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Abstract 

In the world of engineering, strength and toughness are two highly desirable properties to 

materials design. Biological materials have already mastered both of these properties within the 

threads they protect themselves in harsh nature. The key to both the biomaterial’s ability to resist 

external injury and the highly energy dissipative behavior is a type of hierarchical structure called 

brick-and-mortar structure, which is comprised of soft collagen matrix and hard hydroxyapatite 

crystals. Recently, researchers have incorporated metal phases into various sizes of polymeric 

matrix to improve their mechanical properties. However, there is not as much fundamental 

understanding of how the heterogeneity of these combinations dictates fracture behavior, either in 

a single- or in multi-physical fields. 

In this thesis, we use the non-Fourier heat conduction law to explore biomimetic gradation 

design under different surrounding environments. The thesis includes three parts of work. First, a 

multiphysical model was developed to investigate the fracture behavior of biomimetic materials 

under thermoelectromechanical loading. In particular, a piezoelectric material model is used to 

mimic the multiphysical behavior of biological materials, such as wood and nacre. A simplified, 

homogeneous piezoelectric material is used to mathematically model the dynamic multiphysical 

fracture behavior of biomimetic materials. With the aid of fractional heat conduction equation and 

Maxwell’s equations, we analyze the effects of temperature and electrical disturbances on the 

stress-electric displacement intensity factors.  In the second part, a brick-and-mortar graded (BM-

GRAD) model was proposed to investigate how material heterogeneity interacts with its crack 

resistance. It was found that the BM-GRAD always shows a smaller zone of extreme stress 

localization as well as lower values of the normal stress, which significantly improves the crack 
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resistance. It is also highlighted that BM-GRAD microstructure is easier to form deflecting crack 

once a fracture happens and the crack propagation is more likely to be terminated. Finally, we 

combined the gradient design and multiphysical behavior and carried out a comprehensive analysis 

of various multiphysical, gradient designs in the third part. The results showed that multiphysical 

conditions have a significant influence on the fracture resistance of heterogeneous material, whiles 

temperature is a vital factor that cannot be ignored. To describe thermal transport more accurately 

in biomaterials, the non-Fourier theory incorporated with thermal relaxation effect describes 

thermal transport more accurately than classical heat conduction equations which indicates the 

speed of thermal propagation is infinite. The results of a cracked functionally graded piezoelectric 

strip mimicking biomaterials under thermoelectromechanical loading shows that a sudden 

temperature fall will cause an opening-mode failure risk, while a positive electric shock will 

slightly reduce the likelihood of fracture occurrence compared to a negative electric loading. 

From our fracture resistance results, a strong dependence of peak stress on the 

electromechanical gradation coefficient Ω and thermal gradation coefficient Ψ was observed. 

Except the case of a singular thermal environment, the configuration without gradients 

demonstrates exceptional crack resistance performance. Incorporating graded design principles 

into biomimetic piezoelectric structures can effectively enhance their ability to resist crack 

propagation under single stress, single electric, and thermo-electromechanical environments. 

Specifically, the symmetric gradient configuration, characterized by a higher order of the 

electromechanical gradation coefficient Ω and thermal gradation coefficient Ψ, shows remarkable 

fracture resistance under single stress or single electric environment. For coupled heating-

mechanical-electrical and cooling-mechanical-electrical fields, the symmetric functional gradient 
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configuration with (Ω, Ψ) = (1, -0.5) and (1, -1), respectively, displays lower stress intensity in the 

vicinity of crack tips. 

In addition to the theoretical studies, we also first replicated the effect of the multiphysics 

based on non-Fourier theory within finite element simulations. To do so, we first defined time-

dependent thermal partial differential equations in COMSOL Multiphysics platform and further 

coupled static solid mechanics and electrostatics physics. The temperature and stresses simulation 

results are in good agreement with our theoretical results for gradation design.  

Collectively, these findings provide us with new insights into the correlations between 

fracture mechanics and heterogenous functional gradations of biomimetic composites for different 

environments, and guidelines to tune the gradation coefficients of bio-inspired materials under 

complex environments. 
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Preface 

This thesis is an original work by Weilin Yang (W. Yang) under the supervision of Prof. 

Zengtao Chen (Z. Chen), and is organized in a paper-based format. 

Chapter 1 provides a brief introduction of biomaterials. 

Chapter 2 outlines the research objectives and conducts the literature survey of related biomimetic 

composite materials. 

Chapter 3 has been published as: 

Yang W, Chen Z. Multiphysical model to predict thermomechanical fracture of functional 

hierarchical biomimetic composites. Composite Structures 2023; 303: 116261. 

Chapter 4 has been published as: 

Yang W, Nourazar M, Chen Z, Hu K, Zhang X. Dynamic response of a cracked 

thermopiezoelectric strip under thermoelectric loading using fractional heat conduction. Applied 

Mathematical Modelling 2022; 103: 580-603. 

Chapter 5 has been submitted as: 

Yang W, Nikrad SF, Nourazar M, Chen Z. Functionally graded Design of Bio-composite Material 

for Fracture Resistance under Multiphysical Application. 

Chapter 6 implements Multiphysics Finite element simulations of a cracked Functionally graded 

Piezoelectric strip based on non-Fourier heat conduction. 

Chapter 7 is the summary of the thesis and prospection of the future works. 
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Chapter 1 

Introduction 

1.1 Background 

It is a classic problem in materials design that the two key material properties — strength and 

toughness — tend to be mutually exclusive. Extremely stiff materials like ceramics tend to be 

brittle, and tough materials like rubber are easily deformable. Clues from nature, biological 

materials have evolved for millions of years, enabling them to perform perfectly in both strength 

and toughness properties and far surpass those of its individual components 1-3.  

1.1.1 Hierarchical structure 

In nature, most of biological materials are usually in the form of combination of a soft protein 

and stiff but brittle minerals 4-6. For instance, mollusks protect their soft body against external 

predators and foreign bodies with a three-layered shell 7-9: the outermost layer “periostracum”, the 

middle layer “prismatic”, and the inner layer “nacre” (Figure 1.1). Nacre is a typical brick-and-

mortar structure which is composed of the hard aragonite phase and soft organic materials. The 

hard mineral aragonite offers remarkable strength which can provide resistance to penetration from 

external impact, while it would be brittle if local high stresses cannot be relieved. The soft organic 

phase addresses this issue, acting like a lubricant by allowing some movement between the 

platelets, and provides toughness 10. The principal toughening mechanisms in nacre are crack 

bridging and the resulting ‘pull-out’ of mineral bricks and aided by viscoelastic energy dissipation 
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in the organic layer (Figure 1.2) 11. With the aid of the mechanism, nacre exhibits three orders of 

magnitude higher toughness than aragonite. 

 

Figure 1. 1 Schematic of the molluscan shell anatomy 12. 

  

                            (a)                                          (b)                                           (c) 

Figure 1. 2 The toughening mechanisms: (a) mineral bridge; (b) nano-asperities; (c) organic glue 10. 

Bone is another fine example of damage-tolerant material design in nature. The lamellar 

structure at the microscopic scale of bone is somewhat similar to nacre and consists of a soft 

collagen matrix and hard hydroxyapatite crystals. The macroscale arrangement of bone involves 

both compact bone at the surface and spongy bone in the interior. Compact bone is composed of 

osteons and Haversian canals, which surround blood vessels. Osteons have a lamellar structure, 

with individual lamellae consisting of fibrils arranged in geometrical patterns. The fibrils comprise 

organic (mainly type I collagen) phases and inorganic (mostly carbonated hydroxyapatite) (Figure 

1.3) 11,13,14. Carbonated hydroxyapatite crystals periodically deposit within the gap zones of 

collage. Fracture resistance of bone can be divided into two categories: intrinsic mechanisms that 

enhance ductility and extrinsic mechanisms that serve to protect against the growth of cracks 15. 

The intrinsic toughening mechanism operates ahead of the crack tip and involves various features 
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ranging from atomic to nanoscale, such as molecular uncoiling, fibrillar sliding, and 

microcracking. On the other hand, the extrinsic toughening mechanisms are situated behind the 

crack tip and include fibril bridging, crack deflection, and twisting. As a result, the fracture 

toughness of bone is nearly ten times greater than that of its individual hydroxyapatite phase 16. 

 

Figure 1. 3 Scheme showing the hierarchical organization of bone from the macro- to the nanoscale 

11,13,14. 

The main mechanical function of these hierarchical arrangements is to produce interfaces that 

will open up in the presence of potentially dangerous cracks, deflecting the cracks and making 

their travel energetically expensive 17. This makes biomaterials facilitates efficient high-energy 

dissipation and fracture resistance 18-20. With their excellent mechanical performance, biomaterials 

have opened a way to inspire new designs for hierarchical composite materials. 

1.1.2 Multiphysical functionality 

Biomaterials are sophisticated and highly dynamic systems. Their multifunctional 

microenvironments instruct cellular behavior via a complex interplay of multiple biochemical and 

physical cues from the specific extracellular matrix 21. Despite the diverse extracellular matrix of 

biological materials, there is a common feature that almost all the biomaterials exhibit piezoelectric 

properties 17. For example, by weight, bone is nearly composed of 70% hydroxyapatite and 30% 

collagen fibrils 22. These two inorganic and organic materials are the main reason responsible for 
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the piezoelectricity of bone. Once collagen undergoes fracture, bone exhibits piezoelectric 

properties. As shown in Figure 1.4, a mechanical strain generates electric fields in the collagen. 

Generally, the compression area of bone forms electronegative potential, whereas electropositive 

potential is developed where tensile force is experienced.  

 

Figure 1. 4 Positive piezoelectric effect of collagen 23. 

Due to the piezoelectric property of collagen, it play an important role in the process of bone 

healing. Through electrostatic forces, collagen induces conformational changes, stimulating 

migration, proliferation and differentiation of bone forming (osteoblasts, osteoclasts, and 

osteocytes) and progenitor cells (Figure 1.5) 24-26. Except the piezoelectricity, heat can also 

accelerate osteogenesis directly by increasing the metabolic rate of osteoblasts, and indirectly, by 

producing vasodilation and thus increasing the local circulating blood volume (Figure 1.5) 27. 

 

Figure 1. 5 Multiphysical stimulus in bone healing engineering 27. 

Overall, biomaterials have the fascinating self-healing property due to their multiphyscial 
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functional performance, and achieve an ideal combination of light weight, high strength, and high 

toughness owing to their hierarchical structure 28. All these merits inspire biomimetic materials to 

become the newest design concept of functional composites. 

1.2 Significance 

Benefited from advances in 3D printing, the fabrication of microstructures with arbitrary 

geometry has become possible and the study of biomimetic composite has been promoted 

significantly in recent years. With the rapid development of high-speed trains, planes and 

spacecraft, the security of the components has become the critical challenge to engineers. Because 

cyclic loads often cause structure failure, higher strength and fatigue resistance are the main goals 

for failure prevention in component design. The secret of excellent protective performance of 

nature lies in its sophisticated hierarchical “brick and mortar” architecture, which leads to superior 

crack resistance by simultaneous activation of multiple mechanisms ranging from 

nanoscopic/microscopic to macroscopic scales that resist crack propagation 29,30. To this end, in 

pursuit of exceptional improvements in fatigue resistance, engineers were inspired to mimic such 

hierarchical brick-and-mortar structure in order to replace traditional engineering materials, such 

as alloys, plastics, and ceramics to achieve higher mechanical performance. Inspired from bone 

(Figure 1.6 (a)), engineers explored the hierarchical multiphase steels, which were composed of 

the hard martensite phase and the soft metastable austenite phase. The steels show the superior 

crack resistance by simultaneous activation of multiple micromechanisms 31. The outstanding 

lightweight and strong properties of hierarchical structure also serve as the basis for the design of 

armor. Recently, a nacre-inspired hierarchical structure of helmet was presented (Figure 1.6 (b)), 

whose reinforcements of graphene nanoplatelets (GNs) act as bricks with the polymer matrix in 

between as mortar. The helmet shows lightweight property while exhibiting comparable specific 
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fracture toughness and strength to the natural nacre 32. These biomimetic composites also exhibit 

potential applications in other fields including electric cables, fire-retardant materials, gas barriers, 

nanogenerators, and supercapacitors 33-37. 

 

                                    (a)                                                                       (b) 

Figure 1. 6 Biomimetic composites applications of lightweight and strong properties: (a) Bone-inspired 

steel 31; (b) Nacre-inspired helmet 32. 

Facing more complex service conditions, the demand for better mechanical property of 

component become intense, and materials are even developed to achieve self-adaptable and self-

recoverable performance under external stimuli. The multiphysical functional property of 

biomaterials inspires alternative approaches to solving challenging design problems. A water 

vapor response sensor was fabricated according to multilayer photonic crystal structures on the 

body surface of damselfish (Figure 7 (a)). The hybrid one-dimensional photonic crystal sensor was 

prepared by alternating thin films of titania and polymer (2‐hydroxyethyl methacrylate‐co‐glycidyl 

methacrylate) 38. Due to the response of soft polymer to water vapor, the sensor possesses fast 

water-vapor responsiveness and reversible full-color switching. The deformation of hard materials 

on or inside the soft matrix can also be used to control the surface morphology 39,40. Tissue 

engineering uses the piezoelectric properties of biomaterials to repair or replace damaged, 



 
Chapter 1. Introduction 

 

7 
 

malfunctional organs and tissues through regeneration. Electrotherapy is commonly used in bone 

healing, whose aim is forming the electric potential, and then induce migration, attachment and 

activity of bone-forming cells in the damaged parts. Figure 1.7 (b) shows the piezoelectric 

nanofilms on strontium titanate implants which generate a constant built-in electropositive field 

and strongly interact with the electronegative potential of bone. This stimulation strategy was 

employed in triggering bone healing in rat femoral defects 41,42.  

 

                                    (a)                                                                       (b) 

Figure 1. 7 Bio-inspired materials smart applications of piezoelectric performance: (a) Water vapor 

response sensor 38; (b) Self-healing engineering 42. 

The mechanical and piezoelectric performances of the biomaterials will inevitably be 

degraded once cracking happens. Especially, the brick-and-soft hierarchical structure of 

biomaterials will amplify the responses to the external stimuli 43-45, which will trigger the formation 

of crack and promote crack propagation. Even in the lifetime of biomaterials, different 

environments will inevitably occur simultaneously. Therefore, the fracture performance of 

different hierarchical structures under multi-physical stimuli demands prompt solutions in the 

design process.
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Chapter 2  

Motivation and Objectives 

2.1 Motivation 

When designing biomimetic materials, two factors are critical: hierarchical structure and 

multiphysical functional properties, which are the main motivation of the present work. 

2.1.1 Structural design 

Inspired from the hierarchical structure observed in biological materials, biomimetic 

materials are composed of two distinct components: soft material and hard material. Benefit from 

the developments of 3D printing technology and computer simulation software, it is easy to build 

various hierarchical specimens and the mechanical properties can be obtained by various test 

methods, such as tensile test, bending test, ductility test and so on. For example, to reveal the 

underlying toughness-microstructure relationship, four bioinspired material microstructures are 

investigated under tensile test, including the brick-and-mortar, cross-lamellar, concentric 

hexagonal, and rotating plywood microstructures (Figure 2.1). Results show that the brick-and-

mortar structure displays the maximum load of failure. Its work of fracture per mass is 14 times 

greater than the single hard phase, making it both tough and strong. Moreover, the rotating 

plywood structure exhibits the 17 times the work of fracture per mass, but less maximum load of 

failure compared to the hard phase. Similarly, the concentric hexagonal structure shows the 

toughness improved by 15 times but weak in strength. Compared to the above structures, the cross 
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lamellar structure shows relatively small toughness improvements, because the cracks are 

constrained to the interface, leading to a relatively small fracture processing zone. 

 

Figure 2. 1 Biomimetic microstructure with different unit element 24. 

To expose the effect of soft and hard phases of brick-and-mortar microstructure on the 

mechanical properties of biomimetic materials, based on the 2D elasticity theory, the effect of the 

hierarchical size on the stress and strain response has been analyzed (Figure 2.2). Results showed 

that the stress concentration decreases very fast with increasing protein (soft phase) thickness 46,47 

and the smaller the aspect ratio of the mineral (hard phase), the more uniform the distribution of 

shear stress is at the mineral–protein interface 48. All these results on bi-material composites have 

implications on the design of gradient materials that could guide the deflection of the crack when 

the whole structure is threatened by potential fracture. 

 

Figure 2. 2 Hierarchical size of brick-and-mortar microstructure. 
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On the other hand, the feature sizes of these microstructures are controlled to be functionally 

graded, providing better pictures of how crack resistance interacts with heterogeneity. In 

functionally graded models, some or all properties of material change along one direction with 

several gradation laws (Figure 2.3). The most common FGMs are formulated along z-coordinate        

 

                                          (a)                                                                 (b) 

Figure 2. 3 Several laws of functionally graded model: (a) Electroelastic properties 49; (b) Elastic 

properties 50. 

and refer to the thickness of the material. The following models are widely used in Young’s 

modulus. The indices "t" and "b", used in the following gradient models, represent the top and the 

bottom face, respectively. 

 

(1) Reuss Material Model 

Reuss 51 assumed Young’s modulus E, is a function E(z) of coordinate z, which is represented 

as 52. 

𝐸(𝑧) =
𝐸 𝐸

𝐸 (1 − 𝑉 ) + 𝐸 𝑉
                                                        (2.1) 

where 𝑉  is the volume fraction of the top material and it is calculated by the relation (2.2). 
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𝑉 = (0.5 + 𝑧/ℎ)                                                                  (2.2) 

in equations (2.1) and (2.2), the coordinate "z" represents the position of a point along the thickness 

of the material, "h" denotes the material thickness, and "k" stands for the exponential coefficient, 

which can take various values.  

(2) Local Representative Volume Element Mode 

The Local Representative Volume Element Mode (LRVE) 52 is applicable to length scales 

that are significantly larger than the characteristic length scale of individual component particles 

but still smaller than the characteristic length scale of a macroscopic specimen. 

𝐸(𝑧) = 𝐸 1 +
𝑉

𝐹𝐸 − 𝑉
                                                       (2.3) 

𝐹𝐸 =
𝐸 𝐸

1 − 𝐸 /𝐸
                                                               (2.4) 

The LRVE model relies on the assumption that the microstructure of the heterogeneous 

material is well-known. The primary input parameter consists of the average volume or the overall 

average of the microstructure descriptors. 

(3) Mori-Tanaka Material Model 

In this model 53, the heterogeneous material of functionally graded material is conceptualized 

as a composite composed of two materials, wherein one is consolidated by randomly distributed 

spherical particles of the other material. 

𝐸(𝑧) = 𝐸 + (𝐸 − 𝐸 )
𝑉

1 + (1 − 𝑉 )(𝐸 /𝐸 − 1)(1 + 𝜈)/[3(1 − 𝜈)]
        (2.5) 
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Typically, the Poisson's ratio (ν) exhibits a small variation 54, leading to a minor impact on 

FGM behavior 55. Therefore, in this model, the Poisson's ratio is assumed to remain constant. 

(4) Power Law Material Model 

Power law material model 56,57 is used for the description and obtaining of the properties and 

in the development of the calculations regarding the deformations and stresses, which is expressed 

as 

𝐸(𝑧) = 𝐸 (𝐸 − 𝐸 )(0.5 + 𝑧/ℎ)                                          (2.6) 

(5) Exponential Material Model 

The exponential material model is the most used and simplest one in the construction of 

functionally graded materials.  

𝐸(𝑧) = 𝐸 𝑒                                                                (2.7) 

Relying on the exponential, functionally gradient model, mechanical parameters, like stress 

intensity factors 58, fracture toughness 59, deflection 60 and crack growth resistance behavior 61 and 

the effects of gradient direction 62 and degree 63, crack position 64 and numbers 65 on all of the 

above parameters were extensively investigated. 

2.1.2 Multiphysical behavior 

The replications in the multiphysical functionality of biomaterial can be filled by the 

incorporation of smart materials in biomimetic materials. Smart materials are distinguished by 

their ability to reverse, change, or generate a response from external stimuli in their environment 

66,67. Among the available smart materials, piezoelectric materials are widely utilized to mimic 



 
Chapter 2. Motivation and Objectives 

 

13 
 

biomaterials because of their ability to exhibit electromechanical responsivity to an external 

stimulus in either a direct or converse piezoelectric configuration 23, which is similar to the natural 

extracellular matrix. The piezoelectric constitutive equations in the stress-charge form are: 

𝝈𝒊𝒋 = 𝑪𝒊𝒋𝒌𝒍𝜺𝒌𝒍 − 𝒆𝒌𝒊𝒋𝑬𝒌

𝑫𝒊 = 𝒆𝒊𝒌𝒍𝜺𝒌𝒍 + 𝝐𝒊𝒌𝑬𝒌
                                                        (2.8)   

where i, j, k, l = 1, 2, 3. Terms 𝝈𝒊𝒋, 𝑫𝒊, 𝜺𝒌𝒍 and 𝑬𝒌 are, respectively, components of the mechanical 

stress tensor, components of the electric displacement, components of the mechanical strain tensor, 

and components of the electric field vector. The terms 𝑪𝒊𝒋𝒌𝒍 , 𝒆𝒌𝒊𝒋  and 𝝐𝒊𝒋  represent the elastic, 

piezoelectric and dielectric coefficients, respectively. 

The components of the strain tensor 𝜺𝒌𝒍 are defined by 

𝜺𝒌𝒍 =
1

2
𝒖𝒌,𝒍 + 𝒖𝒍,𝒌                                                          (2.9) 

where 𝒖𝒍 and 𝒖𝒌 are the components of the displacement vector, and 𝒖𝒌,𝒍 = 𝜕𝒖𝒌/𝜕𝒙𝒍. 

The electric field inside the medium is described by Maxwell’s equations, which relate the 

fields to the microscopic average properties of the material. When the quasistatic approximation 

is introduced 68, the electric field is derivable from a scalar electric potential: 

𝑬𝒌 = −𝝓,𝒌                                                               (2.10) 

where 𝝓,𝒌 is the electric potential. The following Maxwell’s equation is defined by 

𝑫𝒊,𝒊 = 0                                                                   (2.11) 

Without body forces, the equation of motion for a piezoelectric material is 
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𝝈𝒊𝒋 = 𝜌�̈�                                                                 (2.12) 

where 𝜌 represents the density of piezoelectric material, �̈� = 𝜕 𝒖𝒌/𝜕𝑡  , and t is the time. 

It is worth noting that the piezoelectric effect of bone under ultrasound irradiation was 

numerically simulated using the piezoelectric constitutive equations Eq. (2.8) 69, and the results 

were proven with the experiments. 

To mimic the thermal response of biological material, the temperature change term 𝑇  is 

introduced in the piezoelectric constitutive equation 70. 

𝝈𝒊𝒋 = 𝑪𝒊𝒋𝒌𝒍𝜺𝒌𝒍 − 𝒆𝒌𝒊𝒋𝑬𝒌 − 𝜷𝒊𝒋𝑇

𝑫𝒊 = 𝒆𝒊𝒋𝒌𝜺𝒋𝒌 + 𝝐𝒊𝒋𝑬𝒋 + 𝜸𝒊𝑇
                                      (2.13)   

where 𝜷𝒊𝒋  and 𝜸𝒊  are thermal stress and pyroelectric coefficients. For solving temperature 

difference T, in most classical engineering problems with the macro spatial and temporal scales, 

the Fourier Law is taken 

𝒒(𝑥, 𝑡) = −𝑘∇𝑇(𝑥, 𝑡)                                                (2.14) 

where q is the heat flux vector, x is the position vector, and k is the thermal conductivity. When 

the inner heat source is negligible, the conservation of local energy is expressed by: 

−∇ ∙ 𝒒 = 𝜌𝑐
𝜕𝑇

𝜕𝑡
                                                        (2.15)  

where 𝑐  is the specific heat.  

With aid of thermal piezoelectric constitutive equations Eq. (2.15), the thermal stresses at the 

tip of an interface crack between a brick-and-mortar coating and a substrate were discussed 71. 
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Clearly from Figure 2.4, for cooling condition, the crack was opened; by contrast, when 

temperature went higher, the coating was stretched along the substrate. 

          

(a) Cracked brick-and-mortar structure                      (b) residual stress near the crack tip 

Figure 2. 4 Effect of temperature changes on residual stress near the crack tip 71. 

Based on Fourier heat conduction, more environmental parameters are introduced into the 

piezoelectric constitutive equations to help researchers study the effect of multiphysical functional 

properties of biomaterials. For example, the constitutive equations for hygro-thermo-magneto-

electro-elastic piezoelectric materials are defined as follows 72,73 

𝝈𝒊𝒋 = 𝑪𝒊𝒋𝒌𝒍𝜺𝒌𝒍 − 𝒆𝒌𝒊𝒋𝑬𝒌 − 𝜷𝒊𝒋𝑇 − 𝒅𝒌𝒊𝒋𝑯𝒌 − 𝝃𝒊𝒋𝑚

𝑫𝒊 = 𝒆𝒊𝒋𝒌𝜺𝒋𝒌 + 𝝐𝒊𝒋𝑬𝒋 + 𝜸𝒊𝑇 + 𝒈𝒊𝒋𝑯𝒋 + 𝝌𝒊𝑚

𝑩𝒊 = 𝒅𝒊𝒋𝒌𝜺𝒋𝒌 + 𝒈𝒊𝒋𝑬𝒋 + 𝝉𝒊𝑇 + 𝝁𝒊𝒋𝑯𝒋 + 𝝊𝒊𝑚

                       (2.16)   

in which 𝑩𝒊 , 𝑯𝒌 and 𝑚 are the magnetic induction, magnetic field and moisture concentration 

change, respectively; 𝒅𝒌𝒊𝒋 , 𝝃𝒊𝒋  , 𝒈𝒊𝒋 , 𝝌𝒊 , 𝝁𝒊𝒋 , 𝝉𝒊  and 𝝊𝒊  are, respectively, the piezomagnetic, 

hygroscopic stress, electromagnetic, hygroelectric, magnetic permeability, pyromagnetic and 

hygromaganetic coefficients.  

Same with electric field, the magnetic field inside of the medium also described by Maxwell’s 

equations where the magnetic field is derivable from a scalar magnetic potential: 

𝑯𝒌 = −𝚿,𝒌 
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where 𝚿,𝒌 is the magnetic potential. The following Maxwell’s equation is defined 

𝑩𝒊,𝒊 = 0                                                                (2.17) 

For solving the moisture concentration change m, based on the Fick’s law is defined as 

𝒒(𝑴)(𝑥, 𝑡) = −𝐷∇𝑚(𝑥, 𝑡)                                                   (2.18) 

where 𝒒(𝑴) is the moisture flux vector, 𝐷 is the moisture diffusion coefficient. When the inner 

moisture source is negligible, the conservation law for the mass of moisture, equivalent to energy 

conservation for temperature, is given by 

−∇ ∙ 𝒒(𝑴) =
𝜕𝑚

𝜕𝑡
                                                            (2.19) 

 Extracting corresponding fields from Eq. (2.16), Jin and Feng 74 used the integral equation 

techniques to obtain the thermal stress-intensity factors at the crack-tips, finding that the graded 

coating has higher thermal fracture toughness than the homogeneous coating. Ueda et al. 75,76 gave 

a thermal shock at the top surface of the hierarchical, functionally graded piezoelectric material 

(FGPM) and obtained the thermal stress intensity factors. Meanwhile, electro-thermal 77, magneto-

thermal 78, hygro-thermal 79, magneto-electro-thermal 80, hygro-electro-thermal 81, hygro-

magneto-electro-thermal 82 fracture models for functional materials were built. 

2.1.3 Fracture criteria 

In order to evaluate the fracture properties of biomimetic materials, a variety of theoretical 

fracture criteria was proposed. 
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(1) Interface damage model 

Based on fracture mechanics theory, Qin and Zhang 83 and He and Hutchinson 84 proposed 

the interface damage models between dissimilar materials, relying on the ratio of the energy release 

rate for penetrating the interface and for deflecting into the interface, 𝐺 /𝐺 , and the ratio of the 

mode I toughness of the material of branch to the interface toughness, Γ /Γ . Concretely if 

𝐺

𝐺
>

Γ

Γ
                                                                     (2.20) 

the impinging crack is likely to penetrate the interface, Conversely, the crack will tend to be 

deflected into the interface when the inequality is reversed. During crack propagation, usually, 

deflecting crack can dissipates much more energy and be terminated easier than a straight crack, 

so as to efficiently avoid the overall failure. Through the competition between deflection and 

penetration using the maximum energy release rate criterion, if a crack propagates from a soft 

material toward a hard material, the driving force at the crack tip will be reduced significantly, 

which plays an essential role in toughening the heterogeneous materials 85-87.  

(2) Stress intensity factor 

In fracture mechanics, the stress intensity factor K is used to predict the stress state near the 

tip of crack. A crack subjected to any arbitrary loading could be resolved into three types of linearly 

independent cracking modes as shown in Figure 2.5 88: 
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Figure 2. 5 Effect of temperature changes on residual stress near the crack tip. 

Mode I refers to an opening (tensile) mode where the crack surfaces move directly away from 

each other. Mode II is a sliding (in-plane shear) mode where the crack surfaces slide over each 

other in a direction perpendicular to the leading edge of the crack. Mode III is a tearing (antiplane 

shear) mode where the crack surfaces move relative to each other and parallel to the leading edge 

of the crack. The stress intensity factor for each mode is denoted by different subscripts. KI 

represents the stress intensity factor for mode I, which applies to the crack opening mode. KII 

denotes the mode II stress intensity factor, relevant to the crack sliding mode. Lastly, KIII represents 

the mode III stress intensity factor, applicable to the tearing mode. These factors are precisely 

defined as follows 89 

𝐾 = lim
→

√2𝜋𝑟𝜎 (𝑟, 0)

𝐾 = lim
→

√2𝜋𝑟𝜎 (𝑟, 0)

𝐾 = lim
→

√2𝜋𝑟𝜎 (𝑟, 0)

                                            (2.21) 

For piezoelectric material, like stress intensity factors, electric displacement intensity factor 

is defined as 90 

𝐾 = lim
→

√2𝜋𝑟𝐷(𝑟, 0)                                                  (2.22) 
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The sign of intensity factors in fracture mechanics provides information about the nature and 

direction of the stresses and deformations near the crack tip. For KI, positive values indicate 

conditions that promote crack propagation, while negative values indicate conditions that hinder 

crack growth or maintain crack stability. The sign of stress intensity factors, KII, KIII, and KD, 

indicates the direction of the stresses and deformations near the crack tip, while larger magnitudes 

are more likely to promote crack propagation. 

(3) Energy release rate 

A generalized fracture criterion for piezoelectric material requires the establishment of a 

unified theory encompassing mixed mode behavior. Assuming that under applied loadings the 

crack tip advances along the crack plane from 𝑥 = 𝑎  to 𝑥 = 𝑎 + 𝛿  (𝛿 ≪ 𝑎), then the energy 

release rate at the crack tip 𝑥 = 𝑎 per unit length during this process is 91,92 

𝐺 = lim
→

1

2
𝜎 (𝑟, 0)𝑢(𝛿 − 𝑟) + 𝜎 (𝑟, 0)𝑤(𝛿 − 𝑟) + 𝜎 (𝑟, 0)𝑤(𝛿 − 𝑟) + 𝐷(𝑟, 0)𝜑(𝛿 − 𝑟) 𝑑𝑟 

𝐺 =
1

4
{𝐾} 𝐋 {𝐾}                                                                 (2.23) 

where 𝑢, 𝑣, 𝑤 𝑎𝑛𝑑 𝜑 represent the displacements along the 

respective stress and electric displacement directions. {𝐾} =

{𝐾 𝐾 𝐾 𝐾 } . The greater the energy release rate, 

the higher the risk of crack propagation.                                                   

      Figure 2. 6 Coordinate near the crack tip. 
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(4) Critical intensity factor 

However, the energy release rate suffers from a theoretical limitation as it neglects the 

electrical term, as pointed out by Gao et al 93. They argue that the mechanical term is not 

fundamentally distinct from the electrical term since both are influenced by electromagnetic forces. 

To solve this problem, the critical intensity factor was proposed which defined by 

𝐾 =𝐾 +
(𝐋 )[ , ]

(𝐋 )[ , ]
𝐾                                                       (2.24) 

For piezoelectric material, the coefficient of KD in Eq. (2.24), i.e. [ , ]

( )[ , ]
, is positive. This 

implies that a positive electric field will generate tensile stress, leading to increased crack growth, 

which aligns with the experimental findings of Pak and Sun 94. 

2.2 Challenges 

The current state of research in structure design primarily focuses on single mechanical tests. 

However, for biomimetic materials to be reliably developed, a comprehensive consideration of 

their functional properties is imperative as well. Especially for complex configurations, the phase 

arrangement choice will highly depend on the physical environments.  

In the context of functional properties, all the bioheat conduction equations used in assessing 

multiphysical environment-induced damage in biological materials are based on the classical 

Fourier heat conduction law, assuming an infinite speed of thermal disturbance propagation. 

Nevertheless, Kaminski 95, Rastegar 96, and Mitra et al. 97 proved that for biomaterials with 

heterogeneous microstructures, the heat flux equilibrates to the imposed temperature gradient via 

a relaxation phenomenon characterized by a thermal characteristic (relaxation) time. To describe 
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thermal transport more accurately in biomaterials, the thermal relaxation effect 98 has been 

incorporated into the classical heat conduction equations 95-97 and bioheat conduction equations 99-

103. Lately, Banerjee and his colleagues 104 have demonstrated experimentally and theoretically 

that the hyperbolic heat conduction equation is more accurate than the parabolic heat conduction 

equation for both short-pulse and continuous-wave laser irradiations when modeling temperature 

response in biomaterials. 

