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ABSTRACT
In this thesis, three measurement metlods for
the explicit solution of the constituent elements of an

electrical network from a set of measurements made at

~certain p01nts of the network without dlsmantllng it,

are presented. The methods are based on the frequency—
response testrng of the network at certain nodes and re-
quire that at leaét one of the network elements be known
or at least one known element be added to the network.

The first method computes all the elements of
the net@ork in one computation. The second method solves
the network elements one node -set a,time and is gspecially
suitable for. the solutlon of large networks. The. thgrd

method computes the element varlatlons, -from a set of

transfer function measurements, by an 1terat1ve Jacoblan

-~

method. For each method, a suitable computational scheme

- is presented. various sensible conjectures associated

w1th the measurement methods are also included.

. In all the methods, the computatlonal experi-
ments with a number of networks showed'exoellent agree-
ment with the ectual e}ement velues. The methods may be -

used in the. testing of a working electro-mechanical Sys-—

tem and in automatic test applications.
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., . CHAPTER 1-

% INTRQDUCTION

<

The measurement of- the constituent elements of

cah- electrical -network of known configuration from the data

measured at certain points of the network where connections-~

may be, made w1thout dismantling ‘the network is of practical

importance for ‘the maintenance of the network concerned As

an example, in the serVic1ng of - electronic equipment of

0
N

known Circuit configuration, the measurement of the network
elements of the equipment detects anv fault assoc1ated W1th'
it In such measurements, however, the number of unknown
elements, in general exceeds that of the measuring pOints
““and as:a consequence, for example, the frequency response
_;measurements at some measuring points. have to be carried
out at more than one frequency. The problem of diagnosxs*of g

th% network thus resolves into finding' suitable measurement

PO

, critéria for the unique ‘solution of the unknown. elements.'

o

It is also the problem of ascertaining %he minimum numher“'

of measurements that is necessary and sufficient for 'theffi

° 4

jsolvability of the network under con51deration. ‘The’ attrac—

tive feature of such method of measurement 1s thar it would
1

faCilitate the evaluation of , the" network elements w1thout

-

h the. neceSSity of dismantling “the, network and as a zgsult,

RN

ey
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it would provide an effective way of network element identi-
fication of a working system. ) -
Though such a method of network identification
appears to be quite attractive froﬁ the practical point of .
-view, no#considerable attention has so far bheen id to the
probiem.ﬂUntil now, only a few studies have appeared in litera-
’Zﬁture. Theee studies ate, however, limited to the solVability
of the~sinéle;e;ement-kind networks and have heen- triggered
by Berkowiti [1] in 1962. In his work, Berkowité‘derived nece-
ssaryfdpd gufficient conditions for the solvability of linear,
passi@g, lumped- paraﬁeter networks relaring the number of ele-
ments capable of being evaluated to the number of available
and partly—avallable termlnale {l]1. The problem of solvability
of srngle -element-kind r« tworks has later been studied by‘
;Bedr051an and Berkow1t~ [2] and Bedrosian [3] In their work,
'Bedr051an and Berkowitz r2] tresented further condltlons on.
the solvablllty of and a ueneral solutlon procedure for srngle—
element klnd networks based on a specrally partltloned node—
node admittance matrix. The statlstlcal con51deratlons in the
solvablllty of such networks w1th some - partly—avallable and
someﬁnon—avallable nodes based on the max1mum—11ke11hood esti-
mation’procedur?vhes later been reported by gerkowiti and
Wexelblat [4]«Recent1y, Even and Lempel PS] have attempted to
flnd the mlnimum subset of network nodes w1th respect ' to
"whlch the network elements of a 51ngle -element- klndgnetwork

. . v
may be uniquely determlned by rndicating the necessary and

e
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»
sufficient conditions for a node to be.essential as a measu—‘
ring terminal; Though their work is revealing{ it furnishes
only a partial answer to the necessary and sufficient con~ .
ditions for the unique solution of the elements of a passive
singlerelement—kind network.

The purpose of this thesis- is~“to formulate measure—

e

ment methods for the explicit solutlon of the unknown elements
_ of an LCRM network from a set of measurements made at certain
points of the network, without dismantling the system..
Three such measurement methods have been presented . and the
appropriate computatlonal schemes have been developed for
the calculation of the element values from the measured data.
Various sensible conjectures associated‘with the measurement—
methods have also been lnvestlgated by computational experi-
ments. Such measurement methods may be applied in the test-
ing of electromechanical systems (\hcludlng electrlcal net-
“’works-and control systems) and have wide appllcatlon p6551—
bilities in-:automatic test equlpments.“

. _anch measurementnmethod needs at least ‘one of the
network elements known. If none of the elements is known,
then a known, external element is to be added hetween two
suitable nodes of the network. In the case of a network
having no frequency-dependent element, known frequency—
dependent element or elements must be embedded to confer the

}networkvthe necessary frequency dependence{)

In Chapter 2 a measurement procedure for the .
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.

slmultaneous solution of all the unknown elements\}rom ar

-

J
set of node voltage measurements is discussed. A computer

A

program for the computation oﬁlthe element values from the
measured data is deve10ped A few theorems associated with
the measurement method are presented. Computational experi-
ments with a number'of examples are made to 1nvest1gate the
measurement procedure.oA spec1al-k1nd of network , known as
"singular’networks" } are also found to be solvable with the
present method by the addition of more than one known,exter-
nalbfrequency—dependent element.

An alternative method for the explicit solution
Aof the network elements is presented in Chapter 3. In this
method, the unknown elements at a particular node are gom=
Iputed one node-set at a tlme by congdidering the node equa-
Jtlon of that node at a suff1c1ent number of frequenc{es.
The attractive feature of this method is that it av01ds the
complexity of handling bié matrices and is especially
attractive when theusolutlon of only a Spec1f1c portlon of
arnetwork is of 1nterest A computer program is developed
wlth the property that once the node sequence, the known
element or elements, and the node voltages at the reguired
number of}frequencies are specifled, the unknown element
,'values of the ‘riodes Wlll be computed in succes51on along

that node sequence. The measurement method is verlfled with

©.oa few examples. 5

Chapter 4 descrlbes a method for the measurement=

- -



of the’variations of the network elements. The method
reqairee the measurement of the transfer function of the
network at a certain'nuﬁbér of frequencies and involves
the measurements at the input ana the output nodes only.:
The method may be used tb obtain the element variations
of a wide range of networks including those having a few
or all éf the nodes, except the input and the output nodes,
inaccessible. In order to achieve érearer-accuracy, an
iterative method is presented. A computer program that
calculates the element Variations from a set of transfer
funetion measuremenrs is developed,and the experimehtal
.results with a few networks are provided. Concludlng
remarks orn the measurement methods are presented in

. Chapter 5.



CHAPTER 2 < e

EXPLICIT SOLUTION OF NETWORK ELEMENTS BY.A SET

‘OF NODE VOLTAGE MEASUREMENTS L

4

2.1 -The measurement method

This4consists of measuring the node voltages of@;ﬁ
the network at a sufficient number of frequen01es and then :
to evaluate the elements ‘from such measurements. The method
needs one ‘known element to be added betwegn two suitable
nodes. In some cases,,lt requlres more than one “known" element

to be added between sultablgdp01nts. As the number of elements,

in general exceeds the number of test p01nts, measurément

of - the voltages at more than one ‘frequency is requlred if

Y
.'t
v

"

the network has no frequency—dependent element, known fre—ﬂﬁ,»~«

sy

quency—dependent element/elements at sultable p01nts must be

embedded.to confer the Retwork the necessary frequency-

dependencel : ‘ A ' s
Consider the'%%twork shown in figure 2.1 having
e elements, and (m+l) nodes (the (m+l)th node being the
'reference\or datum node)' Let q be the number of known
elements‘being added between certaln p01nts f¥-Te) that the

i

resulting network has (e+q) elements.

The Klrchhoff's Current Law matrlx equatlon for -

the network is glven by (6] .



A I =20 :
1 T (2.'1)

[

whe;g Al,is the node—branch’incidence submatr;f of order’

1

N
\» added- element : y

Pigure 2.1 A basic electrical'netwofk'wiéh m+l nodes.

. -8 '\ B - .
v o ’ - » . »
rom.the node-branch incidence matrix &£

m x (e+q)‘ formed £
the network‘by deleting the‘rQW\dUe to the reference node,

and ‘I is a column vector :given by R
. .



& , i" 8
“ | Y " Il 1 . | | |
I, S
N
/f' ) L
I | T ; .
. I = e S : “(2.2)

- e+l - ' ' .

s B

‘ i Ie+q

where, Ii is the current flowing through the branch i

with an element of value bi’ D¥noting' Yy as the vol-
, - ' i

tage across the element bi' I may be written as

/

) L | . | :
I xi vbi b__} | | (2.3)

\)\ BB . v . Y

it :

-V
o
I
Q
Il

l/Ri, tnr a resistive branch with a resistance

.‘~;: ' | : Ri i

T =Cy ¢ for a capac.tlve branch with a capacitance Cj i

1/L;, for an inductive branch with an inductance Lj;

x. =1, for a resistive branch;
= s , for a capacitive branch;
=1l/s., for an inductive branch;

where s is the Laplace variable.

o —_—
Ed



. . ) [ v
From equations (2. l)d(é 2), an?LEZ .3), we get :
K K Xl Vbl bl
X2'Vpy, P2 T 1 . |
‘X Vi, b ' ' R
b ' .
A \| Te "be. e =0 (2.4)
. X i b '
o e+l be+1 e+l
. L X . v - b, /
o L e+qg be*q e+g—
&

Let A be the node-branch incidence submatrix

b(obtained by deleting the row due to the reference node) of
the network W1thout the added elements, A is ,thus), a.matfix o
of order mxe and is a proper subset of.the matrix Ay . Parti-

‘tioning the matrix -Al-; equatlon (2. 4) may be wrltten as

¢

(2.5)"

i
o

- o e e e e am am

r

o *e#q Vbe+q. e+g

whenpe



 A2lxlvbl

54

An1¥1Vpy

L

oxr

R12%2%p2

ALnaXAaV, .
22%2b,

§m2X2Vb2

' [N
[P SN .

is a matrix of order mXxg.

I —
s mges | | 1]
TN |
. Azexevb by
e
/ -
me*e’b,, | Pe |

X vy,
| etq be+q

X v b
e+l be+l e+l

. X

}e+2 Vbe+2be+2

b
e+q

Equation (2.6) may be rearranged as

10

(256)

(2.7)

“(2.8) -




and £

Lo 11
where e
: o
h-_ ‘ : —l P v ‘ N i
P, A , ‘
i 11¥1Vby P12¥2%, ¢ v Pre¥eld
P2 Ay1¥1Vpy  B22¥2Vp, - ¢ Pze¥elbe
P = . . - '
i A vr A _
| m ] L_mlxl bi'kim2x2vb2 . Amexevbe
= AV (2.9a)
v, is a diagonal matrix of the form
<« } _ . . )
*1'py 0 ]
. o xyV  ow
2%, .
0
' X v
. e b ’
L_ -
) L . N 2 o ;
Py is the row vector due to node i , C is the component
. ) ‘ﬁ:"'.fs A Coe
vector given by ,
B / bl hl
b, |
C = . (02 - 9C)
~ i
. be
L - r

‘is the forecing function vector expressed as’



12,

£ 1 | i X v | T,

b
£, X v b
\ 2 , . ‘e+-2 be+2 e+2 ' -
f = o= - A2 . (2.94)
£ Lo :
1 e SN Lxetqv,be+qbe+q

/ fi 15 the element of the vector f due to node 1 .

Equatlon (2.8) is an 1mportant relatlonshlp; It
represent§ m s;multeneous node equations in e unknowne;"
with, for a connected network, - e being greater or,equal_
to m . For the obtalnment of the component values, we must
have 51multeneous equatlons ‘which can be convenlently

",

,obtalned by con31der1ng the m node equations of equatlon

~

/

(2. .8) ‘at a sufficient. number of frequenc1es.
It may be seen from equatlon (2.8) that the node
equation due to a node i is given by

1,{

P, = [ Aj; Ay, .o B )l Yy (2.10)
/
Using subscript = J to represent the frequency j->

at which such node equation has been'con51dered, we write
= [ A1 Aiz’ ‘. . Bje ] | Vbj o c (2.'11)_‘

The corresponding element of the forcing function ector f is

-



T IR =2

A
f57 7 Dheny o) | *erivb,; Peir |
| | | ; xe+-2_ be+23 Doyt
. | | | | | . , : o - | (2.12)
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- Assume that-the m node equatlons of- equatlon

(2.8)" have been measured with some or all of the node equa- *
tione consxdered at more than one frequency =1e) that we get.
a‘set . of e node equatlons Wthh may be expresseda fram
equations (2.8),(2.11), and (2,12), as -
V C =F’ ., ) ' . . (2.13) "ﬁ
‘Here, V 1is a matrik.of order exe and F 1eﬂaﬂcolnmn'
. : 4 cos i S ) \ P
matrix given by B o L _ .
T e ] K
: - P11 . | ’
— S . A
i 13 | |
N Pa1
) .,.VZ - . . -
v = 9 4 ‘ = o (2. 3?4)
. P23, v
. ' Pml ~
V. A .
| e | " .

o -



(‘2_.15_)

‘. ’ mjm‘ : ; . ' : T - L
T - R //. . ‘ . ) \

_ where the node. equation at the node 1 has been taken up atv

-jl frequenciés,;that at the node 2 at::jé ' frequencies, and

" so on. Note' that ' : w';‘\°
N .o . » .
] o . , S * |
4"/ . . R ) .
A Frop“eguetioj (2.13), the,coﬁponentvvectqr may be
obtained/ds b . |
- ¢ =uv Fo_ - ‘ ;(2.17)

1'prQV1ded the matrlx, V is nonSingular.'

It can be seen that the* mlnlmum number*of frequ-

t

encles at which- the network must be measured 13 glven by
/off to the

the ratlol e/m ' prov1ded the ratlo ‘be rounded

next higher integer in @ase.lt_ls~a fract;en.
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2’2~ The -algorithm for the computer solution:'.

e

r the solution of

-/ 0

& L '
A dlgltal computer algorlthm fo

o

the’ network elements w111 now be presented.

P PO

- .
o .
-, . -

’, . ¢ ine branch voltagd and the source voltage

2.2.1 Convention of t

The voltage .V - across the branch-element 'bkl
by ‘ I .
vy of. the branch k of-

is’ related to" the branch voltage N :
 figure 2.2(a by [7] o | | | y
! b i ) ‘ 4 " @
k .
kS . _ .
v ) .
NY (&, z - \ )
- -— e
// k : \_\
® .
Y N . \ -
-~ : © Z‘_ 'u’
_::; - [} ‘/v/‘
7 k V,\‘
E e T
[“HE .«
- ; A : ) .-' ) ' ) / - P
Figure’2.2 Conventlons of the branch volrage~andAthe

‘source voltace.

