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Abstract

Virtual power plants (VPPs) can enhance reliability and efficiency of power

systems with a high share of renewables. However, their adoption largely

depends on their profitability, which is difficult to maximize due to the het-

erogeneity of their components, different sources of uncertainty and potential

profit streams. In this thesis, we study a VPP that aggregates a fleet of electric

vehicles (EVs), EV chargers with vehicle-to-grid (V2G) support, and possibly

renewable energy systems, such as solar panels. This VPP generates profit by

trading energy in day-ahead and imbalance electricity markets. In the first

part of this thesis, we assume that the VPP owns and operates the EVs in ad-

dition to bidirectional chargers. We propose two profit-maximizing operating

strategies for this VPP. Both strategies solve a two-stage stochastic optimiza-

tion problem. In the first stage, energy bids are placed by solving a sequence of

linear programs, each formulated for a specific forecast scenario. In the second

stage, given the day-ahead commitments and real-time measurements, the de-

cisions with respect to charging or discharging EVs are made sequentially for

every hour, and adjustments to the day-ahead commitments are settled in the

imbalance market. The two strategies differ in how they solve the sequential

decision-making problem in the second stage. But, they both foresee the ef-

fect of their current (dis)charge decisions on the feasibility of fulfilling the EV

charging demands using a one-step lookahead technique. The first strategy

employs a heuristic algorithm to find a feasible charging schedule for every

EV that is connected to a charger. The second one utilizes a soft actor-critic
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reinforcement learning method with a differentiable projection layer that en-

forces constraint satisfaction. We empirically evaluate the proposed operating

strategies using real market prices, solar traces, and EV charging sessions ob-

tained from a network of chargers in the Netherlands, and analyze how the

uptake of V2G could affect the profitability of this VPP.

In the second part of this thesis, we study this VPP under a more realis-

tic assumption that the EVs are independently-owned, hence the VPP does

not own or operate them. As a result, EV owners must be incentivized to

participate in the VPP, and the VPP itself must remain profitable. We use

contract theory to design optimal, incentive-compatible contracts between the

VPP and EV owners, where each contract defines the maximum amount of

energy that can be discharged from the battery in a fixed period of time, and

the compensation the owner receives in return. We then propose a scheduling

algorithm for the optimal operation of such a VPP that participates in a two-

stage electricity market. This algorithm aims to maximize the VPP’s profit,

while (a) respecting the contracts that are accepted and currently valid, and

(b) fulfilling the charging demand of each EV before it disconnects from the

charger. We show that this algorithm increases the profitability of this VPP

and allows EVs to offset the cost of charging their battery by enhancing grid

reliability.
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Chapter 1

Introduction

In recent years, power grids have undergone significant changes owing to the

integration of highly accurate sensor technology combined with advanced con-

trol systems, which allows optimal management of loads whose demands can

be shaped (elastic loads) such as Electric Vehicles (EVs), thermostatically

controlled loads, and storage systems. A Smart Grid (SG) is: ”an electricity

network that can intelligently integrate the actions of all users connected to it

(generators, consumers, and those that do both) in order to efficiently deliver

sustainable, economic, and secure electricity supply” [54]. Sensors installed

in the SG measure voltage, current, and other physical quantities at regular

intervals, producing time-series data that are then used by the SG for certain

actions. These actions make it possible to operate the SG in a reliable and

stable manner at lower costs and with a greater energy efficiency [29], [54],

[100].

Due to the intermittency of renewable generation (e.g., solar) and the

stochasticity of EV mobility, it is crucial for the SG to incorporate adaptive

control strategies to prevent issues pertaining to grid stability and reliability.

The available real-time sensor measurements (communicated to the SG using

a reliable communication network) can be used to develop control strategies to

optimize power flow, and also to develop event detection algorithms to identify

and prevent unprecedented events. Towards this end, various techniques have

been presented in the existing literature [9].

Figure 1.1 shows the operation of an SG with energy producers and various
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Figure 1.1: An illustration of how SG operates. Dashed lines show bidirec-
tional digital communication between the grid control center and the con-
sumers. Solid arrows show the power flow direction from the power plant to
the consumers.

energy consumers that are typically part of the SG [8]. Sensors installed at

the consumer side send measurements of energy usage to aggregation points

via the communication network (dotted lines). These measurements are then

sent to the grid control center. The grid operator can use these measurements

to control the power plant operation or elastic loads. The electricity produced

at the power plant is transmitted to the consumers via transmission lines. The

solid orange arrows show the direction of power flow.

1.1 Integration of Distributed Energy Resources

Future power systems will heavily rely on distributed energy resources (DERs)

as they provide energy at a lower cost than the electric grid, and enable greater

resilience during adverse grid events. These resources, which generate, store,

or reshape energy profiles, can be classified into five types: distributed gen-

eration units (e.g., solar systems), battery storage, electric vehicle charging

stations, grid-interactive appliances, power-to-heat resources (e.g., heat pumps

and thermal storage) [50]. Massive DER growth is expected in the next several
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years. The cumulative DER capacity in the United States will reach 387GW

by 2025 [113]. In Europe, DERs will provide 100GW of demand response, and

in Australia, they will supply 30% to 45% of the total electricity demand by

2050 [34]. With the growing adoption of DERs, the concept of a virtual power

plant (VPP) has become increasingly popular [4].

1.2 VPP Concept and Implementations

A VPP aggregates and orchestrates disparate DERs through sensing, com-

munication, and control technology, to provide various services to the grid

and increase the value of the DERs. For example, Tesla [109] and Swell En-

ergy [105], in partnership with local utility companies, have implemented VPPs

to support the grid by aggregating energy storage and solar systems in res-

idential buildings. We study two novel VPP implementations in this thesis

as shown diagrammatically in Figure 1.2. In Chapter 4, the VPP consists of

solar systems, a fleet of EVs (owned by the VPP), and charging stations with

vehicle-to-grid (V2G) support. This VPP combines renewable generation with

mobile energy storage that can be charged and discharged subject to various

constraints, such as fulfilling the EV charging demand by some deadline. Such

a combination has been shown to enhance the mutual benefits of solar gen-

eration and flexibility of the EV fleet [71], [78]. While this type of VPP has

been studied in the past (see [71] for example), the uncertainty in solar pro-

duction and EV mobility together with a large number of decision variables

have hindered the progress toward an optimal operating strategy. The limited

number of studies, while insightful, exclude some important aspects, such as

V2G [30], [117] make strong assumptions and simplifications, are not scalable,

or are limited to specific network configurations, hence not conclusive [75],

[78]. There are a few pilot projects of this type of VPP that are still in early

stages (e.g., the project in Utrecht [114] will combine 2,000 solar panels, 250

bidirectional chargers, and a car-sharing fleet). In Chapter 5, the VPP that

we study consists of a fleet of EVs that are under independent ownership, and

charging stations with vehicle-to-grid (V2G) support. This realistic setting

3



Figure 1.2: Communication between the various entities that make up the
VPP. Dashed lines show entities that are optional, and solid lines represent
the entities that are always part of the VPP that is studied in this thesis

has an additional challenge of offering reasonable monetary incentives to mo-

tivate the EV owners to participate in V2G since EV batteries would have a

decreased life span due to having to go through the additional charge-discharge

cycles by participating in V2G.

The VPPs can trade their aggregate energy in different stages of electricity

markets, such as the wholesale market (day-ahead and intra-day), ancillary

service, and capacity markets [50]. Participation in the wholesale electricity

market, in particular, has attracted more attention [82] due to its simple form

of bidding, higher predictability, manageable types of (energy) commitments,

and the fact that it is by far the largest electricity market today. The par-

ticipation of VPPs in this market could reduce wholesale prices considerably

and cut end users’ electricity bills. For example, Tesla’s VPP in South Aus-

tralia [101] can reduce the annual electricity bill of a typical customer by 30%

by trading in the wholesale market.
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Inspired by this, we consider a setting in which the VPP trades (buys/sells)

energy in the day-ahead (DA) market. Due to the uncertainty in DERs such as

stochastic EV mobility patterns, the amount of energy provided by the VPP

in real time may not match its DA commitment. In this case, real-time devia-

tions from the DA commitments are adjusted by the system operator, and the

resulting financial cost or profit in the imbalance (IM) market is transferred

to the VPP operator. Figure 1.2 illustrates the VPP’s participation in these

two markets. In the DA market, the (price-taker) VPP operator places an

energy bid for every hour of the next day according to its predictions of the

available solar energy, DA and IM market prices, and EV charging demands.

On the operation day (i.e., the next day), deviations from the DA bids are

adjusted in the IM market according to imbalance prices. The price volatility

in these markets further complicates the design of an optimal operating strat-

egy for this VPP. The VPP operator can take advantage of V2G to shape the

EV charging demand to increase its profit. Since the VPP operator owns and

operates the EV fleet in the VPP setting that we study in Chapter 4, thus it

does not collect payment from the EVs for charging their battery, nor does

it compensate them for participating in V2G. Its profit solely depends on the

amount of energy traded in the two markets in each hour. An example of this

VPP is a car-sharing or taxi company that owns a fleet of EVs in addition to

bidirectional chargers and solar systems installed across the city (as depicted

in Figure 1.2). The VPP setting that we study in Chapter 5 assumes that the

EVs are owned independently and thus the EV owners need to be appropri-

ately incentivized to participate in V2G. The optimal operation of both of our

VPP settings are a complex, two-stage stochastic optimization problem due to

time-varying constraints and high uncertainty that can be attributed to inter-

mittent solar generation, mobility and energy demand of EVs, and electricity

market prices.

We develop practical operating strategies for this VPP that involve (a)

bidding in the DA market according to the average solution of a sequence

of linear programs defined for different forecast scenarios, i.e., realizations of

random variables; (b) charging or discharging EVs the next day via an online
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algorithm to maximize the VPP’s profit, while ensuring the demand of every

EV can be met before it disconnects from the charger.

It is to be noted that all the computation takes place in the VPP control

centre and we assume that the VPP control centre is equipped with servers

that meet the stringent performance requirements of the VPP.

1.3 Incentive Mechanism for V2G Participa-

tion

Vehicle-to-Grid allows discharging of energy from the EV battery and injecting

it into the grid. V2G can play a crucial role in providing ancillary services to

the VPP. However, when EVs are owned by independent owners, they need

to be incentivized (usually through monetary incentives) to motivate them to

participate in V2G. This is primarily due to the accelerated EV battery degra-

dation associated with frequent charge/discharge cycles when EVs participate

in V2G. Therefore it is crucial to provide incentives to EV users (that offset

some of the battery degradation cost) for V2G participation. The authors

of [51], [115] studied VPPs for the scenario where a VPP integrates renewable

generation and EV chargers with V2G capability. However, an important re-

quirement that was not considered in previous work is ensuring the fulfillment

of the EV charging demands. In this thesis, we overcome this limitation by

presenting a scheduling algorithm and offering contracts that guarantee the

feasibility of EV charging/discharging (i.e. ensuring fulfillment of EV owners’

charge requirements by their charging deadline) despite the discharging of EV

batteries as a result of V2G participation via the offered contracts. In addi-

tion, it is commonly assumed that energy storage systems are owned by the

VPP operator. However, this restricting assumption implies that the VPP can

only operate the resources it owns. As a result, the size (capacity) of this VPP

would be smaller as it only operates the resources that it owns and therefore,

it cannot be scaled due to the increased complexity of controlling all the VPP-

owned entities. Relaxing this assumption raises the question pertaining to the

incentive of third-party EV owners in V2G participation. Towards this end,
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we seek an appropriate method for motivating EV owners to participate in EV

discharge, by providing them monetary incentives, so that the VPP operator1

can mitigate the surplus/deficit in energy with respect to to the day-ahead

bids. Each of the EV owners is self-interested and therefore, they will attempt

to claim a large incentive amount for the discharge power they allow. This

problem is made even more difficult due to the information asymmetry that

exists since the VPP operator does not have accurate knowledge about the

discharge energy preference of the EV owners when participating in V2G. In

this study, the V2G-discharge energy preference of an EV owner (assumed

to be their private information) is unavailable to the VPP operator which

necessitates designing a mechanism in which EV owners will be rewarded in

accordance with their EV discharge amount. The said mechanism must also

ensure that EV owners cannot game the system by being untruthful about

their incentive threshold for V2G participation. Towards this end, we use

Contract Theory [19].

Providing incentives to EV users for participation in V2G has been previ-

ously studied in the research works in [39], [53], [123]. However, this thesis is

the first study that finds the efficacy of using contract theory for incentivizing

EV users for V2G in the context of a VPP. In addition, the methodologies

used for application of contract theory for V2G in [39], [53], [123] have several

shortcomings that we tackle in our work. For example, the designed contracts

do not ensure a feasible EV charge/discharge strategy (i.e. ensuring EV own-

ers leave the charging station having their EV battery charged to their desired

SoC level), when EV owners accept the proposed contract. In addition to that,

simulation studies (based on real-life datasets) that show the efficacy of the

offered contract are missing. Moreover, any scheduling mechanism for optimal

utilization of the discharge energy from the EV owners under the uncertainties

of future solar power, electricity market price, and EV mobility has not been

provided. Finally, there is no discussion regarding the duration of the contract

which can affect the discharge of energy as well as the incentive amount in the

contract.

1We will use the terms VPP operator and VPP interchangeably
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1.4 Research Questions

This thesis aims to answer the following research questions:

1. How to overcome the inherent challenges of operating a VPP that par-

ticipates in 2-stage electricity markets?

2. What algorithms can be used to solve this stochastic decision-making

problem under uncertainty and risk?

3. What is the profitability of this VPP under the proposed operating strat-

egy?

4. How do different rates of V2G participation by EV owners affect the

VPP profitability?

5. How to incentivize independent EV owners to participate in VPPs?

6. What are the factors that influence EV owners’ willingness to participate

in V2G?

7. What is the profitability of VPPs after accounting for the payoff provided

to the EV owners?

Research Question 1 is answered in Chapter 3, where we present the math-

ematical model and the assumptions that we made to overcome the inherent

challenges of operating the VPP participating in a 2-stage electricity market.

We answer Research Questions 2 to 4 in Chapter 4, where we present our

methodology to optimize the VPP operation and examine the VPP profitabil-

ity using the two proposed profit-maximizing algorithms. To answer Research

Questions 5-7, in Chapter 5 of this thesis, we use contract theory to incentivize

independent EV owners, analyze the offered contracts, and finally, we analyze

the resulting VPP profit.
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1.5 Outline

Chapter 2 presents the related work that studies different VPP types and their

trading platforms. We explain the methods that have been used to solve prob-

lems involving decision-making under uncertainty, such as model predictive

control, stochastic optimization, and reinforcement learning. We also explain

different ways of designing and offering incentives and their application to

provide ancillary services or control DERs.

In Chapter 3, the problem formulation is presented, the assumptions are

stated, and the 2-stages of VPP operation are discussed. This chapter then

provides a detailed discussion about the working mechanisms of the proposed

strategies for solving the stage-1 and stage-2 problems.

In Chapter 4, we explain the operating strategies that a VPP operator can

utilize to maximize its profit by participating in the 2-stage market (explained

in Chapter 3), under the uncertainty (of solar generation and EV mobility),

risk (due to price volatility), and the requirement of fully charging the EVs

before their departure from the charging station. Then, we evaluate the effi-

cacy of the proposed strategies as the number of EVs that participate in V2G

increases. We show that V2G can increase the VPP’s profit by more than 42%

compared to the case where V2G is not supported at all. Finally, we explain

the data sources, as well as the baselines considered for evaluation.

In Chapter 5, we relax the assumption that the EV fleet is owned by the

VPP operator. Hence, EV owners must be incentivized to participate in V2G

while they are connected to a charger. We explain our contract theoretic ap-

proach to provide monetary incentives to EV owners via novel V2G contracts,

thereby allowing them to enter into an agreement with the VPP operator

so that their EVs can be discharged for a pre-specified duration of time in

exchange for some monetary benefit. We also prove that a computationally

efficient version of the contract optimization problem can be solved instead

to obtain the contracts more efficiently. Then the choice of parameters in

experiments is discussed, and a sensitivity analysis to different factors is per-

formed. In addition to that, a heuristic algorithm that schedules the charging

9



of V2G-participating EVs for optimal VPP profit is presented. Chapter 5 also

discusses the efficacy of the proposed contract theoretic approach for incen-

tivizing EV owners for efficient VPP operation in terms of the VPP profit.

