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Abstract—Recent technological advancements have enabled

mobile devices to provide mobile users with substantial capability

and accessibility. Energy is evidently one of the most critical

resources for such devices; in spite of the substantial gain in

popularity of mobile devices, such as smartphones, their utility

is severely constrained by the bounded battery capacity. Mobile

users are very interested in accessing the Internet although it is

one of the most expensive operations in terms of energy and cost.

HTTP/2 has been proposed and accepted as the new standard

for supporting the World Wide Web. HTTP/2 is expected to

offer better performance, such as reduced page load time. Conse-

quently, from the mobile users point of view, the question arises:

does HTTP/2 offer improved energy consumption performance

achieving longer battery life?

In this paper, we compare the energy consumption of HTTP/2

with its predecessor (i.e., HTTP/1.1) using a variety of real

world and synthetic test scenarios. We also investigate how

Transport Layer Security (TLS) impacts the energy consumption

of the mobile devices. Our study suggests that Round Trip

Time (RTT) is one of the biggest factors in deciding how

advantageous HTTP/2 is compared to HTTP/1.1. We conclude

that for networks with higher RTTs, HTTP/2 has better energy

consumption performance than HTTP/1.1.

I. INTRODUCTION

In recent years, the popularity of mobile devices (e.g.,

smartphones, and tablets) has dramatically increased. As of

2014, more than 1.4 billion smartphones were used glob-

ally [7], which induced a 70% increase in worldwide mobile

data traffic [2]. With the recent technological advancements,

there has been an exponential improvement in memory ca-

pacity and processing capability of mobile devices. Moreover,

these devices come with a wide range of sensors and different

I/O components, including digital camera, Wi-Fi, GPS, etc.—

thus inspiring the development of more sophisticated mobile

applications. These new opportunities, however, come with

new challenges: the availability of these devices is severely

constrained by their bounded battery capacity. A survey [50]

has indicated that a longer battery life is one of the most

desired features among smartphone users. Unfortunately, the

advancement in battery technology is minimal compared to

the improvement in computing abilities, thus amplifying the

increasing importance of energy efficient application develop-

ment [7].

The energy consumption of servers has also become a

subject of concern for large data centers—consuming at least

one percent of the world’s energy [11]. Data centers must cater

to the continually increasing demand for storage, networking

and computation capabilities. In 2010, 4.3 terawatt-years of

energy was consumed within the US by LAN switches and

routers [38]. Energy efficiency was reported as one of the

pivotal issues even by Google, facing the scale of operations,

as cooling becomes a very important operational factor [8].

Another very important aspect of energy consumption is the

environment: energy consumption has a detrimental effect on

climate change, as most of the electricity is produced by

burning fossil fuels [20]. Reportedly, 1000 tonnes of CO2 is

produced every year by the computer energy consumption of

mid-sized organizations [27].

With the increased penetration of the mobile devices, the

Internet usage on these smartphones is also mounting. Accord-

ing to eMarketer [15], it is expected that Internet access from

mobile devices will dominate substantially by 2017. Accessing

the Internet, however, is undoubtedly one of the most energy

expensive use cases for mobile users [31].

Loading Web pages has become more resource intensive

than ever, and this poses challenges to the inefficient HTTP/1.1

protocol which has served the Web for more than 15 years.

HTTP/1.1, with only one outstanding request per TCP con-

nection, has become unacceptable for today’s Web, as a single

page might require around 100 objects to be transferred [46].

HTTP/2—mainly based on SPDY, a protocol proposed and

developed by Google [49]—is the second major version of

HTTP/1.1 and is expected to overcome the limitations of its

predecessor in the contexts of end-user perceived latency, and

resource usage [25]. The Internet Engineering Steering Group

(IESG) has already approved the final specification of HTTP/2

as of February, 2015 [46]. It is no exaggeration to state that

“the future of the Web is HTTP/2” [4].

While HTTP/2 is expected to reduce page load time, we

ask if using HTTP/2 improves energy consumption over using

HTTP/1.1? In other words, is HTTP/2 going to be more

mobile-user-friendly by offering longer battery life? Subse-

quently, should mobile application developers switch to this

new HTTP/2 protocol for developing applications with HTTP

requests? A recent study claimed the positive impact on energy

consumption through efficient HTTP requests [31]. HTTP/2

is based on the promise of making efficient HTTP requests

but the more complicated operations might require more CPU

usage, such as dealing with encryption—a requirement in



HTTP/2. Will this extra computation harm its energy consump-

tion?

In this paper, we study and compare the energy efficiency

of HTTP/1.1 and HTTP/2 on mobile devices using a real hard-

ware based energy measurement system: the Green Miner [28].

