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Abstract

The classification of mineral resources must follow standards that were created to regulate
the public disclosure of projects assisting investors and their advisers in making
investment decisions and preventing the publication of erroneous, misleading and
fraudulent information. The definition of classification categories are subjective and based
on the degree of confidence in geologic continuity, granting the choice of an adequate
technique for classification to an expert professional, commonly referred as a competent
or qualified person. Many techniques have been developed for resource classification in
recent years and to understand the state of practice of resource classification, a survey of
Canadian NI 43-101 reports was conducted. The survey revealed that geometric
techniques dominate the techniques used for classification and that, although geostatistical
techniques are not commonly used in practice, kriging variance appeared as criteria for

classification more often than expected.

Geostatistical techniques have the potential to introduce relevant information to the
classification paradigm, such as, accounting for the spatial correlation of attributes of
interest or even allowing the assessment of local distributions that enable the use of
meaningful probabilistic classification criteria. Kriging variance is known to generate
undesirable artifacts (bullseyes) and often requires post processing. A novel
cross-validation variance technique that keeps the advantages of variance based

techniques while reducing artifacts is proposed in this thesis. The classification is
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performed by (1) removing one or more drill holes with highest kriging weight (2)
calculating KV using the surrounding data and (3) applying a threshold for classification.
The thresholds applied are naturally higher than those originally used for regular kriging

variance due to the removal of nearby drill holes.

A second technique based on a moving window classification applied to conditionally
simulated realizations is also proposed. This addresses the problem of the scale of
classification and artifact generation leading to a high resolution classification with
reduced artifacts. Moreover, simulation uses meaningful probabilistic criteria for the
classification such as precision and confidence (e.g. a block is classified as measured if its

grade falls within £15% of the mean 95% of the times).

The optimum location of infill drill holes is also addressed in this thesis. An objective
function that maximizes classified resources while minimizing the kriging variance is
proposed. The optimization algorithm based on an intelligent random search with a
random restart and local refinement. Although the proposed technique is not guaranteed to
find a global optimum, the proposed methodology is capable of finding reasonable
solutions that lead to improved resources. All techniques developed in this thesis are
applied to synthetic examples and a case study. The case study is a Cu-Mo deposit located

in northern Chile.
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Chapter 1: Introduction

Mining projects are capital intensive and commonly listed in stock exchange to raise
capital for development. As with any investment, understanding the risks involved is
crucial. The quantity of mineral resources is a critical asset of a mining project and the
degree of confidence in its estimation must be clearly reported to investors and their
advisers. Because the mining sector has a large impact in many countries economies, there
was a movement towards the standardization and regulation of the public disclosure of

mineral projects.

Mineral resource classification standards were created in order to define rules for public
disclosure of mineral projects providing investors with reliable information to assist in
making investment decisions and preventing the disclosure of misleading, erroneous or
fraudulent information. The idea of creating codes and guidelines for the regulation of the
public disclosure of exploration results, mineral resources and mineral reserves is not new.
The first published was the JORC Code in 1989, which is now in its sixth edition. Due to
the globalization of the mining industry, there was a need for the development of an

international standard (Weatherstone, 2008).

The Committee for Mineral Reserves International Reporting Standards (CRIRSCO)
composed of representatives of the major National Reporting Organizations (NROs)
developed the Template mostly based on the JORC Code with the purpose of defining a
minimum international standard for public disclosure of mineral projects that could be
used by countries that want to create or update their own codes with international best
practices. The NROs are: Australia (JORC), Canada (CIM Standing Committee on
Reserve Definitions), Chile (National Committee), Europe (PERC), Russia (NAEN),
South Africa (SAMCODES) and United States (SME). (CRIRSCO, 2013)

The estimation of mineral resources is based on samples from the deposit, which are

acquired from different sources such as drill cores, trenches, channels, random chips,



among others. The estimation quality and geological confidence are not only dependent
on the quantity of available data but also on its quality. The quality of these samples have
a direct effect on the resources and must be ensured by quality control and quality
assurance programs. A number of different quality parameters are discussed by
CRIRSCO (2013), Yeates and Hodson (2006), Postle et al. (2000) and Dominy et al.
(2002). According to the Canadian Institute of Mining (CIM) standards on mineral

6

resources and reserves, the classification of mineral resources is dependent on “... nature,
quality, quantity and distribution of data...” (Postle et al., 2000). Based on the quality of
their estimates the resources are classified in one of three possible categories: inferred,

indicated, and measured with increasing degree of geological confidence.

1.1 Problem statement

Although classification standards exist, they are subjective and mostly rely on the
judgement of the qualified/competent person. The existing standards do not specify the
methodology to be applied for the definition of a resource category. Geometric techniques
that use the quantity of data as the criteria for classification have been applied for many
years and are the most used techniques in practice. In the past decades, many other more
sophisticated techniques were proposed, but are rarely used in practice because of

increased complexity, dependency on parameter selection, and artifact generation.

Geometric techniques such as drill hole spacing (DHS) and neighbourhood restrictions
(NR) are the most commonly used in practice. These methods are very simple to apply
and have understandable parameters that make them transparent to most interested parties
and generate reproducible classification results. On the other hand the results cannot be
easily translated to a quantitative measure of accuracy/confidence on resource estimation
and any statement regarding accuracy is qualitative. These methodologies are described in

Section 1.2.2.

Geostatistics provides tools for the quantitative measure of accuracy/confidence in resource

estimation, representing an improvement when compared to geometric techniques. The use



of kriging variance (KV) for classification generates artifacts close to sample locations, the
same happens when simulation is used to classify at a selective mining unit (SMU) scale.
Two new techniques for classification are proposed in this thesis, the first is based on the
KV and cross-validation and the second is based on simulation. These techniques retain the
improvements of using geostatistics for classification while reducing artifacts, enhancing
the accuracy of classification models. Even in cases that the direct use of geostatistical
techniques is deemed inappropriate, it can be used to check the classification results of

standard techniques.

A second area of interest related to the classification of resources, is the optimization of
drill holes to maximize classified resources. Current drill hole optimization techniques are
mostly 2D, while 3D methods are limited as they consider some parameters constant or
they have sub-optimal parameter definition. An ideal optimization algorithm should allow
for 3D drill holes; however, allowing for arbitrary collar, strike and dip parameters,
coupled with the optimization of N drill holes results in a difficult, non-convex
optimization problem. Moreover, the objective function to optimize depends on the
particular deposit, but is often linked to minimizing a local uncertainty measurement,
commonly the KV. The goal of locating infill drill holes also changes during the project
life. Perhaps the minimization of the KV is deemed important in the early stages of a
project. In later stages, the location of infill drill holes may be targeted to increase
classified resources to increase reserves listed in the stock exchange. An optimization
strategy that simultaneously maximizes classified resources while minimizing the KV is
proposed to deal with different optimization objectives. In addition to enhanced parameter
flexibility, the consideration of resources classification in the objective function allows for

improved resources.

Thesis Statement

The proposed classification techniques improve classification accuracy, while
incorporating resource classification into infill drilling optimization allows for the

design of drilling campaigns that maximize classified resources, while minimizing



local uncertainty.

1.2 Literature review

The idea of classifying resources based on the confidence level of estimation was introduced
by the national standards for classification. The most recognized national codes are those
from countries that constitute the NROs and the main features of their codes are introduced
in the Template proposed by CRIRSCO. A brief discussion regarding the key aspects of the

Template is presented here (Section 1.2.1).

Geometric techniques such as DHS and NR are the simplest and most popular among
practitioners. Due to their relevance, a detailed description of these techniques is given

(Section 1.2.2).

The KV is not as popular as geometric techniques for resource classification, but it has
been used in practice. It has the advantage of accounting for data redundancy and grade
continuity. The use of conditional simulation has been recommended by a number of
authors due to its potential to introduce valid measures of accuracy and confidence to the
classification paradigm, but it is still not used in practice. An overview of different

geostatistical based techniques is provided (Section 1.2.3).

The optimization of infill drill holes has been investigated by different authors in recent

years. A brief description of these works is given (Section 1.2.4).

1.2.1 Classification standards

The Template published by CRIRSCO is very similar to The JORC Code 2012 Edition, but
it is compatible with the codes of the NROs (CRIRSCO, 2013). Although the Template
itself does not constitute a 'code’, it was chosen due to its compatibility with the well known

national codes avoiding the need to describe them separately.

The classification standards are guided by three main principles, which are transparency,



materiality and competence. A public report provides all necessary information for
decision making and it has to be based on the work of a competent/qualified person. A
competent/qualified person is a skilled and experienced professional, a member of a
recognised professional organization and is responsible and accountable for part of or the

whole content of the report. (CRIRSCO, 2013)

The motivation behind developing classification standards is to provide a general
definition of different categories based on a quantified level of geological confidence so
that a qualified/competent person or persons can judge the uncertainty based on their past
experience with similar deposits. The Template defines three main categories: exploration

results, mineral resources and mineral reserves (Figure 1.1).

Exploration
Results
MINERAL MINERAL
RESOURCES RESERVES
Inferred
Increasing level of
geological . ———fem———
knowledge and -
b Indicated Probable
Measured Proved
Consideration of mining, processing, metallurgical, economic,
marketing, legal, environmental, infrastructure, social,
sl and governmental factors E——f|-
(the “Modifying Factors").

Figure 1.1: General relationship between exploration results, mineral resources and

mineral reserves. (CRIRSCO, 2013)

Exploration results are used for reporting data and information generated in the early stages
of exploration but are not sufficiently reliable for calculation of reasonable estimates of
tonnage and grade. The category type and classification criteria must be made clear in the

report. (CRIRSCO, 2013)



Mineral resource, which is the main focus of this thesis, is defined as "... a concentration
or occurrence of solid material of economic interest in or on the Earth’s crust in such
form, grade or quality and quantity that there are reasonable prospects for eventual
economic extraction. The location, quantity, grade or quality, continuity and other
geological characteristics of a mineral resource are known, estimated or interpreted from
specific geological evidence and knowledge, including sampling” (CRIRSCO, 2013, p.
10). This means that in addition to the confidence in geologic and grade continuity,
reasonable expected technical and economic factors based on previous experience on

similar deposits must be considered in order to define mineral resources.

14

Mineral reserve is defined as the economically mineable part of a measured and/or
indicated mineral resource” (CRIRSCO, 2013, p. 15). In order to classify as mineral
reserves the technical and economical viability of extraction must be demonstrated.
Mineral reserves are subdivided into proved and probable according to the confidence on

the technical, economic, environmental, social and governmental factors (modifying

factors, see Figure 1.1) used to convert the mineral resources into mineral reserves.

Mineral resources are subdivided into three categories: inferred, indicated and measured
with increasing level of confidence in the geologic and grade continuity. The definition of

each category in the Template is given as follows (CRIRSCO, 2013, p. 11-13):

"An inferred mineral resource is that part of a mineral resource for which quantity
and grade or quality are estimated on the basis of limited geological evidence and
sampling. Geological evidence is sufficient to imply but not verify geological and

grade or quality continuity. ...

An indicated mineral resource is that part of a mineral resource for which quantity,
grade or quality, densities, shape and physical characteristics are estimated with
sufficient confidence to allow the application of Modifying Factors in sufficient
detail to support mine planning and evaluation of the economic viability of the
deposit.  Geological evidence is derived from adequately detailed and reliable

exploration, sampling and testing and is sufficient to assume geological and grade

6



or quality continuity between points of observation. ...

A measured mineral resource is that part of a mineral resource for which quantity,
grade or quality, densities, shape, and physical characteristics are estimated with
confidence sufficient to allow the application of modifying factors to support
detailed mine planning and final evaluation of the economic viability of the deposit.
Geological evidence is derived from detailed and reliable exploration, sampling and
testing and is sufficient to confirm geological and grade or quality continuity

between points of observation."

1.2.2 Geometric techniques

The most commonly used classification techniques are geometric. These methods are
preferred due to their simplicity and transparency, which make them easily understandable
for all stakeholders (Deutsch et al., 2006). There are a variety of geometric measures used

for classification, but the most popular are DHS and NR.

