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Abstract

Giving reasons for justifying the decisions made by classification models has received

less attention in recent artificial intelligence breakthroughs than improving the accu-

racy of the models. Recently, AI researchers are paying more attention to filling this

gap, leading to the introduction of the emerging topic of explainable AI (XAI). XAI is

a field of artificial intelligence that aims to create more transparent and understand-

able AI systems. A form of XAI approach called “model-independent explanations”

aims to offer explanations without requiring the internals of a trained model.

This study presents BARBE for text, a technique that can explain the decisions

made by any black-box classifier for text datasets with a high degree of precision,

without relying on information about the internal architecture of the model. A prob-

ability score from the black-box classifier is not necessary in order to use BARBE.

In addition, BARBE offers explanations in two distinct formats: firstly, the genera-

tion of rules; secondly, the importance score for salient features. Because they more

closely match human intuition, rules are seen to be a superior explanation method.

Additionally, BARBE makes use of association rules. An association rule is in the

form of “if X then Y,” which means that if X occurs, then the likelihood of Y oc-

curring increases as well. BARBE not only provides a single rule but also provides

a set of rules where each rule may contain a conjunction of features. In this study,

we introduce two different versions of BARBE and illustrate their capability to ef-

fectively generate explanations for sentences of varying lengths. We propose a data

augmentation technique for BARBE that can generate more meaningful rules as the

explanation.
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Our study demonstrates the effectiveness of BARBE in generating explanations

for detecting cyberbullying in the context of a resource-constrained language. The

experimental analysis shows that BARBE outperforms other XAI frameworks in gen-

erating more convincing explanations for resource-constrained language. This is a

significant finding as it demonstrates the potential of BARBE as a tool for improv-

ing the explainability of machine learning models trained using formal and informal

embedding, even in contexts where data is limited or constrained.

iii



Preface

BARBE for tabular data was proposed by Mohammad Hossein Motallebi Shabestari

in his thesis. The author has extended his work to incorporate BARBE for text

datasets. A conference paper regarding the implementation of BARBE for text has

been submitted to Database and Expert Systems Applications (DEXA). A journal

paper with some major enhancements will be submitted to ACM Knowledge and

Information Systems (KAIS). The author is one of the co-authors of these papers.

In Chapter 6, the application of BARBE for generating explanations in the de-

tection of cyberbullying is explored in the context of resource-constrained Language.

This work started in the context of a course project for the course Data Mining

and Knowledge Discovery (CMPUT 690) in Winter 2022 semester with two other

co-authors: Md Saiful Islam and Nazmus Sakeef. Later, the project led to the sub-

mission of a paper to the ACM Transactions on Asian and Low-Resource Language

Information Processing. The author is one of the co-authors of that paper.

The author is also a co-author of a survey paper regarding text data augmentation

that will be submitted soon.
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“The more you know, the more you realize how much you don’t know.”

-Aristotle
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Chapter 1

Introduction

1.1 Motivation

In recent years, an increasing number of businesses have been leveraging the benefits

of Artificial Intelligence (AI) in their products, resulting in a more significant impact

of intelligent machines on society than ever before. The uses of AI span from sim-

ple activities like route-finding to complex ones like self-driving cars. For example,

Google Maps uses AI to provide users with the fastest route, while Tesla Autopilot

is replacing human drivers in vehicles. The introduction of Expert Systems (ES) in

real-life problems marked the beginning of AI applications decades ago. Since then,

more advanced intelligent systems have been developed, differing from ES systems in

various ways.

While AI has come a long way since the introduction of ES decades ago, there

are growing concerns about the application of machine learning models in industries

such as healthcare, law enforcement, energy management, cybersecurity, etc. These

models can be difficult to interpret, making it challenging for stakeholders and end-

users to understand how the models are making predictions and what factors are

driving those predictions. One key motivation for addressing this challenge is to

improve the interpretability of machine learning models. By developing a rule-based

explainer using an associative classifier, it can be possible to provide more transparent

and understandable explanations for model predictions. This, in turn, can help build
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trust and understanding among stakeholders and end-users, particularly in industries

where AI has a significant impact on the daily lives of individuals.

Shabestari introduces Black-box Association Rule-Based Explanations (BARBE)

in his thesis [1]. BARBE can explain the decisions of any black-box classifier on

tabular datasets with a high level of precision. In this thesis, we aim to extend the

BARBE framework for text datasets. Our primary motivation in this thesis is to

utilize BARBE to generate rules that can explain the prediction of machine learn-

ing models for text. BARBE consists of two primary elements: a data augmenta-

tion method that produces synthetic datasets to be labeled by the black-box, and

an associative classifier that generates rules from these labeled data. BARBE uses

SigDirect [2] as the underlying associative classifier. One limitation of SigDirect is

its inability to process high dimensional datasets having a large feature vector space,

as it requires high memory and long run time. We are interested in overcoming this

limitation of BARBE with SigDirect by replacing the underlying associative classifier

SigDirect with an ensemble approach proposed by the authors in [3] that utilizes a set

of base learners where each base learner is an associative classifier and finally combin-

ing the rules generated from each base learner to formulate the final set of rules as the

explanation. We call it BARBE with CFAR which has the ability to efficiently handle

high-dimensional datasets with large feature vector spaces by distributing the feature

space among base learners, each of which is trained on a subset of the feature vector

space. We investigate the effectiveness of BARBE with SigDirect and BARBE with

CFAR for different black-box classifiers in binary and multiclass text classification

tasks. We also explore a suitable data augmentation technique for BARBE that can

effectively augment the dataset without increasing its dimensionality.

One key aspect of developing BARBE is to generate explanations in the form of

rules which are more satisfactory and meaningful to explain the decision made by the

black-box models when compared with explainers such as LIME [4], Anchor [5], and

SHAP [6]. Through a comparative analysis, we aim to demonstrate that our method
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is capable of providing more accurate and meaningful explanations than these existing

explainers. By developing a more effective rule-based explainer, we hope to provide

a valuable tool for researchers, practitioners, and end-users in various domains where

the interpretability of machine learning models is critical.

The key motivation points of this thesis are:

• To investigate data augmentation techniques to identify a suitable method for

BARBE that can effectively augment the training dataset without increasing

its dimensionality.

• To extend the BARBE for text so that it can generate rules that can explain

the prediction of machine learning models for text datasets.

• To overcome the limitations of SigDirect, the underlying associative classifier

used in BARBE, by replacing it with an ensemble approach that utilizes a set

of base learners, each of which is trained on a subset of the feature vector space.

• To demonstrate through a comparative analysis that BARBE is capable of

providing more meaningful explanations than existing explainers such as LIME,

Anchor, and SHAP.

• To apply BARBE for the explanation of cyberbullying detection in the context

of resource-constraint language.

1.2 Explaining Black-box Systems

Black-box models are complex machine learning models that are difficult to interpret,

and their lack of transparency can be a significant limitation. The term “black-box”

originates from the fact that the internal workings of the model cannot be easily

understandable in terms of generating the inference. This lack of transparency can be

a significant disadvantage in many applications as the reasoning behind its decisions

is vague. Because of this, many users might decide to remain with straightforward,
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transparent models that can offer a clear justification for their decisions. Model

complexity and accuracy, nevertheless, sometimes trade off since more complicated

models can frequently provide better accuracy at the expense of interpretability. Even

if it means compromising some accuracy, being able to explain the thinking behind

a model’s judgments may be crucial in some fields, such as healthcare, finance, or

criminal justice.

In an effort to address this shortcoming, researchers have been looking for ways to

explain how these models infer. Humans can have more faith in the model’s output

and can more readily spot faults or biases in the system by knowing the elements that

contributed to a certain decision. This can help to ensure that the model is making

fair and accurate decisions and can also help to build trust between the model and

its users. “Model-dependent” explainers [7], [8] are a type of explainability method

that relies on the model’s architecture or internal workings of the machine learning

model in order to generate explanations. The major dependency here is to achieve

understandability regarding how the model functions and the factors that it considers

when making a prediction. If the model architecture needs to be modified, or a

different model is chosen for a specific task, the explainer needs to be changed.

Conversely, “Model-agnostic” explanations are techniques that can be used to pro-

vide insights into how a machine learning model makes its predictions, without re-

quiring a deep understanding of the model’s architecture or inner workings. These

methods operate by examining the model’s inputs and outputs to determine which

features are most crucial for a particular prediction. In general, model-agnostic ex-

plainers can work for any model e.g. a DNN model based on Long Short Term

Memory (LSTM) [9] or a Support Vector Machine (SVM) that uses a specific kernel

[10] to explain the decision. Since they do not need to employ a separate explainer

for each unique classifier, these explainers also provide users the opportunity to get

familiar with a certain kind of explanation. A technique called “Permutation feature

importance”, introduced by Breiman [11] involves randomly permuting the values of
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each feature in the input data and measuring how much the model’s output changes

as a result. The features that cause the largest changes in the output are deemed

the most important. Ribeiro et al. [4] introduce the concept of local surrogate mod-

els that involves training a model on a subset of the data, and using this model to

explain the predictions made by the original model. Their published method called

Local Interpretable Model-agnostic Explanations, known as LIME [4] is one of the

state-of-the-art explainers that can explain any model, regardless of its underlying

architecture or internal workings. The authors seek to substantiate their assertion

in their paper using a few well-known datasets. Another popular model-agnostic ex-

plainer is SHAP [6], a method for computing the Shapley value, a concept from

cooperative game theory, to assign an importance score to each input feature based

on how much it contributes to the model’s output. In our thesis, we will thoroughly

examine these explainers as we compare the performance of our proposed architecture

with them.

1.3 Thesis Statement

Our proposal is to construct a post-hoc explainer with the aid of an associative

classifier that is a representation of a true model-agnostic approach using rule-based

techniques. Earlier, it was achieved for tabular data [1]. The focal point of our study

is to investigate whether this explainer can effectively generate explanations for text

datasets. We aim to explore how the associative classifier can be utilized to clarify

the operation of a black-box that classifies sentences.

The implementation of Shabestari [1] for tabular data involves taking a tabular

record and producing a perturbation in the immediate vicinity of the original in-

stance. However, when it comes to sentences, the method for perturbation is differ-

ent. The perturbation technique takes a sentence and creates many copies around it,

close enough to ask the black-box to label. Data augmentation (DA) technique can

be employed to achieve this objective. There are several methods available for carry-
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ing out DA. Nevertheless, a problem arises when DA produces sentences that include

words that were not originally present in the sentence, which is not meaningful for

an eventual explanation. As a result, a suitable method can be Easy Data Augmen-

tation (EDA) [12], which drops random words from the sentence without increasing

dimensionality. Once the perturbed sentences are ready along with their labels, the

associative classifier generates rules to explain the label.

The associative classifier implemented in [1] is not capable of handling high-dimensional

datasets with large feature vector space due to its requirement of high memory and

long run time. To address this limitation, we propose to replace the associative clas-

sifier with an ensemble approach [3] that employs a set of base learners as associative

classifiers. The rules generated from each base learner are then combined to form the

final set of rules, which serves as the explanation.

We also demonstrate the efficacy of our proposed solution for detecting cyberbul-

lying in the context of resource-constraint language.

1.4 Thesis Contribution

This manuscript contains two major contributions to the field of XAI. First, we intro-

duce Black-box Association Rule-Based Explanations (BARBE) for text. Regardless

of the black-box model being used, BARBE uses association rules to provide explana-

tions for text datasets. We demonstrate that the explanation generated by BARBE

for text outperforms other explainers such as LIME [4], Anchor [5], and SHAP [6].

Our study introduces two distinct versions of BARBE, which have been developed

to generate effective explanations for sentences of varying lengths in both binary and

multiclass classification tasks.

BARBE explains the decisions of a black-box model in a more human-understandable

way. It presents the most important features that contribute to the decision of the

black-box model. The features are represented in the form of rules. These rules are

easier for humans to understand, as they provide a set of conditions in order for the
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model to make a particular decision. These rules are called association rules that take

into account the associations among different features. As an illustration, suppose a

black-box model is assigned the task of determining whether a given sentence con-

veys positive or negative sentiment. In this case, association rules may consider the

words contained within the sentence that are contributing to its positive or negative

sentiment.

Furthermore, we propose an explanation of cyberbullying detection using BARBE

in a resource-constraint language. It is one of the applications of BARBE for text. The

existing research on machine learning models that predict whether a text is a bully or

not lacks human-understandable information about the reasons for their predictions.

Deep-learning models are often black-box classifiers that may learn irrelevant patterns

in the data, making it difficult to understand the underlying reasons for predictions.

To address this issue, we have applied BARBE to justify cyberbullying detection in

resource-constraint language to better understand the features that contribute to the

models’ prediction.

1.5 Thesis Outline

Chapter 2 begins by providing how interpretability and explainability are defined and

differentiated. We review some of the fundamental concepts in XAI in this Chap-

ter, and do some background study. We discuss how EDA helps generate synthetic

datasets.

Chapter 3 explores the rule-based classifiers commonly found in the literature, with

a particular focus on the association rule-based classifier. Moving forward, we discuss

the utilization of SigDirect, an associative classifier employed in BARBE. We also

provide the motivation for using SigDirect. Furthermore, we discuss the limitations

of SigDirect and introduce CFAR which utilizes an ensemble of associative classifiers.

Chapter 4 presents BARBE for text, where the methodology is discussed in detail.

Experimental analysis of BARBE is conducted in Chapter 5 and compared with
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LIME, Anchor, and SHAP. We discuss the shortcomings of the other explainers and

demonstrate how BARBE outperforms them.

In Chapter 6, we present the application of BARBE when detecting cyberbullying

in a resource-constraint language.

In Chapter 7, we present an evaluation to demonstrate the effectiveness of BARBE

in generating an explanation that is highly aligned with human intuition.

Finally, in Chapter 8, we finish this work by presenting our conclusions and sug-

gesting potential research opportunities.
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Chapter 2

Background

This chapter provides a basic understanding of explainable AI (XAI), its definitions,

why it is needed, its importance, and its applications. We discuss the interpretable

and explainable systems after that. Our proposed method called BARBE uses a

simple data augmentation strategy to generate augmented texts around the provided

instance. As a result, we include some data augmentation-related research works

in this chapter. Our spotlighting of data augmentation-related studies will provide a

brief comprehensive overview of the techniques in machine learning. This chapter also

covers the most recent post-hoc explainers since we compare them in our comparison

research for the experimental analysis part. We provide some studies regarding the

efficacy of explainers in the field of cyberbullying detection in this chapter as well

since our manuscript contains the application of BARBE for generating explanations

to detect cyberbullying in the context of resource-constrained Language.

2.1 Explainable Artificial Intelligence (XAI)

The term “explainable artificial intelligence,” or XAI, refers to the use of strategies

and methods to make AI systems more transparent and interpretable. Understanding

how AI algorithms generate judgments or predictions with the use of XAI approaches

helps increase the accountability, transparency, and trustworthiness of AI systems.

Especially in delicate or crucial applications like healthcare [13], banking [14], and
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legal systems [15], the aim of XAI is to give meaningful explanations that can help

people comprehend the judgments made by AI systems. XAI techniques are intended

to help humans understand the inner workings of AI models, including how they make

decisions and predictions, and how they learn from data.

It can be tricky to detect how advanced machine learning algorithms, such as deep

learning models, arrive at their predictions or choices since many of these algorithms

are super complicated and difficult to interpret. For example, Zhao et al. [16] discuss

the importance of interpretability in artificial intelligence systems, particularly for

Visual Question-Answering (VQA) models. To process resumes of job applicants,

Amazon used an AI-based recruiting system, although it was later shown that the

algorithm was biased towards male candidates. The product development team was

disbanded as a result of this serious problem [17]. The problem may have been

identified and prevented, resulting in the production of a superior product, if an

explanation tool had been employed earlier in the development process. Moreover,

the company also suffered damage from being labeled as biased towards a particular

gender. Such lack of transparency and interpretability can limit the adoption of AI

in critical applications such as healthcare [13], banking [14], and legal systems [15],

where decisions can have significant impacts on people’s lives.

The General Data Protection Regulation (GDPR), which regulates the privacy of

user data, was established by the European Union (EU) in 2018 [18]. The primary goal

of the law is to guarantee that businesses that interact with the data of EU citizens

secure it. In addition to data privacy, the law also includes a provision for the right to

explanation, which requires companies to provide justifications to their clients when

automated systems make decisions that have legal implications. Moreover, U.S. Equal

Credit Opportunity Act [19] mandates that credit companies provide reasons when

a person is denied credit. In 2016, the Defense Advanced Research Projects Agency

(DARPA) launched a program called DARPA XAI [20], with the aim of creating

AI systems that could be explained to humans. The program aimed to develop
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AI systems that were transparent and could be understood by people, unlike some

existing black-box AI systems that are difficult to interpret.

2.2 Interpretable and Explainable Systems

We review some interpretable and explainable systems in this section.

2.2.1 Interpretable Systems

In our investigation of interpretable systems, we are exploring the studies that focus on

making systems fully transparent and understandable to humans. Transparent models

can be divided into three categories: 1. Generalised Linear Models, 2. Decision Trees,

and 3. Rule-based models according to [21]. In addition, it is important to note that

even for interpretable classifiers, certain conditions must be satisfied to guarantee

their transparency and interpretability. These conditions may include using certain

methods or strategies while creating the classifier.

Interpretable models, such as generalized linear models [22], are a popular class

of models that are often used in various applications. These models include well-

known classifiers like linear regression and logistic regression. Linear regression aims

to identify a linear relationship between a dependent variable and one or more in-

dependent variables. In logistic regression, the dependent variable is binary, and a

logistic function is employed to map the log-odds to a probability value for the depen-

dent variable. As a result, the model is able to produce good predictions depending

on the likelihood of a certain occurrence. Both approaches can use the weights of

features, either directly or indirectly to interpret a system.

Another type of transparent model is the decision tree. In contrast to linear models,

decision trees employ a process of dividing the space into multiple distinct parts. At

each node in the tree, the current subspace is further divided into smaller segments,

creating smaller clusters of the population. Each path in the tree corresponds to a

unique partition in the domain space, based on the value of at least one feature that
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differs from other partitions. Various algorithms have been proposed over the years

to create such trees, with C4.5 [23] being one of the most popular and widely used

decision tree algorithms. During training, C4.5 employs the difference of entropy

as the criterion to determine which feature to use when expanding a node. At test

time, the label of the leaf node of the path that applies to the instance is used to

make predictions. The path and the features used along the path can be presented

to users as an explanation for why and how the model has arrived at its conclusion.

Additionally, the order of features present in internal nodes can provide insights

about the system, with features occurring in the upper layers of the tree indicating

high global importance, while those in lower layers suggest local importance within

a subspace. Figure 2.1 presents the diagram of a decision tree distinguishing benign

and malignant breast tumors.

Figure 2.1: A decision tree taken from [1] distinguishing benign and malignant breast
tumors

Researchers have identified rule-based models as another type of transparent model,

alongside linear models and decision trees. Rule-based models generate a set of pat-

terns that frequently occur in the training set and apply these patterns to classify new

instances. They offer more than one explanation for a prediction. Each rule consists

of antecedent items and a consequent class label, with the final class determined by a

specific criterion, such as confidence scores. To interpret rule-based models, users can
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examine the rules that apply to a specific instance, providing multiple explanations

as each rule is an explanation. Chapter 3 discusses this type of model in more detail.

2.2.2 Explainable Systems

Explainable systems are machine learning models that are tailored to provide ex-

planations for their decision-making processes. which can be important for ensuring

fairness, transparency, and accountability in decision-making processes. These expla-

nations assist users in comprehending the reasoning behind the inference of a machine

learning model, which can be important for ensuring fairness, transparency, and ac-

countability in decision-making processes. Model-specific explainers are a class of

explainable systems that provide explanations for the decisions made by a specific

machine learning model. These explainers are designed to assist users to understand

the internal workings of the model and how it arrives at its predictions. They are

trained on the same data as the underlying model, making them effective at providing

meaningful explanations. The explanations provided by model-specific explainers can

vary depending on the type of model being used. For example, for a decision tree

model, the explainer might show the path that the model took through the tree to

arrive at a particular decision. For a neural network, the explainer might highlight

the features that are most influential in the model’s decision-making process.

Another type of explainable system is called a model-agnostic explainer where our

research focus is on. As black-box models don’t have any explainability features,

these systems are added to them to generate explanations for them. These two types

of explainers are also known as model-dependent and model-independent explain-

ers, respectively. It is important to note that the dependency or specificity referred

to is related to the ability to access the internal workings of the machine learning

model. Because model-agnostic explainers do not rely on the internal workings of

a specific machine learning model, they can be used to provide explanations for a

wide range of models. This makes them particularly useful in situations where the
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exact nature of the model is unknown. Another method of categorizing explanation

techniques involves grouping models based on their knowledge of the domain [24]. An

application-dependent explainer assumes that the user has knowledge of the domain

and uses domain-specific vocabulary to provide explanations, such as using medi-

cal terminology in medical applications. In contrast, a generic explainer does not

possess any domain-specific knowledge and provides explanations that are domain

independent.