The comparison is done with respect to a baseline for different levels of V2G

participation.

Chapter 6 concludes this thesis, where the limitations of this work are

outlined and the scope for improvement/future extension is discussed.
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Chapter 2

Related Work

In this chapter, we first provide details of the different types of VPPs that have

been presented in the literature along with their trading platforms and the re-

spective goals they were designed to achieve. Secondly, we review the related

work on optimizing the operation of VPPs under the inherent uncertainties

of the DERs and electricity market prices. In particular, we review Robust

Optimization (RO), Model Predictive Control (MPC), Stochastic Optimiza-

tion (SO), and Reinforcement Learning (RL)-based approaches. Thirdly, we

provide an overview of the approaches used to provide incentives to DER own-

ers/operators, namely Mechanism Design (MD) and Contract Theory (CT).

Finally, we conclude this chapter by highlighting the limitations of existing

CT approaches that have been used to incentivize the stakeholders for V2G

participation.

Reference Hydro plant Solar Wind farm Battery
[92], [74], [68], [38], [56], [88], [99], [107] × ✓ ✓ ✓
[58] × ✓ ✓ ×
[2] ✓ ✓ × ✓
[110], [49], [79], [13] × × ✓ ✓
[16] ✓ × × ✓
[66], [93], [15] × ✓ × ×
[122] ✓ ✓ ✓ ×

Table 2.1: Taxonomy of related work that considered a VPP.

11



Reference VPP design goal
[47],[106],[97],[119],[73],[65], Energy trading in electricity markets for profit
[72],[127],[94],[24],[81],[68]
[92],[84],[65],[94],[24],[21],[87],[112] Improving forecast of energy production/consumption
[76],[24],[105],[81],[68] Providing energy backup and enhancing stability
[77],[119],[72],[83],[80],[81],[18] Frequency regulation and capacity management
[119],[84],[65],[72] Scheduling and balancing the VPP’s loads

Table 2.2: VPP design goals in the literature.

2.1 Different VPP Types and their Trading Plat-

forms

Extensive research has been conducted on a VPP that incorporates various

combinations of DERs as well as some form of energy storage ([41], [64], [79])

as shown in Table 2.1. Bagchi et al. [13] quantify the additional gain of adding

a stationary energy storage system to a VPP. The VPPs that combine wind

and solar power with battery are considered in [107]. A combination of a con-

ventional power plant, wind turbines, and energy storage is studied in [79].

Utkarsha et al. consider a VPP that aggregates prosumers in combination

with energy storage [6]. Thermal generation [41], conventional power plants

and wind turbines [79], grid-interactive appliances and HVAC [64] have also

been combined with energy storage to implement a VPP. A VPP that inte-

grates EVs without V2G has been the subject of many studies too (see for

instance [30], [55], [117]). Jin et al. [55] explore the problem of EV charging

with an external battery used for energy storage. Derakhshandeh et al. [30]

consider a VPP that combines heat and power (CHP), solar PV, and EVs.

Yao et al. [117] study VPPs that consist of different types of DERs, includ-

ing EVs. Fewer studies consider a VPP that integrates renewable generation

and EV chargers with V2G capability [51], [115]; these are the closest work

to ours. We study the same type of VPP in a more practical setting and pro-

pose efficient operating strategies (for bidding and smart charging) that honor

day-ahead commitments and guarantee the fulfillment of the EV charging de-

mands, an important requirement, especially for V2G, that was not considered

in previous work.

VPPs are capable of providing various prevalent challenges of the exist-

12



ing grid including, but not limited to, improving grid resiliency, and optimal

DER utilization. Table 2.2, presents some of the existing VPP literature that

has been designed with various goals. However, the VPP operator is typi-

cally assumed to be a profit seeker, with a few exceptions such as [13] where

the VPP aims to become an energy-independent entity. Most related work

considers the wholesale electricity market (typically the DA market) as the

primary trading platform for the VPP operator. However, a simplified ver-

sion of the wholesale market with a single stage and exogenous hourly prices

is commonly considered [30], [41], [115]. Only a small number of papers en-

visage a two-stage model of trading in the electricity markets by accounting

for the bidding in the DA market and the energy adjustments made in the

IM and/or reserve market [13], [51], [64], [117]. We also adopt the two-stage

trading model where the VPP operator trades energy in the DA market and

settles its adjustments in the IM market. Despite this similarity, both of the

VPP settings that we study have a unique configuration. The first VPP set-

ting (studied in Chapter 4) includes EVs (owned by the VPP), chargers with

V2G support, and solar systems. The second VPP setting (studied in Chapter

5) included independently-owned EVs and chargers with V2G support. The

interactions among these DERs Besides, we quantify the additional gain that

V2G provides in this type of VPP.

2.2 Decision Making Under Uncertainty

The optimal control of DERs in a VPP can be viewed as a decision-making

problem under uncertainty and risk. This is primarily due to the intermittency

of renewable generation, the uncertainty of EV mobility and charging demands,

and the volatility of market prices. Thus, a wide range of techniques, from

stochastic dynamic programming to robust optimization, can be applied to

optimize the VPP operation.
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2.2.1 Robust Optimization (RO)

Robust Optimization (RO) is one of the prevalent approaches used to take de-

cisions under uncertainty, for the control of DERs and VPPs, as found in [70],

[95]. The RO methods incorporate the uncertainty in the objective and con-

straint functions by taking expectation with respect to the control variable or

considering the supremum of multiple functions. For example, a distribution-

ally robust chance-constrained model is proposed in [125] to control several

HVAC systems to absorb as much solar generation as possible. In another

work, a chance-constrained energy management model is proposed in [95] to

optimally control renewable generation and battery energy storage systems in

a microgrid. Another variant of RO is used in [95] for the control of DERs.

Several papers cast the control of DERs as a robust optimization problem [95],

[125]. For example, a robust optimization problem is solved in [70] to develop

a residential energy management system that controls PV systems, batteries,

EVs, and thermostatically controlled loads. Another variant of RO is used

in [95] for the control of DERs.

2.2.2 Model Predictive Control (MPC)

Model Predictive Control (MPC) is another approach that has been used to

control DERs in an online fashion. In this approach, a model is utilized to

predict the system dynamics and changes in the environment. This predictive

model yields point estimates for future time slots, which are then plugged

into a finite-horizon optimization problem. The solution to this optimization

problem is the optimal control for the next time slot. MPC has been used for

voltage stability, transmission line thermal control and management of energy

by [10], [11], [46]. The authors of [12] have used MPC in order to develop a

multi-level VPP control system that coordinates DERs (participating in the

VPP) during the event of power mismatch or similar adverse event in the

VPP. Vasirani et al. [115] adopt MPC to decide on the operation of a VPP

that integrates wind turbines and EVs (with V2G) in an intra-day market.

Distributed MPC is used in [14] to coordinate renewable generation in one
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control area with storage in another area. To lower the computational cost

of MPC, a neural network is trained in [60] to approximate the control policy

of an MPC. This neural network is then used in an online fashion to control

a solar-plus-battery system. In addition to having high computational costs,

a major drawback of the MPC-based approaches is the need for an accurate

predictive model. In our problem, the MPC-based approach performs poorly,

because market prices, and in particular imbalance prices, are highly variable

and depend on various factors that cannot be accurately modeled. Moreover,

mispredictions could result in a violation of the charging constraints.

2.2.3 Stochastic Optimization (SO)

Stochastic Dynamic Programming (SDP) and Monte Carlo (MC) methods

are two of the techniques that are used to solve SO problems, such as DER

control under uncertainty. In SDP, similar to Dynamic Programming, the

problem is solved by modeling it using Bellman Equations. The solution to

these equations can then be used to compute optimal policies (operational

strategies) via Bellman’s principle of optimality [17]. The SDP method for

DER control can be found in [67]. In MC methods, samples from a large

number of different scenarios of a system are taken, and probabilistic models

for the defined problem are then used to solve for values of the random variables

so that eventually, an approximate solution to the problem can be found. The

MC method for DER control can be found in [25]. In this thesis, one of our

online solution approaches entails using RL, which is also one kind of SO and

will be explained in the next paragraph.

2.2.4 Reinforcement Learning (RL)

Different types of Reinforcement Learning (RL) have been used in recent years

to solve control tasks in the energy domain that have continuous and high di-

mensional action spaces [104]. RL algorithms can be broadly classified into two

major types: model-based RL algorithms and model-free RL algorithms. A

model-based RL algorithm requires an accurate model of the environment with

which the RL agent interacts, in order to effectively find the optimal policy.
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However, in most real-world applications, such as the VPP settings considered

in this thesis, it is very difficult to accurately model the environment. Hence,

model-free RL methods are advantageous for VPP and DER control because

they do not require a separately trained model of the system dynamics. In-

stead, the RL agent continuously interacts with the environment to learn an

optimal policy that governs the operation of DERs. For example, the authors

of [86] utilize model-free RL for controlling battery operations and model-free

RL control strategies are designed for EV charging in [7], [96]. Model-free

RL algorithms can be further classified into action-value methods and policy

gradient methods. In the case of action-value methods, the RL agent learns

the actions’ values and then selects an action based on its estimates of the

action values. In contrast, the RL agent in policy-gradient methods aims to

learn a parameterized policy and does not select the action based on the esti-

mated action values. Actor-critic RL algorithms are one of the policy gradient

methods that have been used to control the charging of EVs and stationary

batteries [7], [86].

All traditional RL algorithms, however, suffer from one major issue during

training and when deployed in the real world: due to the agent’s inherent need

to balance exploration and exploitation during the learning process for finding

the optimal policy, they may take actions that violate operational or physical

constraints [40]. In the context of controlling DER, there are usually several

hard constraints that must be satisfied at all times. It is critical to ensure that

they are satisfied in the deployment phase, and during training, if it takes

place in a real environment rather than a simulator.

Safe RL

Action clipping or mapping the agent’s action outside the RL loop using simple

bounds can result in safe actions. However, the aforementioned techniques do

not ensure the optimality of the resulting action, which in turn, does not ensure

the optimal performance of the RL agent. Moreover, since the agent does not

learn these hard constraints, action mapping would be required whenever the

agent is deployed in any environment. There has been growing literature on
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the adoption of various safe reinforcement learning techniques. For example,

[40], [45], [52] have focused on techniques to learn constraint-satisfying policies

to ensure safe actions. Various other techniques have been explored in the safe-

RL literature. For example, the authors of [3] utilized a conditional-gradient

technique, and authors of [37], and [102] have tweaked the reward function

by adding the cost objective’s weighted copy to it. Policy optimization using

an initial safety set is another approach adopted by [116], [103] and [111].

A safety layer was added to ensure safe actions by [26]. The aforementioned

studies in their proposed methods cannot provide any guarantee as to whether

their obtained safe action is optimal in nature. Moreover, the RL agent does

not learn the hard constraints of the system which implies that the agent’s

actions would require mapping to the safe region even in the deployment phase.

Safe RL Using a Differentiable Projection Layer in a Neural Network

To address the shortcoming of safe-RL techniques, various techniques have

emerged in the safe-RL literature [48], [98] that enforce bounds on the agent’s

actions to satisfy the hard constraints. Bingqing et al. [23] show that a deep

reinforcement learning agent trained with a differentiable projection layer em-

bedded in the neural network can safely control inverters and building energy

systems. To our knowledge, the application of safe-RL techniques to smart

EV charging has not been explored in the literature yet. In this context, the

charging deadlines and operational constraints of the battery can be viewed

as hard constraints.

2.3 Incentive Mechanisms for DERs

The intermittent nature of renewable power generation calls for the active par-

ticipation of end users, who are rational and self-interested agents. Therefore,

incentive mechanisms are needed to attract them to participate in V2G to im-

prove grid operation. A desirable incentive mechanism could maximize either

the utility of the VPP operator or a social choice function, thereby increasing

the utility of end users while optimizing the VPP’s resource utilization and
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profitability. We now expand on some of the existing approaches, namely MD

and CT, that have been used to design such incentives.

2.3.1 Mechanism Design (MD)

Mechanism Design (MD) is defined as the allocation design of available re-

sources under the assumption that the relevant information of the mechanism’s

participants is dispersed in the economy [89]. Since the complete information

is unavailable to the allocation designer, therefore MD approaches aim to find

an allocation technique such that it is in every user’s best self-interest to reveal

their private information in the mechanism [91]. MD has been used mostly

for demand side management and demand response in the context of a smart

grid [90].

The authors of [118] design a vehicle-to-aggregator interaction game where

the aggregator is modeled as the coordinator and the EV batteries are mod-

eled as independent players who provide frequency regulation service to the

power grid by taking charging/discharging decisions. However, a major lim-

itation of this work results from the assumption of a homogeneous setting

where different preferences of EVs are not considered for charging/discharging

decisions. In [120], a two-level reverse auction is implemented with a group-

bidding mechanism where EV owners are incentivized for V2G participation

via a feedback-based price scheme. In [57], EV charging and discharging are

coordinated via a distributed mechanism that comprises day-ahead schedul-

ing for the aggregator, and distributed coordination and distributed dispatch

algorithms for the V2G services from the EVs. References [126] and [121] also

use MD for incentivizing EV owners to participate in V2G. However, none of

the incentive mechanisms presented in the aforementioned research works [57],

[118], [120], [121], [126] discussed how these mechanisms are enforced in prac-

tice. That is, there is no penalty in place in the event that the EV agents

participating in the mechanism deviate from their charging or discharging de-

cision.
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2.3.2 Contract Theory (CT)

Contract Theory (CT) is a principle from microeconomics in which rational

and self-interested agents enter into an agreement with the contract provider

and the agents receive a payoff (i.e. incentive) for their contribution. The

agent contribution and payoff are both stipulated in the contract and any de-

viation from the stipulated contribution will result in a penalty being imposed

on the agent. The agents (who are offered the contract) can be classified

into different types according to the characteristics that influence their con-

tract acceptance. For example, when providing contracts to EV owners for

V2G participation, the EV owner types can depend on factors such as their

EV laxity (i.e., maximum duration of time by which charging can be delayed

while satisfying EV’s charging demand by the deadline) and the EV owners’

perceived battery degradation cost. However, owing to the self-centered and

rational nature of the participating agents, they may disguise their true type

to maximize their profits. Using the revelation principle [28], CT can help

in designing contracts that incentivize the participating agents based on their

true type under information asymmetry [19]. Each contract specifies the pay-

off to the participating agents in return for their service and the contracts vary

across different types of participating agents. In Chapter 5, we discuss how

incentive compatible contracts can be defined.

In [22], the authors consider a 5G network, where the Mobile Virtual

Network Operator (MVNO) and Infrastructure Providers (InPs) enter into a

contract theoretic agreement. Here, InPs are the employees and the MVNO

is the employer. The InPs are provided incentives to provide services to the

MVNO’s customers. Similarly, in [27], the authors consider a 5G network

where a Base Station (BS) wants to use data cached in Augmented Reality

(AR) devices. Thus, the BS and AR devices enter into a contract theoretic

agreement. Here, AR devices are the employees and the BS is the employer.

The AR devices are provided incentives to provide caching service to the BS.

In [44], contract theory is used for relay selection and incentive mechanisms

in multi-carrier wireless systems under asymmetric information. The source
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node is ill-informed of potential relay nodes and their private information such

as channel conditions on the relay-destination link. They solve this problem

by introducing a principal-agent model for the source and relays. In [61], the

authors consider a vehicular network where a Road Side Unit (RSU) equipped

with a Multi-access Edge Computing (MEC) server wants to offload its tasks

to a set of neighboring EVs. Here, EVs are the employees and the RSU is the

employer. The EVs are provided incentives to provide task computation ser-

vice to the RSU. In [124], the authors consider the case where a Base Station

(BS) needs to offload some of its traffic via Device-to-Device (D2D) communi-

cation to some User Equipment (UE). Here, UE devices are the employees and

the BS is the employer. The UE devices are provided incentives to provide

task computation service to the BS.

