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Abstract 
 

Multiple studies have reported results of activities focused on development of different 

algorithms for prognosis of failures of apparatuses and machines. Failure prediction allows to 

schedule maintenance activities, increase productivity, and decrease inventory of spare parts. 

Construction of prediction models requires multiple procedures and thorough analysis of 

available data. For that, processes of Data Mining and Machine Learning can be applied. Data 

Mining provides necessary tools for storing, refining data, and analyzing data. Machine learning, 

on the other hand, includes a variety of approaches and techniques for finding patterns in data 

and building data models.  

This study addresses data-driven analysis of two industrial problems. In the case of the first one, 

we analyze a degree of “weariness” of suspensions in haul trucks. Here, we determine usage of a 

suspension via generating and integrating features representing struts’ pressures. The second 

problem concerns prediction of outages in power systems. Feature selection is performed, and 

different prediction models are built. Additionally, we look at graph-based data representation 

and visualization of data with Neo4j database. 

 

 

 

 

 

 

 

 

 



iii 

 

Table of Contents 

CHAPTER 1 Introduction...............................................................................................................1 

1.1. Motivation ........................................................................................................................1 

1.2. Thesis Goal and Contributions .........................................................................................1 

1.3. Thesis Outline ..................................................................................................................2 

CHAPTER 2 Related Work ............................................................................................................3 

CHAPTER 3 Background ...............................................................................................................5 

3.1. Data Mining......................................................................................................................5 

3.1.1 Applications .....................................................................................................................6 

3.2. Machine Learning ............................................................................................................7 

3.2.1 Supervised and Unsupervised Learning ...........................................................................7 

3.2.2 Applications ...................................................................................................................10 

3.3 Time Series Analysis ......................................................................................................10 

3.3.1 Time Domain Approach .................................................................................................11 

3.3.2 Frequency Domain Approach ........................................................................................11 

3.3.3 Applications ...................................................................................................................11 

CHAPTER 4 Maintenance-oriented Prediction ............................................................................12 

4.1 Problem Statement .........................................................................................................12 

4.2 Data Description .............................................................................................................12 

4.2.1 Measurement Data..........................................................................................................13 

4.2.2 Notification/Failure Logs ...............................................................................................13 

4.2.3 Data Pre-processing........................................................................................................13 

4.3 Initial Analysis of Data ..................................................................................................14 

4.3.1 Measurement Data Analysis...........................................................................................14 

4.3.2 Data Modifications .........................................................................................................15 



iv 

 

4.4 Analysis ..........................................................................................................................16 

4.4.1 Integration of moving windows .....................................................................................18 

4.4.2 Balanced signals .............................................................................................................19 

4.5 Discussion ......................................................................................................................22 

CHAPTER 5 Event Prediction in Power Systems ........................................................................24 

5.1 Problem Statement .........................................................................................................24 

5.2 Data description..............................................................................................................24 

5.3 Visualization and interactive analysis of data ................................................................25 

5.3.1 Schema ...........................................................................................................................26 

5.3.2 Database population .......................................................................................................27 

5.3.3 Querying the graph .........................................................................................................28 

5.4 Unsupervised techniques in analysis of outage ..............................................................30 

5.4.1 Clustering process ..........................................................................................................30 

5.4.2 Statistical analysis ..........................................................................................................33 

5.5 Supervised techniques in analysis of outage: prediction models ...................................34 

5.5.1 Prediction based on OMS and weather (temperature and humidity) data......................34 

5.5.1.1 Data description..............................................................................................................35 

5.5.1.2 Modeling ........................................................................................................................36 

5.5.1.3 Results ............................................................................................................................36 

5.5.2 Prediction based on OMS and weather ..........................................................................37 

5.5.2.1 Data description..............................................................................................................38 

5.5.2.2 Feature selection .............................................................................................................39 

5.5.2.3 Modeling ........................................................................................................................40 

5.5.2.4 Results ............................................................................................................................41 

5.5.3 Prediction based on weather only...................................................................................42 



v 

 

5.5.3.1 Modeling ........................................................................................................................42 

5.5.3.2 Results ............................................................................................................................42 

5.5.4 Prediction of outage and associated weather phenomena ..............................................43 

5.5.4.1 Modeling ........................................................................................................................44 

5.5.4.2 Results ............................................................................................................................44 

5.6 Discussion ......................................................................................................................45 

CHAPTER 6 Conclusion, Contribution and Future Work ...........................................................47 

6.1 Conclusion ......................................................................................................................47 

6.2 Contributions ..................................................................................................................47 

6.3 Future Works ..................................................................................................................48 

References .....................................................................................................................................49 

Appendix A: Cause code description ............................................................................................51 

Appendix B: Weather code description ........................................................................................52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

List of Figures 

Figure 3.1 Decision tree ..................................................................................................................8 

Figure 3.2 Artificial Neural Network ..............................................................................................9 

Figure 4.1. Plots of times series for Truck A: Feb 2014 – Feb 2016 ............................................14 

Figure 4.2 Suspension’s axis.........................................................................................................15 

Figure 4.3 (a) Sample of feature “diff left” ...................................................................................16 

Figure 4.3 (b) Averaged “diff left” ...............................................................................................16 

Figure 4.4 (a) Sample of all features .............................................................................................17 

Figure 4.4 (b) Averaged all features .............................................................................................17 

Figure 4.5 Behavior of the suspension’s differences using a moving window of a week, with 

step size of a day ...........................................................................................................................18 

Figure 4.6 Behavior of the suspensions using a moving window of a week, with step size of a 

day 18 

Figure 4.7 Behavior of the suspensions using accumulative usage ..............................................19 

Figure 4.8 Involvement of strut LR’s pressure in the suspension’s differences ...........................20 

Figure 4.9 (a) Strut’s differences in a normal behavior ................................................................21 

Figure 4.9 (b) LR behavior applying the equation from (4.6) ......................................................21 

Figure 4.10 (a) Pulses generated based on the thresholds ............................................................22 

Figure 4.10 (b) Accumulated values generated based on the pulses. ...........................................22 

Figure 5.1. Tables and integration “links” between them .............................................................25 

Figure 5.2 Schema with the entities, relationships and properties involved in an outage. ...........27 

Figure 5.3 Displayed outage nodes ...............................................................................................29 

Figure 5.4 Alternative visualization provided by the graph database ...........................................30 

Figure 5.5 Three outages were selected and “expanded” to see their relationships; one of them 

(on the right) with several customers affected ..............................................................................30 



vii 

 

Figure 5.6 Clustering of all features .............................................................................................32 

Figure 5.7 Clustering of features: voltage, dev_type_name, mobcustom2, mobcustom3 and 

mobcustom4 ..................................................................................................................................32 

Figure 5.8 Clustering of features: dev_type_name, mobcustom2, mobcustom3 and mobcustom4

 33 

Figure 5.9 Flow chart of the integrated model ..............................................................................44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Tables 

Table 5.1 Result returned by the query (first four records) ..........................................................29 

Table 5.2 A sample records of the dataset ....................................................................................35 

Table 5.3 Confusion matrix for each cause code ..........................................................................36 

Table 5.4 Statistics by class ..........................................................................................................36 

Table 5.5 Statistics by class ..........................................................................................................37 

Table 5.6 Statistics by class ..........................................................................................................37 

Table 5.7 (a) Sample of the weather dataset; the first nine features .............................................38 

Table 5.7 (b) Sample of the weather dataset; the second set of features ......................................39 

Table 5.8 Sample of the first 10 records of the OMS dataset .......................................................39 

Table 5.9 Confusion matrix with the classification of each class .................................................41 

Table 5.10 Confusion matrix with the classification of each class for 10-fold cross validation 

(cumulative matrix combining each experiment results) ..............................................................41 

Table 5.11 Confusion matrix with the classification of each class ...............................................42 

Table 5.12 Confusion matrix with the classification of each class with 10-fold cross validation 43 

Table 5.13 Confusion matrix with the classification of each class ...............................................45 

Table 5.14 Confusion matrix with the classification of Snow ......................................................45 

Table 5.15 Confusion matrix with the classification of Ice ..........................................................45 

Table 5.16 Confusion matrix with the classification of each class ...............................................45 

 



1 

 

CHAPTER 1 

Introduction 

1.1. Motivation 

Prediction of events is an important topic of academic and industrial research. Anticipation 

provides multiple benefits for long-term strategies. If it is possible to forecast a certain event, we 

can adopt proactive measures, and improve future states of a system. Currently, this topic is 

being addressed by different industries for betterment of procedures, preparedness of new 

conditions, and improvement of final products. In this aspect, maintenance procedures draw a lot 

of attention due to a novel and extensive usage of sensors (Saiied and Moe, 2017) and their 

integration with IoT (Internet of Things) devices (Yeon and Jun, 2016). Sensors, taking different 

types of reading from machines/systems, generate a lot of data that allows us to determine 

current states of machines/systems and potentially, the prognosis of any failures that might arise. 

Nevertheless, several steps and some of them quite complex are required in order to obtain any 

type of prognosis. Firstly, data has to be captured, stored, cleaned, integrated with other sources, 

and then analyzed. Secondly, a prediction model needs to be developed with the ability to 

generate prognosis about machine/system faults. In most cases, this involves such processes as 

feature selection and the design of an architecture of a prediction model. Selection of the most 

suitable procedures and technologies depends entirely on the context and goals set up for each 

stage. Therefore, development of prediction models is rarely straightforward, given that there is 

not a well establish procedure that defines how to achieve the desired results. 

