Conservation planning for non-human primates in Colombia (South America)

by

Claudia I. Castillo Ayala

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

In

Conservation Biology

Department of Renewable Resources

University of Alberta

© Claudia I. Castillo Ayala, 2016

Abstract

Primates play an important role in the maintenance and functioning of tropical ecosystems. However, habitat loss due to land use conversion threatens the persistence of primates worldwide. Colombia has a diverse fauna of primates with 12% of its terrestrial territory protected under the country's national natural park system. However, threats remain, even within protected areas, with important habitats for threatened species remaining underrepresented or unprotected. Indeed, ~53% of species and subspecies of primates are imperiled in Colombia. Here I examined conservation planning for primates in Colombia to identify conservation gaps in and prioritize new sites for protection. First, I developed environmental niche models for 39 primate taxa predicting suitable habitat for each species in Colombia. Second, I used the Zonation conservation planning software to rank conservation priorities within primary and secondary forest across Colombia. I identified thirty-seven potential conservation sites using targets of 17, 22 and 27% terrestrial protection. Irreplaceability and vulnerability ranking of these conservation sites facilitated assessments of socio-economic threats from mining and illicit crops. Conservation gaps and areas of high vulnerability were most common to the Andes region.

"Conservation is a state of harmony between men and land".

Yet,

"We shall never achieve harmony with the land, anymore than we shall achieve absolute justice or liberty for people. In these higher aspirations the important thing is not to achieve but to strive."

— Aldo Leopold —

Dedicated to my beloved parents, to my amazing husband and to my lovely son, who are indeed a treasure from life.

Acknowledgments

I would first like to thank my thesis advisor Dr. Scott Nielsen of the Applied Conservation Ecology Lab at University of Alberta, for all his support, patience and understanding. He was always open to answer my doubts, to share his knowledge, and he consistently allowed this thesis to be my own work, but putting my feet down to earth whenever he thought I needed it. Also, thanks for all his effort to finance my program, and for being supportive when my parenting stage started.

Thank you to José Vicente Rodríguez-Mahecha, Scientific director of Conservation International Colombia for his deep interest in the development of conservation plans and for facilitating the use of primate occurrence data. Thank you to Maria Isabel Moreno, Focal & Threatened Species Manager of Selva NGO for gathering spatial and species information. It would not have been possible without the support and knowledge of an inspirational person, Thomas Defler, his suggestions and advice were key to the development of this proposal. Also, many thanks to Erwin Palacios, Amazon Manager at Conservation International Colombia for his constant support in my academic and professional career, for his invaluable friendship, for being my mentor and share my passion for monkeys and bats.

Thanks to my committee members, Dr. John Spence and Dr. Mark Poesch for their support as examiners for this thesis. I owe a debt of gratitude to Dr. John Spence, without his unconditional support, his kindness and for believing in me, I would not have been able to finish my Master's program and enjoy all the good things that friends bring in life.

I would also like to thank Dexter Dombro, Director at Corporación Ambiental La Pedregoza, for his unconditional support, participation and input carrying out fieldwork in the Reserva Natural La Pedregoza, and to his wife Kochurani Dombro, for making me feel part of their family. Thanks to Jennifer del Rio, Executive Coordinator at Corporación Ambiental La Pedregoza, for her unconditional friendship and for her assistance with fieldwork. Thanks to all my field assistants for their help and for teaching me the mysteries of the jungle.

Finally, I must express my very profound gratitude to my parents for all their love, and to my husband Jaime Pinzón for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of writing this thesis. This accomplishment would not have been possible without your help, and thanks for all your love, your patience, your passion about life and for always being there for me. THANK YOU!

Table of Contents

1. Primates in Colombia: conservation needs and approaches	1
1.1 Colombia's natural regions and the protected areas system	1
1.2 An overview of primate conservation in Colombia	3
1.3 State of knowledge of primates in Colombia	7
1.4 Global/National status and conservation needs for species of primates in Colombia	8
1.5 Thesis scope and goals	9
1.6 Tables	10
1.7 Figures	13
2. Prioritizing conservation areas for primates in Colombia	15
2.1 Introduction	15
2.2 Methods	16
2.2.1 Study Area	16
2.2.2 Primate species occurrences	17
2.2.3 Environmental predictors of primate habitat	18
2.2.4 Environmental Niche Models (ENMs)	19
2.2.5 Conservation Planning	20
2.2.6 Vulnerability Analysis	22
2.3 Results	23
2.3.1 Environmental Niche Models for primates of Colombia	23
2.3.2 Importance of environmental factors	25
2.3.3 Representativeness of species and prioritized sites for conservation	26
2.3.4 Vulnerability for the species of primates in Colombia	28
2.4 Discussion	30
2.4.1 Environmental niche models for primates of Colombia	30
2.4.2 Priority areas for conservation and vulnerability	31
2.5 Conclusions	35
2.6 Tables	37
2.7 Figures	44

3. Protecting primates in Colombia: from fine to coarse perspectives in conservation needs 54
3.1 Implications
3.2 Limitations
3.3 Recommendations
3.4. Figures
4. Bibliography
Appendices
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F96
Appendix G
Appendix H
Appendix I
Appendix I.a 100
Appendix I.b 110
Appendix J111
Appendix K
Appendix L

List of Tables

- - Table 2.3 Selected combinations of variables that best predict distribution patterns of species of primates in Colombia. Only one combination with the best performance was used to generate an ENM for each species.

 41
 - Table 2.4 Area Under the receiver operating characteristic curve (AUC) value, importance of environmental variables and other main statistics for a final distribution model for each

taxon of primates in Colombia with 10 or more occurrence records. Final environmen	tal
niche models are illustrated in Appendix J	42

List of Figures

Figure 1.1 Natural regions of Colombia
Figure 1.2 Climate zones in Colombia adapted from Pell et al. (2007)
Figure 2.1 Map of Colombia and its location in South America
Figure 2.2 Two-dimensional vulnerability matrix used to identify regional conservation
priorities, based on levels of irreplaceability value relative to threats and conservation
value. Conservation value (horizontal axis) denotes the priority rank of a site accordingly
to occurrence of species and habitat quality (zonation rank), whereas human footprint
index (HFP, vertical axis) representing percentage of the human influence on the land.
Adapted from Margules and Pressey (2000)
Figure 2.3 Prioritized conservation areas in Colombia for the 17% conservation goal. Two main
cell removal rules, the Additive Benefit Function (ABF - red areas) and the Core-Area
Zonation (CAZ - Green areas), were used to select the most important areas to consider
for expansion of the current reserve network. Overlapping areas: selected areas where the
two rules converge
Figure 2.4 Prioritized conservation areas in Colombia for the 22% conservation goal. Two main
cell removal rules, the Additive Benefit Function (ABF - red areas) and the Core-Area
Zonation (CAZ - Green areas), were used to select the most important areas to consider
for expansion of the current reserve network. NNP: National Natural Park system.
Overlapping areas: selected areas where the two rules converge
Figure 2.5 Prioritized conservation areas in Colombia for the 27% conservation goal. Two main
cell removal rules, the Additive Benefit Function and the Core-Area Zonation, were used
to select the most important areas to improve representation of suitable areas for primates
in Colombia. Overlapping areas: selected areas where the two rules converge
Figure 2.6 Potential threats associated to priority conservation zones at different protection
targets. Density of Illicit crop areas (UNODC 2014) were overlaid to scenarios using two
main cell removal rules, the Additive Benefit Function (ABF) and the Core-Area
Zonation (CAZ), in order to identify areas of high vulnerability. NNP: current National
Natural Park system

- Figure 2.9 Primate richness in Colombia (a); incidence of species of concern (b); priorities of high vulnerability value using the Core-Area Zonation cell removal rule (c); and the Core-Area Zonation ranking under the 17% conservation goal (d)......53
- Figure 3.2 Indigenous reserves and African descent communities associated to priority conservation zones using two main cell removal rules, the Additive Benefit Function (ABF) and the Core-Area Zonation (CAZ) at 22% protection goal......60

1. Primates in Colombia: conservation needs and approaches

Primate research in Colombia has increased considerably over the last decade. However, the state of knowledge about primates remains insufficient to guide conservation actions with most research limited to only a few localities and species (Defler & Bueno 2010 and Stevenson et al. 2010). Likewise, there is still much uncertainty regarding the distribution of many primates in Colombia (Rodríguez-Mahecha et al. 2006). These data and knowledge gaps result in uninformed decision making with respect to protected area planning and more specifically conservation of primates. To address this shortfall, clarification of the geographic distribution of its primates in Colombia is required, followed by a rigorous evaluation of threats to habitats and species to target protection of particular forests and more specifically specific habitats to conserve imperilled species (Defler & Bueno 2010 and Stevenson et al. 2010). My study focuses on the conservation of primates in Colombia by addressing the following two questions: (1) where are new protected areas most needed for improving the representation of key habitats in Colombia's national park system? and (2) if conservation gaps are identified, which areas face higher levels of vulnerability/threat?

To further contextualize these objectives, this introductory chapter offers background information about the current state of protection for primates in Colombia, along with information on the national system of protected areas and the basic physical features of the country that make it environmentally and biologically diverse.

1.1 Colombia's natural regions and the protected areas system

Colombia is located at the northwestern part of South America between the latitudes 12°26'46" N and 4°13'30" S, and longitudes 66°50'54" E and 79°02'33" W (Armenteras et al. 2003) and organized into 32 administrative divisions or Departments. Colombia borders Panama and the Caribbean Sea to the north, Ecuador, Peru, and Brazil to the south, Venezuela to the east, and the Pacific Ocean to the west. Colombia together with these four South American countries share the Amazon rainforest region. Considered as one of the 17-megadiverse countries in the world (Mittermeier et al. 1998), Colombia is also one of the world's richest country in aquatic resources, containing large watersheds represented mainly by four large sub-continental basins comprising the Amazon, the Cauca, the Magdalena and the Orinoco rivers.

Total area of Colombia is 114,174,800 hectares with 30% of the continental mass comprising the Andean mountains that range between 500 and 5400 m of altitude with three main branches (west, central and east mountain range or "cordilleras") that run across most of the country from south to north. The remaining parts of Colombia include plains of lowland savannah east of the Andes, lowland rainforests to the south and to the east (with the Baudó and Serranía del Darien mountains ranges in this area), and plains in the Caribbean coast to the north with the Sierra Nevada de Santa Marta mountain range. This mountain range in the north includes the Cristobal Colón peak at 5780 m, the highest elevation of the country. Additional highlands within Colombia include the Serranía de la Macarena along the east flank of the Andes, and plateaus and hills associated with the Guiana shield in the south and eastern parts of the country.

Given the complexity of Colombia's geography, more than 311 types of ecosystems have been described (Hernández et al. 1992) with six natural regions recognized based on climatic, vegetation, soil, and physical features. These regions consist of one maritime area or the Insular region (Pacific and Caribbean islands), and five mainland regions that include the Amazon, Andean, Caribbean, Orinoco, and Pacific regions (Figure 1.1). The Amazon and Pacific (Choco Biogeographic) regions, comprise the largest portion of tropical rainforest and include the majority of indigenous and African descent communities. Because of its high biological diversity, vulnerability to human activities, and high rates of endemism, the Andean region represents one of the world's top conservation priorities (Mittermeier et al. 1999). This region includes the Cauca and Magdalena river valleys, which are important regional water resources. The Cauca and Magdalena river valleys within the Caribbean region have dry forests, savannah, desert, and alluvial deposits. The Orinoco region includes vast areas of savannahs and gallery forests, and contains catchment areas of the Meta, Guaviare and Vichada rivers. Geographic subareas within each natural region have particular topographic, vegetational and hydrographic features. These sub-areas are used as place names to categorize the general locations of new conservation sites proposed in this thesis. Appendix A provides a map illustrating these subareas.

Different climates are also associated with the diverse geography of Colombia. Temperature (annual isotherms) and precipitation patterns associated with changes in elevation define different altitudinal thermic levels or "thermal floors". These include: (1) hot lands (>24°C)

between sea level and 1,000 meters; (2) temperate lands (18–24°C) between 1,000 and 2,000 meters; (3) cold lands (12–18°C) and sub-paramo (6–12°C) between 2,000 and 3,000 meters; (4) paramo (1.5–6°C) between 3,000 and 4,000 meters; and (5) perpetual snow (< 1.5°C) located above 4,000 meters (Hernández-Camacho & Defler 1988). Hot lands are associated with heavy annual rainfall, while temperate lands have moderate rainfall and temperatures. The term 'paramo' refers to treeless regions adjacent to the cold zone. The Köppen-Geiger climate classification provides a more detailed classification of climate zones for Colombia (Pell et al. 2007; Figure 1.2).

The National System of Protected Areas (SINAP for its acronym in Spanish) incorporates seven management categories with six categories of public nature and one private category known as natural reserves of civil society. The protected area categories for public nature include: (1) natural national park system; (2) protective forest reserves; (3) natural regional parks; (4) integrated management districts; (5) soil conservation districts; and (6) recreational areas (MAVDT 2010). The Natural National Parks System (SPNN for its acronym in Spanish) consists of 59 reserves composed of six different types including Natural Park, Natural Unique Area, National Natural Reserve, Fauna and Flora Sanctuary, and "Vía Parque" or on the way to become National Natural Park (MAVDT 2010). The SPNN protects ~13% of the country's terrestrial (12%) and maritime (1%) habitats of high conservation and cultural value. People of indigenous and African descent are present in 'cultural sites', in which alterations to ecosystems by human influences is considerably low (PNN-C 2015).

1.2 An overview of primate conservation in Colombia

Primates play a vital role in the maintenance and functioning of tropical ecosystems. For example, primates are seed dispersers and pollinators, as well as prey for large carnivores (Chapman & Chapman 1995, Wright & Jernnvall 1999 and Lovett & Marshall 2006). Primates are also important as seed dispersers in mitigating effects of climate change by maintaining forest cover that is critical for carbon sequestration (Bello et al. 2015). Nevertheless, habitat loss due to conversion of forests to agriculture and other activities threaten many species of primates (Chapman & Peres 2001). Indeed, at least 259 (60%) of the 530 known primate species in the world are listed as "Critically endangered (CR)", "Endangered (EN)" or "Vulnerable (VU)" primarily due to habitat loss (IUCN 2016). Given the current annual rate of loss of tropical

forests at 13 million hectares (Laurence 2010), there is a strong global need for additional conservation policies.

Within Colombia, the state of primate conservation is worrisome. The International Union for the Conservation of Nature (IUCN, 2016) places 57% of species of primates in Colombia (17 species out of 30) at high levels of risk, and furthermore, Defler (2013) emphasizes extinction risk for over 53% of the 40 taxa of primates recognized by Defler (2010). However, the number of species and subspecies of primates included in the Colombian primate fauna varies depending on taxonomic classification, and so the percent of endangered species in the country varies depending on its source. For instance, the APC (2016) recognized subspecies of spider monkeys have been recently integrated into a monospecific taxon, *Ateles hybridus* (CR), while at the same time, the subspecies within *Callicebus torquatus* are now recognized as individual species, but under two new genera (*Cheracebus* and *Plecturocebus*) proposed by Byrne (2016). Lastly, the APC (2016) recognized *Aotus trivirgatus* (LC) as native to Colombia, although there is no confirmed report of its occurrence in the country. Thus, as long as taxonomic conflicts and uncertainties about the occurrence of species persist, the exact number of primate taxa within Colombia will be subject to debate.

Nonetheless, the fact remains that primates in Colombia are in jeopardy. Table 1.1 provides a complete description of the global and national status of threatened primates in Colombia as well as conservation needs for these species. About 80% of the Inter-Andean lowland rainforest, a vital habitat for the critically endangered brown spider monkey (*Ateles hybridus*), has disappeared in the last decade (Morales-Jimenez 2004). Under the current rate of land use conversion in Colombia, a significant number primates are at risk of extinction. This includes the endemic white-footed tamarin (*Saguinus leucopus*) and the varied white-fronted capuchin (*Cebus albifrons versicolor*), which are both categorized as endangered species (de la Torre et al. 2015c). In fact, 60% of the range of the white-footed tamarin has disappeared, and the species has been extirpated from some localities of its historical range (Roncancio et al. 2013).

Likewise, the newly described and critically endangered *Plecturocebus caquetensis* (Caqueta titi monkey) of the Amazon piedmont faces high levels of forest fragmentation. The piedmont area has the highest annual rate of primary forest loss (Armenteras et al. 2006) with only 28% of

natural vegetation remaining as remnants. The Serranía La Macarena mountain range is among the most diverse ecosystems in Colombia. It is the confluence of Amazon, Andean, and Orinoco regions and has numerous endemic species, but the area also has high levels of land use transformation with only 68% of the original vegetation cover remaining (Armenteras et al. 2006). Primate species here include the critically endangered Colombian woolly monkey (*Lagothrix lagotricha lugens*), the endangered long-haired spider monkey (*Ateles belzebuth belzebuth*), the varied white-fronted capuchin (*Cebus albifrons versicolor*), and other vulnerable primates.

Another important biodiverse area is the Chocó Biogeographic rainforest in the Pacific region, it contains many endemic species, but retains only about 24% of its native vegetation. It is thus identified as one of the 25 global biodiversity hotspots for conservation (Myers et al. 2000). The area contains vulnerable populations of the south Pacific blackish howler monkey (*Alouatta palliata aequatorialis*) and the critically endangered Colombian black spider monkey (*Ateles fusciceps rufiventris*).

The main drivers of deforestation in Colombia are socio-economic with native habitats converted to agriculture, cattle ranching, mining, and colonization. The Andean, Inter-Andean, Pacific and Amazon regions are the most affected by lowland tropical forest clearing (Armenteras et al. 2003, Armenteras et al. 2006 and Etter et al. 2006), with some of these are regions having among the highest diversity of primates. Deforestation patterns vary from region to region due to dissimilarities on biophysical traits and accessibility that include differences in soil fertility, population density, rain frequency, distance to towns or to roads or even to rivers, which in the Amazon, for example, are the main modes of transportation (Etter et al. 2006). Etter et al. (2006) suggests that the Andean region is by far the most affected by forest clear-cutting (agricultural conversion mostly) with current hotspots of deforestation occurring in biodiverse enclaves of flora and fauna primarily in both the Pacific and Amazon piedmont regions. Rodríguez-Eraso et al. (2013) suggest that by 2050 up to 30% of the remaining natural areas in the Colombian Andes will be lost due primarily to land use conversion to pastures and agricultural use. This does not bode well for Colombian biodiversity and, in particular, for primates.

Illicit crops and decades of civil conflict have also affected land use dynamics in Colombia. Although cultivation of coca leaf has been an ancient custom for native groups, that consider it sacred, the flourishing traffic of cocaine in the 1980's, along with associated armed conflicts caused by the intensification of illicit crops by drug cartels, local guerillas, and paramilitary groups, had a catastrophic effect on rural/native people and the associated ecosystems. Indeed, Colombia has the highest rate of internally forced displacement of people in the world (UNHCR 2016), with numbers displaced estimated at 6.9 million people (Human Rights Watch 2015 and UNHCR 2016). The displacement of people is primarily due to illicit coca crops that have replaced rural and indigenous small-scale agricultural farming. This has led to the loss of adjacent natural forested areas with high rates of forest fragmentation (Alvarez 2003).

By the beginning of the 1990's coca crops covered 40,000 hectares (60% of these were intended for subsistence crops of less than two ha). Over the following decade there was an increase of 146,000 hectares of coca, spreading along isolated areas of peasant colonization, indigenous reserves, forest reserves, and buffer zones of national parks. The highest incidence of new coca crops was in the Orinoco and Amazon regions, areas of high biological and cultural value with coca leaf production accounting for 78.6% of the countries' total production (Diaz & Sanchez 2004). Despite a decrease in number of cultivated hectares of coca in Colombia by 2013 (89,215 ha in total) due to manual and aerial eradication, 16,334 hectares of forest were still clear-cut in that same year with 58% being primary forest (UNODC 2014). Illicit crops are therefore a major threat to natural ecosystems in Colombia and habitats for primates.

Similarly, mining activities, which are one of the pillars of Colombia's economy, have been recognized as one the main drivers of deforestation and water contamination (Nepstad et al. 2013). Although the total extent of forest loss due to mining is unknown, oil exploration/exploitation licenses account more than 19 million hectares (ANH 2016) of Colombia with mining titles totaling more than five million hectares (MME 2013) or 20% of the country. Low governance capacity in remote regions, which also contain areas of high biodiversity like the Amazon, Orinoco and Pacific regions, increases the chance of both legal and illegal mining operations even in areas where economic development is prohibited – e.g., Forest reserves (Nepstad et al. 2013). The situation has recently worsened with declaration by the national government of strategic areas for mining in the Amazon and the Choco Biogeographic regions. Indeed, illegal mining now accounts for ~80% of gold production in Colombia (MADS 2014).

Mountain and dry forests in the Andean and Caribbean region have been the most affected by mineral exploitation (Davalos 2001 and Saenz et al. 2013). This has negatively affected the endemic and critically endangered cotton-top tamarin (*Saguinus oedipus*) with a 30% decrease in suitable habitat (Miller et al. 2004), as well as threatening other vulnerable populations of primates such the grey-handed night monkey (*Aotus griseimembra*).

Other threats to primates in Colombia include subsistence hunting and illegal traffic of primates, especially for larger primates including the howler and spider monkeys (Hernández-Camacho & Defler 1985, Palacios & Peres 2005 and Defler 2013,). Bush meat from primates is common in the Amazon and Pacific regions where it is an important part of the culture of indigenous and communities of African descent. Indeed, densities of large primates have decreased considerably within some national parks and indigenous reserves due to hunting (Ulloa et al. 1996, Palacios & Peres 2005, Castillo-Ayala & Palacios 2007 and Defler 2013). In some cases, this has led to local extirpation of species, including the endangered longhaired spider monkey (*A.s b. belzebuth*) in the Amazon region (Boubli et al. 2008). Although larger primates are most often hunted, smaller primates are sometimes also hunted, as is the case of the endangered varied white-fronted capuchin (de la Torre et al. 2015c), but usually these smaller species are poached for the pet trade (Defler 2013) or biomedical investigation (Maldonado et al. 2009, Defler & Bueno 2010 and Maldonado & Peck 2014). In some cases, other primates are killed because they are considered as crop pests (de la Torre et al. 2015c and Castillo-Ayala C. pers. obs).

1.3 State of knowledge of primates in Colombia

Despite recent research, there are significant gaps in knowledge about the distribution and the status of primate populations in Colombia. In particular, there is scarcity of basic biological and natural history information for endemic taxa (Stevenson et al. 2010), as well as a general deficiency in peer-reviewed publications. In addition, field research on primates in Colombia presently comprises only few localities due to lack of access or security (threats) from civil conflict.

Red howler monkeys (*Alouatta seniculus seniculus*), brown spider monkeys, tufted capuchin (*Cebus apella fatuellus*) and woolly monkeys are among the species for which research has been most active. However, basic biological data is especially scarce for the critically endangered

Colombian black spider monkey (*Ateles fusciceps rufiventris*) and the white-footed tamarin (Defler 2010 and Defler 2013). The status of species within highly threatened areas is also quite vague, such as for the Río Cesar white-fronted capuchin (*Cebus albifrons cesarae*) and the endemic Brumback's night monkey (*Aotus brumbacki*) (Defler 2013). Nevertheless, establishment of conservation programs for the endemic cotton-top tamarin (*Saguinus oedipus*) and the brown spider monkey (*A. hybridus hybridus*) (Link et al. 2013 and Savage& Causado 2014) have improved our knowledge of the biology and habitat requirements for these critically endangered species.

Although the distribution of primates has recently been reviewed at regional and national scales (Rodríguez-M et al. 2006 and IUCN 2016), species distribution maps are generally quite coarse in scale (resolution/grain size), especially given the level of analysis (i.e., range maps instead of occurrences). Assessment of the effectiveness of currently protected areas requires consistent information about the distribution of species. Species (environmental) niche models provide an alternative approach to identifying environments, habitats, and sites where suitable primate habitat occurs. Thus far, however, Colombian primate species for which there are niche models include spider monkeys (Morales-Jimenez 2004, Burbano-Giron 2013, Link et al. 2013 and Rodríguez-Bolaños et al. 2013), woolly monkeys (Burbano-Giron 2013 and Rodríguez-Bolaños et al. 2013) and the white-footed tamarin (Roncancio et al. 2013). The present study therefore represents a valuable contribution to clarifying the distributional range, via niche analyses, for most primate taxa in Colombia and an analysis of conservation gaps related to the existing reserve network.

1.4 Global/National status and conservation needs for species of primates in Colombia

There are discrepancies about the conservation status for 35% of the 45 taxa listed for Colombia. Three taxa (i.e., *Cebus capucinus curtus, Pithecia hirsuta*, and *A. s. seniculus*), for example, are not listed by the IUCN (2016), while a national conservation status is still needed for three other taxa (i.e., *Cebus capucinus curtus, Aotus jorgehernandezi*, and *Aotus nancymae*). The Hernández-Camacho night monkey (*A. jorgehernandezi*) and the Rio Caqueta white-fronted capuchin are considered data deficient at the global level. However, in the national conservation status, assessment of the latter has changed from Near Threatened (NT) to Endangered (EN) (Defler 2013).

At least five primate species are considered endemic to Colombia: *Aotus brumbacki, Saguinus leucopus, Saguinus oedipus, Plecturocebus ornatus* and *Plecturocebus caquetensis*. Six additional taxa have their distributions restricted to Colombia (see Table 1.1). The Colombian black spider monkey (*Ateles f. rufiventris*) is the only taxon recognized as endangered in Colombia, three more species (the two subspecies of *Ateles hybridus* and the Caqueta titi monkey) are critically endangered, and 14 taxa considered vulnerable. In addition, at least two taxa are not protected under any category of the National Park System (*Leontocebus nigricolis graellsi* (NT) and the Red titi monkey *Plectorucebus discolor* (VU)).

1.5 Thesis scope and goals

As a result of my review and experience in Colombia, the objectives of this thesis are threefold as follows: 1) model relative probability of occurrence for each species / subspecies to address uncertainties in species distributions of primates in Colombia, 2) prioritize new conservation sites of high irreplaceability to achieve the Aichi Biodiversity Target 11 of 17% terrestrial protection, and 3) assess vulnerability of areas of high irreplaceability as they relate to relevant socio-economic pressures (current and future threats). The information derived from this study is relevant to addressing basic biogeographic information about primates of Colombia and requirements for their conservation. The thesis comprises a single analytical chapter that includes both the niche/distribution models of Primates in Colombia and a prioritization analysis that ranks value of sites for future protection based on existing conservation gaps for these same primates. A final section of the thesis summarizes the implications of my findings, discusses its limitations, and offers some recommendations to improve conservation decision making in Colombia.

1.6 Tables

Table 1.1 National conservation status of primates in Colombia that are at risk as listed by Rodríguez-M et al. (2006) with annotations on conservation needs. Each group (a) correspond to **National** conservation status based on the IUCN Red List Categories: CR= Critically Endangered; EN= Endangered; VU= Vulnerable; NT= Near Threatened; LC= Least Concern; DD= Data Deficient. Information on each species includes (b) **Global** status by IUCN 2015, and suggested conservation needs (Rodríguez-M et al. 2006 and IUCN 2015). Protection requirements for the species *Callicebus caquetensis* and *Callicebus torquatus medemi* (c) were adapted from Defler et al. (2010) and García et al. (2010).

Critically Endangered (CR) ^a				
Plectorucebus caquetensis (Caquetá Tití Monkey) CR ^b	Remarks: severe habitat fragmentation, small area of occurrence and population in high risk of decline. Conservation needs: clarify distribution (range) and design protected areas. ^e Photo credit: ©Thomas Defler (Arkive.org)			
Ateles hybridus bruneus (Brown spider monkey CR ^b	Remarks: population trend decreasing. Habitat greatly fragmented. Land conversion for agriculture, hunting, and colonization recognized as main threats Conservation needs: identify and evaluate local populations, even within protected areas. Photo credit: ©Wilfredorrh2012 (flickr.com)			
Ateles hybridus (Variegated spider monkey) CR ^b	Remarks: due to habitat loss and hunting, population has decreased by 80% over the past 45 years (three generations) and acuteness of threats in its distribution is the norm. Conservation needs: studies on the ecology and population dynamics are still required. Photo credit: ©Diana Liz Duque Sandoval (Arkive.org)			
Endangered (EN) ^a				
Ateles fusciceps rufiventris (Colombian black spider monkey) CR ^b	Remarks: hunting and exploitation of forest for timber are its main threat. Large portions of suitable habitat have disappeared. Restricted access to areas of occurrence due to the presence of illegal army forces. Conservation needs: evaluate the status of the population, and establish conservation programs. Photo credit: ©Steve Wilson (flickr.com)			
Vulnerable (VU) ^a				
<i>Callimico goeldii</i> (Goeldi's Monkey) VU ^b / Appendix I CITES	Remarks: rare. Conservation needs: generate information on occurrences and assess population status (long-term studies). Design conservation programs in protected areas or in potential new reserve areas. Control trade and hunting. Photo credit: ©Jaime Pinzon			
Saguinus leucopus (White-footed Tamarin) EN ^b / Appendix I CITES	Remarks: endemic. Under-protected habitat highly threatened by human colonization. <u>Conservation needs</u> : establishment new reserves to improve protection. Photo credit: ©Alba Lucia Morales Jimenez (Arkve.org)			

<i>Saguinus oedipus</i> (Cotton-top Tamarin) CR ^b / Appendix I CITES	3/	<u>Remarks</u> : <u>endemic</u> . Part of one of the most solid conservation programs in the country. <u>Conservation needs</u> : deficiencies on protecting key habitats. <u>Photo credit</u> : ©Jaime Pinzon
<i>Aotus brumbacki</i> (Brumback's night monkey) VU ^b / Appendix II CITES		Remarks: endemic. Current area of occurrence with high amounts of human disturbance (cattle and agriculture). Conservation needs: address major information gaps on its distribution (range). Protect riparian forest. Photo credit: ©filin.vn.ua
Aotus griseimembra (Grey-handed night monkey) VU ^b / Appendix II CITES.	AFKIVE	<u>Remarks</u> : scarce, status of the population is unknown. Forest loss is a major threat. <u>Conservation needs</u> : censuses and establishment of protected areas. Regulate and control the use of the species in biomedical studies. Monitor population and design appropriate conservation strategies. Photo credit: ©Papiliorama Foundation (Arkive.org)
<i>Aotus lemurinus</i> (Colombian night monkey) VU ^b / Appendix II CITES	Ce	<u>Remarks</u> : status of population is unknown. Habitat highly threatened by human colonization. <u>Conservation needs</u> : assess population status and establish protected areas. Photo credit: www.npr.org
<i>Aotus zonalis</i> (Panamanian night monkey) DD ^b / Appendix II CITES		<u>Remarks</u> : less than 10% of suitable habitat. Status of population is unknown. <u>Conservation needs</u> : identify populations and establish protected areas. Monitor populations and design appropriate conservation strategies. Photo credit: © Joe McKenna (flickr.com)
Lagothrix lagotricha lugens (Colombian woolly monkey) CR ^b / Appendix II CITES	ARVE	<u>Remarks</u> : hunting and habitat loss as a major threat. Distribution along the Andes where human disturbance is high. <u>Conservation needs</u> : establish new areas to protect relict populations. Identify more relict populations. Develop and implement monitoring programs and reinforce protection laws. Create education programs. Photo credit: ©Sergio Vargas (Arkive.org)
Alouatta palliata aequatorialis (South Pacific blackish howler monkey) VU ^b / Appendix I CITES	34	<u>Remarks</u> : wide distribution across Central and South America. Considered vulnerable in Colombia due to rapid decline in its populations. <u>Conservation needs</u> : present in National Parks. However, threats need evaluation. Photo credit: ©costarica-nature.org
Ateles belzebuth (Long-haired spider monkey) EN ^b		<u>Remarks</u> : habitat loss (deforestation) and hunting (population decreasing) is of primary concern. Distribution (range) in areas of high colonization. <u>Conservation needs</u> : population assessments are needed and a need to resolve doubts on its occurrence in the eastern portion of the Andes mountain range (Amazonia foothills). Photo credit : ©Miguel Rangel jr. 2011
Pithecia milleri (Miller's saki) DD ^b		Remarks: distribution (range) occurs in areas of high threats due to human colonization. Habitat loss and rapid population declines.Conservation needs: confirm the presence of the species in legally protected areas. Define the eastern limit of its distribution to determine effectiveness of protection. Photo credit: Planetofmonkeys.com
<i>Cheracebus medemi</i> (Colombian Black-handed titi) VU ^b / Appendix II CITES		<u>Remarks</u> : habitat loss due to timber harvesting of uncontrolled slash-and-burn agriculture and ranching. <u>Conservation needs</u> : assess status of population. Occurs in one National Park but there is the need of new protected areas. ^c Photo credit: © 2005 Finding Species Inc.

Plectorucebus discolor (Red titi monkey) LC ^b		<u>Remarks</u> : small distribution (range) in the country, detrimental effect on suitable habitat because of fumigation actions to eradicate illicit crops. <u>Conservation needs</u> : population assessments, vulnerability assessments and areas legally protected within its range in Colombia. Photo credit: ©Chris Schmitt 2007			
Plectorucebus ornatus (Ornate tití monkey) VU ^b / Appendix II CITES	6	<u>Remarks</u> : <u>endemic</u> . Severe habitat fragmentation, small area of occurrence and population in rapid decline. <u>Conservation needs</u> : Clarify distribution (range). <u>Photo credit</u> : ©Gustl Anzenberger (Primate Info net)			
	Near Threatened (NT) ^a				
Cebus albifrons cesarae (Río Cesar White-fronted Capuchin) EN ^b	ali	<u>Remarks</u> : hunting and habitat loss are major threats. <u>Conservation needs</u> : occurs in National Natural Parks. Evaluate conservation status of populations and identify potential threats. Photo credit: ©Margarita Nieto (Defler 2010)			
Cebus albifrons malitiosus (Santa Marta White-fronted Capuchin) EN ^b	GI	<u>Remarks</u> : hunting and habitat loss are major threats. <u>Conservation needs</u> : occurs in National Natural Parks. Evaluate conservation status of populations and identify potential threats. Photo credit: ©Margarita Nieto (Defler 2010)			
Cebus albifrons versicolor (Varied White-fronted Capuchin) EN ^b	GAR	<u>Remarks</u> : hunting and habitat loss are major threats. <u>Conservation needs</u> : occurs in National Natural Parks. Evaluate conservation status of populations and identify potential threats. Photo credit: ©Margarita Nieto (Defler 2010)			
<i>Lagothrix lagotricha</i> (Humboldt's Woolly Monkey) VU ^b / Appendix II CITES	ABREME La MAREL PL	<u>Remarks</u> : Hunting is a major threat. <u>Conservation needs</u> : identify potential threats. Design adequate conservation policies. Photo credit: ©Lucy Molleson/IPPL (Arkive.org)			
Cacajao ouakary (Golden-backed Black Uakari) LC ^b / Appendix I CITES		<u>Remarks</u> : Subsistence hunting and population under rapid decline are major threats. <u>Conservation needs</u> : present in some Natural Parks, but the extension of its occurrence in these areas is undefined. Determine the distribution (range) and apply conservation strategies. Photo credit: ©Luis Claudio Marigo (Primate Info Net)			

1.7 Figures

Figure 1.1 Natural regions of Colombia.

Adapted from:

http://geoportal.igac.gov.co/mapas_de_colombia/IGAC/Tematicos2012/RegionesGeogr aficas.pdf

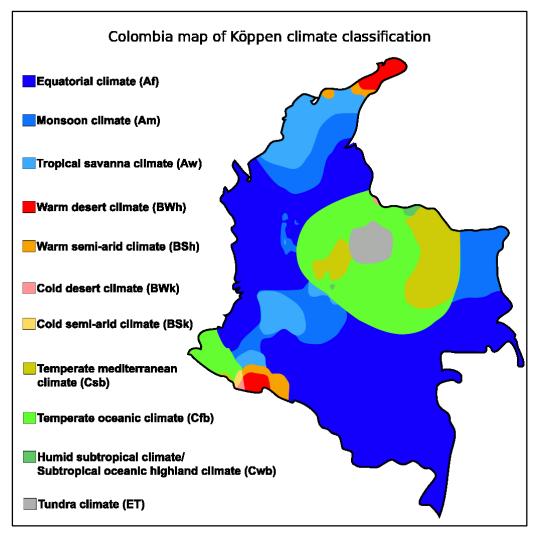


Figure 1.2 Climate zones in Colombia adapted from Pell et al. (2007).

https://commons.wikimedia.org/wiki/File:World_Koppen_Classification_(with_authors

).svg

2. Prioritizing conservation areas for primates in Colombia

2.1 Introduction

Colombia is a tropical country that contains one of the most diverse assemblages of primates in the world consisting of ~30 species and 25 subspecies (Grooves 2005 and Defler 2010). However, most species (18 or 53% of all recognize species) are considered threatened (Defler 2013) with two species recognized as critically endangered, one species endangered, 14 species vulnerable, and six species near threatened (Rodríguez-Mahecha et al. 2006). Some of these species, however, have different global conservation status using the IUCN categories (IUCN 2016, Table 2.1). The rate of habitat loss and alterations to primate habitats has accelerated in Colombia over the past few decades due to human population growth and land use and land cover conversion (Miller et al. 2004, Etter et al. 2011 and Rodríguez Eraso et al. 2013). In addition, there are substantial knowledge gaps on about the status of subspecies, and uncertainty remains about ranges/distribution for many species (Defler 2010). This limits the identification of effective national conservation priorities for primates in Colombia.

Establishment and management of protected areas has been one of the most valuable strategies to address conservation shortfalls, given its clear potential to safeguard species through assuring the continuity of ecosystems (Cowlishaw & Dunbar 2000). In the case of Colombia, the National System of Protected Areas ("Sistema Nacional de Áreas Protegida", SINAP is its acronym in Spanish) incorporates seven management categories to be administered in alliance with governmental, non-governmental, public and private sectors depending on the nature of the protected area (MAVDT 2010). Across these categories, the Natural National Parks System ("Sistema the Parques Nacionales Naturales de Colombia", SPNN for its acronym in Spanish) consists of 59 parks protecting 13% of the country's terrestrial and maritime habitats (PNN-C 2015) within areas of high conservation and cultural value that have been little altered by human activities.

Nonetheless, there are significant conservation gaps that include some ecosystems of high biodiversity value (Conpes 2010, Forero-Medina & Joppa 2010). In fact, under the Natural National Parks System, terrestrial protected areas in Colombia represent only 11.27% (12,877,086 ha) of the country's territory (PNN-C 2015), which is a 5.73% (6,532,629 ha) shortfall relative to the Aichi Biodiversity Target 11 on safeguarding 17% of terrestrial habitats

by 2020 (Convention on Biological Diversity, 2010). Moreover, Corzo (2008) identified protection shortfalls for important biomes, including those with high restoration potential. Thus, key habitats remain underrepresented or even unprotected within the protected area system thereby increasing the level of vulnerability for threatened primate species (Rodríguez-Mahecha et al. 2006 and Stevenson et al. 2010). In particular, existing analyses of conservation gaps for primates in Colombia suggest a shortfall in protection for woolly monkeys (Rodríguez-Bolaños et al. 2013), spider monkeys (Morales-Jimenez 2004, Link et al. 2013 and Rodríguez-Bolaños et al. 2013), and the White-footed tamarin (*Saguinus leucopus*) (Roncancio et al. 2013). However, there is little information available to identify suitable habitats for these and other primates, as is required to prioritize areas for further protection.

The main goal of this study was to identify conservation gaps for primates in Colombia and prioritize new protected areas to improve representativeness of key habitats in the country's national park system. Specifically, I had three objectives: 1) develop environmental niche models for species and subspecies of primates in Colombia in order to address uncertainties in the distribution of many species, 2) prioritize new conservation sites based on primate distributions in a way that achieves the Aichi Biodiversity Target 11 of 17% protection, and 3) identify areas of high vulnerability (current and future threats) relative to high primate biodiversity value. To do this, I first used a combination of environmental niche (species distribution) modeling for primates of Colombia to map suitable primate habitat using the MaxEnt software (Phillips et al. 2011), and then ranked irreplaceability of sites for future protected areas using Zonation software (Moilanen et al. 2014). Finally, I prioritized the irreplaceability values from Zonation by relating them to a vulnerability ranking of human threats based on the occurrence of major socio-economic threats in Colombia. This identified where conservation actions should be focused first.

2.2 Methods

2.2.1 Study Area

Colombia is situated at the northwestern part of South America between the latitudes 12°26'46" N and 4°13'30" S, and longitudes 66°50'54" E and 79°02'33" W (Armenteras et al. 2003; Figure 2.1). Total area of Colombia is 114,174,800 hectares containing five major ecosystems known as "natural regions". This includes the Andes Mountains with the diverging by the valleys of the Magdalena and Cauca rivers cutting the three main mountain ranges of western, central and eastern cordilleras, the Pacific Ocean coastal, the Atlantic coastal, the Orinoco (plains) and the Amazon regions. These natural regions vary widely in climate, habitats, and species, leading to the Colombia flora and fauna being among the richest and most diverse in the Neotropic region (Hernández-Camacho & Cooper, 1976), and indeed, the world (http://rainforests.mongabay.com/03highest_biodiversity.htm).

2.2.2 Primate species occurrences

I considered 39 primate taxa (19 species and 20 subspecies) with occurrence records in Colombia (Table 2.1). This taxonomy follows the arrangement used by Defler (2010), as well as the new categorization for genera in the subfamilies Callicebinae and Callitrichinae by Byrne (2016) and Buckner et al. (2015), respectively, and the new classification by Marsh (2014) for the genus *Pithecia*. My analysis was restricted to species with five locality records in Colombia so as to facilitate environmental niche modeling (Table 2.1). Although it is preferable to have a larger number of occurrence records (e.g., 10 to 50) to obtain more accurate distribution patterns (Peterson 2001, Stockell & Peterson 2002 and Pearson et al. 2007), Environmental Niche Models (ENM) using MaxEnt have demonstrated that 5 is a minimum sample size (Hernández et al. 2006, Pearson et al. 2007 and Hernández et al. 2008).

Occurrence records for each species were collected from the Ara Colombia species database (Rodríguez-Mahecha et al. 2013) from Conservation International Colombia, that included more than 8,000 georeferenced records from species occurrence records across the country, museum specimens and Thomas Defler (personal data base). All duplicate records, records outside of known species ranges, or with partial geographic coordinates, were discarded. Additional sources of primate records included peer reviewed literature, databases with historical occurrences of species from museum records (Appendix B) and my own personal observations made in the Amazon region and gallery forests of the Bita river (Orinoco region). Data were organized into a database that contained information on sources, specimens, and observers/collectors (Appendix C). In total, this included more than 1,800 records with geographic coordinates individually checked to establish reliability. The final list of geographic locations of primates used for environmental niche modeling included 1,476 occurrences from 19 species and 20 subspecies

with each species having at least five location records that were considered independent of one another (different sites), based on place names or geomorphological units. For new taxonomic changes within the genus *Pithecia*, older subspecies occurrence records were adjusted to geographic distributions of new species as suggested by Marsh (2014).

2.2.3 Environmental predictors of primate habitat

Thirty-one environmental predictors were considered in building Environmental Niche Models (ENMs) for each primate species and subspecies. I grouped environmental predictors into the following four major themes: (1) climate, (2) vegetation indices, (3) soils, and (4) physical features (Appendix D). Climatic factors included 19 potential variables based on 'current' climate conditions of precipitation and temperature using interpolations of observed data from 1950 to 2000 (Hijmans et al. 2005 and WorldClim 2015). Vegetation indices include average available amount of biomass (Net Primary Productivity - NPP) for 2010 (UNEP 2015), forest canopy height mapped from Lidar-derived satellite data for the year 2005 (Simard et al. 2011), and percentage of tree cover (PTC) derived from the MODIS sensor of Terra at 30 arc-seconds resolution (ISCGM 2003). Soil factors were based on 6 different soil quality indicators (Trabucco & Zomer 2010, ISRIC 2013 and Hengl et al. 2014), while physical and terrain factors were based on four different variables representing a digital elevation model (DEM) created using 1 arc-second (30m) ASTER data (LP DAAC 2001) and three categorical variables (land cover, biomes and watersheds) based on data from the geographic viewer SIG-OT (2009). Detailed information about variables, resolution, and acquisition sources are described further in Appendix D. All environmental raster layers were masked to the extent of Colombia and resampled to a common resolution of one-kilometer cell size (ArcGIS 10.2.2, ESRI 2013) using the official reference system of Colombia of a GAUSS BTA MAGNA coordinate system with a D-CGS-SIRGAS Datum (IGAC 2004).

I used Pearson's correlation analysis in R software v.3.2.0 (R Core Team 2015) to assess variable and model collinearity, using 100,000 locations (raster cells) randomly selected within Colombia. A correlation coefficient equal or higher to |0.7| was considered indicative of a strong co-linear relationship for any pair of variables, and I subsequently excluded one of the variables (Naoki et al. 2006, Giovanelli et al. 2010, Hegel et al. 2010 and Zhang & Zhang 2012). Elevation, for example, was negatively correlated with annual mean temperature-BIO1 (r = - 0.96), isothermality-BIO3 was correlated with temperature seasonality-BIO4 (r = -0.79), annual precipitation-BIO12 was correlated with soil pH (r = -0.77), and temperature mean diurnal range-BIO2 was correlated to temperature annual range-BIO7 (r = 0.75). Correlation values among all continuous environmental variables are presented in Appendix E.

Considering the variation of thermogradients due to local changes in altitude (Hernández-Camacho & Defler 1988), along with a strong relationship between elevation and habitat heterogeneity and the effect of altitude on the distribution and patterns of adaptability exhibited by species of primates (Hernández-Camacho & Defler 1988 and Shanee et al. 2014), elevation was chosen as a predictor variable over that of annual mean temperature (BIO1). Likewise, pH, temperature seasonality, and temperature annual range were selected over the other strongly correlated variables. To minimize the number of remaining climate variables, all "extreme or limiting environmental factors" (e.g., temperature of the coldest and warmest month), as defined in the WorldClim database (www.worldclim.org/bioclim), were removed (Appendix D). This resulted in three final climatic variables: temperature seasonality (BIO4), temperature annual range (BIO7) and precipitation seasonality (BIO 15). The final number of candidate environmental variables used in ENMs was therefore reduced from 31 to 16 final variables (Table 2.2).

2.2.4 Environmental Niche Models (ENMs)

Due to the presence-only nature of the data available for this study, Maximum Entropy software (MaxEnt; Phillips et al. 2011) was used to model relative probability of species occurrence (e.g., habitat suitability). MaxEnt is a statistical algorithm that models probable occurrences of species by estimating the density of environmental variables on which a particular species depends (Franklin 2010). Furthermore, MaxEnt allows interactive associations between continuous and categorical features in the generation of probability distributions, even with a low number of training locations (Phillips et al 2006). To avoid overfitting, only linear and quadratic features were considered when the number of presence records was below 50 (Elith et al. 2011), while the "product" option (interactions) was tested for species with more than 50 localities to allow fitting of simple interactions (Elith et al. 2011). Similarly, the random test percentage for cross-validation was set as zero when the number of locations per species (or subspecies) locations was <30, while set to a 20% test percentage for taxa with ≥ 30 occurrences. In each MaxEnt run, a

backwards model selection was use to reduce model complexity, by identifying and removing variables that contributed <1% to the explained distribution of the species, while the Jackknife method was used to evaluate importance of remaining variables (Phillips 2010).

To assess model fit and predictive performance, environmental variables were combined into 39 different models (Appendix F). Given the number of variables used in the models and the low number of presence records for most taxa, this initial set of 39 models was used in MaxEnt runs for only the most prevalent taxa (nine taxa with >50 locations). Model predictive performance was evaluated first by assessing the modeled distributions against known geographic range maps of each species and secondly by exploring differences in the model AUC (Area Under the Curve from the Receiver Operating Characteristic ROC). AUC values >0.9 indicated strong predictive power (Hanley & McNeil 1982 and Swets 1988), values between 0.7 to and 0.9 moderate performance, and poor model performance for values <0.7 (Willey et al. 2003, Elith et al. 2006 and Fawcett 2006). Out of 39 models assessed, only seven models with the best performance were selected (see Appendix I) and used in MaxEnt runs for all the remaining taxa with <50 total occurrences (geographic locations).

The single best predictive model was then designated for each of the 39 primate taxa (see models highlighted in red in Appendix I.a). In addition to spatial comparisons, model selection and accuracy were assessed by the use of the logistic threshold at "Equal training sensitivity and specificity", with corresponding training omission rates, and the fractional predicted area. More parsimonious models accounted for lower fractional predicted area and reduced omission errors (Franklin 2010). Plots depicting the variation of sensitivity (1 - omission rate) and predicted area (1 - specificity) in relation with the cumulative threshold, and AUC values were also used to assess the predictive power of the models (e.g., Fawcet 2006, Hernández et al. 2006, Lobo et al. 2008 and Zhang & Zhang 2012).

2.2.5 Conservation Planning

Two different cell removal rules of Core-Area Zonation (CAZ) and the Additive Benefit Function (ABF) were used to run conservation planning scenarios in the Zonation software (v.4.0, Moilanen et al. 2014). All scenarios considered existing protected areas as "locked in" with hierarchical models ranked in terms of local occurrence of species (Moilanen 2007, Lehtomaki & Moilanen 2013 and Moilanen et al. 2014) and solutions that would most improve the representation of suitable habitats for modelled primates. New conservation sites were therefore ranked based on distribution patterns of species relative to the current protected area network. The Core-Area Zonation (CAZ) cell removal rule emphasized high suitability for a single or rare biodiversity features in terms of high probability of occurrence, while the Additive Benefit Function (ABF) cell removal rule prioritized sites based on species richness, giving more importance to biodiversity rich locations.

Species were weighted in all scenarios in terms of their national conservation status (Rodríguez-Mahecha et al. 2006) with cells having higher weights removed last. Species weights were assigned as follows: five point five (5.5) for endemic species considered Critically Endangered (CR) or Endangered (EN), five (5) for CR and EN species, four point five (4.5) for vulnerable (VU) and endemic, four (4) for VU species, three point five (3.5) for endemic species Near Threatened (NT), three (3) for those considered as NT, two point five (2.5) for the Least Concern (LC) but endemic, two (2) for LC, and finally one (1) for species that were Data Deficient (DD).

Analyses were restricted (masked) to terrestrial (non-aquatic) forested habitats of Colombia by using a binary ASCII derived from 1 km rasters of land cover (IGAC 2007b) and the current National Natural Park System (PNN-C 2014) clipped to the extent of Colombia's mainland. The land cover raster was reclassified as one (1) for natural (primary) and secondary forest and zero (0) for water systems, rocky outcrops, pastures, crops and disturbed areas. This binary mask was used as an "Analysis area mask" in Zonation (Moilanen et al. 2014) to omit areas that were unlikely to contain significant primate habitat. Although pastures can have patches of woodlands and stubble fields that are potentially used by some species, such as tamarin and titi monkeys, this land cover unit was not considered here because the majority of its extent is represented by herbaceous fields intended for livestock (IGAC 2007b).

Similarly, the reclassify tool in ArcGIS was used to create a binary protected areas raster where one (1) related to protected areas (SPNN) and zero (0) unprotected areas. This raster was converted to an ASCII file and used as the "Hierarchical Removal Mask" (Moilanen et al. 2014) to "lock in" the inclusion of existing conservation areas in the analysis (Lehtomäki et al. 2009).

Finally, full Zonation ranks that identified the biologically most valuable and least valuable areas for each of the cell removal rules (Appendix G) were adjusted to identify the most valuable 17, 22 and 27% of landscape to protect. Thus, zonation ranking for each scenario was compared using three different conservation thresholds at 17% (11,789,398 ha), 22% (15,256,868 ha) and 27% (18,724,338 ha) of masked forested areas in Colombia. The logic of having conservation targets greater than the 17% threshold was to allow for subsequent connectivity assessments, as well as providing more options for conservation sites based on different socio-economic threats. For instance, the potential for conservation threats at some sites could require alternative sites. Geographical locations of prioritized conservation sites were identified via the online Geoportal from the Institute Agustin Codazzi (IGAC 2015), Google Earth, and Tremarctos Colombia (Rodríguez-Mahecha 2015).

