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ABSTRACT 

Strands and wire ropes are widely used in many civil and mining engineering 

applications, such as encountered in cable stays for bridges, suspension bridge elements, 

mooring structures, cranes, ropes for shovels, draglines, and for elevators and mine shaft cages 

and skips. These ropes are broadly classified as stationary and running ropes depending on 

whether they are subjected to predominantly tensile loads or both tension and bending, over a 

sheave. The primary reason for failure in such strands and wire ropes subjected solely to tension 

are fretting fatigue scenarios, manifest as individual wires rubbing against each other as a load is 

cyclically applied. For strands and wire ropes also bent over sheaves, the failure is invariably 

identified at the top of the sheave where the rope comes into maximum contact with the sheave. 

To this date, research based prediction of fretting induced fatigue life reduction of strands and 

wire rope has partially but not wholly been investigated.  

Feyrer (2007) performed milestone direction work in proposing regression models, 

established through regression coefficients, that could be used to calculate the anticipated fatigue 

life of strands and wire ropes for tension only, and tension plus bending over sheave specific 

configuration cases. The collection of regression coefficients established by Feyrer were limited 

to the cases he proposed, such that the current research here extends that knowledge base, 

through investigating the effect of sheave to rope diameter ratio, /D d , applied load, S , sheave 

contact length of rope, l , and sheave groove radius, r . These results were analyzed in a 

parametric study generating regression coefficients to permit additional strands and wire rope 

types not included in Feyrer`s original investigation.  Specifically 7, 19, 91 and 92-wire strands 

in tension, independent wire rope core (IWRC) and 619 Seale-IWRC wire rope (usually called 

619 Seale wire rope) in tension were analyzed, and subsequently their predicted cyclic tension 

fatigue life is obtained using a stress based approach. The behaviour of 7 and 19-wire ropes 

subjected to both tension and bending over sheaves fatigue were also investigated. In all cases 

investigated, S-N fatigue regression models were proposed. Since the stress based method used 

for fatigue life prediction is dependent on a stress concentration factor or stress correction factor, 

both prediction routes have been compared with subsequent recommendations for practical 

application. Finite element analysis of the strand or wire rope models yielded the stress 

concentration and correction factors necessary for the fatigue life prediction.  
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1.1 GENERAL BACKGROUND 

1.1.1 DEFINITIONS FOR TERMINOLOGIES USED FOR STRANDS AND WIRE 

ROPES 

Wire ropes are used in many civil engineering structures such as bridges, mooring lines, 

elevators and others. They are also used in mine hoist equipment such as shaft systems draglines 

and electric rope shovels. The choice of using wire ropes is attributed to high axial strength, 

bending flexibility and redundancy, generated by the failure of one wire in a wire rope not 

necessarily leading to the failure of the entire wire rope system. Such an eventuality might be the 

case for elements such as chains, where failure of one link would lead to failure of the entire 

chain. Wire rope systems can be either static or dynamic. A typical example of a static stationary 

rope would be a cable stay used for a suspension bridge. Dynamic (running) ropes are those that 

run over pulleys or sheaves and are commonly used in both civil and mining hoist applications 

such as those encountered with rope shovels or cranes. Running ropes experience cyclic loads as 

they run over a sheave. The main concern with running ropes is the high degree of fretting and 

interaction between wires that make up the whole cable (wire rope or individual strands) 

arrangement, and the associated interaction between the cable and the sheave, compared to the 

experience with stationary cables. 

Wire ropes are made of strands that are wrapped helically around a central strand to form 

a wire rope. Each of the individual strands that make up the wire rope has wires that are wrapped 

around a central wire to form a strand. The wind direction of the helical wires or strands 

determines whether the wire rope is a Regular or Lang lay. A Lang lay is developed when the 

wires in the strand and the strands themselves are laid in the same direction. A Regular or 

Ordinary lay is developed when the wires in the strand are in the opposite direction to the 

direction of the strands. The number of wires and their relationship to each other determine the 

construction of the strand or wire rope. For example, one of the simplest form of strands used 

today is the 17 strand (7-wire strand) this is the basic component strand of most cables, also 
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used as a prestressing strand. Figure 1-1 shows the cross section of a 7-wire strand. 

Correspondingly, a 119 (19-wire strand) describes a strand made up of 19 wires where the 

cross section of this strand arrangement is shown in Figure 1-2. Other strands such as the 1  37, 

191 and 192 arrangements are formed by adding several layers of wires to the 7-wire strand. 

Figure 1-3 shows the cross section of the 67 wire rope, typically known as an independent wire 

rope core (IWRC), which has six strands with seven wires in each of these strands wrapped 

helically around a central strand with seven wires.  Although wire rope may have a core made of 

different materials, only wire ropes with steel core will be investigated in this research. Figure 1-

4 shows the 619 Seale wire rope which comprises a central IWRC and six strands of 19 wires 

each around the IWRC. 

Wire ropes that run over sheaves are subjected to a significant amount of cyclic loading, 

which after time develops degradation of the wire rope due primarily to fretting fatigue, as both 

the wire rope runs over the sheave and due to wire-wire contact. Much research has been 

conducted on wire ropes, but research on running ropes has primarily been performed by 

manufacturers, where such findings remain proprietary and undisclosed through research 

dissemination.  

1.1.2 WIRE MANUFACTURING PROCESS AND ITS PROPERTIES 

Steel wires are made of high strength non-alloy carbon steel with carbon content between 

0.4 and 0.95%. Other elements used in the manufacturing of such wires include Si at 0.1-0.3%, P 

and S at <0.035%, Mo at <0.05%, Mn at 0.5-0.8%, Cr at < 0.15%, Ni at < 0.2% , Cu at < 0.25% 

and Al at <0.01%. A patenting process (essentially a heating process) is used on the steel wires, 

prior to reduction in diameter by cold drawing (Feyrer, 2007).  Before the steel wire strands or 

wire ropes are assembled, the wires are galvanized with zinc to protect against corrosion. It is 

pertinent to mention that, although corrosion fatigue can occur in cables, this phenomenon was 

not investigated, also the effect of methods of galvanising on the fatigue life was also not 

included in the current research The standard nominal strength of these wires has been reported 

by Feyrer (2007) at 1370 MPa to 2450 MPa. 
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1.1.3 TYPES OF TERMINATIONS OR SOCKETS 

Wire rope and strand terminations will not be specifically investigated in this current 

research, but it is pertinent to provide some information on the types of termination typically 

used for cables in civil and mining applications. In all applications it is expected that failure of 

the termination, joint or connection should not occur, hence connections or terminations are 

designed for a high duty capacity, depending on function. Swaged or poured sockets are 

frequently used. Figure 1-5 shows a swaged termination, which is effected by squeezing the 

cable hydraulically into a pendent. A poured socket consist of placing the cable in the socket 

orifice and pouring molten epoxy resin or Zn-Cu alloy socketing material into the orifice to affix 

the cable and socket together. Papanikolas (1995) provides greater detail on the various types 

and performance of socketing materials. 

1.2 STATEMENT OF PROBLEM 

To date research on the fatigue of cables has focused on failure, terminations, stress- 

strain range and relationships, but little on the prediction of the fatigue life of strands and wire 

ropes under cyclic loading activity. Almost nothing is reported on the interaction between a 

sheave and cable. 

Wire fracture in a cable is the most significant event in overall cable life. If the onset and 

progression to loss of functionality of the cable, as an expression of time, is known then 

preventive maintenance condition based monitoring strategies can be established to circumvent 

overall catastrophic failure of the cable system. A fatigue model was proposed by Feyrer (2007) 

for some strands and wire ropes subjected to cyclic tension and in bending over a sheave. 

Regression coefficients related to this model were presented by Feyrer for these strands and wire 

ropes. However, fatigue regression models or coefficients for typical strands in industrial use, 

such as the 7-wire and 19-wire strands were not investigated at that time by Feyrer (2007). The 

same was true for 6  7 wire ropes, and 6  19 Seale wire ropes with IWRC in cyclic tension 

fatigue.   

The primary focus of the research encompassed in this thesis seeks to advance the work 

of Knapp (2004), Raoof (1990), Hobbs and Raoof (1996), and Feyrer (2007) to predict the 

fatigue life of strands and wire ropes subjected to tensile and bending loads through modeling; 
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by considering the behaviour of the constituent wires and strands. Verification of the models 

developed has been performed using the physical and previous modeling results of Raoof (1990) 

and others.  The typical application of this research will be to predict the fatigue life of mining 

shovel hoist ropes, as used by the P&H 4100 BOSS ultra-class mining shovel, a schematic of 

which is illustrated in Figure 1-6.  

There are two different types of wire ropes employed in such mining shovels (ignoring 

the variety of low load crowd mechanisms employed); suspension ropes, and hoist ropes. 

Suspension ropes do not run over sheaves and act as main stays supporting the weight of the 

boom and ground engaging attachments. Failure rarely occurs in such cables, as they are only 

subjected to incremental cyclic tensile loads. Failures more typically take place in the bending 

length of the hoist rope that runs off and on over the sheave wheel at the top of the boom.  These 

ropes take the cyclic brunt of the digging effort impacted by both operational function and the 

geological resistance of the active mining face material being excavated. 

1.3 OBJECTIVES AND SCOPE OF WORK 

The objective of this research is to develop a design model to predict the fatigue 

behaviour of stands and wire ropes subjected to tension and bending over a sheave wheel, 

generating fatigue. The work will consider the range of parameters needed to describe the 

behaviour of a range of wires, strands and wire rope configurations.  

The model developed will account for variations in parameters affecting the fatigue inducing 

tension and bending events experienced by the cable in contact with the sheave wheel for the life 

of a cable of set configuration. To achieve this goal, a stress based approach similar to that used 

by Raoof (1990), Hobbs and Raoof (1996), and Knapp (2004) that shows good correlation with 

experimental results will be used.  

The key objectives targeted are: 

1. Review of the current literature on cables subjected to static tension, cyclic tension 

fatigue, bending over sheave wheels fatigue, and also a review of previous research on 

prediction of the fatigue life of cables, failure of cables including terminations will be 

conducted.  

2. Validate a stress based approach that was previously proposed by Raoof (1990), Hobbs 

and Raoof (1996), and Knapp (2004) for tension and bending over a sheave wheel 
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generating fatigue of cables. This will involve comparison with the predicted fatigue life 

and fatigue test results from different test programs reported in the literature. 

3.  Modify the former approach as seen appropriate. 

4. Apply the validated modified approach to investigate the effect of diameter of strand or 

wire rope ( d ) and load or stress range on the fatigue life of 7, 19, 91 and 92-wire strands, 

IWRC and 619 Seale wire rope in cyclic tension. Implicitly, the effect of the lay length 

on the fatigue life of strands will be investigated. 

5. Apply the validated modified approach to consider bending of cables over sheaves, 

investigating the effect of  

a. diameter of cable,  

b. diameter of sheave wheel to the diameter of the cable ( /D d  ratio),  

c. groove size, r ,  

d. load or stress amplitude, and 

e. the lay length and the bending length ( l  ) 

on the fatigue life of a 7 and 19-wire strands. 

6. The stress based approach for fatigue life prediction is complicated for design use, so  by 

using the parametric study results obtained in the present research, multiple linear 

regression analysis will be carried out to obtain design regression coefficients based on 

the fatigue model proposed by Feyrer (2007) for cables in cyclic tension and bending 

over sheave. 

Figure 1-7 shows the flow chart for the methodology used in achieving the objective 

outlined above, as well as the scope of work covered. 

1.4 THESIS ORGANISATION 

In Chapter 2, the literature related to research on cables will be reviewed, with a focus on 

tension and bending of cables over sheave arrangements leading to fatigue.  

In Chapter 3, the development of the user defined content required for the finite element 

models used in this research will be explained. This chapter will also include a comparison of the 

numerical strand stiffness and a theoretical or measured stiffness, and an explanation of the 

proposed stress based approach for the determination of the fatigue life for strands and wire 

ropes.  
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Chapter 4 will provide details of the finite element analysis results for strands and wire 

ropes subjected to tension only, and provide a discussion of the fatigue analysis results.  The 

effect of parameters such as strand diameter, and strand or rope load on fatigue resistance will be 

investigated. Validations via statistical comparison between the literature reported fatigue test 

results and the modeled fatigue results developed here will be discussed. A regression analysis of 

the predicted fatigue life will be carried out, to establish regression coefficients that may then be 

applied to the Feyrer model for strands and wire ropes in tension.  

The finite element results of strands in bending over sheaves will be discussed in 

Chapter 5. This will include a discussion of the multiple effects and impact of the diameter of 

sheave to the diameter of the cable, /D d ratio, bending length, groove size, lay length and load 

level on the overall fatigue life of the cable will be investigated using the stress results obtained 

from the finite element model used. Comparisons will be made between the literature reported 

fatigue test results and modeled fatigue analysis results discerned from the model outcomes. 

Incorporation of the effects of the targeted parameters investigated into the Feyrer’s equation 

will be investigated in Chapter 5. Such parameters will be evaluated via the establishment of 

regression coefficients for the cables in combined tension and bending over a sheave.  

The summary of the research conducted, conclusion and recommendations for future 

work are presented in Chapter 6.  
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Figure 1-1: Cross section of a 7-wire strand 

 

 

 

Figure 1-2: Cross section of a 19-wire strand 
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Figure 1-3: Cross section of an IWRC 
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Figure 1-4: Cross section of a 619 Seale wire rope 
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Figure 1-5: Swaged termination 

 

 

 

 

Figure 1-6: Schematics of a shovel showing hoist and suspension cables 
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2.1 INTRODUCTION 

Extensive research exists on the static behaviour of wire ropes, where such investigations 

have primarily focused on failure analyses of wire ropes subjected to tensile loads. The 

applications for these previously reported loading cases are considered primarily hoisting type 

applications in the absence of a sheave. These applications were simple scenarios such as 

employed in cable stay bridges and mooring lines, although it is recognized that some degree of 

bending and fatigue loading would be present.  

The effect of parameters such as wire rope diameter, nominal wire rope strength and 

length of rope was primarily investigated by Feyrer (2007) amongst other researchers. The 

behaviour and fatigue resistance of wire rope is significantly affected when a rope is bent over a 

sheave, and compounded when subjected to cyclic loading as evident in the active hoist ropes 

used for mining draglines, rope shovels and construction cranes.  

Little research has focused on finding a unified approach to predict the fatigue life of 

wire ropes subjected to cyclic tension and bending over a sheave. This chapter thus focuses on 

the research focused on these two areas. 

2.2 TENSION BEHAVIOUR OF WIRES, STRANDS AND WIRE ROPES 

2.2.1 TENSION BEHAVIOUR OF WIRES AND STRANDS 

Zhang et al. (2003) investigated the effect of fretting wear on the fatigue life of individual 

steel wires used in hoisting rope application. They investigated the effect of contact forces and 

the wear mechanisms between steel wires. The steel wires used in their work were obtained from 

619 ropes, where each wire was 1 mm in diameter. In order to simulate fretting, two wires were 

aligned at 90 degrees to each other. The tests were conducted at a frequency of 3.3 Hz and 

amplitude of 75 µm, where the contact force was varied from 14 N to 40 N. Fatigue tests were 

also conducted in a pull-pull loading mode, with tensions fluctuating between 200 and 1000 N at 
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a frequency of 9 Hz. They observed that as the contact force increases the friction coefficient 

between the wires decreases, but attained a stable value after the contact loads reach a certain 

value. They concluded that the wear depth depends on the contact stresses and the fretting time, 

and that both had a directly proportional relationship. Fretting wear notching was found to lead 

to stress concentrations and accelerated crack initiation, reducing fatigue resistance. 

Thorpe and Rance (1983) studied the fatigue behaviour of zinc coated wires used to 

manufacture 40 mm diameter wire ropes, with individual wires of diameter ranging from 1.8 to 

2.3 mm. Some of the wires were galvanised using a hot dip method, while others were 

galvanised by electro deposition. The experiments conducted involved four target criteria: 

corrosion, fatigue in air, fretting fatigue and corrosion fatigue. The effectiveness of the zinc 

coating was validated by immersing single wires in natural seawater at 5 to 10 
o
C for 6 months. 

The wires were then examined for corrosion impacts. All wires were tension tested before and 

after immersion. They did not observe any visual signs of corrosion but some zinc coating was 

lost, evaluated by measuring the remaining thickness of the coating. They also did not observe 

any deterioration in the mechanical properties of the wire after it was removed from the 

seawater. Fatigue testing in air was carried out on the wires galvanised using the two methods 

outlined above. The frequency of the fatigue testing was set at 4 Hz, and the mean tensile stress 

set at 915 MPa or 366 MPa (representative of 50 or 20% of UTS, respectively). The ends of the 

wires were cast into cylindrical blocks of cold setting epoxy resin with carbon fibre added to 

minimize epoxy cracking during testing. They observed that fatigue endurance strongly 

depended on stress range, but the mean stress had a negligible effect on the endurance. Electro 

galvanised wires were shown to exhibit slightly longer life. Corrosion-fatigue testing was carried 

out in almost the same manner as described previously, but the gauge length of the wire was 

surrounded by a Perspex cell, through which seawater at 5 to 10 
o
C was permitted to flow. Two 

loading frequencies were evaluated at 4 Hz and 0.1 Hz, for both types of galvanised wire tested. 

Additional tests were carried out at low frequencies on bare ungalvanized wires and with wires 

subjected to half the thickness of galvanized coating. They observed that, the fatigue endurance 

of a fully coated, hot-dipped wire during corrosion-fatigue was lower than fatigue in air, and that 

the corrosion-fatigue endurance decreased with increasing mean stress and decreasing test 

frequency. A decrease in fatigue life was observed when the thickness of the zinc coating was 

reduced by half at a loading frequency of 0.1 Hz.  The bare ungalvanized wire showed a decrease 
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in the fatigue life at higher stress ranges. The fatigue endurance of electro galvanised and hot-

dipped galvanized wires were seen to be similar. They investigated fretting fatigue using a scale 

physical simulation, in which one vertical wire was placed in contact with two horizontal wires. 

The fretting fatigue test was carried out in air at 4 Hz, on each of fully coated, hot-dipped and 

electro galvanised wires.  It was concluded that the action of fretting had the most negative effect 

on the fatigue life of wires compared to all other imposed conditions. 

Cappa (1988) examined accumulated wire strain for undamaged and damaged steel 

strands subjected to tensile loads. The effect of severing a number of external wires on a strand 

on the developed strain in a wire rope, subjected to static and quasi-static loading was examined 

experimentally. A 7-wire strand was cut from a new piece of rope and examined. The wires in 

the strand were seen to be bright and unlubricated, and had external wires with a diameter of 

3.0 mm and internal wires with diameter 3.2 mm. The equivalent overall diameter was measured 

as 9.2 mm. The Lay length was for the assembly was measured at 136 mm for an overall length 

of sample of 1258 mm. The tensile static breaking load for the sample was recorded at 71.2 kN 

The strands were loaded and unloaded about 100 times prior to commencing the tests. 

Measurements were taken at six static load levels up to a load of 29.4 kN, with readings taken at 

20 minute intervals for each load level. Their test was repeated 10 times. Strain results measured 

via 6 independent strain gauges showed unequal load sharing between nominal identical wires, 

which decreased with increase in applied quasi-static loads from 0 to 29.4 kN.  Comparing the 

results of the quasi-static to the static loading conditions, they observed that in the quasi-static 

case unequal load sharing was increased. It also observed that for nominally identical wires that 

the load sharing between wires was not related to the wire position. For a test repeated with a 

severed wire it was concluded that the higher strained wires are not the ones closest to the 

interrupted severed unit.  

Raoof (1990a) carried out a series of axial and torsional tests on newly manufactured 

41 mm strands as a comparison to the behaviour of an older established 39 mm strands (fully 

‘bedded-in’). The 41 mm strand had three layers with 24, 18 and 12 wires in the first, second and 

third layers, respectively. Within the innermost third layer, a central core comprising a single 

straight wire surrounded by six helical wires was present. The lay types were LH, RH and LH for 

the first, second and third layers, respectively. He concluded that newly manufactured strands 
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may need a very long time to become fully ‘bedded-in’ and stable, such that within this period 

there is a change in hysteresis behaviour. They also suggested that, before the strand became 

fully ‘bedded-in’ any results obtained from hysteresis measurements could not be considered 

representative of the behaviour of a strand in long term service. In older fully ‘bedded-in’ 

specimens, a fluctuating load did not cause a substantial increase in cable hysteresis. Raoof also 

noted that the torsional and full-slip axial stiffness are not sensitive to time in service or 

‘bedding-in’ state. They also suggested that the strains in the free length of the cable and at the 

sockets were not significantly different. 

Utting and Jones (1985) investigated the tensile behaviour of a seven-wire strand. An 

instrument that measured both strand extension and rotation simultaneously was used, with a 

strain gauge load cell used to monitor the tensile load and torque. Five strands with seven wire 

construction were used in their work. Strands I, II and III were cut from the same length, having 

lay lengths of 115 mm, and core wires with helical wire diameters of 3.94 and 3.73 mm, 

respectively. The wire had a minimum breaking stress of 1.77 GPa. The wires were ‘bright’ and 

not lubricated. Strand IV was cut from a different length of rope but having the same 

construction as the other strands described previously. Strand V comprised of seven galvanized 

wires and all the wires were lubricated. The core wire diameter and the helical wire diameter 

were 3.91 mm and 3.73 mm, respectively. Strand V did not have the wire grade specified. 

Polyester based resin with silica filling was chosen for securing the strands in the socketing 

arrangements. The test machine used had a limited test length of 527 mm. Strain gauges were 

attached at common comparable locations of the five sample strands tested. The resulting strain 

measurements showed that the helical wires share load unequally, particularly when close to the 

end grips. It was noticed that as the load increased, most of the failures took place at the end 

grips by pulling the wires from the epoxy and socket. Other samples had complete fracture of all 

wires in the strands and hence these researchers suggested that further termination techniques 

should be investigated. 

Llorca et al.  (1989) presented a model for analysis of the fatigue behaviour of a strand or 

cable, where they assumed that the behaviour can be derived from the behaviour of individual 

wires using fracture mechanics. The results of their model were compared with dynamic tests on 

wires and ropes. The cable (strand) sizes compared were 12.7 mm and 15.2 mm, where the wires 
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had diameters of 3, 5, and 7 mm. The free length between grips for the wires and the ropes tested 

were between 600 and 960 mm, and the loading test frequency was set between 4 and 15 Hz. 

They applied a sinusoidal load to specimens between 60% and 70% of the actual strength of the 

specimen for the first series; and if after 2×10
6
 cycles no rupture had occurred then the maximum 

load is increased to 80% of its strength until fracture testing was continued. The second series of 

tests were done between 70 and 80% of the actual strength; the minimum load was reduced to 

60% of the strength, if no rupture occurred after 2×10
6
 cycles. Epoxy resin mortar was used for 

socketing. After testing, they observed the fracture surfaces of the wires in a profile projector to 

obtain the geometry of the crack that ultimately led to the final rupture, in some cases the 

surfaces were observed with scanning electron microscope. They concluded that (i) the fatigue 

life for thinner wires is shorter than that of thicker wires, but the same endurance limit was 

observed for both sizes; and that (ii) the spin angle below 20
o
 had negligible effect on the fatigue 

behaviour, and fatigue life decreases with increasing spin angle. 

Hobbs and Smith (1983) investigated the effect of stress fluctuation on the safe working 

life of socketed cable systems. They examined the influence of fatigue loading on guy insulators. 

A series of in-line fluctuating tension tests were conducted on a 16 mm diameter strands with 19 

wires. A standard Amsler tensile testing machine with a 50-tonne capacity was used to test these 

strands at constant amplitude loading. The length of the specimens was set at 740 mm. Two 

batches of 6 specimens were tested, with most testing performed at 4.4 Hz except for some at 

lower amplitudes where the frequency was increased to 8.8 Hz to save testing time. A smaller 

number of tests were conducted on much longer 38 mm strand specimens (92 wire semi-

balanced constructions). These were carried out to investigate extrapolating the behaviour of 

large diameter strands predicted from smaller diameter strands at a loading frequency of 4.4 Hz, 

where in-line test lengths were set at 6 m and transverse test lengths at 8.5 m.  The sockets for 

these tests were filled with zinc metal. Amongst other findings, they found that fatigue failure of 

socketed cables occurs in the socket interface for both in-line (axial) and transverse fluctuating 

(flexural) loading conditions. In the in-line test, the fatigue life seemed to be independent of the 

mean value of tension applied. A pull out of the strands from the sockets occurred for cases in 

which the socket jaw fractured. Hobbs and Smith proposed a method to evaluate fatigue 

performance of 38 mm compared to other diameter cables, but stated that further tests on other 

cable sizes needed to be carried out before such methods would be confidently acceptable. 
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Papanikolas (1995) investigated the fatigue behaviour of multilayered strands in tension 

only. The strands investigated were a 19 and 91-wire strand configuration with diameters of 25 

and 45 mm respectively. Papanikolas studied the effect of stress range, strand make-up and the 

length to diameter ratio on fatigue life. Fatigue tests were conducted on both types of strand and 

the stress range and strand make-up were found to have significant impact on fatigue life. From 

fractographic inspection of some specimens it was concluded that wire fracture was due to 

fretting fatigue. Fatigue S-N curves was proposed for both types of strand. 

Fisher and Viest (1961) presented S-N curves based on fatigue testing of 18 specimens on 

suspension bridge materials of 3/8 inch diameter prestressing strands. Their test was conducted 

in conjunction with AASHO, leading to a linear plot of the logarithm of fatigue life versus 

minimum stress or the stress range, which generated a mathematical model. 120 test results on 

7/16 inch diameter prestressing strands were presented by Warner and Hulsbos (1966), 

consisting of 69 constant cycle tests and 51 cumulative damage tests. For the 69 constant cycle 

tests, premature failure of the termination took place in the strand weldment.  

Cullimore (1972) conducted several tests on 15.2 mm diameter prestressing strands, 

while studying hangers for suspension bridges. A total of 59 specimens were tested, with a mean 

stress of 550 MPa, and a stress range as low as 220 MPa. He concluded that an endurance limit 

does not exist for the stress levels investigated when the strand life is less than 10 million cycles. 

Muller and Zeller (1975) continued this work and presented the results of 41 fatigue tests on 12.4 

mm and 15.2 mm prestressing strands, where the specimens were tested at different stress levels. 

Paulson et al. (1983) investigated the fatigue behaviour of prestressing strands. They 

carried out fatigue tests on 11.1 mm (Grade 250) diameter prestressing strands. The strands were 

tested using two stress ranges, to 326.1 or 465.4 MPa. They also presented previous fatigue test 

results from Fisher and Viest (1961), Muller and Zeller (1975), Cullimore (1972), and Warner 

and Hulsbos (1966); and other researchers who had conducted tests on different ASTM A416 

prestressing strands; to generate a single S-N curve. The diameter of the ASTM A416 

prestressing strands that were used were 9.5, 11.1, 12.7 and 15.2 mm. 

Heller (2003) investigated the fatigue response of prestressing concrete beams and 

fatigue tests were conducted on 7-wire ASTM A416 prestressing strands with diameters of 
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12.7 mm; where the minimum tensile strength was 1860 MPa. The effect of stress range was 

investigated. The fatigue behaviour was found to be similar to that of Paulson et al. (1983), with 

their test results falling within the S-N data reported by Paulson et al. (1983).  

2.2.2 TENSION BEHAVIOUR OF WIRE ROPES 

Suh and Chang (2000) conducted fatigue tests on steel cables to investigate the axial 

fatigue behaviour of wire ropes used as hangers for suspension bridges. The wire rope 

construction investigated was 6×19 with IWRC, Warrington, RHO, and zinc coated. The rope 

had a diameter and cross-sectional area of 12.75 mm and 78 mm
2
, respectively, and the test 

specimen lay length was 88.8 mm. The nominal tensile strength and actual breaking strength for 

the wire ropes were 1572 MPa and 122.6 MPa, respectively. An initial overload of 80% of the 

rope’s ultimate tensile strength (UTS) was applied to affix the specimen to the socket. The 

frequency of the testing was set at 2.5 Hz to 4 Hz. They reported that the locations of wire break 

were distributed between the free length and the anchor point of the wire rope and mostly in the 

outer wires of the outer strands. The failure criterion used in these tests was a 10% loss in 

stiffness. Suh and Chang investigated the effect of specimen length, mean stress and stress range. 

They observed that the fatigue life increases with increase in specimen length, although they 

suspected that the shorter life observed in shorter specimens might have been due to the effect of 

terminations, and hence they recommended further investigation to confirm this trend. They 

observed that as the mean stress increased, the fatigue life decreased especially at a mean stress 

of 65% of UTS, even though this was not very significant for a mean stress of 15 to 40% of UTS. 

As they expected, the stress range was found to be the most significant parameter affecting 

fatigue life. 

Evans et al. 2001 investigated the effect of cyclic tension loading on the load transfer 

length (defined as the length from a break point where the load is carried in full); measured via 

local strain measured close to the breaking point. They did not know where the breaking points 

will occur; so the strain gauges were distributed uniformly along the specimen length. They 

extended the investigation to the variation in load transfer length comparing ordinary and Lang's 

lay rope configurations. The effect of individual wire breakage on the stress shedding to other 

wires within the same cross section was also investigated. They investigated two rope 
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constructions: a 19mm Seale 619 (9/9/1) RHO rope with IWRC, and an equivalent right-hand 

Lang lay rope. They kept the length of the rope constant at 1.1m, and the ropes were 

instrumented with 12 strain gauges to monitor the strain in the outer wires as a function of the 

wire rope load. All fatigue tests were conducted at a load range of 10 to 25% of the rope tensile 

breaking strength at a frequency of 0.8 Hz. Resin sockets were used to terminate the rope 

specimens. The tests conducted on ordinary lay ropes indicated that a rope with a broken wire 

takes up its complete load creating a transfer length at about two rope lay lengths from the break 

point immediately after the break occurs and extends to 3 rope lay lengths after 20,000 cycles. 

They attributed this behaviour to inter-wire slippage under cyclic loading. For the Lang lay rope, 

it was seen that the transfer length occurred at one lay length from the breakage. They concluded 

that the difference observed between the two ropes were due to the greater inter-layer forces in 

the Lang lay rope. Wire breakage effectively caused a decrease in strain in the wires on the 

opposite side of the rope; this was attributed to localized bending of the rope resulting from wire 

breakage. However, only external wire breaks were observed using the strain gauges and no 

knowledge was discerned concerning wires within the cross section structure. 

Casey and Waters (1988) carried out tensile fatigue tests on three sizes of steel wire rope 

to investigate the change in stiffness and transfer length, where stiffness values were obtained 

from plots of load and test machine crosshead displacement. A 6×41 wire ropes, comprising of 

6×7 IWRC at three sizes; 40, 70, and 127 mm diameter ropes with test lengths of 3.75, 3.6, and 

7 m, respectively, were tested. The minimum breaking strength was noted at 1.01 MN, 3.30 MN, 

and 9.71 MN, respectively as specified by the manufacturer. The ropes were sinusoidal loaded to 

20   15% of the manufacturer's minimum breaking load, at a frequency of 0.3 Hz, chosen to 

avoid overheating of the largest 127 mm rope during testing. Prior to testing each specimen was 

loaded statically to a maximum fatigue load five times. Plots of load and crosshead displacement 

during static loading to maximum fatigue loading were obtained by interrupting the fatigue test.  

The rope had silica-filled polyester resin inside steel cylindrical sockets used for its termination. 

It was shown by these authors that, by a plot of stiffness versus elongation there is a relationship 

between the point at which stiffness starts to decrease and rope endurance, identified at 25 to 

35% of the rope life, where wire breaks were considered the explanation for a change in rope 

stiffness. They also found out that outer strand breakage occurs late in the life of a rope subjected 

to tensile fatigue, as sections taken from ropes that failed prematurely provided no visual 
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evidence of wire breakage in outer strands.  They concluded that an accurate indication of the 

overall condition of the rope cannot be known by visual examination of ropes only. IWRC 

breakage was suspected to be a viable explanation for this kind of failure mechanism.  

Casey et al. (1988) evaluated wire breaks in a 40 mm diameter rope using an acoustic 

emission wire break detector. The ropes were of 641 construction surrounding an IWRC of 7

7 strand construction. The length of each specimen of 3.75 m, and each rope had end 

terminations consisting of steel cylindrical sockets with silica-filled polyester resin. They 

conducted axial fatigue testing in a 1 MN testing machine. Out of 12 specimen tested, seven of 

the ropes failed either due to rope unwinding as a result of rotation at the terminations or at one 

of the terminations, four failed away from the ends, and one specimen was tested to a high 

endurance and so the test was stopped. Their major finding was that wire breaks start at the 

IWRC, and that the outer strand starts to accumulate wire breaks at later stages of the wire rope 

life. 

Casey and Lee (1989) described the degradation of large diameter six strand wire ropes 

subjected to constant amplitude tension fatigue. The wire ropes investigated were a 6 × 41 with a 

diameter of 40 mm and 70 mm, and a 6 × 49 with a diameter of 127 mm also having an ordinary 

lay and 6  7 IWRC with a Lang lay.  Considering contact as either being continuous or discrete, 

they described that for a 40 mm diameter rope specimen, majority of wire breaks took place in 

the IWRC. These wire breaks were shown to have an effect on the stiffness, hysteresis and 

elongation. They observed that for a 40mm diameter rope at the early stages of rope life 

deterioration, elongation and stiffness were found to initially increase with a corresponding 

decrease in hysteresis; this was followed by the stiffness and hysteresis remaining unchanged 

while elongation increased. At about 50% of rope life the stiffness then started to decrease and 

the hysteresis increased, and this trend continued until 15% of the rope life remained. At that 

point the properties changed relationship such that elongation and hysteresis in the wire rope 

increased while the stiffness decreased, maintaining this trend until failure. They suggested that 

the change in stiffness and hysteresis that occurred at approximately 50% of the rope life was as 

a result of fracture of wires in the IWRC. Final rupture of outer wires was observed at 85% of the 

fatigue life. 
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Hanzawa et al.  (1981) used a wire-breakage detection system to investigate the factors 

that influence the tensile fatigue strength of 50 mm wire ropes.  The fatigue performance of 

socketing polyester, Zn/Cu or epoxy resin material was also investigated. One specimen had a 

length of 1810 mm; two specimens had lengths of 800 mm, while all others had lengths of 

700 mm. The fatigue life was defined as complete when wire breakage rates reached 5%.They 

observed that the larger the diameter, the greater the fatigue strength, and that the fatigue 

strength of large diameter wire ropes can be evaluated from the information from 50 mm wire 

ropes. They showed that the fatigue strength decreases with the wire ability to rotate, and 

increases with an increase in wire diameter and wire strength. Fatigue wire breakage was 

observed to occur in the outer strands and inner/core strands at low and high stress ranges 

respectively. Epoxy resins were concluded by the researchers to be the best socketing material. 

Zn/Cu was shown to be unsatisfactory. 

Smith et al. (1978) reviewed the effect of periodic overloads and salt water on the 

endurance of wire ropes investigated by the Naval Research Laboratory. Their work comprised 

of two pendants in parallel connected by load equalizing gussets. Each pendant had an eye splice 

at both ends formed around galvanized steel thimbles. They used an electro-hydraulic 

mechanical testing machine loading to 89 kN in a closed-loop, applied sinusoidally with a stress 

ratio (R) close to zero, at a loading frequency of 1 Hz. Six types of wire rope were investigated. 

Type A Rope (6×19 IWRC, IPS, right regular lay (RRL)) tested, had a diameter of 6.4 mm, an 

overload of 62% of the breaking strength was applied at 43% and 24% of service loading 

respectively. These tests produced a recorded overload ratio of 1.44 and 2.60, respectively, 

where a decrease in wire breakage was observed. For Type B Rope (Aircraft Rescue Hoist, 19×7 

IWRC, SS) of diameter 4.8 mm tested at load levels of 25%, 50% and 75% were applied to 

effect partial damage studies. They observed that when wire-break density was plotted versus 

decreasing applied load proportion, a peak was observed at 50% load level. A plot of breakage 

density and static breaking load versus percentage endurance showed that wire breakage is 

insignificant up to 50% of rope life. The results indicated a relationship between number of 

breaks and the remaining static breaking strength. Any scatter in the data was deemed likely to 

be due to the weakness of the eye splice. For Types C, D, E, and F Ropes of 6.4 mm diameter; 

where ropes C, D, E, and F were respectively 6×19 IWRC IPS, 6×7 FC Iron, 6×19 FC IPS, and 

6×19 IWRC EIPS, all four ropes were RRL. Plots of break density versus load fraction were 
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plotted generating different peaks. No breaks were observed in the soft iron rope. For all tests 

performed, loading was conducted for 5000 cycles at a 30% load factor. Varying endurance was 

observed for different overload ratios. An overload ratio of 2.5 times the base load (75% of 

ultimate) seems to have a beneficial effect on the endurance of higher strength ropes, attributed 

to a peak overload ratio initiating yield in the rope. The iron rope yielding was found to occur at 

a ratio of 1.5 times 30% of the base load or 45% of the ultimate load. They concluded that there 

is an increase in fatigue life of a wire rope with an increase in overload, until yielding 

commences, and then any beneficial effect of overload begins to decrease. An increase in fatigue 

life was attributed due to a combination of two processes: crack growth retardation and 

readjustment of stresses due to changes in contact points between wires.  By introducing an 

aqueous 3.5% solution of sodium chloride with Type A ropes, it was observed that a decrease in 

endurance in salt water was insignificant compared to that in air, but more dependent on load 

cycle and duration. Under a scanning electron microscope evaluation, it was observed that there 

were portions of the wires showing evidence of fretting. It was also observed that wire breaks 

were not significant until 50% of the rope life was used up, and that failure of individual wires 

occurred as a result of subcritical fatigue crack growth. 