(1) Hyperbolic heat conduction 

The thermal wave equation of hyperbolic type was proposed by Cattaneo and Vernotte, taking 

into account “inertia” of the heat transfer process 105,106 

𝒒(𝑥, 𝑡) + 𝜏
𝜕𝒒(𝑥, 𝑡)

𝜕𝑡
= −𝑘∇𝑇(𝑥, 𝑡)                                       (2.25) 

where 𝜏  is a relaxation time depending on material properties, and the finite thermal wave speed 

can be calculated as 𝑠 =  , where 𝑘 is  the thermal conductivity, 𝜌 is the mass density, and 

𝑐  is the specific heat capacity. When 𝜏  equals zero, the thermal wave speed will be infinite, and 

Eq. (2.25) is transformed to the classical Fourier’s Law Eq. (2.14). 

(2) Dual-phase-lag heat conduction 

In addition, heat conduction in two-phase-systems of biomaterials shows deviation from 

classical Fourier’s law. Researchers 107,108 applied energy conservation and Fourier’s law to the 

two-phase-biosystems suffering non-thermal equilibrium and found that the heat conduction in 

two-phase-biosystems was equivalent to dual-phase-lag heat conduction, which is defined as 109 
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𝒒 𝑥, 𝑡 + 𝜏 = −𝑘∇𝑇(𝑥, 𝑡 + 𝜏 )                                       (2.26) 

where 𝒒 is heat flux, 𝑘 is thermal conductivity, T is temperature, and 𝜏  and 𝜏  are the time lags 

of heat flux and temperature gradient respectively. When 𝜏 > 𝜏  , the first order approximation 

of Eq. (2.26) is hyperbolic type and thermal waves will be generated, while when 𝜏 < 𝜏 , it will 

become parabolic type without thermal waves. 

(3) Fractional heat conduction 

Lately, the fractional thermal wave bioheat transfer equation has been widely used in 

biological tissue 110-114. Different from the integer order, the time fractional differential is 

characterized by its nonlocal property and memory effect, which implies the next state of a system 

depends on both the current input as well as the historical states, as illustrated by 

𝒒(𝑥, 𝑡) +
𝜏

𝛼!

𝜕 𝒒(𝑥, 𝑡)

𝜕𝑡
= −𝑘∇𝑇(𝑥, 𝑡)                                 (2.27) 

where 

𝜕 𝑓(𝑥, 𝑡)

𝜕𝑡
=

⎩
⎪
⎨

⎪
⎧ 1

Γ(1 − 𝛼)
(𝑡 − 𝜏)

𝜕𝑓(𝑥, 𝜏)

𝜕𝜏
𝑑𝜏 0 < 𝛼 < 1

𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
𝛼 = 1

 

Using the fractional time derivative, many biological processes have been successfully 

modeled. Ezzat and colleagues 115,116 introduced a novel fractional bio-heat model using the 

fractional heat conduction equation. Ghanmi and Abbas 117 examined fractional transient heating 

occurring within skin tissue due to the movement of a heat source. Mondal et al. 118 explored 

transient heating within skin tissue resulting from time-dependent thermal therapy, within the 
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framework of a heat transport law characterized by memory-dependent behavior. Caponetto and 

his associates 119 further experimentally demonstrated the reliability of enhanced fractional heat 

conduction theory, and find the fractional order is a powerful characteristic parameter for 

heterogeneous materials. 

For multiphysical behavior of biomaterials, non-Fourier thermal damage analysis becomes a 

challenging topic, especially when temperature, electric field, moisture and mechanical loading 

are coupled simultaneously. Until now, there are still gaps in the non-Fourier thermal damage 

study of biomimetic materials in multiphysical environment, and how to select the appropriate 

material configuration for different multiphysical fields is another challenge. 

2.3 Objectives and Methods 

The objective of the thesis is to build the non-Fourier multiphysical model and guide the 

hierarchical structural design under different physics. To achieve the goal, three tasks need to be 

tackled: 

(1) Establishment of multiphysical piezoelectric fracture model based on non-Fourier heat 

conduction. 

(2) Implementation of heterogeneous microstructure in fracture prediction of biomimetic 

materials. 

(3) Construction of non-Fourier multiphysical piezoelectric model for fracture analysis of 

hierarchical microstructures. 

The main theoretical methods of integral transform and singular integral equations are 

employed to deal with the governing equations of both the transient thermal fields and dynamic 

stress and electric fields. In order to solve the non-Fourier thermo-electromechanical problems in 
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cracked media, Fourier transform is utilized to convert the partial differential equations to ordinary 

differential equations, while Laplace transform is used to eliminate time dependence and analyze 

the mathematical problem in the Laplace domain. By incorporating corresponding boundary 

conditions, the problems are eventually reduced to singular integral equations and then solved 

numerically to reveal the singularity of thermoelectromechanical response around the cracks. 

2.4 Structure of the thesis 

The thesis is structured around the three major tasks, particularly on fracture analysis of 

biomimetic composite materials and structures under multiphysical loading. Nonlinear coupling 

field and crack properties are explored in the framework of non-Fourier model. 

In chapter 3, the non-Fourier, fractional heat conduction equation is introduced in the thermal 

analysis of a homogenous cracked piezoelectric strip to reflect the influence of thermal waves on 

the thermoelectric, fracture behavior of biomimetic materials under thermal and electrical shock 

loadings. In chapter 4, the simulation of hierarchical microstructure in biomimetic materials is 

effectively realized through the implementation of the functional gradation method and verified 

by experimental and numerical results under single tensile load. The thermal stress and fracture 

prediction of different gradations are compared with each other under transient thermal and stress 

loadings. In chapter 5, the comprehensive thermo-electromechanical analysis is conducted for 

functionally graded microstructures. The optimal gradation configuration and design guidelines 

for graded microstructures under various fields are provided. In chapter 6, the results of non-

Fourier multiphysical models are verified by finite element simulations using COMSOL 

Multiphysics software. The non-Fourier heat conduction model is achieved in the numerical work. 
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Finally, chapter 7 provides conclusions and some perspectives for future work. A detailed flow 

chart is presented below to elucidate the structure in a clearer manner: 

            

                Figure 2. 7 Structure of the thesis.
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Chapter 3  

Dynamic response of a cracked thermopiezoelectric 

strip under thermoelectric loading using fractional 

heat conduction 

Piezoelectric materials are a class of smart materials widely used in biomimetic engineering 

because of their ability to consistently exhibit reproducible and stable electromechanical responses 

when subjected to electrical or mechanical stimuli, which is similar to the biological materials. 

This chapter simplifies the materials into homogeneity and employs the constitutive equations of 

piezoelectric materials to mathematically model the dynamic multiphysical behavior of 

biomimetic materials. With the aid of fractional heat conduction equation and Maxwell’s 

equations, we analyze the effects of temperature and electrical disturbances on the stress-electric 

displacement intensity factors. The results reveal that, with the longer relaxation time and higher 

fractional order, the overshooting phenomenon would be more evident, while the wave behavior 

becomes weaker and stronger, respectively. There are apparent inflection points on the dynamic 

stress intensity factors (DSIFs) and the dynamic electric displacement intensity factor (DEDF) 

curves for different configurations of the strip and the coefficients of the heat conduction model. 

In addition, the stress intensity factors are insensitive to the electric load which has a dominant 

influence on the electric displacement intensity factor. 
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3.1 Introduction 

Smart materials can achieve self-adaptable and self-recoverable performance by responding 

to external stimuli, such as stress, moisture, temperature, electricity, and much more 120-122, and 

have already found applications in the aerospace, automotive, and many other industries. As a 

typical smart material, piezoelectric material exhibits high sensitivity and excellent electrical 

insulating properties and has been widely used in bioengineering applications 120,121,123. 

Piezoelectric materials can convert the electric signals into physical deformation, and an 

applied deformation can also generate an electric current in the piezoelectric material. Most 

piezoelectric materials are brittle and susceptible to cracking, particularly when they are exposed 

to extremely high or low temperatures. Therefore, many researchers devoted to the thermal fracture 

analysis of piezoelectric materials. Ueda et al. 76,124 gave a transient heat conduction analysis of 

the piezoelectric strip with a parallel or perpendicular crack. Wang et al. 19,94 derived a general 

solution for a penny-shaped crack in piezoelectric materials subjected to a uniform or transient 

heat flow. Arani et al. 125 studied thermo-electro-mechanical behaviors of the piezoelectric rotating 

shaft. Until now, the fracture behavior of piezoelectric materials under different thermal loading 

conditions has been investigated by many researchers 126-131. 

It is worth noting that all the above studies were based on the classical Fourier heat conduction 

law, which allows thermal disturbance to spread at an infinite speed. However, the process of 

establishment of thermal equilibrium needs a certain period of time. To fix this defect, researchers 

introduced the non-Fourier heat conduction model, which considers the relaxation time of thermal 

disturbance 132-136. Hu and Chen 137 employed the hyperbolic heat conduction theory to check the 

thermoelastic performance of a cracked strip, whose results showed the hyperbolic heat conduction 
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model gives more conservative results than the Fourier model. Zhou et al. 138 analyzed a 

functionally graded piezoelectric strip by hyperbolic heat conduction and compared the results 

with the Fourier heat conduction model. It showed that the contact stress and surface heat flow 

reach their peak values later based on the non-Fourier theory than the Fourier theory. Mondal et 

al. 139 dealt with the transient behavior of a magnetic-piezoelastic half-space through the dual-

phase-lag heat conduction model. They found the new model presents a much better prediction 

than the Fourier heat conduction. Wang and Li 140 adopted the hyperbolic, non-Fourier heat 

conduction to study the mechanics of a finite piezoelectric layer with a Griffith cracked under 

thermal loading. They pointed out that the non-Fourier effect became significant on a small length 

scale.  

In the most previous work, the historical states have not been taken into account. As a part of 

the non-Fourier theory, the fractional heat conduction model could describe the state of the system 

containing information about its past state 141-146. In the last few years, fractional calculus had been 

applied successfully in various material modeling to rebuild the physical processes 147-154. Ezzat 

and El Karamany 155,156 found the theory of electro-thermoelasticity with fractional derivative 

order can describe the behavior more realistically than the theory of integer order. Ma and He 157 

investigated the dynamic response of a one-dimensional, thermo-piezoelectric rod in the context 

of fractional order heat conduction theory. Results showed the effects of fractional order on the 

displacement, temperature and stress results. The researchers 158 further found the response of 

piezoelectric material becomes more expressive in transient conditions. 

From the above overview, there are not sufficient research about the effect of different 

fractional models and crack locations on the dynamic behaviors of piezoelectric material under 

multi-physical loading. Concerning the practical problem, the multi-physical field conditions need 
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to be investigated owing to the importance of engineering applications. In this paper, we 

investigate the dynamic response of an insulated crack in a piezoelectric strip under the in-plane 

normal thermal and electrical impacts. The problem is reduced to a system of singular integral 

equations that can be solved numerically. The numerical results indicate that the thermal-electrical 

loading combination and the configuration of the crack, as well as the thermal relaxation time and 

fractional order coefficients of the heat conduction model significantly affect such fracture 

parameters as the dynamic stress intensity factors and the dynamic electric displacement intensity 

factor. Especially, the electric displacement intensity factor shows the apparent dynamic response 

instead of the stress intensity factors for the electric load. And the dynamic intensity factors have 

obvious inflection points for the configuration of the crack and the coefficients of the heat 

conduction model considered. In conclusion, the result shows that we can adjust the variables of 

the heat conduction model to obtain the most reliable numerical results in commercial software 

according to the inflection points. 

3.2 Problem statement and basic equations 

Consider an infinite, transversely isotropic, piezoelectric strip of length ℎ = ℎ + ℎ  with a 

parallel insulated crack of width 2c, as shown in Figure 3.1. For convenience, a set of Cartesian 

coordinate system (𝑥, 𝑦, 𝑧) is attached to the center of the crack. 
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Figure 3. 1 A piezoelectric strip with an insulated crack under thermal-electric loading. 

As shown in Figure 3.1, a suddenly uniform thermal shock 𝑇 𝐻(𝑡) is applied on the lower 

edge, where 𝐻(𝑡) is the Heaviside step function, and t denotes time. The initial temperature of the 

whole plane is 𝑇 . A transient electric displacement 𝐷𝐻(𝑡) is applied in the positive z-direction. 

And the boundary condition at infinity in x-direction is taken to be zero. 

3.3 Fractional heat conduction equation 

For the temperature field, considering the relaxation time for the thermal shock, the fractional, 

non-Fourier heat conduction equation is: 

1 +
𝜏

𝛼!

𝜕

𝜕𝑡
𝑞 = −𝑘

𝜕𝑇

𝜕𝑥
 

1 +
𝜏

𝛼!

𝜕

𝜕𝑡
𝑞 = −𝑘

𝜕𝑇

𝜕𝑧

                              0 < 𝛼 < 1 (3.1) 

where 𝑞 , 𝑞  are the heat fluxes in the x- and y- directions, 𝑇  is the change of temperature; 𝑖 =

1,2 denote the field quantities in the upper (0 ≤ 𝑧 ≤ ℎ ) and lower (−ℎ ≤ 𝑧 ≤ 0) part of the 
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strip, respectively; 𝜏  is the thermal relaxation time, and 𝑘  and 𝑘  are the thermal conductivities 

in the x- and z-directions. The Caputo fractional derivative of order α is defined as: 

𝜕 𝑓

𝜕𝑡
=

⎩
⎪
⎨

⎪
⎧

1

Γ(1 − 𝛼)
(𝑡 − 𝜏)

𝜕𝑓

𝜕𝜏
𝑑𝜏                                   0 < 𝛼 < 1

𝜕𝑓

𝜕𝑡
                                                                                 𝛼 = 1 

(3.2) 

and Γ(∗) is the Gamma function. Combining with energy equation without heat resource: 

𝜌𝑐
𝜕𝑇  

𝜕𝑡
= −𝛻 ∙ 𝒒                                                                (3.3) 

where 𝜌 and 𝑐  are the mass density and the specific heat, finally, the non-Fourier fractional heat 

conduction equation becomes: 

1

𝛽
 

𝜕𝑇  

𝜕𝑡
+

𝜏

𝛼!

𝜕 𝑇  

𝜕𝑡
= 𝜅

𝜕 𝑇

𝜕𝑥
+

𝜕 𝑇

𝜕𝑧
                   0 < 𝛼 < 1 (3.4) 

where 𝑘 =  , and 𝛽 =   which is the thermal diffusivity.  

According to the problem considered, the thermal initial and boundary conditions in the time 

domain are: 

Initial condition: 

𝑇 (𝑥, 𝑧, 0) = 𝑇                                                                    (3.5) 

Assuming an insulating crack, then: 

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
= 0                       |𝑥| < 𝑐 (3.6 − 1) 
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And the heat flux and temperature along the extended line of crack is continuous. 

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
                         |𝑥| ≥ 𝑐 (3.6 − 2)

𝑇 (𝑥, 0, 𝑡) = 𝑇 (𝑥, 0, 𝑡) |𝑥| ≥ 𝑐 (3.6 − 3)

 

Boundary conditions at the edges: 

𝑇 (𝑥, ℎ , 𝑡) = 𝑇                 |𝑥| ≥ 0 (3.6 − 4)

𝑇 (𝑥, −ℎ , 𝑡) = 𝑇 + 𝑇 𝐻(𝑡)                      |𝑥| ≥ 0  (3.6 − 5)
 

3.4 Piezothermoelastic governing equation 

The corresponding constitutive relations of linear, transversely isotropic, piezoelectric strip 

for the elastic and electric field are: 

𝜎 = 𝑐
𝜕𝑢

𝜕𝑥
+ 𝑐

𝜕𝑢

𝜕𝑧
+ 𝑒

𝜕𝜙

𝜕𝑧
− 𝜆11𝑇                                      

𝜎 = 𝑐
𝜕𝑢

𝜕𝑥
+ 𝑐

𝜕𝑢

𝜕𝑧
+ 𝑒

𝜕𝜙

𝜕𝑧
− 𝜆33𝑇  

𝜎 = 𝑐
𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
+ 𝑒

𝜕𝜙

𝜕𝑥
(3.7)

𝐷 = 𝑒
𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
− 휀

𝜕𝜙

𝜕𝑥

𝐷 = 𝑒
𝜕𝑢

𝜕𝑥
+ 𝑒

𝜕𝑢

𝜕𝑧
− 휀

𝜕𝜙

𝜕𝑧
+ 𝑝 𝑇

 

in which 𝜎 , 𝜎 , 𝜎  and  𝐷 , 𝐷  are stress tensor and electric displacement components; 𝑢 , 

𝑢 , 𝜙  and 𝑇  are displacement in the x-direction, displacement in the z-direction, electric 
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potential and temperature change; 𝑐 , 𝑒 , 휀 , 𝜆  and 𝑝  are, respectively, elastic, piezoelectric, 

dielectric, thermal moduli and pyroelectric constants.  

As the strip is under a thermal shock loading, according to the dynamic equilibrium equation, 

the governing equations for the piezoelectric strip are: 

(𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕2

𝜕𝑡2
)𝑢 + (𝑐 + 𝑐 )

𝜕 𝑢

𝜕𝑥𝜕𝑧
+ (𝑒 + 𝑒 )

𝜕 𝜙

𝜕𝑥𝜕𝑧
= 𝜆

𝜕𝑇

𝜕𝑥

(𝑐 + 𝑐 )
𝜕 𝑢

𝜕𝑥𝜕𝑧
+ (𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕2

𝜕𝑡2
)𝑢 + 𝑒

𝜕 𝜙

𝜕𝑥
+ 𝑒

𝜕 𝜙

𝜕𝑧
= 𝜆

𝜕𝑇

𝜕𝑧
  (3.8)

(𝑒 + 𝑒 )
𝜕 𝑢

𝜕𝑥𝜕𝑧
+ (𝑒

𝜕

𝜕𝑥
+ 𝑒

𝜕

𝜕𝑧
)𝑢 − 휀

𝜕 𝜙

𝜕𝑥
− 휀

𝜕 𝜙

𝜕𝑧
= −𝑝

𝜕𝑇

𝜕𝑧
 

 

Then, the boundary conditions for the electromechanical field are: 

𝜎 (𝑥, 0, 𝑡) = 0                                   |𝑥| < 𝑐 (3.9 − 1)

𝜎 (𝑥, 0, 𝑡) = 0 |𝑥| < 𝑐 (3.9 − 2)

𝐷 (𝑥, 0, 𝑡) = 0 |𝑥| < 𝑐 (3.9 − 3)

 

𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡)                       |𝑥| ≥ 𝑐 (3.9 − 4)

𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡)                      |𝑥| ≥ 𝑐 (3.9 − 5)

𝐷 (𝑥, 0, 𝑡) = 𝐷 (𝑥, 0, 𝑡)                         |𝑥| ≥ 𝑐 (3.9 − 6)

𝑢 (𝑥, 0, 𝑡) = 𝑢 (𝑥, 0, 𝑡)                          |𝑥| ≥ 𝑐 (3.9 − 7)

𝑢 (𝑥, 0, 𝑡) = 𝑢 (𝑥, 0, 𝑡)                          |𝑥| ≥ 𝑐 (3.9 − 8)

𝜙 (𝑥, 0, 𝑡) = 𝜙 (𝑥, 0, 𝑡)                            |𝑥| ≥ 𝑐 (3.9 − 9)

 

at the crack surface and extended line, and  
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𝜎 (𝑥, ℎ , 𝑡) = 0                               |𝑥| ≥ 0 (3.9 − 10)

𝜎 (𝑥, ℎ , 𝑡) = 0                                      |𝑥| ≥ 0 (3.9 − 11)

𝐷 (𝑥, ℎ , 𝑡) = 𝐷𝐻(𝑡)                               |𝑥| ≥ 0 (3.9 − 12)

 

𝜎 (𝑥, −ℎ , 𝑡) = 0                                    |𝑥| ≥ 0 (3.9 − 13)

𝜎 (𝑥, −ℎ , 𝑡) = 0                           |𝑥| ≥ 0 (3.9 − 14)

𝐷 (𝑥, −ℎ , 𝑡) = 𝐷𝐻(𝑡) |𝑥| ≥ 0 (3.9 − 15)

 

at the boundary surfaces. 

3.5 General solutions 

3.5.1 Temperature field 

According to superposition, the temperature field can be rewritten as the sum of the uniform 

temperature field without crack, 𝑇( ) , and the temperature field disturbed by the existence of 

crack, 𝑇
( ), and the initial temperature 𝑇 : 

𝑇 (𝑥, 𝑧, 𝑡) = 𝑇 + 𝑇( )(𝑧, 𝑡) + 𝑇
( )

(𝑥, 𝑧, 𝑡)                            (3.10) 

To continue the analysis, the following property of the Laplace transform for fractional 

derivative 

ℒ
𝜕 𝑓(𝑡)

𝜕𝑡
= 𝑝 𝑓∗(𝑝) − 𝑓( )(0 )𝑝                             (3.11) 

will be adopted, where p is the Laplace transform variable, m is the largest integer less than α and 

the asterisk denotes the Laplace transform of a function. Appling a Laplace transform pair as: 



 
Chapter 3. Multiphysics 

 

35 
 

𝑓∗(𝑥, 𝑧, 𝑝) = 𝑓(𝑥, 𝑧, 𝑡) exp(−𝑝𝑡) 𝑑𝑡                                

𝑓(𝑥, 𝑧, 𝑡) =
1

2𝜋𝑖
𝑓∗(𝑥, 𝑧, 𝑝) exp(𝑝𝑡) 𝑑𝑝      (3.12)

 

in which 𝐵𝑟 stands for the Bromwich path of integration 159, then  𝑇( )(𝑧, 𝑡)  and 𝑇( )
(𝑥, 𝑧, 𝑡) 

change into 𝑇∗( )(𝑧, 𝑝) and 𝑇∗( )(𝑥, 𝑧, 𝑝), where 𝑇∗( )(𝑧, 𝑝)  satisfies the following definition and 

boundary conditions: 

1

𝛽
𝑝(1 +

𝜏

𝛼!
𝑝 )𝑇∗( ) =

𝑑 𝑇∗( )

𝑑𝑧
        0 < 𝛼 < 1    (3.13)

𝑇∗( )(−ℎ , 𝑝) =
𝑇

𝑝
𝐻(𝑝) (3.14 − 1)

𝑇∗( )(ℎ , 𝑝) = 0 (3.14 − 2)

 

Then, the expression and the corresponding boundary conditions of  𝑇∗( )(𝑥, 𝑧, 𝑝) are: 

1

𝛽
𝑝 1 +

𝜏

𝛼!
𝑝 𝑇

∗( )
= 𝜅

𝜕 𝑇
∗( )

𝜕𝑥
+

𝜕 𝑇
∗( )

𝜕𝑧
        0 < 𝛼 < 1    (3.15) 

and 

𝜕𝑇
∗( )(𝑥, 0, 𝑝)

𝜕𝑧
=

𝜕𝑇
∗( )(𝑥, 0, 𝑝)

𝜕𝑧
= −

𝑑𝑇∗( )

𝑑𝑧
    |𝑥| < 𝑐 (3.16 − 1)

𝜕𝑇
∗( )(𝑥, 0, 𝑝)

𝜕𝑧
=

𝜕𝑇
∗( )(𝑥, 0, 𝑝)

𝜕𝑧
                   |𝑥| ≥ 𝑐  (3.16 − 2)

𝑇
∗( )(𝑥, 0, 𝑝) = 𝑇

∗( )(𝑥, 0, 𝑝) |𝑥| ≥ 𝑐  (3.16 − 3)

 

at the crack surface and extended line, and  
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𝑇
∗( )(𝑥, ℎ , 𝑝) = 0                                       |𝑥| ≥ 0 (3.16 − 4)

𝑇
∗( )(𝑥, −ℎ , 𝑝) = 0 |𝑥| ≥ 0 (3.16 − 5)

 

at the edges. 

It is easy to solve Eq. (3.13) combined with Eq. (3.14) 160,  

𝑇∗( )(𝑧, 𝑝) =
𝑇 {exp −(ℎ + 𝑧)√𝜆 − exp[−(2ℎ + ℎ − 𝑧)√𝜆]}

𝑝 1 − exp −2ℎ√𝜆
                   (3.17) 

where 𝜆 = 𝑝 1 +
!
𝑝 . 

Applying the Fourier integral transform to Eq. (3.15), and its general solution is obtained: 

𝑇
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
[𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 𝑧 > 0 (3.18 − 1)

𝑇
∗( )(𝑥, 𝑧, 𝑝) =

1

2𝜋
[𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 𝑧 < 0  (3.18 − 2)

 

in which, 𝜏 = 𝜅 + , and 𝐷 (𝑠, 𝑝)  are unknown functions which can be determined by 

introducing the density function 𝐺 (𝑥, 𝑝): 

𝐺 (𝑥, 𝑝) =

⎩
⎪
⎨

⎪
⎧ 𝜕

𝜕𝑥
{𝑇

∗( )
(𝑥, 0, 𝑝) − 𝑇

∗( )(𝑥, 0, 𝑝)}                       |𝑥| < 𝑐

    0                                                                               |𝑥| ≥ 𝑐

     (3.19) 

Substituting the general results of Eq. (18) into Eq. (19), based on Eq. (3.16-2), (3.16-4) and 

(3.16-5), all the functions of 𝐷 (𝑠, 𝑝) can be expressed in terms of 𝐷 (𝑠, 𝑝): 
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𝐷 (𝑠, 𝑝) = − exp(−2ℎ 𝜏|𝑠|)
𝜌 (𝑠, 𝑝)

𝜌 (𝑠, 𝑝)
𝐷 (𝑠, 𝑝)                      (3.20 − 1)

𝐷 (𝑠, 𝑝) =
𝜌 (𝑠, 𝑝)

𝜌 (𝑠, 𝑝)
𝐷 (𝑠, 𝑝)    (3.20 − 2)

𝐷 (𝑠, 𝑝) =
𝜌 (𝑠, 𝑝)

𝜌 (𝑠, 𝑝)
𝐷 (𝑠, 𝑝)    (3.20 − 3)

 

𝐷 (𝑠, 𝑝) = − exp(−2ℎ 𝜏|𝑠|)
𝜌 (𝑠, 𝑝)

𝜌 (𝑠, 𝑝)
𝐷 (𝑠, 𝑝)               (3.20 − 4) 

and: 

𝜌 (𝑠, 𝑝) = [1 − exp(−2ℎ 𝜏|𝑠|)]𝜌 − [1 − exp(−2ℎ 𝜏|𝑠|)]𝜌

𝜌 (𝑠, 𝑝) = −[1 + exp(−2ℎ 𝜏|𝑠|)]

𝜌 (𝑠, 𝑝) = 1 + exp(−2ℎ 𝜏|𝑠|) ⎭
⎪
⎬

⎪
⎫

            (3.21) 

where function 𝐷  can be expressed in terms of 𝐺 (𝑥, 𝑝) by using inverse Fourier transform: 

𝐷 = −
1

𝑖𝑠
𝐺 (𝜉, 𝑝) exp(𝑖𝑠𝜉) 𝑑𝜉                                                (3.22) 

Letting 𝜉̅ = 𝜉/𝑐, �̅� = 𝑥/𝑐, then, the singular integral equation of 𝐺 (𝜉, 𝑝) is finally obtained 

via Eq. (3.16-1): 

1

2𝜋
𝐺 𝜉̅, 𝑝

1

𝜉̅ − �̅�
+ 𝑐𝑀 �̅�, 𝜉̅, 𝑝 𝑑𝜉̅ = −

𝑑𝑇∗( )

𝑑𝑧
                             (3.23) 

where the kernel function reads: 

𝑀 �̅�, 𝜉̅, 𝑝 = −
2√𝜆 + 𝑠 𝜌 𝜌

𝑠𝜌
− 1 sin 𝑠𝑐 𝜉̅ − �̅� 𝑑𝑠                  (3.24) 
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From the continuity condition, it is clear that 

𝐺 𝜉̅, 𝑝 𝑑𝜉̅ = 0    𝑎𝑛𝑑,    𝐺 𝜉̅, 𝑝 = 0                          𝜉̅ ≥ 1 (3.25) 

Employing Erdogan’s numerical method 161, the singular integral equation, Eq. (3.23), can be 

reduced to the following algebraic equation: 

  
1

2

1

𝑛
𝐹 𝜉 , 𝑝

1

𝜉 − 𝑥
+ 𝑐𝑀 𝑥 , 𝜉 , 𝑝 = −

𝑑𝑇∗( )

𝑑𝑧
      |�̅�| ≤ 1 (3.26)

     
𝜋

𝑛
𝐹 𝜉 , 𝑝 = 0 (3.27)

 

where 𝜉 = 𝑐𝑜𝑠
( )

, 𝑘 = 1,2,3, ⋯ , 𝑛; 𝑥 = 𝑐𝑜𝑠 , 𝑟 = 1,2,3, ⋯ , 𝑛 − 1 and 

 𝐹 𝜉̅, 𝑝 = 𝐺 𝜉̅, 𝑝 1 − 𝜉̅                                             |�̅�| ≤ 1 (3.28) 

3.5.2 Electromechanical field 

Once the temperature field is obtained, the displacement and electric potential in the Laplace 

domain can be found.  

𝑢∗ (𝑥, 𝑧, 𝑝) = 𝑢
∗( )(𝑥, 𝑧, 𝑝)              

𝑢∗ (𝑥, 𝑧, 𝑝) = 𝑢
∗( )(𝑧, 𝑝) + 𝑢

∗( )(𝑥, 𝑧, 𝑝)             (𝑖 = 1,2) (3.29)

𝜙∗(𝑥, 𝑧, 𝑝) = 𝜙∗( )(𝑧, 𝑝) + 𝜙
∗( )(𝑥, 𝑧, 𝑝)              

 

Under uncracked situation which has no effect on x parameter, the governing equations, Eq. 

