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ABSTRACT 20 

Construction labor productivity (CLP) has a significant impact on the performance 21 

and profitability of construction projects. A construction project can benefit from 22 

improved labor productivity in many ways, such as a shorter project life cycle and 23 

lower project cost. However, budget and resource restrictions force construction 24 

companies to select and implement only the most effective CLP improvement 25 

strategies. Analyzing labor productivity in order to determine the most effective CLP 26 

improvement strategies is a difficult task because labor productivity is influenced by 27 

numerous subjective and objective factors. This paper presents a framework for ranking 28 

the factors affecting CLP according to their importance for CLP improvement; the 29 

framework uses an integration of fuzzy data clustering and multi-criteria decision-30 

making methods. The proposed framework entails asking experts to weight 31 

determinant criteria for selecting CLP improvement strategies and then clustering CLP 32 

factors and ranking the clusters. This paper’s major contribution is providing a 33 

systematic approach for analyzing and selecting CLP improvement strategies by 34 

identifying the CLP factors with the greatest impact on productivity improvement. The 35 

findings of this research will help establish a set of CLP improvement strategies in 36 

order to enhance CLP. 37 

INTRODUCTION 38 

Many activities in the construction industry are labor intensive. Therefore, 39 

improving construction labor productivity (CLP) is key for improving the overall 40 

performance of construction organizations in multiple areas, such as shortening project 41 

life cycles and lowering project costs. However, analyzing and improving labor 42 
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productivity is difficult, as CLP occurs in a complex environment where numerous 43 

objective and subjective factors influence labor productivity. 44 

Managers of construction companies apply a variety of CLP improvement 45 

strategies according to their knowledge and experience, but many do not use a 46 

systematic approach for considering the effectiveness of these strategies (Nasir et al. 47 

2015). However, some limitations, such as the cost of implementation and limited 48 

resources, restrict companies from adopting multiple CLP improvement strategies. The 49 

main challenge for construction management teams is identifying the key factors 50 

influencing labor productivity in order to be able to prioritize CLP improvement 51 

strategies. 52 

The objective of this paper is to provide a framework for ranking CLP factors 53 

according to their importance for CLP improvement in order to assist construction 54 

companies with the prioritization of CLP improvement strategies. The framework 55 

involves four steps. First, three determinant criteria for selecting CLP improvement 56 

strategies, namely strategy selection criteria (SSCs), are defined. Then, the weight of 57 

each criterion is evaluated using experts’ opinions and the fuzzy analytic hierarchy 58 

process (FAHP) as a fuzzy multi-criteria decision-making (MCDM) method. Next, the 59 

fuzzy c-means (FCM) method is used to cluster the CLP factors based on their 60 

similarities and dissimilarities in terms of the SSCs. Finally, the Technique for Order 61 

Preference by Similarity to Ideal Solution (TOPSIS), a widely used MCDM method, is 62 

employed to rank the CLP clusters according to their importance for CLP 63 

improvement. 64 

Although there are numerous studies on ranking the factors that affect labor 65 

productivity on different types of locations and projects, little research has been done 66 

on ranking CLP factors in terms of CLP improvement strategy selection. This study 67 

fills this gap in the research by presenting a new framework for ranking CLP factors 68 

that uses an MCDM method and fuzzy data clustering to determine the factors’ 69 

importance for CLP improvement strategy selection. The outcomes of this study help 70 

construction management teams identify key CLP factors and implement improvement 71 

strategies in order to reinforce the factors that positively affect labor productivity and 72 

eliminate the factors that have a negative impact on labor productivity. 73 

In this study, a CLP improvement strategy is a management strategy that comprises 74 

several management practices. According to Ghodrati et al. (2018), management 75 

practices are individual practices that are carried out by a construction management 76 

team to improve labor productivity. For instance, an incentive program is a CLP 77 

improvement strategy that consists of several management practices: performance-78 

based incentives, health and safety incentives, incentives for no rework, etc. 79 