Stonesifer and Smith (1979) continued the research of the Smith et al. (1978) on 4.8 mm 

diameter wire rope pendants. They focused on the effect of an initial overload or periodic 

overload on the fatigue life of a wire rope, performing tests on galvanized steel wire rope 

pendants with eye splice pendants at both ends. The length of the free rope between compression 

sleeves was 0.44 m. A cyclic load of 89 kN closed-loop was applied in a sinusoidal load-time 

pattern at frequency of 1 to 5 Hz. It was noted from the earlier work (Smith et al., 1978) that for 

one type of rope, most wire break-up occurs after 50% of the wire rope life has been expended. It 

was also observed that a relationship between break density and static breaking strength of 

fatigue damaged ropes exists. Consequently, they loaded two specimens for a predetermined 

number of cycles at a load level less than the expected life to investigate this phenomenon, where 

on stopping the test a wire count was performed in one specimen, while the other one was tested 

to destruction in tension. They concluded that only using wire break count is not the best as a 

sole replacement criterion. This evaluation was extended to include the effect of applying a mean 

load, to which it was concluded that overloading generally increases the fatigue life of a wire 

rope, where the maximum life is attained by repeated periodic overloads that are large enough to 
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cause yielding of the rope. They suggested that this loading had both the benefits of lower 

compliance (higher stiffness) and maximum crack retardation, and that a single initial overload 

applied to a pendant was expressed as being almost as beneficial as periodic overloads and may 

be more practical. They also concluded that increasing the mean load was observed to increase 

the fatigue life to a maximum up to the ultimate tensile strength, but working-in a new pendant at 

lower loads has no advantage in increasing cyclic tension fatigue life.  

2.2.3 PREVIOUS WORK ON TENSION FATIGUE LIFE PREDICTION FOR STRANDS 

AND WIRE ROPES 

Using a regression analysis applied to previous fatigue tests on strands, Feyrer (2007) 

developed a fatigue prediction model from the investigations of other researchers via the effect 

of tensile strength on the fatigue life of wire ropes. Feyrer (2007) proposed an empirical model 

that predicts fatigue life of strands subjected to tension as shown in Equation 2-1, written in a 

slightly different form: 
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where, 
aS  is the force amplitude in Newtons (N), 

lowerS  is the mean force minus the force 

amplitude in Newtons, d  is the strand or wire rope diameter in mm, and 
ia are regression 

coefficients. N  is the number of cycles experienced to strand or wire rope breakage. For strands 

and wire rope in tension, taking into account the number of wires, Feyrer (2007) proposed the 

following equation; again the model was written in a slightly different form: 
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where, z  is the number of wires in the strand. Regression coefficients for Equation 2-2 were 

obtained for spiral strands with 37 to 292 wires and strand diameters ranging from 4 to 127 mm. 

Knapp (1987) proposed a model that predicts the fatigue life of cables under fluctuating 

axial tension. In this model the contact stress obtained analytically, was taken to behave like a 
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notch permitting a stress concentration factor to be obtained. The endurance stress was computed 

using the Goodman equation (Stephens et al., 2001), to obtain the failure stress and fatigue life. 

Raoof (1990) also looked at the prediction of fatigue life for multilayered strands in 

tension only. In his work a stress based approach was used to estimate the fatigue life of 19, 92 

and 139 wire strands having diameters of 16.4, 39 and 51 mm, respectively. The method 

involved obtaining stress concentration factors using an analytical approach and then using this 

stress concentration factor, and fatigue test stress results for single wires, evaluate the fatigue life 

of strands via adjusting the S-N relationship for a single wire. 

Wang et al. (2013) used a finite element method to investigate the state of stress and 

strain in a multi layered 619 wire rope with 19 wire strands in 3 layers. The behaviour of a 

strand in tension was compared to Costello’s theory (Costello, 1997) with good correlation. 

Fretting fatigue behaviour of the wires was investigated by studying the evolution of wear and 

models were proposed for estimating the crack growth in a cable solely under tension. 

2.3 BENDING BEHAVIOUR OF STRANDS AND WIRE ROPES 

2.3.1 BENDING BEHAVIOUR OF STRANDS  

Feyrer (1981a) and Feyrer (1981b) focused his studies on alternating bending in a 16 mm 

diameter rope over a sheave of 400 mm diameter. The tension applied on the wire rope at 30. 42, 

and 60 kN, generated a bending zone of 22.5
o
 (360 mm), a contact angle of 165

o
 within a groove 

radius of 8.5 mm. Tests were carried out on standard ropes with fibre inserts and parallel lay 

ropes; divided into 6- and 8-strand standard ropes and 8- and 9-strand non-standard ropes. One 

group with a 6-stranded Warrington-Seale rope and other parallel ropes were also tested. 

Fracture of at least one strand was taken at the end of a bending test, where a bend reversal was 

considered to be the process of transitioning from a straight configuration into a bend and back 

into a straight configuration. Feyrer’s work was completely statistical which concluded that the 

number of bending reversals sustained by wire ropes follows a normal logarithmic distribution, 

and that the dispersion in such a distribution is relatively small when only one rope construction 

is repeatedly tested. For several rope constructions the dispersion was larger. Feyrer also 

observed that in all cases Lang lay ropes exhibited longer service life than ordinary lay ropes, 
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where ropes containing 8 strands performed better in terms of service life than ropes with 6 

strands. They also observed that as long as the same tensile stress was applied to a rope with a 

steel or fibre insert under bending, the fibre insert configuration would have a longer service life. 

However if the diameter of the wire ropes tested was the same, subjected to the same tension, 

then the service life would be approximately the same.  Considerations such as construction 

would create a difference as a function of tension applied. 

2.3.2 BENDING BEHAVIOUR OF WIRE ROPES 

Gorbatov et al. (2007) conducted flexure fatigue strength tests on wire ropes. The two 

wire ropes tested had a diameter of 16 mm and the same construction (Warrington Seale 6×36 

steel wire ropes).  However the wire ropes differed by core design: One had an E-1 oil-

impregnated hemp core and the other an ASKM-impregnated jute core. They observed that the 

ASKM-impregnated jute core developed a longer service life of higher quality than the E-1 oil-

impregnated hemp core. 

Waters (1985) mainly presented a review of work performed on large diameter wire 

ropes in bending over sheaves (BOS) fatigue testing. The study presented a plot of load range as 

a percentage of breaking load versus the number of cycles to failure in direct tension fatigue, 

from tests conducted by other researchers, and a plot of bending pressure ratio versus number of 

cycles to failure from a series of BOS fatigue tests for different diameters of steel wire ropes, 

also conducted by other researchers. It was shown that it was difficult to predict fatigue 

performance of large diameter wire ropes from smaller diameter ropes. The theoretical 

assessment of the performance of a wire rope was concluded as complex.  

Ridge et al. (2001) evaluated the influence of manner of rope degradation and impaired 

quality on fatigue endurance of wire ropes subjected to a repeated bending at constant tension, 

with prediction of fatigue endurance using such experimental results. Two rope constructions 

were tested, namely (i) a 6×25F (12/6+6F/1) + IWRC 6(6/1) with right hand lay (RHL) and 

1960 MPa wire grade, and (ii) a 34×7 with Left regular lay (LR) deformed multistrand 

(16/6+6/6) with wire steel core (WSC) and 1960 MPa wire grade. Ultimate breaking load (UBL) 

and bending fatigue performance was measured for these new ropes, followed by quality 

impairment BOS fatigue testing under artificially induced degradation. Specimens had constant 
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bending lengths of 150 mm, described as the length which ran on and off the sheave. Each test 

had a D/d ratio of 18, a constant rope tension of 20% UBL, a frequency of cycling at 0.097 Hz 

and a sample length of 1.7 m established with cast resin cone sockets. The artificially induced 

degradation and impairments introduced into the specimens were: 

1. External wire breaks within the bending zone introduced to the 6 strand Lang lay rope 

and internal wire breaks introduced to multi-strand wire ropes. 

2. Abrasion wear introduced by grinding to simulate running rope applications. 

3. Plastic wear caused by sliding during contact with the sheave 

4. Corrosion introduced by opening the wires and degreasing to produce a stiffer wire. 

5. Slack wires or strands. 

6. Torsional imbalance. 

They observed that under BOS fatigue, the endurance of the ropes were minor, indicating that 

the type of damage did not affect the endurance of the wire rope as much as the D/d ratio, which 

they suggested, is due to wire curvature. Feyrer’s equation was used to predict the endurance of 

these ropes, where the difference between the predicted and test results were about 61% for the 

6×25F wire rope, and 5% for the 34×7 wire rope. 

Fatigue testing of a 109 mm diameter (large diameter) wire rope was carried out by 

Vennemann et al. (2008). The wire rope was subjected to tensile loads ranging from 50 to 

330 tonnes (i.e. loads up to 33% of MBL at 1000 tonnes). NDT magnetic flux tests were 

frequently carried out during fatigue testing to obtain information about the wire rope 

deterioration over its life. The wire ropes used in these bending fatigue tests were low torque 

multi-strand ropes having either compacted or uncompacted strands, where in both cases the 

lengths of the specimens were 11.75 m. The wire ropes pass over sheaves of diameter 2200 mm 

with a D/d ratio of 20. Single cycles were established within 8 to 20 second periods. ISO 4309 

discard criteria was used which indicated that the wire rope must be discarded when the number 

of visible broken wires exceeds 2 over a rope length of 6d or if the number of broken wires is 

more than 4 over 30d., Testing proceeded until significant rope elongation due to increased wire 

failures was detected or it became clear that one or more strands were broken and the wire rope 

became imbalanced. Water cooling was applied to the bend zones of some test specimens, while 

others did not have such cooling. They observed that, 1) most wire failures occur internally, with 
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little visible damage on the rope surface, 2) Magnetic flux or any NDT should be used with the 

ISO 4309 discard criteria, 3) High temperature could result in a reduction in wire rope life and 

application of active cooling to wire ropes can increase the lifetime of these wire ropes by 50%.  

Urchegui et al. (2008) identified predominant wear patterns for polymer-covered 

stranded rope and wear evolution as fatigue life proceeded. They also analysed the effect of 

sheave size on the wearing of ropes. Three different wear patterns were identified for the rope: 1) 

“Linear wear scars”, which they identified was “due to the contact of the central wire of strands 

with wires in the inner layer and the contacts of adjacent wires within the same layer”, 2) “Nick 

type A”, which they defined as “wear scars caused by inter-strand point contacts due to 

interaction of the wires of the outer layer of strands with wires of the outer layer of the core”, and 

3) “Nick type B”, which they defined as “wear scars caused by inter-strand point contacts due to 

the interaction with the outer layer of adjacent strands”.  The 7×19 strand steel wire rope was 

covered with a polymeric sheath and had minimum breaking load of 22.5 kN. The metallic part 

of the rope was 5.0 mm and the total diameter including the cover was 6.5 mm. flash brass-plated 

wires were used and had diameters between 0.22 to 0.45 mm. Warrington right lay strand was 

the core, with the rope outer layer consisting of 6 Seale strands wrapped around the core in a 

right regular lay pattern. The wires had a tensile strength that was over 2,800 MPa and was made 

of cold-drawn eutectoid carbon steel (0.8% C). A 200 mm diameter traction sheave was used for 

the test, and the 200mm tension sheave applied a tensile load of 3 kN. Three different sheave 

sizes were used, 200 mm (D/d of 40), 150 mm (D/d of 30), and 100 mm (D/d of 20). The ropes 

tested were subjected to a velocity of 3.2 m/s at a wrap angle of 180 degrees. They observed that 

the most severe wear pattern experienced corresponded to Nick-Type A with a maximum scar 

depth of 40m, and Nick-Type B at 23 m. They expected that Nick Type B would have 

produced the most severe wear state, and suggested that due to the presence of the polymeric 

cover, contact was prevented for some time and delayed the formation of Nick-type B.  They 

also observed that reduction in D/d ratio from 40 to 30 doubled the volumetric wear rate, and a 

reduction in D/d from 40 to 20 caused a 2200% increase in volumetric wear rate. The wear 

pattern in all cases was measured via planimetric wear and wear scar depth, the latter described 

by the authors as “the maximum difference between the worn profile and the profile of a new 
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wire along its axis”, and the former was defined as “the area enclosed between the new and worn 

profiles”, determined numerically. 

Giglio and Manes (2005) applied a number of analytical formulations to estimate the 

state of stress for inner and external wires of a rope. This was compared with experimental data 

defining modulus of elasticity, fatigue and rope bending states. A MIL-W-83140 specification 

type I wire rope was tested which had 19×7 stainless steel. The diameter of the rope was 

4.76 mm. It consisted of a core of seven strands of seven wires each, and had a left Lang laid 

configuration. The outer layer had 12 strands of seven wires each, and this had a right regular lay 

configuration. Using MTS 10 kN electro-mechanical machine, three tests were conducted on 

three lengths without terminals. The three specimens were; 1) core strand, 2) core strand with the 

first layer of strands and 3) the entire rope consisting of one core strand and two layers of 

strands. Modulus of elasticity was determined at a maximum load of 20% of ultimate tensile load 

using thimble terminations, since this was used to measure loss of strength. A pulsating cyclic 

traction test with loads varying from 1330 N to 2660 N was used for the whole wire rope, 

representing a hoist cycle. The other two specimens had a pulsating load which was calculated 

from an analytical model of axial load. Strains were obtained via an extensometer mounted on 

the specimens and hence Young’s modulus can be obtained from the cyclic stress-strain plot. To 

estimate the ultimate tensile strength of the material (obtained at about an average of 1714 MPa) 

static tests were carried out on single wires. A comparison was made for the modulus of 

elasticity obtained from the analytical program and the cyclic traction test, with the three 

specimens, having Young’s moduli of 149,630, 76,810 and 74,700 MPa, respectively. The wire 

material had a Young’s modulus of 159,300 MPa. It was evident from their model, which had 

assumed no friction between the wires and small displacements, that high oscillation angles 

greater than 35
o
 to 40

o
 may cause premature inner and non visible failures. 28

o
 of oscillation was 

established as the limit of alternating bending fatigue. Fatigue limit stress amplitude of 285 MPa 

divided by the maximum Von Mises stress in the external strand for 28
o
 alternate bending fatigue 

was recommended as the design coefficient by the authors. 

Ridge et al. (2000) presented strain gauge measurements of cyclic bending strain in wires 

of a six strand steel wire rope with right-handed Lang's lay construction running on and off a 

pulley. The test consists of two samples, both made from the same coil of rope; a 6 strand rope 
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with RHL and IWRC of construction 625 F. The rope diameter used is 19 mm. It had outer 

strand diameter of 6.2 mm and outer strand outer wire diameter of 1.2 mm. The lay angle of each 

strand was 25
o
 and a rope lay length 125 mm. An ultimate breaking load of 273 kN was 

measured, for a sample length of 1.7 m.  A total of ten strain gauges were mounted on the test 

sample. Rope test loads were applied to 20% of ultimate breaking load for tests cycled at a test 

frequency of 0.097 Hz. The terminations were made of cast polyester with 70% talc powder 

filling. They observed that the test on the first sample ended with the rope failing at 82,577 

cycles. One cycle defined as straight-bent-straight. Only one strain gauge remained intact to the 

rope failure. In the second test, they observed that three gauges survived to failure. In monitoring 

cyclic bending strain as a function of time, they observed that the strain developed a 

characteristic peak value as the rope contacted and then left the pulley. They also observed that 

the amplitude of these peaks had a significant impact on the bending fatigue endurance of a rope. 

They suggested that these peaks may be due to a local reaction to shear forces associated with 

the changing moment as the rope approached the pulley. Lubrication and wire sliding 

movements were considered the reason for small fluctuations in waveforms. Some of their 

conclusions were that, degradation and imperfection had limited effect on the fatigue life in 

cyclic bending. They observed that the predicted cyclic strains were consistent with the measured 

cyclic bending strains. That also the cyclic strain amplitude is highly dependent on the diameter 

ratio of the pulleys to wires, axial position of the wires with regards to the bending motion, and 

the relative location of the wire in the rope.  

Chen and Gage (1981) qualified the degree of improved endurance for wire ropes 

reacting with nylon sheaves compared to steel sheaves in a lifting device. The wire rope 

specimen was obtained from a single 305 m spool of 3/4 inch 625 FW PRF RRL EIPS IWRC 

wire rope. The ultimate tensile strength of three specimens averaged 290 kN. Nylon sheaves 

were monomer cast anionic polymerized caprolactam, while steel sheaves were machined and 

hardened. The sheave – rope pitch diameters used were 18/1 and 24/1 with rope grooves and a 

contact angle of 140
o
. Cast nylon and a steel sheave were simultaneously installed at each end of 

the test machine for comparison. The load applied used design factors of 10, 5, and 3.5 for the 

24/1 sheave ratio and 3.5 for the 18/1 sheave ratio. They stopped the test at defined periods for 

evaluation of wear, deformation and wire breaks until a replacement point was established, at a 

stress level of 10% of the rope breaking strength where 6 strands were retired from the steel 
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sheave contact and one from the nylon sheave contact. At 20% breaking strength, 5 and 2 ropes 

were retired from steel and nylon sheave contacts respectively. At 28.6% breaking strength, the 

same observation was obtained at both ratios. At 10%, 20%, and 28.6 % breaking strength for 

D/d ratios of 24 and 18, the wire rope endurance life for the nylon sheave interaction was 

recorded as 4.5, 2.2, 1.9, and 1.3 times that for the steel sheave interaction respectively.  Chen 

and Gage (1981) observed more scatter in the plot for the steel sheave interactions. Using a stress 

factor and fatigue factor they were able to establish the remaining strength of a rope, where the 

degree of stress in a wire rope decreases as the sheave ratio and the design factor increases. Tests 

were considered complete when a combined total of seven ropes were removed from both sheave 

interaction sides. The ropes in removal were subjected to tensile tests to failure to determine the 

remaining strength. Visible breaks were classified as crown break and tangential break due to 

rope/sheave and strand/strand contacts respectively. The lack of abrasion and improved rope 

support they observed was considered to have reduced the incidents of crown break in the nylon 

sheave. 

Giglio and Manes (2003) completed bending fatigue tests for cyclic free swinging 

motions over guide sheaves, evaluating angular wrap variation below which rope damage would 

not occur. Mil-W-83140 Type I, 19×7 stainless, preformed, non-rotating wire rope was used for 

the tests. The core of the rope consisted of seven strands of seven wires each, and the outer layer 

of the rope having 12 strands of seven wires each. The inner core was a left lang lay, while the 

outer layer was a regular right lay. The wire rope had a diameter of 4.76 mm, and a length of 

1000 mm. Fatigue testing were also carried out on parts of the ropes that was close to the 

terminal; to observe the effect of angular variation developed rotation imposed on the rope 

terminals by the support, and thereby on the fatigue life. An applied preload of 98.1 N was used 

and a test frequency of 0.5 Hz to a maximum angular variation of 180 degrees. The failure 

condition was assessed at complete breakage of an entire strand on the outer surface of the rope, 

per the UNI ISO 4309 standard, performed by visual inspection. Little temperature increase due 

to overheating as a result of the test frequency was observed. Giglio and Manes (2003) 

confirmed that when a rope is allowed to swing when wrapped around sheave wheels, damage of 

the rope can occur where the fatigue life increases with reduction in test angle. Below 28
o
 no 

damage is expected to take place in the rope. 
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Nabijou and Hobbs (1994) focused on investigating whether a change in sheave size, 

generating D/d ratios between 12 and 20, and the ratio of rope breaking load to the working load, 

generally referred to as the factor of safety, SF, will drastically affect the fatigue life of a wire 

rope. Wire rope diameters of 28 mm and 35 mm for a 6×36 construction rope were tested in a rig 

consisting of a sheave and jack frame assembly. The sheave frame transmitted a lateral pull to 

1 MN. The failure criteria used in this study were based on ISO 3601 which states that failure 

has occurred when the number of broken wires equals to 5% of the total number of outer wires in 

a rope of length five times the rope diameter. Nabijou and Hobbs (1994) concluded that the 

fatigue life decreased with a decrease in D/d ratio and an increase in line tension, The IWRC 

rope tested displayed a better fatigue performance than the FC (Fibre core) wire rope tested. The 

comparison of IWRC wire ropes indicated that the smaller the diameter, the more resilient the 

fatigue life within the stress range considered. Nabijou and Hobbs (1994) also observed that 

galvanizing seriously reduced the fatigue life within the stress range studied. The effect of 

microscopic details on the sheave surface was observed to affect fatigue performance. Foreign 

contaminant soil particles such as sand and mud were seen to reduce fatigue performance, where 

frequent re-lubrication and cleaning actions were recommended under severe operating 

conditions. 

Feyrer (1981c) studied the effect of bending length on the fatigue life of a wire rope. He 

described the bending length as the length of the wire rope that is subjected to bending and as 

this length becomes larger; there is an increased probability of failure in the stressed portion. 

Feyrer (1981c) considered both fatigue tests carried out on a wire and on a wire rope. For the 

wire, of diameter 0.75 mm, the test was performed in a crank-driven testing machine, where the 

wire moved to and fro over a pulley of diameter 115.75 mm. The maximum bending and tensile 

stresses were 1300 and 400 MPa respectively, reaching a breaking strength of 1701 MPa 

(nominal strength 1570 MPa) for a bending length of 192 mm. Overall, Feyrer (1981c) carried 

out 13 bending tests, leading to a lognormal distribution plot of the percentage of broken wires 

versus endurance. For the wire rope test, the diameter of the sheave used, D, was 250 mm with a 

groove radius of 5.3 mm; and the diameter of the rope, d, was10 mm, The lubricated Seale rope 

had a (8×19+FEN, DIN 3062, ordinary lay) fibre core with a mean effective breaking strength of 

1561 MPa and a nominal strength of 1370 MPa. The 13 fatigue tests were performed with 

bending lengths of 450 mm. Again, a lognormal distribution was obtained between the 
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percentage rope breakage and the number of bending cycles; where it was observed that an 

increase in bending length increases the probability of failure in the stressed portion. 

Krause and Neumann (1984) investigated the effect of parameters such as lubrication and 

sheave construction material on the fatigue life of wire ropes. A test rig was designed with the 

goal of investigating the effect of lateral deflection angle on the fatigue life of wire ropes. Using 

a steel sheave, tests at a frequency of eight bending reversals per minute with a deflection angle 

of 4
o
 caused an inertia temperature of 33.4

o
C. While using a PVC-coated sheave at a deflection 

angle of 0
o
 degrees generated a temperature of 39.8

o
C at an ambient temperature of 21.4

o
C. 

Krause and Neumann (1984) specified that the temperature should be limited to 50
o
C.  In 

investigating the effect of varying deflection angle, a 6×36 Warrington-Seale parallel constructed 

rope was used for the tests. This rope also had fibre inserts, was 200 m long, but only tested 60 m 

of the length, with a nominal tensile strength of 1770 MPa. The rope of diameter 20 to 34 mm, 

used for the tests, was made up of five different sized wires. The sheave diameters used ranged 

from 450 to 900 mm. The rope traction force was varied from 0 to 100 kN at a speed varied from 

0 to 1.66 m/s with deflection angles from 0 to 12
o
, and a constant stroke length of 2.5 m. The test 

length of the rope was 1500 mm. The resultant plots generated by Krause and Neumann (1984) 

showed an increase in the number of fractures as the deflection angle increased; indicating a rope 

replacement decision length of 30d. 

Research on the effect of sheave diameter, D, to the diameter of a wire rope, d, via the 

ratio D/d, as a function of the tensile stress on fatigue life dates back to the early 1940s. Drucker 

and Tachau (1945) developed a factor called the dimensionless bearing-pressure variable, 

2 /B T UdD , which relates the load, T, ultimate tensile strength, U, sheave diameter, D, and 

cable diameter, d, to the fatigue life of 6×19 and 6×37 ordinary lay ropes. Drucker and Tachau 

(1945) observed that as B decreases, the number of bends to failure increases. The effect of 

sheave diameter and rope tensile stress on a 16 mm, 6×19+1H construction lang lay rope was 

investigated by Müller (1961), who observed that the working life (bending reversals to failure) 

increased with D/d ratio and decreased with an increase in rope tensile stress. Müller (1961) 

investigated D/d ratios varying from 7.3 to 59.3 and tensile stresses up to 980.7 MPa. Chen and 

Gage (1981) investigated the effect of D/d ratios of 18 and 24, although primarily targeting the 

impact of quality of improvement using nylon versus steel sheaves. They observed that the stress 
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level in the wire rope was reduced by increasing the D/d ratio. Nabijou and Hobbs (1994) 

considered D/d ratios from 12 to 20, witnessing a decrease in fatigue life of the wire rope with a 

decrease in D/d ratio. Urchegui et al. (2008) observed wear evolution as a function of the fatigue 

life of a wire rope being expended for D/d ratios of 40, 30 and 20. They observed that a 

reduction in D/d ratio increases the volumetric wear, leading to a shorter fatigue life. Costello 

(1997) also reported the same trend between fatigue life and D/d ratios of 20 to 30. 

Müller (1961) carried out bending tests on wire ropes with bending lengths (defined as 

the contact length between the sheave and the cable) from 20 to 350 mm for a sheave diameter of 

400 mm (30d). The fatigue life was seen to remain initially constant, but the working life rose 

gradually as the bending length becomes smaller than the lay length. Feyrer (1981b) also studied 

the effect of bending length on fatigue life, observing that an increase in the bending length 

increases the chance of failure. Feyrer (2007) also presented results of fatigue tests with bending 

lengths up to 1000d. 

The effect of the angle of wrap, also termed the angle of contact, that is the angle made 

by the hoist rope directly in contact with the sheave, was investigated by Scoble (1930) and 

Müller (1961). Both observed the same trends although with different rope constructions, 

diameters, and under different applied tensile stress. They observed that as the contact angle 

became smaller than 10
o
, the fatigue life increased dramatically. They explained this as due to 

the contact angle reduction essentially produces a minimal bending stress, decreasing fatigue life 

with angle of wrap between about 10
o
 and 30

o
, but increasing fatigue life with an angle of wrap 

from 30
o
 to 50

o
. Finally, they observed that the fatigue life remains constant up to 180

o
. 

Wiek (1973) obtained stress curve for two wire ropes bent over sheaves using strain 

gauge attached to the wire ropes, showing that wire ropes that have broken wires can still carry 

loads beyond one lay length. 

2.3.3 PREVIOUS WORK ON BENDING FATIGUE LIFE PREDICTION FOR STRANDS 

AND WIRE ROPES 

Only a small handful of research has focused on the prediction of fatigue life of wire 

ropes subjected to bending over sheaves.  
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The most important physical parameters that affect the fatigue resistance of wire ropes 

were identified by Feyrer (2007) as the D/d ratio and the rope tensile force. He investigated the 

tensile force as a function of the square of the diameter, 2/S d , where values ranged from 20 to 

540 MPa for D/d ratios of 10 to 63.  

For wire ropes in bending over sheaves, Feyrer (2007) proposed the following relationship:  
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where, 
0R  is the nominal tensile strength of the wire rope in MPa and l  is the bending length in 

mm. Regression coefficients 
ib , were obtained for equation 2-3 for 819 Seale wire ropes with 

fibre core (FC) and IWRC, 819 Warrington wire ropes with FC and IWRC, 8 (19 6F) Filler 

with FC and IWRC, and finally, 836 Warrington Seale wire ropes with FC and IWRC.  

Feyrer’s equation corrected the fatigue life prediction obtained using Equation 2-3 for impacts 

such as rope lubrication, rope constructions of 8 strands or 6 strands, sheave groove radius, and 

side deflections.   

Onur and Imrak (2012) investigated the fatigue life of a 636 Warrington Seale wire 

rope with IWRC and right regular lay.  They investigated the effect of the load and sheave size 

on the fatigue life of the wire rope, concluding that the fatigue life decreases with smaller 

sheaves and higher tensile loads. In their work they proposed some alternative regression 

coefficients for Feyrer’s model to predict the fatigue life of the 636 Warrington Seale wire 

rope, which they observed to give better prediction of the performance than the original Feyrer’s 

equation, and had a difference in the predicted and test results of about 46%, for that particular 

type of wire rope. 

Knapp (1988) also proposed a theory to predict the state of stress in a helical wire bent 

into a circular arc using simplifying assumptions and their results were compared with 

experimental results of bending and shear stresses and they obtained good predictions. A 
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theoretical model for state of wire stress for helical strands in bending in multi-layered and 

axially preloaded spiral strands was proposed by Raoof and Huang (1992). 

Knapp (2004) discussed tension and bending fatigue modeling of cables by computing 

the stress components acting on individual helical wires and comparing these stresses to crossed-

wire stresses developed between wire layers.  The stress concentration in the cables was taken as 

an equivalent notch and it was used to obtain the fatigue life via a stress based approach. 

CableFATIG software was used to compute fatigue life, yielding promising results when 

compared with test results.   

Sasaki et al. (2007) estimated the fatigue life of wire ropes by assuming that the fatigue 

life of the wire rope may be obtained from the fretting fatigue life of the individual wires that 

make up the rope. A model of the wire rope was created using finite element analysis and the 

contact pressures obtained. Using a relationship between the stress amplitude, contact force, and 

the fretting fatigue life obtained via fretting tests on wires, the fatigue life of the wire rope was 

estimated.  

Jiang (2012) investigated the stress behaviour of a 7-wire strand, 11.4 mm diameter wire 

rope subjected to ending. Finite element analysis showed behaviour was identical to Costello’s 

theory for a strand subjected to bending. 

2.4 FAILURE AND DAMAGE RESEARCH ON STRANDS AND WIRE ROPES 

Casey et al. (1985) described equipment used for detecting failure of wires in 

investigating12mm diameter rope. Denison-Mayes and Shenck testing machines were used to 

establish initial load and the ensuing cyclic loading experiments, with a Hitachi VC-6041 digital 

storage oscilloscope recording transducer signals at galvanised wire breakage. The ropes tested 

were 500 mm and 150 mm length 6×7 (6/1) + 1×7 (6/1) steel core construction, with a breaking 

load of 95 kN. Initial load and fatigue tests were carried out on short specimens, while breakage 

tests were performed on longer specimens. Three principal tests were conducted using signal 

analysis: 1) Single wires with small notches loaded to failure, where the transducer was 

positioned adjacent to the notch; 2) 20 notches introduced to outer wires, with the ropes then 

loaded to failure of a single wire, then the load was removed and repeated; 3) Rope specimens 
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tested between 20 and 70 kN at a frequency of 1.2 Hz, where for wire break detection, 2 sub-sets 

of tests a) where each was designed to determine whether only a single wire break was detected, 

with no other noise effect. For these tests, 16 notches were introduced into outer wires, with the 

rope reloaded until failure of the notched wires prior to load removal. A good correlation 

between number of events and number of wire breaks became evident; permitting Casey et al. 

(1985) to conclude that the set-up was suitable for detecting failure of the wires, such that noise 

sources may be eliminated via threshold settings for the instruments. 

Yeung and Walton (1986) described an acceptable accelerated testing procedure for wire 

ropes using block testing. They discussed cumulative damage theories, such as Miner’s law 

which displayed shortcomings such as linear damage accumulation. Yeung and Walton (1986) 

acknowledged that there are two methods to predict fatigue life under variable amplitude loading 

conditions: 1) by using cumulative damage theory, and 2) using variable-amplitude load testing 

in a laboratory, simulating conditions that represent service damage conditions. They evaluated 

variable-amplitude testing as either approached by random-load or block testing. Random-load 

testing may be carried out in a servo-controlled fatigue testing machine, through service recorded 

stress signal or randomised signal input. Block testing however can be directly used to verify 

Miner’s law and also to predict the endurance of wire ropes under random loading. For block 

testing blocks (typically 6 to10) of constant maximum load plateaus were used to replace the 

load history. Yeung and Walton (1986) discussed the beneficial effect of high overloads and 

means of accelerating tests via a) increasing test speed with 2 Hz as an upper frequency limit to 

obtain valid results, or b) by testing at increasingly higher stress levels followed by extrapolation 

to reduce to service stresses. The latter (b) approach displayed problems in validating such 

extrapolations to effect a reduction in testing time, as condensed blocks with smaller numbers of 

load reversals may introduce errors while editing the stress history. The final approach adopted 

by Yeung and Walton (1986) to reduce test duration was the omission of low stress and high 

cycle events, given that it was assumed that low stress level contribute little to the fatigue 

damage. 

Casey (1988) described control and data acquisition systems for monitoring changes in 

rope response properties as a fatigue test proceeds. Stiffness, cyclic displacement, hysteresis and 

elongation may be measured via load - extension data. A stiffness hysteresis plot shows that the 
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stiffness initially increases as a rope “beds-in” followed quickly by a hysteresis reduction, 

thereafter stiffness drops with hysteresis increase, marking the degradation process. Casey 

(1988) noted that cyclic displacement increases rapidly as the rope beds-in and rope length 

increases to the onset of failure. 

Edward (1988) used a simulator which applied a progressively increasing tensile load to 

100 kN onto a Crosby socket mounted sample housed in a salt spray cabinet constructed to 

ASTM B117. Samples of 0.9 m length and 25 mm diameter were tested; with the first test 

conducted to failure and subsequent tests carried out for shorter durations to identify the residual 

breaking strength. Visual examination of wires, and lubrication level through mechanical testing 

was noted. The Dyform 17 ropes loaded to 75% of SWL experienced failure at 229 000 cycles.  

At about 180,000 cycles strength loss accelerated with rapid deterioration to failure at about 

215,000 cycles, with fatigue failure predominating in the inner wires and core. Fretting corrosion 

was noted to be less than that experienced in service.  A ratio of residual breaking load divided 

by minimum breaking load was plotted versus service life, establishing a pair of linear regression 

lines for both samples that failed and those that did not fail. A comparison made between 

galvanised and non-galvanised ropes showed that newly galvanised ropes have greater 

performance than ungalvanised ropes, degrading to a lesser extent. 

Hansel and Oleksy (1986) presented fatigue testing performed to obtain a relationship 

between calculated stress in a rope and the number of bending cycles, while considering the 

sources and characteristics of partial stress in a rope, based on the work of other authors. Plots of 

reduced stress versus fatigue life, maximum bending stress versus bending diameter, maximum 

stress versus fatigue life, and maximum bending stress versus angle of lap, permitted the 

influence of wire diameter on rope safe operating life, influence of carbon content on fatigue life 

and the relationship between fatigue life and wire diameter to be considered. They found that, 

fatigue life decreases with increasing wire diameter and an increase in carbon content was seen 

to effect an improvement in fatigue life. 

Kuruppu et al. (2000) presented loss of metallic area (LMA) determined by the geometry 

of wearing surfaces via a loss in wire mass. This was related to a loss in breaking strength of the 

wire rope. The focus of this study was on abrasive wear but not plastic wear. Worn-out discarded 
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wire ropes were acquired from a mine drum winder at a Western Australian gold mine. The rope 

was made of 6 triangular flattened 6×19 fiber core strands, with a nominal diameter of 32 mm. 

The nominal diameter of the outer and inner strand wires were 3.35 and 0.98 mm, respectively. 

A core of 3 strands had wires with nominal diameter of 1.04 mm. The rope had nominal metallic 

cross-sectional area of 425.5 mm
2
. 12 rope samples of different wear states were cut, including 

portions with significant wear at the drum end. Corrosion was considered insignificant. The loss 

of metallic area (LMA) was measured using callipers to give 1) the wear chord where it 

intersects imaginary lines parallel to the axis of the rope, describing a width of wear, U1; 2) 

chord length of worn wires U2, 3) geometry of the wire at mid section, U3, plus 4) Loss of mass 

of the outer wires, LM. Linear regression equations were obtained for the relationship between 

loss of breaking strength, LBS and each of the measured values estimating LMA. 

de Silva and Fong (2002) investigated cases were external abrasive wear was introduced 

into a 6-strand steel wire rope, where the effect of such wear on the tensile strength of the wire 

rope was examined against several wear based discard criteria. They tested steel wire rope 6×37 

(1-6-12-18) RRL/ IWRC with a diameter of 10 mm. Each rope had 6 strands with 37 wires each 

with 18 wires in the outer most layer, followed by 12 and 6 wires in the next 2 layers. The grade 

of the steel wire was 1960 MPa with an actual breaking load of 6750 kgf. To introduce wear, 

each rope sample was held in tension and rotated slowly in a lathe, while a file was moved 

against the outer surface to cause wear over a length of 1.5 lay lengths. The strain rate applied in 

a universal testing machine was set at 5 mm/min.  Resin compounds secured the two ends of the 

rope, with an effective gauge length of 0.6 m. The samples of wire rope tested were worn by 1%, 

3%, and 5% of the nominal diameter of the wire rope. For each wear extent a large number of 

measurements such as the maximum depth of flat (reduction in the outer wire diameter) and 

reduction in steel cross section were recorded. They observed that the specified breaking strength 

of the wire rope was always higher than the actual breaking strength, as the specified breaking 

strength may not account for geometric irregularities. Tensile strength versus percentage 

reduction in rope diameter, loss in outer wire thickness, maximum width of flat, and percentage 

loss in steel area was recorded for a 15% drop in tensile strength. The most indicative parameter 

reflected the degree of abrasive wear was shown to be the reduction in outer wire diameter, 

comparable with a previously suggested 33% reduction in depth of outer wires by the UK 

National Coal Board (NCB) indicating discard. The maximum width of external flat produced on 
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the outer wires by abrasive wear was used as a convenient practical assessment of the extent of 

reduction in tensile strength of the wire rope, given that width measurement could be performed 

accurately. They reported on actual wear in the field of a 38 mm diameter rope with right hand 

lang’s lay and fibre core, such that when the percentage decrease in breaking strength was 

plotted versus percentage reduction in depth of outer wires for both lab measured and field data, 

two significant drops were evident. The first drop occurred at 12% reduction in outer wire 

diameter, corresponding to the onset of failure of outer wires  for a service rope to meet the BS 

302:1987 reverse bend test requirement, and for inner wires to meet a torsion test requirement to 

the same standard. The second drop represented the point where the touching of the outer wires 

circumferentially ceases and a reduction in outer wire diameter exceeds 50%, leading to rapid 

accumulation of damage.  