(3.8) change into: 
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𝑐
𝑑

𝑑𝑧
− 𝜌𝑝 𝑢

∗( )
+ 𝑒

𝑑 𝜙∗( )

𝑑𝑧
= 𝜆

𝑑𝑇∗( )

𝑑𝑧
                      (3.30)

𝑒
𝑑 𝑢

∗( )

𝑑𝑧
− 휀

𝑑 𝜙∗( )

𝑑𝑧
= −𝑝

𝑑𝑇∗( )

𝑑𝑧
 

 

And the boundary conditions are: 

 

𝜎
∗( )(ℎ , 𝑝) = 0,    𝜎

∗( )(−ℎ , 𝑝) = 0

𝐷
∗( )(ℎ ) =

𝐷

𝑝
𝐻(𝑝),       𝐷

∗( )(−ℎ ) =
𝐷

𝑝
𝐻(𝑝)

                              (3.31) 

Solving Eq. (3.30) with Eq. (3.31), the solutions are: 

𝑢
∗( )

(𝑧, 𝑝) = −𝑒 𝛽 𝐶 exp 𝛽 𝑧 + 𝐶 exp − 𝛽 𝑧                                               

+𝐶
−𝑇 √𝜆{exp −(ℎ + 𝑧)√𝜆 + exp[−(2ℎ + ℎ − 𝑧)√𝜆]}

𝑝 1 − exp −2ℎ√𝜆
              (3.32) 

𝜙∗( )(𝑧, 𝑝) = (𝑐 𝛽 − 𝜌𝑝 ) 𝐶 exp 𝛽 𝑧 + 𝐶 exp − 𝛽 𝑧 − 𝜌𝑝 [𝐶 𝑧 + 𝐶 ] 

+𝐶
−𝑇 √𝜆 exp −(ℎ + 𝑧)√𝜆 + exp −(2ℎ + ℎ − 𝑧)√𝜆

𝑝 1 − exp −2ℎ√𝜆
              (3.33) 

where 𝛽 = , and: 
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𝐶 =
(𝐶 휀 𝑇 − 𝐷𝑒 ) exp −(2ℎ + ℎ ) 𝛽 + 𝐷𝑒 exp − 𝛽 ℎ

𝐶 휀 𝑝 1 + exp −2 𝛽 ℎ

𝐶 =
𝐷𝑒 exp −(2ℎ + ℎ ) 𝛽 + (𝐶 휀 𝑇 − 𝐷𝑒 ) exp − 𝛽 ℎ

𝐶 휀 𝑝 1 + exp −2 𝛽 ℎ

𝐶 =
𝜆 휀 − 𝑝 𝑒

(휀 𝑐 + 𝑒 )𝜆 − 휀 𝜌𝑝
,     𝐶 =

(𝑒 𝜆 + 𝑐 𝑝 )𝜆 − 𝑝 𝜌𝑝

(휀 𝑐 + 𝑒 )𝜆 − 휀 𝜌𝑝 𝜆

𝐶 =
(𝜆 휀 − 𝑒 𝑝 )𝜌𝑝

(휀 𝑐 + 𝑒 )𝜆 − 휀 𝜌𝑝
,    𝐶 = −𝜌𝑝 𝑒 𝛽    

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

   (3.34) 

The normal stress and electric displacement under uncracked conditions can be obtained as 

follows: 

𝜎
∗( )

(𝑧, 𝑝) = 𝐶
𝑇 exp −(ℎ + 𝑧)√𝜆 − exp −(2ℎ + ℎ − 𝑧)√𝜆

𝑝 1 − exp −2ℎ√𝜆
−

𝑒 𝐷

휀 𝑝
 

+𝐶 𝐶 exp 𝛽 𝑧 − 𝐶 exp − 𝛽 𝑧                                                            (3.35) 

𝐷
∗( )

(𝑧, 𝑝) =
𝐷

𝑝
                                                                                                                      (3.36) 

Then, the dynamic equilibrium equations for plane strain piezoelectricity in the Laplace 

domain caused by the temperature field 𝑇∗( )
(𝑥, 𝑧, 𝑝) can be given as: 

(𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝2)𝑢

∗(2)
+ (𝑐 + 𝑐 )

𝜕 𝑢
∗(2)

𝜕𝑥𝜕𝑧
+ (𝑒 + 𝑒 )

𝜕 𝜙
∗(2)

𝜕𝑥𝜕𝑧
= 𝜆

𝜕𝑇
∗(2)

𝜕𝑥

(𝑐 + 𝑐 )
𝜕 𝑢

∗(2)

𝜕𝑥𝜕𝑧
+ (𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝2)𝑢∗ + 𝑒

𝜕 𝜙
∗(2)

𝜕𝑥
+ 𝑒

𝜕 𝜙
∗(2)

𝜕𝑧
= 𝜆

𝜕𝑇
∗(2)

𝜕𝑧
(3.37)

(𝑒 + 𝑒 )
𝜕 𝑢

∗(2)

𝜕𝑥𝜕𝑧
+ (𝑒

𝜕

𝜕𝑥
+ 𝑒

𝜕

𝜕𝑧
)𝑢

∗(2)
− 휀

𝜕 𝜙
∗(2)

𝜕𝑥
− 휀

𝜕 𝜙
∗(2)

𝜕𝑧
= −𝑝

𝜕𝑇
∗(2)

𝜕𝑧
 

 

at the crack surface and extended line: 
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𝜎
∗( )(𝑥, 0, 𝑝) = −𝜎

∗( )
(0, 𝑝) |𝑥| < 𝑐 (3.38 − 1)

𝜎
∗( )(𝑥, 0, 𝑝) = −𝜎

∗( )
(0, 𝑝) |𝑥| < 𝑐 (3.38 − 2)

𝐷
∗( )(𝑥, 0, 𝑝) = −𝐷

∗( )
(0, 𝑝) |𝑥| < 𝑐 (3.38 − 3)

𝜎
∗( )(𝑥, 0, 𝑝) = 𝜎

∗( )(𝑥, 0, 𝑝)                       |𝑥| ≥ 𝑐 (3.38 − 4)

𝜎
∗( )(𝑥, 0, 𝑝) = 𝜎

∗( )(𝑥, 0, 𝑝)                      |𝑥| ≥ 𝑐 (3.38 − 5)

𝐷
∗( )(𝑥, 0, 𝑝) = 𝐷

∗( )(𝑥, 0, 𝑝)                         |𝑥| ≥ 𝑐 (3.38 − 6)

𝑢
∗( )(𝑥, 0, 𝑝) = 𝑢

∗( )(𝑥, 0, 𝑝)                          |𝑥| ≥ 𝑐 (3.38 − 7)

𝑢
∗( )(𝑥, 0, 𝑝) = 𝑢

∗( )(𝑥, 0, 𝑝)                          |𝑥| ≥ 𝑐 (3.38 − 8)

𝜙
∗( )(𝑥, 0, 𝑝) = 𝜙

∗( )(𝑥, 0, 𝑝)                            |𝑥| ≥ 𝑐 (3.38 − 9)

 

at boundary surfaces: 

𝜎
∗( )(𝑥, ℎ , 𝑝) = 0 𝜎

∗( )(𝑥, −ℎ , 𝑝) = 0              |𝑥| ≥ 0 (3.38 − 10)

𝜎
∗( )(𝑥, ℎ , 𝑝) = 0 𝜎

∗( )(𝑥, −ℎ , 𝑝) = 0 |𝑥| ≥ 0 (3.38 − 11)

𝐷
∗( )(𝑥, ℎ , 𝑝) = 0 𝐷

∗( )(𝑥, −ℎ , 𝑝) = 0 |𝑥| ≥ 0 (3.38 − 12)

 

The solution of Eq. (3.37) is expressed by the general solution of the homogeneous equations, 

𝑢
∗( )

, 𝑢
∗( )  and 𝜙

∗( )  plus the particular solution of the nonhomogeneous equations, 

𝑢
∗( )

, 𝑢
∗( ) and 𝜙∗( ).  According to Ding et al. 162,  

𝑢
∗( )

= 𝐻 𝐹∗,           𝑢
∗( )

= 𝐻 𝐹∗,            𝜙
∗( )

= 𝐻 𝐹∗                          (3.39) 

𝑢
∗( )

= 𝐻 𝐹∗ ,     𝑢
∗( )

= 𝐻 𝐹∗ ,     𝜙
∗( )

= 𝐻 𝐹∗                    (3.39) 
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where 𝐻  (𝑖 = 1,2;  𝑗 = 1,2,3) are co-factors of the differential operator matrix determinant |𝐷|, 

and 𝐹∗ and 𝐹∗ satisfy the following relations: 

|𝐷|𝐹∗ = 0,   |𝐷|𝐹∗ = 𝜆
𝜕𝑇

∗( )

𝜕𝑥
,   |𝐷|𝐹∗ = 𝜆

𝜕𝑇
∗( )

𝜕𝑧
,   |𝐷|𝐹∗ = −𝑝

𝜕𝑇
∗( )

𝜕𝑧
 (3.40) 

the coefficient matrix D is: 

D =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝 (𝑐 + 𝑐 )

𝜕

𝜕𝑥𝜕𝑧
(𝑒 + 𝑒 )

𝜕

𝜕𝑥𝜕𝑧

(𝑐 + 𝑐 )
𝜕

𝜕𝑥𝜕𝑧
𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝 𝑒

𝜕

𝜕𝑥
+ 𝑒

𝜕

𝜕𝑧

(𝑒 + 𝑒 )
𝜕

𝜕𝑥𝜕𝑧
𝑒

𝜕

𝜕𝑥
+ 𝑒

𝜕

𝜕𝑧
−휀

𝜕

𝜕𝑥
− 휀

𝜕

𝜕𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Using Fourier integral transform, the general solutions 𝑢
∗( )

, 𝑢
∗( )  and 𝜙

∗( )  can be 

obtained: 

𝑢
∗( )

(𝑥, 𝑧, 𝑝) =
𝑖

2𝜋
{𝑍 sgn(𝑠)[𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 ]} exp(−𝑖𝑠𝑥) 𝑑𝑠

𝑢
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
{𝑍 [𝐴 exp |𝑠|𝜆 𝑧 + 𝐵 exp −|𝑠|𝜆 𝑧 ]} exp(−𝑖𝑠𝑥) 𝑑𝑠 (3.41)

𝜙
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
{𝑍 [𝐴 exp |𝑠|𝜆 𝑧 + 𝐵 exp −|𝑠|𝜆 𝑧 ]} exp(−𝑖𝑠𝑥) 𝑑𝑠

 

where 

𝑍 = (𝑒 𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝑠 𝜆 − (𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝑠 𝜆

𝑍 = −𝑐 휀 𝑠 𝜆 + {[(𝑒 + 𝑒 ) + 𝑐 휀 + 𝑐 휀 ]𝑠 + 휀 𝜌𝑝 }𝑠 𝜆 − (𝑐 휀 𝑠 + 휀 𝜌𝑝 𝑠 )

𝑍 = −𝑐 𝑒 𝑠 𝜆 − [(𝑐 𝑒 + 𝑐 𝑒 + 𝑐 𝑒 − 𝑐 𝑒 )𝑠 − 𝑒 𝜌𝑝 ]𝑠 𝜆 − (𝑐 𝑒 𝑠 + 𝑒 𝜌𝑝 𝑠 )
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the roots 𝜆  (𝑗 = 1,2,3) are determined from solving the characteristic equation |𝐷| = 0 , and 

given in Appendix A; 𝐴 (𝑠, 𝑝), 𝐵 (𝑠, 𝑝) are unknowns to be determined. 

Based on Eq. (3.39) and Eq. (3.40), the particular solutions are as following: 

𝑢
∗( )

(𝑥, 𝑧, 𝑝) =
𝑖

2𝜋
(𝑅 𝑠 + 𝑅 𝑠 )[𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠

𝑢
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
(𝑅 𝑠 + 𝑅 𝑠 )sgn(𝑠)[𝐷 exp(|𝑠|𝜏𝑧) − 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 (3.42)

𝜙
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
(𝑅 𝑠 + 𝑅 𝑠 + 𝑅 𝑠)sgn(𝑠)[𝐷 exp(|𝑠|𝜏𝑧) − 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠

 

the constants 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅  𝑎𝑛𝑑  𝑅  are shown in Appendix A. 

The stress and electric displacement components can be expressed according to Eq. (3.7) as: 

𝜎
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
{𝑃 [𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 ] exp(−𝑖𝑠𝑥) 𝑑𝑠               

+
1

2𝜋
𝐶 [𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠                        

𝜎
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
{𝑃 𝑖sgn(𝑠)[𝐴 exp |𝑠|𝜆 𝑧 + 𝐵 exp −|𝑠|𝜆 𝑧 ] exp(−𝑖𝑠𝑥) 𝑑𝑠 

+
1

2𝜋
𝐶 𝑖sgn(𝑠)[𝐷 exp(|𝑠|𝜏𝑧) − 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠    (3.43) 

𝐷
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
{𝑃 [𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 ] exp(−𝑖𝑠𝑥) 𝑑𝑠              
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+
1

2𝜋
𝐶 [𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠                      

where 

𝑃 (𝑠, 𝑝) = 𝑐 𝑍 |𝑠| + 𝑐 𝑍 |𝑠|𝜆 + 𝑒 𝑍 |𝑠|𝜆

𝑃 (𝑠, 𝑝) = 𝑐 𝑍 |𝑠|𝜆 − 𝑐 𝑍 |𝑠| − 𝑒 𝑍 |𝑠|

𝑃 (𝑠, 𝑝) = 𝑒 𝑍 |𝑠| + 𝑒 𝑍 |𝑠|𝜆 − 휀 𝑍 |𝑠|𝜆

 

and: 

𝐶 (𝑠, 𝑝) = 𝑐 (𝑅𝑥
1𝑠6 + 𝑅𝑥

2𝑠4) + 𝑐 (𝑅𝑧
1𝑠6 + 𝑅𝑧

2𝑠4)𝜏 + 𝑒 𝑅 𝑠 + 𝑅 𝑠 + 𝑅 𝑠 𝜏 − 𝜆33

𝐶 (𝑠, 𝑝) = 𝑐 (𝑅𝑥
1𝑠6 + 𝑅𝑥

2𝑠4)𝜏 − 𝑐 (𝑅𝑧
1𝑠6 + 𝑅𝑧

2𝑠4) − 𝑒 (𝑅 𝑠 + 𝑅 𝑠 + 𝑅 𝑠 )

𝐶 (𝑠, 𝑝) = 𝑒 (𝑅𝑥
1𝑠6 + 𝑅𝑥

2𝑠4) + 𝑒 (𝑅𝑧
1𝑠6 + 𝑅𝑧

2𝑠4)𝜏 − 휀 𝑅 𝑠 + 𝑅 𝑠 + 𝑅 𝑠 𝜏 + 𝑝

 

Combining with the boundary conditions Eq. (3.38-4) to Eq. (3.38-6) and Eq. (3.38-10) to 

Eq. (3.38-12), the unknown functions 𝐴 (𝑠, 𝑝), 𝐵 (𝑠, 𝑝) (𝑖 = 1,2; 𝑗 = 1,2,3) can be expressed in 

terms of unknowns 𝐵 (𝑠, 𝑝) (𝑗 = 1,2,3)  as: 

𝐴 (𝑠, 𝑝) = 𝑉
∗( )

(𝑠, ℎ , 𝑝)𝐵 + 𝐶 (𝑠, 𝑝)𝐷  

𝐴 (𝑠, 𝑝) = 𝐼
∗( )

(𝑠, ℎ , ℎ , 𝑝)𝐵 + 𝐶 (𝑠, 𝑝)𝐷                        (3.44)

𝐵 (𝑠, 𝑝) = 𝑈
∗( )

(𝑠, ℎ , ℎ , 𝑝)𝐵 + 𝐶 (𝑠, 𝑝)𝐷

 

where 𝑉
∗( )

(𝑠, ℎ , 𝑝),  𝑈
∗( )

(𝑠, ℎ , ℎ , 𝑝) , 𝑈
∗( )

(𝑠, ℎ , ℎ , 𝑝) , 𝐶 (𝑠, 𝑝) , 𝐶 (𝑠, 𝑝)  and 

𝐶 (𝑠, 𝑝) ( 𝑗, 𝑛 = 1,2,3) are known functions defined in Appendix A. 



 
Chapter 3. Multiphysics 

 

45 
 

Similar to the temperature analysis, let’s define the new unknown functions 𝐺 (𝑥, 𝑝) (𝑙 =

1,2,3) to reduce the problem into a system of singular integral equations, 

⎩
⎪
⎨

⎪
⎧

𝐺 (𝑥, 𝑝)

𝐺 (𝑥, 𝑝)

𝐺 (𝑥, 𝑝)⎭
⎪
⎬

⎪
⎫

=
𝜕

𝜕𝑥

⎩
⎪
⎨

⎪
⎧

𝑢∗ (𝑥, 0 , 𝑝) − 𝑢∗ (𝑥, 0 , 𝑝)

𝑢∗ (𝑥, 0 , 𝑝) − 𝑢∗ (𝑥, 0 , 𝑝)

𝜙∗(𝑥, 0 , 𝑝) − 𝜙∗(𝑥, 0 , 𝑝) ⎭
⎪
⎬

⎪
⎫

              |𝑥| < 𝑐 (3.45) 

Substituting the solutions Eq. (3.42) and Eq. (3.43) into (3.45), and using the Fourier inverse 

transform, the following relations can be obtained: 

𝐷 (𝑠, 𝑝) =
1

|𝑠|
𝐺 (𝜉, 𝑝) exp(𝑖𝑠𝜉) 𝑑𝜉 −

(𝑅 𝑠 + 𝑅 𝑠 )𝐷 (𝑠, 𝑝)

|𝑠|

𝐷 (𝑠, 𝑝) =
1

−𝑖𝑠
𝐺 (𝜉, 𝑝) exp(𝑖𝑠𝜉) 𝑑𝜉

𝐷 (𝑠, 𝑝) =
1

−𝑖𝑠
𝐺 (𝜉, 𝑝) exp(𝑖𝑠𝜉) 𝑑𝜉

⎭
⎪⎪
⎬

⎪⎪
⎫

              (3.46) 

Considering the relations in Eq. (3.44), the following relationship can be obtained: 

𝐵 = 𝐶
( )(𝑠, 𝑝)𝐷 + 𝐶

( )(𝑠, 𝑝)𝐷 + 𝐶
( )(𝑠, 𝑝)𝐷 + 𝐶 (𝑠, 𝑝)𝐷           (3.47) 

where functions 𝐶( ) (𝑠, 𝑝) and 𝐶 (𝑠, 𝑝) (𝑚, 𝑗 = 1,2,3) are defined in Appendix A. 

Letting 𝜉̅ = 𝜉/𝑐, �̅� = 𝑥/𝑐, then, the singular integral equations of 𝐺 (𝜉, 𝑝) (𝑙 = 1,2,3) are 

finally obtained by Eq. (3.38-1), Eq. (3.38-2) and Eq. (3.38-3): 

1

𝜋
𝑐𝐿 𝐺 𝜉̅, 𝑝 +

𝑀

𝜉̅ − �̅�
+ 𝑐𝐿 𝐺 𝜉̅, 𝑝 +

𝑀

𝜉̅ − �̅�
+ 𝑐𝐿 𝐺 𝜉̅, 𝑝 𝑑𝜉 ̅

= 𝜎
∗( )

(0, 𝑝) + 𝑓 (�̅�, 𝑝)                                                                                                     (3.48) 
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1

𝜋

𝑀

𝜉̅ − �̅�
+ 𝑐𝐿 𝐺 𝜉̅, 𝑝 + 𝑐𝐿 𝐺 𝜉̅, 𝑝 + 𝑐𝐿 𝐺 𝜉̅, 𝑝 𝑑𝜉̅                      

= 𝜎
∗( )

(0, 𝑝) + 𝑓 (�̅�, 𝑝)                                                                                                (3.49) 

1

𝜋
𝑐𝐿 𝐺 𝜉̅, 𝑝 +

𝑀

𝜉̅ − �̅�
+ 𝑐𝐿 𝐺 𝜉̅, 𝑝 +

𝑀

𝜉̅ − �̅�
+ 𝑐𝐿 𝐺 𝜉̅, 𝑝 𝑑𝜉̅ 

= 𝐷
∗( )

(0, 𝑝) + 𝑓 (�̅�, 𝑝)                                                                                                    (3.50) 

where 𝑓 (�̅�, 𝑝), 𝑓 (�̅�, 𝑝) and 𝑓 (�̅�, 𝑝) are: 

𝑓 (�̅�, 𝑝) =
1

2𝜋
{𝜑

( )
𝐷 + 𝐶 [𝐷 + 𝐷 ] − 𝜑

( ) (𝑅 𝑠 + 𝑅 𝑠 )𝐷

|𝑠|
} exp(−𝑖𝑠�̅�) 𝑑𝑠 

𝑓 (�̅�, 𝑝) =
1

2𝜋
𝑖sgn(𝑠) 𝐶 [𝐷 − 𝐷 ] + 𝜑

( )
𝐷 − 𝜑

( ) (𝑅 𝑠 + 𝑅 𝑠 )𝐷

|𝑠|
exp(−𝑖𝑠�̅�) 𝑑𝑠 

𝑓 (�̅�, 𝑝) =
1

2𝜋
𝜑

( )
𝐷 + 𝐶 [𝐷 + 𝐷 ] − 𝜑

( ) (𝑅 𝑠 + 𝑅 𝑠 )𝐷

|𝑠|
exp(−𝑖𝑠�̅�) 𝑑𝑠 

and 𝑀 = lim
→

( )

, then the kernel functions are as follow: 

𝐿 �̅�, 𝜉̅, 𝑝 =
𝜑

( )

𝑠
− 𝑀 sin 𝑠𝑐 𝜉̅ − �̅� 𝑑𝑠 (𝑙 = 1,3;  𝑚 = 2,3)

𝐿 �̅�, 𝜉̅, 𝑝 =
𝜑

( )

𝑠
− 𝑀 sin 𝑠𝑐 𝜉̅ − �̅� 𝑑𝑠

𝐿 �̅�, 𝜉̅, 𝑝 =
𝜑

( )

−𝑠
cos 𝑠𝑐 𝜉̅ − �̅� 𝑑𝑠 (𝑙 = 1,3)

𝐿 �̅�, 𝜉̅, 𝑝 =
𝜑

( )

𝑠
cos 𝑠𝑐 𝜉̅ − �̅� 𝑑𝑠 (𝑚 = 2,3)

 



 
Chapter 3. Multiphysics 

 

47 
 

where 𝜑( )
 (𝑚 = 0,1,2,3; 𝑙 = 1,2,3) are defined in Appendix A. 

The Lobatto-Chebyshev method 163 is employed to transform the singular integral equations 

Eq. (3.48) - (3.50) into the following algebraic equations: 

1

𝜋
𝐴 𝑐𝐹 𝜉 , 𝑝 𝐿 𝑥 , 𝜉 , 𝑝 + 𝐹 𝜉 , 𝑝

𝑀

𝜉 − 𝑥
+ 𝑐𝐿 𝑥 , 𝜉 , 𝑝

+ 𝐹 𝜉 , 𝑝
𝑀

𝜉 − 𝑥
+ 𝑐𝐿 𝑥 , 𝜉 , 𝑝 = 𝜎

∗( )
(0, 𝑝) + 𝑓 (�̅�, 𝑝)  |�̅�| ≤ 1(3.51) 

1

𝜋
𝐴 𝐹 𝜉 , 𝑝

𝑀

𝜉 − 𝑥
+ 𝑐𝐿 𝑥 , 𝜉 , 𝑝 + 𝑐𝐹 𝜉 , 𝑝 𝐿 𝑥 , 𝜉 , 𝑝

+ 𝑐𝐹 𝜉 , 𝑝 𝐿 𝑥 , 𝜉 , 𝑝 = 𝜎
∗( )

(0, 𝑝) + 𝑓 (�̅�, 𝑝)                           |�̅�| ≤ 1(3.52) 

1

𝜋
𝐴 𝑐𝐹 𝜉 , 𝑝 𝐿 𝑥 , 𝜉 , 𝑝 + 𝐹 𝜉 , 𝑝

𝑀

𝜉 − 𝑥
+ 𝑐𝐿 𝑥 , 𝜉 , 𝑝

+ 𝐹 𝜉 , 𝑝
𝑀

𝜉 − 𝑥
+ 𝑐𝐿 𝑥 , 𝜉 , 𝑝 = 𝐷

∗( )
(0, 𝑝) + 𝑓 (�̅�, 𝑝) |�̅�| ≤ 1(3.53) 

𝐴 𝐹 𝜉 , 𝑝 = 0                                                                                                 (𝑙 = 1,2,3) (3.54) 

where 𝜉 = 𝑐𝑜𝑠
( )

, 𝑘 = 1,2,3, ⋯ , 𝑛; 𝑥 = 𝑐𝑜𝑠
( )

( )
, 𝑟 = 1,2,3, ⋯ , 𝑛 − 1; 𝐴 =

( )
, 𝑘 =

1, 𝑛; 𝐴 = , 𝑘 = 2, 3, … , 𝑛 − 1; and: 

𝐹 𝜉̅, 𝑝 = 𝐺 𝜉̅, 𝑝 1 − 𝜉̅           |�̅�| ≤ 1 (𝑙 = 1,2,3) (3.55) 
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Therefore, the stress intensity factors 𝐾 ∗(𝑝), 𝐾 ∗(𝑝) and the electric displacement intensity 

factor 𝐾 ∗(𝑝) in the Laplace domain are: 

𝐾 ∗(𝑝) = − lim
→

2𝜋(𝑥 − 𝑐)𝜎
∗( )

(𝑥, 0, 𝑝) = −√𝜋𝑐[𝑀 𝐹 (1, 𝑝) + 𝑀 𝐹 (1, 𝑝)]

𝐾 ∗(𝑝) = − lim
→

2𝜋(𝑥 − 𝑐)𝜎
∗( )

(𝑥, 0, 𝑝) = −√𝜋𝑐𝑀 𝐹 (1, 𝑝)

𝐾 ∗(𝑝) = − lim
→

2𝜋(𝑥 − 𝑐)𝐷
∗( )

(𝑥, 0, 𝑝) = −√𝜋𝑐[𝑀 𝐹 (1, 𝑝) + 𝑀 𝐹 (1, 𝑝)]⎭
⎪
⎬

⎪
⎫

(3.56) 

The stress intensity factors and the electric displacement intensity factor in the time domain 

are then obtained from Laplace inverse transform: 

𝐾 (𝑡) = −√𝜋𝑐
1

2𝜋𝑖
[𝑀 𝐹 (1, 𝑝) + 𝑀 𝐹 (1, 𝑝)] exp(𝑝𝑡) 𝑑𝑝

𝐾 (𝑡) = −√𝜋𝑐
1

2𝜋𝑖
[𝑀 𝐹 (1, 𝑝)] exp(𝑝𝑡) 𝑑𝑝

𝐾 (𝑡) = −√𝜋𝑐
1

2𝜋𝑖
[𝑀 𝐹 (1, 𝑝) + 𝑀 𝐹 (1, 𝑝)] exp(𝑝𝑡) 𝑑𝑝

⎭
⎪
⎪
⎬

⎪
⎪
⎫

           (3.57) 

3.6 Numerical results and discussions 

3.6.1 Verifications 

To first verify the solutions, letting the phase-lag of heat flux 𝜏 = 0 and time t goes to 

infinite, we restrict our attention to the static case of the Fourier model. Solutions of the 

temperature on the upper and lower crack surfaces and extended line have been compared with the 

previous work 124 as shown in Figure 3.2, with perfect agreement. The stress and electric 

displacement intensity factors also shows excellent agreement with Ueda 124 when the current 

results reduced to the static case, as shown in Table 3.1.  
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Figure 3. 2 Verification of the solutions. = 0.25, = 0.5  

Table 3. 1 Static temperature, stress and electric displacement intensity factors a parallel crack in a strip. 

Variables  
ℎ ℎ⁄   (𝑐 ℎ⁄ =0.5) 𝑐 ℎ⁄   (ℎ ℎ⁄ =0.25) 𝐷 (ℎ ℎ⁄ =0.25, 𝑐 ℎ⁄ =0.5) 

0.25 0.50 0.75 0.50 0.75 1.00 -0.50 0.00 0.50 

Normalized 𝐾  
Ueda 124 0.011 0.00 -0.013 0.011 0.019 0.020 0.013 0.017 0.018 

Present 0.008 0.00 -0.009 0.008 0.010 0.011 0.008 0.008 0.008 

Normalized 𝐾  
Ueda 124 0.038 0.040 0.038 0.038 0.041 0.040 0.041 0.039 0.038 

Present 0.035 0.01 0.036 0.035 0.038 0.036 0.036 0.035 0.034 

Normalized 𝐾  
Ueda 124 -0.018 0.00 0.021 -0.018 -0.021 -0.020 -0.650 -0.010 0.601 

Present -0.014 0.00 0.015 -0.014 -0.019 -0.019 -0.608 -0.014 0.580 

 

3.6.2 The temperature and elastic-electric results 

To study the effect of electro-thermo-elastic interaction on the temperature and stress field, 

the material constants of piezoelectric ceramic are taken in the calculation as listed in Table 3.2 

Table 3. 2 Material constants for cadmium selenide 164. 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

(T
i-T

1)
/T

0

x/c

 Present results

 T(0,0-), Ueda, 2007
 T(0,0+), Ueda, 2007

Properties Constants Properties Constants 

𝑐 (𝑁/𝑚 ) 7.41 × 10  𝜆 (𝑁/𝑚 𝐾) 0.621 × 10  

𝑐 (𝑁/𝑚 ) 1.32 × 10  𝜆 (𝑁/𝑚 𝐾) 0.551 × 10  

𝑐 (𝑁/𝑚 ) 3.93 × 10  휀 (𝐶/𝑉𝑚) 0.825 × 10  

𝑐 (𝑁/𝑚 ) 8.36 × 10  휀 (𝐶/𝑉𝑚) 0.903 × 10  

𝑒 (𝐶/𝑚 ) -0.160 𝑝 (𝐶/𝐾𝑚 ) −2.940 × 10  

𝑒 (𝐶/𝑚 ) -0.138 𝜌(𝑘𝑔/𝑚 ) 5.684 × 10  

𝑒 (𝐶/𝑚 ) 0.347 𝜅 1.500 



 
Chapter 3. Multiphysics 

 

50 
 

The temperature results in the time domain can be obtained by using the numerical inverse 

Laplace transform 165. Since the crack is assumed to be thermally insulated, the temperature on the 

crack surface will absolutely be disturbed. When the distance between crack surface and heat 

source  = 0.25, crack size = 0.5, relaxation time 𝜏 = 0.2 and fractional order 𝛼 = 0.5, the 

normalized temperature distributions on the crack faces and extended line (|𝑥| > 0, 𝑧 = 0) at 

different values of normalized time 𝐹 =  are shown in Figure 3.3. It can be found that, due to a 

thermal shock loaded on the lower surface (𝑖 = 2), the temperature on the lower crack face is much 

higher than on the upper surface (𝑖 = 1). With the time increasing, the difference tends to be more 

pronounced at first, until reaching a peak value and then reduced, and finally it will remain at a 

stable stage consistent with the steady state results. 

 

Figure 3. 3 Distribution of the temperature on the crack surfaces and extended line at various times. 

= 0.25, = 0.5, 𝜏 = 0.2, 𝛼 = 0.5  

Figure 3.4 shows the effect of the heat conduction model on the normalized temperature. 

When 𝜏 = 0, 𝛼 = 1, the heat conduction is reduced to the Fourier model. All the figures show 

the Fourier model leads to the immediate response to the thermal shock, but the thermal response 

is delayed with 𝜏  increasing or advanced with increase 𝛼  for the fractional heat conduction 

0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

1.25  F =0.1          i=2 (z 0-)

 F =0.3          i=1 (z 0+)
 F =0.5
 F =inf.
 Steady state

(T
i-T

1)
/T

0

x/c
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model. Because of the thermal shock, overshooting occurs for all the models. With the increase of 

𝜏  and 𝛼, overshooting becomes more severe. On the other hand, the wave behavior is aggravated 

by decreasing 𝜏  or increasing 𝛼. 

 

                                           (a)                                                                                (b) 

 

                                           (c)                                                                                (d) 

Figure 3. 4 The effects of the relaxation time and the fractional order on the temperature at the crack 

center (a) z → 0  (𝛼 = 0.5); (b) z → 0  (𝛼 = 0.5); (c) z → 0  (𝜏 = 0.2); (d)  z → 0  (𝜏 =

0.2). = 0.25, = 0.5  

In order to study the influence of the geometric size on the temperature filed, Figure 3.5 shows 

the normalized temperature changes with F for the crack center when 𝜏 = 0.2 and 𝛼 = 0.5. With 
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the increase of crack size, , the temperature difference between the upper and the lower surface 

of the crack becomes more prominent. However, the difference does not change with . 

         
                                           (a)                                                                           (b) 

Figure 3. 5 The effect of the geometry parameters on the temperature at the crack center: (a) the effect of 

crack size = 0.25 ; (b) the effect of the distance = 0.5 . 

The stress and electric displacement results are shown in Figure 3.6 and Figure 3.7. Here, the 

geometric size = 0.25, = 0.5 , the fractional model coefficients 𝜏 = 0.2, 𝛼 = 0.5  and the 

electric load 𝐷 = 0.  

Figure 3.6 shows the results at normalized time 𝐹 = 0.1. It is evident that the normalized 

stresses 𝜎 , 𝜎  and displacement 𝐷  increase drastically around the crack tips. At the crack face 

( 𝑧 = 0, |𝑥| < 𝑐 ), the stresses and electric displacement are almost zero, which satisfies the 

boundary conditions Eq. (3.9-1) to (3.9-3). Form figures Fig 3.5 (a) and (b), under the same 

distance from the crack face, the absolute values of normalized 𝜎  and 𝐷  of the upper area are 

bigger than the lower area. However, the normalized shear stress 𝜎  in the upper and lower 

regions are almost the same near the crack face. As the distance from the crack face increases, the 

shear stress of the upper region is significantly higher than that of the lower region. 
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                                        (a)                                                              (b) 

 
                                        (c)                                                             (d) 

 
                                        (e)                                                              (f) 

Figure 3. 6 Strip’s stress and electric displacement distributions at normalized time  𝐹 = 0.1 at different 

surfaces: (a) 𝜎 ; (c) 𝜎 ; (e) 𝐷 ; and around crack tip (b) 𝜎 ; (d) 𝜎 ; (f) 𝐷 . = 0.25, = 0.5, 𝜏 =

0.2, 𝛼 = 0.5, 𝐷 = 0  
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According to Figure 3.6 (c), there is no shear stress in the plane of 𝑥 = 0, which bisections 

the crack. The distributions of normal stress and electric displacement in z-direction of the 

bisection plane of the crack are given in Figure 3.7. At the free surface, all the results are zero, 

which contends with the boundary conditions for the upper and the lower edges of the strip. From 

the crack face to the upper edge, the absolute values of the results are climbing first and then 

descending to zero. With time increasing to infinity, the curve rises to its highest level, and 

eventually meets the results of steady state. Therefore, the dynamic response will become 

increasingly apparent with the distance between crack face and free edge increasing. 

 

                                             (a)                                                                        (b) 

Figure 3. 7 Distributions of stress and electric displacement in z-direction of the bisection plane of the 

crack at various times: (a) normal stress 𝜎 ; (b) electric displacement 𝐷 . = 0.25, = 0.5, 𝜏 =

0.2, 𝛼 = 0.5, 𝐷 = 0  
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the normal stress and shear stress intensity factors (𝐾 , 𝐾  ) are normalized by 𝜆 𝑇 √𝜋𝑐, while 

the electric displacement intensity factor (𝐾 ) is normalized by −𝑝 𝑇 √𝜋𝑐.  

 Taking the ratio  and   as 0.25 and 0.5, respectively, without electric shock, the DSIFs are 

plotted in Figure 3.8, which shows the influence of heat conduction model. For different values of 

relaxation time, 𝜏 , the histories of 𝐾  and 𝐾  both always show three distinct stages. At the first 

stage, the stress intensity factors are decreasing with increasing 𝜏 . After F exceeds around 1.60 

for 𝐾  and 1.10 for 𝐾 , the stress intensity factors start to increase with increasing 𝜏 . When F 

arrives at around 8.45 for 𝐾  and 7.50 for 𝐾 , the trend goes inversely. So, with the increase of 𝜏 , 

the crack will be retarded first, promoted next, and finally retarded again. However, the effect of 

fractional order 𝛼 shows an opposite effect at each stage compared to the effect of 𝜏 . It is worth 

noting that 𝐾  only possesses the latest two stages of 𝐾  and 𝐾 , with the least influence of the 

heat conduction model.  

As a conclusion, the variation of coefficients of the heat conduction model will retard or 

promote the likelihood of crack propagation at different stages of the loading process. 𝐾  is the 

most sensitive to the heat conduction model,  𝐾  is the least one. Between the coefficients 𝜏  and 

𝛼, all the DSIFs and DEDIF are more responsive to 𝜏 . 
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                                           (a)                                                                                (b) 

 
                                           (c)                                                                                (d) 

 
                                           (e)                                                                                (f) 

Figure 3. 8 Normalized dynamic stress and electric displacement intensity factors vs. normalized time as a 

function of the relaxation time and fractional order: (a) 𝐾  (𝛼 = 0.5); (b) 𝐾  (𝜏 = 0.2); (c) 𝐾  (𝛼 = 0.5); 

(d) 𝐾  (𝜏 = 0.2); (e) 𝐾  (𝛼 = 0.5); and (f) 𝐾  (𝜏 = 0.2).  = 0.25, = 0.5, 𝐷 = 0  
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To illustrate the effect of crack size  on the propagation of a crack in a piezoelectric material, 

Figure 3.9 plots the normalized DSIFs and DEDIF versus normalized time as a function of . With 

the increase of crack size, 𝐾  keeps increasing. When  increases to a value, say larger than 1.25, 

the impact on 𝐾  will become insignificant. For 𝐾  and 𝐾 , the higher the size of crack , the 

higher the absolute values of them. After the crack size increases beyond 1.0, increasing the size 

of crack leads to a decrease in the absolute values of 𝐾  and 𝐾 .  

The results imply that the inflection point for the history of 𝐾  and 𝐾  is = 1, before which 

𝐾  will be enhanced with increasing crack size, whilst, 𝐾  will be impeded. Once  exceeding 

unity, all the results are inversed. Unlike 𝐾  and 𝐾 , 𝐾  is always promoted with increasing . 