Our observations/contributions can be summarized as:

1) Using Transport Layer Security (TLS) incurs more en-

ergy consumption than HTTP/1.1 alone.

2) HTTP/2 performs similarly to HTTP/1.1 for very low

round trip time (RTT).

3) For a significantly higher RTT, HTTP/2 is more energy

efficient than HTTP/1.1.

In addition, we show the perils related to software energy mea-

surements. We observed that energy measurement of software

can be very tricky and making an incorrect conclusion is very

likely in the absence of enough domain knowledge or controls.

In such a case, an energy-aware software developer, in spite of

having all the required energy measurement equipment, might

not be measuring what they intend to measure.

II. BACKGROUND

In this section, we review the evolution of the HTTP

protocol and the motivation for HTTP/2. We also define some

of the terms that are frequently used in software energy

consumption research.

A. Hyper Text Transfer Protocol (HTTP) and Its Limitations

Hypertext Transfer Protocol (HTTP) was proposed in 1989

and documented as HTTP v0.9 in 1991 by Tim Berner Lee,

laying out the foundation for modern World Wide Web [51].

In 1997, IETF published HTTP/1.1 [26] as the new improved

official standard and more features and fixes were added af-

terwards: persistent connections, pipelining requests, improved

caching mechanisms, chunked transfer encoding, byte serving

etc. Users were not only able to request a hypertext resource

from the servers but could also request images, Javascript, CSS

and other types of resources.

According to HTTP Archive [29], as of April 2015, most

Web applications are composed of HTML, images, scripts,

CSS, flash and other elements, making the size of an average

page more than 1.9 MB. It can take more than 90 requests over

35 TCP connections to 16 different hosts to fetch all of the

resources of a Web application [46]. Although new features

were proposed in HTTP/1.1 to handle such Web applications,

some of these features suffered from their own limitations.

For example, pipelining was never accepted widely among

browsers because of the FIFO request-response mechanism,

which can potentially lead to the head of line blocking

problem resulting in performance degradation [46]. To keep

up the performance of Web applications, Web developers have

come up with their own techniques like domain sharding—

splitting resources across different domains; spriting—e.g.,

combining a number of images into a single image; in-lining—

avoiding sending each image separately; and concatenation

of resources—aggregating lots of smaller files (Javascript for

example) into a bigger one. These techniques, however, come

with their own inherent problems [46].

B. SPDY and HTTP/2

Google recognized the degrading performance of Web ap-

plications [22], and in mid-2009 they announced a new ex-

perimental protocol called SPDY [9]. While still retaining the

semantics of HTTP/1.1, SPDY introduced a framing layer on

top of TLS persistent TCP connections to achieve multiplexing

and request prioritization. It allowed SPDY to achieve one

of its major design goals to reduce page load time by up

to 50% [24]. SPDY reduced the amount of data exchanged

through header compression, and features such as server push

also helped to reduce latency.

SPDY showed the need and possibility of a new protocol

in place of HTTP/1.1 to improve Web performance. SPDY

was the basis for the first draft of the HTTP/2 protocol [10].

HTTP/2 is a binary protocol that incorporates the benefits

provided by SPDY and adds its own optimization techniques.

It uses a new header compression format HPACK to limit

its vulnerability to known attacks. HTTP/2 uses Application

Layer Protocol Negotiation (ALPN) over a TLS connection

as compared to Next Protocol Negotiation (NPN) used by

SPDY. However, unlike SPDY, it does not make the use of

TLS mandatory [46]. In early 2015, IESG allowed HTTP/2 to

be published as the new proposed standard [36].

C. Power and Energy

In this paper we focus on power use and energy con-

sumption induced by a change in workload: switching from

HTTP/1.1 to HTTP/2. Power is the rate of doing work or

the rate of using energy; energy is defined as the capacity of

doing work [3]. In our case, the amount of total energy used

by a device within a period is the energy consumption, and

energy consumption per second is the power usage. Power

is measured in watts while energy is measured in joules. A

task that uses 4 watts of power for 60 seconds, consumes

240 joules of energy. For tasks with the same length of time,

mean-watt is often used to reduce noise in the measurement.

This difference between power (rate) and energy (aggregate) is

important to understand—improving one does not necessarily

imply improving the other.

D. Tail Energy

Some components including NIC (Network Interface Card),

sdcard, and GPS on many smartphones suffer from tail

energy—a component stays in a high power state for some-

times even after finishing its task [3], [41], [42]. This is inef-

ficient as the application consumes energy without doing any

useful work in this period. In 3G for example, approximately

60% of the total energy can be wasted only because of this

tail energy phenomenon [6], which is a concern for mobile

application developers.