1.2. Thesis Goal and Contributions 

Given the countless ways to solve different event-prediction tasks, our study focuses on the 

analysis of two different industrial problems by applying suitable approaches based on the 

context. The first problem addresses predicting failures of a suspension in haul trucks. For that, 

new features have been created using the measures of the strut’s pressure. Interesting results 

have been obtained. However, it has become evident that construction of a prediction model 

requires more suspension data. The second problem focuses on building a model capable of 

predicting an outage in a power system. Prediction models have been constructed using features 
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representing different aspects of a power system itself and features describing weather. In this 

case, suitable models have been developed based on the available data. Also, it has been evident 

that more information and more integration is required to construct models in order to improve 

their performance. 

The contributions of this thesis are as follows: 

1. We propose a reference-like approach for dealing with different data related analytics: 

for time series in the case of our first problem – haul trucks; and data integration issues 

for our second problem – outages in power systems.  

2. We propose an application of different technologies for storage, integration, 

visualization and manipulation of data. 

3. For the suspension’s failure prediction task: we provide a way to measure a degree of 

usage of suspension, and visually detect a suspension’s failure. 

4. For the power system outage prediction task: we provide a methodology for construing 

a model able to predict an outage using the available data.  

1.3. Thesis Outline 

This thesis is divided into five chapters. Chapter 2 describes work focused on event prediction 

procedures applied in industrial settings. Chapter 3 provides background on data mining, 

machine learning and time series analysis. Details related to analysis of data related to the 

suspension’s failures in haul trucks are presented in Chapter 4. Chapter 5 describes the analysis 

done on power system outage data and construction of prediction models able to predict specific 

types of outages. Finally, Chapter 6 presents the conclusion of the thesis. 
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CHAPTER 2 

Related Work 

As technology progresses, industry becomes more competitive. Now, companies not only put 

their focus on the final product/service but also, they try to add intelligence to their processes, 

optimizing them. With this addition, the costs are reduced, the productivity increases, and the 

final output becomes less cumbersome to produce, unveiling new venues to explore; the 

available resources may be used to generate new business opportunities. In the light of this 

necessity, the application of machine learning plays a main role, granting this new added value, 

intelligence. In the pursuit of optimization, there are numerous applications that can be 

mentioned; one of the most common ones has to do with the prediction of “events” (failures) in 

machines. In this regard, the main task is to find a suitable model capable of predicting (with 

high accuracy) the defined “event”. If is not possible to predict the event with high accuracy, the 

combination of different models is needed in order to generate the desirable output. Interesting 

approaches have been done in this case, in which multi-model approach outperforms a single-

model approach (Kim et al., 2018) reducing the probability of an error. Here, the study analyzes 

different factors of degradation in railway tracks and buildings, proposing a linear model to 

forecast degradation in normal conditions, in combination with an exponential model to predict 

degradation when a defect has been detected.  

Other studies that try to address proactive maintenance combine different techniques depending 

on how far in time the prediction is. In (Raziyeh et al., 2016) the task predicted if a pipe was 

prone to failure considering 3 factors: pipe-intrinsic features (such as material, diameter, and 

age), operational features (such as corrosion, pressure, and external stresses) and environmental 

features (such as temperature, rainfall, and soil conditions). The research divided the prediction 

in two categories: mid-term prediction, and long-term prediction. For the mid-term (or annual) 

prediction, they used Evolutionary Polynomial Regression (EPR). For the long-term prediction, 

they first clustered the similar pipes using K-Means, and then applied EPR on each cluster to 

determine if the pipe was going to suffer damaged. The accuracy in the prediction is 83%.  

The implementation of other machine learning tools is also utilized in industry. Alternatives 

such as Genetic Programming (GP) might grant good results when other conventional 
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technologies do not perform as expected. An interesting work done using GP predicts the 

performance degradation of a gas compressor (Safiyullah et al., 2018). The performance 

degradation prediction provided by the GP model is compared against the actual performance 

degradation of the centrifugal gas compressor. Both indicators are compared in order to 

determine if maintenance is necessary, having two levels or alerts: “alarm 1” when the 

difference between the indicators is 20% (at this stage, the spare part needed are requested) and 

“alarm 2” when the difference is 30% (here, the compressor must be shot down and taken to 

maintenance). The GP model estimates the degradation performance with 92% of accuracy. 

Research related to outage prediction focuses its attention in weather to forecast a potential 

blackout. Complex models can predict an outage in the presence of an extreme weather 

conditions (such as storm, heavy rain and lightning) applying fuzzy rules (Asma and Vali, 

2015). The model was built using the weather data of 3 years and tested using the weather data 

of 2014 in 3 different locations, having an average accuracy of 94.23%, specificity 94.2% and 

sensitivity of 89.53%. Other approaches look at a single weather event, and then assess the 

likelihood of an outage. An example of this method is described in (Rozhin et al., 2017) using a 

linear regression for predicting the outage. The accuracy of the study is 90%, nonetheless, the 

authors concluded that further studies were needed given that artificial data points were used to 

measure the performance of the model. 

In time series, main challenge has to do with the amount of data and features that usually are 

involved. Due to this complexity, a general architecture for tackling time series tasks is defined 

(Soheila and Mohammad, 2015). In this study, different ideas and suggestions are proposed 

depending on the type of difficulty that the time series task presents, having two categories: data 

challenges and algorithm challenges. In addition, based on the nature of the data involved, a 

suitable set of algorithms are recommended for implementation. 
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CHAPTER 3 

Background 

3.1. Data Mining 

Ubiquitous devices (e. g. sensors, portable computers, cellphones) and computers are capable of 

collecting a huge amount of data in a short period. Depending on the context and the nature of 

the data, there is the potential of providing additional information to generate new knowledge, 

discover patterns, or predict eventual anomalies. In order to achieve any desired goal, the data 

has to go through the following processes (Sumathi, 2006): 

1. Collection: it corresponds to the process of gathering data. The main sources of data are: 

• Human (e. g. a person who enters data through a web portal). 

• Sensors (e. g. a sensor that measures heart rate). 

• Other systems (e. g. a retail software system that generates statistics regarding their 

customers). 

2. Extraction: is the process of extracting unstructured data and transforming it into a more 

structured (or semi-structured) data. This task is essential for humans to understand the data, 

and for computers to easily process it. 

3. Storage: depending on the nature of the data and the desired output, it can be stored in a well-

defined structure (i. e. relational database) or in a looser structure (i. e. graph database). Some 

of the more common ways of storage are: 

• Relational (SQL) database such as: MySQL, SQL Server, Oracle. 

• Non-SQL database such as: MongoDB, Neo4j. 

• Flat files: also known as text files, in which the data is organized based on a pre-defined 

structure, such as JSON, XML or CSV. 

4. Preprocessing: corresponds to the necessary activities needed to prepare the data for analysis. 

The main tasks are:  

• Data cleaning (e.g. outlier removal).  

• Data integration (i. e. gathering data form different sources and merging it in a single 

dataset. 
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• Data transformation (or data normalization). 

• Data reduction (i. e. reduce the amount of records when, for example, the data is 

unbalanced). 

5. Analysis: after the data goes through the previous steps, a new data subset is generated, 

which will be the input of our algorithm. Depending on the task (desired output), our 

algorithm could derive in the form of a model (generated using a machine learning technique) 

a statistic process or a new system. 

All previous tasks are part of a broad field called Knowledge Discovery in Database (KDD). 

KDD is process of gathering and preparing data for the purpose of solving a problem, extracting 

knowledge, or recognizing a pattern. Due to the broadness of this concept, in the 1990’s a novel 

concept was proposed that focuses on data analysis that is called Data Mining. Data Mining is a 

field of computer science that applies machine learning and statistics to discover patterns in the 

data (Sumathi, 2006).  

3.1.1 Applications 

Recent progress in databases and machine learning, has granted a wider spectrum of Data 

Mining Application. Some of the most common are: 

Telecommunications: Telecommunication related data sets are of high quality, initially they 

were call records collected for billing purposes, but now they have been used for fraud detection 

and consumer marketing. For example, detection of patterns in the data leads to identification of 

users’ preferences. 

Climate: The data collected by satellites (Earth snapshots) and terrestrial observations 

(temperature, precipitation and pressure, just to name a few) allows the prediction of weather, 

ecological problems and the future health of the planet. 

Banking: The transactions done by a customer within a period are usually used to define the 

customer’s profit, behavior and preferences, allowing it to assign a suitable segment for credit 

scoring. Nevertheless, current applications are used for fraud detection in case the customer 

presents an unusual pattern. 
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Criminal Investigation: One of the features of crime analysis is the relationship between a 

crime and the criminal. In this regard, the analysis allows for the definition of a pattern based on 

the modus operandi of an offender. As the pattern gets better defined (based on other similar 

crimes), it is possible to define a set of suspects when a new crime is committed.  