 
                           (a)                                                 (b)                                              (c)  

Figure 3. 9 The effect of the crack size on the stress and electric displacement intensity factors: (a) 𝐾  ; (b) 

𝐾 ; (c) 𝐾 . = 0.25, 𝜏 = 0.2, 𝛼 = 0.5, 𝐷 = 0  
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influence on 𝐾 . 

It is worth pointing out that the distance between the crack face and thermal shock will govern 

the fracture behavior of the cracked strip. Increasing the distance will retard the model I and II 

fracture but promote DEDIF and the likelihood of electric fracture. Moreover, when the crack 

locates at the center of the strip, only sliding fracture is likely to happen as both 𝐾  and 𝐾  vanish. 

 

Figure 3. 10 The effect of the distance between crack face and thermal loading on the stress and electric 

displacement intensity factors 𝐾 , 𝐾 , 𝐾 . = 0.5, 𝜏 = 0.2, 𝛼 = 0.5, 𝐷 = 0  

Finally, the impact of the electric load on the fracture response is shown in Figure 3.11. The 

results show that the DEDIF remains constant and the value increases remarkably with the electric 

load, whilst the DSIFs slightly decreasing with increasing of D. 

 
                           (a)                                                 (b)                                              (c)  

Figure 3. 11 The effect of the electric load on the stress and electric displacement intensity factors: (a) 

𝐾 ; (b) 𝐾 ; (c) 𝐾 . = 0.5, = 0.25, 𝜏 = 0.2, 𝛼 = 0.5  
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3.7 Conclusions 

In the chapter, the dynamic response of a cracked piezoelectric strip subjected to 

thermoelectric impact has been investigated. The field equations are reduced to the solutions of 

Cauchy-type singular integral equations by using the dislocation density functions. The results 

reveal that the fractional heat conduction model is superior in comparison to the Fourier and C-V 

models, as the relaxation time and fractional order coefficients modify the overshooting and wave 

behavior of dynamic thermal response. Some interesting observations are listed as follows: 

(1) With the increasing of relaxation time, the overshooting phenomenon would be more 

obvious, while wave behavior is weaker. For higher fractional order, the thermal wave and 

overshooting behaviors both become apparent.  

(2) Stress and electric displacement intensity factors are greatly affected by the relaxation time 

and fractional order coefficients and exhibit an apparent inflection point between different 

stages of the historical spectrums.  

(3) The larger the crack, the higher values of the DSIFs, and the lower value of the DEDIF. 

Once the crack is bigger than the length of the strip, the mode I fracture and electric fracture 

modes will be impeded with increasing of crack size, as the normalized mode I DSIF and 

DEDIF decrease.  

(4) As the distance between the crack and the thermal shock increases, the crack is dominated 

by a mode I fracture combined with electric fracture.  

(5) The electric load will reduce DSIFs slightly but enhance DEDIF significantly. 
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Chapter 4  

Multiphysical model to predict thermomechanical 

fracture of functional hierarchical biomimetic 

composites 

In this chapter, following the study of thermoelectric performance, the emphasis is placed on 

the mathematical modeling of the microstructural characteristics of biomimetic materials. 

Functionally graded models enable the control of feature sizes within the layered structure of 

biological materials. Thus, inspired by nacre, we propose a brick-and-mortar graded (BM-GRAD) 

model and employ it to investigate how material heterogeneity interacts with its crack resistance. 

The interface damage model is further used to estimate the crack propagation direction between 

dissimilar materials under thermal and stress fields. Results show that the BM-GRAD 

microstructure can remarkably increase the strength of the biomimetic composite under the pure 

stress field; however, the temperature has a high impact on structures, and a sudden cooling will 

highly likely cause an opening-mode failure. Moreover, although multiphysical leads structure to 

become more risky, compared with functional unbrick single gradient (GRAD) design, the BM-

GRAD arrangement has a great advantage, the deflecting cracks form more easily in the BM-

GRAD microstructure which progress of crack propagation is much easier to be terminated. 
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4.1 Introduction 

 Stiffness and toughness are two desirable properties hard to be combined. Biomaterial 

exhibits a remarkable combination of stiffness, strength, and lightweight due to its hierarchical 

soft-hard structure, in which hard aragonite tablets are glued together with soft organic materials 

to form tiles 4-6. As an excellent mechanical performance, biomaterial has opened a way to inspire 

new designs for hierarchical composite materials 3,166-169. 

With the advent of 3D printing techniques, arbitrary hierarchical geometry can be designed. 

For example, staggered microstructures inspired by nacres 170 were printed with lamellar and brick-

and-mortar (BM) architectures. Compared to lamellar microstructure, a BM structure realized over 

2 times increase in fracture toughness under quasistatic bending loading. Similar tests were 

conducted between the BM and the cross lamellar 171, branch lamellar 172, concentrated hexagon 

11, and rotating plywood 173 microstructures, and the BM always showed a higher load of failure, 

and its work of fracture per unit mass even over 14 times greater than single hard or soft phase 24, 

uncovering the design benefits of brick-and-mortar arrangement. Besides shapes of microstructure, 

fibers were controlled to arrange in different dislocation patterns 174, thickness 168, and direction 

175, imparting high strength and preventing early fracture simultaneously. Furthermore, with the 

change of material ingredient, BM hierarchical structures with functional gradients were printed 

176-178, and the continuous gradient offered a 2-fold increase in stiffness and ultimate strength 177.  

These works on printing hierarchical biomimetic composites improve our understanding of 

how microstructure can be controlled to produce tougher materials. But there are still many open 

questions. First, most researches focus on one single tensile or compressive mechanical 

environment while complex working circumstances are inevitable during the lifetime of the 
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hierarchical composites 179-183. Varying temperature is the most common issue, especially for the 

structures with a brick-and-mortar architecture, where the material would display a lower strength 

and easier to emerge crack 184 at high temperature, yet the crack-growth resistance can be improved 

due to enhanced ductility in the metallic mortar 2. Besides, in need of high technology service, 

composites are required to keep stable in extreme temperature conditions 71,185-187, thus the effects 

of coupled, extreme thermal and mechanical environments on the BM structure are vital issues to 

be considered to evaluate the fracture performance in these nacre-like hierarchical composites. 

Second, when testing fracture behaviors of biomaterial specimens, the applied method is based on 

ASTM standard empirical formula. In such a scenario, only the force-induced tensile stress 

intensity factor can be presented 24,168,174,175. The more complex mechanism-the interaction 

between temperature and mechanics, is hard to be revealed. In contrast, studying the whole stress 

and displacement fields brings a more detailed picture of the multiphysical loading-induced 

fracture behaviors. Even though theoretical models that consider crack propagation in extreme 

temperature and thermomechanical environments 188-192 have been proposed in many studies, most 

of these studies applied the traditional Fourier heat conduction model which will render 

unreasonable temperature predictions when the temperature is extremely low, the temperature 

gradient is extremely high, or the material has a heterogeneous microstructure 193-195. To fix this 

problem, the non-Fourier heat conduction model should be employed with a so-called relaxation 

time which measures the time lag between temperature and heat flux. Besides, while many studies 

have extended these theoretical models with FEM simulations 196-200, application of the non-

Fourier models to 3D printed hierarchical composites to guide the design of biomimetic 

microstructures under multi-filed is rather rare in the literature.  
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In this work, we have built a coupled thermal-mechanical model for functional, hierarchical, 

biomimetic materials based on the non-Fourier heat conduction model. The material properties are 

controlled to be a function of the volume fraction of the hard phase. General solutions to stress and 

displacement fields are eventually obtained. Subsequently, the fracture strength is evaluated using 

the linear elastic stress-intensity values. Fracture theories are further used to predict crack 

propagation. We also consider the effects of cooling-heating conditions, multiple physical fields, 

and hierarchical degree on the failure mechanism and failure stress. Finally, the results are 

compared with the experiments and numerical results, which verifies the accuracy of the present 

model. 

4.2 Materials and Constitutive Model 

4.2.1 Microstructure design and material properties 

Inspired by the scanning electron microscope (SEM) micrographs of nacre (Figure 4.1a), the 

biomimetic composite is structured to be composed of a hard brick phase and a soft mortar phase 

(Figure 4.1 (b)). All bricks have the same size and are arranged hierarchically. From SEM 

micrographs, the degree of grey color is not the same for the whole part, thus a functional gradient 

is introduced in the z-direction. Then, to analyze the multiphysical fracture performance of the 

biomimetic composite, tensile stress and temperature fields are both applied at upper and lower 

surfaces. A multiphysical, functional, hierarchical, biomimetic composite model is finally built as 

shown in Figure 4.1 (b). 
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                                                (a)                                                                 (b)  

Figure 4. 1 Brick-and-mortar multiphysical functional biomimetic hierarchical model: (a) SEM 

micrographs of the nacre 201; (b) Multiphysical model. 

The material properties can be obtained by the volume fraction of the hard brick phase, 𝛾 178 

𝐸 = 𝑒 𝛾 + 𝑒 𝛾 − 𝑒                                                      (4.1) 

where 𝐸 and 𝜌 are position-dependent Young’s modulus and mass density, 𝑒 , 𝑒 , 𝑒  are material 

constants related to modulus. The volume fraction of the hard phase, 𝛾 is also the function of z, 

and  𝛾(𝑧) varies along the z-direction. 

4.2.2 Thermomechanical constitutive model 

Along with the thickness of the composite, there are no changes in material properties and 

the applied physical fields. Thus the 3D model can be changed into a plane problem to build the 

constitutive model as shown in Figure 4.2 (a). To test fracture performance, an insulated crack of 

width 2c is set in the center of the composite. According to the symmetry of the nanostructure, a 

brick-and-mortar united cell of the composite is shown in Figure 4.2 (b), where the black and white 

parts are denoted as soft and hard phases, respectively, 𝑑  is the length of hard material, 𝑑  is 
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the thickness of hard material, and 𝑑  is the thickness of soft material. For the crack tip stress 

field, a polar coordinate system (𝑟, 𝜗) is set at the crack tip. 

            
                                           (a)                                                                               (b) 

Figure 4. 2 A center cracked multiphysical functional brick-and-mortar plane model: (a) multiphysical 

plane model; (b) unite cell. 

A Cartesian coordinate system (x, y, z) is attached to the midpoint of the crack. Suppose the 

initial temperature is 𝑇 . Then a tensile stress P is applied on both the upper and lower faces of the 

composite, along with a thermal pulse Asin(ψt) on the upper face, at time t. 

As the material is under a thermal shock loading, according to the classical theory of 

elasticity, the dynamic equilibrium equations for a 2D problem in the absence of body forces are 

given as 

𝜕𝜎

𝜕𝑥
+

𝜕𝜎

𝜕𝑧
= 𝜌

𝜕 𝑢

𝜕𝑡
,

𝜕𝜎

𝜕𝑧
+

𝜕𝜎

𝜕𝑥
= 𝜌

𝜕 𝑢

𝜕𝑡
                         (4.2) 

where 𝜌 is the mass density; 𝑢  and 𝑢  are the displacement in x and z directions, respectively. 

the strain is related to the displacement by  
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휀 =
𝜕𝑢

𝜕𝑥
,    휀 =

𝜕𝑢

𝜕𝑧
,    휀 =

1

2

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑥
                                 

                            (4.3) 

Then, the constitutive equations for the thermomechanical multiphysical model can be 

expressed as follow 
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𝑇    (4.4) 

in which 𝜎 , 𝜎 , 𝜎  are the stress tensor components; 휀 , 휀 , 𝛾  are the strain components; 

𝜆  and 𝜆  are thermal expansion coefficients in x and z directions, respectively; 𝜐  is the 

Poisson’s ratio. 𝑇  is temperature change. 𝑖 = 1,2  denote the field quantities in the upper 

(0 ≤ 𝑧 ≤ ℎ ) and lower (−ℎ ≤ 𝑧 ≤ 0) part of the composite. 

Considering heterogeneous properties and high temperature gradients in the z-direction, the 

heat conduction equation based on the non-Fourier law is written as 202 

1

𝛽

𝜕𝑇  

𝜕𝑡
+ 𝜏

𝜕 𝑇

𝜕𝑡
= 𝜅

𝜕 𝑇

𝜕𝑥
+

𝜕 𝑇

𝜕𝑧
                                       (4.5) 

where 𝜏  is the thermal relaxation time; 𝜅 =  , that 𝑘  and 𝑘  are the thermal conductivities in 

the x- and z-directions, respectively; and 𝛽 =  , is the thermal diffusivity, 𝑐  is the specific heat 

parameter.  

In Eq. (4.4), set 𝑐 =
( )

, 𝑐 =
( )

, 𝑐 =
( )

( )
, 𝜆 = 𝑐 𝜆 + 𝑐 𝜆 , 𝜆 =

𝑐 𝜆 + 𝑐 𝜆 . By introducing the following dimensionless quantities 
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𝑇 =
𝑇

𝑇
, 𝑡,̅ 𝜏 =

𝑡, 𝜏

𝑐 /𝛽
, (�̅� , 𝑧̅) =

(𝑥, 𝑧)

𝑐
, (𝑢 , 𝑢 ) =

(𝑢 , 𝑢 )

𝑐
, �̅� =

𝜌

𝐸𝑐 /𝛽
 

𝜎 =
𝜎

𝐸
 (𝑖, 𝑗 = 𝑥, 𝑧), 𝑐 =

𝑐

𝐸
 (𝑖, 𝑗 = 1,2), 𝜆 =

𝜆 𝑇

𝐸
 (𝑖 = 𝑗 = 𝑥, 𝑧) 

the dimensionless governing equations for the plane model of the multiphysical, functional, brick-

and-mortar structure can be obtained: 

𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕

𝜕𝑡
𝑢 + (𝑐 + 𝑐 )

𝜕 𝑢

𝜕𝑥𝜕𝑧
= 𝜆

𝜕𝑇

𝜕𝑥

(𝑐 + 𝑐 )
𝜕 𝑢

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕

𝜕𝑡
𝑢 = 𝜆

𝜕𝑇

𝜕𝑧

           (4.6) 

𝜕𝑇  

𝜕𝑡
+ 𝜏

𝜕 𝑇

𝜕𝑡
= 𝜅

𝜕 𝑇

𝜕𝑥
+

𝜕 𝑇

𝜕𝑧
                                            (4.7) 

here and after, the hat “-” of the variables is neglected for simplicity. The boundary conditions, 

therefore, are subjected to the following boundary and initial conditions in dimensionless forms 

𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 𝑃 

𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 0 

𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡) = 0                            |𝑥| < 1      (4.8) 

                                𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡), 𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡)   |𝑥| ≥ 1 

                                  𝑢 (𝑥, 0, 𝑡) = 𝑢 (𝑥, 0, 𝑡), 𝑢 (𝑥, 0, 𝑡) = 𝑢 (𝑥, 0, 𝑡)       |𝑥| ≥ 1 

for mechanical conditions and 
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𝑇 (𝑥, 𝑧, 0) = 0

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
= 0                            |𝑥| < 1

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇 (𝑥, 0, 𝑡)

𝜕𝑧
|𝑥| ≥ 1

𝑇 (𝑥, 0, 𝑡) = 𝑇 (𝑥, 0, 𝑡) |𝑥| ≥ 1

𝑇 (𝑥, ℎ , 𝑡) = 𝐴 sin(𝜓𝑡) |𝑥| ≥ 0

𝑇 (𝑥, −ℎ , 𝑡) = 0 |𝑥| ≥ 0

(4.9) 

for thermal loading conditions. 

4.3 General solutions and stress intensity factors 

For solving the problems, we introduce a Laplace transform pair as 

𝑓∗(𝑥, 𝑧, 𝑝) = 𝑓(𝑥, 𝑧, 𝑡) exp(−𝑝𝑡) 𝑑𝑡                                

𝑓(𝑥, 𝑧, 𝑡) =
1

2𝜋𝑖
𝑓∗(𝑥, 𝑧, 𝑝) exp(𝑝𝑡) 𝑑𝑡      

      (4.10) 

in which 𝐵𝑟 stands for the Bromwich path of integration to transform the time variable t into the 

Laplace variable p, and the superscript ‘∗’ indicates the variables in the Laplace domain.  

4.3.1 Temperature distribution 

First, we should find temperature solutions of the composite under a thermal sine wave. 

According to superposition, the temperature field can be expressed as uncracked 𝑇∗( )(𝑦, 𝑝) plus 

cracked 𝑇∗( )
(𝑥, 𝑧, 𝑝) 

𝑇∗(𝑥, 𝑧, 𝑝) = 𝑇∗( )(𝑦, 𝑝) + 𝑇
∗( )

(𝑥, 𝑧, 𝑝)                                      (4.11) 

where 𝑇∗( )(𝑧, 𝑝) satisfies the following equation and boundary conditions, 
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𝑝 + 𝜏 𝑝 𝑇∗( ) =
𝑑 𝑇∗( )

𝑑𝑧
                                              (4.12) 

𝑇∗( )(ℎ , 𝑝) =
𝜓𝐴

(𝜓 + 𝑝 )

𝑇∗( )(−ℎ , 𝑝) = 0        

                                                   (4.13) 

whereas 𝑇∗( )(𝑥, 𝑧, 𝑝) is subject to the relations, 

𝑝 + 𝜏 𝑝 𝑇
∗( )

= 𝜅
𝜕 𝑇

∗( )

𝜕𝑥
+

𝜕 𝑇
∗( )

𝜕𝑧
                                  (4.14) 

𝜕𝑇
∗( )(𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇
∗( )(𝑥, 0, 𝑡)

𝜕𝑧
= −

𝑑𝑇∗( )

𝑑𝑧
          |𝑥| < 1

𝜕𝑇
∗( )(𝑥, 0, 𝑡)

𝜕𝑧
=

𝜕𝑇
∗( )(𝑥, 0, 𝑡)

𝜕𝑧
|𝑥| ≥ 1

𝑇
∗( )(𝑥, 0, 𝑡) = 𝑇

∗( )(𝑥, 0, 𝑡) |𝑥| ≥ 1

𝑇
∗( )(𝑥, ℎ , 𝑡) = 𝑇

∗( )(𝑥, −ℎ , 𝑡) = 0 |𝑥| ≥ 0

(4.15) 

It is easy to solve 𝑇∗( )(𝑧, 𝑝) through Eq. (4.12) combined with Eq. (4.13) 

𝑇∗( )(𝑧, 𝑝) =
𝜓𝐴

(𝜓 + 𝑝 )

𝑒 ( )√ − 𝑒 √ ( )

1 − 𝑒 √ ( )
                        (4.16) 

where 𝜔 = 𝑝 + 𝜏 𝑝 . By applying the Fourier integral transform to Eq. (4.14) and making use 

of boundary conditions Eq. (15), we have 

𝑇
∗( )

(𝑥, 𝑧, 𝑝) =
1

2𝜋
[𝐷 𝑒𝑥𝑝(|𝑠|𝜏𝑧) + 𝐷 𝑒𝑥𝑝(−|𝑠|𝜏𝑧)] 𝑒𝑥𝑝(−𝑖𝑠𝑥) 𝑑𝑠 (4.17) 

in which, 𝜏 = 𝜅 +  ; 𝐷 (𝑠, 𝑝) are unknown functions that can be determined by introducing 

the density function 𝐺 (𝑥, 𝑝) 
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𝐺 (𝑥, 𝑝) =

⎩
⎪
⎨

⎪
⎧ 𝜕

𝜕𝑥
{𝑇

∗( )
(𝑥, 0, 𝑝) − 𝑇

∗( )(𝑥, 0, 𝑝)}                           |𝑥| < 1

    0                                                                                   |𝑥| ≥ 1

  (4.18) 

from the continuity conditions, the density function satisfies 

𝐺 (𝜉, 𝑝) 𝑑𝜉 = 0    𝑎𝑛𝑑,    𝐺 (𝜉, 𝑝) = 0                    |𝜉| ≥ 1 (4.19) 

the singular integral equation of 𝐺 (𝜉, 𝑝) is finally obtained  

1

2𝜋
𝐺 (𝜉, 𝑝)

√𝜅

 𝜉 − 𝑥
+ 𝑀 (𝑥, 𝜉, 𝑝) 𝑑𝜉 = −

𝑑𝑇∗( )

𝑑𝑧
                     (4.20) 

where the kernel function reads 

𝑀 (𝑥, 𝜉, 𝑝) = −
2√𝜅𝑠 + 𝜔𝜌 𝜌

𝜌 𝑠
− √𝜅 sin(𝑠(𝜉 − 𝑥)) 𝑑𝑠            (4.21) 

and 

𝜌 (𝑠, 𝑝) = [1 − exp(−2ℎ 𝜏|𝑠|)]𝜌 − [1 − exp(−2ℎ 𝜏|𝑠|)]𝜌

𝜌 (𝑠, 𝑝) = −[1 + exp(−2ℎ 𝜏|𝑠|)]

𝜌 (𝑠, 𝑝) = 1 + exp(−2ℎ 𝜏|𝑠|)

      (4.22) 

Employing the collocation method by Erdogan 203, the singular integral equation, Eq. (4.20), 

can be reduced to the following algebraic equation 

  
1

2

1

𝑛
𝐹(𝜉 , 𝑝)

√𝜅

𝜉 − 𝑥
+ 𝑀 (𝑥 , 𝜉 , 𝑝) = −

𝑑𝑇∗( )

𝑑𝑧
         |𝑥| ≤ 1

     
𝜋

𝑛
𝐹(𝜉 , 𝑝) = 0

(4.23) 
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where 𝜉 = 𝑐𝑜𝑠
( )

, 𝑘 = 1,2,3, ⋯ , ; 𝑥 = 𝑐𝑜𝑠 , 𝑟 = 1,2,3, ⋯ ,  and 

 𝐹(𝜉, 𝑝) = 𝐺 (𝜉, 𝑝) 1 − 𝜉                                      |𝑥| ≤ 1 (4.24) 

4.3.2 General solutions and multiphyscial model 

Then, based on the multiphysical constitutive equations, the temperature solutions can be 

coupled with the stress field. Similar to the temperature field, using superposition, the 

displacements can be separated into uncracked 𝑢∗( )(𝑧, 𝑝) and cracked 𝑢∗( )(𝑥, 𝑧, 𝑝), 𝑢∗( )(𝑥, 𝑧, 𝑝) 

situations, written in the Laplace domain is 

𝑢∗ (𝑥, 𝑧, 𝑝) = 𝑢
∗( )(𝑥, 𝑧, 𝑝)                         

𝑢∗ (𝑥, 𝑧, 𝑝) = 𝑢
∗( )(𝑧, 𝑝) + 𝑢

∗( )(𝑥, 𝑧, 𝑝)
                                  (4.25) 

where 𝑢∗( )(𝑧, 𝑝) satisfies the following differential equation and boundary conditions, 

𝑐
𝑑

𝑑𝑧
− 𝜌𝑝 𝑢

∗( )
= 𝜆

𝑑𝑇∗( )

𝑑𝑧
                                  (4.26) 

𝜎
∗( )(ℎ , 𝑝) = 𝑃/𝑝 ,         𝜎

∗( )
(−ℎ , 𝑝) = 𝑃/𝑝                               (4.27) 

 𝑢∗( ) then equals 

𝑢
∗( )

= 𝐶 exp(휁𝑧) + 𝐶 exp(−휁𝑧) + 𝛿
√𝜔𝑒 ( )√ + √𝜔𝑒 √ ( )

1 − 𝑒 √ ( )
    (4.28) 

where 휁 = , 𝛿 =
( )

 and 
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𝐶 =
−𝑃/𝑝 exp[−휁(ℎ + 2ℎ )] +

𝜆 𝐴
𝑝

− 𝑐 𝛿𝜔 + 𝑃/𝑝 exp(−휁ℎ )

𝑐 휁{1 − exp(−2휁ℎ)}

𝐶 =
−𝑃/𝑝 exp(−휁ℎ ) +

𝜆 𝐴
𝑝

− 𝑐 𝛿𝜔 + 𝑃/𝑝 exp[−휁(ℎ + 2ℎ )]

𝑐 휁{1 − exp(−2휁ℎ)} ⎭
⎪
⎬

⎪
⎫

              (4.29) 

The general solutions of the uncracked composite finally are 

⎣
⎢
⎢
⎡𝜎

∗( )

𝜎
∗( )

𝜎
∗( )

⎦
⎥
⎥
⎤

( )

=

𝑣𝑐 −𝑣𝑐 0

𝑐 −𝑐 0

0 0 0

휁 exp(휁𝑧) 𝐶

휁 exp(−휁𝑧) 𝐶

0 ( )

−

⎣
⎢
⎢
⎢
⎡
𝑐 𝐴

𝑝
− 𝛿𝜔𝑣𝑐

𝜆 𝐴

𝑝
− 𝛿𝜔𝑐

0 ⎦
⎥
⎥
⎥
⎤

𝑒 ( )√ − 𝑒 √ ( )

1 − 𝑒 √ ( )
(4.30) 

Cracked conditions require 𝑢
∗( )(𝑥, 𝑦, 𝑝)  and 𝑢

∗( )(𝑥, 𝑦, 𝑝) to satisfy the following 

differential equations  

𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝 𝑢

∗( )
+ (𝑐 + 𝑐 )

𝜕 𝑢
∗( )

𝜕𝑥𝜕𝑧
= 𝜆

𝜕𝑇
∗( )

𝜕𝑥

(𝑐 + 𝑐 )
𝜕 𝑢

∗( )

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌𝑝 𝑢

∗( )
= 𝜆

𝜕𝑇
∗( )

𝜕𝑧

          (4.31) 

with the following boundary conditions 

𝜎
∗( )(𝑥, ℎ , 𝑝) = 𝜎

∗( )(𝑥, −ℎ , 𝑝) = 0                

𝜎
∗( )(𝑥, ℎ , 𝑝) = 𝜎

∗( )(𝑥, −ℎ , 𝑝) = 0

𝜎
∗( )(𝑥, 0, 𝑝) = −𝜎

∗( )(𝑥, 0, 𝑝) |𝑥| < 1

𝜎
∗( )(𝑥, 0, 𝑝) = −𝜎

∗( )(𝑥, 0, 𝑝) |𝑥| < 1

𝜎
∗( )(𝑥, 0, 𝑝) = 𝜎

∗( )(𝑥, 0, 𝑝) |𝑥| ≥ 1

𝜎
∗( )(𝑥, 0, 𝑝) = 𝜎

∗( )(𝑥, 0, 𝑝) |𝑥| ≥ 1

𝑢
∗( )(𝑥, 0, 𝑝) = 𝑢

∗( )(𝑥, 0, 𝑝) |𝑥| ≥ 1

𝑢
∗( )(𝑥, 0, 𝑝) = 𝑢

∗( )(𝑥, 0, 𝑝) |𝑥| ≥ 1

(4.32) 
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The solutions are separated into general  solutions and particular solutions. The general 

solutions can be expressed as 

𝑢 ,
∗( )

=
𝑖

2𝜋
𝑍 sgn(𝑠) 𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 exp(−𝑖𝑠𝑥) 𝑑𝑠

𝑢 ,
∗( )

=
1

2𝜋
𝑍 𝐴 exp |𝑠|𝜆 𝑧 + 𝐵 exp −|𝑠|𝜆 𝑧 exp(−𝑖𝑠𝑥) 𝑑𝑠            

   (4.33) 

where 𝑍 = −(𝑐 + 𝑐 )𝜆 𝑠  and 𝑍 = 𝑐 𝜆 − 𝑐 𝑠 − 𝜌𝑝 . The coefficients 𝜆  given in 

the Appendix B as Eq. (B.1). The particular solutions are 

𝑢 ,
∗( )

=
𝑖

2𝜋
(𝑅 𝑠 + 𝑅 𝑠)[𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠             

𝑢 ,
∗( )

=
1

2𝜋
(𝑅 𝑠 + 𝑅 𝑠)sgn(𝑠)[𝐷 exp(|𝑠|𝜏𝑧) − 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 

(4.34) 

where the parameters 𝑅 , 𝑅 , 𝑅  and 𝑅  are shown in the Appendix B as Eq. (B.2). We can find 

that the particular values represent the thermal-induced deformations. 

Finally, the general solutions of the cracked multiphysical model are 

𝜎
∗( )

=
1

2𝜋
𝑃 𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 exp(−𝑖𝑠𝑥) 𝑑𝑠 

 +
1

2𝜋
𝜑 [𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 

𝜎
∗( )

=
1

2𝜋
𝑃 𝐴 exp |𝑠|𝜆 𝑧 − 𝐵 exp −|𝑠|𝜆 𝑧 exp(−𝑖𝑠𝑥) 𝑑𝑠 
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+
1

2𝜋
𝜑 [𝐷 exp(|𝑠|𝜏𝑧) + 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠 

𝜎
∗( )

=
𝑖

2𝜋
𝑃 sgn(𝑠) 𝐴 exp |𝑠|𝜆 𝑧 + 𝐵 exp −|𝑠|𝜆 𝑧 exp(−𝑖𝑠𝑥) 𝑑𝑠  

+
𝑖

2𝜋
𝜑 sgn(𝑠)[𝐷 exp(|𝑠|𝜏𝑧) − 𝐷 exp(−|𝑠|𝜏𝑧)] exp(−𝑖𝑠𝑥) 𝑑𝑠     (4.35) 

where 𝑃 (𝑠, 𝑝) and 𝜑 (𝑠, 𝑝) (l=1,2,3) are expressed in the Appendix B as Eqs. (B.3) and (B.4). 

Introducing density functions 𝐺 (𝑥, 𝑝) (𝑙 = 1,2)  and combining with boundary conditions Eq. 

(4.32), we can express unknown parameters 𝐴  and 𝐵  (𝑖, 𝑗 = 1,2) as function of 𝐺  

𝐺 (𝑥, 𝑝)

𝐺 (𝑥, 𝑝)
=

𝜕

𝜕𝑥

𝑢∗ (𝑥, 0 , 𝑝) − 𝑢∗ (𝑥, 0 , 𝑝)

𝑢∗ (𝑥, 0 , 𝑝) − 𝑢∗ (𝑥, 0 , 𝑝)
                    |𝑥| < 1 (4.36) 

Finally, solving 𝐺 (𝑥, 𝑝) from the system of singular integral equations 

1

𝜋
𝐺 ( 𝜉, 𝑝)𝑀 + 𝐺 (𝜉, 𝑝) 𝑀 +

𝑀

 𝜉 − 𝑥
𝑑𝜉 = −𝜎

∗( )
(𝑥, 0, 𝑝) − 𝑓 (𝑥, 𝑝)

1

𝜋
𝐺 ( 𝜉, 𝑝) 𝑀 +

𝑀

 𝜉 − 𝑥
+ 𝐺 (𝜉, 𝑝)𝑀 𝑑𝜉 = −𝑓 (𝑥, 𝑝)

𝐺 ( 𝜉, 𝑝)𝑑 𝜉 = 0

(4.37) 

one can get the thermomechanical fields of the problem. In Eq. (4.37), 𝑀 , 𝑀 , 𝑀 , 𝑀 , 𝑀  

and 𝑀  are given in the Appendix B as Eqs. (B.5) and (B.6), while the temperature-induced 

parameters 𝑓 (𝑥, 𝑝) and 𝑓 (𝑥, 𝑝) are expressed as 
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𝑓 (𝑥, 𝑝) =
1

2𝜋
𝜑 [𝐷 + 𝐷 ] + 𝑆 𝐷 − 𝑆

(𝑅 𝑠 + 𝑅 𝑠 )𝐷

|𝑠|
exp(−𝑖𝑠𝑥) 𝑑𝑠

𝑓 (𝑥, 𝑝) =
1

2𝜋
𝜑 [𝐷 − 𝐷 ] + 𝑆 𝐷 − 𝑆

(𝑅 𝑠 + 𝑅 𝑠 )𝐷

|𝑠|
exp(−𝑖𝑠𝑥) 𝑑𝑠

(4.38) 

By virtue of the Lobatto-Chebyshev method 163, transforming the singular integral Eq. (4.37) 

into the following algebraic equations, the solutions of density functions 𝐺  can be finally obtained 

1

𝜋
𝐴 𝐹 (𝜉 , 𝑝)𝑀 + 𝐹 (𝜉 , 𝑝) 𝑀 +

𝑀

 𝜉 − 𝑥
= −𝜎

∗( )
(𝑥 , 0, 𝑝) − 𝑓 (𝑥 , 𝑝)

1

𝜋
𝐴 𝐹 (𝜉 , 𝑝) 𝑀 +

𝑀

 𝜉 − 𝑥
+ 𝐹 (𝜉 , 𝑝)𝑀 = −𝑓 (𝑥 , 𝑝)

𝐴 𝐹 (𝜉 , 𝑝) = 0  

(4.39) 

where 𝜉 = 𝑐𝑜𝑠
( )

, 𝑘 = 1,2,3, ⋯ , 𝑛;  𝑥 = 𝑐𝑜𝑠
( )

( )
, 𝑟 = 1,2,3, ⋯ , 𝑛 − 1;  𝐴 =

( )
, 

𝑘 = 1, 𝑛; 𝐴 = , 𝑘 = 2, 3, … , 𝑛 − 1; and 

𝐹 (𝜉 , 𝑝) = 𝐺 (𝜉, 𝑝) 1 − 𝜉        |𝑥| ≤ 1                        (𝑙 = 1,2)    (4.40) 

4.3.3 Stress intensity factors 

The stress intensity factors 𝐾 ∗(𝑝), 𝐾 ∗(𝑝) in the Laplace domain can be obtained 

𝐾 ∗(𝑝) = lim
→

2𝜋(𝑥 − 𝑐)𝜎∗ (𝑥, 0, 𝑝)

𝐾 ∗(𝑝) = lim
→

2𝜋(𝑥 − 𝑐)𝜎∗ (𝑥, 0, 𝑝)
                                (4.41) 

then, applying the Laplace inverse transform, the stress intensity factors (SIFs) in the time domain 

can be obtained as 
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𝐾 (𝑡) = −√𝜋
1

2𝜋𝑖
[𝑀 𝐹 (1, 𝑝)] exp(𝑝𝑡) 𝑑𝑝

𝐾 (𝑡) = −√𝜋
1

2𝜋𝑖
[𝑀 𝐹 (1, 𝑝)] exp(𝑝𝑡) 𝑑𝑝

                       (4.42) 

4.4 Results and Verifications 

Depending on the multi-material AM (3D printing) techniques, a type of 15mm × 75mm 

(c×h) functional biomimetic brick-and-mortar composite was produced recently 178. The hard and 

soft phases of the composite were printed by rigid plastics VeroCyan and rubber-like Agilus30 

Black materials, respectively. According to the experimental data, the material constants are listed 

in Table 4.1 and the corresponding volume fraction of the hard phase, 𝛾 is expressed as  

𝛾 =
Φ 𝑧/ℎ + Φ 𝑖 = 1

−Φ 𝑧/ℎ + Φ 𝑖 = 2
                                                   (4.43)                                                                                                               

Table 4. 1 The experimental coefficients of Young’s modulus 178. 

e1 e2 e3 

-75.81 551.41 -0.09 

 

To pursue the benefits of a designed nacre-like functional brick-and-mortar (BM-GRAD) 

microstructure, a brick-free single gradient (GRAD) arrangement is introduced to compare the 

results. The values Φ1 and Φ0 of two different microstructures are shown in Table 4.2. 