III. METHODOLOGY

A. Green Miner

In order to run and capture the energy consumption profiles

for HTTP/2 and HTTP/1.1, the Green Miner test bed [28] was

used. Green Miner—a continuous testing framework similar to

a continuous integration framework but with a focus on energy

consumption testing—consists of five basic components: a

power supply for the phones (YiHua YH-305D); 4 Raspberry

Pi model B computers for test monitoring; 4 Arduino Unos

and 4 Adafruit INA219 breakout boards for capturing energy

consumption; and 4 Galaxy Nexus phones as the systems

under test.

A constant voltage of 4.1V, generated by the YiHua YH-

305D power supply, is passed to the Adafruit INA219 breakout

board and subsequently goes to the Android phones. The

INA219 reports voltage and amperage measurements to the

Arduino that aggregates and communicates it to the Raspberry

Pi. The Raspberry Pi sets up and monitors tests by initiating

the test cases on a phone through ADB shell, and it controls

the USB communication power (by using the Arduino Uno).

Finally, the collected data (i.e., total energy consumption for

a test case) is uploaded to a centralized server.

In order to disable cellular radios and bluetooth, the airplane

mode was enabled in each phone and then Wi-Fi was re-

enabled so that the phones can access the Internet. The phones

were connected to a WPA secured wireless N network located

in the same room, and thus ensuring very low variability of

Internet access in order to have reliable measurements for our

test scripts. The GreenMiner is fully described in the prior

literature [28], [44].

B. Writing a Test Script

In order to emulate a use case for the Android clients, a

test script is required. For example, to emulate the use case

where a user wants to load the Google home page to search

for an item, we need a test script that can load a browser,

write www.google.com in the address bar, and can press enter

to load the webpage. This test can be automated by injecting

various touch inputs into the input systems – these events can

also be captured during actual use. A sequence of such actions

(a test script) represents a specific use case for a user. The

Green Miner executes the test script on the actual devices to

execute the user actions (e.g., tap, swipe, enter etc.).

C. Collecting Mozilla Firefox Nightly Versions

We have selected 10 versions of Mozilla Firefox Nightly

(mobile US versions) to conduct our experiments [34]—using

more than one Mozilla Firefox Nightly version improves

generality and ensures that our results/observations are not

contaminated by energy bugs that can be present in a specific

version. Nightly versions—also known as Central in contrast

to Aurora, Beta, and Release—are committed each day and are

used to test the effectiveness of new features before including

them in the actual releases [47]. We opted for the Nightly

versions so that we could test a constantly changing codebase

and avoid single version bugs while improving generality.

The versions used in this paper, however, exhibit a stable

energy consumption profile without any significant differences

in terms of energy consumption.

Of the 10 Firefox versions, 9 versions were from January,

2015 to March, 2015 (three versions from each month with

equal time intervals) and one version was from April, 2015.

These versions had HTTP/2 support enabled by default while

HTTP/1.1 can be enabled by disabling HTTP/2. The test

scripts can enable or disable HTTP/2 within the Firefox

browser: to test HTTP/1.1, HTTP/2 was disabled. We could

not use Chromium in our tests as one cannot force newer

Chromium versions to use HTTP/1.1 with TLS when HTTP/2

is enabled, regardless of disabling HTTP/2 in Chromium.

Green Miner removes and installs Mozilla Firefox Nightly for

each separate test, thus ensuring no caching advantages for

any of the runs.

D. Deploying a HTTP/2 Server

Among several implementations of HTTP/2 servers [1], we

decided to deploy and experiment with the H2O [37] web-

server, located at University of Alberta, Canada. H2O supports

both HTTP/1.1 and HTTP/2 thus enabling a fair comparison

between the two technologies. Besides, the performance of

H2O was found significantly better than other implementations

like Nginx [37]. The final version of HTTP/2 specification

is also supported including NPN, ALPN, Upgrade and direct

negotiation methods; dependency and weight-based prioritiza-

tion; and server push. For the Gopher Tiles tests (described

later) and the Twitter and Google tests, we relied on 3rd party

webservers and webservices. This helped us to measure real

world performance; when the page load time varies depending

on different network scenarios.

E. Workload

Our objective is to observe the performance of HTTP/2

compared to HTTP/1.1 with benchmarks that can represent

real world scenarios. Recent observations for popular websites

suggest that on average 2 MB of data needs to be downloaded

in order to load a full page, and on average 100 objects must be

downloaded [46]. Previous studies have found that the number

of objects can play a key role in SPDY performance—the clos-

est relative of HTTP/2 [49]. Although the evaluation criteria

was different (page load time), this would be practical to do

the similar for our analysis. Consequently, we experimented

with the following benchmarks with varying number of objects

and sizes. Table I shows the summary of our benchmarks.