L4




The fo;lowing'conventions'afe'to be followed for tﬁe;use,

- of this equation: : -

O has been assigned for the’ branch, the head of the arrow . °

represents the reference p

*  onc¢e a particular direction

 the voltage across the branch and that

‘of’the bran;h are concefned.-Thus, fof

-

e W

o

Voltage across the branch

The sigpAconvention-for the

_3n-the branch k' is,és follows:

T

it should deliver current into the branch in the same T

directibn*gs the arrow, Ej

it is

1f the voltagé source has a

. (which is arbitrary) .

oint for that branch g% far .as

'k

ig~assumed positive , otherwise

le ~
-t . N \

\ N

- R i #

-

.
V

across the element -
. \S . . .'
figure 2.2:,

o L o

'figure 2.2(B),
figure 2.2(cl.

~

voltage source Ek

4

polarity such that

asshmedfnegaEiVe.
“fThus, for the brahqh ngtation of figﬁre 2.2(b),
Ekr v whereas for figufe 2.2(c)y Ek = - IEkIF.
. ’ S . » _ Ty
y vbk = ( vy‘—‘vi ) + ,lEk| for~flgure 2.2(b),c f
\N’. > .V . . . . }
= (.Vz - Vy )- - IFE' for -figure 2.2(c?i

°
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2.2.2 Voltage across the'branch element from the node -

voltage

The analysis in Section 2.1 has Ween carried out
in terms of the voltage across the: branch.elements, whereas
in the practlcal SLtuatlons, only the node voltages will

be measpred. In order to use the results in Section 2. l

,

- one must calculate the voltage across the branch elements
-~ \‘
: ~ ‘
from the node voltages. )

Let vj be the voltage at the node j Wlth

respect to the reference node. With our 51gn convention,
g \

(
the relationship between the node voltagesena the branch

?oltage is given by {81, (9]

T - . ,
\ |

v' = AV ] (2{19)
| .
. Egquations (2.i8) and (2.19) may be combined toget
CELTEL N
R S : : ‘ ) TN
N 0 . ‘ o o i T - N
F'/Vb. _-‘ ’ : El » \
3 J ,-'”" l -
v — E
b2 v i 2
1;
. v. © . . .
- 2 . .
v S N - e | (2200
be- 1 . e |
) v, E ~
L m 1. etqg
V —
1 Betq L .d




/ .
Equation (2.20) gives the relationship between the branch

voltageé and the node voltages of a network.

2.2.3 Calculation of the node voltage

‘ In order to calculate the node voltages of the
network, the following relationships may be conveniently

used [101,[11]

B , ' '
° Gv =A YE | . (2.21)

where G is the node admittance matrix given by

. L. k3 » .7
) - ! . .
- N .
< - a : .

K - T o
G =2y YR ; f . | (2.22a)
where e -1 .
- Y =2 o -, (2220
Z =R+ sL + (1/s)D ‘ . (2.22¢)

R is a dlagonal matrlx of order (etq) with the dlagonal

element rii.= Ry the re51stance of the branch ‘i

( ryi = 0 if the branch does not contain a resistance);

D is a diagonal matrix of order (e+q) with the diagonal
element :dii = 1/C;, where Cj is the capac1tance of the
branch i ( dj3 = 0 if the branch does not contain a capa-
citance )} L _is a square matrix of order (e+q) wﬁth

the dlagonal element 1 i < Li the inductance of the

- branch i ( lii =0 lf the branch is nonlnductlve ), and N

-
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iy = Mij , wWhere Mij is the»mutual inductance‘getyeen
the branch i and the.branch j .
For such calculations, culrent source ,1f any,
must be converted into its equivalent voltage source . It

.may be pornted out that in order to use these equatlons,

the matrix 2 must be non51ngu1ar which requlres that [12]

(i) each of the current eources must be connec-
ted across.a single‘branoh so that it\can be transformed

into an equ1valent voltage source with a series 1mpedance,

(ii) each of the voltage sources must be in
| 3

series w1th some 1mpedance PO \ S o

\
\

If the above condltlons are not satlsfled then
N \

I- Shlft transformatlon [12] in the case of\current source,
and E—Shlft transformatlon [12] in the case of voltage

source ,must be made in order to make the marrix 2 non-

singular. : _ R \

2.3 Flow chart of the computer program

The flow chart mayvbe'obtained_from the discus-
sion in the preV1ous sections.The computer program must be
such that once the node-branch 1nc1dence submatrlx Ay '
the E-matrix , and a suff1c1ent number of node voltage
measurements are given, it will calculate the forc1ng

function vector F at different frequenc1es and/tzeg,k orm
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the V-matrix to use equation (2}17T_ to find the éoﬁponent
values. However, for the purpose of‘the'computational expe-
riments, the computer programlhae beenknritten with the
additienal feature that it calculates the node voltages'
dthat would have been obtained through measurements in prac-
tice, and W1th thls set of node voltages, caleulates the
element values. For the purpose of greater accuracy, the
program must be wrltten in double preclslon. In writing the
|

program, we shall assume, for clarlty and without restric-

* tion, that there is no mutual 1nductance presentvln‘the

.

" network.

;'The‘flow chart will have the following major

stepsi ) L IR , . o

1. Read _m,‘n,'nr, ni, n, andvthe'f;equeneies at-whieh,
measﬁrements areeto'be made. m is the total numbet

. of nodes excluding the reference node- n is the |

, total number of elements lncludlng the added elem—'

ents; nr,'nl, and n are the total number of

el

res1stances, 1nduptances ,and capaeitanees.respecti—
vely. o .

2. Readr the elements of the matrlx Al; thenelements aof
the matrix E ., and the values of the re51stances,
inductances and capa01tances. In order to ease the .

e

formatlon of the Y-matrix, lement Values are

B

assigned these locations:
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Resistances: ' R(1) ,R(2), « « R(n,) ;

) [ .
Inductances: Ling+1),L(n+2), . . ,L(nrfnl) :
Capacitances: C(nr+n141)fc(nr+nl+2l,', . +C(n).

In assigning locations for the added element, care

must be takeéh so .that if such ‘element is capacitive,
it is a351gned the locatlon C(n). For two capacitive

elements, a551gn them ;n locatlons C(n—l) and C(n)[
3 .

etc. If the added element is a resistance, assign

.
’

Resistances: R(l); R(2); .« JR(np-1)
Inductances: _L(nr)}L(nr+l), . . ,L(nr+nl—l) ;:
Capacitances;{C(nr+n1),c(nr+nl+l), . ..,C(n—l) ;
Added resistance: "R(n). | o

v

For two aqgéd resistances,‘assign-such that the added
elements occupy the locatlons. R(n-1) and-R(n)..Simi—

: la:_ procedure is to be adopted in case the added

element is an 1nductance.

k4

3..Form,£he matrix Y. Slnce there is no mutual induc- ~

.'tance, the matrix 2 of the network w1ll be dlagonal

and as a,result, . Y;; = 1/2554 ,:Ihe matrlx' Y w1ll

jthus be a diagonal matrix’én@_have the follow1ng

‘diagonal elements:

vi; = L/R(E) . i=1, 2 - . Bed



- the matrix H given by -

1/[sL(i)] , l = nr+l( nr+2, .« . ; n£+n1 ;

)
|
i

i
I

sC(i) , i = nptny+l, npetni+2, . ., n.

These are the diagonal elements when the addedvelement'

is a capacitance. For a resistive or an inductive

‘added element, Y.. is to be formed in acgordance

1l1

with the locatlons a551gned in the step 2.

Premultlply the matrix Y by the 1nc1dence matrlx

,Al tOrfOIm the matrix D given by

D=2 ¥ o (2.23)

. 7T . :
Postmultiply the matrix D by A, to get the node-

admittance'matrix' G..

‘Postmultiply the matrix D ‘by the matrix E to form‘

! . =

?

H;AlYE S (2.24)

Invert the matrlx G and premultlply the 1nverted

matrlx by the matrix H to get the node voltage matrlx g

V.. ~
/

‘ Obtaln the branch voltages from the node voltages by

the use of equatlon (2 20) by the procedure as’ follows-
T ‘ .
(1) postmultlply the matrix Ay by‘the'node

voltage matrix’ to get the matrix VX such

that



10.

11,

12

13,

14.

. 23 ‘-

o VX = Ay V - (2.25) ~

. (3i) subtract the matrixb E from the.matrix'
VX to obtain the branch voltage matrix.
Multiply the elementS'cf the branch VOltagermatrixn
by s for a capacitive branch..by ‘1/s for an

1nduct1ve branch and keep the elements unchanged

. for a re51st1ve branch Thus, the term X, Jb

: ! /
the frequency s 1s obtalned .These are the dia-

gonal elements of the matrix Vb .
Form the element f i3 of the forcing functlon vec-
tor by the use of equatlon #2.12). In the ‘\case of

only one added element, the element £, i3 ‘is given

'by Alnvb j by where Vb . .1s\the element of:

‘the matrix Vp due to the added element bp -at

'

a frequency j. L “ﬁﬁ

Form the matrlx P of equatlon (2.9a) -fromgthe

| A—matrrx and the matrix Vb by postmultlplylng

the A-matrlx w1th the matrlx Vb

Return to step 3 to repeat the subsequent steps at .

a new frequency untll all thé frequenc1es have been

ccnsidered; - .

; | _ . ,
Form the matrix V from the p-matrices by the
use of equation~(2.14);

Invert'the matrix V._'
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15. From the element. fij’ form the fefcing'function
‘vector F by the use of equation (2. 15) .
164‘ Obtgln the component matrix by premultlplylng

Q,

"'« “the vector F with the inverse of the V-matrix.

’.

/ , -
The details of the above steps are illustrated

in the flow chart given in figure 2.3.
. , /

2.4 A few. theogemns

A few theorems which are relevant to the present

measurement method will be presented in this Section.

2.4.1 Some 'definitions

Directly connected node: The nodes X -and Y

' ) . ’ ‘ (“'rl“"g?._"p G .
are called ?directly connected" if there. is at_least one "

51ngle netw0rk element ( either a re51stance, a capac1tance,..

or an inductance. ) thh or without a serles—voltage source

or a pérallel—current source,.connedting theém. ThiS‘és illus- -

trated in figure 2.4.

. Primary node: A node is called a primary node

-

if it is directly connected to the reference node.’

L

2.4.2 Theorem l., The ‘node equatlon of each prlmarv node

'must be - taken at least at one frequency for the V-matrix



START

READ m,n,nf,nl,nc,sl,sz,s3

READ AND PRINT . Ei' i®l,2,.../M;

[
vz g
i=1,2,...,m7 3=1,2,...,n.

READ R;, jel,2,...,n

|

r

Yo = LR, i=1,2, oo, ny

25

ii
!

Yes
73+l

Yes-
i=i+l

READ Li,i=nx+1,..,nt+n

f

READ C,,i=ng+n1+l,..,n

ii . i i =nr+n1+l, seer N

PRINT Y35, i=1,2,....,n

Figure 2.3 The\f/low'chart.




CALL THE MATRIX INV.

ER

A\?

SUBROUTINC TO INVERT :

- - - —
VB; = VXi/s, i= nr*l, «es Dptny

[

VBi'=SVX'

i s i=ng+ni+l, .. ,n

PRINT Vi, i= 1,2

o ir

m

L

l FF(i,INT)=AinVBnC4 :

{

IPRINT FF(i,INT), i=1,2, <., @

]




v

= P(i,},2) ,

nij

Figure 2.3 The flow chart(Continued).

”



-t

= [

f?nmr Vige ;Ll,.‘., n-1; 3s1,.., n—lj,

CALL THE MATRIX I SION SUBROUTINE

TO INVER}‘ THE MATRIX V.
PRINT THE INVERSE MATRIX &DETERMINANT

Yes.
T . j n, =
. - . NO . .

Lo

’l"ﬁy J 3
Ghi=l/ 1 ,iunr+l, PR nrtnl

= I

i

|_ GA; = C; . i=tngEnyel, .., "n‘-lAJ ,

e 2

i

v

..

—

r . PRINT Gy, 151,2, @, D=1 I'—"_‘

i=1

=
pRINT coMpr (i),
o,

. ;: .h‘

e,

Figure 2.3 The flow chart(Continued),
4 L f'
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(b) SR

Eigure;2.4 (a) Nodes X and Y are directly connected,

w12

(b) Nodes X and ¥ are not dlrectly connected

. to be nonsingular. . ' S

!

S

v

" Proof: : o
——————— » - .

The node—branch' incidencev matrix A Qf
/3
‘?‘/l

-

a. network has two non—zero elements in each column. The.
- o R
matrix A 1s obtalned from the matrix A, by deleting ‘the

row due to the reference node which has non-zero elements

]
_in the columns due to. those branches which are 1nc1dent to

.the reference node. As a result, the matrix A w1ll have

@



I3

A

a 51ng1e non-zexro element ( either +1 or -1 ) in

'each of the columns du

incident on the refere

welement for a particu

due to the primary- no
to the reference node

node equation at that

V-matrix ‘will have a

that branch, makingﬁt

J
o

Corollary i.l: The no

¢ . /“l(‘ " N
to th& primay node -mus

frequency. .ot

KON

L
Pt

Proof:
By Theo

o

the prlmary nodes mus

e to thbse branches whlch are ¢

nce node. The single non-zero

lar column appears in the row

de which is directly connected
through that branch. If the
primary node is not'taken,<the
zero column corresponding to

he V-matrix singular.

-3

des which are directly connected

st be measufed at least at one’"

rem'l , the node equations dﬁe to

t be taken at 1east at one fre-

quency In writing- such node equatlons, one must know’ the

voltages across,all th

voltages of all the no

fto't _‘bde under cons

e pranches Wthh are incident at

'that node. As a consequence, one must measure the node

des whlch are directly“connected
1 . . ‘

1deratlon.
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" corollary 1.2: For the node equation of any particular :
. ' I

node at any frequency, the node voltages of all the nodes,

directly connected to that node, nust be measured at

that frequency.

I
2.4.3 Theorem 2: - Each node voltage of a connected

»

network must be measured at some frequency.

IO . : (f/

“i--proof:
L "Prool
‘ L

. It has been shown that the primary nodes
_ as well as the nodes which are directly connected to
the primary nodes must be measured at least once.
Let us now consider the remaining nodes which are |
neither prinay node not directly connected with

them. They.are‘either of the following two types:

(a) Nodes which are directly connected to
a dlrectly—connected node
(b) Nodes Wthh are not dlrectly connected i

/ o to any directly-connected node.