The effect of degradation type and wear on the endurance of a wire rope has initiated 

parallel research activities. Ridge et al. (2001) evaluated the effect of various degradation 

processes and impaired quality on the fatigue resistance of wire ropes subjected to bending 

fatigue over sheaves. Plastic and abrasive wear, corrosion, wire breaks, slack strands or wires, 

and torsional imbalance were all investigated. They found that any degradation or damage had a 

similar effect on fatigue life and that the D/d ratio was the physical parameter that had the most 

influence on fatigue life.  

Argatov et al. (2011) studied wear evolution using Archard’s wear law based on 

mathematical models of fretting wear between contacting wires. This was applied to previous 

experimental work carried out by Urchegui et al. (2008) and the effect of mean and contact 

pressures on fretting wear of thin steel wires studied by Cruzado et al. (2010). Argatov et al. 

(2011) observed that for higher loads a high coefficient of wear was evident, permitting a 

relationship between normal force, stroke and the wear to be established. Cruzado et al. (2011) 

also investigated the effect of wire - sheave crossing angles on fretting wear of steel wires. Two 

scenarios were studied: the first was a variation in crossing angle while the load was held 

constant, and the second was the influence of crossing angle at constant pressure. In the first 

scenario, the contact pressure reduced with a decrease in crossing angle and hence less wear 

developed giving rise to a longer fatigue life. In the second scenario it was found that the fatigue 

life remained unchanged as the crossing angle was varied. 
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Velinsky and Schmidt (1988) considered a wire rope as a collection of wires helically 

arranged, such that equations of equilibrium were applied for bending and twisting assuming the 

wires to be thin rods. Constitutive relations where formulated based on wire-to-wire and wire-to-

sheave contact wear, permitting them to conclude that stiffness is not a good measure of the 

condition of a rope, primarily as axial stiffness of the rope can increase as wearing ensues.  

Cable terminations was not the subject of this work, but one of such work that discusses 

about the selection, inspection and replacement of various types of terminations used in cable 

application is by Metcalf and Matanzo (1980). They performed some testing on several 

termination types to evaluate their effectiveness. 

2.5 SUMMARY 

Research on the fatigue state of wire ropes have focused on, stress and strain, fatigue 

testing, failure and damage investigations, and terminations. Studies on the prediction of the 

fatigue life of strands and wire ropes subjected to tension and bending over sheaves is limited. 

Feyrer (2007) model appears to be the most comprehensive approach to the onset of the research 

reported in this thesis, where Feyrer (2007) used regression coefficients to calculate the fatigue 

life of a number of strands and wire ropes. Feyrer’s model does not report regression coefficients 

for all strands and wire ropes, especially those widely used by hoisting dominated mining 

equipment in the surface mining industry.  For example; the fatigue behaviour of 7-wire and 19-

wire strands in tension and bending was not investigated by Feyrer (2007). Also the tension 

fatigue behaviour of IWRC and 619 Seale wire ropes with IWRC were not included in the 

Feyrer’s regression analysis. The stress based approaches proposed by Raoof (1990) and 

Knapp (2004) appear to be comprehensive approaches for predicting fatigue life, but have short 

comings associated with complex analytical computations. One outstanding consideration with 

little study as yet performed is an evaluation of the number of cycles to cause outer wires to 

break. This period in the life of a wire rope is of great significance since it dictates the time 

between targeted inspection and maintenance activities. The approaches adopted by 

Raoof (1990) and Knapp (2004) consider fatigue life as the number of cycles to cause outer 

wires to break. It is this work by Raoof (1990) and Knapp (2004) and the work of Feyrer (2007) 
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that will be extended in this thesis to establish a more comprehensive wire performance of wire 

ropes used by surface mining equipment subjected to high excavation tensile forces.  
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3.1 INTRODUCTION 

In this chapter the finite element models developed to investigate the effect of various 

parameters on the stress conditions for several cables in tension or bent over sheaves will be 

discussed.  The results of the finite element analysis of the cables are needed to obtain the 

stresses or stress parameters that are pertinent to fatigue life computations. A description of the 

model geometries, material properties, element type, mesh type, mesh refinement, boundary 

conditions and loads are presented.  The finite element analysis of the cable is necessary to 

obtain the maximum von Mises stress and maximum internal axial strain in the wires of the 

cable, and also to obtain the reaction force, which will be used to compute the stress 

concentration and correction factors. The stress based approach will be used to predict the 

fatigue life of cables in cyclic tension and in bending over sheaves (Chapter 4 and Chapter 5), 

and this requires some inputs such as the stress concentration and correction factors.  

To validate the finite element modeling technique used, an investigation was conducted, 

which involved developing the model of a 7-wire strand using Abaqus/CAE. The 7-wire strand 

model was subjected to a tensile load and validated using a load versus strain prediction using 

the theory developed by Costello (1997). The validation of the finite element modeling technique 

also involved comparing the modulus of elasticity of a 7-wire, 12.7 mm diameter, ASTM A416 

prestressing strand to the measured modulus of elasticity of test specimens by Heller (2003). Six 

prestressing ASTM A416 strands, two 19-wire strands, one 91-wire strand, one 92-wire strand, 

one 67 wire rope and one 619 Seale wire rope subjected to tension were modeled using 

techniques similar to that used for the initial 7-wire strand analysis, where the fatigue life was 

predicted using a similar stress based approach to that proposed by Raoof (1990) and 

Knapp (2004).  A 7-wire strand model bent over a sheave was developed as part of the analysis. 

Finally, a 19-wire strand tested by Knapp (2004) was modeled. All the cables modeled were 

selected because of availability of essential dimensions for modeling, as well as availability of 
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experimental or analytical fatigue life results for comparison with the predicted fatigue life from 

the current research.  

3.2 FINITE ELEMENT MODEL DESCRIPTION 

3.2.1 MODEL GEOMETRY, MATERIAL PROPERTIES  

A finite element model of a 7-wire strand with a diameter of 15.5 mm was developed to 

compare its load-deformation behaviour to the load-deformation for the same strand presented by 

Costello (1997). The dimensions of the 7-wire strand are typical of the dimensions used as 

prestressing strands. This same strand configuration was used later to investigate the stress 

conditions in strands bent over sheaves. The core (central) wire of the strand was generated by 

the extrusion of a circle with a diameter of 5.23 mm. The external wires were helical in shape 

with a diameter of 5.13 mm. A revolution command was used to generate the external wires by 

specifying a lay length (pitch) of 247.65 mm, direction of twist generating left or right lay, (left 

lay for this case), and the total revolution angle to achieve a specified model length (in this 

model the angle was set equal to 360 degrees, which means the strand model length was equal to 

the lay length). Figure 3-1 shows the cross section of the 7-wire strand and Figure 3-2 shows the 

geometry of the 7-wire strand one lay length long. Later effort will be made to reduce the model 

length so as to reduce computation time.  

A finite element model for six ASTM A416 prestressing strands was generated with 

diameters of 6.4, 7.9, 9.5, 11.11, 12.7 and 15.24 mm. The dimensions of the ASTM A416 

prestressing strands used in the modeling are provided in Table 3-1. The lay lengths of 9.5, 

11.11, 12.7 and 15.24 mm 7-wire prestressing strands are as specified in the SWPC specification 

sheets conforming to the ASTM Standard. The lay length of the for the 6.4 and the 7.9 mm 

prestressing strands were chosen in the current research to conform to the range of lay length 

specified by the ASTM Standard. 

The stress condition and fatigue behaviour of multi-layered strands are essential to 

understand the behaviour of larger diameter strands and wire ropes; hence a 19-wire strand 

presented by Raoof (1990) was also modeled. Raoof (1990) used a similar stress based approach 

for predicting the fatigue life for this strand configuration, as the approach used for this research. 
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Table 3-2 shows the dimensions of the 19-wire strand as analysed by Raoof (1990) and Figure 3-

3 shows the cross section of the 19-wire strand. The core wire of this arrangement was created by 

generating a 3.594 mm diameter circle in the parts module of Abaqus/CAE and extruding it to a 

length of one sixth of the largest lay length (i.e. length of 31.83 mm). Costello (1997) and 

Erdönmez and İmrak (2009) presented the relationship between the lay length, lay angle and the 

lay radius as: 

 tan
2

p

R



                                                                                                           (3-1) 

where p  is the lay length, and  is the lay angle of the strand, and   is equal to 90  , R  is 

the lay radius; defined as the vertical dimension between the axis of the strand or core wire to the 

centre of a wire in the layer under consideration. Equation 3-1 was used to compute the lay 

length in Table 3-2, since it was not reported by Raoof (1990). The second layer of helical wires 

was created by generating a circle above the core wire of diameter 3.25 mm and using the 

revolution command in the parts module to revolve the geometry around the central wire. A 

single wire created in the second layer was cloned to create five more wires around the core wire. 

A similar technique was used for the 12 wires in the third layer. Figure 3-4 shows the geometry 

of the 19-wire strand.  

A 19-wire strand tested by Papanikolas (1995) was also modeled in Abaqus/CAE to 

predict the stress distribution and fatigue life of multi-layered strands subjected to cyclic tension. 

Table 3-3 shows the dimensions of the 19-wire strand tested by Papanikolas (1995) used to 

create the strand as based on the modeling technique described above. In Table 3-3, the Layer 

O.D is defined as 2 times the vertical dimension between the axis of the strand to the top of the 

wire in the layer under consideration. 

A 92-wire strand and 91-wire strands were created using the same approach described for 

the 19-wire strand. The basic difference between the 92-wire and the 91-wire strands was the 

second layer, which consisted of 7 and 6 wires for the 92 and 91-wire strands, respectively. Both 

strands had six layers, starting with a central straight wire as layer 1, increasing to layer 6 with 

30 wires. Table 3-4 and Table 3-5 show the dimensions used to create the model of the 92-wire 

and the 91-wire strands, respectively. Figure 3-5 and Figure 3-6 show the cross section and the 
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geometry of the 92-wire strand, respectively. The cross section and the geometry for the 91-wire 

strand are shown in Figure 3-7 and Figure 3-8, respectively.  

For a 619 Seale wire rope, three strand diameters were used in a parametric study. The 

diameters of the wire ropes were 33, 49.53 and the 70 mm. Since only direct tension was applied 

to the wire rope, the dimensions of the 49.53 and 70 mm wire ropes were scaled-up versions of 

the 33 mm wire rope. The stress concentration and stress correction factor obtained using the 

finite element analysis for all three wire ropes were suspected to be the same; so only the finite 

element modeling of the 33 mm wire rope will be carried out. This will be verified when the plot 

of the von Mises stress versus the applied stress for the different 7-wire prestressing strands is 

carried out in Chapter 4. If a constant slope is obtained for all prestressing strands, then it can be 

surmised that a scaled model should have the same stress concentration or correction factor, but 

the size effect that takes into account a reduction in fatigue life for larger diameter components 

(discussed latter in this Chapter) will be applied to modify the endurance of each wire rope for 

the parametric study in Chapter 4.  The dimensions of the 33 mm diameter 619 Seale wire rope 

are shown in Table 3-6; the geometry of which was originally presented by Velinsky (1981). 

Table 3-6 presents a parameter m defined by İmrak and Erdönmez  (2010) as: 

/ ( tan cos )sh dh dh shm r r                                                                                               (3-2) 

where 
shr is a single helix strand outer radius measured from the central wire rope axis (same as 

the Strand O.R. in Table 3-6 ),
 sh  is a single helix lay angle and 

dhr  and 
dh are the respective 

double helix radius and lay angle, respectively. These were measured relative to the axis of the 

wire rope, although the double helix radius is measured from the central wire in its strand to the 

centre of the wire of interest. The parameter m is used to develop the 619 Seale wire rope, and 

it is used specifically to generate coordinates of the double helix wires (refer to Appendix A). 

Figure 3-9 shows a typical cross section for the 619 Seale wire rope, containing the three types 

of strand. Figure 3-10 shows the nomenclature used to describe strand 1, where the dimensions 

of H11 to H16 are the same, except for the relative position of each of the wires within the 

strand. Figures 3-11 and 3-12 show similar nomenclature for strands 2 and 3, respectively. The 

dimensions of H21 to H26 are identical. Similarly, the dimensions of H31 through H39 are the 

same, and the dimensions of H41 through H49 are also the same. Table 3-6 provides all 
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dimensions for the wire rope.  Each of the wires of the Seale wire rope was generated using 

parametric equations in SolidWorks, as presented in Appendix A. Figure 3-13 shows the 

geometry of the Seale wire rope once the parts have been imported from SolidWorks and 

assembled in Abaqus/CAE. The SolidWorks files were converted to a STEP format and then 

imported into Abaqus/CAE. 

The IWRC was formed by removing strands 3 of the 619 Seale wire rope. Figure 3-14 

shows the geometry of the IWRC.  

Bending over sheave fatigue behaviour of strands and ropes is of interest in the current 

research since hoist ropes in shovels and elevator ropes are subjected to this type of loading. The 

effect of the diameter of a sheave, D, to the diameter of a wire strand, d, ( / )D d , the tensile load 

( )S  and the radius of the sheave groove ( )r  on the stress conditions was investigated using the 

7-wire strand presented by Costello (1997) and the 19-wire strand tested by Knapp (2004). The 

strand from Costello’s (1997) was a 7-wire strand as discussed previously. The Knapp (2004) 

test specimen was a 19-wire strand, generated using extrusion and revolution of circular cross 

sections as described previously. The dimensions of the 19-wire, 3.3 mm diameter strand tested 

by Knapp and used for the finite element model are shown in Table 3-7. 

Homogenous and isotropic material properties with a Young’s modulus of 200 GPa and 

Poisson's ratio of 0.3 were used for the wires, and a friction coefficient of 0.12 was used as; this 

friction coefficient was also used by Raoof (1990), considered to be representative of friction 

between lubricated galvanised wires over long periods by Raoof and Hobbs (1988), established 

by comparing theoretical and experimental data.  The mass density of the steel material was 

specified as 7800 kg/m
3
. General contact with a penalty algorithm, which is basically a contact 

enforcement method (refer to ABAQUS documentation), was used to simulate contact between 

wires and contact between wires and a sheave. In the bend-over sheave analysis the wires in the 

strands were considered the “slave” surfaces, and the sheave, modeled as a rigid body, was the 

“master” surface. This is because the “slave” surface should be the more finely meshed surface, 

and should be the softer material as recommended by the ABAQUS documentation. A large 

displacement, non-linear geometry analysis was conducted to capture the contact behaviour 

between the adjacent wires and between wires and the sheave.    
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3.2.2 INTERACTION, BOUNDARY CONDITIONS AND LOADING 

All 7-wire strands that were subjected to tensile loading only, had all the nodes at each 

end slaved to a reference point at each end. The cross section of the wires at one end of the 

strand was tied to the reference point (reference point 2, RP2) using a multi-point constraint 

(Beam type). The beam type multi-point constraint was used to constrain the displacement and 

rotation of the slave nodes to the displacement and rotation of a control point (a single point, 

where boundary conditions or loads can be applied, and it ultimately applied this to the slave 

nodes), while the nodes at the other end of the strands were tied using kinematic coupling. 

Kinematic coupling limits the motion of the slave nodes to the rigid body motion of a reference 

node (reference point 1, RP1). Several alternatives were tried to model the behaviour of the 

strands under load; with the beam type multi-point constraint at one end of a strand and the 

kinematic coupling at the other end providing the best stiffness estimate output for the strand 

performance. RP1 for each cable was subjected to several concentrated loads, with RP2 having 

all degrees of freedom fixed. Loads were applied using a tabular amplitude curve, ramped up to 

full magnitude within a time period of 0.001 for the 7 and 19-wire strands. The loads were 

applied in a similar manner for the 91, 92-wire strands, the IWRC and the 619 Seale wire rope, 

but a time period of 0.01 was used for these cables. All strands and wire ropes subjected to 

tension only had the same boundary conditions as the 7-wire strand, and the complete details of 

the loads applied to each case will be presented in Chapter 4. 

For the strands bent over sheaves, the cross section of the wires at both ends of the 

strands was tied to a reference point using the kinematic coupling constraint, and the boundary 

condition was applied to the reference point. The length of each strand that bends over the 

sheave was determined using the length of an arc formula: 

L R                                                                                                                       (3-3)                                     

where R  is the radius of the sheave plus the radius of the strand and   is the angle subtended by 

the strand in contact with the sheave, expressed in radians. If the strand was made significantly 

longer than the length obtained from Equation (3-3), then the analysis became highly unstable 

and produced unrealistic results. This problem was suspected to be because, in a quasi-static 

analysis, when the downward displacement is applied to the strand, it can generates a dynamic 
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effect that creates an unwanted displacement in the strand as it falls and wraps around the 

sheave. Displacement control loading was used for loading the strands after it wraps around the 

sheave. Figure 3-15 shows the wire strand and the applied displacements at both ends in the 

downward direction; and the geometry of the 7-wire strand over the sheave is shown in Figure 3-

16. The displacement applied depended on the applied tension, and the radius of the sheave 

involved in each analysis. The strands were free to rotate about the z-axis and also free to 

translate in the x-axis, as defined in Figure 3-16. All other degrees of freedom were restrained. 

The time period was varied between 0.12 to 0.16 seconds, as was the mass scaling factor; the 

latter described as a factor that scales up the mass of the model, effectively increasing the overall 

kinetic energy of the model in Abaqus/CAE Explicit, and hence speeds up the analysis.  The 

mass scaling factor was only applied to the cables bent over sheave, because of computation time 

required to bend the cable over the sheave and apply a tension. For the 7-wire strands bent over 

sheave a mass scaling factor of five was used, and for 19-wire strands bent over sheave a mass 

scaling factor of 49 was used. Using higher values of mass scaling factor produced output that 

had kinetic energy greater than 5% of the internal energy, and hence the produced results were 

completely unreliable. Figure 3-17 shows the geometry of the 19-wire strand over a sheave 

before the application of a displacement, and this was the same as the geometry of the strand and 

sheave investigated by Knapp (2004), which had a very high ( / )D d ratio at 90.9 and a groove 

radius of 1.92r d . All sheaves had all the degrees of freedom restrained at the centre, and a 

coefficient of friction of zero (which can allow for free sliding of the cable over the sheave) was 

specified between the cable and the sheave, while the coefficient of friction between wires of the 

cable was set at 0.12 (as suggested by Raoof (1990)).  

3.2.3 MESH REFINEMENT STUDY AND ELEMENT TYPE 

Cables have complex geometry, which makes the prediction of the location of the 

maximum stress concentration very difficult. Therefore, the whole cable mesh must be refined to 

predict accurately the stress concentration.  

The mesh was generated after all boundary conditions and loads were applied to the 

model. The mesh of the 7-wire strands was generated using a free meshing technique in 

Abaqus/CAE. The current research used C3D8R elements, which are 8-node linear brick, 
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reduced integration with hourglass control, as recommended in the ABAQUS documentation for 

contact and large deformation problems. A mesh refinement study was conducted to obtain the 

most appropriate element size. This was done using a 7-wire strand of 15.5 mm diameter as used 

by Costello (1997). The lay length and the length of the strand modeled was 247.65 mm.  

An alternative to reduce the model size is necessary to reduce computational time. Wang 

et al. (2013) and Jiang (2012) have used a model with length of one-sixth of the lay length (short 

model) and they obtained satisfactory load-strain predictions, since larger cable sizes will be 

modeled in the current research the same will be adopted to reduce computational time. The 

comparison of the load-strain predicted using the short model and the full lay length model will 

be carried out in the current section, also a comparison of von Mises stress obtained using a short 

model and a long model (with length of 300 mm) of the prestressing strands will be carried out 

and is presented in Appendix B.  

Figure 3-18 (a) shows the results of the mesh refinement study comparing the load-strain 

relationship for each mesh size to the predicted load-strain relationship proposed by 

Costello (1997). From the comparison plot it can be seen that with 1,224,132 elements the load-

deformation behaviour of the finite element model was very close to that predicted by Costello’s 

theory. The axial force versus the strand axial strain or the strand bending moment versus 

bending curvature predicted using Costello’s theory has been used by several researchers such as 

Wang et al. (2013), Jiang (2012), İmrak and Erdönmez (2010), Erdönmez  and İmrak (2009) to 

compare with their model axial or bending behaviour and they all found that their model load-

strain relationship had less than 5% difference from the Costello’s predictions, provided the 

material response is elastic. Figure 3-18 (b) shows the mesh refinement study based on the von 

Mises stress, it can be observed that although the von Mises stress seems to have converged in a 

coarser mesh (10250 elements), the strand is still very flexible, so it is better for such elements to 

observe convergence of both the stress of interest as well as the stiffness whenever it is possible, 

and this flexible behaviour of the C3D8R elements was also reported in the ABAQUS 

documentation.  Therefore, a mesh size of 1,224,132 elements was selected for this strand size. 

Figure 3-19 shows an overall view of the mesh for the short model. For all other 7-wire strands, 

subjected to tension only, no further mesh study was considered necessary since the number of 

elements around the cross section relative to the strand diameter was kept constant. However, 
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later it is necessary to explore alternatives to reduce computational time and cost by reducing the 

overall length of the model. As the number of wires in a strand increases contact between wires 

becomes more complex, necessitating a significant refinement of the C3D8R elements to ensure 

convergence. Also, as geometric non-linearity increased these elements became significantly 

costly to use. To overcome such problems, C3D10M elements were used for the 19, 91 and 92-

wire strands. The C3D10M element is a solid second order modified tetrahedral element known 

for good performance in contact and geometric non-linear problems (refer to ABAQUS 

documentation).  

To investigate the effect of a reduction in the length of the model on the load-strain 

relationship, the behaviour of a 7-wire strand presented by Costello (1997) in tension only was 

compared to the behaviour predicted by Costello’s theory for the same strand. A load of 

83.67 kN in this case was applied to only one end of the strand. The model with length reduced 

to one sixth of its lay length as suggested and applied by Wang et al. (2013) and Jiang (2012) 

was analysed and compared to a model with length equal to one full lay of 247.65 mm. 

Figures 3-20 and 3-21 shows the displaced model for the long model (length of one lay length), 

and the short model (with a length of one sixth of the lay length), respectively. Figure 3-22 

compares the load-strain results of the finite element analysis with the prediction from Costello’s 

theory, indicating that the finite element model here accurately predicts the load-strain 

relationship suggested by Costello (1997) with less than 1% difference. The load-strain of the 

reduced length for the strand is also shown in Figure 3-22. It can be concluded that there is a 

reasonably good prediction of the load-strain relationship by the short or long model when 

compared to the load-strain predicted from Costello’s theory. 

Figure 3-23 shows the results of the mesh refinement study conducted on Raoof’s 19-

wire strand at a load of 23.4 kN. A mesh with 33,850 elements was chosen as mesh refinement 

beyond this did not lead to any significant difference (about 1% difference) in stress values. The 

selected mesh is shown in Figure 3-24. Since a similar wire size as the 19-wire strand was 

modeled for the 92 and 91-wire strands, the same element size was used for the 92 and 91-wire 

strands as shown in Figure 3-25 and Figure 3-26, respectively.  
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Although, the element size used for the strands may be extended to the 619 Seale wire 

rope, a mesh refinement study was carried out as shown in Figure 3-27. Figure 3-28 shows the 

final mesh chosen with 106,204 elements; representing the number of elements to be used if the 

same element size as used for the strands were used. For strands subjected to bending a different 

mesh size was selected. The Costello and Knapp 7 and 19-wire strand ‘bending over sheave’ 

models were given element sizes of 0.70 and 0.20 mm, respectively. An overall view of the mesh 

for the 7 and 19-wire strands bending over sheave are shown in Figure 3-29 and Figure 3-30, 

respectively. 

3.2.4 STRANDS AND WIRE ROPES SUBJECTED TO TENSION ONLY  

  All 7-wire strands had loads up to 50% of the tensile strength applied. For the 6.4 and 

7.9 mm prestressing strands, loads up to 20 and 32.25 kN, respectively were applied along the 

axis of the strand. A 9.5 mm ASTM A416 strand was loaded axially with a load up to 45 kN at 

only one end of the strand. 11.11 mm, and 12.7 mm ASTM A416 prestressing strands were 

loaded up to 60 kN and 83.7 kN, respectively. A 15.24 mm strand was loaded with a tensile load 

up to 128 kN, applied to one end of the strand. Raoof's 19-wire strand was loaded with a force up 

to 81.9 kN (30% of the UTS), based on the load investigated by Raoof (1990). The 19-wire 

strand model for the strands tested by Papanikolas (1995) was loaded up to an axial force of 

150 kN.  

The 91-wire strand was loaded axially with a force up to 700 kN. The loads applied to the 

19 and 91-wire strands tested by Papankolas (1995) were intended to create a stress range up to 

25 to 29% of the minimum ultimate tensile strength as specified by Papanikolas (1995) (UTS for 

the 19  and 91-wire strands was 1402 and 1409 MPa, respectively). The 92-wire strand was 

loaded at various load levels up to 369 kN (30% of the UTS specified by Raoof (1990)). 

Similarly, the 67 strand was subjected to an applied load up to 50 kN. The 619 Seale wire 

rope was given applied loads up to 360 kN. The loads applied to the strands and wire ropes will 

be discussed in Chapter 4 in the parametric study. Feyrer (2007) reported that the factor of safety 

for crane stay ropes and steel construction (including bridges) is 3.2 and 2.2, respectively. 

Tension loads were applied to all strands and wire ropes such that the fatigue life will be 

investigated to a maximum factor of safety within a range of 2 to 3. 
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3.2.5 STRANDS SUBJECTED TO BENDING OVER SHEAVE 

To study the behaviour of strands bent over a sheave, two strand types were used: a 7-

wire strand used by Costello (1997) and a 19-wire strand investigated by Knapp (2004). For the 

7-wire strand, a parametric study was conducted, which varied the diameter of the sheave to the 

diameter of the strand ratio ( /D d ) at 12, 15, 20, 40 and 60, with corresponding varying load 

levels in each case. The corresponding lengths used for the above /D d  ratios were 317, 391, 

512, 999 and 1486 mm, respectively. These lengths were based on Equation 3-3 for a strand bent 

over a sheave. The diameter of the strands was considered constant at 15.5 mm for this analysis, 

except when the effect of the diameter of strand was investigated.   

The effect of change in diameter for a 7-wire strand bent over a sheave was also 

investigated, where the diameter was reduced by 50% and 75% of the original diameter and 

loaded over a sheave; this was carried out for /D d  ratios of 12 and 15. The groove radius ( r ) 

used was typically 0.53 times the diameter of the strand, this is normally the groove size used in 

practice (Feyrer, 2007), although the effect of the groove was also investigated for /D d  ratios 

of 12 and 15.  For the /D d  ratios of 12 and 15, a groove radius of 0.53d , 0.8d , 1.0d  and a flat 

groove ( /D d of 12 only) were also investigated.  

A parametric study to investigate the effect of /D d  and load on stress concentration in 

the multi-layered 19-wire strand was carried out for /D d  ratios of 10, 15, 30, 60 and 90.9. For 

all these cases the radius of the groove was kept constant at 0.53d . To investigate the effect of 

change in strand diameter, the diameter of the 19-wire strand was increased by 50% and 100%, 

bent over a sheave, and then loaded for /D d  ratios of 10 and 15. To observe the effect of 

groove radius for multilayered strands, groove radii of 0.53d , 0.8d  and 1.0d  were investigated 

for a /D d  ratio of 10.  

The fatigue life of strands bent over sheaves will be obtained using the maximum von Mises 

stress in a strand and the nominal stress, which is expressed as the reaction force at the sheave 

divided by the nominal cross sectional area at the cable. 
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3.2.6 COMPARISON OF PREDICTED AND ACTUAL STIFFNESS 

A 12.7 mm ASTM A416 prestressing strand described and tested by Heller (2003), with a 

Young’s modulus of 202,706 MPa generated a finite element analytical solution here with a 

Young’s modulus value of 202,614 MPa; this was generated from a plot of the strand force 

versus the strain in Figure 3-31. Further validations were performed as fatigue life predicted 

using stress based approaches are compared with fatigue test results in the following chapters. 

The validation of the finite element model and the validation of the stress based approach for 

fatigue life prediction were conducted. The latter will be treated in two parts, 1) a fatigue 

analysis for strands and wire ropes subjected to tension only and, 2) a fatigue analysis for strands 

bent over a sheave, such that the validation of the stress based approach for fatigue of strands and 

wire ropes will be discussed in Chapters 4 and 5. 

3.3 ANALYSIS 

A non-linear elastic quasi-static analysis was conducted, with an elastic stress 

concentration factor ( )nomSCF  computed as the ratio of the maximum von Mises stress, mv , to 

the nominal stress, nom , as described by: 

mv
nom

nom

SCF



                                                                                                                (3-4) 

The nominal stress is the applied force divided by the gross cross sectional area for the strands or 

wire ropes subjected to tension only. The gross cross sectional area of the cable is obtained by 

summing up the circular cross sectional area of all the individual wires that make up the cable. In 

calculating the nomSCF  for strands bent over sheaves, the nominal stress was defined as the 

reaction force at the sheave obtained from the finite element analysis divided by the sum of the 

nominal cross sectional area of each wire in the strand. The fatigue life will also be obtained 

using a stress correction factor int.( )stressCF  suggested by Raoof (1990) and given as:  

 int.

int.

mv
stress

stress

CF



              (3-5) 
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where 
int.stress  is the maximum internal wire stress. The analysis was sub-divided into two main 

categories: (1) tension and (2) bending over sheave analyses. In the tension analysis, 10 strand 

types were considered: six of which were 7-wire prestressing mono strands (ASTM A416 

strands); a 19-wire strand as investigated by Raoof (1990); a 19-wire strand as tested by 

Papanikolas (1995); 91 and 92-wire strands, and one 619 Seale and one IWRC wire rope will 

also be analysed. In bending over sheaves, one 7-wire strand as considered by Costello (1997) 

and a multilayer 19-wire strand that was tested by Knapp (2004) were investigated for stress 

concentration, stress correction and fatigue resistance. In all cases, to obtain a quasi-static 

analysis, the kinetic energy in the dynamic explicit analyses was found to be less than 5% of the 

internal energy, this check is necessary to ensure that the loads or displacements are applied in 

such slow and steady manner that the impact of the dynamics of the model does not affect the 

results, as will be expected when the kinetic energy is greater than 5 to 10% of the internal 

energy (refer to ABAQUS documentation)    

3.4 FATIGUE ANALYSIS 

The main goal of this research is to predict the fatigue life of strands and wire ropes in 

cyclic tension and bending over sheaves, from fatigue test results for single galvanised wires. To 

predict the fatigue life of cables made of wires that are not galvanised a similar stress based 

approach can be used, but the fatigue S-N curve for a single wire that is not galvanised will have 

to be used for the fatigue life prediction for such cables. Figure 3-32 shows the schematic of a 

fatigue S-N curve for a single wire and the reduced fatigue S-N curve for a strand or wire rope. 

The endurance limit for the single wire, oS , is modified to obtain the reduced endurance limit for 

a strand or wire rope, eS , as proposed by Bannantine et al. (1990) as: 

 e o sf sc sS S C C C   (3-6) 

where sfC  is the modification factor for wire surface finish, scC  is the modification factor for a 

stress concentration or notch sensitivity, and sC is the modification factor for size (in this case 

diameter) of the component. sfC depends on the surface finish and the tensile strength and can be 

found from the literature (Bannantine et al., 1990). scC is the reciprocal of the fatigue notch 
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factor, where the notch sensitivity factor for fully reversed loading was previously developed by 

Neuber (1961) as: 

1

1 n

q
r




                                                                                                                 (3-7) 

where   is the characteristic length dependant on the material and 
nr  is the notch root radius. 

The fatigue notch factor is related to the notch sensitivity factor from the equation presented in 

Stephens et al. (2001): 

1 ( 1)f tK q K                                                                                                             (3-8) 

where 
tK  is the stress concentration factor. For steel with an ultimate tensile strength of 

1725 MPa and a notch radius of 1 mm as defined by Stephens et al. (2001), the fatigue notch 

factor is about 1.0. So, the fatigue notch factor for this research analysis was assumed to be equal 

to the nomSCF  or int.stressCF  , as the notch sensitivity factor for such high strength steels used in 

making strands or wire rope approaches unity. sC was presented by Bannantine et al. (1990) and 

Shigley and Mitchell (1983) as: 

0.0971.189sC d    (3-9)    

where d  in the current research is the diameter of the strand or wire rope, Equation 3-9 was used 

if 8 mm d 250 mm. For d 8 mm, sC is 1.0. Equation 3-9 was derived from plots of actual 

test specimens, considering the effect of specimen size on the endurance limit for specimens 

under reversed bending and torsion. Although, some of the wires in the strands and wire ropes in 

the analysis were subjected to tension only, the geometry of the wires analysed are such that the 

wires are invariably subjected to twisting when in tension, so that the specimen size effect should 

be applied to strands and wire ropes in tension or bent over sheaves. Table 3-8 shows the typical 

modification factors for surface finish and size used in the current research. The nomSCF  or 

int.stressCF  was obtained from a linear elastic finite element analysis of strands or wire ropes, 
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where afterwards a reduced endurance limit for a strand or wire rope was obtained, the fatigue 

life of the cable could be calculated using the S-N equations: 

1

10
c

b b
NN S


  (3-10) 

where, 

log

log

f

e

f

e

S

S
b

N

N

 
 
 


 
 
 

 
 (3-11) 

log( ) [log(N ) / (log )](log )
f f

f f

e e

N S
c S

N S
 

 (3-12)
 

where fS  is the maximum stress amplitude for  a single wire, fN is the corresponding fatigue 

life for a single wire at the maximum stress amplitude, and NS  is any arbitrary stress amplitude 

for which a fatigue life N  is being estimated. Thorpe et al. (1985) conducted fatigue tests on 

single wires such that: fS  is 644 MPa and fN  at 58,880 cycles for a mean stress of 920 MPa. 

oS  is the fatigue limit for a single wire and using the definition from Thorpe et al. (1985), it was 

offset at 490 MPa, as defined by Equation (3-6) and eN , the corresponding endurance limit 

fatigue life for a single wire (1,020,000 cycles) is shown schematically in Figure 3-32. Figure 3-

33 shows the flow chart for the process of obtaining the fatigue life for cables either in cyclic 

tension or bent over sheave wheels. 

3.5 DISCUSSION 

In this chapter, the method used for the development of the finite element models was 

presented for cables in tension and bent over sheave wheel. The strands models generated were 

seven 7-wire strands, two 19-wire strands, one 92 and one 91-wire strands, also modeled was one 

IWRC and one 619 Seale wire rope , all of these were subjected to tension only, so as to 

investigate the tension fatigue resistance of cables. All of the 7-wire strands investigated in the 

current research had dimensions that conform to ASTM A416 prestressing strands, and there 
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were availability of fatigue test data for most of these 7-wire prestressing strands for comparison 

in the following chapter. The other multi-layered strands investigated were reported by other 

independent researchers, such as Raoof (1990) and Papanikolas (1995), again these were 

standard strand types used in civil or mining applications.  

The bend over sheave behaviour of cables is of great importance, since equipments such 

as shovels, cranes, and elevators are subjected to such loading conditions, hence two strand 

types; 7 and 19-wire strand at different sheave diameter to strand diameter ratios, groove sizes, 

and tensile load was created in a parametric form. The 19-wire strand was from the work of 

Knapp (2004) and hence had fatigue test results for comparison with the current research 

prediction. The 7 and the 19-wire strands were not investigated and presented by Feyrer (2007), 

but they are the fundamental strands for all other larger cables and investigating the fatigue 

behaviour of such strands when bent over sheave wheels will enable us to understand behaviour 

of larger cables bent over sheaves, since the same factors such as the load, and the diameter of 

sheave to the diameter of cables affects small or large cables. 

Non-linear elastic model was used for all analysis to obtain elastic stresses and strains, 

hence elastic stress correction or concentration factors will be obtained, and since yielding was 

not included in the material behaviour high stresses of several magnitudes higher than the yield 

stress of steel should be expected. The stress-life method of fatigue prediction does not work 

well in low cycle fatigue where there is significant plastic deformation (Bannantine et al. 1990); 

hence the use of elastic stress correction or concentration factors with the stress based approach 

for cables, which will typically be subjected to high cycle fatigue in the current research is 

justified.  

The loads applied to each cable were meant to achieve a factor of safety between the 

ranges of 2 to 3, which is typical of field conditions. 

The fatigue life of strands will be obtained using a stress based approach that treats the 

stress correction or concentration factor as an equivalent notch and reduces the fatigue limit of 

the S-N plot for a single wire (assumed to be without any notch or stress concentration) by 

accounting for the stress concentration, surface finish, and size of the cable as recommended by 

Bannantine et al. (1990) and used for other types of structures.  
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One of the shortcomings in the present chapter is the availability of stress results to 

compare with the finite element model results. Costello’s Theory remains the most widely used 

theory to check the models load-strain relationship. This theory has been used by several 

researchers such as Wang et al. (2013), Jiang (2012), İmrak and Erdönmez (2010), Erdönmez  

and İmrak (2009) to mention just a few, and it had resulted in good prediction of the cable strains 

and stiffness, with less than 5% difference between the model and Costello’s predicted load-

strain relationship. The other shortcoming is the fact that running large models with hundreds if 

not thousands of contact points in a single cable is time consuming, so in order to overcome this, 

a model with one-sixth of the largest lay length in the cable was adopted. The stiffness of such 

“short” model has been proven in the current chapter to be representative of the measured and 

predicted modulus and load-strain behaviour by Heller (2003) and Costello (1997), respectively. 

