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Abstract

Computer Vision shares its interest in investigating animate behaviour and bic: 1. '
processes with other disciplines within the field of artificial intelligence (AD). ::
rescarch focuses on two aspects of biological vision and applies the knowledge gleane:d
from nature to appropriate computer vision situations. Both variable resolution image
compression and spatially variant image data prioritization are present within animate
visual systems and these concepts can be effectively transferred to enhance several
computer applications.

In the area of digital image compression, new techniques are required to overcome
significant storage and transmission problems in computer vision. A strong under-
standing of image characteristics enhances the effectiveness of compression and many
other image processing operations. Traditional methods have maintained a constant
resolution throughout an image. However, a survey of the various visual systems
present in the animal kingdom demonstrates the potential of Variable Resolution
(VR) compression methods. The author models several animate visual systems and
outlines novel image compression techniques based on foveated vision. Interesting
variations on the simple fovea are proposed, motivated by similar variations present
in animate visual systems — specifically multiple, dynamic and weighted foveae,
and visual streaks. Techniques for eficient modelling of fovea movement are also
described.

The other topic discussed is the prioritization of image data. A fundamental
drawback to increasingly popular ATM-based switching is the possibility of infor-

mation loss with congestion. We demonstrate that with intelligent, fovea driven



priority assignment of image data. we can reduce the negative impact of information
loss over ATM networks. ATM standards allow a single bit to indicate high or low
packet priority. To reduce the effect of ihis restriction we introduce the coneept of
priority dithering. Network multimedia multicast scenarios over heterogencous link
capacities where foveal prioritization would be of benefit are described. Included
are network simulation results of this method. which demonstrate the advantages of
priority dithered foveal prioritization over traditional methods.

Utilizing our knowledge of biological vision systems provide us with insights into
new developments in the areas of image compression, video compression., image trans-
mission, videophcnes, multimedia, teleconferencing, and telepresence. Original, sulb-

stantive research is presented.
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Where there is no vision,
the people perish.
Proverbs 29:18



Chapter 1

Introduction

1.1 Motivation

'Today, advances in technology are proceeding at an unprecedented rate. Computers
have become commonplace in homes and offices around the globe, and are considered
important tools for daily activities. One recent trend in modern computer applications
is towards a greater usage of digital images. The advent of multimedia has posed many
new problems for both the storage and transmission of image data. A typical colour
image one half the size of a sheet of looseleaf (say, 600 square pixels), contains over 1
would quickly become unmanageable. If transmitted over a typical 28,800 baud link,
this single image would take over 37 seconds to arrive. Much research has been done
to address these problems, and numerous digital image compression techniques have
been proposed.

In many situations, such as videoconferencing, compression of some form is nec-
essary. It reduces the bandwidth required for transmission, the memory required for
storage, and the processing required for manipulation. However, one must be careful
to take into account the purpose for the data when considering a method of compres-
sion. While some methods perform well in a specific domain, they may prove to be
unsuitable for others.

Data compression techniques existed even before the days of computing science.
However, initial schemes were designed mainly for the compression of text and/or
programs, not for images [71]. Image compression requires riew methods and ideas

which may not apply to other data types. By researching the unique characteristics



which certain images possess, we are able to develop compression schemes capable of
exploiting them.

The transmission of these images may also occur over network scenarios where
there is no guarantee of error free communication. Encoding data with a method
that intelligently controls the nature of the data loss can minimize its detrimental
effect. Again, such encoding schemes capitalize on known properties inherent within
certain images.

Specifically, our research is based on the assumption that most scenes are not
comprised of equally important areas. There is often at least one primary area of
particular importance, while the remainder of the image is of less interest [113]. This
primary area of interest is called the Jovea, and more detailed information is required
here; less detail is required in the areas not in the fovea, called the periphery.

Capitalizing on this knowledge for the purpose of image compression involves
decreasing the spatial sampling rate of an image as one moves further from the location
of the fovea, thereby spatially varying the resolution. Spatially prioritizing data in
the same way can also assist in development of image encoding schemes suited (o
unreliable transmission scenarios.

In the past, Variable Resolution (VR) techniques have been successfully applied
to tasks in many areas, such as stereo correspondence [97], two dimensional object
recognition [81], the estimation of depth from motion (94], line detection [97], the

evaluation of time-to-impact from optical flow [95], character thinning [59, 60}, and

linear motion estimation in robotic navigation and on assembly lines [97]. Its nse

only recently been seriously explored [15, 16, 89].
We will demonstrate the advantageous characteristics of VR compression and

encoding are that:

* VR compression methods, if designed with the use of look-up tables, reqitire no

complex calculations and therefore are extremely fast;

* VR transforms operate entirely in the spatial domain; any other compression

1Literature in this area m:;,y also refer to image sequences as videos. The former term will be
used most frequently in this work.



scheme can be run on the compressed images for greater compression ratios;
o sampling can be adjusted to guarantee minimal compression ratios;
e similarly, sampling can be adjusted to achieve constant bandwidth requirements;

by monitoring network loads or intelligently prioritizing data, bandwidth re-

quirements can be varied to maximize network resource utilization.