2.2.6 Vulnerability Analysis

A vulnerability analysis was used to identify areas of threat relative to areas of high conservation value (i.e., irreplaceability). More specifically, priority ranks derived from Zonation analyses at different protection targets were overlaid with existing mining rights (INGEOMINAS 2012), oil concessions (ANH 2016), and density of illicit crops (UNODC 2014). Mining rights refers to current mining titles that grant the right to explore, exploit and ultimately extract relevant minerals (MME 2003), while oil concessions related to areas of exploration, production, reserve (in standby due to political, environmental, social or exploratory factors), and technical evaluation (TEA) for assessing potential hydrocarbon development (ANH 2015).

To consider both conservation value and future threats, an irreplaceability-vulnerability ranking was used to identify sites of both high conservation value and high levels of risk given the magnitude of threats (Margules & Pressey 2000 and Lawler et al. 2003). Thus, a twodimensional vulnerability matrix (Margules & Pressey 2000) was used to pair the Zonation rank (conservation values) with the percent of threats relative to local human influence in order to identify sites of high vulnerability (high threat and high biodiversity value, Priority #1) and high biodiversity (Priority #2) (see Figure 2.2 for a schematic diagram).

Human influence was defined as the Human Footprint Index (HFP) where 1% represented the least influenced ("wildest"). The HFP index was derived from global data from 1995 to 2005 and

accounted for population density ("human population pressure"), land cover/use, urban areas and night time lights ("human land use and infrastructure"), and "human access" (shorelines, road and rail network, navigable and waterways) at a 1 km raster scale (WCS & CIESIN 2005).

To derive the two-dimensional vulnerability matrix, zonation prioritization ranks for each of the two removal cell rules and the HFP index were reclassified for each into seven categories based on the percentage of conservation/threat value at a site (Appendix H). For both the Zonation and HFP index a minimum value of zero was given to low ranked values (\leq 1), below average HFP for 1-25, moderate HFP rank for 26-50, high and very high HFP for 51-75 and 76-99 respectively, and finally the top priority/threat at 100% biological/HFP value.

2.3 Results

2.3.1 Environmental Niche Models for primates of Colombia

The total of 1476 occurrences used to model habitat suitability for primates in Colombia gave an average of 37 locations per species (minimum of 7 and maximum of 266). Considering the 39 taxa modeled, four taxa (three species/one subspecies) had less than 10 location records, 19 (9 species/10 subspecies) ranged from 10 to 29 locations, six taxa (one species/five subspecies) between 30 to 50 locations, and ten taxa (five species/5 subspecies) with more than 50 locations (Table 2.1).

Out of the 39 preliminary models, seven models were considered reliable (Table 2.3). In general, all models involving soil variables were rejected since they appeared to over-predict species distributions (modeled probability of occurrence was always much larger than known range maps). With the removal of soil variables, the number of missing/omitted environmental data decreased, while the number of sites for training (data used to fit the model) increased. Similarly, models that included Net Primary Productivity (NPP) also over-predicted species distributions (wider than known range maps) and these were therefore removed. Among the set of selected models (Table 2.3), only two combinations of variables – vegetation and climate – were consistently selected as important. Predictive performance of the models ranged from moderate at an AUC = 0.764 for *Alouatta seniculus seniculus* to high at an AUC = 0.999 for *Leontocebus nigricollis*. Average AUC among species was impressively high at 0.948 (Appendix Ia).

The best-fit models to known range maps for 12 species with <10 locations were based on models that included all climate and physical variables (Model E). The next best fits, respectively, were for eight species using all climate variables, elevation, land cover, and watershed (Model C), seven species using the three physical variables (Model F), and six species using model climate, biomes, elevation, and watershed variables (Model D) (Table 2.3 & 2.4). In contrast, models that include vegetation variables (Models B & G), were the most parsimonious combinations for the Spix's night monkey (*Aotus vociferans*) and the South Pacific blackish howler monkey (*Alouatta palliata aequatorialis*) respectively. Species models had reliable predictive performance with an average AUC value of 0.961 (minimum = 0.804; maximum = 0.998; Table 2.4). However, training omission rates in models for the red howler monkey (*A. s. seniculus*), the collared titi monkey (*Cheracebus lugens*) and the tufted capuchin (*Cebus apella fatuellus*) were not close to the predicted omission line suggesting lower reliability of predictions.

Fractional predicted areas (FPA) ranged from a minimum of 0.004 for *Plectorucebus caquetensis* to a maximum of 0.253 for *A. s. seniculus* with total number of observations not necessarily correlated with FPA values (Table 2.4). Rare species (lower number of observations) that were consistent with the FPA included the Spix's black mantle tamarin (*L. n. nigricollis*) with 12 observations and a FPA of 0.004, and the Brumback's night monkey (*Aotus brumbacki*) obtaining a FPA of 0.010 with 10 observations. By comparison, most "common" species, such as the red howler monkey (266 observations) and the tufted capuchin (102 observations), obtained high values of FPA (0.253 and 0.185 respectively). In general, values of FPA for all the species observed were low (< 0.25), with lower values of FPA associated with lower omission rates (Table 2.4).

The minimum relative probability of occurrence was 0.82 for the Caquetá tití monkey (*P. caquetensis*), and as high as 1.00 for the Cotton-top tamarin (*Saguinus Oedipus*) and the Western pygmy marmoset (*Cebuella pygmaea pygmaea*), with an average value of 0.95 among all species with 10 or more presence records (Table 2.4). Finally, predicted distributions of species were narrower than the known range map of species for 23% of taxa: *A. p. aequatorialis, Aotus brumbacki, Aotus griseimembra, Aotus zonalis, Ateles b. belzebuth, Ateles fusciceps rufiventris, Cebus capuchinus, Saguinus inustus*, and Saimiri sciureus albigena. On the other hand, predicted

distributions of species were wider than known range maps for 20.5% of species including *Cacajao ouakary*, the collared titi monkey (*Cheracebuss lugens*), *Cebus albifrons*, the two subspecies of woolly monkeys, the Miller's saki monkey (*Pithecia milleri*), the White-footed tamarin (*Saguinus leucopus*), and the Humboldt's squirrel monkey (*Saimiri s. cassiquiarensis*) (Appendix I.a).

Although AUC values indicated strong model performance for four species (*Cheracebus medemi*, *Callimico goeldii*, *Cebus albifrons malitiosus* and *Leontocebus nigricollis hernandezi*) with <10 occurrences (average AUC = 0.974, Appendix I.b), these species were not included in Zonation analysis because their predicted species distributions did not match known range maps. The exception was for the Santa Marta white-fronted capuchin (*C. a. malitiosus*) (Appendix J) that has a restricted distribution (range) with severely fragmented populations as a result of locally high rates of deforestation (de la Torre et al. 2015a). There are, however, uncertainties about the current status of this species with some sub-populations already protected.

2.3.2 Importance of environmental factors

Physical variables were by far the most important factors affecting the distribution of primates in Colombia (Table 2.4). In particular, the watershed categorical variable was a key predictor of primates for all the species/subspecies, except the Spix's night monkey. Percent contribution of the watershed variable ranged from 20.7% for the white-fronted capuchin (*Cebus albifrons albifrons*) to 86% for the cotton-top tamarin (*Saguinus oedipus*). The second most important variable was the biome category which was included in 74.3% of species models and the land cover categorical variable which was included in 80% of species models with maximum percent contributions of 51.2% (white-fronted capuchin) and 46.3% (red howler monkey).

In comparison, the effect of climate was marginal with variable contribution ranging from values of less than 1% for ~10 species to a maximum of 36% for the precipitation seasonality variable for the Spix's night monkey. The importance of annual range in temperature ranged up to 16% for the collared titi monkeys, while temperature seasonality contributed up to 12% to the Panamanian night monkey (Table 2.4).

Vegetation variables generally, if surprisingly, made little contribution to explaining the distribution patterns of primates in Colombia. The South Pacific blackish howler monkey and the

Spix's black mantle tamarin were marginally predicted by percent tree cover (4.1% and 2.2% respectively), while forest canopy height marginally influenced (1.1%) distribution of the Spix's black mantle tamarin.

2.3.3 Representativeness of species and prioritized sites for conservation

A total of 37 new prioritized conservation sites was identified in the Zonation analyses under 17% conservation goal (Appendix K), with 14 identified by the Additive Benefit Function (ABF, Figure 2.3), 14 by the Core-Area Zonation (CAZ, Figure 2.4) rule, and nine sites by the two cell removal rules. The overlapping areas identified in the 17% conservation goal represented 98% of the 17% conservation goal total area (11,789,400 ha) (Figure 2.3).

Under a 17% conservation goal (Figure 2.3), areas prioritized by the additive benefit function (ABF) were located mainly in the Amazon and Andean regions, representing 94.5% (~10,928.700 ha) of the ABF total area. Additional ABF areas (5.4%, ~639,900 ha) include new sites located in the Caribbean and the north side of the Pacific region. In comparison to the ABF, areas prioritized by the core area zonation rule (CAZ) were located mostly in the Amazon, Andean and Caribbean regions, representing 95.4% (~11,249,800 ha) of the CAZ total area (Figure 2.3). Additional CAZ areas comprise ~300,600 ha (2.5% of the CAZ total area) in the Orinoco and Pacific regions, with new sites were identify in the north and south side of the Pacific region.

In terms of overlapping priorities identified by the two cell removal scenarios (~11,556,200 ha) (Figure 2.3), two large areas of overlap were identified, one adjacent to the west side of the Central Cordillera (northern side of the Andean region) and other in the southeast foothills of the Amazon region. Some scattered small areas of overlap were located along the coastline in the Caribbean region and the north side of the Pacific region (Figure 2.3).

After expanding conservation targets to 22% and 27% (respectively, Figure 2.4 and 2.5), areas increased in both number and size. For instance, a 22% conservation threshold (Figure 2.4) resulted in a larger patch of Core-Area Zonation (CAZ) areas in the north side of the Caribbean region that represent an increment of ~616,300 ha compared with the initial set of areas in the 17% conservation goal. Additional CAZ areas were located in north, south (creating a belt of areas that connected a present national park with the coast) and central sides of the Pacific region, all together representing 3.9% (~598,700 ha) of the CAZ total area for the 22%

conservation goal. Also 1.4% (~211.100 ha) of the CAZ total area was located in the southeast side of the Orinoco region, but 85.5% (~13,040,200 ha) were located in the Andean (~4,136,000 ha) and Amazon (~8,904,200) regions, some of them associated to increase in size of five national parks (Figure 2.4).

Under the 22% conservation goal, areas prioritized by the Additive Benefit Function (ABF) rule in the Amazon region (60%, ~9,155,500 ha of the CAZ total area) were located along riparian forests and the southeast side of the east cordillera mountain range, and increments in size accounted ~645,300 ha compared with the initial set of areas included in the set identified under the 17% conservation goal. In the Andean region, a combination of larger and new areas represented 26.5% (~4'050,200 ha) of the ABF total area and were located in the north across the north side of the region, some of them easily accommodated by expansion of two national parks (Figure 2.4). Additional ABF areas covered ~305,300 ha (2% of the ABF total area) in the Orinoco region, ~549,300 ha (3.6%) in the Pacific region and ~778,200 (5.1%) in the Caribbean region (Figure 2.4). Overlapping priorities from the two cell removal represented 92.6% (~14,123,500 ha) of the full extent of prioritized areas under the 22% conservation goal, and connectivity areas were identified in the south side of the Amazon region, between the Putumayo and Amazonas river basins.

Under the 27% conservation goal (Figure 2.5) the number and size of overlapping areas in the Andean, Caribbean, and Pacific regions further increased. Overlapping areas connected the Munchique national park with the Pacific coast, as well as the three national parks in the foothills of the east cordillera. Overlapping areas comprised ~16,786,100 ha of forest, representing 89.6% of prioritized areas for the 27% conservation goal scenario. ABF areas expanded within riparian forest in the Orinoco (~295,800 ha more compared with the 22% conservation goal and in the Amazon region (an additional ~458,200 ha), as well as north areas of the Andean region (an additional 1,902,100 ha) (Figure 2.4). The Amazon region comprised the largest amount of the priority Core-Area Zonation total area (50%, ~9,362,400 ha), followed by the Andean region (32.2%, ~6,038,100 ha) and the Orinoco region (2.4%, ~456,900 ha).

2.3.4 Vulnerability for the species of primates in Colombia

Illicit crop areas were mainly distributed in three regions of Colombia: (1) north parts of the Andes, (2) central and southern areas in the Pacific, and (3) north and western areas of the Amazon plains. Additional scattered illicit crops were also located in the Orinoco region (Figure 2.5). Major areas of illicit crops, predominantly of less than 4 ha/km² in density, were associated with 18 of 59 (30.5%) current protected areas. When considering zonation priority sites, ABF and CAZ scenarios for the 17% protection target were almost all affected by the presence of illicit crops, with the exception of sites located in western areas in the Caribbean region, and northern side of the Andean region (Figure 2.6).

Zonation priority ranks for 22% and 27% were not closely related to illicit crops in the central and north parts of Colombia. However, areas of coca crops clearly overlapped with CAZ and ABF conservation sites in the Amazon and the Andean regions (Figure 2.6).

When considering the impacts of mining activities on conservation sites identified by Zonation (Figure 2.7), the central and northern areas of the Andes cordilleras and the Caribbean region were the most affected with mining activities overlapping conservation sites. In particular, oil concessions for exploration and production were nearby Core-Area Zonation (CAZ) and Additive Benefit Function (ABF) in areas described as of high importance for primates (i.e., Serranía de San Lucas, Serranía de las Iglesias, and the middle Magdalena region), and a vast extent of the Caribbean region where conservation sites with key habitats for some vulnerable species of primates occur. Likewise, mining rights granted in the western, central, and eastern cordilleras were near prioritized areas, some of which were essential for critically endangered and vulnerable species (e.g., CAZ areas in the north of the Andean region), while the overlap of mining activities with critical conservation areas was minimal for the Pacific region (Figure 2.7).

Habitats for critically endangered species of primates were located near exploited mining activities in the Amazon piedmont (foothills of the Eastern cordillera) and in portions of the southeast side of the Orinoco plains (Figure 2.7). Finally, few mining titles that may sustain mining operations are adjacent to natural national parks in the east side of the Amazon region.

Vulnerability analysis using the human influence index identified ~821,700 ha of prioritized ABF and CAZ areas of high vulnerability (Priority #1), while ~57,418,400 ha of areas selected

by the two rules were considered as of high biodiversity value (Priority #2) (Figure 2.8). Vulnerability assessments were similar between cell removal rules, with the exception of an area of high vulnerability between the Pacific and Andean regions identified in the CAZ scenario that was considered at high threat in the Additive Benefit Function zonation rank (Figure 2.8a).

Most areas of high vulnerability were identified in the Andean region (66.5%, ~546,700 ha) concurring with mining operations and enclaves of high biodiversity as the Nechí refuge, while 24.4% (~200,400 ha) were identified in the Caribbean region. Priority #1 areas comprise ~14600 ha (1.77%) in the Pacific region, and ~19,000 ha (2.17%) in the Orinoco region. Lastly, the incidence of areas of high vulnerability in the Amazon region was minimal 0.32 % (~2,700 ha), with areas located in the eastern cordillera with a few scattered sites in the Amazon piedmont that concur with highly fragmented habitats for the critically endangered Caqueta titi monkey. Areas of high biodiversity value were found in the northern parts of the Andean mountains, across Caribbean savannahs, as well as in the Pacific region for more than half of the extent of the Department of Choco and across the extent of the Amazon region (Figure 2.8b).

In relation to national parks, my vulnerability assessments identified areas of high vulnerability adjacent to the northeast side of the Farallones de Cali National Park, and nearby the Tayrona and near the Catatumbo Bari National Parks (Figure 2.8b).

A map of primate richness (Figure 2.9a) derived from the sum of binary species distribution maps (thresholded at values of "Equal training sensitivity and specificity") identified the Amazon as the most biodiverse area in the country, followed by the Andean region and foothills in the western part of the Orinoco region. These findings agree with the elevational and latitudinal diversity gradient suggested by Hernández-Camacho & Defler (1989). The incidence of species of concern (endemic, rare and/or highly threatened -critically endangered and endangered) were also higher in the Andean region and east foothills of the east cordillera between the Amazon and Orinoco region (figure 2.9b). This overlaps with areas of high vulnerability and prioritized conservation sites selected by the Core Area Zonation cell removal rule (Figure 2.9c, d).

2.4 Discussion

2.4.1 Environmental niche models for primates of Colombia

Predictive accuracy of species distributions model for primates of Colombia were considered to be acceptable, despite many species having few occurrence records. Species distribution models should ideally be based on >100 occurrences (Stockwell & Peterson 2002, Hernández et al. 2006 and Hanberry et al. 2012). These results are consistent with other MaxEnt models that have performed well with smaller data sets (Phillips et al. 2006 and Pearson et al. 2007). Environmental variables that best explained the distribution of primates in Colombia tended to be categorical definitions of watershed, biomes and land cover.

The close relationship between these categorical variables and biogeographical patterns of the taxa helps explain the high percent contribution of these variables. For instance, watershed highlighted the role that river systems play limiting species distributions, especially for species of small body size such as marmosets and tamarins (subfamily Callitrichinae), as well as correlating broadly with soil properties and vegetation type. Likewise, biomes broadly represented differences in habitat heterogeneity that relate to specific ecological requirements of species and their distribution (Cowlishaw & Dunbar 2000 and Defler 2010). Indeed, Pearson & Dawson (2003), suggested land use and elevation are the key factors affecting the distribution of species at regional scales.

Given that species with less than seven occurrence records had low predictive performance, there is a significant need for increased sampling efforts for rare species in Colombia to better evaluate geographic ranges, ecological requirements and conservation status. In particular, data (presence location information) gaps are evident for the Goeldi's marmoset monkey (*Callimico goeldii*), the Colombian black-handed titi monkey (*Cheracebus medemi*) and endemic the Hernández-Camacho's black-mantled tamarin (*Leontocebus nigricollis hernandezi*)

Net primary productivity (NPP) and soil nutrient levels have in general been positively related to density of plant consuming primates (Kay et al. 1997 and Peres 1997), with NPP correlated to nutrients absorption, canopy leaf area, flower and fruit production, and exudate quality (Malhi et al. 2011), which are associated with richness of local primate assemblages (Lehman 2000 and Stevenson 2001). However, in my study NPP and soil variables were not strongly associated

with factors affecting primate distribution. When used, these variables often led to over prediction of species geographic distributions. This may be explained by the scarcity of reliable data and the inability to quantify net primary productivity in tropical forest at local scales. This is partially due to sampling bias, lack of continuity, improper measures, and differences in sampling methods (Clark et al. 2001a and Clark et al. 2001b). Similarly, the lack of predictive power for soil variables could be the result of low spatial resolution, and/or a significant variability across the region, despite the indirect effect that soil properties have on species distributions (Franklin 2010).

Environmental niche models presented in this study offer valuable information to clarify uncertainties in the ranges of some taxa, although issues relating to errors in species identification during field surveys and lack of occurrence records for many of the taxa continue to be a challenge. For instance, the broader distribution (range) for the Humboldt's woolly monkey (*Lagothrix l. lagotricha*) in the eastern slopes of the eastern cordillera is due to historical records in areas of occurrence of *Lagothrix l. lugens* (Stevenson & Link 2008, Defler 2010 and Rodríguez-Bolaños et al. 2013), and frequent misidentification of these subspecies based on coat color has been noted (Botero & Stevenson 2014 and Defler 2014). However, ENMs developed here were more consistent with the known range of the species than are those obtained by Rodríguez-Bolaños et al. (2013).

2.4.2 Priority areas for conservation and vulnerability

The use of two different cell removal rules allowed assessment of complementarity for the current reserve system while increasing the representativeness of key habitats for primates. Priority conservation sites proposed here provide a balance between sites that are important refugia for rare species, on the one hand, with the potential to harbor higher species richness, on the other hand (Figure 2.9). Additional evidence of this includes selection of areas across a latitudinal and elevation gradient of primate diversity (Appendix L) and overlapping areas from the two cell removal scenarios.

Considering new conservation areas in the 17% conservation goal, the most notable conservation gap that is filled in terms of habitat representativeness for primates is the incorporation of sites for critically endangered species that are not currently protected (i.e., *Ateles hybridus brunneus*

and *Plecturocebus caquetensis*) (Link et al. 2013, Defler 2010, García et al. 2010 and Stevenson et al. 2010). Also, Zonation priority areas identified in this study comprise important sites for species with some level of protection (present in at least one reserved area), but currently or eventually facing significant levels of threats (e.g., hunting, colonization cores and land use/conversion), principally in the Andean and Pacific regions.

Core areas of higher suitable habitat for primates were prioritized for protection within areas of primary and secondary forest in Colombia. These sites presumably also convey biodiversity value (surrogacy and umbrella effects) to other species of flora and fauna in Colombia. By considering vulnerability of these sites to current and future development, these products provide guidance for conservation planning in Colombia. This is especially important in centers of endemism and speciation such as the Nechi and Chocó refugia. For instance, the conservation sites suggested in this study can fill conservation gaps in the current protected area system (Corzo 2008). Corzo (2008) considered over eight million hectares (7% of the total extent of the country) to be of urgent ("urgentes") conservation need, given the high level of potential threat due to future development within these areas. In addition, Corzo (2008) recognized nearly 13 million hectares (11.31% of the country) as protected area omissions ("omisiones") where the representation of critical habitats in protected areas is very low or absent, and over 73 million hectares (64.32% of the country's continental extent) as insufficient ("insuficientes") given existing targets for protection.

Conservation sites proposed in the Nechí Valley and Pacific region by the analyses of this thesis overlap with areas considered insufficient for existing conservation targets, while priority sites identified in the Yariguies mountain range, could be used to fill gaps of sites urgently needed to protect habitats omitted entirely from the reserve system. In addition, conservation sites prioritized in this thesis for the northwest of the Choco Biogeographic region and the mountain ranges of Serranía de San Lucas and Las Iglesias (Andean region) concur with areas classified as appropriate, urgent, and with omissions. This area is also considered to be among the highest conservation priority for Colombia being linked to the largest enclaves of biodiversity in the country (Corzo 2008). These findings, along with the selection of priority sites that pair with two new national parks recently declared by the government (MADS 2015) (Figure 3.1), indicate the agreement between the methods and models produced in this thesis with expert-opinion of recent

conservation planning initiatives by the government. Models from this thesis are therefore an important tool for providing even further guidance and decision-making for conservation planning throughout Colombia.

Another important outcome from the conservation portfolio presented here is the prioritization of areas in regions presently undergoing habitat fragmentation. For example, the existence of dry tropical forest has substantially diminished in the Caribbean region (Miller et al. 2004, Savage & and Causado 2014) and remnants of Inter-Andean rainforest represent a mere 20% of its original extension. Likewise, habitat fragmentation has been recorded as a major concern for the viability of populations of critically endangered species (Defler et al 2003 and Defler 2010). Consequently, prioritized conservation areas in central and north sides of the east cordillera could provide viable habitats for these species, especially considering that Protective Forest Reserves already exist within this region, so enlargement of this reserves or reclassification to a higher protective status might be considered as an additional means of enforcing conservation actions.

It is important to clarify that a Protective Forest Reserve allows "sustainable" use of forest resources present inside the area, which may imply easier access to bush meat and pet trade. Thus, management of some animal populations would be improved by enlarging the forest reserves. Such species include the variegated spider monkeys and the Colombian woolly monkey, a preferred sources of animal bush meat by rural and indigenous groups, as well as the varied white-fronted capuchin monkey for which declines in populations are the result of pet trade and excessive hunting (de la Torre et al. 2015c). However, management of animal populations are still a major challenge even within national natural parks (Urbani et al. 2008). Additional stressors in the central and north areas of the Andean region include oil exploration, mining rights, and the general presence of high human influence (Figures 2.6 & 2.7).

New conservation sites prioritized in the southern part of the Amazon region are associated with areas of high biodiversity value, and connectivity areas identified under 22% and 27% conservation goals could represent potential biological corridors. These include areas of primary forest without human influence like the Purite river where the near threatened Humboldt's woolly monkey occurs. This area is also adjacent to the Amacayacu NNP and an enlargement of this protected area towards the Brazilian border has been suggested by Defler (2001) in order to

safeguard the most diversity within the Amazon region. Prioritized conservation areas proposed here occurs throughout the Purite river expanding this initiative. In addition, other areas in the Amazon river basin and areas adjacent to the southern side of the Rio Pure national park identified as important in this conservation plan can be part of the expansion plan. However, small communities are present in this area and they are an important factor in the establishment of new conservation sites since use of forest resources, cooperation, control and management plans must be considered in effective conservation planning.

Comparison among conservation targets at 17, 22 and 27% revealed that increases in protection thresholds were mostly associated with expanding current and my initially proposed conservation areas, as well as increases in number of potential conservation sites. This will offer a larger array of areas of high conservation value to select from when determining the best set of new sites for protection, especially in regions with significant incidence of habitat conversion and human influence (i.e., areas of high vulnerability). As an example, the Cienaga de Barbacoas (Andean region) considered under the scenario of 27% of terrestrial protection could be a conservation area for A. hybridus hybridus (Urbani et al. 2008). Vulnerability analysis demonstrated high incidence of stressors in natural ecosystems where prioritized sites are more likely to occur under 22% and 27% conservation goal scenarios. This indicates that the selection of new areas to improve representation of habitats for primates should be based in conservation of sites identified under these thresholds. In fact, to be able to achieve the Aichi Biodiversity Target 11 of 17% terrestrial protection (~19,407,716 ha of the total extent of Colombia), selection of conservation areas based on primate habitat requirements (~69,349,400 ha of forested areas) would concur with the extension of prioritized areas under a 27% conservation goal (~18,789,400 ha).

Habitat loss due to land use conversion for illicit crops in current national parks could be alleviated by incorporating neighboring forests that can harbor not only populations of primates but also many other threatened species of fauna and flora. For instance, by 2013 there was a 12% rise in coca cultivation within national natural parks, of which 86% took place in four parks: Nukak, Sierra de la Macarena, Catatumbo-Barí and La Paya (UNODC 2014). In this context, prioritized sites that would enlarge the size of the Catatumbo Barí (north of the Andean region) could be an important input for securing the last remnant of tropical rainforest in this part of the

country (Sesana 2006). This region is a home to not only for endangered species of primates but also for vulnerable (VU) species, including the South American Tapir (*Tapirus terrestris*), the spectacled bear (*Tramarctos ornatus*), and the nationally threatened Abarco tree (*Cariniana pyriformis*). Moreover, new Core-Area Zonation sites along the Micay River basin that connect the Pacific coast with the Munchique NNP (Pacific region) would contribute to a major biological corridor, along with facilitating the preservation of adequate habitats for 28.5% of the Colombian avifauna (BirdLife International 2015). Similarly, recommended conservation sites adjacent to the national natural park Sierra La Macarena (Orinoco/Amazon regions) would also benefit endemic and rare birds (BirdLife International 2015). However, the set of priority conservation areas in the northeastern part of the Orinoco region is still under-represented with only two confirmed, wide-ranging and secure species (the white-fronted capuchin and the red howler monkey) in the region.

Finally, other potential gains linked to higher protection targets, include connectivity areas that can represent potential biological corridors, more protection of Andean and Caribbean regions where habitat fragmentation threatens primates, and riparian forests selected along river bodies in the Amazon Department (Amazon region) that can be included in the new conservation initiative of protected rivers. Along with harboring numerous wild species of flora and fauna, including elements of the Napo-Imerí refugia, these riparian forests are of great importance to the subsistence of indigenous groups and settlers. Approximately 29.5% of the total indigenous reservation areas in Colombia are represented in this Department, and the total population, including colonization cores, was about 72,858 inhabitants by 2011 (Rodríguez-Celis 2012).

2.5 Conclusions

I created new environmental niche models for 34 primate taxa. Despite low occurrence records, models demonstrated high predictive accuracy for the majority of the taxa, and physical variables were the most important drivers of primate geographic ranges and suitable areas. This includes watersheds (highest general importance), probably due to its effect as geographic barrier and the influence on different environmental components of the landscape.

In regards to new conservation sites, about ~37 new sites were proposed benefiting the protection of threatened and near threatened species of primates. Zonation models also improved

the representation of key habitats for taxa with major deficiencies in protection (species not currently protected in national park system, or already protected but at low levels).

Although the initial top 17% of conservation priorities may offer an adequate set of areas to cover representation for primates, further enlargement of conservation sites modelled in the 22% and 27% conservation scenarios increases the opportunity to select new conservation areas as we learn more. It also allows prioritization and triage of locations based on areas of high vulnerability (i.e., especially in the North portion of the Andean region).

Despite declaration of new conservation-oriented areas (1,660,000 ha in total) by the Colombian government in 2015, there is still a deficit of 6,532.629 ha to reach even the Aichi Biodiversity Target 11 of 17% inland protection in Colombia. Sites for primate conservation suggested in the conservation plan presented here provide important input for selecting additional conservation areas to fulfill that deficit. However, other considerations are important, including species ability to adapt to disturbance, and assessing both impacts of climate change and species vulnerability to climate change. Of course, a primate focus only approximates the priority for other species of animals or plants. Inclusion of other taxa may offer a different array of potentially important sites for consideration. Prioritized conservation areas identified in this study depend on the nature of the environmental niche models, and thus the nature of the occurrence data used to model habitat suitability and the spatial information defining environmental factors.

Finally, conservation areas proposed within indigenous reserves must include local participation in the definition of management plans, together with sustainable economic alternatives and environmental education programs. These are critically important inputs into the conservation of threatened species, while ensuring the permanency of traditional ways of life.

2.6 Tables

Table 2.1 Species of primates present in Colombia, including number of occurrences, global and national conservation status. Taxa with five or less observations (in bold) were ignored in distribution modeling analyses. Nomenclature follows the taxonomic arrangement proposed by Defler (2010). In addition to new considerations by for species of the *Pithecia* genus (Marsh 2014), as new categorization for genera in the subfamilies Callitrichinae (Buckner et al. 2015) and Callicebinae (Byrne et al. 2016).

Family	Subfamily	Genus	Species	Subspecies	Common Name	Global ¹	National ²	Obs.
			oedipus (Linnaeus, 1758) *		Cotton-top tamarin	CR	VU	55
		Saguinus	geoffroyi (Pucheran, 1845)		Geoffroy's tamarin	LC	LC ³	13
		Suguinus	inustus (Schwartz, 1951)		Mottled-faced tamarin	LC	LC ³	16
			<i>leucopus</i> (Günter, 1876) *		White-footed tamarin	EN	VU	78
				<i>graellsi</i> (Jiménez de la Espada, 1870)	Graell's black-mantled tamarin	NT Saguinus	LC ³	4
	Callitrichinae	Leon-	nigricollis	<i>hernandezi</i> Hershkovitz, 1982**	Hernández-Camacho's black mantle tamarin	LC Saguinus	LC ³	7
		tocebus ^(a)		nigricollis (Spix, 1823)	Spix's black mantle tamarin	LC Saguinus	LC ³	12
			fuscus (Lesson, 1840)		Saddle-backed tamarin	LC	LC ³	33
Cebidae		Cebuella	pygmaea	pygmaea (Spix, 1823)	Western pygmy marmoset	LC	LC ³	12
		Callimico	goeldii (Thomas, 1904)		Goeldi's marmoset	VU	VU	7
				<i>albifrons</i> (Humboldt, 1812)	White-fronted capuchin	LC	LC	37
				<i>cesarae</i> Hershkovitz, 1949**	Río Cesar white-fronted capuchin	DD Cebus cesarae	NT	13
	Cebinae	Cebus	albifrons	<i>cuscinus</i> Thomas, 1901 ^(b, c)	Shock-headed capuchin	NT Cebus cuscinus ^(b)	LC ³	0
				<i>malitiosus</i> Elliot, 1909**	Santa Marta white-fronted capuchin	EN Cebus malitiosus	NT	7
				<i>versicolor</i> Pucheran, 1845**	Varied white-fronted capuchin	EN Cebus versicolor	NT	59

			apella	<i>fatuellus</i> (Linnaeus, 1766)	Tufted capuchin	LC Sapajus macrocephalus	LC ³	102
				<i>capucinus</i> (Linnaeus, 1758)	Colombian white-throated capuchin	LC	LC ³	53
	Cebinae	Cebus	capucinus	<i>curtus</i> Bangs, 1905* ^(d)	Gorgona white-faced capucin	No Listed	No Listed	?
Cebidae				<i>albigena</i> (Von Pusch, 1941) **	Colombian squirrel monkey	NT	LC ³	35
	Saimirinae	Saimiri	sciureus	<i>cassiquiarensis</i> (Lesson, 1840)	Humboldt's squirrel monkey	LC	LC ³	21
				<i>macrodon</i> (Elliot, 1907)	Ecuadorian squirrel monkey	LC	LC ³	29
			<i>brumbacki</i> Hershkovitz, 1983*		Brumback's night monkey	VU	VU	10
			griseimembra (Elliot, 1912)		Grey-handed night monkey	VU	VU	70
		Aotus ^(e)	<i>jorgehernandezi</i> Defler & Bueno, 2007		Hernández-camacho's night monkey	DD	?	?
Aotidae		1100000	lemurinus I. Geoffroy, 1846		Colombian night monkey	VU	VU	68
			nancymaae Hershkovitz, 1983		Nancy Ma's Night Monkey	LC	No Listed ⁴	5 ^(f)
			vociferans (Spix, 1823)		Spix's night monkey	LC	LC ³	17
			zonalis (Goldman, 1912)		Panamanian night monkey	DD	VU ³	20
			hirsuta (Spix, 1823)		Hairy saki	No Listed	LC	12
		Pithecia	milleri J.A. Allen, 1914		Miller's saki	DD	VU	21
	Pitheciinae	Cacajao	ouakary (Hershkovitz, 1987)		Golden-backed Black Uakary monkey	LC Cacajao melanocephalus	NT	18
Pitheciidae		Plecturo-	<i>caquetensis</i> Defler, Bueno & García 2010 ^p *		Caquetá tití monkey	CR Callicebus caquetensis	CR ¹	18
		cebus	<i>discolor</i> (I. Geoffroy & Deville, 1848)		Red titi monkey	LC C. discolor	VU	1
	Callicebinae		ornatus (Gray, 1866)		Ornate tití monkey	VU C. ornatus	VU	32
		Change 1	<i>lucifer</i> Thomas, 1914		Yellow-handed Titi Monkey	LC Callicebus lucifer	LC ³	10
		Cheracebus	lugens (Humboldt, 1811)		Collared titi monkey	LC Callicebus lugens	LC ³	23

			Medemi Hershkovitz, 1963**		Colombian Black-handed Titi	VU C. medemi	VU ^{3(g)}	7
Atelidae	Atelinae	Ateles	belzebuth	<i>belzebuth G</i> eoffroy, 1806	Long-haired spider monkey	EN	VU	41
			fusciceps	<i>rufiventris</i> Scalter, 1872	Colombian black spider monkey	CR	EN	31
		Ateles	1 1 . 1	<i>brunneus</i> Gray, 1870**	Brown spider monkey	CR	CR	24
	Atelinae		hybridus	<i>hybridus</i> I. Geoffroy, 1829	Variegated spider monkey	CR	CR	25
Atelidae	Atennae			<i>lagotricha</i> (Humboldt, 1812)	Humboldt's woolly monkey	VU Lagothrix lagotricha	NT	64
		Lagothrix	lagotricha	<i>lugens</i> Elliot 1907**	Colombian woolly monkey	CR Lagothrix lugens	VU	56
	Alouattinae	Alougtta	palliata	<i>aequatorialis</i> Festa, 1903	South Pacific blackish howler monkey	VU	VU	26
		Alouatta	seniculus	<i>seniculus</i> (Linnaeus, 1766)	Red howler monkey	No Listed (LC)	LC ³	266

¹IUCN 2016 (Assessment on species designated by specialist assessor(s) in 2008); ² Rodríguez-Mahecha et al. 2006 (National status designated in 2004); ³Conservation status suggested by Defler 2010; ⁴ Records confirmed by IGUN (2012). ^(a)Buckner et al. 2015 placed the genus within the family Callitrichidae; ^(b) Not reported in Colombia by the IUCN 2016; ^(c) Not reported in Colombia by APC (2016); ^(d) Restricted to the Gorgona Island NNP; ^(e) One more subspecies, *A. nancymae*, is listed by APC (2016) but major doubts about its occurrence in the country exist; ^(f) None ENM elaborate for this species; ^(g) Not listed in Rodríguez-Mahecha et al. 2006; ^{*}Endemic; ^{p*}Probably endemic; ^{**} Distribution restricted to Colombia. **Table 2.2** List of environmental variables used to generate preliminary and final environmental niche models (ENMs) for the species of primates in Colombia. All variables were masked to the extent of the country at 1-kilometer cell size resolution. Net Primary Productivity and Soil variables were not used in final ENMs due to overestimation of primate habitat based on known geographic ranges of species.

Group	Variable Name	Year	Description
Climate	BIO4		T° Seasonality (standard deviation *100)
Models ¹	BIO7	2005	T° Annual Range (BIO5-BIO6)
WIUUUUS	BIO15		Precipitation Seasonality (Coefficient of Variation)
	Net Primary Productivity ²	2010	Amount of atmospheric carbon fixed by plants and accumulated as biomass (Multi Year average)
Vegetation	Forest Canopy Height ³	2005	Global Forest Canopy Height - forest vertical structure (Simard et al. 2011)
Models	Tree Cover ⁴	2003	Percent tree cover (%) or density of trees on the ground $(0 - 100)$. Ratio of the area covered with branches and leaves of trees (tree canopy) to the ground surface seen from the above (vertical direction).
	Actual Evapo - transpiration	1950-2000	Soil water balance (yearly average)
	BulkDensity_0-5mean	2013	Bulk density in kg / cubic-meter (mean estimate) for 2.5 cm depth
Soil	Clay_0-5mean	2013	Soil texture fraction clay in percent (mean estimate) for 2.5 cm depth
Models ⁵	Organic_Carbon_0-5mean	2013	Soil organic carbon content (fine earth fraction) in per Milles (mean estimate) for 2.5 cm depth
	pH_0-5mean	2013	Soil pH x 10 in H2O (mean estimate) for 2.5 cm depth
	Sand_0-5mean	2013	Soil texture fraction sand in percent (mean estimate) for 2.5 cm depth
	Elevation ⁶	2001	Global Digital Elevation Model (GDEM) _1 arc-second (approximately 30-m at the equator) grid.
Physical	Land Cover ⁷	2007	19 classes (Appendix D) relating areas cover by with natural vegetation, transformed lands, cultivated, coastal and
Models	Lunu Cover	1007	inland wet areas and water surfaces. Relevant subclasses were also established.
wodels	Biomes ⁷	2007	32 classes (Appendix D) Defined by the relationship among geo-pedology, vegetation and climate features.
	Watershed ⁷	2002	43 areas (Appendix D)

¹WorldClim - Hijmans et al. 2005; ²UNEP 2015; ³Simard et al. 2011; ⁴ISCGM 2003; ⁵ISRIC 2013; ⁶LP DAAC 2001; ⁷SIG-OT 2009. **BIO5**: Maximum Temperature of Warmest Month; **BIO6**: Minimum Temperature of Coldest Month.

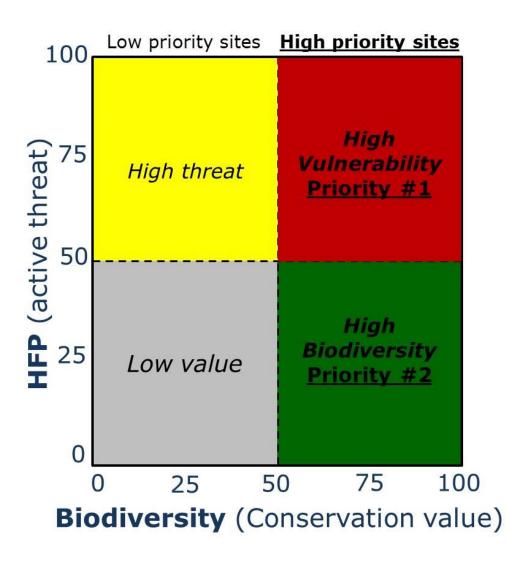
Table 2.3 Selected combinations of variables that best predict the geographic distribution of primates in Colombia. Only the top model was used to generate an ENM for each species.

MODEL		VARIABLES														
MODEL	С	LIMATE		VEGE	TATION	PHYSICAL										
Α	BIO4	BIO7	BIO15			Bio	Elev	Land								
В	BIO4	BIO7	BIO15	РТС	Canp	Bio		Land								
С	BIO4	BIO7	BIO15				Elev	Land	Wat							
D	BIO4	BIO7	BIO15			Bio	Elev		Wat							
E	BIO4	BIO7	BIO15			Bio	Elev	Land	Wat							
F						Bio		Land	Wat							
G	BIO4	BIO7	BIO15	PTC	Canp		Elev		Wat							

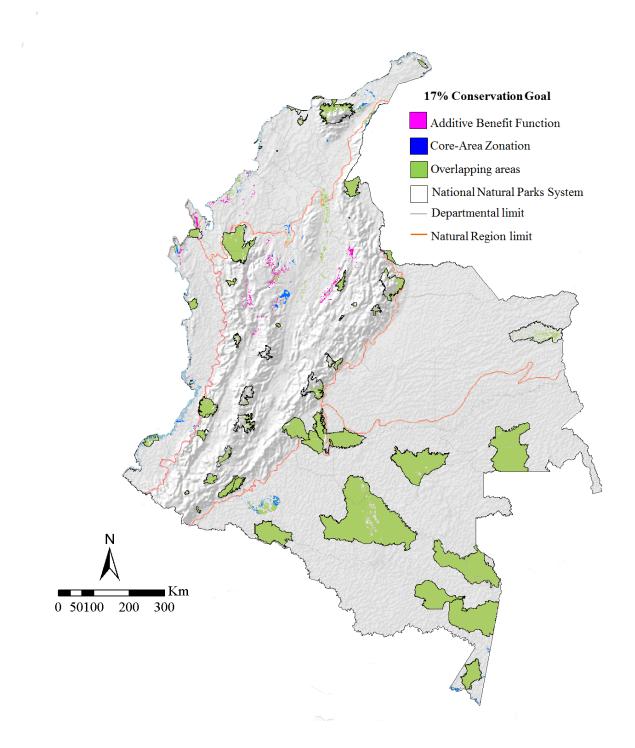
BIO4: Temperature Seasonality (standard deviation *100); BIO7: Temperature Annual Range (BIO5: Maximum Temperature of Warmest Month - BIO6: Minimum Temperature of Coldest Month); BIO15: Precipitation Seasonality (Coefficient of Variation); PTC: Percent Tree Cover; Canp: Forest Canopy Height; Bio: Biomes; Elev: Elevation (DEM); Land: Land Cover; Wat: Watershed.

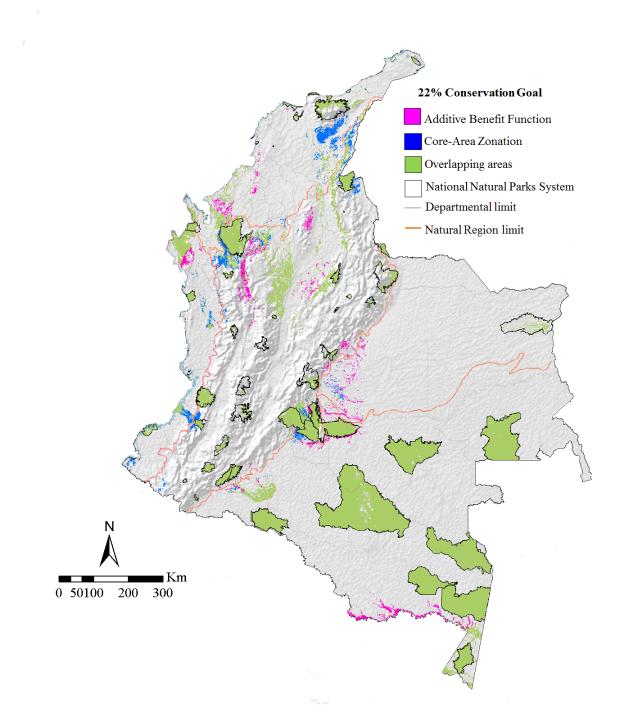
Table 2.4 Area Under the receiver operating characteristic curve (AUC) value, importance of environmental variables and other main statistics for a final distribution model for each taxon of primates in Colombia with 10 or more occurrence records. Final environmental niche models are illustrated in Appendix I.

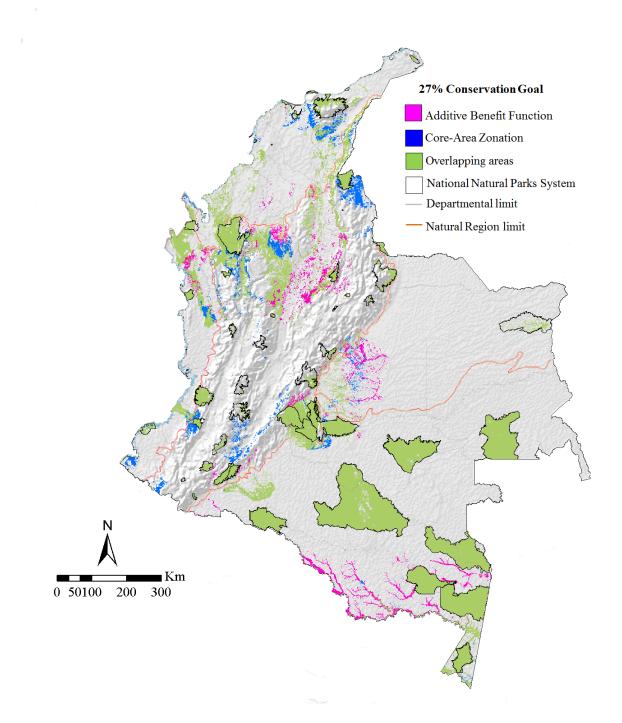
Species / Sub-species			OTr		AUC	LT	FPA		Percent Contribution								
		Obs		POc				TOR	РТС	Can	BIO 4	BIO 7	BIO 15	Bio	Elev	Land	Wat
Alouatta p. aequatorialis	Н	26	23	0.84	0.991	0.128	0.042	0.048	4.1	<1	4.0	3.1	11.9	-	<1	-	76.8
Alouatta seniculus seniculus	F	266	205	0.99	0.804	0.368	0.253	0.268	-	-	-	-	-	23.0	-	46.3	30.7
Aotus brumbacki*	Е	10	10	0.98	0.995	0.638	0.010	0.000	-	-	2.0	<1	<1	17.1	1.2	18.6	61.2
Aotus griseimembra	F	70	56	0.99	0.958	0.285	0.108	0.107	-	-	-	-	-	31.7	-	31.5	36.8
Aotus lemurinus	С	68	53	0.92	0.956	0.364	0.093	0.094	-	-	11.6	1.7	5.0		10.1	33.1	38.5
Aotus vociferans	В	17	17	0.97	0.940	0.298	0.166	0.176	2.2	1.1	9.0	<1	35.7	42.6	-	9.3	-
Aotus zonalis	Е	20	19	0.98	0.991	0.131	0.046	0.053	-	-	<1	11.7	<1	7.0	5.7	8.9	66.8
Ateles belzebuth belzebuth	Е	41	31	0.99	0.961	0.095	0.096	0.097	-	-	<1	<1	<1	23.3	<1	8.6	68.1
Ateles fusciceps rufiventris	C	31	25	0.99	0.979	0.270	0.060	0.040	-	-	<1	<1	<1	-	3.8	26.0	70.2
Ateles hybridus*brunneus**	Е	24	24	0.96	0.986	0.221	0.047	0.042	-	-	<1	<1	<1	26.2	<1	12.9	60.9
Ateles hybridus hybridus	C	25	25	0.99	0.976	0.161	0.108	0.000	-	-	6.7	<1	<1	-	1.9	26.0	65.4
Cacajao ouakary	C	18	18	0.93	0.948	0.558	0.111	0.111	-	-	<1	<1	<1	-	3.3	19.1	77.6
Plecturocebus caquetensis*	Е	18	18	0.82	0.998	0.473	0.004	0.000	-	-	3.4	<1	1.7	17.5	<1	23.2	54.2
Plecturocebus ornatus	С	32	25	0.95	0.987	0.303	0.037	0.040	-	-	1.0	<1	<1	-	5.4	10.9	82.6
Cheracebus lucifer	Е	10	10	0.99	0.990	0.219	0.042	0.000	-	-	6.6	<1	2.6	10.3	19.5	<1	61.0
Cheracebus lugens	D	23	23	0.99	0.915	0.384	0.180	0.174	-	-	16.0	<1	1.4	30.7	8.5	-	43.4
Cebuella pygmaea pygmaea	Е	12	11	1.0	0.976	0.104	0.091	0.091	-	-	<1	<1	4.3	35.2	1.3	14.5	44.7
Cebus albifrons albifrons	Е	37	29	0.97	0.930	0.271	0.135	0.138	-	-	<1	<1	<1	51.2	7.6	20.5	20.7
Cebus albifrons cesarae**	C	13	13	0.99	0.995	0.173	0.015	0.000	-	-	<1	<1	<1	-	<1	29.9	70.1
Cebus albifrons versicolor**	Е	59	47	0.95	0.969	0.202	0.083	0.085	-	-	<1	<1	<1	38.1	-	36.7	25.3

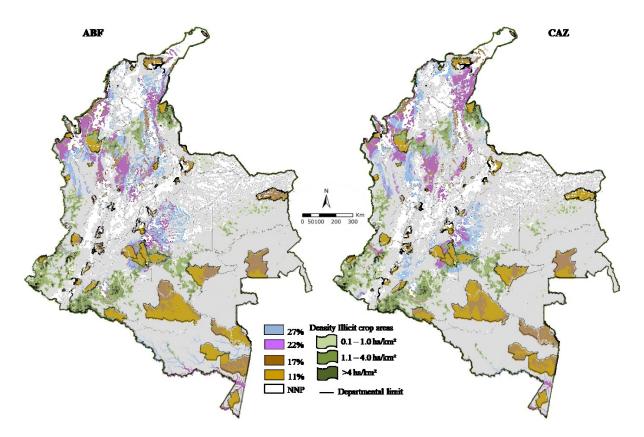

Cebus apella fatuellus	D	102	81	0.91	0.876	0.339	0.185	0.185	-	-	<1	<1	2.3	48.1	<1	-	49.6
Cebus capucinus	Е	53	42	0.98	0.969	0.256	0.077	0.071	-	-	<1	<1	<1	18.2	<1	23.5	58.3
Lagothrix l. lagotricha	D	64	51	0.90	0.910	0.327	0.171	0.176	-	-	1.0	<1	11.6	49.6	6.2	-	31.5
Lagothrix l. lugens**	F	56	45	0.99	0.940	0.293	0.136	0.133	-	-	-	-	-	20.3	-	18.0	61.6
Pithecia hirsuta	D	12	12	0.97	0.980	0.316	0.065	0.083	-	-	<1	<1	28.1	16.6	19.1	-	36.2
Pithecia milleri	D	21	18	0.91	0.956	0.178	0.100	0.056	-	-	<1	<1	<1	27.3	<1	-	72.7
Leontocebus fuscus	F	33	26	0.99	0.966	0.401	0.084	0.077	-	-	-	-	-	31.4	-	7.0	61.6
Saguinus geoffroyi	С	13	12	0.94	0.993	0.158	0.030	0.000	-	-	<1	6.2	2.2	-	1.2	10.7	79.7
Saguinus inustus	С	16	16	0.98	0.941	0.366	0.130	0.125	-	-	15.8	<1	12.4	-	2.4	5.7	63.7
Saguinus leucopus*	F	78	61	0.87	0.972	0.201	0.072	0.066	-	-	-	-	-	16.1	-	11.3	72.6
Leontocebus n. nigricollis	D	12	12	0.90	0.998	0.300	0.004	0.000	-	-	14.7	1.4	1.5	22.5	6.3	-	53.8
Saguinus oedipus*	F	55	38	1.0	0.986	0.185	0.054	0.026	-	-	-	-	-	3.0	-	11.1	85.9
Saimiri sciureus albigena**	F	35	28	0.91	0.976	0.178	0.073	0.071	-	-	-	-	-	9.3	-	8.4	82.3
Saimiri s. cassiquiarensis	Е	21	21	0.93	0.965	0.291	0.089	0.095	-	-	<1	<1	<1	32.1	3.3	3.3	61.3
Saimiri sciureus macrodon	Е	29	28	0.84	0.953	0.350	0.107	0.107	-	-	<1	<1	7.2	19.1	1.1	<1	72.6

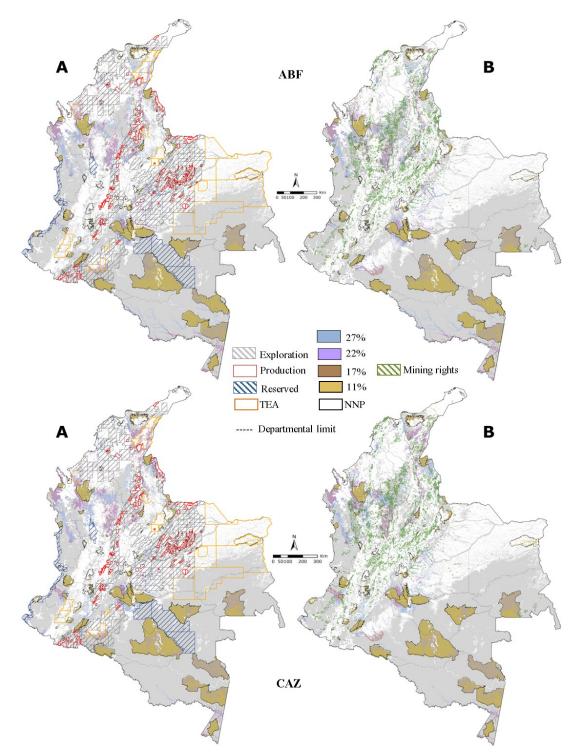
M: Selected Model; **Obs**: Number of observations; **OTr**: Number of observations for training; **POc**: Probability of occurrence; **AUC**: Training AUC value; **LT**: Logistic Threshold; **FPA**: Fractional Predicted Area; **TOR**: Training Omission Rate; **PTC**: Percent Tree Cover; **Can**: Forest Canopy Height; **BIO4**: Temperature Seasonality (standard deviation *100); **BIO7**: Temperature Annual Range (BIO5: Maximum Temperature of Warmest Month - BIO6: Minimum Temperature of Coldest Month); **BIO15**: Precipitation Seasonality (Coefficient of Variation); **Bio**: Biomes; **Elev**: Elevation (DEM); **Land**: Land Cover; **Wat**: Watershed.*Endemic ** Distribution restricted to Colombia.