3.2. Machine Learning 

The necessity of making a computer able to “learn” has been a purpose followed since 

computers were invented. This concept was introduced by Alan Turing in 1950 in his paper 

“Computing Machinery and Intelligence” in which he proposed the idea of making a computer 

behave like a human, rather than think like a human (Turing, 1950). If that is possible, the 

computer will acquire the ability to “learn” based on “experience”. For instance, a computer that 

controls a house would be able to optimize the usage of every resource (power, water, gas and 

even data traffic) based on the behavior of its inhabitants. In other words, the house learns the 

patterns and applies them based on experience (Mitchell, 1997). Currently, it is not possible to 

make a computer behave like a human, but it is possible to make them “learn” through a well-

defined input. Therefore, Machine Learning is the process of making a computer able to detect a 

pattern using input data (i.e. “learn”), applying performance measurements as feedback to 

improve (i.e. “experience”). 

3.2.1 Supervised and Unsupervised Learning 

Most of the Machine Learning tasks fall into one of these two categories: Supervised and 

Unsupervised Learning. In Supervised Learning, there is a set of data points (or observations) 

and for each observation there is a response. In this case, we build a model that relates each 

response with an observation. Thus, given a new observation, the model is capable of providing 

(predicting) a response. In contrast, Unsupervised Learning there is a set of observations, but not 

an associated response. In this scenario, we try to find relationships within the observations 

(James, 2013). 

Given the context of our work, we will focus our attention on two tasks: Classification 

(Supervised Learning) and Clustering (Unsupervised Learning). 
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Classification: In this task, there is a set of defined responses (or classes). Therefore, we can 

refer to this as a qualitative response. If the response has continuous values (quantitative 

response) we refer it as a Regression task. Some examples of classifiers are: Random Forests 

and Neural Networks. 

Random Forest: This is a tree-based classifier. In this case, the set of observations is divided 

into a number of segments. In order to define the most suitable segment for a given observation, 

the algorithm looks at the most commonly occurring class (i.e. mode) of each segment. In 

Random Forest, every time that the segment is split, a random sampling of the observations is 

taken, considering only one of them as a potential class, decreasing the eventual correlation that 

might exist in each class (James, 2013). This approach is called “tree” due to the shape of the 

classification, in which each segment is evaluated as a suitable class.  

 

Figure 3.1 Decision tree 

Neural Network: Based on biology, Neural Networks (NN) mimic the structure of the human 

brain’s neural network. An artificial neuron (AN) is connected to others artificial neurons. Every 

time that an AN receives a signal as input, it will generate an output signal to the rest of 

connected ANs. The input signal might be intensified or diminish depending on the associated 

weight of the connection. The output signal of each AN is dictated by a non-linear function that 

computes all the incoming signals from the connected ANs. Hence, a NN is composed of several 

ANs that are connected though one or several layers (Andries, 2007). Usually, the anatomy of a 
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NN is dictated by an input layer, one or several hidden layers, and an output layer. Going back 

to the previous concept, the “input signal” would be the observation, and the “output signal” 

would be the classification (keeping in mind that the output signal might go back and forth if the 

NN is recurrent). 

 

Figure 3.2 Artificial Neural Network 

Clustering: The idea of clustering is to look for a relationship within the data points. For that, 

the observations are divided in subsets or clusters. Once the clusters are derived, it is possible to 

analyze them and conclude whether there is a relationship between the subsets or not. Of course, 

any conclusion has to be related to the nature of the data being clustered. One of the most 

popular techniques is K-Means. 

K-Means: Proved to be one of the best methods for Clustering, K-Means utilize a pre-defined 

number of cluster K to group the observations. After that, each observation is randomly assigned 

to one of the K clusters. Now, the following steps are iterated until the local optimum is reached: 

1) The centroid of each cluster is computed. The centroid corresponds to the feature means 

of all the observation of the K cluster. 

2) Re-assign each observation to the nearest centroid. For that, K-Means calculates the 

Euclidian distance. 
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The local optimum is achieved when the sum-of-squares is minimum and no longer changes in 

the next iteration. But ¿how can we determine the initial number of clusters K? this can be done 

using experimentation. The idea is to run K-Means several times for a different number of 

clusters, until the objective value is minimum, and there is a clear (visual) definition of each 

cluster (James, 2013).  

3.2.2 Applications 

In real world problems, these are some of the most common applications of Machine Learning: 

Speech recognition: The process of transforming spoken words into plain text (or bytes, using a 

lower granularity) is one of the most common applications of Machine Learning. The World’s 

most famous assistant Siri is not only capable of recognizing a question with high accuracy 

(around 95%) but also capable of providing an answer (with lower accuracy). 

Healthcare: Computer Assisted Diagnosis (CAD) allows the prediction of an eventual disease. 

Using the patient’s medical data, the Machine Learning algorithm is capable of detecting 

patterns that are not visible to clinicians. In this way, if there is a high probability of occurrence 

of a disease, the clinician can act and mitigate any risk.  

Online advertising: Also known as online marketing, applies Machine Learning to detect the 

pattern of thousands of customers and then define the preferences of a new customer. Thus, the 

new customer receives promotional marketing that might be of interest, according to his/her 

preferences. 

3.3 Time Series Analysis 

In most of the previous applications, the analysis assumes that the observations are independent 

of each other, and there is no order in the data points. Therefore, it is not a factor that has to be 

considered. For instance, if we have a classification task, in which we need to predict the salary 

of a person based on features such as: degrees, years of study, experience, age and field, each 

data point will be independent, given that the nature of the prediction is not related to the time in 

which the observation was recorded. A different challenge would be weather prediction, in 

which each data point becomes a part of a discrete time sequence. This type of task is called 
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Time Series Analysis. Under this type of analysis, there are two subcategories: Time Domain 

Approach and Frequency Domain Approach. 

3.3.1 Time Domain Approach 

This approach works under the presumption that current values are dependent on past values. 

For example, in astrology it is commonly used to determine how an astrological object changes 

over time. For that, it is imperative to consider past observations to determine the current or 

future variations of the object (Shumway, 2011). 

3.3.2 Frequency Domain Approach 

Contrarily, in this approach the variation of the data is subjected to a periodic oscillation that 

depends on external factors. In this context, most of the studies are associated with stock market 

prediction, social behavior and weather. In these cases, the current behavior is dictated by 

external (or seasonal) features (Shumway, 2011). 

3.3.3 Applications 

Time Series Analysis is not strictly related to prediction. Generally, the analysis tries to find a 

pattern of behavior or relationships between different components: 

Brain’s Response: Using Magnetic Resonance Imaging (MRI) the analysis tries to find how 

different regions of the brain react before, during and after an external stimulus. 

Weather: One of the most common uses of Time Series Analysis is related to weather behavior. 

Using seasonal patterns, the analysis tries to study not only temperature, but also other weather 

phenomena (such as El Niño) and other features associated with location (e.g. snow, wind, 

humidity).  

Stock Market: Over the past decade, stock market prediction is an objective that has been 

pursued because it might yield huge profits if it is done properly. Applying values from past 

trends in the prediction, several (and sometimes hundreds) of features (such as current price, 

open price, quarter, volume just to name a few) are applied. However, current models are not 

able to accurately predict the price in the short or medium term.  
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CHAPTER 4 

Maintenance-oriented Prediction 

4.1 Problem Statement 

Haul ultra-class trucks are high-performance heavy-duty machines that require regular and 

scheduled maintenance due to the constant harsh environment that they are subjected to, mainly 

enormous payloads, uneven roads, and extreme weather. The planning of their maintenance 

plays a fundamental role in their utilization. Any downtime of even a single truck diminishes the 

productivity and has a direct impact on the company’s profit. In the case of haul trucks, one of 

the most severe problems is related to failures of suspension. The implications of such failures 

involve: 

• Taking care of trucks’ payloads and bringing them to a shop, this happens when trucks 

are carrying payloads and their suspension fails; 

• Re-arranging the current work schedule because of a smaller number of trucks able to 

move the planned payload; 

• Inability to determine availability of trucks in a case of lack of spare parts, and a long 

waiting time for re-supplying the inventory. 

Therefore, to minimize any possible loss in productivity, it is imperative to be able to predict 

maintenance timelines and needs for working trucks. 

Objective: To perform a feasibility studies regarding need for maintenance tasks, and to 

determine the degree of wear of a suspension based on different data analysis methods. Further, 

to forecast a life-span of trucks’ suspensions based on their utilization and predict their potential 

failures. 

4.2 Data Description 

The trucks are equipped with multiple sensors that take readings of their speed, payload, and 

pressure of all suspensions, i.e., left front (LF), right front (RF), left rear (LR) and right rear 

(RR). 
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4.2.1 Measurement Data 

There are two formats of data used in this study: 1) time series data representing continuous 

measures strut pressure, and 2) information about notifications and failures. The data values are 

measured in short intervals that contain the following values: 

• Time stamp.  

• Payload. 

• Ground speed. 

• Strut pressures: LF (Left Front), RF (Right Front), LR (Left Rear) and RR (Right Rear). 

The original format of this data is:  

<Truck-ParamName-ReadTime-FloatValue>. 

The data from six different trucks has been used. At different points of the studies, we have also 

analyzed data from another eleven trucks. 