Drill hole spacing (DHS)

This technique classifies blocks based on the spacing between drill holes near the block
location under consideration. The application of this technique is straightforward when
drill holes are vertical and regularly spaced with minimal deviation. In this situation the

classification can be reduced to two dimensions and easily done by hand with the use of

polygons.

In cases where the drill holes are irregularly spaced, drilled in different directions or with
significant deviations, the DHS may be calculated locally. There is no unique way to
calculate DHS. A methodology for the unbiased calculation of data spacing/density based
on Delaunay triangulation and Voronoi polygons is proposed by Naus (2008). Wilde
(2010) proposed a program for calculation of DHS for non-vertical drill holes that uses

Equation 1.1.



s(u) = (%) (1.1)

¢ ny(u

where:

s(u) - data spacing at location u;

V() - search volume;

c - sample spacing along the drill hole;

n,(u) - number of samples found within the volume V' (u);

Thresholds on DHS are often selected based on past experience with similar deposits at the
discretion of the qualified person. The DHS accounts only for the quantity of data. Deutsch
et al. (2006) suggests the use of DHS for resource classification while using conditional
simulation only to support the selection of input parameters. The calculation of DHS in this
thesis is performed using the approach presented in Appendix A that was proposed as an

improvement to the methodology proposed by Wilde (2010).

Neighbourhood restrictions (NR)

The NR technique of classifying blocks is based on a distance to nearby samples and
constraints related to the number and configuration of the data within a search radius
(Figure 1.2). This technique is most commonly applied by defining estimation passes with
different search parameters. Blocks that are estimated by less restrictive passes are
classified as inferred, an intermediate restrictive pass defines the indicated category and

the most restrictive pass defines the measured blocks. (Emery et al., 2006)

1.2.3 Geostatistical approaches

The increasing popularity of geostatistical methods for classification is because of the
potential to introduce additional relevant factors such as grade continuity, data

redundancy, and statistically valid measures of accuracy and confidence. There have been



Figure 1.2: Illustration of the NR technique with three informed octants and three drill

holes found within a search radius R.

a number of different techniques for classification, mostly based on KV. The use of
conditional simulation has been suggested by a number of authors as a better approach to

access uncertainty, but is not common industry practice.

Kriging variance (KV)

Kriging is an interpolation technique that minimizes the squared error between the
estimated value and the unknown true value. The resultant error variance, also known as
the KV, is only dependent on the estimation location, the position of samples and the
variogram. The interested reader is referred to Journel and Huijbregts (1978) for a detailed

derivation/explanation of kriging and the KV.

Typically, the KV is used as a classification criteria by applying thresholds based on the
variogram. The application of these thresholds to the KV in order to define the categories
was recommended by Royle (1977), Sabourin (1984) and Froidevaux, et al. (1986) (as cited
in Sinclair and Blackwell, 2002).

More sophisticated techniques based on KV were proposed by a number of authors. David
(1988) proposed the use of a relative kriging standard deviation defined as the ratio between
kriging standard deviation and the estimated value of a block for classification. Arik (1999)

proposed a classification based on a combination of the ordinary kriging variance and the



weighted average of the squared difference between the estimated value of a block and the
data values used in its estimation. This combined variance is also used in the calculation of a
resource classification index proposed later by the same author. The resource classification

index includes the estimated value of the block and a calibration factor (Arik, 2002).

Yamamoto (2000) proposed a classification technique based on interpolation variance that
is the weighted average of the squared difference between the estimated value of a block
and the data values used in estimation, the weights used are the ordinary kriging weights.
Mwasinga (2001) gives a brief description of some other geostatistical classification
approaches such as variogram range; kriging variance pdf; confidence limits based on
normal and lognormal models; block efficiency; Isobel Clark’s classification index and

linear regression slope.

The advantage of using KV as the criteria for classification is the consideration of the spatial
structure of the variable and the redundancy between samples (Figure 1.3); however, it often
produces classification maps with undesirable artifacts (Figure 1.4). Artifacts are common
near sample locations as the KV is very low, resulting in patches of measured blocks in
indicated zones. Moreover, the KV does not account for the proportional effect, which is a
common characteristic of earth sciences data and may be important in the high grade zones

where the variance is often high.

Kriging efficiency (KE) and regression slope (RS) were proposed by Krige (1996) to
evaluate the quality of estimation and avoid conditional bias (Equations 1.2 and 1.3
respectively). These techniques have been used for resource classification as shown in
Section 1.2.1. The use of KE or RS for classification will result in classification maps

similar to KV in that artifacts persist as both indexes are close to one near data locations.

_ BV —-KV
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KE (1.2)
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BV — KV + |u|

RS = BV — KV + 2|y (1.3)
where:
KE - kriging efficiency;
RS - regression slope;
BV - theoretical variance of blocks within the domain;
KV - kriging variance;
1 - Lagrange multipliers;

A new classification technique based on the KV and cross-validation is proposed in order
to keep the advantages of variance based techniques while reducing the artifacts from
conventional methods improving the accuracy of classification results and reducing the

need to manually adjust KV based techniques.

Conditional simulation

The KV generates smooth maps that do not consider the proportional effect (Manchuk
et al., 2009) and the true variability of the data. Conditional simulation corrects for this at
the cost of generating multiple realizations that must be processed simultaneously. The
mining industry is hesitant to consider conditional simulation as the processing of multiple
realizations for mine design is difficult (Dominy et al., 2002) however, it is becoming
more common (Snowden, 2001). Each realization generated by simulation is an equally
probable representation of the mineral grades and the full set of realizations must be
treated as an ensemble, which allows for the ability to quantify the uncertainty in the

variable under consideration.

The realizations can be scaled to any volume of interest, which is often an SMU or a
production volume over some time period of interest. The scaled models can be used to
evaluate the distribution of grades at a specific support allowing for a meaningful

utilization of probabilistic criteria for resource classification. It is up to the qualified
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person to determine the criteria that would define each category. There are at least three
critical parameters to be defined: volume under consideration; precision; and confidence
interval (e.g. the values of a quarterly production volume must fall within £15% of the

mean 95% of the time in order to be classified as measured).

A further advantage of using simulation based techniques is the possibility of considering
many other important factors that should be considered for resource classification such the
incorporation of all identified sources of error (Dominy et al., 2002). Moreover, a
significant proportion of current geostatistical research is focused on generating better
conditional simulations; using simulation for classification allows practitioners to take

advantage of the numerous advances being made in this field of study.

The use of conditional simulation for resource classification is suggested by many authors
such as Wawruch and Betzhold (2005), Dohm (2005), Dominy et al. (2002) and Snowden
(2001), which suggest it is a better approach to access uncertainty when compared to the
KV. Other authors such as Deutsch et al. (2006) recommends its use only as a supporting
tool while the final classification criteria should remain geometric. The hesitation to use
simulation stems from the concern that the results of classification are highly dependent
on the modeller assumptions and the parameters chosen, making resource disclosure less

transparent to investors when advanced and complex methodologies are used.

Dohm (2005) proposed a methodology that uses conditional simulation to estimate the
coefficient of variation (CV) of different production volumes: local (SMU), monthly and
annual. The estimated CVs are later used to define change of support factors that account
for the correlation between the blocks. These factors are used to determine the threshold
between classification categories. A block (SMU) with a CV (given by its kriging
standard deviation and kriging estimate) small enough to support a monthly production
volume with a precision of £15% with 90% confidence (assuming Gaussian distributions)
is classified as measured. The annual production volume is used to define the indicated
category and the remaining blocks are assigned to the inferred category. The main

drawback of this methodology is that conditional simulation is only used to make a global
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estimate of the coefficient of variation for different production volumes not taking
advantage of additional local information contained in the realizations. It also assumes the
block distribution to be Gaussian while the simulation can be used to provide the local

distribution at any location.

Similar artifacts as observed when using KV are also observed while using conditional
simulation results to classify SMU blocks. The classification at a larger scale is often
suggested when considering simulation because it allows for the use of meaningful
confidence/precision parameters and avoids the generation of artifacts in the final
classification map, but the classification results may vary depending on the grid definition
due to the coarse resolution of panels. The technique proposed in this thesis combines the
advantages of using a larger volume for classification with the desired SMU resolution for

the classification maps, but reduces artifacts.

1.2.4 Infill drilling optimization

Determining the optimum location of infill drilling has been a constant focus of research
because (1) the high cost of drilling suggests that using fewer drill holes is preferred and
(2) targeting locations of the deposit that are locally uncertain should result in better mine
planning decisions and increased profit of the operation. Existing methodologies for
optimizing the location of infill drill holes consider minimizing the KV as the objective

and are mostly restricted to two dimensions (Soltani and Hezarkhani, 2013).

The use of the KV to assess local uncertainty is attractive for a number of reasons (1) the
KV can be calculated before the drilling is executed (2) KV can consider anisotropies in
the deposit (3) spatial relationships between locations can be correctly accounted for and
(4) the KV is independent of the grade. The simplest optimization scheme is to optimize a
single drilling location by selecting the location with the highest KV, drill holes are placed
in a one-at-a-time manner after recalculating the KV; however, this is unlikely to yield an
optimum reduction in the overall variance as it does not consider the interaction between

the new drill holes and the interaction with existing drill holes (Gershon, 1987).
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The optimization of infill drilling locations must be done considering all drill holes
simultaneously in order to be able to find the optimal solution. The potentially large
number of drill holes to optimize and the number variables required for drill hole
parameterization, coupled with the relatively few constraints on these variables, leads to a
high dimensional non-convex optimization problem; an exhaustive search for an optimum

solution is infeasible, motivating the use of advanced optimization algorithms.

Scheck and Chou (1983) proposed a method based on fixed point theory. The
optimization is achieved by an iterative gradient based technique (GR) that is highly
dependent on the starting locations and quickly converges to a local minimum. Getting a
good starting location for this optimization problem constitutes itself a difficult
optimization exercise. Other drawbacks of this methodology are (1) the consideration of
only two dimensions and (2) the assumption that kriging weights are constant within a

certain neighborhood to simplify the partial derivatives.

Gershon (1987) proposed the use of integer programming for selecting a set of optimum
locations from previously selected candidates using the branch and bound procedure. This
methodology is capable of providing an optimum within the previously selected locations
but cannot provide the best solution among all possible locations, especially in three
dimensions where the strike and dip of the drill holes would provide additional
complexity. Moreover, when too many sites are considered this technique becomes

unpractical.

Soltani et al. (2011) use a binary genetic algorithm (GA) in which the objective function is
the minimization of the average kriging variance (AKV) for an industrial mineral deposit.
They apply the algorithm in 3D and a 2D simplification of the same deposit in order to
highlight the importance of considering the third dimension; however, the drill holes are
still considered vertical. Mohammadi et al. (2012) applies simulated annealing to find the
optimal locations for infill drill holes for a 3D case study using the weighted average kriging
variance (WAKYV) as the objective function, where the weights are the estimated grade of

each block. In this work, block grades are introduced as relevant factors in the objective
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function, but again the drill holes are considered vertical. Soltani and Hezarkhani (2013) use
direct search simulated annealing to optimize the location of 3D directional drill holes. To
be able to optimize directional drill holes, the azimuth is considered constant while the dip is
optimized to maximize the intersection of the drill hole with the ore body and minimize the
proportion of the drill hole within the overburden material. Although some of the presented
works consider the optimization of 3D drill holes they are still limited in that they often
fix some of the parameters that define the drill holes, such as strike and dip. There is an
apparent hole in the available techniques, the optimization of an arbitrary number of drill
holes with unconstrained parameterization (collar location, strike and dip) to minimize KV

and/or maximize resources is proposed.

1.3 Thesis organization

The subjective nature of the regulatory codes regarding the classification procedure allows
the practitioners to use any technique deemed adequate. In order to evaluate the current state
of practice regarding resource classification, a survey of 120 recent Canadian NI 43-101

technical reports was conducted. The results are shown and discussed in Chapter 2.

