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ABSTRACT

The thesis considirs the possibility that an advanced civilisation might be able to
svnthesise, in a laboratory, a globule of false vacuum that inflates to become a new
universe eansally disconnected from our own. On the basis of classical gravitational
theory it is shown that this possibility can be ruled out, because it requires acausal
hehaviour of matter. However. in a quantun: context, the phenomenon of tunnelling
through gravitational potential barriers implies that universe fabrication is possible
in principle, though the probability is extremely small. The bulk of this thesis is
devoted to attempts to estimate this probability: the functional integral method
and the Hamiltonian approach. T attempt to link and amalgamate these formally

rather different approaches.
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CHAPTER ONE
INTRODUCTION

For as far back in human history as one would care to look, evidence can be found
that supports the notion that people have been curious about the composition and
origin of the world around them. Fortunately, modern day physics has dispelled
most of the myths associated with the composition of the world around us (the
observed universe) and the way in which it functions. Yet as to the nature of
its origin, onc can not be so confident. Although many have entertained various
conjectures pertaining to the universe's origin, no one conjecture rises above all the
others. Asis well known, the scope of these conjectures encompasses everything from
theology, through the heuristic, to scientifically respectable models. Each possible
explanation attains its own level of plausibility, with perhaps the Big Bang model
generally being accepted as the most plausable picture of comological evolution from
the moment the universe has cooled below a billion degrees [1]. However, one still

lacks a complete answer to the question of the universe’s origin.

Whatever the explanation, the author is quite willing to accept the most
physically plausible description/scenario, as it is not this issue that this thesis is
intended to address. Instead, this thesis is to focus on a subsidiary question. This
dilemma is that given that a universe exists (i.e. the observed universe), can one,
without knowing the details of its origin, construct a second universe from within
the first. More specifically, is it theoretically possible to construct a "new universe”

in the laboratory? This is the question that is to be addressed in this thesis.

\'et before one can attempt to answer this question, it must be made more

precise, as it is not clear what one means by "construction of a new universe”. In



fact, at present, the term "new universe” is not even clear. So, in order to clarify
things, start by considering the observable universe. It would scem that a "new
universe” would have to be defined as something similar to the presently observed
universe. That implies that it would have to be a spacetime region that was of
a size that was comparable or greater to that of the present size of the universe.
Also, this new universe would have to be effectively disconnected from our present
universe, otherwise there would be nothing to distinguish the new universe from
the old one. Here cffectively disconnected means that the spacetime region that
constitutes the new universe sooner or later becomes causally disconnected from
its parent spacetime (i.e. the laboratory, the universe observed). Note, causally
disconnected implies that information from one region cannot reach another region
by standard timelike or lightlike propagation. Thus one possible way to achieve
a loss of causality is to allow some sort of spacclike propagation. (This could be

produced by the presence of a wormhole for example.) [4, 5, 0]

So, in order to construct a "new universe” in the laboratory, the construction
should commence within the realm of the observed universe, and finish with the sced
spacetime which has expanded to a comparable size, and in the process, disconnected
itself from its parent. Thus, one now has a refined form of the question that this

thesis is to address: can such a construction be achieved.
This question resolves into three subproblems, namely
1. What is the mechanism by which the seed spacetime attains a size comparable
to that of the observed universe?

2. How does one construct a spacetime region that is suitable for the production

of a "new universe”?



3. What is the nature of the process whereby effective causal disconnection is

achieved?

The answer to the first of these three problems can be found in the theory
of inflation, which was first proposed by Alan Guth in 1981 [2]. This theory called
inflation was devised in order to solve the what is known as the horizon problem
[3], [26, pages 740 and 815] which hindered the Big Bang model’s explanation of the
state of the observed universe. Without inflation, the Big Bang model, in order to
provide predictions of the observed structure of the universe (such as the uniformity
of the microwave background), required an exceedingly strong dependence on the
initial conditions of the universe. For example, the temperatures associated with the
microwave background radiation of two regions of the sky that are separated by 180°
are the same to within present experimental accuracy [7, refer to Abbott and Pi,
chapter 6 article 1]. Yet these two regions, according to the Big Bang model, have
never been in causal contact (i.e their past horizons have not overlapped), which
leaves one at a loss to explain why the temperatures are the same. This is one form
of the horizon problem. According to Big Bang theory, the only way out of this

dilemma is to impose exacting initial conditions of homogeneity and isotropy.

However, one may then be tempted to ask if perhaps these two initial con-
ditions are rcasonable. The answer is that they are not, and this can be seen by
considering the universe at ¢ = 1073 seconds after the big bang. At this time,
according to the Big Bang model, the observed universe would have to be composed
of approximately 10%0 regions that had no prior causal contact with each other. Yet
all these regions would have to be bound by the initial conditions of homogeneity
and isotropy, so that they have a consistent temperature. Clearly, this is a case

of extreme fine tuning, and so the standard Big Bang model is seen as physically



unreasonable when extrapolated back to this carly time.

For this reason (amongst others), Guth proposed inflation, which was to act
as a modifier of the standard Big Bang theory (a more complete review of the theory
of inflation is given in [7]. Inflation itself is to be scen as an era in which a spacetime
region undergoes very rapid expansion (exponential expansion). In particular, the
rate of expansion has to be sufficiently rapid to exceed the rate at which the region’s
past Hubble radius is expanding. If this is the case, then the region initially inside
one horizon could expand to such a size that it encompasses many if not all of
the horizons of the individual regions present at the onsct of the inflationary era.
With such an expansion, one can easily understand the uniformity of the microwave
background, as regions that at present seem to be causally disconnected according to
Big Bang theory, are actually causally linked by inflation. Thus one has an answer

to the horizon problem.

So, inflation is to be seen as an era of very rapid expansion. Therefore, in-
flation would certainly be a desirable feature to have in any construction process.
However, one must ask how such expansion occurs, as one needs some sort of mech-
anism to propel the expansion. To answer this question, one has to consider the
form of the spacetime region that constitutes the seed spacetime (i.e. the region
that is to undergo inflation). In particular, the seed spacetime has to be composed
of a false vacuum, in order for inflation to occur. A false vacuum state is defined
as one in which the vacuum energy density of a region has a local minimum that is
different from the global minimum (hence the name "false”). Further, the energy
density of a false vacuum is fixed, and takes the value of local minimum, which is

usually denoted by p.

The stress energy tensor T}, associated with this state is easily determined (as



T, is a covariantly conserved quantity, and Einstein's field equation is assumed),
and it has the form T, = —pgu- This in turn implies that the pressure of the
false vaenum is P = —p, which is constant and negative. One's first reaction to
this is that a constant pressure implies no gradient, and so no mechanical forces
are produced. The absence of mechanical forces would seem to indicate that the
false vacuum lacks an expansion mechanism. However, this is not the case. The
false vacuum region does indeed have an expansion mechanism, and it results from
the gravitational effects of the false vacuum pressure. As the pressure is negative, it
contributes a negative term to the equation of deceleration (obtained from Einstein's
field equation) that exceeds the positive term associated with the energy density.
This has the effect of essentially reversing the role of gravity so that it increases the
expansion rate with time (instead of the usual deceleration). Thus, given a false
vacuum with an appropriate energy density, one can produce a spacetime region
that will expand to a size comparable to that of the observed universe in a given
amount of time. At this point, it should be noted that the boundary between false
and true vacua would be pulled toward the false vacuum region (due to the pressure
difference at the boundary), but this does not prevent the expansion, as the volume

of the false vacuum that is inflating rapidly.

Also, two further properties of the inflationary model should be noted. First,
the expansion due to the false vacuum is not unbounded. The inflationary era
will last until the false vacuum decays [8, 9, 10] to the global vacuum energy state
- the true vacuum. Secondly, the amount of expansion is generally regarded as
considerable, as the energy density for a false vacuum is typically of the order
of p ~ 108kg m~3(x~ (10'GeV)*). This is large. In order to comprehend the
magnitude of such an energy density, one just has to realise that it is roughly

equivalent to the energy density one would associate with a large star that had



been squashed down to the size of a hydrogen nuclens. Such an energy density then
implies that the pressure is not only constant and negative, but is also very large in

magnitude, thereby implying an extremely rapid expansion rate.

So it would seem that one does have a mechanism by which a small spacetime
region can evolve in a finite time into a spacetime region comparable to the observed

universe. Therefore, part one of the three part construction problem is solved.

In expounding the theory of inflation and its explanation of the expansion
mechanism, the solution to part two of the construction problem has been disclosed.
That is, inflation suggests a form for the required seed spacetime that is to be
constructed. Obviously, the seed spacetime is a false vacuum. Requiring one to
construct a false vacuum has the advantage that the structure of the seed spacetime
in the post-inflationary cra will not depend on the initial conditions associated with
the pre-.nflationary era. That is, one would not have to fine tune the construction
process to a particular false vacuum state, as inflation is a generic property of
the false vacuum state. Also, the characteristic properties of the false vacuum
are independent of any particle theory that cne would ascribe to the spacetime.
Unfortunately, there is one slight drawback to the use of the false vacuum; a false
vacuum state has never been experimentally observed. The reason for this is that
one is required to produce very high energy densities, which are out of the range of
the present technology. So it would seem that the construction process is hindered
not by any theoretical impasse, but rather by technological difficulties. As this is
the case, it will be assumed for the remainder of this thesis, that these difficulties
will eventually be overcome, so that one can indeed produce the false vacuum region

required.

With the expansion and the construction of the sced spacetime settled, at-



tention is now turned to the one remaining question. This last problem concerns
the manner in which a potential "new universe™ spacetime region would effectively
disconneet itself from the parent spacetime (i.e. the laboratory). Unfortunately.
1o immediate answer is apparent. Further, on reading chapter two of this thesis.
one will discover that if one follows the classical laws of physics, there are no seed
spacetime scenarios that are both constructible in the laboratory, and have an in-
flationary era. If one starts by constructing a false vacuum in the laboratory, then
it is found that the associated expansion is not sufficient to produce the desired
amount of inflation. However, if at some point in its evolution, this solution were
interrupted, with the interruption being in the form of a quantum mechanical tran-
sition or tunnelling to another classical solution, then one could produce the desired
amount of inflation, as long as the new classical solution affords the required amount
of inflation. For such a step or interruption of the classical picture, an observer in
the laboratory region of the spacetime wouid see a false vacuum seed expanding,
and then suddenly disappearing. All that this observer would see after the seed
tunnelled, is a black hole with a characteristic mass equal to that of the seed’s mass

at the onset of the tunnelling.

With this quantum tunnelling step as an intermediate stage, one now has a
process that has a constructible seed spacetime, the required amount of inflation.
and a means by which there is an effective causal disconnection from the parent

spacetime.

With the addition of the quantum tunnelling stage to the inflationary false
vacuum, all the meanings behind the question "Can one construct a new universe
in the laboratory?” have been ascertained. Thus, as the problem has been clearly
defined, and a possible solution suggested, one can proceed towards a detailed solu-

tion of the problem and its physical plausibility. This forms the main substance of



this thesis.

However, before launching headlong into this problem, one should stop to
consider its development, its history, and the various attempts to solve it. From
what has been discussed so far, it seems that the key to the construction process
is the presence of a false vacuum state, and hence infation. Although Guth's 1981
paper [2] introduced inflation, the essential features of the false vacuum had already
been realised. For example, Novikov in 1967 [11] discussed the connection hetween
very high densities and gravitational expansion, whilst Gliner {12, 13], and Gliner
and Dymnikova {14] were among the first to work with matter that possessed the
stress energy tensor of the false vacuum state. Further, the connection between the
vacuum energy density and an effective cosmological constant was made in 1968 by
Zcldovich [13]. Yet it was the work of Einhorn and Sato (1981) [16] on supercooled
phase transitions (which appeared necessary for a false vacnum to occur), that led

Guth to his theory of inflation.

With inflation established the way was clear for the evaluation of the classical
motion of a spherical false vacuum seed spacetime immersed in a true vacuum, and
as a result there have been a number of papers describing the classical physics
[17, 18, 19, 20, 29]. The net result of this classical analysis was that construction of
a "new universe” seemed impossible, and so, as mentioned, the investigation turns
to the use of quantum mechanics, and in particular, quantum mechanical tunnelling.
Such a step has produced several possible methods of solution to the problem, and
they all centre around the evaluation of the action associated with the spacetime
(both seed and laboratory). These different approaches to the quantum tunnelling
range from a general evaluation of the action via the Lagrangian of the system [39]

through to canonical quantisation [21, 44}, and to minisuperspace models [22].



Finallv. it should be noted that the false vacmun seed spacetime is not the
only wav to obtain a new universe. If one considers Reissner-Nordstrém geometry
[23]. [26 page 921]. or the work of Frolov et. al. [24], then one can discuss the
existence of a new universe. Yet such considerations are not really related to the

problem at hand as one has lost the notion of constructing the "new universe”.

Thus the brief review of the problem'’s history has been completed. and so the
analysis can begin in carnest. The reader will find that the next chapter is devoted
to the evaluation of the classical physics of a false vacuum seed spacetime, and its
no-go conclusion for the problem of creating a "new universe” in the laboratory.
Chapters three and four look at several methods of evaluating the transmission
coetficient (transition probability) of the intermediary quantum tunnelling stage,
in an effort to decide whether such a process is likely to occur, and also to deduce
what exactly happens during the tunnelling stage. With the results of chapter four as
gnidelines, chapter five then proceeds to attempt to uncover more information about
the interpolating geometry of the classically forbidden region (i.e. the geometry over
which the tunnelling occurs) by using a somewhat more generalised Hamiltonian
formalism. Finally, the results of this thesis are brought together in chapter six, and

an overview to the problem of constructing a "new universe” in the laboratory is

given,

So, without further ado, let the snark hunt' begin.

! A snark hunt is defined as an impossible voyage by an improbable crew to find an inconceivable
creature. The phrase comes from the poem The Hunting Of The Snark; An Agony In Eight Fits.
by Charles Lewis Dodgson (Lewis Carroll).



CHAPTER TWO

THE CLASSICAL PHYSICS

2.1 Introduction

In order to look at the creation of a new universe, one must carefully consider the
tvpe of spacetime from which it is spawned. The mother spacetime requires a seed
or inhomogeneity from which the new universe can be established.  As this seed
is taken to be small (size wise), then its main feature must be a tendeney toward
expansion. For this reason, the region of seed spacetime is to be taken as a false
vacuum, as it is well known that a false vacuum region that is large enough will
undergo inflation [2]. It is this inflationary era that transforms the seed spacetime
into a "new universe” (refer back to chapter one). However, the question that has to
be addressed is whether a seed spacetime can (given the technology) be constructed
by humankind, such that it evolves to a large enough size so that it passes into an

inflationary era.

Given that there is a false vacuum seed, there must be something exterior
to it, and by Occam'’s razor!, the simplest scenario is when the exterior is in the
true vacuum state. By Birkhoff’s theorem, it can then be assigned a Schwarzschild
metric, with parameter m. As usual, m is the mass of the system as seen at infinity.
For the seed spacetime, all that is known is that it is a false vacuum, and so has
a constant energy density, p, and negative pressure. Now, one can, without loss of

generality, arrange that the seed spacetime is centred on the coordinate origin. This

10Occam’s razor is a maxim atttributed to William of Occam (b. ?, d. 1349), stating that in
explaining something, assumptions must not be needlessly multiplied.

10



then requires that at r = 0 everything is regular, and in particular, the solution to
Einstein's field equations is non-singular, as the encrgy momentum tensor is defined
at the origin. If the restriction to spherical symmetry is also imposed (as otherwise,
a deseription of the seed is difficult) then this leads to the conclusion that de Sitter

spacetime is the only snitable coordinate system for the false-vacuum seed.[25]

Using the Schwarzschild and de Sitter coordinate systems, a full description
of this inhomogencous composite spacetime can be given. This assumes that the
houndary between the two regions is arbitrarily thin, which will later be seen as
an acceptable assumption. However, this system is dynamical, and so will evolve
according to the classical equations of motion, which require Einstein's field equa-
tions to be solved. In order to do this, one must further assume that the boundary
or wall (labelled ) between the two spacetime regions also obeys Einstein’s field
equation. If this is done then the equation of motion for T can be obtained. with
the one degree of freedom that remains after the application of the symmetry con-
straints being the radial parameter. By tracing out the trajectories implied by this
equation of motion, one then has all the possible classical trajectories of £. From
these, one can then deduce whether any values of m and/or p give a seed spacetime

that expands into a new universe.

2.2 The Classical Trajectories Of The Seed Wali

To obtain the classical trajectories, one must of course start with the energy momen-

tum tensor T,,,, which due to the inhomogeneity of the spacetime, can be segregated
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into three parts: the false vacuum region, the wall X, ond the true vacuum region.
4
—pgu  false vacuum

T = ¢ 5;“,5(2) © (2.2.1)

0 Schwarzschiid

.

Here S,, is the energy momentum tensor of the wall, and at this stage it is left

unspecified. As can be scen, the false vacuum contribution is metric dependent.

Given that Birkhoff’s theorem gives the true vacuum to be Schwarzschildian,

the coordinates are a* = (tg,r,0,¢) and the metric for the region is

-fs 0 O 0
0 % 0 0
Juv = (2.2.2)
0 0 r? 0
\ 0 0 0 r’sin®d }
with fs = (1 — grﬂ). For the false vacuum region a de Sitter metric i d be used,

and though there are several choices of coordinates for this spacetime, the one to be
used is the static coordinate description, as it mirrors the true vacuum coordinate

system. Thus the coordinates are z* = (tp,r,8,¢) and the metric is

(
~fp 0 0 0

Jo (2.2.3)

Guv =

\ 0 0 0 rzsin2f)/
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with fp = (1 = \*r?). Due to the fact that both coordinate systems have the same
angular coordinates, and as a result of the spherical symmetry, the two sphere radius.
r for the two systems, must be equal at the surface on which they are matched.
Thus, r can be taken as a coordinate common to both spacetimes. However, the
time coordinate t will not be the same in the two coordinate patches, and so one must
distingnish between tg and tp. Also, both of these metrics have a single parameter

(m snd \ respectively) and each is directly related to the energy density p.

As the energy momentum tensor and the geometry of the interior and exterior
spacetinie regions has been specified, the next step is to write down Einstein’s field
equation and link the two quantities together. Using the LLSC sign convention {26,
the convention is listed inside the front cover] the general form of the field equation
is

Gu = Ry — le,“, =871, (2.2.4)

2
Note: the units are chosen such that the gravitational constant G is set equal to one.
In this cquation, R is the Ricci scalar and is given by R = g*”R,, with R, = R},

being the Ricei tensor. Further, the Riemann tensor R, is calculated via

Rg/,w = Fgu,y - gp,u + F:"P7U - F:,,PZ;,‘ (225)

where I'j, are the Christoffel symbols. These are generated from the metric via

Qa 1 a
I3, =39 5(g8py + G648 — 93.6) (2.2.6)
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For the two metrics given, the Christoffel symbols can be written

0 | S 1SS
1-‘01—1111—‘7_»7l Loo = =5+
Tl=—fr Ty = —frsin2f
(2.2.7)
3, =T} =1 T3; = —sinfcost
1-33 = C0t9

and after a little algebra the Ricci scalar can be shown to be

12y? false vacuum
R = (2.2.8)

0  Schwarzschild

Note; as an aside, if one considers the trace of equation 2.2.4 for the false vacuum

region, then

~R=8rT; = —8mpsh

= 2 = §7rp (2.2.9)

which gives the relation between the energy density p and the de Sitter parameter
x. Unfortunately, the relationship between the Schwarzschild mass parameter m

and p is not as easily obtained, as the true and false vacua are as yet unlinked.

The fact that Einstein’s field equation holds for the two component geomet-
ries is well known, and if each is considered separately, no dynamical information
is revealed. However, if the field equation is evaluated across ¥ (and it is assumed
that the field equation holds on ) then it will contain information pertaining to the
matching of the two spacetimes. This can then translate into dynamical information

of £. As T is, in this simple analysis, treated as a boundary wall, the so called thin
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wall approximation [27], [29, refer to the paragraph that precedes equation 3.17]
is assumed. This approximation requires that £ be treated as a three surface em-
bedded in the four-space, and so any variation intrinsic to ¥ is on a much larger
length scale than the aegligible thickness of £. The existence of & implies that there
must be a delta function contribution to the energy momentum tensor (otherwise
would not be discernible), and hence, by equation (2.2.4), a jump or discontinuity
in the geometry at ©. As mentioned, ¥'s energy momentum tensor contribution is

the surface energy momentum tensor S, and so one can write (2.2.1) as
T;w = —/)@(R - r)g;w + S;wé(R - T) (2210)

with © being a Heaviside step function [28], and R representing the radius of Z.
\Vith reference to the discontinuity in £, one can make a coordinate transformation
to a new set of coordinates in which the new metric is continuous across E. In doing
this, all the gcometrical discontinuity is then represented in the normal derivative of
the metric at ©. Such a transformation seems sensible, as it will be shown that the
discontinuity is expressible in terms of the extrinsic curvature of £. The extrinsic
curvature of a surface is just the measure of curvature of an n-dimensional surface

relative to the (n + 1)-dimensional geometry that it is embedded in.

The next step is to develop the coordinate transformation to this new coor-
dinate system, which is known as a Gaussian normal coordinate system (G.N.C.)
[25, page 42]. The G.N.C. is such that there are (for this case of a four dimensional
embedding space) three coordinates intrinsic to £ and they are taken to be in a
(2 + 1) spacetime split. As spherical symmetry is maintained, the two angular coor-
dinates 6 and ¢ are unaltered by the transformation - only the timelike coordinate is
affected. Given that this third intrinsic coordinate is timelike, the obvious choice of
coordinate is the proper time parameter 7 of an observer at rest with respect to Z.

