
Liquidity Management Attacks on Decentralized Lending Markets

by

Alireza Arjmand Shakouri

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Department of Electrical and Computer Engineering
University of Alberta

© Alireza Arjmand Shakouri, 2024

Abstract

Decentralized Finance (DeFi) continues to open up promising opportunities for a

broad spectrum of users, with lending pools emerging as a cornerstone of its applica-

tions. While prominent platforms like Compound and Aave maintain a large share

of the funds in lending pools, numerous other smaller pools also exist. Many of these

smaller entities draw heavily from the design principles of their larger counterparts

due to the complex nature of lending pool design.

This thesis asserts that the design approaches that serve larger pools effectively

may not necessarily be the most beneficial for smaller lending pools. We identify

and elaborate on two liquidity management attacks, which can allow well-funded

attackers to exploit specific circumstances within lending pools for personal gain.

Although large lending pools, due to their vast and diverse liquidity and high user

engagement, are generally less vulnerable to these attacks, smaller lending protocols

may need to employ specialized defensive strategies, particularly during periods of low

liquidity. We also show that beyond the six leading lending protocols, there exists a

market value exceeding $1.75 billion. This considerable sum is dispersed among over

200 liquidity pools, posing a potentially attractive target for malicious actors.

Furthermore, we evaluate existing designs of lending pools and suggest a novel

architecture that distinctly separates the liquidity and logic layers. This unique setup

gives smaller pools the adaptability they need to link with larger, well-established

pools. Despite encountering certain constraints, these emerging pools can leverage

the considerable liquidity from larger pools until they generate sufficient funds to

form their own standalone liquidity pools. This design cultivates a setting where

ii

multiple lending pools can integrate their liquidity components, thus encouraging a

more diverse and robust liquidity environment.

iii

To my fiancée, my rock and guiding star. Your unwavering love, understanding, and

encouragement have been the driving force behind every page of this work.

And to my parents, who have always believed in my dreams, even when they seemed

distant. Your love and guidance have been the bedrock upon which I’ve built my

aspirations.

iv

Acknowledgements

I would like to express my sincere gratitude to Professor Majid Khabbazian, my thesis

supervisor, for the invaluable guidance, patience, and expertise provided throughout

this research journey. Your insights and feedback have been instrumental in shaping

this work, and your unwavering support has made this endeavor both challenging and

rewarding. I am deeply thankful for the opportunity to learn under your mentorship

and for the wisdom you’ve shared.

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Overview of Thesis . 5

2 Background and Related Works 7

2.1 Blockchains . 7

2.2 Decentralized Finance (DeFi) . 7

2.3 Attacks on DeFi . 8

2.4 High frequency trading . 9

2.5 Related work . 9

3 Liquidity Management Attacks 11

3.1 Model . 11

3.2 Attacks on lending markets . 12

3.2.1 Utilization kink attack . 13

3.2.2 DoS attack on liquidity providers 21

3.2.3 Economical games by adversary 24

3.3 Liquidity aggregation . 27

3.3.1 Designing Logic and Liquidity Layers 29

3.4 Analyzing on-chain lending protocols 33

3.5 Extension ideas . 37

3.5.1 Interest Rate Swap . 38

3.5.2 Token Wrappers . 38

3.5.3 Payment Scheduling . 39

4 Conclusion 40

Bibliography 42

vi

List of Figures

3.1 The exploit of the kinked rate model 14

3.2 Liquidity aggregation process . 29

3.3 asset distribution beyond the top 6 protocols, totaling $1.75b. 34

3.4 Frequency of protocols forked by newer projects. 37

vii

List of Symbols

Latin

B Borrowed amount

EC Effective collateral

kink Optimal utilization

L Supplied liquidity

R Interest rate

U Utilization

Greek

α Attacker liquidity percentage

viii

Abbreviations

CeFi Centralized Finance.

DAO Decentralized Autonomous Organization.

DeFi Decentralized Finance.

DeX Decentralized Exchange.

DoS Denial of Service.

EVM Ethereum Virtual Environment.

NFT Non-Fungible Token.

P2P Peer-to-Peer.

PoS Proof of Stake.

PoW Proof of Work.

TVL Total Value Locked.

USD United States Dollar.

ix

Chapter 1

Introduction

1.1 Motivation

Blockchain technology’s initial real-world applications emerged in 2009 when Satoshi

Nakamoto [1] introduced a method allowing multiple entities to transition from one

state to another through global consensus, without needing to trust other parties.

This groundbreaking concept was pivotal in the creation of Bitcoin, ushering in a

decentralized banking system where individuals had direct control over their funds.

This innovation sidestepped traditional banking intermediaries, offering users semi-

anonymity and complete autonomy over their assets. The evolution of blockchain

technology hasn’t ceased. While Bitcoin started the passage, other projects, no-

tably Ethereum, have expanded on this foundation. Ethereum leveraged the global

state machine, enabling users to develop interactive applications. This advancement

extended blockchain uses further, allowing for the creation of automated systems

characterized by immutable open-source code and utter transparency.

Many financial tools have been built on blockchain systems, especially on Ethereum,

leading to what we call Decentralized Finance (DeFi). This new field offers various

options such as Liquidity Staking, Non-Fungible Tokens (NFTs), Decentralized Ex-

changes (DEX), Yield Aggregators, and more. Unlike the traditional financial world

managed by banks, DeFi is open and transparent for everyone to see.

The magic behind blockchains is their consensus algorithm. Bitcoin, the first of its

1

kind, used the Proof-of-Work (PoW) method. In PoW, system security depends on

the combined computer power of all of its honest users. In this setup, users request to

send their digital coins to others and their transactions are publicly viewable in a place

called the mempool. Miners, another group in this system, batch these transactions,

the first one to solve a specific challenge gets to finalize their batch of transactions

and is rewarded for it. Everyone else then validates and accepts this new batch,

and the process continues to the next updated state. However, this method uses

huge amounts of energy across the whole system, which can be an important issue

to consider. An alternative is the Proof-of-Stake (PoS) method, where instead of

competing, a random leader block builder is picked to finalize transactions at each

round. Other block builders then are enabled to vote if they attest to the proposed

block, or they want it invalidated.

Applications developed on blockchain systems, such as Ethereum, have established

DeFi protocols as a bedrock for investors aiming to earn returns on their assets in a

decentralized setting, retaining full custody of their funds. Lending and borrowing

are some of the most fundamental financial practices. Traditionally, a deal involves

two parties, the lender and the borrower. The borrower receives money from the

lender, promising to return it with added interest after a set period. Often, the

lender may require something valuable as collateral to ensure repayment. Blockchains

have modernized this practice in a way that lenders contribute funds to a common

pool [2], from which borrowers can draw. This pooled approach offers advantages:

(i) transactions are instantaneous provided there’s sufficient liquidity, (ii) and there’s

no direct interaction between individual lenders and borrowers. The protocol ensures

repayment by holding assets worth more than the borrowed amount as collateral.

This over-collateralization means borrowers must lock in assets of greater value than

their loan. For instance, if Alice owns 10 ETH and needs $1000 but expects the ETH

price to rise, she can lock her ETH in a lending pool, borrow the $1000, and later

retrieve her ETH by repaying the loan. However, if the value of her collateralized

2

ETH approaches $1000, the protocol may sell it to safeguard the lenders’ investments

in a process known as liquidation [3].

Despite experiencing a decline in 2022 [4], the lending markets continue to ex-

pand, amassing a Total Value Locked (TVL) in excess of $13.2b across a multitude

of blockchains [5]. While dominant lending markets such as Compound [6, 7] and

Aave [8, 9] maintain the bulk of this value, new lending protocols inspired by these

major lending pools are constantly emerging, contributing novel capabilities to the

application layer for users. To gain traction, these newer lending protocols need to

incentivize users to entrust their funds to their platforms. This often requires compe-

tition with larger lending pools through attractive incentives such as higher interest

rates and novel application layer opportunities.

A key part of any lending pool is its interest rate formula, which determines how

much borrowers have to pay back based on what they borrow. The importance of this

formula lies in its potential to encourage certain behaviors: (i) It should incentivize

borrowing by decreasing interest rates when ample liquidity is available; (ii) It should

attract external liquidity providers to participate in the protocol by elevating interest

rates when a significant portion of the liquidity is borrowed; (iii) It should stimulate

the retention of some liquidity in the pool, enabling providers to withdraw at any

time. To encourage these behaviors, several recognized models are frequently used by

lending protocols [10].

In the widely adopted models, lending pools implement high interest rates on

borrowed funds when usage approaches 100%. Consequently, if this level of usage

persists for an extended duration, borrowers will be subject to significantly increased

fees compared to the norm. To address this issue, these lending protocols depend

on diligent users who actively monitor the situation. These users are incentivized to

inject funds into the pool when interest rates are high. However, if these users lack

sufficient funds to effectively reduce the usage or if there is a delay in their actions,

borrowers in the lending pools may suffer substantial losses due to the elevated interest

3

rates.