Table 4. 2 The values of the coefficients of the volume fraction of the hard phase 178. 

Microstructure Φ1 Φ0 

GRAD 0.62 0.38 

BM-GRAD 0.48 0.52 
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As the thermal performance of the composite has some missing information in the 

experiment, considering the soft phase of material generally has a better thermal resistance, we 

assume 𝜏 = 1.5  and 𝜅 = 1.  Moreover, the biomaterial could respond to the thermal stimuli, 

let  𝜆 = 1 (𝑖 = 𝑗 = 𝑥, 𝑧). 

4.4.1 Model verifications 

The likelihood of crack propagation of functional brick-and-mortar (BM-GRAD) and unbrick 

single gradient (GRAD) microstructures are compared as shown in Figure 4.3. The single-edged 

notched experimental specimen is a special condition of the central crack case in fracture 

mechanics with, Kedged =1.12 Kcentral. As expected, shear stress intensity factors (KII) are equal to 

zero under a pure tensile loading, and only an opening crack will happen if P increases. Moreover, 

it is observed that the values of KI of the GRAD are always higher than BM-GRAD. The results 

showed the crack propagation trend of the BM-GRAD is much lower under the single mechanical 

field, which is consistent with the experimental results (Figure 4.3b), where BM-GRAD has larger 

maximum stress than the GRAD specimen. 

       
                                       (a)                                                                               (b) 

Figure 4. 3 Crack propagation likelihood of functional brick and unbrick microstructures: (a) stress 

intensity factors under pure tensile stress; (b) experimental and theoretical stress-strain curves 178. 
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To further validate the theoretical model, strain patterns around the crack tips are visualized 

and compared with DIC experiments as well as Abaqus simulations. Figure 4.4 presents the good 

consistency of the results via the three methods. In all the results with or without brick-and-mortar 

layouts, a high strain concentration is seen in front of the crack tip. The strain localization for both 

the BM-GRAD and GRAD exhibits a candle flame-shaped region around the crack tip. A longer 

and thinner zone of strain localization is shown in the GRAD group than in the BM-GRAD. 

Moreover, due to the functional gradient introduced in constitutive equations which are ignored in 

the Abaqus finite element simulation and replaced by averaged values, the strain pattern and exact 

value obtained via the theoretical model are even closer to the DIC results than the finite element 

results. 

 

 

Figure 4. 4 The strain patterns around the crack tip obtained from the present model, DIC experiments 178, 

and Abaqus simulations 178. 

So far, after reducing the scale of the field into the single tensile load, all the solutions of the 
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prediction model is reliable and can be extended to predict material performance involving 

multiphysical structures. 

4.4.2 Thermal loading 

If the composite undergoes a single thermal pulse Asin(t) =sin(0.5t), Figure 4.5 compares 

the temperature changes at the center of the crack (x=0, z=0) under classical Fourier and non-

Fourier heat conduction models. Both types of the model show an obvious, sinusoidal, thermal 

response. Meanwhile, a temperature jump happens between the upper and lower faces of the 

insulated crack as expected. However, owing to the thermal relaxation time, an apparent delay in 

the thermal response is observed for the non-Fourier model as the peak values occur after that of 

Fourier heat conduction. At the same time, the temperature predicted by the non-Fourier model 

exhibits an amplifying phenomenon, with a peak value much larger than the results by the Fourier 

model. The classical Fourier’s law results in a diffusion-type heat transfer, which is different from 

the wave form heat transfer as expressed in Eq. (4.5). Hence, the introduction of the phase lag of 

heat flux 𝜏  in thermal analysis leads to a more conservative design. 

 

Figure 4. 5 Temperature results with different heat conduction models. 
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The stress intensity factors (SIFs) measure the intensity of the singular stress field around the 

crack tip. SIF-based fracture criteria allow us to evaluate the failure mode of the composite. Figure 

4.6 plots the mode I and mode II SIFs versus temperature change, showing the SIFs for both BM-

GRAD and GRAD exhibit the same trend of variation under single thermal loading, where the 

magnitudes of KI decrease with the increase of temperature, while KII remains zero for the pure 

thermal loading. An opening failure mode (mode I) will likely occur under the cooling condition, 

while the crack trends to closed under heating conditions due to KI becoming negative. Therefore, 

thermal failure needs to be considered in material design.  

 

Figure 4. 6 Stress intensity factors under single thermal loading. (𝑡 = 1, 𝜌 = 0.1) 

4.4.3 Thermal-mechanical loading 
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GRAD microstructure before the C point (T < C), but it is worth noting that the KI at point C is 

negative, which means crack will be closed. Even though, after the temperature rises beyond point 

C, the KI of BM-GRAD becomes bigger than GRAD as the temperature rises, they both cause 

cracks to close and keep the structure safe. It also notices that the KI value of BM-GRAD gets into 

the negative regime earlier than GRAD, so as temperature increases, the BM-GRAD enters the 

safe zone earlier. To further illustrate the thermomechanical behavior of the GM-GRAD and 

GRAD microstructures, the normal stress distribution in two different conditions: cooling-tensile 

condition 1 (T= -40, P=1) and heating-tensile condition 2 (T= 40, P=1) are shown in Figure 4.8. 

 

         Figure 4. 7 The plots of the SIFs with different microstructures. (𝑡 = 1, 𝜌 = 0.1) 

The line graphs in Figure 4.8 show the stress values on the crack surface equal to zero which 

satisfies the free surface boundary condition requirement. The stress spikes around crack tips for 

both conditions: for condition 1, the peak value of GRAD is much larger than BM-GRAD; for 

condition 2, at crack tips, the normal stress of BM-GRAD already transforms into a negative value, 

which will cause the crack to close, but the normal stress of GRAD is still positive. By further 

comparing stress patterns in the whole strip as shown in the contour plot of Figure 4.8, BM-GRAD 

always shows a smaller substantial zone of stress localization as well as lower values of the normal 

-40 -20 0 20 40 60 80 100 120 140
-10

-8

-6

-4

-2

0

2

4

6

8

10

S
tr

es
s 

in
te

ns
ity

 f
ac

to
r

Normalized temperature change T

 KI
BM-GRAD   KI

GRAD

 KII
BM-GRAD  KII

GRAD

C

BM-GRAD

GRAD

Condition 1 (T= -40, P=1)

Condition 2 (T= 40, P=1)



 
Chapter 4. Functionally graded Materials 

 

82 
 

stress than GRAD. These stress distributions confirm that introducing brick-and-mortar (BM) 

microstructure can significantly improve the potential to overcome the crack propagation of the 

composite under thermal-tensile loading.  

 

 

Figure 4. 8 The stress distribution around the crack surface and crack tips. (𝑡 = 1, 𝜌 = 0.1) 

4.4.4 Initial crack propagation predictions 
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the impinging crack is likely to penetrate the interface, Conversely, the crack will tend to deflect 

into the interface when the inequality is reversed.  

Suppose that the crack forms an infinitesimal kink at an angle 𝜗 from the plane of the crack. 

The local stress intensity factors at the tip of this kink differed from the nominal K values of the 

main crack. If we define a local system r- 𝜗, the local Mode I and Mode II stress intensity factors 

at the tip are obtained by summing the normal and shear stresses, respectively, at 𝜗 204 

𝑘 (𝜗) = 𝐾
3

4
cos

𝜗

2
+

1

4
cos

3𝜗

2
+ 𝐾 −

3

4
sin

𝜗

2
−

3

4
sin

3𝜗

2

𝑘 (𝜗) = 𝐾
1

4
sin

𝜗

2
+

1

4
sin

3𝜗

2
+ 𝐾

1

4
cos

𝜗

2
+

3

4
cos

3𝜗

2

               (4.45) 

The energy release rate for the kinked crack is given by 204 

𝐺(𝜗) =
𝑘 (𝜗) + 𝑘 (𝜗)

𝐸
                                               (4.46) 

According to experimental results 178, the crack tips located in the hard layer of the BM-

GRAD groups, thus the toughness ratio is equal to monolithically GRAD material, Γ /Γ = 1. 

According to Eq. (4.46), the estimated ratios of energy release rate Φ = 𝐺 /𝐺  under a single 

stress field for GRAD and BM-GRAD groups are equal to 3.98 and 3.91 (> 1), respectively, thus, 

the microcracks in front of the crack tips will penetrate and remain parallel to the original crack 

faces. The outcomes are consistent with optical microscopy images (Figure 4.9).  
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Figure 4. 9 Initial crack propagation directions under a single stress field. 

To further understand the influence of external thermomechanical loading on crack deflection 

between dissimilar soft and hard materials, three loading conditions: single stress (P=1), thermal 

(T= -40, 40), and coupled thermal-mechanical (P=1, T= -40, 40) fields are considered. Assume the 

crack tip locates at the interface of soft and hard phases, like Figure 4.2b, then the toughness ratio 

of BM-GRAD changes to 6.71 based on the experimental results of monolithic materials 178. Table 

4.3 shows that the initial crack trends propagate in a straight line for the GRAD group, however, 

it deflects to the BM-GRAD and the corresponding predictions are drawn in Figure 4.10. In 

addition, the coupled thermomechanical loading increases the risk of crack penetration except for 

tensile-heating condition which is consistent with Figure 4.7, owing to the value of KI becoming 

negative, and the crack trends to close. Therefore, Φ under P=1, T=40 becomes lower than under 

single heating or tensile condition. These observations suggest that multi-physical fields can lead 

to different directions of crack propagation which can not be neglected in the application of BM-

GRAD materials. Importantly, introducing a brick-and-mortar layout results in a higher prospect 

of deflecting cracks that can dissipate much more energy and are easier to be terminated than a 

straight crack path observed in the unbricked pattern.  
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Table 4. 3 The ratio of the energy release rate for different environments. 

Microstructure 

(Toughness ratio 

Γ /Γ ) 

The ratio of the energy 

release ratio 

 
Heating condition  

(T= 40) 
Cooling condition 

 (T= -40) Predict 

Tensile Thermal Tensile-heating Thermal Tensile-cooling 

GRAD (1) Φ= G(0)/G(π/2) 3.98 3.94 4.25 3.94 4.01 Penetrate 

BM-GRAD (6.27) Φ= G(0)/G(π/2) 3.91 4.00 3.67 4.00 4.00 Deflect 

 

  

                                                               (a)                                        (b)      

Figure 4. 10 Initial crack propagation direction predictions: (a) Penetrate; (b) Deflect. 

4.5 Conclusions 

In summary, we have compared the thermomechanical behavior of brick-and-mortar and 

unbricked gradient patterns under single sinusoidal thermal, single stress, and coupled thermal-

stress fields, and used an interface damage model to characterize crack propagation directions. 

Based on the experimental results and numerical analysis, we differentiate the microstructure 

layouts by controlling Young’s modulus, which varies with the volume fraction of the hard phase 

γ, and finally propose an elastic model to predict the stress results. The reliability of the present 

results is verified. Multiphysical conditions have a significant influence on the material 

performance of different microstructures, whiles temperature is a vital factor that cannot be 

ignored. A sudden temperature fall will cause an opening-mode failure risk. Furthermore, under 
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thermal-tensile loading condition, brick-and-mortar gradient microstructure (BM-GRAD) always 

shows a smaller zone of extreme stress localization as well as lower values of the normal stress, 

which significantly improves the crack resistance. It is also highlighted that BM-GRAD 

microstructure is easier to form deflecting crack once a fracture happens and the crack propagation 

is more likely to be terminated. The present results show the influence of the multiphysical loading 

on the fracture of microstructure and provide guidelines for the microstructure design and criteria 

for obtaining favorable failure patterns.
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Chapter 5  

Functionally graded Design of Bio-composite Material 

for Fracture Resistance under Multiphysical 

Application 

Combing thermal piezoelectric multiphysical behavior and graded hierarchical 

microstructure property of biomimetic materials, a thermo-electromechanical piezo functionally 

graded theoretical model is developed in this chapter. To explore the appropriate configuration for 

different Multiphysics, two configurations, namely symmetric functionally graded piezoelectric 

material (Sym-FGPM) and exponential functionally graded piezoelectric material (Expo-FGPM), 

are designed and controlled against fracture using thermal gradation coefficient Ψ and 

electromechanical gradation coefficient Ω. Comparisons with non-functionally graded 

piezoelectric material (Non-FGPM) are conducted using a revised critical intensity factor (KC) in 

both single and multiphysical environments. The results demonstrate that the Sym-FGPM 

structure, with high gradation coefficients, achieved lower KC, indicating superior crack resistance 

in single stress and electric fields. However, in the thermal field, the functionally graded design 

amplified the thermal shock effect. For thermo-electromechanical fields, the optimal Sym-FGPM 

configuration with (Ω, Ψ) values of (1, -0.5) for heating and (1, -1) for cooling reduces KC by 24% 

and 48% respectively compared to Non-FGPM. Caution is advised when using Expo-FGPM, as it 

is suitable for cooling coupling conditions but not for heating coupling environments. 
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5.1 Introduction 

Biomaterials possess ingenious hierarchical construction and smart living organic cells. 

These two features empower biomaterials performing great strength and toughness mechanical 

performances 205-207 as well as intelligent self-optimizing ability 208-210.  

The characteristics of biomaterials become the source of inspiration for the designs of 

engineering structure 211-215. For example, through mimicking the brick-and-mortar like structure 

of nacre 216-220, the multi-layer composite panel exhibits good impact resistance and energy 

dissipation 221-224. In these studies, the brick-and-mortar structure is simulated by finite element 

method (FEM) and fabricated through additive manufacturing (AM) technique. To achieve the 

brick-and-mortar grade of nacre-inspired composite, researches separated the composite into 

different layers 225-227. Then homogeneous elements with constant material properties in each layer 

were used to approach the non-homogeneous performance of nacre 228. The accuracy of this multi-

layered method highly depends on the number of layers utilized. If the number of layers is not 

large enough, the material gradation becomes discontinuous 229 and leads to the undesirable 

discontinuities of the stress fields 49. However, if the number of layers is increased, the associated 

computational and fabrication costs would be prohibitively high. Hence, as the hierarchical, 

functional structure becomes more intricate and complex, it becomes very difficult to develop a 

FEM model or achieve AM fabrication.  

Considering the presence of living cells within biomaterials, which consist of a large amount 

of collagen. The piezoelectricity of collagen is incorporated into the brick-and-mortar functional 

structural model 230-234. After the structures are equipped with the piezoelectric ability, the bio-

composites become self-adaptable which are able to respond to external triggers and widely used 
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in sensors 235-238 and actuators 239-242. Researches have conducted various response analyses of 

functionally graded piezoelectric material (FGPM) model by changing external stimuli, such as 

mechanical impact 243-247, electrical charge 248-252, and electromechanical loading 253-257. The 

investigations primarily focused on the interaction between mechanical and electrical fields to 

improve the smart capability of FGPM. However, thermal disturbance is also a common problem 

that will be faced especially in aerospace applications 258-262. When the spaceship returns to earth, 

the FGPM structure of its surface will undergo an extremely high temperature gradient from 

outside to inside 263. This highly thermal change can induce the structure to lose its stability and 

collapse in a very short time. 

Here, aiming at addressing the issues of discontinuity in the model and costly computational 

and manufacturing expenses in FEM and AM methods, as well as considering the impacts of 

temperature, a continuous, multiphysical model of functionally graded piezoelectric material was 

built in this paper. By introducing a pre-existing central crack, the stress and displacement 

responses at the crack tip, as well as the structure stability, of the FGPM were investigated under 

thermo-electromechanical loading. This multiphysical boundary makes the model of biomimetic 

materials more realistic and comprehensive, thus providing a more precise reflection of their 

performance in complex, real-world environment. It is worth pointing out that, in the theoretical 

model, the configurations of FGPM can be easily changed by the governing equation. Therefore, 

we designed symmetric and unsymmetric configurations of FGPM, and introduced thermal 

gradation coefficient Ψ and electromechanical gradation coefficient Ω to control the gradation 

profile of configurations. A critical intensity factor (KC) was defined and calculated, and the results 

were compared among various gradation parameters, providing guidelines for the design of bio-

composite material in both single and multiphysical conditions.  
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5.2 Statement of the problem 

5.2.1 Microstructure of FGPM and its properties 

In nature, bamboo is a typical, functionally graded piezoelectric material (FGPM). The 

microstructure of bamboo is shown in Figure 1 (a) with fibers gradually varying through the wall 

thickness and, the concentration being most dense near the upper (exterior). According to it, we 

have designed the gradation profile for the functionally graded piezoelectric material (FGPM) as 

expressed by Eq. (5.1). The schematic variations of material property parameters are taken to vary 

continuously along the z-direction as shown in Figure 5.1 (b). 

               

                                           (a)                                                                 (b)      

Figure 5. 1 Microstructure of an FGPM that is graded from material A to material B: (a) SEM micrograph 

of a bamboo 264; (b) the gradation profile of FGPM material. 

(휁 , 𝑝 ) = (휁 , 𝑝 )𝑒 FPGM. Ψ

(𝑐 , 𝑑 , 휀 , 𝑘 , 𝜌) = (𝑐 , 𝑑 , 휀 , 𝑘 , 𝜌 )𝑒                    FPGM. Ω
(5.1) 

where the superscripts Ω and Ψ stand for the gradation coefficients for the FGM, whose values 

can be used to reschedule the profile of gradation. Additionally, we also introduce 𝜇 as a functional 



 
Chapter 5. Multiphysics of Functionally graded Materials 

 

91 
 

gradient parameter: when 𝜇 = sgn(𝑧) , the material properties of piezoelectric material vary 

symmetrically along the x-axis, when 𝜇 = 1, the variations become unsymmetrical.  

𝜇 =

⎩
⎪
⎨

⎪
⎧

1 𝑈𝑛𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

sgn(𝑧) 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

 

  

For a piezoelectric material, parameters 𝑐 , 𝑑 , 휀 , 𝑘 , 휁 , 𝑝  and 𝜌 in Eq. (5.1) are, respectively, 

elastic stiffness, piezoelectric constants, dielectric constants, thermal conductivities, thermal 

moduli, pyroelectric constants, and mass density. 

5.2.2 Thermo-electromechanical orthotropic constitutive model and boundary 

conditions 

Let a central crack of length 2c be in the interior of an infinite FGPM as shown in Figure 5.2. 

Considering that the upper surface of the strip is subjected to an impact tensile stress loading 

𝜎(𝑡) = 𝜎 𝐻(𝑡), a thermal shock 𝑇(𝑡) = 𝑇 𝐻(𝑡), and an impact electrical loading 𝐷(𝑡) = 𝐷 𝐻(𝑡), 

where 𝜎 , 𝐷  and 𝑇  are the loading amplitudes and 𝐻(𝑡) is the Heaviside step function.  

Unsymmetric

Symmetric
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Figure 5. 2 FGPM strip model and boundary conditions.  

As a convention, the poling axis of the piezoelectric material is in the z-direction. The 

constitutive relations for piezoelectric media give the coupled thermo-electromechanical, 

multiphysical relationship of plane orthotropic piezoelectricity as 

⎣
⎢
⎢
⎢
⎡
𝜎
𝜎
𝜎
𝐷
𝐷 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑐 𝑐 0
𝑐 𝑐 0
0 0 𝑐
0 0 𝑑

𝑑 𝑑 0 ⎦
⎥
⎥
⎥
⎤

.

휀

휀

𝛾

−

⎣
⎢
⎢
⎢
⎢
⎢
⎡
휁

휁

0

0

𝑝 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

.

𝑇 −

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 𝑑

0 𝑑

𝑑 0

−휀 0

0 −휀 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

.

𝐸
𝐸

(5.2) 

where 𝜎 , 𝐷 , 휀 , 𝐸 , and 𝑇  are components of the stress tensor, electric displacement, strain 

tensor, electric field vector and change of temperature.  

The electric field is derivable from a scalar electric potential: 

𝐸 = −𝜙,  
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where 𝜙  is the electric potential, a comma denotes partial differentiation about the coordinates. 

Finally, combining with the equation of motion without body forces and Maxwell’s equation, the 

thermo-electromechanical, multiphysical governing equations are  

𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕

𝜕𝑡
+ 𝜇Ω𝑐

𝜕

𝜕𝑧
𝑢 + 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑐

𝜕

𝜕𝑥
𝑢

+ 𝑑
𝜕

𝜕𝑥𝜕𝑧
+ 𝑑

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑥
𝜙 = 휁 𝑒

𝜕𝑇

𝜕𝑥
 

𝑐
𝜕

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑐

𝜕

𝜕𝑥
𝑢 + 𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌

𝜕

𝜕𝑡
+ 𝜇Ω𝑐

𝜕

𝜕𝑧
𝑢

+ 𝑑
𝜕

𝜕𝑥
+ 𝑑

𝜕

𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑧
𝜙 = 휁 𝑒

𝜕𝑇

𝜕𝑧
+ 𝜇Ψ𝑇                (5.3) 

𝑑
𝜕

𝜕𝑥𝜕𝑧
+ 𝑑

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑥
𝑢 + 𝑑

𝜕

𝜕𝑥
+ 𝑑

𝜕

𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑧
𝑢

− 휀
𝜕

𝜕𝑥
+ 휀

𝜕

𝜕𝑧
+ 𝜇Ω휀

𝜕

𝜕𝑧
𝜙 = 𝑝 𝑒

𝜕𝑇

𝜕𝑧
+ 𝜇Ψ𝑇  

For simplicity, φ = Ψ − Ω in Eq. (5.3). 

The component of the temperature T satisfies the non-Fourier, dual-phase lag heat conduction 

109 which accommodates a certain time for the process of heat transport and building a local thermal 

equilibrium in the composites, expressed by 

𝑞 + 𝜏
𝜕𝑞

𝜕𝑡
= −𝑘

.

𝜕𝑇

𝜕𝑥
+ 𝜏

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑥

𝑞 + 𝜏
𝜕𝑞

𝜕𝑡
= −𝑘

.

𝜕𝑇

𝜕𝑧
+ 𝜏

𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑧

                                    (5.4) 
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where 𝑞 , 𝑞  are the heat fluxes in the x- and z- directions, 𝜏  and 𝜏  are phase lags of the heat 

flux and temperature gradient, respectively. Considering the graded property of thermal 

conductivity expressed in Eq. (5.1), further incorporating Eq. (5.4) with the energy equation, the 

governing equation of temperature change T is finally defined as 

𝜌 𝑐  1 + 𝜏
𝜕

𝜕𝑡

𝜕𝑇

𝜕𝑡
= 1 + 𝜏

𝜕

𝜕𝑡
𝑘

𝜕 𝑇

𝜕𝑥
+ 𝑘

𝜕 𝑇

𝜕𝑧
+ Ω𝜇𝑘

𝜕𝑇

𝜕𝑧
             (5.5) 

where 𝑐  is the specific heat. 

Referring to Figure 5.2, the corresponding initial and boundary conditions for the thermal 

field are 

𝑇(𝑥, 𝑧, 0) = 0

 𝑇(𝑥, ℎ , 𝑡) = 𝑇 𝐻(𝑡)

𝑇(𝑥, −ℎ , 𝑡) = 0

𝜕𝑇(𝑥, 0 , 𝑡)

𝜕𝑧
=

𝜕𝑇(𝑥, 0 , 𝑡)

𝜕𝑧
,    𝑇(𝑥, 0 , 𝑡) = 𝑇(𝑥, 0 , 𝑡) |𝑥| ≥ 𝑐

          (5.6) 

and for electromechanical fields are 

𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 𝜎 𝐻(𝑡)

𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 0

𝐷 (𝑥, ℎ , 𝑡) = 𝐷 (𝑥, −ℎ , 𝑡) = 𝐷 𝐻(𝑡)

𝜎 (𝑥, 0, 𝑡) = 𝜎 (𝑥, 0, 𝑡) = 0 |𝑥| < 𝑐

𝜎 (𝑥, 0 , 𝑡) = 𝜎 (𝑥, 0 , 𝑡),   𝜎 (𝑥, 0 , 𝑡) = 𝜎 (𝑥, 0 , 𝑡) |𝑥| ≥ 𝑐

𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡),   𝜙(𝑥, 0 , 𝑡) = 𝜙(𝑥, 0 , 𝑡) |𝑥| ≥ 𝑐

𝑢 (𝑥, 0 , 𝑡) = 𝑢 (𝑥, 0 , 𝑡),   𝑢 (𝑥, 0 , 𝑡) = 𝑢 (𝑥, 0 , 𝑡)  |𝑥| ≥ 𝑐

         (5.7) 

While two different electric and thermal boundary conditions are applied at the crack surface: 

 Impermeable crack: the electric crack-face boundary conditions are given by 

𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡) = 0 |𝑥| < 𝑐 
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𝜕𝑇(𝑥, 0 , 𝑡)

𝜕𝑧
=

𝜕𝑇(𝑥, 0 , 𝑡)

𝜕𝑧
= 0 |𝑥| < 𝑐 

 Permeable crack: the electric crack-face boundary conditions are given in such cases by 

𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡) |𝑥| < 𝑐 

𝜙 (𝑥, 0 , 𝑡) = 𝜙 (𝑥, 0 , 𝑡) |𝑥| < 𝑐 

𝜕𝑇

𝜕𝑧
= Θ[𝑇(𝑥, 0 , 𝑡) − 𝑇(𝑥, 0 , 𝑡)] |𝑥| < 𝑐 

where the quantity Θ is the thermal conductivity of the crack surface. 

5.3 General solutions and stress intensity factors 

Define a Laplace transform pair by 

𝑓∗(𝑥, 𝑧, 𝑝) = 𝑓(𝑥, 𝑧, 𝑡)𝑒 𝑑𝑡                                

𝑓(𝑥, 𝑧, 𝑡) =
1

2𝜋𝑖
𝑓∗(𝑥, 𝑧, 𝑝)𝑒 𝑑𝑡      

             (5.8) 

in which 𝐵𝑟 stands for the Bromwich path of integration to transform the time variable t into the 

Laplace variable p, and the superscript ‘∗’ indicates the variables in the Laplace domain, which 

have been omitted in the following analysis for convenience. Then the time dependency in Eq. 

(5.5) is eliminated and transformed into 

𝜅
𝜕 𝑇

𝜕𝑥
+

𝜕 𝑇

𝜕𝑧
+ Ω𝜇

𝜕𝑇

𝜕𝑧
= δ

(𝑝 + 𝜏 𝑝 )

(1 + 𝜏 𝑝)
𝑇                                  (5.9) 
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with 𝜅 = , and δ = . Combing thermal boundary conditions and permeable schemes at 

crack face (|𝑥| < 𝑐) 

𝑇(𝑥, 𝑧, 0) = 0 

𝑇(𝑥, ℎ , 𝑝) = 𝑇 /𝑝 

𝑇(𝑥, −ℎ , 𝑝) = 0 

𝜕𝑇(𝑥, 0 , 𝑝)

𝜕𝑧
=

𝜕𝑇(𝑥, 0 , 𝑝)

𝜕𝑧
, 𝑇(𝑥, 0 , 𝑝) = 𝑇(𝑥, 0 , 𝑝) |𝑥| ≥ 𝑐           (5.10) 

 Impermeable crack: 
, ,

=
( , , )

= 0 

 Permeable crack: = Θ[𝑇(𝑥, 0 , 𝑝) − 𝑇(𝑥, 0 , 𝑝)] 

Solving partial differential equation (PDE) (5.9), after employing Fourier transform, the 

temperature solutions in the Laplace domain is 

𝑇(𝑥, 𝑧, 𝑝) =
1

2𝜋
[𝐷 𝑒| | + 𝐷 𝑒| | ]𝑒 𝑑𝑠 + 𝐹 𝑧 > 0

𝑇(𝑥, 𝑧, 𝑝) =
1

2𝜋
[𝐷 𝑒| | + 𝐷 𝑒| | ]𝑒 𝑑𝑠 + 𝐹             𝑧 < 0

(5.11) 

where 𝜆 = −
| |

𝜇 + 𝜏 , 𝜆 = −
| |

𝜇 − 𝜏 , 𝑖 = 1,2 represents upper (𝑧 > 0) and lower 

(𝑧 < 0) domain. 𝑟 = −Ω + √Ω + 4𝜔 , 𝑟 = −Ω − √Ω + 4𝜔  with 𝜏 =

+ 4 𝜅 + , ω = δ
( )

. Here s is the Fourier transform variable; 𝐷 (𝑠, 𝑝) are 

unknown functions that can be determined by introducing a density function 𝐺 (𝑥, 𝑝) 
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𝐺 (𝑥, 𝑝) =

𝜕

𝜕𝑥
{𝑇∗(𝑥, 0 , 𝑝) − 𝑇∗(𝑥, 0 , 𝑝)}                |𝑥| < 𝑐

0                |𝑥| ≥ 𝑐
(5.12) 

which satisfies  

𝐺 (𝜉, 𝑝)𝑑𝜉 = 0       𝑎𝑛𝑑,      𝐺 (𝜉, 𝑝) = 0              |𝜉| ≥ 𝑐 (5.13) 

by using the inverse Fourier transform in Eq. (5.12), and introducing the function 𝐷  (𝑠, 𝑝) , 

corresponding to boundary condition Eq. (5.10), the unknown functions 𝐷 (𝑠, 𝑝) can be expressed 

in terms of 𝐷  (𝑠, 𝑝): 

𝐷 = −𝑒 | |
𝑙

𝑙
𝐷 , 𝐷 =

𝑙

𝑙
𝐷 , 𝐷 =

𝑙

𝑙
𝐷 , 𝐷 = −𝑒 | |

𝑙

𝑙
𝐷  

with 𝑙 (𝑠, 𝑝) = − 𝑒 | | , 𝑙 (𝑠, 𝑝) = 1 − 𝑒 | | , 𝑙 (𝑠, 𝑝) = [1 − 𝑒 | | ]𝑙 −

1 − 𝑒 | | 𝑙 . Letting 𝜉̅ = 𝜉/𝑐, �̅� = 𝑥/𝑐, then, the singular equation of 𝐺 (𝜉, 𝑝) is finally 

obtained 

1

𝜋
𝐺 𝜉̅, 𝑝 𝑓 �̅�, 𝜉̅, 𝑝 +

√𝜅

2𝑐 𝜉̅ − �̅�
𝑑𝜉̅ = 𝐹                       (5.14) 

with the kernel function:  

𝑓 �̅�, 𝜉̅, 𝑝 = − 𝜆 − 𝜆 𝑒 | |
𝑙

𝑙
−

ℵ

𝑠
− 𝑀 sin 𝑐𝑠 𝜉̅ − �̅� 𝑑𝑠 

According to permeable conditions ℵ defines: 

ℵ =
0 Impermeable crack
Θ permeable crack
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Furthermore, with the aid of the Lebatto-Chebyshev numerical technique 163, the singular Eq. 

(5.14), is converted into an algebraic equation: 

𝐴 𝐹 𝜉 , 𝑝 𝑓 𝑥 , 𝜉 , 𝑝 +
√𝜅

2𝑐 𝜉 − 𝑥
= 𝐹                 |�̅�| < 1

𝐴 𝐹 𝜉 , 𝑝 = 0   

(5.15) 

where 𝜉 = 𝑐𝑜𝑠
( )

, 𝑘 = 1,2,3, ⋯ , 𝑛; 𝑥 = 𝑐𝑜𝑠
( )

( )
, 𝑟 = 1,2,3, ⋯ , 𝑛 − 1;𝐴 =

( )
, 𝑘 =

1, 𝑛; 𝐴 =
( )

, 𝑘 = 2,3, ⋯ , 𝑛 − 1 and 𝐹 𝜉 , 𝑝 = 𝐺 𝜉 , 𝑝 1 − 𝜉̅ , |�̅�| < 1. 