The fourth and final coordinate in the G.N.C. is, by definition, a coordinate normal

15



to &, and in this case it is spacelike. It will be given the label 1), and by convention,
the outward normal is to be taken as positive. Thus 1 is a measure of distance
along a geodesic orthogonal to ¥. With this set of coordinates (1 = (7,0, ¢, 1)) the

transformed metric has the following restrictions.

g =gy =1 (2.2.11)
grrr =0y = 0 (2.2.12)
g7 =g, =-1 onlyon & (2.2.13)

So, the transformation equations that give the new metric in terms of the old coor-
dinates are

m = 1= _f(:)l,")z + %(g—;)l

. e 2.9

grr = (3 + §(52)? (2.2.14)
— N — at dt 1 dr dr

Grp = 0= "f_ar_or, + 7_0: o

One also has the requirement that the G.N.C. move with £, which can be written

as

r(r,n =0)=R(7) (2.2.15)

Equations (2.2.14) and (2.2.15) give four equations with four unknown coefficients

(g—,’, etc.) which if one designates

or :
=R (2.2.16)

gives a solvable set of equations. In terms | R the other coefficients are

g 248
o or (2.2.17)
9t _ 4R 8r _ 1
2 =32 2R
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with 3 = £/R? + f. Here the Schwarzschild and de Sitter subscripts have been
loft off. However, (2.2.17) only gives the coefficients on T, which is not sufficient
for 2 G.N.C. - these coefficients must be specified for off-T locations as well. This

is done by examining the geodesic cquations for the neighbourhood of ¥ with 7, 8,

and ¢ fixed. From this, one gets that

(2.2.18)

When these two equations are integrated, with the on T coefficients as the constants
of integration, it is found that the coefficients have the same form as (2.2.17) for
off-T locations. Hence, if R is replaced with 7 then (2.2.17) gives the coefficients for

the local coordinate patch around T, and a G.N.C. has been defined in this region.

With the G.N.C., the surface T is easily specified: it is the 7 = 0 hypersurface.
The curvature of S in the four-space is just the extrinsic curvature of ¥ and it is

given by

Ky =&y (2.2.19)

Here | represents the four-dimensional covariant derivative, and £, is the normal to

S, and in the G.N.C. has the form &, = (0,0,0,1). Thus, the use of the G.N.C.

-y

reduces thie extrinsic curvature to

1
K, =-T}, = 53,,57,“, (2.2.20)
and conversely,
KJ@ = F:‘u_ Kij = -T% (2.2.21)

From 2.2.20, it becomes obvious that the extrinsic curvature is apt to describe the

s

discontinuity in the geometry at T; it is just the normal derivative of the metric,
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and as g, is continuous at £ (in the G.N.C.) this is precisely the geometrical
discontinuity implied by the existence of S,... Evaluating the non-zero components

of I\, in the G.N.C., one gets

C = zldd?
N,y =%
I\.go e

- . 2
Kop =rdsin g

Now in order to utilize this notion of extrinsic curvature, it has to be linked to
Einstein’s field equation. Such a linking is achieved in the formalism of Gauss and
Codazzi [26, section §21.3], [27] which uses 2.2.21 to re-express an n-dimensional
field equation in terms of an (n — 1)-dimensional field equation and the curvature
of the hypersurface slicing. For a general four dimensional spacetime the Gauss-

Codazzi equations (in G.N.C.) are

n

G = -5 R+{ ['"‘ - I\"I\,,} = 8T} (2.2.23)
G! = K}

3

™), = 8aT” (2.2.24)
iim m/|

i . 3 -t 1 'm 1 1 ~mn my2 "
Gi = 3G — (Ki-6Km), — (KMK: + 5{1\ Ko + (K7)?2}(2.2.25)
= 87rT;

Given this component form of the field equation, one can substitute for the encrgy
momentum tensor (equation 2.2.10), and check for consistency. For off-X evaluation
of the field equation (i.e.  # 0), no new dynamical information is obtained. Further,
if one considers an evaluation on I itself (i.e. n = 0), then equations 2.2.23 and
2.2.24 are satisfied if g;; is continuous across £ (which is the case). In order to
evaluate equation 2.2.25 across T, one raust consider the contribution from the

(6}[&’,’,’,‘ - \.;),, which has a delta function contribution at £ , and so is the only
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ter of GY to survive an integration over the thickness of the wall. As one is using
the thin wall approximation, this integration of this term reduces to the jump in
o I — [\'J‘f. The jump in across T of a quantity is symbolised by [ ] and is defined

by

[B] = hl% (B(n = +¢€) - B(n = —¢)) (2.2.26)
Thus equations 2.2.10 and 2.2.25 (in the thin wall approximation) give that
/EG;\/—w d'z = 8%‘/97}?\/—4‘(] d'z
=  [Ki]-6iAn] = -8xS; (2.2.27)
Considering the trace of equation 2.2.27, one gets

™ = 478 (2.2.28)

[A] = 4xS
and equation 2.2.27 can be rewritten as
[Nij] = —87(Si; — %h,’jS) (2.2.29)
with h;; as ©'s intrinsic three metric.

Equation 2.2.29 is the classical equation of motion, and as such holds all
the information on the classical trajectories of ©. Yet this equation is not yet in a
workable form, as Sy, is unspecified. In order to elucidate the characteristics of S,
one must resort to the generic classical property of energy momentum conservation
which is formulated as
™), =0 (2.2.30)
When written in the Gauss-Codazzi formalism, equation 2.2.30 splits into the two
following equations.

T, = T + T, + 2KiT97 + KT =0
(2.2.31)

Tr;ulu —_ qu;j + T'I'?yn - [('.J.Tl'j + I(,’,?T"'I =0
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with . representing the three dimensional covariant derivative, If the jump of equa-

tion 2.2.31 is then considered, it can be reduced to
0 = [SY,; + 2K}87)8(n) + S (n) (2.2.32)

Here ’ denotes differentiation with respect to 1. In dealing with this expression,
onc must be careful, as &'(n) is discontinuous at 5 = 0, which is exactly where
the jump in K;; is evaluated. This evaluation ambiguity is remedied by requiring

Sin = S;, = 0. Thus,

SY,;=0 (2.2.33)
Similarly equation 2.2.31 gives
0=[p— Ki;S9 + K2S™8(n) + S™E (1) (2.2.34)
with
Ki; = y_r%é(mj(n = +¢€) + Kij(n = —¢)) (2.2.35)

Again, the apparent ambiguity is resolved by taking the &' cocfficient to be zero.

That is, S = 0, and I.\',-jS‘j = p. Thus
S™ =0 (2.2.36)

Still, one can go further in constraining the form of S,, by means of the thin wall
approximation and spherical symmetry. The spherical symmetry permits the impo-
sition of the constraint that S, be rotationally invariant, and so S, must be of the

form

SH = gURUY = (W™ + UPUY) (2.2.37)

with h#¥ = gH¥ — £€Y being the intrinsic metric projected onto L. U* is X's four
velocity, and in the G.N.C. it has the normalized form U* = (1,0,0,0). The two

parameters, o and { can be thought of as the surface energy density and the surface
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tension respectively. Yet by the thin wall approximation §*” can only depend on

quantities intrinsic to the surface, and so from equation 2.237.¢ =( and
S = —gh*’(n = 0) (2.2.38)
This then gives the dynamical equation of £ as
[K;j] = —4mahy; (2.2.39)

From this there are three non-zero component equations, as Kj; is diagonal, but
KU = K% by spherical symmetry, so only two of the three equations are independent.
Ou further investigation, a little algebra shows that the K, equation is just the
proper time derivative of the Ko equation [29, the paragraph that follows equation
4.28] (due to the energy momentum conservation law (equation 2.2.30) that results
from Einstein's field equation), so there is actually just one independent equation
of motion (which scems reasonable, as there is only one degree of freedom due to

the spherical symmetry). Hence, the equation of motion that is to be analysed is

(K] = —4mor? (2.2.40)
From 2.2.22 R = 3, so the explicit form of 2.2.40 is
Bp — Bs = 4war
(2.2.41)

B=x/72+f
In order to use this equation to classify the possible trajectories of T, a little re-
arrangement is required. If one considers the square of 8p = 4wor + Bs and f?% is
replaced by 7% + f then one obtains an expression that is linear in Bs. By again
rearranging and squaring this new expression the s dependence is removed and

equation 2.2.41 takes the form

24+ V(r,m,x)=-1 (2.2.42)
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)
[+,

T

Figure 2.1: The tunnelling potential V(r,m, x) with m = 0.001kg and x = 0.001m™!.

(These values place the Schwarzschild and de Sitter horizons at a small and a large radius

respectively.)

with

V(rvm1X) =S T Tas (X2 + KZ)T2)2 (2243)

2m 1 (2m
r 4K2r2"

with k = 4ro.

Equation 2.2.42 makes the dynamics of £ obvious; equation 2.2.42 has
the mathematical form that is equivalent to a particle, with rest energy £ = —1,
moving in a one dimensional potential field. Hence, using the analogy to model the
situation, one can make a plot of the potential as a function of r (figure 2.1), and
as can be seen, V/(r,m, x) has the form of a potential barrier. This potential barrier
creates three general classes of possible I trajectories, which have been labelled S1,

S2, and S3 (refer to figures 2.2 and 2.3). The S1 class is such that in the particle
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S1

Figure 2.2: The monotonic solution. The trajectory V = -1, labelled by S1, is not
obstructed by the potential barrier. This allows the seed to expand from the origin, and

continue expanding without hinderence, until the false vacuum decays.
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S2 S3

Figure 2.3: The Bounded and Bounce trajectories. For the V = —1 trajectory labelled
S2, the seed expands to a maximum radius, and then collapses (i.e. a bounded solution).
For the S3 solution, the trajectory starts at very large r, collapses to a minimum radius,

then expands back out to infinity (i.e. a bounce solution).
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analogy, a particle starting from the origin would move outwards, and because it
would not encounter the potential barrier, it would continue to move to larger r.
This type of solution is referred to as the monotonic solution, and it does possess
the expansion property that is required for the evolution of a new universe seed
(i.c. it expands to a size large enough to permit an inflationary era). The reason
for the continual expansion is that £ is expanding too rapidly for the pull of the
negative pressure of the false vacuum. Thus ¥ cannot be brought to a halt, and
thenee collapse, before the seed attains an inflationary state. Unfortunately, this
solution class is not suitable, due to it having a singular initial condition (more on

this later).

With S1 being ruled out, S2 and S3 are left as possible T trajectory classes.
Both S2 and S3 are not defined over all spacetime, but rather, are defined in a
certain classically allowed region which is defined by the presence of the potential
barrier. The S2 class, if viewed in the analogy, has the particle moving outwards,
but with the outward motion being curbed, halted, and then reversed. Thus, the
false vacuum sced expands out to a maximum, and then collapses due to the pull of

the false vacunm pressure. This type of solution is called a bounded solution.

On the other hand, a trajectory from the S3 class starts with ¥ being at a very
large radius and collapsing to a minimum and then expanding back out to a large
radius. Such a class of solution could physically be seen as one where the spacetime
exterior to the seed is the false vacuum, and the interior is the true vacuum (i.e. a
reversal of the proposed scenario). This type of solution is referred to as a bounce

solution.

In considering these two solution classes as possible solutions to the creation

and evolution of a seed spacetime, one must discern whether either class is (given
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the technology) constructible in the laboratory. That is, it must be checked that the
trajectories have non-singular origins or starting points. Unfortunately, the present
coordinates (either (¢, 1,8, @) or the G.N.C.) are unsuitable for the addressing of such
a question. The reason for this i that despite the fact that they are immediately
understandable in terms of physical meaning, these coordinates imply the existence
of a singularity at the horizon. However, this is a non-physical singularity that is
due entirely to the choice of coordinates, as the Kretschmann scalar [26, page 822] is

regular at the various horizons. Thus a more suitable coordinate system is required.

As is well known, Kruskal-Szekeres coordinates [30] can be used to deseribe
the true vacuum Schwarzschild region, and in an attempt to maintain the similarity
between the interior and the exterior coordinates, Gibbon-Hawking coordinates shall

be used to describe the de Sitter region.

The Kruskal-Szekeres coordinates are given by

U= /5= — lexp(;)cosh(3)
(2.2.44)
V = ,/3= — lexp(z)sinh()
for r > 2m (region I), and
U =,/1—-5=exp(s~)sinh(:
2m p(4m) (4m) (2245)
V = /1 - 5=exp(g)cosh(z=)

for r < 2m (region II). On substitution into the Schwarzschild line clement, one gets

3 -
ds® = 32m exp(ﬁ)(dUZ — dV?) + r2dQ3 (2.2.46)

which has no singularity at 7 = rg = 2m. Such a coordinate transformation maps the

Schwarzschild space into the U+V > 0 region, and imposes a boundary at U+V = 0.
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This boundary is seen as physical, as one would encounter this boundary in a finite
time if traveliing along a past directed timelike trajectory. Yet the existence of such
a boundary is somewhat artificial, so it is generally accepted that the spacetime
described by (U, V) is not restricted by the boundary, but is instead described by
all values of U and V and the relation U? — V"2 > —1. Hence there are two more

regions to the spacetime, namely

U= —,/:ﬁ—lexp(ﬁ;)cosh(:i—n-) (2247
Lol

V=—/5- 1exp(7%) sinh(75)

for r > 2m (region III), and

U=—/1~ 5= exp()sinh(z)
: ! ! (2.2.48)

V = —/1 — == exp(g) cosh{z%)

for r < 2m (region IV).

Similarly, the de Sitter spacetime can be extended by Gibbons-Hawking co-
ordinates [31], and the apparent singularity at the horizon removed. Again, four
different regions are established, and the coordinate transformations for the quad-
rants are:

u = (/12X cosh(xt)
ik (2.2.49)

v= i—;% sinh(xt)

for (region I),

P (2.2.50)



for (region II).

= _ [T e
u= T coshi(\t)

v= - ;—;—}{siuh(\z‘)

for (region III), and

u= %‘\—l sinh(\t)
(2.2.52)

v = ﬁ'\—i cosh(\t)
for (region IV), with a corresponding line element of

9 1 r)? 9 B 9 9
ds* = (—i—;L)-(du' —dv?) + rodQ; (2.2.533)
N 2

As in the Schwarzschild case, the singularity at the boundary between regions |
and IT and regions III and IV has been removed. Both coordinate systems have
their salient features given by the associated spacetime diagrams (figures 2.4, 2.5).

These diagrams have the angular coordinates § and ¢ are suppressed, and the point
r = 0 has been deformed to an r = 0 curve. Also, it should be noted that it is
not possible to have a trajectory that evolves to a radial size that is different for
a de Sitter observer and a Schwarzschild observer. This is because the spherical
symmetry implies that the two sphere line elements have the same radius at X,

making r a coordinate common to both spacetimes.

With these new coordinates established, the next step is to ascertain which
regions of the spacetimes the T trajectorics actually pass through. To do this, a
tracing prescription is required. One such prescription is obtained by considering

the time rate of change with respect to the proper time 7. From equation 2.2.17

i =20
d (2.2.54)
= 8 =:kfi
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Figure 2.5: The Gibbons-Hawking coordinate system.
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which gives that the sign of .3 depends on the sign of . Further, when € is traversed,
the sign of ¢ is related to the change in the polar angle arctan r for the Schwarzschild
case and arctan & for the de Sitter space. An increasing polar angle implies that
J is strictly positive or strictly negative, depending on the £ that is generated by
the square root. For the Schwarzschild case, with the polar angle increasing, ty is
positive, and so Js is positive. However, in the Gibbons-Hawking diagram £, is
negative as ¥ is traversed, and so 3p is negative for an increasing polar angle. Note:
for either spacetime, if /7 = 0 then the polar angle remains unaltered, which means
that the trajectory is radial. Thus, if for example, 3¢ = 0 for & at a radius r > 2m
then as the trajectory is tangential to a radial line, it is in fact lightlike at this point.
Such a transition (within region I) is seen as not physically acceptable, as fg does
not have zero as a stationary point, and so the trajectory would be changing from
timelike to spacelike evolution. This sort of transition lacks a physical explanation.
Similarly, one gets another physically unacceptable trajectory if Gp = 0 for r < {-

Hence, 3 = 0 provides a way of eliminating some of the possible T trajectorics.

By squaring equation 2.2.41 and then rearranging, it is easily shown that

8¢ = 0 when
3 2m

=" 2.2.55
X2 + K2 ( )
and by substituting the expression for s used in the derivation of equation 2.2.55

into equation 2.2.41, one finds that fp = 0 when

3 2m

r’ = —m—
Y2 — K2

(2.2.56)

and k% < x2. For k% > x2, Bp is never zero (i.e. it is always negative. From this, the
S2 and S3 classes of ¥ trajectories can be split into a more detailed classification,
which is obtained by comparing the actual path of the "particle” of rest energy

E = —1 with its position relative to the V(rg) and V(rp) lines. Here V(rs) and
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Figure 2.6: A diagrammatic classification of the sub-classes of S2 and S3 trajectories.
This diagram is really three ciagrams in one, as each horizontal line is to be considered
as V = —1. Thus the T1, T2, and T3 should be considered separately. Likewise for T4,
T5, and T6.

V(rp) are defined as the values of the potential V(r) (m and x fixed) for which
Bs = 0 with r = rs, and Bp = 0 with 7 = rp respectively. Depending on the
value of p (and hence m and ), the potential will be raised or lowered (and slightly
deformed) in such a way that V = —1 is above or below either V = V(rs) and
V = V(rp). Hence, as shown on figures 2.6 and 2.7, the S2 and 53 classes split up
into three different cases. For each sub-class there are six 52 and S3 trajectories.
However, the T2, and T7 trajectories are of the same structure as the T1 trajectory.
Similarly, the other trajectories can be grouped into sets of trajectories of similar
structure, and the sets are (T1, T2, T7), (T3, T8, T9), (T4, T5, T10), and (T6,

T11, T12). Now these four different ¥ trajectories have quite different spacetime
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Figure 2.7: More sub-class classifications of the S2 and S3 trajectories. Note, the inter-

pretation of this graph is the same as for figure 2.6.
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Figure 2.8: The spacetime diagram for a T1 trajectory displayed in composite form. The

spacetime is given by the shaded regions.

diagrams, as seen in figures 2.8, 2.9, 2.10, 2.11, and 2.12.

Of these four trajectory groups, some or all may not be suitable for describing
a seed spacetime that is constructible in the laboratory, for which the main criterion
is a non singular origin or starting point. Yet, from figures 2.8 and 2.9, it appears
that all the bounded trajectories start from r = 0, which in the Kruskal-Szekeres
diagram, is singular, and so plagued by the r = 0 Schwarzschild singularity. This
singularity must be avoided if the seed spacetime is to be constructible, yet the
bounce solutions, with their large r starting condition are also not physically feasible.
Fortunately, it may be that not all the bounded trajectories necessarily require an
initial singularity. The reason for this lies in a theorem by Penrose [32]. The theorem

states that if a spacetime is such that it has
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diagram for a T3 trajectory. For these solutions, I never passes

The spacetime

.
.

Figure 2.9

through quadrant one of the Kruskal-Szekeres diagram.
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ectory. This is a bounce solution, and

The spacetime diagram for a T4 traj

Figure 2.10

so has both a deflationary and inflationary era (at early and late times respectivly).
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The spacetime diagram for a T6 trajectory. Again, one has the deflationary

Figure 2.11

and inflationary eras.
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ime

The spacetime diagram for the S1 or monotonic solution. Note the late t

.
.

Figure 2.12

inflationary era. This is the type of trajectory used to describe the inflationary stage

associated with the observed universe.
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i a non-compact Cauchy hypersurface,
ii it satisfies the (very) weak energy condition,

ili there exists an anti-trapped surface

then an initial singularity must exist. The (very) weak energy condition is defined
as T, U*UY > 0 for all null vectors U¥, and it is valid as long as the magnitude of
the pressure does not exceed that of the energy density p. Note, the qualifier (very)
is used as U* is lightlike instead of being timelike as in the standard definition of

the weak encrgy condition.

As the mother spacetime is asymptotically flat, and a well defined Cauchy
evolution is assumed, the first requirement is satisfied. Similarly there are no prob-
lems with the (very) weak energy condition, as one is dealing with the classically
allowed false and true vacuum regions. So this implies that the existence of an ini-
tial singularity is dependent on the presence of a closed anti-trapped surface [33].
If the trajectory, at any stage, forms a closed anti-trapped surface, then an initial

singularity is required somewhere in the trajectory’s past.

For a surface to be anti-trapped, it must have that at any point on that
surface, both the in and out going normal incident rays arriving at that point are
diverging. On the spacetime diagrams (where a hypersurface is represented by a
point), the light rays are shown as 45° lines. In order to tell if the in and out going
rays are diverging, consider the light cone formed by the past directed rays of the
surface, as shown in figure 2.13. The surface S is then anti-trapped if the radial

coordinate increases as one moves along the lightlike lines towards S.

As can be seen, this is the case for the trajectory sub-class T3 (as well as

the monotonic solution, S1), and so this trajectory class necessarily has an initial
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Figure 2.13: An example of a closed anti-trapped surface labelled S.

singu:arity as a starting condition. Only the T1 bounded solution class lacks any
anti-trapped surfaces, and so does not necessarily start from a singularity (i.e. it is
theoretically constructible in the laboratory). Further, this trajectory class passes
into region I of the Kruskal-Szekeres diagram, which is taken to represent the ob-
served or laboratory spacetime. This means that the seed spacetime T1 could be
constiucted without an initial singularity, and the construction could be done in
a region that is accessible (i.e. the laboratory). In restricting the possibilities to
the T1 class, one constrains the parameters p (and hence x), m, and . This con-
straining of the parameters is due to the fact that the T1 class has r = | such that
V(ry) = =1 and r; < rg (with rg defined by equation 2.2.55). For a typical T1

trajectory solution, possible values of the parameters (which are those used in figure
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2.1) are:

v =0.001m~! = p=0.045kg.s72m!
(2.2.57)

m = 0.001kg n = lhg.s™?
Note, when considering these parameter values for the T1 class, it should be remem-
bered that the smaller the value of p the further out (radially) the de Sitter horizon,
and the closer in the Schwarzschild horizon. Also, these values are given under the

prescription G = 1.