1.2 Thesis Organization

This work? is concerned with the concept of the fovea, or region of interest. Methods
of both image compression and data prioritization which incorporate this concept are
shown. Biological vision is used as the inspiration.

Our work first considers the spatially nonuniform visual subsampling within ani-
mate vision and carries this idea into the area of image and video compression. Five

common topographical isodensity features of biological retinae are of specific concern:

» general characteristics — single fovea, continuity, anisotropism, receptor

boundary shape
¢ multiple foveae — weighted foveae
e visual streaks

e optic discs

We also investigate spatially variant prioritization of image data in biological
visual systems. These systems can be viewed as a network stretching from the eye’s
retina, along the optic nerve, into the occipital lobe at the posterior of the brain. The
concepts illustrated by this natural prioritization of image sequence transmission are
transferred to the domain of computer vision.

The goals of our research are to:

?Versions of several of the cllé]%ﬁéfs in this thesis have been published in [15], [109], and [110].



o Study the differences in the visual systems of a number of dissimilar animals,
from a variety of species and environments. Special attention will be given to

the retina.

e Isolate unique characteristics of animate visual systems and link them, if possi-

ble, to their ecology; determine the purpose of retinal specializations.

¢ Develop simple, practical computational models of general structures or classes

of these biological visual systems.

e Construct tools which assists in the modelling of both biological visual systems
and their extensions; support the process of fitting computer visual models to

their intended specific digital environments.

e Demonstrate applications which can benefit from a purposive active vision ap-

proach; match biological vision models to application purposes.

Chapter 2 outlines contributions that have been made to date, in the arca of image
compression. Several popular compression methods are described. This chapter also
reviews general concerns with networked image transmission.

Chapter 3 contains a general description of image forming visual systems found in
the animal kingdom, including naturally occurring image compression. This chapter
also describes several features found within biological visual systems which ceffectively
prioritize image data, providing spatially variant natural protection against informa-
tion loss.

Chapter 4 is an overview of the main existing anthropomorphic computer vision
implementations. While some transformations have tried to adhere strictly to the
natural model, others have taken animate visual systems as merely a guideline. Dis-
tinctive features of each method are given.

Chapter 5 contains a description of the work of the author in developing unique
VR compression methods and enhancing existing ones. Comparisons with respect, to
biological visual characteristics presented in Section 3.2 are made.

Chapter 6 addresses several issues relevant to the analysis of VR compression

algorithms.



Chapter 7 outlines how the presented research impacts the areas of image archiv-
ing, videophones, videoconferencing, and network transmissions. Specific applications,
tools, and protot_pes are presented in these areas, using the techniques under discus-
sion.

Chapter 8 proposes directions where the image compression research could be
extended. Areas in which further ATM data transmission research could continue are
also mentioned.

Chapter 9 concludes the material presented in this work. It summarizes the image

compression material presented as well as the results of the ATM simulation.



Chapter 2

Image Compression and
Transmission

As described in Section 1.1, the demand for efficient information handling is increasing
rapidly. In many situations, the volume of information creates a tremendous burden
on the system in use. It is therefore essential that the information be compressed -
that is, the information must be encoded in some alternate format that takes up less
space.

All compression methods are based on some assumptions of the data’s charac-
teristics. An accurate model of the data allows us to use that knowledge to make
“shortcuts” in encoding the information. If, however, our models are not accurate,
the method will not work well, or will not work at all. For example, a compression
scheme that works well for compressing English text might not work as well for com-
pressing French text. It is important to use the method best suited to the specific
information being handled.

As researchers have identified more accurate models of the information we use, the
number of different compression methods has increased. Also, technological advances
in areas such as images and sound have added to the types of data we are using,
further increasing the need for new compression methods.

In this chapter, we will review the most popular image compression methods
currently in use. A general description of each is given. In Section 2.1 the two
main categories of compression methods are defined. The motivation for, distinctive
features of, and formulae for variable resolution compression methods are given in

Chapters 4 and 5.



2.1 Lossless vs. Lossy Compression

Within the area of data compression, two main approaches classify all algorithms.
Lossless compression, as its name implies, loses no information during compression.
After decompression, the resulting data is identical to the original data in every
respect. Many situations require such accuracy. When compressing something like a
novel or detailed financial records, one can only be satisfied with a compression process
that leaves the information intact; deviations from the original are unacceptable. Nor
can discrepancies — no matter how minute — be tolerated in medical images, for
instance, for reasons of safety. The accuracy lossless compression methods provide is
obviously crucial in situations that may involve a matter of life and death.