4.2.2 Notification/Failure Logs 

Log data contains entries representing Maintenance Notifications & Failure Codes. This data 

comes in the format: <Unit-Notification-Creation(date)-Description-Symptoms-WorkOrder-

WOCreation-FunctionalLoc-Part-DamageCode-Failure Code>. The data have been obtained for 

four different trucks. 

4.2.3 Data Pre-processing 

The format of the obtained measurement data has not been suitable for time series style analysis. 

A program has been developed to translate the original format of data sets into the format that 

resembles time series waveforms. The new format is the following: 

<Time-pressures: LF, RF, LR, RR> 

The program allows us to identify a desired time step between measurements. The results 

presented here are based on data with “measurement interval” of 5 mins. At the same time, the 

program has been written in a way that an issue of missing points has been addressed. At this 

stage, we have adopted an approach of filling the missing data with interpolated values. Most of 
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the suspension’s pressure values (95%) are between the range of 15000 and 30000 Pa, thus, all 

the data points greater than 30000 Pa were treated as outliers and removed from the dataset 

4.3 Initial Analysis of Data  

4.3.1 Measurement Data Analysis 

The first set of experiments were performed on formatted and clean data from Truck_A. The 

plots representing suspension pressure in LR, and RR cylinders are shown in Figure 4.1. 

Additionally, Figure 4.1 contains the plot of values of PITCH – one of three auxiliary values, 

besides RACK and BIAS1. In the study, we investigated these quantities only at the beginning – 

we have replaced them with different values, Section 4.3.2.  

 

 

 

 

Figure 4.1. Plots of times series for Truck A: Feb 2014 – Feb 2016 

The plots presented in Figure 4.1 have not provided “clear” indicators that could lead to 

identification of abnormal/failure conditions of struts. In this case, the failure is spotted using the 

                                                 
1 Terms PITCH, RACK and BIAS represent different measures: PITCH is a Front and Rear Axle Wheel Strut 

Pressure; RACK is a Diagonal Wheel Strut Pressure; and BIAS is a Side to Side Strut Pressure. 

RR Replaced 



15 

 

notification/failures logs previously described. The measurements contain a lot of variations in 

magnitude of quantities. Over some period of time, the values have looked suspicions: “clouds” 

of largely spread data points before the time of “RR replacement” on RR and PITCH plots. All 

this has prompted us to investigate and introduce an additional processing of data. 

4.3.2 Data Modifications 

As the result of analysis of measurement data, we have proposed two modifications: 

• Generation of “new” quantities called differences, and; 

• Elimination of “jittering” of data via application of moving window average. 

New quantities: a set of six new quantities, Figure 4.2, have been introduced in order to better 

capture differences between measures strut pressures at four axis: LF, RF, LR and RR. These 

quantities are: 

• Diff left = (LF) – (LR) 

• Diff right = (RF) – (RR) 

• Diff front = (LF) – (RF) 

• Diff rear = (LR) – (RR) 

• Cross 1 = (LF) – (RR) 

• Cross 2 = (RF) – (LR) 

 

Figure 4.2 Suspension’s axis 
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4.4 Analysis  

At first look, the dataset presents a high level of variation in values, or “jittering” behavior 

(Figure 4.3 (a)). To reduce those variations, a smoothing factor has been identified, taking the 

average of a specified number of readings. Figure 4.3 (b) represents a “smoothed” version of 

previous plot, taking the average of the last 200 readings. As can be observed, it is much easier 

to see a behavior of the measure quantity. 

 

Figure 4.3 (a) Sample of feature “diff left” 

 

Figure 4.3 (b) Averaged “diff left” 

All studies have been conducted using such a smoothing factor. In order to illustrate the 

difference with the smoothing factor, Figure 4.4 (a) shows all the suspension involved in the 

study, and Figure 4.4 (b) shows the same features within the same time range applying average 

with moving window. 

Now, to predict the “life span” of a suspension, it is necessary to measure the accumulative 

usage of a suspension over time, result that will lead to determining a failure of a suspension. 

The accumulative usage will be dictated by the equation:  

(4.1) 
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Applying (4.1) it is possible to analyze the behavior of the suspensions given the usage. The plot 

below (Figure 4.5) shows a sample of “integrated” pressure values (using the six features 

defined), with a moving window of a week (i. e. summation of all the data points of the last 7 

days), step size of a day (i. e. the window moves one day in every summation). 

 

 Figure 4.4 (a) Sample of all features 

 

Figure 4.4 (b) Averaged all features 
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Figure 4.5 Behavior of the suspension’s differences using a moving window of a week, with 

step size of a day 

Similar results can be derived using only the values of each axis (LF, LR, RF, RR). The 

following graph shows the behavior. 

 

Figure 4.6 Behavior of the suspensions using a moving window of a week, with step size of a 

day 

The red dot on both plots indicates the time of replacement of RR suspension. After the 

replacement, it is possible to observe that the signal is steady, having a smaller difference among 

the struts. This approach does not consider accumulative usage. In other words, given a day, the 

summation of the last 7 days of “usage” (pressure) is computed and plotted. For the following 

days, the same logic is applied, without keeping the values of previous days.  

4.4.1 Integration of moving windows 



19 

 

More interesting results can be obtained when the summation of the pressure is kept over time; 

the accumulation of usage can be seen clearly when the same event happens (i.e. replacing a 

suspension that is failing). This behavior is depicted below. 

 

Figure 4.7 Behavior of the suspensions using accumulative usage 

Likewise, the red dot shows the moment in which the defective suspension RR was replaced. 

The blue line represents the RR suspension. Before the change, the pressure in RR was low due 

to its malfunction, therefore the slop is smaller compared to the rest of the suspensions. After the 

replacement, the new RR suspension picks up the payload, recovering its normal level of usage. 

When the truck is moving with a payload, most of the weight ‘is taken’ by the rear suspensions. 

If the suspensions work correctly, the suspensions’ wave-forms look steady and symmetric, 

showing a minor difference among the suspensions’ curves of the integrated pressures LF and 

RF (front) have similar slopes, indicating similar “load” on each strut. The curve of LR is 

different, at the beginning its slope is the highest, taking part of the load from the defective RR 

struct. After the replacement, the gap between the rear suspensions is smaller, showing balance 

in the payload. These results have led to further analysis on “integrated” values of pressures. 

4.4.2 Balanced signals 

Using a similar approach previously described, here the level of usage is calculated based on 

how “balanced” the struts are. Figure 4.8 presents the main idea: focusing on suspension LR, 

compute the level of usage considering the differences between the suspension (i. e. “diff left”, 

“diff rear” and “cross 2”). 
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Figure 4.8 Involvement of strut LR’s pressure in the suspension’s differences 

Based on Figure 4.8, we can say that the amount of “stress” put in LR is given by: 

Diff Rear – Diff Left – Cross 2    (4.2) 

Which leads to: 

3LR – RR – LF – RF      (4.3) 

The fact that “diff left” and “cross 2” are constantly negative (pressure in the rear is higher than 

in the front) requires a correction. Thus, the constant differences between the front and the rear 

is given by: 

DeltaL: Diff Rear – Diff Left     (4.4) 

DeltaC2: Diff Rear – Cross 2     (4.5) 

Adding those constants to (4.3) the perfectly balanced suspensions is given by: 

3LR – RR – LF – RF – deltaL – deltaC2 = 0    (4.6) 

The equation represents the perfect balance between LR pressure (times 3, given that we have to 

consider the same factor in the other suspensions) and the others strut’s pressures, with two 

constant values (deltas) between the rear and the front. If the values are plugged in the equation, 

it would be possible to observe unusual loads (positive and negative) in reference to a normal 

condition. These results can be further processed to determine if the suspension has been over-

used due to a malfunction in one of the other suspensions. If we plug the values to (4.6) the 

following results are obtained: 
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Figure 4.9 (a) Strut’s differences in a normal behavior 

 

Figure 4.9 (b) LR behavior applying the equation from (4.6) 

Figure 4.9 (a) depicts the original values, while Figure 4.9 (b) shows the results of the equation 

applied in LR. The values above zero indicate a usage higher than normal, and below zero 

indicates lower than normal. If we further process the results from Figure 4.9 (b) it is possible to 

define a threshold-based approach combined with summation to determine the level of the 

strut’s usage. Based on the observations, three thresholds were defined the determine levels of 

“stress” that the suspension has been exposed to. In other words, each time a value exceeds a 

threshold, the “signal” is replaced by one of three possible numbers: 

• If the threshold of 2000 is crossed – a signal of value 1 is used; 

• For crossing the threshold of 5000 – a signal of value 2 is formed; 

• When crossing the threshold of 10000 – a signal of value 3 is created. 

 



22 

 

Figure 4.10 (a) illustrates the results of the application of the thresholds, based on the wave 

presented in Figure 4.9 (b). Finally, Figure 4.10 (b) shows the summation of the pulses. This 

represents a way to determine the level of usage of a given suspension. 

 

Figure 4.10 (a) Pulses generated based on the thresholds 

 

Figure 4.10 (b) Accumulated values generated based on the pulses. 