The most commonly used classification techniques are reviewed and two new techniques
are proposed. The first is based on KV and involves removing one or more drill holes with
the highest weights while performing kriging and using the resultant KV for classification.
This technique has the advantages of variance based techniques and reduces artifacts (see
Chapter 3). The second is based on conditional simulation and uses a moving window
approach for classification at the desired selective mining unit (SMU) resolution based on
larger production volume criteria. This technique has the advantage of accounting for
heteroscedasticity, which is a common characteristic in mineral deposits and also reduces
artifacts since a production volume scale is considered for the actual classification (see
Chapter 4). In order to demonstrate the applicability of the proposed techniques for

resource classification a case study is developed in Chapter 5.

The possibility of using some of the aforementioned classification techniques in the
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optimization of infill drilling for maximizing the classified resources is also explored. In
recent years there has been many works related to infill drilling optimization and most of
these works are based on minimizing local uncertainty (i.e KV). Many techniques have
been used for this purpose, such as: random search, modified random search (MRS), GA,
GR and simulated annealing. Most of these works are restricted to 2D examples but some
authors have proposed methodologies for optimization in 3D. Accounting not only for
uncertainty (KV) but also for grades has been considered by using the estimated grade of
each block as a weight in the objective function. The main contribution of this work on
this topic is to introduce a different way to formulate the objective function that is not
limited to minimizing the KV, but also focusing on maximizing the classified tonnage.

This subject is developed in Chapter 6 along with a case study.
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Chapter 2: Current State of Practice

Regarding Resource Classification

A number of different techniques have been proposed for resource classification, but only
few of them are used in practice. It is important to understand the factors that motivate
the use of certain techniques over others, as well as the limitations of the most common
techniques. This information can be used to assist in the development of new techniques

that would provide significant improvements in resource classification.

The public disclosure of mineral projects by companies listed on Canadian exchanges
must follow the Canadian Institute of Mining (CIM) standards for mineral resources. The
documents that contain this disclosure are known as NI 43-101 and are publicly available
through the SEDAR website (SEDAR, 2013). The SEDAR database constitutes a great
source of information and a survey on its database was performed for the evaluation of the

current state of practice regarding resource classification.

2.1 Methodology

This study was conducted in 2013 with the objective of evaluating the common techniques
currently used for resource classification and for this reason it includes Canadian NI 43-101

technical reports issued mostly in 2012 (125 reports) and 2011 (27 reports).

The main focus of this survey was to understand the current practice in resource
classification but additional useful information was also retained from the surveyed

reports. The database consists of the following information:

* project location

* principal commodities
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* classification technique
* classification criteria

* estimation technique

Only reports with sufficient information to determine the technique used for classification
were considered. The reports that were not considered in this study are: reports without
resource classification; reports with only Inferred resources; reports with classified
resources but without clear explanation of the methodology applied; and, reports on the
same deposit that were already included in the database and that did not present major

changes.

2.2 Results

The locations of the projects are shown in Table 2.1. Only 20.8% of the projects are located
in Canada, followed by United States (16.8%), Africa (13.9%), and South America (11.9%).

Within Canada the provinces that had most number of projects were: Québec (44.8%),
British Columbia (34.5%), and Yukon (27.6%) (Table2.2).

Location % of reports
Canada 20.8
United States 16.8
Central America 7.9
South America 11.9
Africa 13.9
Europe 9.9
Asia 8.9
Australia 9.9

Table 2.1: Geographic distribution of surveyed NI 43-101 reports in World

The percentage of reports by commodity is given in Table 2.3. Gold is most common with
53.7% of the reports. Copper, Iron and Rare Earth Elements (REE) also appear in the top of

the list. All these commodities experienced an increase in price during the years preceding
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the year of the surveyed reports, which explains their prevalence.

Province % of reports

Québec 31.0

British Columbia 23.8
Yukon 19.1
Ontario 7.1
Labrador 4.8
Manitoba 4.8
Nunavut 4.8
Northwest Territories 24
Saskatchewan 2.4

Table 2.2: Geographic distribution of surveyed NI 43-101 reports in Canada

Commodity % of reports
Gold 28.9
Gold-Copper 12.8
Gold-Silver 12.1
[ron 11.4
Copper 54
REE 4.7
Silver 34
Lead-Zinc 3.4
Copper-Nickel 2.7
Nickel 2.7
Uranium 2.4
Other 10.1

Table 2.3: Frequency of each commodity on the surveyed NI 43-101 reports

The most common classification techniques are NR and DHS, accounting for more than
75% of the reports. The KV also appeared in a surprising number of reports and was often
combined with a geometric technique. The prevalence of KV (8.6%) was expected to be
lower as most practitioners are reluctant to use non-geometric techniques that require many

additional subjective modeling decisions.

It is common to find the combined use of different techniques. Some techniques that appear
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in combination with the most common techniques are: RS, KE and manual classification.

Type % of reports Regular drilling (%) Irregular drilling (%)
NR 50.7 6.5 93.5
NR + DHS 2.0 66.7 333
NR + MANUAL 2.0 0.0 100.0
DHS 25.0 34.2 65.8
KV 2.6 0.0 100.0
KV +NR 53 0.0 100.0
KV + DHS 0.7 0.0 100.0
RS + NR 2.0 0.0 100.0
RS + DHS 1.3 100.0 0.0
RS + NR + DHS 0.7 100.0 0.0
RS +NR +
MANUAL 0.7 0.0 100.0
KE + NR 0.7 0.0 100.0
MANUAL 2.0 0.0 100.0
OTHER 4.6 0.0 100.0

Table 2.4: Summary of classification methods used in NI 43-101 technical reports
published in Canada in 2012 and 2011 (152 reports were considered)

As expected, geometric techniques are the most used in practice. DHS seems to be preferred
in cases in which the drill holes are fairly regularly spaced, which simplifies the calculation
of spacing and the classification maps can be defined by manually drawing polygons. Note
that reports classified manually with DHS as the criteria for classification were considered
in the DHS category. The reports considered in the manual category were those in which
the classification was performed by hand, but considering different criteria that may or may

not include DHS.

The NR technique seems to be preferred when the drill holes are irregularly spaced, which
is commonly the case in mining. The use of NR for irregular drilling could be due to the
fact that most commercial software do not offer an option for DHS calculation for
irregularly spaced drill holes. Moreover, NR can be easily applied by modifying the
search parameters of the estimation functionality in most available software. The most

common constraints considered while applying NR are: minimum number of data,
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minimum number of drill holes and minimum number of informed octants. Appropriate
thresholds are decided based upon the experience of the qualified person. The

neighbourhood range is sometimes associated to the variogram ranges, but it is not a rule.

The KV was used in 8.6% of the surveyed reports and in most of these cases KV was applied
in combination with other techniques with the purpose of avoiding artifacts. In the cases
where KV was used alone, the classified maps were reviewed bench by bench and artifacts
were removed by hand. Automated techniques, such as dilatation and erosion were also
used to remove artifacts from classification maps. The variance thresholds for different
classification categories are often chosen based on an equivalent DHS that would support

that category.

It is interesting to note that two other techniques based on KV were also found in this survey.
Slope of regression and kriging efficiency are values derived from the KV and produces

results that are similar to the results of classification based solely on KV.

Another interesting information retrieved from the surveyed reports is the estimation
technique applied in each case. The most commonly used estimation techniques,
according to the survey, are given in Table 2.5. There is a prevalence of geostatistical
techniques with ordinary kriging accounting for over 50% of the surveyed reports. Inverse
distance is widely used with 29.61% of the reports and polygonal is surprisingly high
accounting for 7.24% of the reports. In some cases, different techniques are considered
appropriated for different domains for the same project, which explains the use of more

than one estimation technique for some of the reports.
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Technique % of reports

Polygonal 7.3

Inverse Distance 29.6

Inverse Distance and Ordinary Kriging 2.6
Ordinary Kriging 54.0

Ordinary Kriging and Multiple Indicator Kriging 1.3
Ordinary Kriging and Indicator Kriging 1.3
Multiple Indicator Kriging 2.6
Sequential Gaussian Simulation 0.7

Median Indicator Kriging 0.7

Table 2.5: Techniques used for estimation in surveyed NI 43-101

2.3 Conclusion

The geographic distribution of projects listed in the Canadian Stock Exchange is diverse
with the majority of the projects located in the Americas (57.4%). Within Canada, the
provinces and/or territories that lead in the number of projects are: Québec, British

Columbia and Yukon accounting for 73.8% of reports.

As expected, geometric techniques are the most common in practice. DHS is used mostly
when the drill holes are regularly spaced while NR 1is preferred for irregularly spaced drill
holes. The lack of software that supports drill hole spacing calculation for irregularly

sampled deposits might be the reason for the prevalence of NR.

The KV has been used in several reports, mostly combined with other techniques for
artifacts reduction. Even in cases in which the KV was used alone, the final results were
treated for artifact reduction. KV is closely linked to DHS but with appealing advantages
such as the ability to account for redundancy between data and the use of a measure of
spatial continuity (variogram). Despite the benefits of KV, the artifact generation seems to
be a major issue. These facts motivated the development of the cross-validation variance
(CVV), which is presented in Chapter 3. This technique preserves the advantages of KV

classification, but with reduced artifacts.

More advanced geostatistical techniques, such as conditional simulation, were not used
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for resource classification. Simulation could bring a number of benefits to resource
classification such as the use of confidence intervals that account for the proportional
effect, which is commonly observed in mining data. KV is a good measure of the spatial
distribution of data, but it is not a good measure of uncertainty as it does not account for
data values or shape of local distributions. KV is able to provide the local distribution of
uncertainty in Gaussian space, but an appropriate measure of local uncertainty would
require the assessment of the local distributions in the original units, which is achieved by
using simulation. The lack of its use in the surveyed reports together with its potential
benefits motivated the proposal of a technique based on simulation, which is detailed in

Chapter 4.
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Chapter 3: Cross Validation Variance

The survey presented in Chapter 2 showed that geostatistical techniques are the most used
in practice for resource estimation, however, this is not true for classification. Even
though geostatistical techniques are not commonly applied for classification, the survey
results revealed a higher usage than expected. There are interesting properties of KV that
motivates its use for classification, such as accounting for data redundancy and spatial
structure of data, but the artifact generation and the need for additional subjective
modeling parameters prevents widespread use. The main issue with KV are the artifacts
that require post-processing for their removal. CVV was developed to overcome the
limitations of the existing techniques while keeping the advantages of variance based

techniques (Silva and Boisvert, 2014).

This chapter is organized as follows. Section 3.1 gives a detailed description of the CVV
technique while Section 3.2 presents a small example that was built in order to compare the

proposed technique with the most used in practice (NR, DHS and KV).

3.1 Methodology

Artifacts (bullseyes and holes) are generated because the KV is very low near data
locations. An example of artifacts generated by using KV for classification is shown in
Figure 3.1. Blocks very close to a drill hole that are located in areas with low drilling
density are classified with a resource category that is higher than it should be
(Figure 3.1b). This could result in measured blocks in zones that are expected to be
indicated, or indicated and measured blocks in inferred zones. Figure 3.1c and 3.1d shows
a proper classification using KV in a densely sampled area that is expected to be classified.

The threshold for classification are the same for both cases (Figure 3.1b and 3.1d).

The impact of removing one drill hole on the KV of nearby blocks is expected to be higher
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Figure 3.1: KV classification artifacts. (Classified blocks are colored in gray in b and d,

black dots are data locations)

in low drilling density zones than it is in high drilling density zones. Based on this fact

a methodology based on cross-validation was used to reduce artifacts, resulting in more

accurate classification maps that retain the advantages of variance based techniques.

The CVV is calculated by removing one or more drill holes with the highest weights while
performing kriging and using the resultant KV to classify the blocks. This technique: is
suitable for regular and irregular drilling patterns; accounts for spatial structure and
redundancy between data; and reduces artifacts caused by using the KV alone.

Classification is done by (1) removing the drill hole with highest kriging weight (2)

26



calculating KV using the surrounding data and (3) applying a threshold for classification.