Lossy compression methods, however do not provide the assurance of maintaining
100 percent accuracy of the original data; some data is usually maintained. Most lossy
compression methods, however, have a degree of control over how much accuracy is

accuracy desired.

Although most lossy compression methods judiciously decide what information
may be lost, it is natural to question any loss. What would be the advantage of
lossy over lossless methods? The answer is that the former achieve much higher
compression ratios than the latter. A compression ratio is a measurement of how well
a method achieves its goal in reducing the size of the information. By removing or
changing a small portion of the original data, lossy compression methods can reduce

the size of the entire data collection much more effectively than if they are forced to

lossy methods are preferable. For example, some image compression schemes do not
maintain exact accuracy in very high frequencies of the image when assuming its
purpose after decompression is to be viewed by humans. The reasoning is that the
human visual system is not very sensitive to high frequencies, and will not perceive

the small errors introduced.



2.2 Theoretical Considerations

When studying data compression, a natural question to pose is, *How much com-
pression is possible?” What this question really addresses is the minimum number of
bits necessary to encode the data. This limit can be calculated using the concept of
entropy. Entropy is the amount of information contained in a string of data, and is

calculated with the following formula:
Number of bits = — Zp; log,(p;) (2.1)

The frequency (probability) of the occurrence of the value i is represented by p; [89].

Clearly, the minimum number of bits necessary to encode the data stream can be

What is not so clear is how close to this theoretical minimum any compression
method may come. We can approach the minimum by taking advantage of the knowl-
edge we have of each value’s probability, and by studying the type of data we are
working with. Special codes can be assigned to each of the values, with shorter codes
being given to values expected to occur more frequently. This approach is known
as entropy encoding, and the more non-uniformly distributed the values’ oceurrences
in the data are, the more effective it is. Written text, therefore, would compress
quite well using entropy encoding schemes, while typical digital images would not.

Sections 2.2.1 and 2.2.2 outline several methods based on entropy encoding.

2.2.1 Shannon-Fano / Huffman Encoding

One of the popular encoding schemes based on predictions of value frequency within
data is Huffman encoding. It was developed in the early 1950’s by D. A. Huffinan. It
assigns a unique binary code to each value. These binary codes are structured in such
a way that, although they vary in length, no code is the prefix of another. Huffman
codes are usually built with the use of binary trees. Each leaf on the tree represents
one of the values, and the length of the binary code depends on the distance the leaf
is from the root. Shorter codes are given to values which are expected to appear in
the data more frequently, reducing the average number of bits per value necessary for

encoding all the information [61].



Huffman encoding was an improvement on Shannon-Fano encoding, another min-
imum redundancy encoding scheme. This method was invented by C. Shannon an:l
R. M. Fano, and operated by building a binary tree structure consisting of subdivid-
ing tables of values. Branching occurs to maintain a balance of frequencies, wherever
possible, and one bit is added on to the code at each branching level. Again, more
frequent symbols, having larger values, will be unable to be subdivided sooner, and
thus stay closer to the root; they will have shorter codes.

It must be pointed out that these methods work well only if the values in the
data do not all appear with roughly the same frequency. They must have skewed
distributions. English text is a good example of data that compresses well under
Huffman encoding. In most typical samples of English text, the letter ‘a’ appears
more often than the letter ‘z’. If the more frequent letters are given shorter codes
than the less frequent ones, we can expect reasonable compression. The UNIX “pack”

utility employs the Huffman encoding technique for file compression.

2.2.2 LZW Encoding

A more recent approach to encoding data is based on the observation that often
patterns of values occur quite frequently. In English text, for example, the values
‘t’, ‘h’, and ‘e’ often appear in this order. This pattern could be stored in a buffer
and simply assigned one code, eliminating the need to encode each value separately.
Such schemes are referred to as Dictionary compression methods, as they end up
generating a look-up table — or dictionary — of patterns being encoded.

A. Lempel and J. Ziv first proposed this idea in 1977. Their method searched for
repeating patterns in the data, using a one pass sliding window. Known as LZ77, this
technique replaced the second (or greater) occurrence of any pattern found with a
pointer to the first occurrence in the window. In 1978, they modified their technique,
to produce LZ78. Here, a table of patterns is constructed. These patterns are ex-
tended wherever possible, and future occurrences of these patterns are replaced with
appropriate references to the growing table. If new patterns were discovered, they
were added to the table.

In 1984, T. Welch introduced still more refinements to the LZ77 and LZ78 methods

[107]. One of the greatest improvements in his method was to initialize the dictionary
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with entries for each separate value before compression began. His technique, known
as LZW, is widely used within several image file formats, the UNIX *compress” utility,

and various archivers.

2.3 Single Image Compression

Values and pattern probabilities within image data typically have a fairly uniform
distribution, and therefore do not compress well under methods based primarily on
entropy encoding. There are, however, schemes which employ such methods. Com-
mon techniques concentrate on image continuity or eliminating details difficult to
detect. Entropy encoding techniques are then used to further compress data struc-
tures or look-up tables used in the process.