4.5 Discussion 

The generation of new features (“diff right”, “diff left”, “diff rear”, “diff front”, “cross 1” and 

“cross 2”) with moving averages enabled us to clearly see the behavior of the suspensions when 

the truck is carrying a payload. Most of the weight (pressure) is taken by the rear suspensions, 

making them more prone to failure. In a normal state, the gaps between the “differences” is 

minor (i.e. the amplitude of each wave form is close to zero). When one of the suspensions has a 

defect, the gap between each feature is visible, making the amplitude of each wave greater.  
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The first approach (integration of moving windows) allows to accumulate the usage of each 

suspension. In this case, a failure can be detected, but over time; the change of the angle of the 

slope is visible long after the suspension is replaced. The second approach also grants with the 

accumulation over time but using the balance among the struts. 

With these findings, we can conclude that: first, the level of usage of a given suspension can be 

measured; second, detect when a failure is occurring. Combining these two events, it would be 

possible to predict a malfunction of a suspension. In other words, based on the lifespan of a 

brand-new suspension (provided by the manufacturer) it is plausible to estimate when the 

suspension will complete its lifespan by accumulating its usage, and then look at its behavior 

after it reaches this threshold. Any abnormal behavior is readily detected looking at the gaps 

between each suspension’s wave form, which can be done using threshold-based algorithm or a 

machine learning model. However, to reach this stage, further studies have to be performed, 

given that all the studies were done over “old” struts, thus it is necessary to define the values of 

these thresholds (for usage and gaps between the struts) using a brand-new suspension (or in an 

ideal scenario, a brand-new truck). 
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CHAPTER 5 

Event Prediction in Power Systems 

5.1 Problem Statement  

Outages are events that are difficult to handle in a timely manner. When they happen, they are 

usually reported by one or several users that were affected by a given outage, or by someone 

who saw that something wrong happened to a power line, a switch or a transformer. Once the 

affected area is approximated, a group of technicians is sent to the location to inspect the place 

and try to identify a problem. When the problem is detected, reparations begin. It is not possible 

to determine how long they take place, especially, considering such factors as: difficulty of 

repairs, availability of needed supplies and man power. In this case, the most affected 

stakeholders are users who have several problems created due to the absence of electricity. 

The necessity to anticipate an outage is imperative to avoid any major problems (and hazardous 

situations) caused by an interruption of electricity. 

Objectives: To integrate and analyze outage related data. To build outage prediction models. To 

identify, automatically, types of outages. 

5.2 Data description 

In power systems, a large number of quantities are being measured with different frequency. 

Under this scenario, we can divide measured variables into two groups: 

• Internal: these are variables that represent different entities/measures of the system; some 

examples of these are: power consumption, number of customers connected to a 

transformer, age of a given device, number of repairs done on a device, etc. 

• External: these variables represent quantities not related to the system, but that might 

affect its operations; most common of those are weather features: temperature, humidity 

and wind speed. 

As it will be shown, these variables are combined in different ways to construct models 

predicting an eventual outage. 
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All measured quantities are stored in multiple databases that are distributed among multiple 

locations in electrical utility sites. The process of preparation of data involved a number of 

activities that required interaction with utility personnel in order to understand meanings of 

individual attributes/features of collected data. One of the important activities has been data 

integration. Fig 5.1 represents a snapshot of tables from two databases: Outage Management 

System (OMS Database) and Maintenance database (Maximo): 

• OMS: a database system that contains information about the outages reported by 

customers, entered by operators, and provided by personnel involved in taking care of an 

outage.  

• Maximo: a database system that contains information about the maintenance done in a 

given equipment (e. g. poles, transformers, switches, etc.). 

 

 

5.3 Visualization and interactive analysis of data 

Provided the complexity and the number of features involved in an outage, it is fundamental to 

first understand all the entities involved in this event and how those relate each other. In this 

context, graph databases provide the concept of node-relationship-properties to define a schema: 

Figure 5.1. Tables and integration “links” between them 

5.3 Visualization and interactive analysis of data 

Provided the complexity and the number of features describing an outage, it is essential to 

understand all the quantities involved in representing an outage, and how they are related to each 

other. In this context, graph databases provide an interesting view at the tuple <node-

relationship-property> to define a schema: 

• Node: represents an entity within the model. 

• Relationship: represents a link (or association) between different entities defined within 

the model. 

OMS  
Database 

Maximo 
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• Properties: represents the entity’s features. 

At the beginning we have modeled the available data using a special schema (Section 5.3.1) and 

then visualized the model accordingly. 

5.3.1 Schema 

In database systems, a schema represents the structure of the data described in a formal 

language. The main entities of the schema are represented by tables (nodes) that are connected 

to other entities through constraints (relationships). After analyzing the data available to us, the 

main entities involved in an outage are the following: 

• Outage: has general information of the outage (such as id, date, location, number of 

affected customers). 

• Event: has information regarding the cause of the outage. 

• Cause: domain node that defines all possible causes associated to an outage. 

• Calls: represents all the calls from the customer that reported the outage. 

• Root transformer: contains the location and the id of the root transformer that was related 

to the outage. 

• Transformers: contains the id of all the transformers involved in the outage. 

• Customers: contains the id and the location of the affected customers. 

• Location: defines the X and Y coordinate of the location of the customers. 

• Breaker: contains the path of all the devices affected by the outage, starting from the root 

transformer and ending in the customer’s transformer. 

The graph model is depicted in Figure 5.2: 
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Figure 5.2 Schema with the entities, relationships and properties involved in an outage. 

Once the conceptual model has been defined, we have loaded it into a graph database called 

Neo4j (Neo4j, 2018). 

5.3.2 Database population 

For manipulating and interacting with the database, we use Cypher which is a simple query 

language for graph databases. The process of creating the model is divided in three parts: 

• Create nodes: using the data source, we create all nodes of the model. Cypher command 

below shows how to create a node “Outage” with properties “eid” (outage id), “num_1” 

(event id) and “cdts” (date in which the outage happened) when loading the data from a 

CSV (Comma Separated Values) file. 

LOAD CSV WITH HEADERS FROM 

'file:///AEVEN_01.csv' as line 

WITH line 

WHERE line.CURENT = "T" 
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CREATE (o:Outage {eid:line.EID, num_1:line.NUM_1, 

cdts:substring(line.CDTS,0,8), dev_id:line.DEV_ID}) 

• Create constraints: to maintain integrity of the data, it is necessary to create the 

constraints according to the structure of the data; a Cypher command below defines a 

unique constraint for the node “Outage”, property “num_1”. 

CREATE CONSTRAINT ON (o:Outage) ASSERT o.num_1 IS UNIQUE 

• Create relationships: applying conceptual schema defined, we create all relationships of 

the model; a Cypher command shown below defines a relationship between two nodes 

“Outage” and “Transformers”. 

MATCH (o:Outage),(t:Transformers) 

WHERE o.num_1 = t.evntnum 

CREATE (o)-[:AFFECTED]->(t) 

Once the graph database is loaded, we can query the model and extract the data for our analysis. 

5.3.3 Querying the graph 

Using defined relationships, we are able to obtain values of properties from the nodes that we 

are interested in. Depending on what we need to obtain, and the relationship defined among the 

nodes, we prepare proper graph queries. For example, in order to retrieve the customer locations 

from all the outages we follow the model defined in Figure 5.2, using the following query: 

MATCH (o:Outage)-->(t:Transformers)-->(c:Customers)-->(l:Location)  

RETURN o.num_1 as outage, t.xfmr_name as transformer, c.premise as customer, 

l.x_coord as x, l.y_coord as y 

Locations of customers involved in all outages can be retrieved based on the relationship defined 

in the model: “match”, and “return”, and the properties “num_1” (outage), “xfmr_name” 

(transformer), “premise” (customer), “x_coord” (coordinate X) and “y_coord” (coordinate Y). 

Table 5.1 shows a sample of the result returned by the query. 

Outage Transformer Customer X Y 

D964096 937575 1169101272 28345735 603335040 
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D964096 663111 7941289 28418864 603283266 

D964097 P2575452 3109389 15324631 577123292 

D964096 663089 7941287 28212441 603272844 

Table 5.1 Result returned by the query (first four records) 

An alternative way to visualize the data is via displaying relevant nodes. For that, we can select 

all the nodes using a command: 

MATCH (n:Outage) RETURN n 

Once we display nodes representing outages (Figure 5.3) we can expand nodes and see their 

relationships with other nodes (Figure 5.4). A simple graph shown in Figure 5.4 illustrates a set 

of relationship between an outage node (red), a transformer node (pink), a customer node 

(yellow) and a location node (blue). The number in each node represents an id of that node. 

 

Figure 5.3 Displayed outage nodes 
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Figure 5.4 Alternative visualization provided by the graph database 

Previous example shows that the selected outage has one “affected” transformer, which is 

“connected” to one customer, and that the customer “has” a location. Further visualization 

provides more complex situations as depicted in Figure 5.5, in which multiple users are 

connected to a single transformer affected by an outage. 

 

Figure 5.5 Three outages were selected and “expanded” to see their relationships; one of them 

(on the right) with several customers affected 

The graph visualization provides an interactive way of analyzing multiple different relationships 

that leads to visual exploration of data according to the users’ needs. 

5.4 Unsupervised techniques in analysis of outage 

5.4.1 Clustering process 
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The unsupervised learning technique allows us to determine if there are isolated groups – 

clusters – within the data. The technique we use here is K-Means. If clusters are determined, 

they can be used to “classify” a new data point based on its closeness to one of the clusters. As a 

feasibility study, we focus on a small portion of the dataset, more precisely, outages reported in 

January of 2017. Only non-continuous features have been selected for this purpose: 

• Customer_no: number of customers affected by the outage. 