2.3.3 Contract Theory Applications for V2G

References [39], [53], [123] use contract theory to provide incentives to EV users

for V2G participation. In particular, the authors in [123] use contract theory

to incentivize EVs in a cloudlet-based Vehicle-to-Vehicle (V2V) setting where

an external broker agent offers contracts to discharging EVs and resells the

discharged energy to the EVs in demand of energy. However, the contracts de-

signed in [123] may be in infeasible at certain times and therefore, a separate

algorithm is used to re-design the infeasible contracts, creating a computa-

tional overhead. In [53], a game theoretic approach (using a non-cooperative

Stackelberg game) was used to find the optimal pricing for discharging EVs

and their discharging strategy and a contract theory-based approach was pre-

sented in order to incentivize EV users to participate in V2G. In [39], the

authors present an algorithm that learns the optimal unit price (to incentivize

owners to participate in V2G) using past interactions of the EV owners with

the aggregator for V2G participation using a modified version of the Upper

Confidence Bound (UCB) algorithm [104]. However, the authors do not incor-

porate the EV owners’ perceived battery degradation cost in their algorithm

design which can lead to sub-optimal performance of the algorithm. In Chap-

ter 5, we attempt to overcome all of the aforementioned limitations in the
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existing contract theory literature for V2G participation.
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Chapter 3

Virtual Power Plant Model

In this chapter, we design a 2-staged Virtual Power Plan (VPP) operational

method that enables it to overcome the inherent challenges of operating a VPP

that participates in a 2-stage electricity market.

The VPP setting that we study consists of a fleet of EVs (all of which are

owned by the VPP operator), solar systems (only in Chapter 4), and bidirec-

tional chargers distributed across the city. The EVs visit charging stations,

each containing multiple chargers, at random times to replenish their battery.

They stay there for a certain amount of time before they start their next trip.

This determines their charging deadline. We assume bidirectional chargers

and solar inverters do not cause overloading or voltage violation problems,

and consequently, ignore the grid constraints when optimizing the VPP oper-

ation. Moreover, we assume that the VPP operator is not certain about the

arrival time, charging deadline, and energy demand of an EV before it arrives

at a charging station. However, once an EV arrives, it communicates its en-

ergy demand and departure time (or deadline) to the VPP. It is also assumed

that the VPP operator allows a subset of the EV fleet to participate in V2G,

for example, they can be the EVs whose battery has a high remaining cycle

life.

Because of the DERs that comprise the VPP, its demand and supply are

both variable and flexible. The VPP operator trades (i.e., buys or sells) energy

in the wholesale day-ahead (DA) market, which is a pool-based energy market.

The players in this market, place separate energy-price bids for every hour of
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the next day, and each hour has an independent auction. DA markets are

typically cleared based on the uniform pricing mechanism, hence the same

(clearing) price applies to any market player (seller or buyer) whose bid is

accepted. We further assume that the VPP operator is a price taker, which is

reasonable given the size of a typical DA market today. Since the marginal cost

of supplying power by the VPP is much lower than conventional generators

that typically govern the clearing prices, the VPP’s energy-price bid reduces to

an energy (quantity) bid as the corresponding price does not affect the price it

receives. This is a practical assumption for battery operators and aggregators

in electricity markets [20], [59]. With this assumption, we can treat the DA

prices as exogenous random variables, denoted by PDA = [PDA
0 , · · · , PDA

23 ], and

postulate that the VPP operator only bids for quantity (and not for price).

At the time of operation, the DA market players might deviate from their

DA commitments. Any such deviation must be financially settled through

the imbalance (IM) market. The IM market prices reflect the additional costs

incurred to serve the unexpected demand beyond wholesale commitments. As

such, these prices are treated as exogenous random variables too. We assume

the IM market adopts the single-pricing (aka one-pricing) model [36] – the

most prevalent pricing scheme in the imbalance market today. In this model,

selling and buying prices in each hour t are identical, denoted by P IM
t . The

vector PIM = [P IM
0 , · · · , P IM

23 ] represents IM prices for one day.

In the DA bidding stage, the VPP operator does not deterministically know

the market prices, available solar energy every hour of the next day, and the

EV arrival and demand patterns on the next day. It must submit a vector

of energy bids X = [x0, · · · , x23] to the market, where xt is positive when the

VPP commits to sell energy in hour t of the next day and is negative when the

VPP commits to buying energy in that hour. On the operation day, the VPP

must schedule the charge and discharge of EVs that arrive at the charging

stations. We denote this schedule by Yn = [yn0 , · · · , yn23] with n being the

index into the set of EVs that arrive the next day (n ∈ N = {1, 2, ..., N}).

Hence, every element ynt represents the amount of energy stored in (positive

sign) or withdrawn from (negative sign) the battery of the nth EV in hour t.
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When EV n is not in a charging station, the respective elements of Yn are set

to zero.1 Note that for a given vector X and a set of vectors Yn (∀n ∈ N ),

the amount of energy that must be traded in the IM market, denoted by

Z = [z0, · · · , z23], can be computed from the energy balance equation, which

states that the VPP’s demand and supply must be equal in each hour. The

VPP operator will buy enough energy from the two markets to satisfy the

energy demand of all EVs by their deadlines. Additionally, the operator can

sell energy (solar production and/or energy discharged from the batteries) in

the markets. These decisions must be made so as to maximize the expected

profit of the VPP operator. Energy bids are submitted to the DA market all at

once on the day before the operation day, whereas (dis)charging and trading

decisions in the IM market are made for every hour in an online fashion.

3.1 Notation

Let Esolar = [Esolar
0 , · · · , Esolar

23 ] be the available solar energy in every hour of

the operation day, Esolar
max be the total peak generation capacity of the solar

systems, Nt be the set of EVs that are connected to a charger owned by the

VPP in hour t of the operation day, and N = ∪t∈T {Nt} be the set of all EVs

that visit the charging stations on the operation day. Let ND ⊆ N denote

the set of EVs that participate in V2G; hence, the operator can discharge

their battery as long as it is possible to meet their charging demand by the

deadline. We denote the EVs in ND that are connected to chargers in hour t

of the operation day by ND
t ⊆ Nt. For the EV indexed by n, we denote the

energy capacity of its battery by bn, its arrival time by tns , and the length of

its charging session by τn. Hence, its departure time will be tne = tns + τn. The

maximum charge and discharge power supported by a charger are denoted by

αc, αd > 0, respectively. We assume these maximum rates are the same for

all chargers. Since the length of each time slot is one hour, we use the same

notation (αc, αd) to represent the maximum amount of energy that can be

1Without loss of generality, we assume EV arrivals and departures occur in the beginning
of a 1-hour time slot as it is the timescale of trading in the IM market.
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stored or withdrawn from a battery in a single time slot. The state-of-charge

(SoC) of the battery of EV n at time t ∈ T is denoted by SoCn
t , which is

bounded by δmin and δmax. The charge and discharge efficiencies are denoted

by ηc and ηd, respectively. Given the energy demand of the EV and its SoC

upon arrival, denoted by SoCn, we calculate the target SoC, which is denoted

by SoC
n
.

Let PDA,PIM ,Esolar, ts, te,SoC,SoC be random vectors that collect the

random variables and Ω is the set of possible realizations of these random

variables.

3.2 Two-Staged Approach to VPP Operation

The optimal VPP operation is the solution of the stochastic optimization in

Problem (3.1). However, solving this problem via sample-average approxima-

tion (SAA) [62] is overly costly due to a large number of random variables

that appear in the objective function and some of the constraints, leading to

a huge optimization problem even for a small number of samples.

maximize
X, Y, Z,AC,AD

E<PDA,PIM ,Esolar,ts,te,SoC,SoC>∼Ω X⊤PDA+Z⊤PIM (3.1a)

subject to − |Nt| · αc ≤ xt ≤ Esolar
max + |ND

t | · αd, ∀t ∈ T (3.1b)

xt + zt + yt = Esolar
t , ∀t ∈ T (3.1c)

yt =
∑
n∈N

ynt , ∀t ∈ T (3.1d)

ynt = ACn
t + ADn

t , ∀n ∈ Nt,∀t ∈ T (3.1e)

ADn
t = 0, ∀n ∈ Nt \ ND

t , ∀t ∈ T (3.1f)

− αd ≤ ADn
t ≤ 0, ∀n ∈ ND

t ,∀t ∈ T (3.1g)

0 ≤ ACn
t ≤ αc, ∀n ∈ Nt,∀t ∈ T (3.1h)

SoCn
t+1 = SoCn

t +
ACn

t ηc
bn

+
ADn

t

ηdbn
,∀n ∈ Nt,∀t ∈ T (3.1i)

δmin ≤ SoCn
t ≤ δmax, ∀n ∈ Nt,∀t ∈ T (3.1j)

SoCn
tns

= SoCn, ∀n ∈ Nt (3.1k)

SoCn
tne

= SoC
n
, ∀n ∈ Nt (3.1l)

Recall that xt is the DA energy bid placed for hour t of the next day and zt

is the amount of energy that would be traded in the IM market in that hour.

The sign of zt determines whether the VPP operator buys or sells in the IM
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market: positive implies selling and negative implies buying. Constraint (3.1b)

is an operational constraint that defines the DA hourly selling and buying bid

caps for the VPP operator. We assume that the selling bid cap in any hour

is the sum of the peak solar generation capacity and the maximum amount

of energy that can be discharged from the connected EVs that participate in

V2G in that hour. Similarly, the buying bid cap in any hour is the maximum

amount of energy that can be stored in the connected EVs in that hour. Con-

straint (3.1c) is the energy balance equation and constraint (3.1d) expresses

the total charging demand as the sum of the demands of individual chargers

within charging stations. Constraint (3.1e) splits the contribution of each EV

n to the total charging demand in time slot t into two parts: energy stored

in its battery ACn
t , and energy is withdrawn from its battery ADn

t . This

is necessary as charge and discharge efficiencies can be less than 1 in Con-

straint (3.1i). Constraints (3.1g)-(3.1h) set bounds for the amount of energy

that can be stored or withdrawn from the battery of an EV. These bounds

depend on the maximum charge and discharge rates supported by the charg-

ers. As shown in Constraint (3.1f), for the EVs that do not participate in

V2G, the amount of energy that can be withdrawn from their battery is set to

zero. Constraint (3.1i) updates the SoC of each EV according to the amount

of energy stored or withdrawn from its battery in the previous time slot and

the respective inefficiency parameter. Finally, constraints (3.1j)-(3.1l) define

bounds for the SoC of each EV and assign a value to it at arrival and departure

time. Observe that all constraints are affine in Problem (3.1).

Remark 1. We do not need to introduce binary variables to ensure that

ACn
t and ADn

t are not nonzero at the same time. This is because due to

battery imperfections, a strategy that simultaneously charges and discharges

the battery of one or multiple EVs will either increase the deficit energy that

must be purchased from the IM market or decrease the surplus energy that

could be sold in the IM market. Either way, assuming that IM prices are

nonnegative, this strategy reduces the profit of the VPP and is therefore not

optimal.

We decompose Problem (3.1) into two subproblems, namely stage 1 and
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stage 2. The stage 1 problem determines the optimal bidding strategy in the

DA market. This is not a sequential decision-making problem as hourly bids

are submitted all at once. The stage 2 problem entails finding feasible sched-

ules for charging or discharging the EVs as they arrive at the charging stations,

while trading in the IM market to close the gap between day-ahead bids and

the realized solar generation minus the total realized EV charging demand.

This can be cast as a sequential decision-making problem. We formally define

the two problems below:

3.2.1 Stage-1: Day-Ahead Energy Bidding

Given different forecasts for (hourly) DA and IM market prices, hourly solar

production, EV arrivals, stay times, and energy demands for every hour t of

the next day, where t ∈ T = {0, 1, , ..., 23}, the goal is to compute day-ahead

energy bids, i.e., X = [x0, · · · , x23], that maximize the expected profit of the

VPP as a result of participating in both markets. This problem is solved in an

offline fashion, typically in the beginning of the day before the operation day.

3.2.2 Stage-2: Real-Time Energy Trading and EV Charg-
ing

Given the energy bids submitted to the DA market the day before (i.e., the

stage 1 solution), the current price of the IM market and IM market price

forecast for every hour until the end of the day, the deadline and unmet energy

demand of the EVs that are currently in the charging stations, and forecast

data for EV arrivals, stay (sojourn) times, and energy demands in future

time slots, this problem concerns determining the amount of energy that must

be charged/discharged in/from the EV batteries in the current time slot to

maximize the expected profit of the VPP, such that the energy demand of

every EV is guaranteed to be satisfied by their deadline. In other words, the

stage 2 problem concerns determining ynt for every EV that is currently present

in the charging stations while ensuring that it is possible to fulfill their demand

before their departure. Once these values are fixed in hour t, the net difference
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between demand and supply (zt) will be traded in the IM market according

to its current price.

Remark 2. In Chapter 5, we study a different VPP where we assume the

EVs are under independent ownership, and the VPP comprises charging sta-

tions with vehicle-to-grid (V2G) support, but it does not own a solar farm.

In this chapter, our primary focus is on the design of contracts rather than

addressing the uncertainty caused by highly variable solar generation. This

VPP also participates in the 2-stage electricity market in the same manner

and hence we use the same problem formulation for both of the settings. We

solve an additional challenge in the latter setting that pertains to motivating

the EV owners to participate in V2G, by developing an appropriate incentive

mechanism. Since the EV battery life would be reduced due to the additional

charge-discharge cycles when participating in V2G, the EV owners need to

be incentivized according to their perceived battery degradation cost. This is

necessary to ensure their participation in the VPP.

3.3 Contracts for V2G Participants

We denote the V2G-participating EVs that have connected to the charger at

hour t by ND
t ⊆ Nt, where Nt denotes all the EVs (both V2G participating

and non-V2G participating) that are connected to the charger at hour t. We

represent the contracts offered to EV owners as energy-reward bundles, repre-

sented as {(gm, wm)}m=1···M , where each contract is designed for a specific type

(denoted m). In the contract, wm is the discharge energy that the EV owners

contribute in V2G and gm is the associated payoff to the EV owners accepting

the contract. The hourly charging schedule for V2G participating EVs is de-

noted using the variable dt and lV 2G represents the duration of the contract,

which is the maximum duration of V2G participation of the EV owners.
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Chapter 4

Operating Strategies

In this chapter, we show what algorithms can be used to solve the stochas-

tic decision-making problem (under uncertainty and risk) that was introduced

in the previous chapter. Specifically, we show that the stage 1 problem can

be solved by an approximation technique that involves solving a sequence

of deterministic LPs formulated for different forecast scenarios (i.e., different

hourly market prices, solar production levels, EV arrival times, and charging

demands). Given the solution to the stage 1 problem, i.e., the DA energy bids,

we propose two algorithms to solve the stage 2 problem. Both utilize obser-

vations up to the current time slot of the operation day and make real-time

decisions for (dis)charging EVs, and subsequently trading in the IM market.

The decisions are made while ensuring that the charging deadlines can be met.

Finally, we evaluate the profitability of this VPP under the proposed operat-

ing strategy and show how different levels of V2G participation by EV owners

affect VPP profitability.

4.1 Stage-1 Problem: Linear Programming us-

ing Wait-and-See

The stage-1 solution method entails placing energy bids in the DA market by

solving a number of linear programs for different forecast scenarios and taking

the average of the solutions. This is called the wait-and-see (WS) approach in

the field of stochastic programming. The WS approach [69] is computationally

efficient and to solving a stochastic program with a large number of decision
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variables is tractable, it yields a good approximation to the solution of the

original stochastic program and provides a practical approach to handling a

large number of decision variables and scenarios.