For the type {(a) node, let suchle node X be-connected

to a dlrectly connected node ng. through an unknown

element i . Since the columns of the node- -branch
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incidence submagfix Ay - due to éhe element i
‘"has non-—2€erxro element in fhe rowlndue to the

node ng andv thé node X' only, either one

~or both of the node equatioﬁs must be taken at
least at one frequenCy. -As a conseqﬁence, the
voltages at both the nodes hd and X ,muét

be measured at least oncé. For the tvpe (b)

node ., let Y ~and 2 Dbe two such ﬁodes which
are not directlydconnected to ény directlv- »
connected noae. Let the branch i ;COhnect‘them. Now,
in the matrix A ,  the elements in the columns

due to the bragi: i are zero everywhere except

\in.the row due to 'theAnbde y and %. Thus,
for the ﬁatrix V(/ to be nonéingular, either one
or both of the n;ae equations must be included.
The voltages of the nodes X and Y there-
fore,.must be measured atcleast at ohe frequehcy.
2.4.4 Theorém 3: For'the _ V-matrix 'to,be'noh-
singular, the number of different .frequencies
at which the node e%Pation of’a node may.be taken
to form the v-matrix , cannst exceed (dfl),

where- ‘a  is the dégree of that node.

-

proof:
Consider a node X with d branches in-

©



cident at it as shown in figure 2.5. The Kirchhoff's

Current Law at the node is given by

f

X1V} bl + X2Vb2b2 +- . . .+ X3V b

=0 - (2.26)

> S

Figure 2.5 A node with d branches. incident on it.

N
pea

' ‘Writing this equation in d different fre-

gquencies, we get

X11Vp 1P1 * ¥p1VpaP2 T+ 0 ¢ Y *a'p 1Pg =0
1 3 d
g (2.27)
XV b, + X,V | b +, . e e T XV b .=.b:
F1a"p, a1 28" a2 ad"bga"d,
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Equatlon (2 27) is a set of linear homogeneous

b b

Since the varlables are non-zero, the solution of this set

equations w1th a unknown varlables b

of equations must be.non—tr1v1a1 necessiating that the b
‘coefficient matrix | ' . .

xlivbll X51Vp1 v ¢ © X31Vp.1 1 - -

Xy aVi o © XooV ' . : . ‘
12"b,2 22 'b,2 . . . XV , E S
-1 2% d2 bg2. |

x L] L] L]
2aVb,d | . devbdd

‘must be.slngular. The set of equations are, thus,'linearly
dependent. As a consequence, the matrix V with this set

of equatlons as a subsew will be s1ngular. For_this’set of
homogeneous equatlons to have’ non-tr1v1al solutlon the

rank of the coeff1c1ent matrix cannot exceed ( d-1 ). There-

fore; ( d-1 ) is an upper bound for the number of 1ndepen4

dent equations. Hence the theorem. , '
i . 4 : I

Corollary 3.1: Theorem 3 is also true for the nodes where
knoWn elements have been added. The degree d at these

nodes includes the known, added'elements.
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Proof:

! - ' o : .
: : The node,where some known elements have

been added"also satisfies equation - (2.27), whefe d re-
presents the totaL;number-of elements including the added

“ones. The: node, thus, must satisfy Theorem 3.

A

/
‘2 4.5 Theorem 4: If. two or more.elements of same kind
\ /

(either resistances, capaCitances, or inductances) are

connected in parallel between"two nodes, the matrix v

will be'singular.

Proof: , v _ ' R
"i. ' - Let two branches i and 3j, bhaving the

same kind of elements, be connected in parallel between

A )
,\two.nodes X and Y as shown in figure 2. 6. The node /

Nodes X and Y are connected by two parallel

Figute 2.6
branches bi and bj.

'at m different ftequencies‘

equations of the node X
- o

are éiven by

4
A"



+Xx b. .

+ .V.v+x
. 31Vb.1 J

. b . )
Xllvbll l llvbilbi+ .. »

Xl2vb12b1/+" ‘b

X52Vb.2 j+ .o

36
+
%dlvbdlbd 0

+ 2 =
*a3 2P0

+‘. |
X2V 2%t 1 0 F

o

; . . t+x b.+ { . *+Xx. v .
| | jm'b 53 am bgm-d

imvbim i
(2.28)

" The node equations of the nodeffd'at p different fre-

quencies are “ - > o .
X, boA. ANV - -
X;,lvbl.lbl' X;1%p,1°1" *xglvbj;b to g0V, 1Pa Q}
Xp1oVp, gPyete s¥X Uy oD e AX Ty Pyt TXqiVD 2Pg=0
R e ¢ : 3 < Par -
. ' '. | \‘
- i
' ’ : . j v ) )
b, +. .+x. WV b.+. .+x.-v, _b.+. .+x_ - o b_ =0
1'p bl-p 1! ip _biP i - JP bjp 3. xd'pvbdvp ar'

Since none of the remaining'npdesﬂof<tﬁe network

has the branches i and j incident at it, it i?'clear that

/the entries of the v-matrix in the column cotrespOnding"- - :

to branch i anﬁ‘branch | w111 be zero except for the nodes

‘are of

Again, since the elements by and bJ

‘X and Y .

same type ,‘and since they are parallel,



- s

ks B

X. V. , = X.. vV
ik b.k jk bjk

indicating that the'columns of the matrix v correspondingj

to- the eléments} bi and bj are the same. The mat:ik v

. . . N
ls,thus,.51ngularﬁu/

2.4.6 Theorem 5: For a ladder network with a single ele~
e —————————— a . . ) [y

mentwbetween'the nodes, the matrix V is always nonsingu-
lax. B A S
' o /

Probf£

. ST B
Consider the ladder network of figure 2.7.

‘Figure_2.7 A ladder nétwork with n nodes.

i

In terms of the node voltages, the V-matrix of the;qetwork

may be obtained as
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%, Vo1 Vi) T g0 (Vp1vyy) 0 e e e O
X12(V02_v12) ~X55V12 X35 (Vg vi,) O S R
00 -x31.(V217v11) *41V2) (x51(v337va1) O -0
0 0 =-x32(Vop-Vig) —XE4oVos x52(v32—v22) o . . O
0. .0 x v -V Cox ,
. (2n—-3)/1[ (n-2)1 (n—l)l'] X (2n=2)1" (n-1)1
*(Zn—l‘)l[v?’ll—v(n-l)ll 0
5 |
0. . X v -v 1 =% 3
(2n-3) 2 (n-2)2 '_(n—%)z : (2n-—2)2v.(n-l)2
- | , | |
' / .
‘#(zn_l)z[th—v(n—l)2J
o . . .0 opmmTVen! o T 1Vn1
0 . . .0 —X(z'n_l)z[Vn'z"v’(n_]_)z] . "*on 2Vn2
(2.300 .

A

By elementary transformation, the determinant of the ma- -

/

trix V may be evaluates as.
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A =
n
%13 Vo1 7™V1y) T*21v11 x33 W1V O o 0
le(VO?—Vlz) —x22v12 x32(v22-v12) 0 0
0 O —x3l(v21—v11) -x4lv21 x51(v31—v21)» 0. . ’0
0 0 -332(v22—v12). —x42V22"x52(V32-V22)' 0 Q
00 0 X VTV eny! e el
( ‘ , . | |
0 .. 0 x(zn-3)2[v(n-2)§v(n_1)2] : —X(Zn—2)2v'(n—l)2
where o
K = | . l‘.V
*2n zvnzx(zp-l)l[y(n-l)l nl |
] (.37

—x2n lvnlx(n—l)z[‘v(n—;)z_vpz

Equation (2.31) may be used to derive
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A é_[x v X {v -
n 2n.2 n2 (2n-1)1 #(n-1)1 vnl}

_x2n‘lvhlx(2n#1)2{V(n—l)2-vn2}]

X v X Av }
2(n-1)2 (n-1)2 (2n-3)1 (n—2)i (n—l)l

‘xz(n—l)lf(n—l)lx(zn-3)2{_V(n—z)g’v(n_i)z}]

X“° o o & X xX v X - " | ""
- - [x,,V,,%51 (V17757 X41Y21%32 V21 Vool

)]

T PR

. . : e
(2:3})

X [xzzvilelA(V01‘V11) - x21V11x;2‘$§§‘V12

A sufficient condition for the matrix V to be nonsingu-

lar may be easily derived from equatioﬁ‘(2.33) as

X - v X 4 .
—== = 1] # L -

X v : X -V

2a a 1. 2a a ]2

(2.34)
for a = 1,2, « « & B

N
“TYf +his condition 1S not satisfied at one Or more nodes,

' t;é matrix V Wlll be singular.

The node equatlon at the output node n may be

written as &

“ - - = b v. (2.35)
Xy 1P9n1 Vne1” Vnl XonPonVn T *2nsp 2n+l D (2.3

/

P2



whence

- b  +x b , o
_ 2n+l1 2n+l 2n 2n ' (2.36)
v X - b
n 2n-1 2n-1 | Lo,

v . X

The node equation at any other node 'a’ is‘given/by

pe b (v - v ) +x b (v -v) - b v =0
2a-1 2a-1 a-1 a 2a+l 2a+l a+l a 2a 2a a

(2.37)

from whiéh,.we get

x v S o X b A :
.. 2a-l a-1 15 __2a - 2a+l 2a+1(,a+l’y_ 1
X <= = X b v )
2a a . = 2a-1 2a’ 2a-1 a
(2.38)
We now ¢onsider_5everal cases of interest:

_ v o
2.4.6.1. Resistive ladder ) : '

the nonsingularity

K

For the resistive’laddér,

conditions reduce to the conditiontggg; the ratio

v | A . . .
a-1 _ 3 ] should remain same at two d

v
a

ifferent fre-
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quenc1es. For a- re51st1Ve ladder, equatlon (2 36) "and

‘s I
equatlon (2 38) may be used to obtaln : S :
v | g +sC | |
n-1 _ 3 - _2n . (2.39a)
v g . _
n . 2n-1
and - 1. ' _ I . ,
' Ty . o X :
~ /
v g ' v | g .
a-l _, . 2, _atl . ;; 2atl '(2.39)
v . . v o
a - 2a-1 oa - 2a-1"

It may be seen from equations (2: 39a) and (2. 39b) that for

.the ‘node 'a' to satisfy 'hLe nonsmngularlty condltlon we | '.E
‘must-necessarily have the term I(va_l/val-lj or the term
, i

[ (vay1/Va f 11 frequency—dependent.

"j jfw, from equatlons (2. 39a) and (2 39b), we get

fer node n-1:

—

v | g (g +g ~ )+g . + sC(g +1)

- on—-2 . _11 _ 2n-2 2n 2n-1 . 2n-1l 2n=-1

v - - i - i o

n-1 g (g +g  +'sC) v o
; | 2n-3 2n  2n-1 o .
i
Cl + dlS
|

-e . -

a + b s
1 1 -
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for node n-2:. -

V 3 - 'gz 4 9 A ~ ¢ +d's
n-3 . _._<4n-4 2n-3 , . n-1 -2 2 -
v — 1 g O F —=1) =735 '

n-2 " 2n~5 2n-5 n-2 2 2

¥ 4

In general, for the»node is ~—

/

(n-1) -1 i i (2aD

where a , b+, ¢ and & are non-zero positive quanti- -
' i i i i - : '

,ties. It is clear from the. above analy51s ﬁhat the non—"
singularlty cendltlons are satlsfled at each node of such .

a ladder.

' 5.4.6.2 Resistance-capacitance ladder

\. a /

274.6.2.1 R-C ladder: o

.For the ladder network of flgure 2.8, the non¥.:‘

\

51ngu1ar1ty condition is that' the term [(va 1/vg) -11/s

must bg frequency—dependﬁnt, which is equlvalent to the -
condition that the term [(va+1/v ) - 1]/s must be fre-ff

quency—dependent [see equat;on (2. 39b)]
For this 1adder, equatlons L2 36) and (2 381

! ) il
. ; .

. /‘ - ) . : : Y

Ce




- v ( o i ’
hd .;‘ -
R2n+1
_ _ ,
¢
' Figuxe 2.8 A fésistancé-capacitance ladder. Q!!
’ '
“
'may be used to obtain
—— , ! ‘ ° N\ . - ~ ! -
" ' \\. 7 )
for node ng
..‘.. <, | ' . C +v"’ g ,. /’S
v ( 1 : 2n ~ 2n+l - (2.41)
( n"'l _ l ) ‘ = N ’ ) ) - .
g Vn ‘s . 92n-1.
us satisfied ?y the nade n. g

The ngnsinéularity,condition is.th

°

<.
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for node n-1l:
/
v ‘ . g + sC A
vn c- 1l = - ..2n+l 2p‘ (2.42)
3‘1 g + g + sC
2n+1l 2n-1 2n
for node n-2: Y \
e |
v asd+(b-C )s+d
n-1 1 = - % 1 2n’ 1 .
v ' _ 2 g : (2.43)
n-2 . as“+bs+c “
C 1 1 1
where A _
/ c ¢ . -
: a %% _2n 2n-2 -
; 1 ' : » - :
' ' I2n-3 ‘ ;
(g +g )C_ ) g :
b1 e 2n+l ?n-l 2n-2 + O 2§-1 + 1)C
’ . . . n
? : g2n-'-3 ) ‘g2n~3 ' |
c - a.+ + :
1 vt 9on-1” Tann
aﬁd" g S . -
’ 2n-1 2n+l : ‘ o -
) n=-. ’
.1t .may be shown that for any arbitrary node n-i (‘i #0 ),
. - . . ! '.'—l . -
v P Afsl+A S:L + . e . +As + A
(n-i)+1 _ ; _ _ i i-1 - 1 0
M SR i e T i-1 , o
n-i - S a8 4B 8 ..o . +Bs+B
g bt i i-1 N ¢ o -
@ 4 o - (2.44)
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(whexe By and By (k=0, 12, - i), are all
non-zero positive constants. From équation (2,445, it may

be shown that

(n-1)+1 - 4 K sl,
V’ .
n-1i

where K 1s an arbitrary constant, indicating that all the
nodes satisfy the nonsingularity condition.

© ,.4.6.2.2 C-R ladder: : o |
or the C-R ladder . ‘

The nonsingularity conditions £

2n+1l

é—resistance 1adder.

Figure 2.9 A capacitanc
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shown in figure 2. 9 are that the term s[(v /v )_1] 

and hence'

the term

s[(v

/v )-1] must be frequency-

dependent for all values of a .