This paper is organized as follows: First, a review of past research on the 80 

identification of key CLP factors and key CLP improvement strategies is provided. 81 

Second, the framework for ranking CLP factors is presented along with an example. 82 

The framework consists four phases: (1) component identification (i.e., list of factors 83 

influencing labor productivity and determinant criteria for selecting CLP improvement 84 

strategies); (2) data collection (i.e., development of survey questionnaires); (3) data 85 

preparation (i.e., weighting criteria, checking consistency of data, and aggregating 86 

survey data); and (4) data analysis (i.e., clustering data and ranking clusters). 87 
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LITERATURE REVIEW 88 

Due to the importance of labor productivity for the overall performance of 89 

construction projects, a significant amount of research has been conducted to determine 90 

the most influential CLP factors and improve them by developing a variety of analysis 91 

models (Heravi and Eslamdoost 2015; Raoufi and Fayek 2018; Alaghbari et al. 2019; 92 

Kedir et al. 2019). 93 

The factors that influence CLP are multilevel, ranging from the activity level to the 94 

organizational level and to national and global levels (Tsehayae and Fayek 2014; 95 

Gerami Seresht and Fayek 2019). The different perspectives of personnel (e.g., project 96 

managers, supervisors, craft workers and foremen) are therefore required in order to 97 

assess the importance of each CLP factor for CLP improvement. Several studies have 98 

incorporated the opinions of different project participants through interview and 99 

questionnaire surveys and categorized the CLP factors under different groups. For 100 

example, Alaghbari et al. (2019) categorized 52 factors under the four groups: human-101 

labor, technical and technological, external, and management. In these studies, the most 102 

commonly used method for determining the rank of CLP factors is the relative 103 

importance index technique, which only considers one criterion, impact (I), when 104 

ranking factors. 105 

Tsehayae and Fayek (2014) gathered 169 CLP factors from existing literature 106 

related to North American construction projects and investigated their influence on 107 

CLP by developing a protocol for collecting data from several construction companies. 108 

They not only focused on the impact (I) of CLP factors on labor productivity, but also 109 

considered another criterion, frequency or agreement (FoA), when ranking the CLP 110 

factors. FoA evaluates the extent to which each factor exists in a project setting. 111 

The construction industry has had many opportunities to improve labor 112 

productivity by implementing innovative technologies and techniques. However, the 113 

influence of new innovations is not significant without efficient management strategies 114 

to control and support labor productivity (Nasir et al. 2015). Different studies have 115 

recommended several management strategies, such as training, incentive programs, 116 

and communication, to improve labor productivity, but only a few have used a 117 

systematic approach to evaluate the effectiveness of these strategies. For example, 118 

Nasir et al. (2015) and Ghodrati et al. (2018) developed statistical methods to ascertain 119 

the implementation level of some specific CLP improvement strategies. The results of 120 

their research reveal that construction projects with a high implementation of certain 121 

CLP improvement strategies have experienced higher labor productivity than 122 

construction projects with a lower level of implementation. 123 

In spite of extensive research on the identification of key CLP factors and key CLP 124 

improvement strategies, few studies have attempted to develop a framework that 125 

investigates the importance of CLP factors in terms of CLP improvement strategy 126 

selection. By identifying the CLP factors with the most influence on CLP improvement, 127 

such a framework would help construction organizations select CLP improvement 128 

strategies more systematically. It would also help construction organizations allocate 129 

their limited budget and resources to those CLP improvement strategies that target the 130 

most important factors for improving labor productivity, rather than putting effort into 131 

strategies with minor or no influence on CLP (Ghoddousi et al. 2015). 132 
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FRAMEWORK FOR RANKING CLP FACTORS 133 

This section presents the framework for integrating MCDM methods with fuzzy 134 

data clustering in order to evaluate the importance of CLP factors and rank them. Figure 135 

1 illustrates the framework for clustering and ranking CLP factors. 136 
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Figure 1. Framework for clustering and ranking CLP factors. 140 