Model-specific Explainers

Model-specific explainers, also known as model-dependent explainers are created to

work with a specific machine learning model architecture. Although the majority of

these methods are created to provide explanations for Deep Neural Networks (DNNs),

there are some techniques that have been developed for explaining other types of

classifiers as well. Tree ensembles are a collection of classifiers that utilize multi-

ple decision trees to improve accuracy compared to a single tree, making them a

preferred choice for achieving high accuracy scores. However, this improvement in

accuracy often results in a lack of interpretability in ensemble models. If accuracy

is the primary concern in a task, and understanding how the model arrived at its

decision is a secondary concern, then using ensemble methods is reasonable. Moore

et al. [25] present a technique for generating explanations for individual instances in

tree ensemble models like random forests. Their approach involves calculating the ex-

pected output change for each node in every tree of the ensemble model and utilizing

these changes to generate an explanation for a specific data point. The explanation

produced by their system includes an importance score for each feature present in the

data point, which is the sum of the prediction output change for all the corresponding

nodes along the paths used to determine the class label of the instance.

Over the past few years, there has been a significant research focus on explaining

DNNs. This is largely due to the widespread popularity of DNNs and their success-
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ful application to various domains, including Natural Language Processing (NLP)

for tasks like sentiment analysis [26], as well as image processing for tasks like object

localization [27]. As a result, developing explainable systems for DNNs has become in-

creasingly important for promoting transparency and understanding of these models.

The attention mechanism [28] is a recent innovation in DNNs that has considerably

enhanced their performance, notably in the field of NLP. To address the challenge

of vanishing or exploding gradients in sequence-to-sequence tasks, such as Neural

Machine Translation, DNN previously relied on the architecture of Long Short-Term

Memory (LSTM) [29]. NMT translates the text from one language to another. The

model takes a sentence in the source language as input and generates a correspond-

ing sentence in the target language as output. NMT is based on DNN and uses an

encoder-decoder architecture to perform the translation. In NMT, the decoder in

an LSTM-based model faces the challenge of generating the first word in the target

sentence using only the information in the state vector of the last word in the source

sentence. This limitation often made the translation task more difficult. However,

the attention mechanism has enabled the model to take advantage of the weighted

sum of the state vectors of source words, including the information corresponding

to the first word in the target language, which usually lies at the beginning of the

source sentence. The assigned weights indicate which source words the model should

pay more attention to, resulting in better performance in various natural language

processing tasks, including NMT [29].

To illustrate an example of using the attention mechanism, Choi et al. [30] pro-

poses a machine learning model called Retain, which utilizes a reverse time attention

mechanism for predicting medical outcomes. The authors employ a DNN model to

analyze Electronic Health Records (EHR) in reverse chronological order to predict

heart failure diagnosis. The EHR data is treated as a time series dataset, and two

attention mechanisms are used to process the records. They utilize the weights from

the attention layers to offer explanations, such as considering the physician visits that
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led to a significant impact on the model’s decision. For example, the record with the

highest result after multiplying its attention weights by the corresponding embedding

weights is deemed the most important.

In the context of deep-learned models, there are multiple methods for gaining

insight into how a model makes its predictions. One such approach is to use the at-

tention mechanism, as mentioned previously. Researchers have focused on explaining

DNN using methods where the internals of the model are exposed to the explana-

tion module [31], [32]. Another method involves computing gradients. This approach

entails calculating a gradient with respect to the predicted class and using the back-

propagation algorithm to propagate this gradient back to the input. This process

allows the input to be combined with the gradient to identify the important pix-

els that contribute most significantly to the predicted class. These important pixels

can be used to generate explanations for the model’s decision-making process (e.g.,

Grad-CAM [33]).

Model-agnostic Explainers

In this section, we review the explainers that assert their capability to explain the

decisions independent of the model architecture. Model-agnostic explainers have no

dependency on the internal working of the model. Nevertheless, it is important to

highlight that obtaining accurate explanations is a significant obstacle because the

individual providing the explanation lacks the ability to access the internal workings

of the system. In contrast, a model-specific explainer has the capacity to access all

of its components. We will review some state-of-the-art model-agnostic explainers in

this section.

Local Interpretable Model-agnostic Explanations (LIME) The research com-

munity has enthusiastically welcome LIME, introduced by Ribeiro et al. [4] is one of

the earliest XAI frameworks claimed to be model-agnostic. LIME is available as a
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Python package. Because of its availability and ease to use, researchers and developers

have begun implementing it readily to incorporate explainability into their systems.

As an illustration, the classification of biologically generated fuel compounds was ex-

amined by Whitmore et al. [34] using LIME on 2-D chemical structures. Mishra

et al. [35] show the application of LIME for music content analysis. Modarres et

al. [36] demonstrate the efficacy of LIME in credit lending. LIME has been em-

ployed in NLP endeavors, such as Named-Entity Recognition (NER), which involves

sequence-to-sequence tagging. [37] discusses the importance of explainability in se-

quence tagging models for NER and explores the use of several techniques to achieve

it, including saliency maps and layer-wise relevance propagation. The authors of [37]

suggest two distinct methodologies for utilizing LIME. In the first approach, they of-

fer explanations for every word in a sentence, whereas, in their second methodology,

they attempt to elucidate every named-entity (as a phrase, not an individual term)

by utilizing LIME.

As with other post-hoc model-agnostic explainers, LIME must depend on a model’s

input and output to produce explanations since it assumes that the classifier functions

as a black-box. To put it differently, in contrast to transparent models where some

portion of the decision tree, if not the entire tree, can be visualized or where certain

rules in a rule-based method can be demonstrated, LIME possesses no knowledge

regarding the inner workings of the model. The only pieces of information it has access

to are the input space and the target predictions. It should be taken into account that

the explanations pertain to each individual data point, not the entire model. Our

interest is to present the output of LIME for the purpose of explaining text dataset in

this manuscript. As an example, for a sentiment classification sentence, the output of

LIME would be a set of words or phrases along with their weights, which indicate how

important they are for the model’s prediction. These words or phrases are usually

highlighted in a different color to make them easily visible. If the sentence is “I loved

the movie, it was great!”, and the model predicts a positive sentiment, LIME may
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identify the words “loved” and “great” as the most important features that contribute

to the model’s decision. The weights associated with these words indicate how much

they influence the model’s prediction. In applications that entail classifying natural

text, like sentiment analysis, individual tokens are typically transformed into a vector

space. LIME method of explanation employs the tokens themselves and produces

words as part of the explanation, rather than solely numerical values associated with

them. In Figure 2.2, we show the output of LIME for a sentence “I did enjoy as it was

an excellent movie”. This sentence has been chosen from IMDB movie review dataset

[38] which is widely used for sentiment classification tasks. According to the output

of LIME, the words “excellent” and “enjoy” are responsible for making the sentence

positive labeled by the block-box. Orange bars represent the positive outcome and

the blue bars represent the negative. It is evident from the right side of the Figure

2.2 that the word “excellent” has more weight than the word “enjoy”.

Figure 2.2: Explanation provided by LIME for a sentence “I did enjoy as it was an
excellent movie”. This sentence has been picked from IMDB movie review dataset
[38]. The probabilities on the left are the prediction probabilities of the underlying
black-box model. On the right, the features and their corresponding importance
scores generated by LIME are shown in order of their importance. A higher absolute
value on the right side bar chart denotes that LIME perceives the feature as having
a more substantial impact on the classification outcome.

LIME works by generating a synthetic dataset around the original data point and

labeling its instances using a black-box model. This dataset is then used to build an

interpretable model for explaining the data point. Our discussion provides a detailed

explanation of how LIME generates explanations.
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To train a transparent model, LIME requires a new dataset consisting of new sam-

ples. These samples are perturbations of the original instance that the system aims to

explain to the user. The most commonly used technique in model-agnostic explainers

is perturbation, where small changes are made to the original data to create new

samples [39]. LIME uses different methods to create samples based on the type of

dataset. In the case of text data, LIME generates 5,000 new data points by perturb-

ing the original text, unless the user specifies a different number using a parameter as

mentioned in the Python package release by the author. The perturbation technique

comprises randomly deleting a word at a time from the original sentence. Essentially,

the perturbation process begins by selecting a specific text instance to explain, and

then LIME generates several perturbations by randomly removing words from the

original text. The number of perturbations can be set by the user or specified as a

default value in the LIME package which is set to 5,000 according to the settings in the

Python package. LIME then uses the perturbed text samples and their corresponding

predicted labels from the black-box model to train an interpretable model. The inter-

pretable model is trained to identify the important words or features that contribute

to the prediction of the black-box model. Finally, LIME generates an explanation for

the original text instance by highlighting the important words or phrases identified

by the interpretable model, thus providing insights into the decision-making process

of the black-box model.

After creating the local interpretable model, LIME proceeds to extract and provide

explanations to the user based on the features. This is a pretty straight forward step in

the LIME algorithm, requiring only the extraction of feature weights from the linear

model. The research paper [4] only provides an example with linear models, but

LIME can use other interpretable models such as decision trees or rule-based models

to extract feature-based explanations. However, the method of extracting feature

weights from the model remains the same regardless of the type of interpretable

model used.
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Although LIME has been widely used in various systems, many researchers, in-

cluding the authors of LIME, have developed new models to improve certain aspects

of LIME. We discuss two models, KLIME [40] and LIME-SUP [41], that use LIME

as their core algorithm. We review LORE [42], a method that takes advantage of the

Genetic Algorithm to create a neighborhood around the instance for generating expla-

nations. KLIME aims to provide explanations for a limited number of representative

points that can be used for the remaining points. KLIME aims to generate explana-

tions for a limited number of representative points that can be used to explain the

remaining points in the dataset. Unlike LIME, KLIME distributes the training data

into K clusters and for each cluster, trains a Generalised Linear Model (GLM) based

on the data points of the cluster. The popular K-means clustering is used to create

the clusters, whereas another GLM is trained based on all the training instances of

the dataset. KLIME chooses whether to utilize the GLM for the related cluster or the

global GLM when explaining a new instance based on the number of training data

points in the cluster. If there are 20 or more training data points in the cluster, the

GLM for that cluster is used; otherwise, the global GLM is used. It is important to

note that the K-means clustering has stability issues and finding the optimal value

for the parameter K of K-means clustering impacts the number of clusters generated

by KLIME.

Hu et al. [41] propose another method similar to KLIME, called LIME-SUP that

employs supervised partitioning to divide the training data, which is different from

KLIME’s K-means approach. In LIME-SUP, model-based trees are used, where the

nodes represent models that apply to specific regions of the problem space, unlike

decision trees. As compared to KLIME, this technique produces more accurate lo-

cal models in the leaves since the space is divided according to the training data.

Also, subspaces of LIME-SUP are more stable than K-means subspaces in KLIME.

The LIME-SUP technique, on the other hand, requires training labels to create the

tree, which may not always be accessible. While LIME-SUP offers an improvement
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over KLIME, both methods provide faster explanation generation by sacrificing the

accuracy of the explanations, which are based on data points in the vicinity of the

instance being explained.

Rules are highly interpretable and an appropriate technique to provide users with

explanations as mentioned previously in this chapter. The method called LORE,

introduced by Guidotti et al. [42] uses rules as the form of explanation. They use a

Genetic Algorithm to create a neighborhood around the instance, with the data point

selection algorithm choosing up to half of the data points from the same class as the

original data point. While the Genetic Algorithm is used to create data points, class

labels are determined by querying the black-box model. They train a decision tree

with synthetic data points and utilize it to create two sorts of rules: a single decision

rule and a set of counterfactual rules. The decision rule identifies the attributes that

contributed the most to the decision made by following the path leading to the original

instance in the decision tree. The counterfactual rules provide alternate approaches

to changing the decision by amending the input attributes, which are retrieved by

traversing all pathways in subtrees starting from nodes along the original instance’s

path.

Pattern Aided Local Explanation (PALEX) is another method proposed to provide

explanations for black-box models. In their method, Jia et al. [43] suggest a set of

patterns as the explanation. In their work, these patterns are extracted by taking

advantage of contrast sets built in the vicinity of the instance. They rely on the

FP-Growth algorithm [44] to build contrast sets. Their method, however, requires

defining a few hyper-parameters such as minimum support, and minimum growth

ratio thresholds. One noticeable fact we observed in the experiments they report is

that different values for the mentioned parameters work best across different datasets.

For example, among the five datasets, the best minimum support threshold varies

from 0.10 to 0.25 which is significant. Finally, their method requires a probability

score provided by the black-box model.
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Alternatively, Pastor and Baralis propose LACE [45] as a method that directly

learns an associative classifier by exploiting the nearest data points in training data.

Their method, however, requires the training data to be available, and this may not

always be realistic. Moreover, the percentage of instances in the neighboring data with

a different label can significantly change the performance of their method. Addition-

ally, the sparsity of the training data in that neighborhood can have a substantial

impact on the performance of their system. Furthermore, this method also can only

work on black-box models that provide probability scores. Besides, their associative

classifier has many hyper-parameters difficult to set and tune. Finally, they provide

no quantitative results on the performance of their system.

Anchor Ribeiro et al. introduce Anchor [5] after LIME by figuring out a weakness

of LIME based on the fact that the explanation of LIME is generated from a linear

model. The authors demonstrate that assigning an importance score to each feature

may not always be an effective method. The text classification example in Figure 2.3

illustrates this situation. For instance, the authors show that the word “not” in

a sentence can have both positive and negative influence depending on the other

words sitting next to it in the sentence, making it difficult to accurately assign an

importance score to this feature alone. An approach like LIME cannot account for

such dependencies because it assumes feature independence and produces individual

feature importance scores, making it unable to capture the nuanced relationships

between features that can affect their impact on the prediction. To address this

limitation, Ribeiro et al. [5] propose a set of salient features in the form of “if-then”

rules as the explanation since these rules comprehend Anchor to capture complex

feature interactions and dependencies that might be ignored by LIME. The authors

named the term “Anchors” to describe these rules since they serve as anchor points

that guide the prediction toward the target class. This means that modifying the

other features would not change the class label, making the rules more reliable and
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trustworthy for users. In their framework, each anchor is essentially a set of crucial

features that contribute significantly to the prediction. For instance, an anchor can

be composed of important words in a text such as “not” and “bad.”. They argue that

their Anchors approach has high precision, meaning that when an anchor is applied,

it is likely to classify most instances that fit the anchor correctly. In other words, the

anchor’s definition is precise and specific enough to capture a subset of instances that

can be classified with high confidence.

The authors use a greedy algorithm to construct an anchor. A greedy algorithm

is a simple heuristic algorithm that follows a specific set of rules to make the best

decision at each step. In the case of Anchors, the greedy algorithm aims to con-

struct the most precise and smallest anchor that can capture the most significant

features contributing to the prediction. The algorithm considers all possible subsets

of features and chooses the one that satisfies the precision and coverage requirements

while minimizing the size of the anchor. The greedy algorithm constructs Anchors

efficiently while still maintaining a high level of precision. To determine the preci-

sion, Anchor uses a synthetic set of instances that are close to the instance being

explained. However, unlike LIME, Anchor aims to minimize the number of queries

to the black-box model by identifying the smallest set of necessary instances using a

multi-armed bandit algorithm. By leveraging this approach, Anchor can adaptively

generate the neighborhood around the instance. They stop the greedy approach when

the precision exceeds a heuristic criterion, which they set at 0.95 in their study. While

Anchors can capture the most important features that contribute to the prediction, it

may not provide insight into how these features interact with each other or how their

joint effects contribute to the prediction. Thus the association among the features is

not expressed by Anchor. As opposed to LIME, the importance score or weight of

the features is not exposed by Anchor.
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Figure 2.3: Explanations generated by LIME and Anchor. This figure has been taken
from [5]. (a) shows two sentences from the sentiment analysis task. The blue one
has a positive sentiment and the red one has a negative sentiment. (b) presents the
explanations of LIME, (C) presents the explanations of Anchor

SHAP The SHAP (SHapley Additive exPlanations) [6] framework is built upon

the concept of Shapley value [46], a cooperative game theory concept that measures

the contribution of each player to the overall outcome of the game. Shapley value

provides a fair and efficient way to allocate rewards by considering the marginal

contributions of each player in different combinations of players. Shapley value has

been widely used in various fields to solve reward distribution problems, and it has

also been applied to machine learning models to explain the contributions of each

feature to the predicted outcome. In the context of machine learning, the players are

the input features, and the outcome is the predicted output. The feature importance

can be thought of as the reward a player receives as a participant in the game. The

formula used in the SHAP framework to calculate the contribution of each feature to

the predicted outcome is as follows:

ϕi(val) =
∑︂

S⊆{x1,...,xp}\{xi}

|S|!(p− |S| − 1)!

p!
(val (S ∪ xi)− val(S)) (2.1)

This formula computes the feature importance for a given feature i in an instance
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x with p features. The formula involves computing a weighted sum over all subsets of

x that exclude feature i. For each subset, the formula calculates how adding feature

i to that subset affects the final prediction of the model. The weight of each subset is

determined by the number of possible ways that subset could have been generated.

The SHAP method, while effective for computing feature importances, can be

computationally expensive because it involves computing the weighted sum over all

subsets of features. Since the number of subsets grows exponentially with the number

of features, this can quickly become infeasible for large datasets. To address this issue,

the authors of SHAP propose using a sampling approach to make the computation

more efficient. The basic idea behind the sampling approach is to randomly select a

subset of subsets to include in the sum. By selecting subsets at random, the hope is

that the resulting feature importances will be representative of the true values, while

the computation time will be greatly reduced. The authors show that, with appropri-

ate sampling strategies, the resulting feature importances can be very accurate while

using a fraction of the computation time required for the full sum. There are many

different sampling strategies that can be used with the SHAP method, and the choice

of strategy can have a significant impact on the resulting feature importance.

2.3 Data Augmentation

This section provides a brief overview of data augmentation for text, with particular

emphasis on simple data augmentation techniques [12] since our proposed method

leverages a straightforward data augmentation approach to create additional texts

based on the given input. Data augmentation is a set of techniques that aim to

enhance the variety of training samples without the need for additional data collection.

In recent machine learning research, it has gained considerable interest, with highly

acclaimed general-purpose approaches (e.g. UDA [47], AutoAugment [48]). In the

context of NLP, data augmentation can be used to increase the size of a corpus of

text data, which can help to improve the performance of language models. However,
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adapting DA techniques for NLP can be more challenging compared to other domains,

such as computer vision. This is partly due to the discrete nature of language, where

words and sentences are represented by discrete symbols (e.g., individual words or

characters) rather than continuous signals. This rules out some techniques commonly

used in computer vision, such as adding random noise to images, which are not

directly applicable to text data. However, despite the challenges presented by the

discrete nature of language, there has been a growing interest in and demand for data

augmentation techniques in NLP. This is partly due to the increased availability of

large pre-trained language models which have led to significant advances in various

NLP tasks, such as text classification, question answering, and language generation.

One of the simplest and most efficient data augmentation techniques that have been

shown to improve the performance of NLP models on various tasks is EDA proposed

by Wei et al. [12]. It is also easy to implement and can be applied to any text dataset

without requiring extensive domain knowledge or resources. We describe the core

components of EDA in the next section.

2.3.1 Easy Data Augmentation

Famously proposed by Wei et al. [12], Easy Data Augmentation (EDA) uses tra-

ditional and very simple data augmentation methods. EDA consists of four sim-

ple operations: (synonym replacement, random insertion, random deletion, random

swapping) that do a good job of preventing overfitting and helping train more robust

models. Inspired by their proposed work, this category also includes techniques that

are simple and easy to use. Based on whether the technique requires looking into the

context of the sentence, it is again divided into two broad subcategories:

1. Contextual Replacement: One of the easiest and most popular data augmenta-

tion techniques is producing a new sentence by replacing n words with similar

words while taking into account the context of the sentence. Here similar words

refer to synonyms, hyponyms, hypernyms, words with same Part-Of-Speech
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(POS) tag etc. Such replacement should be label preserving without changing

the meaning of the sentence. This can be done in three ways depending on the

task and the level of correctness required.

(a) Thesaurus based: This technique involves finding similar replacement words

using thesaurus derived fromWordNet, VerbNet etc. Kolomiyets et al. [49]

are one of the first ones to implement this technique in order to improve the

portability of time expression recognition to non-newswire domains. They

replace temporal expression words with potential synonyms from WordNet

in order to generate additional training examples. Later, authors like Li

et al. [50], Mosolova et al. [51] and Jungiewicz et al. [52] also experiment

with word replacements based on thesauri using pre-defined dictionaries

for sentiment analysis and toxic comment classification. EDA randomly

chooses words from the sentence that do not stop words and replaces them

with one of their synonyms chosen at random from WordNet. Zuo et al.