Figure 2.1' compares a few of the most popular lossy single image compression

schemes.

2.3.1 Graphic Interchange Format

The CompuServe organization has developed a lossless compression method which
has enjoyed widespread popularity for many years — the Graphic Interchange Format

(GIF) [23]. It preserves one byte of data for ecach pixel in the image. As it is based

an entropy encoding scheme. The colour map is quantized to 8 bits per pixel, or a

maximum of 256 colours.
2.3.2 Tagged Interchange File Format

The Tagged Interchange File Format (TIFT) was designed by Microsoft and Aldus.
It is meant to be a collection of other formats, an extendible superset of com pression
methods, including Huffman and LZW [61]. Depending on the type of data heing
compressed, alternate encoding methods can be used within the TIFF. A “ag” is
put at the beginning of each compressed file to indicate which method is nccessary

for decompression.

] Iﬁéprinted 7f'ro::u’1’17[327]i pége 681 Used with permission.
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JPEG Compression
512x512 Boat Image

Compression = 54.3:1 (0.147bpp)
PSNR = 23.7dB

rlgil

512x512 Boat Image

Fractal Compression
512x512 Boat Image

Compression = 58.1:1 (0.137bpp)
PSNR = 27.2dB

Wavelet Compression
512x512 Boat Image

Compression = 58.0:1 (0.138bpp)
PSNR = 26.4dB

Figure 2.1: Example results of JPEG, Wavelet, and Fractal compression.
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2.3.3 JPEG Compression

national Télégraphique et Téléphonique ( CCITT) joined forces and formed the Joint
Photographic Expert Group (JPEG). They collaborated on a project investigating
compression methods specifically designed for image data [5]. Their work between
1986 and 1991 resulted in the JPEG compression method.

JPEG, similar to TIFF, incorporates several compression techniques. The lossless
method included in JPEG uses a predictive encoding scheme which estimates each
pixel’s value from the neighbouring pixels above and to the left of it. The errors in
estimation are further compressed using Huffman encoding.

The most interesting compression method included in the JPEG standard is a
lossy techninue based on the two dimensional Discrete Cosine Transform (DC'T) [104].
Like the famous Fourier Transforin, the DCT is a lossless reversible function that
transforms images to the frequency domain. The reason JPEG uses the DCT is that
the image can be compressed differently when represented in the frequency domain,

as opposed to the spatial domain. The formula of the DCT is given as follows [89]:

F(u,v) = —C(u )C(v) Z Z f(z,y)cos (22 +61)"7T 2y Tﬁl‘lm

=0 y=0

m

t

£

B
=

L ifu,v=0
Clu),Cv) = { 17: otherwise

For reasons of efficiency, the image is first segmented into blocks of 64 pixels. Fach
of these blocks is then transformed to the frequency domain using the DCT. Tt has
been previously noted that the human visual system is not as sensitive to the higher
frequency information in images as it is to lower frequencies. T herefore, the JPEG
method quantizes the frequency information non-uniformly, eliminating more of the
high frequency information.

From here, the information is compressed using Huffman, predictive, and sub-
sampling techniques. Specifically, pixel colours are represented in the luminosity-
chrominance colour space, as opposed to the typical red-green-blue representation.
This allows pixel intensity to be sampled more frequently than colour, as the human

visual system is more sensitive to brightness than chrominance. Such techniques have

12



proved to be extremely useful, and JPEG has gained worldwide acceptance as a vi-
able standard in image compression. It must be noted, however, that since the JPEG
techniques are based heavily on the characteristics of the human visual system, they
may not perform adequately on images intended for machine use.

The main drawbacks to the JPEG algorithm are lack of speed and continuity. The
DCT transform is computationally expensive. Also, although the compression ratios
can be varied to balance image quality with actual compression, at high compression
values the algorithm’s segmentation interferes with final clarity. The 64 pixel blocks

begin to appear, causing quite noticeable “blocky” artifacts.

2.3.4 Wavelet Compression

Wavelet compression interprets the image plane as a function of frequency versus time,
as opposed to frequencies only — as in JPEG. Wavelets are a set of base functions of
differing frequency upon which the image is built. There are several families of basis
functions such as Haar and Daubechies. The wavelet bases are not discrete, but are
symmetric wave pulses that decrease in amplitude continuously from their origin. The
wavelet transform decomposes the phase plane and quantizes it in a similar method to
JPEG [22] in that the original image (signal) can be reconstructed using the encoded
temporal and frequency information.