-

As in the case of R- -C ladder,

for node n:

.. rnode n-1:

-C 52+g S .
2n+l 2n ' o (2.45)

od

c_
2n-1

antl | 2n C(2.46)

as”+bs + ¢ s

V=2 (dz+ a2)‘s2 +(52+1)s +Cn
) (2.47)
where
' i
a, = C
2n+l 2n-1- . o
J - ,9
b =g ¢+ ) *9 C
27 95n-2 2n+l 2n-1 . 2n2nmlo
2 2n-2n-2 .Jﬁ' “
and . d2 = (c  +C Y/9 . -
- : 2n+l 2n-1

- 2n .
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In general, for the node n-i (1 #0 )z

. V- , o . a‘s:‘.+1 +b.si+ iz
s ( (n=-i)+1 ~1 )y = A... : l i “i
BESS | : “isi +Bisi_l+ .. HyystSy
(2..48) |
" where ai, bi'-' . o 1 ?i' ai;. Bi, R ,Gi are all non-

' zero.positive quantities. It is clear from the above equac

IS

tion that the term

1)

is al%%ys frequency—dependent From equatlon (2 45) ’ it
is seen-that ‘the term for the output node is also frequenﬁy

dependent. The matrlx-V w1th such a ladder is, thus, non-

singular.-

. L)

Wlth the same approach we' have'been able to

'show, by routlne procedures, that the V—matrlx for an .
L-C 1adder, an R-L ladder, as well as for ‘any comblna—‘ ,
tion of Lgc, R—C,.C—R, R-L, and, re51st1ve ladders is always

nonsingular.

2.5 Examples and.experimental results

For_the_verification of the measurement~method _



byfcomputational-experiments,

<}
are given below.

N

| 49
the examples considered'

!

3 .

2.5.1 Example ‘L' 7
(a) The network:

—WW ‘ J

el e |©

. AAN __]l
.
+ Ry R2 Csg »
v - | Ce
0 Ry .T_
/

. Figure 2,10

The netWork‘of Example 1.

(b)  The diagraph:

Figure 2.1

-

: Diagraph of the ne

twork of Example 1.

I
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() The matrix Aj: i 5

A}

(d) The matrix BE:

With Ry = R2 = Ry = R4'= 1an cs-s Ce = 1:F.,

the network was solved for lO dlfferent comblnatlons of
Ty
the node equatlons. It was found that, so long as the num—o

“ber of node equations takeh at a partlcular node does not
exceed the (degree—l) of that node, the element values—~m4'
calculated by the present method are, in fact, the same
as the actual element values, However,'when the number of
node equatlons at any node exceeds the (degree—l)' of -

that node, the V—matrlx was found to be singular as ex-

‘pected.

2.5.2 Example 2 o

i

(a) The .network: (A twin+TJnetwork.)

Figure 2.12 .- Twin-T nétWo:k.
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‘v

The network after the E-shift:

Vo + l® ;_]I
(:) . c |r* . c W (j

4

. | R3 (:)J— Rp 4

The network of Example 2 after the E-shift.

. v {

Figure,z;la

’

(b) The diagraph:

A
-0

Figure 2.14 Diaéfaph of:the Twin-T network.

(¢) The Al-matrix:
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0 —1 Z1 0 0 -1

.‘) -
5

(d) The E-matrix:

: L . T
[0 0 VyVg0 01

(e) The results:

o Assuming .C6 as the known element, the values
~of the remaining elements ‘were calculated with.40 diffe-‘
vrent combinations of element values and node equations;
The calculated element values were found to be the same
as the actual element values 1n all but the following
cases:

_(i) The v-matrix was found to be singular

when'the node eguation of any node was taken at a number

of frequenciee greater than the (degree - 1) of the node.

(ii). Whep the node equatlon of node 2 was taken
at the crltlcal frequency of the network ( the crltlcal
frequency of the tW1n-T network 1s the frequency at whlch
a'pole_and a zero of the network coincide resultlng in
their cancellatlon ). At the crltlcal frequency, all the

W
node voltages were found to 'be same. Thus, w1th‘the node

Yo &
equatlon of node 2 taken at this frequency, the row of the

resultlng v-matrix correspondlng to node 2 became zero

o
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with the consequence that the V-matrix became 51ngular.
For the measurement of the tw1n—T network the

" node equatiop of node 2 must not be'taken at the criti-

cal frequency. . . ' :

©2.5.3 Example 3 °

(a) The network:

. ;

/ |
O = ©
— AW MW
Rl R2 ®R4

(b) The diagraph:

N

2.16 biagraph of the network of Example 3.

Figure



/ 5¢

~ (¢) The Al—matrix:

-1 1 0 0 O 1 1 O

(d)
. ’T
0 0]
(e)
. With Ry =18, R, = 2 &, Ry = 3 R, = 2 %
Rg = 1.8, R6 =7 8, c, = 7 F., and Cg = 2 F., the element

values were‘compﬁted for g different combinations Of the
,node equatlons and of the measuringffrequehcies,'The cal-
culated element values 001n01ded with the actual ones.- in’
all the comblnatlons except when the node eguation at node
3 was-taken at four frequencxes when the V—makrlx became
singular. The V—matrlx w1th the node equatlon 6f node 3
:taken at four. dlfferent frequencies and with Ry = Ry =

R3 % Ry = R5 = RG =1Q, Cy = C8 = 2F.,‘the V-matrlx was |
seen to be singular 1rrespect1ve of the comblnatlon of the}
‘node equatlons and the measuring frequencies. Thls is due "~

to the fact that since with these element values,
Ry Cg = R¢ Cyq ,Athe voltage of t&s;node 3 does not change
with frequency making the V—matrlx singular.

/
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1t may also be mentioned that, although' the

degree of node 3 is five, the nede equation at ‘that node

cannot be taken at more than three frequencies.

2.5.4 ExamEle 4

" (a) The ﬁeﬁwork:
| N e o
* ———'—ik———-
- ®1 '-?e @
— AN——W .
R Rj3 >
+ l " .
~) Vo R, R,z =+ Cy

Figuré 2.17 The network of Example 4.

The network after the E-shift:
‘ ~ — M :
., 0 5
o L
; + _
;o v<:>' o ’
i 0 . Ry
/

@ . v I ) ' ”*'
The network of  Example 4 after the-
E-shift. SR S
. _ sht L ' e
‘ i

Figure.2.18 
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(b) The diagraph:

[

-
.

.Figure 2.19 'Diagraph of the network of Example 4.
, : A i ” _
‘' (¢) The %l—matrixi. B o
j '
_J; 21-1 1 0 0 1°0
o 1o 0-1-1-1-1 -1
(d) The E—matrix:
® : '
. S ey . ~
_ : [v00-0,0v00_0] '
(e) The results:
' The elements of the network were computed with
R, =1gq R, = 2911455-7 Ry = 1g rth = 1F., and Cy =7F.
12 dlfferent comblnatlons of the node equatlons and measu—;
i :
enc1es were takgg‘ The calculated results showed

~ ring frequ
actual element values in all but

close agreament'with’the

the‘following cases: : :
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(1) When the-number of node equations{aﬁ'ihé nodehi

exceeds~ he (degree—l) of that node,

[

(ii) when the number of node ;equations at. the node 2

exceeds three, though its degree is five.

"'2.5.5 Example 5 L

5.5.5.1 Example 5.1

'(a) TheJnétworkr

*

pigure 2.20 The/ network of Example 5.1.

@

(b) The diagraph:

S




- iy

.. Figure 2.21 piagraph of the network of Example 5.1. S
' o : .

L0

(c) The Al'—matrix:’

. i . . )
. . Vs T
S ) .

'f‘..'-(e,);,A;k"‘:tTh’e results:
ow S with Ry = Ry =, 3,”'R4 =Rg = Rg =Ry =LA
7 Cg=2F., G4 = 1F., and wm:h all the node equations taken
% :
A :
» ¥ a -




v

Lo

3
.’

—— v ‘ v"59d

at two frequenc1es‘ sl‘— 2 rad/sec, and S, = 5 rad/sec,

,fﬁpe computed element values were

accurately the same .S ,

'5 the actualhgnes. Next, w1th Rl T 1l Q, R2 = 24, R3 = 5Q ,

?

S Q Q %. £ - B

ar

C9 8. F&, “ 8 ﬂg}fferent combln

\.

d measurthg ffequenples were C

=20 , c8“$ 3 F., and
atlons ‘of node equatlons

on51dered Another 8 com-

. _bxnatlons Wef% takén w1th the same resxstance values and

W1th Cir— 0%2 F., and ‘Cg = 0. 2

5 F'. he element values

L omputed agreed accurately in all the comblnatlons EXcept

the following cases where the V matrlx was found to be

singular: /

at three or.morefﬁrequencies,

(i) when the'node equation of node 1 was taken Q!

k4

P

(11) when tfe number‘of\§quati0ns of node 4

o

‘*~exceeded ‘three.- |
.T“”lﬂ”: It 1s,thu / seen that,
cannot’be con51dered at

/

at more than three frequen01es,

o~

o,

the node equatlon of node 1

more than;two, and that of" node 4

i
though the degrees of the

'nodes are three a &?four respectlvely.‘

e

-

5.5.5.2 Example 5.2

;EXample 54@ except .that the jole)

%

Rg and the capa01tahce Cger

9 o

e

,&a)- The networkJ?' The network is. the s

ame as'that of

51tlons of the re51stance [

‘have been lnterchanged
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. (&) The network: . - : _ - Q!

o o . 60
(b) The results: ' . ‘ ST ,;
The resui:-s ; B

_ . ‘\,9*{%
with Ry=1g , Ry = s.1@ , Ry = 6/ Q, Ry = 2.2 9,@{%&
R, = 5.4 9, R6=l4Q,R7=4Q c8=1.5F.,andc9=2.7F.~,»’

i : I

six different comblnatlons of node equatlons and the fre-

quen01es were taken The calculated results were found. to - be
correct 1n,all comblnatlons except when the node equatlon

of node 1 and that of node 4 were taken at nore than o

~ two and three frequencies respectlvely. e o

@ R . ‘ | o ’:'g‘})

"2

2.5.6 Examgle-s.

!
Figute é.)ii,?he network of Example 6.

-

(b) . Tﬂg’LiaQraéh; ( After conveftlng‘ the current source

R |
. Q




_ | . 61 ,\#V o
into the’ equivalent voltage source.)
/
X
/
¥ 4
P

F&igure 2.23 Diagraph of the hetWo;k of Example @,.
. ) . oy

(¢) The /Aj-matrix: - ’ |
1 1.1 0 0.0 000 0]
6 -1°0 0 1 0-1 0 11
| o o0=1-1 00 0-1-1 0 /
) % o o 0-1-1 0 1, 0-1
L 9 7 i
(d) The E-matrix: . « - .
: _,‘ . ! : . . rI-‘

[ 50 0 =100 0 .0 56 0 0o 0 0 1

(e) The xesults:

P N

‘ The’%é{two__rk was ;investigated with Rl = 2 Q,ﬁ | RN

. .
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e ‘
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"R

I

, =208, Ry = 50, Ry = 158,

L, = 0.5 H., Lg = 0.35 H.{ C9 =

63

R, = 10 @, R6 = 10 Q,

2.2 F., and Cyg= 1 F.

TEe measurlng frequencies in rad/sec were s1'= 1,

sét— 3, s3 = 5, and sS4 = 7. Fiv

e dlfferent comblnatlons

-

of- node equations were taken and it was found that the

calculated element values agree

d accurately with the actual

ones, provided the number of node equatlons of any node

does not exceed the (degree -1)

suit Wlth the node equation O

of that node. Fhe computed

f node 1 taken at one, those"

-of nodes 2, 3, and 4 taken at foura two, and two frequen-

cies respectlvely are shown in

2.5.7 Example 7

~a,

L]

(a) The net&Ork:'

g

flgure 2.24.

Figure 2.25 The network offExample'7;



he EFShift:

The network after t

64

Figﬁré'2,26i The netwo

(b). The diagraph:

Fa

rk of Examplé 7 after the E-

shift.

.
x

o ‘-'

.27 Diagraph of the

Figure

netwbikvof Evample 7.
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(c) ,Ehe\reéhlts; :

Eight different combihations of the node equa-

tions and ége measqring frequencies were considered for
. . - ' .7

-

—~y

the nebwork with R =1 ¢, R, = 3.1 Q R. = 1.9Q
b o l ) ‘ 2 - ’ 3 ’,

R4= 2.5 Q' R = 0.5 Q,R .= 1.6 Q, R-7' = 1.24Q ’ R8 = 4.19,

5 "6
Ly = 2 Hey DIpg = l.?”H., Ly, = 3.4 Hey Lyy = 0.6 Ha.,
. Cyg =0.24 F., Cy, = 6.1 F.y Cy5 = 4.3 F., Cy¢ =Ao.71{§),

-

and Cleﬁ 1. 7 F. The element values obtalned by the method
were accurately the same as the actual element values It
was - -found that for all the nodes, the number of node equa—

.tlons that may be. taken without making the V—matrix singu-

'1ar is the (degree - 1) of the node. o A : . ‘a
);:g ! . . 3-“1;
' 2.5.8 Example 8 - . . g

(a) The network: ',

3 . .. / -t . 6
AR

Figure 2.28 The ladder network of Example 8.
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{pb) The diagraph: , - /

¢ .

0 0® 00 0 00000 )
3 4 5 g 716,11 127

8

Figure 2.%9_ Diagraph of the network of Example 8. "

(c) The resulis:

"w,%‘“ | ' with Iy = 1 H., L, = 1.05 H, Ly = i.l'H.';G
L, = 1.15 Hep Lo = 1.2 Hoy Lg = }.25 H., Ly =.1.3 Heo
Ly = 1.35 H., Ly = 1.4 Beo 1o © 1.45 H., Ly = 1.5 He
Ly,= 1.55 5., Cy3 = 1 For C14 = 0.95 F., C5 = 0.9 Fi
Cig = 0-85 F.,,cl7 _ 0.8 P, Cyg = 0.75 F.sC19™ 0.7 Fu,

g Cpo = 0:65 F.,iC,y = 0:6 Fe c,,= 0:55 Fer Co3 =0.5 F..s8
Chy = 0.45 F., ﬁ25 = 0.125 & and with the measurlng

'«frequen01e: in rad/sec as S; % l_,,and sz'— 2, the

element values computed are shown in figure 2. 30 whlch

/
are, in effect, the same as the actual elemen; values. .
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el
/
| -
( -
COMPONT NT VALUES(ACTUAL) COMPONENT VALUES (CALCULATED)
! - ' Q
COMPONENT  MATRIX(CALCULATED): sty 1 s2= 2
. e e o o
1.00000000 T 1400000000 T
0.95238095 0.95233095
0eGNINS091 ’ 0e90U090091
0eB06I50522 0415956522
L 0.R3333333 Coi3 333333
00000000 030020000
0e76923077 : 0276923077
007/1074074 C'.-f!{OT-I» O7Th.
0a71422571 De71423571
068368517 0ebLB2IB3517
0.BEARGHOEOT 0o0BHHRE666T
L 0.64516129 e s 0 HATLEL2O o
/ 1.G0000000 1.C00B00000 !
Ce%5000000 0.95000000
0,90000000 L D.C0020C00
. 0.£300C000 - 0.850C0000
. 0./80G60G000 0,20NIN000
S Ce75200000 0.73000000
Ca7300C000 - R 0,70000C00
I Oe £50N00000 oo e LA Oe03000000 ot
Csh(00Q000 0./G0I0C00
N0, HE000000 De55060000
Ce=000GCC00 052000000
. 0e0%5000000 . 0.45000000
- .
- . o \ " . . A
Figure 2.30 The uted element values of Example 8
with e node equations of all the npdes
takegn at two freguencies each.ly T

,
©

8 _ i" o 5
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2.5.9 Example 9

The network:

(a)

68

Figure 2.31

A

- - . ”
L e g vy

The netwOrk;df Example 9;  1
- P '.. . o
e




(b) The diagraph?