The expanding domain of lending pools has spurred the creation of numerous new

applications, adding fresh functionalities. Beyond the top six lending pools, there

exists a substantial sum—over $1.7 billion—dispersed across more than 200 pools.

This situation results in a decentralized distribution of liquidity, primarily in pools

that take cues from larger entities. Yet, these smaller pools lack the robust liquidity

seen in major players like Compound and Aave. This disparity not only decentralizes

liquidity but also opens the door for well-funded malicious actors. These actors can

significantly impact these smaller protocols by injecting a substantial amount of cap-

ital, which, relative to the total pool size, can be quite consequential. Such malicious

actors are capable of inflicting considerable harm, including imposing significantly

higher fees on borrowers and triggering liquidity shortages that could lead to censor-

ship. Furthermore, we discuss and explore options that protocols have to effectively

shield honest users from such adversarial actions.

1.2 Contributions

In this thesis, we focus on small lending pools that adopt known models. We pos-

tulate that a malicious liquidity provider, owning a significant share of a liquidity

pool’s reserves, can manipulate other actors to align with certain conditions for their

benefit, potentially causing harm to others. We demonstrate that the relative lack of

substantial liquidity funds and centralized liquidity providers in these smaller pools

can expose them to various threats. In particular, we make the contributions:

• Liquidity Management Attacks: To highlight the vulnerability of small

lending pools, we present two different liquidity management attacks on these

pools. Furthermore, we delve into a general strategy that could be implemented

by an attacker with sufficient funds, highlighting the incentives for users and a

long-term approach that could prove profitable for the attacker but detrimental

4

to the ecosystem. We also evaluate potential mitigation as well as risks involved

in launching the proposed attacks.

• Liquidity Aggregation: We present a model in which lending pools separate

their liquidity layer from their logic layer. By this means, smaller lending pools

can integrate their applications with larger lending pools, thereby enhancing

their liquidity safeguards. In this model, lending pools can coexist in depen-

dent or standalone modes, allowing the community to avoid scattering liquidity

across numerous platforms.

• Lending Protocol Data Extraction: We assessed each of the six biggest

lending pools. Even though they hold most of the TVL, it’s important to note

that there is still a considerable amount of value in the remaining lending pools.

This could potentially make them targets for malicious users.

1.3 Overview of Thesis

The structure of this thesis is outlined as follows, Chapter 2 provides essential back-

ground information and reviews related work in this domain. Chapter 3 is divided

into several key sections. In Section 3.1, we introduce the mathematical model that

serves as the foundation for our discussions, focusing on the most widely utilized

model in this field. Section 3.2 delves into the mechanics of two types of liquidity

management attacks, the Utilization Kink attack, where attackers force borrowers to

incur excessive fees, and the Denial of Service (DoS) attack, which prevents with-

drawals from the protocol. Section 3.3 presents a novel design for lending pools that

facilitates liquidity aggregation. Section 3.4 provides an in-depth analysis of on-chain

lending protocols, concentrating on their structural models, TVL, and distinctive

design features. Additionally, this section examines the aspect of liquidity central-

ization, comparing the top six protocols with the smaller pools. In Section 3.5, we

explore innovative ideas for enhancing lending pool functionalities, which not only

5

foster their growth but also indirectly bolster the overall protocol’s security. Finally,

the concluding part of Chapter 3 summarizes our discussions and suggests avenues

for future research.

6

Chapter 2

Background and Related Works

2.1 Blockchains

Blockchains are distributed systems that maintain a global state across numerous

nodes connected via a peer-to-peer (P2P) network [1, 11]. These nodes utilize a con-

sensus mechanism to synchronize, validate, and perpetuate the state independently,

operating without the need for mutual trust.

State transitions within a blockchain are initiated through transactions submit-

ted by nodes. These transactions must be sequentially ordered and integrated into

the global state transition in the form of blocks. Characteristically, blockchains are

append-only structures, once a transaction is added to the network and collectively

approved by the nodes, it achieves finality and becomes an immutable part of the

blockchain record.

2.2 Decentralized Finance (DeFi)

Ethereum [12] employs a Turing-complete1 language named Solidity, enabling users

to deploy smart contracts. These contracts broaden user capabilities by facilitat-

ing the creation of decentralized applications, giving rise to DeFi [13]. At present,

Ethereum employs the Proof of Stake (PoS) consensus algorithm, which designates

1Turing complete languages are programming languages capable of implementing any algorithm
that a Turing machine can, essentially allowing them to solve any computable problem given sufficient
resources.

7

a block builder each round to select the transactions’ order, which is then subjected

to voting by other block builders. Once a block is produced in each round, all users

can sequentially execute each transaction within the Ethereum Virtual Environment

(EVM) to ascertain the current global state. One distinctive feature of the EVM is

that its operations are deterministic and atomic, altering the state only upon success.

Therefore, given any pre-state and specific inputs, each node would produce identical

outputs. These attributes, coupled with Ethereum’s high throughput, have led to

novel, transparent DeFi applications not traditionally found in Centralized Finance

(CeFi) [14]. Furthermore, Ethereum’s allowance for smart contract composability has

resulted in the establishment of complex ecosystems.

DeFi has continued to thrive over the past year, attracting numerous users and

boasting more than $41.5b in TVL. The absence of third parties and the trans-

parency offered by DeFi applications make them an attractive prospect for many.

Popular DeFi applications include lending pools [2], wherein liquidity providers earn

interest on their contributions, and borrowers can secure a temporary loan of a spe-

cific token by providing collateral. Decentralized Exchanges (DEXs)[15] enable users

to swap one asset for another, with the exchange rate determined by the DEX itself.

Yield aggregators[16] offer investors returns based on strategically pre-programmed

investment approaches. Stablecoins [17] are designed to maintain a consistent value

over time, giving their holders confidence that their assets won’t depreciate with the

passage of time.

2.3 Attacks on DeFi

While code transparency is one of the important DeFi attributes, it can also simplify

the task of spotting faulty code. If such vulnerabilities are detected by attackers, they

could lead to massive security breaches. In some of the most significant hacks, such

as [18, 19], attackers exploited application layer bugs to siphon user funds. The clas-

sification of attack strategies has been thoroughly documented in the literature [20–

8

23], which is essential in assisting the community in identifying and avoiding patterns

that could lead to undesirable consequences. Concurrently, there exist open-source

libraries [24] that strive to provide secure building blocks for contracts. This enables

protocol developers to ensure the safety of their code’s foundational elements.

2.4 High frequency trading

Decentralized markets have given rise to on-chain high-frequency trading [25, 26].

This environment, while presenting many opportunities, also attracts malicious users

aiming to seize on-chain opportunities by tampering with transaction ordering. Tac-

tics such as front-running and sandwich attacks are used to drain funds or steal

opportunities away from unsuspecting users. To mitigate this, private relayers such

as Flashbots [27] have emerged. These entities promise users certain assurances about

their transaction inclusion, thereby safeguarding them from generalized front-runners.

2.5 Related work

Gudgeon et al.[10] introduced the concept of Protocols for Loanable Funds (PLF),

referring to decentralized protocols designed for fund lending. Their research catego-

rizes various interest rate models used by leading lending protocols, focusing on three

primary types, linear, non-linear, and kinked rate models. This thesis specifically

concentrates on the kinked rate model due to its simplicity and effectiveness. Addi-

tionally, Gudgeon et al. evaluated the efficacy of these models and assessed liquidity

availability across different protocols, along with exploring the interconnectedness

among various PLFs.

Bartoletti et al.[2] presented a comprehensive conceptual and formal analysis of

lending pools, framing them as state machines. This approach enabled them to for-

malize a range of user actions within the lending markets. Their study further extends

to the formulation of potential attacks and threats to these markets. Key concepts in-

9

troduced include over-utilization and under-utilization attacks. In under-utilization,

attackers deposit excessive liquidity to reduce the interest rate for lenders. Conversely,

in over-collateralization, they drive utilization to the maximum, preventing liquidity

providers from reclaiming their funds. While this work outlines these strategies, We

tend to delve into the motivations behind each actor’s actions. Building upon this

groundwork, our research explores how attackers can exploit these vulnerabilities to

their advantage without incurring substantial fees when the utilization is at full rate.

Sun et al.[28] investigate various liquidity risks, using Aave as a case study to

highlight the critical nature of these issues. Their analysis focuses on challenges

related to liquidity availability and diversity of liquidity providers.

Hafner et al.[29] evaluate liquidity risks, particularly emphasizing liquidity avail-

ability in emerging lending pools, using Folks Finance as a reference point for their

investigation. Their research identifies the primary cause of these risks as the lim-

ited diversity among liquidity providers in new pools, potentially leading to liquidity

scarcity. They propose methods to gauge liquidity availability based on the diver-

sity of these providers. Our study builds upon this by examining the motivations

of potential attackers, developing a model, and considering collusion among various

attackers. We categorize these types of malicious actions as liquidity management

attacks.