Wavelet compression is well suited to some specific types of images, such as bilevel
scanned text, and not suited to images with muted variations, textures, or soft edges.
Unlike the DCT, wavelets involve only a convolution over the image, making them less
mathematically complex and resulting in less computationally expensive implemen-
tations. Fast Wavelet Transforms exist in the same sense as fast DCT algorithms,
making some wavelet compression methods even faster than JPEG. For example,
the Fast Fourier Transform and Fast Discrete Cosine Transform have computational
complexities of O(n logy(n)), while the Fast Wavelet Transform is of O(n) [103]. One
can also operate wavelet compression based on 64 bit blocks as JPEG does, but the

problem of blocky artifacts remains.
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2.3.5 Fractal Compression

Fractal compression uses complex fractal equations to achieve high compression ratios.
Very complex equations are necessary to encode an image, with the most diflicult task
being to determine the values of the parameters in the equations. Numerous iterations
within the algorithm are necessary to achieve reasonable image quality. This process
is extremely time consuming — almost prohibitively so. The benefit, however, is that
once the values are determined, decompression is relatively effortless [50).

Although it is still in its infancy, fractal compression has many promising aspects.
The high compression ratios reported to date are indeed attractive. The case of
decompression is also of interest. More research is necessary on the compression side
to speed up and completely automate the process. At present, some human guidance

is often necessary during compression.

2.4 Image Sequence Compression

When one wishes to encode a movie or video clip, many of the standard image com-
pression techniques can be used. There are some important differences between a set
of unrelated images and a set of images taken in sequence. In the laiter case, one
expects only relatively small differences between consecutive images.

While some image sequence compression methods, such as Motion JPEG (M-
JPEG), simply compress each image independently using standard image compression
techniques [21], others take advantage of the temporal redundancics. Such consider-

ations greatly increase compression ratios.

2.4.1 CCITT H.261 Compression

The compression of video to facilitate transmission over telephone lines was studied
by the CCITT, and a standard, H.261, was developed for such a purpose [5]. Phone
companies allocated bandwidth in ISDN channels of 64 Kh/s each, which this standard
took into account, and so it has more commonly become known as the “px64”2

compression scheme.

?Pronounced “P times sixty-four.”
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The px64 method uses the DCT transform in much the same way as JPEG does in
intra frames. However, it does not always compress each frame separately, but instead
compresses only the change in the frequencies of each 64 pixel block in infer frames.

That is, it compares successive frames and only records the difference, skewing the

more cffectively. The greater the similarity between frames the greater the skewing

cffect [62].

2.4.2 MPEG Compression

Like JPEG, the Motion Picture Expert Group (MPEG) was formed for the pur-
pose of establishing a compression standard — this time for digital video image se-
quences [36, 53, 54]. While the px64 was designed to be decompressed in the for-
ward direction only, MPEG sought to allow simple decompression in both directions.
MPEG also addressed the issue of px64’s vulnerability to transmission errors. Three
different compression structures were developed, namely Intraframes (I), Predictive
frames (P), and Bidirectional frames (B). These different frames are interleaved dur-
ing transmission, with different ratios varying the quality and compression ratio.
Intraframes are compressed as independent images using a method similar to
JPEG. Unlike px64, all errors introduced are not passed through the entire sequence,
but stop once an I frame is encountered. P frames use predictive encoding schemes
based on the previous I or P frame. B frames are designed to allow viewing ©f the
frames in reverse order. They encode image data in 256 pixel blocks (macroblocks),

compensating for pattern (area) motion within the scene.

2.5 Networked Scene Transmission

Many computer applications transmit images from one location to another, over a
network. One example of an increasingly popular application based on foveated scenes
is the videophone. The typical image sequence which is transmitted includes a human
face, which is of greater interest to the viewer than the peripheral background.

An assumption in many traditional implementations is that the transmission of

image data occurs over reliable, static bandwidth connections. However, in some net-
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work scenarios, such as with asynchronous transfer mode (ATM) technologies, this

assumption does not hold [56]. Diflerent network characteristics provide possibili-

will look to biological visual systems for ideas on how to address these issues. The
three main concepts involved in scene transmission are data reduction, bandwidth

allocation, and data prioritization.

2.5.1 Data Reduction

All data compression, in general, results in a fewer number of bytes encoding informa-
tion. This is also true for image compression, including the compression techniques
discussed earlier in Sections 2.3 and 2.4. If the information is being sent from site
to site, this reduction in bytes translates to a necessity to transmit less actual data.
Where network charges are calculated on the number of transmitted bytes, such
a reduction could result in significant savings, depending on the compression ratio

achieved. Therefore, image compression can be a significant concern.

2.5.2 Bandwidth Allgcafian

Data reduction prior to transmission can also effectively reduce the requirements for
network bandwidth. Situations where greater demands are placed on networks already
at capacity usually require the elimination of some of the traffic, or and upgrading of
the network. Data compression is a much less costly solution. Where restrictions on
bandwidth cannot be avoided, data compression allows a larger amount of information

to be transmitted within the same number of bytes.