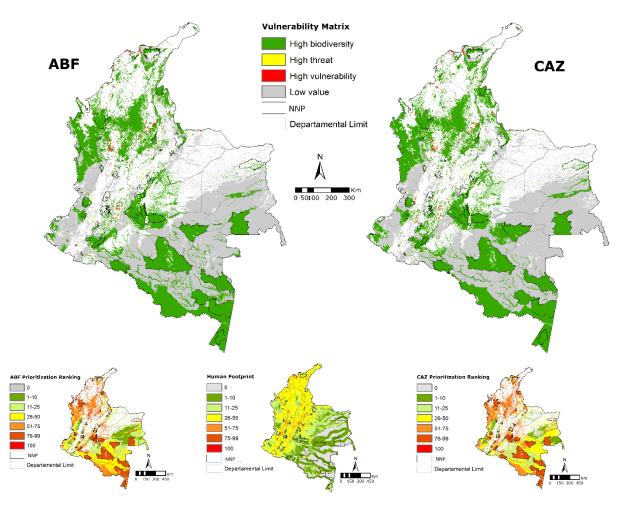

2.7 Figures

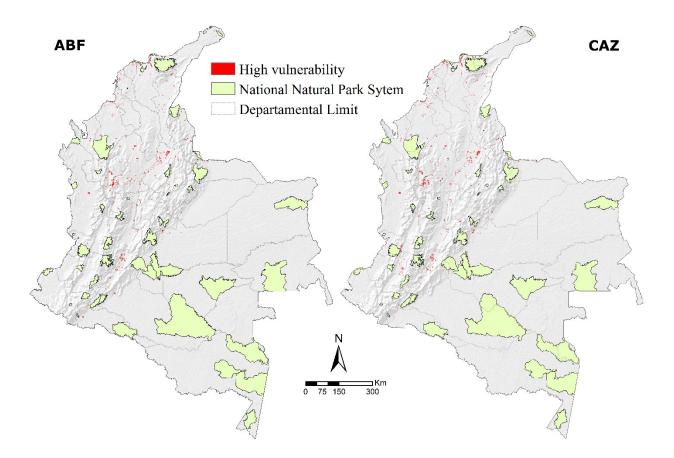

Figure 2.1 Map of Colombia and its location in South America.


Figure 2.2 Two-dimensional vulnerability matrix used to identify regional conservation priorities, based on levels of irreplaceability value relative to threats and conservation value. Conservation value (horizontal axis) denotes the priority rank of a site accordingly to occurrence of species and habitat quality (zonation rank), whereas human footprint index (HFP, vertical axis) representing percentage of the human influence on the land. Adapted from Margules and Pressey (2000).


Figure 2.3 Prioritized conservation areas in Colombia for the 17% conservation goal. Two main cell removal rules, the Additive Benefit Function and the Core-Area Zonation, were used to select the most important areas to improve representation of suitable areas for primates in Colombia. Overlapping areas: selected areas where the two rules converge.


Figure 2.4 Prioritized conservation areas in Colombia for the 22% conservation goal. Two main cell removal rules, the Additive Benefit Function and the Core-Area Zonation, were used to select the most important areas to improve representation of suitable areas for primates in Colombia. Overlapping areas: selected areas where the two rules converge.


Figure 2.5 Prioritized conservation areas in Colombia for the 27% conservation goal. Two main cell removal rules, the Additive Benefit Function and the Core-Area Zonation, were used to select the most important areas to improve representation of suitable areas for primates in Colombia. Overlapping areas: selected areas where the two rules converge.


Figure 2.6 Potential threats associated to priority conservation zones at different protection targets. Density of Illicit crop areas (UNODC 2014) were overlaid to scenarios using two main cell removal rules, the Additive Benefit Function (ABF) and the Core-Area Zonation (CAZ), in order to identify areas of high vulnerability. NNP: current National Natural Park system.

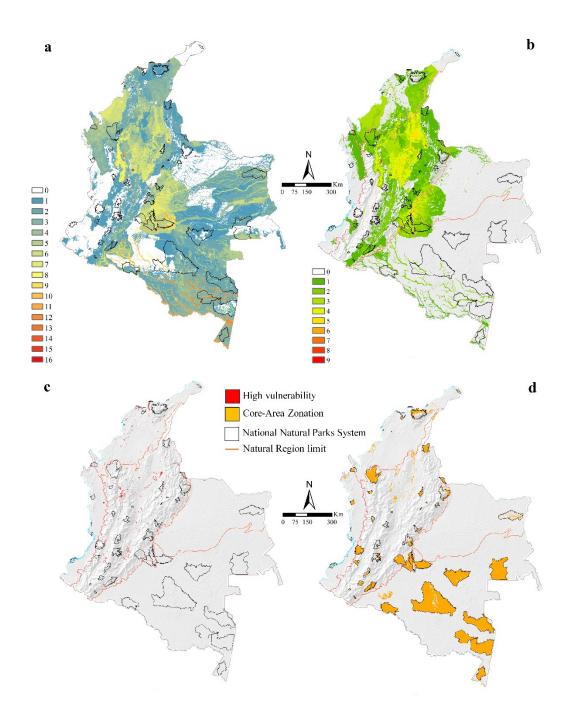

Figure 2.7 Potential threats associated to priority conservation zones at different protection targets. Oil concession areas (A) and mining rights (B) were overlaid to Additive Benefit Function (ABF) and Core-Area Zonation (CAZ) scenarios to identify vulnerability priorities to consider in the expansion process of the current reserve network. NNP: current National Natural Park system

Figure 2.8a Irreplaceability-vulnerability ranking based on the Human Footprint Index and reclassified Additive Benefit Function (ABF) and the Core-Area Zonation (CAZ) priority rank scenarios. Regional conservation priorities are identified in terms of high vulnerability value (High biodiversity and high threat) using a two-dimensional vulnerability matrix. NNP: current National Natural Park System.

Figure 2.8b Regional conservation priorities of high vulnerability value (High biodiversity and high threat) derived from the irreplaceability-vulnerability approach using a two-dimensional vulnerability matrix to pair the zonation rank (conservation values) with the percentage of threat relative to human Influence on the land (biomes). ABF: Additive Benefit Function; CAZ: Core-Area Zonation. Green areas represent the current National Natural Park System.

Figure 2.9 Primate richness in Colombia (a) -cold to warm colors represent increase in number of species. Incidence of species of concern (b) -endemic, rare and highly threatened, red color represents higher occurrences. Priorities of high vulnerability value using the Core-Area Zonation cell removal rule (c). Core-Area Zonation ranking under the 17% conservation goal (d).

3. Protecting primates in Colombia: from fine to coarse perspectives in conservation needs

3.1 Implications

This thesis provided both an assessment of conservation gaps and prioritized sites for future protection, as well as new geographic distribution maps (ranges and suitable habitat) for 39 taxa of primates. This is especially valuable for species that do not have contemporary distribution models including species in the families of Aotidae, Pitheciidae, Cebidae, and most of the species in Callitrichinae. Modeled potential distribution of primates provide the capacity for better assessing population status and development of sites to target for verifying occurrence (Hipólito et al. 2015 and Maestri & Patterson 2016) and monitoring of populations for not only endangered species, but also poorly known species where conservation assessments are needed. For example, monitoring activities are recommended for spider monkeys and woolly monkeys (Palacios & Peres 2005, Link et al. 2010 and Lizcano et al. 2014) given the rate of habitat fragmentation in areas where these species occur (Armenteras & Villareal 2003). These species have diet requirements and body size features, making them more susceptible to fragmentation (Cowlishaw & Dunbar 2000, Peres 2000, Palacios & Peres 2005, Defler 2010 and Link et al. 2010), along with the risk of becoming a regular prey for hunting. Likewise, the taxonomic arrangement, geographic ranges, and conservation needs for night monkeys in the Andes and Amazon regions need to be better addressed (Defler & Bueno 2007).

Conservation planning needs to consider the social dimension with conservation strategies ensuring the quality and well-being of not only non-human species, but also opportunity to coexist with humans by allowing responsible traditional use of the different resources. This is even more important when settlements overlap with forested areas that harbor high biodiversity values or sensitive species. Thus, one of the main goals in the current paradigm of conservation planning is the maintenance of ecosystem functions and services, while also ensuring traditional ways of living. New conservation sites in areas where African decent and indigenous communities occur (Figure 3.2) should therefore be integrated with ongoing conservation programs in the country. This includes the policy of social participation in conservation 'Parques con la gente'' (parks with people), special management regimes with indigenous peoples formulated by the SNNP (Paredes 2011), and the multiple community-based strategies led by different NGOs providing support in the formulation of management plans of natural resources with active participation of stakeholders. This includes the use of traditional knowledge to ensure protection of primary forests and sacred sites (e.g., PNN Yaigoje-Apaporis and native reserves in the Amazon region, Conservation International Colombia (pers. obs.)). Indeed, Corzo (2008) considers such approaches to be advantageous ("oportunas") since communities can help to conserve strategic ecosystems while limiting the pressure of human development. Likewise, Armenteras et al. (2009) pointed out the value of indigenous reserves to mitigate deforestation. These strategies benefit species of spider monkeys in the Andean and Chocó bio-geographic region, as some other vulnerable species present in new proposed conservation areas in the Amazon piedmont and Pacific region.

Likewise, the conservation category of rural reserve ("reserva campesina", Corzo 2008) could be used to set protection actions in rural areas where critically endangered species of monkeys occur (e.g., the Caqueta titi monkey), while occurring in areas of high habitat fragmentation. Similarly, social based conservation projects on reforestation and sustainable resource use occurring in areas of high coca crop incidence have demonstrated to be effective in providing alternative economic options, while increasing awareness and values of restoring forests and associated ecosystem services (Giraldo-Benavides et al. 2007 and Baena 2016).

Finally, primates represent highly charismatic species that have value in being used as flagship species to gain public and international interest and funding for conservation programs (Leader-Williams & Dublin 2000). This includes assembly alliances with different players (communities, government, NGO, universities, etc.) and finding ways to generate incentives (Supriatna & Ario 2105). Use of primates as flagship species for conservation in areas of high vulnerability may provide substantial benefits for both communities and habitats (biodiversity). Home et al. (2009) noted that a combination of charisma and ecological importance is an important criterion for the selection of flagship species and for successful conservation programs. These features are clearly exhibited by primates (their role in the maintenance and functioning of the ecosystems, along with the sympathy that they generate in the public). Currently, species-based conservation programs in Colombia aim at protecting populations of the cotton-top tamarin (*Saguinus Oedipus*), spider monkeys (*Ateles hybridus*), and woolly monkeys (*Lagothrix l. lagothricha*) and can be replicated and/or adjusted to include other under-protected vulnerable species such as the white-footed tamarin (*Saguinus leucopus*) and Caqueta titi monkey (*Callicebus caquetensis*).

3.2 Limitations

Given that the number of location records for some taxa in this study were small, there is still uncertainty in both their environmental niche (Zhang & Zhang 2012) and their geographic distribution/suitable habitat. This identifies the need for prioritizing collection and reporting of occurrence records, especially for those species with less than ten observations (e.g., *Saguinus n. graellsi, S. n. hernandezi, Callimico goeldii, Cebus a. malitiosus*) or with unknown occurrence records such as the shock-headed capuchin (*Cebus albifrons cuscinus*). Censuses for some taxa are still needed such as the Hernández-Camacho's night monkey, a newly described species for Colombia (Defler & Bueno 2007) based on only one museum specimen and no record of locality (i.e., found in captivity), although supposedly captured in the NNP-Los Nevados (Andean region) (Table 2.1, Main Chapter). This limits identification of geographic distribution and conservation status.

Furthermore, to improve the knowledge on national conservation needs and for a more precise definition of distribution ranges for the Aotidae family in the country, there is the need to confirm the presence of the Brumback's night monkey (*Aotus brumbacki*) at northeastern parts of the Orinoco region, to clarify whether the Northern Night Monkey (*A. trivirgatus*) occurs in the country, and to include confirmed records for a new species for Colombia the Nancy Ma's Night Monkey (*A. nancymaae*) (IGUN 2012), which report was found after the distributions maps were made.

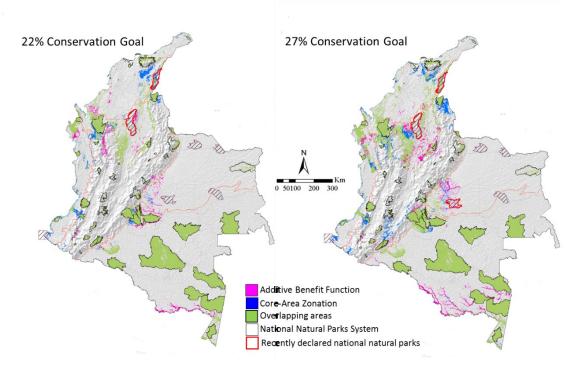
For the Brumback's night monkey, most records are limited to localities in the western parts of the Orinoco region with an unsuccessful attempt to clarify the extent of its geographic distribution in forested areas of savannas in the eastern side of this region (Castillo-Ayala & Nielsen 2013). Increasing regional efforts for sampling are essential given the vulnerability/status of this night monkey and the level of threat due to deforestation for illicit crops in the Orinoco region (Armenteras et al. 2013).

A recent update of the list of primates in Colombia includes the northern night monkey (*A. trivirgatus*) (APC 2016), while Veiga & Rynalds (2008) does not recognize Colombia as native for this species. There is also uncertainty about determining if a specimen from a locality in the Orinoco basin in Colombia is either *A. trivirgatus*, *A. brumbacki*, or even a new species

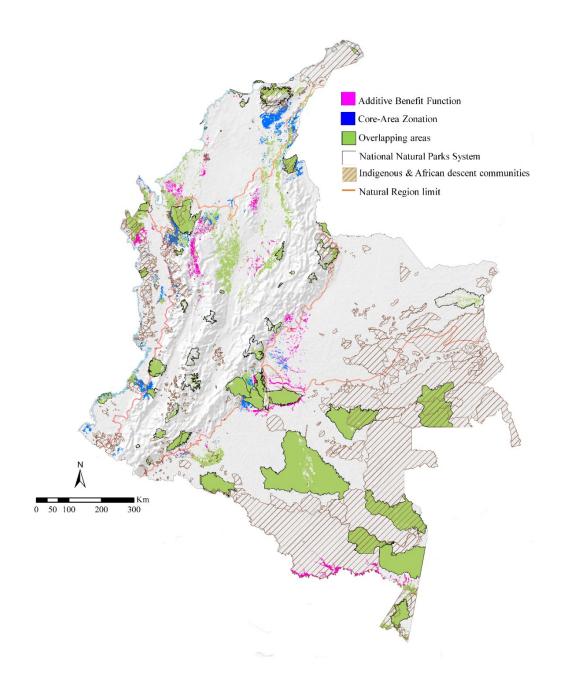
highlighting the need to resolve the phylogenetic arrangement for the species of night monkeys within the eastern localities of Colombia (Defler & Bueno 2007).

Lack of national high-resolution environmental data (e.g., soil fertility, tree species composition and dominance, forest productivity and structure, etc.) limits fine-scale predictions of geographic distribution and a full understanding of ecological niches. Regionally-derived environmental data would also increase the level of confidence in conservation planning assessments, as well as allowing better assessments of landscape connectivity (Lehtomäki et al 2009). As an example, Lawley et al. (2016) remarked about the capacity of integrating data from both site-based and remote sensing platforms in order to monitor vegetation condition and thus inform management decisions. Such monitoring would be highly valuable. Open access to spatial data in Colombia is critical but limited for scientists and conservation organizations (Brito 2013).

Likewise, improvements are needed in further prioritization of protected areas and assessments of vulnerability as more information becomes available and sites are protected. Updated spatial datasets on contemporary forest and land use cover type for the country would be especially valuable (as the models generated by Armenteras et al. 2002, Armenteras et al. 2003, Etter et al. 2006 and Rodríguez Eraso et al. 2013). Other important data sets include the occurrence and/or density of illicit crops, human population density, forest industry, farming, and ranching. For instance, the information derived from the spatial footprint index developed by Etter et al. (2011) could be an effective tool for identifying vulnerable areas across the geographic ranges of primates in Colombia since it integrates important variables such land use intensity, intervention time, and biophysical variability.


3.3 Recommendations

In spite of limitations described above, this study offers the first attempt to address major conservation needs for primates at a national, multi-specific level. It also contributes to providing a consistent dataset and approach to defining the geographic ranges for most primates in Colombia. However, connectivity assessments also need to be carried out. Connectivity analyses would allow evaluation of the condition of forested areas within national natural parks and to select in an objective manner new conservation areas that link remnant patches of forest with


current protected areas. Protection costs could also decrease if new conservation areas are located near existing areas (Moilanen et al. 2009).

Finally, it is critical to consider other threats (e.g., deforestation and agriculture patterns) in order to have more diverse array of scenarios for prioritizing conservation areas and helping with decision-making. This could follow the form of irreplaceability-vulnerability analysis (Lawler et al. 2003), opportunity cost modeling (Naidoo & Adamowicz 2006) using probabilities of land conversion and estimates of economic gain, or by considering the impacts as surrogates for cost, mainly those related with land uses. This last approach has the benefit of setting conservation priorities in areas with low incidence of human development and lower land purchasing cost. However, caution is needed in settling on the right costs and conservation targets since it can lead to the inadequate selection of areas to protect (Possingham et al. 2009).

3.4. Figures

Figure 3.1 National Natural Parks recently declared in relation with merged scenarios using two main cell removal rules, the Additive Benefit Function (ABF) and the Core-Area Zonation (CAZ) at 22 and 27% protection targets.

Figure 3.2 Indigenous reserves and African descent communities associated to priority conservation zones using two main cell removal rules, the Additive Benefit Function (ABF) and the Core-Area Zonation (CAZ) at 22% protection goal.

4. Bibliography

- Alvarez M. D. 2003. Forest in the time of violence: conservation implications of the Colombian war. *Journal of Sustainable Forestry*, 16(3/4): 49-70.
- ANH Agencia Nacional de Hidrocarburos. 2016. Concesiones petroleras mineras. Listado Areas 130616. Geovisor ANH v2.0.10. Bogotá, Colombia. http://www.anh.gov.co/enus/Asignacion-de-areas/Paginas/Mapa-de-tierras.aspx
- ANH Agencia Nacional de Hidrocarburos. 2015. Mapa de Tierras 2015. Bogotá, Colombia. http://www.anh.gov.co/Asignacion-de-areas/Paginas/Mapa-de-tierras.aspx
- APC Asociacion Primatologica Colombiana. 2016. Lista de primates colombianos de la Asociacion Primatologica Colombiana. Bogotá, Colombia.
 www.asoprimatologicacolombiana.org
- Armenteras D., Cabrera E., Rodríguez N., & Retana J. 2013. National and regional determinants of tropical deforestation in Colombia. *Regional Environmental Change*, 13: 1181-1193.
- Amenteras D., Rodríguez N., & Retana J. 2009. Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield? *Biological Conservation*, 142: 1411-1419.
- Armenteras D., Gast F., & Villareal H. 2006. Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. *Biological Conservation*, 113: 245–256.
- Armenteras D., Rudas G., Rodríguez N., Sua S., & Romero M. 2006. Patterns and causes of deforestation in the Colombian Amazon. *Ecological Indicators*, 6: 353-368.
- Armenteras D., Gast F., & Villareal H. 2003. Andean forest fragmentation and representativeness of protected natural areas in the Eastern Andes, Colombia. *Biological Conservation*, 113: 245-256.
- Armenteras D., Rodríguez N., Rudas G., & Sua S. 2002. An indicator system with GIS to explain and prevent biodiversity losses in the Colombian Amazonia. In: *Proceedings of the 22nd ESRI Users Conference*. San Diego, California.
- Baena M. P. 2016. Bosques de paz en el Guaviare. Una apuesta ambiental en el postconflicto. El Espectador newspaper. Bogotá, Colombia.
 www.elespectador.com/files/especiales/apuesta-ambiental-posconflicto/index.html

- Bello C., Galetti M., Pizo M. A, Magnago L. F, Rocha M. F., Lima R. A. F., Peres C. A., Ovaskainen O., & Jordano P. 2015. Defaunation affects carbon storage in tropical forests. Science Advances, 1: 1-10.
- BirdLife International. 2015. Important Bird and Biodiversity Area factsheets: Parque Nacional Natural Sierra de la Macarena and Munchique Natural National Park (Parque Nacional Natural Munchique IBA). Downloaded from http://www.birdlife.org
- Botero S., Stevenson P. R., & Di Fiore A. 2015. A primer on the phylogeography of *Lagothrix lagotricha* (*sensu* Fooden) in northern South America. *Molecular Phylogenetics and Evolution*, 82: 511-517.
- Botero S. & Stevenson P. R. 2014. Coat Color is not an Indicator of Subspecies Identity in Colombian Woolly Monkeys. In: Defler T. R. & Stevenson P. R. (Eds.). *The Woolly Monkey: Behavior, ecology, systematics and captive research*. Springer. New York, USA. Pp. 17-31.
- Boubli J. P., Di Fiore A., Stevenson P., Link A., Marsh L., & Morales A. L. 2008. Ateles belzebuth. The IUCN Red List of Threatened Species 2008: e.T2276A9384912. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T2276A9384912.en.
- Boubli J. P., Rylands A. B., de la Torre S., & Stevenson P. 2008. Saimiri sciureus. The IUCN Red List of Threatened Species 2008: e.T41537A10494364. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41537A10494364.en
- Brito Hoyos D. M. 2013. Colombia from space: applications of remote sensing and geographic information systems in the country. Master of Space Applications in Early Warning and Emergency Response. Seminary. National University of Cordoba. Cordoba Province, Argentina.
- Buckner J. C., Lynch Alfaro J. W., Rylands A. B., & Alfaro M. E. 2015. Biogeography of the marmosets and tamarins (Callitrichidae). Molecular *Phylogenetics and Evolution*, 82: 413–425.
- Burbano-Giron J. 2013. Modeling the dispersion of atelines (primates, atelinae) through scenarios of climate change and habitat fragmentation in Colombia. Conservation implications for the persistence of species into the future. Master's thesis. Universidad Nacional de Colombia. Sinab – Sistema Nacional de Bibliotecas and bdigital. Bogotá, Colombia. http://www.bdigital.unal.edu.co/10803/#sthash.3gE2TMTu.dpuf

- Byrne H., Rylands A. B., Carneiro J. C., Lynch Alfaro J. W. et al. 2016. Phylogenetic relationships of the New World titi monkeys (*Callicebus*): first appraisal of taxonomy based on molecular evidence. *Frontiers in Zoology*, 13:10 DOI 10.1186/s12983-016-0142-4
- Castillo-Ayala C., & Nielsen S. 2013. *Assessing sampling techniques to estimate primate occurrence in forested areas of the Colombian Orinoco savannas*. University of Alberta. Edmonton, Alberta, Canada. Unpublished raw data.
- Castillo-Ayala C. I., & Palacios E. 2007. Density of Saguinus inustus (Schwartz, 1951) in the interfluvium of the Caquetá– Apaporis rivers, Colombian Amazonia. Neotropical Primates, 14(3): 134-137.
- Clark D. A., Brown S., Kicklighter D. W., Chambers J. Q., Thomlinson J. R., Ni J., & Holland E. A. 2001a. Net primary production in tropical forests: an evaluation and synthesis of existing field data. *Ecological Applications*, 11: 371-384.
- Clark D. A., Brown S., Kicklighter D. W., Chambers J. Q., Thomlinson J. R., & Ni J. 2001b. Measuring net primary production in forests: concepts and field methods. *Ecological Applications*, 11: 356-370.
- Chapman C. A., & Chapman L. J. 1995. Survival without dispersers: Seedling recruitment under parents. *Conservation Biology*, 9: 675–678.
- Chapman C. A., & Peres C. A. 2001. Primate conservation in the new millennium: the role of scientists. *Evolutionary Anthropology* 10: 16–33.
- Conpes. 2010. Consejo Nacional de Política Económica y Social. *Lineamientos para la consolidación del sistema nacional de áreas protegidas*. Ministerio de Ambiente, Vivienda y Desarrollo Territorial MAVDT, Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales –UAESPNN. Bogotá, Colombia. 47pp.
- Cornejo F. 2008. *Callimico goeldii*. The IUCN Red List of Threatened Species 2008: e.T3564A9947398. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T3564A9947398.en
- Corzo G. 2008. Áreas prioritarias para la conservación "in situ" de la biodiversidad continental en Colombia. Mesa Nacional de Prioridades de Conservación. Memorando de Entendimiento. Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales. Bogotá, Colombia. 40pp.

- Cowlishaw, G., & Dunbar, R. 2000. *Primate Conservation Biology*. The University of Chicago Press. USA
- Cuarón A. D., Morales A., Shedden A., Rodríguez-Luna E., & de Grammont P. C. 2008a. Ateles fusciceps rufiventris. The IUCN Red List of Threatened Species 2008:
 e.T39921A10286751.

http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39921A10286751.en

 Cuarón A. D., Shedden A., Rodríguez-Luna E., de Grammont P. C., Link A., Palacios E., Morales A., & Cortés-Ortiz L. 2008b. *Alouatta palliata*. The IUCN Red List of Threatened Species 2008: e.T39960A10280447. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39960A10280447.en.

- Cuarón A. D., Palacios E., Morales A., Shedden A., Rodríguez-Luna E., & de Grammont P.C.
 2008c. *Aotus zonalis*. The IUCN Red List of Threatened Species 2008:
 e.T39953A10297100.
 http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39953A10297100.en
- Davalos L. M. 2001. The San Lucas mountain range in Colombia: how much conservation is owed to the violence? *Biodiversity and Conservation*, 10: 69–78.
- Defler T. R. 2014. Colombian Lagothrix: Analysis of their phenotypes and taxonomy. In: Defler T. R. & Stevenson P. R. (Eds.). *The Woolly Monkey: Behavior, ecology, systematics and captive research*. Springer. New York, USA. Pp. 33-58.
- Defler T. R. 2013. Aspects on Colombian Primate Conservation: what will the future bring? In: Defler T. R., Stevenson P. R., Bueno M. L., & Guzmán-Caro D. C. (Eds.). *Primates colombianos en peligro de extinción*. Asociacion Primatologica Colombiana. Bogotá, Colombia. Pp. 3-22.
- Defler T. R., & Rodríguez-Mahecha J. V. 2013. Tití cabeciblanco Saguinus oedipus. In: Rodríguez-Mahecha J. V., Alberico M., Trujillo F., & Jorgenson J. (Eds.). 2006. Libro Rojo de los Mamíferos de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Conservación Internacional Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, Colombia. Pp. 196-201.
- Defler T. R., & García J. 2012. *Callicebus caquetensis*. The IUCN Red List of Threatened Species 2012: e.T14699281A14699284. http://dx.doi.org/10.2305/IUCN.UK.2012-1.RLTS.T14699281A14699284.en

- Defler, T. R. 2010. Historia natural de los primates colombianos. Second edition. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología. Bogotá, Colombia. 612pp.
- Defler T. R., & Bueno, M. L. 2010. Prioridades en investigación y conservación de primates colombianos. In: V. Pereira-Bengoa, P. R. Stevenson, M. L. Bueno, & F. Nassar-Montoya (Eds.). *Primatología en Colombia: Avances al principio del milenio*. Gráficas San Martín. Bogotá, Colombia. Pp. 193-214.
- Defler T. R., & Bueno M. L. 2007. *Aotus* diversity and the species problem. *Primate Conservation*, 22: 55-70.
- Defler T. R., Palacios E., & Rodríguez A. 2006. Mico volador, *Pithecia monachus*. In: Rodríguez-Mahecha J. V., Alberico M., Trujillo F., & Jorgenson J. (Eds.). 2006. Libro Rojo de los Mamíferos de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Conservación Internacional Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, Colombia. Pp. 232-235.
- Defler T. R., Rodríguez-Mahecha J. V., & Hernández-Camacho J. I. 2003. Conservation Priorities for Colombian Primates. *Primate Conservation*, 19: 10-18.
- Defler T. R. 2001. Conservación y la Amazonia Colombiana. In: Franky Calvo C. E., & Zárate C. G. (Eds.). *Imani mundo: estudios en la Amazonia Colombiana*. IMANI Universidad Nacional de Colombia, Bogotá. Pp. 105-142.
- de la Torre S., Morales A. L., Link A., Palacios E., & Stevenson P. 2015a. Cebus malitiosus. The IUCN Red List of Threatened Species 2015: e.T4084A81280665. http://dx.doi.org/10.2305/IUCN.UK.2015.RLTS.T4084A81280665.en
- de la Torre S., Morales A. L., Link A., Palacios E., & Stevenson P. 2015b. *Cebus cesarae*. The IUCN Red List of Threatened Species 2015: e.T4082A81271492
- de la Torre S., Morales A. L., Link A., Palacios E., & Stevenson P. 2015c. Cebus versicolor. The IUCN Red List of Threatened Species 2015: e.T39952A81281674. http://dx.doi.org/10.2305/IUCN.UK.2015.RLTS.T39952A81281674.en
- Diaz A. M., & Sanchez F. 2004. Geografía de los cultivos ilícitos y conflicto armado en Colombia. Documento de trabajo #47. Crisis States Programmed - Development Research Centre. Working paper 1: 1-72.

- Di Fiore A., Chaves P. B., Cornejo F. M., C. A. Schmitt, et al. 2015. The rise and fall of a genus
 : Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, *Lagothrix flavicauda*, and on the evolutionary history of the family Atelidae (Primates : Platyrrhini). *Molecular Phylogenetics and Evolution*, 82: 495-510.
- Dudley N. 2008. *Guidelines for Applying Protected Area Management Categories*. IUCN: International Union for Conservation of Nature. Gland, Switzerland. 106pp.
- Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E., & Yates C. J. 2011. A statistical explanation of MaxEnt for ecologists. *Diversity and Distributions*, 17:43-57.
- Elith J., Graham C. H., Anderson R. P., Dudík M., et al. 2006. Novel methods improve prediction of species distributions from occurrence data. *Ecography*, 29: 129-151.
- ESRI. 2013. ArcGIS Desktop: Release 10.2.2. Environmental Systems Research Institute. Redlands, CA.
- Etter A., McAlpine C. A., Seabrook L., & Wilson K. A. 2011. Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. *Biological Conservation*, 144: 1585-1594.
- Etter A., McAlpine C., Wilson K., Phinn S., & Possingham H. 2006. Regional patterns of agricultural land use and deforestation in Colombia. *Agriculture, Ecosystems and Environment*, 114: 369-386.

Fawcert T. 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27: 861-874

- Ferrari S. F., Iwanaga S., Ramos E. M., Messias M. R., Ramos P. C. S. & Cruz Neto E. H. da. 1999. Expansion of the known distribution of Goeldi's monkey (*Callimico goeldii*) in south-western Brazilian Amazonia. *Folia Primatologica*, 70: 112-116.
- Forero-Medina G., & Joppa L. 2010. Representation of Global and National Conservation Priorities by Colombia's Protected Area Network. *PLoS ONE* 5(10): e13210. doi: 10.1371/journal.pone. 0013210
- Franklin J. 2010. *Mapping species distributions: spatial inference and prediction*. Cambridge University Press.New York, USA. 320pp.
- García J., Defler T. R., & Bueno M. L. 2010. The conservation status of Callicebus caquetensis (Pitheciidae): A new species in Southern Caqueta Department, Colombia. *Neotropical Primates*, 17(2): 37-46.

- Giovanelli J. G. R., de Siquiera M. F., Haddad C. F. B., & Alexandrino J. 2010. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. *Ecological Modelling*, 221: 215-224.
- Giraldo-Benavides B., Vargas Avila G., Zubieta Vega M., & Coy Torres M. W. 2007.
 Construcción participativa de sistemas productivos sostenibles para la Amazonia norte de Colombia. *Revista Colombia Amazonica*, Special Edition (4): 51-70.
- Groves, C. 2005. Order Primates. In: Wilson D. E., &. Reeder D. M. (Eds.). *Mammal Species of the World*. The Johns Hopkins University Press, Baltimore. Pp. 111-184.
- Groves C. P. 2001. Primate taxonomy. Smithsonian Institution Press, Washington, DC, USA.
- Hanberry B. B., He H. S., & Dey D. C. 2012. Sample sizes and model comparison metrics for species distribution models. *Ecological Modelling*, 227: 29-33.
- Hanley J. A., & McNeil B. J. 1982. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. *Radiology*, 143 (1): 29-36.
- Hegel T. M., Cushman S.A., Evans J., & Huettmann F. 2010. Current state of the art for statistical modelling of species distributions. In: Cushman S. A. & Huettmann F. (Eds.). *Spatial complexity, informatics, and wildlife conservation*. Springer. New York, USA. Chapter 16:273-311.
- Hengl T., de Jesus J. M., MacMillan R. A., Batjes N. H., Heuvelink G. B. M., Ribeiro E., et al. 2014. SoilGrids1km Global Soil Information Based on Automated Mapping. *PLoS ONE*, 9(8): e105992. doi: 10.1371/journal.pone.0105992
- Hernández-Camacho J., Hurtado A., Ortiz R., & Walschburger T. 1992. Unidades Biogeográficas de Colombia. In: Halffter G. (Ed.). La diversidad biológica en Iberoamérica. Acta Zoológica Mexicana. Pp. 55- 152.
- Hernández -Camacho J., & Defler T. R. 1989. Algunos aspectos de la conservación de primates no-humanos en Colombia. In: Saavedra C. J., Mittermeier R. A., & Bastos Santos I. (Eds.). *La primatologia in Latinoamerica*. WWF-US. Washington D. C., USA. Pp. 67-100.
- Hernández -Camacho J., & Defler T. R. 1985. Some aspects of the conservation of non-human primates in Colombia. *Primate Conservation*, 6: 42-50.

- Hernández -Camacho J., & Cooper R. C. 1976. The nonhuman primates of Colombia. In: Thorington Jr. R. W., & Heltne P. G. (Eds.). *Neotropical Primates: field studies and conservation*. National Academy of Sciences. Washington, D. C. Pp. 35-69.
- Hernández P. A., Franke L., Herzog S. K., Pacheco V., et al. 2008. Predicting species distributions in poorly-studied landscapes. *Biodiversity and Conservation*, 17:1353–1366.
- Hernández P. A., Graham C. H., Master L. L. & Albert D. L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. *Ecography*, 29:773-785.
- Hershkovitz P. 1982. Subspecies and geographic distribution of black-mantle tamarins Saguinus nigricollis Spix (Primates: Callitrichidae). Proceedings of the Biological Society of Washington, 95(4): 647-656. In: de la Torre S. & Stevenson P. 2008. Saguinus nigricollis. The IUCN Red List of Threatened Species 2008: e.T39945A10294823. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39945A10294823.en
- Hijmans, R. J., Cameron S. E., Parra J. L., Jones P. G., & Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25: 1965-1978.
- Hipólito J., Hasui É., & Viana B. F. 2015. Solving problems involving the distribution of a species of unknown distribution via ecological niche modeling. *Natureza & Conservação*. http://dx.doi.org/10.1016/j.ncon.2015.03.001
- Home R., Keller C., Nagel P., Bauer N., & Hunziker M. 2009. Selection criteria for flagship species by conservation organizations. *Environmental Conservation*, 36: 139-148.
- Human Rights Watch. 2015. World report 2015: Colombia, Events of 2014. Human Rights Watch 2016. New York, USA. https://www.hrw.org/world-report/2015/countrychapters/colombia
- IDEAM- Institute of Hydrology, Meteorology and Environmental Studies. 2002. Cuencas hidrográficas. República de Colombia. Edited by: Sistema web de administración de Metadatos del IGAC 2002. Bogotá, Colombia. 3pp. http://sigotn.igac.gov.co/sigotn/default.aspx
- IGAC Instituto Geográfico Agustín Codazzi. 2015. Geoportal. *Mapa de cartografía básica con relieve*. http://geoportal.igac.gov.co/ssigl2.0/visor/galeria.req?mapaId=22

- IGAC Instituto Geográfico Agustín Codazzi. 2007a. Cobertura de la tierra. República de Colombia. Edited by: Sistema web de administración de Metadatos del IGAC 2008.
 Bogotá, Colombia. 5pp. http://sigotn.igac.gov.co/sigotn/default.aspx
- IGAC Instituto Geográfico Agustín Codazzi. 2007b. *Ecosistemas continentales, marítimos y costeros*. Edited by: Sistema web de administración de Metadatos del IGAC 2008.
 Bogotá, Colombia. 5pp. http://sigotn.igac.gov.co/sigotn/default.aspx
- IGAC Instituto Geográfico Agustín Codazzi. 2004. Adopción del marco geocéntrico nacional de referencia MAGNA-SIRGAS como datum oficial de Colombia. IGAC-Subdirección de geografía y cartografía, división de geodesia. Departamento Administrativo Nacional de Estadística – DANE. Bogotá, Colombia. 33 pp.
- INGEOMINAS Instituto Colombiano de Geología y Minería. 2012. Títulos mineros vigentes 2012. In: SIG-OT - Sistema de información geográfica para la planeación y el ordenamiento territorial. IGAC- Instituto Geográfico Agustín Codazzi. Bogotá, Colombia. http://sigotn.igac.gov.co/sigotn/default.aspx
- IGUN Instituto de Genética Universidad Nacional de Colombia. 2012. Informe final convenio 10F. Convenio de cooperación científica y tecnológica no. 10F del 15 de diciembre de 2011. Fondo Nacional Ambiental – FONAM, Universidad Nacional De Colombia – Instituto de Genética – IGUN, Instituto Amazónico de Investigaciones Científicas – SINCHI, y la corporación para el desarrollo sostenible del sur de la amazonia – Corpoamazonia. Bogotá, Colombia. 62pp.
- INVEMAR Instituto de Investigaciones Marinas y Costeras `José Benito Vives de Andreis,
 IIAP Instituto de Investigaciones Ambientales del Pacífico Jhon Von Newman, SINCHI
 Instituto Amazónico de Investigaciones Científicas, IDEAM, IGAC, IAvH Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. 2007. *Biomas. República de Colombia*. Edited by: Sistema web de administración de Metadatos del IGAC 2008. Bogotá, Colombia. 3pp. http://sigotn.igac.gov.co/sigotn/default.aspx
- ISCGM International Steering Committee for Global Mapping. 2003. Percent Tree Coverage (PTC) Global version 1. Secretariat of ISCGM, Geospatial Information Authority of Japan and Chiba University. http://www.iscgm.org/gm/ptc.html#use
- ISRIC World Soil Information. 2013. *SoilGrids: an automated system for global soil mapping*. Available for download at http://soilgrids1km.isric.org.

- IUCN. 2016. The IUCN Red List of Threatened Species. Version 2016-1. <www.iucnredlist.org>. Downloaded on June 2016
- IUCN. 2015. Summary statistics (Table 4a). *IUCN Red List of Threatened Species*, version 2015.2. http://www.iucnredlist.org/about/summary-statistics>.
- Izawa K. 1978. A field study of the ecology and behavior of the black-mantle tamarin (*Saguinus nigricollis*). *Primates*, 19: 241-274.
- Kay R. F., Madden R. H., Van Schaik C, & Higdon D. 1997. Primate species richness is determined by plant productivity: Implications for conservation. *Proceedings of the National Academy of Sciences of the United States of America (Washington, DC)*, 94: 13023-13027.
- Laurence W. F. 2010. Habitat destruction: death by a thousand cuts. In Sodhi N. S. & Ehrlich P.
 R. (Eds.). *Conservation Biology for All*. Oxford University Press, UK. Chapter 4. Pp. 73-87.
- Lawler J. J., White D., & Master L. L. 2003. Integrating representation and vulnerability: two approaches for prioritizing areas for conservation. *Ecological Applications*, 13(6): 1762-1772.
- Lawley V., Lewis M., Clarke K., & Ostendorf B. 2016. Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. *Ecological Indicators*, 60: 1273-1283.
- Leader-Williams N., & Dublin H. T. 2000. Charismatic megafauna as "flagship species". In: Entwistle A., & Dunston N. (Eds.). *Priorities for the conservation of mammalian diversity: hasthe Panda had its day?* Cambridge University Press. Cambridge, United Kingdom. Pp. 53-81.
- Lehman S. M. 2000. Primate Community Structure in Guyana: A Biogeographic Analysis. International Journal of Primatology, 21: 333-351.
- Lehtomäki J., & Moilanen A. 2013. Methods and workflow for spatial conservation prioritization using Zonation. *Environmental modelling & software*, 47:128-137.
- Lehtomäki J., Tomppo E., Kuokkanen P., Hanski I., & Moilanen A. 2009. Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. *Forest Ecology and Management*, 258: 2439-2449.

- Link A., Stevenson P., & de Luna G. 2015a. Brown Spider Monkey Ateles hybridus (I. Geoffroy Saint Hilaire, 1829) Colombia, Venezuela. In: Schwitzer C., Mittermeier R. A., Rylands A. B., Chiozza F., Williamson E. A., Wallis J., & Cotton A. (eds.), Primates in Peril: *The World's 25 Most Endangered Primates 2014–2016*. IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society, Arlington, VA. Pp. 20-22.
- Link A., Valencia L. M., Cespedes L. N., Duque L. D., Cadena C. D., & Di Fiore A. 2015b.
 Phylogeography of the Critically Endangered Brown spider monkey (*Ateles hybridus*):
 Testing the riverine barrier hypothesis. *Internatinal Journal of Primatology*, 36: 530-547.
- Link A., de Luna G., & Burbano-Girón J. 2013. Estado de conservación en Colombia de uno de los primates más amenazados con la extinción: el mono araña café (*Ateles hybridus*) (Conservation status in Colombia of one of the most threatened primates: the Brown spider monkey (Ateles hybridus)). In: Defler T. R., Stevenson P. R., Bueno M. L., & Guzmán-Caro D. C. (Eds.). *Primates colombianos en peligro de extinción*. Asociación Primatológica Colombiana. Bogotá, Colombia. Pp. 88-117.
- Link A., de Luna A. G., Alfonso F., Giraldo-Beltrán P., & Ramirez F. 2010. Initial effects of fragmentation on the density of three Neotropical primate species in two lowland forests of Colombia. Contribution to the theme section "Responses of animals to habitat alteration". *Endangered Species Research*, 13: 41-50.
- Lizcano D. J., Ahumada J. A., Nishimura A., & Stevenson P. R. 2014. Population viability analysis of woolly monkeys in Western Amazonia. In: Defler T. R., & Stevenson P. R. (Eds.). *The Woolly Monkey: Behavior, ecology, systematics and captive research*. Springer. New York, USA. Pp. 265-282.
- Lobo J. M., Jiménez-Laverde A., & Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. *Global Ecology and Biogeography*, 17: 145-151.
- Lovett J. C. &, Marshall A. R. 2006. Why should we conserve primates? *African Journal of Ecology*, 44, 113–115.
- LP DAAC Land Processes Distributed Active Archive Center. 2001. ASTER GDEM Version
 2. U.S. National Aeronautics and Space Administration (NASA) and Japan's Sensor
 Information Laboratory Corporation (SILC) See more at:

https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/astgtm#sthash.jclpre KO.dpuf- (https://lpdaac.usgs.gov), accessed October 1, 2012

- MADS Ministerio de Ambiente y Desarrollo sostenible. 2015. Resolución (Ministerial order)
 1628. "Declaratoria y delimitación de zonas de protección y desarrollo de los recursos naturales renovables y del medio ambiente". July 13, 2015. Bogotá, Colombia. 9pp.
- MADS Ministerio de Ambiente y Desarrollo Sostenible. 2014. Quinto Informe Nacional de Biodiversidad de Colombia ante el Convenio de Diversidad Biológica. Programa de las Naciones Unidas para el Desarrollo. Bogotá, Colombia. 101pp.
- Maestri R., & Patterson B. D. 2016. Patterns of species richness and turnover for the South American rodent fauna. *PLoS ONE* 11(3): e0151895. doi: 10.10.1371/journal.pone.0151895
- Maldonado A M., & Peck M. R. 2014. Research and in situ conservation of owl monkeys enhances environmental law enforcement at the Colombian-Peruvian border. *American Journal of Primatology*, 76(7): 658-669.
- Maldonado A. M., Nijman V., & Bearder S. K. 2009. Trade in night monkeys *Aotus* in the Brazil–Colombia–Peru tri-border area: international wildlife trade regulations are ineffectively enforced. *Endangered Species Research*, 9:143-149.
- Malhi Y., Doughty C., & Galbraith D. 2011. The allocation of ecosystem net primary productivity in tropical forests. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences (London)*, 366: 3225-3245.
- Margules C. R., & Pressey R. L. 2000. Systematic conservation planning. Nature, 405:243-253.
- Marsh, L. K. 2014. A taxonomic revision of the Saki monkeys, *Pithecia* Desmarest, 1804. *Neotropical Primates*, 21 (1): 163 pp.
- Marsh L. K., & Veiga L. M. 2015. *Pithecia milleri*. The IUCN Red List of Threatened Species 2015: e.T17407A70609259. http://dx.doi.org/10.2305/IUCN.UK.2015-1.RLTS.T17407A70609259.en
- Matthews L. J., Arnold C., Machanda Z., & Nunn Ch. L. 2011. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass. *Proceedings of the Royal Society*, 278:1256–1263.
- MAVDT Ministerio de Ambiente, Vivienda y Desarrollo. 2010. Resolución (Ministerial order)
 2372. "En relación con el Sistema nacional de áreas Protegidas, las categorías de manejo

que lo conforman y se dictan otras disposiciones". Julio 1, 2010. Bogotá, Colombia. 23pp.

Miller I., Savage A., & Giraldo H. 2004. Quantifying Remaining Forested Habitat within the Historic Distribution of the Cotton-top Tamarin (*Saguinus oedipus*) in Colombia: implications for Long-Term Conservation. Brief report. *American Journal of Primatology*, 64:451–457.

Miller J. 2010. Species Distribution Modeling. Geography Compass, 4/6: 490-509.

- Mittermeier R. A., Myers N., & Mittermeier C. 1999. Hotspots: Earth's biologically richest and most endangered terrestrial ecoregions. Cemex, Conservation International & Agrupación Sierra Madre. México city, Mexico.
- Mittermeier R. A., Myers N., Thomsen J. B., Da Fonseca G. A. B., & Olivieri S. 1998. Biodiversity Hotspots and Major Tropical Wilderness Areas: Approaches to Setting Conservation Priorities. *Conservation Biology*, 12(3): 516-520.
- MME Ministerio de Minas y Energía. 2013. Anuario estadístico minero 2007-2012. Ministerio de minas y Energía. Bogotá, Colombia. 133pp.
- Moilanen A., Pouzols F. M., Veach V., Arponen A., Leppänen J., & Kujala H. 2014. Zonation: spatial conservation planning methods and software. V 4.0. User manual. C-BIG
 Conservation Biology Informatics Group. University of Helsinki, Finland. 290pp.
- Moilanen A., Possingham H. P., & Polasky S. 2009. A mathematical classification of conservation prioritization problems. In: Moilanen A., Wilson K.A., & Possingham H. P. (Eds.). *Spatial Conservation Prioritization. Quantitative Methods & computational tools*. Oxford University Press. New York, USA. Chapter 3. Pp. 28-42.
- Moilanen A. 2007. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. *Biological Conservation*, 134: 571-579.
- Morales-Jiménez A. L., & Link A. 2008. *Aotus griseimembra*. The IUCN Red List of Threatened Species 2008: e.T1807A7650460.

http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T1807A7650460.en

Morales-Jiménez A. L. 2004. Modeling distributions for Colombian spider monkeys (Ateles sp.) using GARP and GIS to find priority areas for conservation. MSc. Primate Conservation. Oxford Brookes University. London, UK. 114pp.

- Naidoo R., & Adamowicz W. L. 2006. Modeling opportunity costs of conservation in transitional landscapes. *Conservation Biology*, 20(2): 490-500.
- Naoky K., Gómez M. I., López R. P., Meneses R. I., & Vargas J. 2006. Comparación de modelos de distribución de especies para predecir la distribución potencial de vida silvestre en Bolivia. *Ecología en Bolivia*, 41(1): 65-78.
- Nepstad D., Bezerra T., Tepper D., McCann K. et al. 2013. Addressing agricultural drivers of deforestation in Colombia : Increasing Land-Based Production While Reducing Deforestation, Forest Degradation, Greenhouse Gas Emissions and Rural Poverty. Earth Innovation Institute. San Francisco, USA. 120pp.
- Noss R. F. 1987. From plant communities to landscapes in conservation inventories: A look at The Nature Conservancy (USA). *Biological Conservation*, 41: 11–37.
- Palacios E., Boubli J. P., Stevenson P., Di Fiore A., & de la Torre, S. 2008. Lagothrix lagotricha. The IUCN Red List of Threatened Species 2008: e.T11175A3259920. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T11175A3259920.en
- Palacios E., & Peres C. A. 2005. Primate population densities in three nutrient-poor Amazonian terra firme forests of South-Eastern Colombia. *Folia Primatologica*, 76:135-145.
- Paredes G. 2011. Diagnóstico, procedimientos y lineamientos de política para la gestión de tierras y territorios en parques nacionales y otras aéreas protegidas en Colombia. Parques Nacionales Naturales de Colombia- SPNN. Bogotá, Colombia. 111pp.
- Pearson R. G., Raxworthy C. J., Nakamura M. & Peterson A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. *Journal of Biogeography*, 34: 102–117.
- Pearson R., Dawson T., & Liu C. 2004. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. *Ecography*, 27: 285–298.
- Pearson R. G, & Dawson T. P. 2003. Predicting the impacts of climate change on the distribution of the species: are bioclimatic envelope model useful? *Global Ecology and Biogeography*, 12: 361-371.
- Pearson R. G., Raxworthy C. J., Nakamura M. & Peterson A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. *Journal of Biogeography*, 34: 102–117.