[53] use both WordNet and VerbNet to retrieve not only synonyms but also

hyperonyms and words of the same category. When it comes to choosing

the synonyms, Zhang et al. [54] and Marivate and Sefara [55] look into

the geometric distribution by which the insertion of a distant synonym

becomes less probable. In order to remove gender bias in datasets, Lu

et al. [56] in Counterfactual Data Augmentation (CDA) technique use a

bidirectional dictionary of gendered word pairs to replace masculine words

with their feminine counterparts and to break the associations between

gendered and gender-neutral words. In addition to synonyms, Coulombe

et al. [57] also suggest the use of hyponyms and hypernyms to replace the

original words in a text. For example: generating a new text ’I have a

small animal.’ from ’I have a small dog.’ In order to ensure that the newly

generated texts are syntactically identical, Xiang et al. [58] propose to use
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WordNet to find candidates to substitute a word having the same POS

tag (Adjective/Adverb, Verb or Noun). Experiments done on eight bench-

mark datasets used for NLP classification tasks show that the augmented

data helps improve the accuracy of deep learning models including state-

of-the-art transformer-based models. Jungiewicz et al. [52] have utilized

WordNet and Thesaurus.com for finding synonyms for substitution. Their

augmented data improve the performance of two of their CNN-based mod-

els for text classification. Such thesaurus-based methods, however, suffer

from the limitation of the replacement range and word part-of-speech.

(b) Semantic embedding based: To tackle the limitations of thesaurus-based

word replacement, a number of works have proposed using embedding re-

placement of words instead. Such embeddings aim to represent words in a

dense vector by making sure that similar words are close to each other in

the embedding space. Pre-trained word vectors like as Glove, Word2Vec,

FastText, etc. are often used to find words closest to the original word in

the vector space. Wang and Yang [59] use this technique to better classify

annoying tweets. They replace each original word in the tweet with one

of the k-nearest-neighbor words using cosine similarity. Li et al. [60] also

replace a word with its top-k nearest neighbors in a context-aware word

vector space for generating adversarial examples. Marivate and Sefara [55]

and Rizos et al. [61] have used pretrained neural word embeddings for

word substitution instead of relying on an external thesaurus [62]. To bet-

ter classify sentiments of product reviews in Vietnamese language, Huong

and Hoang [63] perform word embedding replacement based on the cosine

distance for measuring the similarity. Madukwe et al. [64] look into an

embedding replacement for improving hate speech detection which often

suffers from a lack of diversity and a diminutive class of interest. One of the

problems with this however is the fact that antonyms of a keyword could
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be in the same vicinity as that keyword because they usually co-occur in

documents. In order to avoid that, instead of pre-trained Word2Vec, they

use counter-fitted (synonym and antonym) word embedding [65] and Levy

and Goldberg’s [66] skip-gram model (word2vecf2). Also when it comes

to choosing the words to be substituted, they use techniques like Particle

Swarm Optimization (PSO) [67] and Integrated Gradient (IG) [68]. Their

proposed methods of selecting candidate words are superior to the baseline

methods on the Founta and Davidson datasets. However, word embedding

replacement still suffers from the lack of context when it comes to fetching

synonyms, especially for words with multiple meanings and few synonyms.

(c) Language Model (LM) based: To mitigate the limitations of word embed-

dings and to make use of the context of a sentence, a number of authors

have used language models. This is because large pre-trained language

models are good at predicting synonyms that are not only similar in mean-

ing but also fit the context in principle. Alzantot et al. [69] in their work

utilize the Google 1 billion words language model [70] to choose synonyms

that have a high probability of fit. Similarly, Gao et al. [71] compute a

weighted average of the embeddings of all possible synonyms predicted by

the LMs as the replaced input thinking that the average representations

could augment text with richer information. Instead of just relying on syn-

onyms to generate new data, Sosuke Kobayashi [72] makes use of context

and replaced words in sentences with other words having paradigmatic re-

lations. As a result, the number of replacement words increases to a great

extent which in turn increases the number of augmented sentences. For

example: ’the actors are amazing’ gets augmented into ’the performances

are fantastic’, ’the films are fantastic’, ’the movies are fantastic’, and so

on. In order to make sure that the replacement words still preserve the

original label and context, they modify a bi-directional language model
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and make it label-conditional; thus preventing any changes in semantics.

Fadaee et al. [73] also propose a similar technique using language models

where they slightly modify the source sentence in a way that still preserves

the semantics and syntax. As an example, the generated sentence ’My un-

cle sold his house’ from the original sentence ’My uncle sold his motorbike’

is valid. However, the generated text ’Alice waters the motorbike’ from

the original text ’Alice waters the plants’ is not semantics preserving and

is therefore invalid.

Random Transformation: This category involves simple and easy transformations

like random deletion, substitution, swapping, insertion, etc. of characters, words, or

sentences in order to produce new data. These techniques usually do not take into

account the context of the sentence and are mostly done with the aim of adding

perturbations or noises without changing the original label. The newly generated

noisy data is usually faint and does not shift the semantics of the text so much that

it deviates from the original data or changes human judgement. Most of the time,

a combination of these techniques is used at once. Models are often trained on this

augmented data in order to increase robustness.

1. Character-level: In order to make NMT models less susceptible to adversarial

examples, Belinkov and Bisk [74] add artificial and natural noise to the train-

ing data on a character level. This included random switching of single letters

(cheese → cehese), randomization of the mid part of a word (cheese → ceehse),

the complete randomization of a word (cheese→ eseehc) and the replacement of

one letter with a neighboring letter on the keyboard (cheese→ cheeae). Feng et

al. [75] followed similar character-level techniques like random deletion, swap,

and insertion whilst keeping the first and last letter of every word unchanged

in order to fine-tune text generators. Their method was able to perform better

than the baseline model in terms of diversity, fluency, semantic context preser-
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vation, and sentiment consistency. Karimi et al. [76] propose AEDA which

includes random insertion of punctuation marks into the original text as well as

changing the position of words in the sentence while keeping the order intact.

On five text classification tasks, the model trained on AEDA augmented data

outperformed those trained on EDA. Ebrahimi et al. [77] on the other hand

generate noisy data by flipping a letter of the input data (one-hot representa-

tion) if it increased the loss of an existing model. Upon retraining the model

on the additional noisy data, the error rate improves and the success of adver-

sarial attacks is minimized. Li et al. [60] similarly propose ’TextBugger’ which

generates label-preserving adversarial examples by inserting bugs into texts by

swapping two adjacent characters, replacing characters with visually similar

characters (’O’ with ’0’), deleting a random character or inserting a space into

a word.

2. Word-level: Wei et al. [12] in their famously proposed EDA technique use

a combination of synonym replacement, random deletion, insertion, and swap

on a word level and show that in low resource settings which are able to im-

prove model performance in five text classification tasks. Miao et al. [78] have

looked into a number of random local modifications including removing words

in the sentence with some probability p as well as inserting words in random

positions in a sentence for boosting the performance of language models for

semi-supervised opinion mining. Rastogi et al. [rastogi2020can] also have

experimented with random deletion, swapping, and substitution of words and

achieved a performance boost in the toxic comments classification task. Others

have looked into replacing non-important words with random words (Niu and

Bansal [79]) and randomly swapping any two words in a sentence (Artetxe et al.

[80], Lample et al. [81]) for a number of tasks like text classification, sequence

labeling and so on. Although the semantics of a language depends largely on
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the order of the text information, a slight change in order is still detectable

by humans [82]. With this intuition, Dai et al. [83] first split token sequences

into segments according to labels, then randomly chose some segments to shuf-

fle the order of the tokens inside, with the label order unchanged. They also

combine it with other techniques like label-wise token replacement and men-

tion replacement using some binomial distribution and reported improvement

in model performance for NER tasks, especially for small datasets. To make

models more robust to common spelling mistakes, Coulombe et al. [57] and

Regina et al. [84] introduce a list of the most common English misspellings.

For example, replacing “across” as “accross” to generate an augmented text

containing a misspelling. In order to improve generalization, Xie et al. [85]

introduce ’blank noising’ which replaces random words with ’ ’. Wei et al. [86]

leverage curriculum learning by first training models on only original examples

and then introducing augmented data (using EDA) as training progresses for

improving few-shot text classification. On four diverse text classification tasks,

they also found that common data augmentation techniques can improve the

performance of triplet networks by up to 3.0% on average.

Instead of manipulating words, some authors have looked into manipulating

slot values. Peng et al. [87] augment input dialogue acts by either deleting,

replacing, or inserting slot values to obtain more combinations in the task of

spoken language understanding. Song et al. [88] similarly augment datasets by

copying user utterances and replacing real slot values with randomly generated

strings. The technique proves to be effective for copy-mechanism models in

dialogue state tracking in three widely used datasets (WoZ 2.0, DSTC2, and

Multi-WoZ 2.0).

3. Sentence-level: Yan et al. [89] perform random deletion, insertion, and shuf-

fling of sentences in the legal documents dataset. Random deletion of sentences
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from a legal document is done according to a certain probability with the in-

tuition that deleting irrelevant statements will not affect the understanding of

the legal case. Moreover, since documents with the same label may have similar

sentences, they randomly select sentences from other legal documents with the

same label and insert them to get augmented data. They also perform random

swapping of sentences between legal documents thinking that since sentences

independently contain relatively complete semantics compared to words, the

sentence order in the legal document would have little effect on the meaning

of the original text. Yu et al. [90] employ an attention mechanism for both

word-level and sentence-level random deletion in their proposed hierarchical

data augmentation (HDA) technique for text classification.
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Chapter 3

Association Rule-Based Classifiers

Rule-based classifiers are an important category of transparent classifiers. During

the prediction phase, these classifiers typically utilize a collection of rules developed

during the training phase. Association rule classification is a technique that involves

applying pattern mining to the classification task. In essence, frequent itemsets that

are linked with a particular class label are transformed into rules that characterize

that class label. The rules are therefore conjunctions of feature-values implying a

class label: f1, and f2, and f3, and f4, and ..., fn → class1.

In this chapter, we begin by briefly examining various types of rule-based classifiers

before delving into the notion of association rules and association rule-based classi-

fiers. In Section 3.3, we provide a detailed overview of a particular association rule

classifier called SigDirect [2], which we use in our experiments. We evaluate the ef-

fectiveness of our SigDirect classifier implementation using text dataset and compare

the explanations with other state-of-the-start explainers in the experiment section.

Finally, we discuss the limitations of SigDirect and introduce Classification by Fre-

quent Association Rules (CFAR), a method that utilizes an ensemble of associative

classifiers.
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3.1 Rule-based classifiers

Essentially, rule-based classifiers function similarly to ”if” statements in computer

programming languages, where a statement is executed only if a specific condition is

met. Each rule in rule-based classifiers consists of two primary components: a set of

items on the left-hand side (LHS) and an item on the right-hand side (RHS), which

represents the class label in classification tasks. Alternatively, these components

can be referred to as antecedent and consequent, respectively. Additionally, some

classifiers might include additional information to each rule, such as the frequency of

the LHS in the dataset (support score) or the frequency of the LHS co-occurring with

the RHS in the dataset (confidence score). One of the popular rule-based methods

is OneR [91]. The algorithm generates a single rule for each value of each feature

using one feature in the antecedent and the label in the consequent. For every rule,

the classifier retains the number of mistakes it committed on the training set, which

it uses during the testing phase. At test time, the algorithm chooses the rule with

the lowest error score among the relevant rules and returns the label associated with

it as the final class label.

In contrast to OneR, which only uses one feature in the antecedent, the First

Order Inductive Learner (FOIL) [92] incorporates multiple features in the antecedent.

This classifier, which relies on First-Order Logic, generates rules using separate-and-

conquer method. During each iteration, the algorithm constructs a new rule by

adding new feature-values to it via a top-down greedy approach. The selection of the

subsequent feature-value to be added to the rule is determined by the Foil-gain metric,

which aims to include as many positive examples as possible under the rule while

reducing negative examples. Once the new rule has been established, all instances

that the rule applies to are eliminated from the present dataset, and the next iteration

of the algorithm commences.

RIPPER is another prominent rule-based classifier that operates on multi-class
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datasets by utilizing a technique called Repeated Incremental Pruning to Produce

Error Reduction [93]. Like FOIL, this classifier takes advantage of the separate-

and-conquer approach to generate rules in an iterative manner. However, this rule

learner partitions the data into growing and pruning sets. Using FOIL’s gain metric,

it creates a new rule based on the growing set and then utilizes the pruning set to

eliminate some of the feature-value literals that were added during construction, only

if the removal contributes to producing a better rule. It is worth mentioning that

RIPPER introduces an additional post-processing stage to enhance the quality of the

generated rules.

3.2 Association Rule-Based Classifiers

Association rules are specific types of rules that leverage the associations between

features. They are mainly utilized in pattern mining, where they help extract frequent

itemsets from transactional datasets. The Apriori algorithm [94] and FP-Growth [95]

are two of the most notable algorithms employed to extract these frequent patterns

from datasets. In this section, we are going to review these algorithms. Association

rule mining aims to identify relationships between items in a transactional dataset.

For instance, given a dataset that records transactions from a grocery store, the

primary objective is to discover frequent itemsets like {“p1’, “p2’, “p3’, and “p4’}.

Using the frequency of each item, we can create association rules, such as “p1”, “p2”

→ “p3”, “p4” or “p1”, “p2” → “p3”. There are no restrictions on items in the RHS

itemset.

The Apriori algorithm is a classic algorithm for association rule mining. It is pri-

marily used to extract frequent itemsets from large datasets. The technique operates

by periodically scanning the dataset for frequent itemsets of increasing size. During

each iteration, the algorithm applies a minimum support threshold to prune itemsets

that are less frequent than the specified threshold. This approach is known as the

“Apriori principle,” which states that if an itemset is frequent, then all of its subsets
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must also be frequent. The Apriori method may prune a huge part of the search area

using this approach, making it more efficient than other algorithms that scan the full

dataset. It is composed of two main phases: the frequent itemset generation phase and

the rule generation phase. During the frequent itemset creation phase, the algorithm

scans the dataset for frequent itemsets of various sizes. During the rule generation

phase, the algorithm constructs association rules from frequent itemsets that meet a

minimum confidence threshold. The confidence threshold specifies the minimum level

of certainty required for an association rule to be considered significant.

FP-Growth (Frequent Pattern Growth) is a popular algorithm for mining frequent

itemsets in large datasets. It was introduced as an improvement over the Apriori

algorithm, which can be inefficient when dealing with large datasets due to its re-

quirement of multiple passes over the data. The FP-Growth algorithm operates by

constructing an FP-Tree, which is a tree-like structure that provides a compressed

representation of the dataset. This structure enables faster generation of frequent

itemsets. To construct the FP-Tree, the algorithm initially scans the dataset to de-

termine the frequency of each item. It then recursively adds frequent items to the

tree, commencing with the most frequent item.

CBA (Classification Based on Associations) [96] is a classifier that resembles the

Apriori algorithm in the manner it extracts Classification Association Rules (CARs)

from data. In contrast to regular association rules, which can contain any number

and type of items in the consequent of a rule, the consequent of a CAR is constrained

to only one item, which must correspond to the class label. After the rules have been

generated by the algorithm, they are initially arranged based on their confidence

and support. The algorithm then implements the concept of database coverage and

preserves only those rules that cover at least one instance of the dataset if no previous

rule has covered it. Unseen instances are classified using the first applicable rule in

the aforementioned list.

CMAR (Classification based on Multiple Association Rules) [97] is another ap-

37



proach that utilizes FP-Growth instead of Apriori to generate rules. The algorithm

applies a pruning strategy similar to CBA once it has generated all the rules. To

classify each instance, the learner applies a particular measure to determine the ap-

propriate class label.

CPAR (Classification based on Predictive Association Rules) [98] is a hybrid

approach that combines traditional rule-based methods with association rule mining

techniques. This algorithm builds upon the FOIL algorithm mentioned earlier and

utilizes the FOIL gain metric to determine the most suitable feature in the algorithm.

A significant contrast between CPAR and FOIL is that CPAR assigns a significance

score to each instance. Instead of deleting samples covered by a created rule, a

weighted score is used to lower their importance.

3.3 SigDirect

In this section, we spotlight on SigDirect, a classifier introduced by Li and Zaiane

[2] known as Statistically Significant Dependent Classification Association Rules for

Classification. SigDirect is at the core of the BARBE. We discuss the concept of

statistical significance in this section along with the reason to select SigDirect to

explicate the reasoning behind the decisions made by black-box systems.

SigDirect differs from other techniques based on the fact that it makes use of

the concept of Statistical Significance to eliminate untrustworthy rules while other

approaches rely on a threshold for support and confidence values to discard such rules.

The Statistical Significance test can be used to ensure that the results of an experiment

are not the result of errors such as sampling errors. When performing the Statistical

Significance test, we start by assuming a null hypothesis, which implies that there is

no association between the measured variables, and any observed outcome is purely

by chance. Our aim is to demonstrate that this hypothesis is improbable. To be more

precise, once we have selected a threshold α, which depends on the particular field of

study, we can determine if the outcome of an experiment is statistically significant by
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checking if the p-value (i.e., the probability of obtaining results as extreme as those

observed in a null hypothesis) is lower than alpha. For most scientific research, α is

set to 0.05. The formula, known as Fisher’s exact test to compute the p-value for a

classification association rule presented in the form of X → ck is:

p (X → ck) =

min{σ(X,¬ck),σ(¬X,ck)}∑︂
i=0

⎛⎝ σ(X)

σ (X, ck) + i

⎞⎠⎛⎝ σ(¬X)

σ (¬X,¬ck) + i

⎞⎠
⎛⎝ |D|

σ (ck)

⎞⎠ (3.1)

Although it is computationally expensive to compute such value, Hamalainen et

al. [99] propose a method to efficiently compute the lower bound for p-value when

σ (ck) ≥ σ (X) :

p (X → ck) ≥
σ(¬X)!σ (ck)!

|D|! (σ (ck)− σ(X))!
(3.2)

By employing this equation, we can calculate the lower bound for the rule. If the

calculated lower bound exceeds the threshold value α, there is no further need to

compute the exact p-value, as the rule is already not statistically significant.

SigDirect employs a strategy similar to Apriori for rule generation. Subsequently,

it uses an instance-based approach for pruning to retain only high-quality rules while

discarding the rest. Like Apriori, SigDirect leverages the expansion of the kth level

to construct the k + 1th level by utilizing the training set.

During the kth iteration, every node undergoes the following evaluation process:

First, the lower bound of the p-value is calculated using Equation 3.2. If the resulting

lower bound is less than the statistical significance threshold α set by the user, then

Equation 3.1 is employed to derive the exact p-value. By utilizing this method, we

can save on the expenses incurred in computing the exact p-value, which can be quite

costly, for rules that are not significant. Upon calculating the p-value, the algorithm

proceeds to assess the candidate rule’s minimality and non-redundancy to determine
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whether it is a viable selection. It is imperative that the p-value of every parent

of the LHS of the candid rule must not be less than the p-value of the candid rule

itself. Ultimately, to ascertain whether a candidate rule is minimal, we verify that all

occurrences of the LHS itemsets in the training set pertain to the identical class.

An inherent advantage of employing SigDirect as the transparent model in com-

parison to other classifiers such as CPAR or CMAR is the elimination of the need

to calibrate any hyper-parameters in SigDirect. By hyper-parameter, we focus on

support and confidence thresholds that play a major role in CBA and CMAR. This

benefit proves particularly useful when elucidating a black-box model, where it is cru-

cial to train the explainer, i.e., the transparent model like SigDirect, for each unique

decision of the black-box, i.e., varying test instances. Furthermore, typically, there is

a lack of ground truth data to measure the accuracy of the explanations generated

by the explainer model. Therefore, there exists no simple method for end-users to

adjust any hyper-parameters. Therefore, there exists no simple method for end-users

to adjust any hyper-parameters. The authors [2] also demonstrate the performance

of SigDirect not only in terms of accuracy but also its effectiveness in generating

fewer rules. This benefit enables the end-users to get a better understanding of the

explanation effortlessly.

SigDirect is available as a Python package1. It exploits certain numerical libraries

like Numpy and Scipy to perform calculations more rapidly than with pure Python

code. We opt to use Python, rather than other programming languages like C++,

which are generally faster, because it enables other researchers to enhance or cus-

tomize SigDirect to suit their specific requirements. The increasing popularity of

Python in the field of machine learning cannot be understated. Python has now

surpassed other programming languages in ML, both in academics and industry. Ac-

cording to recent research, 57% of machine learning developers and data scientists

prefer to use Python for ML tasks [100].

1You can access the code at https://github.com/mhmotallebi/sigdirect.
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SigDirect is an associative classifier. We are using SigDirect as the core component

of our proposed methodology. An issue with SigDirect is that it generates many rules

making it difficult to evaluate them. Zaiane and Antonie [101] conduct a study to

reduce the number of rules by introducing a two-stage pruning technique without

affecting the accuracy of the classifier. Their proposed method called SigD2 improves

the interpretability of the learned model by reducing the number of rules using the

pruning technique. However, SigDirect and SigD2 both have a limitation in dealing

with datasets with a large feature vector, as it requires high memory and long run

time. Therefore, in the case of datasets with high dimensions, SigDirect and SigD2

encounter memory and run-time problems due to the large feature vector space. To

mitigate these problems in SigDirect and SigD2 when dealing with high-dimensional

datasets, an ensemble of associative classifiers can be employed. In the following

section, we explore CFAR, a methodology that leverages an ensemble approach to

tackle the aforementioned challenges.