• Voltage: connected voltage. 

• Dev_type_name: type of the device affected. 

• Weather: description of the current state of weather; for example: “normal”, “storm”, 

“hurricane”, etc. 

• Mobcustom2: range of temperature at the time an outage happened; for example: “-19 to 

-30”, “-6 to -18”, etc. 

• Mobcustom3: wind’s strength; for example: “light”, “strong”, “moderate”, etc. 

• Mobcustom4: weather phenomena involved; for example: “normal snow”, “light rain”, 

“heavy rain”, “none”, etc. 

• Expr1: corresponds to the phase at which an outage occurred. 

All the nominal values, such as “dev_type_name”, “weather”, “mobcustom2”, “mobcustom3”, 

“mobcustom4”, have been transformed to numerical values that are required by the K-Means 

algorithm. Using the described features, we have analyzed data using three different 

combinations of features. In each case, the optimum k number of clusters is three. 

Case 1: all features are used. Fig. 5.6 shows the result of the clustering. In this scenario, there is 

no conclusive result; there is no a clear separation between the clusters. In addition, the diameter 

of cluster nº1 is almost twice the size of the cluster nº3.  
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Figure 5.6 Clustering of all features 

Case 2: two features “customer_no” and “expr1” are discarded. Fig 5.7 shows the result of the 

clustering; there is a minor improvement. In this experiment, there seems to be less overlap 

between the clusters, but again it is possible to observe a cluster (nº2) with a long diameter.  

 

Figure 5.7 Clustering of features: voltage, dev_type_name, mobcustom2, mobcustom3 and 

mobcustom4 
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Case 3: Another feature – “voltage” – is discarded. In this case, two of the clusters are 

practically overlapped, therefore removing this feature has not improve the results, Fig 5.8. 

 

Figure 5.8 Clustering of features: dev_type_name, mobcustom2, mobcustom3 and mobcustom4 

Visually, case 1 and case 2 presents similar results given the shape of the clusters.  

5.4.2 Statistical analysis 

In order to compare the results of clustering, two metrics are used to determine how good the 

clusters are in each case. These performance metrics are: total sum of squares, and between sum 

of squares: 

• Total sum of squares (“Total_ss”): it represents a ratio the sum of squared distances of 

each data point to the global mean (Tusell, 2016). 

• Between sum of squares (“Between_ss”): it represents a ration the sum of square 

distance of each centroid to the global mean (Tusell, 2016). 

According to these definitions, if centroids of clusters are close to the global mean, it indicates 

that the clusters are not distinguishable between each other. To determine which results are the 

best among all cases, we apply the formula: 
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Between_ss / Total_ss 

Thus, the closer to one this ratio is, the better the clustering result is. Now, the values of the ratio 

for each case are: 

• Case 1: 0.85 

• Case 2: 0.37 

• Case 3: 0.43 

Based on the ratio, Case 3 represents a better result than Case 2, having a better measure of 

distance between centroids; however, this might be misleading, considering the overlap between 

the clusters obtained for Case 3, Figure 5.7 and Figure 5.8. Case 1 represents the best result. 

In summary, we can state that unsupervised-based analysis of data does not provide a very good 

result. The obtained clusters have provided us with a basic understanding of relations between 

individual data points and features.  

5.5 Supervised techniques in analysis of outage: prediction models 

A process of building a model requires a number of steps that can be quite different every time a 

model is constructed. There is a lot of flexibility in methodology that defines which approach to 

follow for a given dataset/classification task. Of course, there are well-known actions that must 

be done to ensure reliable results, such as: preprocessing, data cleaning, normalization, and 

feature selection. 

The data we used for model construction include: 

• OMS (Outage Management System). 

• Weather data: features related to the environmental conditions; some of these features 

are: temperature, humidity, solar radiation, wind speed, pressure, just to name a few 

In the following sections, we describe different approaches we have applied to construct models 

suitable for prediction outages using the available data. 

5.5.1 Prediction based on OMS and weather (temperature and humidity) data 
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This first approach shares some similarities with the unsupervised analysis described in the 

previous section. Most of the features used for building a prediction model are the same. 

5.5.1.1 Data description 

The data set has information over a time range from 2012 until 2015. It contains information 

about all outages reported during that period. In comparison to the unsupervised learning we 

have performed, such features as “voltage”, “dev_type_name”, “expr1” are kept, while the 

feature “customer_no” has been removed due to its dependence on extensive post-mortem 

analysis of outages. 

The features: “weather”, “mobcustom2”, “mobcustom3”, “mobcustom4” have been replaced by 

new features: “temp” (temperature) and “hum” (humidity). These new values have obtained 

using the R Studio library “rclimateca” (https://cran.r-

project.org/web/packages/rclimateca/index.html). This library has allowed us to query the 

weather data from The Environment Canada climate repository (Historical Climate Data, 2018), 

using a time and the “X” and “Y” coordinates of an outage.  

The following new features have been also added as part of the data: 

• Substation: power system that provides electricity to a service area. 

• Feeder: power line that transfers electricity from the substation to the transformers. 

Table 5.2 depicts a sample of the data used. The cause codes in the table represents the causes of 

outages as identified by personnel servicing a given outage (see Appendix A): 

Voltage_kv Dev_type Substation Expr1 Feeder Temp Hum Cause_code 

25 313 759S ABC 759-502 23.7 31 9.6 

25 313 NULL ABC 763-504 -11.3 77 9.6 

25 314 759S A 759-502 7.7 91 4 

25 300 777S ABC 777-502 14.2 58 7 

25 304 777S B 777-502 32.4 18 4 

999 313 728S B 728-503 12.1 56 3 

25 313 759S ABC 759-502 23.7 31 9.6 

25 314 700S A 700-504 17.1 52 5 

25 300 720S ABC 720-502 19 20 3 

25 300 720S ABC 720-504 19.7 68 4 

Table 5.2 A sample records of the dataset 
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5.5.1.2 Modeling 

For the classification task, all the categorical values, such as: “substation”, “feeder” and “expr1”, 

have been transformed into numeric values. As a preliminary study, the data has been split 60% 

for training, and 40% for testing, taking a random sample for generating both subsets. The target 

of the classification is the value “cause_code” which represents the cause of an outage. The 

prediction model is Random Forests, which has been identified as the one that provides the best 

results. 

5.5.1.3 Results 

The process of constructing a prediction model has been done using R Studio (R Studio, 2018). 

A confusion matrix is shown in Table 5.3.  The performance measures of the model are included 

in Table 5.4. We also provide the values of measure averaged over all types of outages: 

• Average: sensitivity 0.501; specificity: 0.957; precision: 0.746; 

• The global accuracy 74%. 

  Reference               

Prediction 2 3 4 5 6 7 8 9.6 

2 33 0 0 5 0 0 0 0 

3 0 588 1 40 5 0 0 2 

4 9 394 2626 280 343 335 0 26 

5 797 111 105 2724 290 2 13 276 

6 0 6 6 27 1538 0 0 24 

7 0 0 0 0 0 34 0 0 

8 0 0 0 0 0 0 0 0 

9.6 0 22 24 56 3 1 0 1572 

Table 5.3 Confusion matrix for each cause code 

  2 3 4 5 6 7 8 9.6 

Sensitivity 0.0393 0.52453 0.9508 0.8697 0.7058 0.0914 0 0.8274 

Specificity 0.9995 0.99571 0.8549 0.8265 0.9938 1 1 0.9898 

Precision 0.8684 0.92744 0.6543 0.6308 0.9606 1 0 0.9368 

Balanced 

Accuracy 0.5194 0.76012 0.9028 0.8481 0.8498 0.5457 0.5 0.9086 

Table 5.4 Statistics by class 

Worst results are obtained applying 10-fold cross validation: 
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• Average: sensitivity 0.206; specificity: 0.894; precision: 0.479; 

• The global accuracy 63%. 

  Reference               

Prediction 2 3 4 5 6 7 8 9.6 

2 36 0 0 0 0 0 0 0 

3 0 310 96 76 3 0 0 126 

4 1250 2136 5115 3624 1779 717 963 3794 

5 789 1966 2548 14743 3969 113 742 7385 

6 30 1065 5005 5005 2632 312 804 3765 

7 0 0 0 0 0 38 0 0 

8 0 0 0 0 0 0 0 0 

9.6 6 281 934 934 85 3 0 1651 

Table 5.5 Statistics by class 

  2 3 4 5 6 7 8 9.6 

Sensitivity 0.017 0.0538 0.538 0.604 0.310 0.032 0 0.098 

Specificity 1 0.995 0.766 0.615 0.811 1 1 0.967 

Precision 1 0.508 0.26 0.457 0.19 1 0 0.423 

Balanced 

Accuracy 0.508 0.524 0.675 0.609 0.561 0.516 0.500 0.533 

Table 5.6 Statistics by class 

As it can be seen, the worst results are obtained for the cause codes “loss of supply” (2) and 

“adverse environment” (7). In “loss of supply” and “adverse environment” the low sensitivity is 

due to the number of missed-classifications. “Human element” (8) is a special case because it 

does not have a significant number of instances, thus the indicators are not meaningful 

(nevertheless, it is considered as part of the overall accuracy of the classifier).  