The WS approach approximates the solution of this stochastic linear pro-

gram1 that was introduced in the previous chapter. In this approach, we

consider a large number of forecast scenarios and formulate a deterministic

linear program (written below) for each forecast scenario ω ∈ Ω:

maximize
X, Y, Z,AC,AD

X⊤PDA+Z⊤PIM (4.1a)

subject to − |Nt| · αc ≤ xt ≤ Esolar
max + |ND

t | · αd, ∀t ∈ T (4.1b)

xt + zt + yt = Esolar
t , ∀t ∈ T (4.1c)

yt =
∑
n∈N

ynt , ∀t ∈ T (4.1d)

ynt = ACn
t + ADn

t , ∀n ∈ Nt,∀t ∈ T (4.1e)

ADn
t = 0, ∀n ∈ Nt \ ND

t , ∀t ∈ T (4.1f)

− αd ≤ ADn
t ≤ 0, ∀n ∈ ND

t ,∀t ∈ T (4.1g)

0 ≤ ACn
t ≤ αc, ∀n ∈ Nt,∀t ∈ T (4.1h)

SoCn
t+1 = SoCn

t +
ACn

t ηc
bn

+
ADn

t

ηdbn
, ∀n ∈ Nt,∀t ∈ T (4.1i)

δmin ≤ SoCn
t ≤ δmax, ∀n ∈ Nt, ∀t ∈ T (4.1j)

SoCn
tns

= SoCn, ∀n ∈ Nt (4.1k)

SoCn
tne

= SoC
n
, ∀n ∈ Nt (4.1l)

We solve these deterministic linear programs independently and take the av-

erage of the respective solutions to efficiently compute near-optimal DA bids.

We discard the tentative smart charging and IM market trading schedules be-

cause they will be recalculated in an online fashion (in stage 2), using more

accurate data.

To create different forecast scenarios, we add white Gaussian noise with

standard deviation being 10% of the realized value to the realized value of each

random variable, namely PDA, PIM , Esolar, ts, te, SoC, SoC. We have found

empirically that considering 1,000 forecast scenarios (ω1, · · · , ω1000) provides

1It can be proved that WS yields a bound on SAA [62] as it interchanges the order of
summation and maximization.
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Figure 4.1: Comparison between the optimal DA bids (i.e. bids obtained with
accurate knowledge of all random variables) and DA bids computed using the
WS approach over one year.

a good-quality solution2 and the total running time of solving 1,000 deter-

ministic LPs is less than 15 minutes on an Intel core-i9 server with 128GB of

memory. Once the deterministic LPs are solved, we take the average of the

respective solutions and treat this as the energy bids that will be submitted

to the DA market. Figure 4.1 compares the optimal energy bids (assuming

perfect information) with the energy bids computed efficiently using the WS

approach. It can be seen that the difference between the average hourly energy

bids is generally insignificant.

Note that the objective function of Problem (4.1) is linear and its con-

straints are affine. We model this deterministic LP in CVXPY [31] and solve

it using Gurobi [42]. Next, we propose two algorithms for solving the stage 2

problem given the DA energy bids, which is the solution of the stage 1 problem.

2Our experiment shows that the resulting DA bids do not vary noticeably if we consider
more forecast scenarios. We omit the convergence analysis to save space.
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4.2 Stage-2 Problem: Laxity-Lookahead Algo-

rithm (LLA)

We propose two profit-maximizing strategies for the VPP considered in our

work to solve the stage-2 problem. Both strategies place energy bids in the

DA market by the WS approach. To hedge against the uncertainty of solar

generation and satisfy the charging constraints, a decision-making problem is

solved in an online fashion to (dis)charge the connected EVs and trade en-

ergy in the IM market. One strategy solves this problem using a heuristic

algorithm, while the other adopts a policy learned via reinforcement learning.

Nevertheless, they both perform a laxity lookahead to ensure that the problem

remains feasible if they take a specific action at the present time.

4.2.1 Laxity LookAhead

The first algorithm we propose to solve the stage 2 problem is a heuristic

algorithm, called Laxity-LookAhead (LLA). When we run LLA for hour t of

the operation day, it computes the laxity of every EV that is currently in a

charging station and uses this value to find out if the charging demand of

this EV will be satisfied before its departure. This is essential for constraint

enforcement.

The laxity of an EV is defined as the maximum amount of time we can

delay its charging, while still being able to charge its battery to the desired

SoC by the deadline. Specifically, the laxity of EV n, with departure time tne ,

battery size bn, and target SoC, SoC
n
, in time slot t is:

laxnt = tne − t−
(SoC

n − SoCn
t ) · bn

αcηc
. (4.2)

Note that the laxity of an EV can be calculated deterministically in any time

slot after its arrival, because its deadline and energy demand are communicated

to the VPP upon arrival. Nevertheless, the EV’s laxity is unknown before it

arrives. The basic idea of this algorithm is to identify all EVs that will have a

negative laxity in the next time slot if they are not charged in the current time

slot. These EVs must be charged at the maximum charge power supported by
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Algorithm 1: LLA for EV charging

1 S1 ← FindEVsWithNegativeLaxity(Nt) ; // lookahead

2 et ← ChargeEVs(S1);
3 xt ← xt + et;
4 if xt > Esolar

t then
5 S2 ← FindEVsToDischarge(xt − Esolar

t );
6 et ← DischargeEVs(S2);
7 xt ← xt - et;
8 BuyFromImbalanceMarket(xt − Esolar

t );

9 end
10 else if xt ≤ Esolar

t then
11 S3 ← FindEVsToCharge(Esolar

t − xt);
12 et ← ChargeEVs(S3);
13 xt ← xt + et;
14 SellToImbalanceMarket(Esolar

t − xt);
15 end

the charger, otherwise the problem becomes infeasible. Next, depending on

whether there is surplus solar energy in this time slot, other EVs are charged

or discharged.

4.2.2 LLA Algorithm

The LLA algorithm utilizes three main functions (see Algorithm 1). In Line 1,

the FindEVsWithNegativeLaxity(Nt) function returns the set of EVs

that are presently connected to a charger and will have negative laxity in the

next time slot if they are not charged in the current time slot. This set is

denoted by S1 and is determined via a one-step laxity lookahead. Concretely,

to calculate the laxity of an EV in the next time slot, we substitute t with t+1

in Equation (4.2) and let SoCn
t+1 be equal to SoCn

t . The set S1 is then passed

to the ChargeEVs(S1) function (Line 2), which is responsible for charging

these EVs at the maximum power supported by the charger. Once these

EVs are charged, we add the energy delivered to these EVs to the day ahead

commitment for this time slot, xt, to update the amount of energy required in

this time slot (Line 3). This value is then compared with the available solar

energy in this time slot, Esolar
t . If the available solar energy is not enough

to supply the demand (Line 4), we must discharge a subset of EVs or buy
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the deficit from the IM market. Otherwise (Line 10), we can charge a subset

of EVs or sell the surplus in the IM market. LLA uses a simple heuristic to

specify the order in which we use smart charging and trade in the IM market

in both cases.

In the case that xt > Esolar
t , the FindEVsToDischarge(xt − Esolar

t )

function gets the amount of deficit and returns the set of EVs, denoted by

S2, that (a) participate in V2G, (b) have the highest laxity, and (c) their

laxity will not become negative in the next time slot if we discharge them

at the maximum power supported by the charger in this time slot by call-

ing DischargeEVs(S2). If there is not enough EVs in S2 to cover the

deficit, we buy the remainder from the IM market according to the current

market price (Line 8). This gives zt. In the case that xt ≤ Esolar
t , the

FindEVsToCharge(Esolar
t − xt) function gets the amount of surplus and

returns the set of EVs, denoted by S3 not intersecting with S1, that have the

lowest laxity. These EVs are charged at the maximum power in this time

slot by calling ChargeEVs(S3). If there is not enough EVs in S3 to absorb

the surplus energy, we sell the remainder to the IM market according to the

current market price (Line 14). This gives zt.

Since LLA is an online algorithm, it does not assume the knowledge of the

available solar energy and IM market prices in the next time slots of the day,

and future EV arrival times, stay times, and energy demands. Moreover, it

does not find the optimal EV charging strategy because regardless of future

charging demands and market prices it always prioritizes (a) discharging EVs

with highest laxity that will not have negative laxity in the next time slot over

buying the deficit energy from the IM market; (b) charging EVs with lowest

laxity over selling the surplus energy to the IM market.

4.3 Stage-2 Problem: Laxity Aware-Soft Ac-

tor Critic (LA-SAC)

The second algorithm we propose to solve the stage 2 problem is a model-

free reinforcement learning algorithm that respects the EV charging deadlines.
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This algorithm is designed based on SAC [43] and is called Laxity Aware-

Soft Actor Critic (LA-SAC). It borrows the notion of laxity from LLA and

incorporates one-step laxity lookahead in the differentiable projection layer

embedded in the actor network. In this section, we describe the Reinforcement

Learning (RL) framework, the algorithms used, the MDP formulation and

we explain how the projection layer is used to ensure safe exploration and

convergence to the optimal policy.

4.3.1 Reinforcement Learning

In RL, interactions between a decision-making agent and its surrounding envi-

ronment are modelled as a Markov Decision Process (MDP) (S,A, R, P, γ, µ),

where S is the set of states, A is the set of actions, R is the reward function,

P : S × A → ∆(S) describes the next state distribution as a function of the

current state and action, γ ∈ [0, 1] is the discount factor, and µ : ∆(S) is the

distribution of starting states. Here, ∆(S) denotes the probability simplex

over states. The interaction between the RL agent and the environment is as

follows: at step t, the agent observes a state vector st and selects an action at

according to a policy π(·|st), which is used to interact with the environment.

The environment returns a reward rt+1 and the next state st+1 to the agent.

The goal of the RL agent is to learn a policy that maximizes its expected

discounted cumulative reward (or return). We define the return at time t as

Gt
.
=

∑∞
k=0 γ

kRt+k+1, and the value function vπ(s) as the expected return when

starting at s and following the policy π, given by: vπ(s)
.
= Eπ [Gt | St = s] .

When the state space is continuous or large, the state value function is ap-

proximated as vπ(s) ≈ vw(s), where the vector w ∈ Rd collects the parameters

of this approximation. When deep neural networks are used for function ap-

proximation, we refer to it as deep reinforcement learning.

Actor-Critic Methods They are RL methods that learn the approxima-

tion to the policy in addition to the approximation to the value function. The

actor refers to the policy and the critic refers to the value function learned by

the agent. The main advantage of actor critic methods is their ability to tackle
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continuous action spaces. In our work, we use the Soft-Actor Critic (SAC) al-

gorithm [43], which is an off-policy, maximum-entropy policy gradient method,

using a stochastic actor. We explain the SAC algorithm in the next Section.

4.3.2 Soft Actor Critic (SAC)

The SAC algorithm [43] is a policy gradient algorithm which is more suit-

able for tackling continuous action space problems. In this case, a param-

eterized function (i.e., a neural network) denoted πθ, represents the policy

of the RL agent. The policy parameter is updated towards the gradient di-

rection of a performance function J(θ), as follows: θ ← θ + γ∇θJ(θ). The

SAC algorithm encourages further exploration of the agent by incorporating

an entropy measure in the reward function. The objective is to maximize

both the entropy and expected return. The performance function is given by:

J(θ) =
∑T

t=1 E(st,at)∼ρπ [rt + νH(π(.|st))].

Here, ρπ denotes the marginal distribution for the state-action pairs (st, at)

sampled from the policy π. The entropy measure and entropy importance are

denoted by H and ν, respectively. We refer the readers to [43] for further

details about SAC, including the policy and value functions along with their

gradients. To enable the RL agent to do safe exploration and learn the hard

constraints, we redefine the loss function as explained in the next section. The

Adam optimizer is used with a learning rate of 0.0001, the discount factor is set

to be 0.99, and the batch size is set to 72. We allow automatic entropy tuning,

which automatically balances exploitation and exploration for the agent.

4.3.3 Markov Decision Process (MDP) formulation

State The state at time t, is a tuple st, where the first state variable is the

moving average of solar generation for the particular time slot t in the past 3

days, denoted Ēsolar
t . We use the moving average of the previous 3 days as one

of the state variables to capture the diurnal pattern of solar generation and

help the (model-free) RL agent to implicitly learn this temporal relationship.

The second and third variables are the moving average of DA and IM market

prices for the particular time slot t in the past 7 days, denoted p̄DA
t and p̄IMt
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respectively. Although market prices change drastically over the course of

the day, incorporating the average of previous-day market prices (in the same

hour) could help the agent learn temporal patterns that might exist in the two

markets. The rest of the state variables are the laxity and SoC level of each

of the EVs present in the current time slot in a charging station, before the

RL agent’s (dis)charging action is implemented.

st = (Ēsolar
t , p̄DA

t , p̄IMt , {laxnt−1}n∈Nt , {SoCn
t−1}n∈Nt) (4.3)

Action The action space in continuous and multidimensional. Specifically,

the action taken by the RL agent for every hour t forms a vector at =

[y0t , · · · , y
|Nt|−1
t ] where ynt is the charge or discharge decision taken for the

nth EV that is present in one of the charging stations in this hour and satisfies

the following conditions:

−αd ≤ ynt ≤ αc ∀n ∈ ND
t , (4.4)

0 ≤ ynt ≤ αc ∀n ∈ Nt \ ND
t . (4.5)

Reward The reward obtained by the RL agent in hour t, denoted by rt, is

a scalar value calculated based on the profit that will be generated by taking

actions that charge or discharge the EVs feasibly and trade the surplus or

deficit in the IM market according to its current price. To help the agent in

taking actions that result in the maximum return, we reward the agent as

follows

rt = zt · pIMt + ζ · ¯laxt. (4.6)

The first term is the immediate reward received by the agent. It depends on

how much energy is traded in the IM market (i.e., zt = Esolar
t − xt − 1⊺at)

and the current market price. The second term is the average laxity of all the

EVs that are present at the charging stations at time t, denoted as ¯laxt, and

a positive scaling factor ζ (ζ = 2 in our experiments). As discussed earlier,

the laxity of an EV characterizes charging flexibility. Thus, the second term

is included to incentivize the agent to take actions that do not significantly

lower this flexibility on average.
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4.3.4 Safe Reinforcement Learning (safe-RL) using Dif-
ferentiable Projection Layer

The RL algorithms could violate the hard constraints of the actuator or the

environment during training (as they explore the space) and/or after deploy-

ment. Clipping or hand-crafted projection of the action taken by the RL agent

to a safe region (aka the feasible set), can prevent the violation of hard con-

straints when the policy is used in practice. However, this does not guarantee

that the resulting safe action is optimal too. Furthermore, the RL agent does

not actually learn the hard constraints, hence the actions must be mapped to

the safe region even after deployment.

To make the RL agent effectively learn the hard constraints without sacri-

ficing optimality, we embed an optimization problem [5] that projects a point

onto the safe region, in the neural network3 used for approximating the policy

function in the actor-critic method. The optimization problem (described be-

low) is a differentiable layer within the actor-network, allowing the RL agent

to learn the hard constraints through backpropagation. Consider the ℓ2-norm

projection PS : Rn → S which maps a point in â ∈ Rn to the point closest to

it in a constraint set S ⊆ Rn, as shown below:

PS(â) = argmin
a∈S

∥a− â∥22 . (4.7)

This is a convex optimization problem if S is a convex set. Thus, it can be

solved using a standard solver, which constitutes the forward procedure in the

neural network. The backward procedure is constructed using implicit function

theorem [63] where the gradients of the solution variables of Equation (4.7)

are calculated by differentiating the Karush-Kuhn Tucker (KKT) conditions at

the solution. The respective gradients are then propagated back to the neural

network. As a result, the agent is aware of the hard constraints in S through

the parameter updates done when training the neural network.

Figure 4.2 illustrates how of an optimization problem embedded within the

neural network as an implicit layer can help the neural network learn the hard

3The optimization problem can be implemented as a neural network layer using a Python
library called cvxpylayers: https://github.com/cvxgrp/cvxpylayers.
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Figure 4.2: Illustration of how a neural network’s unsafe actions are projected
into the safe (constrained) region and how the neural network implicitly learns
these hard constraints. Solid lines represent the forward pass and the dotted
lines represent the backpropagation steps.

constraints of the optimization problem and thereby output safe actions.

4.3.5 LA-SAC Algorithm

The action is selected according to π̂θ, which is the neural network that ap-

proximates the policy and is parameterized by θ. However, the output action

of π̂θ does not guarantee that the physical constraints of the system are main-

tained which can result in issues like system voltage violation or damage to

the EV battery, and are hence said to be unsafe actions. To get a safe policy,

the output of this neural network is passed to a differentiable projection layer

P that maps the action to the safe region by solving an optimization problem.