In Eq. (5.15), function 𝐹  corresponds to the temperature components on the x-axis in the 

absence of the crack, as 

𝐹 = 𝜆 𝐷 + 𝜆 𝐷                                                 (5.16) 

with 

𝐷 =
(1 − 𝑒 )

𝜆
𝜆

− 1 −
𝜆
𝜆

𝑒 𝑒

(1 − 𝑒 ) 1 −
𝜆
𝜆

𝑒 − (1 − 𝑒 )
𝜆
𝜆

−
𝜆
𝜆

𝑒

𝑇

𝑝
 

𝐷 = −𝑒 𝐷 +
𝑇

𝑝
𝑒  

𝜆 =
1

2
(−Ω𝜇 + 𝜏 ), 𝜆 =

1

2
(−Ω𝜇 − 𝜏 ); (𝑖 = 1,2) 

𝜏 = Ω + 4ω 
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After determining the thermal distribution of the strip, Laplace transform is applied to the 

electro-mechanical field, and the governing Eq. (5.3) and boundary conditions (5.7) change to 

𝑐
𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌 𝑝 + 𝜇Ω𝑐

𝜕

𝜕𝑧
𝑢 + 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑐

𝜕

𝜕𝑥
𝑢

+ 𝑑
𝜕

𝜕𝑥𝜕𝑧
+ 𝑑

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑥
𝜙 = 휁 𝑒

𝜕𝑇

𝜕𝑥
 

𝑐
𝜕

𝜕𝑥𝜕𝑧
+ 𝑐

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑐

𝜕

𝜕𝑥
𝑢 + 𝑐

𝜕

𝜕𝑥
+ 𝑐

𝜕

𝜕𝑧
− 𝜌 𝑝 + 𝜇Ω𝑐

𝜕

𝜕𝑧
𝑢

+ 𝑑
𝜕

𝜕𝑥
+ 𝑑

𝜕

𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑧
𝜙 = 휁 𝑒

𝜕𝑇

𝜕𝑧
+ 𝜇Ψ𝑇             (5.17) 

𝑑
𝜕

𝜕𝑥𝜕𝑧
+ 𝑑

𝜕

𝜕𝑥𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑥
𝑢 + 𝑑

𝜕

𝜕𝑥
+ 𝑑

𝜕

𝜕𝑧
+ 𝜇Ω𝑑

𝜕

𝜕𝑧
𝑢

− 휀
𝜕

𝜕𝑥
+ 휀

𝜕

𝜕𝑧
+ 𝜇Ω휀

𝜕

𝜕𝑧
𝜙 = 𝑝 𝑒

𝜕𝑇

𝜕𝑧
+ 𝜇Ψ𝑇  

𝜎 (𝑥, ℎ , 𝑝) = 𝜎 (𝑥, −ℎ , 𝑝) =
𝜎

𝑝

𝜎 (𝑥, ℎ , 𝑝) = 𝜎 (𝑥, −ℎ , 𝑝) = 0

𝐷 (𝑥, ℎ , 𝑝) = 𝐷 (𝑥, −ℎ , 𝑝) =
𝐷

𝑝

𝜎 (𝑥, 0, 𝑝) = 𝜎 (𝑥, 0, 𝑝) = 0 |𝑥| < 𝑐

𝜎 (𝑥, 0 , 𝑝) = 𝜎 (𝑥, 0 , 𝑝),   𝜎 (𝑥, 0 , 𝑝) = 𝜎 (𝑥, 0 , 𝑝) |𝑥| ≥ 𝑐

𝐷 (𝑥, 0 , 𝑝) = 𝐷 (𝑥, 0 , 𝑝),   𝜙(𝑥, 0 , 𝑝) = 𝜙(𝑥, 0 , 𝑝) |𝑥| ≥ 𝑐

𝑢 (𝑥, 0 , 𝑝) = 𝑢 (𝑥, 0 , 𝑝),   𝑢 (𝑥, 0 , 𝑝) = 𝑢 (𝑥, 0 , 𝑝)  |𝑥| ≥ 𝑐

         (5.18) 

 Impermeable crack: 𝐷 (𝑥, 0 , 𝑝) = 𝐷 (𝑥, 0 , 𝑝) = 0 |𝑥| < 𝑐 

 Permeable crack: 𝐷 (𝑥, 0 , 𝑝) = 𝐷 (𝑥, 0 , 𝑝), 𝜙 (𝑥, 0 , 𝑝) = 𝜙 (𝑥, 0 , 𝑝) |𝑥| < 𝑐 

By further applying Fourier transform, a calculation leads to the expressions for the 

displacements and electric potential in the Laplace transform domain. 
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𝑢 (𝑥, 𝑧, 𝑝) = 𝑖sgn(𝑠)
1

2𝜋
𝑍 𝐴 𝑒| |

+
1

|𝑠|
𝑃 𝐷 𝑒

| |
| | + 𝑃 𝐷 𝑒

| |
| | 𝑒 𝑑𝑠 

𝑢 (𝑥, 𝑧, 𝑝) =
1

2𝜋
𝑍 𝐴 𝑒| |

+
1

|𝑠|
𝑃 𝐷 𝑒

| |
| | + 𝑃 𝐷 𝑒

| |
| | 𝑒 𝑑𝑠                       (5.19) 

𝜙 (𝑥, 𝑧, 𝑝) =
1

2𝜋
𝐴 𝑒| |

+
1

|𝑠|
𝑃 𝐷 𝑒

| |
| | + 𝑃 𝐷 𝑒

| |
| | 𝑒 𝑑𝑠 

Here i = 1,2 indicates the region z>0 and z<0; 𝛾  (𝑗 = 1,2,3, ⋯ 6) are the roots of the following 

characteristic equation (all the coefficients are shown in Appendix C Eq. (C.1)) 

𝑎𝛾 + 𝑏𝛾 + 𝑐𝛾 + 𝑑𝛾 + 𝑒𝛾 + 𝑓𝛾 + 𝑔 = 0 

and 𝑍 (𝑠, 𝑝) and 𝑃 , 𝑃 , 𝑃 , (𝑙 = 1,2) are given in the Appendix C as Eq. (C.2). 

Then the stresses and electric displacements can be obtained by making use of Eqs. (5.2) and 

(5.11) 
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𝜎 = 𝑖sgn(𝑠)
1

2𝜋
|𝑠|𝜒 𝐴 𝑒

| |
| |

− 𝑃 𝐷 𝑒
| |

| | | | + 𝑃 𝐷 𝑒
| |

| | | | 𝑒 𝑑𝑠 

𝜎 =
1

2𝜋
|𝑠|𝜒 𝐴 𝑒

| |
| |

− 𝑃 𝐷 𝑒
| |

| | | | + 𝑃 𝐷 𝑒
| |

| | | | 𝑒 𝑑𝑠 + 𝜎 (5.20) 

𝐷 =
1

2𝜋
|𝑠|𝜒 𝐴 𝑒

| |
| |

− 𝑃 𝐷 𝑒
| |

| | | | + 𝑃 𝐷 𝑒
| |

| | | | 𝑒 𝑑𝑠 + 𝐷  

where coefficients 𝜒 (𝑠, 𝑝)(𝑠𝑡𝑟 = 𝑧𝑧, 𝑧𝑥, 𝑑𝑧) and 𝑃  (𝑙 = 1,2) are expressed in Appendix C 

as Eqs. (C.3) and (C.4).  

Submitting the stress and electric displacement expression (5.20) into boundary conditions 

(5.17), the unknown functions 𝐴  can be expressed by the independent unknowns 𝐴 (𝑠, 𝑝) (𝑘 =

4,5,6) 

𝐴 (𝑠, 𝑝) =
1

|𝑠|
𝑃 𝐷 + 𝐾 𝐴  
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where 𝑃  and 𝐾  are solved using MATLAB code. Furthermore, the density functions 

𝐺 (𝑥, 𝑝) (𝑓 = 1,2,3) are introduced to get the solutions of 𝐴 (𝑠, 𝑝), as follows 

𝐺 (𝑥, 𝑝)

𝐺 (𝑥, 𝑝)

𝐺 (𝑥, 𝑝)
=

𝜕

𝜕𝑥

𝑢 (𝑥, 0 , 𝑝) − 𝑢 (𝑥, 0 , 𝑝)

𝑢 (𝑥, 0 , 𝑝) − 𝑢 (𝑥, 0 , 𝑝)

𝜙 (𝑥, 0 , 𝑝) − 𝜙 (𝑥, 0 , 𝑝)

|𝑥| < 𝑐 

After making use of boundary conditions (5.17) and permeable conditions at |𝑥| < 𝑐, letting 

𝜉̅ = 𝜉/𝑐, �̅� = 𝑥/𝑐, normalized crack length (−𝑐, 𝑐) to (−1,1), the density functions 𝐺 (𝑥, 𝑝) can 

be solved through the following simultaneous singular equations 

1

𝜋
𝑓 𝐺 𝜉̅, 𝑝 − 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐺 𝜉̅, 𝑝 + 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐺 𝜉̅, 𝑝 𝑑𝜉̅

= −𝜎 +
1

2𝜋
𝜅

1

𝑖𝑠
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠 

1

𝜋
− 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐺 𝜉̅, 𝑝 − 𝑓 𝐺 𝜉̅, 𝑝 + 𝑓 𝐺 𝜉̅, 𝑝 𝑑𝜉̅

=
1

2𝜋
𝜅

1

|𝑠|
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠                               (5.21) 

1

𝜋
𝑓 𝐺 𝜉̅, 𝑝 − 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐺 𝜉̅, 𝑝 + 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐺 𝜉̅, 𝑝 𝑑𝜉̅

= −𝐷 +
1

2𝜋
𝜅

1

𝑖𝑠
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠 

where the constants 𝑓  (𝑠𝑡𝑟 = 𝑧𝑧, 𝑧𝑥, 𝑑𝑧; 𝑡 = 1,2,3) are 
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𝑓 =

⎩
⎪
⎨

⎪
⎧ 𝜅 cos 𝑐𝑠 𝜉̅ − �̅� 𝑑𝑠

𝑖𝑓 𝑠𝑡𝑟 = 𝑧𝑧, 𝑑𝑧; 𝑡 = 1
𝑖𝑓 𝑠𝑡𝑟 = 𝑧𝑥, 𝑑𝑧; 𝑡 = 2,3

(𝜅 − lim
→

𝜅 )sin 𝑐𝑠 𝜉̅ − �̅� 𝑑𝑠
𝑖𝑓 𝑠𝑡𝑟 = 𝑧𝑧, 𝑑𝑧; 𝑡 = 2,3 
𝑖𝑓 𝑠𝑡𝑟 = 𝑧𝑥, 𝑑𝑧; 𝑡 = 1 

 

where constants 𝜅 (𝑠𝑡𝑟 = 𝑧𝑧, 𝑧𝑥, 𝑑𝑧; 𝑡 = 1,2,3,0) are given in Appendix C Eq. (C.5). Similar to 

the procedure for solving the temperature field, the singular integral equation (5.21) can be 

transformed into 

𝐴 𝑓 𝐹 𝜉 , 𝑝 − 𝑓 +
lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐹 𝜉 , 𝑝 + 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐹 𝜉 , 𝑝

= −𝜎 +
1

2𝜋
𝜅

1

𝑖𝑠
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠 

𝐴 − 𝑓 +
lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐹 𝜉 , 𝑝 − 𝑓 𝐹 𝜉 , 𝑝 + 𝑓 𝐹 𝜉 , 𝑝

=
1

2𝜋
𝜅

1

|𝑠|
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠 

𝐴 𝑓 𝐹 𝜉 , 𝑝 − 𝑓 +
lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐹 𝜉 , 𝑝 + 𝑓 +

lim
→

𝜅

𝑐 𝜉̅ − �̅�
𝐹 𝜉 , 𝑝

= −𝐷 +
1

2𝜋
𝜅

1

𝑖𝑠
𝐺 𝜉̅, 𝑝 𝑒 𝑑𝜉̅ 𝑒 𝑑𝑠 

where 𝐹 𝜉 , 𝑝 = 𝐺 𝜉 , 𝑝 1 − 𝜉̅  (𝑓 = 1,2,3). 

The functions 𝜎  and 𝐷 , which correspond to the stress and electric displacement 

components on the x-axis in the absence of the crack, are obtained as follows 
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𝜎 = 𝜒 𝐴 𝑒

−
𝑇

𝑝
𝑃 𝐷 𝑒( ) + 𝑃 𝐷 𝑒( ) 𝛿(𝑠) 𝑑𝑠

= 𝜒 𝐴 𝑒 −
𝑇

𝑝
𝑃 𝐷 𝑒( ) + 𝑃 𝐷 𝑒( )  

𝐷 = 𝜒 𝐴 𝑒

−
𝑇

𝑝
𝑃 𝐷 𝑒( ) + 𝑃 𝐷 𝑒( ) 𝛿(𝑠) 𝑑𝑠

= 𝜒 𝐴 𝑒 −
𝑇

𝑝
𝑃 𝐷 𝑒( ) + 𝑃 𝐷 𝑒( )  

Based on the inverse Fourier transform and the property of the Dirac delta function  

𝐹(𝑠)𝛿(𝑠) 𝑑𝑠 = 𝐹(𝑠 = 0) 

where 𝜒 , 𝑃  (𝑠𝑡𝑟 = 𝑧𝑧, 𝑑𝑧) are equal to  𝜒 , 𝑃 , when 𝑠 = 0. and 𝛾  are 

𝛾 =
1

2
−𝜇𝛺 − 𝛺 + ω , 𝛾 =

1

2
−𝜇𝛺 + 𝛺 + ω , 𝛾 = −𝜇𝛺 

Therefore, the stress intensity factors 𝐾 (𝑝), 𝐾 (𝑝) and the electric displacement intensity 

factor 𝐾 (𝑝) in the Laplace domain are: 
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𝐾 (𝑝) = lim
→

2𝜋(𝑥 − 𝑐)𝜎 (𝑥, 0, 𝑝)

𝐾 (𝑝) = lim
→

2𝜋(𝑥 − 𝑐)𝜎 (𝑥, 0, 𝑝)

𝐾 (𝑝) = lim
→

2𝜋(𝑥 − 𝑐)𝐷 (𝑥, 0, 𝑝)

 

5.4 Numerical results and Discussions 

In order to obtain the solutions in the time domain, the numerical inversion of the Laplace 

transform proposed by Miller and Guy 165 is employed. All the results were presented in 

dimensionless form with: ℎ = ℎ/𝑐 and time 𝑡̅ = 𝑡𝑐 /𝑐 where 𝑐 = 𝑐 /𝜌. To indicate the ratio 

between the mechanical, electrical and thermal impacts, the dynamic stress and electric 

displacement intensity factors (DSIFs) are normalized as follows 

 Single temperature and multiphysical condition  

𝐾 (𝑡) =
𝐾 (𝑡)

𝑓√𝜋𝑐
, 𝐾 (𝑡) =

𝐾 (𝑡)

𝑓√𝜋𝑐
, 𝐾 (𝑡) =

휁

𝑝

𝐾 (𝑡)

𝑓√𝜋𝑐
                  (5.22) 

where 𝑓 = 휁 |𝑇 |. 

 Single mechanical and electrical condition 

𝐾 (𝑡) =
𝐾 (𝑡)

𝑓√𝜋𝑐
, 𝐾 (𝑡) =

𝐾 (𝑡)

𝑓√𝜋𝑐
, 𝐾 (𝑡) =

𝑑

휀

𝐾 (𝑡)

𝑓√𝜋𝑐
                (5.23) 

for pure mechanical condition, 𝑓 = 𝜎  

for pure electrical condition, 𝑓 = 𝐷 .  

The stresses and electric displacement 𝜎 , 𝐷  were normalized following the same procedure as 

DSIFs. In the following sections, the normalized hat " " is omitted for the sake of brevity. 
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5.4.1 Model reliability 

To verify the accuracy and validity of the numerical results, we considered the case of a strip 

with a central crack, where ℎ /𝑐 = ℎ /𝑐 = 2.5  and Ω = φ = 0 (Non − FGPM),  to check the  

following boundary conditions of the strip under thermo-electro-mechanical loading. The 

calculations are carried out for three different piezoelectric materials, whose constants are given 

in Table 5.1.  

Boundary conditions ( BCs: 𝜎 = 𝐷 = 𝑇 = 1 ): 

at strip surface: at the crack surface: 

BC1: 𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 𝜎  

BC2: 𝜎 (𝑥, ℎ , 𝑡) = 𝜎 (𝑥, −ℎ , 𝑡) = 0 

BC3: 𝐷 (𝑥, ℎ , 𝑡) = 𝐷 (𝑥, −ℎ , 𝑡) = 𝐷  

BC4: 𝜎 (𝑥, 0, 𝑡) = 0 

BC5: 𝜎 (𝑥, 0, 𝑡) = 0 

BC6: 𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡) 

 Impermeable crack: Θ = 0, 𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡) = 0 

 Permeable crack: Θ = 0.5, 𝐷 (𝑥, 0 , 𝑡) = 𝐷 (𝑥, 0 , 𝑡), 𝜙 (𝑥, 0 , 𝑡) = 𝜙 (𝑥, 0 , 𝑡) 

                                          

        
                                                (a)                                                                        (b) 
Figure 5. 3 Boundary conditions under thermo-electro-mechanical loading stresses and 𝐷  variations (a) 

insulted crack; (b) permeable crack along thickness (𝑥 = 0). (𝑡̅ = 1) 
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Figure 5. 4 Boundary conditions under thermo-electro-mechanical loading: stresses and 𝐷  variations at 

the crack surface and extended line (𝑧 = 0). (𝑡̅ = 1) 

Table 5. 1 Material properties of homogeneous piezoelectric ceramics. 

 

Elastic stiffnesses 

(×1010N/m2) 

Piezoelectric coefficients 

(C/m2) 

Dielectric 

constants  

(×10-10C/Vm) 

Thermal 

Modulus 

(×106N/Km2) 

Pyroelectric 

coefficients 

(×10-7C/Km2) 

Specific 

heat 

(J/kg°C) 

Density 

(×103kg/m3) 

𝑐  𝑐  𝑐   𝑐  𝑑  𝑑  𝑑  휀  휀  휁  휁  𝑝  𝑐  𝜌  

PZT-6B 16.80 6.00 16.30 2.71 -0.90 7.10 4.60 36 34 2.02 1.98 3700 420 7.60 

CdSe 7.41 3.93 8.36 1.32 -0.16 0.35 -0.14 0.83 0.90 0.62 0.55 29.4 490 5.81 

BaTiO3 22.20 2.40 19.80 3.30 -0.21 0.31 -0.48 0.51 0.45 2.02 3.76 1200 430 5.80 
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By examining the variations of stresses and electric displacement along the thickness 

direction (z-axis) as shown in Figure 5.3, and along the x-axis as shown in Figure 5.4, all the 

boundary conditions have been satisfied. The stresses 𝜎 , 𝜎  and electric displacement 𝐷  

conform to the applied loadings at the surfaces of the strip (Figure 5.3), and correspondingly meet 

the requirements for different electric permeable conditions at the crack surface, which should be 

equal to zero because no electricity is allowed to cross the crack for insulated crack (Figure 5.3a), 

whereas electric field is continuous at the crack surface for permeable condition (Figure 5.3b). 

Moreover, considering the free surface of crack, all the stresses should be zero (Figure 5.4). And 

the stresses are singular near the crack tip which tends to infinite. Therefore, the numerical results 

are reliable and can be used for further research.  

Considering electrically conditions in Figure 5.5, the singular behavior (the value of DSIFs) 

near the crack tips of impermeable crack is much more pronounced than permeable crack, which 

is easier to trigger crack and deserve further research. Therefore, in the following discussions, we 

choose an insulated crack condition and pick PZT-6B as an example. 

   

Figure 5. 5 Normalized DSIFs variation of permeable and impermeable crack conditions. 
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5.4.2 Functional gradient piezoelectric material (FGPM) design 

At the macroscale, a functionally graded piezoelectric material was investigated with its 

properties varying along the thickness based on different gradation functions (Figure 5.6). By 

controlling the functional gradients parameter 𝜇 and gradation coefficients Ω, and Ψ in Eq. (5.1), 

the profile of the materials along the gradating direction can be changed. Here, we proposed three 

distinct configurations of FGPM to study the effect of different functional gradient laws on 

material performance under different physical scenarios. The first configuration is characterized 

by Ω = Ψ = 0, 𝜇 = 1 , representing a homogeneous material without gradient. In the second 

configuration, with Ω = Ψ = 1, 𝜇 = 1 , the material properties vary exponentially along the 

thickness direction (z-direction) over the cross-section, gradually decreasing from the upper 

surface to the lower surface. Finally, the third configuration, with Ω = Ψ = 1, 𝜇 = sgn(𝑧) , 

demonstrates a symmetric graded property over the thickness. 

                              

Figure 5. 6 Sketch of functionally graded piezoelectric material (FGPM). 

Sketch 1: Ω = Ψ = 0, 𝜇 = 1 Nongraded-FGPM (Non-FGPM) 

Sketch 2: Ω = Ψ = 1, 𝜇 = 1 Exponential-FGPM (Expo-FGPM) 

Sketch 3: Ω = Ψ = 1, 𝜇 = sgn(𝑧) Symmetric-FGPM (Sym-FGPM) 
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5.4.3 FGPM design under a single physical field 

(1) Single dynamic mechanical loading 

Figure 5.7 illustrates a comparative analysis of dynamic stress and electric displacement 

intensity factors under a single mechanical loading condition. In particular, the central-crack strip 

is subjected to a normalized tensile stress impact, 𝜎 𝐻(𝑡), and 𝜎 = 1. It is obvious that under a 

single tensile load, the dynamic stresses and electric displacement intensity factors (DSIFs) rapidly 

increase over time, reaching a peak (Nj, Ej, Sj, j=1,2,3) and then decreasing in magnitude and 

eventually converging towards the static value for a sufficiently long time. For exponential, 

functionally graded piezoelectric material (Expo-FGPM), the DSIFs are notably higher compared 

to those of the non-functionally graded piezoelectric material (Non-FGPM) and symmetric 

functionally graded piezoelectric material (Sym-FGPM). This discrepancy can be attributed to the 

presence of dissimilar layers at the interface of the crack surface in the Expo-FGPM, leading to an 

initiation of an interface crack. 

 Especially, since the configuration and applied mechanical load of Non-FGPM and Sym-

FGPM are symmetric, no shearing stress is induced, resulting in a zero KII value throughout the 

entire time duration. When comparing the Non-FGPM and Sym-FGPM, it is evident that the 

symmetric configuration exhibits a lower intensity than the non-graded configuration. Therefore, 

the symmetric configuration provides greater fracture safety under single mechanical loading, 

while the exponential design presents the highest level of risk of fracture. 
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Figure 5. 7 DSIFs versus time under a single mechanical field. 

(2) Single dynamic electrical loading 

In the case of pure electric loading, a step electrical load, 𝐷 𝐻(𝑡) with 𝐷 = 1, is applied on 

the strip, where the positive poling direction is along the z-axis. Similar trends are also observed 

in the resulted electric field. The DSIFs climb to a peak value and then gradually tend to a stable 

value. The Expo-FGPM demonstrates the highest values of the dynamic stress intensity factors 

(DSIFs) as depicted in Figure 5.8. Due to the symmetric electric load and configuration, both Non-

FGPM and Sym-FGPM exhibit a shearing stress intensity factor KII of zero.  

Another intriguing observation is the negative electric displacement intensity factor in the 

asymmetric exponential configuration when compared to the symmetric configuration for PZT-

6B. This indicates a change in the direction of electric displacement around the crack tip after 

altering the material configuration. In the case of Non-FGPM, the electric response near the crack 

tip is expected to decrease or become more in magnitude in the negative side due to the 

piezoelectric coefficients and dielectric properties of PZT-6B. However, the unique characteristics 

of the exponential, functional grading, with piezoelectric properties decreasing exponentially from 

the upper to the lower surface, lead to an increasingly larger and positive electric displacement 

intensity factor. These findings further highlight the enhanced reliability of the symmetric graded 
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design, emphasizing that Sym-FGPM and Non-FGPM are safer than Expo-FGPM under single 

electric loading conditions. 

   

Figure 5. 8 DSIFs versus time under a single electrical field. 

(3) Single dynamic Thermal loading 

Another important task is the analysis of the temperature distribution of piezoelectric 

material, which is computed by using Eq. (11) and presented in Fig. 9 (a). In this analysis, a heat 

shock is applied to the top surface of the strip with 𝑇 𝐻(𝑡), where 𝑇 = 1, and keep a temperature 

near zero on the lower surface. It can be observed that for both Non-FGPM and Sym-FGPM, the 

temperature decreases symmetrically from the upper to the lower surface, with the temperature 

gradients being higher for Sym-FGPM. Conversely, the temperature distribution gradually 

decreases from top to bottom as the configuration of Expo-FGPM changes. 
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(a) 

   

(b) 

Figure 5. 9 Thermal distribution and DSIFs: (a) stable temperature distribution at t=50s; (b) DSIFs versus 

time under a single thermal field. 

Distinguishing from the single stress and single electric field scenarios, the DSIFs of Expo-

FGPM and Sym-FGPM exhibit notable fluctuations during the initial stages under single thermal 

loading. This behavior can be attributed to the non-Fourier heat wave phenomenon, which is 
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EC1 and SC1 points. Conversely, when the boundary loading conditions are altered to cooling, the 

observed trends are reversed entirely. Moreover, the magnitudes of EC1, SC1 and EH1, SH1 are 

different, highlighting the necessity to consider two different thermal conditions: cooling and 

heating. 

Additionally, when comparing the three different configurations under thermal loading, the 

DSIFs of the homogeneous non-FGPM are consistently lower than those of the inhomogeneous 

Expo-FGPM and Sym-FGPM. Consequently, for a single thermal load and under the same 

gradation coefficients, the non-FGPM is the preferred choice, as the inhomogeneous material 

properties amplify temperature disturbances and lead to higher stress intensity factors. 

5.4.4 Fracture evaluation of FGPM under Single field 

It is important to note that the field intensity factors discussed above solely provide 

information regarding the respective field quantities on the crack face plane. As a result, the 

decoupled field intensity factors alone are insufficient to establish a fracture criterion for the crack 

problem addressed in this study. To assess the coupled fracture performance of the material, 

Dascalu 265 and Fang 93 separately proposed an energy release rate G and critical intensity factor 

KC as  

⎩
⎨

⎧𝐺(𝑡) =
1

4
{𝐾} 𝐇 {𝐾}

𝐾 (𝑡) = 𝐾 +
(𝐇 )| , |

(𝐇 )| , |
𝐾

                                                 (5.24) 

where {𝐾} = {𝐾 ∗(𝑝) 𝐾 ∗(𝑝) 𝐾 ∗(𝑝)} . 
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To determine which fracture criterion is more suitable for our specific problem, we conducted 

an examination using Non-FGPM under a single thermal load as the test case. We employed the 

energy release rate G and the critical intensity factor KC, respectively, to evaluate the single normal 

stress intensity factor KI at the peak point NH1. From the results shown in Figure 5.10, it is evident 

that under the G criterion, the results consistently yield positive values regardless of the heating or 

cooling conditions. However, as we have already observed in Figure 5.9 (b) when considering only 

the KI of Non-FGPM, since its value is negative, indicating crack closure during cooling and 

positive, indicating crack propagation in heating. In comparison, the KC intensity factor accurately 

captures this difference, with the value turning negative upon entering the heating condition. 

Therefore, we employ the KC intensity factor to evaluate the coupled field intensity factor in this 

study. 

 
      Figure 5. 10 Fracture criteria comparison. 

In the context of our study, it is worth noting that the electric displacement near the crack tip 

can exhibit direction changes, which consequently result in a negative value of electric 

displacement intensity factor (KD). According to the definition proposed by Fang 93, in Eq. (5.24), 
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the coefficient of  
𝐇

| , |

(𝐇 )| , |
 for piezoelectric ceramics is positive, and the negative value of KD will 

lead to a smaller value for the critical intensity factor and shift the fracture performance of material 

towards the safer side. However, it is important to acknowledge that even with a negative KD, the 

material can still be susceptible to crack propagation, albeit in a different direction influenced by 

the electric displacement. Therefore, building upon Fang's definition, we have improved KC by 

introducing the absolute value of KD as 

𝐾 (𝑡) = 𝐾 +
(𝐇 )| , |

(𝐇 )| , |
|𝐾 |                                                  (5.25) 

here the matrix 𝐇 is normalized according to Eqs. (5.22) and (5.23), which is expressed as 

𝐇 =

⎣
⎢
⎢
⎡
− lim

→
𝜅 /𝑓 0 0

0 − lim
→

𝜅 /𝑓 lim
→

𝜅 /𝑓

0 − lim
→

𝜅 /𝑓 lim
→

𝜅 /𝑓⎦
⎥
⎥
⎤

 

As the gradation coefficients Ω and Ψ in the above sections were defined as Ω=Ψ=1, to further 

explore the impact of these coefficients on the different material configurations, the gradation 

coefficients Ω and Ψ vary to -1.0, -0.5, 0.5 and 1.0. And then the results of critical intensity factor 

KC for the three configurations under both single mechanical and single electrical fields are 

compared. The corresponding results are shown in Figure 5.11. Since all the critical stress intensity 

factors KC stabilize after t=10, the figure only displays the KC values until that point. 
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(a) 

  
(b) 

Figure 5. 11 Critical intensity factor KC comparison (a) under single mechanical load (single P); (b) under 

single electrical load (single D). 

Based on the observations from Figure 5.11, it is evident that the same configuration, with 

identical gradation coefficients Ω and Ψ, exhibits consistent trends in KC under either single 

mechanical or single electrical field when examining the left and right figures in Figure 5.11 (a) 

and (b) for Expo-FGPM. It is apparent that larger positive values of Ω and Ψ correspond to 

significantly higher KC values, indicating increased risk of fracture. Conversely, smaller negative 

values of Ω and Ψ result in lower KC values. Moreover, the magnitude of Ω and Ψ plays a crucial 

role, as higher magnitudes of Ω and Ψ are associated with greater levels of fracture risk. In contrast, 

for Sym-FGPM, the results are reversed. Specifically, higher values of Ω and Ψ lead to lower KC, 
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suggesting reduced fracture risk. When comparing the three configurations under the same 

gradation coefficient conditions, the results indicate that the Sym-FGPM configuration performs 

better against fracture than Expo-FGPM when Ω=Ψ>0, while Expo-FGPM outperforms Sym-

FGPM when Ω=Ψ<0. Furthermore, in comparison to the Non-FGPM case, Expo-FGPM with 

smaller gradation coefficients and Sym-FGPM with larger gradation coefficients exhibit lower KC 

values, indicating enhanced material stability and fracture performance. These findings offer 

valuable insights for selecting the optimal configuration and gradation coefficient to improve 

material performance against fracture in the single mechanical or electrical loading.  

The results within a single thermal field exhibit apparent differences than the other two single 

field cases, as shown in Figure 5.12. The fluctuating highest and lowest peaks represent the most 

dangerous conditions under heating and cooling loading. In both heating and cooling conditions, 

for the inhomogeneous configurations, Expo-FGPM and Sym-FGPM, KC is increasing with the 

gradation coefficients Ω and Ψ. Compared to the Expo-FGPM, the Sym-FGPM demonstrates 

lower KC when Ω=Ψ>0, and has higher KC when Ω=Ψ<0. For homogenous Non-FGPM, during 

the heating condition, KC is negative which is safer compared to the Expo-FGPM and Sym-FGPM 

whose values of KC are positive making the crack easier to propagate. However, during the cooling 

condition, the KC value of the Non-FGPM transitions to a positive value. In comparison, the KC 

values associated with Ω=Ψ<0 for Expo-FGPM and Ω=Ψ>0 for Sym-FGPM during the same 

cooling phase are comparatively lower. Accordingly, we have provided specific design 

suggestions for configurations under single heating and cooling conditions in Table 5.2. This 

comprehensive analysis and guidance serve to optimize the selection and implementation of 

appropriate configurations based on the thermal environment, thereby enhancing the overall 

fracture performance and reliability of the system. 
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Figure 5. 12 KC variation and sketch choice of single thermal load. 

Table 5. 2 Sketches choice under single thermal load. 

 Ω=Ψ>0 Ω=Ψ<0 

Heating Expo-FGPM < Sym-FGPM < Non-FGPM Sym-FGPM < Expo-FGPM < Non-FGPM 

Cooling Expo-FGPM < Non-FGPM < Sym-FGPM Sym-FGPM < Non-FGPM < Expo-FGPM 

 

5.4.5 Thermo-electro-mechanical FGPM design 

The evidence from single fields demonstrates that the choice of gradient configuration is 

significantly influenced by the prevailing boundary conditions. Therefore, besides the single field, 

it is necessary to evaluate the multiphysics problem when determining the optimal configuration. 

Since the heating and cooling conditions have a large impact on the choice of configuration, 

we consider both heating and cooling conditions coupled with tensile mechanical and positive 

electric loadings. We introduce the ratios RS and RD, which represent the ratios between 

mechanical and thermal, as well as electrical and thermal loading, respectively.  

𝑅𝑆 =
𝜎

𝑇
,   𝑅𝑆 =

𝐷

𝑇
 

when RS and RD are negative it represents the cooling condition, otherwise, it is the heating 

condition. 
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(1) Thermomechanical and Thermoelectrical Fields 

In Figure 5.13, the critical stress intensity factors are compared under two gradation 

coefficient conditions: Ω=Ψ=1>0, and Ω=Ψ=-1<0. The ratios RS and RD vary from -2, -1, 1, to 2. 

From the figures, it can be observed that the Non-FGPM, Expo-FGPM, and Sym-FGPM 

configurations exhibit the same trend under thermomechanical and thermoelectrical environments. 

Taking into account the impact of RS and RD on KC for each configuration, it is noted that under 

the same applied stress and electric load, the KC of the cooling condition (RS and RD < 0) is higher 

than the heating condition (RS and RD > 0) for Non-FGPM and Expo-FGPM with Ω=Ψ=1, but 

less for Sym-FGPM and Expo-FGPM with Ω=Ψ=-1. Regardless of the gradation coefficient or 

heating or cooling condition, the critical stress intensity factor consistently increases with 

increasing applied stress and electric load. 

 
(a) 

  
(b) 

Figure 5. 13 Critical intensity factor comparison under different loading ratios (a) RS of 

thermomechanical field; (b) RD of thermoelectrical field. 
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Comparing three configurations, when Ω=Ψ<0, the performance of Expo-FGPM is similar to 

that of the Non-FGPM, while Sym-FGPM performs worse than the Non-FGPM. However, when 

Ω=Ψ>0, the Expo-FGPM exhibits the worst performance, while the Sym-FGPM shows a slight 

improvement compared to the Non-FGPM. 

(2) Thermo-electromechanical Field 

The impact of both RS and RD ratios on the fracture performance of material is illustrated in 

Figure 5.14, which depicts the thermo-electromechanical results. By comparing the single RS and 

single RD cases with the coupling results of RS=RD, RS>RD, and RS<RD, it is evident that the 

coupling of fields leads to a more severe situation in terms of the critical intensity factor. Moreover, 

when comparing the results of RS>RD and RS<RD with RS=RD, it is observed that the KC value 

increases more significantly under RS>RD, indicating that the stress factor plays a more prominent 

role under thermo-electromechanical conditions. 

Specifically, when Ω=Ψ<0, the Sym-FGPM configuration is identified as the most hazardous 

design against fracture under both heating and cooling conditions. However, when Ω=Ψ>0, the 

Sym-FGPM configuration becomes the best performer, while Expo-FGPM exhibits the least 

favorable performance among the three configurations. 
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Figure 5. 14 The impact of 122hermos-electromechanical loading. 