\

- "Figure 2.3

E¥ey -
g

~‘Eu<fent sources into eq
'd, '

: /
in figure 2.32.

2 Diagraph-of the networ

69

The diagraph, after conﬁérﬁing the

givalent,voltage sources, are shown

>e
~

ﬁ oErExahple 9.

5

. . ' . ‘- g [
Y ‘ ) . L . )
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/) ] (c) The results:

Twelve different combinations of node equations
and measurlng frequencies Wwere consmdered to 1nvest1gato
the network W1th the - follow1ng element values:

R = 12 Q, R2 = 1.2 9, Ry = 108, Ry = 2.1

1

R =38, Rg =5 8 Ry -, 7.1, Rg = 10 . Ry = 40 ,Ry=3-20
Ry, = 19l;'ﬁiélfv59 , Rpy = 5% 0 Ryys 1.5;é,'gi% = 200,

R = 2.5Q Rl; . 60 ng.— 1.6Q R26,= AQ , L2i= 1 H., "A?
L, = 0 8 H., L2$?= 0.5 H., Lyy = 0- 32 H., Lyg.= 0.75 Hey |

Lo %@H D,y = 0.5 HeoTog ~0.4 H., Lyg = o,.é H.,

Lyg = L Her I3y = 0.2 H., L3y = 0.25 H.,Cy3 = 1 Fev

Cyy = 5 Fer Cas = 2.5 éj;?c36“5 1.2 F.y Cgq9 = 6 Fu»

0

_ _;// Cyg = 2.2 F.r C39 7 1.25 F.y Cyp = 3.2 F., Cgy = 1 Fev

NC42 = .2.5_F. ' C43= is{_.F-, C44 = :‘L-B F., C45 = 5.2 F.y

and Cyq = 1 F- LT . R

It was found that whenythe equatlon of node 19+

was taken at/ more than two frequénc1es, the V—matrlx

l

“became 51ngular, although the.degree of the node is four.

Y-For all other cases, the calculated element values ‘were. .
found"to pe accurately the same as the actual values. It

was also found that except ﬁor node ‘19, the node equa4

‘tions of all " they. nodes may be taken at a- max1mum of
w»

the (degree - 1) dlfferent frequencxes w1thout making the

V*matrlx singular. o
. e k.




!

L~

e . _‘:- .
2.6 Singular'network

A

71

"

In the examples of the preV1ous Sectlony we haVéJ.

seen that all, the networks can be solved by the addltlon .
N

of one known, external element to the network But there'
¥

of a single exter'a element because

“are_some networks w?lch cannot be solved by the addltlon .
n

the V—matrlx of the

network is 51ngular 1rrespect1ve of the element values /

/

'and the measurlng frequenc1es. Such a network may be termed

a "slngular EZEWQrk". For the- solutlon of such a: netwOrk,

more thaq one known,\external element are requlred to ‘be

added to the network Such ‘a network

2.33.° s "

> - c v
@
\T—;JVV‘ "JVVk‘
'f;x"Rz 'R 5

Figure 2.33 A,singular,network; '

with the capacitance’ Cg

\N

Ve

is shown in flgure

r

‘as the added element,



e

11

-uwhen'%he V—matrlx became nonsrngular. ;4. .-

72

,- |
.

an attempt was made to solve the nttwork by ‘the dlfferent

sets of element Values apd w1th dlfferent comblnatlons of

the measurlng frequencres. In all the cases, the V—matrlx

o
A 1

was " found to ‘be angular. However, the network beééhe
Y

I
splj .

vable aF soon as a second external capac1tance Cq0 Was

added in between the datum  node and the node 2 or node 3,

PR i

in fiqure

elgment, the V~matr;x of the,network was. fOu

. ‘Figurej2.34 A 51ngu1ar network.

4

e\
T

A second example of a 51ngular network*is shown

2.34. Wlth the capacxtance 18 a: the :dq?d

-

~



_ v | : e - "
su,;lguLa;; n:resp&ctme of the element ,values and the mea— @

0
owever '@Jlth an addltlonal capac1-

’ tam ‘-*Clg . connecgzed between the node 4 and the datum .

node, - ‘the V—matrlx became non51ngular and the netWork

a-j . ' X \
became sol .- ' ‘. & '
The above examples demonstrate that a sincjular
' LWy ot ~ T
: 'netwa;k may be mxée’ solvablfe by the 1' "_poratlcm “of some o
t. S \EB 5. d(d‘
;e'xt@ernal‘,elemﬁnts between sultablé ﬂnodés.-.;. s kd
oy o e A N
o2 !‘- ‘ : . 7 -' 77 ‘ -
< \ R . ”Q; : .
X > w W
. : <7 ooe
’ -t . A
o 3
oy - “
2 A3 E ;‘& W ’ !}
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ﬂidescrlbéd 1n Chapter 2 resuires

' be 1n00n§bn1ent for the solutlon’g¥ large networ S wh;ch

¥ y'-'.‘

V.51dered at aﬁtlme andkconsequentl

] - .-,
- /v_ . - ) B E
= . - {HAPTER 3 .

] o : S e v e
. EXPLICIT SDLUTION OF NETWORK ELEMENTS BY - :§§ 15 g
R,
C . THEJ"METHOD OF PART’ITIONING
.t e The method for the sbl\ggpn of network elements

7
n

“ﬁ ulteneous

.equatlons be soPVed, where ‘n_AES'G : tbﬂhl number of net—'

. work,elementgb ASs a &Dnsequence, the method 3ppea4s td#“ ;.‘éﬁi

R

woom

o W37

1nvolves the 1nver51on of a iarge' V-mé%rlx : It 1s thg
4
purposa%pfathls C@apter to present an alternﬁtiVe method
hat avoids  the comolex1ty of‘handllng blg»matrlces. In 4

»
the present method, nly one node of the network is con— -

ke

T

fe method 1nvolves«

~
~

none “of whlch

s .
”the rnver51 of matrlces the order O

» . e L4

,iiexceeds the (degree -.1) of the node concernedu In addl—

tion to ‘the 51mp11c1ty of this measurement procegure,the%§;‘

.method has the advantage tﬁat‘lt ‘may be used to solve'r' Tk

‘only a. part of a. network ‘without solvrng the whoLe network

~and~1s especrally attractlve‘to the cases where only a ;,”g

spec1f1c portlon of a blg network is re ired. to solve.

(> . . <

The measurement method and the necessary algorlthm for -

the computer‘program>w;11 be described w1th a few examplesr‘

: e
.« 3.1 The solutmon method
B ' ithe solution method con31sts of considering-a
; .

74



. ber of unknown elements at that node. -

o
A equatlon,

P
3
b‘a

Iparticular nod.

.of that node g

Q

t a timeyand writlpg

F%ﬁlji

-

afnumber of frequencieé

75
ode equatlon *L
equal to the num-

The sofution of

chls Seﬁ of node equatlons glve

s the unknownwelements of

tHat node.

Let d be the degree of a node and

Anumber of known elements 1nc1dent

‘of -the

(d—X)

.unknown elements of the node,

?

the-node

X be_the

on 1t For the solutlon

N

A~ 35 glven by , o
v SN .'A! R B ‘(
¥ T '

-

»
rent frequenc1és soO tha

‘ 9_\\t |
""- xll w
% b 21 bzl
R o -
Sy | x \'4 s
N e 12 b12 22 b22
ciﬂ ' SRR '
i D
S o
; D' -
‘o Lwiknbl 2k b,k
s K K ,I' -
\;0 R A
. .ﬁ; |
WD

at that node must be con51dereg

£X

(d ﬁﬁ dlffe—’

t the seg,of égaag;o at that node

A LR T e e
T :
oo X Ve ‘blj t
c ot *x2'py2 = Ry | 7
0 | b
RIS 6 x|
. '_ ) L ST et ~
N B
. X ’ N . s oy *
R T AN .
el . P RN '
, N -
% XLV co
N 3 12Db.2 . (3.1)
i=l- -
L
T v'
i=1 lk' b.k P
L * . _j /:'\

o



A

~where

'#'rm, as

.I' | )
k=‘(d-x) , bi

ment with a voltage .V
j, and Vy

i
at the. frequﬁncy j.

v, C=F 3
p ¢ = Fp
& i

” .,.;."h":"o

“ l(’

functbon vector of the n‘ﬁe and‘ﬁpesg are glben by

b;3]

!

1

. 3

Yy is the branch voltage matrlx,

T

.76

is fhe'valﬁe of the irth unknown ele-

across it occuring at a freqguency
3 is‘the vofgage.acrgss the i-th known element

A '
i §

1

ﬁﬁas set of equatlons may be wrltten, in compact
‘ 3

(3.2)

ﬁ;fis;the forcing

&
Lo o r’_ N
o , | EL . N ,
L T 7 ' : .'% Xy S B
o - :X;;Vbll,. x21"b~21 ¥ g kl bkl -
. ‘_ R ] - . o V .
¥12Vb 2" *22"p,2 g 1§v*k2;bk2
M o S 2 (3.3a)
et ON o o .
Vb = p \D . . ,
A / <. e ) : : . . o v y
Lxlkeblk',f¥2kvb2k R ®kk " byk
I | / -
o . ' » //(
« 1 x..v. .
. o FEEEEER I 3
| ‘§=i xlz b 2 - (3.3b)
F o= - .
. |
‘ .."§ X vb N k . L] .
.Li=1\lk i~ > e
‘ - A




~prov1ded that the branch voltage matr1Xw N, is nonsingular.

1»- Ed o
‘tlal that at. least One.o

<

vwhich°the node equatlon may‘be bbn51dered¥at any node

L o T 11

and. C as'the component vector to be determlned
' ¢

o
-

From equatlon (3 ), the component vector may

‘be_gbtained as

C=Vy, Fp o B (339@. X

2y

b
.
Slnce thgpnumber of dlfférent fregUenc1es at

‘o

cannot exceed the (degree-l) of that node,’lt is essen—

e_elementS' lncldent on the
M “7 : ’ ; )
node must be known. For, thlS purpos e knoWn element
p e X - i . W .

the elements of that node have been solved, a new‘node,

which is directly cpnnected to the first node, 1s then

considered-f The elements of such a node can now be solved
t

’since.one or more elements connectlng this node w1th the

previously-solved node are now known. Follow1ng thls,_a

new node, which . 1s\d1rectly connected to thls hode oOr to

-any prev1ously-solved node ‘1s con51dered since | 1t has one

g i
- morevelements known. Thlsrprocess may be contlnued

en. found out. _;Q

S5

untll all mhe elements have
| To 1llustrate the mea rement procedure, conSi#

m

v .

der the diagriph of an electr1ca1 network shown in flgure/

3. l Node l 1s assumei such that when a known, external

T

element is embedded between it and another ‘saitable node,jﬁf\

-
- . . . . : )
N Y . . . . )

e : . R . N
. o . P

o

R
¥

oW
L

i PR
. is added to the node that is to be’ con51dered flrst. Ohce . .-



NCA
s

wf

F‘igur.egf.i;,.,;ur The.diagréﬁhfef;an electrieal network. .

o Y o ’ o o : _'};é?’r.v'.;on{:v'“ TR
e ENLL | I : S o

i . . e A
jam o ot
o

SRS : _ R »
i _ o ' T %
Ay N . P -

: | ol L
the node equatlons of this node at four dlfferent frequen—

cies are»linearly independenﬁ. The known added element is

.ﬁ‘_-. .

‘ . e
LI represented by the branch 15 The node equatlon of node l

“at four glfferent frequénc1es may be expresSed as

'
M

X11Vb 1bl 21 v, 1 2+X41 b 1b +%g61Vp_1P6 =“”“15,1"’19 1P15
°1 4 6 15
. i
2b1+xzzvb 2b +x42 b; 2b4+x62Vb 26~ *15,2"b; 2 15
2 A’ 6 , 15° 13
7* ' » ;
+ - IR V4 .~b .
§13"b13b1+xz3"5 5%, +"4,3"1043% %63 b63b6 = %15,37b3 15
~*15,4 b154 15§

: N
L X14Vb14b1+xz4vb24b2 44 b44 A x64 bgld 6

X Y4
12 bl

"

{ v o - (3.5

S



N

.Pg : | _. ) < “ ’ -

79

o»° - since the elementA blS is known, thig set of

T~ equatlons can be used to solve the values ojhthe elementsﬂ

o

‘bl, b2, b4, and b6. Once these elements are known, any of
the’ nodes 2, 3, é, and 7 may next be con51dered It may

be seen that for the node 7, gwo elements, elements 1 and

-Q;S ' are known and as a resu.}ntg. the number of different fre-

i

cuenc1es at which the node equation at the node is to be
. .'}‘, . /

considered is two._For each of the nodes 2, 3 "and 6, only

one element is known and as a consequence, the number of.

dlfferent frequenc1es

'.‘)

. the. node equatlon is to. be-
considered 1s 2, 2, and igwi-fectively Assumlng that the

node'equatkbn of node 2 may be COn51dEred at £two dlfferent

freﬁhencies, node 2 is con51dered next. This glves the ’

’values of the elements 3 and 5. Node 3 is then con51dered
X ey
: Wthh needs measurement at- one frequency only and the |

value of the element 7 is known. In thlS way, we consider

)J +
-"‘

i

'the nodes 4, 5, and 6 respect ely. It may be seen that .

.4«.., 5

V' in that sequence of nodes, the number;oﬁbdlfferent fre—q

8‘

e~

quenc1es at whlch the node equatlons are to be cons1dered

~ at these nodes 1s two in each case. \

-i3.2i criteria for the choice of the node sequence o
. . : . A . .
A network may be solved usxng a ﬁlfferent sequenf*

\

ce’ of nodes. As for example, an*alternatlve node sequence

6, 5 4, and . 2

for the network of figure 3.1 is 1, 7.

{node 3 not taken at all) with the number of frequendies

N0
L 4
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at these nodes belng 4, 2 3 -2, 2, and'l respectively.

The number of frequenc1es at whlch the node equatlon of
any node is toqbe taken depends on tH node sequence and
by the su1table ch01ce of the node .seguence, ‘the number
of dlfferent frequenbxes that 1s to be used for the - S
Etlon of a network may be mlnlmlzed The folloW1ng

'areﬂthe,crlterla for the cholce of the node sequence:’

k4 : : : ' ‘ ¥ <
k) ' .
s (1) The startlng noae’ﬁust‘be one at which
S | | .
\‘WL@‘ "the node.equatlon may be taken at a number of fre—

fquen01es equal to- the (degree - 1) of that Qode * )

& (11) "“he nodes,whlch are’ to be considered sub- .