The number of drill holes to be removed and thresholds are defined by the user in order
to minimize the undesirable ‘holes’ and ‘patches’ that are created with conventional KV
classification. An improved reduction of artifacts can be achieved by using the average
cross-validation variance (ACVV) resulting from removing different numbers of drill holes

and averaging all the CVV's.

The same exercise presented for KV in Figure 3.1 was used to calculate the CVV removing
a single sample for each block to be classified. The result is shown in Figure 3.2. As
expected, the variance of each block is higher than the original KV for all blocks in both
high and low data density case and, as result, the classification threshold must also increase.
The thresholds for KV are usually decided to match a certain DHS, the same can be done
for CVV. For this example the classification threshold was increased from 0.30 to 0.80. As
observed in Figure 3.2b the misclassified blocks were removed while the high data density

zone remained classified.

A block must be informed by at least two drill holes in order to be classified when CVV is
calculated by removing one drill hole. A general purpose software for kriging in 3D (kt3d)
that is part of the Geostatistical Software Library (GSLIB) (Deutsch and Journel, 1998) was

modified for the calculation of CVV in this work.
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Figure 3.2: CVYV classification. (Classified blocks are colored in gray in b and d; black

dots are data locations)

3.2 Comparison with common classification techniques

The NR, DHS, KV and the proposed CVV are compared for 2D and 3D examples with
regular and irregular drilling patterns to highlight the advantages and disadvantages of
each. Using sgsim (Deutsch and Journel, 1998), the 2D model was generated by an
unconditional sequential Gaussian simulation (SGS) and sampled on a regular and
irregular grid (Figure 3.3). The 3D example uses data from drill holes on a porphyry
copper-gold deposit (Figure 3.4).
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Figure 3.3: 2D example generated by sgsim and sampled in a regular and irregular

pattern

Classification for the 2D regular grid is trivial, but is included as a bench mark for the
techniques. The model is created to resemble a constant thickness (10 m) tabular deposit
in which the modeling block size is 25m by 25m. For the regular 2D example the model
is sampled by three regular grids: 200x200m; 100x100m; and, 50x50m (Figure 3.3a). For
the irregular 2D example a random component is added to the coordinates of the regular
grid before sampling (Figure 3.3b). The variogram of the data is composed of two isotropic
spherical models with ranges of 200 and 300 meters with 25% and 75% of contribution to

the sill respectively.

For the 3D example the variogram of the data is composed of three spherical models and
a nugget effect of 15% (Equation 3.1). The 3D example have two nominal DHS of 50x50
and 25x25 meters. The modeling block size for the 3D example is 15x15x10m.

h — ]_ ]. h(lv: m h ]. h(u}: m h
’)/( ) 0.154+0.18 x sp ah:%gm( )—l—O 7 X sp ah:ggg)n( ) G.1)

0.50 hav=180m (h
+0.50 X sphay=1som (h)
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Figure 3.4: 3D example: porphyry copper-gold deposit.

3.2.1 2D regular

The synthetic 2D example with a regular drilling pattern is considered first to visualize the
results of each technique (Figure 3.3a and Figure 3.5). For DHS the measured blocks are
those within the area drilled at 50x50m grid with extrapolation of half a spacing (25m),
indicated blocks are those within the area drilled at 100x100m with extrapolation of 50m

and inferred blocks are those within the area drilled at 200x200m.

An additional contribution of this work is that the use of the average drill hole spacing
(ADHS) removes the reliance on selecting a single value of n. The methodology for the
calculation of ADHS is described at Appendix A. In this example the method for calculation
of ADHS is the search for a number of data and the parameters used are n = 2 to 8 with steps
of one unit. The thresholds for classification are S0m for measured, 100m for indicated and

200m for inferred.

For the NR classification the parameters are chosen by a visual sensitivity analysis in order

capture the areas considered measured, indicated and inferred. Blocks with at least 8 drill
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Figure 3.5: Classification results for the 2D regular grid. Axes dimensions: 2000m by
2000m.

holes within 100m are considered measured, indicated blocks are those with at least 8 drill

holes within 200m.

For the KV classification the thresholds are defined based on same drill hole spacing used
for DHS classification. The threshold between measured and indicated is 13% of the sill

and the threshold between indicated and inferred is 31% of the sill.

The number of drill holes removed for the CVV method is one and the thresholds are
chosen by a visual sensitivity analysis in order to reduce artifacts. The removal of drill
holes increases the KV for each block, which leads to higher thresholds when compared to
the KV technique. The thresholds used are 20% and 50% of the sill. For the ACVV
classification, the number of drill holes removed is one and two and the thresholds are

25% of the sill and 60% of the sill, again selected based on visual inspection.

For this synthetic example the DHS zones defined by hand (titled DHS in Figure 3.5) are
matched well by the majority of the techniques as this is a fairly easy set of drill holes

to classify. As expected, the KV perform well in classifying different zones but with the
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problem of artifacts (patches) close to drilling locations that are successfully removed using
the proposed CVV methodology. In this case there is no anisotropy and the proportional

effect is not considered.

3.2.2 2D irregular

The 2D example with irregular drilling is used to visualize the effect of parameters for
each technique and to visualize the adequateness of each technique to situations in which

classification is not straightforward.

Drill Hole Spacing (DHS)

A visual analysis of the parameters for DHS is shown in Figure 3.6a. Increasing the
number of data used in calculation reduces the artifacts but also increases misclassified
blocks. There is no control on the search radius considered as it is a function of the block
location and number of data searched (n). Data far from a block may inadvertently assign
a higher category for a block; a small number of drill holes is recommended to avoid this
problem. More accurate (closer to the known ‘by hand’ technique) and smoother (fewer
holes and patches) maps can be achieved using the proposed ADHS technique
(Figure 3.6b)

Neighborhood restrictions (NR)

A visual analysis of the parameters for the NR technique is shown in Figure 3.7.
Classification based on NR requires two parameters (search radius and minimum number
of drill holes) and performs similarly to DHS for irregular drilling patterns. The
classification maps may require post processing to reduce noise in the classification

borders.
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Figure 3.6: Sensitivity on DHS parameters. Axes dimensions: 2000m by 2000m.
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Figure 3.7: Sensitivity on NR parameters: search radius (SR) and minimum number of
drill holes (n). Axes dimensions: 2000m by 2000m.
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Kriging variance (KV) and Cross-validation variance (CVV)

A visual analysis of parameters for the CVV technique is shown in Figure 3.8. Blocks that
are close to redundant drill holes tend to stay in the same category as with the conventional
KV method; blocks that are located close to isolated drill holes tend to be downgraded. This
is a desirable characteristic but a balance must be made between removing ‘patches’ and
creating new ‘holes’. In general, the technique reduces the artifacts compared to using the
KV alone (Figure 3.5, Figure 3.9 and Figure 3.10). If the removal of one drill hole is not

sufficient for removing artifacts the ACVV may be considered.
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(a) CVV calculated (b) ACVYV calculated removing 1
removing a single drill hole to 2, 1 to 3 and 1 to 4 drill holes

Figure 3.8: Sensitivity on CVV parameters: threshold and number of drill holes removed
(nDHR). Axes dimensions: 2000m by 2000m. Removing 0 drill holes, nDHR=0, is

equivalent to the traditional KV technique.

Classification results

The result of classification for the 2D irregular case is shown in Figure 3.9 for all techniques

and illustrates how the different techniques considered perform in a non-straightforward
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Figure 3.9: Classification results for the 2D irregular grid. Axes dimensions: 2000m by
2000m.

The DHS and ADHS are calculated using the methodology presented in Appendix A with
n = 8 and n = 2 to 8 respectively. Blocks with DHS/ADHS less or equal to 50m are
measured, blocks with DHS/ADHS less or equal to 100m are indicated, remaining blocks

are inferred.

For NR classification the parameters are chosen by a visual sensitivity analysis in order
to take the best combination that captured the areas considered measured, indicated and
inferred. Blocks with at least 8 drill holes within 100m are considered measured, indicated

blocks are those with at least 8 drill holes within 200m.

For the KV classification the thresholds are defined based on a regular grid of 50x50m for
measured and 100x100m for indicated. The threshold between measured and indicated 1s
13% of the sill and the threshold between indicated and inferred is 31% of the sill based on

an equivalent DHS.
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The number of drill holes removed for the CVV method is one and the thresholds are chosen
by a visual sensitivity analysis in order to minimize artifacts. The thresholds used are 20%
and 50% of sill. For the ACVV the number of drill holes removed are one and two and the
thresholds are 25% and 60% of the sill.

3.2.3 3D example

The 2D examples are appropriate for vertically drilled holes, but often mineral
classification problems are three dimensional with a significant proportion being
irregularly drilled as a high degree of geological confidence requires drill holes
intersecting the ore body in different directions (Yeates and Hodson, 2006). For the 3D
example (Figure 3.4), a sensitivity analysis similar to the 2D irregular case is performed in
order to select the parameters for various classifiers. The classification models are shown

in Figure 3.10.

For this example the grade values are estimated by ordinary kriging (Figure 3.11) and the
resources are calculated and classified with each technique. The results of resource

calculation and classification are given in Figure 3.12.

The quantitative results for geometric methods and proposed technique are similar with
a slight increase in the indicated category for the proposed technique (CVV). There is a
considerable increase in the measured category while using KV mainly due to the ‘patches’
artifacts that are common with this classification technique. Ignoring the KV technique,
it is interesting to note that the measured and indicated results are surprisingly consistent
across all techniques. Of course, the benefit of using KV in CVV is that local classification

can be more accurate as data redundancy and anisotropy can be incorporated.
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Figure 3.10: Classification results for the 3D example. Axes sizes: 1000m (vertical);
600m (east); and 560m (north). Horizontal slices at elevations 150m, 318m 486m, 654m,

822m, and 990m (first row). Vertical slices at 352.5m east (second row) and 352.5m north
(third row).
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Figure 3.11: Estimated grades for the 3D example. Horizontal slices at elevations 150m,

318m 486m, 654m, 822m, and 990m (left). Vertical slices at 352.5m east (center) and
352.5m north (right).
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Figure 3.12: Resource classification results, showing the metal tonnage.
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3.3 Conclusion

Geometric techniques, which are most commonly used, do not account for the spatial
continuity of the variables nor redundancy between data but typically result in
classification maps that have less artifacts and are less sensitive to modeling parameters

(i.e. kriging and simulation parameters).

When the anisotropy of the deposit is significant and known, it is important that this be
incorporated into classification in some way in order to improve the local classification.
The KV captures this information but often results in artifacts when used in classification.
The combination of cross validation with the KV is able to reduce these undesirable features

and incorporate known information on spatial continuity into classification.

The proposed technique represents a viable alternative for resource classification. As with
all resource classification techniques, it is the responsibility of the practitioner to assess the

appropriateness of the final result based on knowledge of the deposit.
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Chapter 4: Simulation Approach for
Classification at SMU Scale

Classification of mineral resources plays an important role in the economic assessment of
any mining project. There have been many proposed methodologies for applying
geostatistical techniques to classification, mostly based on KV; however geometric
techniques are the most used in practice due to ease of implementation. KV considers the
spatial structure of the variable under study and deals with redundancy, but does not
consider heteroscedasticity, which is a common characteristic in mineral deposits. The use
of conditional simulation has the potential to overcome this limitation and its use for
classification is attractive, although it is not often applied in practice because of its
complexity and sensitivity to key parameters such as the covariance function and trend
model, which are very dependent modeling assumptions, making resource disclosure less
transparent to investors (Silva and Boisvert, 2014). A new methodology for the
application of simulation to classification is proposed here in order to classify at the SMU

resolution based on a larger production volume criteria.

4.1 Methodology

It is desirable to have a classification model at the SMU scale (Wawruch and Betzhold,
2005), but at this scale the variability is often too high leading to difficulties of using
probabilistic criteria (i.e. the values must fall within +15% of the mean 95% of the time)
for resources classification. In order to classify at the SMU scale, the probabilistic criteria
has to be less restrictive for allowing measured or indicated resources, but the uncertainty
at this scale is only reasonable during the production stage when dense data from blast
drill holes is available. Moreover, artifacts are often generated close to drilling locations

where SMU blocks are classified as measured even in sparsely sampled areas. These
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artifacts are undesirable (Deutsch et al., 2006) as they lead to small disconnected volumes
that would not be considered during the definition of reserves. These problems are often
remedied by classifying resources based on larger volumes, which may represent monthly,
quarterly or yearly production (Figure 4.1). In this case the probabilistic criteria can be

more restrictive leading to more control at a meaningful scale with fewer artifacts.

f(x) 0 p-15%  p+15%
—— Panel

Figure 4.1: SMU grade distribution vs panel grade distribution.