Unfortunately, whilst the T1 class has the right initial conditions, it Joes not
constitute a new universe trajectory, as it is a bounded solution and so eventually
collapses back to small r In other words it fails in the second criterion - that of
evolving to a stage that tends toward an inflationary era ( or at least substantial
expansion). Several of the bounce solutions exhibit this trait: namely trajectories

T4 and TG, yet neither has a suitable starting coudition.

So after studying the classical solutions to the equation of motion for &, no
trajectories have been found that are suitable for a constructible seed spacetime
that is to evolve into a new universe. What is required is a combination of the first
part of the T1 solution and the latter part of a bounce solution (either the T4 or
T6 solution). Such a combination would resemble that of the monotonic solution,
except that it would have an intermediary stage, and no singular starting point.
For definiteness, the two classical trajectory regions are to be taken from the sub-
classes T1 and T6 respective, which then gives a universe fabrication trajectory that
diagrammatically is of the form shown in figure 2.14. With this type of trajectory,
the intermediary stage would be equivalent to a one dimensional particle tunneling
through the potential barrier. However, due to the lack of a theory of quantum

gravity, and topological changes, the analogy to tunneling can only be seen as a first
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Figure 2.14: The trajectory for a universe fabrication via quantum tunnelling. The up-

per composite spacetime diagram shows the T1 solution, whilst the lower one is the T6

solution. Ry and R represent the radius of £ at the onset and the completion of the

intermediary stage. With such a trajectory, it can be seen that both the false vacuum and

the true vacuum regions causally disconnect themselves when tunnelling occurs.
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order approximation.

2.3 The Transmission Coefficient

Although the classical trajectories of ¥ do not give the desired sced spacetime, they
do suggest a possible spacetime trajectory that would correspond to a constructible
seed spacetime that would evolve into an inflationary era. As mentioned above, this
spacetime trajectory is actually a combination of two of the classical trajectories,
with the linking between the two being provided by a quantum mechanical tunneling
through the classically forbidden region. As the bounded and the bounce segments
of this desired trajectory can be adequately described by the classical theory, it is
only the transition from one classical turning point (that of the bounded solution) to
the other turning point (bounce solution) that requires attention. It is this transition

that has to be described quantum mechanically.

In order to describe this crossing of the classically forbidden region, one can
use the fact that the classical theory reduces to a particle moving in one dimension
in a potential 2.2.42. (This is where Fischler et. al. [44] claims Farhi et. al. {39]
goes wrong as they only retain the one degree of freedom). With this analogy in
place, one can quantise by treating the position » and the momentum p as operators
instead of variables. The system is then aptly given by the Schrodinger equation.
Thus, writing ¥ as a shorthand notation for |¥ >, the state vector of the particle

(the particle, due to the analogy, is synonymous with X), then

L0
ih=-U = HY (2.3.58)

with H being the Hamiltonian. Classically, H has the form
2

H=2 +v (2.3.59)
2m
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and is 2 constant of the motion, whereby H = E = constant. This latter constraint,
when applied to the quantised system, simply gives H¥ = E¥ with H now being

an operator and E an eigenvalue of H.

Now using standard quantum mechanics, separation of variables and equation
2.3.58 give
1Et
U(r,t) = exp(—T)w(r) (2.3.60)
Due to the conversion of p to an operator (p — —ih‘% ), the constraint (equation

2.3.59) has the form Hy(r) = Ey(r), and so

2% 2m T
[bﬁ*l'—h—(E—V(r))]w—O (2.3.61)

If one makes the further substitution ¥ = exp(%) then

- (%)2 + l%” + gf_‘:‘.;(E -V(r)=0 (2.3.62)
with / denoting differentiation with respect to r. The reason for this substitution
can now be made clear; it is used to obtain a semi-classical approximation to the
quantised theory. The approximation is done by writing ¢ as an expansion in powers
of h and then treating h as small. The reason for taking the i — 0 limit is that in

this limit the de Broglie wavelength tends to zero, which is indicative of the classical

theory.

As mentioned, h is considered small but non-zero, and if the ¢ expansion is

taken only to first order in & then one has
¢ = ¢o + fidy (2.3.63)

which constitutes what is commonly referred to as the WKB approximation. Sub-

stituting this into equation 2.3.62, and keeping terms up O(hP), one obtains two
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conditions, namely

0 = p?— (o))’ (2.3.64)
and 0 = o) — 20,0 (2.3.65)
Integrating 2.3.64 gives
o = £ / pdr (2.3.66)
which provides a zeroth order form for v. Extending to the next order in h, 2.3.65
implies
Og _ LYY D) 3 nd
B,TO-—_hlél (1-. .Gl)
and so ¢, has the form
o1 = iln {/p + constant (2.3.68)
Utilizing 2.3.66 and 2.3.68 ¢ becomes
, 10 p(ro) J l
U(r) = expx— = ¥(ro),| —=exp :i:—/p(lr & P(rg)expx— /p(lr (2.3.69)
h p(r) h h

This is the first order WKB form of the wavefunction associated with the one di-

mensional particle.

With the form of ® determined, the transmission coefficient or tunneling
amplitude can be determined. The transmission coefficient is a measure of the
probability of T passing from a bounded solution, through the barrier to a hounce
solution simply given as the ratio of the wavefunction evaluated at the respective
spacetime endpoints of the tunneling. If the transmission coefficient for a wavefunc-
tion to propagate from position 1 to position 2 is given by T(2, 1) then

T(2,1) = %% (2.3.70)

From the WK B approximation, T(2,1) takes the form

iE i
T(2,1) = exp —h-(tg - tl)exp(:i:;; /pdr) (2.3.71)
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However, this can be rearranged by noting the following.

[pr = [pEkdt

= [(H(p,r)+ L(p,7))dt by equation 2.3.59 (2.3.72)

= [L(r,p)dt + [ H(r,p)dt
Yet the transmission coefficient is to be calculated for a tunneling from one classical
turning point to the other, and for both turning points ‘é—;— = 0 (i.e. according to the
classical theory a solution cannot enter the forbidden region as it has no velocity at
the tuning points). This in turn gives that p = 0 at the turning points, and so by
equation 2.3.59, H(r,p) = E = —L(r,p = 0) =constant. When this applied to the

integral above,
/ pr = / L(r,p)dt — / Lir,p = 0)dt = Wy — Walstatic (2.3.73)

Here W4 is the classical action associated with the particle as it traverses the for-
bidden region (i.c. there is a solution to a Euclidean classical equation of motion
which has been obtained by Euclidising the time variable in the classically forbidden
region), and We|saric is the action assigned to a particle that does not tunnel, but
ratl. rstays at the first turning point for the duration of the tunneling. This in turn
gives

T(2,1) = exp zTE(tz - tl)exp(i%(Wd — Walstatic)) (2.3.74)
As can be seen from equation 2.3.74, the WKB approximation, when applied to the
transmission coefficient calculation, has the effect of picking out only the extremal
action (i.e. the classical action) contribution, while all the other paths have negligible

contributions.

So, in order to evaluate T(2, 1), with points 1 and 2 being the classical turning

points, the classical action must first be determined.
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CHAPTER THREE

THE LAGRANGIAN APPROACH

3.1 The Classical Action

In order to obtain a probability for the tunneling from one classical trajectory to
another, it has been shown that the classical action has to be evaluated. However,
the form of the action has yet to be derived. Hence, the purpose of this section is

to first derive then evaluate the classical action associated with E's trajectory.

Due to the composite form of the spacctime, the classical action is to be
derived in a piecewise manner, with the gravitational and matter contributions
from the three spacetime regions being considered separately. Once the action has
been determined, the variational principle can be applied in order to check that the
action gives the correct classical equations of motion. With the form of the action

established, the numerical evaluation of the transmission coefficient then follows.

In commencing the derivation of the classical action, W, a generic form is
assumed, namely the Einstein-Hilbert action integral. This is the standard pure

gravity contribution, and it is of the form
1 4 4,4

with 4R being the four dimensional Ricci scalar, and *g the determinant of the
metric. Note, units have been chosen so that the gravitational constant, G, is set
equal to one. Yet this form of W is incomplete, as it has only the gravity-matter

interaction and it does not account for pure matter contributions. Thus the form of
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r=0

r=0

Figure 3.1: A diagrammatic representat.on of the spacetime region over which the action

is to be evaluated.

W should be
1
—_— —441
W = 16%/\/ g Rd41'+/£md41' (3.1.2)

where L, = L,,/—%g = the lagrangian density of the matter in the system.

With this general form for W, there appear to be no restrictions on the
four volume on which W is defined, and in general, the integral is taken over all
space. This however is not feasible, as W is eventually evaluated numerically, and
so, the four volume of the composite spacetime must be specified. This is done
pictorially in figure 3.1 for an arbitrary segment of a ¥ trajectory. Note that al-
though the spacetime is most conveniently represented by two spacetime diagrams
as in figure 2.8, its actual diagrammatic form can be given as one, e.g. figure 3.2.
Now, as the transmission coefficient measures the probability of an initial spacetime

configuration evolving to a final configuration, one can choose the initial and final
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Figure 3.2: A one diagram representation of a composite spacetime trajectory T1.

boundaries to be t = constant hypersurfaces. Also, the radial boundary is taken
as an r = rg = constant hypersurface, with rg being asymptotically large. Here
the requirement is that rg be large enough so that the seed spacetime induces only
negligible effects on this boundary at rg. So, if the region over which W is defined
is as outlined, then one can proceed with the derivation of W. Note however that in
specifying the four volume boundary, one must then consider any possible surface
boundary terms that may arise in W. Further, although the choice of boundary sur-
faces is somewhat arbitrary; the simplicity of these particular choices will become

apparent when the surface contributions are evaluated.

As to the actual four volume, its form is to be constrained by the con-
structibilty requirements. That is, the ' and ¢/ hypersurfaces are required to be
in either regions I or III of the Kruskal-Szekeres and Gibbons-Hawking diagrams,

as this implies that the tunneling of the classical solution starts and ends in the
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spacetime region over which the constructors have influence (i.e. the laboratory, or
its cansally disconnected mirror image). This also removes the problem of working
in a coordinate set. ((¢,r,8,¢)) that is singular on the horizons. Hence, the four
volume does not intersect any horizons. However, it should be remembered that the
trajectory under consideration is the one associated with universe fabrication, and

s0, is of the form given by figure 2.14.

Now returning to equation 3.1.2, one has a general form for W over a well
defined spacetime interval, but it is still a generic expression, with no allowance
made for simplifications due to any inherent symmetries. In particular, the spherical
symmetry of the composite spacetime has not been utilized. If this is done then one
reduces W from a four dimensional integral to a two dimensional one by integrating
over the angular coordinates. Of course this dimensional reduction does not preserve
the form of 3.1.2 as R contains terms that are not a result of manipulations of the
reduced two dimensional metric. Fortunately, for spherically symmetric spacetimes
one can easily perform the reduction from a (1 + 3) to a (1 + 1) dimensional theory,

and the pertinent results are

~4g = 72 sinfy/—%g (3.1.3)

‘)
iR = R+ 7_:2(1 — g%rary — 2rm%,) (3.1.4)

For 1 more complete description of this reduction via spherical symmetry, consult the

paper by Poisson and Israel [35]. When substituted into W, these rearrangements
give
W= LPRe T ) (1= grars = 2% VT
(3.1.5)
+i7 [Lor? d?x

Note, here the latin indices @ and b range over the (1 + 1) spacetime, and 2R is the
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Ricei scalar for the (1 + 1) dimensional spacetime.

As can be seen from equation 3.1.5, W has an explicit dependence on second
order derivatives (i.c. r, = Or), and in second order time derivatives in par-
ticular. This however is not an asset, as actions containing such terms cannot be
quantised easily. For example, if one attempts a canonical quantisation, then the
genceralised coordinate and conjugate momentum associated with Or are not well
defined. Moreover, a path integral quantisati-n for such an action founders as the

property of intermediate state insertion is lost [36]. That is,
Wits, ty) = W(tg, t2) + Wi(ta, ty) (3.1.6)

with t3 > t5 > ¢ is not valid. So. if the analysis is to proceed, the terms containing

second order time derivatives need to be removed.
If the culprit term in equation 3.1.5 is integrated by parts, then

—/r[]'r\/—zgd?r = —/(r!“");a \/_2_(1(12.1,‘-{-/]““!“(, v —2gd*z
= —/wrr‘“na dS+/r‘“r‘a vV —2gd’c (3.1.7)

Here the total divergence has been re-expressed as a boundary surface integral by

means of Gauss's divergence theorem [37], which is as follows.

/A;:,,/—nﬂg g = /wA“na ds (3.1.8)

with w = n%n, = £1 and n, is defined as the outward normal.

Using equation 3.1.7, one can write W as

W= LRI lz + L [(1 + grar ) V=T
(3.1.9)

+4n[ Lr? &’z — [wrrtn,dS

50



which has no explicit dependence on second order time derivatives. Still, the form

of 2I? is as yet undetermined.

Now at this point, one has a choice in the direction the analysis takes, as one
has a choice in how 2R is dealt with. One can use either a direct brute force method
which involves using the values of *R given by equation 2.2.8, or one can utilize

the Ganss-Bonnet theorem and express 2R as a pure divergence. Whilst the latter

approach is more elegant, t" " more direct, with only ©’s contribution to

“R/~=Tgdx requiring adelc. . Therefore, the brute force approach shall
Yy | 4

be used to continue the ey 'z ... Nevertheless, the benefits of writing 2R as

a pure divergence will be iwves.3- -ed in sectior: 3.1
3.2 The Brute Force Approach

With this brute force approach to the analysis of the 2R term in W, contributions
from the three spacetime regions are to be considered separately. Further, for all
three regions, it is easier to use equations 2.2.8 and 3.1.2 and do the integrations
explicitly, than resort to more developed form of the gravitational contribution of

W given by equation 3.1.9. Hence,

1 4 q 1 4 2 2
-1-6?/12 -4gd'z = Z/ Rréy/=2%gd°zx

1 4 2 U

= - R -2 dl
4{A‘V+/E+/7‘t”}( r gd'z)

= /FV 3x2r2\/—2gd2x+ -}A“er\/—?gd%

tf R
= /_Ddtp/ dr3x*r? + i/ 41%1"“’\/—2gd2:r,
& 0 4 Jx

o
= /,” dtp x’R? + i/ ‘Rr?\/-2gd%z (3.2.10)
£ 4z
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Note. R represents the radial position of the wall. Here the false vacuum con-
tribution has been expressed in terms of the de Sitter parameter and coordinates
(equations 2.2.9 and 2.2.3), but one cannot do likewise for the T contribution.
Instead, one must deal with this *R contribution by using the Gauss-Codazzi for-
malism. Thus, by appealing to the extrinsic curvature of T, one can rewrite * R, and
if a G.N.C. is used then
9 01(‘,‘
T Oy

Note, here the indices i and j range over {0,1.2}, and I\ is the extrinsic curvature

R=3R— (KK + (K')*) (3.2.11)

of the 5 = 0 hypersurface that is £. Also, it is not essential that a G.N.C. be used,

but it does make for a less cluttered set of equations.

Now as the thin wall approximation has been assumed,

+¢€ 2
4 2/ 2042, =1 4 2 9190
/‘; Rréy/—%gd°x 121(1)/ (1'7/,. Rredr (3.2.12)

—-¢
and as T is such that for the G.N.C. the metric is continuous and the normal
derivative is discontinuous on T (pages 16 and 17), then only the last term of 3.2.11
will survive the 7 integration. Further, as the extrinsic curvature contains all the
discontinuity, the 7 integration will give a delta function contribution, which reduces

the volume integral to a surface integral. So,

[_ ‘R “2gd% = 2 / R2[PLK]dS (3.2.13)

with [PIv] being the jump of the extrinsic curvature of the three surface ¥, and
dS the one dimensional surface element associated with . Thus the gravitational
contribution is ,

Werap = ¢-:,D dtp X*R3 - % / R [PPK]dS (3.2.14)

Next, one has to consider the matter contribution to W, which also can be

split into a false vacuum, a true vacuum, and a ¥ contribution. Obviously, the true



vaennin region gives a zero contribution (as there is no matter present). However,
the false vacuum has a constant energy density p, and the standard contribution to

Wois

wkY = p- (proper four volume)

malter
= —gd'r
o[ V=
R
= Jdnp ,D/ 2 dr
ty, JO

4 th .
= -np/, R dtpy (3.2.15)
3 t

This just leaves T's matter to be accounted for. Like the false vacuum, Tis
assimed to have a constant energy density, as in the thin wall approximation the
wall takes the form of a false vacuum (refer to equation 2.2.38). This suggests that
its contribution to the action should mirror that of the false vacuum iaterior. So, a
is

trial form for W3 ...

e = 0 - (proper three volume)

malter
= 0 / V3R d€ (3.2.16)

In order to check whether this is the correct form, one must take the variation of

WE

malter

and sce if it gives the correct energy momentum tensor for ¥. Note, the

energy momentum tensor T+ is generally defined by [38, page 154]

§Womatter = / &z T \[=1g 6g,, (3.2.17)
On performing such a variation, [39, refer to Appendix B] one finds that
WE . = o / & 6v/=3%
= 2 [&¢v=hon

= 2 [#eV=hni 8X.- %‘; 64z — X(6))6g  (3.2.18)
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where the embedding of T in the four space is given by a# = X#(£), with & being
the coordinates intrinsic to £. The intrinsic metric is then given by

AN AN
'('9?;' -.O—EJ—!I,W

hij = (3.2.19)

So, on comparing equation 3.2.18 with the definition of equation 3.2.17, and using
the G.N.C. to put things in a concise form, one finds that

TE = ah™§(n) (3.2.20)

Yet this is the negative of the actual wall energy momentum tensor (equation

2.2.38), and so instead of equation 3.2.16 one should use

Wiaer = =0 [ VR = —dzo [ R2as (3:2.21)

-

Now if equation 2.2.9, 3.2.14, 3.2.15, and 3.2.21 are combined, then W has

the form

f
W= /‘ dtp \*R® ~ —/78 PK]dS + = m)/ R dtyp - 4nq [ R?dS
t‘,
- g/ dtp YR ~ -/{R2 PK] + 870R?}dS (3.2.22)
2z Je

o
Clearly one needs to substitute in for [*K], and from equation 2.2.22, the trace of

the extrinsic curvature of ¥ is given as

. 108
3rm —  _
K = R OT
1, 1 2R
= —= S+ 2 2.23
6(72+2f,,+72 (3.2.23)
and hence
_3 _1 y dS (3.2.24
W 2/% dtp 'R 2/{871'072+( U + l}s (3.2.24)

o4



Thus W has a further second order time derivative dependence (R) that,
as ontlined on page 50, should be removed  Yet this 7 term cannot be removed
by an integration by parts, and all the terms of the generic Einstein-Hilbert action
Lave been considered. Therefore, the only way that this term can be removed is by
addition of a boundary term to W. Such a counter term was originally proposed by
Gibbons and Hawking [36], and its form is of no surprise - it is proportional to the
extrinsie curvature of the boundary surface integrated over the boundary surface.

Formally. the Gibbons-Hawking counter term is

L / eI TR = — / 3K d*B (3.2.25)
8w Jam &7 Jip

with 3B the three dimeusional boundary of the four volume over which W is defined.
A full description of 3B was given on page 46 and it is given diagrammatically in
figure 3.1.

For the t = constant sections of the boundary, there is no contribution to
W, as 31, is zero. The reason for this is that for both the Schwarzschild ar i the

de Sitter spacetimes,

. 1 - 1 0
37 1 - — —_—
N=n y = ﬁaﬂ( —4971#) = \/—ﬁza—t'( '—497’1!) =0 (3226)
Here, n# is the normal, and n#* = (—7?,0,0,0). Similarly, one can look at the
r = constant hypersurfaces, for which the normal is n* = (0, Vv f,0,0), and find

that
1 9
I — —_ r
K = n“m—ﬁg;(\/—wn)

1 9, _2/f Lt .
= r'zsinl)ar(r sinfy/ f) = . +2\/7, (3.2.27)

This in tvrn nnplies that

! 35 1 Q\/T f.r 2
-/r=const. KdB = -2-./( + )\/}-T jr=const. dt
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= [ur+ Lol |t (3.2.98)

So. for the r = 0 boundary there is no contribution. whilst at the » = ry boundary

1
S"/ SN dB = / ry — ﬂ)(11‘1, =(rp - i,)—”-)(t‘ —ty) {3.2.29)
it r=rg

Unfortunately, as one takes the rgp — ¢ limit, this contribution to W blows up.
Yet this infinite term has been disenssed {361, and a renormalising preseription put
forward. It is known as th.e Git nons-Hawking prescriptior.. and it requires one to
subtract oft thw contributicn from the r = ry hypersurface embedded in flat space.

IL this is done tho

1 3r- _ m. f Y-
o [ B == - r)+()(,l)) (3.2.30)

which is reguiar as rgp — oc. On consulting figure 3.1, one may think that all
the contributions to equation 3.2.23 have been considered, but this is not the case.
As can be seen. the normal to the boundary surface change discontinuously at the
intersection of r = constant and t = constant, and ty = constant and t, = constant
hypersurfaces. Further, these points of intersection produce additional terms that

supplement the Gibbons-Hawking boundary term.