In the absence of actual or predicted von Mises or contact stress for such complex cables, we 

have differed further validation or justification of the short model to the following Chapters and 

Appendix B.  
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Table 3-1: Dimensions of the ASTM A416 Prestressing strands 

ASTM Strand 

diameter (mm) 
Core Wire 

Diameter 

(mm) 

External Wire 

Diameter 

(mm) 

Lay Length 

(mm) 

Lay Angle 

(degrees) 

6.4 2.150 2.130 90 8.53 

7.9 2.660 2.620 110 8.53 

9.5 3.220 3.160 130 8.76 

11.11 3.750 3.680 165 8.05 

12.7 4.290 4.210 180 8.43 

15.24 5.150 5.040 205 8.88 

 

 

 

 

Table 3-2: Dimensions of the 16.4 mm diameter, 19-wire strand by Raoof (1990) 

Layer No. of 

Wires 
Lay 

Direction** 
Wire 

Diameter 

(mm) 

Lay Angle 

(degrees) 

Lay   

Radius 

(mm) 

Lay 

Length 

(mm) 

1 1 — 3.594 — — — 

2 6 LL 3.250 11.42 3.30 102.66 

3 12 RL 3.250 11.91 6.41 190.98 

** LL is left lay, and RL is right lay 
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Table 3-3: Dimensions of the 25 mm diameter, 19-wire strand tested by Papanikolas (1995) 

Layer No. of 

Wires 
Lay 

Direction** 
Wire 

Diameter 

(mm) 

Lay Length 

(mm) 

 Layer O.D 

(mm) * 
Lay Angle 

(degrees) 

1 1 — 5.260 — 5.260 — 

2 6 RL 5.056 161 15.43 11.44 

3 12 LL 5.056 263 25.34 13.62 

 

* O.D is outer diameter 

** LL is left lay, and RL is right lay  

 

 

 

 

Table 3-4: Dimensions of the 39 mm diameter, 92-wire strand by Raoof (1990) 

Layer No. of 

Wires 
Lay 

Direction** 
Wire 

Diameter 

(mm) 

Lay Angle 

(degrees) 

Lay 

Radius 

(mm) 

Lay 

Length 

(mm) 

1 1 — 5.050 — — — 

2 7 RL 3.540 15.42 4.19 95.46 

3 12 RL 3.540 14.90 7.04 166.26 

4 18 LL 3.540 15.93 10.57 232.71 

5 24 LL 3.540 16.45 14.10 300.09 

6 30 RL 3.540 17.74 17.73 348.27 

** LL is left lay, and RL is right lay 
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Table 3-5: Dimensions of the 45 mm diameter, 91-wire strand tested by Papanikolas (1995) 

Layer No. of 

Wires 
Lay 

Direction** 
Wire 

Diameter 

(mm) 

Lay Length 

(mm) 

 Layer O.D 

(mm) * 
Lay Angle 

(degrees) 

1 1 — 4.315 — 4.315 — 

2 6 RL 4.034 100 12.29 14.54 

3 12 RL 4.034 206 20.16 13.82 

4 18 LL 4.034 301 28.29 14.21 

5 24 RL 4.034 395 36.27 14.38 

6 30 LL 4.034 506 44.37 14.06 

* O.D is outer diameter 

** LL is left lay, and RL is right lay 

 

Table 3-6: 619 Seale wire rope by Velinsky (1981) of 33 mm diameter 

Strand

§ 

Wire No. of Wires Lay 

Direction

** 

Wire 

Radius 

(mm) 

Lay 

Length 

(mm) 

Strand 

O.R* 

(mm) 

Strand 

Lay 

Angle 

(degrees) 

Double 

Helix 

Radius 

(mm) 

m 

(Eq. 3-

2) 

1 H10 1 RL 0.801 — — — — — 

 H11-

H16 
1 RL 0.735 33.02 1.536 16.30 — — 

2 H20 1 RL 0.704 77.47 4.287 19.18 — — 

 H21- 

H26 
1 RL 0.656 77.47 4.287 19.18 1.360 1.5087 

3 H30 1 LL 1.456 199.61 11.413 19.77 — — 

 H31-

H39 
1 LL 0.712 199.61 11.413 19.77 2.168 3.3855 

 H41-

H49 
1 LL 1.243 199.61 11.413 19.77 3.867 3.3855 

§  Refer to Figures 3-9 to 3-12 

* O.R : outer radius 

** LL is left lay, and RL is right lay 
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Table 3-7: Dimensions of the 3.3 mm strand tested by Knapp (2004) 

Layer No. of 

Wires 
Lay 

Direction** 
Wire 

Diameter 

(mm) 

Lay Length 

(mm) 

Strand 

O.D (mm) 

1 1 — 0.700 — 0.700 

2 6 RL 0.660 19 2.000 

3 12 LL 0.640 33 3.300 

** LL is left lay and RL is right lay 

Table 3-8: Modification factors used for various cables 

Cable type Diameter 

(mm) 
sfC  

sC  

7-wire prestressing 

strands 
6.4 0.53 1.00 

7.9 0.53 1.00 

9.5 0.51 0.96 

11.11 0.53 0.94 

12.7 0.53 0.93 

15.24 0.53 0.91 

19-wire strands 16.4    0.50* 0.91 

25     0.54** 0.87 

3.3 0.53 1.00 

92-wire strand 39   0.50* 0.83 

91-wire strand 45     0.54** 0.82 

67  wire rope 12.6 0.53 0.93 

619  Seale wire 

rope 
33 0.53 0.85 

* The value was used by the Raoof (1990) 

** based on specified tensile strength of 1402 and 1409 MPa reported by Papanikolas (1995) 
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Figure 3-1: Cross section of the 7-wire strand 

 

 

Figure 3-2: Geometry of 7-wire strand   
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Figure 3-3: Cross section of the 19-wire multilayer strands 

 

 

Figure 3-4: Geometry of a 19-wire strand 
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Figure 3-5: Cross section of 92-wire strand 

 

Figure 3-6: Geometry of 92-wire strand 
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Figure 3-7: Cross section of 91-wire strand 

 

 

Figure 3-8: Geometry of 91-wire strand 
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Figure 3-9: Cross section of the 619 Seale wire rope 
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Figure 3-10: Nomenclature for the wires of strand 1 of the 619 Seale wire rope  
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Figure 3-11:  Nomenclature for the wires of strand 2 of the 619 Seale wire rope   



69 

 

 

Figure 3-12: Nomenclature for the wires of strand 3 of the 619 Seale wire rope  
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Figure 3-13: Geometry of the 619 Seale wire rope 

 

 

 

Figure 3-14: Geometry of the IWRC  
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Figure 3-15: Schematics of load on wire strand to be bent over a sheave 

 

 

 

 

Figure 3-16: Geometry of a 7-wire strand on a sheave 
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Figure 3-17: 19-wire strand on a sheave for D/d=90.9 

 

 

(a) Mesh refinement using the stiffness 

Figure 3-18: Mesh refinement study for 7-wire strand in tension (using C3D8R elements and 

model of one lay length) 
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(b) Mesh refinement using the von Mises stress 

Figure 3-18: (Cont’d) 

 

 

 

Figure 3-19: Overall view of the mesh for 7-wire strand (1,224,132 elements) 
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Figure 3-20: Costello 7-wire strand (length= one lay) showing the displaced strand 

 

 

Figure 3-21: Costello 7- wire strand (length= one sixth of the lay length) showing the displaced 

strand 
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Figure 3-22: Stiffness prediction for various strand lengths 

 

 

Figure 3-23: Mesh refinement study for 19-wire strand in tension (C3D10M elements) 
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Figure 3-24: Overall view of the mesh for 19-wire strand 

 

 

Figure 3-25: Overall view of the mesh for 92-wire strand 
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Figure 3-26: Overall view of the mesh for 91-wire strand 

 

Figure 3-27: Mesh refinement study for 619 Seale wire strand in tension (C3D10M elements) 
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Figure 3-28: Overall view of the mesh for the 619 Seale wire rope 

 

 

Figure 3-29: Overall view of the mesh for 7-wire strand on a sheave 
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Figure 3-30: Overall view of the mesh for 19-wire strand bent on a sheave 

 

 

Figure 3-31: Strand force versus strain for 12.7 mm ASTM A416 prestressing strand 
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Figure 3-32: Fatigue S-N Plot 
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Fatigue Life of cables 

Obtain oS ,and 
fS  from fatigue S-N curve for single wire by Thorpe et al. (1985) 

Calculate the equivalent stress amplitude for oS ,and 
fS  using Modified Goodman equation 

Obtain eN ,and 
fN  for  oS ,and 

fS , respectively, from fatigue S-N curve from Thorpe et al. (1985) 

Obtain maximum von Mises stresses, reaction forces, and maximum internal axial stress from parametric 

study using FEA 

For cables in tension only, 

calculate ( )nomSCF from 

Eq.3-4 

For cables in tension and 

bending, calculate 

( )nomSCF from Eq.3-4, 

and int.stressCF from Eq.3-5 

Obtain 
sfC , sC and scC as reciprocal of  

nomSCF or int.stressCF  

Obtain eS using Eq.3-6 

Compute aS from the applied tension, and convert to  NS
 
using the Modified Goodman equation 

Fatigue Life, N from Eq.3-10 

 

Figure 3-33: Flow chart for obtaining the fatigue life for cables 
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4.1 INTRODUCTION 

The effects of stress amplitude, diameter of strand and lay length on stresses and fatigue 

resistance were investigated for a number of 7-wire ASTM A416 prestressing strands. Models of 

a 7-wire strand were developed using the finite element method previously described in Chapter 

3. The strand models developed had diameters of 6.4, 7.9, 9.5, 11.1, 12.7 and 15.24 mm. The 

finite element analyses results for 19, 91, and 92-wire strands, 67 wire rope (IWRC) and a 6

19 Seale wire rope subjected to tension will also be presented. Applied boundary conditions and 

loads were previously discussed in Chapter 3. The stress concentration and the stress correction 

factors will be obtained from the results of the tension analysis using the finite element method. 

Fatigue life prediction models were then derived from fatigue S-N curve of a single wire tested 

by Thorpe et al. (1985) using a stress based approach. The effect of inter-wire friction is included 

in all the analyses. Only elastic stress concentration and stress correction was considered in this 

research work, and yielding of the cable was ignored in the analysis. 

4.2 FINITE ELEMENT ANALYSIS RESULTS 

Two methods have been presented for quantifying the stress intensity, through nominal 

stress concentration and stress correction factors. The nominal stress concentration factor 

( )nomSCF  has been arrived at via the conventional method used to calculate the stress 

concentration factor of parts of a structures as defined via Peterson’s stress concentration factor 

(Pilkey, 1997), which involved dividing the maximum stress by a nominal stress. In the current 

research the nomSCF  is obtained through the use of Equation 3-4, by dividing the maximum von 

Mises stress by the nominal stress (applied force divided by the summation of the areas of the 

individual wires that make up the cable). The use of the maximum von Mises stress as the 

maximum stress is because, 1) Fatigue failure is a shear failure. Even if the fatigue crack initially 

starts as a tension crack it quickly changes it orientation to a shear crack, 2) Fretting fatigue 

CHAPTER 4 

 

 FINITE ELEMENT RESULTS AND FATIGUE LIFE FOR TENSION 

ONLY CABLES 
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behaviour of a part is dependent on factors such as frictional shear stresses, amplitude of the 

relative motion, normal contact pressure between the surfaces in contact, the magnitude of 

applied mean or alternating stresses (Stephens et al. 2001), and von Mises stress seems to 

capture almost all of these factors. Using the contact stress only, is a bit simplistic for the failure 

condition under fretting fatigue, but the von Mises stress also includes the effect of contact 

stresses as well as other multi-axial stresses that are occurring in a cable. A similar approach for 

calculating the stress concentration factor was used by Wokem and Grondin (2010), the 

difference is that the maximum stress was the maximum principal stress. The alternative method, 

using a stress correction factor int.( )stressCF obtained using Equation 3-5, and it uses the maximum 

internal axial stress obtained as the maximum internal axial strain along the axis of the strand 

multiplied by the modulus of elasticity of a wire, in ratio to the von Mises stress. A similar 

approach of using the int.stressCF was initially proposed by Raoof (1990) and Hobbs and Raoof 

(1996) for obtaining the fatigue life of strands, but their approach uses an analytical formula 

proposed by Thomas and Hoersh (1930) to compute the maximum von Mises contact stress 

under a contact surface at a depth below the surface of the cable in tension and they obtained the 

nominal wire axial stress using an analytical formulae. Their approach was used for strands, but 

could become very complicated for use in wire ropes, where the strands and wires of the wire 

ropes are laid in different directions and the same is true when cables are subjected to tension 

and bending. The current research uses a numerical method to obtain the maximum von Mises 

stress and the maximum internal wire stress for strands and wire rope in tension or bending over 

sheaves. Both factors have been used here to estimate the fatigue life of strands and wire ropes. 

The conventional approach for predicting the fatigue life of parts of a structures makes sole use 

of nomSCF , but where wire ropes are concerned it may be necessary to use int.stressCF , to account 

for inter-wire strains within the strand or wire rope.  

4.2.1 EFFECT OF LOAD AMPLITUDE AND STRAND DIAMETER ON THE STRESSES 

FOR ASTM A416 7-WIRE PRESTRESSING STRANDS 

The effect of load range and strand diameter for six 7-wire ASTM A416 prestressing 

strands was investigated. It was shown in Chapter 3, that the stiffness of the short finite element 

model (length of 1/6 lay length) of the 7-wire strand was representative of the measured modulus 

of elasticity by Heller (2003) and the modulus predicted using Costello’s Theory (Costello, 
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1997). A comparison between the behaviour of the short model (length of 1/6 of the lay length) 

and the long model (length of 300 mm) will be carried out and is shown in Appendix B. In the 

meantime, the finite element results of the short model are discussed in this section.  

A 6.4 mm ASTM A416 prestressing strand was evaluated with a nominal tensile strength 

of 40 kN (ASTM A416-99). The steel cross sectional area of the strand being 23.2 mm
2
. The 

strand was analysed in direct tension only. Table 4-1 shows the values of the stress parameters, 

nomSCF  and int.stressCF , which have been used to compute the fatigue life of the strand. Figure 4-1 

shows the maximum von Mises stress distribution in the strand, with the maximum von Mises 

stress equal to 1,098 MPa for a loading of 20 kN, corresponding to 50% of the minimum 

breaking strength of the strand. The maximum von Mises stress occurred on the outer surface of 

the exterior wire, while the maximum contact stress occurred at the interface between the 

exterior wire and the central wire. The maximum von Mises stress is expected to be maximum at 

the interface between wires and not at the end, hence this may be due to boundary effects which 

may have been as a result of using a short model, this will be analysed as the results of more 

strands are modeled.  It should be mentioned that although the maximum von Mises stress for 

this strand is at the ends, the difference in the maximum von Mises stress at the ends and at the 

interface between the wires is about 11%. Figure 4-2 shows the contact surfaces for the 6.4 mm 

prestressing strand, which are elliptical due to the helical geometry of the external wires 

referenced to the central or core wire in the strand. The contact patches were formed as a result 

of the tensile force and the geometry of the individual wires as they rolled over the adjacent 

wires. There are also contact patches between the external wires, but these are longer surfaces 

than those between the external wires and the central wire. The distribution of contact patches 

over a length of the central wire in the strand suggested that at that load, contact has been 

established between some sections of the external wire and the central wire. These contact 

patches are considered typical of the origin of fretting fatigue wear scars which may lead to the 

ultimate failure of the strands under repeated loading. Casey and Lee (1989), Cruzado et al. 

(2010) and Zhang et al. (2003) described wear scars remarkably similar in shape to the contact 

patches obtained using the finite element analysis conducted here. 

A 7.9 mm ASTM A416 prestressing strand was also analyzed, with a nominal breaking 

strength of 64.5 kN and a steel cross sectional area of 37.4 mm
2
. Table 4-2 shows the values of 

the stress parameters and the computed nomSCF  and int.stressCF  values. These values have been 
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used to compute the fatigue life in this chapter. Figure 4-3 shows the von Mises stress to a 

maximum of 1,147 MPa for a load of 32.25 kN, representing 50% of the minimum breaking 

strength. As with the previous strand investigated above, the maximum von Mises stress 

occurred in one of the external wires of a 6 wire layer.  

A 9.5 mm ASTM A416 prestressing strand with a minimum breaking strength of 89 kN 

and cross sectional area of 54.8 mm
2 

for Grade 1860; yielded nomSCF  and int.stressCF  parameters 

used to compute the fatigue life of the strand shown in Table 4-3. Figure 4-4 shows the 

von Mises stresses for a load of 45 kN, as 50% of the minimum breaking strength.  

An 11.11 mm ASTM A416 prestressing strand with a minimum breaking strength of 

120.1 kN and area of 69.7 mm
2 

for Grade 1725; yielded Table 4-4 values of nomSCF  and 

int.stressCF  parameters that were used to compute the fatigue life, reported in the following 

chapter. Figure 4-5 shows the von Mises stress in the strand when it was subjected 50% of the 

minimum breaking load, at 60 kN.  

An ASTM A416 12.7 mm prestressing strand with a minimum breaking load of 160.1 kN 

and area of 92.9 mm
2 

for Grade 1725; yielded Table 4-5 showing nomSCF  and int.stressCF  

parameters. Figure 4-6 shows the von Mises stress for a load of 83.64 kN. 

Finally, a 15.24 mm ASTM A416 prestressing strand with a minimum breaking load of 

260.7 kN and area of 140 mm
2
, was analysed in direct tension only. The stress parameters 

nomSCF  and int.stressCF  used to compute the fatigue life later are shown in Table 4-6. Figure 4-7 

shows the model von Mises stress for a load of 128 kN.  

Although the von Mises stress for all 7-wire strands evaluated show a maximum at the 

ends of the external wires, the von Mises stress for the internal surfaces are almost the same 

(with a maximum difference of 11%).  Since, it is suspected that the high von Mises stress at the 

ends of the all the 7-wire strands were due to the use of the short models, it was necessary to 

compare the von Mises stress for the short models to that of the long models (length of 300 mm). 

Appendix B has results of the locations and magnitudes of the maximum von Mises stress for the 

short and long models of the 7-wire prestressing strands, and also a comparison between the 

magnitudes of the maximum von Mises stress for both models. The major observation was that 

the location of the maximum von Mises stress in the long model is more representative of what is 

expected when theses strands are subjected to cyclic fatigue loading, that is, the maximum von 
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Mises stress should be between wires and not at the ends, as seen in the shorter model. Fretting 

fatigue cracks will initiate at the internal surfaces rather than in the external surfaces that are not 

in contact. The other conclusion drawn was that, the maximum difference in magnitude of the 

maximum von Mises stress between the short and long models was 10%. The difference in the  

stress results will yield a  maximum difference in slope and intercept of 0.24 and 0.57 for the 

mean regression fatigue life equations between the long and short strand models (Refer to 

Appendix B). The von Mises stress was observed to be higher at the ends rather than at the wire 

surfaces in contact because: from Appendix B and Table 3-1, it can be observed that, the 7-wire 

ASTM prestressing strand has a smaller lay angle, such that there is little inter-wire contact stress 

because of a large contact surface area,; so it is possible that the maximum von Mises stress is 

not primarily due to contact, but may have other higher stresses developed at the ends. This 

behaviour is expected to change if the number of layers or the lay angle is varied.  

Figure 4-8 shows a plot of the maximum von Mises stress versus applied force, and it can 

be seen that the maximum von Mises stress is directly proportional to the applied force. As 

explained in Chapter 3, the finite element analysis was linear elastic, and yielding of the material 

was not modeled. The plot of the maximum von Mises stress versus applied stress shown in 

Figure 4-9 reflects a linear relationship. A regression analysis of the data shows that a 

relationship between the maximum von Mises stress,
mv  and the applied stress may be 

expressed as Equation 4-1: 

1.26 50.99mv app                                                                                   (4-1) 

where, app  is the nominal applied stress, and the coefficient of determination, 2R  for 

Equation 4-1, is 0.993. The effect of lay length for a 7-wire strand in tension then becomes 

insignificant within the lay length specified by ASTM standards (i.e. 14 to 16 times the diameter 

of the strand).  

4.2.2 EFFECT OF LOAD AMPLITUDE AND STRAND DIAMETER ON THE STRESSES 

FOR 19-WIRE STRANDS 

Two 19-wire strands were modeled with one of the strands from the work of 

Raoof (1990) and the other tested by Papanikolas (1995). The major difference in the two strands 

was in the lay length or lay angle. The boundary conditions and dimensions applied are as 

previously described in Chapter 3. The first strand, originally presented by Raoof (1990), is 
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16.4 mm in diameter, has an area of 159.5 mm
2
, and a breaking strength of 234 kN. Figure 4-10 

(a) shows the finite element results for the strand with a maximum von Mises stress of 

3,395 MPa, when the strand is loaded with a tension of 81.9 kN. The maximum von Mises stress 

occurred in one of the wires of layer 2 (shaded) in Figure 4-10 (b). Raoof (1990) also reported 

that the maximum stress in the strand should occur between the 6 wire layer and the 12 wire 

layer, which is layer 2 and layer 3, which was also observed in this research. Figure 4-10 (c) 

shows the von Mises stress distribution and the point of maximum stress for the critical wire, 

where all the other wires of the strand were removed. The contact stress distribution and 

elliptical contact patches formed in the wire can clearly be seen in Figure 4-10 (d). Table 4-7 

shows the stress parameters at different load levels. It was expected, based on the results that the 

first wire break would be in one of the wires in layer 2 since this exhibited the highest stress 

concentration in the strand. It can was also observed that the difference between the nomSCF  and 

int.stressCF  is minimal. The reason for the maximum von Mises stress in layer 2 is suspected to be 

because the wires of that layer had the lowest lay angle giving a condition with closely 

contacting wires, and the direction of lay in layer 2 and layer 3 were opposite (i.e. left and right 

lay), creating a critical scenario for high contact stresses compared to lays in the same direction. 

The second 19-wire strand modeled was from the work of Papanikolas (1995). The strand 

had a diameter of 25.34 mm and a minimum ultimate tensile strength of 543 kN with an actual 

breaking strength of 596 kN (Papanikolas, 1995). The area of the strand was reported as 

387 mm
2
. Table 4-8 provides the stress parameters at various loads and Figure 4-11 (a) shows 

the maximum von Mises stress for the strand and an overview of the von Mises stress 

distribution in the external wires of the strand from the finite element analysis for a load of 

150 kN. The maximum von Mises stress occurred at the central straight wire (shaded) as shown 

in the cross section of Figure 4-11 (b). Papanikolas (1995) reported a large number of wire 

breaks in the external wires (layer 3) compared to breaks in wires of other layers, which does not 

correspond to the location of high stress indicated by the finite element analysis at that load 

level, but the overall location of the maximum von Mises stress as observed in Appendix B is 

between layer 2 and layer 3.  Figures 4-11 (c) and (d) showed the stress distribution within the 

interior core wire with all of the exterior wires removed. Again the contact patches were seen to 

be elliptical but not well distributed along the length of the wires as seen in Raoof’s 19-wire 

strand, it is likely due to the fact that the lay length for this strand was larger than the lay length 
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for the strand that Raoof investigated. Layer 2 had the smallest lay angle and again creates a 

condition with closely contacting wires compared to the wires of other layers. 

From the plot of maximum von Mises stress versus applied force shown in Figure 4-12 it 

can be observed that the maximum von Mises stress increases with applied load. Figure 4-13 

shows that the maximum von Mises stress versus applied stress is not the same for both cables, 

indicating that there must be at least another parameter that affects von Mises stress. As 

previously explained, this observed difference may be explained due to the stress concentration 

or stress correction factors of both strands, commensurate with the difference in the lay angle of 

the strands (Refer to Chapter 3 for strand dimensions). The lay angle for the Papanikolas strand 

was generally larger than the Raoof strand, so larger stress concentration and correction factors 

would be expected for the Raoof strand, hence it agrees with the notion that the lay length or lay 

angle has an effect on the stress and the fatigue life of a strand. 

4.2.3 EFFECT OF LOAD AMPLITUDE AND NUMBER OF WIRES ON THE STRESSES 

FOR 91-WIRE AND 92-WIRE STRANDS  

The fatigue life of strands with a large number of wires is of considerable importance as 

they are often used for applications under cyclic tension, but not often bending. Raoof (1990) 

reviewed the performance of a 92-wire strand tested in cyclic tension by Hobbs and Ghavami 

(1982), and similarly Papanikolas (1995) tested a 91-wire strand in cyclic tension. These two 

strand types were analysed and Figure 4-14 (a) shows a maximum von Mises stress of 

6,962 MPa for a load of 369 kN for the 92-wire strand. The maximum stress occurred on one of 

the wires of layer 4, and at the interface between layers 3 and 4, as shown by the shaded wire in 

Figure 4-14 (b). The high stress between the wires of layers 3 and 4 compared to wires in other 

layers of the strand was also commented on by Raoof (1990). Figures 4-14 (c) and 4-14 (d) show 

a closer view of the stress at the contact surfaces of the interior critical wire when all other wires 

were removed.  Figure 4-15 (a) shows the maximum von Mises stress (4,905 MPa) for the 91-

wire strand subjected to a load of 700 kN. Figure 4-15 (b) shows the cross section of the strand 

showing the critical wire (shaded). The stresses around the locations of maximum stress are 

shown closer in Figures 4-15 (c) and 4-15 (d), where only the critical wire is shown. The 

maximum von Mises stress occurred in one of the wires in layer 3, and between layers 3 and 4. 

Papanikolas observed in his test that most wire breaks in strands were predominantly located in 



89 

 

layers 3 and 4 (mainly layer 3), which is the area of high stress as indicated in the finite element 

analysis. Again, as before, the model showed elliptical isolated contact patches as points of stress 

concentration in these types of strand. Tables 4-9 and 4-10 show the von Mises stress at different 

load levels for the 92 and 91-wire strands, respectively and the corresponding values for the 

nomSCF  and int.stressCF  parameters. The stresses are seen to be higher in the 92-wire strand 

compared to the 91-wire strand. The reason for higher stresses in the 92-wire strands compared 

to the 91-wire strand is again considered due to the difference in the lay length between both 

strands, although the numbers of wires are also marginally different in both strands. The results 

for both 92 and 91-wire strands tend to suggest that the most critical lay is located between 

layers were the summation of the lay angles are minimum compared to the combination of the 

lay angle in other layers, and both layers are of opposite lay direction, that is the summation of 

the lay angles that is minimum is between layer 3 and 4 for both the 92, and 91-wire strands, 

provided the lay directions are in opposite directions. Layers with the same lay direction do not 

result in high stresses compared to layers with opposite lay direction. 

4.2.4 EFFECT OF LOAD AMPLITUDE ON THE STRESSES FOR 67 WIRE ROPE 

(IWRC) 

The 67 wire rope (IWRC) is a wire rope of 49 wires, modeled here as an independent 

wire rope, although its geometry and dimensions were taken as previously described for the full 

33 mm diameter 619 Seale wire rope (by removing strand 3) in Chapter 3. For fatigue life 

prediction, three diameters of this wire rope were considered: 12.6, 38.1 and 70 mm wire ropes. 

The latter two diameters are scaled up from the 12.6 mm diameter rope, hence only the finite 

element analysis results for the 12.6 mm diameter wire rope were used as the basis for the fatigue 

analysis considered for all other rope sizes, as the same stress concentration or stress correction 

factors were expected in all three size cases, as evident with the 7-wire prestressing strands. A 

modification factor that accounts for size of the rope will be applied to the scaled models to 

obtain its fatigue life. Table 4-11 shows various stress parameters discerned from the analysis of 

these strands as the load was varied. Also, Figure 4-16 (a) shows the maximum von Mises stress 

at a load level of 50 kN for the 12.6 mm diameter rope. The critical wire (shaded) relative to the 

wire in the cross section can be seen in Figure 4-16 (b). The location of the maximum von Mises 

stress at the corresponding load occurred at the central straight wire. Figures 4-16 (c) and 4-16 
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(d) show the interior of the wire rope where all the wires wrapped around the central core wire 

have been removed, such that the central wire is shown. As previously observed, similar isolated 

elliptical patches were evident in the core wire.  

4.2.5 EFFECT OF LOAD AMPLITUDE ON THE STRESSES FOR 619 SEALE WIRE 

ROPE 

One of the most frequently used wire ropes is the 619 Seale wire rope with IWRC. This 

rope is primarily used for cyclic tension and bending applications, such as might be used for 

cyclic wire rope hoist systems on mining shovels and draglines. One 33 mm diameter rope was 

analysed in tension, but the fatigue life will be predicted for two scaled up wire ropes, 49.53 and 

70 mm respectively, by applying a modification factor for size effect. The dimensions of the 

33 mm diameter rope were described previously in Chapter 3. Table 4-12 shows the stress 

parameters that were used to compute the fatigue resistance of these wire ropes at different load 

levels. An increase in contact stress was basically observed with an increase in load range. A 

maximum von Mises stress of 7,934 MPa for a load of 360 kN is shown in Figure 4-17 (a) for 

the 33 mm diameter wire rope. From Figure 4-17 (b) it can be seen that the critical wire was 

located in the IWRC. The maximum von Mises stress occurred in one of the six helical wires 

surrounding a central straight wire. Figures 4-17 (c) and 4-17 (d) show the highly stressed wire 

and the isolated elliptical contact patches distributed over the length of the wire rope, where all 

other wires have been removed.    

4.3 FATIGUE ANALYSIS RESULTS 

The fatigue life of strands and wire ropes was obtained using the mean fatigue S-N 

regression relationship for a single wire, as tested by Thorpe et al. (1985) and described in 

Chapter 3, applying the stresses obtained via the finite element analysis. The fatigue life was 

obtained by two methods: the first is the fatigue life, nomN , obtained using nomSCF ; and the 

second is the fatigue life int.stressN , obtained using int.stressCF . Depending on the proximity between 

wires or the extent of lay angle, these methods can prospectively yield very different fatigue life 

values. It must be emphasized that the current prediction considers the fatigue life to be based on 

“First wire fracture in the cable”. 
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4.3.1 FATIGUE TEST ON SINGLE WIRE BY THORPE ET AL. (1985) 

Thorpe et al. (1985) conducted fatigue tests on single wires in air and seawater.  This 

work focuses only on fatigue tests in air. The wires investigated by Thorpe et al. (1985) had 

diameters of 2 mm. Figure 4-18 shows the mean regression for the data to two standard 

deviations. The mean regression was then expressed as: 

56.88 18.50 rLogN LogS                                                                                 (4-2) 

where, rS  is the stress range in MPa, and N  is the number of cycles to failure. The standard 

error in Equation 4-2 was discerned as 0.36, as per Appendix B reflecting the test data and 

regression analysis. The mean regression reflected in Equation 4-2 may then be considered to 

derive the fatigue resistance for all other strands and wire ropes. The fatigue life was converted 

to a fully reversed fatigue expression via the Modified Goodman model presented in Bannantine 

et al. (1990) and given by: 

(1 )N amp m ultS S S S                                                                                      (4-3) 

where NS  is the fully reversed fatigue strength, mS  is the mean stress, ultS  is the ultimate tensile 

strength of the wire, and ampS  is the stress amplitude.  The fatigue life in all test programs and all 

the predicted fatigue life were converted to an equivalent fatigue life using Equation 4-3. This 

conversion was necessary to set a uniform approach to compare fatigue test results from previous 

test programs with the predicted fatigue life outlined here. The standard error used for all 

prestressing strands was taken as 0.23 from the previous work of Warner and Hulsbos (1966), 

who conducted a high volume of fatigue test at different stress ranges generating a representative 

variation in fatigue life estimation. 

4.3.2 FATIGUE ANALYSIS RESULTS FOR ASTM A416 PRESTRESSING STRANDS  

The results of the predicted fatigue life using the stress based method will be presented 

and discussed. Fatigue tests on prestressing strands have been conducted by previous researchers, 

such that here a comparison of the predicted fatigue life to the test fatigue for various sizes of 

strand has been assessed. Appendix C houses the test data used for this comparison and the 

corresponding regression analysis.  
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Table 4-13 reflects applied load, and fatigue life for a 6.4 mm prestressing strand, 

commensurate with stress amplitude and fatigue life for loads up to 20 kN. Table 4-13 also 

shows the predicted fatigue life for this strand using nomSCF  or int.stressCF  obtained by dividing 

the von Mises stress by the nominal stress and the maximum internal stress, respectively. It can 

be seen that there is negligible difference in the fatigue life via both factors, as seen in the ratio 

nomN  to int.stressN .  

The 7.9 mm strand was loaded in tension to a maximum load of 32.25 kN as shown in 

Table 4-14, reflecting the stress amplitude and the corresponding fatigue life for the strand. 

Table 4-14 also shows the predicted fatigue life for the strand, and again there is little difference 

in the fatigue life estimate, obtained via using nomSCF or the int.stressCF .  

No test data in the 6.4 or 7.9 mm prestressing strand category was identified to compare 

to a predicted fatigue life using a stress-based approach. Figures 4-19 and 4-20 show the fatigue 

life and mean predicted S-N regression line for 6.4 mm and 7.9 mm strands, respectively, 

yielding Equation 4-4: 

 16.75 4.26 NLogN LogS                                                                                      (4-4) 

The 9.5 mm strand exhibited an S-N relationship as presented in Table 4-15, and this 

indicates that the relationship between the stress amplitude and the fatigue life follows a 

logarithmic profile. The maximum load in this case was recorded as 45 kN. Figure 4-21 shows a 

fatigue life for the 9.5 mm prestressing strand, comparable to the experimental fatigue test results 

conducted by Fisher and Viest (1961), with a standard error of 0.23 was used to fit the 2 standard 

deviations line, as shown in Figure 4-21, although not all the test data fell within the band. The 

predicted fatigue life is more conservative than the test data. The mean predicted S-N regression 

line in this case is given by Equation 4-5: 

15.72 3.88 NLogN LogS                                                                                       (4-5) 

For the 11.11, 12.7 and the 15.24 mm strands the predicted fatigue life is shown in 

Tables 4-16 through 4-19, and also shown, is the data used to obtain the fatigue life for the 

strands. The predicted fatigue life are for both 250 and 270 grades for the 12.7 mm strand. As 



93 

 

seen previously for other 7-wire strands, the fatigue life calculated using either a nominal stress 

or the maximum internal axial stress, gave virtually the same result. 

The comparison of the predicted fatigue life and test fatigue life for an 11.11 mm strand 

is shown in Figure 4-22. The comparison was made to the test results of Warner and Hulsbos 

(1966) and Paulson et al. (1983), the data from which may be found in Appendix C. The mean 

predicted S-N regression line is then given by: 

  15.38 3.77 NLogN LogS                                                                       (4-6) 

It should be commented that almost all the data reported by Warner and Hulsbos fell within 2 

standard deviations of the mean predicted fatigue life band; and only a few data fell outside the 

band for the test data reported by Paulson and others.  

Figure 4-23 shows the predicted and the test fatigue life for the 12.7 mm strand, which 

exhibited an ultimate strength of 1725 MPa, where it can be seen that the test data sourced from 

Muller and Zeller (1975) fall within 2 standard deviations of the mean. The mean predicted S-N 

regression line is described by: 

15.56 3.83 NLogN LogS                                                                                       (4-7) 

A 12.7 mm strand with a tensile strength of 1860 MPa displayed a fatigue behaviour reflected in 

Figure 4-24, where the predicted fatigue life was compared to fatigue test data after 

Heller (2003).  This was also shown to fall within 2 standard deviations from the mean predicted 

S-N regression line of,: 

14.93 3.60 NLogN LogS                                                                                   (4-8) 

Figure 4-25 shows the fatigue behaviour of 15.24 mm strands, whose predicted life was 

compared to test data after both Muller and Zeller (1975) and Cullimore (1972); shown to exhibit 

a good fit between experimental and predicted fatigue life, with only a few data external to 2 

standard deviations of the mean predicted band width. The mean predicted S-N regression line 

here was described by:  

15.47 3.80 NLogN LogS                                                                                            (4-9) 
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The results of the mean predicted S-N regression line shows that the fatigue life decrease 

with increase in strand diameter, and increase in load amplitude, although there seem to be very 

little differences in the prediction, evident in a difference in slope and intercept of the mean 

predicted S-N regression of 0.66, and 1.82, respectively.   

4.3.3 FATIGUE ANALYSIS RESULTS FOR 19-WIRE STRANDS 

Two 19-wire strands were investigated using a stress based approach. The first was a 

16.4 mm diameter strand as introduced in Chapter 3. The S-N data for this strand has been 

presented in Table 4-20. It was noted that the fatigue life calculated using a nominal stress and 

that calculated using a maximum internal axial stress in the cable gave almost the same results. 

The analytical predictions of Raoof (1990) for 16.4 mm diameter strands with 19 wires were 

compared to the predicted results here. Figure 4-26 shows that the predicted mean fatigue life is 

almost the same as that predicted by Raoof, within 2 standard deviations (based on a standard 

deviation from the 19 wire strands tested by Papanikolas of 0.37). Equation 4-10 describes the 

mean predicted regression model: 

9.75 1.76 NLogN LogS                                                                                 (4-10)  

The second 19-wire strand was previously tested by Papanikolas (1995) and it had a 

diameter of 25 mm. The fatigue life for this strand seemed to be longer than for the 19-wire 

strand reflected in Table 4-21. For this strand it was seen that there is some difference between 

the predicted fatigue life using a nominal stress and that derived from using the maximum 

internal axial stress. This difference was attributed to the proximity of the wires to one another, 

such that it may be considered that the wires were not very compressed against each other. 

Raoof’s 19-wire strand had wires that were very much in contact with each other, but 

Papanikolas’ strand displayed some clearance between wires. This separation was very closely 

related to the lay length or lay angle of the wires in the strands. The test results for the 19-wire 

strand tested by Papanikolas (1995) were compared with the fatigue prediction conducted here, 

as shown in Figure 4-27. Although there seems to be a great deal of scatter in the test data 

reported by Papanikolas, these non-compliant results are few to justify a complete statistical 

analysis to make any accurate conclusions. Most of the test results fall within 2 standard 

deviations of a mean predicted S-Nregression line of: 
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19.07 5.60 NLogN LogS                                                                          (4-11) 

Comparing Equations 4-10 and 4-11, there exist a huge difference in slope and intercept values. 

This is again as previously mentioned attributed to the fact that for Raoof’s model the wires were 

in close contact, whereas the Papanikolas strand had wires with large spacing due to lay 

configuration. 