- Pell M.C., Finlayson B. L., & McMahon T. A. 2007. Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences*, 11: 1633-1644
- Peres C. A. 1997. Effects of habitat quality and hunting pressure on arboreal folivore densities in Neotropical forests: a case study of howler monkeys (*Alouatta*). *Folia Primatologica*, 68:199–222.
- Peterson A. T. 2001. Predicting species geographic distribution based on ecological niche modeling. Cooper Ornithological Society. *The Condor*, 103 (3): 599-605.
- Phillips S. J., Dudík, M., and Schapire, R. E. 2011. *Maximum Entropy Modeling of Species Geographic Distributions* – MaxEnt: Version 3.3.3k.
- Phillips, S. J. 2010. Species' distribution modeling for conservation educators and practitioners. Exercise. American Museum of Natural History, Lessons in Conservation.
- Available at http://ncep.amnh.org/linc.
- Phillips S. J., Anderson R. P., & Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190:231-259.
- PNN-C Parques Naturales Nacionales de Colombia. 2015. Mapa de Sistema de Parques Nacionales Naturales de Colombia. UA-ESPNN-Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales. Colombia.

http://www.parquesnacionales.gov.co/portal/es/descarga-el-mapa-de-parques-nacionalesnaturales-de-colombia/

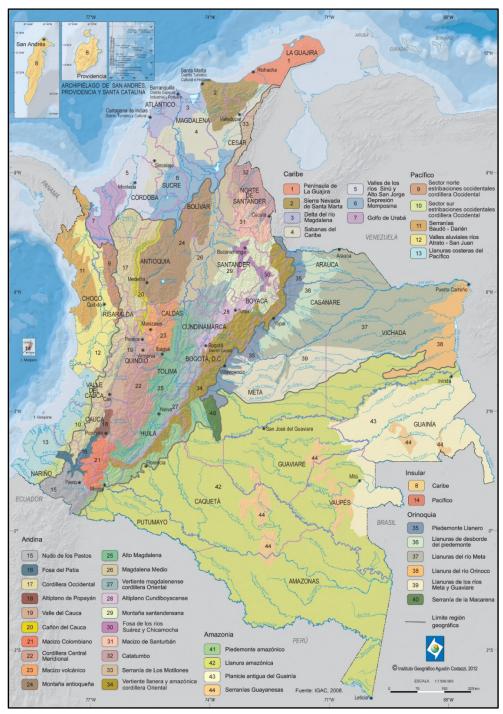
- PNN-C Parques Naturales Nacionales de Colombia. 2014. Límite de los Parques Nacionales Naturales de Colombia. Versión 1. Escala 1:100.000. Contacto: Devia. Y. P. Coordinador Grupo SIR. http://mapas.parquesnacionales.gov.co:9090/visor_parques http://mapas.parquesnacionales.gov.co/#
- Porter L., Chism J., Defler T. R., Marsh L., et al. 2013. Pitheciid conservation in Ecuador, Colombia, Perú, Bolivia and Paraguay. p. 320-333. In: Veiga L. M., Barnett A. A., Ferrari S. F., & Norconk M. A. (Eds.). *Evolutionary Biology and Conservation of Titis, Sakis and Uacaris*. Cambridge University Press. United Kingdom.
- Possingham H. P., Moilanen A. & Wilson K. A. 2009. Accounting for habitat dynamics in conservation. In: Moilanen A., Wilson K.A., & Possingham H. P. (Eds.). Spatial Conservation Prioritization. Quantitative Methods & computational tools. Oxford University Press. New York, USA. Chapter 10. Pp. 135-144.

- R Core Team. 2015. R version 3.2.0: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
- Rodríguez-Bolaños A., Gonzáles-Caro S., Etter A., & Stevenson P. R. 2013. Modelos predictivos de distribución para los micos atelinos (*Lagothrix y Ateles*) en Colombia (Predictive models of the geographic distribution of Ateline monkeys (Lagothrix and Ateles) in Colombia). In: Defler T. R., Stevenson P.R., Bueno M. L., & Guzmán-Caro D. C. (Eds.). *Primates colombianos en peligro de extinción*. Asociación Primatológica Colombiana. Bogotá, Colombia. Pp. 194-216.
- Rodríguez-Celis C. A. 2012. *Plan de desarrollo del departamento del Amazonas 2012-2015*. *Gobernación del Amazonas*. Leticia, Colombia. 413pp.
- Rodríguez-Eraso N., Armenteras-Pascual D., & Retana Alumbreros J. 2013. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. *Journal of Land Use Science*, 8(2): 154-174.
- Rodríguez-Mahecha, J. V., Arjona-Hincapié F., Muto T., Urbina Cardona J. N., Bejarano-Mora P., Ruiz-Agudelo C., Díaz Granados M. C., Palacios E., Moreno M. I., Gómez A., &. Geothinking Ltda. 2013. Ara Colombia. Sistema de Información Geográfica para el Análisis de la Gestión Institucional Estatal (Módulo OtusColombia) y la Afectación a la Biodiversidad sensible y al Patrimonio Cultural (Módulo TremarctosColombia). Versión 2.0. Conservación Internacional-Colombia, Ministerio de Medio Ambiente y Desarrollo Sostenible, CAR, UPME y Ministerio de Minas. Sistema de información en línea disponible en http://www.tremarctoscolombia.org/
- Rodríguez-Mahecha J. V., Alberico M., Trujillo F., & Jorgenson J. (Eds.). 2006. *Libro Rojo de los Mamíferos de Colombia*. Serie Libros Rojos de Especies Amenazadas de Colombia. Conservación Internacional Colombia & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, Colombia. 433pp.

Roncancio N., Acosta Castañeda A., García Loaiza L. M., & Ríos Franco C. A. 2013.
Distribución potencial y disponibilidad de hábitat del titi gris (*Saguinus leucopus*): un primate endémico de Colombia y en peligro de extinción (Potential distribution and hábitat availability for the endemic endangered Colombian primate *Saguinus leucopus*).
In: Defler T. R., Stevenson P. R., Bueno M. L., & Guzmán-Caro D. C. (Eds.). *Primates*

colombianos en peligro de extinción. Asociación Primatológica Colombiana. Bogotá, Colombia. Pp. 217-234.

- Ruiz-García M., Pinedo-Castro M., Shostell J. M. 2014. How many genera and species of woolly monkeys (Atelidae, Platyrrhine, Primates) are there? The first molecular analysis of *Lagothrix flavicauda*, an endemic Peruvian primate species. *Molecular Phylogenetics and Evolution*, 79: 179-198.
- Saenz S., Walschburger T., González J. C., León J. et al. 2013. A Framework for Implementing and Valuing Biodiversity Offsets in Colombia: A Landscape Scale Perspective. *Sustainability*, 5: 4961-4987.
- Savage A., & Causado J. 2014. *Saguinus oedipus*. The IUCN Red List of Threatened Species 2014: e.T19823A17930260
- Sesana L. 2006. Colombia Natural Parks. Villegas Editores. Bogotá, Colombia. 448pp.
- Shanee S., Sanee N., Campbell N., & Allgas N. 2014. Biogeography and conservation of Andean primates in Peru. In: Grow N. B., Gursky-Doyen S., & Krzton A. *High Altitude Primates, Developments in Primatology: Progress and Prospects*, DOI: 10.1007/978-1-4614-8175-1_4 Springer. New York, USA. Pp. 63-102.
- SIG-OT Sistema de información geográfica para la planeación y el ordenamiento territorial. 2009. Visor Geográfico. Instituto Geográfico Agustín Codazzi. Bogotá, Colombia. http://sigotn.igac.gov.co/sigotn/default.aspx
- Simard M., Pinto N., Fisher J., & Baccini A. 2011. Mapping forest canopy height globally with spaceborne Lidar. *Journal of Geophysical Research*, 116, G04021:1-12, doi: 10.1029/2011JG001708
- Stanton J. C., Pearson R. G., Horning N., Ersts P., & Akçakaya. 2012. Combining static and dynamic variables in species distribution models under climate change. *Methods in Ecology and Evolution*, 3:349-357.
- Stevenson P. R., Guzmán D. C., & Defler T. R. 2010. Conservation of Colombian primates: an analysis of published research. *Tropical Conservation Science*, 3(1): 45-62.
- Stevenson P., & Link A. 2008. Lagothrix lugens. The IUCN Red List of Threatened Species 2008: e.T39926A10289596. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39926A10289596.en.


- Stevenson P. R. 2001. The relationship between fruit production and primate abundance in Neotropical communities. *Biological Journal of the Linnean Society*, 72: 161-178.
- Stockwell D. R. B., & Peterson A. T. 2002. Effects of sample size on accuracy of species distribution models. *Ecological Modelling*, 148: 1-13.
- Supriatna J., & Ario A. 2015. Primates as Flagships for conserving biodiversity and parks in Indonesia: Lessons Learned from West Java and North Sumatra. *Primate Conservation*, 29:123–131.
- Swets J. A. 1988. Measuring accuracy of diagnostic systems. Science, 240: 1285-1293
- Trabucco A., & Zomer R.J. 2010. Global Soil Water Balance Geospatial Database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.cgiar-csi.org/data/global-high-resolution-soil-water-balance
- UNEP United Nations Environment Programme. 2015. The UNEP Environmental Data Explorer, as compiled from Department of Ecosystem and Conservation Sciences, University of Montana. http://ede.grid.unep.ch
- UNHCR United Nations High Commissioner for Refugees. Global trends forced displacement in 2015. Field Information and Coordination Support Section Division of Programme Support and Management. United Nations High Commissioner for Refugees. Geneva, Switzerland. 68pp.
- UNODC Oficina de las naciones unidas contra la Droga y el Delito. 2014. Densidad de cultivos de coca en Colombia. In: Colombia, monitoreo de cultivos de coca 2014.
 Gobierno de Colombia & UNODC Colombia. Bogotá, Colombia. 152pp.
- Ulloa, A., Rubio, H., & Campos, C. 1996. Conceptos y metodologías para la preselección y análisis de alternativas de manejo de fauna de caza con indígenas Embera en el Parque Nacional Natural Utría PNNU, Chocó, Colombia. Manejo de fauna en comunidades rurales. In: Campos, C., Ulloa, A., & Rubio, H. (Eds.). *Manejo de fauna con comunidades rurales*. OREWA, Fundación Natura, Ministerio del medio Ambiente, OEI, ICANH. Bogota, Colombia. Pp. 19-48.
- Urbani B., Morales A. L., Link A., & Stevenson P. 2008. Ateles hybridus. The IUCN Red List of Threatened Species 2008: e.T39961A10280054. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39961A10280054.en

- Vargas T. N. 1994. Activity patterns of *Saguinus nigricollis hernandezi* at the Tinigua National Park, Colombia. *Field Studies of New World Monkeys La Macarena Colombia*, 9:23-32.
 In: Defler, T.R. 2010. Historia natural de los primates colombianos. Second edition. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Biología. Bogotá, Colombia. 612pp.
- Veiga L. M., de la Torre S., & Cornejo F. 2008. Callicebus lucifer. The IUCN Red List of Threatened Species 2008: e.T41564A10499538. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41564A10499538.en
- Veiga L. M., & Palacios E. 2008. *Callicebus lugens*. The IUCN Red List of Threatened Species 2008: e.T41563A10499347.
- Veiga L. M., & Palacios E. 2008. Callicebus medemi. The IUCN Red List of Threatened Species 2008: e.T39944A10294581. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T39944A10294581.en.
- Veiga L. M., & Rylands A. B. 2008. Aotus trivirgatus. The IUCN Red List of Threatened Species 2008: e.T41543A10496292. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41543A10496292.en
- WCS- Wildlife Conservation Society, & CIESIN Center for International Earth Science Information Network Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (IGHP). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4GF0RFQ. Accessed: September 2015.
- Wiley E. O., MvNyset K. M., T Peterson A., Robins C. R., & Stewart A. M. 2003. Niche modeling and geographic range predictions in the marine environment using a machinelearning algorithm. *Oceanography*, 16(3):120-127.
- WorldClim. 2015. Global climate data. Free climate data for ecological modeling and GIS.
 WorldClim V. 1.4. Developed by: Hijmans R. J., Cameron S., & Parra J. L. Museum of Vertebrate Zoology, University of California, Berkeley; Jones P. G. & Jarvis A.
 International Center for Tropical Agriculture (CIAT), Cali, Colombia; Richardson K.
 Rainforest Cooperative Research Centre (Rainforest CRC), University of Queensland, Australia.

- Wright P. C., & Jernnvall J. 1999. The future of primate communities. In: Fleagle J. G., Janson Ch., & Reed K. E. (Eds.): *Primate Communities* Cambridge University Press. Pp. 295-309.
- Zárate D. A., & Stevenson P. R. 2010. Primer estudio de estrategias ecológicas de monos churucos (*Lagothrix lagothricha*) en bosques fragmentados (Guaviare, Colombia). Universidad de los Andes. Bogotá, Colombia. In: Botero S. & Stevenson P. R. 2014. Coat Color is not an Indicator of Subspecies Identity in Colombian Woolly Monkeys. In: Defler T. R. & Stevenson P. R. (Eds.). *The Woolly Monkey: Behavior, ecology, systematics and captive research*. Springer. New York, USA. Pp. 17-31.
- Zhang Q., & Zhang X. 2012. Impacts of predictor variables and species models on simulating *Tamarix ramosissima* distribution in Tarim Basin, northwestern China. *Journal of Plant Ecology*, 5(3): 337-345.

Appendices

Appendix A. Map of the geographic sub-areas within the five inland natural regions in Colombia. Downloaded from IGAC (Instituto Geográfico Agustín Codazzi. Bogotá, Colombia): http://geoportal.igac.gov.co/mapas_de_colombia/IGAC/Tematicos2012/RegionesGeograficas.pd f

Appendix B. List of databases and references used to get information on species occurrences.

Main source:

Rodríguez-Mahecha, J. V., Arjona-Hincapié F., Muto T., Urbina Cardona J. N., Bejarano-Mora P., Ruiz-Agudelo C., Díaz Granados M. C., Palacios E., Moreno M. I., Gómez A., &. Geothinking Ltda. 2013. Ara Colombia. Sistema de Información Geográfica para el Análisis de la Gestión Institucional Estatal (Módulo OtusColombia) y la Afectación a la Biodiversidad sensible y al Patrimonio Cultural (Módulo TremarctosColombia). Versión 2.0.

Additional sources:

GIBF- Global Biodiversity Information Facility, http://www.gbif.org/occurrence/search:

- a. Field Museum of Natural History (Zoology): FMNH Mammal Collection. Accessed via http://www.gbif.org/dataset/41fc5c40-5e81-496f-9733-6b5681b3b7a5
- b. Royal Ontario Museum: Mammalogy Collection Royal Ontario Museum. Accessed via http://www.gbif.org/dataset/c5c4a23e-2035-4416-ab64-032d6df52ddb
- c. Museum of Vertebrate Zoology: MVZ Mammal Collection (Arctos). Accessed via http://www.gbif.org/dataset/0daed095-478a-4af6-abf5-18acb790fbb2
- d. University of Washington Burke Museum: UWBM Mammalogy Collection. Accessed via http://www.gbif.org/dataset/830eb5d0-f762-11e1-a439-00145eb45e9a
- e. Museum of Comparative Zoology, Harvard University: MCZ Mammalogy Collection. Accessed via http://www.gbif.org/dataset/84873266-f762-11e1-a439-00145eb45e9a
- f. National Museum of Natural History, Smithsonian Institution: NMNH occurrence DwC-A. Accessed via http://www.gbif.org/dataset/5df38344-b821-49c2-8174-cf0f29f4df0d

SIB - Sistema de información sobre biodiversidad de Colombia, http://data.sibcolombia.net/

Catalogue of the biodiversity of Colombia, coordinated by the Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (**IAVH**), and supported by the Ministerio de Ambiente y Desarrollo Sostenible, Instituto Amazónico de Investigaciones Científicas **Sinchi**, Instituto de Hidrología, Meteorología y Estudios Ambientales **IDEAM**, Instituto de Investigaciones Marinas y Costeras "José Benito Vives de Andreis", Instituto de Investigaciones Ambientales del Pacífico, and the Universidad Nacional de Colombia.

Colecciones científicas en línea, http://www.biovirtual.unal.edu.co/ICN/

The On-line Scientific Collection of the Universidad Nacional de Colombia, which compile all museum records of the Instituto de Ciencias Naturales. Instituto de Ciencias

Naturales, Facultad de Ciencias, Universidad Nacional de Colombia (2004 y continuamente actualizado). Colecciones en Línea. (Accessed October 2013) InfoNatura, http://infonatura.natureserve.org

Animals and Ecosystems of Latin America [web application]. 2007. Version 5.0. Arlington, Virginia (USA): NatureServe. (Accessed October 2013)

IUCN Red List of Threatened Species (map viewer and explorer map tool)

Dechner A. 2011. Searching for *A. palliata* in Northen Colombia: consideration for the species detection, monitoring and conservation in the dry forest of Bolivar, Colombia. *Neotropical Primates*, 18(1): 1-8.

Defler T. R., Bueno M. L., & García J. 2010. *Callicebus caquetensis*: a new Critically Endangered Titi monkey from Southern Caquetá, Colombia. Primate Conservation, 25: 1-9

Marsh, L. K. 2014. A taxonomic revision of the Saki monkeys, Pithecia Desmarest, 1804. *Neotropical Primates*, 21 (1): 163 p

Martin-Gómez O. H. 2008. Consumo de néctar por *Aotus lemurinus* y su rol como posible polinizador de las flores de Inga edulis (Fabales: Mimosoideae). *Neotropical Primates*, 19(1): 30-32.

Rocancio-Duque N. 2012. A record of Variegated Spider monkey (*Ateles hybridus brunneus*) in Selva de florencia National Park, Colombia. *Neotropical Primates*, 19(1): 46-47.

Appendix C. An example of the final Excel data sheet that includes relevant information on species occurrences. This format was adapted from the primate species data base proportioned by Conservation International Colombia.

ID#	Source	Cientific_Name	Dpto	Munici	Locality	Latitude	Longitude	MET_GEOREF_rev	METADATO_URL_re	Date	Type_Rec	Museum_Code	Catalogue #	Collector	Additional_URL
500	ARA	Saguinus oedipus	Córdoba	Tierralta	Urrá	7.7013142	-75.9809942	Google Earth		Desconocida					
501	ARA	Saguinus oedipus	Córdoba	Tierralta	Urrá	7.9114025	-75.9753836	Google Earth		Desconocida					http://data.gbif.org/ws/rest
502	ARA	Saguinus oedipus	Córdoba	Tierralta	Urrá	8.0287689	-75.9666036	Google Earth		Desconocida					
503	GBIF	Aotus griseimembra	Córdoba		Catival, upper	8.2833333	-75.6833333		http://data.gbif.org/occurrences/61811389	Desconocida	Specimen	FMNH-Mammals	68858	P. Hershkovitz	
504	ARA	Cebus capucinus	Córdoba		Paramillo PN	7.5333333	-76.1166667			Desconocida					
505	ARA	Saguinus oedipus	Córdoba		Paramillo PN	7.5333333	-76.1166667			Desconocida					
506	ARA	Saguinus oedipus	Córdoba		Puerto Zapote	9.4166667	-75.7500000			Desconocida					http://data.gbif.org/ws/rest
507	ARA	Alouatta palliata aequatorialis	Chocó	Nuquí	El Amargal E	\$5.5666670	-77.5061110	Ramírez & Sánchez 2005. Primer	Censo del Mono Aullador Negro Alouatta p	Desconocida		ICN-Mamíferos			http://data.gbif.org/ws/rest
515	ARA	Alouatta palliata aequatorialis	Atlántico	Luruaco	Los Pendales	10.6181200	-75.2057900	Google Earth+Genames+DIVIPO	Compilacion-Cl-2009 (J.Gualdron)	Desconocida		IAVH - 8200001422-01			http://data.gbif.org/ws/rest
516	ARA	Saguinus geoffroyi	Chocó	Acandí	Acandí rio, ce	8.5139870	-77.2815800	Google Earth	ICN - Catalogo Mamíferos (YMS 20100419	19590112	Piel, otros	ICN-Mamíferos	1788		
517	ARA	Aotus zonalis	Chocó	Acandí	Acandí rio, ce	8.5139870	-77.2815800	Google Earth	Compilacion-Cl-2009 (J.Gualdron)	Desconocida					
518	ARA	Aotus zonalis	Chocó	Acandí	Gilgal corregi	r 8.1902300	-77.0814810	Geoportal IGAC	IAVH-M_Base de datos coleccion de mam	Desconocida	Espécimen	IAVH - 8200001422-01	2673	Rodriguez J	
519	ARA	Ateles geoffroyi rufiventris	Chocó		Cupica rio	6.7172080	-77.4633060	Geoportal IGAC	Compilacion-Cl-2009 (J.Gualdron)	Desconocida					
520	ARA	Alouatta palliata aequatorialis		Chimá	Pimental	9.0923170		Fuente			Observaciones				
521	ARA	Alouatta palliata aequatorialis		Lorica	Ceiba pareja		-75.9100500	Fuente		05-Oct-11	Observaciones				
522	ARA	Alouatta palliata aequatorialis		Lorica	Cotocá	9.0944830	-75.8642000	Fuente			(Observaciones				
523	ARA	Alouatta palliata aequatorialis	Córdoba	Lorica	Cotocá	9.1128830	-75.8361830	Fuente			Observaciones				
524	ARA	Alouatta palliata aequatorialis	Córdoba	San Pelayo	La Pacha	9.0047000	-75.8611670	Fuente		26-SEP-11 1	1 Observaciones				
525	ARA	Saguinus geoffroyi	Chocó	Riosucio	El Tilupo alto		-77.1166667	Geonames + Geoportal IGAC		Desconocida					
526	ARA	Alouatta palliata aequatorialis			La Pacha	9.0078330	-75.8712170	Fuente			Observaciones				
527	ARA	Alouatta palliata aequatorialis			La Pacha	9.0210500	-75.8512170	Fuente			Observaciones				http://data.gbif.org/ws/rest
528	ARA	Alouatta palliata aequatorialis			La Pacha	9.0211170	-75.8607170	Fuente			4 Observaciones				
529	ARA	Alouatta palliata aequatorialis	Córdoba	San Pelayo	La Pacha	9.0211500	-75.8603000	Fuente		26-SEP-11 1	Observaciones				
530	ARA			Riosucio			-77.1422940	Geoportal IGAC		Desconocida		IAVH - 8200001422-01	6083	Rodríguez, J. V.	
531	ARA	Aotus zonalis	Chocó	Riosucio	Los Katios P	7.9095690	-77.0996140	Geoportal IGAC		Desconocida	Espécimen	IAVH - 8200001422-01	3092	Echeverri, H., & A. Perea	http://data.gbif.org/ws/rest
532	ARA	Aotus zonalis	Chocó	Riosucio	Los Katios P	7.7461810	-77.1500280	Geoportal IGAC		Desconocida	Espécimen	IAVH - 8200001422-01	2676	Rodríguez M., J.V.	
533	ARA	Saguinus geoffroyi	Chocó	Unguía	Tanela correg	i 8.2166400	-77.0484060	DIVIPOLA + Geonames + Google	Earth	Desconocida	Espécimen	IAVH - 8200001422-01	2670	Rodriguez, José V., H. Pav	as & A. Perea
534		Saguinus geoffroyi	Chocó	Unguía	Unguía	8.0522250	-77.1021870	Google Earth		09/03/1950	skin, skull	FMNH-Mammals	FMNH69947	P. Hershkovitz	
535	GBIF	Aotus zonalis	Chocó	Unguía	Unguía	8.0522250	-77.1021870	Google Earth	http://data.gbif.org/occurrences/61811399	Desconocida		FMNH-Mammals	69611	P. Hershkovitz	
536	ARA	Alouatta seniculus	Chocó	Unguía	Unguía	8.0522250	-77.1021870	Google Earth		Desconocida		FMNH-Mammals	69591	P. Hershkovitz	http://data.gbif.org/ws/rest
537	ARA	Aotus zonalis	Chocó	Unguía	Unguía, area	8.3163810	-77.2166310	DIVIPOLA + Geonames + Google	Earth	Desconocida					http://data.gbif.org/ws/rest
538	ARA	Saguinus geoffroyi	Chocó	Unguia	Darien Serrar	8.0620600	-77.2000900	Geoportal IGAC		Desconocida					http://data.gbif.org/ws/rest
539	GBIF	Alouatta seniculus	Chocó	Novita	Novita (400 ft) 4.9492910	-76.6098410	DIVIPOLA (Dane) + Google Earth	http://data.gbif.org/occurrences/213089530) Desconocida		AMNH-Mammalia	33062	L. E. Miller	
540	ARA	Alouatta seniculus	Cesar	Chiriguaná	Carbonero, ca	9.3333300	-73.6333300	Google Earth+Geoportal IGAC+ 0	Geonames	19770216		ICN-Mamíferos	6890		http://data.gbif.org/ws/rest
1322	Thomas Defler	Alouatta seniculus	Magdalena	Santa Marta	Buritaca	11.2604820	-73.7714920	Google Earth		April 1899		AMNH-Mammalia	23334	H. H. Smith	http://data.gbif.org/ws/rest
1323	Thomas Defler	Alouatta seniculus	Magdalena	Santa Marta	Cacagualito (111.2742560	-74.0518810	Geoportal IGAC + Google Earth		Desconocida		AMNH-Mammalia	23330	H. H. Smith	
1324	Thomas Defler	Cebus albifrons malitiousus	Magdalena	Santa Marta	Cacagualito (111.2742560	-74.0518810	Geoportal IGAC + Google Earth		28/04/1899		AMNH-Mammalia	23399	H. H. Smith	http://data.gbif.org/ws/rest
1325	Thomas Defler	Alouatta seniculus	Magdalena	Santa Marta	Calabazo		-74.0028010	DIVIPOLA + Geoportal IGAC + G		April 1899		AMNH-Mammalia	23335	H. H. Smith	
1326	Thomas Defler	Aotus griseimembra	Magdalena	Santa Marta	Cincinati		-74.0833361	Google Earth		20 July 1911		AMNH-Mammalia	32665	M. A. Carriker	
1327	Thomas Defler	Alouatta seniculus	Magdalena	Santa Marta	Guairaca	11.2953250	-74.0605420	Geoportal IGAC		3 Feb. 1900		AMNH-Mammalia	23377	H. H. Smith	http://data.gbif.org/ws/rest
1328		Alouatta seniculus	Magdalena	Santa Marta	Jordan		2 -73.9833611	Google Earth		Feb. 1899	Specimen	AMNH-Mammalia	23332	H. H. Smith	http://data.gbif.org/ws/rest
1329		Alouatta seniculus	Magdalena	Santa Marta	Los Naranjos			Google Earth		May 1898		AMNH-Mammalia	23353	H. H. Smith	http://data.gbif.org/ws/rest
1793		Callicebus caquetensis	Caquetá	Valparaiso	Finca Libardo					20/04/2012	Obsevation			Defler, T., M.L Bueno & J.	
1794		Callicebus caquetensis	Caquetá	Valparaiso	Finca Libardo					20/04/2012	Obsevation			Defler, T., M.L Bueno & J.	
1795	NP_2010_17(2	Callicebus caquetensis	Caquetá	Valparaiso			-75.6181278			20/04/2012	Obsevation			Defler, T., M.L Bueno & J.	G Defler, T., M.L Bueno & J.
1796		Ateles hybridus brunneus	Caldas	Samaná			-75.1155556	UTM_Conversion_ExcelSheet		2011	Obsevation			Roncancio-Duque, Nestor.	
1797		Saguinus oedipus	Bolívar		La Reserva			UTM_Conversion_ExcelSheet		2011	Obsevation			Dechner, A. Searching for	•
1798		Saguinus oedipus	Bolívar	Calamar			2 -74.9447917	UTM_Conversion_ExcelSheet		2011	Obsevation			Dechner, A. Searching for	
1799		Aotus lemurinus	Quindío	Quimbaya	La Montaña o			UTM_Conversion_ExcelSheet		2006	Obsevation			Martin-Gomez, O. H. Cons	
1800		Pithecia hirsuta	Amazonas	La Pedrera			-69.7275000	UTM_Conversion_ExcelSheet		2001-2012	Obsevation			Palacios Erwin_Cl-Col/ Ma	
1801		Pithecia hirsuta	Amazonas	La Pedrera			-69.5276944	UTM_Conversion_ExcelSheet		2001-2012	Obsevation			Palacios Erwin_Cl-Col/ Ma	
1802		Pithecia hirsuta	Amazonas	La Pedrera			-69.8227778	UTM_Conversion_ExcelSheet		2001-2012	Obsevation			Palacios Erwin_Cl-Col/ Ma	
1803		Pithecia hirsuta	Amazonas	La Pedrera			-69.7672222	UTM_Conversion_ExcelSheet		2001-2012	Obsevation			Palacios Erwin_Cl-Col/ Ma	
1804	NP 2014 21(1	Pithecia hirsuta	Amazonas	La Pedrera	Caño El Boliv	i -1.4116667	-69.5827778	UTM_Conversion_ExcelSheet		2001-2012	Obsevation			Palacios Erwin_Cl-Col/ Ma	sh L. K. 2014. Taxonomic r

From left to right: ID number, Scientific Name, Source, Department (similar to Province in Canada), Municipality, Locality, Latitude Coordinates, Longitude Coordinates, Method of Geo-referencing, Metadata_URL, Date of the record, Type of record (skull, skin, direct observation, etc.), Museum Code, Catalogue Number, Collector name, and additional URL link.

Appendix D. List of environmental variables considered for the modelling processes. Description of variables, layers resolution and acquisition sources are enumerated. Variables **in bold** correspond to selected environmental predictors used in all final environmental niche models. Bioclimatic variables defined as in WorldClim (2015), as well as for (*): "Extreme or limiting environmental factors". Note: 30 arc-seconds equal approx. 920 meters at Equator, and 1 arc-second equals approx. 30 meters at Equator.

			CLIMATE N	IODELS		
Variable Name	Year	Description	File Name	Resolution	Source	URL
BIO1		Annual Mean Temperature				
BIO2			Mean Diurnal Range (Mean of monthly (max temp-min temp)) bio_res_02			
BIO3						
BIO4			bio_ res_04			
BIO5*			bio_res_05	30 arc- seconds		http://www.worldclim.org/
BIO6*	2005	Min Temperature of Coldest Month	bio_res_06	GeoTIFF	WorldClim/ Hijmans et al. 2005 ¹	
BIO7		T° Annual Range (BIO5- BIO6)				
BIO8*		Mean Temperature of Wettest Quarter	bio_res_08			
BIO9*		Mean Temperature of Driest Quarter	bio_res_09			
BIO10*		Mean Temperature of Warmest Quarter	bio_res_10			

			1			
BIO11*		Mean Temperature of Coldest Quarter	bio_res_11			
BIO12*	2005	Annual Precipitation	bio_res_12			
BIO13*		Precipitation of Wettest Month	bio_res_13			http://www.worldclim.org/
BIO14*		Precipitation of Driest Month	bio_res_14			
BIO15			bio_res_15	30 arc- seconds GeoTIFF	WorldClim/	
BIO16*		Precipitation of Wettest Quarter	bio_res_16		Hijmans et al. 2005 ¹	
BIO17*		Precipitation of Driest Quarter	bio_res_17			
BIO18*		Precipitation of Warmest Quarter	bio_res_18			
BIO19*		Precipitation of Coldest bi Quarter				
	T		VEGETATION	MODELS	T	
Net Primary Productivity (NPP)	2010	Amount of atmospheric carbon fixed by plants and accumulated as biomass (Multi Year average)	npp_col	1 Km Tiff Image	UNEP -United Nations Environment Programme ²	http://geodata.grid.unep.ch/results.php
Forest Canopy Height	2005	Global Forest Canopy Height	canopy_col	1 Km Tiff Image	SDAT_ORNL DAAC 3 / Simard et al. 2011 ⁴	http://webmap.ornl.gov/wcsdown/dataset.jsp?ds_id =10023

Tree Cover	2003	Percent tree cover	ptc_1km ²	30 arc- seconds GeoTIFF	ISC GM ⁵ (Version 1)/ MODIS data 2003 (Terra)	http://www.iscgm.org/gm/ptc.html
	T	Γ	SOIL MO	DELS	1	
Actual evapo- transpiration	1950- 2000	Soil-water balance (yearly average)	aet_col	30 arc- seconds ESRI Grid	Trabucco & Zomer 2010_CGIAR-CSI ⁶	http://www.cgiar-csi.org/data/global-high- resolution-soil-water-balance
BulkDensity_0- 5mean	2013	Bulk density in kg /m ³ (mean estimate) for 2.5 cm depth	bld_m_ col	1 Km SoilGrid		
Clay_ 0-5mean	2013	Soil texture fraction clay in percent (mean estimate) for 2.5 cm depth	clay_m_ col	1 Km SoilGrid		
Organic_ Carbon_ 0-5mean	2013	Soil organic carbon content (fine earth fraction) in per miles (mean estimate) for 2.5 cm depth	oc_m_col	1 Km SoilGrid	Hengl et al. 2014 – ISRIC ⁷	http://soilgrids.org/
pH_ 0-5mean	2013	Soil pH x 10 in H2O (mean estimate) for 2.5 cm depth	ph1_m_ col	1 Km SoilGrid		
Sand_ 0-5mean	2013	Soil texture fraction sand in percent (mean estimate) for 2.5 cm depth	sd1_m_col	1 Km SoilGrid		
	1		PHYSICAL N	MODELS	1	
Elevation	From 2001	ASTER -Global Digital Elevation Model (GDEM) Version 2.	Dem_col_ clip	l arc- second GeoTIFF	LP DAAC ⁸	http://gdex.cr.usgs.gov/gdex/ https://lpdaac.usgs.gov/products/aster_products_tab le/astgtm

		19 Classes	Landcover_ pj	Shape file	SIG-OT-IGAC ¹⁰	http://sigotn.igac.gov.co/sigotn/						
		Heterogeneous agricultural areas	Areas that present mix of different types of crops, as a mosaic of annual and perennial crops; pasture and crops; crops, pastures and natural areas.									
		Areas mostly affected	Areas of mining, oil drilling, coal mining, gold, and other building materials, waste dumps and landfills.									
		Urban areas	Urban and suburban areas, population centers, communication networks, industrial or commercial areas, roads, railways and associated land, port areas, airports, water pipeline, construction sites, transformed natural areas									
Land Cover		Natural inland waters										
Relates five main		Shrub lands	Shrubs as prevailing woody elements. It includes shrub of "paramo", savannah and xerophytic.									
cover types: vegetation,	2008	Artificial inland waters	Water surfaces built by man as reservoirs or dams.									
wastelands (rocky outcrops, eroded land, etc.), anthropic (crops),		Rocky outcrops It refers to areas where rock is exposed and there is no vegetation. In this exercise of work, the rocky outcrops were integrated into adjacent coverages, mainly bare grasslands.										
hydric and built (Urban and industrial areas) (IGAC 2007 ⁹)		Natural forests	Plant communities dominated by trees higher than 5-meter height with average treetops density greater than 70%, and with an area greater than 50 ha. It includes dense forests, fragmented, of gallery or riparian, and mangroves.									
		Annual or transitional crops	Crops whose growing cycle lasts one year or less, or few months. Mainly characterized, after harvest, it is necessary to plant to continue producing.									
		Planted Forests	Planted hardwo	od forests and	conifers.							
		Semi-permanent and permanent crops		ut replanting.		er than one year and where several crops are h as sugarcane, panela cane, banana and						
		Continental aquatic vegetation	It is associated with aquatic ecosystems in the emerged part or aquatic vegetation belts. It contains herbaceous vegetation in wet inland areas, swamps, marshes, etc.									

		Glaciers and snow	Areas covered b	by ice or snow	7.							
Land Cover		Grasslands				ands may have trees and bushes. This class ah and xerophytic areas.						
Relates five main cover types:		Herbaceous and shrub coastal										
vegetation, wastelands (rocky outcrops, eroded	2008	Bare areas with no or little vegetation	These zones correspond to the sands, beaches and dunes, or areas with sparse vegetation, such as "super-paramos".									
land, etc.), anthropic (crops), hydric and built (Urban and		Pastures	Planted herbaceous species, generally used for livestock activities. Can be pastures, woody, weedy or "enrastrojados"									
(Urban and industrial areas) (IGAC 2007 ⁹)		Coastal lagoons	The coastal lagoons are depressions formed in the bays or in the terminal parts of the floodplain or rivers. Some are of tectonic origin and others are formed by the accumulation of sediments carrie by ocean currents									
		Secondary vegetation	Low-lying vegetation that is usually product of the process of succession of pastures or crops to tree cover. "Rastrojos" and vegetation in early successional state.									
		32 classes	Biome_pj	Shapefile	SIG-OT-IGAC ¹⁰	http://sigotn.igac.gov.co/sigot/						
Biomes		Halobiome of the Caribbean coast	Marine fluvial plains with poor to very poor drainage, in the Caribbean Coast. Tropical dry forest.									
Set of ecosystems characterized by		Halobiome of the Pacific coast	Marine fluvial plains with poor to very poor drainage, in the Pacific Coast. Tropical rain forest.									
species and a variety of plants, weather condition	2008	Helobioma of the Guajira	Dry and very dry Tropical Forest D		in alluvial valleys with p	boor to very poor drainage in the Guajira Peninsula.						
and land cover characteristic		Andean Helobiomes	Very dry cold and Bogota rivers. Tro	l dry cold clima opical rain fores	ttes; Floodplains poor to st.	very poorly drained, in the valleys of Suarez and						
(INVEMAR et al. 2007 ¹¹).		Helobiomes of the Amazon- Orinoco basins	Poor to very poor	ly drained valle	ys in the Amazon and O	rinoco region. Tropical rain forest.						
		Helobiomes of the Magdalena and Caribe	Valleys, plains an rain forest.	d foothills; with	h poor to very poor drain	age in the Caribbean and Magdalena region. Tropical						

		Helobiomes of the Pacific and Atrato	Poor to very poorly drained alluvial valleys and floodplains in the Atrato and pacific. Tropical rain forest.							
		Helobiomes of the Zulia river	Poor to very poorly drained alluvial valleys in the Zulia river. Tropical rain forest.							
		Helobiomes of Valle del Cauca	Temperate too dry to humid temperate climates in poor to very poorly drained plains in Valle del Cauca Tropical dry forest.							
		Litobiomes of the Amazon- Orinoco basins	Residual flattening surfaces (Peniplanicies). Excessively to deficiently drained in the Amazon and Orinoco region. Tropical rain forest.							
Biomes		High Orobiome of de Santa Marta	Very dry to dry cold snowy climate in Sierra Nevada de Santa Marta. Tropical rain forest.							
Set of ecosystems characterized by	2008	Low Orobiome of Santa Marta and Macuira	Warm arid climate to very humid temperate climate; mountain climate. Sierra Nevada de Santa Marta and, Serranía de Macuira, Jarara and Cocinas.							
species and a variety of plants, weather condition		Orobiome of the La Macarena	Warm humid to very humid temperate climate. Hill and mountain climate. Serrania de La Macarena. Tropic rain forest.							
and land cover characteristic INVEMAR et al.		Orobiome of the San Lucas	Dry warm climate to very humid temperate climate. Mountain climate. Serrania San Lucas. Tropical rain forest.							
2007 ¹¹).		Orobiome of the Baudo and Darien	Warm humid climate to very humid temperate climate. Mountain climate. Serrania Baudo and Darien. Tropical rain forest.							
		Middle Orobiome of Santa Marta	Dry cold climate to very cold humid climate. Mountain climate. Sierra Nevada de Santa marta. Tropical rain forest.							
		High Orobiomes Andean region	Very dry cold climate to dry snowy climate. Plains, foothill, hills and mountains excessively to deficiently drained in the Andean region. Tropical rain forest							
		Azonal Orobiomes of Cucuta	Very dry warm climate to dry temperate climate. Valleys, plains, hills and mountains excessively to deficient drained around Cucuta. Tropical rain forest.							
		Azonal Orobiomes of Sogamoso river	Very dry warm climate to dry temperate climate. Valleys, hills and mountains excessively to deficiently drained in the Sogamoso river (Chicamocha and Suarez). Tropical rain forest.							

		Azonal Orobiomes of Patia valley	Warm dry climate to humid temperate. Plains, foothills, hills and mountains (principally) excessively to deficiently drained in the Patia river. Tropical rain forest.
		Azonal Orobiomes Dagua river	Warm dry climate and dry temperate. Mountains of the Dagua river, covered by grasslands. Tropical rain forest.
		Low Orobiomes Andean region	Very dry and warm climate to rainy temperate climate. Plains, foothills, upland, hills and mountains excessively to deficiently drained in the Andes. Tropical rain forest.
		Middle Orobiomes Andean region	Dry temperate climate to very humid cold climate. Plains, foothills, upland, hills and mountains excessively t deficiently drained in the Andes. Tropical rain forest.
		Peinobiomes of the Amazon-Orinoco basins	Dry warm climate to very humid temperate climate. Aeolian plains, foothills, uplands, eroded hills in the Amazon and Orinoco region. Tropical rain forest.
Biomes Set of ecosystems characterized by species and a		"Alternohigrico" and/or tropical sub-xerophytic Zonobiome of the Alto Magdalena	Very dry and warm climate to dry cold climate. Valleys, hills, plains, foothills, uplands excessively to deficiently drained in the Alto Magdalena region. Tropical dry forest.
variety of plants, weather condition and land cover characteristic (INVEMAR et al.	2008	"alternohigrico" and/or tropical sub-xerophytic Zonobiome of the Cauca Valley	Very dry and warm climate to dry cold climate. Valleys, hills, plains, foothills, uplands excessively to deficiently drained in the Cauca Valley. Tropical dry forest.
2007 ¹¹).		Tropical desert Zonobiome of La Guajira and Santa Marta	Warm arid climate, very dry and dry in plains, foothills and hills excessively to deficiently drained in the Guajira peninsula and around Santa Marta. Tropical forest wilderness.
		Tropical wet Zonobiome of the Amazon-Orinoco basins	Dry warm climate too very humid temperate climate. Valleys, plains, foothills, hills, flattening surfaces excessively to deficiently drained in the Amazon and Orinoco region. Tropical rain forest.
		Tropical wet Zonobiome of the Catatumbo	Dry warm climates to humid temperate climates. Valleys, hills, plains, foothills excessively to deficiently drained in the Catatumbo. Tropical rain forest.
		Tropical wet Zonobioma of the Magdalena and Caribbean	Dry warm climates to very humid temperate climates. Valleys, hills, plains, foothills excessively to deficient drained in the Magdalena and Caribbean region. Tropical rain forest.

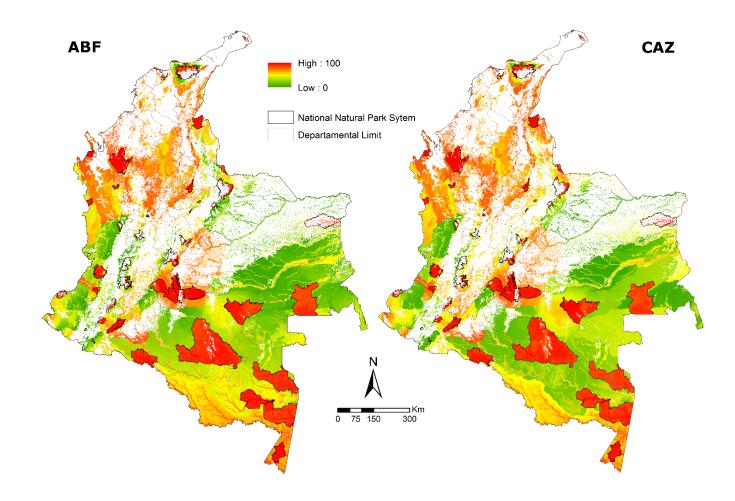
		Tropical wet Zonobioma of the Pacific and Atrato river Humid warm climate to pluvial temperate. Valleys, hills, plains, foothills excessively to deficiently draine the Pacific and Atrato. Tropical rain forest.										
		Tropical dry Zonobioma of the Caribbean Very dry warm climates and dry temperate climate in valleys, plains, foothills and hills excessive deficiently drained in the Caribbean. Tropical dry forest.										
		45 watersheds	Hydro_pj	Shapefile	SIG-OT-IGAC ¹⁰	http://sigotn.igac.gov.co/sigot/						
		Alto Patía										
		Baudó – Directos river										
		Mira-Guiza river										
	2002	Micay river										
		Sanguianga - Patía Norte river										
Watershed		Bajo Patía										
Piece of land		Coyanero – Dagua river										
drained by a single		Low Guaviare										
natural drainage system (IDEAM		San Juan river										
2002 ¹²).		North Sierra Nevada de Santa Marta										
		Low Guajira										
		West Sierra Nevada de Santa Marta										
		Middle Cauca										
		Middle Magdalena										
		Sogamoso river										
		Savannah of Bogotá										
		Atrato river										

-			
			Upper Cauca
	Watershed Piece of land drained by a single natural drainage system (IDEAM ¹²).	2002	Low Carbe Sinú - Carbe Upper Gaajira Low Magdalena Cesar river Catatumbo river Low Caquetá Apaporis river Upper Magdalena Nechi river Arauca river Low Meta Bita river Guainia river Putumayo river Tolo river Atabajo river Vapos river Vapos river Vapos river Vapos river

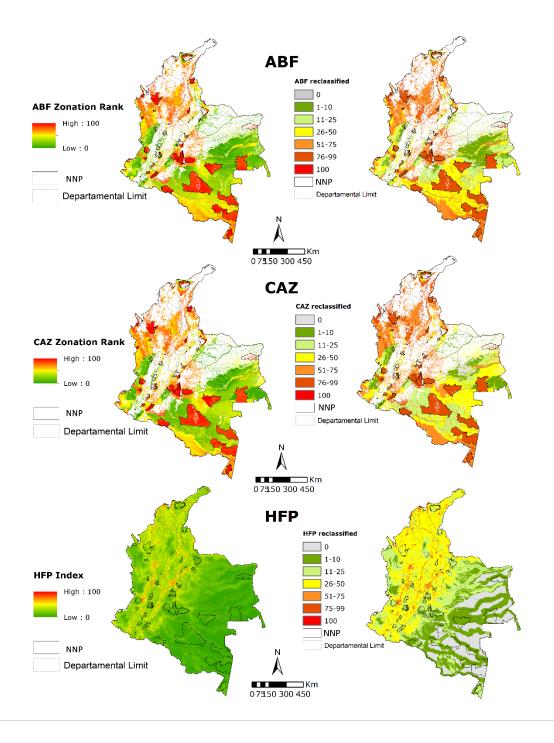
		Upper Guaviare Middle Guaviare
Watershed Piece of land drained by a single natural drainage system (IDEAM ¹²).	2002	Tomo – Tuparru river Upper Meta Vichada river

 ¹Hijmans R. J., Cameron S.E., Parra J. L., Jones P. G., & Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25: 1965-1978; ²UNEP-United Nations Environment Programme. 2015. The UNEP Environmental Data Explorer, as compiled from Department of Ecosystem and Conservation Sciences, University of Montana. http://ede.grid.unep.ch. ³SDAT_ORNL DAAC Spatial Data Access Tool_ Oak Ridge National Laboratory Distributed Active Archive Center; ⁴Simard, M., Pinto N., Fisher J. B., & Baccini A. 2011.
 Mapping forest canopy height globally with spaceborne lidar. *Journal of Geophysical Research*, 116, G04021, doi:10.1029/2011JG001708; ⁵ISC GM-International Steering Committee for Global
 Mapping. 2003. *Percent Tree Coverage (PTC) Global version 1*. Secretariat of ISCGM, Geospatial Information Authority of Japan and Chiba University. http://www.iscgm.org/gm/ptc.html#use;
 ⁶Trabucco A., & Zomer R.J. 2010. *Global Soil Water Balance Geospatial Database*. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal
 at: <u>http://www.cgiar-csi.org</u>; ⁷ Hengl T., de Jesus J. M., MacMillan R. A., Batjes N. H., Heuvelink G. B. M., Ribeiro E., et al. 2014. SoilGrids1km — *Global Soil Information Based on Automated Mapping*. PLoS ONE, 9(8): e105992. doi: 10.1371/journal.pone.0105992 - ISRIC – World Soil Information. 2013. *SoilGrids: an automated system for global soil mapping*. Available for download at http://soilgrids1km.isric.org; ⁸ LP DAAC - Land Processes Distributed Active Archive Center. 2001. ASTER GDEM Version 2. U.S. National Aeronautics and Space Administration (NASA) and Japan's Sensor Information Laboratory Corporation (SILC); ⁹IGAC- Spanish Acronym for Agustín Codazzi Geographic Institute. 2007. *Cobertura de la Tierra*. Bogotá, Colombia. Edited by: IGAC 2008 ¹⁰ SIG-OT 2009. Sistema de información geográfica para la planeación y **Appendix E.** Matrix of Pearson's correlation coefficient values among nominated predictor variables of environmental models to estimate probability of occurrence of species of primates in Colombia. Highly and significant correlated coefficient values are highlighted with dark and clear orange respectively. Extreme and limiting environmental factors are not included.

MODEL	VARIABLE	bulk																
	bulk	1	clay															
	clay	0.41	1	org							_							
Soil	org	-0.62	-0.23	1	рН		_											
501	pH	0.20	-0.23	-0.06	1	sand												
	sand	0.23	-0.53	-0.21	0.24	1	aet		_									
	aet	0.08	0.33	-0.01	-0.64	-0.10	1	can		_								
	can	-0.20	0.10	0.20	-0.43	-0.13	0.44	1	NPP		_							
Vegetation	NPP	0.08	0.03	-0.07	-0.23	0.11	0.10	0.09	1	ptc								
	ptc	-0.20	0.06	0.28	-0.52	-0.08	0.47	0.68	0.18	1	bio3							
	bio3	-0.40	-0.17	0.43	-0.02	-0.24	0.15	0.25	-0.12	0.16	1	bio7						
	bio7	0.37	0.01	-0.40	0.32	0.30	-0.07	-0.30	-0.06	-0.31	-0.41	1	bio2		-			
	bio2	0.08	-0.17	-0.11	0.35	0.15	0.03	-0.14	-0.17	-0.23	0.23	0.75	1	bio15				
Climate	bio15	0.36	-0.06	-0.36	0.53	0.23	-0.52	-0.59	-0.17	-0.54	-0.47	0.59	0.27	1	bio4			
	bio4	0.50	0.28	-0.52	-0.08	0.28	0.04	-0.19	0.18	-0.09	-0.79	0.55	-0.07	0.48	1	bio12		
	bio12	-0.26	0.29	0.28	-0.77	-0.40	0.63	0.35	0.06	0.39	0.27	-0.35	-0.22	-0.49	-0.14	1	bio1	
	bio1	0.61	0.45	-0.50	-0.28	-0.05	0.46	-0.06	0.10	0.01	-0.21	0.29	0.10	0.21	0.46	0.24	1	DEM
Physical	DEM	-0.58	-0.45	0.48	0.37	0.07	-0.49	0.02	-0.13	-0.06	0.27	-0.15	0.05	-0.12	-0.42	-0.29	-0.96	1


Bulk: mean bulk density in kg/m³; clay: soil texture fraction in clay (%, mean estimate); org: soil organic carbon content in per miles(mean estimate); pH: Soil pH x 10 in H2O (mean estimate); sand: Soil texture fraction sand (%, mean estimate); aet: actual evapo-transpiration; can: forest canopy height; NPP: Net Primary Productivity; ptc: percent tree cover; bio3: Isothermality; bio7: temperature annual range (BIO5: Maximum Temperature of Warmest Month - BIO6: Minimum Temperature of Coldest Month); bio2: mean diurnal range; bio15: precipitation seasonality; bio4: temperature seasonality; bio12: annual precipitation; bio1: annual mean temperature; DEM: digital elevation model. **Appendix F.** List of 39 different models run to assess model fit and predictive performance in the estimation of distribution ranges of species with more than 50 locations. Combination of variables **in Bold** correspond to the second set of models used to model final environmental niche models; of them, only one model with the best performance was selected for each species to be used in subsequent Zonation analyses.