Hence, we write the safe policy as πθ(st) = PS
(
π̂θ(st)

)
where S is the safe

region, i.e., the feasible set of Problem (4.9) described below. The SAC agent

is trained to minimize the following loss function:

L(θ, st) = −J(θ) + ξ∥πθ(st)− π̂θ(st)∥22 , (4.8)

where ξ is a non-negative hyper-parameter. We add L(θ, st) to the policy func-

tion equation and to the function used for calculating the loss of automatic

entropy tuning [43]. As a result, the hard constraints of our problem formula-
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tion are learned by the neural network of the SAC agent via backpropagation.

The optimization problem that becomes the differentiable projection layer

within the actor network of SAC is written below:

minimize
at,AC,AD

∥at − ãt∥22 (4.9a)

subject to ADn
t = 0, ∀n ∈ Nt \ ND

t (4.9b)

− αd ≤ ADn
t ≤ 0, ∀n ∈ ND

t (4.9c)

0 ≤ ACn
t ≤ αc, ∀n ∈ Nt (4.9d)

ynt = ACn
t + ADn

t , ∀n ∈ Nt (4.9e)

SoCn
t+1 = SoCn

t +
ACn

t ηc
bn

+
ADn

t

ηdbn
, ∀n ∈ Nt (4.9f)

δmin ≤ SoCn
t+1 ≤ δmax, ∀n ∈ Nt (4.9g)

laxnt+1 ≥ 0, ∀n ∈ Nt (4.9h)

In this formulation, ãt is the pre-projection action vector, i.e., the set of actions

taken by the RL agent concerning the connected EVs, before it is passed

to the projection layer in the neural network. This optimization problem

finds the post-projection action vector at that ensures the charging problem

remains feasible for each EV and has the minimum Euclidean distance from

the pre-projection action vector. The constraints define bounds for charge and

discharge rates, and the SoC of batteries. The last constraint is to force the

laxity of every EV to remain non-negative in the next hour if we implement at

in this hour. Here laxnt+1 can be defined by plugging in SoCn
t+1 in Equation 4.2,

and replacing t with t + 1. This ensures the problem remains feasible and all

charging deadlines can be met.

4.4 Datasets

We combine four datasets that contain real solar traces, DA market prices, IM

market prices, and EV charging sessions between January 1, 2020 and Decem-

ber 31, 2020, to create a test dataset that is used to evaluate the proposed VPP

operating strategies and baselines (described in the next section). All these

datasets pertain to the same region in Rotterdam, Netherlands. Specifically,
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(a) (b) (c)
Figure 4.3: Empirical distribution of solar generation and EV mobility data:
(a) daily solar generation where each gray curve represents the PV system
output on a specific day and the blue curve represents the hourly mean solar
generation over one year; (b) the probability mass function (pmf) of the num-
ber of EV arrivals in a specific hour of the day; (c) the conditional pmf of stay
times for EVs arrived in that hour.

we pull hourly solar irradiance data via the Solcast API,4 using the latitude

and longitude of an arbitrary location in Rotterdam. This irradiance data

is fed to the PVWatts model [32] to compute the power generated by a PV

system located at these coordinates. The tilt angle of the panels is set to 51

degrees and their orientation angle to 270 degrees. The size of the PV system

is defined according to the maximum EV charging demand, which is 200 kW-

peak in our study. Figure 4.3a shows the daily solar production curves of this

PV system. We obtain the hourly DA market price data for the Dutch market

from the European Network of Transmission System Operators [35], and the

IM market price data from the regional Transmission System Operator, called

TENNET [108].

We use the dataset released by ElaadNL, a large charging infrastructure in

the Netherlands [33], as our EV dataset. This dataset contains 10,000 charging

sessions that occurred in several public EV chargers operated by EVnetNL.5

Note that since the initial and target SoC levels are not reported in this dataset,

we assume the target SoC of every EV is 1 and use the total energy charged into

the battery in the respective charging session to calculate its initial SoC. We

evaluate the proposed operating strategies (LLA and LA-SAC) and baselines

on this test dataset.

We create a new dataset, separate from the test dataset described above,

4https://solcast.com/
5https://evnet.nl/
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and use it only to train the LA-SAC agent in the second operating strategy.

This is necessary because the amount of historical data (charging sessions) in

the ElaadNL dataset is not enough to learn a near-optimal policy via reinforce-

ment learning. To obtain a sufficiently large number of episodes, we synthesize

realistic charging sessions. Specifically, we fit distributions to EV arrival times

(depicted in Figure 4.3b), EV stay times (depicted in Figure 4.3c), and EV

charging demands in the ElaadNL dataset. We assume that the number of

arrivals in each hour of the day follows Poisson distribution with a parameter

that depends on that particular hour. Since the stay time correlates with the

arrival time, we fit a Gaussian mixture model, using Kernel Density Estima-

tion (KDE), to the empirical distribution of stay times for EVs that arrived

in a certain hour of the day. For the initial SoC levels, we use a truncated

Gaussian distribution with mean 0.49 and standard deviation of 0.25, with the

minimum and maximum SoC being 0.03 and 0.97 respectively; the two mo-

ments of the Gaussian distribution are defined according to the distribution of

initial SoC in the test dataset. Furthermore, we assume that all EVs must be

fully charged before they leave the charging station and set SoC
n

accordingly.

We set the size of all EV batteries to 80kWh (similar to Tesla Model 3), the

maximum charge and discharge rates to 11kW, and the charge and discharge

efficiencies to 0.98. We generate almost 3 years worth of EV charging sessions

by sampling from these distributions. To create the training dataset, this data

is combined with real market prices and solar traces that are collected from

the same sources we used to create the test dataset, this time for a period that

ends on December 31, 2019. This allows us to train the LA-SAC agent for

up to 1,000 episodes, where each episode consists of 24 one-hour time steps,

representing 1 day.

4.5 Baseline 1: Offline Deterministic (ORA-

CLE)

This baseline solves Problem (4.1) using the actual values of the hourly market

prices (PDA,PIM), solar generation (Esolar), and EV mobility and energy de-
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mand (tns , τ
n, SoCn, SoC

n
). The solution would give the maximum profit the

VPP can make by operating in the two-stage electricity market, i.e., X*, Y*n,

and Z*. Note that we do not need to solve the stage 2 problem separately

because we obtain the optimal EV charging schedule as the LP is solved with

perfect information. This baseline, which we call ORACLE, gives an upper

bound on the VPP’s profit. In practice, the VPP operates under significant

uncertainty, hence it is impossible to generate this much profit.

4.6 Baseline 2: Current Practice in EV Charg-

ing (CHRG ASAP)

The current practice in EV charging referred to as CHRG ASAP, entails

charging an EV at the maximum power as soon as it gets connected to a

charger. This strategy minimizes the length of the charging session. It com-

bines the solution of stage 1 and stage 2 problems when they are solved with-

out taking advantage of V2G. More specifically, for solving stage 1 under this

baseline, Problem (4.1) is modified by dropping Constraint (4.1g) and writing

Constraint (4.1f) for all n ∈ Nt, and then Problem (4.1) is solved using the

aforementioned 2-staged approach.

In stage 2, EVs are charged at the maximum power when they arrive at a

charging station. The main drawback of this strategy is the reduced flexibility,

limiting the VPP options when it comes to addressing potential deviations

from day-ahead commitments.

Figure 4.4 shows the EV charging schedule using the CHRG ASAP baseline

for an EV arriving with 20% SoC and requiring 100% SoC within its 8 hours

of connection time to the charger, where the battery capacity of this EV is

assumed to be 80kWh. It can be seen in the bar chart that the EV is idly

connected to the charger for the last 2 hours of its charging duration. As a

result, it is possible to re-shape the charging schedule of this EV leveraging

this flexibility. The algorithms that we present in this thesis take advantage

of the flexible nature of EV charging to maximize VPP profit.
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Figure 4.4: EV charging schedule with the CHRG ASAP baseline. Negative
values in the y-axis represent EV (dis)charge.

4.7 Annual VPP Profit

We now evaluate the performance of the proposed VPP operating strategies

on the dataset described in Section 4.4. We investigate the profitability of

the VPP in different scenarios considering five different V2G participation

rates (0%, 25%, 50%, 75%, 100%), where the participation rate is defined as

the ratio of EVs whose battery can be discharged to the total number of EVs

that visit the charging stations in one day. Hence, 0% participation implies

that none of the EVs that arrive at the charging stations can be discharged,

and 100% participation implies that all EVs might be discharged as long as

their charging demand can be met by their deadline. For a fixed participation

rate, we randomly sample the required number of EVs to participate in V2G

from the set of EVs that will visit the charging stations during the day.

Figure 4.5 compares the annual profit earned by the VPP when it adopts

CHRG ASAP, LLA, and LA-SAC.6 We see that both LLA and LA-SAC greatly

increase the VPP’s profit for all V2G participation rates, while the profit

earned under CHRG ASAP is much lower and does not vary with the V2G

participation rate because it does not take advantage of bidirectional charg-

ing. The increased profitability of the VPP when all EVs participate in V2G

6Recall that both strategies solve the stage 1 problem using a WS approach. But, for
brevity, we just use the name of the the algorithm used in stage 2 to refer to each strategy.
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Figure 4.5: Annual profit earned by the VPP for various V2G participation
rates.

compared to when V2G is not supported (52% and 42% increase under LLA

and LA-SAC, respectively) highlights the importance of bidirectional charg-

ing in making this kind of VPP viable. Table 4.1 compares the annual profit

earned by the VPP using each operating strategy as a percentage of the an-

nual profit generated by ORACLE for the same V2G participation rate. The

result indicates that for 100% V2G participation case, LA-SAC is the best-

performing algorithm, achieving 51.4% of the profit that could be possibly

earned if there was no uncertainty, followed by LLA which achieves 39.6%

of the profit earned by ORACLE. The gap between the performance of the

proposed operating strategies and ORACLE widens slightly as the V2G par-

ticipation rate increases. We attribute this to the increased complexity of

the problem when more storage capacity becomes available. It is important

to note that LLA achieves around 40% of the profit that could be possibly

earned if there was no uncertainty using a simple heuristic. However, should

the VPP be able to afford the training cost of LA-SAC, its annual profit can

be increased by up to e 2,002 compared to when it adopts LLA.
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V2G participation (%)
Algorithm 0 25 50 75 100

CHRG ASAP 37.5% 32.4% 28.3% 25.2% 22.8%
LLA 42.7% 41.7% 40.8% 40.3% 39.6%

LA-SAC 59.6% 56.8% 54.8% 53.2% 51.4%

Table 4.1: The profit earned under different strategies as a percentage of the
profit earned by ORACLE (assuming perfect information) for the same V2G
participation rate.

Figure 4.6: The reward obtained per episode by LA-SAC for 100% V2G par-
ticipation.

4.8 Learning Curve of LA-SAC

We briefly discuss the number of episodes required to train a policy using

the LA-SAC algorithm. We use 3 random seeds (independent trials) to train

a policy using this algorithm. In each trial, the policy is trained for 1,000

episodes. Figure 4.6 depicts the learning curve of the RL agent assuming

100% participation in V2G. The solid curve corresponds to the mean over 3

trials and the shaded region shows one standard error from the mean. It can

be seen that the RL agent demonstrates improved performance after around

600 episodes (days).

We witnessed stable performance when the learned policy (after 1,000

episodes) was evaluated on the test dataset.
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(a) (b)

Figure 4.7: Comparing discharge energy usage of LLA and LA-SAC. The
summation of the green and pink bars represents the total available discharge
energy from the EVs and the pink bar represents the discharge energy used
by the respective algorithm. (a) discharge energy usage by LLA; (b) discharge
energy usage by LA-SAC

4.9 Comparison between LLA and LA-SAC

Figure 4.7 compares the discharge energy usage by the algorithms, namely

LLA and LA-SAC, that are used to solve the second stage of the 2-stage

optimization problem. As explained in the previous chapter, stage 2 requires

EVs to be discharged in order to mitigate the deficit in solar energy in real

time. It can be inferred upon comparing both bar charts in Figure 4.7 that

LLA takes a less conservative approach in discharging EVs (refer to hours 8 to

12 in Figure 4.7) which reduces the available discharge energy in the following

hours of the day. In contrast, LA-SAC discharges EVs more conservatively

and this ensures that the discharge energy availability is spread throughout the

entire day since EV mobility has an intermittent pattern, which results in less

reliance in buying electricity from the imbalance market, thereby increasing

VPP profit. LA-SAC takes the aforementioned approach in discharging EVs

because the reward function of the RL agent (see Equation 4.6) is designed

such that the agent receives a higher reward for maintaining higher average

hourly laxity.
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Chapter 5

Incentivizing EVs to Participate
in the VPP

In this chapter, we explain how contract theory can be used to incentivize in-

dependent EV owners to participate in a VPP, and perform sensitivity analysis

to the factors such as the perceived battery degradation cost and contract du-

ration that influence EV owners’ willingness to participate in V2G. Finally, we

analyze the profitability of the VPP after accounting for the payoff provided

to the EV owners.

5.1 Modeling the VPP and EV Owners

In contract theory, each contract specifies the contribution from the agent or

agents who are offered the contract, and the corresponding payoff that they

receive. Effective contract design requires a careful definition of the utility

functions of the contract recipients and the contract provider. We use the

principal-agent model to describe the interaction between the VPP and EV

owners. In this model, the VPP (principal) has bargaining power, meaning

that it defines the set of contracts that will be offered to each EV owner

(agent). An EV owner can simply accept or decline an offer proposed by the

In this section, we introduce the contract theory-specific terminologies and

present the utility function of the VPP operator and EV owners.
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5.1.1 EV Owner Type

Let Nt be the set of EVs that arrive at the charging station in hour t of a

day and N = ∪t∈T {Nt} be the set of all EVs that arrive at the charging

station on this day, i.e., in a 24 hour period (T = {1, · · · , 24}). Each EV

owner n ∈ N has some private information that influences the amount of

energy they are willing to provide to the VPP through V2G. We classify EV

owners into different types based on their willingness to contribute to the VPP.

Without loss of generality, we assume the type of an EV owner belongs to an

interval, [θ, θ]. We quantize the type with a quantization factor M such that

the collection of types forms a discrete set denoted Θ = {θ1, · · · , θM} where

θ ≤ θ1 < · · · < θM ≤ θ. A greater value of m in θm indicates that the EV owner

is more willing to have their battery discharged so as to participate in V2G.

The VPP operator does not deterministically know the type of an EV owner

since it is determined based on their private information. However, we assume

that the VPP operator knows the probability distribution over different types,

which implies that it knows an arbitrary EV owner belongs to a certain type

θm with probability πm (where
∑M

m=1 πm = 1).

5.1.2 Contract Structure

To increase V2G participation, the VPP offers monetary incentives to EV

owners for the maximum amount of energy that will be withdrawn from their

battery over a time period of length lV 2G, starting when the contract is ac-

cepted. Recall that the VPP operator does not know the actual type of an

EV owner. Our goal is to design incentive compatible contracts which are,

self-revealing [89], thus allowing us to design the best contracts despite the in-

formation asymmetry that exists. The VPP operator will offer energy-reward

bundle contracts {(gm, wm)}m=1···M to EV owners, where each contract is de-

signed for a specific type. For example, an EV owner of type θm should accept

(gm, wm), with wm being the amount of discharge energy that they will provide

and gm being the associated payoff, which is a strictly increasing function of

θm.
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5.1.3 Utility Functions

VPP’s Utility

The VPP’s utility when an EV of type θm participates in V2G can be defined

as follows:

UV PP (gm, wm) = u(wm)− gm (5.1)

Here u(wm) represents the revenue that can be generated by discharging wm

from the battery of this EV, and gm is the EV owner’s payoff for their partic-

ipation in V2G. Since the VPP is assumed to be risk-averse, we let u(·) be a

concave function of wm [85]. Thus, the expected utility of the VPP from the

participation of an arbitrary EV in V2G would be:

U total
V PP =

M∑
m=1

πm ·
(
u(wm)− gm

)
(5.2)

and its expected utility when |N | EVs participate in V2G would be U total
V PP ·|N |.