4.3.4 FATIGUE ANALYSIS RESULTS FOR 91/92-WIRE STRANDS 

Two large multilayered strands were analysed using Abaqus/CAE. The first was a 92-

wire strand with a diameter of 39 mm. This strand was initially tested by Hobbs and Ghavami 

(1982) and later reported by Raoof (1990), the geometry of which was described in Chapter 3. 

The stress amplitude and fatigue life defined using a stress based approach was presented in 

Table 4-22; it was observed that there is a difference between the fatigue lives obtained using 

nominal and maximum internal axial stress in the strand. The former is more conservative, thus 

recommended for such situations of greater inter-wire contact. The standard deviation (with a 

value of 0.21) used for the 92 and 91-wire strands were from the statistical analysis of the 

experiment data presented by Papanikolas (1995).The analytical and test results for the 92-wire 

strand presented by Raoof (1990) have been compared to the results of the analysis performed 

here in this research, as reflected in Figure 4-28.  A mean predicted S-N regression line was 

established for the 92-wire strand as: 

9.29 1.54 NLogN LogS                                                                          (4-12) 

The experimental results contained only three results and as such would not permit an 

accurate statistical analysis; but it can be seen that both the experimental results and analytical 

results here tend to fall within the 2 standard deviation lines. 

The multilayered strand of 91 wires tested by Papanikolas (1995) had a diameter of 45 mm, the 

S-N values for which are presented in Table 4-23. The fatigue life calculated using a nominal 

stress again yields a more conservative estimate. Figure 4-29 shows an equivalent experimental 

and predicted fatigue life comparison. It should be noted that for small strands such as a 7-wire 
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strand, as the number of wires are small, the predicted and the experimental results are almost the 

same. The mean fatigue life for the 91-wire strand may be expressed as: 

10.42 2.03 NLogN LogS                                                                              (4-13) 

Again, most of the test data falls within the 2 standard deviation band. From the plots for the 91 

and 92- wire strands, it seems that the fatigue resistance for the 91-wire strand is higher than that 

of the 92-wire strand when a stress correction factor approach is used. But this is most likely due 

to an increased size (diameter) and number of contact points produced by increasing the number 

of wires in a 92-wire strand compared to that of a 91-wire strand. 

4.3.5 FATIGUE ANALYSIS RESULTS FOR 67 WIRE ROPE (IWRC) 

A parametric study was performed to consider the fatigue resistance of 67 wire ropes as 

the stress amplitude was increased. Three sizes of rope investigated had diameters of 12.60, 38.1 

and 70 mm. Table 4-24 presents the results of the stress based approach on 12.6 mm wire rope. 

The S-N behaviour for this wire rope has been represented in Figure 4-30. The 38.1 and 70 mm 

diameter wire ropes yielded S-N data as presented in Tables 4-25 and 4-26, respectively by 

applying a modification for size to the finite element analysis results for the 12.6 mm diameter 

wire rope. It is observed from the tables that, the fatigue life calculated using a nominal stress 

was more conservative, again this is suspected to be because of an increased effect of lay angle 

or the proximity of wires in the cable.  

Experimental data for IWRC and 619 Seale wire ropes were not available, so a 

proposed fatigue life estimate using finite element predicted stresses will be discussed here. For 

IWRC, three sizes were analysed; 12.6, 38.1 and the 70 mm diameter wire ropes. The mean 

regression fatigue life for the 12.6 mm wire ropes is given by Equation 4-14: 

11.37 2.36 NLogN LogS                                                                                      (4-14) 

It is evident that there is a reduction in fatigue life as the diameter reduces as reflective of 

the correction for size effects discussed previously in Chapter 3. 
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4.3.6 FATIGUE ANALYSIS RESULTS FOR 619 SEALE WIRE ROPE 

A parametric study was carried out to investigate the impact of stress amplitude and wire 

rope diameter on 619 Seale wire ropes. The fatigue life of a 33, 49.53 and 70 mm diameter 

wire ropes were investigated in the study. Table 4-27 and Figure 4-31 represent the stress-life 

behaviour of the 33 mm diameter Seale wire rope. Tables 4-28 and 4-29 presented a stress range 

and corresponding fatigue life for 49.53 mm and 70 mm diameter cables.  

The fatigue life of strands and wire ropes not only depend on load or stress range but also 

on the diameter of the cable, when subjected solely to tensile loads. In each case investigated, the 

fatigue life calculated using a nominal stress was seen to be more conservative than the fatigue 

life calculated using a maximum internal axial stress, as previously stated it is mainly because of 

an increased effect of lay angle or the proximity of wires in the cable. 

Figure 4-31 shows the mean predicted S-N regression line for the 33 mm 619 Seale 

wire rope given by: 

12.08 2.64 NLogN LogS                                                                        (4-15) 

4.4 FEYRER FATIGUE LIFE MODEL FOR STRANDS AND WIRE ROPES 

Multiple linear regression analysis was conducted as a parametric study of the fatigue life 

for 7-wire, 19-wire, 91-wire and 92-wire strands, IWRC and the 619 Seale wire rope. The 

regression results may be found in Appendix D, where the variables used for the linear 

regression have previously been described by Feyrer (2007), for strands subjected to tension 

only, Equation 4-20 was suggested (Feyrer, 2007): 

2

0 1 2 3 42 2 2

2
log loga lower lowerS S S

LogN a a a a a d
d d d

 
     

 
                                  (4-16) 

Table 4-30 provides the regression coefficients obtained for each strand and wire rope case using 

predicted fatigue life obtained using the maximum internal axial strain. A general model that 

estimated the fatigue life of strands taking into account the number of wires was also presented 

by Feyrer (2007) as reflected by Equation 4-21: 
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2

0 1 2 3 4 52 2 2

2
log log loga lower lowerS S S

LogN a a a a a d a z
d d d

 
      

 
                   (4-17) 

where, aS  is the force amplitude, lowerS  is the mean force less the force amplitude, d  is the 

strand or wire rope diameter, and z  is the number of wires in the strand. For strands and wire 

ropes that are closely in contact with each other before being put into use, the fatigue life model 

using a nominal stress was shown to be more appropriate and more conservative; so Equation 4-

16 or Equation 4-17 should be used with the regression coefficients shown in Table 4-31. It was 

necessary to present at least a visual comparison between the predictions in the current research 

and the predictions by Feyrer (2007) model; this comparison is not aimed at making definite 

conclusions, since the wire constructions or materials are different for both predictions. The 

2

lowerS d  used for the following plots is zero, the specific force is defined by Feyrer (2007) is 

the force divided by the square of the cable diameter,
 

2S d .The plots of the predictions for 

16 mm IWRC with steel (current research) and a IWRC made up of natural fibre core (Feyrer 

(2007)) is shown in Figure 4-32. A plot of the predicted fatigue life for a 12.5 mm diameter 6

19 Seale wire rope  using Equation 4-16 and the predicted fatigue life for the same diameter 6

19 Warrington wire rope with IWRC using the coefficients proposed by Feyrer (2007) is shown 

in Figures 4-33. Figure 4-34 shows the predicted fatigue life for a 16 mm diameter 619 Seale 

wire rope with different cores (IWRC and natural fibre core (NFC)) using the current research 

prediction and Feyrer’s model , there is very little basis for comparison as mentioned previously, 

since the construction or material of the wire ropes are different, and the current research predicts 

the failure as fracture of the first wire, while Feyrer (2007) defines failure as complete wire rope 

breakage. In all cases compared by visually, the fatigue predictions using both predictions are not 

far apart. This predictions will definitely vary as the 2

lowerS d is varied amongst other factors, 

and as the 2S d is also varied. DNV-OS-E301 providing parameters for the S-N curve to be used 

for tension fatigue of stranded and spiral ropes. A slope of 4.0 and 4.8 is recommended for 

stranded and spiral strands, while and intercept parameter of 
143.4 10 and

171.7 10 , 

respectively. Figures 4-35 and 4-36 show the comparison between the predicted fatigue life in 

the current research and the recommended by DNV-OS-E301 standard for a 7-wire strand and a 

stranded rope, respectively. It can be observed that the recommended fatigue life for using the 
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recommendations from the DNV-OS-E301 is conservative, and this may also be because the 

current research predicts failure as first wire break. 

4.5 DISCUSSION 

Till date predictive models for cables subjected to cyclic tension fatigue is very limited. 

Feyrer (2007) has done a milestone research work in establishing a predictive model and 

regression coefficients for several cables, but the prediction of the fatigue life for some industrial 

type cables, such as, 7 and 19-wire strands, as well as the 67 wire rope and 619 Seale wire 

rope subjected to cyclic tension fatigue  is still pending.  

In this chapter finite element analysis results were presented for six ASTM A416 

prestressing  strands, two 19-wire strands, one 91-wire strand, one 92-wire strand, one 67 wire 

rope and one 619 Seale wire rope subjected to tension. The finite element results essentially 

yield the maximum von Mises stress, which is used to obtain the stress concentration and stress 

correction factors that are required for cyclic tension fatigue predictions for these cables using a 

stress based approach. There was no significant difference observed in the predicted fatigue life 

using the stress concentration or stress correction factor for the 7-wire prestressing strands, this 

can be attributed to the fact that the lay angle or lay length of these strands are substantially small 

(less than 9 degrees), such that it looks like an almost straight wire over the core straight wire. 

Evidently this reduces the contact pressure, but multiple contact points, which may still produce 

high stress concentrations, will exist in such cases because of the reduced lay length.  

It was also noticed that using the short model (1/6
th

 lay length) predominantly resulted in 

boundary effects in these 7-wire strands. This seemed to be because of the reduced contact 

stresses at the internal surfaces (due to reduced lay angle), it may have been possible that the 

stress concentration shifted to the boundaries, although in all cases the maximum difference 

between the maximum von Mises stress at the ends and at the internal surface was about 11%. 

To further investigate the implication of using a short or a long model on the magnitude and 

location of the maximum von Mises stress at different load levels, six long models (length of 

300 mm) were generated for all six 7-wire prestressing strands investigated in the current 

research. Appendix B has the results for the magnitudes and locations of the maximum von 

Mises stress. There is evidently a shift in the location of the maximum von Mises stress from 
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predominantly being at the boundaries to the internal surfaces, but overall the maximum 

difference in magnitude of the maximum von Mises stress was 10%, which yields a maximum 

difference in slope and intercept of 0.24 and 0.57 for the mean regression fatigue life equations 

for the long and short strand models (Refer to Appendix B). 

For the 19, 92, 91-wire strands, the effect of boundary conditions were negligible, as is 

evident in the location of the maximum von Mises stress at all load levels completely shifting to 

the internal surfaces (refer to Appendix B). The stress concentration and the stress correction for 

the 19-wire strand from the work of Raoof (1990) shows no significant difference, this can be 

attributed to the reduced lay angle or reduced lay length as previously observed in the 7-wire 

strands. The difference between the stress concentration and the stress correction can be seen in 

the 19-wire strand from the work of Papanikolas (1995), the 92, and 91-wire strands, as well as 

the 67 wire rope and 619 Seale wire rope, at this point it was conclusive that the lay angle or 

lay length has an effect on the fatigue life of multi-layer cables. It can be concluded that for the 

fatigue life predictions for multi-layer strands or wire ropes, the summation of the lay angle at 

two consecutive layers gives information about the critical layer, with layers with opposite lay 

directions being most critical than layers with same lay directions. The higher the lay angle (or 

lay length) the lower the von Mises stress and the higher the fatigue life.  Rather than looking at 

the contact surface or contact stress in isolation it is best to look at it this way; an increased lay 

angle means an isolated contact surface will have a higher contact stress compared to a lower lay 

angle, but for a lower lay angle the contact surfaces are more and hence can lead to significant 

increase in the overall von Mises stress.  

The predicted fatigue life using the stress based approach was compared with 

independent test programs from different researchers, and the prediction is significantly accurate. 

In all, a complete parametric study was conducted to investigate the effect of stress amplitude, 

and size or diameter of cable on the predicted fatigue life (using the stress based approach) of 

cables subjected to cyclic tension. Using the results of the parametric study, regression 

coefficients were proposed for the Feyrer`s model for 7, 19, 92, and 91-wire strands, 67 wire 

rope and 619 Seale wire rope.  
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Although in the current work it was evident that for the 7-wire strands, the shorter model 

did not adequately capture the realistic location of the maximum von Mises stress, it did give 

representative magnitudes of the von Mises stress. It may be necessary to further investigate the 

effect of length on the stress results for 7-wire strands. There was absolutely scarce information 

on the measured dimensions for wire ropes and measured stresses to further compare with the 

numerical model behaviour.    
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Table 4-1: Effect of load magnitude on nomSCF and int.stressCF for a 6.4 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Maximum 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

8.00 450 8.03 0.001642 1.304 1.370 

10.00 556 9.99 0.002048 1.291 1.359 

12.00 664 11.99 0.002457 1.284 1.351 

14.00 774 14.03 0.002872 1.283 1.348 

16.00 880 15.98 0.003277 1.275 1.342 

18.00 989 18.01 0.003691 1.275 1.340 

20.00 1,098 20.02 0.004104 1.274 1.338 

 

 

 

Table 4-2: Effect of load magnitude on nomSCF and int.stressCF  for a 7.9 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Maximum  

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

Axial 

Wire 

Strain 
nomSCF   

 

int.stressCF   

12.90 479 12.90 0.001747 1.387 1.369 

16.13 588 16.13 0.002181 1.363 1.348 

19.35 700 19.32 0.002613 1.353 1.340 

22.58 813 22.56 0.003052 1.347 1.333 

25.80 925 25.84 0.003492 1.341 1.324 

29.03 1,040 29.04 0.003928 1.335 1.319 

32.25 1,150 32.22 0.004361 1.330 1.315 
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Table 4-3:  Effect of load magnitude on nomSCF and int.stressCF  for a 9.5 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Maximum 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

18.00 476 18.04 0.001681 1.449 1.416 

22.50 579.6 22.52 0.002098 1.412 1.381 

27.00 674.1 26.95 0.002514 1.368 1.341 

31.50 775.2 31.49 0.002935 1.349 1.320 

36.00 883.8 36.04 0.003359 1.345 1.315 

40.50 989.4 40.53 0.003778 1.339 1.310 

45.00 1,093 44.95 0.004195 1.331 1.303 

 

 

 

Table 4-4: Effect of load magnitude on nomSCF and int.stressCF  for an 11.11 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Max.    

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

18.00 373.7 18.17 0.001243 1.447 1.503 

24.00 475.3 23.96 0.001643 1.380 1.446 

30.00 588.9 30.06 0.002057 1.368 1.432 

36.00 690.8 35.95 0.002461 1.338 1.404 

42.00 802.8 42.07 0.002875 1.332 1.396 

48.00 901.1 47.94 0.003281 1.309 1.373 

54.00 1,008 54.05 0.003695 1.301 1.364 

60.00 1,112 59.98 0.004102 1.292 1.356 
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Table 4-5: Effect of load magnitude on nomSCF and int.stressCF  for a 12.7 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Max.   

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

25.10 378.9 25.07 0.001310 1.490 1.446 

33.46 484.3 33.73 0.001755 1.429 1.380 

41.82 592.4 42.09 0.002191 1.398 1.352 

50.19 702.5 50.19 0.002621 1.382 1.340 

58.55 814.6 58.33 0.003049 1.373 1.336 

66.92 926.4 66.66 0.003487 1.367 1.329 

75.28 1,042 75.25 0.003933 1.366 1.325 

83.64 1,158 83.89 0.004380 1.367 1.322 

 

 

 

Table 4-6: Effect of load magnitude on nomSCF and int.stressCF  for a 15.24 mm ASTM A416 

prestressing strand 

Applied 

Load  
(kN) 

Max.    

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

42.67 452.6 42.60 0.001557 1.485 1.454 

53.33 547.3 53.18 0.001945 1.437 1.407 

64.00 640 63.92 0.002337 1.400 1.369 

74.67 737.4 74.77 0.002730 1.383 1.351 

85.33 827.1 85.49 0.003123 1.357 1.324 

96.00 915.1 96.09 0.003512 1.335 1.303 

106.70 1,012 106.70 0.003898 1.328 1.298 

117.30 1,108 117.20 0.004287 1.322 1.292 

128.00 1,205 127.90 0.004677 1.318 1.288 

 



105 

 

Table 4-7: Effect of load magnitude on nomSCF and int.stressCF  for a 19-wire strand by Raoof 

(1990) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

23.42 1,081 23.52 0.000861 7.362 6.281 

46.77 2,015 46.75 0.001686 6.872 5.975 

70.19 3,011 70.13 0.002510 6.842 5.998 

81.90 3,395 81.90 0.002924 6.612 5.806 

 

 

 

Table 4-8: Effect of load magnitude on nomSCF and int.stressCF  for a 19-wire strand by Papanikolas 

(1995) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

45.00 304.3 45.08 0.001235 2.617 1.232 

60.00 407.3 59.89 0.001434 2.627 1.420 

75.00 509.2 74.30 0.001634 2.628 1.558 

90.00 593 90.25 0.001733 2.550 1.711 

105.00 672.6 104.80 0.001770 2.479 1.900 

120.00 791.6 119.70 0.001816 2.553 2.179 

135.00 923.7 134.90 0.001869 2.648 2.471 

150.00 1,048 150.00 0.001934 2.704 2.709 
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Table 4-9: Effect of load magnitude on nomSCF and int.stressCF  for a 39 mm strand (92 wires) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

61.50 2,122 61.54 0.001478 31.60 7.18 

123.00 3,092 123.00 0.002784 23.02 5.55 

184.50 4,179 184.60 0.003986 20.74 5.24 

246.00 5,227 246.00 0.005099 19.46 5.13 

307.50 5,872 307.50 0.006141 17.49 4.78 

369.00 6,962 369.00 0.007173 17.28 4.85 

 

 

 

Table 4-10: Effect of load magnitude on nomSCF and int.stressCF  for a 45 mm strand (91 wires) 

Applied 

Load  
(kN) 

Maximum 

von Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

140.00 2,046 139.40 0.003284 17.35 4.02 

280.00 2,902 279.90 0.004977 12.30 4.77 

420.00 3,430 420.00 0.005847 9.69 4.84 

560.00 4,246 560.00 0.006208 9.00 5.35 

700.00 4,905 700.00 0.006496 8.32 5.60 
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Table 4-11: Effect of load magnitude on nomSCF and int.stressCF  for a 67 wire rope 

(d=12.60 mm) 

Applied 

Load  
(kN) 

Max. von 

Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

10.00 2,035 9.88 0.002978 14.29 3.42 

20.00 3,702 20.01 0.004842 13.00 3.82 

30.00 5,115 30.02 0.006430 11.97 3.98 

40.00 5,950 40.05 0.007845 10.45 3.79 

50.00 6,843 50.01 0.009191 9.61 3.72 

 

 

Table 4-12: Effect of load magnitude on nomSCF and int.stressCF  for a 619 Seale wire rope 

(d=33.02 mm) 

Applied 

Load  
(kN) 

Max. von 

Mises 

stress  
(MPa) 

Reaction 

Force 
(kN) 

 
Axial 

Wire 

Strain 

nomSCF   

 

int.stressCF   

72.00 1,710 72.06 0.003309 11.14 2.58 

144.00 3,253 144.00 0.005327 10.60 3.05 

216.00 4,702 216.00 0.007127 10.21 3.30 

288.00 6,001 288.00 0.008842 9.77 3.39 

360.00 7,934 359.90 0.01050 10.34 3.78 
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Table 4-13: Predicted fatigue results for a 6.4 mm prestressing strand using finite element 

analysis results 

 

 

 

 

Table 4-14: Predicted fatigue results for a 7.9 mm prestressing strand using finite element 

analysis results 

 

 

 

 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
  

8.00 190.24 13,382,450 10,741,060 1.25 

10.00 244.11 4,591,808 3,813,594 1.20 

12.00 300.92 1,825,567 1,575,489 1.16 

14.00 360.91 805,635 723,145 1.11 

16.00 424.35 391,620 361,064 1.08 

18.00 491.57 201,122 191,069 1.05 

20.00 562.9 108,859 106,147 1.03 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

12.90 190.3 10,159,036 10,736,905 0.946 

16.13 244.27 3,757,823 3,907,083 0.962 

19.35 301 1,566,342 1,610,596 0.973 

22.58 361.12 721,543 738,261 0.977 

25.80 424.49 361,158 368,106 0.981 

29.03 500.77 191,366 193,709 0.988 

32.25 574.82 106,277 106,893 0.994 
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Table 4-15: Predicted fatigue results for a 9.5 mm prestressing strand using finite element 

analysis results 

 

 

  

 

Table 4-16: Predicted fatigue results for an 11.11 mm prestressing strand using finite element 

analysis results 

 

 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

18.00 180.33 9,006,909 8,712,970 1.03 

22.50 231.07 3,675,788 3,558,736 1.03 

27.00 284.43 1,728,103 1,675,997 1.03 

31.50 340.61 846,324 827,284 1.02 

36.00 399.85 434,754 428,350 1.02 

40.50 462.39 237,896 235,307 1.01 

45.00 528.92 136,152 135,202 1.01 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

18.00 138.87 23,105,716 19,576,995 1.18 

24.00 189.94 8,141,848 6,846,933 1.19 

30.00 243.71 3,060,591 2,671,340 1.15 

36.00 300.41 1,384,535 1,230,915 1.13 

42.00 360.29 657,814 602,787 1.09 

48.00 423.61 344,714 322,377 1.07 

54.00 490.68 186,644 178,788 1.04 

60.00 561.84 105,608 103,291 1.02 
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 Table 4-17 Predicted fatigue results for a 12.7 mm prestressing strand using finite element 

analysis results (UTS = 1860 MPa) 

 

 

 

 

Table 4-18: Predicted fatigue results for a 12.7 mm prestressing strand using finite element 

analysis results (UTS = 1760 MPa) 

 

 

  

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

25.10 136.58 13,845,274 15,526,880 0.892 

33.46 186.68 5,243,551 5,868,476 0.894 

41.82 239.39 2,250,519 2,462,765 0.914 

50.19 294.98 1,070,158 1,141,643 0.937 

58.55 353.56 551,837 577,575 0.955 

66.92 415.50 304,158 314,738 0.966 

75.28 481 175,991 180,467 0.975 

83.64 550.40 106,306 107,860 0.986 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

25.10 145.8 19,164,691 16,827,198 1.14 

33.46 199.62 6,549,770 5,969,409 1.10 

41.82 256.45 2,548,949 2,357,124 1.08 

50.19 316.61 1,107,331 1,033,111 1.07 

58.55 380.25 525,464 496,621 1.06 

66.92 447.83 268,225 258,059 1.04 

75.28 519.58 144,478 141,490 1.02 

83.64 596 81,598 81,030 1.01 
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Table 4-19: Predicted fatigue results for a 15.24 mm prestressing strand using finite element 

analysis results 

 

 

 

 

 

 

 

 

 

Table 4-20: Predicted fatigue results for a 16.4 mm strand (19 wires) using finite element analysis 

results 

 

 

  

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

42.67 166.15 9,320,223 10,086,682 0.924 

53.33 212.46 4,118,043 4,405,719 0.935 

64.00 260.99 2,005,093 2,129,058 0.942 

74.67 311.88 1,028,088 1,082,636 0.950 

85.33 365.24 569,941 595,330 0.957 

96.00 421.37 329,133 340,167 0.968 

106.70 480.61 194,147 198,397 0.979 

117.30 542.43 118,985 120,548 0.987 

128.00 608.26 74,625 74,945 0.996 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

23.40 76.5 2,176,274 2,654,642 0.820 

46.80 159.3 663,718 747,680 0.888 

70.20 249.9 305,061 329,152 0.927 

81.90 298.4 227,863 242,550 0.939 
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Table 4-21: Predicted fatigue results for a 25 mm strand (19 wires) using finite element analysis 

results 

 

 

 

 

 

 

 

 

Table 4-22: Predicted fatigue results for a 39 mm strand (92 wires) using finite element analysis 

results 

 

  

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

45.00 60.31 28,500,597 1,280,000,000 0.0161 

60.00 81.44 12,885,390 145,643,379 0.0646 

75.00 103.1 6,969,708 38,504,202 0.134 

90.00 125.32 4,476,251 13,613,892 0.251 

105.00 148.12 3,045,707 5,731,768 0.410 

120.00 171.54 1,947,759 2,651,593 0.587 

135.00 195.58 1,299,815 1,453,173 0.721 

150.00 220.28 927,582 925,014 0.773 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

61.50 34.2 1,597,679 7,686,512 0.207 

123.00 69.7 913,954 3,289,745 0.278 

184.50 106.56 573,276 1,633,114 0.351 

246.00 144.88 400,747 947,444 0.423 

307.50 184.74 306,498 640,056 0.479 

369.00 226.22 228,607 430,104 0.532 
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Table 4-23: Predicted fatigue results for a 45 mm strand (91 wires) using finite element analysis 

results 

 

 

 

 

 

 

 

Table 4-24: Predicted fatigue results for a 67 wire rope (d=12.60 mm) using finite element 

analysis results 

 

  

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

140.00 61.21 1,299,499 8,132,474 0.160 

280.00 127.26 609,574 1,411,235 0.432 

420.00 198.73 362,048 581,780 0.622 

560.00 276.32 224,340 288,629 0.777 

700.00 360.87 150,629 171,978 0.876 

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

10.00 74.07 1,280,615 9,503,141 0.135 

20.00 154.36 475,935 1,438,901 0.331 

30.00 241.67 255,855 509,075 0.503 

40.00 336.98 161,967 252,558 0.641 

50.00 441.44 108,005 138,782 0.778 
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Table 4-25: Predicted fatigue results for a 67 wire rope (d=38.1 mm) using finite element 

analysis results 

 

 

 

 

 

 

 

Table 4-26: Predicted fatigue results for a 67 wire rope (d=70 mm) using finite element analysis 

results 

 

  

NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

74.07 1,171,846 7,493,072 0.156 

154.36 447,428 1,247,907 0.359 

241.67 244,745 463,166 0.528 

336.98 156,903 236,661 0.663 

441.44 105,923 133,540 0.793 

NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

74.07 1,118,466 6,636,833 0.169 

154.36 433,161 1,160,093 0.373 

241.67 239,117 441,247 0.542 

336.98 154,318 228,909 0.674 

441.44 104,851 130,933 0.801 



115 

 

Table 4-27: Predicted fatigue results for a 619 wire rope (d=33.02 mm) using finite element 

analysis results 

 

 

 

 

 

 

 

Table 4-28: Predicted fatigue results for a 619 wire rope (d=49.53 mm) using finite element 

analysis results 

 

  

Applied Load  

(kN) 
NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

72.00 80.1 1,312,810 12,563,148 0.105 

144.00 167.5 451,214 1,445,093 0.312 

216.00 263.2 231,466 459,420 0.504 

288.00 368.5 140,059 209,076 0.670 

360.00 484.9 90,961 107,473 0.846 

NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

80.10 1,263,575 11,218,869 0.113 

167.50 439,888 1,357,646 0.324 

263.20 227,505 441,982 0.515 

368.50 138,520 204,209 0.678 

484.90 90,469 107,937 0.838 
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Table 4-29: Predicted fatigue results for a 619 wire rope (d=70 mm) using finite element 

analysis results 

 

 

 

 

 

 

 

Table 4-30: Mean fatigue life prediction regression coefficients using the maximum internal axial 

stress 

 

  

NS    

(MPa) 

nomN   

(Cycles) 

int.stressN  

(Cycles) 

int./nom stressN N
 

80.10 1,227,277 10,305,167 0.119 

167.50 431,445 1,295,326 0.333 

263.20 224,532 429,278 0.523 

368.50 137,358 200,615 0.685 

484.90 90,095 107,050 0.842 

Strand or wire 

rope type 
0a    

 

1a   

 

2a  

 

3a
 4a

 5a
 

7-wire 10.14 -0.99 0.012 1.32E-05 0.211 - 

19-wire -27.32 17.50 0.18 0.00044 5.20 - 

7 &19-wire 3.58 2.73 0.029 3.37E-05 0.80 -1.62 

7,19,91,92-wire  7.42 0.54 0.017 1.78E-05 0.52 -1.05 

IWRC 11.80 -2.65 -0.0021 -1.1E-06 -0.11 - 

619 Seale 13.64 -3.60 -0.0076 -1.3E-05 -0.12 - 
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Table 4-31: Mean fatigue life prediction regression coefficients using the nominal stress 

 

 

Strand or wire 

rope type 
0a    

 

1a   

 

2a  

 

3a
 4a

 5a
 

7-wire 10.00 -0.83 0.013 1.47E-05 0.01 - 

19-wire -6.35 5.75 0.069 0.00016 3.32 - 

7 &19-wire 4.21 2.58 0.027 3.12E-05 0.68 -1.94 

7,19,91,92-wire  5.64 1.48 0.020 1.96E-05 0.50 -1.26 

IWRC 8.38 -1.23 0.00086 1.23E-06 -0.036 - 

619 Seale 8.80 -1.42 -2.5E-06 -7.8E-07 -0.045 - 
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Figure 4-1: von Mises stresses in 6.4 mm ASTM A416 prestressing strand subjected to tensile 

force of 20 kN 

 

 

 

 

 

Figure 4-2: Contact stresses in 6.4 mm ASTM A416 prestressing strand subjected to a tensile 

force of 20 kN (1/6
th

 lay length) 
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Figure 4-3: von Mises stresses in 7.9 mm ASTM A416 prestressing strand subjected to a tensile 

force of 32.25 kN 

 

 

 

 

 

Figure 4-4: von Mises stresses in 9.5 mm ASTM A416 prestressing strand subjected to a tensile 

force of 45 kN 
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Figure 4-5: von Mises stresses in 11.11 mm ASTM A416 prestressing strand subjected to a 

tensile force of 60 kN 

 

 

 

 

 

 

Figure 4-6: von Mises stresses in 12.7 mm ASTM A416 prestressing strand subjected to a tensile 

force of 83.64 kN 
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Figure 4-7: von Mises stresses in 15.24 mm ASTM A416 prestressing strand subjected to a 

tensile force of 128 kN 

 

 

 

 

Figure 4-8: von Mises stress versus applied force for prestressing strands in tension 
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Figure 4-9: von Mises stress versus applied stress for prestressing strands subjected to tension 

 

 

 

 

 

(a) von Mises stresses in 19-wire strand subjected to tension 

Figure 4-10: Stresses in 19-wire strand investigated by Raoof (1990) – Tensile force applied on 

strand of 81.9 kN 
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(b) Diagram of 19-wire strand cross section showing the critical wire 

 

 

 

(c) Close-up of wires showing von Mises stress distribution in the 19-wire strand 

Figure 4-10: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 19-wire strand 

Figure 4-10: (Cont’d) 

 

 

 

 

(a) von Mises stress in 19-wire strand 

Figure 4-11: Stress in 19-wire strand tested by Papanikolas (1995) - Tensile force applied on 

strand of 150 kN 
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(b) Diagram of 19-wire strand cross section showing the critical wire 

 

 

 

(c) Close-up of  wires showing von Mises stress distribution in the 19-wire strand 

Figure 4-11: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 19-wire strand 

Figure 4-11: (Cont’d) 

 

 

 

 

 

Figure 4-12: von Mises stress versus the applied force for 19-wire strand subjected to tension 
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Figure 4-13: von Mises stress versus the applied stress for 19-wire strand subjected to tension 

 

 

 

(a) von Mises stresses in 92-wire strand 

Figure 4-14: Stresses in 92-wire strand subjected to a tensile force of 369 kN 
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(b) Diagram of 92-wire strand cross section showing the critical wire 

 

 

 

(c) Close-up of wires showing von Mises stress distribution in the 92-wire strand 

Figure 4-14: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 92-wire strand 

Figure 4-14: (Cont’d) 

 

 

 

(a) von Mises Stresses in 91-wire strand 

Figure 4-15: Stresses in 91-wire strand subjected to a tensile force of 700 kN 
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(b) Diagram of 91-wire strand cross section showing the critical wire 

 

 

 

 

 

(c): Close-up of wires showing von Mises stress distribution in the 91-wire strand 

Figure 4-15: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 91-wire strand 

Figure 4-15: (Cont’d) 

 

 

 

 

 

(a) von Mises Stresses in 67 wire rope 

Figure 4-16: Stresses in 67 wire rope subjected to a tensile force of 50 kN (d=12.6 mm) 
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(b) Diagram of IWRC cross section showing the critical wire 

 

 

 

 

(c) Close-up of wires showing von Mises stress distribution in the 67 wire rope 

Figure 4-16: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 91-wire strand in the 67 wire 

rope 

Figure 4-16: (Cont’d) 

 

 

 

 

(a) von Mises Stresses in 619 Seale wire rope 

Figure 4-17: Stresses in 619 Seale wire rope subjected to a tensile force of 360 kN 

(d=33.02 mm) 
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(b) Diagram of 619 Seale wire rope cross section showing the critical wire 

 

 

 

 

(c) Close-up of wires showing von Mises stress distribution in the 619 Seale wire rope 

Figure 4-17: (Cont’d) 
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(d) Close-up of wires showing contact stress distribution in the 619 Seale wire rope 

Figure 4-17: (Cont’d) 

 

 

 

Figure 4-18: Fatigue test results and regression lines for single steel wire (Thorpe et al., 1985)  
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Figure 4-19: Fatigue life for 6.4 mm prestressing strand 

 

Figure 4-20: Fatigue life for 7.9 mm prestressing strand 
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Figure 4-21: Comparison with test fatigue life for 9.5 mm prestressing strand 

 

Figure 4-22: Comparison with test fatigue life for 11.11 mm prestressing strand 
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Figure 4-23: Comparison with test fatigue life for 12.7 mm prestressing strand (Grade 250) 

 

Figure 4-24: Comparison with test fatigue life for 12.7 mm prestressing strand (Grade 270) 
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Figure 4-25: Comparison with test fatigue life for 15.24 mm prestressing strand 

 

 

Figure 4-26: Comparison with test fatigue life for 16.4 mm strand (19 wires) 
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Figure 4-27: Comparison with test fatigue life for 25 mm strand (19 wires) 

 

  

Figure 4-28: Comparison with test fatigue life for 39 mm strand (92 wires) 
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Figure 4-29: Comparison with test fatigue life for 45 mm strand (91 wires) 

 

  

Figure 4-30: Fatigue life for IWRC (d=12.60 mm) 
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Figure 4-31: Fatigue life for 619 Seale wire rope (d=33 mm)  

 

 

Figure 4-32: Comparison of predicted fatigue life for 67 ropes made of different cores 
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Figure 4-33: Comparison of predicted fatigue life for 619 Seale with different cores  

 

Figure 4-34: Comparison of predicted fatigue life for 619 Seale and Warrington Seale ropes 
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Figure 4-35: Comparison of predicted fatigue life for 7-wire strand and DNV-OS-E301 spiral 

strand  

  

Figure 4-36: Comparison of predicted fatigue life for 619 Seale and DNV-OS-E301 stranded 

rope  

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

St
re

ss
 r

an
ge

 (M
P

a)

Fatigue Life (Cycles)

Predicted Fatigue life for 6.4 mm diameter 7-wire strand

Predicted Fatigue Life for 6.4 m diameter 7-wire strand- DNV OS E301 spiral rope

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
tr

e
ss

 r
a

n
g

e
 (

M
P

a
)

Fatigue Life (Cycles)

Predicted Fatigue Life for 6 by 19 Seale rope (d=33 mm)

Predicted Fatigue Life for 33 mm diameter stranded rope using DNV OS E301



145 

 

5.1 INTRODUCTION 

The ‘bend over’ sheave behaviour of two types of cables was investigated. A model was 

developed using the finite element method described in Chapter 3. The first strand modeled 

consisted of a 7-wire strand with a diameter of 15.5 mm and nominal cross section area of 

145.55 mm
2
, and the second strand was a 19-wire strand with a diameter of 3.3 mm, and nominal 

cross section are of 6.3 mm
2
. These strands were previously investigated by Costello (1997) and 

Knapp (2004), respectively, and were chosen for comparison due to the availability of 

experimental and/or analytical results. The stresses obtained from the finite element will vary 

based on the angle of wrap of the cables on the sheave based on the work of researchers like  

Muller (1961), who reported an investigation involving several angle of wrap, and from his 

investigation, the fatigue life is reduced for angle of wraps less than 40 degrees, at about 30 

degrees the fatigue life is lowest, but for angle of wrap greater than 40 degrees the fatigue life 

remains almost the same and definitely it will be higher than at lower wrap angles. Scoble (1930) 

also observed a similar behaviour; hence a constant angle of wrap was adopted for this research 

on cables bent over sheaves of 180 degrees, since beyond an angle of wrap of 40 degrees, the 

fatigue life remains constant from their investigation. Also in shovels, elevators, and cranes 

where running cables are used, an angle of wrap greater than 40 degrees will typically be used. 

The maximum von Mises stress is obtained for a configuration when the cable is subjected to 

bending over the sheave as well as simultaneously being subjected to tension, otherwise known 

as tension bending configuration. It is assumed that the maximum von Mises stress obtained in 

such a configuration should give the maximum stress condition if the cables are actually 

subjected to fatigue, although the bending stresses will be very small given that very small part 

of cross section of the cable will be in bending. 

CHAPTER 5 

 

 FINITE ELEMENT AND FATIGUE LIFE RESULTS FOR STRANDS 

BENT OVER SHEAVE 
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5.2 COMPARISON BETWEEN KNAPP TEST AND CURRENT STRESS BASED 

APPROACH PREDICTED FATIGUE LIFE FOR STRAND BENT OVER SHEAVE 

In the previous chapter, a proposed stress based approach was used to predict the fatigue 

life for strands and wire ropes in tension, where this approach was observed to produce 

reasonably good predicted fatigue life when compared to test results. This work is now expanded 

to compare the fatigue life predicted from finite element analysis stresses and a stress based 

fatigue life model, to the test results reported by Knapp (2004) for a strand bent over a sheave.  