2.5.3 Packet Prioritization

When information is transmitted over a network, sometimes the data must be broken
up into packets and sent separately. ATM networks operate on this principle. When
the network gets congested, some of these packets must be dropped and are therefore
not successfully transmitted. If there is a method of assigning priority levels to

individual packets, usually the ones with the lowest priorities are lost first.
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Chapter 3

Animate Visual Compression and
Prioritization

In this chapter we outline the basic structure of the animate visual system. Most
notably, the unique spatially variant qualities of the retina will be described. Other
works describe this in greater detail [74].

An introduction to the physiology of animate vision is given in Section 3.1. It
provides a description of foveal regions and saccadic movements and explains their
important role in vision and perception.

As outlined in Section 1.1, many computer applications require some form of data
compression in order to reduce the bandwidth required for transmission, the memory
required for storage, and the processing required for manipulation.

For the same reason of optimal resource management, many biological visual sys-
lems reduce the amount of sensory data transmitted from the optical receptors to
the brain. One of the data reduction methods employed in several stages during
transmission is that of spatially varying the resolution. This concept deserves close
attention for its possible application to various problems in computer vision.

The arca assumed to be of greater interest, the fovea, requires more detail than the
periphery. This effect can be achieved by decreasing the spatial sampling rate of the
image as one moves further from the location of the fovea, thereby spatially varying
the resolution. One cannot remove the periphery entirely, however, as it provides
important general information such as motion, texture, and an overall context for the
scene.

Clearly, VR methods cannot be used to compress all data, as frequently the area
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of primary interest cannot be determined in advance or quickly located automatically.
In some domains, such as with medical images, the distortions caused by inaccurate
foveal location may be unacceptable. However, there are some applications, such
as videoconferencing, where the VR technique gives high coinpression ratios and

acceptable image quality for relatively low computational cost.

3.1 Animate Vision

To say that the animate visual system is complex in design is a gross understatement,
Scientists are still far from consensus as to exactly what occurs between the act of
looking and the result of seeing. Much has been learned through experiments and
dissections, but still more remains hidden. The sense of vision is naturally intertwined
with cognition and self-awareness. One can quickly come to the conclusion that the
secrets of vision and the secrets of how the mind works may have much in coinmon [80].
Discoveries in one area may provide insights into the other. Our research begins with
the area of vision that scientists have had the most success in understanding — the
physical optic sensors. The human eye is probably the best understood in this respect,

The eye is an organ with the purpose of transmitting visual information aboul,
its surroundings to the brain. It is not necessary for the eye itself to understand the
information, just to encode and relay it. Light entering the eye passes through an
opening in the iris called the pupil. The curvature of the cornca and lens focus the
light onto the back of the eyeball. The retina consists of a layer of special cells along
the back of the eycball that capture the projected image and transmit it to the brain
via the ganglion cells and the optic nerve [74]. (See Appendix A for a diagram of the

eye.)
Active Vision

The concept of active vision differs from passive vision in that tasks such as scanning,
exploring, and searching are seen as essential to the perception process. Rather than
merely conveying information to the brain about the surroundings that happen to
present themselves, active visual systems exhibit purposive responses to the infor-

mation they collect. Many researchers have hegun to promote the view of animate
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perception as highly active (2, 3, 6-8, 10, 11, 70, 81, 90, 98). With this approach, the

concepts of a fovea and saccadic movements become increasingly relevant.

3.1.1 Retina

The retina is the layer of cells covering the inner surface of the back of the eye. These
cells encode the two dimensional image projected onto it into a pulse repetition rate
of ncuron transmissions to the brain. The human retina is covered by approximately
125 million receptor cells of two types; rods and cones [55]. Rods operate best in low
light and do not detect colour. Cones detect colour and do not operate well without
high illumination [66].

As with most animals, in humans the majority of information received by these
cells cannot be transmitted directly to the brain due to the small neural capacity of

receptors in the eye to the brain.

3.1.2 Fovea

The 125 million rods and cones are not evenly distributed over the human retina.
One small region, called the fovea !, occupies approximately 2° out of the total visual
range of 60° vertically and 180° horizontally. It is located near the optical axis and is
mainly comprised of cones. The periphery is mainly comprised of rods. It is estimated
that one hundred thousand receptors are present in the fovea and the remainder of the
125 million receptors are located in the periphery. The fovea] area , or macula lutea,
while the periphery is used to detect motion, intensity, and context.

The outer receptors are also arranged so that their density decreases with distance
from the fovea. The eye is directed by the brain to fixate on points of interest [114],
so clearly the portion of the image projected on or near the fovea is assumed to be of

more importance and therefore is sampled at a greater resolution. This decrease in

'In animals, the degrees of resource concentration in the foveal area of the retina differ. Biologists
have loosely defined several terms for what we will continue to call a fovea for reasons of simplicity.
Such an area is subjectively classified, from greater to lesser prominence, as a fovea, foveola, area
(area centralis), or region of high cell density (RHCD). A visual streak is a less pronounced elliptical

foveal arca, usually horizontal, often connecting a temporal and a nasal fovea.
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peripheral image sampling is just one way natural systems achieve variable resolution
data compression.