EV Owner’s Utility

The utility of an EV of type θm that accepts contract (gm, wm) is:

UEV (gm, wm; θm) = gm − C(wm; θm), (5.3)

where C(.) represents the cost incurred by an EV of type θm due to discharging

wm amount of energy from their battery (e.g., the battery degradation cost).

Using the fixed per kWh degradation model proposed in [1], we write the cost

function for type θm as:

C(wm; θm) =
wm

θm
· γ · c , (5.4)

where γ = Vbatt

L
, c = 1

2·bn·DoD/100
, and Vbatt represents the battery price or its

perceived value, L represents its nominal cycle life, DoD represents its nominal

depth of discharge, and bn represents its capacity. Note that C(.) is a concave

function of wm. The economic significance of this design is that the marginal

utility of an increase in wm is always higher for higher EV types. Thus, the
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willingness to receive payment for an increase in wm is always higher for higher

types.

The outside utility of an EV owner, i.e., when they reject all contracts, is

assumed to be zero.

5.2 Contract Design

Let VEV (θm′ , θm) = UEV (gm′ , wm′ ; θm) represent the utility of an EV owner

whose true type is θm, but declares their type to be θm′ . The VPP operator

aims to maximize their expected utility by designing and offering a specific

contract for each type of EV owner, satisfying incentive compatibility and in-

dividual rationality requirements. We define these requirements below.

Individual Rationality (IR): The contract accepted by an EV owner should

guarantee that their utility will be non-negative (i.e., higher than the outside

utility). This can be written as:

UEV (gm, wm; θm) = VEV (θm, θm) = gm −
wm · γ · c

θm
≥ 0

Incentive Compatibility (IC): EV owners do not gain any advantage by lying

about their true type. Consequently, they prefer a contract that is specifically

designed for their type and declare their type truthfully. This can be written

as:

VEV (θm, θm) ≥ VEV (θm′ , θm) ∀θm, θm′ ∈ Θ (5.5)
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5.2.1 Finding Optimal Contracts

The optimal contracts are the solution of the following utility maximization

problem subject to the constraints defined above:

maximize
{(gm,wm)}

M∑
m=1

πm · (u(wm)− gm) (5.6)

subject to (OC1) gm −
wm · γ · c

θm
≥ 0, ∀θm ∈ Θ

(OC2) gm −
wm · γ · c

θm
≥ gl −

wl · γ · c
θm

;

∀m, l ∈ Θ,m ̸= l

(OC3) 0 ≤ w1 ≤ ... ≤ wM

(OC4) 0 ≤ g1 ≤ ... ≤ gM

The solution to this problem is a set of contracts, denoted {(g∗m, w∗
m)}m=1···M ,

which are offered to the EVs, maximizing the expected utility of the VPP.

Observe that there is a total of M(M − 1) constraints in the form of (OC2)

in the above optimization problem, hence the number of constraints is not a

linear function of M . As shown in Figure 5.1, the computational overhead of

solving this optimization problem increases drastically with the number of EV

owner types. We propose a more tractable version of this optimization prob-

lem by rewriting Constraint (OC1) and Constraint (OC2), and by dropping

Constraint (OC3) so as to reduce the number of constraints as follows:

maximize
{gm,wm}

M∑
m=1

πm · (u(wm)− gm) (5.7)

subject to (C1) g1 −
w1 · γ · c

θ1
= 0

(C2) gm −
wm · γ · c

θm
= gm−1 −

wm−1 · γ · c
θm

∀m ∈ Θ \ {1}

(C3) 0 ≤ g1 ≤ ... ≤ gM

The resulting optimization Problem (5.7) can be solved faster than the original

problem and the running time increases moderately as we consider more types

(see Figure 5.1). In the next section, we prove that these two problems are

equivalent.
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Figure 5.1: Run-time comparison between the original optimization problem
with our proposed version which is more tractable. Each point shows the
average running time over 5 trials and the shaded region shows three standard
errors around the mean.

Note that we add an additional constraint to these optimization problems

to ensure that the maximum discharge energy offered in a contract is upper

bounded by the maximum amount of energy that can be possibly discharged

from the battery within the contract duration: wm ≤ αd · lV 2G, and this

constraint is incorporated for practical reasons.

5.2.2 Proof of Equivalence

We borrow the following definitions from [19]:

• Downward Incentive Constraints (DICs):

The IC constraints between type i and type j with j ∈ {1, ..., i − 1},

which can be written as VEV (θi, θi) ≥ VEV (θj, θi)

• Local Downward Incentive Constraints (LDICs):

The IC constraints between type i and type (i−1), which can be written

as VEV (θi, θi) ≥ VEV (θi−1, θi)

• Upward Incentive Constraints (UICs):

The IC constraints between type i and type j, with j ∈ {i + 1, ..., N}

which can be written as VEV (θi, θi) ≥ VEV (θj, θi)

• Local Upward Incentive Constraints (LUICs):
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The IC constraints between type i and type (i+1), which can be written

as VEV (θi, θi) ≥ VEV (θi+1, θi)

Theorem 1 For the optimal solution of Problem (5.6), the individual ratio-

nality constraint for the lowest type is binding, that is, VEV (θ1, θ1) = 0, and

consequently, the individual rationality constraint for higher types also hold

and hence can be ignored.

Proof: We want to prove the following relationship:

VEV (θm, θm) ≥ VEV (θ1, θ1) = 0 (5.8)

Step 1. Since the optimal solution is incentive compatible, we can write

this inequality (∀θm ∈ Θ):

VEV (θm, θm) ≥ VEV (θ1, θm) (5.9)

Step 2. When the same contract (in this case (g1, w1)), is offered to EV

owners of types θm and θ1, the attained utility is higher for the higher type

EV owner, and therefore, the following holds:

VEV (θ1, θm) ≥ VEV (θ1, θ1) (5.10)

⇒ g1 −
w1 · γ · c
θm

≥ g1 −
w1 · γ · c

θ1

This clearly holds because: θ1 < ... < θm < ... < θM .

Step 3. We prove by contradiction that at the optimal solution, the IR

condition for the lowest type (i.e. type θ1) must be binding.

We can write the following if the IR condition for type θ1 is not binding:

VEV (θ1, θ1) > 0

⇒ g1 −
w1 · γ · c

θ1
> 0

Now consider (g′1, w1) which is a new contract with g′1 = −ϵ + g1, where ϵ

is a positive constant and ϵ ≤ g1 − w1.γ.c
θ1

The following is the type θ1 EV owner’s utility when they are offered this

contract:

g′1 −
w1 · γ · c

θ1
> −ϵ+ g1 −

w1 · γ · c
θ1

> 0

⇒ −ϵ+ VEV (θ1, θ1) > 0
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Since the IR condition is satisfied with the new contract (g′1, w1) and this

contract increases the VPP profit, it is, therefore, a better contract than the

optimal solution. This contradiction suggests that the IR constraint for type

θ1 must be binding so that no other contract better than the optimal contract

can be found.

We have proved the following relationship:

VEV (θm, θm) ≥ VEV (θ1, θm) ≥ VEV (θ1, θ1) = 0

The first inequality follows directly from the assumption that the incentive

compatibility constraint has been satisfied, the second inequality follows from

the proof in step 2 and the last equality is proved in step 3. (PROVED)

As a result, we are able to remove Constraint (OC1) of Problem (5.6)

and replace it with Constraint (C1) (which is shown on Problem (5.7)). This

reduces the total number of constraints since Constraint (OC1) had to be

incorporated for all EV owner types present in the set Θ, whereas Constraint

(C1) is written for the lowest EV owner type only.

Theorem 2 The monotonicity condition, i.e. 0 ≤ w1 ≤ ... ≤ wM can be

derived from the IC constraints.

Proof: Let us consider two types of EV owners: θj and θk such that θk > θj.

The IC constraints for these EV owner types are given by:

V (θk, θk) ≥ V (θj, θk)

⇒ gk −
wk · γ · c

θk
≥ gj −

wj · γ · c
θk

(5.11)

Similarly,

V (θj, θj) ≥ V (θk, θj)

⇒ gj −
wj · γ · c

θj
≥ gk −

wk · γ · c
θj

(5.12)
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Adding up the 2 sides of the above 2 inequalities (i.e., Equations 5.11

and 5.12), we get:

gk + gj −
wk · γ · c

θk
− wj · γ · c

θj
≥

gj + gk −
wj · γ · c

θk
− wk · γ · c

θj

⇒ −wk · γ · c
θk

+
wj · γ · c

θk
≥ wj · γ · c

θj
− wk · γ · c

θj

⇒ γ · c · (wj − wk)

θk
≥ γ · c · (wj − wk)

θj

Reorganizing the above inequality yields:

θj · γ · c · (wj − wk) ≥ θk · γ · c · (wj − wk)

⇒ θk(wk − wj) ≥ θj(wk − wj)

Since θk > θj, we conclude that wk ≥ wj. Because the discharge energy from

any arbitrary EV owner type m, i.e. wm, is assumed to be positive, we have:

0 ≤ w1 ≤ ... ≤ wM (5.13)

and thus, our proof is complete. (PROVED)

This theorem allows us to drop Constraint (OC3) to simplify Problem (5.6).

Theorem 3 For the optimal solution of Problem (5.6), we have:

1. All DICs are satisfied when LDIC is satisfied

2. All UICs are satisfied when LUIC is satisfied

Proof. Let us consider 3 types of EV owners: θj−1, θj and θj+1, where

θj−1 < θj < θj+1. In Step 1, we prove that LDIC implies DIC.

Step 1. The IC constraint between type θj and θj−1 constitutes an LDIC
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as follows:

VEV (θj, θj) ≥ VEV (θj−1, θj) (5.14)

⇒ gj −
wj · γ · c

θj
≥ gj−1 −

wj−1 · γ · c
θj

⇒ gj − gj−1 ≥
(wj − wj−1) · γ · c

θj
(5.15)

According to the constraint: θ1 < ... < θm < ... < θM , we know that θj+1

must be larger than θj, and as a result, the following inequality holds.

(wj − wj−1) · γ · c
θj

≥ (wj − wj−1) · γ · c
θj+1

(5.16)

Since Equation 5.15 holds and Equation 5.16 holds, therefore the following

also holds:

gj − gj−1 ≥
(wj − wj−1) · γ · c

θj
≥ (wj − wj−1) · γ · c

θj+1

(5.17)

Now, from the above inequality, the following can be deduced:

gj − gj−1 ≥
(wj − wj−1) · γ · c

θj+1

(5.18)

⇒ gj −
wj · γ · c
θj+1

≥ gj−1 −
wj−1 · γ · c

θj+1

⇒ VEV (θj, θj+1) ≥ VEV (θj−1, θj+1) (5.19)

The following is the LDIC constraint for EV owner of type θj+1:

VEV (θj+1, θj+1) ≥ VEV (θj, θj+1) (5.20)

Now, since Equation 5.19 holds and Equation 5.20 holds, the following also

holds:

VEV (θj+1, θj+1) ≥ VEV (θj−1, θj+1) (5.21)

Therefore, for each type θj, if the incentive constraint with respect to type

θj−1 holds, (i.e. the LDIC is satisfied), then all other downward incentive con-

straints are also satisfied. Thus, we are able to reduce the set of downward
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incentive constraints to the set of LDICs.

Next, we prove that LUIC implies UIC.

Step 2. The IC constraint between type θj and θj+1 constitutes a LUIC,

which is:

V (θj, θj) ≥ V (θj+1, θj)

⇒ gj −
wj · γ · c

θj
≥ gj+1 −

wj+1 · γ · c
θj

⇒ gj+1 − gj ≤
(wj+1 − wj) · γ · c

θj
(5.22)

According to the constraint: θ1 < ... < θm < ... < θM , we know that θj

must be larger than θj−1, and as a result, the following inequality holds.

(wj+1 − wj) · γ · c
θj

≤ (wj+1 − wj) · γ · c
θj−1

(5.23)

Since Equation 5.22 holds and Equation 5.23 holds, therefore the following

also holds:

gj+1 − gj ≤
(wj+1 − wj) · γ · c

θj
≤ (wj+1 − wj) · γ · c

θj−1

(5.24)

Now, from the above inequality, the following can be deduced:

gj+1 − gj ≤
(wj+1 − wj) · γ · c

θj−1

⇒ gj+1 −
wj+1 · γ · c

θj−1

≤ gj −
wj · γ · c
θj−1

⇒ VEV (θj, θj−1) ≥ VEV (θj+1, θj−1) (5.25)

The following is the LUIC constraint for EV owner of type θj−1:

VEV (θj−1, θj−1) ≥ VEV (θj, θj−1) (5.26)

Now, since Equation 5.25 holds and Equation 5.26 holds, the following also

holds:

VEV (θj−1, θj−1) ≥ VEV (θj+1, θj−1) (5.27)
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Therefore, for each type θj, if the incentive constraint with respect to type

θj+1 holds, (i.e. the LUIC is satisfied), then all other upward incentive con-

straints (i.e IC constraints for θj relative to higher θj’s) are also satisfied. This

allows us to reduce the set of upward incentive constraints to the set of LUICs.

(PROVED)

We prove in the next theorem (Theorem 4) that the LUIC constraints can

be omitted. As a result, Constraint (OC2) in Problem (5.6) can be replaced

with Constraint (C2) in Problem (5.7). This allows us to reduce the total

number of constraints significantly, which is important to achieve faster run-

time for the optimization problem.

Theorem 4 An EV owner will not accept a contract designed for a higher

type than their own type, because this leads to a negative utility.

Proof. Let us consider 3 different EV owners belonging to types θj−1, θj,

and θj+1 respectively. Let the following be the optimal contracts that satisfy

individual rationality constraints but not incentive compatibility constraints:

(g∗j−1, w
∗
j−1), (g∗j , w

∗
j ), and (g∗j+1, w

∗
j+1) respectively. More specifically, these

contracts are designed by the VPP operator to pay each EV owner just enough

to keep their utility zero while maximizing their profit. For example, the

contract (g∗j , w
∗
j ) is designed for EV owner type θj and it results in a utility for

EV owner type θj that equals the minimum value of IR constraint. Therefore

the following holds for EV owner of type θj:

g∗j −
w∗

j · γ · c
θj

= 0 (5.28)

Similarly, the following 2 equations hold for EV owners of type θj−1 and

type θj+1 respectively:
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g∗j−1 −
w∗

j−1 · γ · c
θj−1

= 0 (5.29)

g∗j+1 −
w∗

j+1 · γ · c
θj+1

= 0 (5.30)

When the 3 contracts: (g∗j−1, w
∗
j−1), (g∗j , w

∗
j ), and (g∗j+1, w

∗
j+1) are offered,

the EV owner of type θj chooses the contract (g∗j−1, w
∗
j−1) instead of the con-

tract designed for their true type, i.e. (g∗j , w
∗
j ). This is because, when the EV

owner of type θj chooses the contract (g∗j−1, w
∗
j−1), their utility is as follows:

g∗j−1 −
w∗

j−1 · γ · c
θj

> 0 (5.31)

Equation 5.31 shows a positive utility for the EV owner of type θj and it is

greater than the utility of this EV owner when choosing the contract designed

for their own type (the utility given in Equation 5.28). This is because, θj >

θj−1, and hence the second term of the left-hand side of the inequality has a

lower value in Equation 5.31, when compared to the second term of the left-

hand side of Equation 5.28. Therefore, LDIC constraints must be incorporated

so that the EV owners do not deviate from the contracts designed by the VPP

operator for their designated types.

However, the EV owner of type θj does not prefer to choose the contract

designed by the VPP operator for type θj+1. This is because, when the EV

owner of type θj chooses the contract (g∗j+1, w
∗
j+1), their utility will be as

follows:

g∗j+1 −
w∗

j+1 · γ · c
θj

< 0 (5.32)

Equation 5.32 shows a negative utility for the EV owner of type θj and it is

less than the utility of this EV owner when choosing the contract designed for

their own type (the utility given in Equation 5.28). This is because, θj < θj+1,

and hence the second term of the left-hand side of the inequality has a greater

value in Equation 5.32 when compared to the second term of the left-hand side
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of Equation 5.28. Therefore, the LUIC constraints of type-θj EV owner can

be omitted since an EV owner has no incentive to choose a contract designed

for a higher type than their own. (PROVED)

The significance of proving Theorem 4 is that having proven Theorem 3,

the Constraint (OC2) in Problem (5.6) can be replaced with Constraint (C2)

in Problem (5.7).