3.4 CFAR

Kabir and Zaiane [3] introduce Classification by Frequent Association Rules (CFAR),

that can handle high-dimensional datasets. CFAR addresses the limitations of SigDi-

rect and SigD2 by following an ensemble approach where multiple base learners are

used to generate association rules. Each base learner is trained with a subset of the

feature vector, and the rules generated by all the base learners are aggregated and

ranked based on their frequency. The rules having higher frequency are eventually

selected to explain the decision of the black-box model.

Ensembling associative classifiers allows collecting all the rules learned from train-

ing data for labeling test data to a class label. But the inclusion of noisy rules can

affect the model’s performance. To overcome this, CFAR uses Relative Frequency

Ratio (RFR) to select rules that enhance the model’s performance. Once the rules

are generated by the base learners, the frequency of each rule is calculated and the
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maximum frequency is determined as max frequency. For a rule R, the RFR can

be calculated as RFR(R) = Frequency (R)
max frequency

.

CFAR assumes a threshold T to select the rules having RFR(R) ≥ T . Finding the

optimal value of T is crucial to maximize the accuracy. Hence, CFAR implements a

3 step strategy:

Rule generation : During the rule generation phase, CFAR adopts a random sub-

sampling approach to train 100 SigD2 base learners. The dataset is first divided into

training and validation data with an 80:20 ratio. Then, the training data is further

split into training and test data in an 80:20 ratio. To train each base learner, CFAR

uses a subset of the feature vector of size 30. After training, all the generated rules

by the base learners are gathered, and RFR of each rule is calculated.

Find optimum value for T : The optimum value for T is found by trying different

values in a linear search fashion. It is assumed that the frequency of a rule among

the base learners defines its importance. The generated rules are obtained and the

class label is predicted with the selected rules. The value of T is initially set to 1

and is decreased by 0.1 in each step to perform rule selection and class prediction.

The accuracy is calculated in each step and the value of T is decreased until the best

improvement in accuracy is achieved. If there is no improvement for a certain value

of T , the search is stopped and the T value from the previous step is fixed as the

optimum T .

Prediction : In the final step, the value of T that provides the best result is

obtained from the previous step. Using this value of T, rules are selected and the

class label of the validation data is predicted. The performance of the model is then

calculated based on the predicted class label. Figure 3.1 shows the architecture of

CFAR.

We are introducing CFAR in this section since we want to use it as the core of our
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proposed methodology called BARBE. Chapter 4 presents BARBE in detail. We are

interested to compare the performance of BARBE with SigDirect against BARBE

with CFAR to demonstrate the capability of BARBE with CFAR to overcome the

limitations that BARBE with SigDirect has while handling high-dimensional datasets.

CFAR is nothing but the ensemble of SigD2 where rules generated by a set of base

learners are eventually merged together to generate the final explanation.

Figure 3.1: The architectural diagram of CFAR taken from [3]. Rules are generated
by base learners using training data. The generated rules are then applied to test data
to determine the T value that yields the best performance. Final rules are selected
using the T value and applied to validation data to evaluate the model’s performance.
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Chapter 4

BARBE: Black-box Association
Rule-Based Explanations

We introduce Black-box Association Rule-Based Explanations (BARBE) in this chap-

ter, our proposed method, which takes advantage of associative classification rules to

generate explanations that are not only better but also more easily understood by

humans than those produced by other methods, such as LIME, Anchor, and SHAP.

Section 4.1 of this chapter highlights challenges that are present in LIME, as well as

other model-agnostic explainers. We introduce BARBE and elucidate how it over-

comes the aforementioned shortcoming in Section 4.2. We present a demonstration

of how BARBE’s explanation looks like and provide an overview of its architecture

in this Section.

4.1 Shortcomings of Other Methods

Take what LIME generates for the text “I did enjoy as it was an excellent movie”

as shown in Figure 2.2. What do the numbers in front of each feature mean? These

“importance scores” are simply used for ranking. For example, 0.12 for excellent and

0.05 for enjoy highlight that excellent has higher importance than enjoy in making

the sentence labeled by the black-box as positive. This leads us to the conclusion that

only the order among features matters to the users and not the numbers generated

in the explanations. Since LIME uses a weighted loss function for its linear model
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Figure 4.1: Number of empty sentences generated by LIME across different sample
sizes

that also benefits from regularisation, it is likely that the instances which are not in

the very close proximity of the original instance would be misclassified by this linear

model, thus providing wrong explanations to the user.

During the process of generating a neighborhood around the input text for LIME,

random words are removed from the input sentence to create a synthetic dataset.

As observed during our analysis, this method sometimes leads to the creation of

empty sentences with no words in them. Figure 4.1 illustrates the number of empty

sentences generated by LIME while creating the synthetic dataset for different sample

sizes. By default, LIME produces a synthetic dataset of 5,000 1 sentences around

the provided text. We examine the occurrence of empty sentences in the synthetic

dataset produced by LIME across various sample sizes: 5,000, 7,500, 10,000, 12,500,

and 15,000. Our investigation finds that the synthetic dataset generated by LIME

consistently contains around 13%-15% empty sentences. There is a potential for

improving the neighborhood generation process by ensuring that any sentence that

contains at least one word is included instead of having empty sentences.

Ribeiro et al. [5], the same authors of LIME, also point out another shortcoming

of methods like LIME, the fact that features are taken independently (see example

1https://github.com/marcotcr/lime/blob/fd7eb2e6f760619c29fca0187c07b82157601b32/lime/
lime text.py#L374
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in Figure 2.2). They introduce Anchor to overcome this issue. In their new method,

an explanation is a set of features that whenever they co-occur, the class label is

determined with a 95% confidence. This Anchor essentially resembles a rule (with a

high confidence threshold of 95%).

The authors of LORE [42] benefit from the idea of using a rule as the explanation

in their method as well. In their method, however, Guidotti et al. [42] also provide a

set of counter-factual rules helping the user find ways to have a new data point that

is labeled differently than the original one while having the least different features

compared to it.

Despite the fact that these methods, to some degree, overcome the problem men-

tioned above, one issue remains: is there always only one set of correlative features

(and hence one reason) behind the final outcome of the model? What if there are

multiple sets of correlative features that independently derive the final conclusion

of the system [102]. Therefore an explanation should not solely focus on indepen-

dent features or one unique set of associated features but on possibly a set of causes.

Hence the interest in an associative classifier that can provide a set of rules as an

explanation.

4.2 Proposed Resolution for the Challenge: BARBE

To overcome the above shortcomings, we introduce Black-box Association Rule-Based

Explanations or BARBE.

Unlike LIME, BARBE provides a set of rules as the explanation, where not only

do rules provide users with important features (what LIME does), but also take care

of the associations among them (what LORE and Anchor do). In addition, since we

provide multiple rules as an explanation, we can hint at multiple causes that have

led to that decision by the system, something that the aforementioned methods are

unable to provide. Note that using a decision tree (in systems like LORE) the path

in the tree leading to the predicted label results in a single applicable rule which
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constitutes only one unique cause.

4.2.1 Explanations by BARBE

BARBE generates a descriptive model learned on data labeled by the black-box and

provides as the explanation a subset of rules from the model that apply to the instance

for which the explanation is expected. From this set of rules and their individual mea-

sure of confidence and significance, BARBE can provide an ordered set of important

features as an alternative way of providing explanations. This allows the users to have

the choice to look at these two types and get a better understanding of the underly-

ing causes. Moreover, as mentioned earlier, each rule in addition to the items in its

antecedent and the class label, comes with added information such as its confidence,

support value, and p-value.

Figure 4.2 and Table 4.1 demonstrate an example of what BARBE produces for a

text labeled as negative by the black-box model. In this example, BARBE produces

five rules according to Table 4.1 by which they not only provide important features to

the users but also provide the associations among the features. The rules are sorted

in this table based on their confidence values. Note that the first four out of five

rules provided in this explanation infer class labels negative with higher confidence

whereas only one of them infers class labels positive with very low confidence. These

five rules are “applicable rules” since these rules include the same features as the

original instance. The first four out of five rules are “applied rules” which are a

subset of “applicable rules” whose labels match the instance label as predicted by the

black-box model.

4.2.2 How does BARBE work?

A high-level representation of the activity diagram of BARBE is shown in Figure 4.3.

BARBE generates neighborhood instances around the instance to be explained by

creating synthetic instances around the original instance. The synthetic instances
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Figure 4.2: The explanation provided by BARBE for an instance of the IMDB movie
review dataset labeled as negative by the black-box model. (A) shows the sentence
with features highlighted. The red heatmap presents the negative words and the green
heatmap presents the positive ones. Table 4.1 presents the set of important rules
with their support, confidence, and logarithm of statistical significance values. (B)
presents the prediction probability of the black-box, and (C) presents the histogram
of important features ranked based on their importance.

48



Table 4.1: Set of rules generated by BARBE with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “N” denotes
“Negative” label and “P” denotes “Positive” label in the Rule column.

Sentence Rule Support Confidence Log(SS)

A movie where tensions
build and conflicts arise

tensions →
N

48.91 100.00% -53.82

A movie where tensions
build and conflicts arise

conflicts →
N

43.56 100.00% -56.92

A movie where tensions
build and conflicts arise

movie→ N 50.81 99.35% -52.87

A movie where tensions
build and conflicts arise

conflicts
arise → N

25.36 98.19% -56.45

A movie where tensions
build and conflicts arise

build→ P 2.00 31.01% -55.92

are labeled by the black-box which produces a training set for the SigDirect classifier.

The outcome of the training is a set of rules. Rules from the trained model relevant to

the original instance are extracted. Lastly, BARBE derives important features from

these rules and presents them along with the rules as the explanation. We briefly

describe the core components of BARBE in this section.

Neighbourhood Generation For text data, BARBE uses a simple strategy to

generate a synthetic dataset around the original instance. The algorithm to generate

synthetic text data for BARBE has been presented in Algorithm 1. In order to

generate synthetic text data, BARBE makes use of random word removal from the

input sentence. This process involves specifying a number n that determines how

many times the algorithm should iterate to produce n new sentences. The algorithm

then chooses a set of random positions within the input sentence and removes the

words at those positions. The resulting sentence, with random words removed, is

returned as a synthetic sentence. This process is repeated n times, resulting in n

49



Figure 4.3: A high-level overview of how BARBE generates explanations. BARBE
first creates a neighborhood around the provided instance, which comprises perturbed
instances created from the provided instance. Next, the black-box is queried to label
this perturbed dataset. The perturbed dataset and their corresponding labels are
then used to train a supervised model using SigDirect classifier. This results in a set
of rules. Relevant rules are extracted from the trained model using the original data
point. Finally, BARBE reports the relevant rules along with the important features
extracted from them as the explanation to the user.

new sentences. These sentences form the neighborhood dataset around the original

text, providing additional instances for the model to learn from. By creating multiple

synthetic sentences, BARBE generates the set of perturbed instances which are sent

to the black-box for labeling. Unlike LIME, Algorithm 1 ensures no empty sentence

is generated for BARBE.

Algorithm 1 BARBE Neighborhood Generation Algorithm

Input: inputSentence, n
for i← 1 to n do

sentence← inputSentence
nbWordsToDelete← random[0, numberOfWords(inputSentence)− 1]
for j ← 1 to nbWordsToDelete do

t = Select a word randomly and remove it from inputSentence
outputSentence = outputSentence ∪ t

end for
end for
return outputSentence

It is important to note the issues with random word removal in the context of
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data augmentation. Random word removal may not account for the syntactic or

semantic relationships between the words in the original sentence, which may impact

the analysis performed on the augmented data. Consider a sentence “I thought this

was a wonderful way to spend time on a too hot summer weekend, sitting in the air

conditioned theater and watching a comedy” for which we want to create a synthetic

dataset from it using random word removal technique. After random word removal,

one sentence for example may become: “I thought this was a wonderful way to spend

time on a hot summer weekend, sitting in the air theater and watching a comedy”.

The random word removal technique has removed the words “too” and “conditioned”.

Such removals may result in the loss of important semantic context. We will delve

into this topic further in Section 5.4.

Interpretable model (SigDirect) To create a new training dataset for BARBE,

the methodology described above combines the original instance with the synthetic

dataset generated through the perturbation process. This combined dataset along

with their labels obtained from the black-box is then transformed using one-hot en-

coding, which converts categorical data into transactions, a convenient data format

for SigDirect. Once the data has been transformed, BARBE trains its associative clas-

sifier using the new dataset, which produces a set of rules based on the relationships

between different features. It is important to note the difference in what LIME does

here. LIME creates a synthetic dataset by perturbing the original data, then uses a

linear regression model to fit the synthetic data and generate explanations. Linear

regression is a type of linear model that is commonly used to identify relationships

between input features and output labels. Linear regression is useful for identifying

linear relationships between input features and output labels but is not effective for

identifying complex relationships and ignores relationships between input features.

In addition, it is worth noting that LIME uses and depends on the probability scores

generated by the black-box model, whereas BARBE only requires the labels or output

51



values produced by the black-box model.

Rule Extraction In this step, BARBE extracts pertinent rules from the set of

rules generated by SigDirect during training, using an approach that involves identi-

fying “applied” and “applicable” rules. “Applicable” rules are those that contain the

same feature values as the original instance, while “applied” rules are a subset of the

applicable rules that have labels that agree with the label assigned to the instance

by the black-box model. Although the association rules generated by the associative

classifier are generally relevant to the instance being analyzed, BARBE further refines

these rules to identify the most important ones. This process involves narrowing down

the rules based on their relevance to the specific instance being explained, which is

possible because the training data used to generate the rules is made up of instances

that are similar to the original data point.

Feature Extraction Finally, BARBE leverages important rules in order to iden-

tify important features. In this step, it selects the most relevant features from the

important rules to explain the behavior of the model. To do this, BARBE utilizes

a one-hot decoding process to transform the features and rules selected into the fea-

ture space of the black-box model. This allows the selected features to be used to

explain how the model is making predictions. As an option, the user may specify a

value for k when using BARBE, and the system will then return up to k important

features. Otherwise, BARBE can provide all of the important features it has iden-

tified within important rules. To obtain these features, BARBE examines the rules

extracted in the Rule Extraction step and ranks them based on information provided

by the SigDirect, including confidence, support, and p-value scores.

It is important to note the basic difference between BARBE with SigDirect and

BARBE with CFAR in terms of architecture. The only difference in Figure 4.3 for

BARBE with CFAR is the “SigDirect” block to be replaced by CFAR. CFAR is

52



nothing but an ensemble of SigD2 classifiers. BARBE with SigDirect uses a single

SigDirect classifier as the underlying associative classifier to generate association rules

whereas BARBE with CFAR uses an ensemble of SigD2 classifiers to achieve that

purpose.
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Chapter 5

Experiments on BARBE

This Chapter outlines the settings used for conducting experiments to evaluate the

performance of BARBE for text dataset. We demonstrate both the performance

of BARBE with SigDirect and BARBE with CFAR in this Chapter. To analyze

the effectiveness of BARBE with SigDirect and BARBE with CFAR in handling

text datasets, we train black-box models on both binary and multiclass datasets.

By doing so, we aim to showcase how well BARBE can perform across a range of

classification tasks, thereby highlighting its potential as a general-purpose tool for

generating explanations. Since SigDirect has limitations in processing datasets with

a large feature vector space (as discussed in Section 3.3), we choose short sentences

for BARBE with SigDirect. On the other hand, for BARBE with CFAR, which does

not have such limitations, we select long sentences to generate explanations. We

begin by introducing the datasets we used in Section 5.1, followed by a description

of our approach to evaluate the performance of BARBE with SigDirect and BARBE

with CFAR in Section 5.2. We compare the explanation generated by BARBE with

SigDirect and BARBE with CFAR against LIME, Anchor, and SHAP in Section 5.3.

In the end, we discuss a parse tree-based approach in Section 5.4 to modify the

neighborhood generation technique incorporated by BARBE with CFAR to generate

more meaningful rules. We use the shorthand notations BARBE-S and BARBE-C to

refer to BARBE with SigDirect and BARBE with CFAR, respectively in this Chapter.
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5.1 Datasets

Since we aim to develop a framework that can be applied to any text dataset, it is

necessary to adapt BARBE to different datasets to ensure its robust performance

on unseen datasets. In this regard, we conduct our experimental analysis on binary

and multiclass classification tasks. For binary classification, we select IMDB movie

review dataset [38]. The IMDB movie review dataset is a well-known dataset in the

field of NLP and machine learning. It consists of 50,000 movie reviews that were

scraped from the Internet Movie Database (IMDB), a popular website that provides

information about movies and television shows. Each review in the dataset is labeled

with a binary sentiment classification (positive or negative), indicating whether the

reviewer had a positive or negative opinion about the movie. The dataset is evenly

split between positive and negative reviews, with 25,000 reviews in each category.

The dataset was created by researchers at Stanford University and has since become

widely used in the research community as a benchmark dataset for text classification

and sentiment analysis tasks. Because of its large size and high quality, it has been

used in a variety of research applications, including the development and evaluation

of machine learning models and techniques for NLP. It is available for free download

from various online sources and can be easily incorporated into research projects.

For multiclass classification, we select the AG’s News Topic Classification Dataset [103]

which is widely used for multiclass text classification. It consists of news articles col-

lected from more than 2000 news sources and has been preprocessed to remove any

noise and redundant information. The dataset is composed of four different topics:

World, Sports, Business, and Science/Technology, and is often used as a benchmark

dataset for evaluating the performance of various multiclass text classification models.

The dataset has a balanced distribution of classes, making it suitable for multiclass

classification tasks.
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5.2 Experiments Setup

Evaluation is a big challenge in the XAI literature since figuring out the underly-

ing causes of a decision made by a black-box model is challenging. Moreover, the

significance of those causes to a human observer is not a good measure to evaluate

the accuracy of the explainer framework. For example, during the training of a deep

learning model, let us assume we have mistakenly exposed the ground truth labels of

development instances (directly or indirectly) to the model. As a result, our model

is performing very well on development and thus we stop the training early. This is

while in reality it has not learned the hidden patterns present in the provided data.

At this point, we want to evaluate the performance of a well-built model-independent

explanation technique by taking advantage of this deep model (which is a black-box

model) on one of the development instances. In this scenario, the explanation will

include a feature or features that were pointing to the label (the wrongly exposed

features). If the produced explanation is evaluated by a human observer, it will be

marked as a wrong one because it is not what the human observer was expecting

(it is different than the real pattern hidden in the data). In reality, however, the

model is indeed explaining the black-box model rightfully, the task it was supposed

to do. One way to address this issue is to compare the explanation generated by

BARBE-S and BARBE-C with the explanation generated by other state-of-the-art

explainers such as LIME, Anchor, and SHAP. By doing so, we can determine the

effectiveness of BARBE in generating accurate and meaningful explanations, even in

cases where the underlying causes of a decision made by a black-box model are diffi-

cult to understand. Therefore, we compare the explanation generated by BARBE-S

and BARBE-C against the explanation generated by LIME, Anchor, and SHAP.

The black-box model we leverage in our experiments for binary classification tasks

is the SVM. SVM is a popular machine learning algorithm that is often used for

text classification tasks. There are several reasons why SVMs are efficient for text
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classification:

• High-dimensional feature spaces: The purpose of text classification is to cate-

gorize documents or fragments of text depending on their content. Text data is

commonly represented as a bag of words, which entails counting the occurrences

of each word in the document and constructing a vector of word frequencies.

Yet, because documents can contain a significant number of unique words, the

resulting vector can be extremely high-dimensional, with hundreds or thou-

sands, or even millions of features. SVMs are particularly effective at handling

high-dimensional feature spaces because they use a kernel trick to implicitly

represent the data in a higher-dimensional space. This allows SVMs to capture

more complex relationships between the features and the labels, even when the

feature space is very large.

• Robust to noise: Text data is often noisy, which means that it contains errors

or inconsistencies that can affect the accuracy of a classification model. For

example, a document may contain misspelled words, grammatical errors, or

other inconsistencies that make it more difficult to classify. SVM is robust to

noise in the data because they are designed to identify patterns in the data that

are robust to noise (e.g. outliers). This means that even if a document contains

some errors or inconsistencies, the SVM model can still identify the underlying

patterns in the data that are relevant for classification. One way that SVM

is able to handle noise in the data is by using a margin-based approach. In

a binary classification task, SVM tries to identify a hyperplane that separates

the positive and negative examples in the feature space, and this hyperplane

is chosen to maximize the margin between the two classes. By maximizing

the margin, the SVM model is better able to tolerate noise and outliers in the

data. Another way that SVM is able to handle noise in the data is by using

regularization. Regularization helps to prevent overfitting to the training data,
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which can make the model more sensitive to noise and outliers.

• Binary classification: Although popular for different multiclass and binary clas-

sification tasks, SVM is particularly well-suited for binary classification tasks,

which are common in text classification. For example, SVMs can be used to

classify documents into “positive” or “negative” sentiment categories, “spam”

or “not spam” categories.