The strand tested by Knapp had a diameter of 3.3 mm and was made of 19 wires. The test 

was conducted on a sheave with a diameter D=300 mm and the groove radius was 6.34 mm 

(obtained from CABLECAD User manual). Table 5-1 tabulates stresses obtained from the finite 

element analysis for different load levels. Although the maximum calculated von Mises stress is 

the stress used for the fatigue life prediction, other stresses such as the maximum contact stress 

and the maximum principal stress have also been tabulated for comparison. The von Mises stress 

can be observed to be greater than the contact and maximum principal stresses, indicating that it 

should be a more conservative stress for fatigue life computations. The table also shows the 

nominal stress concentration factor, nomSCF , obtained by dividing the maximum von Mises stress 

by the strand nominal stress (i.e. the reaction force divided by the nominal cross sectional area).  

Figure 5-1(a) shows the strand after it has been bent over a sheave, where the location of 

the maximum von Mises stress can be seen near the top of the sheave, when it was subjected to a 

load of 9.49 kN. In Figure 5-19(b) a cross section of the model shows the location of the wire in 

which the maximum von Mises stress was observed. The point of maximum stress is located 

where the wire is in contact with the sheave groove. Feyrer (2007) based on analytical 

formulations of the bending stresses on a rope, predicted that for wire ropes bent over sheaves 

made of steel, it is possible that the first wire break could shift from the central wire to any of the 

wires that are in direct contact with a sheave groove for stranded ropes. He attributed this 

behaviour to high contact stresses in wires. This is supported by the results of the finite element 

analysis. Figure 5-1(c) shows the maximum von Mises stress where some of the wires are 

removed, showing that the maximum stress was in layer 3 of the strand (a wire in contact with 

the sheave), at the interface between layers 3 and 2.  
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The contact surface is elliptical as was previously observed in strands and wire ropes 

subjected to tension outlined in the previous chapter. Table 5-2 shows the predicted fatigue life 

for different loads, obtained using the stress based approach at different load levels. Figure 5-2 

shows the plot of the fatigue test results generated by Knapp (2004) and the predicted fatigue 

life. The predicted fatigue life for the strand using the stress based approach proposed here shows 

good agreement with the Knapp’s test results.  Figure 5-3 shows the mean predicted S-N 

regression line, where the slope of the mean predicted fatigue relationship is 1.93 and the 

intercept is 10.14. A standard deviation of 0.051 was obtained in the regression analysis for 

Knapp`s test results (Appendix B). The lines located 2 standard deviations from the mean 

regression are also indicated; since the crack initiation life for such strands or wire ropes bent 

over a sheave is expected to be very small compared to the total rope life, there is little 

variability in the test data as also reflected by Knapp’s test.   

5.3 FINITE ELEMENT ANALYSIS RESULTS FOR 7-WIRE STRAND 

5.3.1 EFFECT OF LOAD AMPLITUDE AND DIAMETER OF SHEAVE TO DIAMETER 

OF STRAND RATIO 

The 7-wire strand (Costello, 1997) described in Chapter 3 was used to investigate the 

effect of change in load amplitude and /D d  ratio on the maximum stress and nomSCF . All 

groove sizes analysed were kept constant at a groove radius 0.53r d , since normally this is the 

groove radius used (Feyrer, 2007). For a /D d  ratio of 12, the load was varied from 17.91 kN to 

172.91 kN, these loads are obtained from the reaction force on the sheaves. Table 5-3 shows the 

stresses and stress parameters output required for the calculation of the fatigue life of the 7-wire 

strand. The von Mises stresses are again higher than the contact and maximum principal stresses. 

Figure 5-4 (a) shows the strand bent over a sheave where the maximum von Mises stress for this 

case at a load of 172.91 kN is 7,823 MPa. This maximum stress occurred directly above the 

centre of the sheave, it has been observed in the industries that use running ropes that failures 

have typically occurred in the sections of the rope that runs off and on the sheaves and not in 

lengths of the rope free from contact with the sheaves. Figure 5-4 (b) shows that the location of 

the wire with a maximum von Mises stress occurs where it is in direct contact with the sheave.  

Figure 5-4 (c) shows that the maximum von Mises stress in the critical wire where the wire 
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directly rests on the sheave and specifically at the interface between one of the wires (the layer 

with 6 wires) and the central straight wire. The stress concentration zone exhibited isolated 

elliptical contact patches. These contact patches would eventually form wear scars under fretting 

fatigue loading. Wear scars of the same shape as the contact patches have also been reported by 

Urchegui et al. (2008).  

Table 5-4 shows the results of the analysis for a /D d  ratio of 15, where the load was 

increased from 17.44 kN to 177.19 kN. At the maximum load, the maximum von Mises stress 

was 7,605 MPa, as shown in Figure 5-5 (a).  Again the location of the critically stressed wire is 

exactly the same as indicated by the Costello strand described previously for a /D d  ratio of 12 

above. Figure 5-5 (b) shows a close-up view of the interior of the exterior six wires directly on 

the sheave, where again the generation of elliptical contact patches are observed.  

The maximum load and maximum von Mises stress for a / 20D d   was 90.71 kN and 

4,610 MPa, respectively. Figure 5-6 (a) shows the magnitude and location of the maximum von 

Mises stress, while the other stress parameters are shown in Table 5-5 and the contact patches are 

shown in Figure 5-6 (b).  

For a / 40D d   the stress parameters are shown in Table 5-6, where again the maximum 

von Mises stress of 4,111 MPa at a load of 74.3 kN occurred at the portion of the strand directly 

at the top centre of the sheave as shown in Figure 5-7 (a), commensurate with a single elliptical 

contact patch. The single contact patch is considered due to an increased sheave size, which had 

reduced the stresses in the strand. Basically fretting will be reduced in such cases where the 

sheave is large.  

Finally, for the 7-wire strand, the effect of change in load was investigated for a /D d  

ratio of 60. This ratio would be commensurate with the types of sheave that are typically found 

in cranes, draglines and mining shovels, and are recommended for installations were safety of the 

rope system is a very high priority. Table 5-7 shows the stresses generated as the load was 

increased, and Figure 5-8 (a) shows the magnitude and location of the maximum von Mises 

stress. As seen here, the maximum von Mises stress occurred at the part of the strand directly 

over the top centre of the sheave. Figure 5-8 (b) shows the contact patch formed in the six 

exterior wires that rest over the sheave, again in isolation. In all cases of /D d ratio investigated, 
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the maximum von Mises stress occurred in the layer with six wires and between that layer and 

the central wire. The strand models with /D d  ratios of 20, 40 and 60 exhibited the maximum 

von Mises stress at the wires directly in contact with the sheave as described previously for 

/D d  of 12.  

Figure 5-9 shows the plot of von Mises stress versus the nominal stress for /D d  ratios 

of 12, 15, 20, 40 and 60. The trend here seems to be that as the load increased, the von Mises 

stress in the strands increased linearly. Also, as suggested by researchers such as Feyrer (2007), 

and as can be seen in Figure 5-9, as the /D d  ratio increased, the slope of the von Mises stress 

versus the strand nominal stress decreased. That is, there exist an inverse relationship between 

the von Mises stress and the /D d  ratio. From the same plot, it is evident that an increase in 

/D d  ratio reduced the stress developed in the strands. In fact, in Figure 5-10, the effect of the 

curvature of the strands as they bend over the sheave can be seen. At a /D d  ratio of 60, the 

slope of the von Mises stress versus the product of the /D d  ratio and nominal stress,

(( / ) )nomD d  , is less than 5%. The highest slope at about 12.43% was evident for a /D d  ratio 

of 12. Figure 5-11 shows the plot of nomSCF  versus the / ( / )nomD d E dimensionless 

parameter, established by Costello (1997), where he observed a large decrease in nomSCF  as the 

dimensionless parameter increased in magnitude. Costello (1997) observed that at some point, 

the nomSCF  became asymptotic to a constant nomSCF  value. The same trend was observed here, 

for which the nomSCF  decreased with an increase in the dimensionless parameter prior to 

remaining constant at a nomSCF  range of 5 to 8. Nabijou and Hobbs (1995) investigated the 

relative movements within cables bent over sheave, and it was observed that the location of the 

wire failure was also the position with the highest relative movement (slip) for cables bent over 

sheaves. In the current research information about the relative movements in the wires as they 

bend over sheaves was not requested from the finite element analysis output database, but by 

visually observing the maximum displacements of the wires, it was observed that for all 7-wire 

strands bent over sheave in the current work the location of maximum displacement was within 

the external wires of the 7-wire strand. It was also noticed that the shear stresses were maximum 

in the external wires of the 7-wire strands as it is subjected to combined tension and bending. It 

must be recognised that using the maximum von Mises stress for obtaining the fatigue life 
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implicitly accounts for the normal, tangential and slip behaviours as discussed previously, since 

the von Mises stress is a stress obtained by the combination of all multi-axial stresses acting on 

the cable. Also a fatigue failure is a shear type failure and this is a further justification for the use 

of the von Mises stress for obtaining the fatigue life.    

To investigate the effect of change in strand diameter on fatigue life, two sizes of strand 

at 7.8 and 11.62 mm diameter were used. A /D d  ratio of 12 and 15 were investigated per 

diameter. Tables 5-8 through 5-11 shows the resulting stress parametric studies. For the same 

/D d  ratio either 12 or 15, the von Mises stress was higher for 11.62 mm over 7.8 mm diameter 

strands. This behaviour was previously reported by Feyrer (2007) and other researchers, 

commensurate with an increase in /D d  ratio. 

5.3.2 EFFECT OF GROOVE SIZE ON THE STRESSES IN 7-WIRE STRANDS BENT 

OVER SHEAVE 

  For the 7-wire strands, four groove sizes were investigated, 0.53r d , 0.8r d , 1.0r d  

and a groove size with an infinite radius (a flat groove), all at a constant /D d  ratio of 12. 

Tables 5-12 through 5-14 show the finite element stress results by groove size. To observe the 

impact of the groove geometry as the /D d  was increased, the effect of the groove size for a 

/D d  ratio of 15 was also investigated. For this case the groove sizes investigated were

0.53r d , 0.8r d  and 1.0r d . Tables 5-15 and 5-16 show the stress parameters from the 

finite element analysis for a groove size of 0.8r d  and 1.0r d respectively. The strand 

analysed was kept the same as used by Costello (1997), described in Chapter 3. Figure 5-12 

shows the plot of the von Mises stress versus nominal stress, from which we can observe that the 

stress in the strand bent over a sheave increase with an increase in groove radius. In the case 

where the groove is flat, the stress is highest, but at very high nominal stresses (above 

1,000 MPa) the groove sizes tend to exhibit the same von Mises stress. This means that at very 

high loads the stresses in the strands or wire rope will no longer be a function of the groove 

dimensions. Cables used for steel construction and crane stay ropes typically will have a factor of 

safety of 2.2 and 3.2, respectively (Feyrer, 2007); hence the groove dimensions will be pertinent 

to the stress in the cable and by association to the fatigue life. 
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5.4 FINITE ELEMENT ANALYSIS RESULTS FOR 19-WIRE STRAND 

5.4.1 EFFECT OF LOAD AMPLITUDE, DIAMETER OF SHEAVE TO DIAMETER OF 

STRAND RATIO FOR 19-WIRE STRAND 

The effect of an increase in load and /D d  ratio was investigated using the model tested 

by Knapp (2004), where the dimensions, boundary conditions and loads were previously 

described in Chapter 3. The /D d  ratios investigated were 10, 15, 30, 60 and 90.9. The /D d  

ratio of 90.9 with 1.92r d was discussed early in this chapter, chosen because the fatigue test 

results reported by Knapp (2004) used these dimensions, permitting the fatigue life predicted 

using finite element results to be compared with these earlier fatigue test results. Except for a 

/D d  ratio of 90.9 (predicted fatigue has been presented earlier in this chapter), all other /D d  

ratios investigated in this section had 0.53r d .   

The first /D d  ratio considered here was 10. Figure 5-13 (a) shows a maximum von Mises stress 

of 9,823 MPa at a load of 9.29 kN located as shown at the top centre of the sheave as was the 

case for the 7-wire strand described in section 5.2.1. The location of the critical wire with respect 

to the sheave is effectively the same as for Knapp’s model with a /D d  ratio of 90.9 described 

previously, located in one of the twelve external wires that were directly in contact with the 

sheave. Figure 5-13 (b) shows the wire with the maximum von Mises stress when some of the 

internal wires were removed for clarity; where again the maximum stress location is shown to 

occur in one of the 12 exterior wires that rest directly on the sheave, between layers 3 and 2. 

Table 5-17 shows the changes in all the stress and stress parameters as the load was increased.  

With a /D d  ratio of 15, Figure 5-14 (a) shows that the location of the maximum von 

Mises stress has moved away from the top centre of the sheave, to the left side of the sheave, but 

still very close to the top centre. The value of the von Mises stress here was 8,582 MPa at a load 

of 10.79 kN. Table 5-18 provides the variation in the stress parameters by load. Figure 5-14 (b) 

shows again that the maximum von Mises stress occurs at the 12 exterior wires that rest directly 

on the sheave as described in the Knapp’s model for a /D d  ratio of 90.9. Similarly, for  /D d  

ratios of 30 and 60, the maximum von Mises stress had values of 6,310 MPa and 4,715 MPa 

respectively. Tables 5-19 and 5-20 provide the changes in stress and stress parameters with 

changing load.  
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Figures 5-15 (a) and 5-16 (a) show the location of maximum von Mises stress for /D d  

ratios of 30 and 60, respectively, which as before, occurred at the part of the strand on the top of 

the centre of the sheave. Figures 5-15 (b) and 5-16 (b) show that the contact patches are still 

located on one of the wires in the 12 exterior wires (layer 3) that rest on the sheave, where the 

intensity of the contact patches on the wires in the strands decreased as the /D d  ratio 

increased. For a /D d  ratio of 90.9 and 1.92r d  the stresses were seen to be very high as 

shown earlier in Table 5-1, due to the impact of groove size.  

Figure 5-17 shows the plot of von Mises stress versus nominal stress for Knapp’s model 

at /D d  ratios of 10, 15, 30, 60 and 90.9. It can be seen that as the /D d  ratio and the load 

increased, the von Mises stress in the strands also increased. The effect of using a groove size of 

1.92r d  was seen to endorse the notion that a larger groove size has the tendency to increase 

stress and the stress concentration factor in the cables, and hence reduce the fatigue life of the 

cables. To clearly see the effect of the von Mises stress or nomSCF , Figure 5-18 was plotted. As 

previously noted for the case of the 7-wire strand, in the case of the 19-wire strand at a /D d  

ratio of 60, the rate of increase in the von Mises stress to the ( / ) nomD d   parameter was less 

than 3%, as shown in Figure 5-18. At a /D d  ratio of 10 the rate was almost 19%. So again, for 

cranes, and mining equipment such as shovels, a large /D d  ratio of 60 or higher is 

recommended based on the high stresses observed when smaller /D d  ratio is used. Figure 5-19 

shows the variation of nomSCF  versus ( / ) /nomD d E , where again the same trend was evident 

as observed for the 7-wire strand discussed previously, to which Costello (1997) had observed 

similar trends for large diameter 619 Seale ropes. The nomSCF effectively decreased with an 

increase in the dimensionless parameter, but thereafter remained constant at 2.5 to 3.5.  That is, 

for a very high /D d  ratio, typically greater than 60, the increase in stress or nomSCF  in a strand 

or wire rope becomes very small notwithstanding the load in the cable.   

To investigate the effect of change in the strand diameter on fatigue life, two sizes of 

strand at 4.95 mm and 6.60 mm were used. For each diameter of strand the impact of a change in 

/D d  ratio from 10 and 15 were investigated. Tables 5-21 through 5-24 show the stress 

parameters for these parametric studies, where it was observed that the von Mises stress are 
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higher for 6.60 mm strands compared to 4.95 mm strands. Therefore, this also supports the 

notion that an increase in /D d  decreased the stress in the strands. 

5.4.2 EFFECT OF GROOVE SIZE ON THE STRESSES IN 19-WIRE STRANDS BENT 

OVER SHEAVES 

  Three groove sizes were investigated: 0.53r d , 0.8r d , and 1.0r d  for a constant 

/D d  ratio of 10. Tables 5-25 and 5-26 show the stress results for a finite element analysis for 

groove sizes of 0.8r d  and 1.0r d respectively. Figure 5-20 shows the plot of von Mises 

stress versus nominal stress for the different groove sizes. The stress was observed to be highest 

for 0.53r d  at low loads, and lowest for 1.0r d . But as the load was further increased, the 

reverse was the case, although an overall difference in groove size on stress concentration was 

considered negligible within the range investigated. The reason for this non-typical behaviour 

may be due to the number of wires in a strand or wire rope increasing. For smaller grooves, the 

stresses due to the adjacent wires are more than for cases when the groove is larger (effectively 

separating the adjacent wires), and this shows the importance of using sheaves with very small 

groove radii for equipment using strands or wire rope that will be subjected to very high 

fluctuating loads as may be seen in the present study commensurate with mining shovels. 

Figure 5-20 showed that there is a point where the effect of groove is minimal for the 19-wire 

strand bent over sheave, again this is at higher loads as observed in the 7-wire strands and this 

behaviour will be the same for a particular /D d  ratio and strand or wire rope construction. 

5.5 FATIGUE ANALYSIS RESULTS 

5.5.1 FATIGUE ANALYSIS RESULTS FOR 7-WIRE STRANDS BENT OVER A 

SHEAVE 

The fatigue resistance of the 7-wire strand bent over a sheave was evaluated using finite 

element analysis. The fatigue life and corresponding stress amplitude were shown in Tables 5-27 

through 5-35. Figures 5-21 through 5-29 show the S-N plots and the mean predicted regression 

relationships. The fatigue life was shown to increase with an increase in /D d ratio and a 

decrease in stress amplitude. Tables 5-36 through 5-40 show the effect of an increase in groove 

radius for /D d  ratios of 12 and 15, and Figures 5-30 through 5-34 show the S-N diagrams for 

the effect of groove geometry on the fatigue life. Between the groove sizes of 0.53r d , 
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0.8r d , and 1.0r d  little significant difference was observed in the predicted fatigue life 

especially a higher stress amplitudes or loads, but became more noticeable for the groove size 

r Infinity  such that if the groove geometry is continuously increased the fatigue life may 

potentially be significantly reduced. 

5.5.2 FATIGUE ANALYSIS RESULTS FOR 19-WIRE STRANDS BENT OVER A 

SHEAVE 

The fatigue behaviour of the 19-wire strand bent over a sheave was obtained using the 

finite element and fatigue life analyses for their corresponding stress amplitudes as shown in 

Tables 5-41 through 5-48. Figures 5-35 through 5-42 show the S-N plots and the mean predicted 

regressions. The fatigue life, as previously observed for the 7-wire strand bent over a sheave 

increased with an increase in /D d ratio and decrease in stress amplitude. Tables 5-49 and 5-50 

show the effect of an increase in groove radius for a /D d  ratio of 10. Figures 5-43 and 5-44 

show the S-N diagrams for the effect of groove geometry on fatigue life. Between the groove 

sizes of 0.53r d , 0.8r d , and 1.0r d  little significant difference was observed in the 

predicted fatigue life, especially at higher load levels or stress amplitude. 

5.5.3 FATIGUE REGRESSION MODEL AND COEFFICIENTS FOR 7-WIRE AND 19-

WIRE STRANDS OVER SHEAVES 

Multiple linear regression analysis was carried out for the parameters outlined by Feyrer 

(2007) for cables bent over sheaves. Regression analysis performed in the research reported in 

this thesis only determines the coefficients of the model for 7 and 19-wire strands. Its 

applicability to strands with a greater number of wires should be investigated before using these 

coefficients. The Feyrer’s model given in Equation 5-1: 
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Table 5-51 shows the regression coefficients for Equation 5-1 for 7 and 19-wire strands. An 

additional regression analysis was carried out by combining the results for the 7-wire and the 19-

wire strands. The number of wires in the strand was added to the model as 6 logb z , where the 

coefficients are also indicated in Table 5-51. 

Comparison between the predicted tension bending fatigue life of a 3.3 mm diameter 19-

wire strand in the current research using Equation 5-1 and a 8 19  seale wire rope of the same 

diameter was carried out and the result is shown in Figure 5-45. From the figure it can be seen 

that the predictions from the current research is less conservative but is significantly close 

(bearing in mind that failure is considered as first wire fracture) compared to the predicted 

fatigue life from Feyrer (2007). There is very little basis for comparison since both cables are 

substantially different in type and construction. This only reinforces the notion that when cables 

are subjected to bending over sheaves, cable construction is not of predominating influence on 

the fatigue life compared to parameters such as the /D d  ratio, and the stress amplitude. A 

similarly good comparison was also found when comparing the predicted fatigue life for a 

15.5 mm diameter strand and a 8 19  seale wire rope of the same diameter in tension bending 

fatigue as can be seen in Figure 5-46. Both comparisons had a /D d  ratio of 60. Again the 

cables are different in construction, but the predictions did not seem to suggest any significant 

dependence of the fatigue life on the rope construction or type.  

5.6 DISCUSSION 

In Chapter 4, the fatigue of cables in tension was investigated and comparison between 

the predicted fatigue life and experimentally obtained fatigue life was carried out, but in bending 

of cables over sheaves we have a situation where the cable is subjected to tension bending 

fatigue. So it is necessary to compare the predicted fatigue life obtained using the stress based 

method to fatigue test results for a tension bending scenario. One of the very few test results was 

by Knapp (2004), and it involved the tension bending fatigue test of a 19-wire strand. A model of 

the 19-wire strand was created using finite element analysis where it was subjected to tension 

and bending to simulate the tension bending fatigue load. The stress based approach was used to 

obtain the predicted fatigue life and there was good agreement between the test fatigue life and 

the predicted fatigue life.  
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Using the 19-wire strand by Knapp, and the 7-wire strand by Costello (1997) subjected to 

bending over sheave, a parametric study was carried out. The von Mises stress was observed to 

decrease with increase in /D d ratio, also there exist a direct relationship between the von Mises 

stress and the stress or load amplitude.  

The effect of groove radius and diameter of cable on the stress condition on strands bent 

over sheave was also investigated, and it was observed that an increase in the diameter of strand, 

for both the 7 and 19-wire strands increases the von Mises stress in the strands. For the groove 

sizes investigated, of 0.53r d to 1.0r d  the effect of groove seems very minimal, but for 

groove sizes above this range as in the case of Knapp (2004) model, the von Mises stresses were 

observed to be significantly higher.  

The fatigue life was predicted using the stress based approach from the linear elastic 

stress concentration factor, nomSCF , and using the predicted fatigue life obtained from the 

parametric study, a multiple regression analysis was carried out using the Feyrer (2007) model as 

the basis for the analysis, and hence regression coefficients were proposed for the slightly 

different form of the Feyrer’s model. The predicted fatigue life increases with an increase in 

/D d ratio and decrease in the stress amplitude. Feyrer (2007) and other researchers have 

observed this trend,  Nabijou and Hobbs (1995) also observed and predicted that the fatigue life 

was directly proportional to the /D d ratio, although they confirmed that slip increases with 

increasing lay length to diameter of rope ratio, and decreasing /D d ratio. They observed that the 

highest wire slip correlates well with the experimental locations of wire failure when they are 

subjected to tension bending fatigue. The current research did not obtain relative movements of 

wires, although implicitly the relative movement is accounted for in the use of the maximum von 

Mises stress for obtaining the fatigue life. In all cases investigated, the location of the maximum 

von Mises stress was on the external wires that were in contact with the sheaves. 
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Table 5-1: Effect of strand force on various stress parameters for 19-wire strand, D/d=90.9 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF   

3.27 4,710 4,669 5,352 9.06 

3.97 5,449 5,247 5,123 8.65 

6.12 5,068 4,467 5,453 5.22 

6.61 6,115 5,994 5,334 5.83 

7.90 5,484 5,470 6,105 4.38 

9.01 6,198 6,184 5,755 4.33 

9.49 6,122 6,004 6,609 4.06 

 

 

Table 5-2: Predicted fatigue life for 19-wire strand using finite element analysis results 

(D/d=90.9) 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

3.27 302.57 207,784 

3.97 380.24 143,983 

6.12 659.92 56,238 

6.61 733.82 45,859 

7.90 950.15 25,350 

9.01 1,169.64 16,042 

9.49 1,275.13 12,741 
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Table 5-3: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

17.91 6,235 6,141 4,534 50.66 

68.36 6,774 6,664 5,069 14.42 

118.21 7,281 7,156 5,548 8.97 

172.91 7,823 7,664 5,984 6.59 

 

 

 

 

Table 5-4: Effect of strand force on various stress parameters for 7-wire strand, D/d=15 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

17.44 5,825 5,825 3,433 48.61 

46.84 6,204 6,115 3,793 19.28 

84.64 6,664 6,435 4,233 11.46 

130.04 7,158 6,794 4,340 8.01 

177.19 7,605 7,168 4,597 6.25 
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Table 5-5: Effect of strand force on various stress parameters for 7-wire strand, D/d=20 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

10.21 3,787 3,775 2,572 54.01 

27.01 3,980 3,948 2,959 21.45 

40.91 4,109 4,068 3,141 14.62 

59.31 4,316 4,236 3,385 10.59 

76.11 4,479 4,373 3,462 8.57 

85.71 4,561 4,443 3,567 7.75 

90.71 4,610 4,484 3,639 7.40 

 

 

Table 5-6: Effect of strand force on various stress parameters for 7-wire strand, D/d=40 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

3.33 3,225 3,230 4,316 140.80 

10.70 3,323 3,327 4,386 45.21 

17.75 3,431 3,437 4,496 28.14 

21.60 3,484 3,492 4,588 23.48 

28.20 3,527 3,532 4,641 18.20 

39.10 3,706 3,690 4,946 13.80 

43.25 3,708 3,682 4,908 12.48 

55.05 3,858 3,798 4,994 10.20 

67.90 4,061 3,936 5,144 8.71 

74.30 4,111 3,945 5,215 8.05 
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Table 5-7: Effect of strand force on various stress parameters for 7-wire strand, D/d=60 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

4.91 2,031 2,026 2,050 60.21 

10.74 2,171 2,164 2,048 29.42 

21.13 2,341 2,325 2,204 16.13 

47.68 2,779 2,762 2,584 8.48 

70.63 3,111 3,054 2,993 6.41 

74.53 3,209 3,140 3,121 6.27 

 

 

 

 

 

Table 5-8: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 

(d=7.80 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

3.01 6,230 6,113 3,998 75.35 

14.91 6,687 6,565 4,361 16.32 

27.17 7,160 7,038 4,645 9.59 

40.70 7,687 7,550 5,210 6.87 

54.50 8,246 8,053 6,179 5.51 

68.55 8,857 8,538 6,506 4.70 
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Table 5-9: Effect of strand force on various stress parameters for 7-wire strand, D/d=15 

(d=7.80 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

3.06 5,821 5,778 3,196 69.32 

10.27 6,167 6,131 3,741 21.86 

19.70 6,513 6,478 4,107 12.03 

31.21 6,934 6,887 4,158 8.08 

42.86 7,374 7,273 4,524 6.26 

54.61 7,821 7,682 4,689 5.21 

 

 

 

 

Table 5-10: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 

(d=11.62 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

1.91 6,018 5,908 3,810 258.70 

13.56 6,186 6,077 4,051 37.36 

31.31 6,512 6,413 4,456 17.03 

49.31 6,816 6,715 4,723 11.32 

68.56 7,170 7,070 5,103 8.56 

88.81 7,530 7,421 5,422 6.94 
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Table 5-11: Effect of strand force on various stress parameters for 7-wire strand, D/d=15 

(d=11.62 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

4.32 5,928 5,926 3,489 112.29 

15.05 6,119 6,107 3,661 33.30 

28.15 6,395 6,331 3,871 18.61 

44.00 6,728 6,564 3,980 12.52 

60.35 7,019 6,801 4,120 9.53 

78.40 7,356 7,060 4,352 7.68 

 

 

 

 

Table 5-12: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 (

0.8r d  )  

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

10.73 6,197 6,134 3,604 84.06 

35.38 6,674 6,658 3,811 27.45 

68.58 7,067 7,043 4,001 15.00 

114.58 7,449 7,454 4,461 9.46 

164.98 7,861 7,867 5,474 6.94 

197.18 8,145 8,120 5,714 6.01 

 

  



163 

 

Table 5-13: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 (

1.0r d  ) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

13.67 6,346 6,283 2,767 67.58 

28.65 6,459 6,438 3,442 32.82 

54.95 6,914 6,862 3,362 18.31 

92.40 7,384 7,348 3,895 11.63 

137.15 7,820 7,793 4,455 8.30 

167.95 8,161 8,109 4,826 7.07 

 

 

Table 5-14: Effect of strand force on various stress parameters for 7-wire strand, D/d=12 (

r Infinity  )  

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

6.28 6,046 6,016 5,104 140.03 

16.12 6,373 6,325 5,226 57.53 

29.12 6,925 6,839 5,778 34.61 

47.77 7,248 7,232 7,032 22.08 

72.12 7,644 7,601 6,124 15.43 

90.77 7,804 7,791 6,100 12.51 
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Table 5-15: Effect of strand force on various stress parameters for 7-wire strand, D/d=15 (

0.8r d  ) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

8.39 6,177 6,107 3,605 107.20 

27.14 6,563 6,539 3,707 35.20 

53.89 6,853 6,750 4,127 18.51 

90.49 7,156 7,054 4,364 11.51 

132.64 7,514 7,408 4,361 8.25 

 

 

 

Table 5-16: Effect of strand force on various stress parameters for 7-wire strand, D/d=15 (

1.0r d  )  

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

8.46 6,184 6,145 3,855 106.43 

26.91 6,410 6,347 4,038 34.67 

53.96 6,710 6,583 4,612 18.10 

85.71 7,051 6,944 4,889 11.97 

125.96 7,394 7,261 5,201 8.54 
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Table 5-17: Effect of strand force on various stress parameters for 19-wire strand, D/d=10 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

1.71 7,561 7,468 4,345 27.82 

3.95 8,318 8,190 5,219 13.28 

6.37 9,067 8,893 6,007 8.97 

9.29 9,823 9,632 6,943 6.66 

 

 

 

 

 

Table 5-18: Effect of strand force on various stress parameters for 19-wire strand, D/d=15 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

1.33 4,761 4,177 4,643 22.61 

2.58 5,304 4,800 4,986 12.94 

4.71 6,196 5,626 5,649 8.28 

6.45 6,896 6,129 5,937 6.73 

8.49 7,850 6,702 6,240 5.83 

10.79 8,582 7,187 6,872 5.01 
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Table 5-19: Effect of strand force on various stress parameters for 19-wire strand, D/d=30 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

1.01 3,391 3,147 3,621 21.08 

3.29 4,342 3,692 4,117 8.31 

5.05 4,574 4,781 4,794 5.71 

7.58 5,630 5,400 5,629 4.68 

9.30 6,310 5,838 6,166 4.28 

 

 

 

 

Table 5-20: Effect of strand force on various stress parameters for 19-wire strand, D/d=60 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

3.91 3,148 2,905 3,072 5.07 

4.60 3,503 3,945 3,003 4.80 

6.09 3,727 3,923 3,389 3.86 

7.25 3,894 4,366 3,590 3.39 

8.33 4,226 4,631 3,757 3.20 

9.89 4,715 4,830 4,906 3.00 

10.76 4,819 5,367 6,268 2.82 
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Table 5-21: Effect of strand force on various stress parameters for 19-wire strand, D/d=10 

(d=4.95 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

5.08 8,324 8,202 5,262 23.21 

11.49 9,359 9,239 5,869 11.55 

19.29 10,370 10,180 8,485 7.62 

 

 

 

 

 

Table 5-22: Effect of strand force on various stress parameters for 19-wire strand, D/d=15 

(d=4.95 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

3.57 4,597 4,256 4,387 18.23 

7.57 5,275 4,963 5,025 9.87 

13.75 6,488 5,871 5,629 6.69 
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Table 5-23: Effect of strand force on various stress parameters for 19- wire strand, D/d=10 

(d=6.6 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

6.68 8,047 7,956 4,804 30.36 

15.00 8,981 8,893 5,326 15.08 

24.62 9,796 9,680 11,040 10.03 

 

 

 

 

Table 5-24: Effect of strand force on various stress parameters for 19-wire strand, D/d=15 

(d=6.6 mm) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

4.34 3,888 3,641 4,761 5.65 

10.69 4,833 4,350 5,180 2.85 

16.47 5,224 4,902 6,768 2.00 

24.47 6,061 5,518 5,603 1.56 
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Table 5-25: Effect of strand force on various stress parameters for 19-wire strand, D/d=10 (

0.8r d  ) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

1.67 7,270 7,172 5,941 27.39 

3.50 7,851 7,597 6,900 14.14 

6.04 8,538 8,440 8,232 8.91 

8.69 9,605 9,181 8,555 6.97 

 

 

 

 

Table 5-26: Effect of strand force on various stress parameters for 19-wire strand, D/d=10 (

1.0r d  ) 

Strand 

force 
(kN) 

Max. von 

Mises stress  
(MPa) 

Max. 

principal 

stress 
(MPa) 

Max. 