Theorem 5 For the optimal solution of Problem (5.6), all the LDICs are

binding.

Proof. We will prove this by contradiction. The LDIC for an EV owner of

type θk that is not binding can be written as:

V (θk, θk) > V (θk−1, θk)

⇒ gk −
wk · γ · c

θk
> gk−1 −

wk−1 · γ · c
θk

(5.33)

Let (g′k, wk) be a new contract where g′k = −ϵ + gk, where ϵ is a positive

constant and ϵ < gk.

When a type θk EV owner utility is offered the contract (g′k, wk), their utility

would become:

g′k −
wk · γ · c

θk
(5.34)

The VPP operator can fix the value of ϵ, such that Equation 5.33 is still

satisfied (i.e., it is set equal to the gap between the two sides of this inequality),

which results in increased VPP profit, by offering the minimum payment to

the EV owners in the new contract (g′k, wk).

Since the IC condition is satisfied with the new contract (g′k, wk) and this

contract increases VPP profit, it is a contradiction. Therefore, the LDIC con-

straints must be binding. (PROVED)

Theorem 5 has been used to write Constraint (C2) as an equality in Prob-

lem (5.7).

61



5.3 Analysis of the Optimal Contracts

We now consider a case study where we set the number of types to a default

value of M = 3 and examine the energy-reward bundles to find out how many

unique contracts will be found as a result of solving the optimization problem.

We define u(.), the first term in the utility function of the operator given

in Equation (5.1), as u(wm) = κ · log(wm + 1) where κ is a hyper-parameter.

This function is concave and increasing in its domain for positive values of κ.

This hyper-parameter reflects the importance of V2G for the VPP. A large

value of κ indicates that the VPP highly values the flexibility offered by EVs

through V2G. This can be due to high volatility of market prices and renewable

production. A small value of κ however suggests that the VPP does not heavily

rely on V2G to optimize its operation. As κ gets smaller, the payoff of each

contract has to go down to ensure the VPP’s profit is maximized.

Recall that γ is the perceived value of the battery per charge/discharge

cycle. Although it is possible to calculate γ according to the price and cycle

life of lithium-ion batteries that are commonly used in EVs, EV owners may

think that the value of their battery is higher than its actual price or its lifespan

is shorter than the nominal value reported by the manufacturer. This affects

their utility and the contract they would accept accordingly. Specifically, when

γ is large, EV owners should receive higher payoff to participate in V2G. To

investigate how the perceived value of the battery changes the value of the

optimal contracts, we assign different values to γ.

In this case study, we assign a value to κ from {0.01, 0.05, 0.1, 0.5, 1.0} and

to γ from {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}. Notice that the price per cycle of

typical EV batteries is around 0.1 e/kWh today.

Figure 5.2 shows the energy-reward bundles that are obtained for different

values of κ and γ, when lV 2G (i.e., the contract duration) is set to 1 hour.

Interestingly, regardless of the value of M , we found at most 3 unique contracts

in these cases. From the set of empirical results shown in Figure 5.2, we choose

κ = 0.1, and γ = 1.0 which results in offering 2 unique contracts for 2 EV

owner types. Note that the aforementioned κ and γ value combination results
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Figure 5.2: For lV 2G = 1. The κ values from the left to the right column are
set as 0.01, 0.05, 0.10, 0.5, 1.0 respectively. For various γ values (shown on the
x-axis of each bar chart), the y-axis of bar charts (a1 to a5) in the first-row
show EV discharge energy in offered contract, the y-axis of bar charts (b1 to
b5) in the second row show payment offered to EV owners in offered contract,
and the y-axis of bar-charts (c1 to c5) in the third row show the payment
offered per unit of energy discharged, to EV owners in the offered contract.
The number of bars represents the effective number of EV owner types for
designing the optimal contract for the chosen parameter values.

Figure 5.3: For lV 2G = 3. The κ values from the left to the right column
are set as 0.01, 0.05, 0.10, 0.5, 1.0 respectively. For various γ values (shown on
the x-axis of each bar chart), the y-axis of bar charts (a1 to a5) in the first-
row shows EV discharge energy in offered contract, the y-axis of bar charts
(b1 to b5) in the second-row shows payment offered to EV owners in offered
contract, and the y-axis of bar-charts (c1 to c5) in the third-row shows the
payment offered per unit of energy discharged, to EV owners in the offered
contract. The number of bars represents the effective number of EV owner
types for designing the optimal contract for the chosen parameter values.
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in the most number of EV types with the highest possible discharge energy,

and results in contracts where each contract has a reasonably low payoff to

respective EV owners compared to imbalance market price from offering the

contracts. By setting the parameters to the aforementioned values, the payoff

to EV owners (from (bar chart c3)) of the higher type is 0.0063 e/kWh and to

EV owners of the lower type is 0.0051 e/kWh, which are respectively 12.6%

and 10.2% of the average IM price of 0.05 e/kWh. As a result, the EV owners

receive a reasonable payoff for their V2G contribution, and at the same time,

the VPP operator benefits from discharging EVs by reducing the amount of

electricity bought from the imbalance market. A similar sensitivity analysis to

parameters is also performed for contracts having longer duration. Figure 5.3

shows the energy-reward bundles for the same setting except for lV 2G is set to

3 hours in this case. We found from Figure 5.3 that the best-fit values are:

κ = 0.05, γ = 0.5. The effective number of EV owner types along with the

offered monetary incentive and the respective discharge energy can be found in

Table 5.1 for the different values of lV 2G that we considered in our case study.

5.4 Simulating VPP Operation with Contracts

We analyze the VPP operation given the designed contracts for the EV fleet

through simulation. When an EV connects to a bidirectional charger, the VPP

calculates its laxity and uses a probabilistic function that maps the laxity upon

arrival to the type of an EV owner to estimate its type.1

Given the laxity of EV n, we first ignore a) the contracts that are not

meaningful for this EV, either because of its short stay time or low energy

content of its battery, b) the contracts that if executed the charging deadline

of the respective EV cannot be satisfied. Let us define dnmax as the maximum

discharge energy available from EV n upon its arrival at the charging station.

1Laxity is one of the many factors that determine the type of an EV owner. The other
factors, such as their perception of the battery degradation cost, are difficult to model. This
is why we use a probabilistic function to determine the EV owner type given their laxity at
arrival time.
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It is calculated from the reported EV laxity upon arrival using this equation:

dnmax = laxnt · ψlax · αd,

ψlax =
αc · ηc · ηd

αd + αc · ηc · ηd
,

where ψlax denotes the portion of the laxity that can be used to discharge the

battery at the maximum power so that it can be charged to the same level by

the end of the laxity if charged at the maximum power.

Now, suppose the specified amount of discharge energy in contracts (g1, w1)

to (gm, wm) is less than or equal to dnmax (i.e., g1 ≤ · · · ≤ gm ≤ dnmax) and

the amount of discharge energy in contract (gm+1, wm+1) is greater than dnmax.

These are the only contracts that will be offered to EV n to ensure that the EV

charging problem remains feasible. Accepting any of the remaining contracts,

i.e. (gm+1, wm+1) up to (gM , wM), could make the charging problem infeasible,

so they will not be offered to this EV. Additionally, the VPP will not offer any

contract to the EVs that stay in the charging station less than the contract

duration lV 2G, since no such contract can be executed. Similarly, the VPP will

not offer contracts that have a higher amount of discharge energy than the

energy stored in the EV battery upon arrival. This is because these contracts

cannot be executed.

Next we explain the probabilistic mapping of the observed laxity of EV

n to one of the EV types. As mentioned earllier, we assume the EV type is

a function of laxity and some external factors. We use laxmin to denote the

minimum laxity for which a discharge energy of wm amount is feasible and the

maximum possible EV laxity is found (as per our dataset) as laxmax. We want

to map laxnt (i.e., the observed laxity of EV n) to θx, where θx is between θm

and θM . We calculate θx by solving the equation below:

θx − θm
laxnt − laxmin

=
θM − θm

laxmax − laxmin

(5.35)

Finally, we find the EV owner type (denoted θi) by sampling (and rounding

off the resulting value) from a Gaussian distribution (truncated between 0 and

1) whose mean is θx. The variance of this distribution is a fixed value and it

is set as 0.1 in our simulations.
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5.4.1 Designing a VPP Operating Strategy

Once the EV owner accepts the contract (gi, wi), the VPP operator needs to

set a schedule to use up the discharge energy wi within lV 2G time slots while

ensuring that the VPP profit is maximized. We use w̄n
i and lnV 2G to denote

respectively the remaining discharge energy (as specified in the contract) and

the remaining contract duration for the nth EV within the set ND
t . We use

a heuristic EV scheduling algorithm (shown in Algorithm 2), which schedules

the charge and discharge of EV batteries in an attempt to increase the VPP

profit.

The laxity of EV n at time slot t can be calculated given the EV departure

time, battery capacity, target SoC, the maximum charging rate supported by

the charger, and the charge efficiency of the battery:

laxnt = tne − t−
(SoC

n − SoCn
t ) · bn

αcηc
(5.36)

Algorithm 2: VPP Operating Strategy

1 S1 ← FindEVsWithNegativeLaxity(Nt \ ND
t ) ; // lookahead

2 et ← ChargeEVs(S1);
3 xt ← xt + et;

4 P̄
IM ← GetPriceForecasts(t, t+ lV 2G);

5 dt ← GetEVChargingSchedule(ND
t , P̄

IM
);

6 UpdateContractParameters(ND
t );

7 xt ← xt + dt;
8 if xt > 0 then
9 BuyFromImbalanceMarket(xt);

10 end
11 else if xt < 0 then
12 SellToImbalanceMarket(xt);
13 end

In Algorithm 2, which runs in the beginning of each time slot, the Find-

EVsWithNegativeLaxity() function in Line 1 uses the set of non-V2G

participating EVs (that are present at the charging station) as input. Using

laxity lookahead (described in Section 4.2.1), this function returns the set of

EVs (denoted by S1) that will have a negative laxity in the next time slot and
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therefore must be charged at charging power of αc kW in the current time

slot to keep their laxity non-negative. When calculating the laxity lookahead,

the t variable is substituted with t + 1 in Equation 5.36 and SoCn
t+1 is set

equal to SoCn
t . Then in Line 2, the set S1 is passed to the ChargeEVs()

function that charges the EVs in S1 at αc charging power. The output of the

ChargeEVs() function, denoted et, is added to the day ahead commitment

at time t (i.e., xt) to update the total amount of energy required by the VPP

in this time slot (Line 3). In Line 4, the GetPriceForecasts() function re-

turns a vector of imabalance market price forecasts, starting from the current

time step t up to time step t + lV 2G. In this thesis, the GetPriceFore-

casts() has a simple implementation and returns the expected values of the

imbalance market prices for the next lV 2G time slots as the forecast values. In

line 5, the GetEVChargingSchedule() function returns the charging pro-

file of all the V2G-participating EVs that are present at the charging station

in the current time slot by solving the optimization problem (given in Eqau-

tion 5.37). The solution is the optimal charging/discharging schedule of each

EV until the end of their stay time or until t+ lV 2G, whichever happens earlier.

Line 5 is executed for the V2G-participating EVs in every time slot to update

their EV schedules using more accurate information of the stochastic variables

(namely, EV mobility patterns and electricity market prices) for best results.

The obtained EV schedule ensures that their laxity will stay non-negative at

every time step of their charging duration. In Line 6, the UpdateContract-

Parameters() updates the V2G-participating EVs’ remaining contract du-

ration according to this rule: lnV 2G = lnV 2G − 1, and their remaining discharge

energy (as per the contract) according to this rule: w̄n
i = w̄n

i − AD∗n, where

AD∗n is the solution of the optimization problem. This function also updates

the set of V2G-participating EVs (i.e. ND
t ) by adding the newly arrived V2G

participating EVs to ND
t . The amount of energy required in this time slot is

updated again by adding the energy from the V2G-participating EVs, denoted

dt, to the day ahead commitment for this time slot, xt, in Line 7. Note that

the day-ahead commitments are calculated using the ’Wait-and-See’ method

explained in Section 4.1. Now, if the value of xt is positive (Line 8), then the
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VPP purchases the required xt amount of energy from the IM market (Line 9).

In the case where xt is negative (Line 11), there is some surplus energy avail-

able to the VPP even after charging the EVs, and hence the VPP sells the

surplus in the IM market (Line 13).

5.4.2 Scheduling EV Charging

The optimal solutions AC∗ and AD∗ obtained from the optimization Prob-

lem (5.37) constitute the charging schedule of all EVs such that the discharge

energy of the EV owners’ chosen contract is used to maximize the VPP profit.

In the optimization problem formulation, p̄IMt in the objective function in

Equation (5.37a) represents the predicted imbalance market price at time t.

The set T n contains time steps starting from the current time step t and upto

tne (i.e. the stay time of EV n at the charging station). Constraint (5.37b) en-

sures that discharging does not occur for EVs once their contract duration time

has elapsed. The EV discharging amount for EV n at time t, (i.e., ADn
t ) must

be bounded according to minimum value between the remaining discharge en-

ergy specified in the contract and the maximum discharging power supported

by the EV charger which is shown in Constraint (5.37c). Constraint (5.37d)

ensures that the total discharge amount of EV n at time t does not exceed its

remaining contract-specified discharge energy amount, w̄n
i . The charging en-

ergy is bounded in Constraint (5.37e) using the maximum charger-supported

charging rate. Constraint (5.37f) defines the EV schedule for EV n in time slot

t as the summation of the energy that is charged in the EV battery ACn
t , and

energy discharged from its battery, ADn
t . This is essential since charge and

discharge efficiencies (shown in Constraint (5.37j)) could be less than 1. Con-

straints (5.37g) bounds the SoC level of the EV battery and the SoC level at

arrival time and departure time are defined in Constraints (5.37h) and (5.37i)

respectively. The SoC of EV batteries at time t are updated based on the

charging and discharging power supplied to them at the previous time step

and taking into account the battery charge/discharge efficiencies and it is de-

fined in Constraint (5.37j). Finally, Constraint (5.37k) uses laxity lookahead

to ensure positive laxity of the EV at all times during its charging/discharging
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process. It is to be noted that all constraints in optimization Problem (5.37)

are affine.

maximize
AC,AD

t+lV 2G∑
t

(−xt − dt) · p̄IMt (5.37a)

subject to ADn
t = 0, ∀n ∈ ND

t (5.37b)

∀t ∈ T n \ {tns , ..., (tns + (lnV 2G − 1))}
−min (w̄n

i , αd) ≤ ADn
t ≤ 0, (5.37c)

∀n ∈ ND
t ,∀t ∈ T n

t+lnV 2G∑
t

ADn
t ≤ w̄n

i , ∀n ∈ ND
t ,∀t ∈ T n (5.37d)

0 ≤ ACn
t ≤ αc, ∀n ∈ ND

t ,∀t ∈ T n (5.37e)

dnt = ACn
t + ADn

t , ∀n ∈ ND
t ,∀t ∈ T n (5.37f)

δmin ≤ SoCn
t ≤ δmax, ∀n ∈ ND

t ,∀t ∈ T n (5.37g)

SoCn
tns

= SoCn, ∀n ∈ ND
t (5.37h)

SoCn
tne

= SoC
n
, ∀n ∈ ND

t (5.37i)

SoCn
t+1 = SoCn

t +
ACn

t ηc
bn

+
ADn

t

ηdbn
, (5.37j)

∀n ∈ ND
t ,∀t ∈ T n

laxnt+1 ≥ 0, ∀n ∈ ND
t ,∀t ∈ T n (5.37k)

5.4.3 Dataset and Parameters Used for Experiments

Datasets containing real traces of EV charging sessions and electricity market

prices (DA and IM) from the Rotterdam region in the Netherlands were used

that began on January 1, 2020 and ended on December 31, 2020. These

datasets were used for evaluating the proposed contract theoretic approach for

V2G participation in addition to the scheduling algorithm with the baseline

(described in the following section).