1) World Flags with fgallery: We installed fgallery [14], a

static photo gallery generator, on our own H2O server [37] that

shows thumbnails of a set of images installed on the server.

For our experiments, images of the world flags were used; a

similar benchmark was used by Wang et al. [49]. The fgallery

loads all the given images as thumbnails along with the full

view of the first flag. The users have the option to view the

subsequent flags one after another. Instead of using 50 world

flags, we used all the country flags to make the workload



TABLE I
DESCRIPTION OF THE WORKLOADS

Number of Resources Size(KB)

HTML Image CSS JS Other HTML Image CSS JS Other Total

World Flags 1 238 1 5 1 0.92 1261.87 4.61 117.73 27.47 1412.60
Gopher Tiles 1 180 0 0 1 17.14 165.80 0.00 0.00 0.76 183.70

Google 4 6 1 5 1 162.53 434.03 34.95 840.90 1.18 1473.62
Twitter 1 4 2 3 2 53.37 197.37 125.74 588.43 81.80 1046.73

heavier. The H2O server does not support HTTP/2 without

TLS, leading us to experiment with three different settings:

1) HTTP/1.1 without TLS, 1 2) HTTP/1.1 with TLS 2 and 3)

HTTP/2 with TLS. 3

2) Gopher Tiles: We also used another HTTP/2 server, de-

veloped by using the open-source Go programming language,

which hosts a grid of 180 tiled images.4 This demo server

enables experiments with added artificial latencies. This is

very important for our evaluation, as previous study observed

significant performance variations with differing RTTs [40].

We captured the energy consumption of our Android devices

for downloading the tiled images with different RTTs for

both HTTP/1.1 and HTTP/2. The server, however, does not

have TLS option for HTTP/1.1. On the contrary, its HTTP/2

implementation works only with TLS. As a result, we were

able to evaluate the performance for only two settings: 1)

HTTP/1.1 without TLS and 2) HTTP/2 with TLS.

3) Google and Twitter: In order to work with real websites,

we have selected Google and Twitter for our evaluation

because of their adoption of HTTP/2. This type of workload

helps to investigate how HTTP/2 reacts for systems that are

distributed; it is expected that for such highly accessed servers,

Google and Twitter distribute different resources at different

nodes, even if not totally at different domains. In contrast to

the previous workloads, these two sites do not have access

without TLS. This led us to experiment with two settings: 1)

HTTP/1.1 with TLS and 2) HTTP/2 with TLS. For both the

websites, the data collection period was from 2015-04-18 to

2015-04-19.

For Google, all the requests from our android devices

were automatically redirected to google.ca and the resource

statistics as reported in Table I are for HTTPS, as of writing

Google does not support HTTP/1.1 without TLS.

Twitter requests, on the other hand, were redirected to

mobile.twitter.com. Interestingly for Twitter, we observed that

different resources (e.g., images) were downloaded for our

mobile Mozilla Firefox Nightly versions than FireFox or

Chrome in our Desktop computers.

1http://pizza.cs.ualberta.ca:1800/
2https://pizza.cs.ualberta.ca:1801/
3Same as HTTPS but with different browser setting
4Gophertiles https://http2.golang.org/gophertiles (last accessed: 2015-

APR-22)

F. Validation

1) Problems with energy measurement: Aggarwal et al. [3],

using the Green Miner, observed that a single measurement for

a particular setting could be misleading, as there is variation

in the measurements because of several factors unrelated to

the application of interest. Consequently, taking the average

from at least 10 runs produces more accurate results. In this

paper, we repeated each test 20 times for world flags and 15

times for others (after several tests we found that distributions

of 15 were indistinguishable from 20 repeats).

Green Miner enables us to collect energy consumption

measurements for different tasks (partitions) in our tests so

that we can attribute energy consumption more accurately to

a particular task. For example, in our world flags experiment,

our script for capturing energy consumption for HTTP/1.1

with TLS has different tasks including App loading, disabling

HTTP/2 (to enable HTTP/1.1), and page loading. We are,

however, only interested in page load section so that we can

compare it with the same section for HTTP/2. The challenge is

that tasks, such as configuration, before the page load section

for HTTP/1.1 with TLS is very different than HTTP/1.1

without TLS and HTTP/2 with TLS. Mozilla Firefox Nightly

versions used in our experiments default to HTTP/2 support,

hence forcing to HTTP/1.1 requires more configuration. As a

result, for HTTP/2 with TLS experiments our tests do not

have to change the browser’s configuration: any encrypted

request will automatically be a HTTP/2 request. Configuring

the browser to use HTTP/1.1 with TLS requires many taps and

clicks. These extra inputs can place the CPU into a different

power state than if no configuration was done. 5 This is not

required for HTTP/1.1 without TLS, as none of the servers

used in our study support HTTP/2 without TLS. Consequently,

any request without HTTPS will automatically be HTTP/1.1

(without TLS).