The performance of SVM can be influenced by several hyperparameters, such as

the kernel type, regularization parameter, and the degree of the polynomial kernel.

In brief, we discuss the hyperparameters for SVM in our sentiment classification task.

Kernel type : The performance of the SVM can be considerably impacted by the

selected kernel type. Common kernel types for binary sentiment classification include

linear, polynomial, and Radial Basis Functions (RBF). While polynomial and RBF

kernels can handle more complex decision boundaries, linear kernels are often useful

for datasets that can be separated along linear axes. The ideal kernel type for a

particular dataset can be found by doing a grid search or randomized search across

the kernel parameter space. We select RBF as the kernel type during our experiment

because of its capability in capturing complex non-linear relationships between the

input features and the target variable.

Regularization parameter (C) : The regularization parameter (C) controls the

trade-off between maximizing the margin and minimizing the training error. A high

value of C leads to a narrow margin and potentially overfitting, while a low value of

C leads to a wider margin and potentially underfitting. A grid search or randomized

search can be performed over the range of C values to identify the optimal value for

the given dataset. We have set C=1.0 in our experiment which is the default setting

of the Python package 1.

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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For multiclass text classification tasks, we leverage Convolutional Neural Network

(CNN) as the black-box model for our experiments. CNNs are good for text classifi-

cation for several reasons:

• The Convolutional layers in CNN can learn local patterns and relationships

between words in a sentence. This is particularly useful for text classification

tasks because the meaning of a sentence is often determined by the combination

of its constituent words.

• To extract the most essential elements from the learned patterns, pooling layers

might be used. This helps in reducing the dimensionality of the data and

capturing the most salient information.

• In multiclass classification, CNNs can learn to differentiate between multiple

classes by identifying the unique features that distinguish them. This is partic-

ularly useful when the classes are not well-separated or when there is overlap

between them.

The performance of CNN can be enhanced by appropriately tuning the hyperpa-

rameters. In a CNN, hyperparameters determine the architecture of the network and

how the model will be trained. Choosing the right hyperparameters can significantly

impact the performance of the model, including accuracy, training time, and resource

usage. Some of the important hyperparameters in a CNN include the number and

size of convolutional layers, pooling layers, activation functions, learning rate, batch

size, and dropout rate. The number and size of layers determine the complexity of

the model and its ability to extract meaningful features from the input data. The

learning rate determines the step size of the optimizer during training. The batch

size determines the number of samples used in each training iteration. The dropout

rate determines the amount of regularization applied during training. Here are the

values of the hyperparameters we have used to train a CNN with the AG’s News

Topic Classification Dataset:
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• Number of filters: 128

• Kernel size: 3

• Pooling size: 2

• Dropout rate: 0.3

• Learning rate: 0.001

• Optimizer: Adam

• Batch size: 64

• Number of epochs: 30

We have used 3 convolutional layers for the CNN in our experiments. We are not

going to discuss why we have picked these values for the hyperparameters setting

since our main focus is on analyzing the explanation generated by BARBE-S and

BARBE-C. We implement the CNN using the Python package of Keras 2 for our

multiclass classification task.

Prior to training our model, it is necessary to transform the text data into a

numeric form. The most widely used techniques for achieving this are Bag-of-Words

(BOW) [104] and Term Frequency-Inverse Document Frequency (TFIDF) [105],

which can both generate numeric representations of input text. The bag-of-words

model transforms text into fixed-length vectors by counting the frequency of each

word. On the other hand, TFIDF increases the weight of words that appear frequently

within a document, while reducing the weight of words that appear frequently across

multiple documents. Therefore, common words such as ’this’ or ’are’ are assigned a

lower weight, while words that occur frequently in a few documents are assigned a

higher weight. We have used TFIDF to convert the text into features in BARBE-S

and BARBE-C. We train SVM as the black-box model with the IMDB movie review

2https://keras.io/
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dataset and CNN with the AG’s news topic classification dataset. We split the dataset

into 80% training, 10% validation, and 10% testing sets using random sampling to

ensure that the distribution of labels is consistent across all three sets. We achieve

90.10% accuracy using SVM for the binary classification task and 93.25% accuracy

using CNN for the multiclass classification task. Once the black-box models are

trained, we utilize the neighborhood generation process discussed in Section 4.2.2 to

create a synthetic dataset. This dataset is then labeled by the black-box models and

used by BARBE-S and BARBE-C to generate explanations in the form of rules.

5.3 Comparison with Other Explainers

We evaluate our method for explaining text against three other competitive explainers

as discussed in Section 2.2.2. The explainers are LIME, Anchor, and SHAP. LIME has

been widely used as a model-independent method in various domains and is currently

the most cited. Additionally, there have been several extensions to LIME introduced

over time. Another method that utilizes rules to provide explanations for the decisions

of a black-box model is Anchor. Additionally, SHAP aims to provide unified and

consistent explanations for a wide range of models and domains. To facilitate our

analysis, we divide our experiments into two parts: one for binary classification task

using SVM as the black-box model and another for multiclass classification task using

CNN as the black-box model. For conducting experiments with binary classification,

we select two short sentences from the IMDB movie review dataset for BARBE-S,

one labeled as positive and another labeled as negative by the SVM black-box. We

generate the explanation using BARBE-S for these two sentences and compare it

with the explanation generated by LIME, Anchor, and SHAP. Following that, we

select two long sentences from the IMDB movie review dataset for BARBE-C (since

BARBE-S has limitations in processing long sentences), one labeled as positive and

another labeled as negative by the SVM black-box. We again compare the explanation

produced by BARBE-C with the explanation produced by LIME, Anchor, and SHAP.
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For conducting experiments with multiclass classification using CNN as the black-

box, we select a short sentence from the AG’s news topic classification dataset and

provide it to the black-box for predicting the news class. Then we ask BARBE-S to

generate an explanation for it. We compare this explanation with LIME, Anchor, and

SHAP. Furthermore, we select a long sentence for the same dataset to generate an

explanation by BARBE-C. We again compare this explanation with LIME, Anchor,

and SHAP.

5.3.1 Experiments on Binary Classification Task

BARBE typically uses the data labeled by the black-box model to train a descriptive

model that generates a set of rules as the explanation. Each rule has a support,

confidence, and statistical significance value associated with it. The rules correspond

to the features in the data which constitute the set of important features as the form

of explanation. Figure 5.1 demonstrates the result generated by BARBE-S for a

sentence with positive sentiment. Figure 5.1A shows the sentence for which BARBE-

S generates an explanation. The sentence “Get this wonderful story about success in

life” has a positive sentiment as labeled by the black-box model. BARBE-S employs

a green gradient to indicate the importance of positive words within a sentence,

with stronger shades of green representing the most important words for making the

sentence positive as labeled by the black-box model, and lighter shades indicating

less important words. The colors are provided to the words based on their frequency

within the rules. Since “wonderful” appears in 2 out of 5 rules, it has got a stronger

green whereas the word “story” receives a lighter green since it appears in 1 out of 5

rules. A sentence may also contain words that convey a negative impression, and to

highlight their importance, BARBE-S utilizes a red gradient. Stronger shades of red

represent the words with more negative, while lighter shades of red indicate words that

are less negative. By incorporating both green and red gradients/highlights, BARBE-

S provides a comprehensive and intuitive visualization of the sentiment expressed in
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Figure 5.1: The explanation provided by BARBE-S for an instance of the IMDBmovie
review dataset labeled as positive by the black-box model. (A) shows the sentence
with features highlighted. The green heatmap presents the positive words and the
red heatmap presents the negative ones. Table 5.1 presents the set of important rules
with their support, confidence, and logarithm of statistical significance values. (B)
presents the prediction probability of the black-box, and (C) presents the histogram
of important features ranked based on their importance.

a sentence, aiding users to understand the underlying reasoning behind the model’s

prediction. As demonstrated in Figure 5.1A, the words “wonderful” and “success”

are deemed highly important in conveying a positive sentiment, as determined by the

black-box model. We will explain shortly why these words have got higher importance.

The words “story” and “life” are relatively less impactful in conveying a positive

sentiment within the sentence. On the other hand, the word “get” has a negative

impact on the black-box decision.

The rules generated by BARBE-S are highlighted in Table 5.1. BARBE-S generates

a total of 5 rules for this sentence to identify the most important features. These

rules are sorted in Table 5.1 based on their confidence values. It is noteworthy that

BARBE-S generates a set of rules, not a single rule, and each rule contains a set of

words. For the sentence depicted in Figure 5.1A, BARBE-S generates the association
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Table 5.1: Set of rules generated by BARBE-S with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “P” denotes
“Positive” label and “N” denotes “Negative” label in the Rule column.

Sentence Rule Support Confidence Log(SS)

Get this wonderful story
about success in life

wonderful →
P

46.18 100.00% -382.93

Get this wonderful story
about success in life

success→ P 45.84 99.00% -269.74

Get this wonderful story
about success in life

wonderful
story → P

25.50 98.72% -382.02

Get this wonderful story
about success in life

success life
→ P

26.86 97.29% -269.09

Get this wonderful story
about success in life

Get→ N 13.75 26.92% -7.80

rules “wonderful” and “wonderful story” to identify the semantic context required

to classify the sentence as positive. These rules capture the key features of the

sentence that contribute to its positive sentiment, highlighting the importance of

specific words and word combinations in determining the sentiment of a given text.

Each rule has its support, confidence, and statistical significance values. BARBE-

S provides the logarithm of the p-value reported by SigDirect. This logarithmic

transformation can help to highlight smaller p-values, which may be easily overlooked

when presented in their original scale. By presenting the logarithm of the p-values,

users can more readily identify statistically significant rules. For example, the rule

wonderful → Positive depicts that the presence of the word “wonderful” is good

to treat this sentence as positive. The rule wonderful story → Positive depicts

that the presence of the conjunction of the words “wonderful” and “story” can also

make the sentence positive. The rule wonderful → Positive has support of 46.18,

confidence of 100%, and statistical significance -382.93. It is evident that these two

rules have a higher confidence value of 100% and 98.72% respectively. Similarly, the
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two other rules that are responsible for making the sentence positive are success →

Positive and success life→ Positive. Their confidence values are 99% and 97.29%

respectively. Thus, BARBE-S is able to generate a set of explanations to clarify the

reasoning behind the decision of the black-box model. Besides, the conjunction of

words within the rules asserts that the presence of a conjunction of words can also

give justification for the decision made by the black-box model. A conjunction of

multiple words: “wonderful story”, and “success life” have a better semantic context

within the sentence. Such rules emphasize that the two words may stay together in

the explanation generated by BARBE-S. It is worth noting that BARBE-S has the

capability to identify the rules i.e. features, that contribute to the opposite labeling

of a sentence by the black-box model. The rule get → Negative although tells us

that the feature “Get” has a reverse impact on the black-box decision, this rule has

a poor confidence value.

BARBE-S presents the prediction probabilities of the black-box model as presented

in Figure 5.1B. The vertical bar chart in Figure 5.1C showcases the most important

features based on their frequency within the rules, along with the corresponding

weighted confidence value. It is evident from this figure that the words “wonderful”

and “success” are the most important features whereas “story”, and “life” are the

least important ones. The color in this vertical bar chart comes from the color of the

words according to Figure 5.1A.

We use LIME as the underlying explainer with the same black-box model and

hyperparameter settings to generate an explanation for the sentence “Get this won-

derful story about success in life”. Figure 5.2 shows the explanation generated by

LIME. LIME assigns numerical values only to the features of the input data that are

deemed to be important in the prediction process. These values represent the degree

of importance assigned to each feature by the LIME model. Larger values indicate

that the corresponding feature has a greater impact on the model’s prediction, while

smaller values indicate that the feature has a lesser impact. From the numbers shown
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in the top-right bar chat in Figure 5.2, a user can only understand that the words

“life” and “wonderful” are the most significant words contributing to the positive

label assigned by the black-box model. “success” and “story” have got lower impor-

tance score. LIME assigns a higher important score to “life” and a lower important

score to “success”. But logically, “success” and “wonderful” should be in the front

line to carry positive sentiment as expected. LIME is not able to generate any rule

here. A rule is more human-readable and understandable. It appears that LIME has

only been able to detect single features rather than combinations of multiple features.

There has been no demonstration of LIME’s ability to handle conjunctions of features

in this scenario.

Figure 5.2: The explanation provided by LIME for an instance of the IMDB movie
review dataset labeled as positive by the black-box model. Top-left horizontal bar
chart presents the prediction probabilities of the black-box model. The bar chart
located in the top-right displays the importance scores for each feature generated by
LIME, with the features sorted in descending order of their respective importance
scores. A higher absolute value in this chart indicates that LIME assigns greater
importance to that feature in the classification process.

We use the same sentence to generate explanation from the same black-box model

using Anchor as the underlying explainer. Figure 5.3 presents the explanation gen-

erated by Anchor. Unfortunately, Anchor is able to predict only a single word “life”

as the rule, and nothing more than that. In the given context, it seems that Anchor’s
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Figure 5.3: The explanation provided by Anchor for an instance of the IMDB movie
review dataset labeled as positive by the black-box model.

Figure 5.4: The explanation provided by SHAP for an instance of the IMDB movie
review dataset labeled as positive by the black-box model. The red color in the figure
represents features that have contributed positively to the prediction. Features in
blue have contributed negatively to the prediction.

output fails to identify some important words that were identified by BARBE-S and

LIME. Specifically, the words “wonderful” and “success” are more logically associated

with positive sentiment in the context of the sentence. Anchor has generated neither

a set of rules nor a conjunction of features. On the other hand, BARBE-S generates

a set of rules as the explanation as shown in Figure 5.1. Like LIME, BARBE-S as-

signs an important score to the features extracted from the rules. But the beauty

of BARBE-S is the generation of a set of rules, where each rule contains a set of

features, and each rule comes with support, confidence, and statistical significance

values. These additional statistics provide more information to the users to get a

better understanding of the explanation generated by BARBE-S.

Finally, we compare the explanation generated by BARBE-S with SHAP. Again,

we have used the same black-box and the same sentence to generate explanation by

SHAP. Figure 5.4 presents the explanation generated by SHAP for the sentence:

“Get this wonderful story about success in life”. SHAP aims to provide an explana-
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tion of the requested instance by determining the contribution of each feature towards

determining the predicted sentiment of the text sample. The plot allows users to in-

terpret the contribution of each feature to the sentiment prediction of the provided

sentence, giving insights into the factors that influence sentiment classification. The

red color words: “story”, “life”, “success”, and “wonderful” represent the features

that have contributed positively to the prediction of the black-box model. Whereas,

the blue color words: “in”, “this”, and “get” represent the features that have con-

tributed negatively to the prediction of the black-box model. The higher the length

of the bar along the horizontal axis, the greater the importance of the word towards

the prediction of the black-box model. It is evident from Figure 5.4 that the words:

“wonderful” and “success” have more importance in the decision of the black-box

model. SHAP is capable of identifying features in a manner similar to BARBE-

S. Similar to LIME, SHAP generates features as explanations and assigns a Shapley

value to each feature. However, unlike BARBE-S, SHAP does not generate rule-based

explanations, which may be more interpretable and understandable for the end user.

Therefore, while SHAP and LIME can provide a quantitative assessment of feature

importance, BARBE-S provides a more rule-based and interpretable explanation of

the model’s decision-making process.

We demonstrate the explanation produced by BARBE-S for a sentence having

negative sentiment in Figure 4.2 and Table 4.1. Figure 4.2A presents the sentence

“A movie where tensions build and conflicts arise” having a negative sentiment as

labeled by the black-box model. BARBE-S generates 5 rules to explain why the

sentence has been labeled as negative by the black-box model as shown in Table 4.1.

The rules are sorted in this table based on their confidence values. BARBE-S employs

a red gradient to indicate the importance of the negative words within a sentence,

with stronger shades of red representing the most important words for making the

sentence negative as labeled by the black-box model, and lighter shades indicating

less important words. Since the word “conflicts” is available in 2 out of 5 rules, it
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Figure 5.5: The explanation provided by LIME for an instance of the IMDB movie
review dataset labeled as negative by the black-box model. Top-left horizontal bar
chart presents the prediction probabilities of the black-box model. The bar chart
located in the top-right displays the importance scores for each feature generated by
LIME, with the features sorted in descending order of their respective importance
scores. A higher absolute value in this chart indicates that LIME assigns greater
importance to that feature in the classification process.

Figure 5.6: The explanation provided by Anchor for an instance of the IMDB movie
review dataset labeled as negative by the black-box model.

is highlighted with strong red by BARBE-S. Other words: “movie”, “tensions” and

“arise” are assigned a similar color since each of them is present in 1 out of 5 rules.

The horizontal bar chart in Figure 4.2B is the prediction probabilities of the black-

box model and the vertical bar chart in Figure 4.2C highlights the most important

features in terms of their frequency within the rules along with the corresponding

weighted confidence value.

The explanation produced by LIME and Anchor is presented in Figure 5.5 and

Figure 5.6 respectively. The explanation has been generated for the same sentence

using the same black-box used for BARBE-S. LIME highlights “movie” having an
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Figure 5.7: The explanation provided by SHAP for an instance of the IMDB movie
review dataset labeled as negative by the black-box model. The red color in the
figure represents features that have contributed positively to the prediction. Features
in blue have contributed negatively to the prediction.

importance score of 0.10 as the most significant feature for contributing negatively

to the prediction of the black-box model. Other significant words selected by LIME

are “conflicts” and “tensions”. On the other hand, BARBE-S identifies the words

“conflicts” and “tensions” as the most significant features, based on the generated

rules. The word “movie” might not be the significant contributing factor in impacting

the decision of the black-box model since a movie can appear with a positive adjective

or a negative adjective. The explanation provided by Anchor as shown in Figure 5.6

only detects the word “conflicts” as the contributing factor. Anchor completely misses

the other key important words like “tensions”. Figure 5.7 depicts the explanation

produced by SHAP. It is noteworthy that, according to SHAP, the words “tensions”

and “where” are the most important contributors that strongly align with the decision

of the black-box model. Additionally, SHAP identifies the word “arise” as a slightly

less significant contributor to the model’s decision. The contribution of the word

“where” does not make much sense in the context of the sentiment of a sentence.

Furthermore, SHAP is unable to identify the word “conflicts” as a key contributor

to the model’s decision, unlike BARBE-S, LIME, and Anchor, which all detect this

word as one of the most important in impacting the decision of the black-box model.

SHAP is subject to the same limitations as Shapley values, including the potential for

misinterpretation and the requirement for data access in order to compute them for

new data. Besides, it is possible to intentionally manipulate the SHAP interpretation

method to generate misleading explanations that may hide biases in the underlying
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model [106].

We have demonstrated how efficiently BARBE-S identifies the set of rules that can

explain the prediction of a black-box model for the binary classification task. The

sentences used by BARBE-S are shorter in terms of the number of words. We cannot

use long sentences for BARBE-S because of its limitation in handling long sentences

since long sentences have a large feature vector space which is not effectively processed

by SigDirect, leading to high memory usage and long run time. Such limitation has

been addressed by BARBE-C which uses an ensemble of base learners, with each

base learner being a SigD2 classifier that processes a subset of features from the large

feature vector space. This approach enables BARBE-C to generate explanations from

long sentences effectively.

Figure 5.8: The explanation provided by BARBE-C for an instance of the IMDB
movie review dataset labeled as negative by the black-box model. (A) shows the sen-
tence with features highlighted. The red heatmap presents the negative words and
the green heatmap presents the positive ones. Table 5.2 presents the set of important
rules with their support, confidence, and logarithm of statistical significance values.
(B) presents the prediction probability of the black-box, and (C) presents the his-
togram of important features ranked based on their importance.

Prior to demonstrating the explanation generated by BARBE-C for long sentences,

we want to investigate the efficacy of BARBE-C on short sentences. This would
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provide a comparative analysis between BARBE-S and BARBE-C in handling short

sentences. The same sentence, “A movie where tensions build and conflicts arise” is

utilized to generate an explanation for BARBE-C, as it has been used for BARBE-S.

Figure 5.8 illustrates the explanation produced by BARBE-C for this sentence. It is

worth noting that BARBE-C is able to generate 2 more rules with higher confidence

if compared to BARBE-S. The 2 new rules are: tensions conflicts → Negative and

tensions build→ Negative. These two rules are not explored by BARBE-S. Besides,

the confidence values of other rules are also higher for BARBE-C. Table 5.2 presents

the set of rules generated by BARBE-C. This experimental result clarifies that both

BARBE-C and BARBE-S are capable of generating explanations for short sentences.

However, BARBE-C is more efficient in this scenario because of its ability to generate

more rules with high confidence.

Figure 5.9 demonstrates the result obtained by BARBE-C for a long sentence

labeled as positive by the black-box model. The sentence is shown in Figure 5.9A.