10

Chapter 3

Liquidity Management Attacks

3.1 Model

In this section, we aim to formalize the actions of users who can impact a lending

protocol. To simplify the analysis, we focus on a specific subset of actions in lending

pools and disregard other activities such as liquidations and absorptions. We assume

the presence of numerous users in the system. A user u in our system model is a tuple

u = (S,B,C), where S is the amount of funds the user has supplied to the protocol,

B is the amount of funds borrowed by the user, and C is the total collateral the user

provided to the protocol. For simplicity, in our model, we convert the values of S, B,

and C to a common base value (e.g. USD).

The balance of a user ui = (Si, Bi, Ci) is defined as Si − Bi. If a user’s balance is

greater than zero, the user is considered a liquidity provider ; otherwise, if its balance

is less than zero, the user is identified as a borrower. A borrower must have adequate

collateral in the system for the borrowed balance. Since liquidations are not factored

into our model, the following condition should be true for each user ui:

Si + ECi > Bi,

where ECi is the effective collateral for each user, that is

ECi = Σjcij × fj × rateUSD/j

Here, fj represents the collateral factor for each asset. We denote the total amount

11

of each variable in the entire protocol using the “total” subscript, such as Stotal.

In our system, the borrowers in the system are subject to an interest R calculated

using the kinked interest rate model as follows:

R =

{︄
R0 +Rlow × U if U ≤ kink

R0 +Rlow +Rhigh × (U − kink) if U > kink
(3.1)

In this formulation, U denotes the protocol’s utilization, calculated as Btotal

Stotal
, where

kink represents the optimal utilization rate, often referred to as the ’kink rate’. The

terms R0, Rlow, and Rhigh signify the base interest rate, the lower slope for utiliza-

tion, and the sharp increase in interest rates when utilization surpasses the kink

rate, respectively. Borrowers are assumed to accrue interest with each passing block,

adhering to this interest rate model:

Feei = RU ×Bi × t (3.2)

We also assume that the protocol reserve doesn’t accumulate any yields and all bor-

rower fees are shared among the liquidity providers. To model the reserve, we can

consider the reserve amount as one of the liquidity providers.

Collusion model: In the context of lending protocols, it is conceivable that a

group of users may collude to achieve a common objective. Thus, we consider an

adversary A who can compromise multiple accounts with cumulative supply of up to

fraction α, such as:

α ≥ ΣeSe

Stotal

(3.3)

Where α is the maximum fraction of overall funds that an attacker can control.

3.2 Attacks on lending markets

In this section, we examine the overarching structure of lending pools and present

two forms of attacks that enable an adversary to impose specific conditions on the

liquidity pool by employing economic strategies to secure a desired outcome. These

outcomes could be:

12

• More income: An attacker can augment the fees extracted from other partic-

ipants within the pool over a specific time frame.

• Denial of Service: An attacker can obstruct access to the rest of the partic-

ipants, effectively preventing them from either borrowing or withdrawing their

liquidity from the pool.

While these attacks pose potential complications for other users, they necessitate a

substantial amount of liquidity from the attacker to fulfill the preconditions of launch-

ing the attack. Consequently, the attacker’s risk level escalates in correlation with

the growth of this prerequisite amount. The Compound and Aave protocol models

are currently the most influential among the lending pools, widely implemented by

smaller lending pools and occasionally forked from the main projects. Given the vast

liquidity diversity and substantial user base of the top protocols with the highest

TVL, an adversary would face a formidable task executing these attacks. However,

the situation is different for smaller pools. Here, an attacker could instigate these

attacks with a lower risk and initial capital, thereby realizing a profit. Thus, we

demonstrate that smaller pools cannot merely replicate the strategies of larger en-

tities. They must devise additional defence mechanisms against such attacks while

their liquidity pool is relatively small, thereby safeguarding their liquidity providers

and borrowers.

In the remainder of this section, we commence by elucidating the potential attacks

and demonstrating how an attacker with sufficient liquidity can enforce other actors

to comply with specific conditions. We then proceed with an analysis of the attacker’s

risk before deliberating on some design decisions that new lending pools should avoid.

3.2.1 Utilization kink attack

While borrowers secure funds by depositing an overcollateralized quantity of tokens

in the protocol, they pay ongoing fees determined by the length of their loan. These

13

fees fluctuate based on the degree of liquidity utilization, with adjustments made

following each transaction processed by the protocol. Generally, it is anticipated

that the borrowing rate maintains proportionality with the borrowed amount and the

Rlow delineated in the interest rate formula. However, when the utilization quantity

exceeds a predetermined threshold or ”kink”, all borrowers become liable to pay

supplemental fees to the liquidity providers. The objective of this kink value is to

motivate all participants to act, thereby releasing liquidity within the protocol: (1) as

a liquidity provider, the increased fees offer an incentive to contribute more liquidity

from out of the protocol, and (2) as a borrower, the prospect of evading excessive fees

incentivizes the repayment of the borrowed amount. Both actions lead to a decrease

in total utilization and consequently a reduction in fees. By comparing the fees at

maximum lending protocol utilization and at the kink value, we notice that in some

protocols the fees can unexpectedly jump to more than ten times. This indicates

that if an attacker were to elevate these values by either borrowing the rest of the

remaining liquidity, or pulling out his own liquidity out of the protocol, they could

compel borrowers to bear extensive fees. In such scenarios, smaller pools face two

significant threats compared to their larger counterparts:

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Utilization

In
te
re
st

R
at
e

Rlow

Rhigh

Figure 3.1: The exploit of the kinked rate model

14

• Lesser liquidity required: Attackers need a smaller volume of liquidity to

drive up fees, consequently exposing themselves to lower risks.

• Smaller group of active users: In such circumstances, the lending pool re-

quires either active external liquidity providers or borrowers to regulate utiliza-

tion. A smaller lending pool implies a lower number of participants monitoring

such activities in the system, hence increasing the likelihood of such attacks.

Simplified attack

In order to exemplify this attack, we explore a hypothetical scenario involving a

single liquidity provider, Alice, and a borrower, Bob. This analysis demonstrates

how Alice can increase the utilization potentially to secure additional fees from Bob.

Subsequently, real-world protocol figures are utilized to replace the formulas and

estimate the possible damage an attacker can cause borrowers to pay.

Scenario Setup: Consider a lending platform characterized by parameters Rlow,

Rhigh, and kink, which are used to compute the interest rate. Initially, Alice con-

tributes S initial funds to the protocol. Subsequently, Bob borrows an amount B,

setting the protocol’s utilization at the kink amount by offering C in collateral value

with collateral factor f .

Attack Execution: Alice currently receives fees from Bob proportionate to kink×

Rlow. Nonetheless, Alice can elevate the utilization by opting for one of the following

strategies to increase the protocol’s utilization:

• She may withdraw (1− kink)× S liquidity from the protocol.

• She might borrow the remaining amount of (1− kink) × S and pay those fees

to herself, since she is the sole liquidity provider. In this case, Alice needs more

funds compared to the previous method to borrow and execute the attack.

15

Any of these actions would surge the protocol utilization to 100%, thereby significantly

escalating Bob’s fee. We can calculate the Bob’s new fee, which is proportionate to

kink×Rlow +(1− kink)×Rhigh. We can see that Bob needs to pay 1+
(1−kink)×Rhigh

kink×Rlow

times more fees.

Aftermath: Although Bob retains the option to stop this attack at any point by

repaying his borrowed positions, he remains accountable for fees corresponding to the

duration he borrowed the funds from the protocol. Nevertheless, Bob’s response may

be hindered for various reasons:

• He may not have enough liquidity to repay the borrowed sum, especially if these

funds have been invested and locked elsewhere.

• He may be offline or negligent in monitoring the protocol’s fees.

Furthermore, many protocols accumulate fees for borrowers in a manner that esca-

lates their borrowing position over time. This means that by exploiting these cir-

cumstances, Alice not only forces Bob to endure higher fees but could also cause the

liquidation of his position if the accumulated fees surpass Bob’s initial estimations.

Bob’s position can even get liquidated if the following formula becomes true:

ECBob < B + fee (3.4)

While Bob may have provided ample collateral to cover the protocol’s standard fees,

Alice could potentially elevate Bob’s fees, leading to the liquidation of his position

and opening up another potential profit source.

Numerical example: As a straightforward example, consider a lending pool

emulating the interest rate parameters of Compound V2’s cETH contract. As of

this writing, this contract has an Rhigh/Rlow ratio of 217.78 and a kink value of

0.8. Consequently, for utilization rates exceeding 80 percent, we observe a signifi-

cant increase in the fees taken from borrowers. Yet, Compound V2 is a well-known

contract, frequently monitored by numerous users. In contrast, for newly generated

16

contracts which are copying these values, the utilization kink attack can present a

genuine threat. An attacker could amplify fees by escalating utilization from 80 to

100 percent, by ((1 − 0.8)/0.8) × 217.78 = 54.445 times. Thus, if Alice successfully

executes this attack against Bob for merely a single day, the profits generated would

approximate those accrued from nearly two months of honest investment.