»

' sequen ly, must be dlrectly-connected to' the startlng

node r to a node ‘(nodes) which’ has (have) already

-Q'akﬂlﬂggn con51dered.' ~ R o )
‘ (iii)' If % is. the'maximum.number‘of-frequen-

M rimme e -

cies at whlch the node equatlon of a node w1th a
degree of d may be taken, then for that node,to be

con51dered, at least C(d-x) elements 1nc1dent on'- 1t

Amust be known.- If the number ‘of known elgments at

that node 1s less thanﬁ (d x), then before con51de— -

ring this node,'other.nodes, dlrectly—connected to 1t,
’ must be con51dered untll the number of known eaements

1nc1dent on thls node equals or exceeds (d—x)

ﬁ- R \flv) The node sequence should be chosen such
d

that the number'oﬁ difﬁérent frequen01es to be used
' r 4 - ' . ., i i o
T ¢ - % “ ) K

»

&
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NLAE

for 'the solution of the network elements,is minimum.

3.3 The Flow chart , ° . { L e
-Ql The computer program should be written such that

v v

once a specific-node sequence has been 1nd1cated and the
, node voltages at the requlred numper of frequencxes have :
.beeq measured,,the unknown elements of the network can be

found along that node sequence. The follow1ng are the -

e

steps to be’ ‘taken, for such computatlons ,f( . ”,gf T 9

A

x

ag the start;ng

B numb

o

1. ;ASSlgn the node seque

node ‘as node 1, the ‘&3 be con51dered next as

‘uv. 4

node 2, the node tq be taken 1mmed1ately after ', E

node 2 as noge 3,’§nd 50 on. T _
2. Assign the network elements the locatlons accordlng|
- to sthe step 2 of Sectlon 2.3 of the prev1ous Chap—_‘t
- A;ter. It ‘may be mentlonef/;hat thé?bfaﬁcﬁ§voltage ”;::
’representlng the added element is to be labelled-

-i - as the n-th branch, where n 4is the total, number

e ,of netwggh elements 1nclud1ng the . added one.
. R / . .‘
3. A ll the:brané%fvoltagé; of .the netug;k at the re-

qulred number of dlfferent frequen01es are then'.

i
.\calculated by the method suggested in the step.3

! to step '8 of Sectlon 2.3 of the prev1ous Chapter\,
4. The Pematrlx and the F—matrlx of the network are"

A thenShtained by the step 3 to §tep 12 of Section.

)



9.

'50

6.

7.

8-

T © g2

‘e

2. 3 of Chapter 2. } SRUE O

The Vb—matrlx of the startlng nodeJis then formed
C}from the P—matrlx and the row of the A—matrlx due

to the startlng node. -‘m - : B
The forc1ng functlon vector for the startlng node
'ulls then obté@ned by the use of equatlon (3 3b)
The component matrlx is then obtalned by 1nyert1ng

¥

‘the Vb—matrlx and multlplylng the 1nyer§§d matrlx

w1th the forc1ng function vector as 1Qdﬁgpted by

~b~a

$he equatlon (3. 4) ’

. ~_ £ - ey B
odlfy the A—matrlx by rﬁQECLng thre cofg§1¢;,

bta¥

.)

pondlng to the’ eyements whlch are just‘o

~in® the preV1ous step, to zero.

Con51der the next node,‘say no&p x . Form the

) for01ng functlon vector for thls nodé The elgﬁgqt“
. "

of the for01ng functloh vector due to élpartlculary_

' .
frequency is obtafged by mult plylng all the ele—

ments known g0 far, by the correspondlng elements-'

/ -
‘ of the k th row of the P—matrlx at that fr:;;enif
and then subtractlng the product from the el

of-the, k th row of the< F—matrlx at that frequency

10. Form the Vb—matrlx of 'this node from the P—matrrx

)

chart of flgure 3. 2@» o ©w A

and the k- th row of the modlfled A-matrlx.

"11. Repeat the steps 7 to IO ,untll all the unknown

5 elements have been found

The details ofs the above'step5~are givenyin the

- o .o
: . . - S 3

l,

v




ron THE T A=MATRIX, F-MATRIX ,‘\ND_

T ;T VALULS OF THE Nl’;‘.’I‘WORK, .
cns oML LLLNMLRTS 7 rr{i,3) AT
ALl URING FREAULHCIES BY THE
MLTIOS 1UDICATED 1IN THE FLOW CHART B
o FIGURE, 2.3. -
3 : ‘ l pEAD. RX(K), k= 1,2,.., ™
- ' : ) :
¥ . ‘ ‘eM(i) =0, i =1,2,.., 0=l l
. - - . g
M 4
1 .
3
’ \
@
/
' ; ER
. 1 ‘
Xli)= X{i) + cu(3) Pk, 3.4) I
4 ) N
A B {4
. (x, 1) —x(n_l ,
+
3
; y o
S

”l 185 = IB+1 ‘ l 3
F’)n(x,m) = P4k, 3/A) l

] —
- ,
e *
CALL THE MATRIX INVERZION SUB=
| ROUTINL TO IuvIKT VB. PRINT N
THZ INVERSE MATRIX AND THE DETER-
MIUANT S
!
’ . i)

coMp(i) ~ 0O

v ¢ = MK+ 1
. T .
o ' KX (MX) = 3 J
' Y 1
o M [ : EE .
Y| coMe(j)=COMP (MX)

. | comp )=t I

8- . ! -

PRINT  KX(i), i= l,2,..i BB

COMP i), i= 1s2,000

%

. JFigure 3.2 The

‘flow chart.
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. 3.4 'EXahples and eXperiﬁental results’ . .

“measqxementfv,

fiqure 3.3v

\,ngufev3;3 The dlagraph of the‘netwogk

;"" : | 84

" o .

;f In- order to verlfy the measurement me¥®hod, the |

"netWorks of Exatples 7, 8, and 9. of Chapter 2 have been

"\

con51dered and ln all;the cases, the calculated element

values agree w1th the actual vahf Whllst the same net-

worﬁhmayﬁbe solvgai along different node sequences (dxcept -

,for the ladder network whlch may be solved by only one v

-3 node ‘@éﬁende), only one - node éeéﬁence per netwo€E~EE§L///
. iy .
been chosen for the purpose of the verlflcation of tu; T

4 -“ . &

-

ocedure. &

A(v) The network- The netwdrﬁwls the same as that of

.4‘ple 7 of Chapter 2, Cl7 1s the known, added element.

’ ‘ . N .
The node sequence" The node sequence followed by

3 e‘mgasurement proc

edunn 1s 1ndlcated by the dlagraph Qf .

4(2‘

-

of Example 1. The
1ates the node sequence.
. . % N

thicker line 1nd1

1

~

¥
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' Lc) ‘Number of frequencies at which the, node equation is
~ © -6 be considered: S e ‘

e . »
.

TWO : 'Nodes'3, 4, 6,-and 7;

v R :
¢ Three : Nodes 1, 2, and 5 .

~ 7 °
. . />
\j .

»

" (d) The ‘esults: -

”(',\ S v
5 3 -~ The calculated values of the networ
different nodes are shoWn in’ figure 3 4.

re

It is seen that

the ca;culated values @ the same as the actual-values.

. 3%4p Example 2 T Lo
’ ® o - ) .‘ L .
of

k: Same as the: network oE'Example 8

(a) The networ
ious Chapter. R25 is the added element
: ’ ~ <

¢ .
The network has only one node

_ the prev

.7 : T
’ The ‘node sequence.

. (b)
6 0,000,000, 2, ©,09,

k elements at

19} -2

)

of the ladder network

‘The dlagraph
s 1ndldated by

’Figure'3.5“
The node sequence i
kine. E _ v,

‘\Added-element

of Example 2.
+the thlcker



seqtence_aegshdwn‘in.figure 3.5.
Number of‘frequencies at which thefnqde equation s

',(e)

to be considered: L

=
'Two at each node.
-

(d) . The'resultSi‘«- .

h A )

’ ) o . Yo : ~

Wrth the element values same as thoee of Example'
S /

the calculated values of the

f the prevrous Chapter,

curately with-the actua

.8 o]
1 values.

elements agreed ac

o

D

s

3.4.3 Examplé '
e o
- . ) .\
(a} " phe network: The network is the same as that of

W

the added

h the exceptloh that

Example 9 Qf Chapter 2 'wrg

element 646 has been embeddedgbetween the node 1 ‘and

node. 20. | )
3 . . ) \ R » ‘.‘h ‘.
re 3.6.

s indicated,in figu

ncies at which the. node*equatlon is

- / .
(b) The node sequence:"

»

(¢) Number of freque

to be conSidered:
.~ . . N4 / )
: L -
. oOne : [Node l§r; {
Two : Nodes 6,7,8,9,10,11, 12, 13,’18, and 19;

. Three :’Nodes 1,3, 5 14 15, and 175

“\‘\ . 3
| Four 3 Node 2. ,




Figure 3.6 The. dlagraph of ‘the network ndlcatlng the .

e _ node.sequence. by the thicker line( the do-

tted lines
rsequence)

(ay. Tﬁe results._

l

show the contlnuatlon of t e_

G

;~w;th the element values same as those of Example 9 ';

6f_Chapter‘2, the compute

with the actual values.
- - ) . q

d element valueggagreed accurately

.

oo

. - . / ;

. -
. .
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and the output ones,,lnacce551ble,“

'variation9 in t

A}

' l

» o CHHPTER 4

~N

DETERMINATION F THE VARIATIONS OF 'NETWORK ELEMENTS e
i

In =|n electrical-network the network elements

oo

are subject to varlatlon¥ due to the change of the amblent

etemperature, aglng, etc. Such variations in the element R

values alter the behavxcur of the network Lt. is the pur-<

.
varlatlons ma§ be. calculated fhp method requires the

pose of this’ Chapter to present a method by. which s?ch
measurement of the' transfer- functlon of the network at a -
certaln number of frequencles and hence 1nvolves, for
example, the measurement of the voltages of‘the 1nput jj‘ \

-

and the output termlnalsA only. As a consequence,-the

; method may be applied to a varlety of networks’ 1ﬁclud1ng

those haying a few or all of “the nodes, except the 1nput

-

“r ) . ' _ ‘ 3 - . . )
4;l :The measurement method _ S R X ‘
r ¢ ] : , L i ] ‘
. ‘The measurement method ConSlStS of measuflng the

¢ )

he transfer functlon, due to the varlat;ons .

)

in the element values, at a suff1c1ent nuzter_pf fre-
tions by the uge:

quenc1es and then flndlng ‘the element var

of the Jacobian matrlx of .the network evaluated at the .

orlglnal element values. For ‘a passmve network w1th n ele—

y
A

89



ex1st
"équatl
the or

.—-;/'

T.+
. l

i
90

ents, ;;, the 1nverse of the transfer fuuctlon Hy (the
ratio of the eutput voltage to the input voltage) at a
frequency S may be expressed as ¢
-y = f]H?: £, ( lbl_,’ bys - ts b_) (4.1}
L. - : .
A ’ . ‘ ) , . . ' ' } :
where - b, is th k-th element of the. network.
. Let//the elementé: bj, 'i =‘l, ?, ve, N be‘ )
~subject to‘Varmatlons 80 that the element values are.
. b5‘+i6b-, j =1, 24 ««r D The presulting -transfer func-
‘;'tidu LTy is given by '
N i
+ &7, = £5( by+sby, bp¥ébys e b tby ) O

) . N, b v\ -t )
.. (4.2) \

A : - N ,. o P
Assumlng that the partlal de:lyat@ves af;/ Bbj,

at the orlglnal element values bj!' j-=.l 2,00 @

4

on (4.2) may be expanded 1n a Taylor serles about

- L

iginal'elemeﬂt values.te-get\‘

GTi?%.fi( by, bz,_.‘.{lbn}»_wij , ) . | ;f N ,
I afi(bi; bzr -\'I'bn) Gbi + 3fi(b1,b2[;. .’bn)ﬁbz
> - f 9by 1 ) b, )
R 9f. (cbq, b ., b))
F e 1r P20 T Dogp, ¥
abn. .
) 7;,- . ~ -
S
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R A S 14.3)

propping all the terms’ of the oi&er of §b? or higher,
and recalling equation (4?1), equation (4,.3) may be ',
usedfto obtain ’

§ 9T 3T. o AT
57, = ——t &by + —— &byt . - ¥ =

i ] : ,
) 9by - ?bn

b, (4.4)

With the variation ‘in the transfgf function
measured at n dlfferent frequen01es { i:;e. at si, S0
.« o 1 Sp )y we get a set of d‘ equatlons eXpreSSed/fn

the matrix form.as
;e ' -

— . . m !
GT - — . oo . . . b . l
- . ' :
Rk ‘ T
8Ta{ = | 9By  8by N 1
\ i : : ’
. * ~—
- . gé ‘ 3T 2 L
GT n T . 343 . ) L IR n Gb
¢ | nj g dby 35& b, | L
, L o \ - b=bj
v S » (4.5)

L
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' .Equation (4.5) may be written: é :

. 6T = J &b . . . 14.6)

where §T and &b, are two column vectors‘represénting

the/variations in the transfer function and in the element

values respectively, and J 1is the Jacobian matrix eva-
luated at. the original element values and ie given by

-

a <

»Bbl 3b2 y . 'abn N | y
" aT 3T | ‘ T,
J = __?——2- 3—-—2— . . o -:—-—2— (4.7) ‘ 3
; - abl ° abz - bn ‘ f.
) . | .
3Tn s ?’BTn aTn
L abl 55 2 st 3an
. (-] ‘\/ : . /

The subscrlpt b ~on the Jacobian matrix indicates that -

1t mﬁst be evaluated at. éhe oxiginal ; element values.

3 “" Frop equatlon (4. ), the variations in the ele—
ment’valgs§<represented by e column maty be, is
obtained a¥ B R ' \\ ,

. - 5 L
sb = J .8T - o (4.8)

~

A

The new element values are given‘by

- - V:‘v d . . (
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b' = b+ &b | . (4.9)

where the column matrices b andi b' correspond to the
originél and the changed element values resPectlgely.

An electrical netWork may have\gome of its eie-
ments with ho appreciab;e variatiens, while the remaining )
elements are subject to appreEieble'variations. as for
example, a network with high-quality Tresistors with ex-
treﬁely-low drift, the measurement of the variations in
the values of its capacitors and inductors is of preeticel.
impottahce;”The measurement method can be readily applled
inhthis case.v et m be the number of such elements the
variations of'whi h ‘are to be determlned For the remalnlng

- (n-m) elements by ,"k = m+l m+2, .'. ' n_} the varia=

(’_tions-"abk are zer0~so that equatlon (4. 4) takes the

form

-k i R 25 gp  (4:10)
§T. = =——— ©O6by * §b, + e et 35 §b (4.10)

£

and - consequsn\ly, the matrices §Tb

equatlon (4 6) reduce to

er = [ 6Ty, 6Ty .- ¢ %Tm ] _(4.11a)

-

<

. > T .
) 6b [ . Gbl’ ¥b2' . . '.o [} 6t)rn ] : (4-1}b)

and .