This different sequence of operations before the same page

load section is a problem; modifying the about:config page

might result in different power states for different components

including CPU, screen, and NIC [7], [41], [42]. This could

impact the subsequent operations’ energy either positively

(when components in high power states reduce the execution

time significantly and nullify the effect of operating in high

5In Mozilla Firefox Nightly about:config, we need to disable net-
work.http.sdpy.enabled and network-
.http.sdpy.enabled.http2draft



power states) or negatively (the reduction in execution time

is not significant enough). In either case, our measurements

for HTTP/1.1 with TLS would be affected by the previous

task’s energy consumption leading to an unfair evaluation.

In order to verify this hypothesis—to measure how inaccu-

rate the measurement is—we captured the page load energy

consumption for the same protocol (HTTP/1.1 without TLS)

twice:6 once without changing Mozilla Firefox Nightly config

file (as we do not need to disable HTTP/2 for unencrypted

HTTP/1.1) and another time by changing the config file

(disable HTTP/2). This two settings should give us the same

average measurement if the later one is not affected by either

the different power states of the components or the tail energy.

Test runs were averaged and compared against each other

using 2-sided paired t-tests paired by Mozilla Firefox Nightly

version. Besides, we observed the effect size by calculating

Cohen’s d.7 Unfortunately, the small P-value (<< 0.05) and

the large Cohen’s d (7.02) suggest that these two settings

produce significantly different measurements, thus implying

the CPU state was not consistent.

2) A potential solution: The challenges we faced in mea-

suring energy consumption led us to configure our test scripts

differently: what if we apply a sleep period before accessing

the main task, the page load? And how long is required

to have accurate measurements? Our hypothesis is that this

inactive/idle time would help our Android devices to come to

the stable state, i.e., same CPU state.

We experimented with three different periods: 40 seconds,

one minute and 2 minutes. The p-value for the 40 seconds

period was still lower than 0.05, and slightly higher than 0.05

with 60 seconds of idle time. This P-value, however, becomes

very high (0.86) for two minutes of waiting time with very

low Cohen’s d (0.08)—suggesting the very little difference

between these two settings comes from randomness and led

us to conduct our experiments for world flags with two minutes

waiting time before loading the page.

The time-line graphs in Figure 1 show the average power

usage over 20 runs for each Nightly version for both 1 minute

and 2 minutes of waiting time. On the contrary, a box-plot

in the Figure represents the distribution of power usages for

a specific setting by all the versions across all the 20 runs.

Encouragingly, the median value (from the box-plot) is very

similar to the average values (from the time-line), implying the

accuracy of Green Miner in measuring energy consumption.

Results suggest that with one minutes of waiting time the

difference is obvious (one setting always consumed less energy

than the other), whereas there is no such trend for two minutes

of waiting time. Moreover, the variations over different runs

for two minutes stable time are significantly lower than for

one minute of stable time (box plot in Figure 1)—implying

better accuracy can be achieved with longer waiting time

6one single value is actually the average value of 20 measurements
7In order to represent energy consumption by a Mozilla Firefox Nightly

version to calculate Cohen’s d, we took the average of 20 runs.

before executing the actual operations. Interestingly for both

settings, the power usage with 1 minute stable time is also

higher than 2 minutes stable time. This is not surprising as

the CPU is expected to operate in a low power state after

having a significant amount of idle time.

We, however, imposed only 1 minute of waiting time for

experiments other than world flags, as the previous operations

before page load are exactly the same for all the settings. This

energy measurement validation approach is crucial, revealing

the need for controlling the states of components like the CPU.

IV. EXPERIMENT AND RESULT ANALYSIS

A. World Flags

Figure 2 shows the performance of three different set-

tings for world flags with fgallery: HTTP/1.1 (without TLS),

HTTP/1.1 with TLS and HTTP/2 with TLS. Interestingly,

HTTP/1.1 and HTTP/2 exhibit very similar performance for

our world flags workload when encryption is applied. The high

P-value (>> 0.05) in Table II and low Cohen’s d (< 0.3)

between these two settings confirm that the observed small

difference come from randomness in data collection (i.e., the

difference is not significant).

This observation is not surprising as previous studies [40]

also found that HTTP and SPDY perform very similarly when

the RTT is low. And for this experiment with world flags the

RTT between our clients and the server was very low (close

to 0 ms).