The quarterly production volume is much larger than the SMU size and its shape, volume
and position are often unknown as it depends on a detailed mine plan that is certain to change
as more data 1s collected; however, the shape of these larger panels can be determined by
previous experience in similar deposits in conjunction with relevant information such as a
grade variability model (Wawruch and Betzhold, 2005). Different grid definitions for this

large scale block model leads to different classification models (Figure 4.2).

. . . .
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Figure 4.2: Illustrative example of different classification results for different grid origins

based on a large production volume scale.

41



In order to have the desired SMU scale classification resolution while minimizing artifacts, a
large production volume is required but the exact panel positioning is not known at the stage
of classification. A local classification is proposed that considers a window representing
the production panel, which is centered at each SMU block that is classified according to

the classification of the panel (Figure 4.3).

The proposed methodology requires the definition of the classification scale (panel) and
resolution (SMU) as well as multiple realizations of the truth generated with adequate
simulation technique. The steps for classification of a SMU block are: (1) center the panel
volume at the center of the SMU to be classified (2) assess the grades of the panel over
multiple realizations (3) calculate the average grade and therefore the lower and upper
thresholds for each category accordingly with the required precision for each category (4)
count the number of blocks that falls within the thresholds of each category (5) assign the

category according the required confidence interval of each category.

.

Figure 4.3: Illustrative example of moving window classification. Left: The SMU block
is not considered measured as the uncertainty in the larger production volume (light grey)
is large. Center: The SMU block is considered measured as there is low uncertainty in
the larger production volume (light grey) due to the denser data. Right: SMU blocks

considered measured.
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4.1.1 Probabilistic criteria

Although simulation is highly dependent on a modeler's parameter selection during its
application (covariance function, trend model, etc.), the actual classification parameters
are much less subjective than the parameters used for geometric based classification
techniques. The probabilistic criteria have a clear meaning and are easily understood. It is
easier to understand and justify the classification of a block as measured when its grade
falls within £15% of the mean 95% of the time, than when there are eight drill holes
within 100m range. The meaning of eight drill holes within 100m range is not clear,
although it may come from previous experience with similar deposits. Moreover a
standard probabilistic statement for resources could be made (but is beyond the scope of
this work); a standard number of drill holes within a distance is impossible because of the

vastly differing geologies of different deposits.

The specific values for the probabilistic criteria to be used is out of the scope of this work, it
is certainly case specific and requires expert judgment, as with all classification approaches.
The parameters usually range between £10% to £30% for precision and between 95% and
80% for confidence intervals (Dohm, 2005; Dominy et al., 2002; Wawruch and Betzhold,
2005; Yeates and Hodson, 2006). The criteria used in the following section and case study

(Chapter 5) are within this range.

4.1.2 Synthetic examples

For the sake of comparison, the proposed technique is applied to the same 2D and 3D
examples presented in Chapter 3 for CVV (Figures 3.4 and 3.4). For the 2D example the
SMU size is 25m by 25m and the quarterly production is given by a panel size of 150m by
150m. The SMU size for the 3D example is 15m by 15m by 10m and the quarterly
production is given by a panel size of 150m by 150m by 60m.
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Local uncertainty

KV accounts for data redundancy and spatial correlation, but it is not a good measure of
local uncertainty as it cannot capture properties such as heteroscedasticity that often
appears in form of proportional effect as the distribution of geological variables tends to
be positively-skewed. In this context, geostatistical simulation will provide a better
assessment of local uncertainty (Figure 4.4). The example shown in Figure 4.4 displays
the difference between the assessment of local uncertainty with kriging (KV) and
conditional simulation (conditional variance) highlighting how simulation captures the

dependency of local uncertainty on grade values.

The contribution of proportional effect is mitigated as the volume under consideration
increases due to averaging, but the evaluation of the importance the of proportional effect

is not possible until simulation is used for assessing the local distribution at the required

volume.
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(a) Average grade (%) (b) KV (%?) (¢) Conditional variance (%2)

Figure 4.4: Difference between the assessment of local uncertainty with kriging (KV)

and simulation (conditional variance) at SMU scale. Axes dimensions: 2000m by 2000m.

Sensitivity analysis

For a better visualization of the effect of the probabilistic criteria on classification results

of the proposed methodology, a visual sensitivity analysis is shown in Figure 4.5. The
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classification results are not only a function of data location as with KV, but also depend on

grade values.

Conf. > 95% Conf. > 80% Conf. > 50%

Prec. £15%

Prec. £30%

Prec. £50%

Figure 4.5: Sensitivity on conditional simulation parameters. Axes dimensions: 2000m

by 2000m.

When the proportional effect is present, high grade zones will display higher variability
than low grade zones for the same data configuration, but it does not mean that lower grade
zones are more likely to be classified as a higher category (i.g. measured as opposed to
indicated). That is because when precision and confidence intervals are used as criteria for
classification, they are also dependent on grade, but in a non-intuitive way. As the grade
increases the precision interval, which is relative to the mean, also increases, which means
that more variability is allowed for high grade zones while a very small mean grade will
lead to small precision interval allowing less variability in low grade values (Figure 4.6).
The final classification will depend on the balance between the probabilistic criteria and

proportional effect.
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Figure 4.6: Illustration of dependency of the precision interval on the average grade.

Classification results for the 2D examples

The classification based on conditional simulation is performed with the proposed technique
for regular and irregular drilling patterns. In order to define measured blocks the quarterly
production panel must have a precision of at least +15% with 95% of confidence while
indicated must have a precision of +£30% at 80% confidence interval. The result is shown in
Figure 4.7. The classification result accounts for heteroscedasticity, has minimal artifacts

and is at SMU scale.
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Figure 4.7: Classification result for the 2D examples.
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Scale of classification

The conventional classification for small (SMU) and large scale (panel) is compared with
the proposed methodology for classifying at a local scale using a large scale criteria
(Figure 4.8). The proposed technique of centering a production volume on each SMU
(Figure 4.8 right) reduces artifacts and does not have the undesirable reliance on a fixed
large scale grid, where panels clearly contain part measured and part inferred SMU blocks
(Figure 4.8 center). In this comparison, the chosen criteria for SMU scale classification is
precision of £30% with 90% confidence for measured and +30% with 50% confidence for
indicated. For the large scale the criteria is precision of +15% with 95% confidence for

measured and £30% with 80% confidence for indicated.

SMU Panel Proposed

. Measured D Indicated D Inferred

Figure 4.8: The classification based on conditional simulation for conventional SMU
scale, conventional panel scale and the proposed SMU scale classification methodology.

Axes dimensions: 2000m by 2000m.

Classification results for the 3D example

For the 3D example, the probabilistic criteria is a precision of £15% with 95% confidence
for measured and £30% with same confidence interval for indicated. The classification
models are shown in Figure 4.9. Again, the classification was performed at the SMU scale

with quarterly production volume criteria resulting in very few artifacts.
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The group of measured blocks that seem to be disconnected from the main measured mass is
caused by a number of directional drill holes that cross that volume (Figure 4.9). Of course
the benefit of incorporating simulation into classification is that local classification can be

more accurate as data redundancy, anisotropy and proportional effect can be incorporated.
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Figure 4.9: Classification with the proposed moving window applied to conditionally
simulated realizations for the 3D example. Horizontal slices at elevations 150m, 318m
486m, 654m, 822m, and 990m (left). Vertical slices at 352.5m east (center) and 352.5m
north (right).

4.2 Conclusion

When the proportional effect is deemed relevant and/or the consideration of other sources
of error is needed, simulation based techniques are useful for resource classification. The
proposed methodology is capable of performing classification at a typical block modeling
scale (often SMU) but with reduced artifacts as a production volume scale is considered for

the actual classification.

The proposed technique represents a viable alternative for resource classification. As with
all resource classification techniques, it is the responsibility of the practitioner to assess the

appropriateness of the final result based on knowledge of the deposit.
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Chapter 5: A Case Study on Resource

Classification

Since the creation of classification standards for resource classification, a number of
different techniques for classification have been developed, however, only few of them are
actually used in practice. In this chapter, the most popular techniques for resource
classification (DHS, NR and KV) and the two techniques proposed in Chapters 3 and 4
(CVV and a moving window classification based on conditionally simulated realizations)
are applied to the resource classification of a Cu-Mo porphyry deposit located in northern
Chile. The obtained results revealed the dissimilarity among different classification

techniques especially when anisotropy and the proportional effect are present.

5.1 Methodology

In practice, the parameters for classification are selected by an experienced professional
based on his knowledge of the deposit. In order to perform the comparison of different
classification techniques, the parameters and criteria for each technique (with the exception
of KV) are selected with the intention of achieving similar classified volumes; this allows for
a comparison between the techniques rather than a comparison of how to parameterize. The
KV classification is an exception to the previous statement due to the low variance value
close to data locations that causes the volume of measured and indicated to be naturally
higher due to these artifacts. A description of the data and a brief description the parameters

used by each classification method follows.
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5.1.1 Data set

This case study is based on a data set from a Cu-Mo porphyry deposit in northern Chile,
located in a granite-granodiorite complex of the lower Paleocene age that has been dated
by the Chilean Geological Survey (SERNAGEOMIN) at 64 +2 Ma (K-Ar isotopes). The
batholith has been tentatively interpreted to be situated along a north-east trending job in a

regional north-south trending reverse fault.

The data consists of a set of drill holes, a geologic model and a surface model (Figure 5.1).

The size of the 3D model is 201x124x101 blocks of 20x20x15 meters in x, y and z.

The declustered histogram of the data is shown in Figure 5.2. The distribution of grades is
positively skewed with mean of 0.34% of copper and standard deviation of 0.28% of copper
leading to a coefficient of variation (CV) of 0.82. There are 36,373 informed composites
with length of 5.0 meters each.The variogram model consists of a nugget effect of 0.10 and
4 nested structures (Equation 5.1 and Figure 5.3). The direction of major continuity has an

azimuth of 135° from north to east and a dip of 0°.

min=40 min=150

med=40 med=160 (5 ) 1)
+0.20 x Sphmaj:420(h) + 0.13 X Sphmajzlooo(h)
min=240 min=240
med=500 med=500

5.1.2 Drill hole spacing (DHS)

There is no unique way to calculate the DHS of irregularly spaced drill holes. In this case
study, the methodology presented in Appendix A is used. The calculation is made based
on a given number of data. For smother and more accurate results the average of multiple
input parameters is used with the number of data searched ranging from two to eleven with
a step size of one unit. The thresholds used for DHS are 27 meters for measured and 58

meters for indicated.
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Figure 5.1: Data set (surface model, geologic boundary and drill holes) and estimated

model.
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Figure 5.2: Declustered histogram.
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Figure 5.3: Modeled experimental variogram. Left horizontal (blue line and dots:

azimuth of 135°; red line and dots: azimuth of 45°, right vertical (dip of 90°).
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5.1.3 Neighborhood restrictions (NR)

The NR consists of defining a search range within which a certain number of constraints
must be met in order for a block to be classified. In this work the only constraint used is a
minimum number of drill holes. In order to be classified as measured a block is required
to be informed by 11 different drill holes within 114 meters range, while to be defined as

inferred there must be 5 different drill holes within 135 meters from the center of the block.

5.1.4 Kriging variance (KV)

The classification based on KV is performed by defining thresholds for each category. In
this work the blocks with KV below 35% of the block variance are classified as measured
while the blocks with KV below 65% of block variance, but higher than 35% are classified

as indicated.