In order to evaluate these terms, the reduced two dimensional approach out-
lined by Farhi et al [39, page 436] will be used. This approach evaluates the discon-
tinuous normal in terms of a smoothing out of the region of intersection. If these
intersections are taken as being represented by an intersection of lines in a two di-
mensional flat Euclidean space with cartesian coordinates (., y), then the smoothing
out can be attributed to an arbitrary smoothing function y = f(r) of limited range,

as shown in figure 3.3. The resulting curve then has a normal n* of
]

b ) , f

=\"’_,
/1 + (%)2 dx

1) (3.2.31)
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Figure 3.3: The smoothing out of an intersection of two lines.
and so the associated boundary term integral is given as
i a af
/A\/Hdu/n a1+ (5)2dz (3.2.32)
By making the substitution cotd = gf, the integral can be performed, the result is
/ KdB=A8=6, - (3.2.33)
intersection

which is entirely independent of the smoothing function f(x). Now expressing A6

in terms of workable quantities, one has
Af = arccos(n!? . n‘?)) (3.2.34)

where n'!) and n'®) are the normal vectors of the twc lines (taken at points outside
the range of f(r)). Now it should be noted that 3.2.34 does not depend on f(z),
and so one can retain this result in the limit of f(z) tending to a pointlike function

~entred on the intersection.
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Thie above result is for two dimensional Enclidean space. which is not quite
the same as the four dimensional Lorentzian spacetime of the problem at hand.
However. in converting from the simple case to this physical geometry, the analysis
is analogous, and the only changes are that arccos(n'™ .+ nt?') of 3.2.34 becomes
cosh™H{=nM . ), and that one must allow for the angular coordinates of the
two-sphere. Thus, the contribution to W from the inteisection of the two boundary
hypersurfaces is

2
) r-

1 _ Y . _ .
Wointersection = -8—:47.1"’ cosh™H{=nt . pt?) = T)—mslx H=nth . (3 (3.2.35)

" -
So. using equation 3.2.33 the two types of hypersurface intersections can be evaln

ated.

The first to be considered is the t) = constant, tg = constant hvpersurface
intersection. Obviously, the factor cosh™' (=n - n™)) = A0 needs te be evaluatd,
but to do this a reference direction is required (so as to measure Af). The only
thing that is common to both hypersurfaces at the point of intersection is T itself.
Therefore, the four velocity (L) of T at the point of intersection is > be taken as

the reference direction (refer to figure 3.4). This gives that

Ab =6, ~ 8, =85 —0p = cosh™ (=UL(n?) = n(P)) (3.2.36)

!

Now for t = constant surfaces n# = (-\—'/—’;,0,0,0) and U¥ = (¢,#,0,0) (here ~ =

differentiation with respect to the proper time parameter of L), so

cosh™!(~Ufn,) = COSh_l(i\/?)

= cosh'l(—\%,) using equation 2.2.17
= tanh"(%) (3.2.37)

Combining this with equation 3.2.35. one gets
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tg=const

tD =const

Figure 3.4: The diagrammatic representation of the tp =constant, tg =constant hyper-

surface intersection. and its relation to the four velocity of ¥ and the associated angles.
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{s =constan 7""2 - P
T e ecetion. ’={ — tanh ‘(—:) i (3.2.38)

inlersection Y tan

-

S

0
J . . . . « el

Here the |7, indicates that the contribution from the initial t = constant hypersur-

rt

face intersection is subtracted rom the final intersection contribution.

For the sccond type of intersection (i.e. the t = constant, r = constant

hypersurfaces), nt® . n®) = 0, and so the associated intersection action term is

”-r.l=cnnslanl - %(TOSII-I(O) — r (3239)

intersection 9

-

4

Yet, there are two such intersection for the r = 0 surface and for the r = ry surface,

so the full contribution for each r = constunt surface i~

[

r

-rt=constantyr/ __ ! _ :
i intersection |-rl = (? - T)Ir:t?uns!unl =0 (324())

With the determination of equation 3.2.40, the last of the Gibbons-Hawking bound-

ary term contributions has been computed. Thus, on combining equations 3.2.24,

3.2.25, 3.2.29, and 3.2.38, one gets the full form of the action, which is
7 ) 1 S| :
o= %/ ® dtp \2RY — 47.—0/712 ds — 7/(%('& + 5f.) +20R)) [} dS
= Jiy, P ! &
thm ™ d (R? R s .
_/:;- 5(1t5+/ﬂ a;(—g—tanh (73-)1;) dr (5.2.41)
If one expands the last term in this relation, it is found that
d 2 -1 R s — (97 -1 R, RR S
o (R? tanh (E) |D) dr = (2R tank ™! () + = )3 (3.2.42)

and with a little algebra, and equation 2.2.17, W can be written as

. 3 RS, / S 3
W= 7 {R30RS - aroR? - (e 4 gR)| - 3

(3.2.43)
+RR tanh_l(;;;) lp} dr
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This is now the final form of the action for the composite spacetime, and as expected.
it no longer contains second order time derivatives (so no immediately obvious prob-
lems arise with its quantisation). Also, W is expressible in terms of one variable

(i.e. R = R(7), O's radius) associated with the one degree of freedom parameter.

3.3 Evaluation Of The Transmission Coefficient

Having determined W, an expression for the transmission coefficient is now obtain-
able (via cquation 2.3.74). Yet to evaluate the transmission coefficient, the approach
ased here is one that differs from the literature (in particular, Farhi et. al. [39]).
Iusteac of integrating over all possible four geometries thet interpolate the forbidden
region, the classical action is evaluated over a geometry obtained from the euclidised
field equation. Whilst such a step may be considered an oversimplification, it does
provide a semi-classical evaluation of the transmission coefficient, without getting
Jost in the interpretation of the interpolating geometry {39, §5]. But first, in order
to evaluate T(2.1) it must be clear what the endpoints of the tunneling are. That is,
one w ods to specify the initial and final configurations (in this case, three dimension

t = constant hypersurfaces).

To discern these, it must be remembered what sort of trajectory is being dealt
with. From the end of section 2.2, one has that the desired seed wall trajectory
is one that has the initial features of a low mass bounded solution, a section where
quat.tum mechanical tunneling permits £’s passage across the classically forbidden
region, and a final cra that has the traits of a bounce solution. More cpecifically,
the trajectory of interest is one which has a classically forbidden region sandwiched
to the past and the future by a T1, and a T6 trajectory segment respectively. Given

that this is 's trajectory, then the endpoint configurations associated with T(2,1)
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are just a matter of choice depending on the interval one wants to evaluate T(2.1)
over. If both endpoint configurations are chosen to be the bounded solution era, then
T(2.1) is just the transmission coefficient for T to evolve as a classical solution, which
is of no use in evaluating the seed spacetime for the possibility of it forming a new
universe. The same also applies if both endpoints are in the bounce trajectory era.
Further, if 1 and 2 are adjacent configurations in one of the two eras, then one should
have T(2.1) — 1. This is indeed the case. as Wy~ Wiyuatic = Cry —Cro = C=C =0
for a some value C (here R and R are the same for the initial and final configurations

in this limit), and so T(2,1) = exp(0) = 1 as expected (as 75 — 73 ).

Thus, the only type of transmission coefficient left to consider is the one for a
scction of the trajectory that links the classically forbidden segment of £'s trajectory
with cithier or both the bounded and the bounce eras. Such a transmission coefficient
is of the most interest, as the T(2,1) for the case where the initial configuration is
in the bounded era and the final configuration is in the bonnee era will provide an
indication as to whether the tunneling of ¥ is physically likely. In order to make this
assessment as simple as possible, the two configurations are to be chosen to be at
the "edge” of their respective eras - namely, at the classical turning points. This in
turn implies that T(2,1) measures the transmission coefficient for £ to pass “urough
the classically forbidden region. Note, in choosing the classical turning points, one

then has R = 0 at the endpoint configurations.

Yet to obtain this transmission coefficient, one cannot substitute equation
3.2.43 directly into equation 2.3.74, as W was derived from arguments that were
specific to the classically allowed rather than the classically forbidden region. This
is emphasised by the fact that & has no real time solution to the classical equation
of motion in the forbidden region (hence the name). Nevertheless, if the analogy

to the one dimensional particle is adhered to, then T(2,1) can be approximated

62



for the tunneling segment if the time coordinate is made imaginary. That is. the
transmission cocfficient can be approximated if the spacetime is euclidised. To

cuclidise the composite spacetime, each time coordinate is transformed via
tp =it (3.3.44)

and correspondingly, such quantities as velocities are rewritten as
F=—=— = l'l.‘E (3345)

(Note, the subscript E implies a Euclidean quantity.) These changes allow the
action to be written in cuclidean form, but before this is done, a few notes on the

implications of the euclidising is required.

Oue cuclidises in order to examine the motion of the wall trajectory through
the classically forbidden region. Such a step is required as it gives real tg solutions
to s equation of motion for what was the classically forbidden region. Now for
the composite spacetime, the euclidised geometries are taken to be described by the
cuclidean Einstein field equation. Thus the result is that the metric form of the
f. ¢ vacuum is euclidean de Sitter whilst the true vacuum region has a euclidean
Schwarzschild metric. The actual interpolating geometries that take ¥ from one
turning point to the other may not be of this form, or there may not even be a
fixed metric form [43]. Yet as equation 2.3.74 only requires an evaluation of the
classical action, the use of the euclidised classical geometries provides a suitable

approximation.

The effect of euclidising on the equation of motion is only minor, as its general
forts is unchanged; the form of 3 is all that requires alteration. So, in euclidising

equation 2.2.41, one gets
3p—08s=470R  with B==%y/f - R} (3.3.46)
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or equivalently,

RL =14+V(R.m.\) (3.3.47)

with V(R.m.y\) given by equation 2.2.43. Note, one still has the turning points

given by R: = 0.
So now, the euclidised action for the classically forbidden region is

S

- [ 2 : RS, mily
W= [ {230R? —amoR? — (Bl + R - 35

(3.3.48)

+RR g arctan( %ﬂ) lf)} dr

Yet this can be simplified as one requires only the classical action. This means that
equation 3.3 46 can be invoked, both to cancel terms, and to re-express Ry in terms
of R, m. and \. Thus one has
. rf 3n 3,213 Rf., 5 mJdy
W= f { 3\"72 - =5 |..—

T 14 s
fo b s (3.3.49)

+RV1+V arctan(@) IZ} dr

with 3 = £/ f = 72;’5 = £,/f = 1 = V. Unfortunately, this expression for the action

is not yet suitable for numerical evaluation, as R = R(7) has not been specified.

From T’s equation of motion, o= has a differential equation for R in terms
of the wall parameter 7, but it is not an easily solved equation. Therefore, an
approximation is in order. If it is assume -hat the radial width of the forbidden
region is very small then ’s radius changes little over the course of the tunneling.
This feature is the one to be exploited, as R is to be considered constant. Whilst it

is perhaps an oversimplification, this approximation reduces the action integral to
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a trivial integration, for which the result is

S A "2!'_

+RV1I+V arctan(ﬂf—ﬁ) |%} {rf =7}

whicli is of the form W, = (constant){r/ —'}. Further. if the value of the constant

m.Js
— mJIs

p s

(3.3.50)

is taken as the radial coordinate of a turning point, then T;’,E =14 V =0 and the
veloeity dependent term of 3.3.50 vanishes. However, if the constant is chosen to
be Ry, the turning point belonging to the bounded trajectory, then Wou = Wysatic
and this implics that the transmission coefficient is just measuring the probability
of T stayiag at R, for a time corresponding to 74 — 7. This is not what is wanted.
and indeed it makes little sense to choose the constant as R). Instead, it should be
taken as Ra. as then at least this approximation has some indication of the forbide -

region being traversed If this is done, then one has that for the T1 subclass,

Wa - ”"cll.smtic =~ {\\/;?'_ \/—-

with the Igf indicating the difference of Wg and Wetlstatic-

Hrz {rf — 7'} (3.3.51)

Now in order to obtain a numerical value for 3.3.51, the values of R, and
R need to be specified. As mentioned, one takes R, and R, to be the classical
turning points (so as to simplify the evaluation of the transmission coefficient), and
these turning points can be obtained from equation 2.2.42 by solving V(ir) = -1
for r. Unfortunately the form of V(r) is such that this equation does not afford a
general analytic solution. However, one can resort back to numerical and graphical
methods. and from the potential (figure 2.1) generated by the parameters given on

page 40, one can obtain estimates for R; and R,. Reading from the graph

R] ~ 1.2m RQ ~ 2.0m (3352)
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These values, along with the parameters, allow Wy — Wggane to be determined.
Before this is done. one should note that the distance Ry — Ry = 0.8m may not
be small enough to justify the approximation given on page 65. Yet, one must
remember that figure 2.1 was geneiated with an exceedingly small value for the
false vacuum energy density p (so to disdplay the features of the potential). For any

realistic value of p, Ry — Ry would be very much smaller.

In order to avoid confusion, the numerical evaluation of equation 3.3.51 is to

be carried out in Planck units, and so in this unit system

RP~7.5x10% RY ~1.3x 107 (-3.:53)

(Here the ? indicates a quantity given in Planck units.) Substitying in to cquation
3.3.51, one gets

W — Weetatic = 2.0 x 107{7] = 7'} (3.3.54)

and so the transmission coefficient T(R,, Ry ) can be determined via equation 2.3.74.

On substituting the numerical results obtained from the above approxima-

tion, one finds that T(Ry, R,) is
T(Ra,Ry) = exp —(2.0 x 107){rf - 7]’} (3.3.55)

As can be seen from equation 3.3.55, the value of the transmission coefficient is
very small. This however, was to be expected. Further, discussion on this small
tunnelling probability is left until the conclusion, as there a more complete overview
is attainable, and the implications of the magnitude of the transmission coefficient

can be realised.
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3.4 The Covariant Approach

Having evaluated the action in the step by step brute force manner of the previous
section, one is left with the desire to redo the calculations in a more elegant way.
(By elegance, it is meant that the form of W is more concise, general, and possibly
covariant.) This move toward elegance was hinted at in the final paragraph of section
3.1. There it was suggested that the two dimensional Ricci scalar 2R be written as
a pure divergence, courtesy of the Gauss-Bonnett theorem [26, page 309], [34]. In
particular, the work of Horndeski [40] on dimensionally dependent divergences is to

be used, but with the dimension set to n = 2.

If one has an arbitrary non-null vector field £* from which a second vector

field V'* is defined, and has the form

-2

e = sabeegd
e 1§ €%
= e (=) (3.4.56)
Then from: Theorem 1 of [40]
‘R=V1, (3.4.57)

This is the form of 2R that was sought (i.e. a total divergence). Utilizing this,
one can re-arrange the first term of equation 3.1.9 by Gauss’ divergence theorem

(equation 3.1.8). Thus

/21? r? \/T-’gd% = /7*2V“;a\/——2_(;d?x

= /S wr?Von, dS — 2 / rraVo/—2gd’c  (3.4.58)

Here S is the usual boundary surface of the composite spacetime. Substituting this



luto the action. one gets

W= J(l + (]“b’a'b Ir'ra |5 “)V _.'_‘](12-1' + 477f£",l'2 (1)1

tol—

(3.4.59)
=5 Jw(2rrtn, + 32V en,) dS

Now taking advantage of the fact that £ is an arbitrary vector field, one can choose
&* such that on the boundary surface S, it is proportional to the normal of the
boundary surface, n®. Note, this restricts the form of €% slightly, but i* ... 1l maintains
it arbitrariness within the volume. So, if £&* = Mr?)n?® then the associated boundary

term of equation 3.4.59 has an integrand that can be written as

-9
Ving = o (aeet)

f'"f

_9

_— b
Sene (€6t ~ )

B _____ b £a£b

= h\ fa:b(g E"‘Em

The term in the bracket has the appearance of a projection, and indeed if one takes

) (3.4.60)

Eafb .
Aoy = Gub — (3.4.61)
’ €%
then on S,
/\2 a b
Agn® =n® - —Zcfﬂ =nNg—ng = (3.4.62)

So Ay is indeed a projection onto S (it projects perpend.cularly to n?). Therefore,
a 2 ab ab N .
Vin, = —Xfa;bA = =20%n,y = -1 (3.4.63)

The last step in 3.4.63 involves an extrinsic curvature similar to the one defined by
equation 2.2.19; the difference is that this present extrinsic curvature is related to

the one dimensional boundary surface.
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Combining equation 3.1.63 with the othier surface term in W, one gets
1 1, 1 2 Or o
. N P T fhd /] —_ . e Q TayL.s
2‘/_,(._11 2/ Vn, dS 2/ (1‘_0.1.'“” + NJ)redS
1 4
Frei 2 5o
= —;/J Kir2ds (3.4.64)
Here the two surface terms are incorper-ted into the one three surface term (still

mtegrated over the one surface). Using equation 3.4.64, the action becomes

W= i+ G ars — rr VOV =g e + 47 [ Lor? dPx
) (3.1.63)

- % SR dS

The benefit of wiiting the action in this form is now immediate, due to the fact that
Wohas to be extended ro its quantisable form. This means that the “omplete form
of W requires the addition of the Gibbons-Hav"ing counter-term: (page ~3) From
the form of the counrer-term (equation 3.2.20) it is clear that it exs ‘' -ancels the
surface term in the action. Thus the complete form of W is,

n= / (14 g 1y — rraVo) /=25 &2r + 47 / Cor?dir (3.+.56)

with

)
1= #6&’}6“ 4, and &% = Az“)n® on the boundary. (3.4.67)
LY m

Once again, the action has been written in a form that is independent of second
order time derivatives (given that £,, contains none), and indeed of second vrder
derivatives generally. Further, this form of W is much more concise, and it is also
covariant. This means that it is applicable to any spacetime. (Compare with the
brute foree approach, which relied on the form of the spacetime.) For this reason, W
as given by equation 3.4.66 is to be used in the check on the form cf W. That is, by

extremising the variation of W one should get the classical equations of motion of
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the variables defined 1 W (in this case, Einstein’s ficld equation), and to caleulate
oI equation 3.4.66 is used.  also, equation 3.4.66 has two dynamical variables,

ab

namely r®) aud ¢*, and one gauge variable £4. So. there should be two class® al

ccuation: of motion vd eue trivial identity that follow from the varviation of W.

If Einsteln’s - quation is assumed, then by Poisson and Israel’s spherical
sviiipetry split of four pace [35. refer to Appendix A, one gets the following

decomposition.

2"’.:ub + (1 - .’]Cdr.f'r.d - 2’.31‘).’/411) = "8777"-‘7’,,[, (3468)
and
1
rOr — 3R = 87r*T) = 8T = 8% °P :3.4.69)

(Note. P = ¢"T,y = tangential pressure.) These are the two classical equations of

motion that one should obtain through a variation of the action.

Taking the first of the dynamical variables, pamely r{x?), one has that W's

variation be extremised, which is written as
344 -
— =0 (3.4.70)
or

By the variational principie [41, sce chapter 12|, [42], this extremum can be re-

ex: wessed in the Euler-Lagrange equation form [48. chapter 7]

oL oL -
O—E—Oa (5;:) (3.4.11)

Here £ is the total lagrangian density. Substituting in for £ (i - for W) from

equation 3.4.66, one gets

1 a B a 1 ra -
0= —§r,av —2g 4 871 L - (g4 — :?-rl’ );u\/_ (3.4.72)



which ean be rearransed inio the fora

) ‘) ‘) C”l -
rCr -- l“I?r‘ =8rr°—= (3.4.73)
2 /)

Tlis has the form of one of the elassical eguations of motion - quation 3.4.69) except
for the —\}—b tertn. Yet P = ¢" Ty, and by resorting to the energy momeatum tensor
—

definition (equation 3.2.17) one has

o[22,
T\ g

, 2 mm)
c (\/jj oo ,
quoﬁm é e \
- 7251110\/:7uf, e
g0l Gos
r2sin@y/~7g V0050
ﬁm I‘?'am29
T .in€V/=%; r¥siné
['m

So equation 3.4.73 is indeed one of the classical equations of motion.

r

(3.4.74)

In order to obtain the othor classical equation of motion, it should just be
a matter of re-applving the variational procedure - tne dynamical variable g®
Again the starting pcint is the extremum

SW 6Wyraw | 6Wn

5g® = o 5g =0 (3.4.75)

The definition of the energy momentum tensor deals with the variation of the matter

1

contribution, as one has

oW 47r 2
59 rey —29T (3.4.76)

As to the gravitational term, its variation is not as simple. Whilst equation

3.4.66 is more clegant, and has W expressed as the two dimensional integral of a
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Lagrangian density, the second order derivatives have been removed, so it is hard
to match the result f the variation to equation 3.4.68. Instead, it is casier to use

the general form e ven in equation 3.1.5. Thus one ouires

g 1 9 9 0 ") 1 . Y i ; ——
£ (1 '/ ety =gdtr + E /(1 - g”hr'“r'b - '21'[:]1‘)\/ —»-gd'.r) {3.4.77)

. . . D) . .
In order to take the variation. write 2R = ¢**R,,. and then the first term in the

variation becomes

L ofoy o 5 o 1 R
¢ (I/-R "-\/3;‘1-‘1‘) = é (I /!/("’R.,f, r \/——ng'.r)
l : ! 2 2 ab 12
= 1 / ]-'(Ruh - 5!},,,,'[?)\/?-7/(5” [ A

1 ) o / N )
= +1 J/ g""b‘l?d;,;"v =2gd-r (3.-4.78)

using the standard variations of the metric an! determacant [41, page 364] [38.
. - . . . . v I .
page 88]. Now. a two dimensional spacetime is conformally flat, so Ry, — g R is

identic:!y zero. Therefore,

o 2 [T o 1 o — )
6 G/R' ) = 7 [yto Rart g (3.4.79;

Now, the variation of the Ricci tensor is obviously non-zero and it has the form [41,
consult §12.4]
ORgp = O8Iy, — 6, (3.4.80)

ach

which immediately suggests an integration by parts (so to re-express the variation

in terms of 6g°*). Hence,
r26Ry = (rz);;, 606 — (r?).. 6T¢, + divergence (3.4.81)
(Note, one can drop the divergences as they take the form of dyramically irrelevant

surface terms.) Still, the variation is not in terms of §¢°*. To correct this, write
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h = S, and integrate the variation of the Christoffel symbols by parts. A little

alpebra gives

" A 1 ,..
'--(\Rub = ("2):r(bh;, - 5(’.2)"?«' hnb - 5("2):&1 h
. 1 . 1 5. .
= grPoRy = (r?).as h® — 3(7-?)"':C h — S(r“’)'c:c h + divergence
= (%) 69" + (%) . g 69 (3.4.82)
(Note, 1 = -pg" and h = —gu6g°). Using this result, the complete variation of
e, is
“’”’4 rav. 1 I B
— = (_((_" )ab + ( ) clab — (1 i/ | dr.cr.d - 3"";cd96d)gab))
(5_(/"[' 4
1
—) alb — r7';ab+(rr;ab+r:ar:h)
1 —
—5(rrcag™ + rierag™)gas)y =2y dx (3.4.83)

are, i order to obtain the correct variation, one must not forget to include such

ferms as o L (rry).) Thus, under arbitrary variations in ¢° b one gets that

877 = (=1)as + (1D)igas = (1= g7 vy = 27, )gab — 2T aT b
—drry + HrTias + FaT) = 2(Tcag™ + TicT:a0™ ) Gab (3.4.84)

which can be casily rearranged to give the second classica! equation of motion,
eqnation 3.4.68. So, it appears that the action (equation 3.4.66) is of the correct
form, in as much that it implies the Einstein field equations (which are taken as the

starting assumption).