Utilization kink attack in general setting

While the prior example was a basic version of the attack with just two actors in the

system, it served to illustrate that such attacks are indeed possible. However, in real-

world situations, the number of actors, including both honest users and adversaries,

is typically greater than one. In this section, we aim to shape a scenario involving

multiple actors, where adversaries might work together to conduct the explained

attack on a specific lending pool.

Collusion among liquidity providers: In order to examine the attack in a

broader context, we need to account for realistic interactions among actors. In this

section, we concentrate on a specific scenario where attackers could potentially en-

hance the utilization rate by withdrawing their available liquidity. To simplify this

without compromising the mathematical validity of our analysis, we assume that a

fraction, represented as α, of all liquidity provided to the pool is controlled by col-

luding adversaries. In this system, where 1 − α represents honest participants, the

adversaries decrease their shares by withdrawing their funds. Interestingly, under

certain conditions met by the interest rate formula, attackers could increase their fees

even after reducing their shares. One approach for adversaries to collude atomically,

would be through a smart contract. The progression of steps is outlined below:

1. Any adversary could deploy an attack smart contract, equipped with three key

functionalities: (1) obtaining permission from users to manage their liquidity

tokens, (2) withdrawing funds from each adversary’s account to increase the

utilization while reducing their respective shares, and (3) returning funds to

17

the liquidity pool if the liquidity kink attack ceases to be profitable.

2. Each adversary could then grant a certain amount of liquidity provider tokens

to the deployed contract using the pool’s functions, permitting the contract to

manage liquidity on behalf of each adversary.

3. Once all permissions are received, a specific threshold of signatures from ad-

versaries could initiate the event of pulling liquidity from the protocol to boost

utilization.

4. At this point, adversaries can monitor on-chain events to assess the profitability

of the lending pool.

5. Should a new honest liquidity provider join the lending pool, or borrowers repay

their borrowed amounts to an extent that it no longer remains profitable for

attackers to withhold their funds, they can refund all the liquidity and revert

to the initial state.

This strategy enables adversaries to minimize liquidity management risks and, in the

worst-case scenario, return to the starting state. By providing adequate permissions,

adversaries can utilize the attack contract to impose higher fees when feasible.

Scenario Setup: In this particular situation, we presume that attackers are al-

ready in possession of α percent of the total liquidity pool, denoted as L. The

borrowed amount is represented by B. The kinked model, which we discussed earlier,

guides the calculation of the interest rate. Moreover, we operate under the assumption

that the attackers have already initiated the attack contract and have authorized it

to either deposit or withdraw funds as necessary. We assume that prior to the attack,

the utilization U is less than the kink value. We also assume that attackers possess

sufficient liquidity to elevate the protocol’s utilization above the kink value. If they

lack this amount, the attack would be ineffective and they would merely diminish

their own shares. Finally, we operate under the assumption that all fees derived from

18

borrowers are directed to the liquidity providers, with none retained by the protocol

itself. This simplifying assumption aids in streamlining the model, though in real-

world applications, a portion of the fees is typically allocated to a community wallet

managed by a DAO or an admin. Should the attackers choose to retain all their funds

within the liquidity pool, behaving honestly, the fees they would receive would equate

to the following amount:

feehonest ∝ (R0 +
B

L
×Rlow)× α (3.5)

Attack Execution: For attackers to boost the utilization, they initially need to

calculate the exact amount of funds, termed as x, to withdraw from the protocol to

yield higher fees. We assume that when attackers extract this x amount from the

protocol’s reserves, it drives the utilization beyond the kink value. As a consequence,

the fees that would then accrue to the attackers can be computed as follows:

feeattack ∝ (R0 +Rlow × kink + ((
B

L− x
)− kink)×Rhigh)(α− x

L
) (3.6)

In the preceding equation, the attackers’ shares drop from α to α− x/L. Simultane-

ously, the total amount of funds in the protocol diminishes by x, though the borrowed

amount remains unchanged.

Our objective is to pinpoint the ideal amount that adversaries should extract from

the protocol to maximize feeattack. We attain this by identifying the global maximum

obtained from the function’s derivative. The solution to this is realized when the

condition dfeeattack/dx = 0 is fulfilled, the optimal amount can be determined by

solving the following equation:

B ×Rhigh × (a− x
L
)

(L− x)2
=

Rhigh × (B
L−x

− U) +Rlow × U +R0

L
(3.7)

This, naturally, would be the ideal value according to the condition if it lies within

the range x < L−B, and x > kink × L−B.

Risks: Even though attackers stand to profit while the utilization remains high,

19

they are simultaneously accepting certain risks. We explore these primary risks in

this section.

• Borrower Attrition: By initiating the utilization kink attack, attackers risk

compromising their long-term income. Specifically, they may incentivize bor-

rowers to withdraw their money, potentially redirecting it to other protocols.

Consequently, a lending pool subject to such attacks may fail to instill trust in

new borrowers. Nonetheless, an attacker could easily shift their funds to other

protocols, given there are multiple that offer such services.

• Monitoring Challenges: The preceding section demonstrated that certain

conditions need to be met for a profitable scenario. Given these conditions may

change as new actors join and leave the system, attackers can respond quickly

when the situation ceases to be profitable. Failure to do so could result in a

loss of potential fees that could have been earned through honest investing.

• Security Considerations: Participating in a protocol implies that users, both

honest and dishonest, trust the protocol to be secure. However, there’s always

a risk that a protocol may contain a bug leading to a loss of all funds. When

an attacker moves between protocols to execute liquidity management attacks,

they are inherently trusting these protocols not to be compromised. If a breach

does occur, they might lose all their funds.

Mitigation recommendations: The potential threat of liquidity kink attacks

can be partially mitigated at the protocol’s design phase, offering some level of pro-

tection to borrowers. One potential remedy involves demanding a commitment of

liquidity from providers. The majority of honest liquidity providers aim to keep

their resources in the market for an extended duration. In defense of borrowers, the

protocol could stipulate a minimum time commitment from these providers, thereby

inhibiting attackers from removing their funds and artificially increasing the proto-

col’s utilization. An alternative could be the establishment of ”fee tiers”, whereby the

20

protocol rewards providers who have pledged their resources over a longer time frame

with higher fees. However, this strategy only stops attackers from withdrawing their

funds, while the possibility of borrowing the remaining amount to amplify utilization

still exists.

3.2.2 DoS attack on liquidity providers

When liquidity providers contribute funds to a protocol, it is generally assumed that

sufficient funds will be available for regular withdrawals when needed. The portion of

funds supplied to the protocol but not borrowed is typically eligible for withdrawal.

However, it is crucial to acknowledge that this mechanism does not guarantee with-

drawals, as it is incentivized by imposing fees on borrowers when the total protocol

utilization exceeds the specified threshold (kink). Additionally, the fee mechanism

is often time-based, considering the duration between borrow and repayment trans-

actions to calculate the final fee. Consequently, if liquidity is borrowed and repaid

within the same block, the borrower only needs to cover the gas fee and is not subject

to additional fees from the protocol.

An adversary could exploit (1) the absence of guaranteed withdrawals and (2)

borrow fees based on time, to launch a DoS attack. This attack could impact liquidity

providers who are trying to withdraw their funds from many lending protocols, as

well as borrowers attempting to secure a loan after providing sufficient collateral.

Simplified Attack

Here, we discuss a simple attack scenario, Suppose Alice is a liquidity provider in a

lending protocol, supplying $300,000 out of a $1 million pool. The utilization level

is currently at 70%, meaning $300,000 of the pool remains available for both bor-

rowers and liquidity providers to utilize. Alice urgently needs to withdraw the entire

$300,000 from the protocol. Bob, observing this, aims to prevent Alice’s withdrawal

opportunity. He already has sufficient collateral provided to the protocol and initiates

21

two transactions: (1) a transaction with a higher gas fee than Alice’s to front-run her

transaction and borrow the entire $300,000, resulting in 100% utilization, and (2) a

transaction with a lower gas fee than Alice’s to back-run her transaction and push the

borrowed amount back into the protocol. By sandwiching Alice in this manner, Bob

effectively denies her the withdrawal by causing her transaction to fail since there are

no available free funds in the pool.

It is worth noting that in the above example, any other withdrawal requests from

third parties would also fail since Bob has drained the protocol of funds. Furthermore,

during this process, Bob would only pay the gas fees for the two transactions, which

is a relatively small amount compared to the disruptive impact inflicted upon Alice

within the system.

In addition to targeting specific users, an attacker can also attempt a generalized

DoS attack against the entire network. In this scenario, the attacker aims to include

one transaction at the beginning of a block and another transaction at the end of

the same block. If successful, this strategy can effectively prevent anyone within the

system from withdrawing funds from the protocol.