5.4.6 Gradation profile selection 

The electromechanical gradation coefficient Ω and the thermal gradation coefficient Ψ can 

independently control the profile of functionally graded materials. However, the previous analysis 

suggests that fixing Ω=Ψ does not significantly highlight the benefits of functional gradient 

compared to Non-FGPM. As a result, we now allow for the freedom to set Ω and Ψ separately and 

analyze their individual effects on the critical intensity factor. The gradation coefficients Ω and Ψ 

are varied from -1, -0.5, 0, 0.5, to 1. The profiles of Expo-FGPM and Sym-FGPM are presented 

in Figure 5.15. 
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(5) (b) 

Figure 5. 15 Graded piezoelectric material based on the FGM concept with several laws of gradation. 

  

  

Figure 5. 16 Gradation coefficient Ψ of the thermal property profile. 
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coefficient Ψ is analyzed in Figure 5.16. In the cooling condition, positive gradation values of 

Expo-FGPM result in smaller peak values of KC compare to negative Ψ and decrease as the value 

of Ψ increases. Sym-FGPM is primarily affected by the thermal coefficient of gradation, with little 

difference between positive and negative values. Larger absolute values of Ψ indicate greater 

stability. For heating conditions, the phenomenon is reversed. Cooling conditions improve the 

fracture performance of all functional configurations compared to Non-FGPM, while higher 

gradation degrees yield larger critical intensity factors in heating conditions. 

  

  

Figure 5. 17 Gradation coefficient Ω of the electromechanical property profile. 

Figure 5.17 illustrates the impact of the electromechanical gradation coefficient Ω. In contrast 
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impacts, Ω exhibits the same trend under both cooling and heating conditions. As Ω decreases, the 

critical intensity factor KC decreases significantly for the Expo-FGPM, while it increases for Sym-

FGPM. Although there is a slight difference between -0.5 and -1 for the Expo-FGPM when Ω 

becomes negative, this difference is negligible. 

Figure 5.18 presents the results of peak values of KC obtained by combining the 

electromechanical gradation coefficient Ω and the thermal gradation coefficient Ψ. From the 

figure, it can be observed that Ψ does not have a significant impact on KC compared to Ω. The 

main controlling factor is the electromechanical gradation coefficient Ω. As Ω decreases or 

increases, the performance of the Expo-FGPM and Sym-FGPM improves under both heating and 

cooling conditions. By separating the field into two phases, namely Ω > Ψ and Ω < Ψ, a clear trend 

emerges. Expo-FGPM in phase 1 (Ω > Ψ) is found to be safer, while Sym-FGPM in phase 2 (Ω < 

Ψ) exhibits better performance. 

It is worth pointing out that for the Expo-FGPM under heating condition, even though the KC 

values decrease after Ω becomes negative, they are still higher than those of the Non-FGPM 

design. As we have already seen in Figs. 5.16 and 5.17, lower magnitudes of gradation coefficients 

lead to lower KC values. Therefore, even with further reductions in gradation, the Expo-FGPM 

does not outperform the Non-FGPM design under heating conditions. Hence, the Expo-FGPM 

may not be the optimal choice for heating environment. In Table 5.3, we compare the profiles of 

single gradation and combination gradations and provide suggestions for each loading condition. 
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Figure 5. 18 The value of KC with different gradation profile for thermo-electromechanical loading. 

Table 5. 3 Profile suggestions for thermo-electromechanical loading. 

  Single gradient Combination gradients Suggestion 

Ω   Ψ Ω   Ψ Ω   Ψ 

Expo-FGPM cooling -0.5 1 (-1,0) (-1,1) -0.5 1 

heating -0.5 -0.5 (-1,0) (-1,1) 0 -0.5 

Sym-FGPM cooling 1 -1 (0,1) (-1,1) 1 -1 

heating 1 -0.5 (0.5,1) (-1,1) 1 -0.5 

 

To assess the performance of the suggested profiles in Table 5.3, we compare the stresses and 

electric displacement at the crack surface and its extended line in Figure 5.19. Except the shear 
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stress and heating condition of the Expo-FGPM, following optimization, it is evident that the stress 

and electric displacement intensity factors at the crack tips are significantly reduced for the 

functional designs compared to Non-FGPM, with Sym-FGPM exhibiting the most substantial 

reduction. 

 Comparing the functional designs with the homogenous Non-FGPM, the Sym-FGPM with 

(Ω, Ψ) = (1, -0.5) for heating and (1, -1) for cooling shows a respective decrease in critical intensity 

factors of 24% and 48%, as indicated in Table 5.4. Similarly, the Expo-FGPM with (Ω, Ψ) = (-0.5, 

1) under cooling conditions experiences a 25% decrease in the critical intensity factor. However, 

it is important to note that the Expo-FGPM does not perform well under heating conditions. These 

results demonstrate that functional designs can enhance material stability under complex 

multiphysics conditions. 

   

   

Figure 5. 19 Suggested gradation profile of FGPM and comparison. 
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Table 5. 4 Different sketches compare at the crack tip. 

 
 

Suggest Gradients Normal Stress and Electric displacement Critical intensity factor Comparison 

Ω Ψ 𝜎  𝜎  𝐷   KC 𝑅  

Non-FGPM 
heating 0 0 14.147 0 6.242 0.764 − 

cooling 0 0 22.084 0 8.368 1.134 − 

Expo-FGPM 
heating -0.5 -0.5 16.727 2.711 7.820 0.851 11% ↑ 

cooling -0.5 1 16.792 2.588 7.341 0.847 25% ↓ 

Sym-FGPM 
heating 1 -0.5 10.937 0 5.531 0.577 24% ↓ 

cooling 1 -1 11.124 0 5.972 0.593 48% ↓ 

 

5.5 Conclusions 

Thermo-electromechanical analysis of cracked, graded structure inspired by biomaterials has 

been performed in the present work. The results give an idea about the potential of applying the 

piezoelectric functionally graded material concept to design smart, biomimetic composite 

materials, both in single- and multi-physical loading. It is observed that the piezoelectric material, 

designed according to the FGM concept, has improved fracture performance in comparison with 

non-graded ones; for instant, in single stress and electric field, the Sym-FGPM structure with high 

gradation coefficients allows designing piezoelectric with lower critical intensity factor, which is 

desirable for obtaining highly crack resistance performance. 

Especially, when the FGM concept is implemented solely in the thermal field, a significant 

increase in the critical intensity factor is observed compared to the non-graded configuration. This 

observation suggests that the nonhomogeneous functional design amplifies the thermal shock 

effect. Consequently, it becomes imperative to consider thermal coupling in multiphysics research 

when designing graded piezoelectric structures against fracture.  



 
Chapter 5. Multiphysics of Functionally graded Materials 

 

129 
 

From the multiphysics, the analysis reveals that the stress factor plays a prominent role under 

thermo-electromechanical conditions. Additionally, from the examples, it is clear that both thermal 

gradation coefficient Ψ and electromechanical gradation coefficient Ω define the fracture 

behaviour and, hence, a combined optimization must be considered for functional graded design 

of biomimetic smart materials. Finally, the optimal gradation profile is founded for the thermo-

electromechanical fields. The best Sym-FGPM configuration with (Ω, Ψ) = (1, -0.5) and (1, -1) 

for heating and cooling, respectively, leads to a decrease in critical intensity factors of 24% and 

48% compared to the Non-FGPM. However, caution should be exercised when employing the 

Expo-FGPM, as it is suitable for cooling coupled multiphysical conditions but not for heating 

environment. 

 In conclusion, except for the single thermal environment, to design biomimetic piezoelectric 

structures considering gradation can improving their crack resistance under single stress, single 

electric, as well as thermo-electromechanical fields, and broaden the range of applications in the 

field of smart structures. 
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Chapter 6  

Finite element simulations of a cracked functionally 

graded piezoelectric strip based on non-Fourier heat 

conduction 

 Based on the classical elastic theory, the stress and strain response of a continuum under 

different boundary conditions can be expressed, which provide direct guidance for materials 

design. However, when the degree of hierarchy becomes more complex, it will be difficult to build 

a constitutive equation for biomaterials simply by theoretical method. In addition, multiphysical 

boundary conditions along with complex structure geometry can lead to the theoretical analysis 

almost impossible. Benefiting from computer simulation software, it becomes convenient to 

construct corresponding hierarchical specimens. COMSOL is a powerful multiphysics simulation 

software that is known for its user-friendly interface and flexibility in solving partial differential 

equations (PDEs) and strong ability to address mulitphysical problems.  In this chapter, we 

establish the corresponding finite element hierarchical structures mentioned in the previous 

chapters and conduct non-Fourier multiphysical crack simulations in COMSOL Multiphysics 

platform. The simulation results show good agreement with theoretical models, which can be 

widely used in various configuration simulations and multiphysical analyses, guiding biomimetic 

design. 
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6.1 Introduction 

Benefit from the developments of 3D printing technology and computer simulation software, 

researchers are now exploring new experiments and numerical simulations 24,266-270. Through 3D 

printing technology, it is easy to build corresponding hierarchical specimens, and all the 

mechanical properties can be obtained by various test methods, like tensile test, bending test, 

ductility test and so on. For example, Mohammad et al. 178 from tensile experimental data of their 

3D printed functionally graded hierarchical soft-hard composite obtained polynomial expressions 

correlating the obtained mechanical properties. Then, they set the maximum strain separation data 

as the crack propagation criteria in ABAQUS. Finally, the numerical results of the mechanical 

behavior of the material were highly consistent with their experiment results.  

The materials are inevitably exposed in various environmental conditions, some materials 

even need to be used in extreme work conditions, which should be considered in their mechanical 

performance to prevent catastrophic failure. However, letting the specimens work in an extreme 

condition is very difficult through experiment. Benefited from the strong simulation software, we 

can build finite element models for almost any environmental conditions, such as strong thermal 

shock 271, deadly water pressure impact 272, severe electricity shock 273 and much more. 

It is worth noting, however, all the numerical thermal analyses preset in simulation software 

such as ABAQUS, ANSYS or COMSOL Multiphysics are based on the classical, Fourier heat 

conduction law which allows the thermal disturbance to spread at an infinite speed. However, the 

establishment of thermal equilibrium actually takes a certain period of time. Although in most 

thermomechanical problems, Fourier heat conduction works perfectly, it renders unreasonable 

temperature predictions when the temperature is extremely low, the temperature gradient is 
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extremely high, or the material has a heterogeneous microstructure. To fix this problem, non-

Fourier heat conduction models were proposed by introducing so-called relaxation time which 

measures the time lag between temperature gradient and heat flux at the same particle of the 

material. Therefore, in this chapter, we aim to achieve non-Fourier heat conduction in COMSOL 

Multiphysics which is highly user-friendly and has strong ability to address mulitphysical 

problems. Finally, a 2D cracked piezoelectric strip under thermo-electromechanical fields has built 

in the platform, and specifically, the following work has been conducted: 

(1) Modeling non-Fourier heat conduction with partial differential equations in COMSOL 

Multiphysics. 

(2) Building different functionally graded piezoelectric models according to hierarchical 

biomimetic materials. 

(3) Coupling thermal, piezoelectric, and structural analyses in COMSOL and comparing with the 

theoretical results. 

 

6.2 Finite Element Modelling 

6.2.1 Design conditions 

The cracked strip is designed using functionally graded piezoelectric material, 50 mm in 

width and 5 mm in height with a 2 mm insulated central crack. Temperature, electric 

displacements, and stress analyses of the material are carried out with this design. An electric 

displacement of 0.4 C/m2 and a tensile stress of 50 MPa applied at the strip surfaces. At same time, 

a transient thermal load heats the top surface of strip from 293 K to 586 K. The thermally induced 

tension loads the material and deforms the strip, and then coupled with electric and tensile field 

causing stresses concentration at crack tips. 
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The geometric structure of the cracked strip designed as 2-D using COMSOL is shown in 

Figure 1. Functionally graded piezoelectric material is added to the proposed geometric structure. 

The most common piezoelectric material PZT-5H is selected and properties are assigned to the 

selected material. For this study, the functional gradation profile of material is selected from 

Chapter 5 as Eq. (5.1). We choose the heating multiphysical gradation suggestion (Sym-FGPM 

with Ψ = 1 and Ω = −0.5) from Chapter 5 as the example conduct simulations, as Eq. (6.1).  The 

gradation laws are edited in COMSOL as analytic functions varying as shown in Figure 6.1(a), 

here the axis y in COMSOL is the axis z in theoretical model. The homogenous physical properties 

of the materials used in the analysis phase are given in Table 6.1. 

(𝜻𝒊𝒌, 𝑝 ) = (𝜻𝒊𝒌𝟎, 𝑝 )𝑒 | | Ψ = 1 × 10

(𝒄𝒊𝒌, 𝒅𝒊𝒌, 𝜺𝒊𝒌, 𝒌𝒊, 𝜌) = (𝒄𝒊𝒌𝟎, 𝒅𝒊𝒌𝟎, 𝜺𝒊𝒌𝟎, 𝒌𝒊𝟎, 𝜌 )𝑒 | |  Ω = −0.5 × 10
(6.1) 

  

 

Figure 6. 1 Geometry: (a) gradation law; (b) mesh element around crack tip; (c) whole strip. 

Table 6. 1 Material properties of homogeneous PZT-5H ceramics. 

Elastic stiffnesses 
(×1010N/m2) 

Piezoelectric coefficients 
(C/m2) 

Dielectric constants  
(×10-10C/Vm) 

Specific heat 
(J/kg°K) 

Density 
(×103kg/m3) 

𝑐  𝑐  𝑐   𝑐  𝑑  𝑑  𝑑  휀  휀  𝑐  𝜌  

12.72 8.47 11.74 2.30 -6.62 23.24 17.03 150.9 126.9 475 7.5 
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6.2.2 Non-Fourier thermal Modeling 

(1) User-defined partial differential equations (PDEs) 

The fundamental law governing all heat transfer in COMSOL is the first law of 

thermodynamics, commonly referred to as the principle of conservation of energy.  

𝜌𝑐
𝜕𝑇

𝜕𝑡
= −(∇ · 𝒒) + 𝑄 

where 𝜌  is the density (kg/m3), 𝑐  is the specific heat capacity at constant pressure (J/(kg·K)), 

T is absolute temperature (K), q is the heat flux by conduction (W/m2), and Q contains heat sources 

other than viscous heating (W/m3). 

However, the heat transfer interfaces use Fourier’s law of heat conduction, which states that 

the conductive heat flux, q, is proportional to the temperature gradient without considering spread 

speed: 

𝒒 = −𝑘∇𝑇                                                          (6.2) 

where k is the thermal conductivity (W/(m·K)). Considering thermal relaxation effect of 

biomaterials, non-Fourier law of heat conduction was proposed as 105 

1 + 𝜏
𝜕

𝜕𝑡
𝒒 = −𝑘∇𝑇                                      (6.3) 

Finally, without heating sources, the resulting heat equation is: 

1 + 𝜏
𝜕

𝜕𝑡
𝜌𝑐

𝜕𝑇

𝜕𝑡
= (∇ · 𝑘𝛻𝑇)                                      (6.4) 
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COMSOL provides the Mathematics module for the creation of user-defined partial 

differential equations (PDEs) through equation-based modeling. This module empowers us to 

tackle a wide array of PDEs utilizing diverse formulations. In scenarios involving functionally 

graded issues, where material properties exhibit a functional gradient, the General form interface 

emerges as the optimal selection due to its compatibility with nonlinear PDEs. The general PDE 

form in General form interface is: 

𝑒
𝜕 𝑇

𝜕𝑡
+ 𝑑

𝜕𝑇

𝜕𝑡
+ ∇ ∙ Γ = 𝑄                                      (6.5) 

According to Eq. (6.3), the terms 𝑒 = 𝜏 𝜌𝑐 , 𝑑 = 𝜌𝑐 , 𝑄 = 0, and Γ = −𝑘𝛻𝑇.  

(2) Thermal boundary conditions 

Here, four thermal boundary conditions (a) to (d) defined as follows are assigned similar to 

the boundary conditions in chapter 5.  

(a) Initial values T=293 K for the whole strip 

(b) Dirichlet Boundary Condition T=Tboundary at Top surface 

(c) Dirichlet Boundary Condition T=293 K at Bottom surface 

(d) Zero Flux −𝐧 ∙ Γ = 0. 

The bottom substrate surface is maintained at a constant 293 K. The top surface is heated 

from 293 K to 586 K in a very short second. The crack surfaces are considered adiabatic. 
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Figure 6. 2 Thermal boundary conditions. 

(3) Element quality check 

The 2D 1-mm-sized triangular element was chosen and discretized in quadratic order. The 

mesh becomes finer near the cracked positions as shown in Figure 6.3. After mesh sensitivity 

study, the final FE model contained a total of 66258 elements, which represents an appropriate 

meshing considering both computational cost and accuracy. The mesh resolution and mesh 

element quality are important aspects to consider when validating a finite element model. Low 

mesh resolution—in relation to the variations in the solution and the geometry—can lead to 

inaccurate results, and a low mesh element quality—which measures the regularity of the mesh 

elements’ shapes—can lead to inverted mesh elements and convergence issues. COMSOL 

documentation 274 states that element quality in a tetrahedral mesh should not go below 0.1 (where 

1 is represents 100% quality), or else the user risks compromising the quality of the model’s 

solution. Figure 6.2 shows the mesh quality in the strip at the area of maximum stresses and 

displacement. All the mesh quality are higher than 0.5 and close to 1. 
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Figure 6. 3 Measure of mesh quality in the thermal model around crack tip. 

6.2.3 Functionally graded Piezoelectric Modeling 

(1) Piezoelectricity, Solid 

The constitutive equations governing piezoelectric behavior within any given material can be 

written in either “strain-charge” form or “stress-charge” form, both of which are supported by 

COMSOL, and yield identical results. Here, we chose to enter in material properties in the “stress-

charge” form: 

𝝈 = 𝒄𝑬𝜺 − 𝒆𝑻𝑬                                                                (6.6) 

𝑫 = 𝒆𝜺 + 𝜺𝟎𝜺𝒓𝑬                                                                (6.7) 

where 𝜺 is strain tensor, E is electric field strength (V/m), 𝒆 is indirect coupling matrix which is 

elastic stiffness 𝒄𝒊𝒋  in Table 6.1, 𝜺𝒓  and 휀  are relative electrical permittivity and electrical 

permittivity of free space = 8.854187817𝑒 (F/m), 휀 𝜺𝒓 is dielectric constants 𝜺𝒊𝒋. The material 

properties used in the piezoelectric analysis are found in Table 6.1. For a 2D piezoelectric analysis 

in COMSOL, the default material coordinate plane is XY. However, because the strip is polarized 

along z direction. Hence, in the modeling process it was necessary to specify that the material 

coordinate systems of materials be X-Z. 
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(2) Boundary conditions 

Given the central emphasis on transient thermal dynamics, to ensure convergence and 

accuracy, we have simplified the transient stress and electric boundaries, discussed in chapter 5, 

into static loads applied to the upper and lower surfaces. Additionally, the crack surface is free and 

insulated. The following boundary conditions have been set within the COMSOL platform.  

       

Figure 6. 4 Mechanical-electrical boundary conditions. 

 

 

Solid Mechanics interface Electrostatics interface 

(a) Free boundary at crack surfaces 

(b) Initial values displacement field = 0 

(c) Boundary load 1: upper stress FA=p0 N/m2 

(d) Boundary load 2: lower stress FA=-p0 N/m2 

(d) Roller Constraint: left and right surfaces 

* p0=50 MPa 

(a) Charge Conservation, Piezoelectric for whole 

geometry 

(d) Electric Displacement Field: upper and lower    

displacement D0=d0 C/ m2 

(b) Initial values electric potential = 0 

(c) Ground: crack surfaces 

(c) Zero Charge:  left and right surfaces 

* d0=0.4 C/m2 
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6.2.4 Coupled Thermo-Piezo-Electro-Mechanical Model 

(1) Thermal expansion 

The equation for thermal expansion in thermo-mechanical situations is: 휀 = 𝛼(𝑇 − 𝑡0), 

where α is the coefficient of thermal expansion of the given material and ΔT is the change in 

temperature from the reference temperature (t0). The coefficient of thermal expansion of PZT-5H 

is 𝛼(𝑇) = 7 × 10  (unit:1/K). Then Eq. (6.6) is expanded into: 

𝝈 = 𝒄𝑬𝜺 − 𝒄𝑬휀 − 𝒆𝑻𝑬                                                         (6.8) 

(2) Piezoelectric Material 

COMSOL adds the remanent term “Dr” to the governing equation of the piezoelectric 

material, which helps in coupling other fields with the electric field. The Eq. (6.7) expanded into 

𝑫 = 𝒆𝜺 + 휀 𝜺𝒓𝑬 + 𝐷                                                     (6.9) 

in which 𝐷 = −𝑝 (𝑇 − 𝑡0) for electrical-thermal field according to Eq. (5.2) in chapter 5. 

Table 6. 2 Thermal properties of homogeneous PZT-5H ceramics. 

Elastic stiffnesses 
(×1010N/m2) 

Coefficient of 
thermal expansion 

(1/K) 

Thermal Modulus 
(N/Km2) 

Pyroelectric coefficients 
(×10-4C/Km2) 

𝑐  𝑐  𝑐   𝑐  𝛼 휁  휁  𝑝  

12.72 8.47 11.74 2.30 7×10-6 𝑐 ×  𝛼 𝑐 ×  𝛼 4.16 

  

6.3 Results and Discussions 

The simulation processes are carried out in two stages. Initially the time-dependent 

temperature distributions are studied and the resulted displacement is transferred into second stage 
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as preset values. In the second stage, stress and electric displacement are performed for stable 

condition. 

Step 1: Time Dependent: Thermal study — General Form PDE 

Step 2: Stationary: Solid Mechanics and Electrostatics — Multiphysics 

 

6.3.1 Temperature distributions 

In comparison with the theoretical outcomes, the simulation results demonstrate a significant 

level of consistency, effectively achieving the application of the non-Fourier theory within the 

COMSOL Multiphysics platform. To offer a more comprehensive understanding of the relaxation 

phenomenon, Figure 6.5 also presents Fourier-based results. When compared to the non-Fourier 

results, the Fourier temperature outcomes rapidly attain equilibrium without generating 

temperature fluctuations. 

  
                                                  (a)                                                        (b) 

Figure 6. 5 Measure of mesh quality in the thermal model around crack tip: (a) non-Fourier; (b) Fourier. 

According to Figure 6.5, the peak temperature occurs at approximately 19.7 seconds after the 

thermal load is applied, and the corresponding temperature distribution result is illustrated in 

Figure 6.6. It becomes evident that utilizing the Fourier law alone would result in overlooking the 
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critical time period of risk, which leads directly to a steady state value (at t=100 seconds) without 

considering relaxation effects. Therefore, in the context of biomaterial analysis, the adoption of a 

non-Fourier heat conduction law is preferable. Moreover, upon comparing the steady temperature 

distributions depicted in the Figure for Sym-FGPM and Non-FGPM, it is evident that the 

heterogeneous symmetric functionally graded sketch exhibits higher temperature gradients in the 

strip. This aligns well with the theoretical findings outlined in Section 5.4.3 of Chapter 5, which 

supplies further validation for the reliability of the theoretical models. 

 
(a) 

 

(b) 

Figure 6. 6 Temperature distributions of: (a) Sym-FGPM; (b) Non-FGPM. 
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6.3.2 Stress distributions 

Figure 6.7 presents von Mises stress distribution around crack tip of symmetric functionally 

graded PZT-5H under single stress and thermal-mechanical loads. We can see that after adding a 

heating source, the stress concentration near the tip is higher than single stress field, which can be 

attributed to the thermal SIFs observed in Figure 5.9 (b) of Chapter 5, Section 5.4.3. The heating 

source causes a normal stress intensity rise at the SH1 point because of the non-Fourier thermal 

wave effect, and finally the higher stress concentration at crack tip for coupled thermal-stress field. 

 
(a) (b) 

Figure 6. 7 Von Mises stress distribution around crack tip of Sym-FGPM: (a) Mechanical; (b) Thermal-

mechanical. 

The last step of the simulation is carried out for thermomechanical effect coupled with an 

electric field. The thermal-mechanical-electrical results of three microstructure configurations: 

Sym-FGPM, Non-FGPM and Expo-FGPM are presented in Figure 6.8. The gradation 

configurations of Sym-FGPM and Expo-FGPM both follow with suggested gradients, 

respectively, (Ω, Ψ) = (1, −0.5) and (−0.5, −0.5). Based on the findings presented in Chapter 5, 

it is evident that the Sym-FGPM is the most suitable sketch for the heating-mechanical-stress 

conditions. Conversely, the Expo-FGPM exhibits a dangerous trend. These findings are further 
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demonstrated by the outcomes observed in the simulation results. Comparing Figures 6.8 (a), (b), 

and (c), the von Mises stress near the crack tip of the Sym-FGPM is 30.5% lower than Non-FGPM 

sketch; however, the Expo-FGPM is 3.2% higher than the Non-FGPM. The suggested gradation 

improvement for the Expo-FGPM is further substantiated through a comparison of Figures 6.8 (c) 

and (d). The observation reveals that the Expo-FGPM, when employed the identical gradation 

profile of Sym-FGPM: (Ω, Ψ) = (1, −0.5), demonstrates significantly elevated results compared 

to the recommended configuration (Ω, Ψ) = (−0.5, −0.5). Finally, the simulation and theoretical 

models have been mutually validated. 

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Figure 6. 8 Thermal-mechanical-electrical von Mises stress distribution around crack tip: (a) Sym-FGPM 

(1, -0.5); (b) Non-FGPM; (c) Expo-FGPM (-0.5, -0.5); (d) Expo-FGPM (1, -0.5). 
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6.4 Conclusions 

In this chapter, we have successfully implemented Multiphysics finite element simulations 

for functionally graded piezoelectric materials, and first realized the non-Fourier heat conduction 

model within the COMSOL Multiphysics platform. From the results, we observed that the 

temperature and stress simulation results are consistent well with theoretical models. For thermal 

results, the non-Fourier model successfully replicates the thermal relaxation effect of biomaterials 

and shows an obvious thermal amplification in symmetric functionally graded configuration. 

Furthermore, the suggested gradations for biomimetic composites under heating-mechanical-

electrical field proposed from the theoretical model in Chapter 5, have been further substantiated 

in finite element models. The multiphysical finite element model and theoretical models provide 

valuable insights into functionally graded design and performance analysis of biomimetic 

composites.
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Chapter 7  

Conclusions and Future Perspectives 

7.1 Conclusions 

In order to overcome the drawbacks of homogenous structural design and single field 

functional property examinations, as well as the overlook of thermal relaxation effect of 

biomimetic materials, multiphysical, functionally graded models have been built based on non-

Fourier heat conduction theory to provide guidelines for biomimetic gradation design under 

different working environments. Through this work, major conclusions are summarized as follows. 

(1) Significant discrepancies of transient stresses intensity factors exist between non-Fourier 

and Fourier models. Fracture may occur at a much earlier stage in the non-Fourier model 

under thermal shock than the Fourier one based on the predicted stress intensity factors. 

(2) Multiphysical conditions have a significant influence on the fracture resistance of 

heterogeneous material, whiles temperature is a vital factor that cannot be ignored. A 

sudden temperature fall will cause an opening-mode failure. While a positive electric shock 

will slightly reduce the likelihood of an opening crack occurrence. 

(3) Functional gradient concept is not always optimal for every scenario which is greatly 

influenced by the surrounding environment. Particularly, for single thermal loading, the 

non-graded configuration displays superior fracture resistance over graded ones.  
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(4) Except for the single thermal environment, designing biomimetic piezoelectric structures 

considering gradation can improve their crack resistance under single stress, single electric, 

as well as thermo-electromechanical fields. The symmetric functional configuration, 

characterized by a higher value of the electromechanical gradation coefficient Ω and 

thermal gradation coefficient Ψ, shows remarkable fracture resistance under single stress 

and single electric environments when Ω = Ψ. The best sketches for heating-mechanical-

electrical and cooling-mechanical-electrical fields are Sym-FGPM designs with (Ω, Ψ) = 

(1, -0.5) and (1, -1), respectively. 

(5) Non-Fourier theory is first realized within COMSOL Multiphysics platform, successfully 

replicates the thermal relaxation effect of biomaterials. The temperature and stresses 

simulation results are consistent well with theoretical models. Furthermore, the suggested 

gradations for biomimetic composites under heating-mechanical-electrical have been 

further validated numerically. With the aid of multiphysical numerical model, even with 

more complex micro- or nanoscale arrangements as well as high degree of coupling 

environments, the strongly nonlinear problem can be easily solved. 

There exist some limitations of this thesis because of the theoretical nature of the work. 

Classical elasticity cannot describe the creep or stress relaxation phenomena caused by the 

rheological properties of soft materials, such as polymer matrix composites, nanocomposites 

hydrogels and soft elastomers. In dealing with the fracture of these materials, it is necessary to 

develop a more comprehensive viscoelastic model.  
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7.2 Future perspectives 

For the investigation of biomimetic materials, due to the viscoelastic time-dependent nature 

of biomaterial, the linear elastic models are inadequate in addressing issues characterized by 

significant creep and stress relaxation phenomena. The viscosity of biomaterials would become 

particularly pronounced during dynamic or cyclic loading, as well as in their protracted interaction 

with biological systems. To address these complexities, the incorporation of a linear viscoelastic 

constitutive law can be introduced to the framework of multi-physical functionally graded models. 