"be known for the Unlque solut
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. [ et 3T -
1 1 ( AT, |
LY
3T2 BT2 3T2\
L aby by b | (4.11c)
9T ‘9T .
= , m . "
ab 5. . " 3b
s l N
L . 2 . m | p=0b
]
where bir Dyr + b, are the elements'subjected

to varlatlons..

From equatlon (4.8)., it is seen that the varia-
tione-in the element values may be obtained by measuring
the variations 1n the inverse transfer function at a

umber of frequencies equal -to the number of elements the

)

varlatlons of Wthh are being calculated and then pre-

'multip1Ying the resulting- column matrix 6T with the

inyerse of the Jacoblan matrix of the network evaluated

'at the orlglnal element values.

It may be noted that when the input and the

_butput variables are of same kind ( either voltage or

current)x, there may be several combinations of the ele=

ment Qariations that will:result in the same éhange Ein

e te _
theftransfer function and as a result, at least one ele-

i3
ment, either an ex1st1ng one or an added element,ymust

jon of the element variations.

» \
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detgw

4.2 An iterative Jacobian. method for the accurate

mination of network element variations

since all the terms of the order of - sb2",
higher in‘equation‘(4.3) have been drOpped to derlve equa— ,4j“
tion (4.8), the variations in the element values’ obtained
by the method of the previous Section are only apprqximate,
though falrly accurate, especially when such variations are
small However, Dby repeating the method of the previous Sec-
tion in an iterative manner, the element variations may‘be
accurately determined even when such variations are quite -
high. In the present jterative method, the vector Gb]l
is first obtained,from the measured vector \5T]0 "py the %
method of the previous section. A fraction B ( 0 <8< 1)
of the?vecter Gb]l is now taken as the effective ele-

ment variation vector SO that the resulting -element values
7 . .

_Jre given by . . | . S &

- ~ ‘ .

-1 . _ .
= L 4.12)
where b]0 is the vector representlng the original
element values and the vector GT] reﬁresents the

variations in the~inverse transfer fg cthn measured ‘and.

Jo is the Jacoblan matrlx evaluated at the orlglnal .

element values. Instead of blg :the vector ”b]l is. ..

id L )
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now assumed as the original element vector. The Jacobian

matrix J; and the vector ’6T]l are Cal?QIatea with

this element Yector b]l.:The_vector §b] , 'is then cal-

L

‘culated. A fraction B8 of the vector  6b]

- .

2 is then

' hdded to the vector b]’1 to get the element vector b]2

g}ven.by‘\ _ : x
-' : ./
7
b _ ‘ .
112 b]%+ B, 6bl,
o -
= 38 +
T ? Iy 6T]1 , (4.13)
The ‘'vector b]--'is now taken as the original element

vector. This procedure is repeated say p times until .

the vector Sﬁ]p

becomes negllglbly small. The element

vector b]p 'ls then taken as‘the_actua14element~vector,

. / !
i.e. /

1]

o

bl
P a

(4.14)

) - - ’ ' . »
where b]a is- the actual element vector after variations.

To 1llustrate the measurement procedure, consider

,é.network in which’ only one element , say the i-th element

7/
S

/// b, . is subject to varlatlons.

transfer function T agalnst
where bj, and 'I‘0 represent

‘el'ement and the ™nverse transfe

The plot of the inverse
;bi is shown in figure 4.1
thé ‘original values of the

r function respectlvely and

b and T, represent thelr respective values after varia-

“ia

tions. Here, the slope of the curve at the p01nt 0 (repre-

senting the original values) g

o~

ives ‘the 1nverse of the

/ s

)
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ia .

bi2

LY

bjl -

S _
Figure 4.1 The iﬁetapive méthod with the element b
g subjected to variations. ‘ .

N
..
'

N
1>
N

t . o [
[ ) _\\

Jacobian matrix Jo- From the value of Dbjg 1and the-ipvefée

of the'matgix. Jpr the variation 6bi6 jg determined accor-
, ; _ ,

. ding to the method suggested(in the}'p:evious gection. The

_npew element -bil"i after the first iteration . is

\ : L



4 . - -1 :
+ B 6byg S (4.15)

Now, assum ) bil' -as the orlglnal element Va1Ue,_the

. Jacoblan matrlx/ Jlu and the'varlatlon §T, are calou—
| lated and the resultlng vamlat\gJ 8b, 1 ‘is obtained.o:

A fractlon B of - thls varlatlon b, ¢ is again taken as;,;
" the’ effectlve element varlatlon whlch 1s adéed to pre- N

' V1ously -assumed orlglnal value bll to form b, whlch

y
is now taken as the orlglnal value Thlsuprocedure is rep-

‘eated and in the p—th ;teratlon, the  value by, will
be close to the actual value. .Pia- o | :
It mdy be mentloned that the calculated element . w!

value after,the ‘j=-th 1terat10n is glven by

. )_‘ _ Y s .
b.. = - Do 4 J 8T (4.16), -
-] l(J—l{ e B;.j-l s : :

¢

<
- .

-~
.

Tire faotor 'B.is calledjthe'convergence constant andjlies - f

in the rangle 'fO' g € 1. oo - B

.« .

Observe that greater the value of the constant

8 - ’smaller 15 the number of iterations. requlred by the

method. The value of B'., therefJ/e- should be chosen as

large as possrble. However 1n some'cases, espeC1ally
Lo
when the element varlatlonsJare qulte large, a large value

of B ‘may make the 1terat1ve~process dlvergent with the B

El

ealculated element varlatlons 1ncrea51ng 1n successrve

iterations. rpfégzn cases; B mg:t be’ chosen small enough

-, ' -
Lo e . .
- ) ¢ . /

to ensure convergence.’.

-k‘
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g& 4.3 The flow:chart“

\ . . . . : . bl * i
From’the measurement method 1nd1cated in the

ealier Sections, a computer programhaﬁxsbe written that

12 © . will find the new element values frd@ the variations in -
i r N\
the. transfer functlon measured at an’approprlate number ‘

" of frequencies. The steps tc be taken for_such computa-

. % +ions are givep below: : N
v . ) \

: ' ) @
(. : : ! . “. -

1. 'aAssign the output node as ¢he N-th 'node, where ' ‘
Ln" : . :

’% N is the"total-number'of nodes excluding the- |
reference node. Read the values .k, g , KK(i),DA,

'and m . KK(i). is the. percentage varlathn of

" the 1—th element subject te variations, DA is

S .
e
57

a factor by which °ne elements are to be perturbed

to calculate the Jacobian matrix, and m is,the

total number of elenants the VarratiOns of which
are to be determlned C

o 2. From "the node=branch 1nc1dence g submatrix Aq and

the¢ vector E, and with the or1g1nal element values

' o ‘of . the network calculate the admlttance matrlx G

-

t and the vector H at the startlng frequency by . ?

thé steps l to 6 of Sectlon 2.3 of" Chapter 2. In-’

vert the matrlx G.
3. 7 Assign V&(l,j) as the output voltage‘With the

and VN(2,j) as the out-

. . -
put voltage with the actual lementovalues(after

varlatloné\ both occuring at & requency j.Cal-

]
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culate the voltage VN(l,l) at the outp&i node

by premultlplylng the /plumn vector H by thef ;

row vector formed by the N- th row of the 1nvetse

of the G-matrix. ’

4. Repeat the ‘'procedure suggested in the steps 2 and
. 3'€at (m—l) dlfﬂpqent frequenc1es to obtain the

output voltages. VN(l 2), VN(l 3),. . » VN{1,m).

5. W%th the actual eleme%t values(after varlatlons),
compute the output voltages vN(2,1),VN(2,2),. N

" YNkz,m) py the steps 2 and 4.

‘C'aldulate the matrix &T]; by the use of the

p . . ) ’ + - } '
- expression . 1 ' v , ' \

v
-

§T (i) = element of the i-th row of the matrix -

g “ ] V [ . l . l ) ]
‘ ’ VN(2,1) .  yN(l,i)

| | ' o (4.17)
‘where vy is the 1nput voltage. _ e

7. Assign V(l j) as the. output voltage when the i-th

network element - of value b 1s changed to

(1+DA)bi ’E‘a“V(Z,J) as the output Voltage when

_the element value is changed to (1-DA)b,; both

calculated at a frequency j. Take i = 1. With

: _the element value bi‘_changed by an increment .

amount to (1+DA)b and with the remaining elem=__

ents at their orlglnal values, calculitf the out-
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put- voltages V(lfj)’* j=1,2, . ., m at.m |
- diffetent,fiequeneies followiné tthe steps 2'Eﬁd 4,
8. Chaﬂge the element valﬁe to (1-DA):bi and compute
the output voltage y(2;j), J =l,~é, . .;Cm

following the preceeding step.

9. Calculate all the ent's of  the i-th colimn of

- the Jacobian matrix by the use of the expression

T ‘l . aT- » 1 . _ \ l N VO
Bb‘i V(l,j) ‘V(z’j) ’ 2 DA~bi
AN : ' .
o A / Foo (4.18)

'10. Increase the value of i by 1..Go back to step 7
~+ “until the value of i exceeds m . All the ele-
ments of the Jacobian matrix is now obtaiﬁedz

11. Invert the resultlng gacoblan matrlx and poﬁtmul—
. ™ . :
tlply the 1nverted matrix by the column matrlx 5T]l

%calculatedhln the step 6, to obtain the incremen-

vtal matrix ‘8b.

12. With the orlglnal element vector, —the matrix

g 6b to get the new element vector. J
13.'Putt1ng th element vector ,obtalned in the step
_12, as the oéeglnal element vector, repeat the

steps 2 toc 12 a. number of tlmes untll the ele-

ments of the incremental matrix . 5b ~hre less

than some pre—a551gned values or untll the number

Fs



STANT ’

REMAD m,n,nr,nl,nc,sl,SJ,VO,DA,BETA,ITR

. { L)
READ & PRINT A5, i=1,2,..,m; j=1,2,..,n
. v.i{i), i=1,2,.., n¢

.
+ Ef , i=1,2,.., n

r . :
N L ( Y(i,INT) = YYj , 1= 1,2,.., ntj

YY; = /Ry + 30, i=3,2,.., ng | v Yes

_~_4_;__—;{¥4752 = sy ¥{ng=1) s3 Iv . _ .
’ Fv(i,m'r) = 0 -j/(sLy), i= nptlee.-s n,+n1J
) O—r ] »
( L._( Y(i,INT) = 0 + 3sCi, 1i= Atnctl, <. 7 B J

T

/ | I
= Ay Yk, INT)

i= 1,2, «. M

j= 1,2, ¢« ¢ D

Y

READ & PRINT Ly, i L
l' ‘ NT Ly, i= len, . o,nyen j @——b] ik
L,_{ :

o

T
RLAD & PRINT Cy, i= ng+p1tl,.., n j

-

—————————’—{ j=npwny+i ] ) :
Lch = 0.01 cy 'x.‘((i]

l :q'.—':’if :
Ciy = ¢y + DCy I

'

Figure 4.2 The flow chart.
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of iterations: equals a certalh é{e-assigned
Qalue, The element vecktor obtalnéd in the flnal

iteration is then assumed as the new element:
[ %

vector if the process has converged.
. . ‘ L) { . °

The details of the above steps are ‘illustrated

by the flow diagram of figure 4.2.
{ L » .

4.4 Examples and experimental results
~ P
/\

4.4.1 Example 1 ‘ B
~

(a) The netwark:

-

@v — Cg
® e

Figure 4.3 The network of Example-l.



~ elefents agre

" method gave an accurate result even when C6

ﬁd I o 106

Figure 4.4 Diagraph of the network of Example’l.

2

(c¢) The tesults:

The network was 1nvestlgated w1th Rl = 1 Qi

R2 ='8.1 Q, R3 = 5.2 R, L4 = 1.2 H., and Lg ‘0.5 H.

_Only the capacitors were assumed to undergo var;;t{gns.

‘The orlglnal values of the capac1tors were CE = 1,2 F\J

c, = .2.5 F., and C8 = 0 5 F With the convergence cons-—

7
tant B = l, the variations in the cap&cxtor ‘values

were calculateg when they were subjected to’'a W1de range

of variations. The calculated varlatlons in the network

ed accurately w1th the actual varlatlons even

when the capac1tors had a varlatlon of 70% each The

\ ~
< g

was varled

J,v . ’ °

N '




jiﬁ.

-

R R A R i

T ‘ &
LiF s NT VAU TAT 10N Y JACOINTAN

COMERHE Y VALIIFR? ‘

. S
&I TIBTANCYGS 1eCO MNal0 %el0
THEDUCT ANCTEAS ‘|.:'o renn
CADACTIANCES D ] -,’:’.A.ﬂ'.‘.’.'f* 0e%0

COMVI RGTNT CONST ANT = 10000

PELCENT AGE VA TAT tRH OF Tl /(CA

c nt X .
c 7: 70 2
) c n: X

\
..".‘.“...Q‘..'.O.t'..'.'.
- . lTFHAl’ICH’\N"!: 1

JACOPTARN MATRIXS

3ant=(a .2

yi-
(=le208IR=DT (.4 re7n-"111¢
1 ¢ L¥anN-Ca De7

fefeTgann=r3 210000

N}

. -«
PLTIEVINANT OF FHE JACORTAN MATRIX=-

‘NEw o ELEVE Y VALUTS (ACTUAL)

1.5%99999

A.2o079ﬂ5

£.9499999
VALUE 0F THE NOPM =

‘.“.0“0"."..‘0‘0.‘.‘0".__ / . . .
ITERATICN NOT 2

JACORTAN MATRIXD |

{-Cenrv8aD 02 0. ~?n ) N 12270 o1
(=Ca 3077022 €307 D="1) Na1c1n=Ca Cat
["I X el 4

(-Ce30110-C2 Ca130@0-0104

8
{

DETFOVINANT NF THT JACCDIAN VATRIX=

NEW ELEPFNT VALUES (ACTUAL

N .

- ’ l.{éooooo
b . l.Zlv'7‘;')96
/ ) N .949999°

VALUE 0OF THT HOPY =

O.‘t....‘....‘..‘_l"‘..‘.‘..

[TEPATICN NOZ 3

JACCBIAN MATRTIXI

(-Co¥aG1 7™ €O Ce)rmnD M1YI(-Co
) (-C.C‘SAZQ-E.’ 2,28 00100 T ePRGATD=CA
(=Ne1n2ID-C2 co13ecD-T 1L Ce

D[YEPV!’\AM OfF TH
NF o ELEWCNT VALUES (ACTUALD . .