5.1.5 Cross validation variance (CVYV)

The CVV methodology involves the calculation of the KV after the removal of one or
more drill holes with the highest kriging weights in order to reduce artifacts from the KV
classification. Up to seven drill holes are removed for the calculation of CVV for this
case. Blocks with CVV below 66% of the block variance are classified as measured while
the blocks with CVV below 83% of block variance, but higher than 66% are classified as
indicated. As the CVV is calculated by removing drill holes with highest kriging weights
the thresholds used for classification are higher for CVV than for KV. The difference
between thresholds used for CVV and KV increases when more drill holes are removed

for CVV calculation.
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5.1.6 Moving window classification based on conditionally simulated

realizations

This methodology was developed in order to use meaningful classification criteria applied to
large volumes (panels, quarterly or yearly production volumes) but to classify blocks at the
SMU resolution. The size of the panel considered for classification is 200x200x60 meters in
X, y and z directions, representing a quarterly production volume. The probabilistic criteria
considered for classification are a precision of +15% for measured and £30% for indicated

with 95% of confidence for both measured and indicated.

5.2 Results and Discussion

The classification results for the DHS technique are shown in Figure 5.4. The use of the
average DHS from calculation using multiple parameters results in a smooth classification
map that does not require post processing. The classification only depends on the density
of data regardless of the local configuration as data redundancy is not captured by the DHS
classification. Although the presented results do not consider anisotropy, the DHS can be
calculated with anisotropy by performing the appropriate change of coordinates before the
DHS calculation and converting the results back to the original coordinate system after the

calculations.

The classification results for the NR technique are shown in Figure 5.5. The classification
maps for NR are noisy and similar to the DHS with a single parameter. This technique is
the most popular among the practitioners as it can be easily applied by changing the search
parameters of the estimation functionality of most commercial software while calculating

DHS in these software is more challenging.

The classification results for the KV technique are shown in Figure 5.6. This example
illustrates the possible reason for hesitancy in using KV for classification. The artifacts

close to data location causes the presence of measured and indicated blocks within
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Figure 5.4: Classification results for DHS.
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sparsely sampled areas that would not be classified by any other technique. Although KV
accounts for important factors such as the spatial structure of the variable (variogram) and
redundancy between data locations, its use is not reasonable without further processing of
results for artifact removal. In fact, the review of recent technical reports presented in
Chapter 2 revealed that post processing of KV classification results is always required

when it is used alone as criteria for classification.
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Figure 5.6: Classification results for KV.

The CVV technique was developed in order to reduce artifacts from KV classification
while keeping the desired features. The classification results for the CVV technique are
shown in Figure 5.7. The technique greatly reduced the artifacts from conventional KV

classification. The anisotropy from the spatial correlation structure (variogram) is
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observed in the classification maps. Considering that the CVV technique makes use of
additional information regarding the spatial structure of the variable, the results for CVV

are likely more accurate if compared to geometric techniques.
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Figure 5.7: Classification results for CVV.

The classification results for the simulation based technique are shown in Figure 5.8. The
classification map differs from the previous results from other classification methods. This
is mostly due to the proportional effect. The simulation of grades conditional to the data
allows for the assessment of the grade distribution at the desired scale, which enables the
consideration of the proportional effect. This characteristic can be clearly observed in the
horizontal section at an elevation of 750 m (Figure 5.8c) close to the coordinates 2800

m (easting) and 1400 m (northing) where there is unclassified (inferred) blocks that are

58



considered indicated by all other techniques. These blocks that are not classified by the

simulation technique are in a relatively high grade zone (Figure 5.1d) and consequently

have a higher uncertainty due to the dependency of the variance on the grades (proportional

effect).
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Figure 5.8: Classification results for moving window classification based on

conditionally simulated realizations.

A summary of the classification results is shown in Table 5.1.

The average grade

4000

of

classified blocks are consistent among the geometric techniques (DHS and NR) and CVV

while for KV and the proposed simulation based technique the average grade was

consistently lower for measured and indicated category. The reason for KV to result in

lower grades is due to artifacts that classifies blocks at sparsely sampled locations that are



usually low grade zones. For the simulation based technique the reduction in grade is
related to the proportional effect that lead to more variability at high grade zones
decreasing the number of blocks classified at these areas, for the same reason more blocks

are classified at low grade zones.

Technique Measured Measured (% Indicated Indicated (%
(M) of copper) (Mt) of copper)
DHS 150 0.50 1226 0.38
NR 202 0.50 1257 0.39
KV 579 0.41 1445 0.36
Cvv 204 0.50 1303 0.38
Simulation 199 0.44 1311 0.37

Table 5.1: Summary of classification results. (Tonnage obtained assuming a density of

2.30 t/m?)

5.3 Conclusion

The obtained results reveals the dissimilarity among different classification techniques
especially when anisotropy and proportional effect are present. The recently proposed
techniques are successfully applied and performed as expected. The CVV technique is
able to remove the artifacts from the conventional KV classification maps while
preserving the gains from using the available information regarding the spatial correlation
structure of the variable. The simulation based technique generated an artifact free
classification map using meaningful probabilistic parameters such as required precision
and confidence. The proportional effect has significant impact on the final results for this

case study leading to a lower average grade within the measured and indicated categories.

When the spatial correlation structure and proportional effect are deemed important the
geostatistical methods can be considered for resource classification for improved accuracy

of final classification models.
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Chapter 6: Maximizing Resources with

Optimum Infill Drilling

In the mineral industry the information available for modeling is limited and represents a
very small fraction of the domain of interest. Fortunately geological data are often
spatially correlated, which enables the inference of attributes at unsampled locations with
a quantifiable degree of uncertainty. The uncertainty in the estimates is related to the
amount of information available and will always be present as it is unpractical to sample
the entire domain. Uncertainty can only be managed not eliminated. The definition of an
acceptable level of uncertainty is not straightforward and varies for different commodities

and mineralization types.

Regardless of the commodity or mineralization type, gathering information is necessary. In
the mining industry, cores from diamond drill holes are a common source of information for
modeling and are often executed in phases. The costs of acquiring data is high and for this
reason all available information must be used for the planning of infill drill holes including

the information regarding the spatial continuity of the attributes of interest.

The planning of infill drill holes should consider the spatial continuity of the attributes of
interest and the definition of an acceptable level of overall uncertainty in order to avoid
unnecessary costs. Often, a reasonable level of uncertainty is linked to the requirements for

resource classification.

The objective of infill drilling may vary during the project life. In the early stages it may be
important to focus on exploration and delineation of prospective areas. In more advanced
stages the infill drilling might be focused on generating indicated and measured resources

that can be converted into reserves and used to increase the value of the property.

In this case, the reduction in local uncertainty (KV) is not the only desirable characteristic
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of the objective function; the grade of each block as well as the reachability of the areas
is also important. Shallow high grade zones are areas of higher economic interest and are
often first to be developed; therefore, these areas are frequently the first to be converted into
reserves. An objective function that considers resource classification is very relevant. The
proposed objective function considers both the KV for local uncertainty reduction and the
maximization of the tonnage of classified resources, also, potentially weighted by extraction

order to give preference to increasing classified resources early in the project life.

6.1 Background

Random search methods are simple to apply and if applied well can lead to reasonable
solutions in a reasonable period of time. Essentially, this family of algorithms explores the
solution space randomly. The algorithm used in this work for optimization of the proposed
objective function is stochastic in nature and based on a random search with some
improvements to enhance convergence and local refinement of the final solution. A brief

description of relevant random search methods is given.

6.1.1 Blind random search (RBS)

A blind random search (BRS) is the simplest implementation of a random search. It is called
‘blind’ because each iteration dismisses the information acquired in previous iterations.
This algorithm is initialized using a randomly defined variable set or any other pre-defined
feasible solution. In each iteration, the solution space is randomly sampled and the objective
function is evaluated. The new set of variables is kept if it results in a better solution than
the current optimum, otherwise it is discarded. This process is repeated until a maximum
number of iterations is reached or a certain objective function target is met (Spall, 2005). As
the dimensionality of the problem increases (i.e. by increasing the number of drill holes to
be optimized or considering the strike and dip for each drill hole) this methodology quickly
loses its efficiency because it cannot sufficiently explore the solution space and does not

result in a reasonable optimum solution (Spall, 2005).
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6.1.2 Localized random search (LRS)

Each iteration of the BRS algorithm explores the entire solution space and does not keep
record of previous solutions. More sophisticated random search algorithms have been
proposed, including the “localized” random search (LRS) that uses the current best
solution to help propose a new, better, solution. The algorithm is similar to the BRS
algorithm, but instead of generating a variable set that is independent of previous sets, in
each iteration, a step size is generated and added to the current best solution before the

evaluation of the objective function (Spall, 2005).

This improvement keeps the information acquired in previous iterations and permits the
search size to be reduced as optimization proceeds, essentially performing a localized search
for the solution and improving the ability to find a locally optimum solution. Matyas (1965)
proposed a LRS algorithm and proved its convergence to a global optimum for a sufficient

number of iterations, this proof was later revised by Baba et al. (1977).

6.1.3 Modified random search (MRS)

Another variation of the random search is the MRS. Rather than changing all variables in
each iteration, only one variable or a subset of variables is perturbed and the objective
function is reevaluated; the change is accepted if an improvement is observed in the
objective value (Wilde, 2009). Wilde (2009) showed that for a small 2D example this
technique outperforms other common optimization strategies including the BRS, GA, GR,
Nelder-Mead simplex, and Hooke-Jeeves pattern search. MRS outperformed the BRS and
yielded good results with a reasonable number of iterations when compared to the other

tested techniques, suggesting its potential for the optimum placement of drill holes.
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6.2 Methodology

The optimization algorithm chosen for this work is a mix between the LRS and MRS
algorithms. Two major improvements are proposed to enhance efficiency. The first
improvement is the use of weighted probabilities for drill hole selection and the second
improvement is the use of a search restriction schedule to perform local refinement of the
results. Details regarding the objective function are described first and is followed by the
proposed optimization algorithm. A small synthetic example is used to illustrate and

support some of the assumptions and choices made.

6.2.1 Objective function

The proposed objective function is a combination of maximizing the tonnage of metal that
meets a classification criteria and minimizing the overall KV of the blocks (Equation 6.1).
Each term of the objective function receives a weight to allow for tuning of the maximization

of resources and minimizing of the overall variance.

nb

maz : f(x) = Zwi{cl [ZF % pi x V x Li(x)] = ¢2 [075(x)] } (6.1)

i=1

where:

nb - number of blocks in the model,

¢ - weight given to total resource tonnage [0, 1] (¢7');

Co - weight given to the KV [0, 1] (2/¢%);

I;(x) - binary variable: 1 when the i block meet the classification criteria and 0
otherwise;

7K - kriging estimate of the i™ block (g/t);

i - density of the i block (t/m?);

V - volume of the block (m?);
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o2 (X) - KV of the i block considering the infill drilling (g2 /t?);
w; - weight given to the i block;

X - set of drill hole parameters;

The weight w; is considered in order to allow for different weights for different regions
of the deposit according to the mining schedule. This allows the user to give priority to
areas that are likely to produce earlier or to avoid including blocks that are outside the
expected final pit limits of the mine. Setting w; to 1 for all blocks ignores this factor;
however, even a simplistic set of w; where w; decreases linearly with depth would improve
the final optimization results, resulting in optimized drill holes that prefer the reduction of

uncertainty and increase of resources in areas closer to the surface.

Weighting and magnitude of the components of objective function

The proposed objective function have two components. The first is linked to the amount of
classified resources while the second is related to the overall KV. The magnitude of each
component depends on the nature of the deposit, number and location of available drill
holes, number of infill drill holes to be optimized, among other factors. If the magnitude of
each component is very different, then using ¢; = 0.5 and ¢, = 0.5 does not guarantee that
equal importance is being given to each term of the objective function, making the choice

of weighting very difficult.

A straightforward solution is to calculate the weights ¢; and ¢, based on the intended weights
(¢} and ¢}) and standardization factors so that they account for the different magnitude of
each component of the objective function. In this case ¢; = 0.5 and ¢, = 0.5 will give

approximately equal importance to each factor of the objective function.