Similar to BARBE-S, the strong green gradient highlights the words responsible for

making the sentence positive labeled by the black-box model. It is worth noting

that, BARBE-C is capable of generating more rules for long sentences as presented

in Table 5.3. For space limitation in a table cell, we have truncated some parts of

the text in the Sentence column of the table. Here, BARBE-C generates a total of

8 rules for the sentence: “This is a fantastic movie of three prisoners who become

famous. George Clooney is awesome. Another good thing about the movie is the

soundtrack. I recommend this movie to everybody.” Typically, this sentence seems to

have a positive sentiment because the words used in the sentence such as “fantastic”,

“awesome”, “good” and “recommend” are all positive words that convey a positive

sentiment. The phrase “recommend this movie to everybody” implies a positive

evaluation of the movie overall. BARBE-C is able to generate an explanation from this

long sentence and successfully highlights the positive words e.g. “good”, “awesome”,

“fantastic”, “recommend”, etc. All the rules have higher confidence values especially
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Table 5.2: Set of rules generated by BARBE-C with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “N” denotes
“Negative” label and “P” denotes “Positive” label in the Rule column. Rows with
grey backgrounds indicate additional rules generated by BARBE-C, not present in
BARBE-S.

Sentence Rule Support Confidence Log(SS)

A movie where tensions
build and conflicts arise

conflicts →
N

50.08 100.00% -142.75

A movie where tensions
build and conflicts arise

conflicts
arise → N

28.21 100.00% -67.64

A movie where tensions
build and conflicts arise

tensions →
N

50.51 100.00% -144.56

A movie where tensions
build and conflicts arise

tensions
conflicts
→ N

11.15 100.00% -24.04

A movie where tensions
build and conflicts arise

movie→ N 47.88 99.92% -133.77

A movie where tensions
build and conflicts arise

tensions
build → N

28.77 98.97% -69.24

A movie where tensions
build and conflicts arise

build→ P 5.01 10.00% -141.49
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the first two rules have 100% confidence as presented in Table 5.3. There is a rule

become → Negative which does not agree with the decision of the black-box model

and appears with a smaller confidence value of 64.50%. Like, BARBE-S, BARBE-C

is also capable of identifying rules containing conjunction of words that convey more

semantic meaning and better understandability. As an example, the rule fantastic

movie → Positive tells the user that the movie is fantastic. Similarly, the rule

recommend movie → Positive tells the user about recommending a movie. Such

rules convey more semantic context.

The prediction probability of the black-box model is shown in Figure 5.9B. Fi-

nally, Figure 5.9C presents the most important features based on their frequency

within the rules weighted by the confidence value. Features like “fantastic”, “rec-

ommend”, “good”, “awesome” have got higher importance according to BARBE-C.

We compare the explanation of BARBE-C with LIME, Anchor, and SHAP in Fig-

ure 5.10, Figure 5.11 and Figure 5.12 respectively. LIME is able to identify the

features “fantastic”, “awesome”, “recommend” like BARBE-C. But it has assigned

a higher importance to the preposition “to” and a lower importance to the adjective

“good” which may not seem logical in the context of positive sentiment labeled by

the black-box. Anchor is able to identify the feature “fantastic” only with a higher

probability as shown in Figure 5.11. But it completely misses a lot of other im-

portant words in the sentence. A single rule with a single word is not sufficient to

justify the decision of the black-box model. SHAP is not able to identify the features

like BARBE-C and LIME do. Overall, the rules presented by BARBE-C are more

accurate and meaningful as compared with the other explainers.

Figure 5.13 presents the result generated by BARBE-C for the sentence: “The

movie was frustrating with weird looping, hated characters, annoying little girl, and

a final scene that was bad with horrible dancing.” labeled as negative by the black-

box model. Table 5.4 presents the rules generated by BARBE-C for this sentence.

BARBE-C has identified the features such as “hated”, “weird”, “horrible”, “frustrat-
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Figure 5.9: The explanation provided by BARBE-C for an instance of the IMDB
movie review dataset labeled as positive by the black-box model. (A) shows the sen-
tence with features highlighted. The green heatmap presents the positive words and
the red heatmap presents the negative ones. Table 5.3 presents the set of important
rules with their support, confidence, and logarithm of statistical significance values.
(B) presents the prediction probability of the black-box, and (C) presents the his-
togram of important features ranked based on their importance.
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Table 5.3: Set of rules generated by BARBE-C with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “P” denotes
“Positive” label and “N” denotes “Negative” label in the Rule column. Sentence has
been truncated and includes an ellipsis to indicate that there is more to the sentence.

Sentence Rule Support Confidence Log(SS)

This is ... Another good
thing about the movie is the
soundtrack. I recommend ...

good→ P 22.52 100.00% -41.11

This is ... George Clooney
is awesome . Another good
...

awesome →
P

23.70 100.00% -78.44

This is a fantastic movie of
three prisoners who become
famous. George Clooney ...

fantastic →
P

32.39 99.80% -61.40

This is ... I recommend
this movie to everybody.

recommend→
P

23.37 99.60% -66.14

This is a fantastic movie
of three prisoners who be-
come famous. George
Clooney ...

fantastic
movie → P

27.69 99.21% -475.12

This is a fantastic movie of
three prisoners who become
famous . George Clooney
...

famous→ P 13.69 98.93% -34.62

This is ... I recommend
this movie to everybody.

recommend
movie → P

14.39 98.58% -62.74

This is a fantastic movie
of three prisoners who
become famous. George
Clooney ...

become→ N 18.03 64.50% -9.63
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Figure 5.10: The explanation provided by LIME for an instance of the IMDB movie
review dataset labeled as positive by the black-box model. Top-left horizontal bar
chart presents the prediction probabilities of the black-box model. The bar chart
located in the top-right displays the importance scores for each feature generated by
LIME, with the features sorted in descending order of their respective importance
scores.

Figure 5.11: The explanation provided by Anchor for an instance of the IMDB movie
review dataset labeled as positive by the black-box model.

Figure 5.12: The explanation provided by SHAP for an instance of the IMDB movie
review dataset labeled as positive by the black-box model. The red color in the figure
represents features that have contributed positively to the prediction. Features in
blue have contributed negatively to the prediction.
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ing”, “bad”, “annoying” that are responsible for labeling the sentence as negative

by the black-box model. Rules like weird looping → Negative, horrible dancing

→ Negative contain a conjunction of features that convey more semantic context to

explain the decision of the black-box model. Moreover, rules like hated → Negative,

hated characters→ Negative, frustrating→ Negative, bad→ Negative have 100%

confidence as presented in Table 5.4. We compare the explanation of BARBE-C with

LIME, Anchor, and SHAP in Figure 5.14, Figure 5.15, and Figure 5.16 respectively.

Most of the features identified by LIME match with the features presented within

the rules generated by BARBE-C although feature like “was” has got higher impor-

tance by LIME that seem inconsistent. Anchor has been able to identify only one

feature “bad” with 98.7% probability but fails to detect other important features as

depicted in Figure 5.15. Although SHAP is able to identify a few important features

such as “annoying”, “horrible”, “bad” as shown in the red gradient in Figure 5.16, it

falls short compared to BARBE-C and LIME in terms of identifying other significant

features.
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Figure 5.13: The explanation provided by BARBE-C for an instance of the IMDB
movie review dataset labeled as negative by the black-box model. (A) shows the
sentence with features highlighted. The red heatmap presents the negative words.
Table 5.4 presents the set of important rules with their support, confidence, and
logarithm of statistical significance values. (B) presents the prediction probability of
the black-box, and (C) presents the histogram of important features ranked based on
their importance.
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Table 5.4: Set of rules generated by BARBE-C with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “N” denotes
“Negative” label in the Rule column. Sentence has been truncated and includes an
ellipsis to indicate that there is more to the sentence.

Sentence Rule Support Confidence Log(SS)

The movie was frustrating
with weird looping, hated
characters, ...

hated→ N 41.33 100.00% -41.11

The movie was frustrating
with weird looping, hated
characters , annoying little
girl, ...

hated
characters
→ N

23.97 100.00% -61.63

The movie was frustrating
with weird looping, ...

frustrating →
N

13.69 100.00% -34.62

The movie was frustrat-
ing ..., and a final scene
that was bad with horrible
dancing.

bad→ N 23.70 100.00% -75.99

The movie was frustrating
with weird looping, ....

weird→ N 42.54 99.59% -71.22

The movie was ... and a fi-
nal scene that was bad with
horrible dancing.

horrible →
N

12.32 99.45% -31.39

The movie was frustrating
with weird looping, hated
characters, annoying little
girl, ...

annoying →
N

25.57 99.23% -167.69

The movie was frustrat-
ing ..., and a final scene
that was bad with horrible
dancing .

horrible
dancing → N

8.14 99.01% -33.56

The movie was frustrating
with weird looping , hated
characters, ...

weird looping
→ N

27.56 98.92% -72.23
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Figure 5.14: The explanation provided by LIME for an instance of the IMDB movie
review dataset labeled as negative by the black-box model. Top-left horizontal bar
chart presents the prediction probabilities of the black-box model. The bar chart
located in the top-right displays the importance scores for each feature generated by
LIME, with the features sorted in descending order of their respective importance
scores.

Figure 5.15: The explanation provided by Anchor for an instance of the IMDB movie
review dataset labeled as negative by the black-box model.

Figure 5.16: The explanation provided by SHAP for an instance of the IMDB movie
review dataset labeled as positive by the black-box model. The red color in the figure
represents features that have contributed positively to the prediction. Features in
blue have contributed negatively to the prediction.

81



5.3.2 Experiments on Multiclass Classification Task

In this Section, we want to explore the performance of BARBE-S and BARBE-C in

explaining the prediction of the black-box model for multiclass classification tasks.

We are going to use CNN as the black-box model that has been trained with AG’s

news topic classification dataset. Figure 5.17 illustrates the explanation generated

by BARBE-S for an instance of the news dataset labeled as “Sport” by the black-

box model. The sentence: “He could not record goal because of injury” is shown in

Figure 5.17A with the features highlighted. Blue shade, green shade, yellow shade,

and red shade represent “Sports”, “Business”, “World” and “Sci/Tech” classes re-

spectively as labeled by the black-box model. Figure 5.17B displays the prediction

probability of the black-box model. The color of the horizontal bar chart in Fig-

ure 5.17B represents the corresponding classes. Class “Sports” achieves the highest

probability here. Following that, BARBE-S is able to detect 2 out of 4 words in the

sentence that belongs to class “Sports”. Words such as “goal” and “injury” are more

closely associated with sports. The word “record” belongs to the class “Business”

and “because” belongs to the class “World” as highlighted by BARBE. Figure 5.17C

displays the important features ranked based on their important score. Table 5.5

shows the set of rules generated by BARBE-S with their support, confidence, and

logarithm of statistical significance values.
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Figure 5.17: The explanation provided by BARBE-S for an instance of the news
classification dataset. (A) shows the sentence with features highlighted. Table 5.5
presents the set of important rules with their support, confidence, and logarithm of
statistical significance values. (B) presents the prediction probability of the black-
box, and (C) presents the histogram of important features ranked based on their
importance.

Table 5.5: Set of rules generated by BARBE-S with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “S” denotes
“Sports”, “B” denotes “Business”, “W” denotes “World” label in the Rule column.

Sentence Rule Support Confidence Log(SS)

He could not record goal
because of injury

injury → S 23.49 100.00% -119.32

He could not record goal
because of injury

record→ B 22.85 99.63% -77.29

He could not record goal be-
cause of injury

goal → S 21.31 99.00% -118.70

He could not record goal
because of injury

because→ W 19.80 91.33% -76.66

We compare the explanation generated by BARBE-S for multiclass classification

with LIME, Anchor, and SHAP. Figure 5.18 presents the explanation produced by
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LIME for the same sentence: “He could not record goal because of injury”. LIME

generates one chart for each class representing the words on the right side of the line

are positive, and the words on the left side are negative. Like BARBE-S, LIME iden-

tifies the features “goal” and “injury” mostly belong to the “Sports” class. Similarly,

“record” belongs to the “Business” class. One advantage of BARBE-S is that instead

of generating the explanation as “one-vs-rest” approach, it simply handles multiclass

natively. Like binary text classification tasks, BARBE-S can generate rules for mul-

ticlass classification tasks as well where each rule comes with support, confidence,

and statistical significant values. BARBE-S simply assigns the class name on the

right-hand side of each rule. Figure 5.19 shows the explanation provided by Anhcor

for the same sentence. Anchor is able to identify only a single feature “injury” for

which the black-box is labeling the sentence as “Sports” class. But it misses other

significant features as identified by BARBE-S and LIME. Figure 5.20 presents the

explanation generated by SHAP. It follows the “one-vs-rest” approach like LIME to

identify the features impacting the decision of the black-box model. SHAP is capable

of identifying specific words such as “goal” and “injury” that contribute to a sentence

being classified as “Sports” class. But it is not effective in identifying meaningful

features for the other classes.
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Figure 5.18: The explanation provided by LIME for an instance of the news classi-
fication dataset. Top-left horizontal bar chart presents the prediction probabilities
of the black-box model for all the classes. The other charts display the importance
scores for each feature generated by LIME, with the features sorted in descending
order of their respective importance scores. For each class, the words on the right
side of the line are positive, and the words on the left side are negative.

Figure 5.19: The explanation provided by Anchor for an instance of the news classi-
fication dataset.
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Figure 5.20: The explanation provided by SHAP for an instance of the news classifi-
cation dataset. The red color in the figure represents features that have contributed
positively to the prediction. Features in blue have contributed negatively to the pre-
diction.

The sentence we used to generate explanation by BARBE-S for the multiclass

classification task is short in length. In this regard, we again demonstrate the ef-

fectiveness of BARBE-C in generating explanation for a long sentence: “Nike, be-

ing a leading sportswear brands, is anticipating boost in profits in the next quarter

by sponsoring England team for scoring tremendous performance in last league.” in

Figure 5.21. BARBE-C identifies the features within the sentence from “Sports”,

“Business”, “Sci/Tech” classes. The same color to distinguish the different classes

has been used for both BARBE-S and BARBE-C. Figure 5.21A displays the sen-

tence with features highlighted. Figure 5.21B shows the prediction probabilities of

all four classes. Finally, Figure 5.21C ranks the important features based on their

important score. Table 5.6 presents the set of rules generated by BARBE-C with

their support, confidence, and logarithm of statistical significance values. BARBE-

C generates a total of 13 rules to explain the sentence as labeled by the black-box
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model. A good number of rules have 100% confidence as reported by BARBE-C in

Table 5.6. Rules like tremendousperformance→ Sports, nextquarter → Sci/Tech,

boostprofits → Business contain a conjunction of features. The same sentence has

been used to generate explanation using LIME, Anchor and SHAP in Figure 5.22,

Figure 5.23, and Figure 5.24 respectively. BARBE-C identifies the features that con-

tribute to the decision of the black-box model and presents them simply like it does

for binary classification tasks.

Figure 5.21: The explanation provided by BARBE-C for an instance of the news
classification dataset. (A) shows the sentence with features highlighted. Table 5.6
presents the set of important rules with their support, confidence, and logarithm of
statistical significance values. (B) presents the prediction probability of the black-
box, and (C) presents the histogram of important features ranked based on their
importance.
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Table 5.6: Set of rules generated by BARBE-C with their support, confidence, and
logarithm of statistical significance values along with the sentence with features high-
lighted. Rules are sorted in this table based on their confidence values. “S” denotes
“Sports”, “B” denotes “Business”, “T” denotes “Sci/Tech” label in the Rule column.
Sentence has been truncated and includes an ellipsis to indicate that there is more to
the sentence.

Sentence Rule Support ConfidenceLog(SS)

Nike, .. England team for
scoring ...

team→ S 18.22 100.00% -215.54

Nike, ... tremendous
performance in last ...

performance→
S

17.92 100.00% -79.31

Nike, ... scoring tremen-
dous performance in last
league .

league→ S 19.87 100.00% -71.62

Nike, ... tremendous
performance in last
league.

tremendous
performance→
S

9.57 100.00% -71.72

Nike, being a leading
sportswear brands , is ...

brands→ B 21.44 100.00% -93.29

Nike, ... next quarter by
sponsoring England team
...

sponsoring →
T

15.39 100.00% -115.21

Nike, ... team for scoring
tremendous performance ...

scoring → S 22.25 99.68% -213.33

Nike, ... next quarter by
sponsoring England team
...

quarter → T 14.22 99.50% -115.79

Nike, ... next quarter by
sponsoring England team
...

next
quarter → T

8.92 99.37% -108.02

Nike, ... profits in the next
quarter ...

profits→ B 18.29 99.05% -94.19

Nike, being a leading
sportswear brands, ...

sportswear →
S

16.51 98.79% -215.54

Nike, ..., is anticipating
boost in profits in the ...

boost profits
→ B

8.77 98.74% -93.67

Nike, ..., is anticipating
boost in profits ...

anticipating →
T

17.07 98.43% -108.92
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Figure 5.22: The explanation provided by LIME for an instance of the news classi-
fication dataset. Top-left horizontal bar chart presents the prediction probabilities
of the black-box model for all the classes. The other charts display the importance
scores for each feature generated by LIME, with the features sorted in descending
order of their respective importance scores. For each class, the words on the right
side of the line are positive, and the words on the left side are negative.

Figure 5.23: The explanation provided by Anchor for an instance of the news classi-
fication dataset.
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Figure 5.24: The explanation provided by SHAP for an instance of the news classifi-
cation dataset. The red color in the figure represents features that have contributed
positively to the prediction. Features in blue have contributed negatively to the pre-
diction.

5.4 Using Parse Tree for Generating Neighborhood

We have discussed the neighborhood generation technique of BARBE in Section 4.2.2.

Both BARBE-S and BARBE-C use the same approach to construct the neighborhood

dataset. While generating the neighborhood dataset, we use the Algorithm 1 which

mainly focuses on removing words randomly from the sentence to create a new sen-

tence. Random word removal is a technique used for data augmentation in NLP, but

it has potential limitations that can impact the completeness of the resulting data. It

may remove words that are crucial to the overall meaning of the sentence, resulting in

incomplete or inaccurate representations of the text. Moreover, random word removal

may not consider the syntactic or semantic relationships between the words in the

original sentence, which can further undermine the usefulness of the augmented data
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for subsequent modeling and analysis. As a result, it is important to be aware of these

limitations when using random word removal as a technique for data augmentation

and to consider alternative approaches that may improve the overall meaning and

structure of the original text.

When implementing the random word removal technique, one way to optimize the

process is to utilize a parse tree [107], [108]. A parse tree is a data structure used in

NLP to represent the syntactic structure of a sentence. It is a way of breaking down

a sentence into its constituent parts, such as words, phrases, and clauses and showing

how they are related to one another based on the rules of grammar. Using a parse

tree can help ensure that the dropped words do not significantly impact the overall

meaning or structure of the sentence. By leveraging the hierarchical representation

provided by a parse tree, we can more accurately identify words or phrases that can

be safely removed without much impacting the semantic structure of the sentence.

Therefore, incorporating a parse tree into the process of random word removal can

lead to more effective neighborhood set generation for BARBE.

The parse tree is typically visualized as a tree diagram, where each node represents

a constituent part of the sentence, and the branches represent the relationships be-

tween the different parts. The root node represents the entire sentence, while the leaf

nodes represent individual words. The internal nodes of the tree represent phrases

or clauses, and the edges or branches connect these nodes to show the relationships

between them. The parse tree is commonly represented as a tree diagram, with each

node representing a constituent portion of the phrase and the branches representing

the relationships between the various parts. The root node represents the complete

sentence, whereas the leaf nodes represent specific words. The tree’s internal nodes

represent words or clauses, and the edges or branches connect these nodes to demon-

strate their relationships. The parse tree is commonly used in various NLP tasks such

as syntactic analysis, dependency parsing, and semantic analysis. It can help identify

the grammatical structure of a sentence, determine the relationship between different
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Figure 5.25: Parse tree representation of a sentence.

parts of the sentence, and ultimately aid in the interpretation and understanding of

natural language text. Figure 5.25 shows the parse tree representation of a sentence

“This is a fantastic movie of three prisoners who become famous. George Clooney is

awesome. Another good thing about the movie is the soundtrack. I recommend this

movie to everybody.”. We have used Stanford CoreNLP [109] to generate the parse

tree. The Stanford CoreNLP toolkit uses a combination of rule-based and machine

learning-based methods to generate parse trees. It includes a dependency parser that

uses a statistical model to predict the relationships between words in a sentence,

as well as a constituency parser that uses a combination of rule-based and machine

learning-based methods to identify the phrases and clauses in a sentence. It is evident

from the tree in Figure 5.25 that the leaf node siblings “a fantastic movie”, “three

prisoners”, “the movie” etc. should stay together. This tells us to consider the leaf

sibling words as indivisible units while removing words randomly from the sentence,

and if one of the words in the siblings is selected for removal, then the entire siblings

should be removed. Conversely, if the leaf sibling is not selected for removal, all the

sibling words should remain together in the augmented sentence.
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Using a parse tree can be helpful for long sentences. For the case of long sen-

tences, the random word removal technique comprehended by the parse tree can

create synthetic sentences that still contain a sufficient number of words from the

original sentence. For shorter sentences, this approach does not produce synthetic

sentences that contain a sufficient number of words.