The performance of HTTP/1.1 without encryption is, how-

ever, very interesting as it clearly outperforms HTTP/1.1 with

TLS although a previous study [21] found improved response

time with encrypted messages compared to plain HTTP. Our

observations, however, complement the assumptions made by

Naylor et al. [35]: 1) The required handshaking mechanism for

HTTPS consumes energy, which is not present in unencrypted

communication; 2) As the browser also takes the responsibility

for encryption/decryption, this may lead to more CPU usage

and subsequently more energy consumption; 3) The browser

verifies if the server, with HTTPS support, is authenticated by

examining the server’s certificate, which needs more work to

be completed.

B. Gopher Tiles

In order to compare the performance of HTTP/2 with

HTTP/1.1 for different network scenarios, experiments with

Gopher tiles were conducted with different latencies: 0 ms,

30 ms, 200 ms and 1000 ms. The result is shown in Figure 3.

The better performance of HTTP/1.1 than HTTP/2 for low

RTT corroborates our findings for world flags: with no latency,

HTTP/2 does not offer any improvement over HTTP/1.1,

and secured encrypted transmission becomes an overhead

which leads to more energy consumption. HTTP/1.1 loses

its advantage over HTTP/2 once latency is 30 ms latency

or larger. We suspect that HTTP/2 would have outperformed

HTTP/1.1 if implemented without TLS. This overhead from
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TLS, however, becomes negligible for RTT 200 ms and 1000

ms; HTTP/2 significantly outperforms HTTP/1.1 with high

RTT. For all the cases, the P-values were low (<< 0.05) and

Cohen’s d values—the effect size—were very high.

One interesting and useful observation is that although the

total energy consumption for both protocols with 1000 ms

latency is much higher than the energy consumption with 200

ms (the download time is much longer), the power usage

for 200 ms latency is higher than for 1000 ms latency. 8

This could be because of the higher power states of com-

ponents like CPU and NIC for 200 ms than for 1000 ms,

as faster downloading/processing might push the hardware

components to more aggressive energy consuming states. This

complements previous findings that completion time is not

necessarily proportional to a device’s energy consumption—

different hardware components can have different states of

operation; a CPU, for example, can operate at different

frequencies, and thus can have different energy profiles in

different scenarios [43].

C. Google and Twitter

We also experimented with Google Search and Twitter

home pages—two of the most accessed sites by the Internet

users [5]. Instead of experimenting with different types of

user interactions in these sites, we only considered the page

load times similar to a previous study [49]. Figure 4 shows

the performance of both protocols with TLS; as mentioned

earlier, these two sites automatically redirect requests to

HTTPS. Although the P-value (0.028) and Cohen’s d (0.88,

large) suggest that the difference between the two settings for

8We calculate power by dividing the total energy consumption by the
duration.
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Fig. 3. Power usage for Gopher tiles with different RTTs

Google is statistically significant, the improvement in power

usage reduction for HTTP/2 is very little for Google. In case

of Twitter, however, the difference is not only statistically

significant (P-value << 0.05 and large Cohen’s d of 2.1),

but the improvement in energy efficiency for HTTP/2 is large.

We attribute this behaviour to the differing RTTs for these

two sites from our client; the RTT for Google was around

20 ms and was around 80 ms for Twitter. This observation

between Google and Twitter is very significant as it reveals

how HTTP/2 will affect the mobile users in their everyday

lives—if not better, HTTP/2 does not perform worse, at least

for these two very top sites.

V. DISCUSSION

When the RTT is 30ms or more, the difference in energy

consumption between HTTP/1.1 and HTTP/2 is obvious. One

might argue that the difference, although significant statisti-

cally, is not convincing enough to become a deciding factor.

This statement is true when only considered for a single

mobile device and for a browsing period of one second (as

we compared in watt). But when the effect of this difference

is considered globally for billions of mobile devices and for

average users’ browsing time, the energy saving would be

colossal. Moreover, in some of our experiments (e.g., Gopher

Tiles), in contrast to HTTP/2, HTTP/1.1 was experimented
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Fig. 4. Power usage for Google and Twitter

without TLS, otherwise the difference could have been much

more conspicuous.

It is encouraging that although HTTP/2 design goals are

mainly oriented towards faster page load time, in most cases

it also offers better energy performance than its predecessor.

Why is HTTP/2 more energy efficient for larger RTTs?