.
0

1 5500709
. N

4424900096
C 20890099

Q

‘...Ot‘to'ttttt.-ot

VALUE CF THT pors =
'-nohittt . .
TTFEATIEN N 8

JACANTAN VATETXS
K .

- = ~

PR U Y SN A f.n{"‘\'A\(—‘.""I(--’)'_ .

- :-&':il?“"—"" ..'“"c'—'l\( ".‘h"""‘-”l .
Calttntm 14 Cenne =0 e

(-‘.rpnrr-‘
(;I"(I.Hlkf'd'.

N N.l' v e WAL TREACTUALD

Y : 3
Javr nan

S Laee JACTTAN ”

A AN NN

R PG AT D R
7
'

c,470780% L4

=05 0ea3712D-1a)(

3.543 4111

1050=048 O:?-"»lO-CJ)(

-
= JACORIAN maTRIX= (
.

Nne.11R22A0 ‘ )

»

PV 2AYIONS FAAMELE 1 ‘

PACITORSS
,

c

LTINS A 61TARY oMy e
Syeeav—cr royYTY-0ONN !
argn-ce 2210 =-020 1

109-% Nt
aany=-C Vv

LI BrPR2FI=08, 1.1 AT0) AAN-0VY

NTY, ELFMNT VAL I S(CALCULATEN)

. '
s . V. 2A1R220, NL1323D-)2

7,127 VEA, 2.11350 00

«
12171115, 9,%0270-01

”

i
/" .

; . 1 - .
D‘-."l!"-" rAYE-QaacCad "2 c.1074) 023 (

[ L en3723-02) ¢

ActH-c 0|
c. pOTI-"R A aTA2)I-A3Y 0 C e e e

( CopesI1TSI-0AN 04 2360TI1N-QND
NEW FLEVINT VALUIS(CAULCULATENY

. -»
Yyt
. )
(4
v 10381512, L 7a82Ade T T T
- a.3511700, 71.%027%0 32

L a8R8370, T.85450-3)

- . L ey [ -

P Tt 1o B oo} 030830 ARY(=N,7871D (ol C-h’\""‘iil)(
a fpana s 0.1F80)~048 A 21000200 . [

Rl patr-n5 n.apa1I=031(
L E6IPI6MD=NG, = "s1 7 TANAN-0L)

NIw ELEMENT vaLuzStCaLC aTERY .

1532634 ‘.16\7n—31'
e 1RT7TET7S.  ".80807 07

! . .r.uf\n?sv.~““.c‘nﬂ01:\l

poraery fAN(m AT N DRETE B B R
IR R S X Fooe Y0 Se wayany e .
. KR UL I LB R ELELRY

SO
TR | JOPP YRR IR L LR A RTIN TN
wry FLEWTNT VAT S{OM conATENYT

J.3€27P e, PR TR LoDl ]

s Q_".lﬁk‘ﬂ. L T 120 B an

L
A, 30N, a.153670-M

VALUY P T nond s f‘-lc“?“o‘- - - - ot
"Figure 4.5 he computer output showing the calculated
' . .. ‘element values .against the actual oneg when

) | o C6}C7I
: -70%, and 90%

LI .
_

and Cg

of Example 1 vary 30%,
respecti?ely. :
i I \ ‘ _




.
J

-
v

.
dcmenT VAT AL INA HY JACINIAN 1TEIATINNG FuaMmLE 1

: . A . o

CrunemENT VALOFL: ;
S .
LUt TANCES S Vo0 A10 %10 i i v.
PROUCTANC TS 1e™C 0,50 . . N . .
CAPACTTANCFSR: 17N 250 0470 . N
CONVFROINT !'_):mt agr = 1.0000 S ¥ .
PrRCCNT ACGF yA"[A'IﬂN nfF 'T‘!l' CARACTITNRS? ' N .
) « ¢ =0 x P ‘ . N N - ’
‘ ' c'r: 0 x v - ' :
c o a0 X L
...‘.........“.‘."....“.‘ . . .
ITFRATICN NAOT ' . ) . e .-
LJACTIPTAN MATRIX: . ) ' ‘
t o.||"m-gl-c.('-"*n-*l)'(—o.?|nrn-0f- DemERAN-AII[=0,1 TAMN-CA A, 1737) ,o;)(
.(—C._Ml_ Tl FLaataTi= i Na7anN—-Ca Cea 17NN IN(e P1LNIY-N Cat*ra)=-n1it 2
(=Fa07aRP=0Y Capi o= 1) Za36300-04 Qe?AAa M= I){ CoGTrar=0E 0P ta)-"2 ¢
DRETERVMINANT 0OF THE JAFONIAN MATRIXe ( Ne14C2A287- P&, =R 1 ATNT AGD-04) o
MEW ELEWDRT VALUES (ACTUAL S niw rLevinT valuzsceaten aTEnY: ¢ -
|~ s -
o { 1.799¢ 0 ) 1e1a18700, -0,V 775D-01 o] '
' : . ‘ o
47297998 K 12.164271 7. Da10710.91% R
. , 0-"4990?0 1.991%T0%,  2,15230-20 .
VALUE OF THF NOPY 'z 9,7175012 . -
....".‘.‘.“..‘.‘.“.‘.”.. - L. e e . '—-'--_IV_‘-»_ e N ' .
ITFRATICN NOT 2 : T .
’ JACCOIAN MATRIXS . ' ‘ *
RS TR TN S SN S R A ki 1 ISt S I S IS SN R -
o 39arP-C* CaZ1anD-11)( £,20FAT=C5 Co3a130-Radl 0l 10509-Rf Ca20903-3M 0 . oo -
“ Lo E)EYE M INANT AE THE JACONTAN MATRIX= | -,n.lﬁn?"w-an ~0. 151 ACZAD-0%) . . -
NF W LFVFNT VALUES CACTIALY Gfw ELEMTNT VALUTS(CALMULATEDYD
/ " :
AR " © st y.7999009 T T T T : R S o ) 1.{7,2?u9. w3 .37820-3y T 7T T T
4,7899995 ¢ L 27¥,97971925,  J.179130 21
i f..0499999. & . 1.%3%973%, J.21130 2D i
VALUE CF THE NOPM 3 11.840763%7 — N . ’
PP T TS T P T IR LR L R L2 A4 o ) -t Tt T (V W - T - T
ITERATICN NO: 3 i T
JACCRTAN MATRIX:- .
{ ComaPAR-AT C.RATID MY (=A.170AD-AT 0.10270-0001 Coanzon €0 ~.c107) 000
(-CoBacTrat® A 2760 D="101 0, 1702705 2 Sa1nc AN arazry-e Fo12e 1IN0 . - _
(-0, 12740-03 0.12FSD="1)( 0.80¢70-0% 0.77799- 05 ( CoiBITI-0A Co22233-030( v - -
' DETCEVINANT NF THE JACOATAN VATRIX= 2 17RAITAN-0N, l2.4134901D-07)
NEW FLEVENT VALUCS(ACTUALD NTw FLEMINT VALUIZS (CALCULATEDY 2 - .
o ' 1.7900090% 1.4117078, =2.41510=71 R
.'.A.759')’)9" 2P1.3408261, 0.1993D 02
0.9497099 -~ 3.80723%4, 2.73730 32
. LfvaLur CF Ty~ NOFY = 259.9475639 ) ' )
."..‘...l'!."'...ibﬁl .:'... . ‘
l'(":‘ATI\"N uﬁ:d . . -~
JACCYTAN unfwh('; . ) : "
> -n
agn e o emeea e RIS SOMREIELH S .
N B M LI LA cvampeamre ConinTI-0AN L
Of Ts Ewpepnr OF Ter JRCOHTAN wATolX= o A ha1nInrI-11. =1 PANA2D-10) :
NTw FLFEvw HT vagusagcrLent ATVO) 2 B ' \

rerw LFMENTIVALUET CACTUALY
. i B R na
. : 1o 7792007 . L cmearrons. Ser7ann=n
Y s an .
.. 7a0nns {\7\ cotsreresese, =IoINTIN OO L
‘ R TANGERR . IKIOTO D) -

PR L L L L

VALUF ©F THi wCie wessssevssers

‘ . and calculated element values when,
The actus’ aga of Example 1 vary by §Os, 90%,

3 4.6
: Flgure Cgr cy, and _
’ ~  and 90% respectively. - A )

. . - o .




= . . v s

© 109
308, ~C_ and cg by 90% each. However, with the

f element Variations greater than this range, the calcula-

/ ted element values diverged away from the actual values

AY

as illustrated by figure/f.s and’ figure 4.6. However, with
a smaller value of the convergence coiflstant, the element.

variations may be calculated beyond this range. With

-»

B = 0.25, the computed element variations coincided with
L} .
the actual varlatlons even when the capac1tors were varied

by 120% each. However, a smallet value of B necessiates
h] .

greater number of 1terat10ns. As for example, with g —0 25
A

and W1th the capac1tor variations of 90% each; the calcu-

lated results were falrly accurate at aboﬁt the 30th itera-

\o
tion compared to the fact that w1th B = 1 and with capa—

citor variations of 30% each, an accurate result was obtai-

: i
. ned at the third iteration. "
- 4.4.2 Example 2 . - L .

(a) The network:

1 cro

Figdre 4.7 The ladder network of Example 2.



(b) The diagraph:

Figure 4.8 ﬁiagraph of the'hetwork of Example 2.

»

(c) The results:

-~

4
values of the capac1tors as C6 =

Ry = 3.2 Q, R, =1.28 , Rg =5 Q,

Cg = 2.4 F.y Cg = 0.5F:0 and’ Cy

The network was studied Qith R1.=_lQ ’ R2=2.19 ’

and with the original .~

" 1F., C, = 1.5 F.,

7

0= 2.1 F. Onlv the capa—

citors were,assumed to vary. With B = 1, the’ ca}cula§ed

‘element values were a

.values at the fourth 1teratlon‘
of the capacitors aid not exceed

limit, the computed values dlverg

ccurately the same as the actual

={e) 1ong as the ‘variations

115% each Beyond this

ed away from the actual

-~

X
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element values. To calculate the element variations
beyond this limit, the convergence constant B was taken

’ .
as 0.25 and the element variaiﬁons were found to agree

accurately with the capacxtor ‘variations uptott 35% each,

although the number of 1teratlons rqu&red to reach the

-t

_ final value was about 35 in each case. R

4.5 Discussions . o . |
7 ' - ,

By choosimng the convefgence coristant sufficiehtly
. =9t T - ; R

small, it is pcssible, as has been found iln the above exam-=
: {

ples, to flnd the element values subjected o a wide range.
bl ' =
of»variatlcns. In each 1teratlon, the dlstance in the

'm—dlmen51onal elemeqt space, of the solution point from the .

)

solutlon peoint obtalned in the prevlous iteration was cal—

culated;by the use 05 the equation

4

\ . »

: — \ ‘ ) . 2. - ) 2
N A S T
ae) = Loy =By gyt By 2(1'1))
s o : /

/2 (4.19)

+_f-}"' ot b~ bm(l-l)) ]

©

d(i) 1is the distance calculated in-the i- th ite- _ -

where
ration, and bkﬁ is the value of the element bk obtai-' -//
- ned in the j—th'iteration, From'eqﬁatlon J4 16) for the

_— \ . .
i-th iteration: . _ .

e
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p}. = £( b}, .) =bl, 48 J
i Yi-1 i-1 B i-1 GTji—l '(4.20h
)
,v@ﬁencé _'-(Z': ' ) .,:J'“"' e LTt “5 ‘ﬂ' *r': RISV rN.:'N A"l;\jﬂ‘i)
Toflecp1) ® £ b)Y )u= b1 - b1 [ o
T E) e m ] Pl P G

For the functlon f in equation (4.20)4to‘aefine-a con-_

tractlon mappring, we requlré [13]

. . '_J )
.
. > .
4 * N . . ’ . . i
. . i "
/ ) [ . v
. . . . © . ‘o

f ‘- - f‘ ‘.b ‘ . s . ' - y [
£ C N (bl < K b], - bl; .
N i.e. - o |
~ where K < 1. Since * o
bl +l - bl = Q§{+l)

. the condition of expression (4.22) may. bet# written as

(sl ¢« ¥ au) o 4v23) |
It has been observed that in the above examples,
for all the cases where the ca%pulated element. vector
. c01nc1ded W1th the aétual element vector, ' A : '_-
a(i+l). < d(i o T (4.24)

‘s

Dy

eondition (4.23) is thus satisfied indicating that the



T o ‘l "' -.!‘:' K . 0 . .
- ‘ '.Ai‘ . 3.. . . . .
N & .11}3

_'fupction.-f, representing the %&esent iteraéive method is,

possibly, 'a contraction mapping fq}’which .
j ' } R . ~ . /

Lim - f( bl.) = b (4.25)
) jr o 1

S P
b is the actual solution vector.

<l



TR

CHAPTER 5

CONCLUSIONS

I

/

In this thesis, measurement methods for the expli- y
R t . B . ‘ ’
cit sélution of the element values of an electrical network '
from a set of node voltage measurements were considered.

Three such methods,were presented All the methods require

that at least one of the network elements must be known,

/otherwise at least one known,external element must be added
ko the network. In each of the measurement method, an effi-
. \ N
‘cient computer prpgram was developed that compuies the

- unknown element values~from\the approprlate set of measured

>

data. oo

In rhe'first“method, the node equations are con-

-

sidered at a suff1C1ent number of frequencies.and all the
'unknown elements are calculated in one computation. The_
ethod may be used to solve a network .of arbitrary size ,

though wikh a large network, the method 1nvolves the handling
A _ € !
¥

of inconveniently 1arge matrices.

The second method of the element value,solution

| ‘ b
considers one node at a time. and solves for its unknOWn - ’fjf

elements before consaderlng the pext. node/ A computer pro-

/

grdm for such a method was prese ted. ThlS measurement method

is especially attractive in the case when the network is

. . k] N H ~ d
very large or when only a portion of a network ;s;reqplre

114
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£

to be solved

The thlrd method computes the varlatlons of the

network elements by the use of the Jacobian matrix. An | \

iterative method for the accurate solutlon of the element

LN

variatlons and the computer program for such solutions were
provided. Experlments with a number of networks 1nd1bates o .J;

» B
that the method‘may be successfully used for a wide range

.of element variations. For a particular ne£§8k5, such range

of elemeﬁt variations may be increased by . ch0051ng a smaller

i

value of the convergence constant, though the number of ite-

N

rations For the accurate solutlon 1ncreases with such decrease

in the value of th coftvergence ‘constant.
~ The cg putational'experimente with a variety -of

networks,provided in this thesis,indicated,close agreement

_w1th the actual values and no network was found where the

abqve measurement methods failed.
The measurement procedures may be extended

for the solution of the element valles of active netwotks.

The methods may be used in the testlng of elecéromechanical

systems and in | automatic-testlng applicatiOns.
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