Yet there is still the variation of W with respect to the gauge variable £°.
However, as £° is a gauge variable, and the two classical equations of motion have al-
ready been obtained from the variational principle, only a trivial identity is expected

from the & variation. From the variational principle

SV oc oL
= N=-——— .4.85
Of“ 0 = EX Oh (35";6) (3.4.85)




So. by direct caleulation (Note, here £ is chosen to be nornialised in order to simplify
calculations, vet it does not compromise the arbitrariness of £*) one has

oL

o, cf o ch N
Df“ = ”-"E,:ﬂ =1 '.u\t,;h (318())
ac
. sbee 0 ! -
vl rra0.E —rr & (3.1.87)
S b
ac
( b ! 0
s ( — | = e =l (3.4.82)
S

Ou substituting these expressions into 3.4.85, it is clear that the vanation gives

0 = 0. which is in line with what was expected.

Thus, it has been shown that for the action given (either equation 3.1.5, 3.1.9
or 3..4.66) one can obtain tie classical equations of motion which are the components
of Einstein’s field equation. As the field equation has been the starting point of the

analysis. W has been shown to be of the correct form for the composite spacetime.
3.5 Evaluation Of The Covariant Actiru

Given that section 3.4 was spent developing a more elegant form for the action,
with the results culminating in equation 3.4.66, the obvious question is begged.
Can the use of equation 3.4.66, with its more elegant (and covariant) form, simplify
the evaluation »f W and of the transmission coefficient? The immediate answer
would be that the covariant form, and absence of surface terms would provide for
casy evaluation of W. Unfortunately, this is not the case. The reason for this is
the boundary restriction on €2 = A(z®)n®. This requirement means that £ is not
completely arbitrary, but is restricted. Nevertheless choosing a £* that satisfies the

boundary condition is not difficult, and for example, one immediate candidate is

£ = g"F, with F = {t —t)(t = t/)r(r - rp) (3.5.89)
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The fortn of F is due to the boundary surface (which was discussed on page 47)
aned its rectangular or box like shape. Such a shape cannot be described by a single
parameter (as conld a spherical boundary), but instead, the r = constant and

t = constant hypersurfaces have to be incorporated into the form of £2. Hence such

choices as 3.5.89

Yot it is the actua,  -alnation of W that causes probiems, as one is required

to integrais
rrgV® (3.5.90)
over the proper two volume, with ¥ given by 3.4.67. In order to do this integral,
one seleets a convenient coordinate system (e.g. Schwarzschild or de Sitter), and
+o o the integration over the two coordinates. However, all the obvious
o chuices lead to rather difficult integrals; most of which are elliptic in
. acter (due to the dependence of V* on f“{:’c and €9€,). Again, the cause of the

problem is the form of € which results from the box shaped boundary.

Thus the action, when expressed in this elegant form, is quite difficult to
ovaluate. Therefore, whilst the use of the Gauss-Bonnet theorem may provide a
more clegant form of W for which the application of the variation principle is simple
{due to covariance and the three generalised coordinates), it ioses to the brute forcc

approach in terms of physical simplicity, and evaluatibility of W.
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CLAPTER FOUR

THE STANDARD HAMILTONIAN APPROACH

4.1 Introduction

As mentioned in the introduction of chapter one, the explicit evaluation of the action
via the Lagrangian formalism is not tiic only approach that can be used in order to
determine the transmission coefficient for ¥ passing through the classically forbidden
region. One has the choice of using an alternative treatment of the tunneling process.
This alternative approach uses the Hamiltonian formalism, which has its foundation
in the generalised coordinates and ce'jugate momenta of the system. One of the
main reasons for turning to thiz % .alism is that it links up with the attempt
at canonical quantisation of the syt.c:  If such a quantisation can be performed.
then through the solution of the Hamilton-.lacobi equation of the system, one can
obtain a first order approximation to the transmission coefficient. This last step
is achieved by using Hamilton’s principal function (the solution to the Hamilton-
Jacobi equation) to give a WKB approximation to the wavefunctibn, and from this

the transmission coefficient is obtained by taking the ratio of wavefunctions.

Unlike the evaluation of T(2,1) in section 2.3, the emphasis here is on the
quantisation of the system. This however, is not a cut and dried matter, as the
method of quantis-:ion is nct obvious. Several different quantisation schemes are
possible [46, 47, 49, 50}, but in the discussion that follows, attention will be centred

on the Dirac and ADM schemes.



4.2 The Slicing Of Spacetime

In order to start this Hamiltonian analysis one assumes the same starting point as
thie previous method; the basic action of the spacetime is given by equation 3.1.2.
This generic action makes no assumptions about ¢. . form of the spacetime over
which it is defined. In particular, it does not have to adhere to a specific choice of
metric. Therefore, all one has is that the spacetime has an energy-momentum tensor,
which deseribes the form of the spacetime. For the case at hand, the spacetime is a

seed of false vacnum in a sea of true vacuum.

This property of generality has two beneficial features. First, some of the
rigidity in the spacetime is lost due to the fact that one can retain additional degrees
of freedom within the formulation of the problem. This means that during the
quantum tunneling era, the metric of the seed spacetime can adopt any form so
loug as the energy-momentum tensor is maintained, or there may in fact be no
lixed metric form. Such a variation in the metric forin would see:a to imply that
the occurrence of tunneling is linked with topological changes during the course of
the transition. (Note that this link to topological changes is only applicable to a
classically forbidden region, as in such a region the classical equations of motion
have no solution, yet there exists an interpolating gcometry.). The second feature
is subservient to the former, and is that in order to describe the spacetime as given

by equation 3.1.2, one has a large range of choice in the form of the metric.

Utilising these features, one can easily write down a very general metric,
which is only restricted by the assumption of spheiical symmetry (which is used to

simplify the analysis). So, splitting off the spherical symmetry contribution, the line



elee: 1 orakes the form
2 a b 20y 10)2 9
ds™ = gl e®dr’ 4+ u=(0")d§; («1.2.1)

witl Q3 representing the two sphere line element, and u(r*) the two sphere radius.
However, it is the two metric g, that has to be specitied, and generally it coatains
three independent components (given that it is symmetric in its indices) which must
be identified. Identification is necessary, as one of the crucial requirements of canon-
ical quantisation schemes is that time is treated as a special coordinate. That is, the
time variable is singled out in order to make the description of the system dynamical.
sucl: an identification of the time variable corresponds to foliating spacetime with
surfaces and having the connection between hypersurfaces given by the evolution of
the time variable. With canonical quantisation and the Hamiltonian formalism, the
time coordinate assumes a higher status than the coordinntes, as the theory is given
in terms of spatial configurations (or sn#y .ants) that ev - via the laws of physics,
to different spatial configurations. This . dis »ct result of trying to visualise the

four dimensional spacetime as a foliated structure.

Now in order to identify the time coordinate, . .v¢ need only specify the form
of ga explicitly. That is, the three independent components of gq, must be ident:-
fied. Note, as gq has three independent components, it implies that the system g,

described has three degrees of freedom. The standard form for breaking up g, is

l? 2 2 1‘2,0

vt —mn
9ab = (4.2.2)
v 12 )
which gives the li.ie sicinent -
ds? = (Iv? — n?)dt? + 21%vdtdr + 1%dr? + u?(t,7)dQ3 (4.2.3)
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with w, L. . and u being functions of the coordinates 0® = ({,r). (Note, here t and
r represent generie temporal and radial coordinates respectively.) In this notation
n{r*) is commonly referred to as the lapse function (as ndt is a measure of proper
time hetween hypersurfaces), and v as the shift vector (which is one dimensional in
this case, hencee no index). A full description of the geometrical properties of this

metric construction can be found in §21.4 of reference [26]

On taking equation 4.2.2 the Ricci scalar can be calculated by the standard

procedure, and with a little algebra it can be shown that
—tg = u’sin#y/-2g = nlu*sinf (4.2.4)
.02 . 2. .. 2
V=1g'R = 2sind{=(vlu) (i - vu') - ;L-(lr) (& —nu')4 ~ {nu)d
n !
l , nu
+in + —(i — vu')? - -,—l{i—} (4.2.5)
n

= 2sinf °L

with * representing differentiation with respect to the time coordinuiz  and ' rep

resenting differentiation with respect to r. Equation 4.2.5 gives the gravitational
contribution to the action in terms of the four degrees of freedom (n, !, v, u). For the
expanded version of equation 4.2.5, consult appendix A, which contains the : ~ult
of the computer generated calculation of the Ricci scalar. Thus the generic action

has the form

W= -1%/.43,/—49(1‘*“%

1 [y
= = + '™ 2.
2/cd dr+ W, (4.2.6)

Yet this form of W is not immediately beneficial, as no obvious features spring
forth. In fact the only thing worthy of note is that the gravitatienal contribution
is independent of time derivatives of the lapse and shift (i.e. it is independent of n

and ?).



However. the reason for re-expressing W in this form is that it {s to be used
in the canonical qnantisation of the system. Yet before discussing this specifie case,

a general outline of the quantisation procedure seems appropriate.
4.3 Canonical Quantisation

The recason for re-expressing W (eouvations 4.2.5 and 4.2.6) has not been made
clear (other than to say that it aids ‘he canonical quantisation). Therefore, an

explanation is in order.

The general definition of the action of the system in terms of the system's
Lagrangian density is

W:/Eclt (4.3.7)

with ¢ being some time coordinate. From the variatioial principle one gets the

standard Euier-Lagrange equations, and if £ is expressed in terms of generalised

coordinates ¢;, and the generaliscd velocities ¢;, then the form of thie Euler-Lagrange

equations is

d oL oL
'35 " 5g =0

Here : = 0,1,...,.N with N being the number of generalised coordinates. Now the

(4.3.8)

Euler-Lagrange equations give NV second order coupled differential equations, which,

generally, are difficult to solve.

Fortunately, on switching to the Hamiltonian formulation, this set of second
order differential equations can be replaced by an equivalent first order set. To
see this, start by defining the momenta conjugate to the generalised coordinates.
Following the standard definition [48, chapter 8] the conjugate momenta are

g

=5 (4.3.9)

Mg
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Such n definition allows the system to be deseribed either by the (g;, ;) or by the
plinse space coordinates (q;, 7, ), with the former used in the Lagrangian formulation.
If one chooses to switeh to the phase space coordinates, a Legendre ‘ransformation
is required [48, §8.1), [49]. As a result of this coordinate transformation, one obtains
(Ly analogy to thermodynamic arguments) the Hamiltonian H, which is by definition

a function of the phase space coordinates. M has the form
H(qi,mg,) = — L{qir i) (4.3.10)

Clearly, in order to express H purely in terms of ¢; and 7y, (i.e. eliminate ¢;), an
oxpiession for ¢; must be obtainable. That is, equation 4.3.9 must be invertible.
If the is the case, then H(g;, 7, ) can Le deined, and so with the help cf equation

4.3.10, the action becomes
W= /(qinq,. ~ H(gi 7)) dt (4.3.11)

which can be expressed as a function of ¢; and #y,. This is desirable as then there is no
trouble in the quantisation, which involves tr. sting ¢; and 7, as operators. Further,
one is now working in phase space whore there are 2V independent variables (i.e ¢;
and m,,) instead of N. When the variational principle is applied to this form of W,

gets 2V coupled differential equations. However, the benefit is that this set of

wential equations rontains only first order equations, and is commonly referred
to s the canonical equations of Hamilton [48, refer to §8.1], and are equivelent to

the Euler-Lagrange equations (equation 4.3.8).

Yet one must be careful, as this system gives 2V equations of motion, but
it may not have 2.V degrees of freedom associated with the 2N canonical variables.
Instead, the system may have some constraining equations, which would restrict

the number of indcpendent variables. To deal with these constraints and their
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implications it is advisable to first classifv them. To this end. the classification

schenie to be used is the one given by Dirac in his papers on generalised Hamiltonian

dynamics (49]. It is as follows:

Primary Coustraints. These are defined as relations where the s are not
all iandependent functions of the ¢;'s. Thus, if the Tq. s only involve .V — A

incepeadent functions of the ¢;'s then there will be M independent relations

Om(Gi,7g) =0 m=12...M M<N (4.3.12)

. Sccondary Constr.is. .. These are obtained from the primary constraints by

differentiation w.tiv r+spect to the time coordinate. If differentiation produces
sontething other than a trivial result (0 = 0) then one has a secondary con-

straint. Such constraints are usually expressed as
Xk(Gi, ) =0 k=1,2,... (4.3.13)

Note, one of the main distinctions between these two classes of constraints
is that the primary constraints occur in the equations of motion, whilst the

secondary ones don't.

’

First Class Constraints. If the Poisson brackets of a function with the Hamil-
tonian and all the primary and secondary coustraints all vanish, then the

function is said to be first class.

Second Class Constraint. If a function does not satisfy the requirements of a

first class function then it is second class.

It should be noted that for a Poisson bracket to vanish, it is necessary ti.at it vanish

weakly. In this context, a weak equation is one where the equation is satisfied such
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that the Poisson bracket remains a well defined objeet. The reason for this definition
is that given that primary constraints exist, then their use in the determination of
the Poisson bracket causes it to be ill-defined (as the Poisson bracket assumes all
the ¢i's and w,,'s are independent). Therefore a weak equation or equality is one
where the Poisson brackets are evaluated without any assistance from the primary or

secondary constraints. Naturally, equations 4.3.12 and 4.3.13 are weak equations.

These are the four main classes of constraints, but as the definitions show,
they are not mutnally exclusive; for example, a primary constraint can also be first
class. Nevertheless, one does have a complete categorization of the constraints, and
so the task is now oue of considering the effects they produce. This is done by solv-
ing the noun-trivial equations and the Poisson brackets that the constraints produce.
Then under quantisation (i.e. treating the canonical variables as operators) one gets
a sct of constraining operator equations which act on the wavefunction of the sys-
tem. Apart from complications associated with operator ordering, the quantisation
proceeds as with normal quantum mechanics. Further if no gauge fixing is done,
so that the system contains more dynamical degrees of freedom than required, then
this canonical quantisation is referred to as Dirac quantisation [49]. On the other
hand, if one gauge fixes (usually by hand) so that one has the minimal dynamical
degrees of freedom, then the quantisation scheme follows that of Arnowitt, Deser,

and Misner (ADM) [50].

If the ADM version is applied to the composite spacetime, then due to the
symmetries (eg. spherical), the system should reduce to just one degree of freedom;
the radial position of £. Such a gauge fixing would simplify the analysis of the
action, but unfortunatelv, there does not seem to be a clear choice for fixing the
gauge [44]. Therefore, this scheme will not be adopted in favour of the procedure of

Dirac.
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4.4 Dirac Quantisation of W

I applying the method explained in the previous section to the action integral, one

needs to re-express Woin the form

W= %/(wq,q,- —H)dtdr + Wi (4.4.14)

After a little algebra, one gets from the explicit form of £ given in ion

4.2.5 that the conjugate momenta are

T, =2 =0 Ty = Q% = 1((vlu) = (lu)) (14.15)
ﬁ,.:%: ﬂ,:%:l’lﬂ(&—vu’)

which allows equation 4.4.14 to be written as

W= %/(ml' + 7t = nHy — vH, ) dtdr + Wa(pi,qi") (4.4.16)

with
drp ommy 1 2ud u'? m -
H, = " T a +2[( ] ) - l ]+ H;, (4.4.17)

and
Hy = u'm, — lm; + HY' (4.4.18)

Here ¢ refers to the matte: degrees of freedom, and p; the associated conjugate
momenta. If the matter aciion W, contains no momentum dependence other than
pi (as is the case for truc and false vacua), then this form of W has two immediate

features; the vanishing of both 7, and =,. Therefore,
T, =0=m, (4.4.19)

correspond to two primary constraints. Further, from these one obtains two sec-

ondary constraints, as the time derivatives of these momenta result in non-vanishing
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Poisson brackets of the momenta and H. Following the standard definition {51, the

Poisson bracket of operators A and B is

04 0B 040D
[A.B)= 7= — ﬂ—,——— (4.4.20)

and so
OH

[ru.H] = I (1.4.21)
However, —‘% = 7, (by the canonical equations of Hamilton [48, §8.1]), and =,
can be shown to be zero. This can be done by writing %(7.',,), and then considering
the Euler-Lagrange equation (equation 4.3.8) which gives ‘(;—ﬁ = m, = 0, therehy
implying that #, = 0. Thus [m,, H] = 0, equation 4.4.21 implies the secondary
constraint

H, =0 (4.4.22)

Similarly, the Poisson bracket [7,, H] produces a second secondary constraint,

namely

H, =0 (4.4.23)

In terms of the constraint classification of the previous section, it should be noted

that both equation 4.4.22 and 4.4.23 are first class constraints.

With the constraints as given above, their physical implications need to be

extracted.

To do this, one must realise that one is dealing with a quantum system, with
the canonical variables as operators, and so the system is described by a wavefunc-
tion ¥. If no constraints were applicable, ¥ would be a function of all the generalised
coordinates. However, due to the primary constraints, ¥ must be independent of n

and v (this can be seen if one considers the Euler-Lagrange equaticns for n and v).
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Thus b = W(l. u,q,), which implies that ¥ depends only on the spatial geometry

of the foliated spacetime, and the matter content,
1

Next, the secondary constraints have to be considered. Yet
Ha ¥ =d=H, P (4.4.24)

does not appear to be of much help. Only if one confronts the Hamilton-Jacobi
cquation and uses a WKB approximation does the usefulness of equation 4.4.24

become apparent.

As mentioned in the introduction to this chapter, the easiest way to solve a
system of coupled equation characterised by the Hamiltonian H, is to transform the
reneralised coordinates to a new set where the canonical coordinates are cyclic (48,
$10]. This corresponds to a transformation to a system that has a Hamiltonian that

is identically zero. That is, if H is the transformed Hamiltonian, then H = 0, and

0 = H(q. mq,t) + % (4.4.23)

with F being the generating function of the transformation (48, chapters 9 and 10].
Clearly, this equation is a function of the phase space variables (g;, m,). However,
using the transformation, one can write equation 4.4.25 as a partial differential
equation of the generalised coordinates ¢; and t. In particular, the transformation
of the Hamiltonian gives several coordinate transformation equations ([48, §9.1,
equation 9-17, page 383]), of which, the most pertinent one is

JF

;= 5;1"' (4.4.26)

Tq

Substituting this into equation 4.4.25 gives a partial differential equation of ¢; and

t. which is of the form

OF F
0 = H(gi, " t) + %t— (4.4.27)
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and it is this equation that is commonly referred to as the Hamilton-Jacobi equation.

Further, its solution is labelled as Hamilton's principal function.

If the principal function is designated by a(q,.t) then it can be shown ([48.

§10.1, page 439]) that

a(gi.t)y=F (4.4.28)
and so
Jdo
- — 20)
T 3y (4.4.29)
This in turn implies that
algit) :/dr/x,h Ay (4.4.30)

with the integration with respect to r being due to the fact that H is a density
defined over the two-space (i.e. W = [ Ld%r). Taking equation 4.4.29, and using
it to replace the momenta in a WKB expansion of ', one has (cf. equation 2.3.69),
to first order in h

(g, 7g) = exp(zall, g, 1) (4.4.31)

With this WIB form for ¥, the transmission coefficient is then just given by equa-

tion 2.3.70, with the result being

.(0("2) —a(ry)) (4.4.32)

Under this WKB approximation, the secondary constraints can be written

as
da Jda
Halq, a a_u) =0 (4.4.33)
and
da Jda
4=, —)= 4.34
HU\Q! al b au) 0 (4 3 )
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and from these, all the derivatives of @ can be specified. Then, in order to obtain «

itself, one just has to integrate equation 4.4.30. So, the principal function is

¢
a = / (l/‘/rr,,. dy;
0

= /°° dr/(m dl + 7, du) (4.4.35)
0

Ouce a has been determined, the form of the wavefunction can be given by
equation  4.4.31. The transmission cocfficient then just becomes the ratio of the
wavefunction at the initial and final spacetime configurations (as given by equation

4.-4.32).