MODEL 1		Combination of Variables														
	CLIMATE			VEGETATION			SOIL					PHYSICAL				
	BIO4	BIO7	BIO15	PTC	Canp							Elev	Land			
2	BIO4	BIO7	BIO15								Bio	Elev	Land			
3	BIO4	BIO7	BIO15	РТС	Canp						Bio		Land			
4	BIO4	BIO7	BIO15	РТС	Canp						Bio	Elev				
5	BIO4	BIO7	BIO15	PTC	Canp						Bio	Elev	Land			
6	BIO4	BIO7	BIO15									Elev	Land	Wat		
7											Bio	Elev	Land			
8		•	÷									Elev	Land	Wat		
9	BIO4	BIO7	BIO15								Bio	Elev		Wat		
10	BIO4	BIO7	BIO15								Bio			Wat		
11	BIO4	BIO7	BIO15								Bio	Elev	Land	Wat		
12											Bio		Land	Wat		
13	BIO4	BIO7	BIO15	PTC	Canp						Bio			Wat		
14	BIO4	BIO7	BIO15	РТС	Canp							Elev	•	Wat		
15	BIO4	BIO7	BIO15	PTC	Canp						Bio					
16	BIO4	BIO7	BIO15									Elev		Wat		
17	BIO4	BIO7	BIO15									Elev	Land			
18	BIO4	BIO7	BIO15								Bio		Land			
19	BIO4	BIO7	BIO15	PTC	Canp							Elev				
20	BIO4	BIO7	BIO15	PTC	Canp									Wat		
21	BIO4	BIO7	BIO15	PTC	Canp	NPP										
22				PTC	Canp							Elev				
23		•		PTC		NPP					Bio	Elev	Land	Wat		


24					Canp	NPP							Bio	Elev	Land	Wat
25				РТС									Bio	Elev	Land	Wat
26					Canp								Bio	Elev	Land	Wat
27						NPP							Bio	Elev	Land	Wat
28				PTC	Canp	NPP	AET	Bulk	Clay	Org	pН	Sand			*	
29	BIO4	BIO7	BIO15				AET	Bulk	Clay	Org	pН	Sand				
30	BIO4	BIO7	BIO15				AET	Bulk	Clay							
31	BIO4	BIO7	BIO15			•				Org	pН	Sand			•	
32							AET	Bulk	Clay	Org	pН	Sand	Bio		•	
33						•	AET	Bld	Clay	Org	pН	Sand		Elev	•	
34						•	AET	Bulk	Clay	Org	pН	Sand			Land	
35							AET	Bulk	Clay	Org	pН	Sand			•	Wat
36						•	AET	Bulk	Clay	Org	pН	Sand	Bio	Elev	Land	Wat
37						•	AET	Bulk	Clay				Bio	Elev	Land	Wat
38										Org	pН	Sand	Bio	Elev	Land	Wat
39	BIO4	BIO7	BIO15	PTC	Canp	NPP	AET	Bulk	Clay	Org	pН	Sand		b	•	

Bio4: temperature seasonality; **Bio7**: temperature annual range (BIO5: Maximum Temperature of Warmest Month - BIO6: Minimum Temperature of Coldest Month); **Bio15**: precipitation seasonality; **PTC**: percent tree cover; **Canp**: forest canopy height; **NPP**: Net Primary Productivity; **AET**: actual evapo-transpiration; **Bulk**: mean bulk density in kg/m³; **Clay**: soil texture fraction in clay (%, mean estimate); **Org**: soil organic carbon content in per miles(mean estimate); **pH**: Soil pH x 10 in H2O (mean estimate); **Sand**: Soil texture fraction sand (%, mean estimate); **Bio**: Biome; **Elev**: Elevation (DEM); **Land**: Land Cover; **Wat**: Watershed.

Appendix G. Classic Zonation ranking for each cell removal rule. Biological value of areas is expressed in percentages from zero (0) or the least conservation value to 100% or high conservation value, with 83 indicating the top 17% of the landscape to be protected. **ABF:** Additive Benefit Function cell removal rule. **CAZ:** Core-Area Zonation removal rule.

Appendix H. Reclassified raster's layers relating the Human Footprint Index (HFP) and the zonation priority rank for scenarios using two different removal rules (Additive Benefit Function (ABF) and Core-Area Zonation (CAZ)), in order to generate an irreplaceability-vulnerability analysis based on a two-dimensional vulnerability matrix. NNP: current National Natural Park System.

Appendix I. Percent contribution of environmental variables, AUC (Area Under the Curve) values and main statistics of seven selected distribution models for each of the species of primates in Colombia. Model with the best performance is highlighted with red. Description for each model as follows:

MODEL				VARI	ABLES				
MODEL		CLIMAT	TE	VEGE	TATION		PHY	SICAL	
Α	BIO4	BIO7	BIO15			Bio	Elev	Land	
В	BIO4	BIO7	BIO15	PTC	Canp	Bio		Land	
С	BIO4	BIO7	BIO15				Elev	Land	Wat
D	BIO4	BIO7	BIO15			Bio	Elev		Wat
Е	BIO4	BIO7	BIO15			Bio	Elev	Land	Wat
F						Bio		Land	Wat
G	BIO4	BIO7	BIO15	PTC	Canp		Elev		Wat

BIO4: Temperature Seasonality (standard deviation *100); **BIO7**: Temperature Annual Range (BIO5: Maximum Temperature of Warmest Month - BIO6: Minimum Temperature of Coldest Month); **BIO15**: Precipitation Seasonality (Coefficient of Variation); **PTC**: Percent Tree Cover; **Canp**: Forest Canopy Height; **Bio**: Biomes; **Elev**: Elevation (DEM); **Land**: Land Cover; **Wat**: Watershed.

Appendix I.a. Species with more than 10 occurrence records:

Alouatta palliata a	equato	rialis / S	South P	acific bl	ackish l	howler I	nonkey	Alouat	ta senic	ulus sen	iculus /	Red how	vler mor	ikey	•
	Statu	s: IUCN_	_ VU / Na	ational_ V	/U				Sta	tus: IUCN	N_ LC / Na	ational_ L	С		
SDM	Α	В	С	D	E	G	н	SDM	Α	В	С	D	E	F	G
# Observations				26				# Observations				266			
Obs_Train				23				Obs_Train	205	203	205	205	205	205	203
Obs_Test	0	0	0	0	0	0	0	Obs_Test	51	50	51	51	51	51	50
Training AUC	0.986	0.984	0.987	0.988	0.991	0.987	0.991	Training AUC	0.765	0.764	0.789	0.793	0.814	0.804	0.778
Test AUC								Test AUC	0.703	0.707	0.776	0.767	0.781	0.772	0.753
Logis_Tresh	0.101	0.100	0.200	0.101	0.094	0.113	0.128	Logis_Tresh	0.380	0.384	0.374	0.410	0.354	0.368	0.425
Fract_Pred_Area	0.053	0.059	0.043	0.046	0.044	0.052	0.042	Fract_Pred_Area	0.298	0.290	0.278	0.272	0.261	0.253	0.286
Train_Omis_Rate	0.043	0.043	0.043	0.043	0.043	0.043	0.048	Train_Omis_Rate	0.298	0.291	0.278	0.273	0.263	0.268	0.286
	F	Percent	Contrib	ution						Percent	Contrib	ution			
PTC		<1					4.1	PTC		11.5					22.3
Canp		<1					<1	Canp		2.4					9.9
BIO4	1.1	1.0	3.4	<1	<1		4.0	BIO4	1.0	1.4	<1	2.4	<1		3.5
BIO7	24.9	25.5	2.5	8.3	5.3		3.1	BIO7	1.5	1.4	<1	<1	<1		<1
BIO15	1.6	2.3	4.7	2.3	1.2		11.9	BIO15	1.9	4.0	1.8	2.5	1.5		3.0
Biome	55.1	55.4		39.8	37.0	10.1		Biome	32.7	32.1		41.6	21.0	23.0	
Elevation	1.7		<1	<1	<1		<1	Elevation	5.0		2.1	3.1	2.1		5.0
Landcover	15.7	15.2	11.8		8.4	38.3		Landcover	57.9	47.1	54.4		43.6	46.3	
Watershed			77.7	49.6	48.0	51.6	76.8	Watershed			41.7	50.3	31.8	30.7	56.4

Obs_Train: Number of training observations; Obs_Test: Number of testing observations; Logis_Tresh: Logistic Threshold; Fract_Pred_Area: Fractional Predicted Area; Train_Omis_Rate: Training Omission Rate.

Aotus b	rumbac	cki* / E	Brumba	ck's nig	ht mon	key		Aotus g	riseimei	nbra /	Grey-ha	anded n	ight mo	nkey	
	Status	: IUCN_	VU / Na	tional_	/υ				Statu	IS: IUCN	_ VU / Na	ational_ V	/U		
SDM	Α	В	С	D	Е	F	G	SDM	Α	В	С	D	E	F	G
# Observations		•		10				# Observations				70			
Obs_Train				10				Obs_Train			5	56			53
Obs_Test	0	0	0	0	0	0	0	Obs_Test			1	14			13
Training AUC	0.923	0.924	0.986	0.984	0.995	0.989	0.977	Training AUC	0.938	0.927	0.948	0.949	0.957	0.958	0.951
Test AUC								Test AUC	0.941	0.931	0.927	0.912	0.926	0.925	0.840
Logis_Tresh	0.292	0.297	0.520	0.149	0.638	0.447	0.195	Logis_Tresh	0.309	0.370	0.234	0.164	0.228	0.285	0.291
Fract_Pred_Area	0.192	0.181	0.041	0.086	0.010	0.030	0.098	Fract_Pred_Area	0.152	0.153	0.142	0.192	0.107	0.108	0.107
Train_Omis_Rate	0.100	0.200	0.000	0.100	0.000	0.000	0.100	Train_Omis_Rate	0.143	0.161	0.143	0.018	0.107	0.107	0.113
	Pe	ercent	Contrib	ution					I	Percent	Contrib	oution			
PTC		<1					<1	PTC		<1					3.4
Canp		1.6					<1	Canp		<1					3.9
BIO4	<1	<1	<1	4.9	2.0		2.6	BIO4	<1	<1	2.6	<1	<1		7.9
BIO7	<1	<1	<1	<1	<1		<1	BIO7	2.4	<1	<1	<1	<1		<1
BIO15	<1	</th <th><1</th> <th><1</th> <th><1</th> <th></th> <th><1</th> <th>BIO15</th> <th><1</th> <th><1</th> <th><1</th> <th><1</th> <th><1</th> <th></th> <th><1</th>	<1	<1	<1		<1	BIO15	<1	<1	<1	<1	<1		<1
Biome	53.7	53.5		20.5	17.1	19.5		Biome	59.7	62.5		44.1	28.7	31.7	
Elevation	<1		5.6	1.1	1.2		5.4	Elevation	2.8		6.2	4.1	5.4		8.1
Landcover	46.3	44.9	21.4		18.6	23.4		Landcover	35.1	37.5	30.1		24.2	31.5	
Watershed			73.0	73.5	61.2	57.1	92.0	Watershed			61.0	51.8	41.7	36.8	76.6
Watersheu			75.0	75.5	01.2	37.1	52.0	watersneu			01.0	51.0	11.7	50.0	70.0
	lemurii	nus / C	olombia		_		92.0		otus voc	iferans				30.0	70.0
				n night	monke		52.0				/ Spix's		onkey		
			olombia	n night	monke		G				/ Spix's	night m	onkey	F	G
Aotus	Status	s: IUCN_	olombia VU / Nat	in night tional_V	monke) U	Y		A	Stat	us: IUCN	/ Spix's _LC / Na	night m ational_L	onkey C		
Aotus	Status	s: IUCN_	olombia VU / Nat	tional_V	monke) U	Y		A	Stat	us: IUCN	/ Spix's _LC / Na	night m ational_L D	onkey C		
Aotus SDM # Observations	Status	s: IUCN_	olombia VU / Nat	tional_V D 68	monke) U	Y		A SDM # Observations	Stat	us: IUCN	/ Spix's _LC / Na	night m ational_L D 17	onkey C		
Aotus SDM # Observations Obs_Train Obs_Test	Status A 0.935	B B	olombia VU / Nat	n night tional_V D 68 53 13 0.947	monke U E 0.957	F 0.955	G 0.953	SDM # Observations Obs_Train	Stat	us: IUCN B	/ Spix's _LC / Na C	night m ational_L D 17 17	onkey C E	F	G
Aotus SDM # Observations Obs_Train Obs_Test	Status A 0.935 0.923	B B 0.935 0.923	olombia VU / Nat C 0.956 0.942	n night tional_V D 68 53 13 0.947 0.941	monke U E 0.957 0.944	F 0.955 0.948	G 0.953 0.941	SDM # Observations Obs_Train Obs_Test	Stat	us: IUCN B 0	/ Spix's _LC / Na C 0 0.948	night m ational_LC D 17 17 0 0.920	onkey C E 0 0.931	F 0 0.927	G 0 0.935
SDM # Observations Obs_Train Obs_Test Training AUC	Status A 0.935 0.923 0.319	5: IUCN B 0.935 0.923 0.319	olombia VU / Nat C 0.956 0.942 0.364	n night tional_ V D 68 53 13 0.947 0.941 0.436	monke U E 0.957 0.944 0.357	F 0.955 0.948 0.344	G 0.953 0.941 0.372	SDM # Observations Obs_Train Obs_Test Training AUC	Stat A 0 0.920 0.285	B 0 0.940 0.298	/ Spix's _LC / Na C 0 0.948 0.274	night m ational_L D 17 17 0 0.920 0.304	onkey C E 0 0.931 0.212	F 0.927 0.231	G 0 0.935 0.305
SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Status A 0.935 0.923 0.319 0.149	 IUCN B 0.935 0.923 0.319 0.149 	olombia VU / Na C 0.956 0.942 0.364 0.093	n night tional_V D 68 53 13 0.947 0.941 0.941 0.436 0.100	monke U E 0.957 0.944 0.357 0.107	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat	B 0 0.940 0.298 0.166	/ Spix's _LC / Na C 0 0.948 0.274 0.118	night m ational_L D 17 17 0 0.920 0.304 0.123	onkey E 0 0.931 0.212 0.123	F 0 0.927	G 0 0.935
Aotus SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Status A 0.935 0.923 0.319	5: IUCN B 0.935 0.923 0.319	olombia VU / Nat C 0.956 0.942 0.364	n night tional_ V D 68 53 13 0.947 0.941 0.436	monke U E 0.957 0.944 0.357	F 0.955 0.948 0.344	G 0.953 0.941 0.372	SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Stat A 0 0.920 0.285	B 0 0.940 0.298	/ Spix's _LC / Na C 0 0.948 0.274	night m ational_L D 17 17 0 0.920 0.304	onkey C E 0 0.931 0.212	F 0.927 0.231	G 0 0.935 0.305
SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Status A 0.935 0.923 0.319 0.149 0.151	 E IUCN B C <lic< li=""> C C C C<th>olombia VU / Na C 0.956 0.942 0.364 0.093</th><th>n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094</th><th>monke U E 0.957 0.944 0.357 0.107</th><th>F 0.955 0.948 0.344 0.102</th><th>G 0.953 0.941 0.372 0.109</th><th>SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area</th><th>Stati A 0 0.920 0.285 0.176 0.176</th><th>B 0 0.940 0.298 0.166 0.176</th><th>/ Spix's _LC / Na C 0 0.948 0.274 0.118</th><th>night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118</th><th>onkey E 0 0.931 0.212 0.123</th><th>F 0 0.927 0.231 0.157</th><th>G 0 0.935 0.305 0.143</th></lic<>	olombia VU / Na C 0.956 0.942 0.364 0.093	n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094	monke U E 0.957 0.944 0.357 0.107	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stati A 0 0.920 0.285 0.176 0.176	B 0 0.940 0.298 0.166 0.176	/ Spix's _LC / Na C 0 0.948 0.274 0.118	night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118	onkey E 0 0.931 0.212 0.123	F 0 0.927 0.231 0.157	G 0 0.935 0.305 0.143
SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Status A 0.935 0.923 0.319 0.149 0.151	 E IUCN B C <lic< li=""> C C C C<th>olombia VU / Na C 0.956 0.942 0.364 0.093 0.094</th><th>n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094</th><th>monke U E 0.957 0.944 0.357 0.107</th><th>F 0.955 0.948 0.344 0.102</th><th>G 0.953 0.941 0.372 0.109</th><th>SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area</th><th>Stati A 0 0.920 0.285 0.176 0.176</th><th>B 0 0.940 0.298 0.166 0.176</th><th>/ Spix's _LC / Na C 0.948 0.274 0.118 0.118</th><th>night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118</th><th>onkey E 0 0.931 0.212 0.123</th><th>F 0 0.927 0.231 0.157</th><th>G 0 0.935 0.305 0.143</th></lic<>	olombia VU / Na C 0.956 0.942 0.364 0.093 0.094	n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094	monke U E 0.957 0.944 0.357 0.107	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stati A 0 0.920 0.285 0.176 0.176	B 0 0.940 0.298 0.166 0.176	/ Spix's _LC / Na C 0.948 0.274 0.118 0.118	night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118	onkey E 0 0.931 0.212 0.123	F 0 0.927 0.231 0.157	G 0 0.935 0.305 0.143
Aotus SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Status A 0.935 0.923 0.319 0.149 0.151	E IUCN B 0.9335 0.923 0.319 0.149 0.151 ercent	olombia VU / Na C 0.956 0.942 0.364 0.093 0.094	n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094	monke U E 0.957 0.944 0.357 0.107	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109 0.113	A SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Stati A 0 0.920 0.285 0.176 0.176	B 0 0.940 0.298 0.166 0.176 Percen :	/ Spix's _LC / Na C 0.948 0.274 0.118 0.118	night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118	onkey E 0 0.931 0.212 0.123	F 0 0.927 0.231 0.157	G 0.935 0.305 0.143 0.118
Aotus SDM SDM SDS_Train Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Status A 0.935 0.923 0.319 0.149 0.151	E IUCN B 0.935 0.923 0.319 0.149 0.151 ercent 	olombia VU / Na C 0.956 0.942 0.364 0.093 0.094	n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094	monke U E 0.957 0.944 0.357 0.107	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109 0.113 1.4	A SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Stati A 0 0.920 0.285 0.176 0.176	B 0 0.940 0.298 0.166 0.176 Percent: 2.2	/ Spix's _LC / Na C 0.948 0.274 0.118 0.118	night m ational_LC D 17 17 0 0.920 0.304 0.123 0.118	onkey E 0 0.931 0.212 0.123	F 0 0.927 0.231 0.157	G 0.935 0.305 0.143 0.118
Aotus SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Status A 0.935 0.923 0.319 0.149 0.151 P 3.4 <1	s: IUCN B 0.9335 0.923 0.319 0.149 0.151 ercent <1 <1 3.4 <1	0.0956 0.942 0.942 0.364 0.093 0.094 Contrib 11.6 1.7	n night tional_V D 68 53 13 0.947 0.941 0.436 0.100 0.094 tion	monke U E 0.957 0.944 0.357 0.107 0.113	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109 0.113 1.4 1.5	A SDM SDM SDS_Train Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Stat A 0 0.920 0.285 0.176 0.176 0.176 0.177 4 0.176 0	B 0 0 0.940 0.298 0.166 0.176 Percent 2.2 1.1 9.0 <1	/ Spix's _LC / Na C 0 0.948 0.948 0.118 0.118 0.118 Contrib 4.2 <1	night m ational_LC D 17 0 0.920 0.304 0.123 0.118 ution <1 <1	0nkey E E 0 0.931 0.212 0.123 0.118 1.2 <1	F 0 0.927 0.231 0.157	G 0.935 0.305 0.143 0.118 <1 <1 <1 <1 <1 <1 <1 <1
Aotus SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Status A 0.935 0.923 0.319 0.149 0.151 P 3.4	s: IUCN B 0.935 0.923 0.319 0.149 0.151 ercent <1 <1 3.4	0.956 0.942 0.942 0.364 0.093 0.094 Contrib	night ional_V D 68 53 0.941 0.436 0.100 0.094 ition	monke U E 0.957 0.944 0.357 0.107 0.113 0.113	F 0.955 0.948 0.344 0.102 0.094	G 0.953 0.941 0.372 0.109 0.113 1.4 1.5 8.9	A SDM SDM SDM SDM SDS_Train Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Stat A 0 0.920 0.285 0.176 0.176 0.176 0.176 0.176	B 0 0.940 0.298 0.166 0.176 Percent 2.2 1.1 9.0	/ Spix's _LC / Na C 0 0.948 0.948 0.274 0.118 0.118 Contrib	night m attional_LC D 17 0 0.920 0.304 0.123 0.118 ution <1 <1 <1	onkey E E 0 0.931 0.212 0.123 0.118	F 0 0.927 0.231 0.157	G 0.935 0.305 0.143 0.118 <1 <1 4.6
Aotus SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Status A 0.935 0.923 0.319 0.149 0.151 P 3.4 <1	s: IUCN B 0.9335 0.923 0.319 0.149 0.151 ercent <1 <1 3.4 <1	0.0956 0.942 0.942 0.364 0.093 0.094 Contrib 11.6 1.7	n night tional_V D 68 53 13 0.941 0.436 0.100 0.094 tion <1 <1 <1	monke E 0.957 0.944 0.357 0.107 0.113 <1 <1	F 0.955 0.948 0.344 0.102	G 0.953 0.941 0.372 0.109 0.113 0.113 1.4 1.5 8.9 <1	A SDM SDM WOBSERVATIONS Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Stat A 0 0.920 0.285 0.176 0.176 0.176 0.177 4 0.176 0	B 0 0 0.940 0.298 0.166 0.176 Percent 2.2 1.1 9.0 <1	/ Spix's _LC / Na C 0 0.948 0.948 0.118 0.118 0.118 Contrib 4.2 <1	night m ational_LC D 17 0 0.920 0.304 0.123 0.118 ution <1 <1 <1 <1 31.5	0nkey C E 0 0.931 0.212 0.123 0.118 0.118 1.2 <1 <1 30.0	F 0 0.927 0.231 0.157	G 0.935 0.305 0.143 0.118 <1 <1 <1 <1 <1 <1 <1 <1
Aotus SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Status A 0.935 0.923 0.319 0.149 0.151 P 3.4 <1 <1 70.7 <1	B 0.935 0.923 0.319 0.149 0.151 ercent <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	olombia VU / Na C 0.956 0.942 0.364 0.093 0.094 Contrib 11.6 1.7 5.0 10.1	n night tional_V D 68 53 13 0.941 0.436 0.100 0.094 tion <1 <1 <1 <1	monke U E 0.944 0.357 0.107 0.113 0.	F 0.955 0.948 0.344 0.102 0.094	G 0.953 0.941 0.372 0.109 0.113 0.113 1.4 1.5 8.9 <1	A SDM SDM SDM SDM SDS_Train Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Stat A 0 0.920 0.285 0.176 0.176 0.176 0.176 0.176 1 3.3.6	B 0 0.940 0.298 0.166 0.176 Percent 2.2 1.1 9.0 <1 35.7 42.6	/ Spix's _LC / Na C 0 0.948 0.948 0.118 0.118 0.118 0.118 Contrib 4.2 <1 3.7	night m attional_LC D 17 0 0.920 0.304 0.123 0.118 ution <1 <1 <1	0nkey C E 0 0.931 0.212 0.123 0.118 1.2 <1 <1	F 0.927 0.231 0.157 0.176 31.7	G 0.935 0.305 0.143 0.118 <1 <1 <1 <1 <1 <1 <1 <1
Aotus SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Status A 0.935 0.923 0.319 0.149 0.151 P 3.4 <1 <1 70.7	s: IUCN B 0.9335 0.923 0.319 0.149 0.151 ercent <1 <1 3.4 <1 3.4 <1 <1 3.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	olombia VU / Na C 0.956 0.942 0.364 0.093 0.094 Contrib 11.6 1.7 5.0	n night tional_V D 68 53 13 0.941 0.436 0.100 0.094 tion <1 <1 <1 69.1	monke E 0.957 0.944 0.357 0.107 0.113 <1 <1 58.1	F 0.955 0.948 0.344 0.102 0.094	G 0.953 0.941 0.372 0.109 0.113 0.113 1.4 1.5 8.9 <1 <1 <1	A SDM	Stat A 0 0.920 0.285 0.176 0.176 0.176 0.176 0.176 1 3.6 3.8.9	B 0 0 0.940 0.298 0.166 0.176 Percent: 2.2 1.1 9.0 <1 35.7	/ Spix's _LC / Na C 0 0.948 0.948 0.118 0.118 0.118 Contrib 4.2 <1 3.7	night m ational_LC D 17 0 0.920 0.304 0.123 0.118 ution <1 <1 <1 <1 31.5	0nkey C E 0 0.931 0.212 0.123 0.118 0.118 1.2 <1 <1 30.0	F 0.927 0.231 0.157 0.176	G 0.935 0.143 0.118 <1 <1 <1 4.6 <1 5.9

Aotus	zonalis	/ Pan	amania	an night	monke	y		Ateles belz	ebuth be	elzebuti	h / Long	g-haire	d spider	monke	у
	Status	: IUCN_	DD / Na	ational_ \	/U				Statu	s: IUCN	_EN / N	ational_ \	/U		
SDM	Α	В	С	D	E	F	G	SDM	Α	В	С	D	Е	F	G
# Observations		-		20				# Observations				41			
Obs_Train				19				Obs_Train				31			
Obs_Test	0	0	0	0	0	0	0	Obs_Test				7			
Training AUC	0.976	0.953	0.989	0.990	0.991	0.985	0.986	Training AUC	0.937	0.934	0.944	0.959	0.961	0.961	0.940
Test AUC								Test AUC	0.835	0.849	0.885	0.911	0.892	0.892	0.884
Logis_Tresh	0.229	0.104	0.116	0.190	0.131	0.215	0.115	Logis_Tresh	0.233	0.227	0.106	0.103	0.095	0.095	0.135
Fract_Pred_Area	0.070	0.158	0.053	0.052	0.046	0.052	0.053	Fract_Pred_Area	0.127	0.129	0.147	0.097	0.096	0.096	0.163
Train_Omis_Rate	0.053	0.158	0.053	0.053	0.053	0.053	0.053	Train_Omis_Rate	0.129	0.129	0.161	0.097	0.097	0.097	0.161
	Pe	ercent	Contrib	ution					I	Percent	Contrib	ution			
РТС		2.2					3.7	PTC		<1					<1
Canp		<1					<1	Canp		3.3					<1
BIO4	15.3	19.0	2.2	1.4	<1		<1	BIO4	<1	<1	1.0	1.3	<1		1.5
BIO7	4.1	6.0	10.6	14.3	11.7		15.1	BIO7	2.5	4.0	<1	<1	<1		<1
BIO15	5.2	3.1	1.4	<1	<1		<1	BIO15	12.3	10.2	<1	<1	<1		<1
Biome	46.7	54.4		8.5	7.0	11.3		Biome	64.6	63.8		22.5	23.3	23.3	
Elevation	15.2		6.6	6.3	5.7		5.3	Elevation	2.7		2.7	<1	<1		4.2
Landcover	13.6	15.3	9.9		8.9	10.3		Landcover	17.8	18.8	10.5		8.6	8.6	
Watershed			69.2	69.5	66.8	78.4	75.9	March and the state			05.0	76.3	68.1	68.1	94.3
Watersheu			09.2	09.5	66.8	70.4	75.9	Watershed			85.8	76.3	68.1	00.1	94.5
Ateles fuscice	os rufive	entris /						Ateles h	ybridus*	*brunne					94.3
				pian bla	ck spide							rown sp	ider mo		94.3
			Colomb	pian bla	ck spide						us**/B	rown sp	ider mo		94.3
Ateles fuscice	Status	s: IUCN_	Colomb CR / Na	bian bla tional_E	c k spide N	er monk	ey	Ateles h	Statu	IS: IUCN	us**/B _CR / Na	rown sp ational_ C	ider mo R	nkey	
Ateles fuscice SDM	Status	s: IUCN_	Colomb CR / Na	tional_E	c k spide N	er monk	ey	Ateles h	Statu	IS: IUCN	us**/B _CR / Na	rown sp ational_C D	ider mo R	nkey	
Ateles fuscice SDM # Observations	Status	s: IUCN_	Colomb CR / Na	bian blactional_E D 31	c k spide N	er monk	ey	Ateles h SDM # Observations	Statu A	IS: IUCN B	us**/B _CR / Na _C	ational_C D 24	ider mo R E	nkey F	G
Ateles fuscice SDM # Observations Obs_Train	Status A	B B	Colomb CR / Na C	tional_E D 31 25	c k spide N	er monk	ey	Ateles h SDM # Observations Obs_Train	Statu A 24	B 23	us**/B _CR / Na _C	ational_C D 24 24	ider mo R E 24	nkey F 24	G 23
Ateles fuscice SDM # Observations Obs_Train Obs_Test	Status A	B B	Colomb CR / Na C	bian blac tional_E D 31 25 6	ck spide N E	r monk	G	Ateles h SDM # Observations Obs_Train Obs_Test	Statu A 24 0	B 23 0	us**/B CR/Na C 23 0	ational_C D 24 24 0	ider mo R E 24 0	F 24 0	G 23 0
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC	Status A 0.917	8: IUCN B 0.917	Colomb CR / Na C	bian black tional_E D 31 25 6 0.970	ck spide N E 0.981	F 0.980	ey G 0.965	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC	Statu A 24 0	B 23 0	us**/B CR/Na C 23 0	ational_C D 24 24 0	ider mo R E 24 0	F 24 0	G 23 0
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Status A 0.917 0.883	 IUCN_ B 0.917 0.883 	Colomb CR / Na C C 0.979 0.969	bian black tional_E D 31 25 6 0.970 0.942	ck spide N E 0.981 0.941	F 0.980 0.963	ey G 0.965 0.969	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Statu A 24 0 0.956	B 23 0 0.960	us**/B CR/Na C 23 0 0.980	Brown sp ational_C D 24 24 24 0 0.979	ider mo R E 24 0 0.986	F 24 0 0.986	G 23 0 0.973
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Status A 0.917 0.883 0.243	E IUCN B 0.917 0.883 0.243	Colomb CR / Na C 0.979 0.969 0.270	Dian black tional_E D 31 25 6 0.970 0.942 0.221	ck spide E 0.981 0.941 0.148	F 0.980 0.963 0.191	ey G 0.965 0.969 0.324	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 24 0 0.956 0.209	B 23 0 0.960 0.268	us**/ B _CR / Na C 23 0 0.980 0.382	Frown sp ational_C D 24 24 24 0 0.979 0.180	ider mo R E 24 0 0.986 0.221	F 24 0 0.986	G 23 0 0.973 0.152
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Status A 0.917 0.883 0.243 0.174 0.160	E IUCN B 0.917 0.883 0.243 0.174 0.160	Colomb CR / Na C 0.979 0.969 0.270 0.060	Dian bla tional_E D 31 25 6 0.970 0.942 0.221 0.078 0.080	ck spide N E 0.981 0.941 0.148 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 24 0 0.956 0.209 0.125	B 23 0 0.960 0.268 0.103 0.087	US**/ B CR / Na C 23 0 0.980 0.382 0.049	rown sp ational_C D 24 24 0 0.979 0.180 0.059 0.042	ider mo R 24 0 0.986 0.221 0.047	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Status A 0.917 0.883 0.243 0.174 0.160	E IUCN B 0.917 0.883 0.243 0.174 0.160	Colomb CR / Na C 0.979 0.969 0.270 0.060 0.040	Dian bla tional_E D 31 25 6 0.970 0.942 0.221 0.078 0.080	ck spide N E 0.981 0.941 0.148 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 24 0 0.956 0.209 0.125	B 23 0 0.960 0.268 0.103 0.087	US**/ B CR / Na C 23 0 0.980 0.382 0.049 0.042	rown sp ational_C D 24 24 0 0.979 0.180 0.059 0.042	ider mo R 24 0 0.986 0.221 0.047	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Status A 0.917 0.883 0.243 0.174 0.160	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent	Colomb CR / Na C 0.979 0.969 0.270 0.060 0.040	Dian bla tional_E D 31 25 6 0.970 0.942 0.221 0.078 0.080	ck spide N E 0.981 0.941 0.148 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087 0.080	Ateles h SDM Bobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A 24 0 0.956 0.209 0.125	B 23 0 0.960 0.268 0.103 0.087 Percent	US**/ B CR / Na C 23 0 0.980 0.382 0.049 0.042	rown sp ational_C D 24 24 0 0.979 0.180 0.059 0.042	ider mo R 24 0 0.986 0.221 0.047	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077 0.087
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Status A 0.917 0.883 0.243 0.174 0.160	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent <1	Colomb CR / Na C 0.979 0.969 0.270 0.060 0.040	Dian bla tional_E D 31 25 6 0.970 0.942 0.221 0.078 0.080	ck spide N E 0.981 0.941 0.148 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087 0.080 <1	Ateles h SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Statu A 24 0 0.956 0.209 0.125	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3	US**/ B CR / Na C 23 0 0.980 0.382 0.049 0.042	rown sp ational_C D 24 24 0 0.979 0.180 0.059 0.042	ider mo R 24 0 0.986 0.221 0.047	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077 0.087 16.1
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Status A 0.917 0.883 0.243 0.174 0.160	 IUCN B 0.917 0.883 0.243 0.174 0.160 ercent <1 <1 	Colomb CR / Na C 0.979 0.969 0.270 0.060 0.040 Contrib	bian bla tional_E D 31 25 6 0.970 0.942 0.221 0.078 0.080 ition	Ck spide N E 0.981 0.941 0.148 0.080 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087 0.080 <1 3.2	Ateles h SDM SDM WOSSTrain Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu A 0 0.956 0.209 0.125 0.125	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3 <1	US** / B CR / Na C 23 0 0.980 0.980 0.382 0.049 0.042 Contrib	Brown spational_C D 24 24 0 0.979 0.180 0.059 0.042	ider mo R 24 0 0.986 0.221 0.047 0.042	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077 0.087 16.1 <1
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Status A 0.917 0.883 0.243 0.174 0.160 P 8.0	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent <1 <1 8.0	Colomb CR / Na C 0.979 0.969 0.270 0.060 0.040 Contrib	Jian bla bian bla tional_E D 31 25 6 0.942 0.221 0.078 0.080 ttion	Ck spide N E 0.981 0.941 0.148 0.080 0.080 0.080	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087 0.080 <1 3.2 <1	Ateles h SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu A 24 0 0.956 0.209 0.125 0.125	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3 <1 1.3	us** / B CR / Na C 23 0 0.980 0.980 0.382 0.049 0.042 Contrib	Grown spational_C D 24 0 0.979 0.180 0.059 0.042 ution	ider mo R 24 0 0.9860 0.221 0.047 0.042 0.042	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077 0.087 16.1 <1 <1
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Status A 0.917 0.883 0.243 0.174 0.160 P 8.0 <1	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent <1 8.0 <1 8.0 <1	Colomb CR / Na C 0.969 0.270 0.060 0.040 Contrib Contrib	Jian bla tional_E D 31 25 6 0.942 0.221 0.078 0.080 tion 410 <1 <1	ck spide N E 0.981 0.941 0.148 0.080 0.080 <1 <1 <1	F 0.980 0.963 0.191 0.067	ey G 0.965 0.969 0.324 0.087 0.080 <1 3.2 <1 3.2 <1 <1	Ateles h SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu A 24 0 0.956 0.209 0.125 0.125 	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3 <1 1.3 2.3	US** / B CR / Na C 23 0 0.980 0.980 0.049 0.042 Contrib Contrib	Grown spational_C D 24 0 0.979 0.180 0.059 0.042 ution <1 <1	ider mo R 24 0 0.986 0.221 0.047 0.042 0.042 0.042	F 24 0 0.986 0.221 0.047	G 23 0 0.973 0.152 0.077 0.087 16.1 <1 <1 <1 <1
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Status A 0.917 0.883 0.243 0.174 0.160 P 8.0 <1 <1	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent 41 8.0 41 8.0 41 8.0 41 8.0 41 8.0	Colomb CR / Na C 0.969 0.270 0.060 0.040 Contrib Contrib	Jian bla bian bla tional_E D 31 25 6 0.942 0.221 0.078 0.080 tion <1 <1 <1 <1	ck spide N E 0.981 0.941 0.148 0.080 0.080 0.080 <1 <1 <1 <1 <1 <1	F 0.980 0.963 0.191 0.067 0.080	ey G 0.965 0.969 0.324 0.087 0.080 <1 3.2 <1 3.2 <1 <1	Ateles h SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Statu A 24 0 0.956 0.209 0.125 0.125 0.125 	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3 <1 1.3 2.3 <1	US** / B CR / Na C 23 0 0.980 0.980 0.049 0.042 Contrib Contrib	Grown spational_C D 24 0 0.979 0.042 ution <1 <1 <1 <1 <1 <1	ider mo R 24 0 0.986 0.986 0.047 0.042 0.047 0.042 0.042 0.042 0.042	F 24 0 0.986 0.221 0.047 0.042	G 23 0 0.973 0.152 0.077 0.087 16.1 <1 <1 <1 <1
Ateles fuscice SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Status A 0.917 0.883 0.243 0.174 0.160 P 8.0 <1 45.9	: IUCN B 0.917 0.883 0.243 0.174 0.160 ercent 41 8.0 41 8.0 41 8.0 41 8.0 41 8.0	Colomb CR / Na C 0.969 0.270 0.060 0.040 Contrib Contrib C	Jian bla tional_E D 31 25 6 0.942 0.221 0.078 0.080 tion tion <1 <1 31.3	ck spide N E 0.981 0.941 0.148 0.080 0.080 <1 <1 <1 <1 25.9	F 0.980 0.963 0.191 0.067 0.080	ey G 0.965 0.969 0.324 0.087 0.080 <1 3.2 <1 3.2 <1 <1 <1	Ateles h SDM SDM Wobservations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015 Biome	Statu A 24 0 0.956 0.209 0.125 0.	B 23 0 0.960 0.268 0.103 0.087 Percent 19.3 <1 1.3 2.3 <1	US** / B CR / Na C 23 0 0.980 0.980 0.049 0.042 Contrib Contrib	srown sp ational_C D 24 0 0.979 0.0420000000000	ider mo R 24 0 0.986 0.986 0.921 0.047 0.042 0.047 0.0420000000000	F 24 0 0.986 0.221 0.047 0.042	G 23 0 0.973 0.152 0.077 0.087 16.1 <1 <1 <1 <1 <1 <1

Ateles hybr	ridus hy	, bridus	/ Varie	gated	spider r	nonkey	,	Cacajao ou	akary /	Golder	1-backe	d Black	Uakary	monkey	,
	Status	: IUCN_	CR / Na	tional_	CR				Statu	us: IUCN	I_ LC / Na	ational_ N	п		
SDM	Α	В	С	D	E	F	G	SDM	Α	В	С	D	E	F	G
# Observations				25	-	-		# Observations				18		•	
Obs_Train				25				Obs_Train				18			
Obs_Test	0	0	0	0	0	0	0	Obs_Test	0	0	0	0	0	0	0
Training AUC	0.928	0.940	0.976	0.972	0.977	0.970	0.970	Training AUC	0.845	0.887	0.948	0.939	0.946	0.938	0.940
Test AUC								Test AUC							
Logis_Tresh	0.253	0.195	0.161	0.270	0.169	0.158	0.270	Logis_Tresh	0.490	0.489	0.558	0.509	0.466	0.413	0.549
Fract_Pred_Area	0.160	0.159	0.108	0.084	0.084	0.091	0.099	Fract_Pred_Area	0.278	0.201	0.111	0.142	0.138	0.156	0.105
Train_Omis_Rate	0.160	0.160	0.000	0.080	0.080	0.080	0.080	Train_Omis_Rate	0.278	0.222	0.111	0.167	0.111	0.167	0.111
	Pe	ercent	Contrib	ution						Percent	Contrib	ution			
PTC		<1					<1	PTC		40.9					20.8
Canp		2.1					<1	Canp		4.6					4.6
BIO4	<1	<1	6.7	5.2	2.8		10.9	BIO4	9.8	12.7	<1	<1	<1		<1
BIO7	<1	<1	<1	<1	<1		<1	BIO7	<1	<1	<1	<1	<1		<1
BIO15	3.7	3.5	<1	<1	<1		<1	BIO15	1.5	4.1	<1	<1	<1		<1
Biome	56.5	53.8		24.8	20.4	19.3		Biome	29.1	18.1		8.4	2.8	3.4	
Elevation	<1		1.9	<1	<1		3.2	Elevation	6.6		3.3	1.8	2.7		2.8
Landcover	39.9	40.5	26.0		22.4	23.5		Landcover	53.1	19.5	19.1		18.8	18.1	
Watershed															
watersneu			65.4	70.0	54.4	57.3	85.9	Watershed			77.6	89.8	45.6	78.5	71.8
Plecturo	cebus ca	queter			-		85.9		toruceb	us ornat	77.6 tus / Or				71.8
				Caquetá	tití mo		85.9					nate tití	monkey		71.8
			sis* / C	Caquetá	tití mo		85.9 G				tus / Or	nate tití	monkey		71.8 G
Plecturo	Statu	s: IUCN	_CR / Na	Caquetá tional_ C	tití mo R	nkey		Pleo	Statu	us: IUCN	tus / Or _ VU / Na	nate tití tional_V	monkey J	/	
Plecturoo	Statu	s: IUCN	_CR / Na	Caquetá tional_C D	tití mo R	nkey		Plea SDM	Statu	us: IUCN	tus / Or _ VU / Na	nate tití tional_V D	monkey J	/	
Plecturo SDM # Observations	Statu	s: IUCN	_CR / Na	Caquetá tional_C D 18	tití mo R	nkey		Plea SDM # Observations	Statu	us: IUCN	tus / Or _ VU / Na	nate tití tional_V D 32	monkey J	/	
Plecturoo SDM # Observations Obs_Train	Statu:	s: IUCN B	cr / Na	Caquetá tional_C D 18 18	E	nkey F	G	SDM # Observations Obs_Train	Statu	us: IUCN	tus / Or _ VU / Na	nate tití tional_V D 32 25	monkey J	/	
Plecturoo SDM # Observations Obs_Train Obs_Test	Statu A 0	s: IUCN B 0	o sis* / C _ CR / Na C	Caquetá tional_C D 18 18 0	tití mo R E	F	G	SDM # Observations Obs_Train Obs_Test	Statu A	B	tus / Orr _VU / Na C	nate tití tional_VI D 32 25 6	monkey J E	F	G
Plecturo SDM # Observations Obs_Train Obs_Test Training AUC	Statu A 0	s: IUCN B 0	o sis* / C _ CR / Na C	Caquetá tional_C D 18 18 0 0.997 0.300	tití mo R E	F	G	SDM # Observations Obs_Train Obs_Test Training AUC	Statu A 0.952	us: IUCN B 0.965	tus / Orr _VU / Na C	D 32 25 6 0.988	monkey J E 0.987	F 0.988	G 0.984
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Statu: A 0 0.997	8: IUCN B 0 0.998	0 0 0 0.998	Caquetá tional_C D 18 18 0 0.997	tití mo R E 0 0.998	F 0 0.998	G 0 0.998	SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Statu A 0.952 0.954	B 0.965 0.938	tus / Orr VU / Na C 0.987 0.980	nate tití tional_V D 32 25 6 0.988 0.989	monkey J E 0.987 0.974	F 0.988 0.972	G 0.984 0.978
Plecturo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu: A 0 0.997 0.503	s: IUCN B 0 0.998 0.443	0 CR / Na C 0 0.998 0.464	Caquetá tional_C D 18 18 0 0.997 0.300	tití mo R E 0 0.998 0.473	F 0 0.998 0.217	G 0.998 0.231	SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 0.952 0.954 0.182	B 0.938 0.171	tus / Orr VU / Na C 0.987 0.980 0.303	nate tití tional_ V D 32 25 6 0.988 0.989 0.281	monkey J E 0.987 0.974 0.325	F 0.988 0.972 0.210	G 0.984 0.978 0.369
Plecturo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.997 0.503 0.005 0.000	s: IUCN B 0 0.998 0.443 0.005 0.000	0 0.998 0.464 0.004	Caquetá tional_C D 18 18 0 0.997 0.300 0.300 0.006 0.000	tití mo R E 0 0.998 0.473 0.004	F 0 0.998 0.217 0.005	G 0.998 0.231 0.008	SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statut A 0.9522 0.1327 0.1200	B B 0.965 0.938 0.170 0.120	tus / Orr VU / Na C 0.987 0.980 0.303 0.037	nate tití tional_VI D 32 25 6 0.988 0.989 0.281 0.040 0.040	monkey J E 0.987 0.974 0.325 0.043	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040
Plecturo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.997 0.503 0.005 0.000	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent 1.4	sis* C _CR / Na C C 0 0.998 0 0.464 0.004 0.000 0	Caquetá tional_C D 18 18 0 0.997 0.300 0.300 0.006 0.000	tití mo R E 0 0.998 0.473 0.004	F 0 0.998 0.217 0.005	G 0.998 0.231 0.008	SDM SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statut A 0.9522 0.1327 0.1200	B 0.965 0.938 0.171 0.120	tus / Orr VU / Na C 0.987 0.980 0.303 0.037 0.040	nate tití tional_VI D 32 25 6 0.988 0.989 0.281 0.040 0.040	monkey J E 0.987 0.974 0.325 0.043	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040
Plecturo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A 0.997 0.503 0.005 0.000	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent	sis* C _CR / Na C C 0 0.998 0 0.464 0.004 0.000 0	Caquetá tional_C D 18 18 0 0.997 0.300 0.300 0.006 0.000	tití mo R E 0 0.998 0.473 0.004	F 0 0.998 0.217 0.005	G 0.998 0.231 0.008 0.000	Please SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statut A 0.9522 0.1327 0.1200	JS: IUCN B 0 0.936 0.171 0.120 0.120	tus / Orr VU / Na C 0.987 0.980 0.303 0.037 0.040	nate tití tional_VI D 32 25 6 0.988 0.989 0.281 0.040 0.040	monkey J E 0.987 0.974 0.325 0.043	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040 0.040
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Statu A 0.997 0.503 0.005 0.000	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent 1.4	sis* C _CR / Na C C 0 0.998 0 0.464 0.004 0.000 0	Caquetá tional_C D 18 18 0 0.997 0.300 0.300 0.006 0.000	tití mo R E 0 0.998 0.473 0.004	F 0 0.998 0.217 0.005	G 0.998 0.231 0.008 0.000 7.8	Please SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Statut A 0.9522 0.1327 0.1200	B B 0.938 0.9384 0.1711 0.1200 0.1280 Percent 18.8	tus / Orr VU / Na C 0.987 0.980 0.303 0.037 0.040	nate tití tional_VI D 32 25 6 0.988 0.989 0.281 0.040 0.040	monkey J E 0.987 0.974 0.325 0.043	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040 0.040 0.040
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu A 0.997 0.503 0.005 0.000	s: IUCN B 0 0.998 0.443 0.005 0.000 vercent 1.4 1.8	0 0.998 0.464 0.000 Contribu	Caquetá tional_C D 18 0 0.997 0.300 0.000 0.000 0.000 ution	0.998 0.473 0.004 0.000	F 0 0.998 0.217 0.005	G 0.998 0.231 0.008 0.000 7.8 <1	Please SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu A 0.952 0.954 0.182 0.137 0.120	B B B 4 0.938 0.938 0.171 0.120 0.120 18.8 5.5 5.5	tus / Orr VU / Na C 0.980 0.303 0.037 0.040 Contrit t	nate tití Lional_VI D 32 25 6 0.988 0.989 0.281 0.040 ution	monkey J E 0.987 0.974 0.325 0.043 0.040	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040 0.040 7.11 2.7
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu 0 0.997 0.503 0.005 0.000 P 7.7 6.9 5.7	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent 1.4 1.8 5.9 8.1 5.0	0 0.998 0.464 0.000 Contribu	Caquetá tional_C D 18 18 0 0.997 0.300 0.0000 0.0000 0.0000 0.000000	tití mo R E 0.998 0.473 0.004 0.000 3.4 <1 1.7	F 0 0.998 0.217 0.005	G 0 0.998 0.231 0.008 0.000 7.8 <1 5.7	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Statu 0.952 0.954 0.182 0.137 0.120 <1 11.7	B 0.965 0.938 0.171 0.120 0.120 8.8 5.5 2.6 <1 5.4	tus / Orr VU / Na C 0.980 0.303 0.037 0.040 Contrit t 1.0	nate tif tional_V D 32 25 6 0.988 0.989 0.281 0.040 0.040 0.040 ation 3.2 3.2 3.2 3.2 3.2 3.2	monkey E 0.987 0.974 0.325 0.043 0.040 <1 <1 <1 <1	F 0.988 0.972 0.210 0.041 0.040	G 0.984 0.978 0.369 0.040 0.040 0.040 7.1 2.7 2.7
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu 0 0.997 0.503 0.005 0.000 P 7.7 6.9	s: IUCN B 0 0.998 0.443 0.005 0.000 vercent 1.4 1.8 5.9 8.1	0 0.998 0.464 0.004 0.000 Contribution 6.2 <1	Caquetá tional_C D 18 18 0 0.997 0.0000 0.0000 0.0000 0.000000	tití mo R 0 0.998 0.473 0.004 0.000 0.000 3.4 <1	F 0 0.998 0.217 0.005	G 0 0.998 0.231 0.008 0.000 7.8 <1 5.7 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu A 0.952 0.954 0.182 0.137 0.120 	B B 0.938 0.938 0.171 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120	tus / Orr VU / Na C 0.980 0.303 0.037 0.040 Contrit d 1.0 <1	nate tiff itional_V D 32 25 6 0.988 0.989 0.281 0.040 ution	monkey E 0.987 0.974 0.325 0.043 0.040	F 0.988 0.972 0.210 0.041	G 0.984 0.978 0.369 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.041 0.041 0.041 0.041 0.041 0.041 0.051 0.055 0.0
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu 0 0.997 0.503 0.005 0.000 P 7.7 6.9 5.7	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent 1.4 1.8 5.9 8.1 5.0	0 0.998 0.464 0.004 0.000 Contribution 6.2 <1	Caquetá tional_C D 18 18 0 0.997 0.300 0.0000 0.0000 0.0000 0.000000	tití mo R E 0.998 0.473 0.004 0.000 3.4 <1 1.7	F 0 0.998 0.217 0.005 0.000	G 0 0.998 0.231 0.008 0.000 7.8 <1 5.7 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015	Statu 0.952 0.954 0.182 0.137 0.120 <1 11.7	B 0.965 0.938 0.171 0.120 0.120 8.8 5.5 2.6 <1 5.4	tus / Orr _VU / Na C C 0.980 0.303 0.037 0.040 Contrit Contrit C 1.0 C 1.0 C	nate tif tional_V D 32 25 6 0.988 0.989 0.281 0.040 0.040 0.040 ation 3.2 3.2 3.2 3.2 3.2 3.2	monkey E 0.987 0.974 0.325 0.043 0.040 <1 <1 <1 <1	F 0.988 0.972 0.210 0.041 0.040	G 0.984 0.978 0.369 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.0500 0.0500 0.0500 0.0500000000
Plecturoo SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu 0 0.997 0.503 0.005 0.000 P 7.7 6.9 5.7 32.6	s: IUCN B 0 0.998 0.443 0.005 0.000 ercent 1.4 1.8 5.9 8.1 5.0	0 0.998 0.464 0.004 0.000 Contribu 6.2 <1 4.0	Caquetá tional_C D 18 18 0 0.997 0.300 0.0000 0.0000 0.0000 0.000000	tití mo R 0 0.998 0.473 0.004 0.000 3.4 <1 1.7 17.5	F 0 0.998 0.217 0.005 0.000	G 0 0.998 0.231 0.008 0.000 7.8 <1 5.7 <1 4.6	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BI04 BI07 BI015 Biome	Statu 0.952 0.954 0.182 0.137 0.120 11.7 48.2	B B 0.965 0.938 0.171 0.120 0.122 8.8 5.5 2.6 <1 5.4	tus / Orr _VU / Na C 0.980 0.303 0.037 0.040 0.037 0.040 Contrit 0 1.0 <1	nate tif tional_V D 32 255 6 0.988 0.989 0.281 0.040 0.040 ation 3.2 41 6.7	monkey J E 0.987 0.974 0.325 0.043 0.040 0.040 	F 0.988 0.972 0.210 0.041 0.040	G 0.984 0.978 0.369 0.040 0.040 0.040 0.040 7.1 2.7 <1 2.7 <1 2.7