The proposed framework consists of four phases, as follows: 141 

Phase 1: Component Identification 142 

In the first phase, the two main components of the proposed framework are 143 

identified. First, a list of factors influencing labor productivity is elicited from existing 144 

literature related to construction projects. Second, three determinant criteria for 145 

selecting CLP improvement strategies (i.e., SSCs) are defined. These criteria are 146 

impact (I), frequency or agreement (FoA), and controllability (Ctrl). According to 147 

Tsehayae and Fayek (2014), the criterion I refers to the positive or negative influence 148 

of factors on CLP for the project under study and the criterion FoA shows the extent to 149 

which each factor exists in a project setting. CLP is a function of controllable and 150 

uncontrollable factors (Tsehayae and Fayek 2016). Therefore, selecting CLP 151 

improvement strategies is also influenced by the controllability of CLP factors. For 152 

instance, a construction company has no control over oil prices, so “volatility of oil 153 

prices” is an uncontrollable factor and no improvement strategy can improve it, 154 

whereas “job site orientation program for new craftsmen” is a controllable factor to 155 

some extent and can be improved by allocating a reasonable amount of time and cost. 156 

Accordingly, in this study, the criterion Ctrl is defined as the extent to which each factor 157 

can be controlled by a construction company in terms of cost and time. 158 

Phase 2: Data collection 159 

In the second phase, two survey questionnaires are developed, one regarding CLP 160 

factors and one regarding criteria. To prevent biased results, survey respondents were 161 

randomly selected from a population of 505 construction experts with various 162 

Phase 3 

Data Preparation 

Phase 2 

Data Collection 

Phase 1 

Component Identification 

Phase 4 

Data Analysis 
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positions, such as senior management, project management, and craftspeople in order 163 

to capture different perspectives (Tsehayae and Fayek 2014). In the first questionnaire 164 

(Table 1), namely the factor importance (FI) survey, the respondents indicate their 165 

opinions about CLP factors with respect to each strategy selection criterion using five-166 

point Likert scales. The data collection effort produced a total of 141 FI surveys from 167 

construction experts with an average of 10 years of experience (Tsehayae and Fayek 168 

2014). The second questionnaire (Table 2), namely the criterion importance (CI) 169 

survey, collects the respondents’ opinions on the importance of one strategy selection 170 

criterion relative to another. Thus, the CI survey performs pairwise comparisons among 171 

I, FoA, and Ctrl by asking the respondents to select a preference term from “equal” to 172 

“absolute” when comparing the relative importance of one criterion over another. Each 173 

preference term in Table 2 is represented by a symmetric triangular fuzzy number in 174 

order to compute the criteria’s weights in phase 3. The numbers of experts who selected 175 

a specific preference term when comparing the relative importance of one criterion 176 

over another are presented in Table 2. For instance, out of 12 experts who responded 177 

to the CI survey, seven experts selected the preference term “weak” on the right side 178 

of the questionnaire to express that the criterion Ctrl is weakly more important than the 179 

criterion I with respect to selecting CLP improvement strategies. 180 

Table 1. Sample FI survey questionnaire. 181 
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Table 2. CI Survey questionnaire including sample preferences. 182 
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Phase 3: Data preparation 183 

In the third phase, four steps are followed to prepare the collected data for clustering 184 

and ranking the CLP factors. 185 
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Step 1: Calculate the relative weight of importance for each criterion using an 186 

MCDM method. The triangular fuzzy preference numbers elicited from the CI survey 187 

responses must be processed through a fuzzy MCDM method in order to assess the 188 

relative importance of the SSC. Therefore, the FAHP method is applied in a manner 189 

similar to Perçin and Aldalou (2018), resulting in the weights of the SSCs shown in 190 

Table 3. 𝑊𝐼, 𝑊𝐹𝑜𝐴, and 𝑊𝐶𝑡𝑟𝑙 refer to the weights of I, FoA, and Ctrl, respectively. 191 