4.5 Determining The Principal Function For The Compos-
ite Spacetime

It is now clear what is required of this Hamiitonian approach, as the mathematical
skeleton has been laid bare. To flesh out this Hamiltonian formalism as applied to
the compos.te spacetime, the matter contribution of the action must be specified.
With reconrse to the discussion of the matter contributions given in section 3.2,

one can write W as

Rt [ e v [ e
= -}/QRu"’\/—_?;dzx —47rp/u2\/—_2gd2r+47r0/8u2 dr (4.5.36)

Here 7 is the proper time parameter on . From equation 4.2.3, if one restricts the

AN

line element to that of the wall £, then in the thin wall approximation

ds? = (—=n? + (4 + v)?) dt? = —dr? (4.5.37)

This gives d7 = \/ n? — [2(4 + v)? dt, and so the action be written entirely in terms

of the canonical coordinates. Thus, by comparing equations 4.4.14, 4.4.16, and
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4.5.37 one obrains the following form for W

o1 : .

W= 3/(:,1 + mult = nHy — vH, ) dtdr (41.5.38)

with

Moo= gk = By Ly w2 ) 4z ple?Od - u)
(1.5.39)
+8(0 = u)/& + 1672020

and

He = u'm, = lz) = 8(it = u)p (4.5.40)

Note, @ is the two sphere radius of T, and p is its momentum conjugate. Like equa-
tion 4.4.16 the action has the canonical form , with H,, and H, acting as Lagrange
multipliers. and the constraint classification remaining nunchanged. However, the
difference between equation 4.4.16 and equation 4.5.38 is that the latter includes

the matter explicitly, and as such is specific to the composite spacetime scenario.

In order to solve for the principal function (equation 4.4.353) one requires
the form of #; and =, which are obtainable from their definitions (equation 4.3.9).
However the use of equation 4.3.9 is not necessary (and is in fact quite algebraically
messy ), as one is free to appeal to the two secondary constraint (equations 4.5.39 and
4.5.40). Both depend on =, and so 7, can be eliminated via a suitable combination

of these constraints. The appropriate combination is

!

0= 2H, + 2n, (4.5.41)
{ ul
which in expanded form is
u'n? u 2uu |, u'? 2 fong -
= _— - - -
0 5az + 21[( 7 V= | +d4mpuu'O(d — u)

t [=2 7!

+6(a—u) [ 16720200 — 22— Dl —u)p  (4.5.42)
Ly u lu
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= (30 = 1)) + (2Lt -y
r [0 -

(i — u)('i\/’—'_,- + 167220 + 2 j) (4.5.43)
Ly lu

with f = g"uuy as the geometrical mass function of Poisson and Israel [33). In

order to interpret this constraint combination rewrite f as

2m(a®)

u

(4.5.44)

f=1-

with m(a*) taken as a mass function. Equations 4.5.43 and 4.5.44 then give that

Tr u w ., - -
m(xr®) = Tfl + 51 = (5} (4.5.45)

and the constraint (equation 4.3.43) takes the form

2mp 2 P2 25 5 5
m(r"t) = '—'73£u"(-)(fz - u)+ - o7 - r)(% 11)_1 + 16720201 + l%p) dr (4.5.46)

However, the matter contributions of the system can be incorporated into a gencral

mass function by defining M(r%) as

M)y = m(x?) - 2—;3112@(& - u)

~218(r - r)("T',/g% + 1672024 + Lp)dr

Note, this definition simplifies the form of the constraint to M(z®) =0.

(4.5.47)

At this point, the physical interpretation of M (z°) is unclear. The M(z%)' =
( constraint implies that M(z®) is constant in the radial coordinate r. Yet from
cquations 4.5.44 and 4.5.45, it can be seen that m(z?) reduces to the Schwarzschild
mass parameter m (this is most easily ascertained if one considers the case of a static
slicing of the spacetime (m = 0 = 7u). The other contributions to M(z®) simply

subtract off the matter content of the composite spacetime. Therefore M(z°) is
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an adjusted mass parameter of the system. With this interpretation of M), one
then gets two boundary conditions on M), The first is a result of requiring the
origin to be non-singular, which implies (due to equations 1544 and 4.5.47) that
M({r = 0) = 0. The sccond comes from the fact Birkhoff's theorem implies the
exterior true vacuum region is Schwarzschildian with mass parameter m. Thenee.
M(r — x¢) = m. Also, nsing the fact that as the composite spacetime is composed
of true and false vacuum regions, M(r") is constant within a given region, one gets
thie following conditions on M({(r®).
0 u<a
M) = (1.5.48)
m ou>u
Note, the matter terms in equation 4.3.47 counteract any contribution from m(r*)
so that equation 4.5.48 holds. Substituting this into equations 4.5.45 and 4.5.47

one gets that

=l -1+ Bl =28 L) < (4.3.49)
and
=t -1+ By =M~ f) u> (4.5.50)

which gives 7; in the two regions (here fp and fg are as defined by equations
2.2.2 and 2.2.3). From the second secondary constraint (equation 4.5.40) one can

determine the form of 7, as a function of [, u, u', p, and m.

Specifying m; and 7, in both the false and true vacuum regions is not quite
enough to permit the determination of Hamilton’s principal function. The reason

for this is that equations 4.5.49 and 4.5.50 don’t include contributions from X.

To include T's contribution to the differential form of the principal function

(equation 4.4.29), the jump in the momenta must be evaluated via the £ junction
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conditions. To do this, it is assumed that the foliating of the spacetime is such that
the spatial geometry is continnons across £, Note, this seems physically reasonable.
and due to the form of equation 4.2.3 it is just a matter of choosing wisely. With

this assumption, one can then take the juinp of equations 4.5.49 and 4.5.50 at &

(note, the pur.pas as defined by equation 2.2.26), and obtain
mlm]  wd[W]  WE  mp ..
—_ - = ——— — 4.3.51)
" [? 2 ul (
with
E = \[j* + 16720220t (4.5.52)
Now by matching terms of 7 and o’ in equation 1.5.51, one gets
- .
(7] = ~Ii (4.5.53)
-E o
W] = — (4.5.54)
i

which are the junction conditions for ¥,

For the set of eqnations given by the constraints (equations 4.5.49, 4.5.50.
4.5.02, 1.5.53, and 4.5.54) there are six different parameters to be determined
(namely w'(F +€). u'(F — €), (7 +¢€), 7(7 =€), p. and E), but only five constraining
equations . So, in order to solve this set of equations, one of the parameters has
to be specified. One such choice is one that corresponds to choosing the frame of
reference that the set of equations is to be solved in. The easiest and most obvious
choice is the rest frame of T, and this has p = 0. With this choice, the junction

conditions then give

si(F+e) = wH(F—¢)

)5} (4.5.55)

4224 1 .
= dro*a'{(2u—1-A) + 8u 4(47mm
) - -ml -

W(F+e€) = Trod? +2nola(A + 1) (4.5.56)




. —ml -
Hir =€) = ——— 4+ 2xalu(\ - 1) (4.0.07)
drou-

with

’\ — ) _ i (l:)‘-)\\‘)

tres = eemaTo
This result, when combined with eguations 4.5.49, and 4.5.50 gives 7 and o’ over

the entire range of the composite spacetime.  Also, equations  4.5.55, 4.5.56, and

4.5.37 give the motion of £, which has some of the features deseribed in section 2.2,

The characteristies of the motion are as follows.

e 77 can be positive or negative, corresponding to the momentum being in clas-

sically allowed or classically forbidden regions.

e =7 is positive as & — 0 and ¢, and so the initial segments of trajectories like

the bounded and the bounce solutions of section 2.2 are permissible.

e If m is sufficiently large , then 77 is never less than zero, and so the associated
T trajectory would have no classical turning points. This correspond: to the

monotonic solution of section 2.2.

Now the second and third characteristics listed imply that for m less than the
critical value, a classically forbidden region exists, which is bounded by two classical

turning points.

So, given that two classical turning points for the motion of £ exist, one
can legitimately ask what the transmission cocfficient is between these two turning
point configurations. To start such a calculation, label the turning points by r; and
ro with r; < r.. The transmission coefficient that is to be determined is T(r,, ry)
and is given by equation 4.4.32, with r; and ro being the two end points. Note,

one feature of this Hamiltonian method is that one can calculate T(rq, ;) without
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worrving, about the tvpes of trajectories involved (as was the case with the direct
method of section 3.3). Also, as the turning points are the end points for the
tunneling ealenlation, one has by definition of a turning point, that the endpoints

have the condition that all the momenta are zero. That is,

p=m=m,=0 (4.5.59)

4.6 Evaluation of T(ra, 7).

In order to evaluate T(ry, ry) one appeals to equations 4.4.31 and 4.4.32 which give

-

o T L
Tlroor) = ) —(.\p(h(a(l-_,) a(ry)) (4.6.60)
with
B(r) = oxp(-;;a(r)) (4.6.61)

As can be seen from these equations, the determination of the principal function
alr) is of central importance. Further, T(ry, rp) involves evaluating a(r) over the

ringe (ry.ra). Turning attention to the principal function. equation 4.4.35 gives
a(r) = / dr / (midl + 7ydu) (4.6.62)

Note, unlike equation 4.4.35, the range of the r integration has not been given, but
as it is T(ry, ry) that is being determined, the range is (ry, 7). In applying equation
4.6.62 it should first be noted that the region over which T'(ry, ry) is evaluated is the
classically forbidden region, and for this region 77 < 0 (equations 4.5.49 and 4.5.50)
which implies that 7 is imaginary. Similarly for 7,. This gives equation 4.6.62 an
imaginary integrand. To remove the apparent imaginary factor from the integrand
(which is due to being in the classically forbidden region), multiply through by :

(this factor of i comes from equation 4.6.61) to get

T = ifq (4.6.63)
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with &, being real. Under this change in notation, eqnation 4.6.61 becomes

0

P(r) =exp~— (1.6.6:H)

h
From this equation it is clear that if a(r) is real, then the wavefunction has the
form of exponential decay (or growth) which is consistent with standard quantum

mechanical tunneling through a barrier.

Now as equation 4.6.62 has an integration over the whole range of r (ry, 1)
and T lies within this range, a(r) is broken into three components; an interior, an

exterior, and a wall component. So. define

a(r) = ofr)+ )+ aylr

(03]
= / / / (h/..,(ll-{-'ru(lu) (4.6.65)

and consider each component separately. As discussed by Fischler et al. [44] the
evalunation of G{r) can be done in two steps. The first step is the integration over
the variation in [(») and u(r), whilst the second is the integration over the radial

coordinate r.

In attempting this first step, consider é&;(r). This contribution is from the
false vacuum region, and so one can consider £ and the geometry in its immediate
neighbourhood to be held fixed, whilst [ and u are varied over the false vacuum

region. Thus with 7 fixed

&(r) = / dr/(fr,dl+7"rudu)

/r: dr/ %\/l—ig—p)l?u'z—u’zdl

(1- iI2)12 2wl

\/(1 — dze)2y2 — 2
7 u fol? —u'?+ L5 —wy”
/,, dr/(T,/szz — Wl L du) (4600

D

du
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Here the momenta have been converted to real quantities via equation 4.6.63, and
. has been obtained from the second secondary constraint (i.e. T, = %1). Also
fo=1- "—:’;l—'u,"’ =1 —\2u? ( cquations 2.2.3 and 2.2.9). In order to obtain a(r)
from this variation over [ and u, integrate first with respect to I, then with respect
to u. Thus, integrating with respect to ! along « path of fixed u up to an [ associated

u'

with the ry turning point, which is characterised by | = s one has
D

/ ’li Folr — w'tdl (4.6.67)

Note, as u is fixed, the last term in equation 4.6.66 drops out. With reference to
Gradshteyn and Ryzhik [45], one finds that the general form of such an integral is

given by

/ -—Lf—;——}-—g dr = Vel +a+al (4.6.68)

with

-271;lnf‘—;1§§ a>0,c>0

.-2—% In %—: a>0,c<0 (4.6.69)

A cos™! (E) a<0,c>0

vV—a T

and the case that is applicable to equation 4.6.67 is equation 4.6.69. Therefore

!
/%\/mdl =/ fpl? - uw'?—ud cos™! <l——u—\/7—5> (4.6.70)

To complete the integration over the variation in ! and u, one has to keep [ fixed

at | = 7“}— and integrate over u to a standard configuration like ! = 1 and u = 7.
D

With such a pxth there is no contribution from this second section, as due to [ being

u'

fixed at [ = —%==, all the momenta are zero. Hence,
o J
v

a(r) = [: (\/ful'z — w2 — uu' cos™! (l;};)) dr (4.6.71)
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Similarly, one can evaluate ag(r) with the same sort of argument: the only
differences being that as one is dealing with the exterior fg replaces fp, and the
range of the r integration is different. Thus ay(r) is

!

az(r) = /r_r2 (\/fglz —u'? = ' cos™! (1——\‘/1,,_-—}-:)) dr (4.6.72)

With a,(r) and az(r) determined, attention mmnst be focused on éq(r), which
by definition must depend entirely on the geometry of £. This implies that the
geometry is not fixed at £ and so the variation of [ and u extends to T in this case.

Using the same type of path of integration as before, one gets
ra -
a(r)y = / df/(fr, di + #,dit)
™

= /r2 (it{cos™! (____u’ff — E)) —cos™! (M)}) dr (4.6.73)
r Wfp I fs

Here it should be noted that for equations 4.6.71, 4.6.72, and 4.6.73 the inverse

cosine is taken to have values in the interval {0. 7).

With G,(r), aa(r), and é3(r) determined, the transmission coefficient (equa-
tion 4.6.60) can now be written explicitly. As T(ry,7,) depends on the quantity
a(ry) = a(ry), this can now be determined using the three component pieces evalu-
ated over the turning points. Fortunately, as the turuing points are the endpoints
of the tunneling, the turning point condition (equation 4.5.59) simplifies the form
of & (r) and a3(r). Principally, this condition sets the first termn on the right hand
side of equations 4.6.71 and 4.6.72 to zero, whilst the integrand of the second term
in these equations reduces to —uu’cos™'(£1). The =* in the inverse cosine is de-
pendent on the sign of u' relative to the sign of [ and can be ascertained using
equations 4.5.56 and 4.5.57. Also, as the inverse cosine is defined over the principal

branch cos™!(+1) = 0 and cos™!(~1) = . However, care should be taken, as the
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relative sign of v’ may change over the range of the integration (r) to ry). Hence.

the evaluation of a;(r) and a3(r) requires a little more attention.,

To specify when w'(F — €) and u'(7 + €) change sign, consider equations 4.5.56
and 4.5.57. If one adopts the classification scheme of Farhi et al., there are two values
of the mass parameter m for which a sign change could occur (here it is assumed
that m is below the critical value, so that a classically forbidden region exists). It
should also be noted that this classification is equivalent to one given by Blau et al.
[29]. So, under this classification, identify two characteristic mass parameter values,
namely myy and ing, with

mp < mgs < Mayitic (4.6.74)

On considering the inner turning point, one has that u/(7# — €) > 0 whilst
W(F +¢€) >0 for m < mg, and v'(7 + €) < 0 for m > mg. Similarly, the outer
turning point configuration has /(7 + €) always negative with ¥'(7 — €) > 0 for
m > mp, and w'(# — €) < 0 for m < mp. Note, this use of the two values of the
mass parameter, gives the four trajectory types discussed in both section 2.2 and

reference [29].

With this classification in place, one can proceed with the evaluation of a;(r)

and ay(r). From above, these contributions are of the form

/ " qud dr (4.6.75)

1

with a = cos™!(£1): the value of a depends on the value of m. Combining the value
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of cos™!(==) with 1.6.75, one gets
7 8

(
T(uy — uy) m>mg
ay(r2) + ag(r2) — ay(ry) —az(r) = %(u-: - u,";,) mg>m>mp (4.6.76)
X7 0 9
Slup — uy) mp>m
\

Note, here up = u(rp) and ug = u(rg), with rp and rg being defined as the radial

coordinates associated with mp and mg.

The other contribution to @ is as(r), but for this contribution ¥ cannot be

treated as fixed, and so

Y L N AT G os- W(F+e€) .
as(r)y = /rl (cos (———lv,f_[) ) CO '<————lm ))du

_ /rz(cos_l 'x;_,:,l_ + 2#0[17(/\ -1)
- ™ lV fl)

=nl 4 omola() + 1
—cos-‘(4"”"'+ moliA+ D)) 4z (4.6.77)

VFs

with A given by equation 4.5.58.
Thus, from equation 4.6.60

T(ra,r) = eXP(:h—l(&l(Tz) + Go(r2) + d@3(re) — a () = aa(ry) — aa(ry)

—mi Ta
2 2 2 -1 | 4xcou? + 27!'0'111,(/\ _ 1)
up —u +/ cos
(wh~ud)+ | ( ( ar

=ml fa(A +1
~cos™! (“’"’"2 *2roli(A+ 1) ) di (4.6.78)

ro|

IVFs

In this last line the constructibility requirements of section 2.2 have been invoked,
as one requires a composite spacetime of very low m in order for the trajectory to

exist in region I of the Kruskal-Szekeres diagram (i.e. the laboratory region of the

spacetime).
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CHAPTER I'IVE

THE HAMILTONIAN METHOD WITH TIME LEFT
IMPLICIT

5.1 Introduction

Given that the Lagrangian and Hamiltonian methods for dealing with the tunneling
of a seed spacctime have been thoroughly discussed in the previous chapters, a
method that highlights the benefits of both formalisms is now to be attempted. The
main focus of this new method is to not single out time explicitly, yet still retain the
seneralised coordinates and the associated phase space (so to allow for an applicable
quantisation procedure). This notion of having no explicit time dependence in a
Hamiltonian formalism, is not a new idea (e.g. see the work by Weiss in the area
of continuum mechanics [52]), however it is one that still requires some form of
structure to the spacetime. The most natural choice of structure is that in which
the composite spacetime is to be seen as a foliated structure, one can not do away

with the idea of hypersurfaces evolving from one configuration (snapshot) to another.

So, in order to develop this approach, a canonical Hamiltonian formalism
similar to that of chapter four is used as a starting point. Thus, this method will
use a (2 + 2) split of the four metric, with one of the two metrics being a two
sphere (as usual, spherical symmetry has been assumed). The other two metric.
which is orthogonal to the two sphere, is then just a Lorentzian (1 + 1) metric.
However, unlike the previous method, the Lorentzian two space will not be sliced
up in the standard ADM way, which identifies the time variable and then specifies

the three independent components of the two metric gq. This is the standard
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practice of choosing the lapse and the shift functions (refer to page 78), and the
surface-one metric associated with the family of "time™ = constant surfaces. In
the previous method, these three independent functions are used as generalised
coordinates in the subsequent Hamiltonian analysis. Hence it is this complete and
explicit specification of all the degrees of freedom of g4, that has to be avoided if this
implicit time coordinate method is to proceed. Further, it seems that the simplicity

of the Hamiltonian analysis is hidden by the choice of foliation.

5.2 The Implicit Time Version Of The Hamiltonian For-
malism

As mentioned above, in order to produce a simpler and or conceptually clearer
resolution to this problem of the tunneling of the trajectory of I, a canonical
Hamiltonian-styled formalism is sought. Such a formalism would, by design, not
explicitly specify the form of the (1 + 1) metric. Although this lack of explicitness
may cause some problems, it has a degree of sensibility to it, as the tunneling of the
seed spacetime trajectory across the classically forbidden region is discussed in the
semi-classical approximation. This approximation only requires that the geometry
be of some Lorentzian form (i.e. (1 4+ 1)). Note, the spherical symmetry is assumed
to be maintained in the classically forbidden region. Yet with this somewhat arbi-
trary geometry, the notion of the two space being built up by stacking a family of
spacelike surfaces is retained (a choice between timelike and spacelike hypersurfaces
had to be made, as one needs a consistently defined normal). However, one should
note that if the foliating hypersurfaces are specified then one has regressed back to
the Hamiltonian approach of chapter four. Hence, although the two space is foliated,
the foliation is to be treated as being (somewhat) arbitrary, as the hypersurfaces

are given as spacelike, with a normal n®.
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This inexplicit foliation is a direct result of the motivation of this approach.
That is, the hypersurfaces are left implicit as one wishes to make the physics of the
problem more apparent. In addressing this concern, only the two quantities inherent
to any spacetime slice are to be used; the outward normal and the intrinsic surface
metrie. Henee in shifting from the ADM description of the foliation to one based
on these properties, a reduction in the number of generalised coordinates occurs (as
the normal replaces the lapse and the shift function). As mentioned in the Misner,
Thorne, and Wheeler book Gravitation [26, §21.4, page 507, such a reduction results
in a spacetime description that is "a structure deprived of rigidity”. Nevertheless,
such flexibility may be what is needed for the description of the tunneling through
the elassically forbidden region. This loss of rigidity fits in with the notion expressed
in the previous chapter (page 78) that the tunneling is really to be seen as a result
of topological change of the geometry of the spacetime. That is, the proposition is

that the tunneling is caused by a deforming of the geometry of spacetime.

Before considering the problem of the composite spacetime, it seems wise to
attempt a test case first so that this new method may be checked. Such a procedure
has been adopted by Fischler et. al. [44], as for a simple test case, calculated
quantities can be checked against known results. Further, for this problem of a
non-explicit time coordinate foliation of the spacetime, the easiest and most well

known scenario is a true vacuum or empty space case.

5.3 The Empty Space Case

The action associated with pure gravity is generally taken as the Einstein-Hilbert

action, which for the true vacuum spherically symmetric spacetime is of the form
1
W= [‘Ry/-4d 5.3.1
167 gar (5:3.1)
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with 'R = the four-dimensional Ricei scalar. Using the spherical svmmetry one has

a four-metrice as given by equation 4.2.1, and so the theory is dimensionally reduced

to two dimensions (refer to page 49). As with the Lagrangian method, one has to

write 'R in terms of a two geometry, and so again by Poisson and Israel [35] one has
9

R="R+ =(1 - 2ulu — u'uy) (5.3.2)
u?