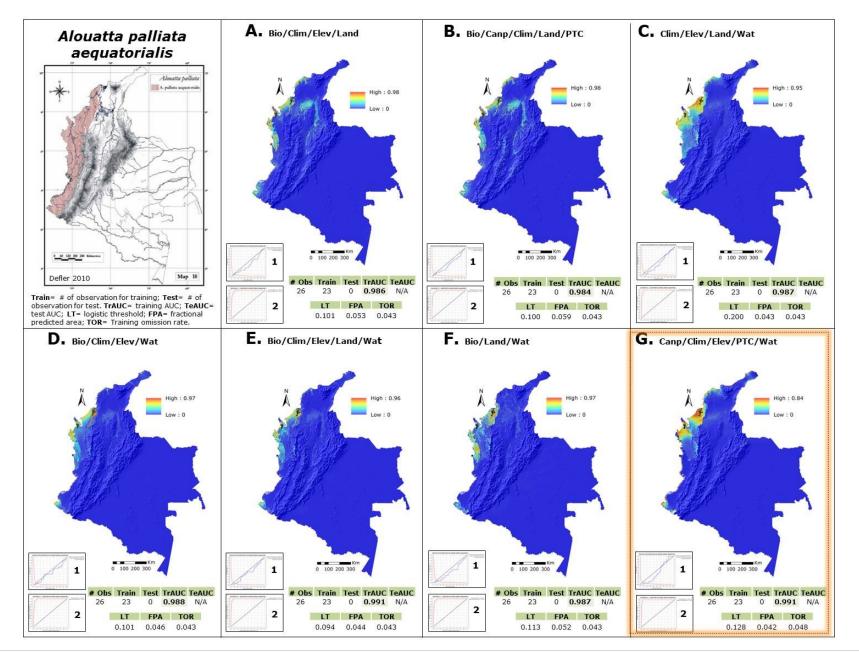
Cherace	ebus luc	; ifer / Y	ellow-l	nanded	Titi Mo	nkey	•	Che	eracebu	s lugens	s / Colla	ared titi	monkey	,	
	Statu	s: IUCN_	_ LC / Na	ational_I	LC				Statu	us: IUCN	_ LC / N	ational_ L	.C		
SDM	Α	В	С	D	E	F	G	SDM	Α	В	С	D	Е	F	G
# Observations				10				# Observations				23			
Obs_Train				10				Obs_Train				23			
Obs_Test	0	0	0	0	0	0	0	Obs_Test	0	0	0	0	0	0	0
Training AUC	0.973	0.932	0.986	0.989	0.990	0.973	0.986	Training AUC	0.876	0.871	0.908	0.915	0.917	0.886	0.912
Test AUC								Test AUC							
Logis_Tresh	0.257	0.297	0.289	0.195	0.219	0.191	0.289	Logis_Tresh	0.330	0.297	0.358	0.384	0.357	0.388	0.353
Fract_Pred_Area	0.078	0.158	0.040	0.046	0.042	0.077	0.040	Fract_Pred_Area	0.217	0.255	0.193	0.180	0.188	0.224	0.211
Train_Omis_Rate	0.100	0.200	0.000	0.000	0.000	0.100	0.000	Train_Omis_Rate	0.217	0.261	0.174	0.174	0.174	0.174	0.217
	P	ercent	Contrib	ution						Percent	Contrib	ution			
РТС		2.8					<1	PTC		<1					<1
Canp		<1					<1	Canp		1.6					4.4
BIO4	2.5	<1	5.2	6.8	6.6		5.2	BIO4	18.7	17.1	25.8	16.0	15.3		26.1
BIO7	<1	<1	<1	<1	<1		<1	BIO7	<1	<1	<1	<1	<1		<1
BIO15	53.5	71.4	4.8	2.8	2.6		4.8	BIO15	11.4	12.3	1.4	1.4	<1		7.0
Biome	17.6	25.8		10.1	10.3	12.6		Biome	38.4	46.3		30.7	24.8	37.3	
Elevation	26.3		21.8	19.8	19.5		21.8	Elevation	9.8		11.6	8.5	6.3		14.0
Landcover	<1	<1	<1		<1	1.5		Landcover	21.6	22.7	23.1		15.7	14.3	
Watershed			68.1	60.2	61.0	85.8	68.1	Watershed			38.2	43.4	37.9	48.5	48.4
Cebuella py	imaea i	vamae	a / Wee	stern ny	amy m	armose	t	Cebus	alhifrons	albifrou	ns / Wh	ite-front	ed canu	chin	
cebuena py		s: IUCN				annose		CCDUS C				ational L			
SDM	Α	в	C	D	E	F	G	SDM	Α	В	C	D	E	F	G
# Observations		_		12				# Observations		-	-	37			
Obs_Train				11				Obs_Train				29			
Obs_Test	0	0	0	0	0	0	0	Obs_Test				7			
Training AUC	0.958	0.954	0.963	0.959	0.976	0.968	0.962	Training AUC	0.910	0.877	0.910	0.921	0.930	0.912	0.890
Test AUC								Test AUC	0.798	0.724	0.943	0.868	0.857	0.752	0.910
Logis_Tresh	0.114	0.117	0.173	0.109	0.104	0.136	0.288	Logis_Tresh	0.330	0.280	0.382	0.304	0.271	0.227	0.471
Fract_Pred_Area	0.091	0.092	0.126	0.117	0.091	0.090	0.099	Fract_Pred_Area	0.158	0.426	0.172	0.158	0.135	0.169	0.207
Train_Omis_Rate	0.091	0.091	0.091	0.091	0.091	0.091	0.091	Train_Omis_Rate	0.172	0.310	0.172	0.172	0.138	0.172	0.207
	P	ercent	Contribu	ution						Percent	Contrib	ution			
РТС		<1					<1	РТС		<1					<1
Canp		<1					6.2	Canp		<1					<1
BIO4	<1	<1	<1	<1	<1		<1	BIO4	<1	<1	<1	1.4	<1		<1
BIO7	<1	<1	<1 6.3	<1 5.0	<1 4.3		<1 10.8	BIO7	<1	<1	<1	<1	<1		<1
BIO15 Biome	34.6 45.4	35.8 45.8	0.3	5.0 41.9	4.3	34.7	10.8	BIO15 Biome	<1 66.1	<1 77.3	<1	<1 69.9	<1 51.2	57.2	<1
Elevation	45.4 3.0	43.0	4.5	41.9 <1	1.3	54.7	6.4	Elevation	11.8	11.5	20.1	4.9	7.6	51.2	38.6
		10.1		< <u>1</u>			0.4	Lievation				4.9			30.0
Landcover	17.0	18.4	28.6		14.5	15.9		Landcover	21.6	22.7	39.8		20.5	9.7	

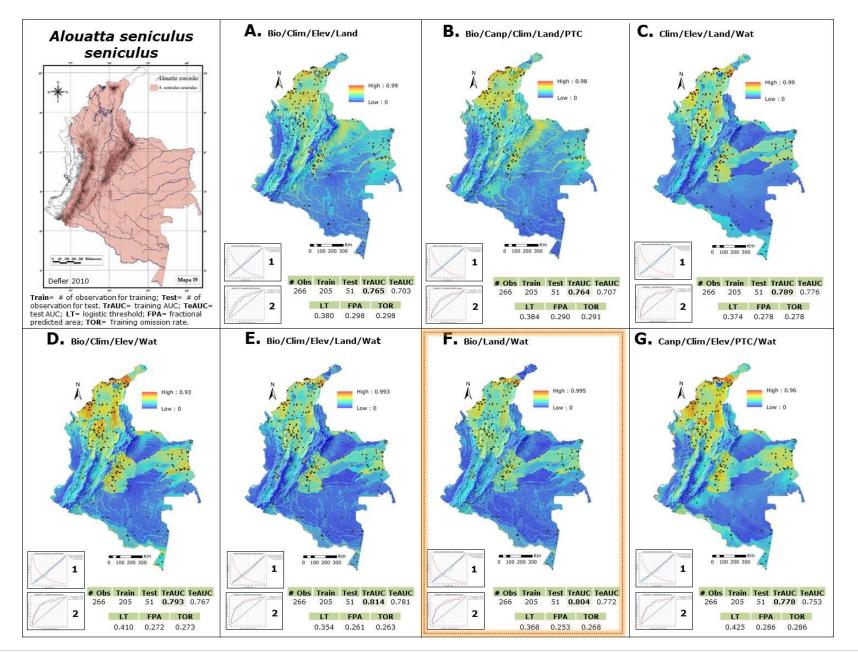
Cebus albifrons	cesara	e** /	Río Cesa	ar white	e-fronte	ed capu	uchin	Cebus albifro	ns vers	icolor**	/ Varie	d white	-fronted	l capucl	hin
	Status	: IUCN_	DD / Na	tional_ I	NT				Statu	s: IUCN	_ EN / Na	ational_ N	T		
SDM	Α	В	С	D	Е	F	G	SDM	Α	В	С	D	E	F	G
# Observations				13	-			# Observations				59			
Obs_Train				13				Obs_Train				47			
Obs_Test	0	0	0	0	0	0	0	Obs_Test				11			
Training AUC	0.988	0.988	0.995	0.988	0.995	0.995	0.986	Training AUC	0.952	0.946	0.965	0.959	0.969	0.973	0.956
Test AUC								Test AUC	0.908	0.921	0.952	0.954	0.961	0.941	0.963
Logis_Tresh	0.226	0.226	0.173	0.098	0.208	0.208	0.096	Logis_Tresh	0.309	0.349	0.219	0.465	0.202	0.177	0.312
Fract_Pred_Area	0.049	0.049	0.015	0.052	0.022	0.022	0.054	Fract_Pred_Area	0.108	0.118	0.100	0.087	0.083	0.088	0.113
Train_Omis_Rate	0.077	0.077	0.000	0.077	0.000	0.000	0.077	Train_Omis_Rate	0.106	0.128	0.106	0.064	0.085	0.106	0.106
	Pe	ercent	Contrib	tion					I	Percent	Contrib	ution			
PTC		<1					<1	PTC		<1					10.7
Canp		<1					<1	Canp		<1					2.1
BIO4	<1	<1	<1	<1	<1		<1	BIO4	1.7	1.2	<1	<1	<1		8.8
BIO7	7.4	7.4	<1	<1	<1		<1	BIO7	<1	<1	<1	<1	<1		<1
BIO15	11.9	11.9	<1	<1	<1		<1	BIO15	<1	<1	5.4	<1	<1		<1
Biome	40.0	40.0		11.9	6.6	6.6		Biome	53.6	54.9		54.2	38.1	39.2	
Elevation	<1		<1	<1	<1		1.1	Elevation	1.4		4.9	<1			6.5
Landcover	40.7	40.7	29.9		26.8	26.8		Landcover	43.1	43.9	42.1		36.7	33.1	
Watershed			70.1	88.1	66.6	66.6	98.9	Watershed			47.6	45.8	25.3	27.7	71.9
			70.1	00.1	00.0	00.0	90.9	watersneu			47.0	45.0	25.5	27.7	71.5
Ceb	us apel	la fatue	llus / Ti			00.0	90.9	Cebus capucin	us capue	cinus /C					
Ceb				ufted ca	puchin	00.0	98.9		<u> </u>			n white	-throate		
Ceb SDM			<i>llus /</i> Ti	ufted ca	puchin	F	98.9 G		<u> </u>		olombia	n white	-throate		
	Statu	s: IUCN_	Ilus / T u _ LC / Na ⁻	ufted ca tional_L	puchin C			Cebus capucin	Stat	us: IUCN	olombia _ LC / Na	n white	-throate C	d capuc	hin
SDM # Observations Obs_Train	Statu	s: IUCN_	Ilus / T u _ LC / Na ⁻	tional_L 102 81	puchin C			Cebus capucin SDM	Stat	us: IUCN	Colombia LLC / Na C	an white ational_L D 53	-throate C	d capuc	hin
SDM # Observations	Statu	s: IUCN_	Ilus / T u _ LC / Na ⁻	tional_L D 102 81 20	puchin C			Cebus capucin SDM # Observations	Stat A	us: IUCN B 4	Colombia LLC / Na C	n white ational_L D	-throate C E	d capuc	chin G 41
SDM # Observations Obs_Train	Statu	s: IUCN_	Ilus / T u _ LC / Na ⁻	tional_L 102 81	puchin C			Cebus capucin SDM # Observations Obs_Train	Stat A 42 0.924	us: IUCN B	Colombia LLC / Na C	an white ational_L D 53	-throate C E 42 0.969	F 0.970	chin G
SDM # Observations Obs_Train Obs_Test	Statu: A 0.799 0.811	 B 0.804 0.826 	Ilus / To LC / Na C 0.850 0.845	ufted ca tional_L D 102 81 20 0.876 0.902	E 0.882 0.905	F 0.884 0.763	G 0.856 0.850	Cebus capucin SDM # Observations Obs_Train Obs_Test	Stat A 42 0.924 0.845	B 4 0.924 0.845	Colombia LC / Na C 1 0.967 0.918	n white ational_LL D 53 10 0.962 0.837	-throate C E 42 0.969 0.834	F 0.970 0.935	G 41 0.954 0.872
SDM # Observations Obs_Train Obs_Test Training AUC	Statu: A 0.799 0.811 0.335	s: IUCN_ B 0.804 0.826 0.326	Ilus / T LC / Na C 0.850 0.845 0.359	ufted ca tional_LU D 102 81 20 0.876 0.902 0.339	E E 0.882 0.905 0.335	F 0.884 0.763 0.311	G 0.856 0.850 0.348	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC	Stat A 42 0.924 0.845 0.258	us: IUCN B 4 0.924 0.845 0.258	Colombia LC / Na C 1 0.967 0.918 0.327	n white ational_LL D 53 10 0.962 0.837 0.308	-throate C 42 0.969 0.834 0.256	F 0.970 0.935 0.200	G 41 0.954 0.872 0.457
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.799 0.811 0.335 0.285	s: IUCN B 0.804 0.826 0.326 0.284	Ilus / T LC / Na C 0.850 0.845 0.359 0.234	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185	Puchin C E 0.882 0.905 0.335 0.189	F 0.884 0.763 0.311 0.184	G 0.856 0.348 0.247	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat A 42 0.924 0.845 0.258 0.165	us: IUCN B 4 0.924 0.845 0.258 0.165	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085	10 0.837 0.308 0.0962	-throate C 42 0.969 0.834 0.256 0.077	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu: A 0.799 0.811 0.335	s: IUCN_ B 0.804 0.826 0.326	Ilus / T LC / Na C 0.850 0.845 0.359	ufted ca tional_LU D 102 81 20 0.876 0.902 0.339	E E 0.882 0.905 0.335	F 0.884 0.763 0.311	G 0.856 0.850 0.348	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Stat A 42 0.924 0.845 0.258 0.165 0.167	us: IUCN B 4 0.924 0.845 0.258 0.165 0.167	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085 0.098	n white tional_L D 53 10 0.962 0.837 0.308 0.096 0.095	-throate C 42 0.969 0.834 0.256	F 0.970 0.935 0.200	G 41 0.954 0.872 0.457
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.799 0.811 0.335 0.285 0.284	 IUCN B 0.804 0.826 0.326 0.284 0.284 	Ilus / T LC / Na C 0.850 0.845 0.359 0.234	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185	Puchin C E 0.882 0.905 0.335 0.189	F 0.884 0.763 0.311 0.184	G 0.856 0.348 0.247	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat A 42 0.924 0.845 0.258 0.165 0.167	us: IUCN B 4 0.924 0.845 0.258 0.165 0.167	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085	n white tional_L D 53 10 0.962 0.837 0.308 0.096 0.095	-throate C 42 0.969 0.834 0.256 0.077	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.799 0.811 0.335 0.285 0.284	 IUCN B 0.804 0.826 0.326 0.284 0.284 	Ilus / LC / C I 0.845 I 0.359 I 0.234 I	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185	Puchin C E 0.882 0.905 0.335 0.189	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247 1.8	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat A 42 0.924 0.845 0.258 0.165 0.167	us: IUCN B 4 0.924 0.845 0.258 0.165 0.167	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085 0.098	n white tional_L D 53 10 0.962 0.837 0.308 0.096 0.095	-throate C 42 0.969 0.834 0.256 0.077	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A 0.799 0.811 0.335 0.285 0.284	s: IUCN B 0.804 0.826 0.326 0.284 0.284 ercent	Ilus / LC / C I 0.845 I 0.359 I 0.234 I	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185	Puchin C E 0.882 0.905 0.335 0.189	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Stat A 42 0.924 0.845 0.258 0.165 0.167	US: IUCN B 0.924 0.845 0.258 0.165 0.167 Percent	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085 0.098	n white tional_L D 53 10 0.962 0.837 0.308 0.096 0.095	-throate C 42 0.969 0.834 0.256 0.077	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103 0.098
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Statu A 0.799 0.811 0.335 0.285 0.284	s: IUCN B 0.804 0.826 0.326 0.284 0.284 ercent <1	Ilus / LC / C I 0.845 I 0.359 I 0.234 I	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185	Puchin C E 0.882 0.905 0.335 0.189	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247 1.8	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC	Stat A 42 0.924 0.845 0.258 0.165 0.167	US: IUCN B 4 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia _LC / Na C 1 0.967 0.918 0.327 0.085 0.098	n white tional_L D 53 10 0.962 0.837 0.308 0.096 0.095	-throate C 42 0.969 0.834 0.256 0.077	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103 0.098 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu: A 0.799 0.811 0.335 0.285 0.284 P 	S: IUCN_ B 0.804 0.826 0.326 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.285 0.	Ilus / T LC / Na C 0.845 0.845 0.359 0.234 0.235 Contrib Contrib <1 <1	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185 0.185 .185 .185 .185 .185 .185	D .882 0.905 0.335 0.189 0.185	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247 0.247 1.8 4.5 1.9 1.9 4.5	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Stat A 42 0.924 0.845 0.258 0.165 0.167 11.0 <1	B B 4. 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia LC / Na C 1 0.967 0.918 0.327 0.085 0.098 Contrib 1.1 1.1 <1	n white titional_L 53 10 0.962 0.837 0.308 0.096 0.095 ution	-throate C 42 0.969 0.834 0.256 0.077 0.071	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103 0.098 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu: A 0.799 0.811 0.335 0.285 0.284 P	s: IUCN B 0.804 0.826 0.326 0.3284 ercent <1 5.6 <1	Ilus / To LC / Na C C 0.845 0.359 0.234 0.235 Contrib Contrib C	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185 ution	Puchin C E 0.882 0.905 0.335 0.189 0.185	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247 1.8 4.5 1.9	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Stat A 42 0.924 0.845 0.258 0.165 0.167 11.0	B B 4. 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia LC / Na C 1 0.967 0.918 0.327 0.085 0.098 Contrib 1.1	n white titional_L D 53 10 0.962 0.837 0.308 0.096 0.095 ution	-throate C - - - - - - - - - - - - -	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103 0.098 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu: A 0.799 0.811 0.335 0.285 0.284 P 	S: IUCN_ B 0.804 0.826 0.326 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.285 0.	Ilus / T LC / Na C 0.845 0.845 0.359 0.234 0.235 Contrib Contrib <1 <1	ufted ca tional_L D 102 81 20 0.876 0.902 0.339 0.185 0.185 0.185 .185 .185 .185 .185 .185	Puchin C E 0.882 0.905 0.335 0.189 0.185 0.185 0.185	F 0.884 0.763 0.311 0.184	G 0.856 0.850 0.348 0.247 0.247 0.247 1.8 4.5 1.9 1.9 4.5	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Stat A 42 0.924 0.845 0.258 0.165 0.167 11.0 <1	B B 4. 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia LC / Na C 1 0.967 0.918 0.327 0.085 0.098 Contrib 1.1 1.1 <1	n white titional_L D 53 10 0.962 0.837 0.308 0.096 0.095 ution <1 <1 <1	-throate C 42 0.969 0.834 0.256 0.077 0.071 0.071	6 capuc F 0.970 0.935 0.200 0.092	G 41 0.954 0.872 0.457 0.103 0.098 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu: A 0.799 0.811 0.335 0.285 0.284 P	B B 0.804 0.826 0.326 0.284 0.284 0.284 0.284 0.284 0.284 1 5.6 <1 5.6 <1 6.7	Ilus / T LC / Na C 0.845 0.845 0.359 0.234 0.235 Contrib Contrib <1 <1	ufted ca tional_L 102 81 20 0.876 0.902 0.339 0.185 0.185 0.185 101	Puchin C E 0.882 0.905 0.335 0.189 0.185 0.185 0.185 0.185	F 0.884 0.763 0.311 0.184 0.185	G 0.856 0.850 0.348 0.247 0.247 0.247 1.8 4.5 1.9 1.9 4.5	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Stat A 42 0.924 0.845 0.258 0.165 0.167 11.0 <1 <1 <1	B B 4. 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia LC / Na C 1 0.967 0.918 0.327 0.085 0.098 Contrib 1.1 1.1 <1	n white titional_L D 53 10 0.962 0.837 0.308 0.096 0.095 ution <1 <1 <1 <1 <1	-throate C 42 0.969 0.834 0.256 0.077 0.071 0.071 0.071 0.071 0.071 0.071	6 0.970 0.935 0.200 0.092 0.095	G 41 0.954 0.872 0.457 0.103 0.098 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu: A 0.799 0.811 0.335 0.285 0.284 P <	B B 0.804 0.826 0.326 0.284 0.284 0.284 0.284 0.284 0.284 1 5.6 <1 5.6 <1 6.7	Ilus I LC / LC / LC / C I 0.845 I 0.359 I 0.234 I 0.235 I Contrib I <1 I 8.1 I	ufted ca tional_L 102 81 20 0.876 0.902 0.339 0.185 0.185 0.185 101 21 21 21 21 23 48.1	Puchin C E 0.882 0.905 0.335 0.189 0.185 0.185 0.185 0.185 0.185 0.185	F 0.884 0.763 0.311 0.184 0.185	G 0.856 0.850 0.348 0.247 0.247 0.247 1.8 4.5 1.9 <1 6.8	Cebus capucin SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Stat A 42 0.845 0.258 0.165 0.165 0.167 11.0 <1 11.0 <1 51.8	B B 4. 0.924 0.845 0.258 0.165 0.167 Percent <1	Colombia LC / Na C 0.918 0.918 0.327 0.085 0.098 Contrib 1.1 <1 <1	white b b 53 10 0.962 0.837 0.308 0.0961 0.095 ution <1 <1 <1 <1 27.7	-throate C 42 0.969 0.834 0.256 0.077 0.0710000000000	6 0.970 0.935 0.200 0.092 0.095	G 41 0.954 0.872 0.457 0.103 0.098 <1 <1 <1 <1 <1

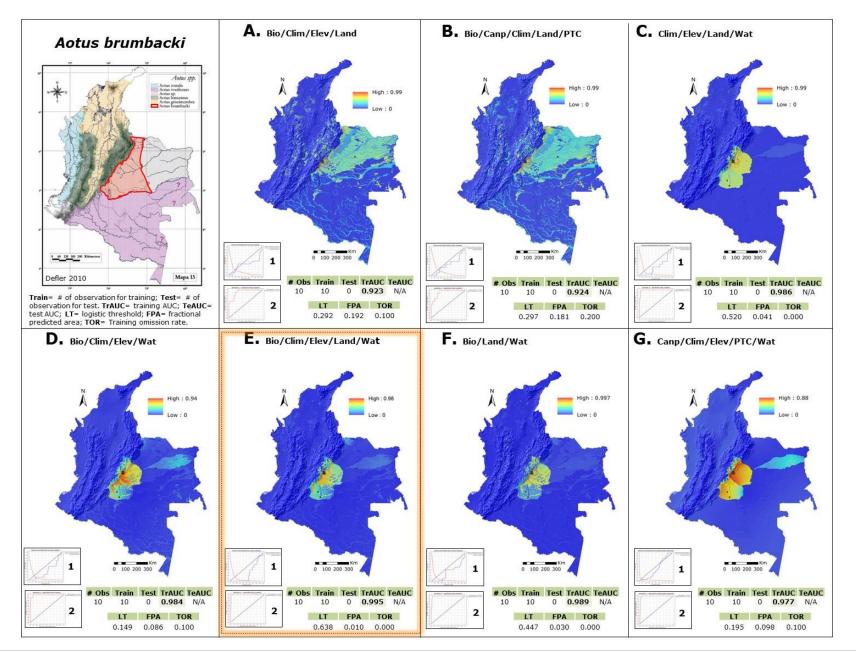
Lagothrix lago	tricha l	agotric	ha / Hu	mboldt	's woo	lly mon	key	Lagothrix la	gotricha	lugens	s** / Co	lombiar	woolly	monke	y
	Status	S: IUCN	_ VU / Na	ational_ I	Т	-					_CR / Na				-
SDM	Α	В	С	D	E	F	G	SDM	Α	В	С	D	Е	F	G
# Observations				64				# Observations				56			
Obs_Train				51				Obs_Train				45			
Obs_Test				12				Obs_Test				11			
Training AUC	0.893	0.893	0.881	0.910	0.910	0.888	0.896	Training AUC	0.841	0.844	0.921	0.931	0.936	0.940	0.909
Test AUC	0.913	0.880	0.795	0.851	0.846	0.893	0.847	Test AUC	0.787	0.806	0.953	0.936	0.936	0.862	0.959
Logis_Tresh	0.374	0.336	0.438	0.327	0.316	0.341	0.410	Logis_Tresh	0.337	0.354	0.259	0.258	0.224	0.293	0.279
Fract_Pred_Area	0.182	0.196	0.197	0.171	0.176	0.196	0.196	Fract_Pred_Area	0.243	0.244	0.178	0.156	0.156	0.136	0.193
Train_Omis_Rate	0.176	0.196	0.196	0.176	0.176	0.196	0.196	Train_Omis_Rate	0.244	0.244	0.178	0.156	0.156	0.133	0.200
	P	ercent	Contrib	ution						Percent	Contrib	ution			
PTC		7.7					18.2	PTC		7.9					6.3
Canp		<1					4.0	Canp		<1					<1
BIO4	4.7	1.6	2.5	1.0	1.0		2.3	BIO4	2.4	2.6	4.5	5.0	1.9		10.6
BIO7	2.5	2.1	<1	<1	<1		<1	BIO7	<1	<1	<1	<1	<1		<1
BIO15	12.9	10.2	5.6	11.6	3.6		10.2	BIO15	1.8	4.8	3.5	3.7	3.6		<1
Biome	51.8	57.8		49.6	46.2	52.3		Biome	62.1	60.9		24.8	22.8	20.3	
Elevation	4.8		20.5	6.2	5.0		18.9	Elevation	3.4		4.9	3.8	2.6		7.3
Landcover	23.3	20.6	34.3		21.0	23.7		Landcover	30.3	23.7	14.9		13.6	18.0	
Watershed			37.1	31.5	23.2	24.1	46.4	Watershed			72.2	62.7	55.5	61.6	75.8
								Waterblied			,	02.17			
	Pithe	cia hirs		airy sak	i			Hutterbilled	Pith	ecia mill	eri / Mil				
Si			uta / H									ler's sak	ci		
Si SDM			uta / H	airy sak / Nationa D		F	G	SDM			<i>eri /</i> Mil	ler's sak itional_V D	ci	F	G
	atus: Il	JCN_ No t	<i>uta /</i> H Listed	airy sak / Nationa D 12	al_ LC	F			Statu	us: IUCN	e <i>ri /</i> Mil _DD / Na	ler's sak itional_V D 21	ci U	F	
SDM	atus: IU A	JCN_Not B	uta / H Listed C	airy sak / Nationa D 12 12 12	al_LC E	F	G	SDM	Statu A	us: IUCN B	le <i>ri /</i> Mil _DD / Na C	ler's sal tional_V D 21 18	ci U E		G
SDM # Observations	A A 0	JCN_Not B	cuta / H Listed C	airy sak / Nationa 12 12 0	el_LC E 0	0	G	SDM # Observations Obs_Train Obs_Test	Statu A 0	B 0	leri / Mil _DD / Na C	ler's sak itional_V 21 18 0	ti U E O	0	G 0
SDM # Observations Obs_Train Obs_Test Training AUC	atus: IU A	JCN_Not B	uta / H Listed C	airy sak / Nationa 12 12 0	al_LC E	-	G	SDM # Observations Obs_Train Obs_Test Training AUC	Statu A	us: IUCN B	le <i>ri /</i> Mil _DD / Na C	ler's sal tional_V D 21 18	ci U E		G
SDM # Observations Obs_Train Obs_Test	atus: IU A 0 0.960	0 0 0 0.946	Uta / H	airy sak / Nation 12 12 12 0 0.980	el_LC E 0 0.980	0 0.956	G 0 0.982	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Statu A 0 0.953	B 0 0.953	eri / Mil _DD / Na C 0 0.966	ler's sak ational_V 21 18 0 0.956	ci U E 0 0.971	0 0.971	G 0 0.962
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	0 0.960 0.272	0 0.946	Uta / H Listed C 0 0.976 0.432	airy sak / Nationa 12 12 0 0.980 0.316	ed_LC E 0 0.980 0.316	0 0.956 0.425	G 0 0.982	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 0 0.953 0.198	0 0.198	eri / Mil _DD / Na C 0 0.966	ler's sak ational_V 21 18 0 0.956 0.178	ci U E 0 0.971 0.131	0 0.971 0.131	G 0 0.962 0.212
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	atus: IU A 0.960 0.272 0.106	0 0.946 0.313 0.110	uta / H Listed C 0 0.976 0.432 0.061	airy sak Nation 12 12 0 0.980 0.316 0.065	ed_LC E 0 0.980 0.316 0.065	0 0.956 0.425 0.083	G 0.982 0.353 0.070	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0 0.953 0.198 0.126	0 0.198 0.126	eri / Mil _DD / Na C 0 0.966 0.144 0.135	ler's sak tional_V D 21 18 0 0.956 0.178 0.178	di U E 0.971 0.131 0.104	0 0.971 0.131 0.104	G 0.962 0.212 0.111
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	A 0 0.960 0.272 0.106 0.083	0 0.946 0.313 0.110 0.083	uta / H Listed C 0 0.976 0.432 0.061 0.083	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083	ed_LC E 0 0.980 0.316	0 0.956 0.425	G 0 0.982	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A I 0 0 0.953 I 0.198 I 0.126 I	0 0.198 0.111	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111	ler's sak tional_V D 21 18 0 0.956 0.178 0.178 0.100 0.056	ci U E 0 0.971 0.131	0 0.971 0.131	G 0 0.962 0.212
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	A 0 0.960 0.272 0.106 0.083	0 0.946 0.313 0.110 0.083 ercent	uta / H Listed C 0 0.976 0.432 0.061	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083	ed_LC E 0 0.980 0.316 0.065	0 0.956 0.425 0.083	G 0 0.982 0.353 0.070 0.083	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A I 0 0 0.953 I 0.198 I 0.126 I	Js: IUCN B 0 0.953 0.126 0.111 Percent	eri / Mil _DD / Na C 0 0.966 0.144 0.135	ler's sak tional_V D 21 18 0 0.956 0.178 0.178 0.100 0.056	di U E 0.971 0.131 0.104	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	A 0 0.960 0.272 0.106 0.083	0 0 0.946 0.313 0.110 0.083 ercent 32.8	uta / H Listed C 0 0.976 0.432 0.061 0.083	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083	ed_LC E 0 0.980 0.316 0.065	0 0.956 0.425 0.083	G 0 0.982 0.353 0.070 0.083 26.8	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A I 0 0 0.953 I 0.198 I 0.126 I	B 0 0.953 0.198 0.126 0.111 Percent <1	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111	ler's sak tional_V D 21 18 0 0.956 0.178 0.178 0.100 0.056	di U E 0.971 0.131 0.104	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	A 0 0.960 0.272 0.106 0.083	0 0.946 0.313 0.110 0.083 ercent	uta / H Listed C 0 0.976 0.432 0.061 0.083	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083	ed_LC E 0 0.980 0.316 0.065	0 0.956 0.425 0.083	G 0 0.982 0.353 0.070 0.083	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu 0 0.953 0.198 0.126 0.111	B 0 0.953 0.198 0.126 0.111 Percent <1 <1	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib	ler's sak tional_V D 21 18 0 0.956 0.178 0.178 0.100 0.056	di U E 0.971 0.131 0.104	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111 <1 2.4
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	0 0.960 0.272 0.106 0.083	UCN_Not B 0.946 0.313 0.110 0.083 Percent 32.8 1.6 <1	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib	Airy sak Nation 12 0 0.980 0.316 0.065 0.083 ution	al_LC E 0 0.980 0.316 0.065 0.083	0 0.956 0.425 0.083	G 0 0.9822 0.353 0.070 0.083 26.8 2.7 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu 0 0.953 0.198 0.126 0.111 2.4	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 <1 2.4	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib	ler's sal tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 ution	ii E 0 0.971 0.131 0.104 0.111	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111 <1 2.4 5.3
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	0 0.960 0.272 0.106 0.083 P	0 0.946 0.313 0.110 0.083 ercent 32.8 1.6 <1	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib Contrib C	airy sak Nation 12 0 0.980 0.316 0.065 0.083 ution <1 <1	0 0.980 0.316 0.065 0.083	0 0.956 0.425 0.083	G 0 0.9822 0.353 0.070 0.083 26.8 2.7 <1 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu 0 0.953 0.198 0.126 0.111 2.4 <1	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 2.4 <1	eri / Mill _DD / Na C 0 0.9666 0.144 0.135 0.111 Contrib 3.9 <1	ler's sak tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 ution 0.056 ution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ai U E 0 0.971 0.131 0.104 0.111 0.111	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111 <1 2.4 5.3 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	0 0.960 0.272 0.106 0.083 P <1 <1 <1	0 0.946 0.313 0.110 0.083 ercent 32.8 1.6 <1 <1 40.4	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083 ution <1 <1 <1 28.1	a LC E 0 0.980 0.316 0.065 0.083	0 0.956 0.425 0.083 0.250	G 0 0.9822 0.353 0.070 0.083 26.8 2.7 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu 0 0.953 0.198 0.126 0.111 2.4 <1 34.0	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 2.4 <1 34.0	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib	ler's sak tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 ution 0.056 ution 0.178 0.100 0.056 ution 0.1788 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.10	ii E 0 0.971 0.131 0.104 0.111 0.111 0.111	0 0.971 0.131 0.104 0.111	G 0.962 0.212 0.111 0.111 <1 2.4 5.3
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	0 0.960 0.272 0.106 0.083 P <1 <1 56.3 22.9	0 0.946 0.313 0.110 0.083 ercent 32.8 1.6 <1	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib Contrib C 1 29.4	airy sak / Nation 12 0 0.980 0.316 0.065 0.083 ution <1 <1 <1 28.1 16.6	0 0.980 0.316 0.065 0.083 <1<1<1<128.116.6	0 0.956 0.425 0.083	G 0.9822 0.353 0.070 0.083 26.8 2.7 <1 <1 18.1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu 0 0.953 0.198 0.126 0.111 2.4 <1 34.0 40.6	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 2.4 <1	eri / Mill _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib 3.9 <1 4.3	ler's sak tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 0.100 0.056 0.100 0.056 0.100 0.178 0.100 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100000000	ai U E 0 0.971 0.131 0.104 0.111	0 0.971 0.131 0.104	G 0.962 0.212 0.111 0.111 <1 2.4 5.3 <1 4.6
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome Elevation	0 0.960 0.272 0.106 0.083 P <1 <1 56.3 22.9 19.7	0.313 0.313 0.110 0.083 ercent 32.8 1.6 <1 <1 40.4 25.2	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib <1 29.4 24.9	airy sak / Nation 12 12 0 0.980 0.316 0.065 0.083 ution <1 <1 <1 28.1	0 0.980 0.316 0.065 0.083 <1<1<1<128.116.619.1	0 0.956 0.425 0.083 0.250 23.8	G 0 0.9822 0.353 0.070 0.083 26.8 2.7 <1 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome Elevation	Statu 0 0.953 0.198 0.126 0.111 2.4 <1 34.0 40.6 <1	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 <1 34.0 40.6	eri / Mil _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib 3.9 <1 4.3 3.4	ler's sak tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 ution 0.056 ution 0.178 0.100 0.056 ution 0.1788 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.1780 0.10	ai U E 0 0.971 0.131 0.104 0.111	0 0.971 0.131 0.104 0.111 23.5	G 0.962 0.212 0.111 0.111 <1 2.4 5.3 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	0 0.960 0.272 0.106 0.083 P <1 <1 56.3 22.9	0 0.946 0.313 0.110 0.083 ercent 32.8 1.6 <1 <1 40.4	uta / H Listed C 0 0.976 0.432 0.061 0.083 Contrib Contrib C 1 29.4	airy sak / Nation 12 0 0.980 0.316 0.065 0.083 ution <1 <1 <1 28.1 16.6	0 0.980 0.316 0.065 0.083 <1<1<1<128.116.6	0 0.956 0.425 0.083 0.250	G 0.9822 0.353 0.070 0.083 26.8 2.7 <1 <1 18.1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu 0 0.953 0.198 0.126 0.111 2.4 <1 34.0 40.6	B 0 0.953 0.198 0.126 0.111 Percent <1 <1 2.4 <1 34.0	eri / Mill _DD / Na C 0 0.966 0.144 0.135 0.111 Contrib 3.9 <1 4.3	ler's sak tional_V D 21 18 0 0.956 0.956 0.178 0.100 0.056 0.100 0.056 0.100 0.056 0.100 0.178 0.100 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100 0.178 0.100000000	ai U E 0 0.971 0.131 0.104 0.111	0 0.971 0.131 0.104 0.111	G 0.962 0.212 0.111 0.111 <11 2.4 5.3 <1 4.6

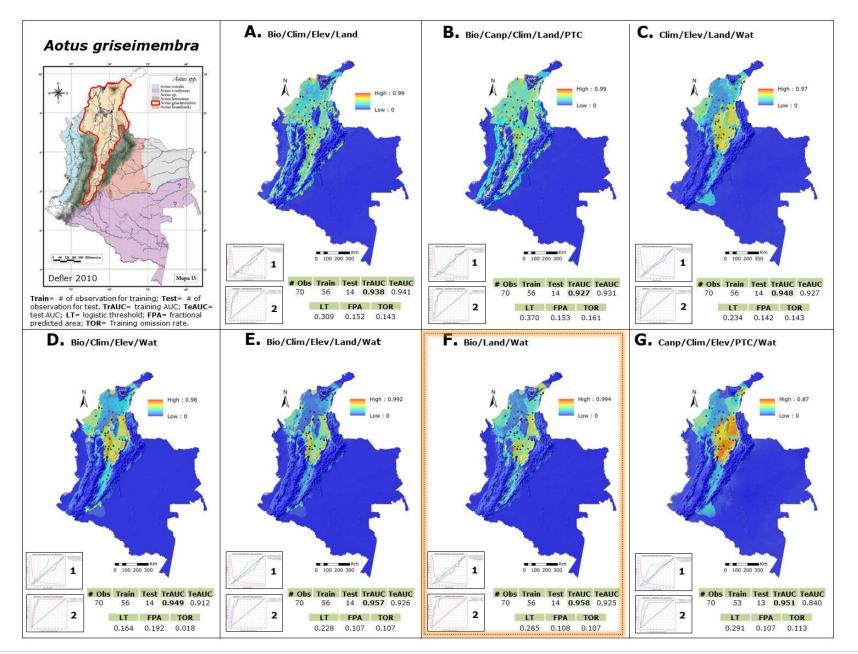
Leonto	cebus f	uscus	/ Saddle	e-backe	ed tama	arin		Sa	guinus g	aeoffrov	/i / Geo	ffrov's t	amarin		•
			LC / Na						-		LC / Na				
SDM	Α	В	C	D	Е	F	G	SDM	Α	В	I C		E	F	G
# Observations				33				# Observations				13			
Obs_Train				26				Obs_Train				12			
Obs_Test				6				Obs_Test	0	0	0	0	0	0	0
Training AUC	0.938	0.950	0.928	0.960	0.960	0.966	0.949	Training AUC	0.966	0.960	0.993	0.992	0.992	0.990	0.993
Test AUC	0.921	0.957	0.962	0.945	0.947	0.924	0.972	Test AUC							
Logis_Tresh	0.320	0.299	0.371	0.308	0.280	0.401	0.359	Logis_Tresh	0.044	0.159	0.158	0.151	0.142	0.057	0.140
Fract_Pred_Area	0.153	0.115	0.143	0.113	0.115	0.084	0.116	Fract_Pred_Area	0.083	0.083	0.030	0.036	0.035	0.042	0.033
Train_Omis_Rate	0.154	0.115	0.154	0.115	0.115	0.077	0.115	Train_Omis_Rate	0.083	0.083	0.000	0.000	0.000	0.083	0.000
	P	ercent	Contrib	ution					1	Percent	Contrib	ution			
PTC		5.4					2.7	РТС		<1					2.1
Canp		4.1					5.9	Canp		<1					<1
BIO4	<1	<1	<1	<1	<1		<1	BIO4	1.9	2.2	<1	<1	<1		<1
BIO7	<1	<1	<1	<1	<1		<1	BIO7	<1	<1	6.2	8.9	6.1		9.7
BIO15	35.1	29.4	11.3	8.0	7.8		5.0	BIO15	<1	<1	2.2	2.7	1.5		2.9
Biome	53.6	50.8		35.9	35.0	31.4		Biome	77.1	79.7		4.4	5.1	9.8	
Elevation	<1		13.7	1.7	1.4		13.5	Elevation	1.4		1.2	<1			<1
Landcover	11.3	10.2	6.9		4.1	7.0		Landcover	19.6	18.2	10.7		6.4	12.9	
Watershed			68.0	54.4	51.6	61.6	72.9	Watershed			79.7	83.9	80.9	77.3	85.3
Sag	uinus inu	ustus /	Mottled	l-faced	tamarir			Sag	uinus lei	ucopus*	/ White	e-footed	tamari	1	
Sagu			Mottled LC / Na			1		Sag	uinus lei Stati		/ White _ EN / Na			n	
Sagu SDM						F	G	Sag SDM						n F	G
	Statu	s: IUCN	_ LC / Na	tional_ L	С		G		Statu	us: IUCN	_ EN / Na	tional_ V	U		G
SDM	Statu	s: IUCN	_ LC / Na	tional_L D	С		G	SDM	Statu	us: IUCN	_ EN / Na	tional_V D	U		G
SDM # Observations	Statu	s: IUCN	_ LC / Na	tional_L D 16	С		G	SDM # Observations	Statu	us: IUCN	_ EN / Na	tional_V D 78	U		G
SDM # Observations Obs_Train	Statu A	s: IUCN B	_LC / Na C	tional_L D 16 16	C E	F		SDM # Observations Obs_Train	Statu	us: IUCN	_ EN / Na	tional_V D 78 61 15 0.971	U		0.965
SDM # Observations Obs_Train Obs_Test	Statu A 0	s: IUCN B 0	_LC / Na C	tional_L D 16 16 0	С Е 0	F	0	SDM # Observations Obs_Train Obs_Test	Statu A	B	EN / Na C	tional_V D 78 61 15	E	F	
SDM # Observations Obs_Train Obs_Test Training AUC	Statu A 0 0.880 0.372	s: IUCN B 0 0.880 0.372	LC / Na C 0 0.941 0.366	tional_L D 16 0 0.932 0.304	C E 0 0.945 0.352	F 0 0.924 0.394	0 0.931 0.319	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 0.954 0.284	0.953 0.940 0.344	EN / Na C 0.961 0.978 0.231	tional_V D 78 61 15 0.971 0.954 0.199	U E 0.970 0.963 0.128	F 0.972 0.973 0.201	0.965 0.956 0.238
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0 0.880 0.372 0.250	s: IUCN B 0 0.880 0.372 0.250	LC / Na C 0.941 0.366 0.130	tional_L D 16 16 0.932 0.304 0.178	C E 0 0.945 0.352 0.134	F 0.924 0.394 0.179	0 0.931 0.319 0.173	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.954 0.284 0.115	0.953 0.940 0.344 0.098	EN / Na C 0.961 0.978 0.231 0.082	tional_V D 78 61 15 0.971 0.954 0.199 0.068	U E 0.970 0.963 0.128 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 0 0.880 0.372 0.250 0.250	s: IUCN B 0 0.880 0.372 0.250 0.250	LC / Na C 0.941 0.366 0.130 0.125	tional_L D 16 0 0.932 0.304 0.178 0.188	C E 0 0.945 0.352	F 0 0.924 0.394	0 0.931 0.319	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu A 0.9504 0.2844 0.1155	0.953 0.940 0.344 0.098 0.098	EN / Na C 0.961 0.978 0.231 0.082 0.082	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082	U E 0.970 0.963 0.128	F 0.972 0.973 0.201	0.965 0.956 0.238
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A 0 0.880 0.372 0.250 0.250	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent	LC / Na C 0.941 0.366 0.130	tional_L D 16 0 0.932 0.304 0.178 0.188	C E 0 0.945 0.352 0.134	F 0.924 0.394 0.179	0 0.931 0.319 0.173 0.188	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu A 0.9504 0.2844 0.1155	IUCN B 0.953 0.940 0.344 0.098 0.980	EN / Na C 0.961 0.978 0.231 0.082	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082	U E 0.970 0.963 0.128 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0 0.880 0.372 0.250 0.250	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1	LC / Na C 0.941 0.366 0.130 0.125	tional_L D 16 0 0.932 0.304 0.178 0.188	C E 0 0.945 0.352 0.134	F 0.924 0.394 0.179	0 0.931 0.173 0.188 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu A 0.9504 0.2844 0.1155	IUCN B 0.953 0.940 0.344 0.098 Percent <1	EN / Na C 0.961 0.978 0.231 0.082 0.082	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082	U E 0.970 0.963 0.128 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu A 0.880 0.372 0.250 0.250 P	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 <1	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib	tional_L D 16 0.932 0.304 0.178 0.188 ition	C E 0 0.945 0.352 0.134 0.125	F 0.924 0.394 0.179	0 0.931 0.319 0.173 0.188 <1 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Statu A 0.954 0.950 0.284 0.115 0.115	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contrib	tional_VU D 78 61 15 0.954 0.954 0.954 0.954 0.082 0.082 ution	U E 0.970 0.963 0.128 0.082 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu 0 0.880 0.372 0.250 0.250 P 35.4	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 <1 35.4	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib 15.8	tional_L D 16 0.932 0.304 0.178 0.188 ition 15.2	C E 0 0.945 0.352 0.134 0.125	F 0.924 0.394 0.179	0 0.931 0.173 0.188 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu A 0.950 0.284 0.115 0.115 2.0	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5 1.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contribu	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4	U E 0.970 0.963 0.128 0.082 0.082 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu 0 0.880 0.372 0.250 0.250 P 35.4 <1	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 <1 35.4 <1	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib 15.8 <1	tional_L D 16 0 0.9322 0.304 0.178 0.178 0.188 ition 15.2 <1	C E 0 0.945 0.352 0.134 0.125 13.7 <1	F 0.924 0.394 0.179	0 0.931 0.319 0.173 0.188 <1 <1 <1 14.6	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Statu A 0.950 0.284 0.115 0.115 2.0 2.4	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5 1.5 3.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contribu Contribu	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	U E 0.970 0.963 0.128 0.082 0.082 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082 <1 <1 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu 0 0.880 0.372 0.250 0.250 P 35.4 <1 18.5	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 35.4 <1 18.5	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib 15.8	tional_L D 16 0 0.9322 0.304 0.178 0.178 0.188 ition 15.2 <1 8.4	C E 0 0.945 0.352 0.134 0.125 13.7 <1 9.4	F 0.924 0.394 0.179 0.062	0 0.931 0.319 0.173 0.188 <1 <1	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Statu A 0.950 0.284 0.115 0.115 2.0 2.4 <1	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contribu	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	U E 0.970 0.963 0.128 0.082 0.082 0.082 0.082	F 0.972 0.973 0.201 0.072 0.066	0.965 0.956 0.238 0.082 0.082 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu 0 0.880 0.372 0.250 0.250 P 35.4 <1 18.5 40.4	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 <1 35.4 <1	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib 15.8 <1 12.4	tional_L D 16 0.9322 0.304 0.178 0.178 0.188 tion 15.2 <1 8.4 14.3	C E 0.945 0.352 0.134 0.125 13.7 <1 9.4 14.3	F 0.924 0.394 0.179	0 0.931 0.319 0.173 0.188 <1 <1 14.6 10.0	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu A 0.950 0.284 0.115 0.115 2.0 2.4 -1 70.4 -1 -1 -1 -1 -1 -1 -1 -	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5 1.5 3.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contribution Cont	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4 1 4 1 30.0	U E 0.970 0.963 0.128 0.082 0.082 0.082 0.082 0.082 0.082	F 0.972 0.973 0.201 0.072	0.965 0.956 0.238 0.082 0.082 0.082 <1 <1 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome Elevation	Statu 0 0.880 0.372 0.2500 0.2500 0.2500 0.2500 0.250000000000	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 35.4 <1 18.5 40.4	LC / Na C 0.941 0.366 0.130 0.125 Contrib 15.8 <1 12.4	tional_L D 16 0 0.9322 0.304 0.178 0.178 0.188 ition 15.2 <1 8.4	C E 0 0.945 0.352 0.134 0.125 13.7 <1 9.4 14.3 <1	F 0.924 0.394 0.179 0.062	0 0.931 0.319 0.173 0.188 <1 <1 <1 14.6	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome Elevation	Statu 0.950 0.284 0.115 0.115 0.2.04 0.115 <	B 0.953 0.940 0.344 0.098 Percent <1 1.5 1.5 1.5 1.5 1.5 0.5 0.7	EN / Na C 0.961 0.978 0.231 0.082 Contrib Contrib Contrib Contrib Contrib Contrib Contrib Contrib	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	U E 0.970 0.963 0.128 0.082 0.082 0.082 0.082 0.082 0.082 0.128 0.	F 0.972 0.973 0.201 0.072 0.066	0.965 0.956 0.238 0.082 0.082 <1 <1 <1 <1 <1 <1
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu 0 0.880 0.372 0.250 0.250 P 35.4 <1 18.5 40.4	s: IUCN B 0 0.880 0.372 0.250 0.250 ercent <1 35.4 <1 18.5	LC / Na C 0 0.941 0.366 0.130 0.125 Contrib 15.8 <1 12.4	tional_L D 16 0.9322 0.304 0.178 0.178 0.188 tion 15.2 <1 8.4 14.3	C E 0.945 0.352 0.134 0.125 13.7 <1 9.4 14.3	F 0.924 0.394 0.179 0.062	0 0.931 0.319 0.173 0.188 <1 <1 14.6 10.0	SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu A 0.950 0.284 0.115 0.115 2.0 2.4 -1 70.4 -1 -1 -1 -1 -1 -1 -1 -	B 0.953 0.940 0.344 0.098 0.098 Percent <1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	EN / Na C 0.961 0.978 0.231 0.082 0.082 Contribution Cont	tional_V D 78 61 15 0.971 0.954 0.199 0.068 0.082 ution 4 1 4 1 30.0	U E 0.970 0.963 0.128 0.082 0.082 0.082 0.082 0.082 0.082	F 0.972 0.973 0.201 0.072 0.066	0.965 0.956 0.238 0.082 0.082 0.082 <1 <1 <1 <1 <1 <1