Regarding the electricity market prices, the DA market price data were

used from the the European Network of Transmission System Operators [35],

and the IM market prices from the regional Transmission System Operator,

called TENNET [108]. For the EV data, the charging dataset released by

ElaadNL (which is a large-scale charging infrastructure in the Netherlands [33])

was used. This dataset comprises of 10,000 charging events that occurred in
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various EVnetNL2-operated public chargers. It is to be noted that the initial

(i.e. arrival) and target/final SoC level of the EV batteries are not reported

in this dataset and hence it is assumed for all EVs to have target SoC of 1.

The initial SoC is calculated based on the total charging energy required by

this EV during its charging session.

In our experiments, αc, αd > 0 are both taken to be 11 kW, δmin and δmax

are assumed to be 0.03 and 0.97 respectively and ηc and ηd are both set to

0.98. Regarding the parameters pertaining to battery degradation cost, L is

assumed to be 3, 500 full cycles, DoD is assumed to be 100%, and bn is taken

to be 80 kWh (which is the battery capacity of Tesla Model 3).

5.4.4 Annual Profit Comparison

The difference in profit earned between the proposed algorithm leveraging con-

tract theory with the prevalent practice of charging EVs (dubbed CHRG ASAP,

which entails charging the EVs at the maximum charging rate at the moment

that the EV is connected to the charger and assumes the absence of V2G tech-

nology) is shown in Figure 5.4. We incorporate the payment received by the

VPP from EV owners after they have completed charging. The EV owners

pay 0.13 e/kWh, which is the 95th percentile of the buying price in the im-

balance market. It can be seen that the VPP operator can achieve significant

improvement in annual profit when utilizing V2G technology despite offering

contracts to EV owners in comparison to the prevalent practice of EV charging

without V2G. Furthermore, when comparing between the annual VPP profit

for different lV 2G values of the contract, it can be deduced from Figure 5.4

that offering contracts where lV 2G = 3 results in a higher annual profit for the

VPP operator. This can be explained using Table 5.1 which shows that the

total discharge energy available to the VPP operator is greater when setting

lV 2G = 3 compared to lV 2G = 1. We find that the annual VPP profit increases

(in comparison to the profit earned when adopting CHRG ASAP baseline) by

6.5% and 23.1% when contracts are offered to 25% and 100% of the EV fleet

respectively when lV 2G = 1. The annual VPP profit increases (in comparison

2https://evnet.nl/
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Figure 5.4: Comparison of annual VPP profit for various lV 2G values with the
baseline.

Contract (Incentive in e, Energy in kWh)
lV 2G (hours) EV Type-1 EV Type-2 EV Type-3

1 0.044, 7 0.056, 11 N/A
3 0.021, 7 0.047, 23 0.057, 33

Table 5.1: Contracts for lV 2G values

to the profit earned when adopting CHRG ASAP baseline) by 7.7% and 28.1%

when contracts are offered to 25% and 100% of the EV fleet respectively when

lV 2G = 3.

Figure 5.5 shows the number of EVs in V2G participation over a period

of 1 year of simulation. It shows a lower number of EVs in V2G participation

when lV 2G is set to 3. The decrease in the number of V2G-participating EVs

for lV 2G = 3 is because fewer EVs stay long enough at the charging station to

participate in V2G when lV 2G = 3. As a result, the VPP operator filters out

a greater number of EVs when lV 2G = 3 in comparison to when lV 2G = 1.
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Figure 5.5: Comparison of the number of V2G-participating EVs for various
lV 2G values during the 1 year period of simulation.
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Chapter 6

Conclusion

Flexibility in the power grid is of utmost importance as it keeps to maintain

reliability and stability during adverse grid events, which are expected to occur

more frequently due to the increasing penetration of intermittent renewable

energy sources in the grid and rising temperature. With the advent of bidirec-

tional charging technology, power system operators can leverage the flexibility

offered by EVs when they are connected to the grid to replenish their battery.

This reduces the cost of providing flexibility.

In this thesis, we considered a VPP that aggregates and orchestrates DERs

(with or without solar systems), an EV fleet, and bidirectional chargers. This

VPP participates in multi-stage electricity markets. Given the uncertainty of

EV mobility and solar generation, the risk involved in the multi-stage electric-

ity market participation, and the challenge of fulfilling EV charging demand,

this problem is complex and non-trivial. In the absence of efficient operat-

ing strategies, it is hard to create such VPPs to improve the reliability of the

power grid.

The goal of this thesis is to find strategies that allow such a VPP to address

the aforementioned uncertainties and risks, while being profitable. Towards

this end, we proposed operational strategies for this VPP when participating

in multi-stage electricity markets, and evaluated the profitability of this VPP

under the proposed operational strategies, by carrying out simulations using

real data (EV mobility, solar generation, and market prices).

We then extended our research to the scenario where a VPP comprises an
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independently-owned EV fleet with V2G-enabled chargers, and participates

in a two-stage electricity market. We designed several incentive-compatible

contracts. By accepting a contract, the EV owners enter into an agreement

with the VPP for V2G participation that ensures that the EV owners are pro-

vided sufficient incentives considering their battery degradation (due to V2G

participation).

Throughout the thesis, we have answered all the research questions that

were presented in the first chapter. We summarize them below:

• In Chapter 3, we showed how to overcome the inherent challenges of

operating a VPP that participates in a two-stage electricity market by

considering an emerging type of VPP that integrates a fleet of EVs with

bidirectional chargers and solar systems. We highlighted that operating

the DERs in a VPP is a challenging task owing to the large number of

stochastic processes that govern demand, supply, and market prices.

• We presented algorithms to solve the stochastic decision-making problem

which determines VPP operation. We proposed efficient and practical

operating strategies for this VPP when participating in a two-stage elec-

tricity market in Chapter 4. Specificaly, we proposed one heuristic and

one RL-based algorithm with a differentiable projection layer to maxi-

mize the profit of this VPP on the operation day, given the day-ahead

commitments. This VPP places energy bids in the DA market according

to the average solution of a sequence of deterministic linear programs

solved for different realizations of random variables (i.e., forecast scenar-

ios), and trades in the IM market to honor its day-ahead commitments

and satisfy the EV charging demands.

• In Chapter 4, we investigated the profitability of this VPP under the

proposed operating strategy. We carried out the evaluation of VPP

profitability using real data pertaining to a specific region in the Nether-

lands and compared it with the offline optimal and current EV charging
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baselines. In our results, we showed that the proposed operating strate-

gies exhibit strong performance and outperform the prevalent practice

of EV charging.

• We showed how varying levels of V2G participation could affect the VPP

profit. Our results show that enabling V2G can substantially increase

the profit of this kind of VPP due to increased flexibility available to the

VPP.

In Chapter 5 of this thesis, we studied how to incentivize independent

EV owners to participate in VPPs, and what factors influence EV owners’

willingness to participate in V2G. We explored the profitability of VPPs after

accounting for the payoff provided to the EV owners. Towards this end, we

explored a related but structurally different VPP, in which the EV owners and

the owner of the charging stations (i.e., the aggregator) are different agents. In

this case, the aggregator was required to design a billing mechanism to charge

the EV owners for the service and another mechanism to incentivize them to

participate in V2G (given the battery degradation cost), while making sure

that the VPP remains profitable and charging deadlines are met.

• We showed how to incentivize independent EV owners to participate in

VPPs by proposing a contract theoretic approach to address the surplus

or deficit in the available energy faced by the VPP operator in real-

time due to the inherent stochasticity of EV mobility and energy market

prices.

• We analyzed the factors that influence EV owners’ willingness to partic-

ipate in V2G by presenting a sensitivity analysis of the parameters and

contract duration when designing the contracts.

• We conducted simulations (based on real datasets) and showed a sig-

nificant profit improvement in the proposed V2G-based scheme com-

pared to the prevalent practice of V2G-disabled EV charging. Further-

more, a scheduling algorithm has been presented that optimizes the EV
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charge/discharge schedule of V2G-participating EVs to maximize VPP

profit.

We plan to address the following limitations of this thesis in future work:

• To calculate the laxity of an EV upon arrival at the charging station, the

EV departure time was assumed to be always accurate. In future work,

we plan to design incentive mechanisms such that it is in the EV owners’

best interest to communicate accurate departure times to the VPP.

• We plan to consider grid constraints in the design of VPP operating

strategies.

• The operational costs of the VPP are not taken into account during VPP

profit calculation. We plan to revisit the profitability of the VPP after

incorporating the operating costs.

• The efficacy of the control methodologies (developed and evaluated using

Netherlands electricity market data) was not evaluated on electricity

markets of other countries and regions. We intend to run experiments

using data from other markets and jurisdictions.

• Only one policy gradient RL method, namely Soft Actor-Critic (SAC)

was used for solving the stage-2 (being sequential decision-making) prob-

lem. So, future work lies on comparing the LA-SAC method against

other policy gradient RL techniques such as Deep Deterministic Policy

Gradient (DDPG) method, Trust Region Policy Optimization (TRPO),

or Proximal Policy Optimization (PPO) by using differentiable projec-

tion within the aforementioned algorithms to solve the stage-2 problem.

We have developed all the operating strategies in this thesis to be generaliz-

able to other VPP settings that consist of other kinds of DERs. Therefore, we

believe that the algorithms and incentive mechanisms presented in this work

would prove beneficial to the research community in providing insight into

the design of more innovative, yet effective VPP control strategies, thereby
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accelerating the adoption of VPPs. We envision a green, safe, and sustainable

power grid in which VPPs provide significant flexibility at the minimum cost.
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[110] R. Torabi, Á. Gomes, and F. Morgado-Dias, “Energy transition on is-
lands with the presence of electric vehicles: A case study for porto
santo,” Energies, vol. 14, no. 12, p. 3439, 2021.

[111] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in
finite markov decision processes with gaussian processes,” Advances in
Neural Information Processing Systems, vol. 29, pp. 4312–4320, 2016.

[112] Z. Ullah, G. Mokryani, F. Campean, and Y. F. Hu, “Comprehensive
review of vpps planning, operation and scheduling considering the un-
certainties related to renewable energy sources,” IET Energy Systems
Integration, vol. 1, no. 3, pp. 147–157, 2019.

[113] United States distributed energy resources outlook. [Online]. Available:
https://www.woodmac.com/news/editorial/der-growth-united-

states/.

[114] Utrecht wants to be the first city to use its electric car fleet as a gi-
ant battery. [Online]. Available: https://www.fastcompany.com/

90705832/utrecht-wants-to-be-the-first-city-to-use-its-

electric-car-fleet-as-a-giant-battery.

[115] M. Vasirani et al., “An agent-based approach to virtual power plants
of wind power generators and electric vehicles,” IEEE Transactions on
Smart Grid, vol. 4, no. 3, pp. 1314–1322, 2013.

[116] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained markov
decision processes,” in International Conference on Machine Learning,
PMLR, 2020, pp. 9797–9806.

[117] Y. Wang et al., “Interactive dispatch modes and bidding strategy of
multiple virtual power plants based on demand response and game
theory,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 510–
519, 2016.

[118] C. Wu et al., “Vehicle-to-aggregator interaction game,” IEEE Transac-
tions on Smart Grid, vol. 3, no. 1, pp. 434–442, 2011.

87

https://www.swellenergy.com/
https://www.swellenergy.com/
https://www.tennet.org/english/operational_management/export_data.aspx
https://www.tennet.org/english/operational_management/export_data.aspx
https://www.tesla.com/support/energy/tesla-virtual-power-plant-pge-2022
https://www.tesla.com/support/energy/tesla-virtual-power-plant-pge-2022
https://www.woodmac.com/news/editorial/der-growth-united-states/
https://www.woodmac.com/news/editorial/der-growth-united-states/
https://www.fastcompany.com/90705832/utrecht-wants-to-be-the-first-city-to-use-its-electric-car-fleet-as-a-giant-battery
https://www.fastcompany.com/90705832/utrecht-wants-to-be-the-first-city-to-use-its-electric-car-fleet-as-a-giant-battery
https://www.fastcompany.com/90705832/utrecht-wants-to-be-the-first-city-to-use-its-electric-car-fleet-as-a-giant-battery


[119] A. G. Zamani, A. Zakariazadeh, S. Jadid, and A. Kazemi, “Stochastic
operational scheduling of distributed energy resources in a large scale
virtual power plant,” International Journal of Electrical Power & En-
ergy Systems, vol. 82, pp. 608–620, 2016.

[120] M. Zeng et al., “An incentivized auction-based group-selling approach
for demand response management in v2g systems,” IEEE Transactions
on Industrial Informatics, vol. 11, no. 6, pp. 1554–1563, 2015.

[121] M. Zeng et al., “Group bidding for guaranteed quality of energy in
v2g smart grid networks,” in 2015 IEEE International Conference on
Communications (ICC), IEEE, 2015, pp. 5266–5271.

[122] G. Zhang, C. Jiang, and X. Wang, “Comprehensive review on struc-
ture and operation of virtual power plant in electrical system,” IET
Generation, Transmission & Distribution, vol. 13, no. 2, pp. 145–156,
2019.

[123] K. Zhang, Y. Mao, S. Leng, et al., “Optimal energy exchange schemes in
smart grid networks: A contract theoretic approach,” in 2016 IEEE/CIC
International Conference on Communications in China (ICCC), IEEE,
2016, pp. 1–6.

[124] Y. Zhang, L. Song, W. Saad, Z. Dawy, and Z. Han, “Contract-based
incentive mechanisms for device-to-device communications in cellular
networks,” IEEE Journal on Selected Areas in Communications, vol. 33,
no. 10, pp. 2144–2155, 2015.

[125] Y. Zhang et al., “Distributionally robust building load control to com-
pensate fluctuations in solar power generation,” in 2019 American Con-
trol Conference (ACC), 2019, pp. 5857–5863.

[126] W. Zhong et al., “Efficient auction mechanisms for two-layer vehicle-
to-grid energy trading in smart grid,” in 2017 IEEE International Con-
ference on Communications (ICC), IEEE, 2017, pp. 1–6.

[127] Y. Zhou, Z. Wei, G. Sun, K. W. Cheung, H. Zang, and S. Chen, “Four-
level robust model for a virtual power plant in energy and reserve mar-
kets,” IET Generation, Transmission & Distribution, vol. 13, no. 11,
pp. 2036–2043, 2019.

88


	Introduction
	Integration of Distributed Energy Resources 
	VPP Concept and Implementations
	Incentive Mechanism for V2G Participation
	Research Questions
	Outline

	Related Work
	Different VPP Types and their Trading Platforms
	Decision Making Under Uncertainty
	Robust Optimization (RO)
	Model Predictive Control (MPC)
	Stochastic Optimization (SO)
	Reinforcement Learning (RL)

	Incentive Mechanisms for DERs
	Mechanism Design (MD)
	Contract Theory (CT)
	Contract Theory Applications for V2G


	Virtual Power Plant Model
	Notation
	Two-Staged Approach to VPP Operation
	Stage-1: Day-Ahead Energy Bidding
	Stage-2: Real-Time Energy Trading and EV Charging

	Contracts for V2G Participants

	Operating Strategies
	Stage-1 Problem: Linear Programming using Wait-and-See
	Stage-2 Problem: Laxity-Lookahead Algorithm (LLA)
	Laxity LookAhead
	LLA Algorithm

	Stage-2 Problem: Laxity Aware-Soft Actor Critic (LA-SAC)
	Reinforcement Learning
	Soft Actor Critic (SAC)
	Markov Decision Process (MDP) formulation
	Safe Reinforcement Learning (safe-RL) using Differentiable Projection Layer
	LA-SAC Algorithm

	Datasets
	Baseline 1: Offline Deterministic (ORACLE)
	Baseline 2: Current Practice in EV Charging (CHRG_ASAP)
	Annual VPP Profit
	Learning Curve of LA-SAC
	Comparison between LLA and LA-SAC

	Incentivizing EVs to Participate in the VPP
	Modeling the VPP and EV Owners
	EV Owner Type
	Contract Structure
	Utility Functions

	Contract Design
	Finding Optimal Contracts
	Proof of Equivalence

	Analysis of the Optimal Contracts
	Simulating VPP Operation with Contracts
	Designing a VPP Operating Strategy
	Scheduling EV Charging
	Dataset and Parameters Used for Experiments
	Annual Profit Comparison


	Conclusion
	References