DoS attacks in general setting

In order for an adversary to launch DoS attacks on real-world systems, they require

access to an amount of funds denoted as x. They can cause any withdrawal to fail if

its size surpasses this threshold:

Withdrawal > L−B − x (3.8)

Assuming that liquidity pools typically maintain utilization up to their optimal uti-

lization, an attacker could disrupt any withdrawal provided they have access to

L× (1− kink) funds. If the attacker’s funds are already in the protocol as liquidity,

they could withdraw their funds. Alternatively, if their funds are outside of the pro-

tocol, they could borrow the necessary amount temporarily for just one block. Given

22

they can perform both these actions within a single block, they neither forfeit any

income nor incur any fees. This is because the duration of the liquidity withdrawal

or borrowing within the same block is effectively zero.

Risks: To execute a Denial of Service attack on users submitting transactions to

a public mempool, an attacker can attempt to accomplish this objective by sending

one transaction with a higher gas price and another transaction with a lower gas

price. However, there is a risk involved as these transactions may not be included

in the desired block. To mitigate this risk, an attacker can minimize the issue by

bribing block builders within the blockchain network, requesting them to include all

the target transactions in their subsequent block. By doing so, the attacker’s risk

exposure would be reduced. Alternatively, the attacker can opt to send transactions

to a private relayer, such as flashbots, which ensures the ”next-block-or-never” at-

tribute. This approach allows the attacker to bundle the user’s transactions into a

meticulously constructed bundle and transmit it to the private relayer. In cases where

an attacker is unable to successfully execute sandwich attacks on their target, their

transactions remain valid and can be processed on the network. Hence, they might

incur borrowing fees over several blocks, which could be a considerable amount given

that the utilization is boosted to 100 percent, and the borrowed sum is substantial.

Mitigation recommendations: To effectively mitigate such attacks, implement-

ing protocol-level measures is crucial. It is important to acknowledge that the DoS

attack described does not incur a protocol-level fee, making it relatively inexpen-

sive for an attacker to execute. One effective mitigation strategy is to introduce a

percentage-based fee within the borrowing process. This means that when a user

borrows a certain amount, they would be required to pay a fee calculated as follows

(t denotes the value of time):

Feei = RU ×Bi × t+Bi × proportionalFee (3.9)

By implementing this approach, the cost for an attacker to execute a DoS attack

23

would increase proportionally with the size of the borrowed amount. As the attacker

needs to deplete the remaining funds in the pool, the associated cost becomes sig-

nificant, acting as a deterrent for such attacks. Furthermore, users can proactively

protect themselves against these attacks by opting to send their transactions through

a private relayer. This approach helps safeguard users from becoming targets of DoS

attacks orchestrated by the attacker. However, it is important to note that these so-

lutions may not be effective against the generalized DoS attacks previously discussed.

It is noteworthy that users observing these attacks in the primary market have the

option to trade their positions in secondary markets, thereby bypass direct interac-

tion with the main market and avoiding DoS attacks. Essentially, a liquidity provider

might choose to sell their position in the liquidity pool, or a borrower could purchase

an existing borrow position from another user to ensure their transactions are pro-

cessed. However, this strategy relies on the availability of secondary markets and the

presence of willing buyers or sellers for these positions.

3.2.3 Economical games by adversary

In the present analysis, an attempt is made to envision the potential tactics of an

adversary within the domain of lending pools to gain profits over an extended period.

There are several incentives that may prompt adversaries to initiate such maneuvers,

which are discussed in the ensuing sections:

• Profit Realization: The most straightforward objective for an adversary could

be to accumulate profits. In the event an adversary consistently executes a kink

utilization attack, they could potentially accrue multiple rounds of rewards.

However, repeated instances of such attacks may compel borrowers to discon-

tinue using the protocol.

• Control over Access: By leveraging a DoS attack, adversaries could exercise

control over the liquidity providers’ access to their funds. In theory, adver-

24

saries may be able to immobilize users’ funds. However, in practice, it is more

possible to cause delays in withdrawals from the protocol resulting in weak

censorship [30]. Such delays can prove critical, particularly during periods of

financial instability [31].

• Attrition of Protocol Users: A possible adversary objective could be to

deter users from engaging with a specific protocol. If the adversary’s liquidity

is sizable in comparison to the entire pool, by performing such attacks, they

could result in actors blacklisting the protocol. This is feasible through two

mechanisms, for liquidity providers, they may join the protocol when they ob-

serve a spike in utilization but as the attacker re-infuses funds, utilization and

consequently fees drop. Borrowers, on the other hand, may be subjected to sub-

stantially higher fees frequently, making the protocol a less attractive option.

An attacker can meticulously plan and execute such attacks over an extended duration

following several steps:

1. Firstly, the attacker must amass significant funds, either through their own

capital or via colluding with other adversaries.

2. Subsequently, they must identify vulnerable protocols with a small liquidity

pool, relative to their initial funds.

3. Initial investment in the protocol may be conventional, followed by an inflow

of investment which reduces the overall fees paid by borrowers. This leads to a

situation where other liquidity providers exit the protocol in pursuit of higher

returns elsewhere, or more borrowers enter the pool. The attacker must wait

until their share is significantly higher than the remaining liquidity to borrow in

the protocol, a stage that may occur over an extended period, such as a week.

During this time, adversaries earn interest at a standard rate.

25

4. Once utilization has risen and remaining liquidity is considerably lower than the

adversaries’ shares, attacks can be launched to achieve their objectives. This

stage should ideally be of a short duration since the execution of a utilization

kink attack incentivizes other actors to balance utilization. Attackers can re-

spond by further reducing their position upon other actors’ actions, thereby

continuing to accrue interest. If a large liquidity provider enters the system,

attackers can reinfuse all withdrawn funds back into the protocol to sustain fee

earnings. However, honest liquidity providers might have no incentive to aid

a pool under attack if they anticipate temporary high utilization, making it

unadvisable for them to move large volumes of liquidity to help the pool.

5. Continued attacks may lead to general actors in the network blacklisting the

attacked protocol, in such situations attackers can easily migrate to a new vul-

nerable protocol.

In this economic game, attackers stand to profit over the long term. Two primary

issues arise:

• Low-Risk, High-Reward Game for Attackers: Attackers stand to gain

exponentially from 5 to 50 times more fees during the attack period without

facing any substantial risks unless the protocol experiences a major hack. This

allows them to perpetuate such activities over a long duration.

• No Financial Incentives for Honest Players: Existing pools incentivize

players by raising interest rates; however, if attackers respond swiftly to honest

actors joining the pool, there would be no financial incentive for honest players

to rescue minor protocols.

Hence, protocols need to address these attacks at the design level to foster growth

and safeguard their users against malicious activities.

26

While it is feasible for an attacker to simultaneously execute the mentioned attacks

by elevating the utilization to its maximum, the objectives for conducting each attack

differ. Here, we discuss some of these variations:

• Utilization Kink Attack: To execute this attack, malicious liquidity providers

need to initially supply liquidity to a specific pool and wait until a part of their

liquidity is borrowed. Only then can they employ the remainder of their funds

to increase the utilization. In such attacks, all borrowers within the pool are

targeted, and the attacker’s profit accumulates over time.

• DoS Attack: In order to carry out a DoS attack, attackers can retain their

funds outside the protocols, monitor multiple systems, and potentially target

specific actors if their funding is sufficient. A DoS attack is intended to transpire

swiftly within a specific block and is not a continuous action. This approach

aims to avoid associated fees.

3.3 Liquidity aggregation

In previous discussions, we explored the issue of liquidity attacks. We proposed some

tactical solutions, like extending liquidity commitments and setting base fees, to deal

with such issues. But in this segment, our aim is to get to the core of the problem

and offer a comprehensive solution. Our solution could safeguard new lending pools

from potential attacks while facilitating their rapid growth.

Often, smaller lending pools try to emulate the larger ones such as Compound and

Aave. This leads many protocols to design their logic layer centered around their

liquidity pool. In this setup, the logic and liquidity components become inseparable

parts of a single, large project. Consequently, each pool has to grow independently.

Our proposition is to separate the liquidity and logic layers in the design of such

protocols. This separation could let several protocols combine their liquidity layers,

possibly strengthening the weaker pools. We recommend the following three-step

27

launch for every new liquidity pool:

1. Design the pool such that the logic and liquidity layers are separate. The

logic layer should only interact with the liquidity layer when necessary. This

arrangement could allow the liquidity layer to be shared among many protocols.

2. Initially, smaller liquidity pools can connect themselves to larger pools such as

Compound. This connection means that they only run out of liquidity when

Compound does, protecting them from most liquidity management attacks.

This method enforces some limitations on the smaller pool, as it has to conform

to the larger pool’s constraints.

3. Once the connected pool has sufficient funds, it can operate independently and

set its own rules.

By following these steps (as shown in Figure 3.2), an ecosystem of lending pools can

reap mutual benefits. These benefits include:

• Attack Resilience: Smaller pools protect their users from attacks. It becomes

more difficult for an attacker to raise borrowers’ fees. Also, liquidity providers

have the freedom to withdraw their funds at any time since the larger underlying

pool provides more liquidity.