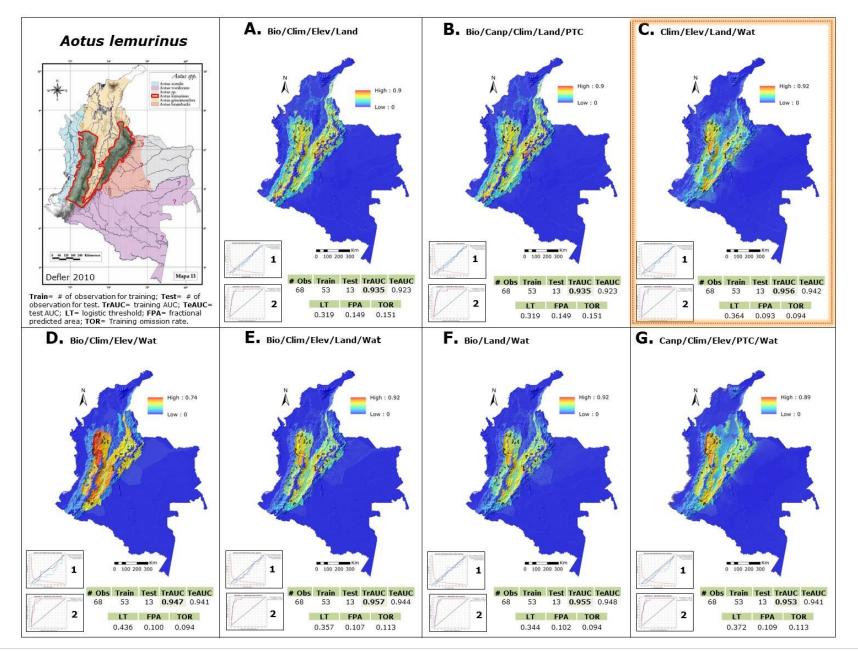
Leontocebus ni	igricollis	nigrico	ollis / S	pix's bla	ack ma	ntle tar	narin	Sa	guinus d	edipus	* / Cott	on-top	tamarin		
	Statu	s: IUCN	_ LC / Na	ational_	.c				Statu	us: IUCN	_ CR / Na	ational_	/U		
SDM	Α	В	С	D	E	F	G	SDM	Α	В	С	D	E	F	G
# Observations				12				# Observations				55			
Obs_Train				12				Obs_Train	38	35		3	8		35
Obs_Test	0	0	0	0	0	0	0	Obs_Test	9	8			9		8
Training AUC	0.997	0.994	0.998	0.998	0.999	0.992	0.998	Training AUC	0.950	0.958	0.980	0.977	0.981	0.986	0.978
Test AUC								Test AUC	0.920	0.926	0.988	0.993	0.992	0.978	0.985
Logis_Tresh	0.127	0.101	0.371	0.300	0.292	0.118	0.441	Logis_Tresh	0.322	0.312	0.324	0.381	0.269	0.185	0.302
Fract_Pred_Area	0.013	0.026	0.006	0.004	0.004	0.050	0.005	Fract_Pred_Area	0.114	0.104	0.063	0.064	0.062	0.054	0.061
Train_Omis_Rate	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Train_Omis_Rate	0.105	0.114	0.053	0.053	0.053	0.026	0.057
	Р	ercent	Contrib	ution		-				Percent	Contrib	oution			
РТС		<1					<1	PTC		3.5					1.3
Canp		<1					<1	Canp		<1					<1
BIO4	36.2	38.2	17.9	14.7	13.6		17.4	BIO4	6.8	5.9	<1	<1	<1		<1
BIO7	1.6	<1	2.4	1.4	1.6		3.0	BIO7	<1	<1	<1	<1	<1		<1
BIO15	1.6	1.9	<1	1.5	1.3		<1	BIO15	1.4	5.1	<1	<1	<1		2.2
Biome	38.5	47.6		22.5	22.6	28.0		Biome	70.0	65.2		2.8	3.2	3.0	
Elevation	12.0		18.1	6.3	5.7		16.2	Elevation	3.1		1.7	2.3	1.8		2.4
Landcover	10.1	12.3	1.1		2.4	2.6		Landcover	18.8	20.2	7.0		7.3	11.1	
Watershed			60.5	53.8	52.8	69.4	63.4	Watershed			91.3	94.9	87.8	85.9	94.1
Saimiri sciu	reus alb	igena**	· / Colo	mbian s	quirrel	monkey	/	Saimiri sciure	us cass	iquiaren	<i>sis /</i> Hu	imboldt'	s squirr	el monke	ev
	Statu	s: IUCN_	_ NT / Na	tional_ L	c.				Stat	us: IUCN	I_ LC / Na	ational_ L	c .		
SDM	Α	В	С	D	Е	F	G	SDM	Α	В	С	D	Е	F	G
# Observations				35				# Observations				21			
Obs_Train				28				Obs_Train				21			
Obs_Test				7				Obs_Test	0	0	0	0	0	0	0
Training AUC	0.908	0.926	0.977	0.974	0.978	0.976	0.977	Training AUC	0.880	0.880	0.955	0.964	0.965	0.955	0.951
Test AUC	0.967	0.880	0.986	0.992	0.990	0.972	0.978	Test AUC							
Logis_Tresh	0.424	0.321	0.308	0.272	0.267	0.178	0.230	Logis_Tresh	0.317	0.317	0.241	0.293	0.291	0.317	0.268
Fract_Pred_Area	0.191	0.143	0.067	0.074	0.071	0.073	0.071	Fract_Pred_Area	0.205	0.238	0.115	0.091	0.089	0.106	0.116
Train_Omis_Rate	0.179	0.143	0.071	0.071	0.071	0.071	0.071	Train_Omis_Rate	0.190	0.238	0.095	0.095	0.095	0.095	0.095
	P		Contrib	ution							Contrib	ution			
РТС		38.2					10.4	PTC		1.4					<1
Canp		19.8	2.6	2.4	1.0		7.0	Canp	6.5	3.0		_			<1
BIO4 BIO7	<1 <1	<1 <1	2.6	3.1 <1	1.9 <1		1.0	BIO4 BIO7	6.5 <1	10.4	<1 <1	<1 <1	<1 <1		<1 <1
D107	<1				<1		<1 <1		<1	<1	<1 <1	<1 <1	<1 <1		<1
PTO15	1 2	1										51	<1		<1
BIO15 Biome	1.2	<1	<1	<1		03	~1	BIO15 Biome					32.1	35.5	
Biome	56.7	<1 27.6		5.6	4.9	9.3		Biome	74.1	70.8		32.7	32.1	35.5	12.3
Biome Elevation	56.7 6.4	27.6	4.9		4.9 3.2		4.8	Biome Elevation	74.1 4.9	70.8	11.7		3.3		12.3
Biome	56.7			5.6	4.9	9.3 8.4 82.3		Biome	74.1			32.7		35.5 1.7 62.8	12.3 87.7

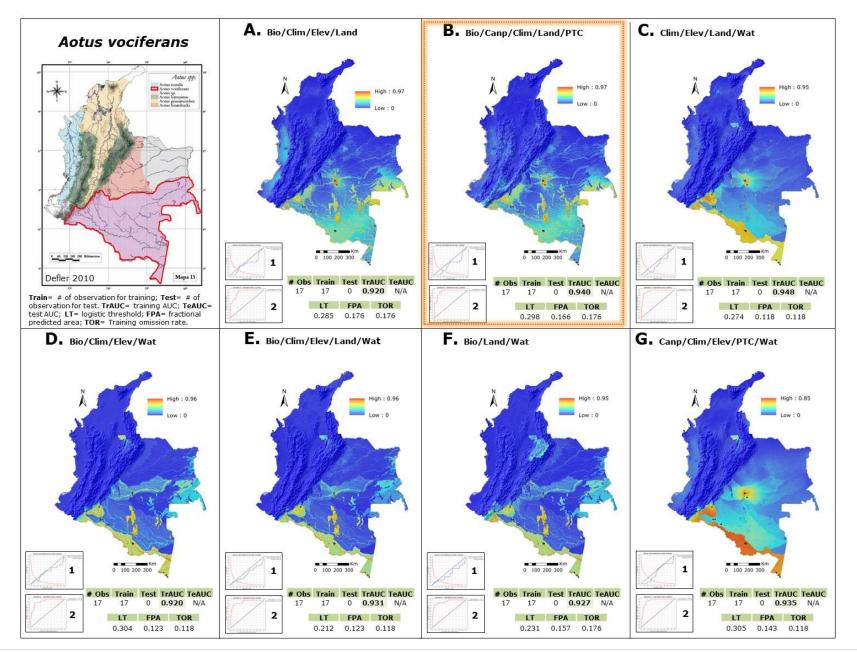

Saimiri sciu	reus ma	crodon	/ Ecua	dorian s	quirrel	monkey	,
	Statu	IS: IUCN	_ LC / Na	ational_ L	.C		
SDM	Α	В	С	D	E	F	G
# Observations				29			
Obs_Train				28			
Obs_Test	0	0	0	0	0	0	0
Training AUC	0.925	0.929	0.947	0.953	0.953	0.944	0.950
Test AUC							
Logis_Tresh	0.316	0.347	0.396	0.304	0.350	0.320	0.413
Fract_Pred_Area	0.166	0.152	0.128	0.128	0.107	0.167	0.107
Train_Omis_Rate	0.179	0.143	0.143	0.143	0.107	0.036	0.107
	F	Percent	Contrib	ution			
PTC		14.9					6.5
Canp		1.3					2.7
BIO4	1.5	4.8	3.1	2.4	<1		2.6
BIO7	<1	<1	<1	<1	<1		<1
BIO15	50.1	34.5	2.2	4.1	7.2		1.2
Biome	45.6	43.1		19.0	19.1	17.3	
Elevation	<1		5.7	2.2	1.1		4.9
Landcover	2.8	1.2	3.1		<1	1.3	
Watershed			85.9	72.4	72.6	81.4	82.0

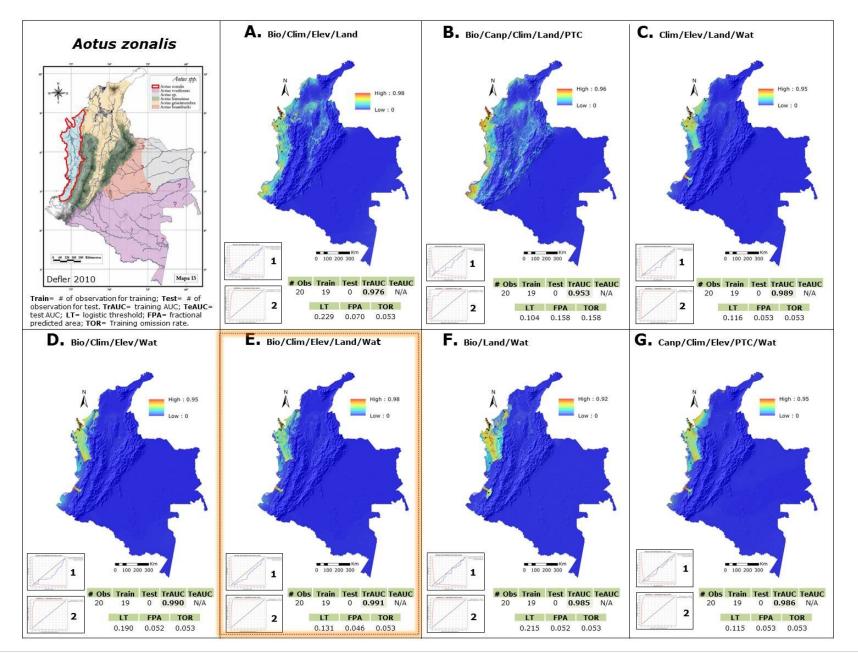

Obs_Train: Number of training observations; **Obs_Test**: Number of testing observations; **Logis_Tresh**: Logistic Threshold; **Fract_Pred_Area**: Fractional Predicted Area; **Train_Omis_Rate**: Training Omission Rate. **BIO4**: Temperature Seasonality (standard deviation *100); **BIO7**: Temperature Annual Range; **BIO15**: Precipitation Seasonality (Coefficient of Variation); **PTC**: Percent Tree Cover; **Canp**: Forest Canopy Height.

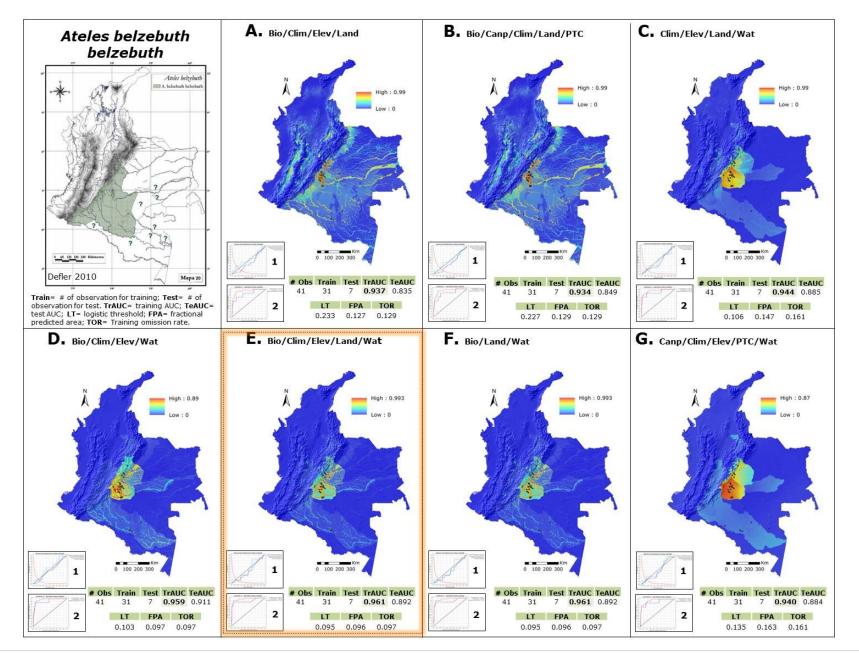

Appendix	I.b. Species	with less than	10 occurrence record	s:
----------	--------------	----------------	----------------------	----

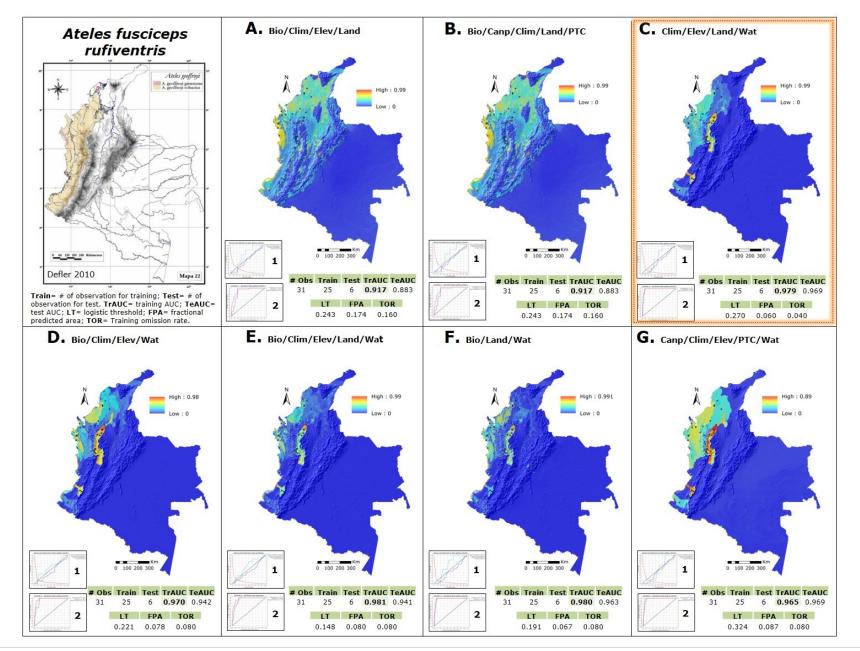

Cheracebu	s mede	emi / C	olombia	an Blac	k-hand	ed Titi		Ca	llimico	goeldii	/ Goeld	li's mar	moset			
Status: IUCN_VU									Status: IUCN_VU							
SDM	Α	В	С	D	Е	F	G	SDM	Α	В	С	D	Е	F	G	
# Observations	7						# Observations	7								
Obs_Train	6						Obs_Train	7								
Obs_Test	0	0	0	0	0	0	0	Obs_Test	0	0	0	0	0	0	0	
Training AUC	0.978	0.980	0.934	0.985	0.987	0.984	0.949	Training AUC	0.985	0.985	0.967	0.987	0.990	0.985	0.976	
Test AUC								Test AUC								
Logis_Tresh	0.518	0.482	0.179	0.486	0.441	0.412	0.205	Logis_Tresh	0.260	0.273	0.298	2.880	0.326	0.348	0.291	
Fract_Pred_Area	0.032	0.033	0.251	0.029	0.032	0.038	0.167	Fract_Pred_Area	0.049	0.044	0.100	0.039	0.027	0.069	0.079	
Train_Omis_Rate	0.000	0.000	0.000	0.000	0.000	0.000	0.167	Train_Omis_Rate	0.000	0.000	0.143	0.000	0.000	0.000	0.143	
Percent Contribution									Percent Contribution							
РТС		<1						РТС		5.3					<1	
Canp		1.1					10.4	Canp		<1					3.2	
BIO4	<1	<1	<1	<1	<1		<1	BIO4	1.8	2.7	1.5	<1	<1		1.3	
BIO7	<1	<1	<1	<1	<1		<1	BIO7	<1	<1	<1	<1	<1		<1	
BIO15	46.8	48.7	24.5	18.8	19.6		24.4	BIO15	54.7	46.8	17.2	12.4	12.1		18.0	
Biome	44.2	44.0		36.0	34.8	41.3		Biome	41.2	43.9		34.6	34.1	35.8		
Elevation	2.0		9.4	2.4	1.9		8.4	Elevation	1.0		4.0	1.3	1.2		5.2	
Landcover	7.0	6.2	5.0		3.3	2.7		Landcover	1.3	1.4	2.0		1.5	1.6		
Watershed			61.0	42.8	40.4	56.0	56.7	Watershed			75.3	51.7	51.0	62.6	72.3	
								Hatterbilda			, 515					
Cebus albifrons m	alitios	us** /	Santa M		ite-fron	ted cap	uchin	Leontocebus nigri	icollis h	ernande		Hernánd	lez-cam	acho's	black m	
Cebus albifrons n			Santa M _EN / Na	larta wh		ted cap	uchin				ezi** / I	Hernánc ational_		acho's i	black m	
Cebus albifrons n SDM				larta wh		ted cap	uchin G				ezi** / I			acho's F	black m	
	Statu	s: IUCN	_EN / Na	larta wh ational_l	NT		1	Leontocebus nigr	Stat	us: IUCN	ezi** / I	ational_I D 7	c		1	
SDM	Statu	s: IUCN	_EN / Na	larta wh ational_I D	NT		1	Leontocebus nigra	Stat	us: IUCN	ezi** / I	ational_I D	c		1	
SDM # Observations	Statu:	s: IUCN B	_EN / Na C	larta wh ational_I D 7	E	F	G	Leontocebus nigra SDM # Observations	Stat	us: IUCN	ezi** / I	ational_I D 7	c		1	
SDM # Observations Obs_Train	Status A 7	s: IUCN B 6 0	_EN / Na C 6	ational_I D 7 7 7 0	NT E 7	F 7 0	G 6	Leontocebus nigra SDM # Observations Obs_Train	Stat	US: IUCN B	ezi** / I I_LC / N C	ational_I D 7 7	E	F	G	
SDM # Observations Obs_Train Obs_Test	Status	s: IUCN B 6 0	EN / Na C 6 0 0.999	ational_I D 7 7 7 0	NT E 7 0 1.000	F 7 0 1.000	G 6	Leontocebus nigra SDM # Observations Obs_Train Obs_Test	Stat A O	US: IUCN B	2 zi** / I L_LC / N C	ational_I D 7 7 0	Е	F	G 0 0.947	
SDM # Observations Obs_Train Obs_Test Training AUC	Statu: A 7 0 0.999 0.609	s: IUCN B 6 0 9.999 0.752	EN / Na C 6 0 0.9999 0.608	larta whe ational_1 7 7 7 0 1.000 0.414	F 7 0 1.000 0.553	7 0 1.000 0.649	G 6 0 0.999 0.633	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Stat A 0 0 0.392	US: IUCN B 0 0.909 0.393	c 0 0 0 0 0 0 0 0	<pre>tional_l D 7 7 0 0 0.970 0.433</pre>	C E 0 0.970 0.433	F 0 0.964 0.447	G 0 0.947 0.319	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Status A 7 0 0.999 0.609 0.003	s: IUCN B 6 0 0.999	EN / Na C 6 0.999 0.608 0.001	arta wh ational_1 7 7 7 0 1.000 0.414 0.001	F 7 0 1.000 0.553 0.001	F 0 1.000 0.649 0.000	G 6 0.999 0.633 0.001	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC	Stat A 0 0.910 0.392 0.172	US: IUCN B 0 0.909	ezi** / I LC / N C 0 0.947	ational_I 7 7 0 0.970	C E 0 0.970	F 0 0.964	G 0 0.947	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Statu: A 7 0 0.999 0.609 0.003 0.000	s: IUCN B 6 0 0.9999 0.752 0.002 0.000	EN / Na C 6 0.999 0.608 0.001 0.000	arta whational_i D 7 7 0 1.000 0.414 0.001 0.000	F 7 0 1.000 0.553	7 0 1.000 0.649	G 6 0.999 0.633 0.001	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh	Stat A 0 0 0.392	US: IUCN B 0 0.909 0.393	c 0 0 0 0 0 0 0 0	<pre>tional_l D 7 7 0 0 0.970 0.433</pre>	C E 0 0.970 0.433	F 0 0.964 0.447	G 0 0.947 0.319	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu: A 7 0 0.999 0.609 0.003 0.000	s: IUCN B 6 0 0.9999 0.752 0.002 0.000	EN / Na C 6 0.999 0.608 0.001	arta whational_i D 7 7 0 1.000 0.414 0.001 0.000	F 7 0 1.000 0.553 0.001	F 0 1.000 0.649 0.000	G 6 0.999 0.633 0.001	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat A 0 0.910 0.392 0.172 0.143	0 0.393 0.172 0.143	2 zi** / I LC / N C 0.947 0.319 0.129	<pre>tional_1</pre>	C E 0.970 0.433 0.073	F 0.964 0.447 0.121	G 0.947 0.319 0.129	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Statu: A 7 0 0.999 0.609 0.003 0.000	s: IUCN B 6 0.9999 0.752 0.002 0.000 ercent <1	EN / Na C 6 0.999 0.608 0.001 0.000	arta whational_i D 7 7 0 1.000 0.414 0.001 0.000	F 7 0 1.000 0.553 0.001	F 0 1.000 0.649 0.000	G 0 0.999 0.633 0.001 0.000	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area	Stat A 0 0.910 0.392 0.172 0.143	0 0.909 0.393 0.172 0.143 Percent <1	0 0.319 0.129 0.143	<pre>tional_1</pre>	C E 0.970 0.433 0.073	F 0.964 0.447 0.121	G 0.947 0.319 0.129 0.143 <1	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate	Statu: A 7 0 0.999 0.609 0.003 0.000	s: IUCN B 0 0.999 0.752 0.002 0.000 ercent <1 2.0	EN / Na C 6 0.999 0.608 0.001 0.000	arta whational_i D 7 7 0 1.000 0.414 0.001 0.000	F 7 0 1.000 0.553 0.001	F 0 1.000 0.649 0.000	G 0 0.999 0.633 0.001 0.000	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp	Stat A 0 0.910 0.392 0.172 0.143	B 0 0.909 0.393 0.172 0.143	0 0.319 0.129 0.143	<pre>tional_1</pre>	C E 0.970 0.433 0.073	F 0.964 0.447 0.121	G 0.947 0.319 0.129 0.143	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Statu: A 7 0 0.999 0.609 0.003 0.000 P C 1 1 1 1 1 1 1 1 1 1 1 1 1	s: IUCN B 0 0.999 0.752 0.002 0.000 ercent <1 2.0 1.3	EN / Na 6 0 0.999 0.608 0.001 0.000 Contrib	arta whational_i p 7 0 1.0000 0.414 0.001 0.000 ution	7 0 1.000 0.553 0.001 0.000	F 0 1.000 0.649 0.000	G 0.999 0.633 0.001 0.000 <1 <1 <1	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4	Stat A 0 0.910 0.392 0.172 0.143 	0 0.909 0.393 0.172 0.143 Percent <1 3.2 14.4	0 0.947 0.319 0.129 0.143 Contrib	ational D 7 0 0.970 0.433 0.073 0.143 Dution 4.4	0 0.970 0.433 0.073 0.143	F 0.964 0.447 0.121	G 0.947 0.319 0.129 0.143 <1 <1 <1 7.4	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Status 7 0 0.999 0.003 0.000 P	s: IUCN B 6 0.9999 0.752 0.002 0.000 ercent <1 2.0 1.3 <1	EN / Na C 0.999 0.608 0.001 0.000 Contrib	Image: state of the s	7 0 1.000 0.553 0.001 0.000	F 0 1.000 0.649 0.000	G 0.999 0.633 0.001 0.000 <1 <1 <1 <1 3.9	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7	Stat 0 0.910 0.392 0.172 0.143 17.4 <1	0 0.909 0.393 0.172 0.143 Percent <1 3.2 14.4 <1	0 0.947 0.319 0.129 0.143 Contrik	ational D 7 0 0.970 0.433 0.073 0.143 Dution 4.4 <1	0 0.970 0.433 0.073 0.143 4.4 <1	F 0.964 0.447 0.121	G 0.947 0.319 0.129 0.143 <1 <1 <1 <1 <1 <1	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Status 7 0 0.999 0.003 0.000 P	s: IUCN B 6 0.9999 0.752 0.002 0.000 ercent <1 2.0 1.3 <1 31.4	EN / Na 6 0 0.999 0.608 0.001 0.000 Contrib	arta whational_l b 7 0 1.0000 0.414 0.001 0.0001 utono	7 0 1.000 0.553 0.001 0.000 <1 <1 <1 2.8	7 0 1.000 0.649 0.000 0.000	G 0.999 0.633 0.001 0.000 <1 <1 <1	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15	Stat 0 0.910 0.392 0.172 0.143 17.4 <1 18.5	O 0.909 0.393 0.143 Percent <1 3.2 14.4 <1 17.9	0 0.947 0.319 0.129 0.143 Contrib	D 7 0 0.970 0.433 0.073 0.143 0.143 4.4 <1 <1	0.433 0.433 0.143 4.4 <1	0 0.964 0.447 0.121 0.000	G 0.947 0.319 0.129 0.143 <1 <1 <1 7.4	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu: A 7 0 0.9999 0.609 0.003 0.000 P (1) <1 <1 <1 28.2 44.8	s: IUCN B 6 0.9999 0.752 0.002 0.000 ercent <1 2.0 1.3 <1	EN / Na 6 0.9999 0.608 0.001 0.000 Contrib < 1 3.2 2.6	arta whational_i b 7 0 1.0000 0.414 0.001 0.000 ution <1 <1 2.9 9.4	7 0 1.0000 0.553 0.001 0.0001 <1 <1 <1 <1 8.8	F 0 1.000 0.649 0.000	G 0.9999 0.633 0.001 0.000 <1 <1 <1 <1 <1 3.9 2.6	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Stat 0 0.910 0.392 0.172 0.143 17.4 <1 18.5 50.1	0 0.909 0.393 0.172 0.143 Percent <1 3.2 14.4 <1	0.319 0.129 0.143 0.143 0.143 0.143 0.143 0.143 0.143	D 7 0 0.970 0.433 0.073 0.143 0.143 4.4 <1 23.3	0.433 0.73 0.143 0.143 0.143	F 0.964 0.447 0.121	G 0.947 0.129 0.143 <1 <1 7.4 <1 <1	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome Elevation	Status A 7 0 0.9999 0.0003 0.0000 P (1) <1 <1 <1 28.2 44.8 <1	s: IUCN B 0.9999 0.752 0.002 0.000 ercent <1 2.0 1.3 <1 31.4 37.5	EN / Na 6 0.999 0.608 0.001 0.000 Contrib 3.2 2.6 1.7	arta whational_l b 7 0 1.0000 0.414 0.001 0.0001 utono	▼ 7 0 1.0000 0.553 0.001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	F 0 1.0000 0.649 0.000 0.0000	G 0.999 0.633 0.001 0.000 <1 <1 <1 <1 3.9	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO4 BIO7 BIO15 Biome Elevation	Stat 0 0.392 0.172 0.143 17.4 <1 18.5 50.1 2.8	0 0.393 0.172 0.143 Percent <1 3.2 14.4 <1 17.9 53.9	0.319 0.129 0.143 Contrib 7.4 <1	D 7 0 0.970 0.433 0.073 0.143 0.143 4.4 <1 <1	0 0.433 0.073 0.143 4.4 <1 <1 23.3 <1	0 0.964 0.121 0.000 23.6	G 0.947 0.319 0.129 0.143 <1 <1 <1 <1 <1 <1	
SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Statu: A 7 0 0.9999 0.609 0.003 0.000 P (1 <1 <1 28.2 44.8	s: IUCN B 6 0.9999 0.752 0.002 0.000 ercent <1 2.0 1.3 <1 31.4	EN / Na 6 0.9999 0.608 0.001 0.000 Contrib < 1 3.2 2.6	arta whational_i b 7 0 1.0000 0.414 0.001 0.000 ution <1 <1 2.9 9.4	7 0 1.0000 0.553 0.001 0.0001 <1 <1 <1 <1 8.8	7 0 1.000 0.649 0.000 0.000	G 0.9999 0.633 0.001 0.000 <1 <1 <1 <1 <1 3.9 2.6	Leontocebus nigri SDM # Observations Obs_Train Obs_Test Training AUC Test AUC Logis_Tresh Fract_Pred_Area Train_Omis_Rate PTC Canp BIO4 BIO7 BIO15 Biome	Stat 0 0.910 0.392 0.172 0.143 17.4 <1 18.5 50.1	O 0.909 0.393 0.143 Percent <1 3.2 14.4 <1 17.9	0.319 0.129 0.143 0.143 0.143 0.143 0.143 0.143 0.143	D 7 0 0.970 0.433 0.073 0.143 0.143 4.4 <1 23.3	0.433 0.73 0.143 0.143 0.143	0 0.964 0.447 0.121 0.000	G 0.947 0.129 0.143 <1 <1 7.4 <1 <1	

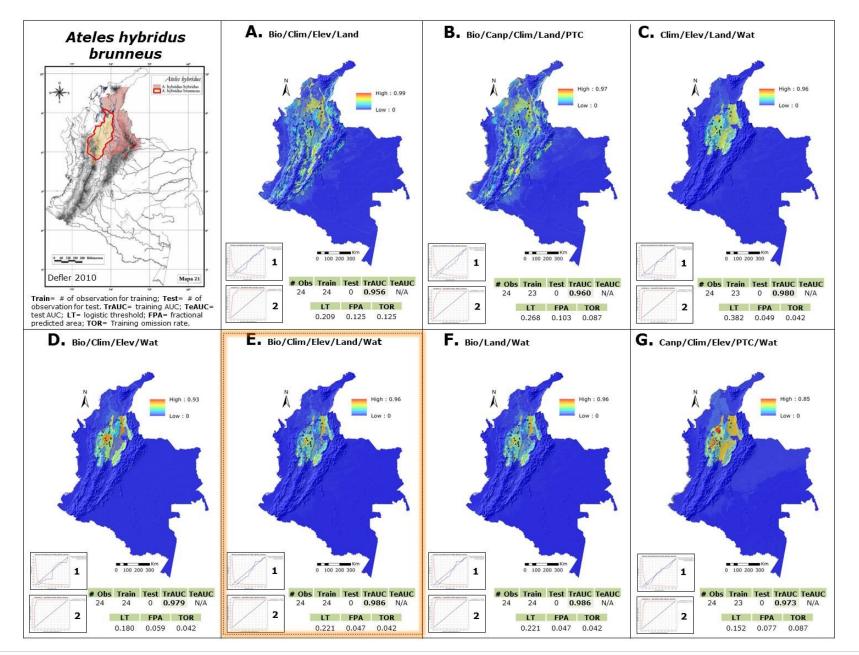

Appendix J. Species distribution models for species of primates in Colombia. A single predictive model with the best performance (highlighted with orange) was selected for each species through a comparative analysis. Selection involved spatial comparison, the relation among AUC values and the fractional predicted area. Parsimonious models account lower fractional predicted area values and reduced omission errors. To visualize predictive power, plots depicting the variation of sensitivity (1 - omission rate) and 1 - specificity (predicted area) in relation with the cumulative threshold, and the ROC (AUC) curve are also included. *Species with less than 10 occurrence records.