In HTTP/1.1, GET requests are processed in the exact

order they are received. Moreover, multiple TCP connections

may be established to achieve concurrency. In a high latency

network, these factors result in longer waiting periods and also

use additional computational resources for establishing TCP

connections. The longer waiting times between subsequent

network operations produce more tail energy leaks. HTTP/2

solved these issues through the multiplexing of GET requests

over a single TCP connection per domain. Also, HTTP/2

eliminated the overhead of transferring redundant header fields

and compresses the header metadata through the HPACK algo-

rithm [13]. These factors reduce the network operation times

between the client and the server supporting HTTP/2 which

is vital in reducing energy consumption. The prioritization

mechanism of HTTP/2 also helps in faster page loading, which

can be a significant factor in reducing energy consumption.

In case of a very low RTT (or no RTT), these factors (e.g.,

head of line blocking, and header overheads) do not play a

significant role both in page loading and power usage, as

we observed previously (Figure 3). In order to have more

insight, we also captured power usage over-time for different

settings. Figure 5 illustrates the power usage over time for

selected configurations during the page load partitions. Figure

5 (a), using a single version of Firefox, shows the more

power usage by HTTP/2 than HTTP/1.1 at the beginning

(highlighted by the rectangle). We believe this is because of

the encrypted transmission (HTTPS) employed by HTTP/2 but

not by HTTP/1.1. This overhead, however, becomes negligible

with the increase in RTT. Although the power usage of

HTTP/2 for high latency networks are higher for the very

first few seconds, Figure 5 (b) and (c), it becomes almost flat

afterwards (with a few small spikes). It is easy to notice that

(rectangles in b and c) page load time for HTTP/2 is much

shorter in high latency networks. On the contrary, HTTP/1.1’s

network operations stay active for a much longer time and

consume much more energy.

It is important to mention that GreenMiner does not know

when a page load is completed so that it can stop the

test immediately. This led us to experiment with fixed test

durations for our different settings. For example, for the 1000

ms latency test with Gopher, our predefined test duration for

the page load partition was 40 seconds. This is the tightest

limit considering the slow page load time of HTTP/1.1. If

the actual page load time could have been configured through

GreenMiner, the difference would be even more significant.

This conclusion can also be made from the Twitter experiment.

Figure 5 (d) shows a very significant spike for HTTP/2 at the

end (second rectangle), although the page load was completed

much earlier (rectangle 1). During the time highlighted by the

second rectangle, HTTP/2 was switching to a different home

page image after loading the first one long before, in contrast

to HTTP/1.1 which, at that time, was not completely done

with loading the first image. This is a clear illustration of the

energy efficiency of HTTP/2 over HTTP/1.1.

Web app developers should really consider adopting

HTTP/2 as their transport protocol. If RTT is 30ms or more

there should be noticeable gains in load time, usability, and

energy consumption for their clients. Also, HTTP/2 mech-
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anisms are great examples of making a trade-off between

computation and network operations toward producing energy

smart systems.

VI. THREAT TO VALIDITY

We did not experiment with HTTP/2 server push and left it

as future work; it would be interesting to see how this feature

affects the overall performance. The workload we experi-

mented with also affects our observation; although we backed

our results, in most cases, with previous studies. The Mozilla

Firefox Nightly versions—although unlikely—can have their

own inherent energy bugs and can contaminate the results. The

realism of our test-cases can be argued for and against as a

balance was to be made between synthetic tests (gopher tiles),

realistic tests (world flags) and real-world subjects (Twitter and

Google). More websites and more browsers and servers could

be tested. Generalization was harmed by using only Mozilla’s

HTTP/2 clients. Future work should investigate the gain for

app developers making HTTP requests from smartphone apps

using libraries like Apache HTTPLib.

VII. RELATED WORK

We divide this section into two subsections: studies related

to optimization in mobile device energy consumption and

performance evaluation of Web protocols.



A. Mitigation of Energy Bugs/hotspots in Applications

Banerjee et al. [7] observed that the main sources of energy

consumption in smartphones are the I/O components. As I/O

components are accessed by applications through system calls,

capturing those system calls can help to find energy bugs

or hotspots in a particular application [42], [3]. Pathak et

al. [41] observed that I/O operations consume more energy

partly because of the tail energy phenomenon. According

to the authors, this tail energy leak can be mitigated by

bundling I/O operations together. Li et al. [32] proposed a

Color Transformation Scheme for Web applications to find

the most energy efficient color scheme while maintaining the

enticement and readability at the same time.