Contact 

stress 
(MPa) 

nomSCF  

0.732 5,319 4,901 4,248 45.79 

2.22 5,798 5,587 4,546 16.43 

3.90 6,577 6,330 5,535 10.63 

6.25 7,547 7,034 6,402 7.61 

8.80 8,705 7,564 7,648 6.24 
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Table 5-27: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=12) 

 

 

 

 

 

 

Table 5-28: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=15) 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

17.91 63.67 670,916 

68.36 269.21 202,249 

118.21 521.1 83,297 

172.91 877.18 33,924 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

17.44 61.93 705,252 

46.84 176.33 321,199 

84.64 345.33 150,989 

130.04 589.95 68,471 

177.19 909.6 31,418 
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Table 5-29: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=20) 

 

 

 

 

 

Table 5-30: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=40) 

 

 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

27.01 97.69 651,243 

40.91 152.14 448,993 

59.31 229.09 290,481 

76.11 304.74 202,349 

85.71 350.50 166,171 

90.71 375.12 150,174 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

21.60 77.32 827,015 

28.20 102.25 678,335 

39.10 144.89 497,353 

43.25 161.62 450,188 

55.05 210.77 336,834 

67.90 267.11 249,486 

74.30 296.34 217,369 
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Table 5-31: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=60) 

 

 

 

 

 

 

Table 5-32: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=12, d=7.80 mm) 

 

 

 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

21.13 75.57 1,110,089 

47.68 179.8 485,177 

70.63 279.49 268,313 

74.53 297.41 242,436 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

3.01 42.29 872,788 

14.91 230.60 248,641 

27.17 468.42 99,433 

40.70 803.50 39,432 
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Table 5-33: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=15, d=7.80 mm) 

 

 

 

 

 

 

Table 5-34: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=12, d=11.62 mm) 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

3.06 42.97 897,361 

10.27 152.77 381,522 

19.70 317.29 173,931 

31.21 559.16 75,429 

42.86 866.12 33,747 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

1.91 11.71 1,410,867 

13.56 86.70 565,363 

31.31 213.34 265,308 

49.31 359.98 143,327 

68.56 541.89 78,699 

88.81 768.83 43,104 
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Table 5-35: Predicted fatigue results for 7-wire strand using finite element analysis results 

(D/d=15, d=11.62 mm) 

 

 

 

 

 

 

 

 

Table 5-36: Predicted fatigue results for 7-wire strand using finite element analysis results (

15.5 , / 12, 0.8d mm D d r d    ) 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

4.32 26.78 1,060,645 

15.05 96.71 528,143 

28.15 189.57 299,951 

44.00 314.57 170,533 

60.35 460.74 101,149 

78.40 647.00 58,619 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

10.73 37.61 925,079 

35.38 130.14 419,771 

68.58 270.18 204,951 

114.58 500.73 89,317 

164.98 819.02 38,131 
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Table 5-37: Predicted fatigue results for 7-wire strand using finite element analysis results (

15.5 , / 12, 1.0d mm D d r d    ) 

 

 

 

 

 

 

 

Table 5-38: Predicted fatigue results for 7-wire strand using finite element analysis results (

15.5 , / 12,d mm D d r Infinity    ) 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

13.67 48.18 810,257 

28.65 103.97 504,701 

54.95 210.34 269,650 

92.40 383.58 131,277 

137.15 633.29 60,811 

167.95 840.48 36,497 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

6.28 21.84 1,175,732 

16.12 57.11 739,031 

29.12 105.78 482,100 

47.77 180.17 306,769 

72.12 286.30 186,948 

90.77 375.44 133,300 
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Table 5-39: Predicted fatigue results for 7-wire strand using finite element analysis results (

15.5 , / 15, 0.8d mm D d r d    ) 

 

 

 

 

 

 

 

Table 5-40: Predicted fatigue results for 7-wires strand using finite element analysis results (

15.5 , / 15, 1.0d mm D d r d    ) 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

8.39 29.27 1,034,934 

27.14 98.20 521,321 

53.89 205.82 276,511 

90.49 374.03 136,833 

132.64 605.61 65,666 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

8.46 29.52 1,030,662 

26.91 97.32 530,687 

53.96 206.12 278,495 

85.71 350.51 149,627 

125.96 565.73 73,621 
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Table 5-41: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=10) 

 

 

 

 

 

 

Table 5-42: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=15) 

 

 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

1.71 146.71 360,335 

3.95 377.53 130,391 

6.37 696.63 51,823 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

1.33 111.71 561,712 

2.58 230.60 273,793 

4.71 469.36 101,630 

6.45 709.52 49,435 



178 

 

Table 5-43: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=30) 

 

 

 

 

 

Table 5-44: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=60) 

 

 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

1.01 84.16 847,048 

3.29 304.51 213,112 

5.05 511.89 92,590 

7.58 893.47 29,555 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

3.91 373.16 180,680 

4.60 455.45 122,080 

6.09 655.53 56,727 

7.25 836.36 31,229 
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Table 5-45: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=10, d=4.95 mm) 

 

 

 

 

Table 5-46: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=15, d=4.95 mm) 

 

 

 

 

 

 

 

  

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

5.08 198.70 265,291 

11.49 519.61 82,302 

19.29 1079.86 23,749 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

3.57 135.34 491,671 

7.57 312.54 190,606 

13.75 658.55 56,702 
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Table 5-47: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=10, d=6.6 mm) 

 

 

 

 

 

 

Table 5-48: Predicted fatigue results for 19-wire strand using finite element analysis results 

(D/d=15, d=6.6 mm) 

 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

6.68 142.81 358,767 

15.00 355.16 138,359 

24.62 665.02 56,108 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

4.34 90.23 739,201 

10.69 239.74 273,382 

16.47 397.36 136,567 

24.47 659.55 56,480 
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Table 5-49: Predicted fatigue results for 19-wire strand using finite element analysis results (

3.3 , / 10, 0.8d mm D d r d    ) 

 

 

 

 

 

 

Table 5-50: Predicted fatigue results for 19-wire strand using finite element analysis results (

3.3 , / 10, 1.0d mm D d r d    ) 

 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

1.67 143.01 374,289 

3.50 326.84 158,581 

6.04 647.82 58,508 

Strand force 

(kN) 
NS    

(MPa) 

N   

(Cycles) 

0.732 59.99 791,461 

2.22 195.24 312,922 

3.90 372.12 140,826 

6.25 679.11 53,806 
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Table 5-51: Mean fatigue life prediction regression coefficients for strands bent over sheaves 

 

 

 

 

 

 

 

 

 

 

 

 

  

Strand or 

wire rope type 
0b    

 

1b   

 

2b  

 

3b
 4b

 5b
 6b

 

7-wire 13.31 -0.74 -0.28 -0.57 0.087 -11.80 - 

19-wire 18.11 -1.36 -0.051 -2.17 -0.11 -16.19 - 

7 &19-wire 13.29 -0.37 -0.67 -0.023 0.16 -13.42 0.24 
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(a) Knapp model bent over sheave showing location of maximum von Mises stress 

 

 
(b) Diagram of Knapp’s strand cross section on sheave showing the critical  wire 

Figure 5-1: FEA model of strand tested by Knapp (D/d=90.9; strand force = 9.49 kN) 
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(c) Close-up of Knapp model bent over sheave showing location of maximum von Mises stress 

for a strand force of 9.49 kN 

Figure 5-1: (Cont’d) 

 

 

Figure 5-2: Comparison between test results and prediction for 19-wire strand 
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Figure 5-3: Comparison between test results and prediction for 19-wire strand 

 

 

(a) Costello 7-wire strand model showing location of maximum von Mises stress 

Figure 5-4: Costello model for D/d=12 bent over sheave for a strand force of 172.91 kN 

1

10

100

1000

1000 10000 100000 1000000 10000000

St
re

ss
 r

an
ge

 (M
P

a)

Fatigue Life (Cycles)

Test results by Knapp (2004)

Predicted Fatigue Life for 19-wire strand (D/d=90.9)

Mean Predicted S-N Regression Line

2 standard deviations from the mean (Predicted)

10.14 1.93 NLogN LogS 



186 

 

 
(b) Diagram of Costello’s strand cross section on sheave showing the critical wire 

 

 

(c) Close-up of Costello 7-wire strand bent over sheave showing location of maximum von 

Mises stress 

Figure 5-4: (Cont’d) 
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(a)  Costello 7-wire strand model showing location of maximum von Mises stress 

 

 

 

 

(b) Close-up of Costello 7-wire strand bent over sheave showing location of maximum von 

Mises stress 

Figure 5-5: Costello 7-wire strand for D/d=15 bent over sheave for a strand force of 177.19 kN 
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(a)  Costello 7-wire strand model showing location of maximum von Mises stress 

 

 

 

(b) Close-up of Costello 7-wire strand bent over sheave showing location of maximum von 

Mises stress 

Figure 5-6: Costello model for D/d=20 bent over sheave for a strand force of 90.71 kN 
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(a)  Costello 7-wire strand showing location of maximum von Mises stress 

 

 

 

(b) Close-up of Costello 7-wire strand bent over sheave showing location of maximum von 

Mises stress 

Figure 5-7: Costello 7-wire strand for D/d=40 bent over sheave for a strand force of 74.30 kN 
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(a)  Costello 7-wire strand model showing location of maximum von Mises stress 

 

 

 

 

(b) Close-up of Costello 7-wire strand bent over sheave showing location of maximum von 

Mises stress 

Figure 5-8: Costello 7-wire strand for D/d=60 bent over sheave for a strand force of 74.53 kN 
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Figure 5-9: von Mises stress versus strand applied stress for 7-wire strand for various D/d and 

constant sheave radius of 0.53d 

 

Figure 5-10: von Mises stress versus strand dimensional parameter for 7-wire strand for various 

D/d and constant sheave radius of 0.53d 
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Figure 5-11: nomSCF  versus dimensionless parameter for 7-wire strand various D/d and constant 

groove radius 

 

 

Figure 5-12: Effect of groove size for 7-wire strand various D/d and constant groove radius 
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(a)  Knapp 19-wire strand model showing location of maximum von Mises stress 

 

 

 

 

(b) Close-up of Knapp 19-wire strand bent over sheave showing location of maximum von Mises 

stress 

Figure 5-13: Knapp 19-wire strand for D/d=10 bent over sheave for a strand force of 9.29 kN 
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(a)  Knapp 19-wire strand model showing location of maximum von Mises stress 

 

 

 

(b) Close-up of Knapp 19-wire strand bent over sheave showing location of maximum von Mises 

stress 

Figure 5-14: Knapp 19-wire strand for D/d=15 bent over sheave for a strand force of 10.79 kN 
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(a)  Knapp 19-wire strand model showing location of maximum von Mises stress 

 

 

 

(b) Close-up of Knapp 19-wire strand bent over sheave showing location of maximum von Mises 

stress 

Figure 5-15: Knapp 19-wire strand for D/d=30 bent over sheave for a strand force of 9.30 kN 
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 (a)  Knapp 19-wire strand model showing location of maximum von Mises stress 

 

 

 

 

(b) Close-up of Knapp 19-wire strand bent over sheave showing location of maximum von Mises 

stress 

Figure 5-16: Knapp 19-wire strand for D/d=60 bent over sheave for a strand force of 9.89 kN 
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Figure 5-17: von Mises stress versus strand stress for 19-wire strand for various D/d and 

constant groove radius 

 

 

Figure 5-18: von Mises stress versus stress parameter for 19-wire strand for various D/d and 

constant groove radius 
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Figure 5-19: nomSCF  versus dimensionless parameter for 19-wire strand for various D/d and 

constant groove radius 

 

Figure 5-20: Effect of groove size for 19-wire strand for various D/d and constant groove radius 
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Figure 5-21: Fatigue life for 7-wire strand bent over sheave with D/d=12 

 

 

Figure 5-22: Fatigue life for 7-wire strand bent over sheave with D/d=15 
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Figure 5-23: Fatigue life for 7-wire strand bent over sheave with D/d=20 

 

  

Figure 5-24: Fatigue life for 7-wire strand bent over sheave with D/d=40 
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Figure 5-25: Fatigue life for 7-wire strand bent over sheave with D/d=60 

 

  

Figure 5-26: Fatigue life for 7-wire strand bent over sheave with d=7.8 mm, D/d=12 
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Figure 5-27: Fatigue life for 7-wire strand bent over sheave with d=7.8 mm, D/d=15 

  

Figure 5-28: Fatigue life for 7-wire strand bent over sheave with d=11.62 mm, D/d=12 
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Figure 5-29: Fatigue life for 7-wire strand bent over sheave with d=11.62 mm, D/d=15 

 

Figure 5-30: Fatigue life for 7-wire strand bent over sheave with D/d=12, r=0.8d 
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Figure 5-31: Fatigue life for 7-wire strand bent over sheave with D/d=12, r=1.0d 

 

 

Figure 5-32: Fatigue life for 7-wire strand bent over sheave with D/d=12, r=Infinity 
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Figure 5-33: Fatigue life for 7-wire strand bent over sheave with D/d=15, r=0.8d 

 

 

Figure 5-34: Fatigue life for 7-wire strand bent over sheave with D/d=15, r=1.0d 
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Figure 5-35: Fatigue life for 19-wire strand bent over sheave with D/d=10 

 

 

Figure 5-36: Fatigue life for 19-wire strand bent over sheave with D/d=15 

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
tr

e
ss

 a
m

p
li

tu
d

e
 (

M
P

a
)

Fatigue Life (Cycles)

Predicted Fatigue Life for 19-wire strand (D/d=10)

Mean Predicted S-N Regression Line

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
tr

e
ss

 a
m

p
li

tu
d

e
 (

M
P

a
)

Fatigue Life (Cycles)

Predicted Fatigue Life for 19-wire strand (D/d=15)

Mean Predicted S-N Regression Line

8.24 1.23 NLogN LogS    

8.47 1.31 NLogN LogS    



207 

 

 

Figure 5-37: Fatigue life for 19-wire strand bent over sheave with D/d=30 

 

 

Figure 5-38: Fatigue life for 19-wire strand bent over sheave with D/d=60 
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Figure 5-39: Fatigue life for 19-wire strand bent over sheave with d=4.95 mm, D/d=10 

 

Figure 5-40: Fatigue life for 19-wire strand bent over sheave with d=4.95 mm, D/d=15 
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Figure 5-41: Fatigue life for 19-wire strand bent over sheave with d=6.6 mm, D/d=10 

 

Figure 5-42: Fatigue life for 19-wire strand bent over sheave with d=6.6 mm, D/d=15 

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
tr

e
ss

 a
m

p
li

tu
d

e
 (

M
P

a
)

Fatigue Life (Cycles)

Predicted Fatigue Life for 19-wire strand (d=6.6 mm, D/d=10)

Mean Predicted S-N Regression Line 

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

S
tr

e
ss

 a
m

p
li

tu
d

e
 (

M
P

a
)

Fatigue Life (Cycles)

Predicted Fatigue Life for 19-wire strand (d=4.95 mm, D/d=15)

Mean Predicted S-N Regression Line 

8.15 1.20 NLogN LogS    

8.40 1.27 NLogN LogS    



210 

 

 

Figure 5-43: Fatigue life for 19-wire strand bent over sheave with D/d=10, r=0.8d 

 

 

Figure 5-44: Fatigue life for 19-wire strand bent over sheave with D/d=10, r=1.0d 
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Figure 5-45: Comparison of predicted fatigue life to Feyrer (2007) prediction 

  

Figure 5-46: Comparison of predicted fatigue life to Feyrer (2007) prediction  
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6.1 SUMMARY 

Fatigue of cables (strands and wire ropes) has been extensively investigated as reflected 

by the literature review in Chapter 2, however little progress into the prediction of the fatigue life 

has been achieved. The principal research to date in predicting the fatigue life of cables was 

performed by Feyrer (2007), who developed fatigue models for predicting the life of cables in 

cyclic tension, and cables bent over sheaves. The coefficients of regression for strands in cyclic 

tension presented by Feyrer were not however exhaustive, with 7 and 19-wire strand coefficients 

including bending over sheave fatigue behaviour remaining yet to be investigated. The cyclic 

tension fatigue behaviour of IWRC or 619 Seale wire rope with IWRC, representing 

fundamental wire rope categories for larger size wire ropes, representing two categories in high 

industrial use mining and hoisting equipment, had also not been investigated. Limited research 

was identified focusing on investigating or accounting for parameters such as lay length, and 

groove size related to fatigue resistance of cables in cyclic tension and bending over sheaves.  It 

is these deficiencies in the knowledge base of cable behaviour that was targeted as the focus of 

this research thesis. 

A total of 213 finite element analyses were conducted here to obtain elastic stresses for 

selected cables. The stress based approach applied to the resulting parameters was similar to that 

previously used by Knapp (2004) and Raoof (1990), accounting for the different methodologies 

that Knapp and Raoof had previously adopted to predict fatigue life as stress based approaches.  

This research proposed two means of estimating fatigue life that accounts for the effect of 

lay length and/or proximity of wires to each other. The first approach uses a stress concentration 

factor, while the second approach uses a stress correction factor, applied to cables subjected to 

tension. As a consequence of the extent of modeling performed here, this thesis also substantially 

increases the database of knowledge on parameters that affect the fatigue life of cables, such as d

, /D d , stress range, and groove size.   

CHAPTER 6 

 

 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
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6.2 CONCLUSIONS 

Six ASTM A416 prestressing strands were numerically analysed in tension to estimate 

their fatigue life. The strands of different diameters were analysed at different load levels, such 

that it was observed that within the range of lay length investigated, the lay length had a 

negligible influence on the fatigue life for 7-wire ASTM prestressing strands, it was surmised 

that this was because the lay angle or lay length of these strands are substantially small (less than 

9 degrees), that it looks like an almost straight wire over the core straight wire. The reduced lay 

angle reduces the contact pressure, but multiple contact points, which may still produce high 

stress concentrations will exist in such cases because of the reduced lay length. Conversely, for 

19, 91, 92-wire strands, the 67 wire rope and 619 Seale wire rope in tension, the lay length 

had an appreciable influence on fatigue life. It was observed that for fatigue life predictions for 

multi-layer strands or wire ropes, the most critical layer can be known from the summation of the 

lay angle at two consecutive layers, with layers with opposite lay directions being most critical 

than layers with same lay directions. The higher the values obtained from the summation of lay 

angles in two contacting layers (or lay lengths) the lower the von Mises stress and the higher the 

fatigue life.  The increased lay angle yielded higher isolated stresses, but when the reduced lay 

angle yielded lower point contact stresses, but more contact points along the length of the cable 

effectively yielding a more critically stressed configuration and reduced fatigue life.  Similarly, 

the lay length was shown to be insignificant for 7- and 19-wire strands bent over sheaves, shown 

with good prediction and correlation, when the nominal stress concentration was used to 

compute the fatigue life for strands previously tested and reported by Knapp (2004). Stress 

amplitude was shown to have a significant effect on the fatigue life for 19, 91, and 92-wire 

strands, IWRC and the 619 Seale wire ropes subjected to tension.  

Two approaches to obtain the fatigue life of cables were proposed. The first approach 

uses the nomSCF  parameter obtained using the nominal stress, while the second approach uses the 

int.stressCF  parameter obtained using the maximum internal axial stress. It was consequently 

shown that if an initial contact between wires that make up a strand or wire rope; related to lay 

length; is expected, then the estimate of fatigue life using either approach yields a similar result. 

However in all cases the fatigue life obtained using the nomSCF  is invariably more conservative. 
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Simultaneously, it was also observed that the length of a sample is insignificant in obtaining 

stresses in strands or wire ropes in tension. 

In bending over sheaves, the effect of the /D d  ratio exhibited the most significant 

impact on fatigue life estimate. The fatigue life was observed to increase with increase the /D d  

ratio. The stress amplitude had less of an effect on fatigue life, while still remaining a significant 

consideration and the fatigue life was observed to decrease with increase in the stress amplitude. 

The effect of groove size was shown to be essentially negligible within the range investigated, 

but as groove radius increased the induced stresses in strands increased, effectively reducing the 

fatigue life. As such, as the groove radius approaches a radius of infinity stresses become higher 

as also reflected by both Knapp’s model with /D d  ratio of 90.9 and 1.92r d  and by 

Costello’s model with /D d  ratio of 12 and r Infinity (representing a flat groove). From the 

statistical analyses performed, it is evident that fatigue lives of strands bent over sheaves, 

extended to also imply wire ropes, are not strongly dependent on lay length.  

In progressing the application of Feyrer (2007) model, the following coefficients were 

clarified to permit mean predicted fatigue regression relationships for strands and wire ropes in 

tension, via using either the nominal stress or the maximum internal stress as reflected by 

Equations 4-20 and 4-21: 
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Table 4-30: Mean fatigue life prediction regression coefficients using the maximum internal axial 

stress 

 

 

 

 

 

 

 

Table 4-31: Mean fatigue life prediction regression coefficients using the nominal stress 

 

 

 

 

 

 

 

 

 

Similarly, for strands in bending over sheaves to fatigue, the following coefficients were 

discerned to be used with Equation 5-1: 

  

Strand or wire 

rope type 
0a    

 

1a   

 

2a  

 

3a
 4a

 5a
 

7-wire 10.14 -0.99 0.012 1.32E-05 0.211 - 

19-wire -27.32 17.50 0.18 0.00044 5.20 - 

7 &19-wire 3.58 2.73 0.029 3.37E-05 0.80 -1.62 

7,19,91,92-wire  7.42 0.54 0.017 1.78E-05 0.52 -1.05 

IWRC 11.80 -2.65 -0.0021 -1.1E-06 -0.11 - 

619 Seale 13.64 -3.60 -0.0076 -1.3E-05 -0.12 - 

Strand or wire 

rope type 
0a    

 

1a   

 

2a  

 

3a
 4a

 5a
 

7-wire 10.00 -0.83 0.013 1.47E-05 0.01 - 

19-wire -6.35 5.75 0.069 0.00016 3.32 - 

7 &19-wire 4.21 2.58 0.027 3.12E-05 0.68 -1.94 

7,19,91,92-wire  5.64 1.48 0.020 1.96E-05 0.50 -1.26 

IWRC 8.38 -1.23 0.00086 1.23E-06 -0.036 - 

619 Seale 8.80 -1.42 -2.5E-06 -7.8E-07 -0.045 - 
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Table 5-51: Mean fatigue life prediction regression coefficients for strands bent over sheaves 

 

6.3 RECOMMENDATIONS  

Design recommendations and recommendations for future work will be discussed in this 

section. 

6.3.1 DESIGN RECOMMENDATIONS 

The fatigue life of 7-wire ASTM prestressing strands, 19, 91, and 92-wire strands or 

IWRC and 619 Seale wire rope and any other wire rope may be modeled in Abaqus/CAE. The 

results from such analyses may be then used to predict such strands’ and ropes’, cyclic tension 

and bending over sheaves, fatigue life via a stress based approach developed here. Confidence in 

this procedure has been built through this research thesis, where such predictions have been 

shown with good correlation to independently documented experimental tests on strands and 

wire ropes from other earlier research.  

The mean predicted regression relationships as described by Equations 4-20 and 4-21, 

and their corresponding coefficients reported in Tables 4-30 and 4-31 to 2 standard deviations 

may reliably be used to predict fatigue resistance of strands ranging from 7 to 92 wires in 

tension, and for IWRC or 619 Seale wire ropes in cyclic tension. The coefficients identified 

and quantified here are a function of the level of accuracy desired by the user, reflected in the 

regression analysis of Appendix C. 

The mean predicted regression relationship described by Equation 5-1, with 

corresponding coefficients given in Table 5-51 to 2 standard deviations, should be used for 

predicting the fatigue life of 7 and 19-wire strands bent over sheaves; however, the applicability 

of the model and its coefficients beyond 19-wire strands should be further investigated before 

such an extrapolation should be employed. 

Strand or 

wire rope type 
0b    

 

1b   

 

2b  

 

3b
 4b

 5b
 6b

 

7-wire 13.31 -0.74 -0.28 -0.57 0.087 -11.80 - 

19-wire 18.11 -1.36 -0.051 -2.17 -0.11 -16.19 - 

7 &19-wire 13.29 -0.37 -0.67 -0.023 0.16 -13.42 0.24 
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From the analysis of various /D d ratios for strands subjected to bending over sheave 

fatigue, it is recommended that the higher /D d ratios, typically over 60 are recommended for 

high risk structures. The effect of groove geometry within the range 0.53r d  to 1.00r d  

show little variance in fatigue behaviour, but for groove geometries beyond this range a thorough 

investigation should be conducted, as there exists the potential for a significant reduction in 

fatigue life due to increased contact stress. 

6.3.2 RECOMMENDATIONS FOR FUTURE WORK 

Many questions are yet to be answered beyond this work, which creates significant scope for 

future research study.  Such considerations might include: 

 

1. Mining shovel, dragline and crane cyclic loads as experienced in the field are highly 

variable. These are dependent on a complex set of inter-related external factors such as 

the geology associated with an excavation medium, excavation ground moisture content, 

weather conditions, face release (exhibited as a sudden release of energy in the hoist 

ropes as a shovel dipper or dragline bucket is released from the excavation face post 

digging trajectory) and operator skill. An investigation of an acceptable simplification of 

such cyclic loading activity to a more model manageable equivalent constant amplitude 

loading, generating similar damage, prior to input into a fatigue prediction model needs 

further investigation and verification. 

 

2. As most heavy equipment employing tensile hoisting functions are designed with more 

than one sheave commensurate with multiple hoist ropes that may or may not be 

synchronous, the application of the fatigue models outlined in this work for bending over 

sheaves needs both implication consideration and further investigation that may 

undoubtedly lead to a more complex expansive fatigue modelling approach. 

 

3. Although this work did add to the parameter knowledge base improving the scope of 

predictive models; many other strand and rope configurations specific to other industrial 

application remain unaccounted for in fatigue prediction analysis.  The principles of 
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analysis outlined here should be extended to include additional widely used strand and 

rope configurations. 

 

4. The research outlined in this thesis solely considered the “dry” strand and rope 

condition.  In actual practice, lubrication plays a huge role from friction reduction and 

cooling actions to acting as a medium within which abrasive dusts and particles may be 

moved away from the contact surfaces.  Both the consideration of the inclusion of 

contaminant particles of mismatched hardness of such particles to the steel wires raises 

implications of abrasion and corrosion which should be considered.  The effect of 

lubrication on the fatigue life of cables within the context of industrial application raises 

a huge research area as yet barely tapped; although Feyrer (2007) presented basic 

modifications for fatigue models to account for simple lubrication. 

 

5. Consideration of probability and consequence of failure leads to the notion of fatigue 

prediction via stochastic models rather than deterministic models. Such considerations 

would lead predictive modeling to establish the level of risk as a function of fatigue.  

This area of research calls for a greater consideration of qualitative parameters, that 

generate quantitative equivalency questions related to capturing magnitude and impact 

knowledge associated with application circumstance.  Such thoughts are essentially 

foreign in a structural analysis world and give rise to the considerations of the value of 

such knowledge in the overall analysis. 

 

It is evident that the scope surrounding this research is far reaching, but generates the 

potential for a large array of future direction.  It is hoped that the knowledge additions associated 

with this work will create the opportunity for further work of a both expansive and novel nature 

to continue in this research area. 
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Appendix A 

PARAMETRIC EQUATIONS FOR 619 SEALE WIRE ROPE 
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PARAMETRIC EQUATIONS FOR 619 SEALE WIRE ROPE 

This appendix contains the parametric equations used to create a model of the 619 

Seale wire rope. The dimensions of each of the ropes were discussed in Chapter 3. The general 

forms of these parametric equations were originally reported by Feyrer (2007) and Erdonmez 

and Imrak (2011): 

The coordinates of the centreline of a single helix wire are given by: 

cossh sh shX r    

sinsh sh shY r    

tan( )sh sh sh shZ r     

where shr  is the radius of a single helix strand, sh  is the single helix lay angle, and 0sh sh   

, and 0sh  is the single helix phase angle, where   is the free angle rotated about the rope axis. 

The coordinates of the centreline of a double wire in a wire rope are given by: 

cos cos sin sin sindh sh dh dh sh dh dh sh shX X r r         

cos sin sin cos sindh sh dh dh sh dh dh sh shY Y r r        

 sin cosdh sh dh dh shZ Z r      

where 0dh dh shm    ,  

/ ( tan cos )sh dh dh shm r r   ,  

dhr  is the double helix radius representing the distance along the double helix wire centreline for 

the single helix strand centreline. 

and 0dh  is the double helix wire phase angle.   
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6  19 Seale wire rope (33 mm) coordinates 

Strand 1 wire radius = 0.735 mm 

H11.        

shX   1.536*cos(t) 

            
shY  1.536*sin(t) 

            
shZ  5.255*t 

H12.         

shX  1.536*cos(t+1.0476) 

            
shY  1.536*sin(t+1.0476) 

            
shZ  5.255*t 

H13.         

shX  1.536*cos(t+2.0952) 

            
shY  1.536*sin(t+2.0952) 

            
shZ  5.255*t 

H14.         

shX  1.536*cos(t+3.1429) 

            
shY  1.536*sin(t+3.1429) 

            
shZ  5.255*t 

 

H15.         
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shX  1.536*cos(t+4.1905) 

            
shY  1.536*sin(t+4.1905) 

            
shZ  5.255*t 

H16.         

shX  1.536*cos(t+5.2381) 

            
shY  1.536*sin(t+5.2381) 

            
shZ  5.255*t 
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Strand 2 Single helix, wire radius = 0.704 mm 

H20.        

 
shX  4.287*cos(t) 

                
shY  4.287*sin(t)  

                
shZ  12.331*t  

 

Strand 2 Double helix, wire radius = 0.656 mm 

H21.       

dhX   4.287*cos(t)+1.360*cos(1.5087*t)*cos(t)-1.360*sin(1.5087*t)*sin(t)*sin(1.2362) 

               
dhY  4.287*sin(t)+1.360*cos(1.5087*t)*sin(t)+1.360*sin(1.5087*t)*cos(t)*sin(1.2362) 

               
dhZ  12.331*t-1.360*sin(1.5087*t)*cos(1.2362) 

H22 

dhX  4.287*cos(t)+1.360*cos(1.5087*t+1.0476)*cos(t)-1.360*sin(1.5087*t+1.0476)*sin(t)*sin(1.2362) 

dhY  4.287*sin(t)+1.360*cos(1.5087*t+1.0476)*sin(t)+1.360*sin(1.5087*t+1.0476)*cos(t)*sin(1.2362) 

dhZ  12.331*t-1.360*sin(1.5087*t+1.0476)*cos(1.2362) 

H23 

dhX  4.287*cos(t)+1.360*cos(1.5087*t+2.0952)*cos(t)-1.360*sin(1.5087*t+2.0952)*sin(t)*sin(1.2362) 

dhY  4.287*sin(t)+1.360*cos(1.5087*t+2.0952)*sin(t)+1.360*sin(1.5087*t+2.0952)*cos(t)*sin(1.2362) 

dhZ  12.331*t-1.360*sin(1.5087*t+2.0952)*cos(1.2362) 
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H24 

dhX  4.287*cos(t)+1.360*cos(1.5087*t+3.1429)*cos(t)-1.360*sin(1.5087*t+3.1429)*sin(t)*sin(1.2362) 

dhY  4.287*sin(t)+1.360*cos(1.5087*t+3.1429)*sin(t)+1.360*sin(1.5087*t+3.1429)*cos(t)*sin(1.2362) 

dhZ  12.331*t-1.360*sin(1.5087*t+3.1429)*cos(1.2362) 

H25 

dhX  4.287*cos(t)+1.360*cos(1.5087*t+4.1905)*cos(t)-1.360*sin(1.5087*t+4.1905)*sin(t)*sin(1.2362) 

dhY  4.287*sin(t)+1.360*cos(1.5087*t+4.1905)*sin(t)+1.360*sin(1.5087*t+4.1905)*cos(t)*sin(1.2362) 

dhZ  12.331*t-1.360*sin(1.5087*t+4.1905)*cos(1.2362) 

H26 

dhX  4.287*cos(t)+1.360*cos(1.5087*t+5.2381)*cos(t)-1.360*sin(1.5087*t+5.2381)*sin(t)*sin(1.2362) 

dhY  4.287*sin(t)+1.360*cos(1.5087*t+5.2381)*sin(t)+1.360*sin(1.5087*t+5.2381)*cos(t)*sin(1.2362) 

dhZ  12.331*t-1.360*sin(1.5087*t+5.2381)*cos(1.2362) 

 

Strand 3 Single helix, wire radius = 1.456 mm 

H30.         

shX  -11.413*cos(t) 

                
shY  11.413*sin(t) 

                
shZ  31.72*t 
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Stand 3 Double helix, wire radius = 0.712 mm 

H31.   

  
dhX  -(11.413*cos(t)+2.168*cos(-3.3855*t+0.3492)*cos(t)-2.168*sin(-3.3855*t+0.3492)*sin(t)*sin(1.2259)) 

  
dhY  11.413*sin(t)+2.168*cos(-3.3855*t+0.3492)*sin(t)+2.168*sin(-3.3855*t+0.3492)*cos(t)*sin(1.2259) 

  
dhZ  31.72*t-2.168*sin(-3.3855*t+0.3492)*cos(1.2259) 

H32 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+1.0476)*cos(t)-2.168*sin(-3.3855*t+1.0476)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+1.0476)*sin(t)+2.168*sin(-3.3855*t+1.0476)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+1.0476)*cos(1.2259) 

H33 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+1.7460)*cos(t)-2.168*sin(-3.3855*t+1.7460)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+1.7460)*sin(t)+2.168*sin(-3.3855*t+1.7460)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+1.7460)*cos(1.2259) 

H34 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+2.4444)*cos(t)-2.168*sin(-3.3855*t+2.4444)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+2.4444)*sin(t)+2.168*sin(-3.3855*t+2.4444)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+2.4444)*cos(1.2259) 
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H35 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+3.1429)*cos(t)-2.168*sin(-3.3855*t+3.1429)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+3.1429)*sin(t)+2.168*sin(-3.3855*t+3.1429)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+3.1429)*cos(1.2259) 

H36 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+3.8413)*cos(t)-2.168*sin(-3.3855*t+3.8413)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+3.8413)*sin(t)+2.168*sin(-3.3855*t+3.8413)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+3.8413)*cos(1.2259) 

H37 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+4.5397)*cos(t)-2.168*sin(-3.3855*t+4.5397)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+4.5397)*sin(t)+2.168*sin(-3.3855*t+4.5397)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+4.5397)*cos(1.2259) 

H38 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+5.2381)*cos(t)-2.168*sin(-3.3855*t+5.2381)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+5.2381)*sin(t)+2.168*sin(-3.3855*t+5.2381)*cos(t)*sin(1.2259) 

dhZ  31.72*t-2.168*sin(-3.3855*t+5.2381)*cos(1.2259) 

H39 

dhX  - (11.413*cos(t)+2.168*cos(-3.3855*t+5.9365)*cos(t)-2.168*sin(-3.3855*t+5.9365)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+2.168*cos(-3.3855*t+5.9365)*sin(t)+2.168*sin(-3.3855*t+5.9365)*cos(t)*sin(1.2259) 
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dhZ  31.72*t-2.168*sin(-3.3855*t+5.9365)*cos(1.2259) 

Strand 3 Double helix, wire radius = 1.243 mm 

H41 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t)*cos(t)- 3.867*sin(-3.3855*t)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t)*sin(t)+ 3.867*sin(-3.3855*t)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t)*cos(1.2259) 

H42 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+0.6984)*cos(t)- 3.867*sin(-3.3855*t+0.6984)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+0.6984)*sin(t)+ 3.867*sin(-3.3855*t+0.6984)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+0.6984)*cos(1.2259) 

H43 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+1.3968)*cos(t)- 3.867*sin(-3.3855*t+1.3968)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+1.3968)*sin(t)+ 3.867*sin(-3.3855*t+1.3968)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+1.3968)*cos(1.2259) 

H44 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+2.0952)*cos(t)- 3.867*sin(-3.3855*t+2.0952)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+2.0952)*sin(t)+ 3.867*sin(-3.3855*t+2.0952)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+2.0952)*cos(1.2259) 

H45 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+2.7937)*cos(t)- 3.867*sin(-3.3855*t+2.7937)*sin(t)*sin(1.2259)) 
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dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+2.7937)*sin(t)+ 3.867*sin(-3.3855*t+2.7937)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+2.7937)*cos(1.2259) 

H46 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+3.4921)*cos(t)- 3.867*sin(-3.3855*t+3.4921)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+3.4921)*sin(t)+ 3.867*sin(-3.3855*t+3.4921)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+3.4921)*cos(1.2259) 

 

H47 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+4.1905)*cos(t)- 3.867*sin(-3.3855*t+4.1905)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+4.1905)*sin(t)+ 3.867*sin(-3.3855*t+4.1905)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+4.1905)*cos(1.2259) 

H48 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+4.8888)*cos(t)- 3.867*sin(-3.3855*t+4.8888)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+4.8888)*sin(t)+ 3.867*sin(-3.3855*t+4.8888)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+4.8888)*cos(1.2259) 

H49 

dhX  - (11.413*cos(t)+ 3.867*cos(-3.3855*t+5.5872)*cos(t)- 3.867*sin(-3.3855*t+5.5872)*sin(t)*sin(1.2259)) 

dhY  11.413*sin(t)+ 3.867*cos(-3.3855*t+5.5872)*sin(t)+ 3.867*sin(-3.3855*t+5.5872)*cos(t)*sin(1.2259) 

dhZ  31.72*t-3.867*sin(-3.3855*t+5.5872)*cos(1.2259)  
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Appendix B 

FINITE ELEMENT RESULT FOR SHORTER AND LONGER 7-WIRE PRESTRESSING 

STRANDS AND LOCATION OF MAXIMUM STRESS FOR CABLES IN TENSION 
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FINITE ELEMENT AND FATIGUE RESULT FOR SHORTER AND LONGER 7-WIRE 

PRESTRESSING STRANDS AND LOCATION OF MAXIMUM STRESS FOR CABLES IN 

TENSION 

This Appendix shows the von Mises stresses in the 7-wire strand models, and the finite 

element analysis results for the short models (1/6
th

 of lay length) and long models (300 mm for 

all 7-wire strands) in terms of the magnitude and location of the maximum von Mises stresses in 

the 7-wire strands. The comparison of the fatigue life for the short and long models is also 

presented in this Appendix. Figures B-1 to B-6 show the von Mises stresses on the surface of the 

wires for several load levels for the short model. Tables B-1 to B-6 show the magnitude and the 

location of the maximum von Mises stresses at different load levels for the short and long strand 

models. In these tables “E.Helix” means that the location of the maximum von Mises stress is at 

the end of one of the 6 helix wires that wrap around the core, “I.Core” means that the location of 

the maximum von Mises stress is on the core wire, and finally “I.Helix” means that the location 

of the maximum von Mises stress is on one of the 6 helix wires that wrap around the core, at 

some distance from the ends. Figure B-7 shows the distribution of von Mises stress across the 

length of various 7-wire strand at the maximum applied loads. Figures B-8 to B-13 are showing 

the distribution of von Mises stresses and the maximum von Mises stresses in the long strand 

model of the 7-wire prestressing strands, when one external wire is removed. By visual 

inspection of Figures B-8 to B-13, it can be seen that the maximum von Mises stress or any other 

internal maximum von Mises stress away from the ends will not be significantly different, and 

noting that the load is applied in tension only. From the ratio of the maximum von Mises stress 

for the short model to the maximum von Mises stress of the long model
( ) ( )( )mv short mv long  , a 

maximum difference between the magnitudes of the maximum von Mises stress is 10%.  

A plot showing the fatigue life for the short and long model is shown in Figure B-14, and by 

visual inspection it can be observed the difference in fatigue life between the long and short 

model is insignificant. Table B-7 gives the fatigue life for the long model at different load levels. 

The S-N plot for 6.4 mm prestressing strand gives a mean fatigue regression equation as follows:   

16.92 4.31 NLogN LogS                                                                                 (C-1) 
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Figure B-15 shows the the S-N plot for long and short 7.9 prestressing strand, Table B-8 shows 

the  Fatigue life at various load levels, again by visual inpection of the plot, it can be concluded 

there isn’t any significant difference in fatigue life between the long and short model. The mean 

fatigue regression equation is given by: 

 16.99 4.33 NLogN LogS                                                                                (C-2) 

In Figures B-16 through B-19 the S-N plot for the 9.5 to 15.24 mm strands are compared for the 

long and short models. For these plots it can be seen that there is not significant difference 

between the predicted fatigue life between the long and short model. Tables B-9 to B-12 show 

the fatigue life values for the long models. The mean fatigue regression equations for the 9.5, 

11.11, 12.7 and 15.24 mm prestressing strands are given in Equations C-3, C-4, C-5, and C-6, 

respectively as follows: 

 16.29 4.08 NLogN LogS                                                                                (C-3) 

 14.81 3.53 NLogN LogS                                                                                (C-4) 

 15.01 3.62 NLogN LogS                                                                                (C-5) 

 15.91 3.95 NLogN LogS                                                                                (C-6) 

The difference in magnitude of the slope of the mean fatigue regression equations between the 

short and long models is 0.05, 0.07, 0.2, 0.24, 0.02 and 0.15 for the 6.4, 7.9, 9.5, 11.11, 12.7 and 

15.24 mm strands, respectively. Also the difference in the magnitude of the intercept of the mean 

fatigue regression equations between the short and long models is 0.17, 0.24, 0.57, 0.57, 0.08 and 

0.44 for the 6.4, 7.9, 9.5, 11.11, 12.7 and 15.24 mm strands, respectively. Little and Jebe (1975) 

proposed methods for checking if two or more mean regression fatigue curve are identical, but it 

is was concluded in the current research that such statistical checks does not seem to be 

necessary, since visual examination of the fatigue plots for the long and short models were pretty 

conclusive in accessing whether there was any significant difference between their predictions. 