SigDirect, the core of BARBE, is a rule-based classifier that may face limitations in

terms of required memory and runtime if the feature vector of the input feature space

is large. This is because as the number of features increases (e.g. for long sentences),

the number of possible association rules also increases exponentially, which can cause

the classifiers to become computationally expensive and require long run time. As a

result, the classifiers may not be able to handle large feature vectors efficiently, which

can impact their overall performance. Because of such limitations, BARBE is not

able to handle long sentences. But this limitation has been overcome by BARBE

with CFAR. CFAR employs an ensemble of associative classifiers as base learners,

with each base learner trained on a subset of the feature vector. This approach

enables CFAR to efficiently handle large input feature space, which is a limitation

of the SigDirect classifier. Thus we want to explore the parse tree-based random

word removal technique for BARBE with CFAR. We are interested to see how the

parse tree can tailor the number of rules generated by BARBE-C. In this regard, we

modify the Algorithm 1 to incorporate parse tree. The modified Algorithm 2 ensures

that while randomly dropping words from a sentence if the word belongs to a leaf

sibling set, all the words of the leaf sibling set also dropped from the sentence. This

means that if a random word e.g. “movie” is selected to drop, the whole sibling set

“a fantastic movie” is dropped from the sentence.

We regenerate the explanation using BARBE-C for the sentence “This is a fantastic

movie of three prisoners who become famous. George Clooney is awesome. Another

good thing about the movie is the soundtrack. I recommend this movie to everybody.”

using parse-tree based random word removal. The explanation generated by BARBE-
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Algorithm 2 BARBE Neighborhood Generation Algorithm Using Parse Tree

Input: inputSentence, n
function GenerateLeafSiblignsUsingParseTree(inputSentence)

leafSiblingsSet = Sets of all the leaf nodes that are siblings
return leafSiblingsSet

end function
leafSiblingsSet = GenerateLeafSiblignsUsingParseTree(inputSentence)
for i← 1 to n do

sentence← inputSentence
nbWordsToDelete← random[0, numberOfWords(inputSentence)− 1]
for j ← 1 to nbWordsToDelete do

t = Select a word randomly and remove it from inputSentence. Drop all
the words if it belongs to leafSiblingsSet

outputSentence = outputSentence ∪ t
end for

end for
return outputSentence

C with parse tree has been illustrated in Figure 5.26. The set of rules reported by

BARBE-C has been displayed in Table 5.7. BARBE-C has generated 7 rules as

shown in Table 5.7. If we compare the rules in this Table with the rules in Table 5.3,

we notice that using parse tree has deducted the rule: fantastic → Positive and

assigns a higher confidence value of 100% to the rule fantasticmovie → Positive.

This happens because the word “fantastic” belongs to the leaf sibling set “a fantastic

movie”. The synthetic dataset does not contain the word “fantastic” alone inside the

perturbed instances. If “fantastic” is present, it is present with all of its siblings,

otherwise if “fantastic” is dropped, it is dropped with its siblings. Such methodology

helps BARBE-C to generate rules that convey more semantic context to the users.

Since the parse tree approach has reduced one rule, the feature importance histogram

in Figure 5.26C differs from that in Figure 5.9C. The word “fantastic” has got a lower

importance score as shown in Figure 5.26C since the rule fantastic → Positive has

been removed by BARBE-C with parse tree.
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Figure 5.26: The explanation provided by BARBE-C with parse tree for an instance
of the IMDB movie review dataset labeled as positive by the black-box model. (A)
shows the sentence with features highlighted. The green heatmap presents the pos-
itive words and the red heatmap presents the negative ones. Table 5.7 presents the
set of important rules with their support, confidence, and logarithm of statistical
significance values. (B) presents the prediction probability of the black-box, and (C)
presents the histogram of important features ranked based on their importance.

95



Table 5.7: Set of rules generated by BARBE-C with parse tree with their support,
confidence, and logarithm of statistical significance values along with the sentence
with features highlighted. Rules are sorted in this table based on their confidence
values. “P” denotes “Positive” label and “N” denotes “Negative” label in the Rule
column. Sentence has been truncated and includes an ellipsis to indicate that there
is more to the sentence.

Sentence Rule Support Confidence Log(SS)

This is ... Another good
thing about the movie is the
soundtrack. I recommend ...

good→ P 21.07 100.00% -57.01

This is ... George Clooney
is awesome . Another good
...

awesome →
P

21.98 100.00% -57.54

This is a fantastic movie
of three prisoners who be-
come famous ...

fantastic
movie → P

20.94 100.00% -112.05

This is ... I recommend
this movie to everybody.

recommend→
P

22.54 99.75% -58.29

This is a fantastic movie of
three prisoners who become
famous . George Clooney
...

famous→ P 12.09 98.54% -58.71

This is ... I recommend
this movie to everybody.

recommend
movie → P

15.26 98.41% -55.23

This is a fantastic movie
of three prisoners who
become famous ...

become→ N 17.07 62.08% -59.87

96



Chapter 6

Using BARBE for Cyberbullying
Detection in Low-Resource
Languages

This chapter presents the application of BARBE for detecting cyberbullying in resource-

constraint language. We first discuss what cyberbullying is, and the context of cyber-

bullying in terms of resource-constraint language like Bengali. Then we introduce a

multi-class cyberbullying classification model for the Bengali language that achieves

state-of-the-art performance. Furthermore, we demonstrate that the linguistic dif-

ferences and complexities between high-resource languages like English and resource-

constrained languages like Bengali lead to performance and accuracy differences. In

this regard, we develop a novel embedding model called informal embedding for Ben-

gali to improve cyberbullying detection accuracy. Finally, we apply BARBE to extract

rules composed of a feature or conjunction of features to create more human-readable

explanations.

Cyberbullying, also known as online harassment, is using electronic communication

to threaten another person, usually by sending scary or compromising communica-

tions. The use of inflammatory and hostile language has expanded dramatically in

the age of social media and internet networking. Examples of cyberbullying are

derogatory emails, texts, photos, and videos sent over various social media platforms.

Cyberbullying affects a large number of children all around the world. Over 80%
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of children own a mobile phone and use social networking sites [110]; their online

presence also exposes them to threats and social misbehaviors such as cyberbully-

ing. Nearly 57% admitted to having experienced cyberbullying, and 60% reported

witnessing bullying on social media [111]. 36.5% of adults believe they have been

cyberbullied at least once in their lives, a figure that has more than doubled in recent

years [111]. According to the Bangladesh Institute of ICT, Bangladesh has an 80%

rate of cyberbullying victims who use the internet and social media, among them 64%

of girls receiving sexually explicit videos, texts, and images [112]. Harassment and

defamation account for 18% of the harassment complaints and cases brought before

the country’s only cybercrime tribunal [113].

To detect cyberbullying, the majority of recent studies have relied on traditional

ML models [114], [115], [116], [117]. Some recent works use Deep Neural Network

(DNN) models to detect cyberbullying. Agrawal et al. [118] employ DNN models to

detect cyberbullying and claim their models outperform typical ML models. Mul-

tilingual cyberbullying detection has drawn considerable attention in recent years,

with numerous studies published in major languages such as Dutch, Indian, Chinese,

and Arabic [119], [120], [121]. Researchers have utilized lexical resources, modeling

word and sentence relationships, and various word embedding techniques for fea-

ture extractions. Word embedding, in particular, has emerged as a commonly used

method for NLP tasks, representing words in a vector space that encodes their mean-

ing. However, the task of detecting cyberbullying in low-resource languages, such as

Bengali, poses a significant challenge. With over 160 distinct inflected forms for verbs,

36 various forms for nouns, and 24 other forms for pronouns [122], Cyberbullying

Detection in Bengali (CDB) requires sophisticated analysis methods. Although 230

million people worldwide speak in Bengali [123], there have been a few studies on

CDB, and there are scopes for improvement in cyberbullying detection for such a low-

resource language context. Most recent work on cyberbullying detection focuses on

pre-trained embedding and deep neural network models for high-resource language.
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Bengali differs from high-resource languages as a resource-constrained language due

to limited resources and complicated linguistic patterns [123]. Moreover, most of

these pre-train embeddings do not work well in Bengali, and existing research on

CDB has only considered binary classes, ignoring data imbalances. Thus, there is

a pressing need to develop more effective techniques for detecting cyberbullying in

low-resource language contexts such as Bengali.

Our key contributions in this chapter are:

• Developing a multi-class cyberbullying classification model for the Bengali lan-

guage that achieves state-of-the-art performance. To improve cyberbullying

detection accuracy, we develop a novel embedding model called informal em-

bedding for Bengali.

• Utilizing BARBE for generating explanations in the form of rules consisting of

a single feature or conjunction of features for better human understanding.

6.1 Dataset

We use the standard Bengali text dataset prepared by Ahmed et al. [124] by collecting

hand-annotated comments on public Facebook posts from celebrities, government

leaders, and athletes. The total number of comments is 44001. After removing

duplicates, the comments are divided into five categories, with four subcategories in

the bully category. A representative sample of the dataset is shown in Figure 6.1.

Bullies are classified as sexual, threat, troll, and religious. If the comments are not

fit into any of the criteria, they are labeled as not-bully. According to the dataset,

the actors’ class is the most harassed on social media, followed by social influencers

with 61.25% and 21.31%, respectively [124]. Furthermore, we can see that 31.9% of

the comments are directed at male victims, while 68.1% are directed toward female

victims. Moreover, the dataset is not properly balanced among all classes.
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Figure 6.1: Example dataset with English translation: one instance from each class

6.2 Methodology

This section explains how we have processed our dataset by separating bully from

non-bully texts within the dataset, feature extraction approaches, selections of ML

models, and our final methods. To get the best-performing architecture, we conduct

an extensive analysis between various combinations of embedding techniques and deep

ML model architectures. We describe some state-of-the-art XAI techniques that are

used to explain the prediction of our ML models.

6.2.1 Dataset Preprocessing

Data pre-processing is a crucial step for preparing the data that can be analyzed

conveniently and utilized for classification tasks. After gathering the comments, we

clean up the raw data by removing inappropriate characters, punctuation, and emojis

and pre-process the data before feeding it to our neural network.

6.2.2 Feature Extraction

The effectiveness of a model in a text classification task is heavily dependent on the

feature extraction process, particularly for low-resource language text. In all text-

processing tasks, words serve as discrete, categorical features. To address the issue

of words that occur frequently but carry little significance, we utilized the TFIDF

vectorizer [125] for our traditional models. The TFIDF value increases with the fre-

quency of a word appearing in a single document and decreases proportionally to the

number of documents in the corpus containing the word, resolving the aforementioned

issue with the bag-of-words approach. We employed word n-grams within a range of
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(1,5) and mindf = 8 with l2 normalization. Despite removing stop-words, we observe

no significant difference in performance when utilizing the TFIDF vectorizer.

6.2.3 Machine Learning Classifiers

Our study involves experimenting with four supervised ML classifiers: Multinomial

Naive Bayes [126], SVM [127], Random Forest [128], and XGBoost [129] because of

their reputation in the classification task.

6.2.4 Deep Neural Network Models

Neural networks demonstrate outstanding performance in a broad range of text clas-

sification and generative tasks. Given a large amount of training data, such models

typically achieve higher accuracy than linguistic feature-based methods and other tra-

ditional ML models. Therefore, we compare two simple and representative models,

CNN [130] and LSTM [29], and experiment with these models that have been used

as benchmark models in various text classification tasks.

6.2.5 Word Embedding Models

The embedding layer works with a set of words having a specific length. Word

embeddings are a type of real-valued vector that represents each word in the vector

space. We explore Word2Vec [131], fastText [132], and fastText built on informal

texts as initialization approaches for word embeddings. Using initial word embeddings

during training can assist the model in acquiring task-specific word embeddings that

can aid in detecting specific types of bullying in multiclass prediction.

6.2.6 Explainability

We choose BiLSTM as the black-box model to generate explanations for the cyber-

bullying dataset. We apply Anchor and BARBE to the learned model for producing

explanations that are easy to understand for readers. Section 6.3.4 and 6.3.5 contain

more details on the explanation generated by Anchor and BARBE respectively.
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6.2.7 Evaluation Metrics

As the evaluation metrics, we use the accuracy(A), precision(P), recall(R), and F1-

Score(F1) of our models. As the dataset is imbalanced, F1-Score is a better metric

for evaluating the results. Furthermore, as our dataset is imbalanced during the trial,

we use macro average accuracy as a performance parameter.

6.2.8 Proposed Workflow

There are two aspects to our proposed model. We begin by experimenting with four

traditional models for multiclass scenarios based on the descriptors: “Not bully”,

“sexual”, “threat”, “troll”, and “religious”. In the second part, while experimenting

with deep learning models, we separate the second section again into two parts. In

the first part, we consider these labels - “sexual”, “threat”, “troll”, “religious” as

“bully” and another part as “Not bully”. Then we apply binary classification models

using BiLSTM and CNN to identify whether the comment is harassing or not. We

redesign the same models for multiclass prediction in the later part of this study. We

have presented our workflow diagram in Figure 6.2. In the following subsections, we

review each step of our approach.

Figure 6.2: Overview of complete workflow
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6.3 Result and Analysis

In order to obtain the best-performing models, we evaluate the performance of several

machine learning models on an identical dataset for both English and Bengali lan-

guages. We compare the performance of four traditional ML models (SVM, Random

Forest, NB, and XGBoost) in terms of Precision (P), Recall (R), and F1-Score (F1) to

compare the performance with Ahmed et al. [124]. Later, we use the same dataset to

test multiple deep learning models (LSTM, BiLSTM, and CNN) with different word

embeddings. We build our own embedding with informal text and comments collected

from various online social platforms representing real-world data. We use the term

informal embedding or fastText informal throughout the paper, describing the

embedding model we have developed.

6.3.1 Experiment on English and Bengali Datasets for Tra-
ditional ML Models

We conduct a comprehensive experiment on both the English and Bengali datasets in

this section. We choose the Twitter dataset 1 as the English language cyberbullying

dataset of 47,691 comments with five classes (“not-cyberbullying”, “gender”, “age”,

“religion”, and “ethnicity”) which is identical to our Bengali dataset. We divide

our dataset into 80% for training and 20% for testing. We report our experimental

results on both English and Bengali for binary classification tasks in Table 6.1. It

is evident from the Table that SVM outperforms all other conventional models to

predict cyberbullying in the binary class scenarios for both datasets.

For multiclass classification, our study finds that SVM outperforms all traditional

models. To obtain the optimal performance, we have used GridSearchCV 2 tools from

Scikit-learn for fine-tuning SVM with various parameters. We have performed cross-

validation using sklearn StratifiedKFold to find the optimal setting and experimented

1https://rb.gy/wtumhy
2https://scikit-learn.org/stable/modules/generated/sklearn.modelselection.GridSearchCV.html
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Table 6.1: Cyberbullying Classification Results: Precision (P), Recall (R), and F1-
Score (F1) generated by traditional machine learning models for Bengali and English
datasets.

Algorithm Dataset P R F1

Random Forest
Bengali 84.00 84.00 84.00

English 82.40 84.10 81.60

SVM
Bengali 85.00 85.00 84.00

English 89.00 90.40 89.60

XGBoost
Bengali 85.00 84.00 84.00

English 81.80 84.60 82.40

Naive Bayes
Bengali 78.00 79.00 79.00

English 80.80 79.00 79.80

with different kernels to find the optimal SVM output. We identify that SVM classifier

with Radial Based Kernel achieves the overall best performance among other kernels.

Both Bengali and English datasets have the same five classes: Not bully, Religious,

Sexual, Threat, Troll and Not bully, Religion, Gender, Ethnicity, Age respectively.

Note that, the classes of the Bengali and English datasets are not exactly the same

but essentially represent the name as the same for better presentation. Here, Not

bully (Class-N), religious or religion (Class-R), Sexual or gender (Class-G), Threat

or ethnicity (Class E), Troll or Age (Class-A) encompass all five classes from both

datasets. Table 6.2 reports the performance of SVM models on 5 classes for both

Bengali and English datasets.

From Table 6.2, we observe that Class-R which is the religious or religion category

gets the highest F1-Score for both Bengali and English datasets. On the other hand,

Class-E achieves the lowest for the Bengali dataset and Class-N achieves the lowest

for the English dataset. The difference found in Class-E and Class-N is due to the

high imbalance in both datasets. As the dataset is collected from social media, more

work can be done to make it a gold standard dataset.
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Table 6.2: Precision, Recall, and F1-Score generated by SVM (Radial Basis Kernel)
for Bengali and English datasets. (Precision, Recall, and F1-Score are represented as
P, R, and F1 respectively)

Class Dataset P R F1

Class-N
Bengali 87.00 91.00 89.00

English 63.00 53.00 58.00

Class-R
Bengali 97.00 95.00 96.00

English 91.00 85.00 88.00

Class-G
Bengali 93.00 85.00 89.00

English 82.40 84.10 81.60

Class-E
Bengali 90.00 50.00 65.00

English 99.00 98.00 98.00

Class-A
Bengali 77.00 84.00 80.00

English 95.00 98.00 97.00

6.3.2 Experiment with Word-Embeddings and DNN Models

In this section, we examine three deep neural network models (LSTM, BiLSTM, and

CNN) with different word embedding for feature extractions to detect cyberbullying.

We analyze the performance of CNN, LSTM, and BiLSTM models on both English

and Bengali datasets in terms of Precision, Recall, and F1-Score using two different

embeddings Word2Vec, and fastText respectively. It is evident from Table 6.3 that

BiLSTM and fastText embeddings work best for both datasets in terms of Precision,

Recall, and F1-Score. The average F1-Score for fastText embedding and BiLSTM is

95.20% and 83.45% respectively for English and Bengali, which is much higher than

the performance of any traditional model.

For multiclass classification, we examine all the deep learning models used for

binary classification and get similar findings that BiLSTM with fastText embedding

outperforms all other models. Table 6.4 presents the class-wise precision, recall, and

F1-Score for the Bengali dataset.
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Table 6.3: Precision, Recall, and F1-Score generated by CNN, LSTM, and BiLSTM
with word2Vec, and fastText embeddings respectively for binary classification. (Pre-
cision, Recall, and F1-Score are represented as P, R, and F1 respectively)

Algorithm Dataset P R F1

CNN+word2Vec
Bengali 76.39 73.28 74.78

English 93.34 91.55 92.20

CNN+fastText
Bengali 80.93 77.45 79.16

English 94.51 92.65 93.81

LSTM+word2Vec
Bengali 85.99 74.16 79.64

English 93.29 92.51 92.09

LSTM+fastText
Bengali 86.42 75.42 80.55

English 94.64 93.87 94.00

BiLSTM+word2Vec
Bengali 90.05 75.16 82.16

English 95.20 92.50 94.33

BiLSTM+fastText
Bengali 90.10 77.20 83.45

English 96.55 93.31 95.20

6.3.3 Impact of Embedding Models

In this section, we examine word2Vec and fastText embedding with CNN, LSTM,

and BiLSTM. Experimental results from Table 6.3 clearly demonstrate that fastText

embedding works better than the word2Vec. In addition, it shows that BiLSTM and

fastText achieve 95.2% F1-Score for the English dataset while the performance is

83.45% for the Bengali dataset. We investigate the reason behind the huge perfor-

mance drop for the same deep learning models and embedding. We hypothesize that

the embedding model for Bengali and English can be different due to their linguistic

complexity and Bengali has more regional words with semantically the same meaning

than English. To solve this problem, we build our own fastText informal embedding.

Table 6.5 represents the performance of BiLSTM and CNN models for binary classi-

fication using Word2Vec, fastText, and fastText built on informal text (fastTextInf)
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Table 6.4: Precision, Recall, and F1-Score generated by BiLSTM model with
word2Vec, fastText, and fastText informal embeddings respectively for multiclass
classification with Bengali dataset. (Precision, Recall, and F1-Score are represented
as P, R, and F1 respectively)

Class Embedding P R F1

Not bully

Word2Vec 75.00 82.00 78.00

fastText 77.00 82.00 79.00

Religious

Word2Vec 91.00 80.00 85.00

fastText 91.00 85.00 88.00

Sexual

Word2Vec 86.00 57.00 69.00

fastText 72.00 68.00 70.00

Threat

Word2Vec 84.00 64.00 72.00

fastText 72.00 72.00 72.00

Troll

Word2Vec 70.00 59.00 64.00

fastText 71.00 61.00 66.00

in terms of Precision, Recall, F1-Score, and Accuracy. We find that both the models

using fastText on informal text perform the best. BiLSTM achieves Precision, and

Recall of 89.54%, 84.79% respectively, as well as an overall F1-Score 87.99%, the

highest of all the embeddings. CNN also shows a similar result in the case of informal

text embedding. CNN achieves Precision and Recall of 86.89%, 86.66% respectively,

as well as an overall F1-Score of 86.77%. Among the other two, fastText performs

well in the case of the Bengali language for cyberbullying detection with nearly 80.55

% of F1-Score. Results show that informal embedding positively influences the per-

formance of both CNN and LSTM architecture by more than 7%. The best results

are highlighted in bold font.