The specificity obtained for each class is high due to a large number of “true-negatives”; in this 

scenario we compare one class against the rest. The precision is lower for such classes as 

“lightning” and “defective equipment” which might be attributed to the fact that these cases are 

more difficult to predict, and they represent a substantial portion of the observations. The 

balanced accuracy in “loss of supply” and “adverse environment” is also misleading because it 

considers the accuracy of the rest of the classes.  

5.5.2 Prediction based on OMS and weather 
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In the second approach, we consider a full set of features related to weather (not only 

temperature and humidity). The number of features used is large due to the sampling of weather 

conditions considering not only the time when an outage occurred, but also the weather 

conditions before and after the outage took place. 

5.5.2.1 Data description 

The dataset contains information about outages that occurred from 2015 until 2018. As has been 

mentioned before, the number of attributes used for weather is larger than in the previous case. 

Now, we have 18 features (see Appendix B). The frequency of the sampling is a single 

measurement of each feature done on an hourly basis. We consider the weather conditions at the 

outage location starting 12 hours before, during, and 3 hours after an outage took place. 

Therefore, we have 288 features for the weather alone. Table 5.7 shows the sample of each 

feature, representing the weather 12 hours before the outage. 

M2t_.12 D2t_.12 Wbt_.12 Rh_.12 Spk_.12 Wp_.12 Wd_.12 Cc_.12 Php_.12 

-21 -25 -21 70 97.8 13 350 100 0 

-19.8 -22.09 -19.8 99 94.1 10.9 312 99 0.00254 

-18.9 -20.9 -19.1 84 93.1 18.4 30 100 0.05 

-32.8 -35.8 -32.9 74 94.4 7.6 190 85 0 

-22.2 -24.93 -22.3 98 95.6 4.2 252 100 0 

-21.7 -24.24 -21.7 99 95.6 12.2 306 99 0 

-23.1 -25 -23.3 84 96.2 7.6 290 95 0 

-17.1 -19.2 -17.4 84 95.8 5.4 50 50 0.05 

-11.5 -12.41 -11.5 99 90.1 9 262 100 0.022 

-15.5 -17.29 -15.6 97 94.6 24.7 330 99 0.00254 

Table 5.7 (a) Sample of the weather dataset; the first nine features 

Dnr_.12 Dsr_.12 Dhr_.12 Wc_.12 At_.12 Hi_.12 Sf_.12 Press_.12 Wg_.12 

0 0 0 -30 -30 -21 0 102.54 17.6 

0 0 0 -27.3 -27.3 -19.8 0.3 104 54.1 

0 0 0 -28.6 -28.6 -18.9 1.4 102.5 28.1 

0 0 0 -40.9 -40.9 -32.8 0 102.9 13.3 

0 0 0 -22.2 -22.2 -22.2 0 104.2 52.3 

0 0 0 -30.1 -30.1 -21.7 0 104 72.1 

0 0 0 -29.6 -29.6 -23.1 0 104.9 14.8 

0 0 0 -21.3 -21.3 -17.1 0 105.4 7.6 

15 78 75 -16.6 -16.6 -11.5 0.4 102.7 69.9 
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0 0 0 -25.7 -25.7 -15.5 0.1 102.9 96.1 

Table 5.7 (b) Sample of the weather dataset; the second set of features 

In addition to the weather data, we also have features from OMS that are related to the system 

and location only. Thus, from OMS we use the following six features: 

• Service_Area: location in which the outage took place. 

• Dev_id: unique identifier of the root device involved in the outage. 

• Mslink: main transformer affected the outage. 

• Scale: type of topology (rural or urban). 

• Feeder: power line that transfers electricity from the substation to the transformers. 

 Table 5.8 illustrates a sample of the OMS data. 

Service_area Dev_id Mslink Scale Feeder Mw.load.corrected 

Fort 

McMurray 7905203 7905203 Urban 820-501 0 

Beaverlodge 8886006 8886006 Rural 815-503 0 

Hanna 2894950 2894950 Rural 803-505 0 

St. Paul 7903124 7903124 Rural 707-501 0 

Falher 9064586 9064586 Urban 784-505 0 

St. Paul 1.14E+09 1.14E+09 Rural 707-502 0 

Vegreville 1.1E+09 1.1E+09 Rural 711-501 0 

Hanna 2894890 2894890 Rural 801-502 0 

Swan Hills 8882036 8882036 Rural 743-503 0 

Bonnyville 7899418 7899418 Rural 859-503 0 

Table 5.8 Sample of the first 10 records of the OMS dataset 

The total number of features is 295, including the target, i.e., a cause code to be predicted. To 

reduce the number of attributes, feature selection process has been performed. It is described in 

next section.  

5.5.2.2 Feature selection 

In this task, the target class “cause_code” is transformed in two categorical values: “scheduled” 

and “unscheduled” outage. For that, all the “cause_code” type “schedule outage” are classified 

as “schedule” and the rest of the “cause_code” are classified as “unscheduled”. Using the subset 

evaluator “FirstBest” that provides the best subset of features, based on the selected target class, 
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from Weka (Weka, 2018), we obtain a subset of features that better defines our target class. The 

output of the process is described below: 

Selected attributes: 

2,3,6,25,28,32,45,138,143,146,152,154,155,164,165,169,170,171,182,184,185,186,187,1

88,189,191,277: 27 

DEV_ID, MSLINK, MW.Load.Corrected, D2T_.11, D2T_.8, D2T_.4, WBT_.7,                      

PHP_.10, PHP_.5, PHP_.2, DNR_.12, DNR_.10, DNR_.9, DNR_0, DNR_1, DSR_.11, 

DSR_.10, DSR_.9, DSR_2, DHR_.12, DHR_.11, DHR_.10, DHR_.9, DHR_.8, DHR_.7, 

DHR_.5, Press_1 

The notation “_.” (underscore point) plus “number” indicates that the value represents a quantity 

measured “number” of hours before an outage. In this case, if the hour is zero, the value 

corresponds to the time when an outage happened. The new subset has 28 features with the 

target class. 

5.5.2.3 Modeling 

In the approach of taking OMS and weather data, our target (output) variable represents only 

two distinct values determined based on the “cause_code”. All the causes considered to be not 

related to weather have been removed, i. e., “unknown/other”, “tree contacts”, “defective 

equipment” and “adverse environment”. The remaining “cause_code” has been labelled as 

follows: 

• Scheduled outage  Non-weather outage 

• Lightning  Weather outage 

• Human element  Non-weather outage 

• Foreign interference  Non-weather outage 

• Adverse weather  Weather outage 

• Non-outage  Non-weather outage 

Therefore, the classifier’s task is to predict outages that are related to weather, or not related to 

weather, rather than predicting all the possible causes with different classes. Two different sets 

of experiments have been conducted: one as a feasibility study where data has been split 70% 
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for training and 30% for testing, taking a random sample for generating both subsets; and one as 

a 10-fold cross validation. The prediction model is Random Forests, which provided the best 

results using the features selected as it was explained in the previous section. 

5.5.2.4 Results 

The confusion matrix is shown in Table 5.9.  The performance measures obtained for the 

prediction model are: 

• Sensitivity: 0.813 

• Specificity: 0.750 

• Precision: 0.778 

• Balanced accuracy: 0.782 

• The global accuracy of this approach is 78%. 

  Reference   

Prediction Non-weather Weather 

Non-weather 2450 699 

Weather 564 2101 

Table 5.9 Confusion matrix with the classification of each class 

Similar results are obtained with 10-fold cross validation: 

• Sensitivity: 0.813 

• Specificity: 0.759 

• Precision: 0.785 

• Balanced accuracy: 0.786 

• The global accuracy of this approach is 78%. 

  Reference   

Prediction Non-weather Weather 

Non-weather 8090 2203 

Weather 1858 6925 

Table 5.10 Confusion matrix with the classification of each class for 10-fold cross validation 

(cumulative matrix combining each experiment results) 

Better results are obtained mainly because the classifier is predicting two well-defined classes, 

rather than trying to predict several “similar classes”. Here, all the similar instances are in the 
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same group, improving the sensitivity and precision. The balanced accuracy is almost identical 

to the global accuracy given that the dataset is balanced between the classes. 

5.5.3 Prediction based on weather only 

The approach that uses only weather data is presented here. The motivation of such a scenario 

has been motivated by the fact that some OMS data is difficult to provide in real time. The 

procedure described previously with a difference of removing all features related to OMS is 

applied. Now, the number of features is 25 (including the target class). The purpose of this 

experiment is to test if the removal of features related to the status of a system at the time of 

outage affects the accuracy of the prediction. 

5.5.3.1 Modeling 

The procedure as described in the previous section has been applied. As before we have 

performed a single experiment where the data is split 70% for training and 30% for testing, 

taking a random sample for generating both subsets, and a series of experiments contributing to 

10-fold cross validation. The prediction model is Random Forests, which provides the best 

results. 

5.5.3.2 Results 

Table 5.11 contains the results of prediction obtained for Random Forest model. 

• Sensitivity: 0.800 

• Specificity: 0.720 

• Precision: 0.763 

• Balanced accuracy: 0.760 

• The global accuracy of this approach is 76%. 