Remember, u = u(x®) = the two sphere radius, and Ou = u*,. Again, the terms
that are extra to the purely gravitational two dimensional theory are to be treated
like source terms. As shown ecarlier, the action. after the dimensional reduction, has

the form

W= ;11/{2Ru2 +2(1 = 2uTu — w'u )}/ -2gdir (5.3.3)

However, as with the method of chapter three, this is not to be taken as the
complete form of the action, as the contributions from the boundary surfaces have
not been considered. Also, this is one of the features that distinguishes this approach
from that of chapter four, which doesn’t consider surface terms. The reason for the
inclusion of these boundary terms is threefold, and at risk of repetition, the reasons

are as follows:

o These boundary surface contributions to W are genuine contributions, even

though they themselves are not dynamically relevant.

e Inclusion of such terms allows the extremisation of the action (§W = 0) to be
satisfied for arbitrary boundary surface metrics as well as arbitrary spacetime

metrics [36).

e Without the addition of these terms the Lagrangian contains second order

time derivatives of standard coordinates (this is not true for the phase space
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coordinates of chapter four), which in turn canses problems with quantisation
and intermediate state insertion (equation 3.1.6. For more details, see page

50).

So following copvention. the standard boundary surface term contribution is
the Gibbons-Hawking surface term (equation 3.2.23), and when this is added to

the action, one has
W= é/{?n,ﬁ +2(1 = 2u0u — wtug)}y/ =29 d*r + -8-%/31\"\/—3hd3§ (5.3.4)

with *A” being the trace of the extrinsic curvature, and 3h the determinant of the

intrinsic three surface metric.

Now to deal with this boundary term, one has from spherical symmetry that

Ik = 3R} i €{1,2,3}

= 3R} +23K3 (5.3.5)

but this is not in a workable form for this analysis. Like the 2R, equation 5.3.5
has to be expressed in terms of the foliating surface metric and its normal (i.e.
thie replacements for the ADM lapse, shift and intrinsic metric). Starting with the

surface term, one has that the extrinsic curvature of 2 hypersurface is given by
Jr __ Ky
Kij = elein,, (5.3.6)

(Note, | = four dimensional covariant derivative.) As the two-sphere is orthogonal
to gus, the normal to the foliating surfaces is of the form n, = (n;,n2,0,0). With
the normal as such, the R} term in equation 5.3.5 can be written as

K} = elef(nu, — 'TE,nc)

= e®led(ngy — 2CSyn.) + €* te{*I'sy ne (5.3.7)
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Note that here the indices & and y belong to the two-sphere part of the metrie, and

as gap 15 orthogonal to the two-sphere metric of = 0, giving

‘;[\'ll = (’"l("fn.,;,, = ll\'ll =X (5.3.8)
(. = the two dimensional covariant derivative). A is the trace of the extrinsic

curvature of the one-surface, and as it is a vne-surface, there is only one extrinsic

curvature coniponent.

Having established equation 5.3.8, one can move on to the two-Ricel scalar
2R, which can be written in terms of the extrinsic curvature of the foliating hy-
persurfaces. From the Gauss-Codazzi formalism discussed on pages 18 and 52, one

has

(MR ==DR 4 (K, K™ = (K*,)?) = 2K, (5.3.9)

with ., = m-dimensional covariant derivative taken with respect to the normal (i.e.

D g =9
gn = nts). Form =2

2R = 'R+ (KNph™ = LK) -2k,
= -2K,

= -2K., (5.3.10)

Note, the Ricci scalar for a line ! R, is identically zero. Substituting equation 5.3.10

into equation 5.3.4, one has, with the aid of Gauss’s Theorem equation 3.1.8,
W= %/\/—25;(1 ~2uu — uugy — Knu?)d®z + /B V-1h3Rude  (5.3.11)

Yet this form of W will not suffice as it is an action that is the two-space integral
of a Lagrangian density that is sought. Also, equation 35.3.11 contains second order
derivatives, and it is not clear whether these lic entirely in the foliating surface or

not. In order to resolve this, one needs to consider the terms containing Ou and
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K more closely This can be doue by applying Gauss’s theorem to the remaining

surface ternn, with the result that it can be written as

/ INu*dB = / V=Th(w Ku?nng) dg

Ju

/m(lll\'u'lnﬂ)m (1'.’1. (5312)
= / V “29((P K )t n® + R 20 n® + *Ku’nG) d’r (5.3.13)

Henee, on combining equations 5.3.3. 3.3.8, 5.3.10, and 5.3.13, the action is of the

form

1 q .
W= 5 / V=2g(1 = 2u0u — uu, + ‘3("1\._:)):(,71,"11.2 + 2uun’K

. o e o \ .
+dun 32 + 0t K+ PRI ) dPr 5.3.14)
@ 2 \ 2 wl

Using equation 5.3.6, and given that n,ef' = 0 by definition, Kj; can be shown to

have the equivalent form (equation 2.2.20) of
A i
1\,']' = 591'1'.;1” (5310)

as this surface plus normal description is in a sens~ a G.N.C. system (see the defi-

uition on page 16), and so,

4o 1
3K = §g 2 gan alt® (5.3.16)
un

= = (5.3.17)

This implies that

. 1 > a un®
W = 5/\/-—~g(1—2u[:[u—u‘ uq + 2(

p U n“
+duupn®—2— K+ 2

2
)on’u® 4 2uu n°K

b 2
u? n L dx

=3 / vV =29(1 — 2u0u — uuq + 2uuen® n® + Quu‘an";bnb - 2u,au‘bn°nb
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. - ! 2 -, . 3
+2uu K+ dupnu n + un Ko+ 20 0 ‘unf',,) -

1 .
= ;/ V=201 = 2wy (¢ = 0 n®) = ungg™ + 20 nf g n®

o . } '_) - » [l 2 -
+2ut K+ 2u,nu n® + 02 K+ 20t unt) P (5.3.18)

However, equation 5.3.18 is not the final form of 11" To see this, consider wu, n®,nt.

Due to Ny, = ngy, this term can be written as
Wi an®yn® = ' Non® (5.3.19)

Now switching to the equivalent definition of Iy, whicl: is in terms of the Lie deriva-

tive with respect to the normal, one has

1
I\’ab = s‘cnhub

1 .
= S(hah:v“c + hrl»”‘ « + I’m”r:l:)
R 1 . . .
= KNan® = s(h,,,,;cnbnc + han"n" ., + hean®n’ +) (5.3.20)
. 1 .
KNan® = S(h,,b;cuhn” — Doty =0 (95.3.21)

which is as expected. Thus the term in I given by equation 3.3.19 drops out. Note,
the simplification occurring in passing from equation 35.3.20 to equation 3.3.21 is
due to the fact that hen® = 0 by definition (as h,, is the intrinsic surface metric),
and hence, hgpen® = —hgn’,. Further, the factor g, — n®nb is just the projection
of the two metric onto a spacelike surface (the foliating surfaces) with normal n®.
This projection is then just the intrinsic surface metric, so hgp = gap — n°n®. This

i turn gives 1 as

1 ;
W = 5 / vV—29(1- Quu.ph® — wau h™ + 2uu  n®yn’ + 2uu n°K

Fupn®u o n® + u?n K + 2u nuk) d*x (5.3.22)

From equation 5.3.22 it is clear that W coutains no second order derivatives

that are taken with respect to the normal (given that K contains none). This
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indicates that the Gibbons-Hawking surface term has succeeded in removing all
the second order "time” derivatives. This also indicates that in the language of
the Hamiltonian formalism, there exists a primary coustraint that is equivalent to

equation 4.4.10.

Yet equation 5.3.22 is not the final form of 117 as one can simplify the terms
involving K. From equation 35.3.16 applied to the one-extrinsic curvature K, one

gets that there is no contribution from these tevins as the splitting has a G.N.C

form. Hencee, the action can be written as
. l 9 a ¢ a. b : aby ;2
W=z =20(1 = uuq + 2uqupn®n’ = 2uu,,h*) d°r (5.3.23)

which is a purely gravitational action. This form of W can be written as the two-

integral of a Lagrangian density. That is, 1V = [ £ d"r with

L===2g(1 = uqupg®™ — 2uu,h*® + 2u quyn®n®) (5.3.24)

N | —

This puts the action in a form that is applicable to a Hamiltonian formalism, and
so one can retain some of the guidelines of the method of the previous chapter.
However, before proceeding any further, it seems advisable to tighten up the notation

a little. To do this, consider the following definitions:

u n® (5.3.25)

u

hay = €5eue (5.3.26)

Note, € is the index for the one-surface intrinsic coordinate, and e§ are the basis
vectors that form the surface metric. These definitions allow £ to be written in an

abbreviated form, namely

1 L2 o~ -
£=5y/=2g(1 — ueut + i = 2uy) (5.3.27)
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Having the Lagrangian density specified, the next step in the procedure is
to determine the associated Hamiltonian density. As stated in chapter four, the

Hamiltonian deusity is given by
H=r,q— L{q.7,) (3.3.28)

with g and 7, being the set of phase space coordinates (refer to page 80). So, in order
to determine M, one must first identify the generalised coordinates to be used. Just
from looking at the form of £ (equation 5.3.27) an obvious choice for a generalised
coordinate is #(+*). As a second generalised coordinate, choose /=2g; the reason for
such a choice is that there should be no loss of metric information from the theory.
All the information associated with the structure of the two-dimensional spacetime
in the form of the componeuts of the metric (which in the ADM formalism forms
the set of generalised coordinates) should be countained in the determinant /=7g.
Another reason for this choice is that it does not appear to be possible to re-express
Vv=2g in terms of the one-metric of the family of foliating hypersurfaces unless
the (1 + 1) Lorentzian metric, along with the family of foliating hypersurfaces, is
specified. This would go against the motivation of this particular approach, as in
specifying the form of the metric, one has return the analysis to a version of the
ADM formalism (i.e. the time coordinate would be explicitly identified). Hence
V—=2y = go is taken as a secord generalised coordinate. No further generalised

coordinates are apparent or necessary.

The conjugate momenta for these coordinates are then given by

oc oL

= — = 5.3.29
Ta dqan®  O0q (5 )
and so the two conjugate momenta are
L
Ty 9L = 2— = gyt (5.3.30)

Jugn®  Ju
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:llul

oL oL :
T e————— T e— T ) —. .
dgy a1 Jgo ( (5.3.81)

Substituting equations 5.3.30 and 5.3.31 into equation 5.3.28, one gets the Hamil-

Tgo

tonian density as

.1 € ¢ .
H = mu-— _-Z-go(l = 2uu — wtug — u?)
2
— Ty go 9, mi€ L€ = q a0
= 5p 2 (1 = 2uu™,e —utug) (5.3.32)

One immediately obvious point is that to write H in the form given by equation
5.3.32. the phase space coordinates are such that ¢ = ¢(q, 7;). As mentioned in the
previous chapter, this is necessary if a Hamiltonian formalism is to be applied to
the problem. but it is one of the difficulties that lies in the Lagrangian approach
of chapter three, as well as the work of Farhi et al. {39, §6]. So as M is given by
equation  5.3.32, there is no problem treating the ¢'s and the 7,’s as independent
variables. Further, from equation 5.3.31 and equation 5.3.32 it is clear that H is
independent of 7w, and so equation 5.3.31 forms a primary constraint (c.f. primary

constraint definition given on page 82)

Now using the Dirac quantisation procedure (as opposed to the ADM quan-
tisation scheme which requires a fixing of the foliating surfaces and therefore is not
suitable here) and the primary constraint, one can determine an associated sec-
ondary constraint. This is done by considering the Poisson bracket of 7y, and H.

in a similar argument to that of section 4.4 of chapter four, one has that
g0 = [Mgo, H] =0 (5.3.33)

due to the Euler-Lagrange equation (equation 4.3.8). From this result, and the

expansion of the Poisson bracket, one obtains the secondary constraint

oH

== 5.3.34
9% (5.3.34)

0
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On substituting in for H from equation 5.3.32 and rearranging, this constraint takes
the form

72 = =gl = 2uut e — wtuy) (5.3.35)

As can be seen, this secondary constraint is a momentum constraint that is similar
in form to equations 4.5.49 and 4.5.50 of chapter four (which is to be expected, as
equation 3.3.33 should contain the same amount of information as the combination
of the lapse and shift secondary constraints given by equation 4.5.43). However,
it must be checked to see if they are indeed equivalent. If the two momentum
constraints are equivalent, then the formalism outlined in this chapter does give a

suitable description of the composite spacetime (at least for this test case).

5.4 The Comparison With The Standard ADM Approach

In order to check this constraint with those of the previous chapter, consider the

metric function f defined by equation 4.5.44. For f as given, one has

2m(r®)

f = 1- ” = ¢%uuy (5.4.30)
= wlug— i
2
s
90

£ - .
= wiug+ (1 - udue— 2uu )i’

= 1-2uu®; (5.4.37)
Using the definition given in equation 35.4.36, one gets that equation 5.4.37 implies
m(z®) = u®ut (5.4.38)

which is a measure of the mass parameter of the system. But, the test case un-

der consideration is that of a completely vacuous spacetime, thereby implying that
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m(r*) = 0 Thus. the use of the momenta constraint to get equation 5.4.38 has
resulted in the condition

u€s =0 (5.4.39)
for the test case spacetime. Before continuing, one should consider whether this
result is sensible. In particular, if m(z?) is taken to be zero for a vacuous spacetime,
does the corresponding geometrical relation (equation 5.4.38) appear correct. Even
though the form of the metric is not specified (for the general discussion), this test
case is a spherically symmetric spacetime that is completely void of matter and
so u(x®) can be taken as &, the intrinsic surface coordinate. It is then that clear
that equation 5.4.39 is satisfied. Hence, the analysis seems to give results that are

acceptable.

Equation 5.4.39 can also be applied to the momentum constraint (equation

5.3.35), thereby providing a simplified form for 72, namely
2 = —go(l — u}) (5.4.40)

for this true vacuum test case. In this equation it is clear that the value of the ufu
will determine whether 7, is real or imaginary (i.e. whether 7, is classically allowed
or classically forbidden for a given value of u). Obviously the transition between
these to states is where 7, = 0. If equation 5.4.40 admits both real and imaginary
values of 7, then the spacetime geometry is composed of both classically allowed

and classically forbidden regions.

In the ADM formalism, one can consider the empty space case, and obtain
an expression for the conjugate momenta involved. Such a calculation was done by
Fischler et al. [44]. Unfortunately, a direct comparison of the momentum constraints
obtained from these two Hamiltonian approaches is not possible as equation 5.4.40

contains the factor gg = /—2¢, which can not be simplified. However, one can
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compare the positions of the turning points and the relative sign of the various
regions as predicted by the two approaches. From the work of Fischler et al. or
by taking the result straight from equations 4.5.49 and 4.5.50 (with all the mass

contributions removed) one has that the position of the classical turning points are

, 2
(%—) —1=0 (5.4.41)

with ’ denoting differentiation with respect to the spatial coordinate of the two space

given by

(i.c. differentiation with respect to r).

Now the two space has, in the ADM formalism, a line element given by
ds® = —n2dt® + (dr + vdt)* + u?dQ; (5.4.42)

and with this general form of the metric, the arbitrariness in the functions n, !, v,
and u allows the foliating surfaces to be described by t = constant. If this is the
case, then ’ refers to an in-surface derivative, and [? is the surface one-metric. This in
turn implies that (v/)? = ugug, and so ufue = (u')%g*¢ = (%)2. Hence, equations
4.5.49 and 4.5.50, and 5.4.40 predict the same turning point positions. Also, as
g2 > 0 the regions that are classically allowed and classically forbidden are the same
for both approaches, which implies that for this test case this second non-explicit

metric Hamiltonian approach gives the same physical results as the ADM approach.

Continuing with this test case a little further, on can study the Hamilton-
Jacobi equation in an attempt to solve for the principal function. As discussed in
chapter four (page 86), the Hamilton-Jacobi equation is generated by a canonical
transformation which transforms the Hamiltonian to zero. The usual form of the

Hamilton-Jacobi equation is

0= H(a 55,0+ 5 (54.43)
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with o being the principal function. Rephrasing this in terms of the formalism at

haned, one has

0 = H(u,go, %3) + a n®
= H(u,go,—g%)+d (5.4.44)
with the principal function given by the canonical transformation, namely
Ty = %3 (5.4.45)
= o = / dz / 7 du (5.4.46)

So, for the test case,
a= /dw‘/gm/wfu‘f —ldu (5.4.47)
Note, the integration over the intrinsic metric coordinate is due to the fact that £

is defined as density (i.e. W = [ Ld%z).

Yet equation 5.4.47 is not the complete form of the principal function, as any
"time” dependence would only appear as a constant of integration. To get the full
form of a, remember that H is a constant of the motion (Hn® = H = [H, H] = 0),
and so H = ¢; = constant. Then from equation 5.4.44, ¢; = —d, which implies

that the full form of a is

a=cn.z’ + /go\/wfu‘g —1ldu (5.4.48)

This is the complete form of the principal function. Unfortunately, the integration
in equation 5.4.48 can not be done explicitly, as u®u ¢ needs to be specified as a
function of u. Nevertheless one can use equations 2.3.70 and 4.4.31 to write down
the form of the wavefunction associated with the system, and the transmission

coeflicient from one spacetime point to another, as

T(2,1) = exp(%(a(Q) — (1)) (5.4.49)
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However, nothing further is gained by looking at T(2.1) for this empty space
case, and 5o the test case scenario has outlived its usefulness. The next step is to take
this altered Hamiltonian formalism and apply it to the problem of the composite

spacetime.

5.5 Adding The Matter

With the formalism for the non-explicit time form of the Hamiltonian approach
having been successfully applied to the test case of a pure true vacuum space time,
the next step is to take this formalism and apply it to the problem at hand. Thus,

the composite spacetime (as described on page 47) is to be examined.

In order to apply the formalism to this spacctime, one needs to write down
the action associated with it. As usual, the action can be split into two contributions;
the gravitational and the matter contribution. That is, if the action for the system
is W, then

W=Wg+ W, (5.5.50)

Fortunately, as a result of the choice of test case, some of the results of the previous
section can be used to specify the gravitational contribution to W. In particular,
one has Wg = [ L5 d%z with Lg given by equation 5.3.27. So, instead of worrying
about the geometrical contributions to the action for this spacetime, one only has
to determine the matter contributions to W. Once W,, has been specified in terms
of the intrinsic metric of the foliating surfaces, and the outward normal, it is just a

matter of working through the formalism.

Fortunately, in specifying the matter contribution to W, one can repair to

the results of chapter three. There it was shown (equations 3.2.15 and 3.2.21) that
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the matter contribution for the composite spacetime is of the form
Vin /p@ - u) J(l r —/ av=3h d*¢ (5.5.51)
-

However as can be seen, the last term in W, is a type of surface term, and its
presence in equation  3.5.50 prevents one writing 1V in the form W = [ Ld2z.
Thence, this surface term needs to be converted to a volume integral. Normally,
one would be tempted to use Gauss’s theorem (equation 3.1.8), but this is not
appropriate, as o (the surface energy density of &) is only defined on E. So, instead,
one makes use of the thin wall approximation and the notions of proper volume and

proper area, and writes
/ oV IRdE = / odA
= / o6(S)dV

- / o8(S)/—gd (5.5.52)

Here 8(E) is a delta function that only has a contribution when the point of evalu-

ation is on the hypersurface £. Now this equation gives that

W, = / (pO(i — u) — 08(Z))y/~4g d*z
/(p@(u —u)—06(Z 2\/——gd2 (5.5.53)

and immediately one has the form of the Lagrangian density for the matter. It is

L = 47(pO(i — u) — 06(T))u®\/-2g (5.5.54)

With £,, defined, the Lagrangian density is then just the combination of
cquation 3.3.27 and equation 5.5.54. Thus, the Lagrangian density for the com-

posite spacetime is

1
L= 5,/—29(1 —ugut 4+ 42 — 2uut — 87(06(Z) — pO(& — u))u?)  (5.5.55)
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with the notation of equations 35.3.25 and 5.3.26 being used.  Having obtained
cquation  95.5.33, it is now just a matter of applving the Hamiltonian formalism to

L.

From the form of £, one can sce that the choice of generalised coordinates
is straightforward, and are the same as the generalised coordinates used in the test
casce example. That is, for the same reasons as given on page 109, the generalised
coordinates are u(x®) and gy = v/=2¢. To extend the generalised coordinate system
to the set of phase space coordinates required for the Hamiltonian method, one needs
the conjugate momenta. From the definition of conjugate momentum (equation

4.3.9) one has that

[ube ]
(1]
c
(=]

Tu = goll (

T = 0 (

[S1]
3
cr
-1

These conjugate momenta are the same as for the test case, and obviously there is
no problem with inverting the n(q,q)’s to give ¢ = ¢(q,7,). This in turn allows the
full set of phase space coordinates (g, m,) to be treated as independent variables,
and so, one can construct the Hamiltonian density. Applying the above results to

equation 4.3.10, one has

H = qﬂ'q_‘c(q,ﬂ'q)

2
= ;g"o - % —2g(1 — ugu® — 2uu,
—87(06(Z) — pO(i — u))u?) (5.5.58)

With the Hamiltonian density defined, the next step in the process is to look
for constraints. Despite the addition of the matter terms, it is obvious that one has
primary and secondary constraints that are similar to those of the test case. Clearly,

there is a primary constraint which is given by equation 5.5.57, and by the same
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reasoning as for the test case, one has a secondary constraint, given by equation
3.3.34 via equation  5.3.33. With some rearrangement, this secondary constraint

can be written as

72 = —g3(1 - 2uue — wlug — 87(06(T) — pO(i — u))u?) (5.5.59)

u
As with the test case, this constraint retains the features ascribed to the momenta
variables of the ADM description; a classically forbidden region, types of solutions
that depend on the mass parameter associated with the seed spacetime, and 72

positive for the & — 0,00 limits.