The factors can be defined by the average variation resultant from a number of
independent perturbations using the same mechanism that the optimization algorithm uses
(Deutsch and Cockerham, 1994). The calculation can be done prior to the start of the

optimization algorithm. The objective function can be rewritten as in Equation 6.2 and the
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components can be simplified as O; and O, (Equation 6.3). In this case the standardized
weights (¢; and ¢;) are calculated as shown in Equation 6.4, where M is the number of
random perturbations, Oﬁm) is the value of the component j after perturbation m and O(®)

is the initial value of the objective function.
nb nb
max : f(X) = ¢ Zwi (2] x pi x V x Li(x)] — e Zwi [o7(x)] (6.2)
i=1 =1

max : f(X) =101 — 20 (6.3)

M
R /, ) —
cj =} f\n/[:l |O§.m) o0 ., j=1and2) (6.4)

6.2.2 Drill hole parameterization

Drill holes are defined by four parameters: (1) X location of the collar, (2) Y location
of the collar (3) azimuth and (4) dip. The composite size for the drill holes is an input
parameter and is constant during the optimization process. The length of a hole is calculated
to maximize the length of intersection with the ore body. The x and y coordinates of the
collar are optimized while the z coordinate is interpolated using a topographic surface. The
dip and azimuth are optimized within a user defined range, which could be the full range
[0°,90°] for dip and [0°,360°] for strike, or practical constraints can be applied to limit the

range.

6.2.3 Proposed algorithm

The proposed algorithm for the optimization of n infill drill holes is defined by the following

steps:
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1. Initialization: the algorithm starts with a random set of infill drill holes generated by
randomly drawing licit values for each of the 4n parameters, where n is the number
of infill drill holes to optimize.

2. Iteration: for each iteration, a drill hole is randomly chosen according to its
selection probability and its parameters are changed by a step value randomly
selected within a search range defined by the search restriction schedule curve. Both
the search restriction curve and selection probabilities are discussed below. If the
change results in a better objective function value it is kept otherwise it is rejected.

3. Stopping criteria: step 2 is repeated until the maximum number of iterations is

reached.

6.2.4 Weighted probabilities

In the MRS algorithm (Wilde, 2009) one drill hole is moved at a time, but the drill hole to be
moved is selected with equal probability. A drill hole that is already in a reasonable location
should have a smaller probability to be moved while a drill hole that is not significantly
contributing to the objective function should receive higher priority. Thus, the probability
to move a drill hole is related to the cumulated improvement on the objective function and

speeds up convergence.

When the objective function is reevaluated, the amount of improvement is stored, and this
value is used to calculate the probability of selecting this drill hole in the next iteration

(Equation 6.5).

max(CCOF) +min(CCOF) — CCOF;

i = <n . 6.5
b S Imax(CCOF) + min(CCOF) — CCOF] 65
where:
n - number of drill holes being optimized;
Di - probability of selecting the i drill hole;
CCOF; - cumulated contribution to the objective function of the i drill hole;
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Figure 6.1: Search restriction schedule

6.2.5 Search restriction schedule

When an infill drill hole is moved randomly during the search for an optimum result it can
move to any position in the domain. This is required to explore the entire solution space for
prospective regions, but it makes it very unlikely that a local optimum can be found because
of the high dimensionality of the problem. Gradient based techniques for local refinement
of the final solution of the randomized search algorithm were attempted without success
due to the non-convex characteristics of the objective function, even at a local scale. A
stochastic method is used for the local refinement. A search restriction schedule is used to

define the parameter range to optimize and changes as iterations progress (Figure 6.1).

The search restriction schedule controls how the drill hole parameters are perturbed over the
course of n iterations and is an input parameter for the algorithm. After a number of attempts
with different curves (not shown here), some interesting characteristics were observed and
allows for some recommendations for the selection of the schedule. It was observed that
the three step curve as shown in Figure 1 performs well. The starting search size is given
by the full range of values for each variable. The average spacing between existing drill
holes represents a good search size for the second intermediate step of the collar parameters.

The use of a delay between collar scheduling and angles scheduling (azimuth and dip) is
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recommended so that the angles can have better local refinement once a reasonable collar
location has been selected. The best middle step for azimuth and dip is not clear and depends
on the dimensions of the model and shape of the ore body. The last step is defined based on

the degree of accuracy needed and should be consistent with the block model specifications.

6.2.6 Synthetic example

A small synthetic example is used to benchmark the different optimization techniques, to
support the proposed improvements, and to demonstrate that the proposed algorithm can
effectively find optimum locations in a case where the optimum solution is known. This
example consists of a 3D model with 40x40x14 blocks of size 25x25x12.5 meters in X, y
and z respectively. A regular drilling pattern (100x100 meters) with 3 missing drill holes
in high and low grade zones is considered. The starting drill holes have a common azimuth

of zero degrees measured from north and a dip of 75 degrees (Figure 6.2).

0.5

=

K. Variance

(a) Estimated grades (b) Initial KV

Figure 6.2: Initial conditions for the synthetic example (the red arrows are the locations

of removed drill holes)

For this synthetic example the intuitive best location for the infill drill holes are the
locations where there they are missing from the regular pattern, the locations with the
highest grades are preferred in the case of optimizing fewer than three infill drill holes. In

this work classification is based on the KV and the threshold used to classify was 19% of
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Figure 6.3: Results from different techniques for the synthetic example. The solid lines
show the best of 5 different random starts and the dashed lines show the average for the

technique.

the variance of the data; however, any method of classification could be used. The
variogram is a spherical model with no nugget effect and a range of 270 meters in the

horizontal direction and 50 meters in the vertical direction.

Among the three sites with the drill holes removed, two are in a high grade zone and one
in a low grade zone (Figure 6.2a). When n is considered to be 2, the algorithm is expected
to be able to find the two high grade locations; high grade locations are preferred because

they contribute more to the classification component of the objective function.

The optimization techniques applied to this synthetic example are BRS, MRS, GA, GR
and the proposed weighted random search with search restriction schedule (WRS). Each
algorithm is run for 5,000 iterations and randomly restarted for five different runs. For GR,
random restarts were allowed within the 5,000 iterations after stabilization of the objective
function. Full weight was given to the classified resource (c; = 1.0 and c; = 0.0). The
best run, the average of five runs and objective using the manual choice consistent with the

known drill hole pattern, are shown in Figure 6.3.

The proposed algorithm not only found these two locations, but it also found a better result
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(objective function = 77.7) than the manual choice (objective function = 77.2). The solution
with the optimization is better because the grade distribution around the drill holes is not
homogeneous and the effect on classification is slightly better with the optimized drill hole

rather than the regular pattern.

All tested techniques perform worse than WRS. GA does well in exploring the solution
space and converges to a solution quickly but it fails to perform a local refinement of the
results and is not able to better the manual choice. The MRS converges more slowly to a
result, but its final results are similar, the selection of one drill hole per iteration improves
in relation to the BSR, which changes all drill holes in each iteration. The GR algorithm
did not perform well mostly due to the non-convex nature of the problem and the limited

number of random restarts.

The search restriction schedule permits the local refinement of the solution, but it also may
cause the algorithm to be trapped in a local minima. The results from the five runs for the
WRS algorithm were 77.7, 77.2, 76.6, 76.2, and 66.3. Two out of five runs outperformed
the manual choice, while two other runs were reasonably close and better than any other
tested technique. There is still a chance that the algorithm finds a local minimum, random

restarts are important.

6.2.7 Real case example

The real case example is based on the same Cu-Mo porphyry deposit presented in Chapter 5.
As the original database is densely drilled, only subset of original drill holes are used here

to allow for a better visualization of the proposed algorithm.

The data consists of a set of drill holes, geologic model and surface model (Figure 6.4).
The size of the 3D model is 100x57x48 blocks of 40x40x30 meters in x, y and z. The
variogram model consists of a nugget effect of 0.10 and 4 nested structures (Equation 6.6).

The direction of major continuity has an azimuth of 135° from north to east and a dip of 0°.
Classification is performed by applying a threshold to the KV 0f 40%. A geometric method,
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Figure 6.4: Real case study. Grade at levels 1170, 960, 750 and 540 are shown. The

topography and ore body extents are shown transparent.

such as number of nearest drill holes to a given location, could also be used and would in

fact improve the results as the calculation of the objective function would be quicker.

’y(h) =0.14+0.29 x E$pmaj:40(h) + 0.28 x Sphmajzlzo(h)

min=40 min=150
med=40 med=160 (66)
+0.20 x Sphmqj:@o(h) +0.13 x Sphmaj:m()o(h)
ed=200 ed=300

The mining schedule for this example is not available, but weights are assigned to the blocks
in order to avoid the preferred location of infill drill holes where the deposit is thicker.
Weights are assigned according to the vertical distance to the surface; blocks with easy
access are likely to be reached in early stages of mining and are assigned high weights,
deep blocks received lower weights. A linearly decrease in the weights is used with the

weights ranging from 1.00 for blocks on the surface to 0.05 in deepest parts of the deposit.
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6.3 Results and discussion

There is no guarantee of a global solution due to the non-convex and high dimensional
nature of drill hole optimization. Ideally, the results would be compared to an expert’s
interpretation of the deposit where the infill drilling locations would be selected based on
a high degree of familiarity with the deposit. In this instance, such an expert interpretation
is not available. Moreover, the manual choice of locations would vary among different
experts taking into account different factors such as exploration potential, past knowledge
with similar deposits, etc. Rather, it is suggested that the results of this optimization be
used as a starting point for such an expert to manually adjust; giving them potential drill

hole configurations that are preferentially located in reasonable areas.

To visualize the performance of the proposed optimization algorithm on the real deposit,
two cases are run for the optimization of 5 and 15 infill drill holes (Figures 6.5 and 6.6
respectively). In the 3D views the optimized drill holes are represented by a red line while
their collars are represented by black markers. In plan view, the black markers are the
locations where an existing drill hole crosses that section and the black lines delineate the
blocks that are already classified. The red markers are the locations where the optimized
drill holes cross the section and the red lines delineate the blocks added to classified

resources due to the optimized drilling.

The results presented in Figure 6.5 show that the optimized infill drilling tends to follow
the high grade zones, this is particularly evident for greater elevations where the blocks
have received higher weights. New holes tend to be located near existing drill holes when
the interaction between them improves the reduction in KV to the point where more blocks
become classified above the 40% KV threshold. This behaviour is more pronounced when

optimizing a larger number of drill holes (Figure 6.6).

The results of the optimization of 15 infill drill holes reveals additional interesting features.
Again, priority is given to the shallow high grade zones. Moreover, there is a link between

the KV threshold and the DHS of the final configuration. The optimized drill holes tend to

73



1500 ~

1000 ~

Elevation (m)

500~

Northing (m)

(a) 3D view

2400+

2200

2000

1800

1600

1400

Northing (m)

=

1000f++

800

600

400+

2000 2500

Easting (m)

500 1000 1500 3000 3500

(b) Horizontal slice, elevation 1170 m

2400
220002
2000+
1800

E 1600}

&

£

£ 1400f

5

Z 1200
1000
800f
600F+

400f

500 1000 1500 2000

Easting (m)

2500 3000 3500

(d) Horizontal slice, elevation 750 m

0
4000

0
4000

Copper (%)

1500

2200

2000

1800

Northing (m)

=

1600

1400 F

1
2
<
e
[
(=9
[=%
o
@)
0.5
0

Easting (m)

Copper (%)

1000f+++

800

600 f

400

2000 3000 3500

Easting (m)

H H o
1000 1500 4000

(c) Horizontal slice, elevation 960 m

2400

22001

2000

1800
g

Z 1600
o

£
2 1400f
T

2 1200

1000+

800
600

400

0
500 1000 1500 2000 4000

Easting (m)

2500 3000 3500

(e) Horizontal slice, elevation 540 m

Figure 6.5: Optimization of 5 infill drill holes. (a) Existing drill holes are black and new

infill drilling is red. (b) through (e) different slices showing blocks with existing drill hole

data (black x) and new infill drilling (red dots) showing classified resources without new

drilling (black outline) and classified resources with new infill drilling (red outline).
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be located with a fairly regular spacing, which is desirable. as an expert would likely plan

an infill campaign with regular spacing in the less informed areas.