  Reference   

Prediction Non-weather Weather 

Non-weather 2463 765 

Weather 605 2030 

Table 5.11 Confusion matrix with the classification of each class 

Similar results are obtained applying 10-fold cross validation: 
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• Sensitivity: 0.812 

• Specificity: 0.725 

• Precision: 0.763 

• Balanced accuracy: 0.768 

• The global accuracy of this approach is 77%. 

  Reference   

Prediction Non-weather Weather 

Non-weather 8082 2506 

Weather 1866 6622 

Table 5.12 Confusion matrix with the classification of each class with 10-fold cross validation 

In this approach, we can readily conclude that the elimination of information related to the 

system affects the overall performance of the classifier, slightly diminishing the accuracy of it. 

5.5.4 Prediction of outage and associated weather phenomena 

This work is slightly different from the one presented above. This time a prediction system is 

composed of a model to predict an outage, and three new models to determine which weather 

phenomena has been involved in the outage. For the development of these new models, a 

subcategory of “cause_code”, called “supplementary_cause_code”, has been used. We have 

distinguished with values: 

• Icing/No Icing 

• Extreme wind/No Wind 

• Snow/No snow 

Considering that these features are related to weather, for the feature selection process only 

weather features were used, having as a target class “supplementary_cause_code”. As in the case 

of previous approach, the algorithm “BestFirst” from Weka has been used. For the outage 

prediction model, the same data features have been used with a single new feature 

“supplementary_cause_code” 

The first stage of the prediction model, “outage model”, predicts if an outage takes place. If 

“yes”, the second stage uses three models: “icing model”, “snow model”, and “wind model” to 



44 

 

determine which phenomena is involved. Thus, one, two or all these factors might be involved. 

If the first stage predicts that there is “no outage”, no further prediction is done. Figure 5.9 

depicts the integrated model. 

 

Figure 5.9 Flow chart of the integrated model 

5.5.4.1 Modeling 

For generation of these models, the data was split 70% for training and 30% for testing, taking a 

random sample for generating both subsets. The prediction model is Random Forests, which 

provides the best results. 

5.5.4.2 Results 

Table 5.13 contains the results of outage prediction obtained for Random Forest model. 
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• Sensitivity: 0.940 

• Specificity: 0.740 

• Precision: 0.80 

• Balanced accuracy: 0.840 

• The global accuracy of this approach is 85%. 

  Reference   

Prediction Non-outage Outage 

Non-weather 2844 707 

Weather 161 2060 

Table 5.13 Confusion matrix with the classification of each class 

Tables 5.14-16 contain the results of the prediction results for each weather condition. 

  Reference 

Prediction No-Snow Snow 

No-Snow 2303 76 

Snow 29 301 

Table 5.14 Confusion matrix with the classification of Snow 

  Reference 

Prediction Non-Ice Ice 

Non-Ice 2202 57 

Ice 92 405 

Table 5.15 Confusion matrix with the classification of Ice 

  Reference 

Prediction Non-Wind Wind 

Non-Wind 2432 149 

Wind 29 129 

Table 5.16 Confusion matrix with the classification of each class 

5.6 Discussion 

Preliminary results show that an outage prediction model can provide better results if there is a 

combination of information coming from weather and the system itself. The clustering of the 

first dataset has not provided useful information; the overlap between the clusters does not 
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permit to further analyze a pattern. In contrast, the supervised approach granted good results 

combining internal (OMS) and external (weather) data. 

The attempt to predict each “cause_code” (first approach) produced good results in terms of 

accuracy, but was inconsistent from the point of view of precision and sensitivity. Mainly, 

because of the similarity among the classes, and the unbalance distribution of the data. Grouping 

the classes (second approach) solved both issues, giving as a result with marginally higher 

accuracy, but a more consistent sensitivity and precision. The third approach proved that the 

deletion of internal information decreases the overall output of the model (using the same 

dataset and the same modeling procedure). The last approach attempts to also predict the 

weather. The high accuracy in the outage prediction is due to the addition of the new feature, 

however, it corresponds to a “post-mortem” feature. The low accuracy in the weather 

classification (“extreme wind”) responds to the unbalance positives and negatives samples of the 

dataset  

This study has a limitation in terms of internal data availability. Currently, OMS does not 

provide any information related to the equipment involved in power system outages (for 

example, how old a device is? How prone to failure a power line is?) These sorts of features 

should be considered when trying to build a more accurate prediction model. Furthermore, the 

location plays an important role as well. Ideally, in a real-world system the model should predict 

an outage based on a selected location (or service area) indicating the probability of an outage 

for that service area. Location plays a fundamental role, considering that there are other external 

factors that have not been used, such as topology of the network, geography and vegetation, that 

might have influence on an outage. The integration of more data is needed to improve current 

approach and develop a model that provides a user with a probabilistic output for a given service 

area. 
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CHAPTER 6 

Conclusion, Contribution and Future Work 

6.1 Conclusion 

In this thesis, we have presented a process of applying main concepts of Data Mining and 

Machine Learning to real world problems. In particular, two different problems from industry 

have been addressed. First, in the case of analysis of haul truck suspension data we have 

analyzed the behavior of trucks’ suspensions by generating new features and visually 

representing waveforms of usage of suspensions. After that, a measure of suspensions’ fatigue 

has been created using a concept of moving windows and compound suspension values. Second, 

in the case of prediction of outages in power systems we have addressed the problem predicting 

outage events. At the beginning we have used an unsupervised learning, i.e., K-Means clustering 

without good results. Further, we have applied supervised learning techniques to build 

prediction models – Random Forests. We have obtained prediction accuracy of 74%. Despite 

such relatively good results, our results have been impacted by limitations in available data 

impeding construction of a fully developed model. This sort of problem is very common in 

industry that struggles to create a reliable and comprehensive infrastructure that supports sensors 

and IoT devices. In order to take advantage of Data Mining and Machine Learning techniques, it 

is imperative to have available data of good quality. 

6.2 Contributions 

Processes of data analysis performed on industrial data lead to a number of contributions. 

Overall, our study has resulted in a set of findings regarding methodology of processing 

industrial data. 

We can state that a number of different approaches can be adopted for data analysis depending 

on availability of data and desired outputs. Main factors influencing the choices are related to:  

• Nature of data, would that be time series, aggregated or integrated data; 

• Quality of data, i.e., consistency of data collecting processes, existence of missing 

values, and even availability of data for on-line modeling; 
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• Understanding of data, visual-based analysis of data inter-relationships and explanation 

of phenomena to be analyzed and predicted; 

• And usefulness of data, such issues as: correspondence of features’ names, importance of 

features for predicting purposes, availability of data for real-time prediction purposes. 

Besides using ML/DM techniques for constructing prediction models, we apply novel 

technologies leading to better, deeper understanding of data. The most significant of them is a 

graph database. It has provided us with the ability to “see” data in a different way. That view 

focuses on relationships between data pieces representing different entities and aspects of 

phenomena that are important for analyzed problems.  

6.3 Future Works 

Further studies will address the following tasks:  

• Suspension’s failure in haul-trucks: More data collected on brand new trucks is 

required to better determine trends and characteristics of actual life span of a given 

suspension. The quantity “accumulated usage” can be determine applying the described 

method (Section 4.4). Similarly, more data and experiments need to be done in order to 

determine such quantities as threshold values and likelihood of suspension to fail. An 

important element that should be determined is the range of slopes of plots representing 

accumulated usage (Figures 4.7 and 4.10(b)) that represent a normal and abnormal 

utilization of suspensions. Additionally, another threshold-based analysis can be 

developed to determine when anomalies/failures occur in struts.  

• Outages in power systems: An integration of multiple sources of data representing 

multiple aspects of power system (or internal data) is needed to improve accuracy of 

developed models. Currently, this type of data is available in several geographically 

distributed databases. This data integration must consider also “on-line” availability of 

information in order for model to predict in real-time. Moreover, more investigation is 

required to determine the impact of the localization on models’ performance. Different 

prediction model architectures should be developed and tested in order to provide not 

only to predict outages but also probabilities of their occurrences.  
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Appendix A: Cause code description 

Outage’s causes defined in OMS system. 

CAUSE_CODE CAUSE_DESC 

0 Unknown/Other 

1 Scheduled Outage 

2 Loss of Supply 

3 Tree Contacts 

4 Lightning 

5 Defective Equipment 

7 Adverse Environment 

8 Human Element 

9.6 Foreign Interference 

6 Adverse Weather 

10 Non Outage 
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Appendix B: Weather code description 

Weather’s features used in the prediction task. 

WEATHER_FEATURE_CODE WEATHER_FEATURE_DESC 

M2T Temperature 

D2T Temperature Dew Point 

WBT Surface Wet Bulb Temperature 

RH Relative Humidity 

SPK Pressure Altimeter 

WP Wind Speed 

WD Wind Direction 

CC Cloud Coverage 

PHP Precipitation 24 hour 

DNR Direct Normal Irradiance 

DSR Downward Solar Radiation 

DHR Diffuse Horizontal Radiation 

WC Temperature Wind Chill 

AT Temperature Feels Like 

HI Temperature Heat Index 

SF Snow 24 hour 

Press Pressure Mean Sea Level 

WG Wind Gust 

 