Besides, in the context of finite element modeling, the geometric configuration can be composed 

of two distinct material phases: a viscoelastic soft material and a linear elastic hard material. The 

strategic arrangement of these two phases would offer a more accurate means to study the 

functionally graded design enhancing overall fracture resistance. Therefore, integrating 

viscoelastic analysis into future studies promises a more accurate representation of biomimetic 

material behavior, ensuring their optimal fracture resistance performance in diverse fields. 
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Appendix A  

Supporting information for Chapter 3 

The constants 𝜆 = 𝑟𝑠𝑗, (𝑗 = 1,2,3) ,  𝑟  are the roots of the following characteristic 

equation: 

𝑎𝑟 + 𝑏∗𝑟 + 𝑐∗𝑟 + 𝑑∗ = 0 

𝑎 = −𝑐 (𝑒 + 𝑐 휀 ) 

𝑏 = 𝑒 [−2𝑐 𝑒 − 2𝑐 (𝑒 + 𝑒 ) + 𝑐 𝑒 ] − 𝑐 (𝑐 + 2𝑐 )휀

+ 𝑐 ((𝑒 + 𝑒 ) + 𝑐 휀 + 𝑐 휀 ) 

𝑐 = [𝑐 휀 − 𝑐 (2𝑒 𝑒 + 𝑐 휀 ) + 2𝑐 (𝑒 + 𝑒 𝑒 + 𝑐 휀 ) − 𝑐 (𝑒 + 𝑐 휀 )] 

𝑑 = 𝑐 (𝑒 + 𝑐 휀 ) 

𝑒 = (𝑒 + (𝑐 + 𝑐 )휀 )𝜌 

𝑓 = −휀 𝜌  

𝑔 = −((𝑒 + 𝑒 ) + 2𝑒 𝑒 + (𝑐 + 𝑐 )휀 + (𝑐 + 𝑐 )휀 )𝜌 

ℎ = 휀 𝜌  

𝑗 = (𝑒 + 𝑐 휀 + 𝑐 휀 )𝜌 
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𝑏∗ = 𝑏 + 𝑒�̅�  

𝑐∗ = 𝑐 + 𝑓�̅� + 𝑔�̅�  

𝑑∗ = 𝑑 + ℎ�̅� + 𝑗�̅�  

𝑝 = �̅�𝑠 

The constants 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅  𝑎𝑛𝑑  𝑅  are given by: 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸 + 𝜔 𝐸

𝜔 = −(𝑒 + 𝑐 휀 )𝜏 + (2𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝜏 − (𝑒 + 𝑐 휀 )

𝜔 = (𝑒 𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝜏 − (𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝜏

𝜔 = (𝑐 𝑒 + 𝑐 𝑒 − 𝑐 𝑒 − 𝑐 𝑒 )𝜏 + (𝑐 𝑒 − 𝑐 𝑒 )𝜏 ⎭
⎪⎪
⎬

⎪⎪
⎫

(A. 1) 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸

𝜔 = (휀 𝜏 − 휀 )𝜌𝑝

𝜔 = (𝑒 + 𝑒 )𝜏 𝜌𝑝

                                                          

⎭
⎪
⎬

⎪
⎫

(A. 2) 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸 + 𝜔 𝐸

𝜔 = −(𝑒 𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝜏 + (𝑒 + 𝑒 𝑒 + 𝑐 휀 + 𝑐 휀 )𝜏

𝜔 = −𝑐 휀 𝜏 + [(𝑒 + 𝑒 ) + 𝑐 휀 + 𝑐 휀 ]𝜏 − 𝑐 휀 𝜏

𝜔 = −𝑐 𝑒 𝜏 − (𝑐 𝑒 + 𝑐 𝑒 + 𝑐 𝑒 − 𝑐 𝑒 )𝜏 − 𝑐 𝑒 𝜏 ⎭
⎪⎪
⎬

⎪⎪
⎫

(A. 3) 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸

𝜔 = (휀 𝜏 − 휀 𝜏)𝜌𝑝

𝜔 = (𝑒 𝜏 − 𝑒 𝜏)𝜌𝑝

                                                          

⎭
⎪
⎬

⎪
⎫

(A. 4) 
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𝑅 = 𝜔 𝐸 + 𝜔 𝐸 + 𝜔 𝐸

𝜔 = −(𝑐 𝑒 + 𝑐 𝑒 − 𝑐 𝑒 − 𝑐 𝑒 )𝜏 − (𝑐 𝑒 − 𝑐 𝑒 )𝜏

𝜔 = −𝑐 𝑒 𝜏 − (𝑐 𝑒 + 𝑐 𝑒 + 𝑐 𝑒 − 𝑐 𝑒 )𝜏 − 𝑐 𝑒 𝜏

𝜔 = 𝑐 𝑐 𝜏 + (𝑐 + 2𝑐 𝑐 − 𝑐 𝑐 )𝜏 + 𝑐 𝑐 𝜏

       

⎭
⎪⎪
⎬

⎪⎪
⎫

(A. 5) 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸 + 𝜔 𝐸

𝜔 = −(𝑒 + 𝑒 )𝜏𝜌𝑝

𝜔 = (𝑒 𝜏 − 𝑒 𝜏)𝜌𝑝

𝜔 = [−(𝑐 + 𝑐 )𝜏 + (𝑐 + 𝑐 )𝜏]𝜌𝑝

                                                      

⎭
⎪⎪
⎬

⎪⎪
⎫

(A. 6) 

𝑅 = 𝜏𝜌 𝑝 𝐸  

and: 

𝐸 (𝑠, 𝑝) =
𝜆

𝐸 (𝑠, 𝑝)
,      𝐸 (𝑠, 𝑝) =

𝜆

𝐸 (𝑠, 𝑝)
,      𝐸 (𝑠, 𝑝) =

−𝑝

𝐸 (𝑠, 𝑝)
 

𝐸 (𝑠, 𝑝) = 𝑎𝑠 𝜏 + (𝑏𝑠 + 𝑒𝑝 )𝑠 𝜏 + (𝑐𝑠 + 𝑓𝑝 + 𝑔𝑝 𝑠 )𝑠 𝜏 + 𝑑𝑠 + ℎ𝑝 𝑠 + 𝑗𝑝 𝑠  

The functions 𝐶 (𝑠, 𝑝) (𝑗 = 1,2,3) are: 

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

⎭
⎪⎪
⎬

⎪⎪
⎫

                    (A. 7) 

where, 
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𝐶 (𝑠, 𝑝) = 2𝐶 exp(−|𝑠|𝜏ℎ )
𝜌

𝜌
 

𝐶 = 𝑃 𝑃 𝑃 − 𝑃 𝑃 𝑃 − 𝑃 𝑃 𝑃 + 𝑃 𝑃 𝑃 + 𝑃 𝑃 𝑃 − 𝑃 𝑃 𝑃  

The functions 𝐶 (𝑠, 𝑝) (𝑗 = 1,2,3) are: 

𝐶 (𝑠, 𝑝) =
𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶

𝐸

𝐶 (𝑠, 𝑝) =
−𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶

𝐸

𝐶 (𝑠, 𝑝) =
𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 + 𝐸 𝐸 𝐶 − 𝐸 𝐸 𝐶

𝐸 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

(A. 8) 

where (𝑛 = 1,2,3), 

𝐸 = 𝑃 + (−1) 𝑈 exp −|𝑠|𝜆 ℎ  

𝑈 = 𝑃 𝑈
( )

+ 𝑃 𝑈
( )

+ 𝑃 𝑈
( ) 

𝑈
( )

(𝑠, 𝑝) = (−1)
𝑅

( )
𝑃 + 𝑅

( )
𝑃 + 𝑅

( )
𝑃

𝐶
exp(−|𝑠|𝜆 ℎ ) 

𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ) 

𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ) 

𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ), 𝑅
( )

= (𝑃 𝑃 − 𝑃 𝑃 ) 

and we have: 
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𝐶 (𝑠, 𝑝) = 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝐶

𝐶 (𝑠, 𝑝) = −{𝑃 + 𝑃 𝐶 + 𝑃 𝐶 } + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶

𝐶 (𝑠, 𝑝) = 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝑃 𝐶 + 𝐶

 

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

𝐶 (𝑠, 𝑝) =
𝑃 𝑃 − 𝑃 𝑃

𝐶
𝐶 (𝑠, 𝑝) exp(−|𝑠|𝜆 ℎ )

⎭
⎪⎪
⎬

⎪⎪
⎫

                    (A. 9) 

𝐶 (𝑠, 𝑝) = −2𝐶 exp(−ℎ 𝜏|𝑠|)
𝜌

𝜌
 

𝐸 = 𝐸 𝐸 𝐸 − 𝐸 𝐸 𝐸 − 𝐸 𝐸 𝐸 + 𝐸 𝐸 𝐸 + 𝐸 𝐸 𝐸 − 𝐸 𝐸 𝐸  

The functions 𝐶 (𝑠, 𝑝) (𝑗 = 1,2,3) are: 

𝐶 (𝑠, 𝑝) = 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝐶

𝐶 (𝑠, 𝑝) = 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝐶

𝐶 (𝑠, 𝑝) = 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝑈
( )

𝐶 + 𝐶 ⎭
⎪
⎬

⎪
⎫

                    (A. 10) 

where, 

𝑈
( )

= 𝑈
( )

exp −|𝑠|𝜆 ℎ  

The functions of 𝑉∗( )
(𝑠, ℎ , 𝑝), 𝑈∗( )

(𝑠, ℎ , ℎ , 𝑝) and 𝑈∗( )
(𝑠, ℎ , ℎ , 𝑝) are: 

𝑉
∗( )

(𝑠, ℎ , 𝑝) = 𝑉
( )

exp −|𝑠|𝜆 ℎ                                             (A. 11) 

𝑉
( )

= (−1)
𝑅

( )
𝑃 + 𝑅

( )
𝑃 + 𝑅

( )
𝑃

𝐶
exp(−|𝑠|𝜆 ℎ ) 
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and: 

𝐼
∗( )

(𝑠, ℎ , ℎ , 𝑝) =
(𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸

𝐸

𝐼
∗( )

(𝑠, ℎ , ℎ , 𝑝) =
(𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸

𝐸

𝐼
∗( )

(𝑠, ℎ , ℎ , 𝑝) =
(𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸 + (𝐸 𝐸 − 𝐸 𝐸 )𝐸

𝐸 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

(A. 12) 

where: 

𝐸 = 𝑉 exp −|𝑠|𝜆 ℎ + (−1) 𝑃  

𝑉 = 𝑃 𝑉
( )

+ 𝑃 𝑉
( )

+ 𝑃 𝑉
( ) 

finally: 

𝑈
∗( )

(𝑠, ℎ , ℎ , 𝑝) = 𝑈
( )

𝐼
∗( )

+ 𝑈
( )

𝐼
∗( )

+ 𝑈
( )

𝐼
∗( )

             (A. 13) 

When solving the Eq. (3.46), the functions 𝐶( ) (𝑠, 𝑝) (𝑚, 𝑗 = 1,2,3) are: 

𝐶
( )

=
𝜗

( )
𝜗

( )
− 𝜗

( )
𝜗

( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗

𝐶
( )

=
𝜗

( )
𝜗

( )
− 𝜗

( )
𝜗

( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗

𝐶
( )

=
𝜗

( )
𝜗

( )
− 𝜗

( )
𝜗

( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
, 𝐶

( )
=

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(A. 14) 

where, 

𝜗 = 𝜗
( )

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
( )

+ 𝜗
( )

𝜗
( )

𝜗
( )

+ 𝜗
( )

𝜗
( )

𝜗
( )

− 𝜗
( )

𝜗
( )

𝜗
( ) 
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and 𝜗( )
(𝑠, 𝑝) (𝑛 = 1,2,3) are: 

⎣
⎢
⎢
⎢
⎡𝜗

( )

𝜗
( )

𝜗
( )

⎦
⎥
⎥
⎥
⎤

=

−𝑍

𝑍

−𝑍
+

𝑍 𝑍 𝑍
𝑍 𝑍 𝑍

−𝑍 −𝑍 −𝑍
⎣
⎢
⎢
⎢
⎡𝑉

∗( )
− 𝐼

∗( )

𝑉
∗( )

− 𝐼
∗( )

𝑉
∗( )

− 𝐼
∗( )

⎦
⎥
⎥
⎥
⎤

+

𝑍 𝑍 𝑍
−𝑍 −𝑍 −𝑍
𝑍 𝑍 𝑍

⎣
⎢
⎢
⎢
⎡𝑈

∗( )

𝑈
∗( )

𝑈
∗( )

⎦
⎥
⎥
⎥
⎤

 

And functions 𝐶 (𝑠, 𝑝) (𝑖, 𝑗 = 1,2,3) are: 

𝐶 (𝑠, 𝑝) = −
𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )

𝜗

𝐶 (𝑠, 𝑝) =
𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )

𝜗

𝐶 (𝑠, 𝑝) == −
𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
+ 𝐶 𝜗

( )
𝜗

( )
− 𝐶 𝜗

( )
𝜗

( )

𝜗 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

(A. 15) 

where 

𝐶 (𝑠, 𝑝)

𝐶 (𝑠, 𝑝)

𝐶 (𝑠, 𝑝)

=

𝑍 𝑍 𝑍
𝑍 𝑍 𝑍

−𝑍 −𝑍 −𝑍

𝐶 − 𝐶
𝐶 − 𝐶
𝐶 − 𝐶

+

𝑍 𝑍 𝑍
−𝑍 −𝑍 −𝑍
𝑍 𝑍 𝑍

𝐶
𝐶
𝐶

 

In singular integral equations Eq. (3.47) and Eq. (3.48), functions 𝜑( )
 (𝑚 = 0,1,2,3; 𝑙 =

1,2,3) are: 

𝜑
( )

= 𝑃 𝐶
( )

+ (−1) 𝐶
( )

+ 𝑃 𝐶
( )

+ (−1) 𝐶
( )

+ 𝑃 𝐶
( )

+ (−1) 𝐶
( )

(𝑚 = 1,2,3; 𝑙 = 1,2,3)

𝜑
( )

= 𝑃 𝐶
( )

+ (−1) 𝐶 + 𝑃 𝐶
( )

+ (−1) 𝐶 + 𝑃 𝐶
( )

+ (−1) 𝐶 (𝑙 = 1,2,3)
 

where 

𝐶
( )

= 𝑉
∗( )

𝐶
( )

+ 𝑉
∗( )

𝐶
( )

+ 𝑉
∗( )

𝐶
( )

𝐶
( )

= 𝑉
∗( )

𝐶 + 𝑉
∗( )

𝐶 + 𝑉
∗( )

𝐶 + 𝐶
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Appendix B  

Supporting information for Chapter 4 

The coefficients 𝝀𝒋 is 

𝜆 =
−𝑐 + √𝑐 − 4𝑎𝑑

2𝑎
,            𝜆 =

−𝑐 − √𝑐 − 4𝑎𝑑

2𝑎
                   (B. 1) 

where 𝑎 = 𝑐 𝑐 , 𝑏 = 𝑐 + 2𝑐 𝑐 − 𝑐 , 𝑐 = 𝑏 − 𝑒�̅� , 𝑑 = 𝑎 + 𝑒�̅� + 𝑓�̅� , 𝑒 = (𝑐 + 𝑐 )𝜌, 

and 𝑓 = 𝜌 , 𝑝 = �̅�𝑠. 

The parameters 𝑅 , 𝑅 , 𝑅  and 𝑅  of particular solutions are 

𝑅 = 𝜔 𝐸 + 𝜔 𝐸

𝑅 = 𝜔 𝐸

𝑅 = 𝜔 𝐸 + 𝜔 𝐸

𝑅 = 𝜔 𝐸

                                                 (B. 2) 

in which the coefficients 𝜔 , 𝜔 , 𝐸  (i=1,2,3) are expressed as 

𝜔 = 𝑐 𝜏 − 𝑐  

𝜔 = −(𝑐 + 𝑐 )𝜏  

𝜔 = −𝜌𝑝  

𝜔 = (𝑐 + 𝑐 )𝜏 
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𝜔 = 𝑐 𝜏 − 𝑐 𝜏 

𝜔 = −𝜏𝜌𝑝  

𝐸 (𝑠, 𝑝) =
𝜆

𝐸 (𝑠, 𝑝)
 

𝐸 (𝑠, 𝑝) =
𝜆

𝐸 (𝑠, 𝑝)
 

𝐸 (𝑠, 𝑝) = 𝑎𝑠 𝜏 + (𝑏𝑠 − 𝑒𝑝 )𝑠 𝜏 + 𝑎𝑠 + 𝑒𝑝 𝑠 + 𝑓𝑝  

The equations of 𝑃 (𝑠, 𝑝) and 𝜑 (𝑠, 𝑝) (l=1,2,3; j=1,2) for general solutions of the cracked 

multiphysical model are 

𝑃 (𝑠, 𝑝) = 𝑐 𝑍 |𝑠| + 𝑣𝑐 𝑍 |𝑠|𝜆

𝑃 (𝑠, 𝑝) = 𝑣𝑐 𝑍 |𝑠| + 𝑐 𝑍 |𝑠|𝜆

𝑃 (𝑠, 𝑝) = 𝑐 𝑍 |𝑠|𝜆 − 𝑐 𝑍 |𝑠|

                                        (B. 3) 

𝜑 (𝑠, 𝑝) = 𝑐 (𝑅 𝑠 + 𝑅 𝑠 ) + 𝑣𝑐 (𝑅 𝑠 + 𝑅 𝑠 )𝜏 − 𝜆

𝜑 (𝑠, 𝑝) = 𝑣𝑐 (𝑅 𝑠 + 𝑅 𝑠 ) + 𝑐 (𝑅 𝑠 + 𝑅 𝑠 )𝜏 − 𝜆

𝜑 (𝑠, 𝑝) = 𝑐 (𝑅 𝑠 + 𝑅 𝑠 )𝜏 − 𝑐 𝑅 𝑠 + 𝑅 𝑠

             (B. 4) 

In the multiphysical singular integral system, the coefficients 𝑀 , 𝑀 , 𝑀 , 𝑀 , 𝑀  and 

𝑀   are expressed like Eqs. B.5 and B.6 

𝑀 (𝑥, 𝜉, 𝑝) = 𝑆
1

−𝑠
− 𝑀 sin 𝑠(𝜉̅ − �̅�) 𝑑𝑠

𝑀 (𝑥, 𝜉, 𝑝) = 𝑆
1

−𝑠
− 𝑀 sin 𝑠(𝜉̅ − �̅�) 𝑑𝑠

𝑀 (𝑥, 𝜉, 𝑝) = 𝑆
1

|𝑠|
cos 𝑠(𝜉̅ − �̅�) 𝑑𝑠

𝑀 (𝑥, 𝜉, 𝑝) = 𝑆
1

−𝑠
cos 𝑠(𝜉̅ − �̅�) 𝑑𝑠

                  (B. 5) 
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𝑀 = lim
→

𝑆
1

−𝑠

𝑀 = lim
→

𝑆
1

−𝑠

                                                       (B. 6) 

where 

𝑆
𝑆
𝑆

=

𝐼 𝐼 𝐼
𝐼 𝐼 𝐼
𝐼 𝐼 𝐼

𝑉
( )

𝑉
( )

−1

𝑃 +
𝑉

( )

𝑉
( )

−1

𝑃 +
0
0

∆
𝑃 +

0
0

∆
𝑃  

𝑆
𝑆
𝑆

=

𝐼 𝐼 𝐼
𝐼 𝐼 𝐼
𝐼 𝐼 𝐼

𝑉
( )

𝑉
( )

1

𝑃 +
𝑉

( )

𝑉
( )

1

𝑃 +
0
0

∆
𝑃 +

0
0

∆
𝑃  

𝑉
( ), 𝑉( ) and ∆  (𝑗 = 1,2) are separately equal to  

𝑉
( )

(𝑠, 𝑝) =
𝑃 𝑃 + 𝑃 𝑃

(𝑃 𝑃 − 𝑃 𝑃 )
exp −|𝑠| 𝜆 + 𝜆 ℎ  

𝑉
( )

(𝑠, 𝑝) =
𝑃 𝑃 + 𝑃 𝑃

(𝑃 𝑃 − 𝑃 𝑃 )
exp −|𝑠| 𝜆 + 𝜆 ℎ  

∆ (𝑠, 𝑝) = −
𝑃 𝜃

(𝑃 𝑃 − 𝑃 𝑃 )
exp(−|𝑠|𝜆 ℎ ) 

∆ (𝑠, 𝑝) = −
𝑃 𝜃

(𝑃 𝑃 − 𝑃 𝑃 )
exp(−|𝑠|𝜆 ℎ ) 

else 
𝐼 𝐼
𝐼 𝐼

=
𝐻

( )
−𝐻

( )

𝐻
( )

−𝐻
( )

,  𝐼 = −𝐼 ∆ − 𝐼 ∆ , 𝐼 = −𝐼 ∆ − 𝐼 ∆ ; and 

Θ = 𝐻
( )

𝐻
( )

− 𝐻
( )

𝐻
( ), 𝜃 = 2𝜑 exp(−|𝑠|𝜏ℎ ) . 𝐻( )

, 𝐻
( ) and ∆  equal like 
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𝐻
( )

𝐻
( )

,

=
𝑍 𝑍 −𝑍 −𝑍 𝑍 𝑍 −𝑍

𝑍 𝑍 −𝑍 −𝑍 −𝑍 −𝑍 𝑍

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑉

( )

𝑉
( )

𝑉
( )

𝑉
( )

𝑉
( )

𝑉
( )

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                              (B. 7) 

∆
∆

,

=
𝑍 𝑍 −𝑍 −𝑍 𝑍 𝑍
𝑍 𝑍 −𝑍 −𝑍 −𝑍 −𝑍

⎣
⎢
⎢
⎢
⎢
⎡
∆
∆
∆
∆
∆
∆ ⎦

⎥
⎥
⎥
⎥
⎤

                                                  (B. 8) 

where 𝑉( )
=

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) , 𝑉( )
=

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,  

𝑉
( )

𝑉
( )

,

=
𝑉

( )
𝑉

( )

𝑉
( )

𝑉
( )

𝑉
( )

𝑉
( )

 

and ∆ (𝑠, 𝑝) =
( )

∆
( )

∆

( ) ( ) ( ) ( ) , ∆ (𝑠, 𝑝) =
( )

∆
( )

∆

( ) ( ) ( ) ( ) , 

∆
∆

=
𝑉

( )
𝑉

( )

𝑉
( )

𝑉
( )

∆
∆

+
∆
∆

. 

Then 
𝐸

( )

𝐸
( )

,

and 
𝑈

( )

𝑈
( )

,

are solve by 

𝐸
( )

𝐸
( )

,

=
𝑃 𝑃 −𝑃

𝑃 𝑃 𝑃

𝑉
( )

𝑉
( )

1

                                        (B. 9) 
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𝑈
( )

𝑈
( )

,

=
−𝑃 −𝑃 𝑃

𝑃 𝑃 𝑃

𝑉
( )

𝑉
( )

1

                                    (B. 10) 

in which 

 𝑉( )
(𝑠, 𝑝) =

( )
exp −|𝑠| 𝜆 + 𝜆 ℎ  

𝑉
( )

(𝑠, 𝑝) =
𝑃 𝑃 + 𝑃 𝑃

(𝑃 𝑃 − 𝑃 𝑃 )
exp −|𝑠| 𝜆 + 𝜆 ℎ  

Furthermore ∆  functions are written as  

∆
∆

=
−𝑃 𝑃
𝑃 𝑃

∆
∆

+
𝑃 𝑃

−𝑃 −𝑃
∆
∆

+
𝜑
0

              (B. 11) 

where 𝜃 = −2𝜑 exp(−𝜏|𝑠|ℎ )  and 

 ∆ (𝑠, 𝑝) = −
( )

exp(−|𝑠|𝜆 ℎ )  

∆ (𝑠, 𝑝) = −
𝑃 𝜃

(𝑃 𝑃 − 𝑃 𝑃 )
exp(−|𝑠|𝜆 ℎ ) 
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Appendix C 

Supporting information for Chapter 5 

The roots of 𝛾  (𝑗 = 1,2,3, ⋯ 6) are given by 

𝑎𝛾 + 𝑏𝛾 + 𝑐𝛾 + 𝑑𝛾 + 𝑒𝛾 + 𝑓𝛾 + 𝑔 = 0                         (C. 1) 

where ℜ 𝛾 < ℜ 𝛾 , the coefficients are 𝑎 = 𝑎 , 𝑏 =
| |

3𝑎 , 𝑐 = 𝑎 − 3𝑏 + 𝑐 , 𝑑 =

| |
(2𝑎 − 𝑏 + 2𝑐 ) , 𝑒 = 𝑎 + 𝑏 − 𝑐 + 𝑑 − 𝑒 , 𝑓 =

| |
(𝑎 − 𝑏 − 𝑐 − 𝑒 ) , 𝑔 = 𝑎 + 𝑏 +

𝑐 − 𝑑 + 𝑒 .  

in which 

𝑎 = −𝑐 (𝑑 + 𝑐 휀 ) 

𝑎 = 𝑐 𝑑 − 2𝑐 𝑑 𝑑 − 𝑐 휀 − 2𝑐 (𝑑 + 𝑑 )𝑑 + 𝑐 휀

+ 𝑐 (𝑐 휀 + 𝑐 휀 + (𝑑 + 𝑑 ) ) 

𝑎 = −𝑐 𝑑 − 2𝑐 𝑑 𝑑 − 𝑐 𝑐 휀 + 𝑐 휀

+ 𝑐 (2𝑑 + 2𝑑 𝑑 + 2𝑐 휀 ) − 𝑐 𝑐 휀  

𝑎 = 𝑐 (𝑑 + 𝑐 휀 ) 

𝑏 = 𝑎
Ω

|𝑠|
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𝑏 = 𝑐 𝑑 − 3𝑐 𝑑 𝑑 − 𝑐 휀 − 2𝑐 𝑑 𝑑 − 3𝑐 (𝑑 𝑑 + 𝑐 휀 )

+ 𝑐 (𝑑 + 𝑑 + 𝑐 휀 + 𝑐 휀 + 3𝑑 𝑑 )
Ω

|𝑠|
 

𝑏 = (𝑐 𝑑 𝑑 + 𝑐 𝑐 휀 + 𝑐 𝑑 𝑑 − 𝑐 𝑑 𝑑 )
Ω

|𝑠|
 

𝑏 = 𝑐 (𝑑 + 𝑐 휀 )
Ω

|𝑠|
 

𝑐 = (𝑑 + 𝑐 휀 + 𝑐 휀 )𝜌
𝑝

|𝑠|
 

𝑐 = (𝑐 휀 + 𝑐 휀 + (𝑑 + 𝑑 ) + 2𝑑 𝑑 + 𝑐 휀 + 𝑐 휀 )𝜌
𝑝

|𝑠|
 

𝑐 = (𝑑 + (𝑐 + 𝑐 )휀 )𝜌
𝑝

|𝑠|
 

𝑑 = (𝑑 + (𝑐 + 𝑐 )휀 )𝜌
𝑝

|𝑠|

Ω

|𝑠|
 

𝑑 = 𝑑 𝑑 𝜌
| | | |

  

𝑒 = 휀 𝜌
𝑝

|𝑠|
 

𝑒 = 휀 𝜌
𝑝

|𝑠|
 

The coefficients 𝑍 (𝑠, 𝑝) and 𝑃 , 𝑃 , 𝑃 , (𝑙 = 1,2) are expressed as Eq. (C.2). 
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𝑍 (𝑠, 𝑝) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑓 𝛾 + 𝑓 𝛾 + 𝑓 𝛾 + 𝑓 𝛾 + 𝑓

𝑔 𝛾 + 𝑔 𝛾 + 𝑔 𝛾 + 𝑔 𝛾 + 𝑔
𝑙 = 2

(𝑐 + 𝑐 )𝛾 + 𝜇
Ω

|𝑠|
𝑐 𝑍 + (𝑑 + 𝑑 )𝛾 + 𝜇

Ω
|𝑠|

𝑑

−𝑐 + 𝑐 𝛾 − 𝜌
𝑝
𝑠

+ 𝜇
Ω

|𝑠|
𝑐 𝛾

𝑙 = 1

(C. 2.1) 

with 

𝑓 = 𝑐 휀  

𝑓 = 𝜇
Ω

|𝑠|
2𝑓  

𝑓 = −(𝑐 휀 + 𝑐 휀 + (𝑑 + 𝑑 ) ) + 휀 𝑐
Ω

|𝑠|
− 휀

𝑝

𝑠
𝜌  

𝑓 = 𝜇
Ω

|𝑠|
−(𝑐 휀 + 𝑐 휀 + (𝑑 + 𝑑 ) ) − 휀

𝑝

𝑠
𝜌  

𝑓 = 휀 𝑐 +
𝑝

𝑠
𝜌 − 𝑑 𝑑

Ω

|𝑠|
 

𝑔 = 𝑐 𝑑  

𝑔 = 𝜇𝑑 𝑐 2
Ω

|𝑠|
 

𝑔 = 𝑐 𝑑 − 𝑐 𝑑 + 𝑐 (𝑑 + 𝑑 ) + 𝑐 𝑑
Ω

|𝑠|
− 𝑑

𝑝

|𝑠|
𝜌  

𝑔 = 𝜇 (𝑐 + 2𝑐 )𝑑 − 𝑐 𝑑 − 𝑑
𝑝

|𝑠|
𝜌

Ω

|𝑠|
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𝑔 = 𝑐 𝑑 + 𝑐 𝑑
Ω

|𝑠|
+ 𝑑 𝜌

𝑝

|𝑠|
 

𝑃 , 𝑃 , 𝑃 , (𝑙 = 1,2) are  

𝑃 =
𝐿

𝑝
, 𝑃 =

𝐿

𝑝
, 𝑃 =

𝐿

𝑝
                       (C. 2.2) 

where 

𝐿 = 𝑘 𝜆 + 𝜇
𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘

𝐿 = 𝑘 𝜆 + 𝜇
𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘

𝐿 = 𝑘 𝜆 + 𝜇
𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘 𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑘

 

and 𝑝 = 𝑎 𝜆 + 𝜇
| |

+ |𝑠|𝑏 𝜆 + 𝜇
| |

+ 𝑠 𝑐 𝜆 + 𝜇
| |

+ |𝑠|𝑠 𝑑 𝜆 + 𝜇
| |

+

𝑠 𝑒 𝜆 + 𝜇
| |

+ |𝑠|𝑠 𝑓 𝜆 + 𝜇
| |

+ 𝑠 𝑔 

then the coefficients 𝑘 , 𝑘  and 𝑘  (𝑛 = 0,1,2,3,4) are 

𝑘 = (𝑑 + 𝑐 휀 )휁  

𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
[(𝑑 + 𝑑 )𝑐 − (𝑐 + 𝑐 )𝑑 ]𝑝

− (𝑑 + 𝑑 )𝑑 + (𝑐 + 𝑐 )휀 휁

+ 2𝜇
𝛺

|𝑠|
(𝑑 𝑑 + 휀 𝑐 )휁  
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𝑘 = 𝜇
𝛺

|𝑠|
𝜆 + 𝜇

𝛹

|𝑠|
𝑐 𝑑 − 𝑐 𝑑 + 2(𝑐 𝑑 − 𝑐 𝑑 ) 𝑝

− 𝑑 𝑑 + 𝑐 휀 + 2(𝑑 𝑑 + 𝑐 휀 ) 휁

+
Ω

𝑠
(𝑑 + 𝑐 휀 )휁 − (2𝑑 𝑑 + 𝑐 휀 + 𝑐 휀 )휁

− 휀 휁 𝜌
𝑝

𝑠
 

𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
(𝑐 𝑑 − 𝑐 𝑑 )𝑝 + (𝑑 + 𝑑 𝑑 + (𝑐 + 𝑐 )휀 )휁

+ (𝑐 𝑑 − 𝑐 𝑑 )𝑝 − (𝑑 𝑑 + 𝑐 휀 )휁
Ω

|𝑠|

− (𝑑 + 𝑑 )𝑝 𝜌
𝑝

|𝑠|

− 𝜇
Ω

|𝑠|
(𝑐 휀 + 𝑐 휀 + 2𝑑 𝑑 )휁 + 휀 휁 𝜌

𝑝

|𝑠|
 

𝑘 = 𝜇 𝜆 + 𝜇
𝛹

|𝑠|

Ω

|𝑠|
(𝑑 + 휀 𝑐 )휁 − 𝑑 𝑝 𝜌

𝑝

𝑠
+ (𝑑 + 휀 𝑐 )휁

+ 휀 휁 𝜌
𝑝

|𝑠|
 

𝑘 = − 𝜆 + 𝜇
𝛹

|𝑠|
𝑐 (𝑑 𝑝 + 휀 휁 ) 

𝑘 = −2𝜇
𝛺

|𝑠|
𝜆 + 𝜇

𝛹

|𝑠|
(𝑑 𝑝 + 휀 휁 )𝑐

− (𝑑 + 𝑑 )𝑑 + (𝑐 + 𝑐 )휀 휁  
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𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
−(𝑐 (𝑑 + 𝑑 ) + 𝑐 𝑑 − 𝑐 𝑑 )𝑝

+ ((𝑑 + 𝑑 ) + 𝑐 휀 + 𝑐 휀 )휁 +
𝑝

𝑠
𝜌 (𝑑 𝑝 + 휀 휁 )

− (휀 휁 + 𝑑 𝑝 )𝑐
𝛺

𝑠

− 𝜇
𝛺

|𝑠|
𝑑 𝑑 + 𝑐 휀 + 2(𝑑 𝑑 + 𝑐 휀 ) 휁  

𝑘 = 𝜇
𝛺

|𝑠|
𝜆 + 𝜇

𝛹

|𝑠|
𝑐 (𝑑 𝑝 + 휀 휁 ) − 𝑐 (2𝑑 + 𝑑 )𝑝

+ 휁 (𝑐 휀 + (𝑑 + 𝑑 ) ) +
𝑝

𝑠
𝜌 (𝑑 𝑝 + 휀 휁 )

− 휁 (𝑑 𝑑 + 𝑐 휀 )
𝛺

𝑠
+ (휀 𝑐 + 𝑑 + 𝑑 𝑑 + 𝑐 휀 )휁  

𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
(휁 𝑑 − 𝑝 𝑐 )𝑑

𝛺

𝑠
− 𝑐 (𝑑 𝑝 + 휀 휁 )

− (𝑑 𝑝 + 휀 휁 )𝜌
𝑝

𝑠
+ 𝜇

𝛺

|𝑠|
(𝑑 𝑑 + 휀 𝑐 )휁  

𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
(𝑐 𝑝 − 𝑑 휁 )𝑐  

𝑘 = 2𝜇
𝛺

|𝑠|
𝜆 + 𝜇

𝛹

|𝑠|
(𝑐 𝑝 − 𝑑 휁 )𝑐

+ (𝑑 + 𝑑 )𝑐 − (𝑐 + 𝑐 )𝑑 휁  
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𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
(𝑐 − 𝑐 𝑐 + 2𝑐 𝑐 )𝑝 + (𝑐 𝑑 − 𝑐 𝑑

− (𝑑 + 𝑑 )𝑐 )휁 − (𝑐 + 𝑐 )𝑝 − 𝑑 휁 𝜌
𝑝

𝑠

+
𝛺

𝑠
(𝑐 𝑝 − 𝑑 휁 )𝑐

+ 𝜇
𝛺

|𝑠|
𝑐 𝑑 − 𝑐 𝑑 + 2(𝑐 𝑑 − 𝑐 𝑑 ) 휁  

𝑘 = 𝜇
𝛺

|𝑠|
𝜆 + 𝜇

𝛹

|𝑠|
𝑐 𝑝 − 𝑑 휁 𝑐 − 𝑐 (𝑐 𝑝 − 𝑑 휁 ) + 2(𝑝 𝑐

− 𝑑 휁 )𝑐 + (−𝑐 𝑝 − 𝑐 𝑝 + 𝑑 휁 )𝜌
𝑝

𝑠

− (𝑑 + 𝑑 )휁 𝜌
𝑝

𝑠
+

𝛺

𝑠
(𝑐 𝑑 − 𝑑 𝑐 )휁 + (𝑑 𝑐

− 𝑐 𝑑 )휁  

𝑘 = 𝜆 + 𝜇
𝛹

|𝑠|
𝑝 𝜌

𝑝

𝑠
+ (𝑐 𝑝 + 𝑐 𝑝 − 𝑑 휁 )𝜌

𝑝

𝑠

+
𝛺

𝑠
(𝑐 𝑝 − 𝑑 휁 )𝑐 + 𝑐 (𝑐 𝑝 − 𝑑 휁 )

+ 𝜇
𝛺

|𝑠|
𝑐 𝑑 − 𝑐 𝑑 − 𝑑 𝜌

𝑝

𝑠
휁  

The coefficients 𝜒 (𝑠, 𝑝)(𝑠𝑡𝑟 = 𝑧𝑧, 𝑧𝑥, 𝑑𝑧) are 

𝜒 = 𝑐 𝛾 𝑍 − 𝑐 𝑍 − 𝑑

𝜒 = 𝑐 𝛾 + 𝑍 + 𝑑 𝑍 |𝑠|

𝜒 = (𝑑 𝑍 + 𝑑 𝛾 𝑍 − 휀 𝛾 )

                                    (C. 3) 
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The 𝑃  (𝑙 = 1,2) defined as 

𝑃 = 𝑐 −
𝐿

𝑝
𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑃 + 𝑑 𝑃

𝑃 = 𝑐 𝑃 − 𝑐
𝐿

𝑝
𝜆 + 𝜇

𝜑

|𝑠|
− 𝑑

𝐿

𝑝
𝜆 + 𝜇

𝜑

|𝑠|
+ 휁

𝑃 = 𝑑 𝑃 − 𝑑
𝐿

𝑝
𝜆 + 𝜇

𝜑

|𝑠|
+ 휀

𝐿

𝑝
𝜆 + 𝜇

𝜑

|𝑠|
+ 𝑝

  (C. 4) 

The functions  𝜅  are solved by 

|𝑠|𝜒 𝐴 − {𝑃 𝐷 + 𝑃 𝐷 }𝐷 = |𝑠|(𝜅 𝐷 + 𝜅 𝐷 + 𝜅 𝐷 ) + 𝜅 𝐷

|𝑠|𝜒 𝐴 − {𝑃 𝐷 + 𝑃 𝐷 }𝐷 = |𝑠|(𝜅 𝐷 + 𝜅 𝐷 + 𝜅 𝐷 ) + 𝜅 𝐷 (C. 5)

|𝑠|𝜒 𝐴 − {𝑃 𝐷 + 𝑃 𝐷 }𝐷 = |𝑠| 𝜅 𝐷 + 𝜅 𝐷 + 𝜅 𝐷 + 𝜅 𝐷

 