The proposed algorithm can be used to evaluate the gains in resources with an increasing
number of optimized drill holes. This would assist in the planning of future drilling
campaigns in a cost-benefit analysis. This possibility is investigated with multiple runs of
the proposed algorithm with increasing number of optimized drill holes (Figure 6.7). The
weights are also varied in order to evaluate the impact of the objective function weights on
the amount of classified resources and on the reduction in KV (Figure 6.7). In this
example the weights were not standardized to account for the magnitude of the

components.

As expected the increase in resources per infill drill hole decreases as the number of
optimized drill holes increases. The slope change is more evident for the increase in the
resources than it is for the decrease in KV. This is related to the dependence of the
resources on the grades as high grade zones are selected first while this has less effect on
the KV that is independent of the grade. The change of slope for the reduction in KV is
linked to other factors such as the thickness of geologic model and the complex
interactions between drill holes. If the cost of drilling is known, this analysis could easily
be adjusted to a maximization of profit by selecting the most appropriate number of holes

for the infill campaign.

As expected, the amount of classified resources reduces with reducing the weight (¢;). The
impact of the weights decreases as the number of infill drill holes increase, which is, again,
a result of the priority given to the high grade zones. The use of equal weights did not
decrease considerably the amount of classified resources especially for more than 100 infill
drill holes. The result of the optimization of 150 infill drill holes with full weight given to
resources was slightly worse than for equal weights indicating a suboptimal solution and

again stressing the importance of multiple runs (random restart).
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Figure 6.7: Sensitivity of classified resources and KV varying the weights.

6.4 Conclusion

There have been many algorithms proposed for infill drill hole optimization. Despite the
importance of this problem, the third dimension is often ignored and very few techniques
exist to simultaneously optimize n holes with arbitrary strike and dip. The proposed drill
hole parameterization gives more flexibility in the optimization algorithm and the
proposed improvements to the existing techniques resulted in enhanced efficiency and
better objective function results as demonstrated on the synthetic example. Improvements
were even seen when compared to the manual choice where regular drilling is usually

expected to be optimum.
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

Mineral resource classification standards were recently developed to define rules for the
public disclosure of mineral projects and prevent the disclosure of erroneous, misleading
or fraudulent information. The classification is performed accordingly to the degree of
confidence in the geologic continuity. There are a number of factors that influences the
confidence in the geologic models, which includes quality, quantity and distribution of
data, among others. Classification standards do not define the appropriate techniques to be
used for classification leaving the decision for an experienced qualified/competent person.
For this reason, since the creation of the standards, a number of different techniques for

classification were developed. The main contributions of this thesis are:

1. A review of current state of practice regarding resource classification based on a
survey on Canadian NI 43-101 reports;

2. A novel technique for classification based on cross-validation and KV that was
developed to address some of the limitations of existing techniques variance based
techniques while keeping its desirable features;

3. A novel technique based on conditionally simulated realizations that uses a moving
window to classify SMU blocks accordingly to probabilistic criteria applied to a larger
volume, which allows for reduced artifacts and meaningful classification parameters;

4. A methodology for the optimization of infill drill holes location that uses an
intelligent random search algorithm with local refinement to minimize the variance

while maximizing resources.

The survey on Canadian NI 43-101 reports revealed that although there are many different

classification techniques, only few are actually used in practice. The geometric techniques
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are preferred among practitioners, mostly because of the ease of their application. NR is
the most common in practice and this may be attributed to the possibility of using the tools
available in commercial software for its calculation while the calculation of DHS, the
second most used technique, is not commonly available in commercial software and its
application mostly consists of drawing polygons by hand, bench by bench. As result, DHS
is mostly applied to deposits with regular drilling patterns. Methods involving KV are not
commonly used in practice, however, the results from the survey revealed a higher usage
than expected. There are a number of factors that may lead to the lack of use of more
advanced methods such as KV or simulation. The increase in complexity (number of
parameters) and the sensitivity to the modeler's choice makes these methods less
transparent to the parts involved. Other characteristics that lead to the generation of
artifacts also discourages the use of geostatistical techniques. In this thesis, two
techniques were proposed in order to address the weaknesses of current techniques in

order to produce more accurate classification maps.

The increase in the amount of data often leads to a decrease in the uncertainty and improves
the confidence on the estimates, however, geologic data are often spatially correlated and
the reduction in uncertainty caused by the increased amount of data is not a simple function
of the number of data, but it is also function of the spatial distribution of this data and the
spatial continuity of the attribute under study. KV itself may not be a good measure of
uncertainty because it does not capture important characteristics of the data, such as the
shape of the distribution and heteroscedasticity; KV accounts for data redundancy, uses
information regarding the spatial correlation of the data and better captures the complex

relationships between data availability and confidence on estimates.

A number of methods based on KV have been developed, but few are actually used in
practice and when they are used, post processing is often required due to artifact
generation. Dilatation and erosion techniques, manual post processing or combination
with other techniques are commonly used for removing the undesirable artifacts. The
CVYV technique proposed in this thesis is able to generate classification maps considerably

reducing the artifacts while maintaining the advantages of the variance based methods;
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however, CVV is still limited in terms of being homoscedastic.

Conditional simulation is a powerful tool for the assessment of uncertainty. It accounts
data quantity, spatial correlation and the distribution of the attributes of interest. By
generating multiple equally probably realizations of the truth, it allows for the assessment
of the local distribution of the attributes at any scale. Meaningful probabilistic criteria that
satisfies the needed degree of confidence can be applied to the multiple realizations in
order to assign the blocks with an appropriate category (measured, indicated or inferred).
The main concerns with using geostatistical simulation in classification mode is the
increased complexity and dependency on modeler's parameters. Little can be done to
address these concerns as simulation will always be more complex than geometric
techniques and will require more expertise from the modeler. When deemed appropriate,
conditional simulation can contribute greatly to the understanding and management of
uncertainty, thus providing valuable information that can be used for resource

classification.

Other more practical concerns regarding the application of conditional simulation, can be
addressed. The support or volume in which the classification is performed is of great
importance to final results. If simulation is used for the classification of small SMU
blocks, the probabilistic criteria must be relaxed and it loses its meaning. For this reason,
the consideration of larger volumes (monthly, quarterly or annual production volumes) is
often recommended; however, these larger production volumes are not always well
defined at early stages of a mining project leading to the uncertainty in the grid definition
that can impact the results for such coarse grid. In addition, classification at a small scale
often generates artifacts similar to those generated with the variance based methods near
data locations. The proposed moving window classification applied to conditionally
simulated realizations addresses these scale issues, as wells as, artifact generation by using
a moving window that represents the larger production volume (panel) centered at SMU
block and performing the classification at the desired resolution (SMU) based on a

meaningful probabilistic criteria applied at the larger scales.
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The application of the proposed techniques to synthetic examples and a case study showed
that these techniques are able to perform as intended, generating more accurate

classification models that have fewer artifacts.

Gathering information is expensive and, as mentioned before, uncertainty is not only a
function of the number of data, but also of its spatial distribution and correlation. It is
important to consider all available information while planning a new drilling campaign in
order to avoid wasting resources. In early stages of projects, infill drilling campaigns are
focused on exploration while in later stages it is focused on local uncertainty reduction
aimed at the generation of classified resources (measured and indicated) that are eligible to
be upgraded to proven and probable reserves. The incorporation of resource classification

into the optimization of infill drill holes is then very relevant in mining.

In this thesis an optimization methodology that accounts for the different goals of infill
drilling is proposed and successfully applied to a synthetic example and case study. The
results for the synthetic example outperformed the optimum 'by hand' demonstrating its
capacity for improving resources. The results of the application to the case study cannot
be quantitatively evaluated as the comparison would require an expert's choice, which is
not available, but the results were consistent with the proposed objective function and
demonstrated desirable characteristics such as fairly regular spacing along horizontal
sections and optimum interaction with existing drill holes and among new ones for
optimum reduction of variance and maximization of resources. In addition, the proposed
methodology is useful for analyzing the relationship between the gain in resources and
reduction in overall variance with the increasing number of drill holes. At times, expert
inputs that are deemed important are not captured by the algorithm, in these cases, the
results of this methodology still have a great potential to serve as starting point for the

planning of infill drilling campaigns.

Two new methodologies for resource classification are proposed throughout this thesis.
These techniques address some of the limitations of existing techniques and improve the

quality of classification models by reducing artifacts and by introducing relevant factors to
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the classification paradigm such as spatial correlation of variables, heteroscedasticity and
shape of distributions. The consideration of these factors leads to a better accounting of
data redundancy and proportional effect. In the case of simulation the use of probabilistic
criteria allows for a better standardization of classification criteria as probabilistic criteria
have clear meaning and can be similarly applied to different deposits. Also, a methodology
for optimizing the location of infill drill holes aiming the maximization of resources is

proposed, which allows for improved resources.

7.2 Future Work

Two new techniques were developed for the classification of mineral resources, which
present qualitative improvements to the existing techniques. A quantitative evaluation of
the goodness of classification results is a difficult task that should be addressed. The
development of a methodology that can quantify and demonstrate the appropriateness of

each methodology to a specific site would be very valuable for this subject.

The proposed methodology for the optimization of infill drill holes is suitable for drilling
performed from surface, which makes the current implementation unsuitable for
underground drilling. In order to allow underground drilling, a different parameterization
of drill holes would be required. As underground drilling is often executed in fans, the
paramterization of these fans could be added to the current methodology in order to

consider underground drilling enhancing the flexibility to the algorithm.
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Appendix A: DHS Calculation

The DHS calculation in this thesis was performed using the software named dhs3d that was
developed for smooth DHS calculation and improved accuracy, which are often required
for applications such as mineral resources classification, uncertainty management and data
spacing studies. The software is suitable for the calculation of DHS in 3D. A small example

is used to demonstrate its features and improvements.

A.1 Methodology

The methodology implemented in the software is similar to the one proposed by Wilde
(2010) for calculation of data spacing/density, but several changes were made as the
objective here is the calculation of DHS. For the calculation of DHS the problem can be
reduced to a 2D calculation that uses a single datum from each drill hole. The selected
location is the closest to the block under consideration within a tolerance in the vertical

direction equal to the size of the block (Figure A.1).

Tolerance

Figure A.1: Search scheme at location « when number of drill holes searched is equal to

4. The tolerance in vertical direction is fixed and equals to the block vertical dimension.

There are three search options for the DHS calculation. The DHS can be calculated based on
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a fixed number of data searched (n) or by a given search geometry (circle or square). When
a squared search is used the DHS is calculated using Equation A.1, which is Equation 1.1 as
proposed by Wilde (2010), reduced to two dimensions. The concept of DHS is often linked
to equally spaced cases (i.e. 50x50m or 100x100m) and, for this reason, when a circular
search is used or when the number of data is specified by the user, Equation A.2 is used to

calculate the DHS for improved accuracy (Figure A.2).

DHS(u) = (T(S?) (A.1)
DHS(u) = R(u) (%) (A2)
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Figure A.2: DHS calculation with different equations for n = 10. Three different regular

spacing are present: 10x10m, 5x5m and 2.5x2.5m.

R(u) is calculated using Equation A.3. When the user selects a search geometry, the input
parameter is used to find n(u) and the data found is used to calculate the final R(u) that is
used in the calculation. For the squared search, R, (u) is not the Euclidian distance from

the block to the sample, rather Equation A.4 is used.
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R(u) = (A.3)

R,(u)=| X, — X(u) |+ | Y, —Y(u) | (A.4)

The calculation of DHS with a single parameter tends to be noisy if the number of data
searched is too low or the search size is too small. In order to get smoother models with a
single parameter a larger search is needed, but the increase in the search leads to a decrease
in accuracy (Figure A.3). In order to obtain smoother and more accurate DHS models the
implemented software allows the definition of multiple parameters and the resultant DHS is
the average of all calculations. Figure A.4 shows an example of calculation of DHS using

n equals two to twelve with a step size of one unit.
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