In the author’s opinion there is insignificant difference in the slopes and intercepts of the short 

and long models. In this appendix the location of the maximum von Mises stress for all other 

cables subjected to tension only at different load levels is indicated in Tables B-13 to B-18. In 
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these tables the layers where the maximum von Mises stress occurred is indicated, as examples, 

“I.Lay2-3” means that the maximum von Mises stress occurred internally (not at the ends of the 

model), in one of the wires in Layer 2, but at the interface between Layer 2 and Layer 3. “I.H10-

H11” means that the location of the maximum von Mises stress occurred internally, in the core 

wire (H10), but at the interface between the core wire and the next layer comprised of H11 wires. 
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Table B-1: Comparison of the magnitude and location of maximum von Mises stress for a 

6.4 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

8.00 450 E.Helix 500 I.Core 0.90 

10.00 556 E.Helix 536 I.Core 1.04 

12.00 664 E.Helix 649 I.Core 1.02 

14.00 774 E.Helix 777 I.Core 1.00 

16.00 880 E.Helix 844 I.Core 1.04 

18.00 989 E.Helix 980 I.Core 1.01 

20.00 1,098 E.Helix 1,137 I.Core 0.96 

 

 

Table B-2: Comparison of the magnitude and location of maximum von Mises stress for a 

7.9 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

12.90 479 I.Helix 517 I.Core 0.93 

16.13 588 E.Helix 571 E.Helix 1.03 

19.35 700 E.Helix 678 E.Helix 1.03 

22.58 813 E.Helix 780 I.Core 1.04 

25.80 925 E.Helix 890 E.Helix 1.04 

29.03 1,040 E.Helix 1,015 E.Helix 1.03 

32.25 1,150 E.Helix 1,103 I.Core 1.04 
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Table B-3:  Comparison of the magnitude and location of maximum von Mises stress for a 

9.5 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

18.00 476 I.Helix 501 I.Core 0.95 

22.50 580 I.Helix 550 I.Core 1.05 

27.00 674 I.Helix 660 I.Core 1.02 

31.50 775 E.Helix 781 I.Core 0.99 

36.00 884 E.Helix 858 I.Core 1.03 

40.50 989 E.Helix 1,000 I.Core 0.99 

45.00 1,093 E.Helix 1,040 E.Helix 1.05 

 

 

Table B-4: Comparison of the magnitude and location of maximum von Mises stress for an 

11.11 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

18.00 374 E.Helix 376 I.Core 0.99 

24.00 475 E.Helix 531 I.Core 0.90 

30.00 589 E.Helix 582 I.Core 1.01 

36.00 691 E.Helix 684 I.Core 1.01 

42.00 803 E.Helix 797 I.Core 1.01 

48.00 901 E.Helix 846 I.Core 1.07 

54.00 1,008 E.Helix 993 I.Core 1.02 

60.00 1,112 E.Helix 1,024 I.Core 1.09 
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Table B-5: Comparison of the magnitude and location of maximum von Mises stress for a 

12.7 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

25.10 379 I.Helix 363 I.Core 1.04 

33.46 484 I.Helix 510 I.Core 0.95 

41.82 592 E.Helix 562 I.Core 1.05 

50.19 702 E.Helix 678 I.Core 1.04 

58.55 815 E.Helix 829 E.Helix 0.98 

66.92 926 E.Helix 923 E.Helix 1.00 

75.28 1,042 E.Helix 1,045 E.Helix 1.00 

83.64 1,158 E.Helix 1,160 E.Helix 1.00 

 

 

Table B-6: Comparison of the magnitude and location of maximum von Mises stress for a 

15.24 mm ASTM A416 prestressing strand 

Applied 

Load  
(kN) 

Short model Long model 
( )

( )

mv short

mv long




 Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

Maximum 

von Mises 

stress  
(MPa) 

Location of 

maximum 

von Mises 

stress 

42.67 453 I.Helix 442 I.Core 1.03 

53.33 547 I.Helix 550 I.Core 1.00 

64.00 640 I.Helix 633 I.Core 1.01 

74.67 737 I.Helix 750 I.Core 0.98 

85.33 827 I.Helix 822 I.Core 1.01 

96.00 915 I.Helix 910 I.Core 1.01 

106.70 1,012 E.Helix 1,011 I.Core 1.00 

117.30 1,108 E.Helix 1,081 I.Core 1.03 

128.00 1,205 E.Helix 1,186 I.Core 1.15 
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Table B-7: Predicted fatigue results for a 6.4 mm prestressing strand using finite element analysis 

results (Long Model) 

 

 

 

 

Table B-8: Predicted fatigue results for a 7.9 mm prestressing strand using finite element analysis 

results (Long Model) 

 

 

 

 

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

8.00 0.001830 10,852,695 

10.00 0.002077 4,592,972 

12.00 0.002557 1,890,118 

14.00 0.003069 830,483 

16.00 0.003301 390,106 

18.00 0.003980 209,114 

20.00 0.004210 105,652 

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

12.90 0.001935 11,969,543 

16.13 0.002188 4,396,484 

19.35 0.002702 1,954,573 

22.58 0.003238 935,348 

25.80 0.003483 389,974 

29.03 0.004200 213,162 

32.25 0.004397 109,593 
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Table B-9: Predicted fatigue results for a 9.5 mm prestressing strand using finite element analysis 

results (Long Model) 

 

 

  

 

Table B-10: Predicted fatigue results for an 11.11 mm prestressing strand using finite element 

analysis results (Long Model) 

 

 

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

18.00 0.001877 11,088,942 

22.50 0.002124 4,437,353 

27.00 0.002607 1,971,855 

31.50 0.003137 946,326 

36.00 0.003367 452,413 

40.50 0.004057 253,022 

45.00 0.004233 141,053 

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

18.00 0.001141 13,541,862 

24.00 0.001838 6,894,281 

30.00 0.002061 2,775,050 

36.00 0.002536 1,356,587 

42.00 0.003044 681,398 

48.00 0.003263 349,330 

54.00 0.003953 193,238 

60.00 0.004093 107,295 
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 Table B-11 Predicted fatigue results for a 12.7 mm prestressing strand using finite element 

analysis results (UTS = 1860 MPa) (Long Model) 

 

 

 

 

Table B-12: Predicted fatigue results for a 15.24 mm prestressing strand using finite element 

analysis results (Long Model) 

 

 

 

 

 

  

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

25.10 0.001237 14,612,266 

33.46 0.001946 7,016,875 

41.82 0.002207 2,914,038 

50.19 0.002716 1,346,086 

58.55 0.003257 628,227 

66.92 0.003507 318,317 

75.28 0.004220 191,400 

83.64 0.004413 108,144 

Applied Load  

(kN) 
Axial Wire 

Strain 
int.stressN  

(Cycles) 

42.67 0.001621 13,062,217 

53.33 0.002037 5,048,275 

64.00 0.002377 2,304,117 

74.67 0.002854 1,155,513 

85.33 0.003197 628,862 

96.00 0.003607 356,239 

106.70 0.004050 206,356 

117.30 0.004377 123,845 

128.00 0.004843 75,713 
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Table B-13: Locations of maximum von Mises stress for a 19-wire strand by Raoof (1990) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

23.42 1,081 I.Lay2-1 

46.77 2,015 I.Lay2-1 

70.19 3,011 I.Lay2-1 

81.90 3,395 I.Lay2-1 

 

 

 

Table B-14: Locations of maximum von Mises stress for a 19-wire strand by Papanikolas (1995) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

45.00 304 I.Lay2-3 

60.00 407 I.Lay2-3 

75.00 509 I.Lay2-3 

90.00 593 I.Lay2-3 

105.00 673 I.Lay2-3 

120.00 792 I.CORE 

135.00 924 I.CORE 

150.00 1,048 I.CORE 
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Table B-15: Locations of maximum von Mises stress for a 39 mm strand (92 wires) 

Applied 

Load  
(kN) 

Max. 

von Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

61.50 2,122 I.Lay3-2 

123.00 3,092 I.Lay2-3 

184.50 4,179 I.Lay3-4 

246.00 5,227 I.Lay3-4 

307.50 5,872 I.Lay4-3 

369.00 6,962 I.Lay4-3 

 

 

 

Table B-16: Locations of maximum von Mises stress for a 45 mm strand (91 wires) 

Applied 

Load  
(kN) 

Maximum 

von Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

140.00 2,046 I.Lay2-3 

280.00 2,902 I.Lay2-3 

420.00 3,430 I.Lay3-4 

560.00 4,246 I.Lay3-4 

700.00 4,905 I.Lay3-4 
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Table B-17: Locations of maximum von Mises stress for a 67 wire rope (d=12.60 mm) 

Applied 

Load  
(kN) 

Max. von 

Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

10.00 2,035 I.H10-H11 

20.00 3,702 I.H11-H10 

30.00 5,115 I.H11-H10 

40.00 5,950 I.H10-H11 

50.00 6,843 I.H10-H11 

 

 

Table B-18: Locations of maximum von Mises stress for a 619 Seale wire rope (d=33.02 mm) 

Applied 

Load  
(kN) 

Max. von 

Mises 

stress  
(MPa) 

Location 

of 

maximum 

von Mises 

stress 

72.00 1,710 I.H10-H11 

144.00 3,253 I.H11-H10 

216.00 4,702 I.H10-H11 

288.00 6,001 I.H10-H11 

360.00 7,934 I.H11-H10 
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Figure B-1: von Mises stresses in the 6.4 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 20 kN 

 

 

 

Figure B-2: von Mises stresses in 7.9 mm ASTM A416 7-wire prestressing strand subjected to a 

tensile force of 32.25 kN 
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Figure B-3: von Mises stresses in 9.5 mm ASTM A416 7-wire prestressing strand subjected to a 

tensile force of 45 kN 
 

 

 

Figure B-4: von Mises stresses in 11.11 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 60 kN 
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Figure B-5: von Mises stresses in 12.7 mm ASTM A416 7-wire prestressing strand subjected to 

a tensile force of 83.64 kN 

 

 

Figure B-6: von Mises stresses in 15.24 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 128 kN 
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Figure B-7: Variation of von Mises stress along the length of the critical wire for 7-wire strands 

at 50% of the tensile strength (short model) 

 

 

                                   
Figure B-8: von Mises stresses in 6.4 mm ASTM A416 7-wire prestressing strand subjected to 

tensile force of 20 kN 
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Figure B-9: von Mises stresses in 7.9 mm ASTM A416 7-wire prestressing strand subjected to a 

tensile force of 32.25 kN 

 

 

 
 

Figure B-10: von Mises stresses in 9.5 mm ASTM A416 7-wire prestressing strand subjected to 

a tensile force of 45 kN 
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Figure B-11: von Mises stresses in 11.11 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 60 kN 

 

 

 
 

Figure B-12: von Mises stresses in 12.7 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 83.64 kN 
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Figure B-13: von Mises stresses in 15.24 mm ASTM A416 7-wire prestressing strand subjected 

to a tensile force of 128 kN 

 

 
Figure B-14: Comparison of fatigue Life for long and short model 6.4 mm ASTM A416 7-wire 

prestressing strand 
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Figure B-15: Comparison of fatigue Life for long and short model 7.9 mm ASTM A416 7-wire 

prestressing strand 

 

 
Figure B-16: Comparison of fatigue Life for long and short model 9.5 mm ASTM A416 7-wire 

prestressing strand 
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Figure B-17: Comparison of fatigue Life for long and short model 11.11 mm ASTM A416 7-

wire prestressing strand 

 

 
Figure B-18: Comparison of fatigue Life for long and short model 12.7 mm ASTM A416 7-wire 

prestressing strand 
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Figure B-19: Comparison of fatigue Life for long and short model 15.24 mm ASTM A416 7-

wire prestressing strand 
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Appendix C 

STATISTICAL ANALYSIS OF FATIGUE TEST RESULTS 
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STATISTICAL ANALYSIS OF FATIGUE TEST RESULTS 

The regression analyses conducted on the test results reported by Thorpe et al. (1985) is 

provided in this appendix. Table C-1 shows the results, which reveals that 11 data points were 

used for the regression. The mean stress for the fatigue test was taken at 50% of the ultimate 

tensile strength (UTS=1840 MPa). The data obtained from their S-N plot had the following mean 

regression fatigue life: 

56.88 18.5 NLogN LogS                                                                                 (C-1) 

The standard error of the estimate for the test data is 0.36. For all the test data by various 

researchers fatigue run-off were not presented in this Appendix. 

The only test on 19-wire strands bent over a sheave was that reported by Knapp (2004), where 

the 19-wire test data (obtained by a digitization of the plot from Knapp (2004)) is presented in 

Table C-2. These points were obtained by digitizing. The mean regression relationship for the 

test results is: 

 12.82 2.85 aLogN LogS                                                                                (C-2) 

The standard error for the test data is 0.051. 

The test results reported by Cullimore (1972) on 15.24 mm strands under tension are shown in 

Table C-3 and had the following mean regression fatigue life: 

14.85 3.60 eqLogN LogS                                                                                 (C-3) 

The standard error for the test data is 0.36. 

The test results of Muller and Zeller (1975) on 15.24 mm strands in tension are shown in 

Table C-4 and had the following mean fatigue S-N curve: 

16.91 4.48 eqLogN LogS                                                                                       (C-4) 

The standard error for the test data is 0.21. 
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The test results of Muller and Zeller (1975) on 12.7 mm (Grade 250) strands in tension are 

shown in Table C-5 and had the following mean fatigue S-N curve: 

13.61 3.28 eqLogN LogS                                                                                   (C-5) 

The standard error for the test data is 0.25. 

The 12.7 mm Grade 270 strand results, tested in tension by Heller (2003) are presented in 

Table C-6. The mean regression relationship for the experimental results is: 

15.0 3.64 eqLogN LogS                                                                                   (C-6) 

The standard error for the test data is 0.18. 

Warner and Hulsbos (1966) tested 11.11 mm strands in tension where the results are shown in 

Table C-7. The experimental results from Warner and Hulsbos (1966) had a mean regression line 

of: 

12.63 2.69 eqLogN LogS                                                                                  (C-7) 

The standard error for the test data is 0.23. 

Although Paulson et al. (1983) tested 11.11 mm prestressing strands in tension, shown in 

Table C-8, at only two stress ranges and probably insufficient to fit an S-N regression, the data 

did yield a mean regression indication of: 

9.50 1.58 eqLogN LogS                                                                                   (C-8) 

The standard error for the test data is 0.24.  

Fisher and Viest (1961) performed tension fatigue tests on 9.5 mm ASTM A416 prestressing 

strands. The test results are shown in Table C-9.The mean regression S-N relationship for their 

data was: 

15.87 3.81 eqLogN LogS                                                                                 (C-9) 
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The standard error for the test data is 0.22. 
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Table C-1: Results of fatigue test on single wire by Thorpe et al. (1985) 

 rS
 
 Fatigue 

Life 

1 690.42 74469 

2 633.84 59738 

3 633.73 65780 

4 629.01 97940 

5 641.64 117500 

6 603.58 155360 

7 590.81 295690 

8 548.57 1930000 

9 523.41 4310000 

10 506.34 2030000 

11 492.06 50130000 

 

Table C-2: Results of fatigue test on 19-wire strand bent over sheave by Knapp (2004) 

 aS
 
 Fatigue 

Life 

1 423.62 200282 

2 564.83 102415 

3 741.33 46735 

4 847.24 30285 

5 953.14 24158 

6 1006.10 21976 

7 1059.05 13153 

8 1164.95 11862 

9 1270.86 9270 
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Table C-3: Results of fatigue test on 15.24 mm prestressing strand by Cullimore (1972) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

501 499.18 714.3 215.12 164.15 6620000 

“ 499.18 714.3 “ “ 4200000 

502 459.19 753.6 294.41 224.58 3070000 

“ 459.19 753.6 “ “ 2120000 

“ 459.19 753.6 “ “ 1370000 

503 438.5 774.97 336.46 256.74 1230000 

“ 438.5 774.97 “ “ 2560000 

“ 438.5 774.97 “ “ 4370000 

“ 438.5 774.97 “ “ 706000 

“ 438.5 774.97 “ “ 8020000 

504 417.13 796.35 379.21 289.37 1200000 

“ 417.13 796.35 “ “ 670000 

“ 417.13 796.35 “ “ 814000 

“ 417.13 796.35 “ “ 539000 

“ 417.13 796.35 “ “ 314000 

“ 417.13 796.35 “ “ 4990000 

505 397.14 815.65 418.51 319.25 382000 

“ 397.14 815.65 “ “ 821000 

“ 397.14 815.65 “ “ 3160000 

“ 397.14 815.65 “ “ 347000 

“ 397.14 815.65 “ “ 354000 

506 376.45 837.02 461.26 351.44 412000 

“ 376.45 837.02 “ “ 1330000 

“ 376.45 837.02 “ “ 283000 

“ 376.45 837.02 “ “ 142000 

“ 376.45 837.02 “ “ 429000 
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Table C-4: Results of fatigue test on 15.24 mm prestressing strand by Muller and Zeller (1975) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

712 666.72 970.78 304.06 284.27 1439000 

713 647.42 970.78 323.36 299.25 644000 

714 608.12 970.78 362.66 328.83 317000 

715 578.47 970.78 392.31 350.36 234000 

716 559.17 970.78 411.62 364.03 219000 

717 529.52 970.78 441.27 384.52 145000 

718 500.56 970.78 470.91 403.97 170000 

719 480.57 970.78 490.22 417.07 330000 

 

 

Table C-5: Results of fatigue test on 12.7 mm prestressing strand by Muller and Zeller (1975), 

Ultimate strength of 1760 MPa 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

703 647.42 970.78 323.36 299.25 1095000 

704 627.42 970.78 343.36 314.45 612000 

705 617.77 970.78 353.01 321.67 443000 

706 608.12 970.78 362.66 328.82 625000 

707 598.47 970.78 373.01 335.90 303000 

708 588.1 970.78 382.66 343.44 1293000 

709 578.47 970.78 392.31 350.36 320000 
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Table C-6: Results of fatigue test on 12.7 mm prestressing strand by Heller (2003), Ultimate 

tensile strength of 1860 MPa 

Strand 

Number 
 mS   rS   eqS

 
 Fatigue 

Life 

A15 1054.9 330.95 382.29 181668 

A16 1054.9 330.95 382.29 561414 

A17 1054.9 330.95 382.29 720707 

A18 1054.9 330.95 382.29 464364 

A19 1034.21 448.16 504.72 137283 

A20 1034.21 448.16 504.72 124005 

A24 1034.21 448.16 504.72 157755 

A25 1034.21 448.16 504.72 132489 

A26 1034.21 551.58 621.19 88824 

A27 1034.21 551.58 621.19 97706 

A28 1034.21 551.58 621.19 91763 

5L 1034.21 551.58 621.19 38914 
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Table C-7: Results of fatigue test on 11.11 mm prestressing strand by Warner and 

Hulsbos (1966) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

302 729.47 1048 319.23 310.93 1246000 

“ 729.47 1048 319.23 310.93 1159600 

“ 729.47 1048 319.23 310.93 1082000 

“ 729.47 1048 319.23 310.93 561000 

“ 729.47 1048 319.23 310.93 591000 

“ 729.47 1048 319.23 310.93 715000 

303 729.47 1093.51 364.73 364.24 287400 

“ 729.47 1093.51 364.73 364.24 308400 

“ 729.47 1093.51 364.73 364.24 344100 

“ 729.47 1093.51 364.73 364.24 274000 

“ 729.47 1093.51 364.73 364.24 573000 

“ 729.47 1093.51 364.73 364.24 359000 

304 729.47 1185.21 455.74 480.17 175500 

“ 729.47 1185.21 455.74 480.17 152600 

“ 729.47 1185.21 455.74 480.17 168000 

“ 729.47 1185.21 455.74 480.17 116000 

“ 729.47 1185.21 455.74 480.17 126000 

“ 729.47 1185.21 455.74 480.17 174000 

305 729.47 1276.22 546.75 608.05 90400 

“ 729.47 1276.22 546.75 608.05 92000 

“ 729.47 1276.22 546.75 608.05 105200 

“ 729.47 1276.22 546.75 608.05 100400 

“ 729.47 1276.22 546.75 608.05 71000 

“ 729.47 1276.22 546.75 608.05 76000 

306 729.47 1367.23 637.77 750.99 36500 

“ 729.47 1367.23 637.77 750.99 54000 
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Table C-7: Results of fatigue test on 11.11 mm prestressing strand by Warner and 

Hulsbos (1966) (continued) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

307 729.47 1458.24 729.47 911.78 37800 

308 1093.51 1276.22 182.02 261.25 3306000 

309 1093.51 1312.76 218.56 322.75 652800 

“ 1093.51 1312.76 218.56 322.75 1873500 

311 1093.51 1367.23 273.72 421.48 425500 

“ 1093.51 1367.23 273.72 421.48 304800 

“ 1093.51 1367.23 273.72 421.48 777000 

“ 1093.51 1367.23 273.72 421.48 863000 

“ 1093.51 1367.23 273.72 421.48 768500 

“ 1093.51 1367.23 273.72 421.48 300600 

 1093.51 1367.23 273.72 421.48 1500000 

312 1093.51 1458.24 364.73 608.41 234400 

“ 1093.51 1458.24 364.73 608.41 211000 

“ 1093.51 1458.24 364.73 608.41 160000 

“ 1093.51 1458.24 364.73 608.41 170600 

“ 1093.51 1458.24 364.73 608.41 121000 

“ 1093.51 1458.24 364.73 608.41 159000 

“ 1093.51 1458.24 364.73 608.41 222000 

“ 1093.51 1458.24 364.73 608.41 95500 

“ 1093.51 1458.24 364.73 608.41 155000 

“ 1093.51 1458.24 364.73 608.41 235800 

“ 1093.51 1458.24 364.73 608.41 271800 

“ 1093.51 1458.24 364.73 608.41 191300 

“ 1093.51 1458.24 364.73 608.41 176000 

“ 1093.51 1458.24 364.73 608.41 162400 

“ 1093.51 1458.24 364.73 608.41 208400 

 

 

 



269 

 

Table C-7: Results of fatigue test on 11.11 mm prestressing strand by Warner and 

Hulsbos (1966) (continued) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

312 1093.51 1458.24 364.73 608.41 214500 

“ 1093.51 1458.24 364.73 608.41 147600 

“ 1093.51 1458.24 364.73 608.41 40900 

“ 1093.51 1458.24 364.73 608.41 164500 

“ 1093.51 1458.24 364.73 608.41 220600 

313 1093.51 1549.25 455.74 829.33 103000 

“ 1093.51 1549.25 455.74 829.33 70000 

“ 1093.51 1549.25 455.74 829.33 88300 

“ 1093.51 1549.25 455.74 829.33 73000 

“ 1093.51 1549.25 455.74 829.33 88500 

“ 1093.51 1549.25 455.74 829.33 68600 
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Table C-8: Results of fatigue test on 11.11 mm prestressing strand by Paulson et al. (1983) 

Sample minS    maxS   rS   eqS
 
 Fatigue 

Life 

A 1116.95 1582.35 465.40 897.60 45800 

 1116.95 1582.35 465.40 897.60 65200 

 1116.95 1582.35 465.40 897.60 58300 

 1116.95 1582.35 465.40 897.60 72900 

 558.48 884.60 326.12 269.97 725000 

 558.48 884.60 326.12 269.97 190400 

 558.48 884.60 326.12 269.97 653000 

B 1116.95 1582.35 465.40 897.60 78200 

 1116.95 1582.35 465.40 897.60 120000 

 1116.95 1582.35 465.40 897.60 78600 

 558.48 884.60 326.12 269.97 284000 

 558.48 884.60 326.12 269.97 607000 

 558.48 884.60 326.12 269.97 908000 

C 1116.95 1582.35 465.40 897.60 61600 

 558.48 884.60 326.12 269.97 351000 

 558.48 884.60 326.12 269.97 270000 

 558.48 884.60 326.12 269.97 734000 

D 558.48 884.60 326.12 269.97 167800 

 558.48 884.60 326.12 269.97 163700 

E 1116.95 1582.35 465.40 897.60 44100 

 558.48 884.60 326.12 269.97 591000 

 558.48 884.60 326.12 269.97 254000 

 558.48 884.60 326.12 269.97 342000 

F 1116.95 1582.35 465.40 897.60 41100 

 1116.95 1582.35 465.40 897.60 53400 

 1116.95 1582.35 465.40 897.60 76600 

 1116.95 1582.35 465.40 897.60 69900 

 558.48 884.60 326.12 269.97 270000 

 558.48 884.60 326.12 269.97 956000 

 558.48 884.60 326.12 269.97 199100 
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Table C-8: Results of fatigue test on 11.11 mm prestressing strand by Paulson et al. (1983) 

(Continued) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

G 1116.95 1582.35 465.40 897.60 67700 

 1116.95 1582.35 465.40 897.60 103900 

 1116.95 1582.35 465.40 897.60 88100 

 558.48 884.60 326.12 269.97 792000 

 558.48 884.60 326.12 269.97 434000 

 558.48 884.60 326.12 269.97 272000 

 558.48 884.60 326.12 269.97 821000 

H 1116.95 1582.35 465.40 897.60 117800 

 1116.95 1582.35 465.40 897.60 74800 

 1116.95 1582.35 465.40 897.60 99900 

 558.48 884.60 326.12 269.97 1500000 

 558.48 884.60 326.12 269.97 593000 

 558.48 884.60 326.12 269.97 468000 

J 1016.98 1482.37 465.40 740.79 91600 

 1016.98 1482.37 465.40 740.79 88600 

 1016.98 1482.37 465.40 740.79 92100 

 504.70 830.82 326.12 257.39 2626900 
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Table C-9: Results of fatigue test on 9.5 mm prestressing strand by Fisher and Viest. (1961) 

Group minS    maxS   rS   eqS
 
 Fatigue 

Life 

251 932.17 1265.88 333.71 406.57 1236000 

 932.17 1265.88 333.71 406.57 909200 

 932.17 1265.88 333.71 406.57 579000 

252 932.17 1360.34 428.17 555.98 560700 

 932.17 1360.34 428.17 555.98 152700 

 932.17 1360.34 428.17 555.98 174000 

253 932.17 1454.10 521.93 725.09 68100 

 932.17 1454.10 521.93 725.09 48700 

 932.17 1454.10 521.93 725.09 38200 

254 1120.40 1360.34 239.94 358.58 1351400 

255 1120.40 1454.10 333.71 539.24 512800 

 1120.40 1454.10 333.71 539.24 422000 

 1120.40 1454.10 333.71 539.24 199100 

256 1120.40 1548.56 428.17 753.60 213400 

 1120.40 1548.56 428.17 753.60 90600 

 1120.40 1548.56 428.17 753.60 159000 
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Appendix D 

STATISTICAL ANALYSIS OF PREDICTED FATIGUE RESULTS 
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STATISTICAL ANALYSIS OF FATIGUE TEST RESULTS 

In this appendix the regression analysis for strands and wire ropes subjected to tension 

and bending over sheaves will be presented.  Tables D-1 through D-6 presents the regression 

analyses for the fatigue life of strands and wire ropes in tension using the stress correction factor; 

calculated from using the maximum internal axial stress. Tables D-7 through D-12 show the 

regression analysis for strands and wire ropes in tension, obtained using the nominal stress 

correction factor. Tables D-13 through D-15 show the regression results for the fatigue of 7 and 

19-wire strands bent over sheaves.  
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Table D-1: Regression analysis for 7-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.996 

R
2
 0.992 

Adjusted R
2
 0.991 

Standard error 0.065 

Number of observations 54 

 

(b) ANOVA-1   

 df SS MS F Significance 

F 

Regression 4 25.75 6.44 1507 1.29E-50 

Residual 49 0.21 0.0043   

Total 53 25.96    

 

(c) ANOVA-2  

 Coefficients 

 ia   

Standard 

error 

t Stat P-value 

Intercept 10.14 1.48 6.85 1.15E-08 

2

2
log aS

d
  

-0.99 0.72 -1.38 0.18 

2
lowerS

d
  

0.012 0.0033 3.58 0.00078 

2

2
lowerS

d
 
 
 

  
1.32E-05 4.22E-06 3.12 0.0030 

log d   0.107 0.109 0.98 0.333 
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Table D-2: Regression analysis for 19-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.978 

R
2
 0.956 

Adjusted R
2
 0.912 

Standard error 0.18 

Number of observations 9 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 2.82 0.705 21.84 0.00558 

Residual 4 0.129 0.032   

Total 8 2.95    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept -27.32 13.88 -1.97 0.12 

2

2
log aS

d
  

17.50 8.30 2.11 0.103 

2
lowerS

d
  

0.181 0.077 2.36 0.078 

2

2
lowerS

d
 
 
 

  
0.00044 0.00019 2.31 0.082 

log d   5.20 0.93 5.58 0.0051 
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Table D-3: Regression analysis for 7 and 19-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.977 

R
2
 0.955 

Adjusted R
2
 0.951 

Standard error 0.153 

Number of observations 63 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 5 28.23 5.65 239 6.68E-37 

Residual 57 1.347 0.024   

Total 62 29.57    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 3.58 1.91 1.88 0.066 

2

2
log aS

d
  

2.73 0.95 2.88 0.0057 

2
lowerS

d
  

0.029 0.0050 5.78 3.24E-07 

2

2
lowerS

d
 
 
 

  
3.37E-05 7.12E-06 4.74 1.46E-05 

log d   0.804 0.186 4.32 6.28E-05 

log z   -1.62 0.181 -8.91 2.19E-12 
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Table D-4: Regression analysis for 7, 19, 91 and 92-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.970 

R
2
 0.94 

Adjusted R
2
 0.931 

Standard error 0.176 

Number of observations 74 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 5 30.52 6.10 196.64 5.29E-39 

Residual 68 2.11 0.031   

Total 73 32.63    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 7.42 0.96 7.73 6.83E-11 

2

2
log aS

d
  

0.54 0.51 1.07 0.289 

2
lowerS

d
  

0.017 0.0034 4.93 5.67E-06 

2

2
lowerS

d
 
 
 

  
1.78E-05 5.74E-06 3.10 0.00278 

log d   0.52 0.189 2.75 0.00755 

log z   -1.05 0.118 -8.95 4.18E-13 
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Table D-5: Regression analysis for IWRC fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.9994 

R
2
 0.9989 

Adjusted R
2
 0.9984 

Standard error 0.025 

Number of observations 15 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 5.785 1.446 2237.81 1.04E-14 

Residual 10 0.0065 0.000646   

Total 14 5.792    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 11.80 0.51 23.15 5.11E-10 

2

2
log aS

d
  

-2.65 0.316 -8.38 7.79E-06 

2
lowerS

d
  

-0.00209 0.0032 -0.655 0.53 

2

2
lowerS

d
 
 
 

  
-1.1E-06 7.88E-06 -0.14 0.89 

log d   -0.112 0.0244 -4.60 0.00098 
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Table D-6: Regression analysis for 619 Seale wire rope fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.9998 

R
2
 0.9997 

Adjusted R
2
 0.9996 

Standard error 0.0151 

Number of observations 15 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 7.60 1.90 8361.19 1.43E-17 

Residual 10 0.0023 0.00023   

Total 14 7.60    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 13.64 0.314 43.44 1.0E-12 

2

2
log aS

d
  

-3.60 0.197 -18.30 5.11E-09 

2
lowerS

d
  

-0.0076 0.0019 -4.02 0.0025 

2

2
lowerS

d
 
 
 

  
-1.3E-05 4.37E-06 -2.87 0.017 

log d   -0.121 0.0292 -4.16 0.0020 
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Table D-7: Regression analysis for 7-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.997 

R
2
 0.994 

Adjusted R
2
 0.994 

Standard error 0.055 

Number of observations 54 

 

(b) ANOVA-1   

 df SS MS F Significance 

F 

Regression 4 26.32 6.58 2150.51 2.27E-54 

Residual 49 0.15 0.0031   

Total 53 26.47    

 

(c) ANOVA-2  

 Coefficients 

 ia   

Standard 

error 

t Stat P-value 

Intercept 10.00 1.25 7.97 2.12E-10 

2

2
log aS

d
  

-0.834 0.61 -1.37 0.176 

2
lowerS

d
  

0.013 0.0028 4.62 2.78E-05 

2

2
lowerS

d
 
 
 

  
1.47E-05 3.57E-06 4.13 0.00014 

log d   0.01 0.0927 0.11 0.915 
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Table D-8: Regression analysis for 19-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.994 

R
2
 0.989 

Adjusted R
2
 0.977 

Standard error 0.066 

Number of observations 9 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 1.53 0.383 86.93 0.000385 

Residual 4 0.018 0.0044   

Total 8 1.551    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept -6.35 5.13 -1.23 0.28 

2

2
log aS

d
  

5.75 3.07 1.87 0.13 

2
lowerS

d
  

0.069 0.028 2.42 0.072 

2

2
lowerS

d
 
 
 

  
0.00016 7.01E-05 2.34 0.080 

log d   3.32 0.344 9.64 0.00065 
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Table D-9: Regression analysis for 7 and 19-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.988 

R
2
 0.976 

Adjusted R
2
 0.974 

Standard error 0.107 

Number of observations 63 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 5 26.95 5.37 470.16 5.47E-45 

Residual 57 0.653 0.0115   

Total 62 27.60    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 4.21 1.331 3.16 9.41E-06 

2

2
log aS

d
  

2.58 0.662 3.90 0.0644 

2
lowerS

d
  

0.027 0.00345 7.88 1.44E-07 

2

2
lowerS

d
 
 
 

  
3.12E-05 4.96E-06 6.30 3.3E-05 

log d   0.68 0.130 5.25 3.23E-07 

log z   -1.941 0.126 -15.37 4.1E-16 

  



284 

 

Table D-10: Regression analysis for 7, 19, 91 and 92-wire strands fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.971 

R
2
 0.943 

Adjusted R
2
 0.939 

Standard error 0.157 

Number of observations 74 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 5 27.81 5.56 225.12 7.11E-41 

Residual 68 1.68 0.025   

Total 73 29.49    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 5.64 0.857 6.59 7.82E-09 

2

2
log aS

d
  

1.48 0.452 3.25 0.00175 

2
lowerS

d
  

0.020 0.00305 6.39 1.76E-08 

2

2
lowerS

d
 
 
 

  
1.96E-05 5.12E-06 3.83 0.00028 

log d   0.500 0.168 2.97 0.00415 

log z   -1.256 0.105 -11.96 2.19E-18 
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Table D-11: Regression analysis for IWRC fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.9998 

R
2
 0.9997 

Adjusted R
2
 0.9996 

Standard error 0.0085 

Number of observations 15 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 2.03 0.509 7130.29 3.17E-17 

Residual 10 0.000713 7.13E-05   

Total 14 2.035    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 8.38 0.169 49.49 2.74E-13 

2

2
log aS

d
  

-1.23 0.105 -11.69 3.73E-07 

2
lowerS

d
  

0.000856 0.00106 0.81 0.437 

2

2
lowerS

d
 
 
 

  
1.23E-06 2.62E-06 0..47 0.65 

log d   -0.0364 0.00812 -4.48 0.0012 
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Table D-12: Regression analysis for 619 Seale wire rope fatigue life in tension 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 1.0000 

R
2
 0.9999 

Adjusted R
2
 0.9999 

Standard error 0.0045 

Number of observations 15 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 4 2.43 0.61 29839.48 2.48E-20 

Residual 10 0.0002 2.04E-05   

Total 14 2.43    

 

(c) ANOVA-2  

 Coefficients

  ia  

Standard 

error 

t Stat P-value 

Intercept 8.80 0.094 93.58 4.75E-16 

2

2
log aS

d
  

-1.42 0.059 -24.15 3.38E-10 

2
lowerS

d
  

-2.5E-06 0.00057 -0.00434 0.997 

2

2
lowerS

d
 
 
 

  
-7.8E-07 1.31E-06 -0.596 0.564 

log d   -0.045 0.0088 -5.18 0.000411 
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Table D-13: Regression analysis for 7-wire strands fatigue life in BOS 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.963 

R
2
 0.926 

Adjusted R
2
 0.917 

Standard error 0.128 

Number of observations 47 

 

(b) ANOVA-1   

 df SS MS F Significance 

F 

Regression 5 8.48 1.70 103.23 4.03E-22 

Residual 41 0.67 0.016   

Total 46 9.15    

 

(c) ANOVA-2  

 Coefficients 

 ib   

Standard 

error 

t Stat P-value 

Intercept 13.31 6.38 2.09 0.043 

0

2
log 0.4log

1770

RS

d

  
   

   
  

-0.74 0.39 -1.89 0.066 

0

2
log log 0.4log

1770

RD S

d d

     
      

      
 

-0.28 0.33 -0.83 0.41 

log
D

d

 
 
 

 
-0.57 1.68 -0.34 0.73 

log d   0.087 0.19 0.45 0.65 

1

1.0 log
l

d

 
  

 

  

-11.80 10.82 -1.09 0.28 
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Table D-14: Regression analysis for 19-wire strands fatigue life in BOS 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.977 

R
2
 0.955 

Adjusted R
2
 0.945 

Standard error 0.101 

Number of observations 28 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 5 4.80 0.96 93.49 4.58E-14 

Residual 22 0.226 0.010   

Total 27 5.03    

 

(c) ANOVA-2  

 Coefficients

  ib  

Standard 

error 

t Stat P-value 

Intercept 18.11 4.65 3.89 0.0008 

0

2
log 0.4log

1770

RS

d

  
   

   
  

-1.36 0.44 -3.12 0.005 

0

2
log log 0.4log

1770

RD S

d d

     
      

      
 

-0.051 0.35 -0.145 0.886 

log
D

d

 
 
 

 
-2.17 1.54 -1.404 0.174 

log d   -0.11 0.17 -0.65 0.052 

1

1.0 log
l

d

 
  

 

 

-16.19 7.28 -2.22 0.037 
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Table D-15: Regression analysis for 7 and 19-wire strands fatigue life in BOS 

(a) Regression statistics 

REGRESSION STATISTICS 

Multiple R 0.961 

R
2
 0.923 

Adjusted R
2
 0.916 

Standard error 0.131 

Number of observations 75 

 

(b) ANOVA-1   

  df SS MS F Significance 

F 

Regression 6 14.01 2.33 135.39 8.29E-36 

Residual 68 1.17 0.017   

Total 74 15.18    

(c) ANOVA-2  

 Coefficients

  ib  

Standard 

error 

t Stat P-value 

Intercept 13.29 4.07 3.27 0.0017 

0

2
log 0.4log

1770

RS

d

  
   

   
  

-0.37 0.27 -1.36 0.18 

0

2
log log 0.4log

1770

RD S

d d

     
      

      
 

-0.67 0.22 -2.99 0.0039 

log
D

d

 
 
 

 
-0.023 1.12 -0.02 0.98 

log d   0.16 0.13 1.20 0.23 

1

1.0 log
l

d

 
  

 

 

-13.42 6.89 -1.95 0.055 

log z   0.23 0.16 1.48 0.14 

 