Table 3. SSC weights. 192 
 𝑊𝐼 𝑊𝐹𝑜𝐴 𝑊𝐶𝑡𝑟𝑙 

Weight (0,1) 0.222 0.287 0.491 

Step 2: Assess the consistency of the respondents’ pairwise comparisons in the CI 193 

survey. This is done by calculating the consistency ratio (CR) of the matrix ( �̃�), which 194 

includes the fuzzy preference numbers determined in step 1. First, the matrix  �̃� is 195 

defuzzified into two crisp matrices; the first matrix (𝐴1) includes the most likely values 196 

of the fuzzy numbers of the matrix  �̃� and the second matrix (𝐴2) includes the geometric 197 

mean of the lower and upper bounds. Then, based on the approach used by Saaty 198 

(1980), the CRs for matrices 𝐴1 and 𝐴2 are evaluated (𝐶𝑅𝐴1
= 0.0030 and 𝐶𝑅𝐴2

=199 

0.0047). Since they are less than 0.1, no re-examination of the pairwise judgments of 200 

the CI surveys is required. 201 

Step 3: Aggregate the respondents’ opinions, elicited through the FI survey, by 202 

assessing the aggregated responses (ARs) (i.e., the levels of I, FoA and Ctrl) for each 203 

CLP factor. Eqs. (5), (6), and (7) compute AR with respect to the criteria I, FoA and 204 

Ctrl, respectively, where the maximum possible AR of the equations is 1. 205 

𝐴𝑅𝐼 =
∑ 𝑖 × 𝐴𝑖

5
𝑖=1

5
           (5) 206 

𝐴𝑅𝐹𝑜𝐴 =
∑ 𝑖 × 𝐵𝑖

5
𝑖=1

5
           (6) 207 

𝐴𝑅𝐶𝑡𝑟𝑙 =
∑ 𝑖 × 𝐶𝑖

5
𝑖=1

5
           (7) 208 

where 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are the percentages of respondents in the FI survey who rated a 209 

particular factor as 𝑖 in terms of I, FoA, and Ctrl, respectively. Table 4 shows sample 210 

ARs of 155 CLP factors derived from Tsehayae and Fayek (2014). 211 

Step 4: Apply the relative importance of the SSCs for ranking CLP factors. This is 212 

done by calculating the weighted AR of each CLP factor by multiplying the aggregated 213 

responses from Table 4 with the corresponding SSC weights as computed in step 1. 214 

Table 5 shows sample weighted ARs with respect to the criteria I, FoA, and Ctrl for 215 

each CLP factor. 216 

Table 4. Aggregated CLP data. 217 

CLP factor no. CLP factor 𝐴𝑅𝐼 𝐴𝑅𝐹𝑜𝐴 𝐴𝑅𝐶𝑡𝑟𝑙 

1 Power equipment breakdown 0.4450 0.5721 0.9890 

2 Instability of political system 0.1270 0.6272 0.0813 

…
 

…
 

…
 

…
 

…
 

155 Lack of protection from weather effect 0.7928 0.7080 0.2037 
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Table 5. Weighted aggregated CLP data. 218 

CLP factor no. 𝑊𝐼 × 𝐴𝑅𝐼 𝑊𝐹𝑜𝐴 × 𝐴𝑅𝐹𝑜𝐴 𝑊𝐶𝑡𝑟𝑙 × 𝐴𝑅𝐶𝑡𝑟𝑙 

1 0.0988 0.1642 0.4915 

2 0.0282 0.1800 0.0404 

…
 

…
 

…
 

…
 

155 0.1760 0.2032 0.1012 

Phase 4: Data analysis 219 

In the last phase, a fuzzy data clustering technique and an MCDM method are used 220 

to cluster and rank the CLP factors, as explained below. 221 

First, due to the overlapping nature of cluster boundaries, FCM is employed to 222 

partition the CLP factors (i.e., the data points) into clusters based on their similarities 223 

and dissimilarities in terms of the SSCs. The CLP factors are clustered in order to 224 