However, the primary and secondary constraints are not the only constraints
on the system. One gets additional constraints which are second class due to the
oliysical state of the composite spacetime. That is, due to the non-uniformity of the
matter distribution over the spacetime region for which the action is defined, one
Las additional restrictions on the phase space coordinates. As the composite is a
false vacuum interior and a true vacuum exterior, the extra restrictions will result
from the discontinuities that occur at the interface between these two regions. This
implies that these second class constraints are a measure of the contribution due to

¥, and they are commonly referred to as junction conditions.

5.6 The Junction Conditions

The wall between the two vacuum regions has been idealised by the use of the
thin wall approximation, and is treated as a surface layer. This surface layer has
a non-zero surface energy density and a perfect fluid equation of state (refer to
cquation 2.2.38). In order to phrase these surface layer attributes into a second
class constraint, one must focus on the discontinuity of the matter as one crosses .

Thus these constraints are truly junction conditions.
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So, it is now clear that given that there is a physical surface laver, there
exists a junction condition, and hence additional constraints. Yet although these
additional constraints may exist. it may not be obvious to the reader as to why they
are required. In order to clarify why they are necessary, one need only consider the
evaluation of the transmission coefficient. According to equation 4.6.60, T(2.1) de-
pends on the exponential of Hamilton's principal function, which is just the solution
to the Hamilton-Jacobi equation. However, it has been shown that in solving the
Hamilton-Jacobi equation one uses a canonical transformation of the Hamiltonian,
and as a result of this transformation, one obtains a differential expression for the

rincipal function, a. From equation 4.4.30 the general expression for o is
g

a= /d.l?s/ﬂq.(l(],' (5.6.60)

and it is this expression that displays the need for the junction conditions. The
junction conditions are required as this expression for & has an integration over all
space of an integrand that is a function of the momenta. Yet from the secondary
constraint (or indeed the definition of the conjugate momenta), one has that =,
depends on u,e. But, it is this u;e dependence that is the root of the problem, as it is
precisely this quantity that is discontinuous at the surface layer, thus not allowing
the integration over all space to be completed until satisfactory junction conditions
have been established (compare this with the argument for the junction conditions
in the ADM approach, given on page 92). Thus, in order to evaluate T(2,1), one

requires ¥ junction conditions.

To actually determine the junction conditions, the variation of the secondary
constraint across £ must be examined (as this will give a measure of the disconti-

nuities). From equation 5.5.59 one has that

T2 = —gg(l - 2uu‘5;€ —ufug — 87(a6(X) — pO(i — u))u?) (5.6.61)

u =
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However., this can be compared to a second expression of 72 which is obtained from
the geometrical mass definition used in the ADM method. That is, an alternative
form of equation 3.6.61 can be obtained through the use of equation 5.4.37, with

the result being that

9 -a 2
fopo 2l ey o (5.6.62)
i Jo
and
72 = —go(f — uluy) (5.6.63)

Comparing this result to equation 5.6.61 one gets that the geometrical mass function

is
m(x?®) = u'zu‘{;f + 47ud(06(Z) — pO(i — u)) (5.6.64)

Now to measure the discontinuity across &, one needs to examine the discontinuity

in m(2®), and from equation 5.6.63 one has

(72 = [ufugd + 2[m(e")]

= [m(z%)] = umy[m,) — v?u{u (5.6.65)
whilst equation 5.6.64 gives
[m(z*)] = x2[u¥] + 47u’o (5.6.66)
So on equating these two expressions for [m(z®)] one gets that
T[] = vt |ug] = u[ut ] + 4mu’o (5.6.67)

which gives a relationship between the quantities that are discontinuous at T (i.e.

7. and w,¢). This is the junction condition that is required.
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5.7 The Problem

The result of determining the junction condition {equation 5.6.67) is that unlike the
ADM analysis. one obtains a junction condition that does not separate into a picce
that contains just the m, discontinuity, and a picce with the n discontinunity. The
lack of such a separation means that one can not give an exact description of the
Ty as ¥ is crossed (i.e. one cannot say in what ratio the right hand side of equation
5.6.67 contributes to [r,] and to [n,]). This then implies that the integrand in
equation 3.6.60 can not be explicitly specified, and so Hamilton's principal function
can not be determined. If a can not be determined, then in this formalism, one does

not have a method for evaluating T(2.1).

So, it seems that this attempt to construct a non-explicit time version of
the Hamiltonian approach which only requires the spacetime to be foliated cannot
provide a satisfactory procedure for the evaluation of T(2.1) for any initial and any
final configurations. This inadequacy is due to the fact that the loss of the rigidity of
the structure of the spacetime (i.e. just assuming a foliated spacetime, and working
with the normal) results in a loss in the number of constraining equations, so that
there are insufficient equations for the variables of the problem (i.e. 7, and u** on
cither side of &, and ¢.) This then implies that there has been a loss of information
in the formulation of this approach (as the ADM method works fine), which leaves
one uncertain as to the quantitative analysis of the various terms associated with

the junction conditions.

If one could establish from the secondary constraint a relation similar to that
of equation 4.5.43, then the explicit evaluation of the junction condition would be
possible. However, the price paid for the combining of the primary constraints as-

sociated with the lapse and the shift function into one primary constraint (equation
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5.5.57) is that one does not have a separation of the quantities that are discontin-
nous.  This then effectively halts the analysis, and prevents one from proceeding
to the evaluation of T(2,1). So, in terms of the motivation for this non-explicit
time approach, the approach has failed in its effort to produce the result. This in
turn suggests that if the quantum mechanical tunneling of a seed spacetime is to
be discussed, one has to be careful to explicitly specify the form of the metric for
the classically forbidden region (i.e. the way that the spacetime is foliated), even
though one is allowing for a deformation of the metric as the sced spacetime tun-
nels. As such, it appears that the ADM foliation provides a more than adequate
specification of the metric form. Further from the above result, it seems that if one
is restricted to a Lorentzian form of metric, then one has to explicitly pick out a
time coordinate, anet follow the standard Hamiltonian procedure. If one iries to
veer away from this explicit time, rigid foliation form of the metric, then one has
to suffer a description that has a loss of information. Such a description then runs
the risk of being incomplete, with the net result that the description is insufficient.

This has been shown to be the case with the approach outlined in this chapter.
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CHAPTER SIX

CONCLUSION

As cach of the avenues outlined in the introduction have been explored, one is
now in a position to critically assess the problem of constructing a "new universe”
spacetime region. Further, whilst the complete picture has not been given, the work
discussed in this thesis is sufficient to allow some modest conclusions. However,
the concluding remarks are such that as several different approaches to the problem
have been discussed, the essential and the salient features will be in a chapter by

chapter review. This will then be followed by a general overview of the problem.

So, in order to begin , consider the results of chapter two, which provides
the classical description of the problem. The main result of this chapter is that
classically, one cannot construct a universe in the laboratory. To sce this one need
only look at the various possible trajectories for the boundary between the sced
spacetime and the laboratory. Generally one gets three classes of trajectory (the
S1, S2, and S3 classes, page 22), but only one of them starts off with a small radial
size and then proceeds to evoive into an inflationary era. This is the S1 class.
Unfortunately, any trajectory belonging to this class is required by a singularity
theorem due to Penrose, to evolve from an initial singularity. Thus, the 51 class
of trajectories is unacceptable for the discussion at hand, as the initial singnlarity

prerequisite makes it impossible to initiate this expansion in a laboratory.

In fact the only trajectory class that avoids the implications of Penrose’s
initial singularity theorem is a set of trajectories in the low mass parameter range

(i.e. small m) of the S2 class. This sub-class has been given the classification T1.
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Therefore. it is conceivable that a trajectory of classification T1 could be constructed
in the laboratory (i.e. region I of the Kruskal-Szekeres diagram), yet if allowed to
evolve in a purely classical manner, it would just expand to a maximum size {which
would not be very large due to the small value of m) and then collapse. This also is

nnaceeptable as a solution to the problem of constructing a "new universe” in the

laboratory.

One other salient feature can be ascertained from the results of the classical
trajectory analysis, and that is that for this particular composite spacetime, T's
equation of motion is analogous to the motion of a particle in a one dimensional
potential. The reason why this analogy is important is that it provides an escape
to the no-go result of classical physics. This so-called escape route is one in which
the problem is re-formulated in terms of a quantum mechanical tunnelling from
one classical solution to another (i.e. from a T1 to either a T4 or T6 trajectory
elass). Such a tunnelling process would then produce 2 trajectory that has the
desired constructibilty and inflationary features of a constructible "new universe”.
Of course the obvious question was whether such a trajectory is possible. To answer
this question one needed to determine the transmission coefficient associated with

the tunnelling process, which neatly led one into the work of chapter three.

Thus, the main purpose of chapter three was not to elucidate any elaborate
scheme, but rather, to provide a straightforward evaluation of the transmission
cocfficient for the tunnelling of the trajectory wall from one classical turning point to
another. Asshown by equation 2.3.74, this involved the evaluation of the action over
this interval. By taking the action to be the standard Einstein-Hilbert action plus
the Gibbons-Hawking boundary surface term, one obtained a Lagrangian density

given by equation 3.2.43.



However, this expression was not quite appropriate for the evaluation of the
transmission coefficient. as the Lagrangian density has to be integrated over the clas-
sically forbidden range of the spacetime. Further, this classically forbidden region
has no real time solutions to the equation of motion, so one was forced to euclidise
this spacetime region in order to procced. In doing this, one obtained ecuclidean
field equations with euclidean solutions, which in turn, permitted one to write done
a euclidean action for the spacetime region. Whether this cuclidean geometry is an
apt description of the interpolating geometry of the classically forbidden region is

not clear. Yet in this semi-classical limit, such an approximation appears sufficient.

Despite having a form for the euclidean action, which meant that the trans-
mission coefficient for £ to tunnel through the classically forbidden region conld
be evaluated, there was still one computational difficulty. The euclidean action de-
pended on one knowing the velocity of ¥ as a function of R during its trek across the
forbidden region. From the equation of motion, one can write down such a relation
for R, but the substitution of this expression into the action integral only served to
complicate the integral to such a degree that it was not readily integrable. Under a
turning point velocity approximation which dropped the troublesome terms in W,
which were essentially corrections resulting from the boundary terms, a simplified
form of the action was obtained. Using this approximate form, and substituting in
for the parameters associated with the T1 trajectory classification, an estimate for

the transmission coefficient was obtained. This estimate is given by equation 3.3.55.

Although only an approximation to the transmission coefficient, this estimate
shows that the probability of a trajectory tunnelling through the forbidden region
is particularly small. This seems to imply that the possibility of constructing a
spacetime region that would evolve into a "new ur}iverse” is virtually zero. That is,

such a quantum mechanical tunnelling between two classical trajectory solutions to
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the classical equation of motion is very very unlikely.

In order to bypass some of the approximations used in the brute force evalu-
ation of the transmission cocfficient, and thereby obtain a more precise evaluation,
the latter part of chapter three was devoted to developing a covariant form of the
action for this composite spacetime. Such a derivation was most easily obtained
when one considered the four dimensional Lorentzian spacetime to be a two dimen-
sional Lorentzian spacetime with additional source terms. Further, as was shown in
chapter three, this covariant form of the action is equivalent to the Einstein-Hilbert
action with Gibbons-Hawking surface term. Unfortunately, due to the form of the
spacetime region over which the action is defined, this covariant form of the ac-
tion resulted in an expression for the transmission coefficient that was rather more
difficult to evaluate. That is, the boundary construction caused, in this covariant
formulation, the action to be composed of a combination of several integrals that
had elliptic integrands. This only served to increase the complexity of the expression
of T(2,1). So, whilst the covariant action is more general and in some sense simpler,
it did not appear to aid in the evaluation of the transmission coefficient, and so was

not really useful.

As the transmission coefficient was determined by the brute force Lagrangian
approach, (albeit under several simplifying assumptions) and was found to be very
close to zero, implying an almost zero probability of any tunnelling, one would be
tempted to take this as the final conclusion. However, such a stance was not taken.
The reason for this was that whilst the result of the Lagrangian approach is believ-
able, it does not lend itself to a clear quantisation procedure (i.e. the invertibility
of # in terms of r and p). Yet it is the quantum mechanical description of the sys-
tem that provides the basis for the investigation into the viability of constructing

a new universe in the laboratory (as classical physics does not allow such a pro-
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cess). Therefore, in order to avoid this problem of quantisability, one was lead to

the Hamiltonian approach, which constituted the work in chapter four.

To move from the Lagrangian approach to one that is more receptive to
quantisation, the action was re-expressed using equations 4.3.7 and 4.3.10. This
has the effect of rephrasing the problem in terms of the Hamiltonian density of the
system, and if quantisation is to be permitted then this density should be expressible
in terms of the phase space coordinates. It was found that the Hamiltonian density
for the composite spacetime was indeed expressible in these coordinates, and thereby
suitable for quantisation. That is, there was no ambiguity due to factors such as
i* which plagued the lagrangian approach. Hence, by switching to the Hamiltonian

formalism, a quantisable action was obtained.

Applying the Hamiltonian formalism generally requires that one specify the
spacetime structure, as the Hamiltonian approach attaches special significance to
the time coordinate. For this chapter, the standard form of describing an arbitrary
spacetime was use, namely the ADM description, which treats the spacetime as a
foliated structure. Slicing up the spacetime is done by prescribing to it the ADM
line element. This line element introduced extra arbitrariness, as the lapse, shift
and intrinsic metric were not specified, but this was what was required in order to
discuss tunnelling through the classically forbidden region. The reason for this being
that it is not clear what form the geometry assumes in this region. The benefit in
using this description is that one retains extra degrees of freedom (in this case four),

and they are treated as the generalised coordinates for the Dirac quantisation.

With the generalised coordinates specified, the conjugate momenta were ob-
tained, the quantisability verified, and the Hamiltonian density determined. Unlike

the Lagrangian approach, only the Einstein-Hilbert action was required in order
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to obtain an acceptable action - inclusion of the Gibbons-Hawking boundary term
wias not necessary. Further, it was found that for this particular spacetime there
were primary constraints associated with the lapse and the shift. These in turn
gave secondary constraints, which when treated as operator equations acting on
the wavefunction of the system yielded constraining equations on the phase space

coordinates.

Rearrangement of these constraint equations permitted one to show that
they implied the five different trajectory classes of the Lagrangian method. Also, an
expression for the radial derivative of the mass of the form M'(z%) = 0 (see page 90)
was obtained, which is compatible with the physical situation (i.e. the true and false
vacuum regions, and &, which under the thin wall approximation, had a constant

surface energy density.)

The usefulness of the secondary constraint equations was not necessarily ob-
vious, but on examining the Hamilton-Jacobi equation of the system, their useful-
ness was clear. These constraints served to constrain Hamilton's principal function,
which is the solution to the Hamilton-Jacobi equation. It was also shown that un-
der the WKDB approximation, the principal function was related to the transmission
coefficient (equation 4.4.32). Further, the principal function associated with the
tunnelling across the classically forbidden region was found to contain contribu-
tions from both the regions of the forbidden spacetime geometry that were interior
and exterior to © as well as a contribution from £. Thus a second form for the

transmission coefficient was obtained (equation 4.6.78).

This second form differs from the first in that it depends not on the (eu-
clidean) time that € takes to traverse the forbidden region, but rather on the width

of the forbidden region that has to be tunnelled through. Also, it contains terms
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that involve some of the generalised coordinates. This implies that the transmission
cocfficient cannot be explicitly evaluated until the arbitrariness of the ADM metric
has been removed. To do this one would need to specify explicitly the nature of the
foliation of spacetime, yet the Hamiltonian approach gives no indication of the form
of the ADM metric. One could make educated guesses [44], but then at this stage
that is all they would be. The formulation of this quantum tunnelling is, at this
stage, not quite complete or sufficient, as the geometry that interpolates between

the two classical regions of spacetime is still a mystery.

Given the partial success of both the Lagrangian and Hamiltonian methods,
chapter five was devoted to an attempt to combine the beneficial features of cach.
Thus, what was attempted was an approach that gave a readily quantisable action
as well as some suggestion of the geometry of the forbidden region. In order to do
this a Hamiltonian formalism was invoked (as this gives the quantisation), but it
was formed not from the purely gravitational Einstein-Hilbert action. Instead, the
Gibbons-Hawking boundary term was added. Addition of this term not only aided
the quantisation,but it also helped to constrain the form of the metric description
of spacetime (i.e. compare with the covariant approach to the action discussed in

chapter three).

Further, in an attempt to simplify the formalism and allow for a general
geometry the forbidden region, the spacetime foliation was not specified by the
ADM prescription. The reason for this is that whilst it utilises an arbitrary metric,
it imposes a degree of rigidity on the spacetime structure. Instead, the foliating
surfaces were taken to be described by the normal and the intrinsic surface metric.
Using the normal as a descriptive tool was equivalent to using the lapse and the
shift functions in the ADM method. However, such a step resulted in a reduction

in the number of degrees of freedom.
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In order to check that the method being attempted gave something sensi-
blethe action was determined for the test case of an empty spacetime. The main
point that resulted from this test case evaluation was that as one no longer had the
four degrees of freedom (as with ADM), the number of generalised coordinates was
also reduced. Further, due to the presence of the /=2g factor in the Lagrangian
density, and its irreducibility in terms of the normal and the intrinsic surface met-
ric of the foliation, one was forced to take \/—2g as a generalised coordinate. The
advantage in doing this was that one recovered the same type of primary constraint
as those of the ADM method. Yet, on the negative side, the choice of /=2g as
a generalised coordinate meant a concealing of information concerning the metric
(this is because the determinant 2g can not be written as a function of the metric

components, as the metric components are not explicitly given).

Fortunately, for the test case, the reduced set of generalised coordinates
caused no apparent problems, as secondary constraints were obtained that were
cquivalent to those of an empty space ADM analysis. That is, a secondary con-
straint was obtained that predicted the same sort of partitioning into classically
allowed and classically forbidden regions. However, when matter was added (i.e.
the composite spacetime) the loss of metric information became apparent. In par-
ticular, one was prohibited from obtaining explicit junction conditions for the metric
quantities that varied discontinuously at £ (equation 5.6.67). Having an implicit
juniction condition was not itself a problem, but it caused the evaluation of the trans-
mission coefficient to be halted. This was because one could not explicitly evaluate

the principal function (as its contribution from ¥ was not clear).

Such a result implies that the use of /—2g as a generalised coordinate (or even
29) is not suitable, and so it suggests that the normal-intrinsic metric description

of the foliation is not sufficient. Thus one is forced back to the ADM description
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of the foliation, which leaves no hint as to the nature of the geometry during the

course of the tunnelling (i.c. during the traversing of classically forbidden region).

Su, if one takes a step back and looks not at each approach individually,
but rather, considers them collectively, then the overall picture is one that is not
quite complete. Certainly, it is clear that classically, one can not construct a "new
universe” in the laboratory. Also, it appears that whilst such a construction may

be possible quantum mechanically, its occurrence is highly unlikely.

Aside from the actual technological details associated with producing a false
vacuum region, the main concern is the interpretation of the classically forbidden
region during the course of the tunnelling. Understanding this geometrical problem
is where future research efforts should be directed. In particular, it would be hoped
that one could move away from the simple and somewhat ad hoc notion of cuclidis-
ing the time coordinate, as this step appears to be more a matter of corvenience.
Instead, the idea of treating the forbidden region as one with a varying geometry
should be pursued. For this, an ADM styled foliation could be retained, as it pro-
vides the means to quantisation. Nevertheless, one would still be presented with

several options.

The first option is that one could attempt to move away from the explicit
Lorentzian foliation which singles out the time coordinate and attaches added im-
portance to it. The other option is to look for additional constraints that are neither
primary nor secondary, but second class. Such constraints could then serve to further
constrain the junction conditions and the principal function, so that the expression
for T(2,1) becomes tractable. Note, an example of such a second class constraint

was used in the latter part of chapter five.

Of course, one may be tempted to say that the quantum tunnelling argument
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is cither too simple or that it is a result of an over-extended analogy to a particle
moving in a potential. Yet if this is so, then one is left with no real path towards a
semi-classical treatment of the problem. This would then imply that one has to turn
cvither to the conclusions of the classical physics, or else to the search for a quantum
theory of gravity. Both of these options are not overly palatable, and so it is hoped

that the investigation into some sort of middle ground would continue.
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APPENDIX

1R FOR THE ADM METRIC

Using the algebraic computer package MACSYMA (©Symbolics Inc., one can pro-
duee the general form for the Ricei Scalar associated with the ADM line element

(equation +4.2.3). This expanded form of 1R is as follows;

B ‘ R . . PYK . K N . 9 .
R = m’}—ﬁ{?l"nuu + Bni? = 2Bnou' i = 2Bnv'ui + 2B n'vui — 207 nvui

—aBhui + 2R2inut + 2800 — 2ndun” — Wnvu(id) + BPro?(y)?

I3 (')? = 2Bnoud + 4Bnov'un’ — 280" v2ud + 212 nvtud’ + 2Bnvun’

—2Pnoud’ — 2n2n'ud + 20nPun’ — Bl'niou? 4 Brov"u? - Ba(o)u?

+Bn()2u? = Br've'u? + 3 nvv'u® + Bav'u® - 2P2nv'u? — BlI'n'v2u?
2.1,,2

FRI nvu? + Bl iwu? + Binfou® = 212(0) nvu? — Blau® — in’nu

+'7 e + Pind® + B3n3}
(A1)

Note, " and ' respectively represent differentiation with respect to the time

coordinate and the radial coordinate.
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