A second method of reducing the amount of data transmitted to the brain involves
the allocation of neural channels in the optic nerve. As previously mentioned, the
transmission of data collected from the 125 million receptors in the human retina can
only occur over the 1 million channels available to the brain (ganglion cells). The
100 000 foveal receptors are allocated channels at a ratio of L:1, while the peripheral
receptors are allocated the remaining 900 000. Data reduction does not occur in the
fovea, while the compression ratio of the periphery at this stage is approximately
140:1. Roughly 10% of the optic nerve’s capacity is utilized by the fovea, while the
fovea operates on only .04% of the visual field.

Here again, biological visual systems have reduced the data transmitted to the
brain with respect to the position of the fovea. The result is a spatially variable
resolution visual sensor which has both a wide field of view and high local acuily. The
clearest indication of the overall spatial compression that occurs before the data passes
through the optic head is ganglion cell density. Therefore, topographical ganglion cell

isodensity maps are of great interest in our research.

Saccadic Movements

The view through the structure of our eyes can be described as a frosty shower door
with a tiny spot rubbed clear. If this is true, why does our vision not appear as
such? The answer is that the spatially variable resolution is combined with saceadic
movements to produce the illusion of a uniformly detailed ficld of view. Saccadic
movements are the often jerky movements of the eye that position the fovea over the
area of the scene we are most interested in viewing [19, 42, 113]. Our entire visual ficld
appears in detail because the fovea is always placed exactly where we arc “looking.”

The classical problem of determining the focus of attention can be approached hy
categorizing gaze control mechanisms into three classes [83]. Reflex eye movements
are involuntary reactions to sudden changes in scene or tracking smoothly moving
objects?. Task driven eye movements depend on the actions being performed. As an

example, one’s eyes tend to alternate between focusing on the ground plane and the

2These smooth saccadic movements are called optokinetic nystagmus.
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horizon while walking. Finally, voluntary eye movements are explicitly controlled by
high level cognition processes, such as visual searching or recognition.
Active visual systems are therefore unique. They are comprised of both a variable

resolution sensor and rapid, accurate foveal positioning controls 3, 6].

3.1.3 Phylogenetic Visual Characteristics

Although not all animals have foveal areas (e.g., goldfish), most advanced biological

visual systems do have a non-uniform distribution of ganglion cells along their reti-

isotropical ganglion cell decrease with respect to eccentricity. Other animals, such
as the eagle possess a visual streak: a horizontally elongated band of high acuity
(Figure 3.1 [48]). Just 5% of birds have no foveation, and 41% have at least two
foveae [18, 68, 86].

Figure 3.1: Ganglion cell isodensity map for the eagle. Dorsal direction is up and
nasal direction is to the left of the page. Numbers indicate thousands of cells per
mm?. Notice the strong central and temporal foveae as well as a, moderate horizontal
visual streak.

The owl, sunbird, nuthatch, and blue Jay are examples of monofoveate birds, al-
though the position of the fovea with respect to the optic center of the eye differs.
Procellariiform seabirds have been found to have a pronounced visual streak, usually
with a central fovea [43]. Eagles, hawks, vultures, swallows, kingfishers, terns, bit-
terns, and hummingbirds are all bifoveate species with some form of horizontal visual
streak, however the relative weights of their foveae differ.

with a visual streak extending in the nasal region. The topographical map of ganglion
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studies on wolves have found that they have pronounced visuz! streaks, while most
dogs have only moderate streaks. Studies included beagles, German shepherds, basset.
hounds, dobermanns, entlebuchers, as well as timber and Alaska wolves [73].

While cheetahs, lecxpa’rds and tree shrews have pfﬂﬂDun(‘E‘d visual streaks, cats,

such as natural terrain are taken into account (see Section 32) [QZ, 67, 69, 92].

3.1.4 Visual Memory

Psychologists tell us that we build a mental representation of what we see — an
internal world view. If we did not create an inner model, we would not be able to
function; our surroundings would be a constant surprise. But how do we create it?
We do not merely take one look at a scene and obtain al] the necessary information
from that; we are not capable of detailed perception over a large area. We instead,
gather information about our environment over time. We use our eyes to scan our
surroundings and slowly build a model. The more time we have to survey our sur-
roundings, the more detailed our internal model will become. Scanning, then, is the
method used in animate vision — a method whose application to computer vision is
worthy of further study. '

Some say that our visual system drives the internal representation, while others
claim the relationship between the two is the reverse. Dr s what [ look at always
determine what I will see? Or are illusions more easily explained by the fact that what
I see is what I expect to see, not necessarily what I am looking at? The truth probably
lies somewhere in between. To be sure, one does not require visual signals free of noise
on order to generate an effective mental model of the world. Anthropomorphically
motivated computer applications, therefore, need not be immediately dismissed if an

imperfect method of image capture is utilized.