determine a set of CLP factors that are considerably more important than other factors 225 

for improving CLP. The identified set of key CLP factors assists construction 226 

companies with identifying a set of CLP improvement strategies that will have the most 227 

positive influence on CLP. Fuzzy partitioning is conducted through minimizing the 228 

objective function (Eq. 6) by the iterative update of the data points’ memberships (𝑢𝑖𝑗
𝑚) 229 

and the cluster centers ( 𝑐𝑗) (Nayak et al. 2015). 230 

𝐽𝑚 =  ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑(𝑥𝑖 , 𝑐𝑗)2

𝑙

𝑗=1

𝑛

𝑖=1

           (6) 231 

where 𝑛 and 𝑙 are the number of CLP factors and clusters, respectively. The parameter 232 

that controls the fuzziness of the clusters is 𝑚 ∈ (1, +∞) and 𝑑(𝑥𝑖 , 𝑐𝑗) is the Euclidean 233 

distance from the data point 𝑥𝑖 (i.e., the 𝑖𝑡ℎ CLP factor) to the cluster center 𝑐𝑗. Shown 234 

below, 𝑢𝑖𝑗
𝑚 is the degree to which the 𝑖𝑡ℎ CLP factor belongs to the 𝑗𝑡ℎ cluster. 235 

𝑢𝑖𝑗
𝑚 =

1

∑ (
𝑑(𝑥𝑖 , 𝑐𝑗)
𝑑(𝑥𝑖 , 𝑐𝑘)

)

2
𝑚−1

𝑐
𝑘=1

           (7) 236 

Cluster centers are initialized randomly and calculated as follows in the next iterations. 237 

𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚. 𝑥𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

           (8) 238 

Based on 𝑐𝑗, the value of 𝑢𝑖𝑗
𝑚 for all 𝑖 and 𝑗 are computed and the iterations between 239 

these two equations are repeated until the minimum 𝐽𝑚 or the following condition is 240 

achieved. 241 

𝑑(𝐶(𝑏), 𝐶(𝑏+1)) < 𝜀           (9) 242 

where 𝐶(𝑏) is the cluster center matrix in the 𝑏𝑡ℎ iteration step and 𝜀 is the 243 

predetermined level of accuracy. As a result of FCM, the CLP factors (i.e., the data 244 

points) are divided into ten clusters with their corresponding centers in three 245 

dimensions (𝐶𝐼, 𝐶𝐹𝑜𝐴, and 𝐶𝐶𝑡𝑟𝑙), as presented in Table 6. The center of each cluster is 246 

the mean importance of its data points. For instance, cluster 1 includes 18 CLP factors 247 
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with a mean importance of 0.1047, 0.2493, and 0.2663 for the criteria I, FoA and Ctrl, 248 

respectively. 249 

Table 6. CLP final clusters. 250 

Cluster no. 
Number of  

CLP factors 

Cluster center 

𝐶𝐼 𝐶𝐹𝑜𝐴 𝐶𝐶𝑡𝑟𝑙 
1 18 0.1047 0.2493 0.2663 

2 18 0.1790 0.2234 0.3682 

3 13 0.1067 0.1702 0.4390 

4 18 0.0553 0.1784 0.1113 

5 13 0.1423 0.0695 0.2872 

6 17 0.0828 0.0501 0.0587 

7 15 0.1652 0.0689 0.1056 

8 16 0.0590 0.0503 0.3899 

9 8 0.0903 0.1706 0.2050 

10 19 0.1345 0.2171 0.0692 

Second, the MCDM method used for ranking the CLP clusters obtained through 251 

the FCM technique is TOPSIS. This method identifies the CLP cluster that has the 252 

shortest distance to the positive-ideal solution ( 𝐴∗) and the longest distance from the 253 

negative-ideal solution ( 𝐴−). The positive-ideal solution consists of the highest values 254 