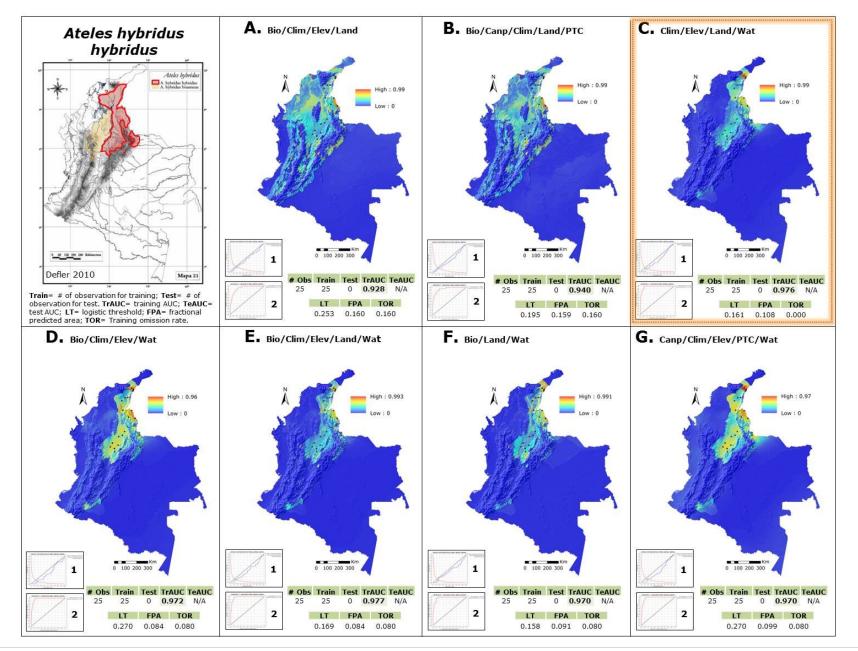


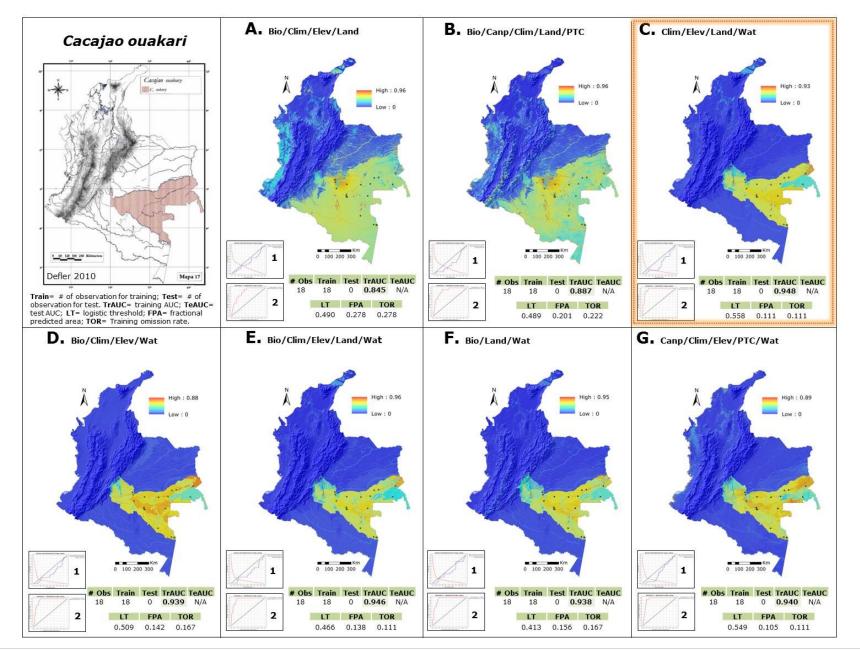


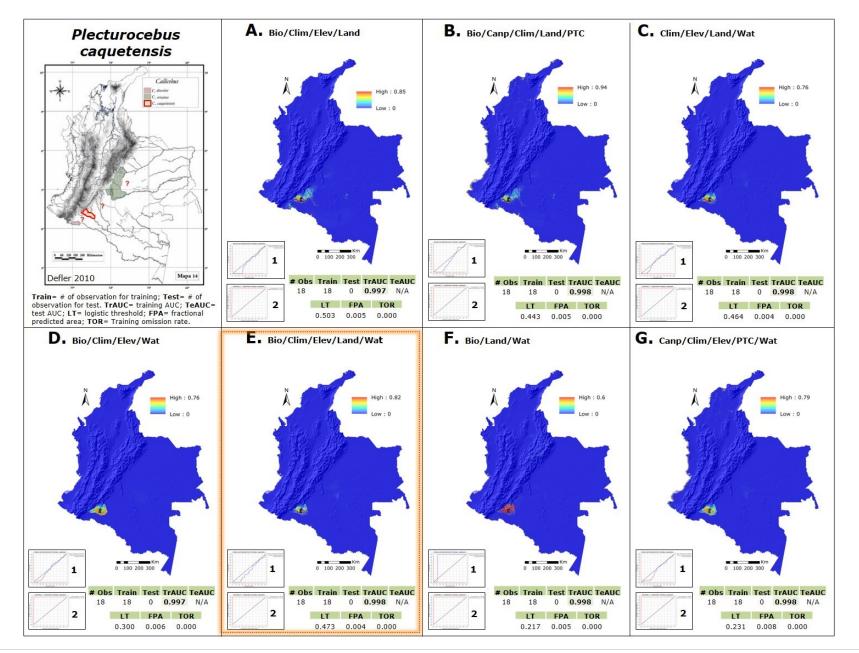


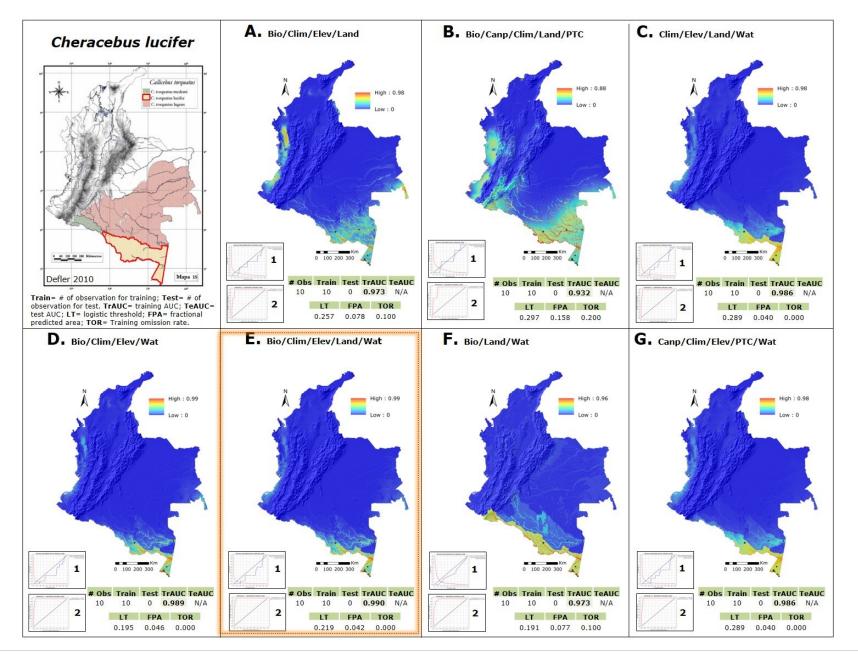


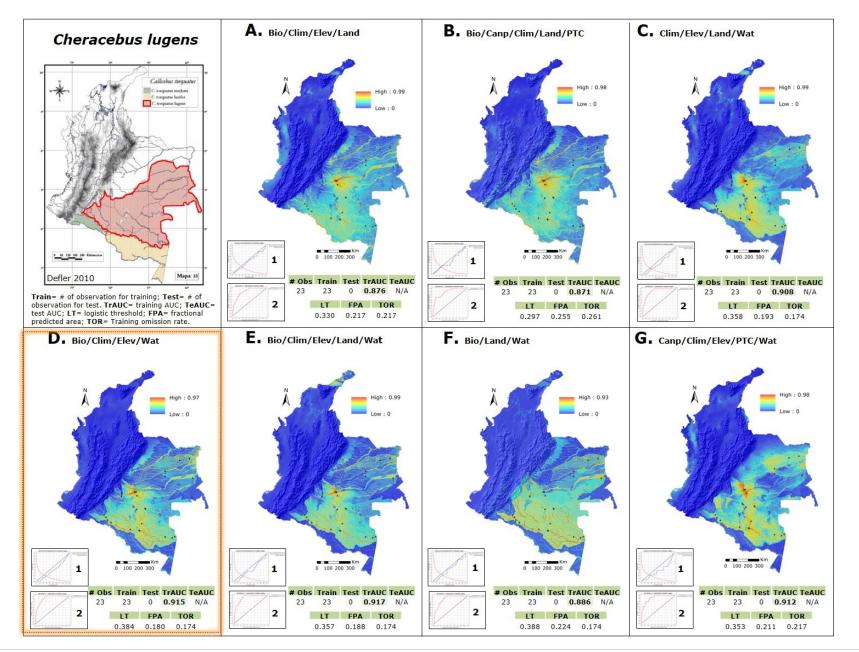


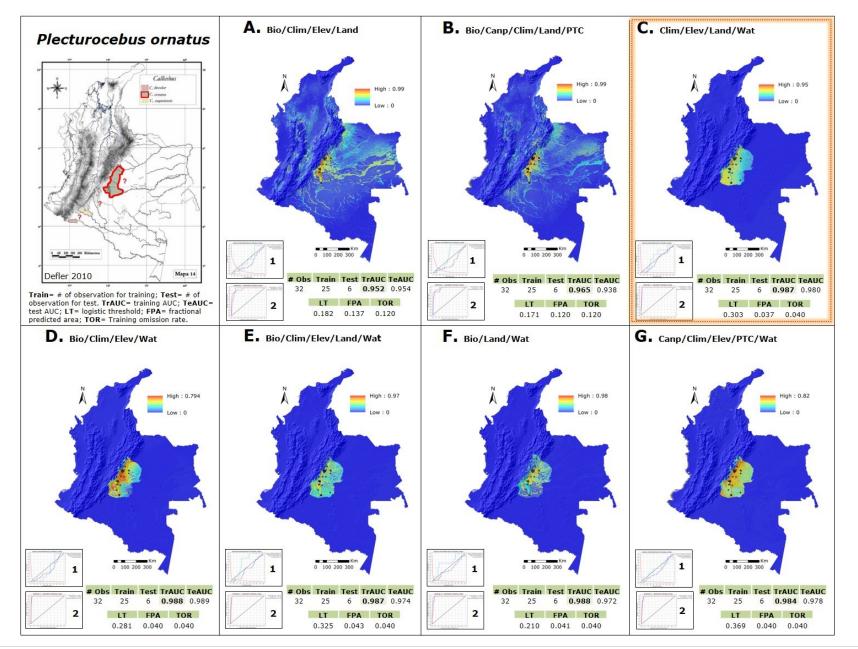


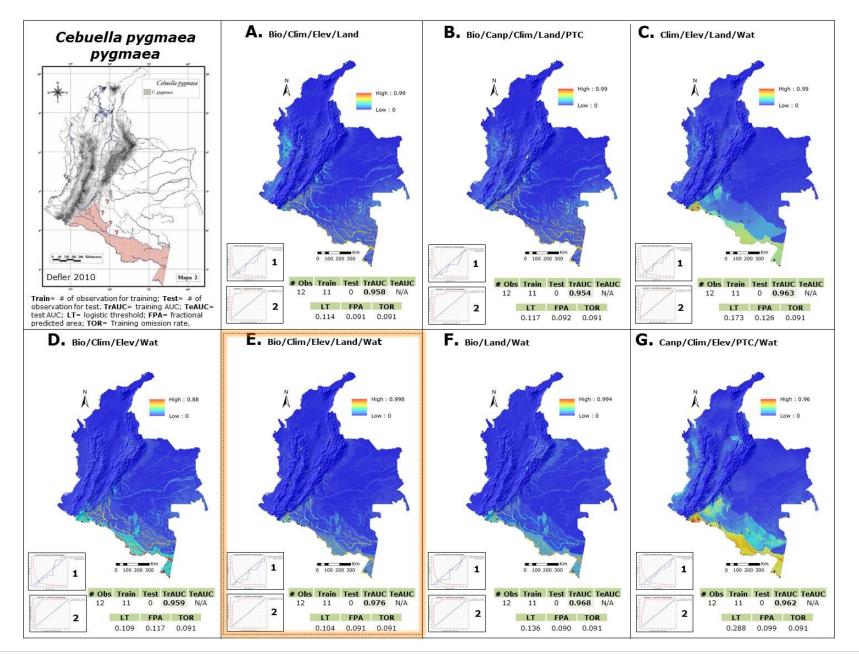


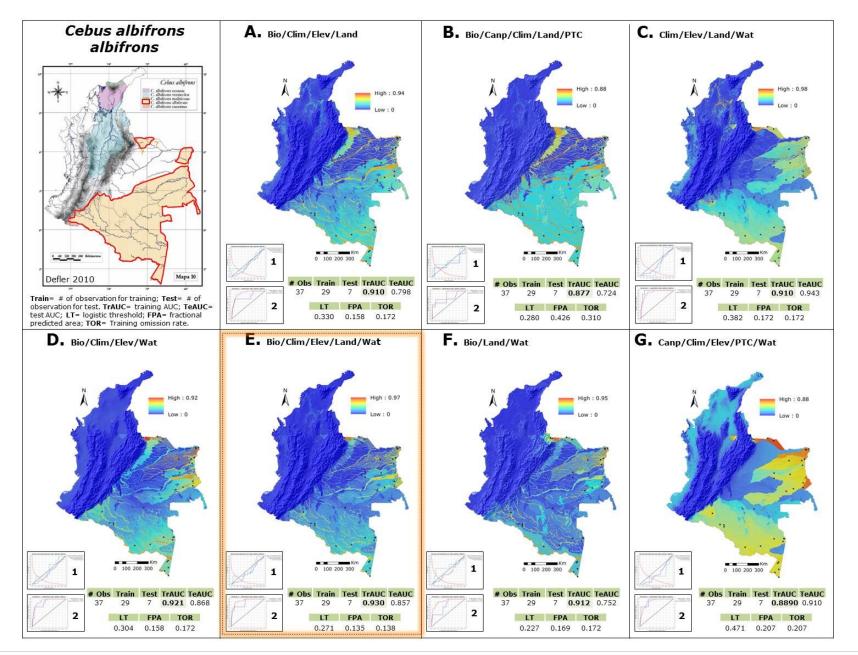


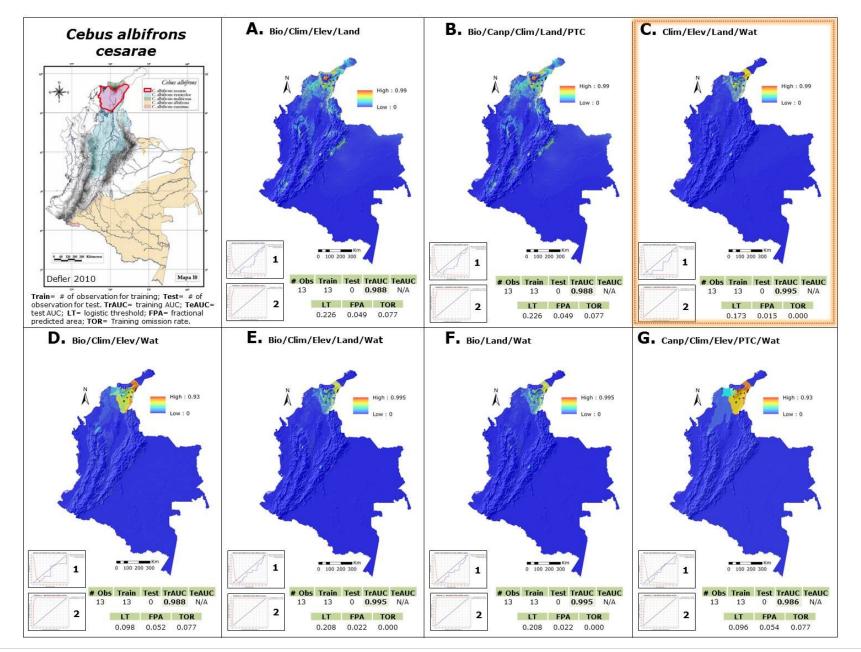


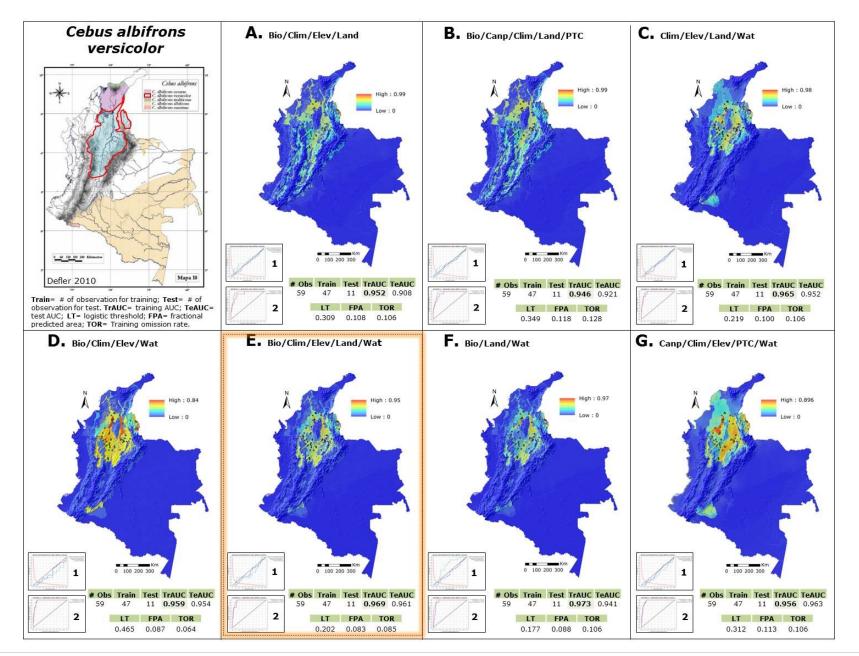


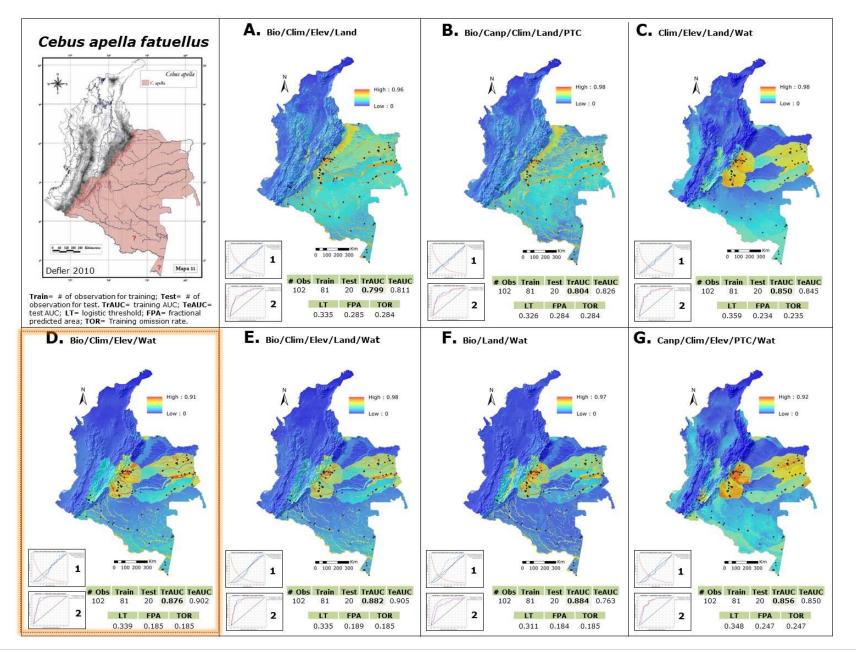


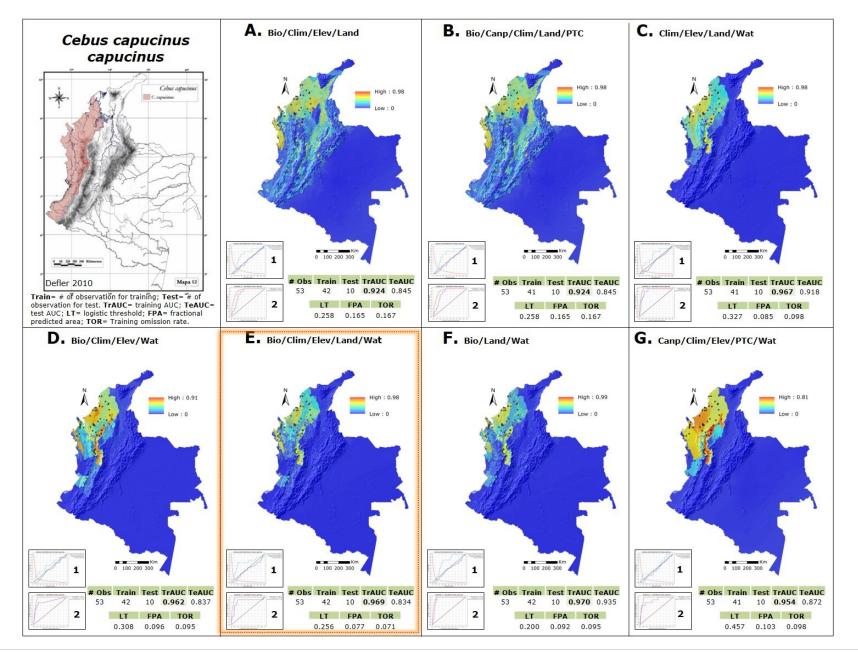


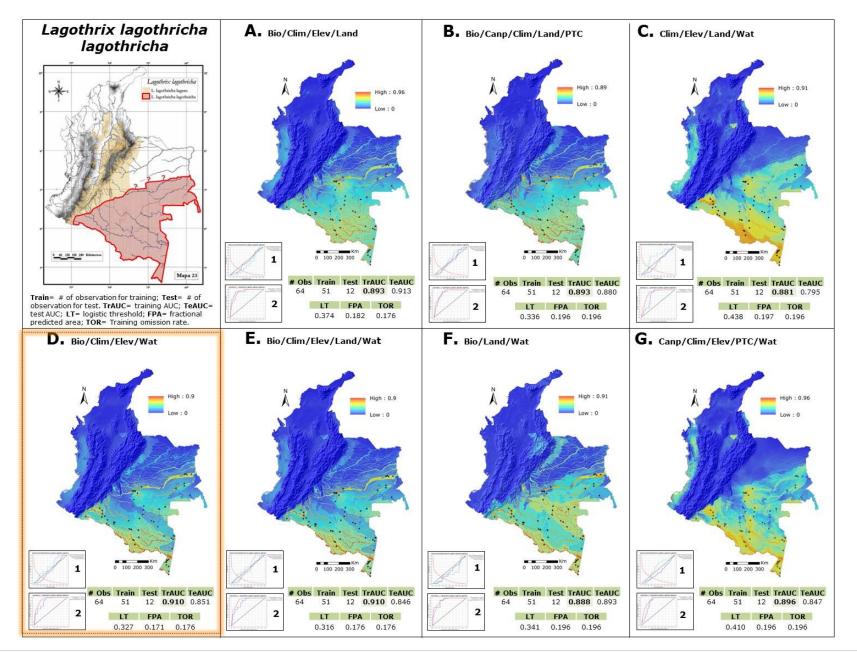


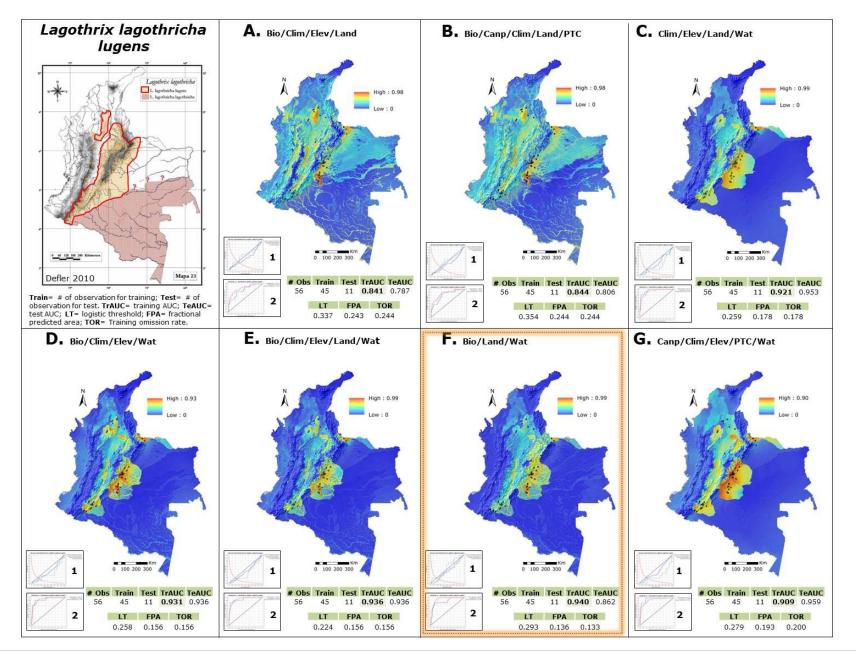


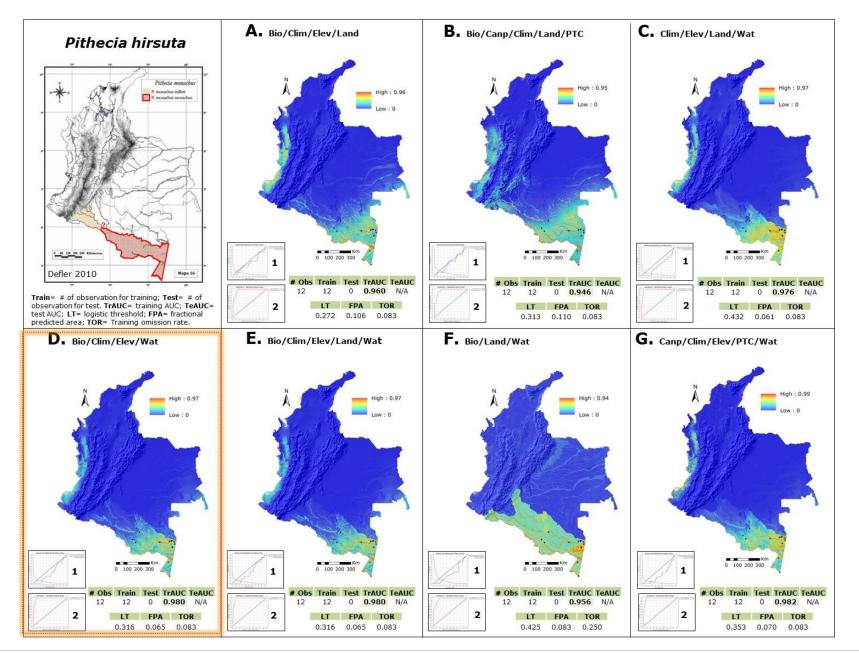


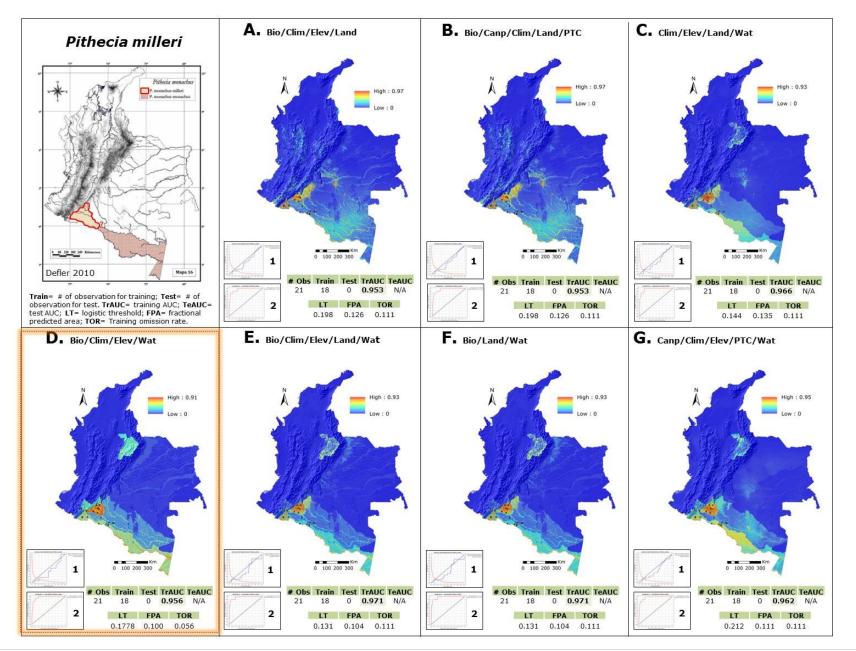


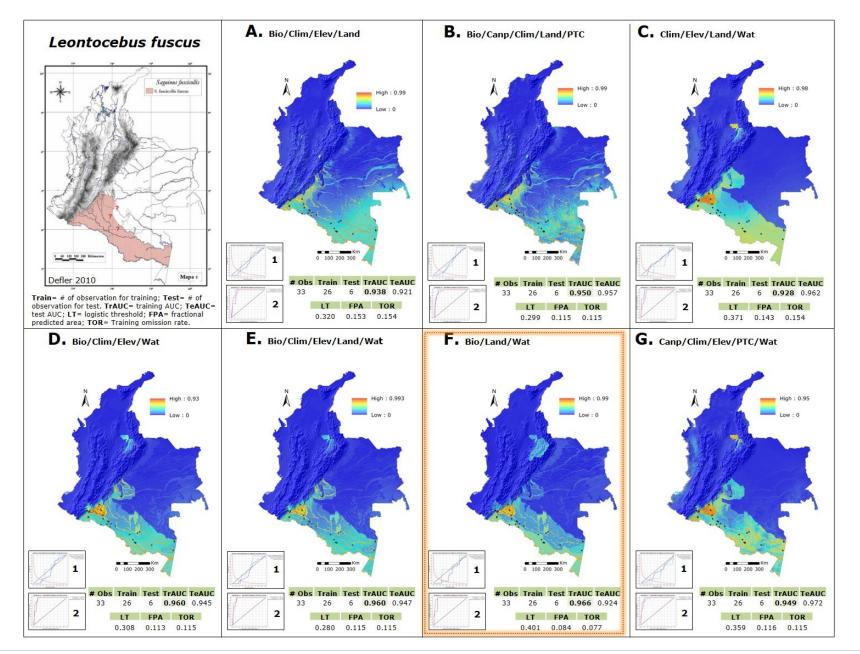


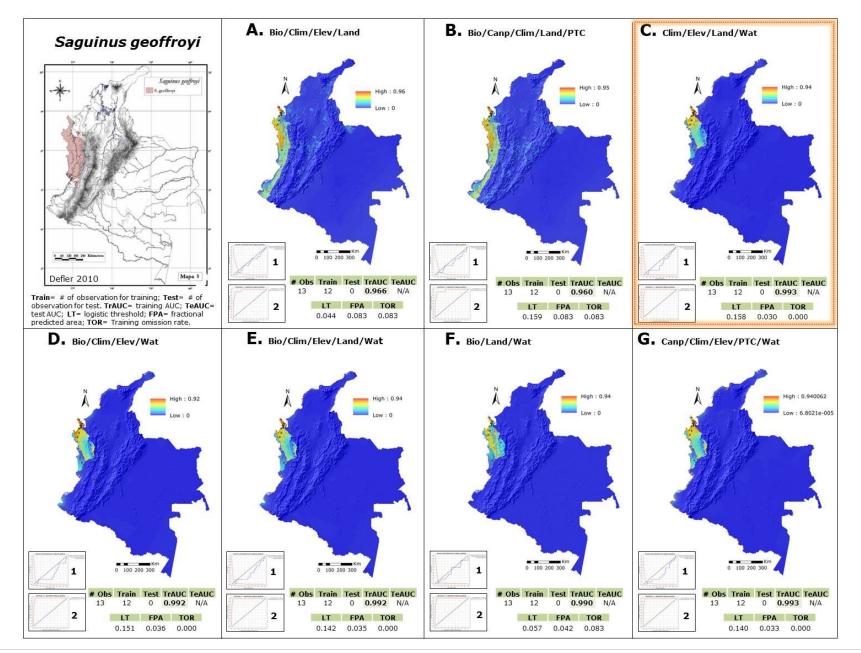


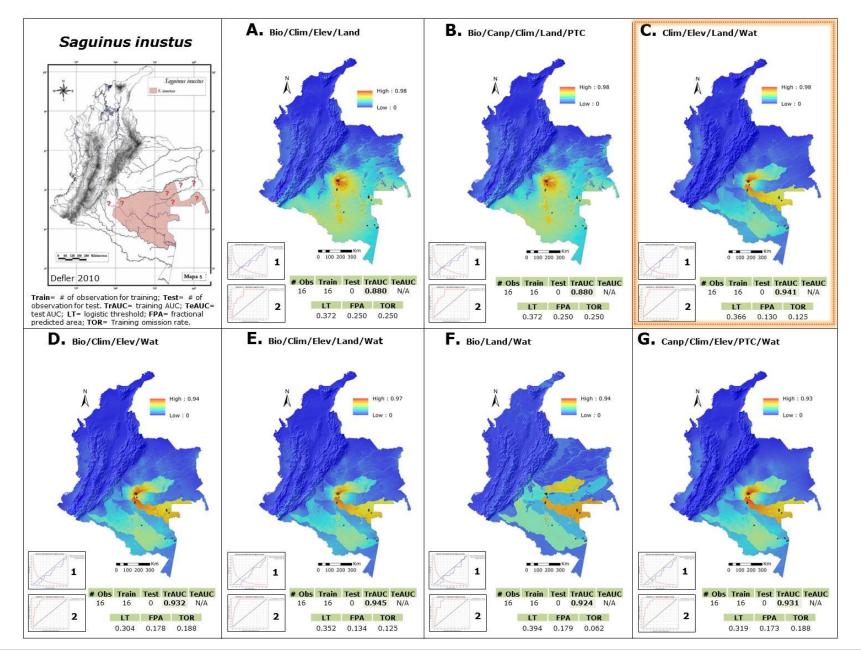


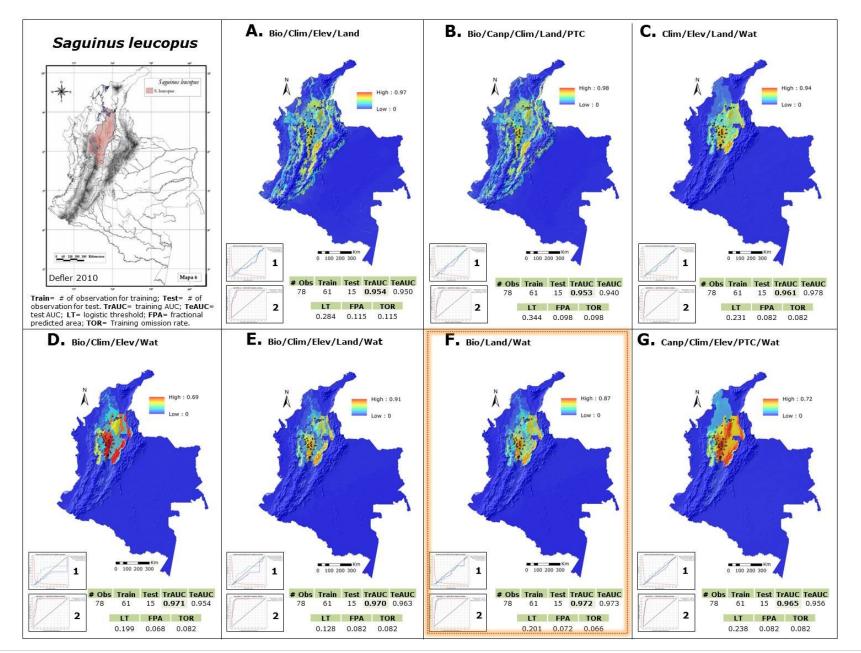


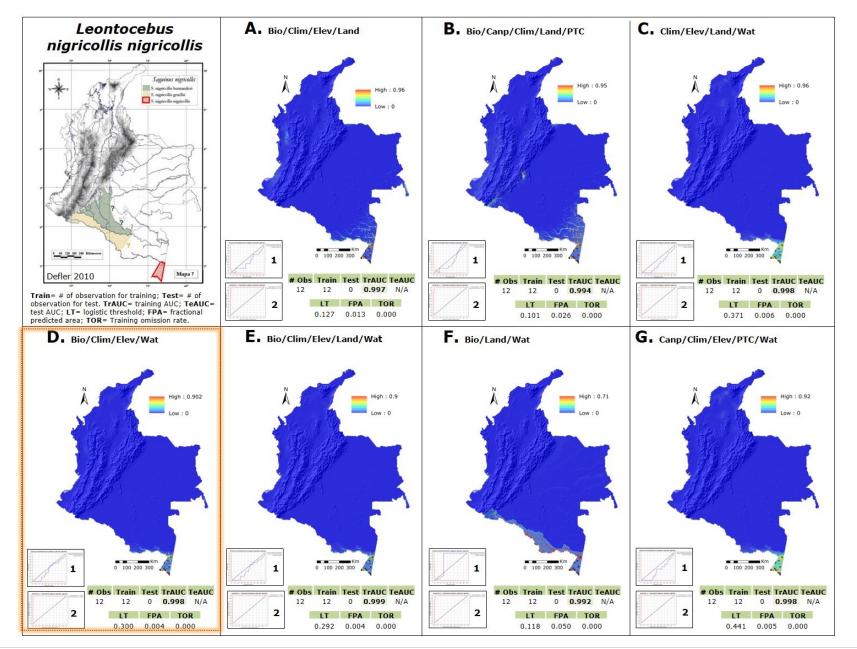


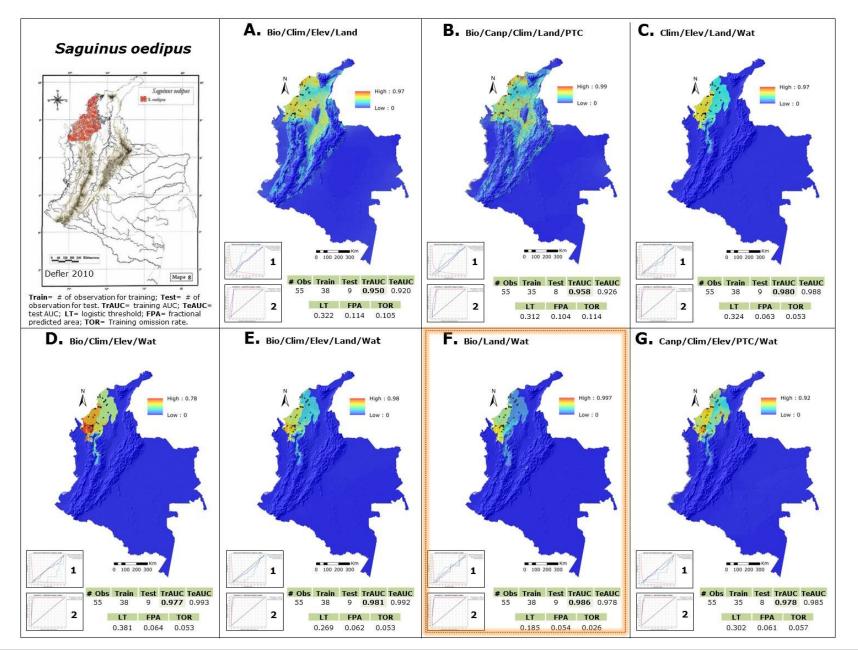


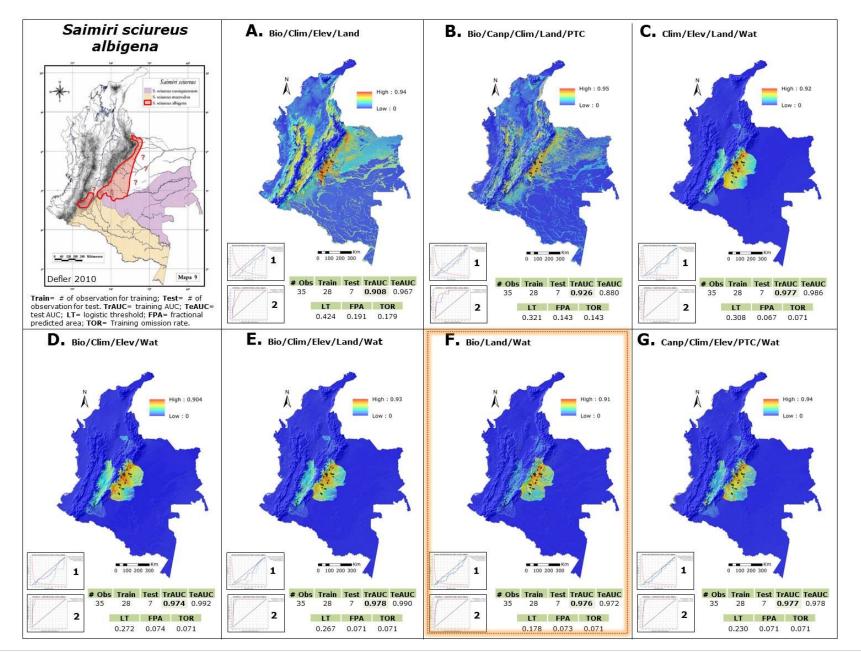


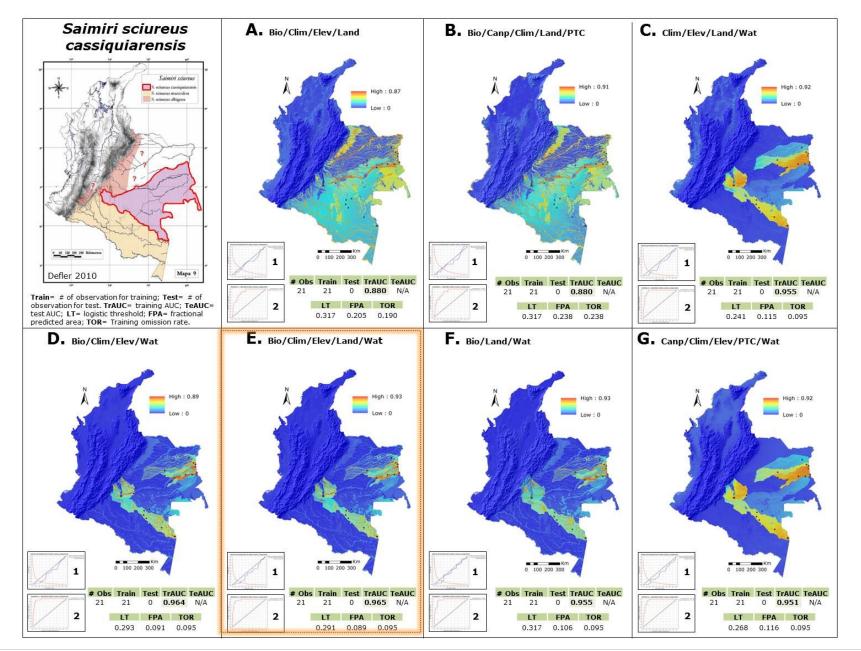


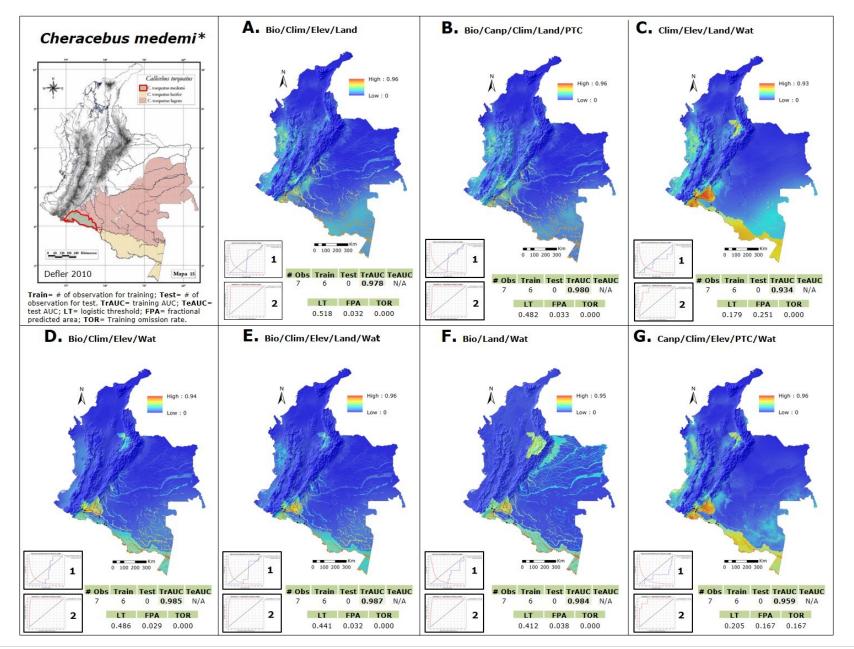


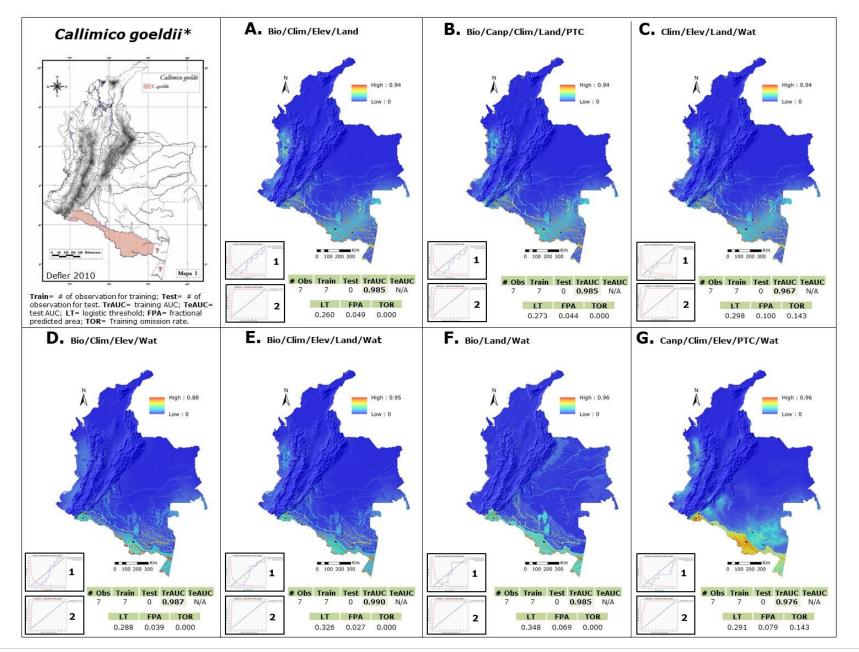


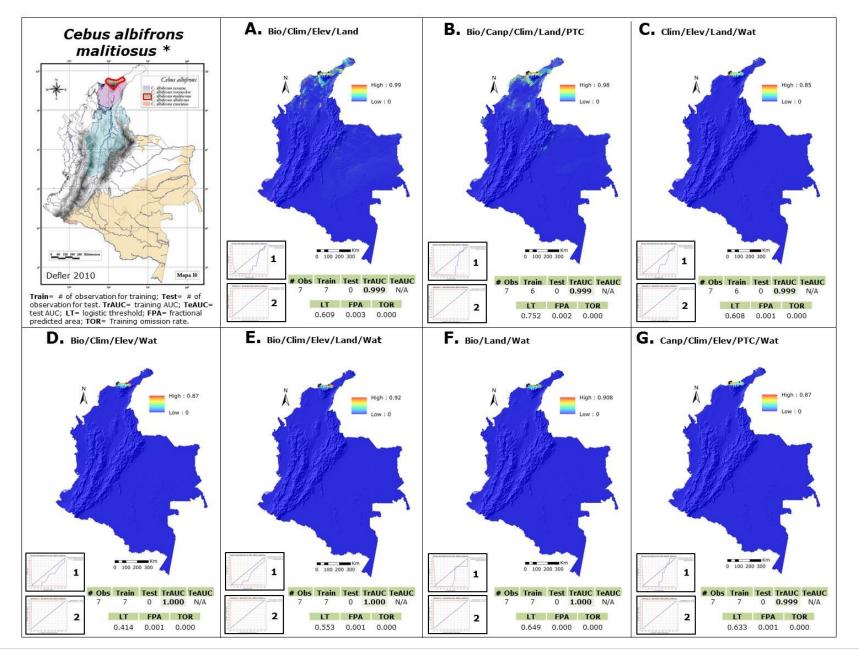


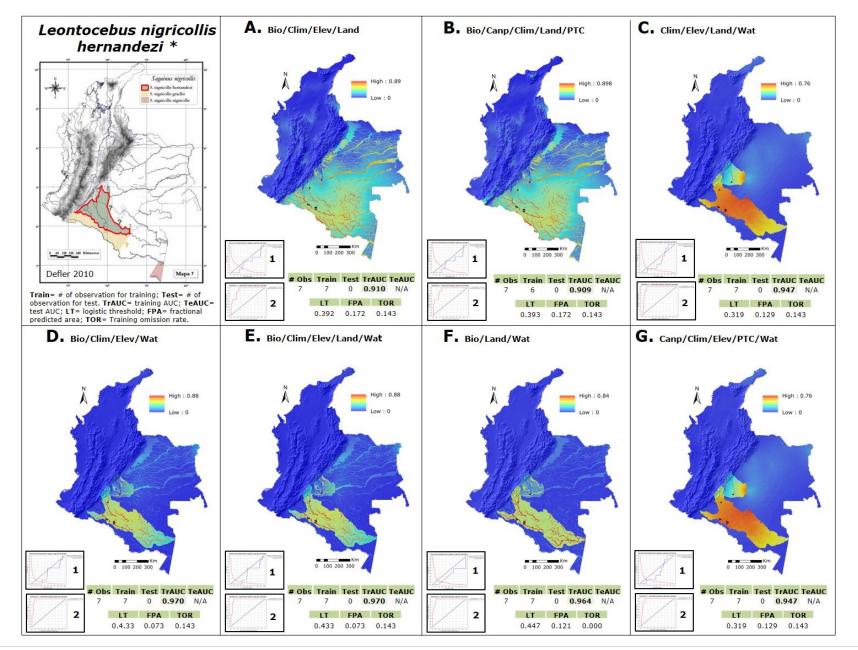












Site	Natural Region	Geographic Sub-area	Dept.	Municipality	Description	CRR
1	Caribbean	Savannas of the valleys of Sinu and Upper San Jorge Rivers (5)	Cordoba	Lorica, Purisima	North east side of the department	ABF
2	Caribbean	Gulf of Uraba (7)	Antioquia	Turbo	Across plains in e mouth of the Atrato River	ABF
3	Caribbean	Gulf of Uraba (7)	Cordoba	Necocli, SanJuan de Uraba	Vicinity to the Marimonda marsh, low Mulatos River basin	ABF
4	Pacific	Baudo-Darien mountain range (11)	Choco	Unguia	Foothills of the Sierra del Darien mountain range near PNN Katios	ABF
5	Pacific	Alluvial valleys of Atrato and San Juan rivers (12)	Choco	Riosucio	Valley of the Salaqui River	ABF
6	Andean	Antioquian mountains (24)	Antioquia	Abejorral, Sonson	Valley of the Rivers Buey and lower Armas	ABF
7	Andean		Antioquia	La Pintada	Cauca canyon between the Palmira hill and De La Pintada cliffs (south-east region of the municipality)	ABF
8	Andean	Valley of Cauca river (20), Antioquian mountains (24)	Antioquia	Urrao, Abriarqui, Caicedo, Anza, Betulia, Concordia and Salgar	South-western region along the Cauca River canyon	ABF
9	Andean	Valley of Cauca river (20)	Antioquia	Taraza, Caceres	Northern areas along the lower Cauca River valley	ABF
10	Andean	Antioquian mountains (24)	Antioquia	Amalfi, Anori	Central areas in the Nechi River basin	ABF
11	Andean	Middle Magdalena (26)	Santander	El Playon, Rio Negro	Foothills west side Serranía de los Yariguies mountain range, close by PNN "Serranía de los Yariguies", ending at the north side of the Department in the middle Magdalena watershed.	ABF
12	Andean	Valley of Cauca river (20)	Caldas	Anserma, Neira, Filadelfia, Riosucio	Hills of Conchari, Cocorondo and Curi, in the mouth of the Tapia River and La Honda ravine	ABF
13	Andean	Western cordillera (17)	Risaralda	Marsella	Small areas_in the valleys of lower Otun River	ABF
14	Andean	Western cordillera (17)	Risaralda	Pereira	Small areas_in the valleys of the Cauca River	ABF
15	Pacific	Coastal plains of the Pacific region (13)	Cauca	Lopez de Micay	Middle and lower basin of the Micay river	CAZ

Appendix K. List of 37 new conservation sites identified under the 17% conservation goal. Additional annotations about species distributions and prioritized conservation areas under 22 and 27% conservation goals can be found below the table.

16	Pacific	Norther n sector western side of the western cordillera (9)	Choco	Riosucio	Along the valley of the Salaqui River	CAZ
17	Amazon	Amazon plain (42)	Putumayo, Caqueta	Puerto Guzman/ La Solita	Area between the upper Caqueta River and the lower Orteguaza River	CAZ
18	Amazon	Amazon plain (42)	Amazonas	Tarapaca	Mouth of the Cotuhé River into the Putumayo River, close to the border with Brazil	CAZ
19	Amazon	Amazon plain (42)	Amazonas	Leticia	Along the Purite River between the eastern side PNN Amacayacu and the Brazilian border	CAZ
20	Amazon	Amazon plain (42)	Amazonas	Leticia/Puerto Nariño	Along the Amazon River basin at the most southern side of the department and adjacent to the south side of the PNN Amacayacu	CAZ
21	Caribbean	Penisula of La Guajira (1)	Guajira	Uribia	Upper-middle Rancheria River before reaching the Caribbean Sea	CAZ
22	Caribbean	Sierra Nevada de Santa Marta mountain range (2)	Guajira	San Juan del Cesar	Northwest hillside of Sierra Nevada de Santa Marta mountain range (hills of the El Chorro, Cerro La Sierra, Bañadero, Los Mojones, Los Salados; Tomarrazon Mountains)	CAZ
23	Andean	Serrania de Los Motilones mountain range (33)	Guajira	La Jagua del Pilar, Urumita, Villanueva	By the Serranía de Perija Mountain range within the limits of the national park Sierra de Perija in Venezuela	CAZ
24	Andean	Antioquian mountains (24)	Bolivar	Santa Rosa del Sur, San pablo	Serrania San Lucas mountain range	CAZ
25	Caribbean	Savannas of the valleys of Sinu and Upper San Jorge Rivers (5)	Cordoba	Los Cordobas, Puerto Escondido, Moñitos	Across Upper Sinu River basin	CAZ
26	Caribbean	Caribbean savannas (4)	Cesar	El Copey	Area between the Garupal and the Paila Rivers	CAZ
27	Andean	Antioquian mountains (24)	Antioquia	Nechi, Caucasia	Nechi River valley, northern area of the department	CAZ
28	Andean	Antioquian mountains (24)	Antioquia	Anori, Amalfi	East side of the Ponce River basin	CAZ
29	Andean	Antioquian mountains (24)	Antioquia	San Carlos, San Luis	Between Nare and Caldera Rivers	CAZ
30	Andean	Antioquian mountains (24), Middle Magdalena (26)	Antioquia, Bolivar, Boyaca, Santander	Several	Large area adjacent to west side of the Central Cordillera, Serranía Las Iglesias and Serranía San Lucas, all along the valley of the Magdalena River in its course by the Departments of Bolivar, Santander and Antioquia, reaching the northwestern side of the department of Boyaca	OVERL

31	Andean	Middle Magdalena (26)	Santander	Cimitarra	Along the Carare River (a tributary of the Magdalena River)	OVERL
32	Andean	Antioquian mountains (24)	Antioquia	Ituango, Taraza	Upper Nechi River basin	OVERL
33	Caribbean	Savannas of the valleys of Sinu and Upper San Jorge Rivers (5)	Cordoba	San Bernardo del Viento	Close by the coastline.	OVERL
34	Pacific	Serranias Baudo - Darien mountain ranges (11)	Choco	Riosucio	Valley of the Salaqui river, northwest portion of the Department.	OVERL
35	Amazon	Amazon plain (42)	Putumayo	Puerto Guzman	Upper Caqueta River	OVERL
36	Amazon	Amazon plain (42)	Caqueta	La Solita	Lower Orteguaza River	OVERL
37	Amazon	Amazon plain (42)	Amazonas	Tarapaca, Leticia	Area adjacent to Putumayo, Purite and Amazon rivers.	OVERL

Numbers in parentheses beside geographic sub-area names correspond to their ID numbers in Appendix A. **Dept.**: Department (administrative division similar to Provinces in Canada) **CRR**: Cell Removal Rule; **ABF**: Additive Benefit Function; **CAZ**: Core-Area Zonation; **OVERL**: Overlapping areas.

Additional prioritized sites for conservation

When expending conservation targets to 22% and 27% protection (Figures 2.4 and 2.5, main chapter), overlapping areas were identified in: 1) Serranía de Abibe mountain range (Bolivar Department), the Mulatos River basin and Serranía de Urama mountain range (Antioquia Department); 2) municipalities of Otanche and Pauna in Boyaca; 3) forested areas in the Cundinamarca Department (Negro River basin, municipalities of Puerto Salgar, Caparrapi, Yacopi and La Palma); 4) forested areas in the Gulf of Uraba and Valley of the Sinu and upper San Jorge rivers, the coastal Pacific region (Choco Department) in zones along the middle Atrato and middle San Juan basin rivers, and a large area that include the PNN Los Katios, covering parts of the Serranía del Darien mountain range and Salaqui riverbed (Unguia, Riosucio and Jurado municipalities); 5) areas between the Putumayo River and Amazonas River (southern side of the Amazonas Department), especially forests associated to the lower Putumayo River in the corregimiento de Tarapacá and the area connecting with PNN Amacayacu to areas along the Cotuhé River.

In addition, priority areas increased in size 1) along the east side of the Serranía San Lucas mountain range (Bolivar and Cesar Departments) within the valley of the Magdalena River and extending north into the valley of the Cesar River (municipalities of La Loma, Chimichagua and Guiamaral); 2) from north by the Serranía de Perija mountain range heading south along the Serranía Los Motilones mountain range until reaching the north side of the department of Santander (municipalities El Playon and Rio Negro); 3) along the Amazon River (including the area of the Boia Uassu River) and the catchment area of the Calderon River from the border with Brazil to the southeast side of the PNN Amacayacu.

Individual priority areas were also identified for each cell removal rule in the 22% conservation target (Figure 2.4). In the case of the ABF rule: 1) central areas in the Serranía San Lucas mountain range (department of Bolivar), 2) habitats across the east side of the Magdalena River basin (Santander Department), and scattered throughout the Serranía de las Quinchas mountain range in the Departments of Boyaca (municipalities of Puerto Boyaca and Ochante) and Santander (municipalities of Bolivar and Jesus Maria), 3) wooded areas between the Mulatos and

San Juan rivers (Arboletes and San Pedro de uraba municipalities, western side of Antioquia Department), 4) in central zones in the Serranía de Urama mountain range and west foothills of Occidental Cordillera, 4) in the northern area of the Cordoba Department and in the Serranía de Las Palomas mountain range (Antioquia Department), 5) northeast areas (municipality of Riosucio) and the Serranía de los Saltos mountain range (Choco Department), 6) plains and Amazon slopes in the Eastern Cordillera, specifically along the Mesa del Guavio plateau (municipality of San Luis de Gaceno, south of Boyaca Department), 7) additional areas in the Orinoco region in the Cusiana River basin (municipalities of Mani and Tauramena, department of Casanare), parts of the Meta Department adjacent to the north side of PNN La Macarena, and across catchment areas of the rivers Metica, Ariari and Guejar. Finally, areas in the Amazon region are located in 8) the south of the La Macarena mountain range where the rivers Duda and Guayabero converge (Meta Department), 9) gallery forests associated to tributaries of the low Guayabero River (municipality of San Jose del Guavire, Guaviare Department), and along the Putumayo River (Puerto Arica and El Encanto).

In regards CAZ areas: 1) in the Caribbean Savannas (department of Cesar, south PNN Sierra Nevada de Santa Marta, Cesar Department), 2) the Andean region, particularly in the Serranía de Los Motilones mountain range (Cesar Department), 3) in the Catatumbo area near the east side of the PNN Catatumbo Bari (Norte de Santander Department), 4) plains between the low Mulatos and low Sinu river in northwest of the region of the Gulf of Uraba (Departments of Antioquia and Cordoba), 5) wooded areas in the Pacific region along the Parmillo River (southwest side of PNN Paramillo, Antioquia Department), 6) in the upper Quito River basin, the coastal zone of the municipalities of Acandi and Unguia along the Atrato River (Choco Department), 7) gallery forests along the Micay River and reaching the west side of the PNN Munchique (Cauca Department), 8) in the upper Mira River basin (municipality of Tumaco) and in west foothills of the western Cordillera in the municipality of Barbacoas (southern of the Nariño Department). Finally, 9) in the Amazon plateau, prioritized areas were selected adjacent to the south side of the national parks of Tinigua and Picachos (Meta Department) and in a small area in the upper Caqueta River (municipality of Puerto Guzman, Putumayo Department).

Under a 27% conservation scenario (Figure 2.5), major changes included increases in the number and size of overlapping areas: 1) forest in the north part of the Andean region, 2) in the

Caribbean region (Gulf of the Uraba in the Antioquia Department and forested areas in Savannas of the Cesar Department), and the El Corchal Mono Hernadez Sanctuary for flora and fauna (Sucre Department), 3) in the Pacific region in a continuous strip of land from Serranía del Darien mountain range to alluvial plains of the Atrato and San Jorge rivers, 4) areas connecting the Munchique national park with the pacific coast (south of the Cauca Department), 5) in the Meta Department by the foothills of the east Cordillera towards plains in the Orinoco region (Upper Meta River and Duda River) and the north/south area of the national parks complex of Tinigua, Macarena and Picachos.

Similarly, increases in number priority ABF and CAZ areas were also observed. ABF areas expanded within gallery forests in the department of Amazonas (Amazon region) and within riparian forest in central zones of the department of Meta across Meta and Guayabero river basins (Orinoco region) where prioritized CAZ areas were also identified. Additional areas were also found in the department of Santander, adjacent to the Serranía of Yariguies mountain range (Andean region). Priority CAZ and ABF zones were also within the north part of Central Cordillera in the upper Nechi river watershed (Department of Antioquia).

Additional priority CAZ areas were also detected in the Andean region, in the Catatumbo River basin at the east side of the Eastern Cordillera (department of Norte de Santander), and the catchment area of the upper Magdalena River (south of the department of Huila) along its course in the north parts of the department. Selected areas were also located besides the Cienaga Grande de Santa Marta Sanctuary for flora and fauna at the north of the department of Magdalena.

Implications for primates in Colombia

Under the 17% conservation goal, prioritized sites identified in the Amazon piedmont correspond to fragments of forested areas used by the Caqueta titi monkey (*Plecturocebus caquetensis*), a recently discovered endemic taxon considered as at most risk in Colombia (García et al. 2010 and Porter et al. 2013) and that is not currently protected. García et al. (2010) has emphasized in the importance of reserves for the survival of this species, due to the ongoing detrimental effect of mining activities and land conversion associated with illicit crops and extensive ranching within the range of the Caqueta titi monkey.

Although national parks or civil natural reserves should be the best way to safeguard the Caquetá titi monkey, it would be important to consider a Fauna Sanctuary (Santuario de Fauna in Spanish) as a more appropriate tool for protection since explicitly preserves species or communities of wild animals, and genetic resources of the national fauna (MAVDT 2010). The fauna sanctuary relates to the protected area category of "Habitat / species management area" (category IV) suggested by the IUCN (Dudley 2008), where the priority of the site is protecting, maintaining, or restoring particular species and/or fragments of ecosystems or habitats in areas already enduring substantial modification, with the possibility of constant management intervention. This category is a valuable conservation tool to protect particular target species under high risk of endangerment or extinction, such as is the case of the critically endangered Caquetá titi monkey, but possibly other species such spider monkeys and the Santa Marta white-fronted capuchin.

Another species that would benefit from conservation sites in this portion of the Amazon plains is the long-haired spider monkey (*Ateles belzebuth belzebuth*) and the Miller's saki (*Pithecia milleri*). Although some populations of Miller's sakies are secure in La Paya NNP (Defler 2010), the species's conservation status is still considered vulnerable (Defler et al. 2006), with an unknown ecology and status of populations (Defler 2010, Porter et al. 2013 and Marsh & Veiga 2015).

Priority conservation sites identified in the north part of the Andean region (e.g., Serranía de San Lucas mountain range, the Nechí river basin and the upper Cauca basin, all part of the Nechí Forest Refuge), would protect the endemic Brown spider monkey (*Ateles hybridus brunneus*). However, assessments of its population status are still needed given the identification of areas of high vulnerability within its range (Figure 2.8), and additional refinement of remnant habitat would strengthen decision making. *A. hybridus* has been recently included in the list of the "world's 25 most endangered primates", with little known about number of individuals in the wild (Link et al. 2015a). Recently, the Serranía de San Lucas was declared as one of the six new protected areas to be included in the national park system in Colombia (MADS 2015). Several authors agreed to the importance of protecting this area as it is a potential refuge for not only for the brown spider monkey, but also other threatened species including the Santa Marta white-fronted capuchin, the white-footed tamarin, the grey-handed night monkey, and the Colombian

woolly monkey (Defler et al. 2003, Morales-Jimenez 2004, Urbani et al. 2008, Defler 2010, Defler et al. 2010, Stevenson et al. 2010, Link et al. 2013, Rodríguez-Bolaños et al. 2013 and Roncancio et al. 2013).

In addition, the inclusion of new conservation areas benefit species with low level of protection as the national endangered Colombian black spider monkey (*Ateles fusciceps rufiventris*), the species occurs in two national parks (Los Katios and Las Orquideas) but have seen decreases in population size due to habitat loss and hunting (Cuarón et al. 2008a and Defler 2010). Moreover, mining rights appeared to exist around Las Orquideas National Park, near high vulnerability areas (Figure 2.7). Thus, new conservation sites in the Pacific region (Sierra del Darien mountain range and valley of the Salaqui River) could also protect primate habitats of low threat (Figure 2.7), although population and hunting pressure should be assessed and monitored. Defler (2010) suggests that the Colombian black spider monkey may become national extirpated if hunting activities not better controlled. This is especially relevant to this species given that life history traits such late maturation and long inter-birth intervals limit its capacity to recover from threats (Cuarón et al. 2008a). Hunting activities in this region have been also linked to decreases in population size of the South Pacific blackish howler monkeys (*Alouatta palliata aequatorialis*) to the point of considering it as rare within the Utria National Park (Cuarón et al. 2008b).

Sites prioritized for conservation in forested areas within the middle and lower basin of the River Micay would offer a valuable alternative to protecting Colombian black spider monkeys given the suitability habitat modelled for this area and low mining pressure. However, assessments of populations and local threats are needed given the incidence of illicit crops that can increase habitat fragmentation. Lastly, areas of higher habitat suitability of black spider monkeys are also predicted along the Cauca river valley in the region between the Antioquia Mountains and the west side of Western cordillera, where sites of high vulnerability and high conservation value were identified so observation in that areas would benefit this species. It is worth to mention that the conservation plan presented here is the first attempt to meet management measures suggested by Defler (2010) about increasing reserved sites for this taxon.

Adding protection in the Pacific would also benefit the Colombian white-throated capuchin (*Cebus c. capucinus*), the Geoffroy's tamarin (*Saguinus geoffroyi*), and the Panamanian night monkey (*Aotus zonalis*), a vulnerable species presumably being protected in seven national

natural parks in the country but knowledge on population status is null (Cuarón et al. 2008c). Whereas that modeled conservation sites in the valley of the Cauca River (Antioquia Department) would also safeguard the near threatened varied white-fronted capuchin monkey (*Cebus a. versicolor*) and other vulnerable species such as the Colombian night monkey (*Aotus lemurinus*) and the white-footed tamarin (*Saguinus leucopus*).

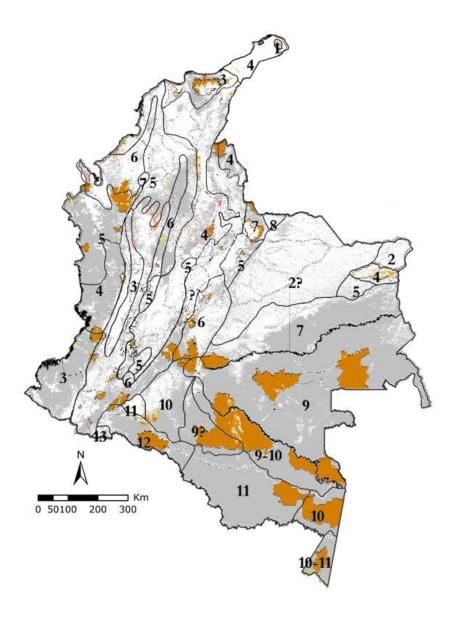
Core-Area Zonation priority sites in central parts of the Andean region are strategic sites to protect key habitat for the white-footed tamarin. Additional reserves proposed by Roncancio et al. (2013) within the municipalities of Anori and Amalfi (Antioquia Department), Serranía San Lucas mountain range and the Bolivar Department are consistent with conservation sites prioritized in Zonation and within the probable range predicted for the white-footed tamarin. The same authors reported a 60% decrease on the habitat suitability for this endemic species, along with indications of local extinctions and total habitat loss. The vulnerability analysis also suggested the presence of illicit crops and mining rights within much of the modeled distribution for this endangered tamarin.

In addition, the grey-handed night monkey (*Aotus griseimembra*) and the Río Cesar whitefronted capuchin (*Cebus albifrons cesarae*) would benefit from prioritized Core-Area Zonation areas (that include a recently declared protected area by the Serrania de Perija (MADS 2015)) in the Guajira region, although examination of remaining habitats still needs to be addressed (Morales-Jiménez & Link 2008 and de la Torre et al. 2015b).

New conservation areas in the Caribbean region (Mouth of Atrato River, Urabá Gulf, Sinú River and Upper San Jorge River valleys) could be secured for endemic species such as the cotton-top tamarin (*Saguinus oedipus*). Despite the existence of strong conservation programs and having presence within three national parks, substantial percentage of suitable forest for this taxon is still disappearing (Miller et al. 2004 and Savage & Causado 2014). New reserves have been recognized as an important condition to further safeguard this emblematic taxon (Defler et al. 2003 and Defler & Rodríguez-Mahecha et al. 2013), as well as increasing protection of sympatric species as the South Pacific blackish howler monkey, the Colombian white-throated capuchin and the Colombian black spider monkey.

Changes in the distribution of some species of primates in Colombia

In regards increases on species distributions compared with known range maps, historical occurrence records for Saimiri sciureus cassiquiarensis in La Macarena (Orinoco region) probably may better represent that of Saimiri sciureus albigena given the existing description of the distribution for the subspecies (Boubli et al. 2008 and Defler 2010). Another possible misidentification is the Miller's saki (*Pithecia milleri*) with the modeled distribution encompassing habitats where the other species of saki (*Pithecia hirsuta*) occurs. Defler (2010) and Marsh (2014) further describe the controversy on distribution patterns of saki monkeys in Colombia. Misidentification may also explain increases in the distribution (ranges) of the collared titi monkey, with locations on the south side of the Caquetá River (Amazon region) when it should correspond instead to the distribution of the yellow-handed titi Monkey (*Cheracebus lucifer*) (Veiga & Palacios 2008 and Veiga et al. 2008 respectively).


On the other hand, wider ranges for the white-fronted capuchin (*C. a. albifrons*) and the endemic white-footed tamarin (*Saguinus leucopus*), may be tied to a similarity of environmental conditions between new and known areas and not to probabilities of actual occurrence (Roncancio et al. 2013). Suggested losses in the distribution for S. leucopus (Defler 2010) are consistent with the smaller range predicted for this species in this study.

Habitat loss due to forest harvesting and land conversion could be closely related with decreases in the distribution for the imperilled and sympatric species *A. palliata aequatorialis, Aotus zonalis, Ateles fusciceps rufiventris* and *Cebus capucinus capucinus*. In fact, current "deforestation hotspots" and predicted areas of clear-cuts (Etter et al. 2006) in the Pacific region occur within known distributions of these species (Defler 2010) and concur with locations modeled as unsuitable in this study. Highly restricted distribution of suitable habitats for the vulnerable grey-handed night monkey (*Aotus griseimembra*) in the Catatumbo area, are also associated to forest loss (Morales-Jimenez & Link 2008).

Finally, restricted ranges of suitable habitat for the Brumback's night monkey (*Aotus brumbacki*), and the Colombian squirrel monkey (*Saimiri sciureus albigena*) correlate with aggregated observations for a few localities within the same region. Information gaps for the Colombian black-handed titi monkey limit conservation efforts and the identification of habitat preferences,

a quality displayed by other species within the genus (Veiga & Palacios 2008 and Defler 2010). This is also the case for the rare and habitat specialist Goeldi's marmoset monkey (Ferrari et al. 1999), where available data date back to 1976 (Cornejo 2008 and Defler 2010), and for the Hernández-Camacho's black mantle tamarin, with little information on its ecology and geographic distribution (Izawa 1978, Hershkovitz 1982 and Vargas 1994).

Appendix L. Distribution of new conservation sites from the Additive Benefit Function (ABF) and Core-Area Zonation (CAZ) rules at 17% conservation target, and their concurrence with the elevational and latitudinal diversity gradient suggested for Colombia (modified from Defler 2010, original: Hernández-Camacho & Defler 1989). Higher number of species is found in lowland areas in the Amazon region, south side of the country.