• Larger Shared Pool: The larger pools also benefit from this arrangement.

They now have a larger pool of liquidity providers. Many protocols can use

their liquidity for security, while merging their pools to enhance the overall

security of the ecosystem.

In the following parts of this section, we aim to explain the complexity in the process

of implementing such systems.

28

Logic Layer

Liquidity Layer

Small Pool A

Logic Layer

Liquidity Layer

Small Pool B

Logic Layer

Liquidity Layer

Small Pool C

Logic Layer Liquidity Layer

Bigger Liquidity Pool

Logic A Logic B Logic C

Logic Layer Liquidity Layer

Figure 3.2: Liquidity aggregation process

3.3.1 Designing Logic and Liquidity Layers

The goal of this section is to propose a design that separates the logic and liquidity

layers of a lending pool. However, we still need these layers to merge together and

form a complete lending system. This design expands upon the traditional lending

pools’ design of one-to-one logic and liquidity layers. It also potentially allows for the

integration of multiple logic layers without the need to change the implementation of

the liquidity layer.

The logic layer of the lending protocol is deployed via a smart contract, which

should be the point of interaction for all users of the protocol. This means the logic

layer must handle all bookkeeping and monitor each participant’s activity, and it is

not designed to hold any funds. When users interact with the protocol via the logic

layer, it facilitates the transfer of funds between users and the liquidity pool after

conducting necessary checks. On the other side, the liquidity layer, which holds all

funds, should only respond to the logic layer contract.

29

A design layer should have the capability to (1) interface with another logic layer,

thereby piggybacking on the infrastructure of another protocol, or (2) function as a

standalone liquidity layer, in which it independently manages all of its funds.

Piggybacking Liquidity Pool

When a design layer is in piggybacking mode, it is connected to another design

layer. This allows us to establish a system like D1, D2, . . . , DN , LLN , where Dis

are design layers and LLN is the liquidity layer that only responds to DN . Here,

D1, D2, . . . , DN−1 are all in piggybacking mode, and DN operates in standalone mode.

While users can interact with any of the Di to use their services, their liquidity will

be forwarded through Di+1, DN and must comply with all their logic. In this setup,

each of Di has its own users, but all that Di+1 sees from the previous logic layer is the

entry of Di, which is using the system just like other users. The simplest version of

the use case that interests us is where N = 2. Here, D1 is a small lending pool, and

D2 is one of the largest existing lending pools, such as Compound. In this setting,

while users interact with the D1, their funds are getting accumulated in D2’s pool

LL2. The significant benefit here is that if D1 runs out of funds, it is backed up

by the bigger lending pool’s funds and can support its users. We delve deeper into

how each basic functionality changes when the design layer is piggybacking off other

design layer when a user interacts with D1:

• Supply: Whenever a user supplies amount X to the D1, then supply of the

system changes as:

SD1,user += X

∀1<i≤NSDi,Di−1 += X

L += X

(3.10)

This means that each logic layer supplies funds to the next one, and the final

pool supplies it to the pool.

30

• Collateral: when users supply collateral to the protocol, the state changes are

similar to the supply:

CD1,user += X

∀1<i≤NCDi,Di−1 += X

C += X

(3.11)

• Borrow and liquidation: For a borrow of amount X to happen, the borrow

process is happening in every single layer. Therefore, the collateral that user

has provided, should follow the equation below:

X > maxi(Σc(Cuser,c,i × fc,i)) (3.12)

This implies that the collateral tokens submitted should exceed the borrowing

amount in each logic layer. If the aforementioned condition is not met, the funds

could potentially face liquidation in one of the layers. For protocols to ensure

that the equation above is never broken, they need to limit their collateral

factors, so that fc,i < fc,i+1. in such cases the collateral equation gets reduced

to a limit against the effective collateral of the user at layer 1:

X > Σc(Cuser,c,1 × fc,1) = ECuser,1 (3.13)

The state changes for borrow are:

BD1,user += X

∀1<i≤NBDi,Di−1 += X

B += X

(3.14)

When a user seeks to borrow from the protocol and a layer runs out of liquidity,

the protocol can borrow from the layer beneath it. This mechanism increases

the confidence in liquidity availability.

• Interest Rate Calculation: Should there be no borrow at layer i, the total

liquidity supplied to this layer, denoted as Stotal,i, earns interest at the rate of

31

the succeeding layer, or i+ 1. This follows the formula:

Ri+1 × Stotal,i (3.15)

Now, if any borrowing occurs from the protocol at layer i, the interest rate from

the underlying protocol is given by:

Ri+1 × (Stotal,i −Btotali) +Ri ×Btotali (3.16)

Which depends on the interest rate of Di. In order to incentivize more liquidity

providers to join the protocol with an increase in borrowing, it is necessary that

the condition Ri ≥ Ri+1 be met. This requirement ensures that the previously

mentioned formula progressively increases with the growth in borrowing posi-

tions. It indicates that the interest rate for layer i should surpass that of layer

i + 1. The proposed interest rate for level i extends from the kinked interest

rate algorithm, following the subsequent equation:

∀1≤i<N , Ri =

{︄
Ri+1 +Rlow,i × Ui if U ≤ kink

Ri+1 +Rlow,i × kink +Rhigh,i × (Ui − kink) if U > kink

(3.17)

The interest rate at each level is influenced by Ui. A significant difference in

this model is that Ui can exceed the value of one. This is because each layer can

lean on the next one for support, and therefore the borrowed amount within a

specific protocol can go beyond the supplied amount. However, this also leads

to a rise in the interest rate. To stop the growth of the interest rate at max

utilization, protocol designers that are using this model could replace the Ui

value with Min(1, Ui).

In this setup, the outermost design layers can make use of the liquidity from all

underlying protocols. However, this comes at the cost of stricter restrictions on their

protocol variables. This implies that for an attacker to carry out a DoS attack on layer

i, they now need to have enough funds to exhaust all layers from i+ 1 to N . On the

32

other hand, if a lending protocol wants to connect to another protocol’s logic layer,

they don’t need to set a steep Rhigh,i fee beyond their optimal utilization. Instead,

they can rely on the liquidity from the underlying layer. As such, this system is more

resistant to utilization kink attacks due to a smaller Rhigh,i/Rlow,i ratio, compared to

standalone pools.

Standalone liquidity pool

Once a protocol has matured and expanded its TVL by piggybacking off another lend-

ing pool, it may be time for the protocol owners to consider transitioning into stan-

dalone mode. This transition involves the protocol creating its own liquidity pool and

transferring its assets into this new pool. It’s crucial to note here that when a protocol

detaches from the next one, it also severs connections with all its preceding protocols

and transfers them as well. In essence, if in the chainD1, D2, ..., Di, Di+1, ..., DN , LLN ,

layer i decides to detach, it would result in two separate chains: D1, D2, ..., Di, LLi,

and Di, Di+1, ..., DN , LLN .

Protocols should only transition to standalone mode when they have accumulated

enough liquidity to fend off liquidity management attacks independently. Further-

more, during this transition, it would be advantageous for the ecosystem if the funds

weren’t withdrawn all at once. As these lending pools possess large liquidity pools,

withdrawing all the funds abruptly could potentially trigger a spike in the underlying

pools’ utilization. We recommend that, at this stage, lending pools transition to a

new pool by gradually vesting all the liquidity over a certain time period. For in-

stance, a protocol could gradually withdraw all funds over the course of a day, after

duly notifying the community.

3.4 Analyzing on-chain lending protocols

In this section, we dive into the lending pools deployed across multiple blockchain

networks. Our data collection efforts aim to understand their design, TVL, and

33

below 1 million (1.4% or $25.6 million)

1-10 million (12.1% or $214.8 million)

10-25 million (20.1% or $357.7 million)

25-50 million (25.6% or $455.4 million)

50-75 million (7.1% or $126.3 million)

75-100 million (5.4% or $95.5 million)

above 100 million (28.4% or $505.2 million)

Figure 3.3: asset distribution beyond the top 6 protocols, totaling $1.75b.

potential susceptibilities to liquidity management attacks. Our study includes two

types of pools. Initially, we analyze the six most prominent lending pools in the space,

and then we shift our focus to scrutinize the rest of the lending pools. Although the

larger lending pools are typically secure from liquidity management attacks due to

their significant liquidity base, analyzing them remains crucial as they significantly

influence numerous emerging lending protocols.

According to reports [5], lending pools on the chain hold over $13.2b in TVL. Of

this amount, 86.6% resides within the top six lending pools. We examine each of these

influential pools, recognizing their role as templates and foundations for subsequent

projects, which may adapt and develop their logic.

We also analyze smaller pools to determine their potential vulnerability to liquidity

management attacks. These pools hold over $1.75b across 240 protocols on various

chains, posing a tempting target for potential attackers. As shown in Figure 3.4 our

investigation reveals that 32.5% of all 240 smaller lending pools are officially forks

of Compound, while over 10% have branched off from Aave. Among the remaining

132 pools, many draw inspiration from the design choices of more established pro-

tocols, including aspects such as interest rate determination, supply, borrowing, and

liquidation mechanisms. Figure 3.3 illustrates the distribution of funds across these

protocols. When comparing the liquidity distribution of smaller pools with the daily

trading volume of Aave, which has consistently exceeded $30 million since the start

34

Table 3.1: Data describing the six largest lending pools.