(i.e., 0.1790 for 𝐶𝐼, 0.2493 for 𝐶𝐹𝑜𝐴, and 0.4390 for 𝐶𝐶𝑡𝑟𝑙) of SSC among CLP clusters, 255 

and the negative-ideal solution includes the lowest values (i.e., 0.0553 for 𝐶𝐼, 0.0501 256 

for 𝐶𝐹𝑜𝐴, and 0.0587 for 𝐶𝐶𝑡𝑟𝑙). Hence, by considering the distances from the positive-257 

ideal solution (𝑆𝑖
+) and negative-ideal solution (𝑆𝑖

−), the ranks of the clusters are 258 

calculated as follows: 259 

𝑅𝐶𝑖 =
𝑆𝑖

−

𝑆𝑖
+ + 𝑆𝑖

−            (10) 260 

where 𝑅𝐶𝑖 is the relative closeness of the 𝑖𝑡ℎ CLP cluster to the positive-ideal solution. 261 

By implementing all the steps of the TOPSIS method, the relative closeness and, 262 

consequently, the rank of each CLP cluster is determined, as shown in Table 7. The 263 

highest value of relative closeness belongs to cluster 2, which consists of 18 CLP 264 

factors: (1) crew experience, (2) cooperation between craftsmen, (3) craftsman learning 265 

speed, (4) job site orientation program, (5) remuneration, (6) shortage of consumables, 266 

(7) material order tracking system, (8) waiting time for manlifts, (9) quality of work 267 

tools, (10) rework sources, (11) cleanliness of work area, (12) work conditions (noise, 268 

dust, and fumes), (13) foreman experience, (14) foreman skill, (15) adequacy of job 269 

instructions, (16) health and safety training, (17) materials management practices, and 270 

(18) zero accident techniques. 271 

These factors have the highest importance for CLP improvement. This result will 272 

help construction companies implement a set of CLP improvement strategies in order 273 

to improve the identified key factors. For example, for foreman experience and foreman 274 

skill, which are among the identified CLP factors in the first ranked CLP cluster, one 275 

CLP improvement strategy would be to implement training programs to improve the 276 

experience and skills of foremen. 277 
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Table 7. Cluster ranks. 278 

Cluster no. 𝑅𝐶  Rank 

1 0.6082 3 

2 0.8328 1 

3 0.7895 2 

4 0.2797 8 

5 0.5073 5 

6 0.0587 10 

7 0.2419 9 

8 0.5825 4 

9 0.4236 6 

10 0.3312 7 

CONCLUSIONS AND FUTURE RESEARCH 279 

Budget and resource restrictions force construction organizations to prioritize CLP 280 

improvement strategies according to their effect on CLP factors. Hence, it is necessary 281 

to rank CLP factors based on their importance for CLP to help construction 282 

organizations identify the most effective CLP improvement strategies. This study 283 

proposed a hybrid model for ranking CLP factors using the integration of fuzzy data 284 

mining and MCDM methods. Two questionnaires were designed to measure the 285 

weights of SSCs based on experts’ opinions and collect experts’ opinions about each 286 

CLP factor with respect to the selection criteria. The first contribution of this paper is 287 

defining a new criterion, controllability, which influences the selection of CLP 288 

improvement strategies. The second contribution is using a fuzzy MCDM method for 289 

aggregating SSCs for CLP improvement strategies. The third contribution of this paper 290 

is presenting a framework of MCDM and fuzzy data clustering for ranking CLP factors 291 

based on their importance for CLP improvement. This importance is measured in terms 292 

of three criteria that influence the selection of CLP improvement strategies. The last 293 

contribution is providing a systematic approach for analyzing and selecting CLP 294 

improvement strategies by identifying the most effective CLP factors. The results of 295 

this paper will help construction organizations identify key CLP factors and implement 296 

a set of CLP improvement strategies in order to improve the identified key factors. The 297 

findings of this work provide a basis for future research, including ranking CLP factors 298 

with actual collected data and using a fuzzy MCDM method such as fuzzy TOPSIS. 299 
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