Othman et al. [39] claimed that up to 20% energy savings

is achievable by uploading tasks from mobile devices to fixed

servers. A similar study by Miettinen et al. [33] suggests that

most of the mobile applications were found to be suitable for

local processing. This could be the result of limited available

resources with such devices, resulting in deficient number

of computationally expensive mobile applications. Trestian et

al. [48] examined the impact of different network related

aspects on mobile device’s energy consumption in case of

video streaming. The authors addressed the impact of several

factors on mobile energy efficiency: video quality, selection of

TCP or UDP as the transport layer protocol, link quality, and

network. A similar study by Gautam et al. [18] suggests that

applying algorithmic prefetching can help in saving substantial

energy of mobile devices. Rasmussen et al. [44] found that

a system with Ad-blockers, in most cases, is more energy

efficient than systems without Ad-blockers.

B. Performance of Web Protocols

SPDY Studies: A study [23] on the page load times of

the top 100 websites suggests that SPDY can improve page

load time by 27-60% over HTTP without SSL and 39-55%

with SSL. In a different study by Google [24], SPDY over

mobile networks on an Android device was found to improve

the page load time by 23%. Contradicting those observations,

Erman et al. [16] found that unlike wired connections, SPDY

doesn’t outperform HTTP over cellular networks. Latency in

cellular networks can continuously vary due to radio resource

connection state machines, and TCP doesn’t account for such

variability which results in unnecessary re-transmissions. This

affects SPDY more due to its use of a single connection.

Wang et al. [49] found that multiplexing and longer RTTs

help SPDY to achieve an improvement over HTTP. However,

the improvement is significantly reduced due to Web page

dependencies, browser computations or under high packet loss.

Padhye et al. [40] compared SPDY and HTTP on a dummy

Webpage simulating different network conditions.

HTTP/2 Studies: In HttpWatch [30], the performance of

HTTP/2, SPDY and raw HTTPS (HTTP with TLS) proto-

cols were compared using different parameters. Compared

to SPDY, request and response header size were found to

be smaller for HTTP/2—indicating compression achieved in

HTTP/2 using HPACK is more efficient than the DEFLATE

algorithm used by SPDY. However, SPDY’s response message

sizes were smaller as they compressed textual resources.

The compression used by HTTP/2 also allowed headers [45]

and images to be smaller. In terms of number of connections,

due to multiplexing over a single connection, HTTP/2 and

SPDY performed better than raw HTTPS. For page load

time, HTTP/2 was consistently found to be better than SPDY

(HTTPS performed worst). Centminmod [17] community’s

administrator benchmarked HTTP/1.1, SPDY 3.1 and HTTP/2

performance on different servers—Nginx, H2O and OpenLite-

Speed depending on the protocols supported by them. For all

three servers HTTP/2 and SPDY 3.1 performed better than

HTTP/1.1. Between HTTP/2 and SPDY, the performance of

HTTP/2 on H2O server was best followed by SPDY/3.1 on

Nginx and HTTP/2 on OpenLiteSpeed. Similar results were

observed under 3G mobile network. Other studies [4], [19]

compared HTTP/2 performance with HTTP/1.1 under different

latency conditions and showed the performance benefits of

HTTP/2 over HTTP/1.1.

Cherif et al.[12] used HTTP/2’s server push feature in a

Dynamic Adaptive Streaming (DASH) session to reduce the

initial load time of a video. Loading time under HTTP and

HTTPS increased with the increase in RTT, and at an RTT of

300 ms loading time with HTTP/2 outperformed HTTP and

HTTPS by 50%. This gain was attributed to the fast increase

in TCP receiver window size due to server push in HTTP/2.

VIII. CONCLUSIONS AND FUTURE WORK

Does HTTP/2 save energy? Yes, when round trip times are

above 30ms and when TLS is being used, our tests indicate

that HTTP/2 outperforms HTTP/1.1 with TLS in most scenar-

ios. The Mozilla Firefox Nightly implementation of HTTP/2

consumes less energy than the HTTP/1.1 implementation to do

the same work regardless of the webserver used in the tests.

The advantage of HTTP/2 highly depends on the round trip

time between the client and the server. HTTP/1.1 becomes

expensive, for large number of TCP connections, with large

number of objects. This becomes even worse when the RTT is

higher, which is common in cellular data networks. HTTP/2,

on the other hand, does not have this problem as it deals

with one single connection by incorporating a multiplexing

technique. We also observed that accessing the Internet has be-

come more energy expensive for mobile clients after adopting

HTTPS as the standard to ensure user’s privacy and security.

We conclude that the web served over HTTP/2 is going to

be more mobile user friendly especially on high-latency wire-

less and Wi-Fi networks, and that energy-aware application

developers should adopt HTTP/2.

In this paper, we did not consider the energy consumption

of HTTP/2 servers; we only evaluated the energy usage of

HTTP/2 from the context of mobile clients. This would be

an interesting avenue of research to investigate how energy

efficient HTTP/2 is from the server side perspective.
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