Protocol TVL Amount Number of Markets Interest rate model Liquidity Management attacks

Aave $5.46b 13 Aave Model Vulnerable

JustLend $3.78b 1 Aave Model Vulnerable

Compound $1.92b 4 Compound Model Vulnerable

Venus $804.55m 1 Compound Model Vulnerable

Morpho $341.38m 3 P2P/Compound Model Possible

Radiant $260.09m 3 Aave Model Vulnerable

of 2023, it becomes plausible that such amount of funds is not out of reach for users

in the network. Given this amount of funds, attackers could potentially execute the

mentioned attacks on these pools.

Our analysis comprises a selection of noteworthy protocols, including Aave, Com-

pound, JustLend [32], Venus [33], Morpho [34], and Radiant [35]. You can find the

detailed information in Table 3.1. In the subsequent part of this section, we will delve

into each aspect and investigate whether any of the protocols employ innovative ap-

proaches:

• TVL: We examine the amount of TVL each market holds and the degree of

liquidity concentration which is shown by the number of markets. It’s common

for protocols to be deployed on multiple chains for user accessibility. Addition-

ally, protocols often release new versions over time. While users typically prefer

the latest versions, older versions can coexist and continue to serve users. For

example, despite the launch of Compound V3 in August 2022, a substantial

sum, exceeding $1.32 billion, is still locked in Compound V2.

• Supply and Borrow Mechanism: Most lending pools utilize a similar supply

and borrow mechanism, consistent with the one we outlined in our model. How-

ever, some protocols incorporate different logic, like P2P lending, and impose

additional restrictions. Morpho, for instance, uses a P2P system to pair borrow-

ers with lenders, transferring the borrower to the backup protocol, Compound,

35

if the lender needs to withdraw their funding at any point. This mechanism

makes Morpho somewhat resistant to liquidity management attacks, as borrow-

ers borrowing from honest liquidity providers remain secure.

• Interest Rate Model: The interest rate model we presented in this thesis

generalizes those used in the mentioned protocols. Typically, smaller pools

widely adopt two main models, those being Compound and Aave, due to their

proven efficacy and popularity. The Compound model aligns with the model

we utilized in this thesis, while Aave’s model, though similar, employs different

variables:

R =

{︄
R′

0 +R′
low × U

kink
if U ≤ kink

R′
0 +R′

low +R′
high × U−kink

1−kink
if U > kink

(3.18)

Even though the formulas bear strong resemblances, they are provided to allow

readers to reason with numerical examples. Aave also offers users a choice

between stable and variable rates. In this thesis, we presumed that protocols

only offer variable rates for simplicity. Although stable rates do not alter the

assumptions and results of our analysis, we direct the reader to the Aave white

paper for more information on stable rates [9].

• Attack Vulnerability: We assess whether the pool is generally susceptible to

liquidity management attacks. In each case, we assume the attacker possesses

ample funds and is pursuing a specific objective. This section highlights the

importance of design choices for new protocols adopting each of these larger

protocols’ designs during their initial public usage, a phase when they may

have limited overall liquidity and thus be vulnerable to potential exploitation

by an attacker.

36

Co
m
po
un
d
A
av
e

A
lp
ac
a
Fi
na
nc
e

Im
pe
rm
ax
Fi
na
nc
e

R
ar
i C
ap
ita
l

U
ni
sw
ap

Ta
ro
t

Li
qu
ity

0

20

40

60

80 78

24

1 1 1 1 1 1

Protocol Names

F
re
q
u
en
cy

Figure 3.4: Frequency of protocols forked by newer projects.

3.5 Extension ideas

In this section, we explore a range of concepts that can enhance the functionalities of

each lending pool, thereby fostering their fund growth. While these innovations don’t

directly fortify the pools against liquidity management attacks, they offer additional

applications for users. This, in turn, stimulates an increase in the pools’ funds,

which indirectly contributes to a more secure ecosystem. In order to enhance the

resilience and strength of lending pools, it is advisable to develop applications that

leverage the capabilities of these markets. By building applications on top of lending

markets, users can be incentivized to retain their funds within the system and even

contribute additional capital. This can be achieved through various mechanisms

such as introducing attractive interest rates, providing exclusive features or benefits

to users, or offering innovative financial products and services that align with the

needs and preferences of the market participants. By creating a robust ecosystem

of applications, users can be motivated to actively engage with the lending pools,

thereby fostering greater liquidity and stability within the overall lending ecosystem.

For the rest of this section, we are going to explore application ideas that can be built

37

on top of lending markets.

3.5.1 Interest Rate Swap

In order to expand the capabilities of lending markets and provide additional oppor-

tunities for liquidity providers, it is worth considering the implementation of mecha-

nisms that enable the swapping of interest rate accrual rights. As liquidity providers

accrue interest over a certain period of time in the future, allowing them to exchange

these rights for immediate capital can be a beneficial proposition. By facilitating

such swaps, liquidity providers can access the present value of their future interest

earnings, providing them with greater flexibility and liquidity in managing their cap-

ital. This can incentivize participation in lending markets and attract a wider range

of users seeking to optimize their financial positions. By enabling the conversion of

interest rate gains into tangible capital, lending markets can offer enhanced utility

and value to liquidity providers, thereby fostering their continued engagement and

participation. Currently, several markets are active in the interest rate swap space,

including Pendle [36] and Voltz [37].

3.5.2 Token Wrappers

Upon providing liquidity to lending market protocols, liquidity providers receive liq-

uidity tokens, representing their share in the pool. The value of these tokens generally

increases over time due to interest accruing from borrowers to lenders. In some in-

stances, as with Compound, the protocol augments the quantity of liquidity tokens

for providers to signify interest accumulation, rendering these liquidity tokens ’re-

basing tokens’. However, secondary markets often struggle with compatibility issues

concerning rebasing tokens, which require a constant token count over time. To ad-

dress this, wrapped tokens have been introduced. These wrapped tokens encapsulate

the liquidity tokens, converting fluctuating rebasing tokens into stable tokens. An

example of such a solution is the Comet Wrapper [38] developed for CompoundV3,

38

enabling liquidity providers to wrap their tokens for seamless trading in secondary

markets as standard tokens.

3.5.3 Payment Scheduling

Lending markets can be leveraged to add value to scheduled payments, a scenario

particularly relevant for companies planning future payouts to multiple recipients.

Applications can be developed to not only schedule these payments but also to con-

currently invest the funds in lending pools, thereby generating interest over time.

This approach can yield significant profits for users of such applications. An example

of this is the Paytr protocol [39], which facilitates payment scheduling while investing

the funds in Compound. By locking specific funds for a set duration in Compound,

Paytr enhances the protocol’s security through increased liquidity stability in the

market.

39

Chapter 4

Conclusion

Liquidity management attacks present substantial risks to lending markets, partic-

ularly to smaller, emerging platforms. Despite these attacks requiring substantial

capital from the attacker, it is imperative for protocols to implement robust miti-

gation strategies. These measures are crucial not only for their growth but also to

safeguard their honest user base effectively. In this thesis, we have introduced and

formalized two liquidity management attacks, where an attacker with sufficient re-

sources can exploit specific conditions within lending pools. We have demonstrated

that such attacks are not only feasible but also incentivized, given the considerable

amount of liquidity dispersed across numerous small liquidity pools. We further ex-

plored possible mitigation strategies and risks at the application layer that could aid

upcoming lending protocols.

Our analysis of the prevalent design models in use reveals that these frameworks

can pose risks for new lending pools. The unrestricted flow of liquidity in such designs

presents opportunities for attackers to exploit system behavior for their own ends. We

proposed a simple design, wherein the design and application layer are structured as

separate systems that can interact with each other. This structure enhances the

flexibility of options available to liquidity pools and allows for the combination of

multiple design layers that can utilize the same liquidity pool. While we scrutinized

the overarching design of such systems, there remain considerable complexities to be

40

addressed in their implementation. It is our hope that new lending pools will adopt

this design and potentially establish a standard set of defensive mechanisms against

liquidity management attacks.

To mitigate these concerns, it’s crucial for the community to consolidate funds.

Currently, a well-funded adversary can exploit multiple lending protocols with lim-

ited liquidity, potentially amassing significant profits by imposing inflated fees. By

centralizing funds into a few primary pools, we can significantly reduce the risk of

such attacks. On the other hand, protocol designers must be mindful of liquidity

management attacks and seek to address them at the logic layer. By doing so with-

out introducing excessive complexity, they can safeguard both lenders and borrowers

within the system.

41

Bibliography

[1] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, May 2009. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf.