Table 6.6 represents the performance of BiLSTM and CNN models for the mul-

ticlass scenario for the three embedding models in terms of Precision, Recall, and

F1-Score. The best results are highlighted in bold font. For multiclass classifica-
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Table 6.5: Precision, Recall, and F1-Score generated by BiLSTM and CNN models
with Word2Vec, fastText, and fastTextInf embeddings for binary classification

Algorithms Embeddings P R F1

BiLSTM

Word2Vec 85.99 74.16 79.64

fastText 86.42 75.42 80.55

fastTextInf 89.54 84.79 87.99

CNN

Word2Vec 76.39 73.28 74.78

fastText 80.93 77.45 79.16

fastTextInf 86.89 86.66 86.77

tion, both the models using fastText on informal text (fastTextInf) achieve the best

performance, similar to the result for binary class classification. BiLSTM achieves

Precision and Recall of 84.00% and 83.00% respectively, as well as an overall F1-

Score of 84.00%, the highest of all the embeddings. CNN also shows a similar result

in the case of informal text embedding. CNN achieves Precision and Recall of 79.00%

and 78.00% respectively, as well as an overall F1-Score of 79.00%. Among the other

two, for BiLSTM and CNN, the fastText model achieves an F1-Score of 79.00% and

71.00% respectively in CDB texts.

Table 6.6: Precision, Recall, and F1-Score generated by BiLSTM and CNN models
with Word2Vec, fastText, and fastTextInf embeddings for multiclass classification

Algorithms Embeddings P R F1

BiLSTM

Word2Vec 78.00 70.00 74.00

fastText 77.00 74.00 75.00

fastTextInf 84.00 83.00 84.00

CNN

Word2Vec 76.00 67.00 69.00

fastText 72.00 69.00 71.00

fastTextInf 79.00 78.00 79.00

Table 6.7 illustrates the classification results for BiLSTM model based on fastText
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embedding built on informal text for multiclass classification. Based on precision,

recall, and F1-Score from Table 6.6, we find that the BiLSTM model performs better

with fastText embedding than other embeddings in properly identifying all the classes

while utilizing informal texts.

Table 6.7: Precision, Recall, and F1-Score generated by BiLSTM with informal text
embedding for Bengali dataset

Class P R F1

Not bully 86.00 86.00 86.00

Religious 92.00 91.00 92.00

Sexual 83.00 82.00 83.00

Threat 77.00 76.00 76.00

Troll 79.00 75.00 77.00

6.3.4 Explainability with Formal and Informal Embedding

We have conducted a few experiments with LIME and Anchor to explain the results

obtained by the black-box models. We present the explanation for the BiLSTM clas-

sifier using Anchor not LIME since our findings show that the explanation generated

by LIME for resource-constraint language is not clear and meaningful. Figure 6.3

shows an example of the explanation generated by LIME for an instance of the Ben-

gali cyberbullying dataset. LIME is not able to identify the features responsible for

the decision of the black-box model.

We provide two examples of Bengali sentences as shown in Figure 6.4 to explain

with Anchor. In this example, the first sentence is truly labeled as “not bully” and

the second sentence is labeled as “bully”. The best-performing model BiLSTM with

formal embedding predicts both of them incorrectly. However, BiLSTM with informal

embedding successfully classifies it. The explanation of the two sentences of Figure 6.4

has been provided in Figure 6.5 and Figure 6.6 respectively. The first illustration

in Figure 6.5(a) belongs to the class “not bully”. Its English translation is “Sudipta
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Figure 6.3: Explanation generated by LIME for an instance of the cyberbullying
dataset. The characters within the words are broken.

Figure 6.4: Example sentences with the prediction from the BiLSTM model for both
formal and informal embedding.

Tithi is your dear Alam Uncle”. The words “Sudipta” and “Tithi” are two Bengali

names. The word “Alam” is a common middle name of Bengali people. In general,

this sentence is not a bully because there is no indicative word in this sentence that

makes it “bully”. When we use the BiLSTM classifier as the desired black box model

and use Anchor to explain it with both formal embedding and informal embedding

setup, the explanation for the formal embedding is “bully” which is wrongly predicted.

This happens because the words that made the prediction “bully” are rarely available

in formal literature. For the illustration in Figure 6.5(b), the output of the informal

embedding is “not bully” which matches the original label of the sentence. The

explanation for the second sentence of Figure 6.4 is presented in Figure 6.6. Its

English translation is “You prostitute what to say, you bastard”. It is clearly evident

that there are a couple of slang words in this sentence which are slang words in

Bengali conversation. Our experiment with BiLSTM informal embedding correctly

predicts the label of the sentence as shown in Figure 6.6(b). The prediction of the
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BiLSTM with informal embedding is “bully” but BiLSTM with formal embedding

fails to predict it. Instead, it predicts the sentence as “not bully” which is not correct.

Figure 6.6(a) also highlights the words that turn the sentence into “bully”.

Figure 6.5: The explanation generated by Anchor using BiLSTM classifier as the
black-box model with formal and informal embedding. The original label is “not
bully” and the informal embedding predicts “not bully”

Figure 6.6: The explanation generated by Anchor using BiLSTM classifier as the
black-box model with formal and informal embedding. The original label is “bully”
and the informal embedding predicts “bully”
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6.3.5 Model Interpretation Using BARBE

In order to generate a more meaningful and better readable explanation, we use

BARBE to generate the set of rules within informal embedding. Figure 6.7 and 6.8

demonstrate the explanations generated by BARBE. For convenience, we also provide

the English translation of the Bengali sentences used in these figures. BARBE high-

lights the indicative words that are responsible for classifying the sentence as either

“bully” or “not bully”. According to Figure 6.7, the original label of the sentence is

“not bully”. BARBE extracts the rules that are making the sentence “not bully” as

presented in 6.7(b). Figure 6.7(b) shows support and confidence values of the rules

generated by BARBE. The horizontal bar chart in Figure 6.7(c) represents prediction

probabilities of the black-box model whereas the vertical bar chart in Figure 6.7(d)

shows important features based on the word frequency within the rules. Figure 6.8

demonstrates another example used in BARBE where the original label of the sen-

tence is “bully” and BARBE significantly extracts the rules that make the sentence

classified as “bully”. Unlike Anchor, BARBE generates a set of rules along with the

frequency and confidence values which clearly explain the decision of the black-box

model by improving the understandability and clarity of the prediction. The verti-

cal bar chart in Figure 6.8(d) also signifies the critical words in the sentence with a

heatmap visualization of the sentence presented in Figure 6.8(a).
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Figure 6.7: The explanation provided by BARBE for an instance of the cyberbullying
dataset where the actual label is “not bully”. (a) shows the heatmap of highlighted
words. (b) shows the rules extracted by BARBE with support and confidence values.
(c) shows the black-box probabilities. (d) presents the important features with their
importance score.
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Figure 6.8: The explanation provided by BARBE for an instance of the cyberbullying
dataset where the actual label is “bully”. (a) shows the heatmap of highlighted words.
(b) shows the rules extracted by BARBE with support and confidence values. (c)
shows the black-box probabilities. (d) presents the important features with their
importance score.

114



Chapter 7

Systematic Comparison of the
Explanations

To systematically compare the explanations provided by BARBE and other systems

like LIME, we conducted a human evaluation in which human participants created

a “ground truth” that we use to estimate the explanation performance on sentiment

analysis task explanations. In this evaluation, participants perform the task of data

annotation where they mark the features that they think influence the black-box to

come to a decision. We use the same black-box that we use for BARBE-C (BARBE

with CFAR). We use a set of 200 movie reviews labeled by the black-box as either

positive or negative. Participants are asked to annotate the words or a set of words

i.e. conjunction of words that they think led the black-box to its decision. This

evaluation helps us to construct the ground truth. Participants are presented with a

series of movie reviews and the corresponding sentiment predicted by the black-box

model. For example, consider the following movie review:

“This movie is a perfect blend of action, drama, and romance. The actors deliver

outstanding performances, making the story both thrilling and heart-wrenching at the

same time.”

that has been predicted as “Positive” by the black-box model. The participants

might consider the words like “perfect”, “perfect blend”, “outstanding performance”,

“heart-wrenching” as the words for which the black-box could have labeled this review
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as “Positive”. We employ BARBE-C to extract the rules for this review and sort the

rules by their frequency, and confidence values, and finally extract the words identified

by BARBE-C. We also use LIME to extract the words for each of the reviews used

in the study. Eventually, we come up with a metric to measure the participant’s

observation with BARBE and LIME that we discuss in this chapter. We start with

the data annotation process in Section 7.1. Then we discuss the agreement between

annotators in Section 7.2. Finally, we compare the explanations provided by BARBE

and LIME by proposing a metric in Section 7.3. We do not compare against Anchor

and SHAP here as they produce a limited set of words as explanations and would

de-facto perform poorly with our metric.

7.1 Data Annotation

In order to conduct this evaluation, we randomly choose 200 IMDB movie reviews.

We invited 6 human annotators for our study. They participated in this study vol-

untarily. We divided the users into two groups. Three users from Group 1 annotated

the first 100 reviews and the other three users from Group 2 annotated the next

100 reviews. We developed a web application to collect the annotations through an

interactive interface. When users first sign up for the evaluation, they are assigned

a unique username and password which they use to log in to the web application.

Upon successful login, they are immediately presented with a sentence. A sentence is

basically an IMDB movie review. This sentence is labeled either positive or negative

by the black-box model. As shown in Figure 7.1, the user interface presents this

question along with the decision of the black-box (i.e., whether the review is deemed

positive or negative). The user clicks on a word (or multiple words) to mark it as

a potential influence on the black-box decision. Once clicked on a word, it will turn

green meaning that the user has selected this word to be influential for black-box

decisions. However, it is essential to note that users will not judge their decision

whether a review is positive or negative. Instead, the user has to annotate the words
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for which the black-box has predicted that review as positive or negative. By identify-

ing these influential words, the annotators help us to develop the ground truth for our

evaluation. The annotators are independent, they don’t see each other annotations.

Each sentence is annotated by 3 annotators.

Figure 7.1: User interface of our evaluation

Once users mark i.e. annotate the words for a review, they click the “Submit

Highlighted Words” button to move to the next review as shown in Figure 7.1. After

they annotate 100 reviews, they are done with the evaluation. We save the annota-

tions in our database. When all six users are done with their tasks, we analyze their

agreement to construct the ground truth.

7.2 Agreement between Annotators

We analyze the annotations provided by the annotators to calculate the agreement

between annotators. Table 7.1 demonstrates the summary of the evaluation. There

are a total of six annotators, divided into two groups. They annotated a total of
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188 questions. Each sentence was annotated by 3 annotators. We noticed that 12

reviews had no annotations at all. This could happen because the annotators might

not find the words that they think are relevant to annotate. As a result, we record

annotations for 188 reviews. A full agreement is when the three annotators select the

same words for a sentence and majority agreement is when two out of three annotators

select a word as influential in a sentence for the black box decision. For example, for

this sentence: “This movie is a perfect blend of action, drama, and romance. The

actors deliver outstanding performances, making the story both thrilling and heart-

wrenching at the same time.”, Annotator 1 marks “stunning, visual, auditory, feast,

awe”, Annotator 2 marks “stunning, visual, and, auditory, feast, awe”, and Annotator

3 marks “stunning, awe”. All users agree on “stunning, awe” and the majority of

users agree on “stunning, visual, auditory, feast, awe”. This is how we define full

agreement and majority agreement in our evaluation. Among the 188 reviews as

shown in Table 7.1, we see that for only 32 reviews, all the annotators agree. But

the majority of the annotators agree on 149 reviews. We take this agreement as the

ground truth for our evaluation. The last column in this table shows the average

number of words in majority agreement – i.e. 2 out of 3 annotators agree on 5 words

on average. Our average is 5 in our study.

We calculate the kappa agreement [133] to demonstrate the level of agreement

between the annotators. We obtain 0.635 for the kappa agreement between Annotator

1 and Annotator 2, 0.644 between Annotator 2 and Annotator 3, and 0.675 between

Annotator 1 and Annotator 3. The final kappa agreement we obtain by taking the

average is 0.651. This can be considered as a good kappa agreement between the

annotators1.

1https://elentra.healthsci.queensu.ca/assets/modules/reproducibility/kappavalues.html
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Table 7.1: Summary of user annotations

Number of
Annotators

Total
Ques-
tions

Responses
Given

Full
Agree-
ment

Majority
Agree-
ment

Avg. Word
in Majority
Agreement

6/2=3 200 188 32 149 5

7.3 Comparison of Explanations

We generate the explanations using BARBE-C and LIME for all 188 reviews. In order

to compare the explanations provided by BARBE and LIME using the ground truth

(majority agreement), we propose a metric to assign scores to BARBE and LIME.

We call it WSMA: Word Selection Majority Agreement. This metric reflects the

presence of words in the explanation, according to their agreement with the majority

and takes into account the ordering of the words in the explanations since in the

explanation, words are ranked. We extend the same metric with the presence of co-

locations of words in the explanation if these words are in the ground truth. We call

this new extension: WSMA+. We explain the algorithm of WSMA and WSMA+ in

this section that we use to assign scores to both BARBE and LIME.

Both BARBE and LIME generate ranked lists of words. LIME ranks the words

based on some probability values and BARBE ranks them using the support and

confidence values obtained from the association rules. We construct a list of words

based on majority agreement that we call our ground truth. This list serves as the

benchmark against which the model outputs are compared. The ground truth is

based on the “majority agreement”. Each word in the model output list is compared

to the ground truth. If the word exists in the ground truth, it’s assigned a score,

depending on its rank. The top-ranked word that also exists in the ground truth

gets a score equal to the total number of words (n) in the ground truth. The second-

ranked word gets n−1 points if it is in the ground truth, the third n−2, and so forth,

until we check the first n ranked words, or the model’s list ends. If a word from the
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model’s list is not in the ground truth, it’s assigned a score of zero. The “best case

scenario” for a model is if all its words match those in the ground truth, in which

case its total score would be the sum of the first n natural numbers, which can be

calculated as n× (n+1)/2. Since we obtain 5 as the average number of words in the

majority agreement as presented in Table 7.1, the “best case scenario” when LIME

matches the ground truth or BARBE matches the ground truth is 15 on average.

WSMA+ also considers word co-locations. If a model output includes a co-location

that also exists in the ground truth, it gets an additional point. This appears to

be more advantageous for BARBE since the association rules generated by BARBE

contain conjunction of words, but to prevent over-penalizing LIME, which does not,

the additional point for co-locations is kept minimal. Such scoring methods quantify

the models’ effectiveness when compared to the ground truth.

WSMA andWSMA+ compare the output of BARBE and LIME using the majority-

agreed ground truth from the evaluation results. After applying WSAM andWSMA+

to all 188 reviews, we observe that BARBE significantly outperforms LIME, demon-

strating a higher degree of agreement with the human participants’ perceptions. We

obtain 9.05 for BARBE and 8.73 for LIME as shown in Table 7.2 when we use WSMA

by averaging over 188 reviews. Using WSMA+ gives 10.29 which is an advantage for

BARBE since it generates rules containing a conjunction of words. LIME remains

the same when WSMA+ is applied since LIME only identifies one single word at a

time. We obtain 5 as the average number of words in the majority agreement as pre-

sented in Table 7.1. Thus 15 is the best-case scenario on average for our evaluation.

It is evident that BARBE with WSMA and WSMA+ scoring is close to this number

than LIME. This demonstrates a clear win for BARBE. This result suggests that the

explanations provided by BARBE are more useful, and more human-aligned com-

pared to those provided by LIME. In other words, BARBE appears to better mimic

human reasoning in these instances. The rules or features highlighted by BARBE

as important for the black-box model’s decision-making process are similar to those
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identified by the majority of the participants. This alignment is crucial in the field

of XAI, as it indicates that BARBE’s explanations are not only understandable to

humans but also correspond with their reasoning. By analyzing the marked words

across all the reviews, we were able to construct a set of association rules that reflect

the human perception of the black-box model. Moreover, the evaluation aims to serve

as a benchmark for evaluating the quality of explanations generated by our proposed

method.

We have not chosen Anchor and SHAP to compare with BARBE in this evaluation.

Our experimental analysis finds that Anchor mostly chooses one or two words from

a sentence. It misses many of the significant influential words (e.g. Figure 5.19).

Whereas BARBE selects all the influential words and LIME ranks all words. It is

important to note that LIME can select all the words from the sentence since it has

a parameter to select the words. As a result, LIME picks up non-influential words as

well and obtains less score using our scoring method since the non-influential words are

mostly not chosen by the participants. SHAP’s calculation involves a combinatorial

problem, meaning that it can get computationally expensive as the number of words

grows in a sentence. SHAP values assume that features interact additively, which

might not be the case in all black-box models where features could have interaction

effects.

Table 7.2: Comparative evaluation of BARBE and LIME using WSMA and WSMA+

BARBE LIME

WSMA 9.05 8.73

WSMA+ 10.29 8.73
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Chapter 8

Conclusion

In recent years, there has been a significant interest in the field of eXplainable Ar-

tificial Intelligence (XAI). Several researchers have focused on developing various

explanation frameworks to provide explanations for different deep neural network

architectures. However, despite their reasonable performance in terms of accuracy,

these methods are restricted to specific DNN architectures, limiting their applicabil-

ity. LIME was first proposed by Ribeiro et al. [4] as a versatile framework capable of

providing explanations for any black-box model. Despite their assertion that LIME

is model-agnostic and can be applied to any model, the method actually relies on

the black-box model to provide a probability score for each class. Furthermore,

the effectiveness of LIME in providing explanations and generalizing it across dif-

ferent datasets remained an open research problem. We also evaluated Anchor [5]

and SHAP [6] as the explainers to generate quality explanations. The drawback of

Anchor is that it does not provide insights into the interactions between the most

important features it captures or how their joint effects contribute to the prediction.

It also does not express the associations among the features and does not expose the

importance scores or weights of the features like LIME. On the other hand, SHAP

can be computationally expensive, especially for large datasets or complex models,

which can make it impractical for some use cases.

In Chapter 4, we introduced Black-box Association Rule-Based Explanations (BARBE)
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which was originally proposed by Shabestari [1] in his thesis. We extended BARBE

to work with text in our thesis. BARBE is an explainable framework that is not

dependent on any particular model and delivers explanations with a high degree of

precision in the form of rules, along with a ranked list of important features. The

rules generated by BARBE not only reveal the important features responsible for the

decision of the black-box model but also provide insight into the associations among

these features. BARBE, in contrast to LIME, is not dependent on the probability

scores generated by some classifiers and has the ability to generate an explanation

for any black-box classifier. We discussed two variants of BARBE in this manuscript.

One is BARBE with SigDirect and another is BARBE with CFAR. BARBE with

SigDirect uses SigDirect as its underlying associative classifier. Although SigDirect is

effective for processing short sentences, it may encounter limitations in dealing with

high-dimensional datasets that have a large feature vector space, as the number of

possible association rules increases exponentially with the number of features. This

can result in computationally expensive classifiers that require a significant amount of

memory and run-time to process. To overcome this limitation, BARBE with CFAR

(Classification by Frequent Association Rules) was proposed, which uses an ensemble

approach that utilizes a set of base learners where each base learner is an asso-

ciative classifier. This approach enables BARBE with CFAR to efficiently handle

high-dimensional datasets with large feature vector spaces by distributing the feature

space among base learners, each of which is trained on a subset of the feature vector

space.

We explored different data augmentation techniques in Chapter 2. We particularly

focused on the EDA to generate neighborhood datasets around the provided instance

for BARBE. However, we could not incorporate the EDA methods that increase

the vocabulary by adding new words within the sentence. Also, we were not able to

utilize the random swap technique of EDA since it changes the semantic and syntactic

meaning of the sentence. We primarily selected the random word removal technique
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for BARBE to generate the neighborhood instances since this technique does not

increase the vocabulary. But our methodology ensured that this approach should not

create empty sentences which happened for LIME.

Our explainer was evaluated against other state-of-the-art explainers, including

LIME, Anchor, and SHAP. The experimental analysis in Chapter 5 demonstrated

that BARBE outperformed other explainers in generating high-quality explanations.

BARBE generates rules in an “if-then-else” format that is highly readable for hu-

mans, setting it apart from other explainers such as LIME, Anchor, and SHAP. Each

rule comes with support, confidence, and statistical significance value. BARBE also

highlights the feature using a color gradient to denote the importance of the feature

within the provided text along with a feature importance score assigned to the im-

portant features. We provided an application of BARBE in detecting cyberbullying

for resource-constraint languages in Chapter 6.

We conducted a human evaluation where human participants created a “ground

truth” to systematically compare the explanations provided by BARBE and LIME.

The “ground truth” was used to estimate the explanation performance on sentiment

analysis task explanations.

Our research work paves the way for further research in various directions. One

important area of research is to improve the ability of BARBE with SigDirect to

handle datasets with a large number of features. This will involve exploring different

methods for organizing the feature space to improve the efficiency and accuracy of the

method. Expanding the scope of BARBE with SigDirect and BARBE with CFAR

to handle different types of data such as speech, and images are another potential

direction to extend our research.
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