[2] M. Bartoletti, J. H. yu Chiang, and A. Lluch-Lafuente, Sok: Lending pools in
decentralized finance, 2020. arXiv: 2012.13230 [cs.CR].

[3] K. Qin, L. Zhou, P. Gamito, P. Jovanovic, and A. Gervais, “An empirical study
of DeFi liquidations,” in Proceedings of the 21st ACM Internet Measurement
Conference, ACM, 2021. doi: 10.1145/3487552.3487811. [Online]. Available:
https://doi.org/10.1145%2F3487552.3487811.

[4] H. Research, Global crypto industry overview and trends[2022–2023 annual
report](first part), 2022. [Online]. Available: https : / /medium . com / huobi -
research/global - crypto - industry - overview - and - trends - 2022 - 2023 - annual -
report-first-part-e15372f29c.

[5] Defillama, 2023. [Online]. Available: https://defillama.com/.

[6] Compound protocol website, 2023. [Online]. Available: https : / / compound .
finance/.

[7] R. Leshner and G. Hayes, 2019. [Online]. Available: https://compound.finance/
documents/Compound.Whitepaper.pdf.

[8] Aave protocol website, 2023. [Online]. Available: https://aave.com/.

[9] Aave protocol whitepaper v1.0, 2020. [Online]. Available: https://github.com/
aave/aave-protocol/blob/master/docs/Aave Protocol Whitepaper v1 0.pdf.

[10] L. Gudgeon, S. M. Werner, D. Perez, and W. J. Knottenbelt, Defi protocols
for loanable funds: Interest rates, liquidity and market efficiency, 2020. arXiv:
2006.13922 [q-fin.GN].

[11] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
“Sok: Research perspectives and challenges for bitcoin and cryptocurrencies,”
in 2015 IEEE Symposium on Security and Privacy, 2015, pp. 104–121. doi:
10.1109/SP.2015.14.

[12] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[13] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and W. J.
Knottenbelt, Sok: Decentralized finance (defi), 2022. arXiv: 2101.08778 [cs.CR].

42

http://www.bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2012.13230
https://doi.org/10.1145/3487552.3487811
https://doi.org/10.1145%2F3487552.3487811
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://defillama.com/
https://compound.finance/
https://compound.finance/
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://aave.com/
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://arxiv.org/abs/2006.13922
https://doi.org/10.1109/SP.2015.14
https://arxiv.org/abs/2101.08778

[14] K. Qin, L. Zhou, Y. Afonin, L. Lazzaretti, and A. Gervais, Cefi vs. defi – com-
paring centralized to decentralized finance, 2021. arXiv: 2106.08157 [q-fin.GN].

[15] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “SoK: Decentralized exchanges
(DEX) with automated market maker (AMM) protocols,” ACM Computing
Surveys, vol. 55, no. 11, pp. 1–50, 2023. doi: 10.1145/3570639. [Online]. Avail-
able: https://doi.org/10.1145%2F3570639.

[16] S. Cousaert, J. Xu, and T. Matsui, “SoK: Yield aggregators in DeFi,” in 2022
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
IEEE, 2022. doi: 10.1109/icbc54727.2022.9805523. [Online]. Available: https:
//doi.org/10.1109%2Ficbc54727.2022.9805523.

[17] A. Moin, K. Sekniqi, and E. G. Sirer, “Sok: A classification framework for
stablecoin designs,” in Financial Cryptography and Data Security, J. Bonneau
and N. Heninger, Eds., Cham: Springer International Publishing, 2020, pp. 174–
197, isbn: 978-3-030-51280-4.

[18] Poly network - rekt, 2021. [Online]. Available: https://rekt.news/polynetwork-
rekt/.

[19] Bnb bridge - rekt, 2022. [Online]. Available: https://rekt.news/bnb-bridge-
rekt/.

[20] L. Zhou et al., Sok: Decentralized finance (defi) attacks, 2023. arXiv: 2208.13035
[cs.CR].

[21] N. Atzei, M. Bartoletti, and T. Cimoli, A survey of attacks on ethereum smart
contracts, Cryptology ePrint Archive, Paper 2016/1007, https://eprint. iacr .
org/2016/1007, 2016. [Online]. Available: https://eprint.iacr.org/2016/1007.

[22] L. Gudgeon, D. Perez, D. Harz, B. Livshits, and A. Gervais, The decentralized
financial crisis, 2020. arXiv: 2002.08099 [cs.CR].

[23] S. Eskandari, S. Moosavi, and J. Clark, Sok: Transparent dishonesty: Front-
running attacks on blockchain, 2019. arXiv: 1902.05164 [cs.CR].

[24] OpenZeppelin, Openzeppelin/openzeppelin-contracts: Openzeppelin contracts is
a library for secure smart contract development. [Online]. Available: https://
github.com/OpenZeppelin/openzeppelin-contracts.

[25] P. Daian et al., Flash boys 2.0: Frontrunning, transaction reordering, and con-
sensus instability in decentralized exchanges, 2019. arXiv: 1904.05234 [cs.CR].

[26] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, High-frequency trading
on decentralized on-chain exchanges, 2020. arXiv: 2009.14021 [cs.CR].

[27] Flashbots documentation, 2023. [Online]. Available: https://docs.flashbots.net/.

[28] X. Sun, C. Stasinakis, and G. Sermpinis, Liquidity risks in lending protocols:
Evidence from aave protocol, 2023. arXiv: 2206.11973 [q-fin.RM].

43

https://arxiv.org/abs/2106.08157
https://doi.org/10.1145/3570639
https://doi.org/10.1145%2F3570639
https://doi.org/10.1109/icbc54727.2022.9805523
https://doi.org/10.1109%2Ficbc54727.2022.9805523
https://doi.org/10.1109%2Ficbc54727.2022.9805523
https://rekt.news/polynetwork-rekt/
https://rekt.news/polynetwork-rekt/
https://rekt.news/bnb-bridge-rekt/
https://rekt.news/bnb-bridge-rekt/
https://arxiv.org/abs/2208.13035
https://arxiv.org/abs/2208.13035
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://arxiv.org/abs/2002.08099
https://arxiv.org/abs/1902.05164
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/2009.14021
https://docs.flashbots.net/
https://arxiv.org/abs/2206.11973

[29] M. Hafner et al., Defi lending platform liquidity risk: The example of folks fi-
nance: Published in the journal of the british blockchain association, 2023. [On-
line]. Available: https://jbba.scholasticahq.com/article/74150-defi- lending-
platform-liquidity-risk-the-example-of-folks-finance.

[30] A. Wahrstätter et al., Blockchain censorship, 2023. arXiv: 2305.18545 [cs.CR].

[31] A. Wahrstätter, L. Zhou, K. Qin, D. Svetinovic, and A. Gervais, Time to bribe:
Measuring block construction market, 2023. arXiv: 2305.16468 [cs.NI].

[32] Justlend dao money market protocol v1.0, 2020. [Online]. Available: https://
portal.justlend.org/docs/justlend whitepaper en.pdf.

[33] Venus protocol documentation, 2023. [Online]. Available: https://docs.venus.
io/docs/getstarted.

[34] M. Gontier Delaunay, Q. Garchery, P. Frambot, M. Égalité, J. Thomas, and
K. Babbar, “Morpho V1 Yellow Paper,” working paper or preprint, May 2023.
[Online]. Available: https://hal.science/hal-04087388.

[35] Radiant documentation, 2023. [Online]. Available: https://docs.radiant.capital/
radiant/.

[36] Pendle protocol, 2023. [Online]. Available: https://www.pendle.finance/.

[37] Voltz protocol, 2023. [Online]. Available: https://www.voltz.xyz/.

[38] Comet wrapper, 2023. [Online]. Available: https : / / github . com/compound -
finance/comet-wrapper.

[39] Paytr protocol website, 2023. [Online]. Available: https ://paytr .gitbook . io/
product-docs/.

44

https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://arxiv.org/abs/2305.18545
https://arxiv.org/abs/2305.16468
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://docs.venus.io/docs/getstarted
https://docs.venus.io/docs/getstarted
https://hal.science/hal-04087388
https://docs.radiant.capital/radiant/
https://docs.radiant.capital/radiant/
https://www.pendle.finance/
https://www.voltz.xyz/
https://github.com/compound-finance/comet-wrapper
https://github.com/compound-finance/comet-wrapper
https://paytr.gitbook.io/product-docs/
https://paytr.gitbook.io/product-docs/

	Introduction
	Motivation
	Contributions
	Overview of Thesis

	Background and Related Works
	Blockchains
	Decentralized Finance (DeFi)
	Attacks on DeFi
	High frequency trading
	Related work

	Liquidity Management Attacks
	Model
	Attacks on lending markets
	Utilization kink attack
	DoS attack on liquidity providers
	Economical games by adversary

	Liquidity aggregation
	Designing Logic and Liquidity Layers

	Analyzing on-chain lending protocols
	Extension ideas
	Interest Rate Swap
	Token Wrappers
	Payment Scheduling

	Conclusion
	Bibliography