3.2 Five Ecological St pecializations

interaction with its environment. Variations in habitat and lifestylg have a direct
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relation to the specialization of the visual system [1, 46, 88]. The study of an animal’s
retina can provide clues to its daily routine. Indeed, a variety of procellariiform
seabirds who hunt for squid miles from shore, and who had never actually been
scen feeding were studied in [43). Close inspection of their foveae and visual streak,
however, provided clues to the details of their hunting methods, which were later
verified. Even species which are closely related may have widely differing retinal
topographies; it appears that the individual’s habitat is the determining factor [46].

While there is still some speculation about the purpose of some components of visual

There are five common topographical isodensity features of biological retinae that

are of particular interest to our research:

e general characteristics — single fovea, continuity, anisotropism, receptor

boundary shape
e multiple foveae — weighted foveae
e visual streaks
e optic discs

e multiple optic paths — dynamic foveae

3.2.1 General Characteristics

Some generalities can be drawn from surveying a wide variety of animals. In binocular
vision there seems to be a tradeoff between a large field of view and acute foveae.
Predators tend to have keen frontal vision with a strong temporal fovea and a limited
posterior field of view; tracking a highly motile target is of greater importance than
being on constant alert for other predators. Prey, on the other hand, tend to have
wide fields of view with limited foveal capacity, in order to detect predators and
navigate an evasion. A cat, for instance, has a 99° binocular field, a strong fovea,
and 187° field of view. A rabbit has a 360° total field of view, but only a weak visual

streak and a 24° binocular field.
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While humans possess a single fovea, the majority of advanced visual systems
are multifoveate. Three main classifications of retinal topographies can be made, as
shown in Figure 3.2. Clearly only monofoveate systems (e.g., Figure 3.2 A) such
as human eyes could be broadly classified as having isotropic ganglion isodensities.
Anisotropic nonconformal cortical projections predominate, specifically suited to the
environment or tasks.

Avian eyes with a single, usually central fovea, are the most common and are
associated with ground feeding birds (e.g., pigeons). The relatively simple task of
detecting and pecking static or slowly moving objects such as berries, secds, and bugs
requires a single area of accurate vision [63].

The natural shape of the eyeball is always spheroid, but the actuzl surface shape

of the retina can vary. The border of the visual field in humans is elliptical, comn-

with the possible exception of an optic disc. It is important to note these obvious
characteristics of animate visual systems when adapting biological methods to the
predominantly square, computing domain with possible mathematical singularitics in

the equations. This is discussed further in Chapter 4 and Section 5.1.

3.2.2 Multiple Foveae

Most avian predators (e.g., hawks, eagles) have more than one foveal area. The
central or temporal fovea is used for binocular vision. T racking rapidly moving or
camouflaged prey requires this keen frontal binocular fixation on proximate objects.

The nasal foveae are usually smaller and provide a wider panoramic view of the
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surroundings. These foveae are used for monocular foveation on surrounding objects
such as trees during navigation. Fine detail is not as necessary here as in the temporal
fovea. For example, a hummingbird will rely on its temporal fovea for catching insects,
and its nasal fovea while eating nectar. A minor visual streak also assists navigation,
as described below. The relative strength of the two foveal areas depends on the visual
purposc. Typically carrion eating birds which pursue from the ground (e.g., vulture,
condor, chimango) have weaker temporal foveae, while predators which capture live

prey from flight or perches (e.g., eagle, hawk) have acute temporal foveae.

3.2.3 Visual Streaks

Finally, mammals or birds whose habitat is either in open spaces (e.g., leopard) or
near water (e.g., puffin) often have a predominant visual streak and, occasionally, a
poorly developed fovea. This can be linked to the greater importance the horizon
has in the sensory ecology. Navigation with respect to the horizon and scanning for
surface food both benefit from the visual streak. Eye or head movements are greatly
reduced and a greater sensitivity to horizontal motion (e.g., prey) is gained. A strong
visual streak is not typically found in animals that scurry among bushes (e.g., mouse,
hedgehog, cat), because for them vertical vision is as important as horizontal. Most
animals whose heads commonly assume a wide variety of orientations during daily
activities (e.g., macaque) also exhibit an absence of a strong visual streak.

Even within similar configurations, different environments correspond to slightly
differing retinal topographies. Examples of animals with visual streaks include her-
bivores (e.g., rabbit), carnivores (e.g., leopard), and ungulates (e.g., horse), whose
habitats are fields or plains where the horizon is dominant. While most visual streaks
are dorsal to the optic disc (blind spot), the rabbit’s is ventral, due to its smaller
size causing the horizon to be higher in its field of view. Some taller animals (e.g.,
cow, fallow deer) also have a weak vertical streak-like area rising upward from the
fovea, called the anakatabatic area [46]. This area improves detail to the scene on the
ground immediately in front of the animal.

A wide range of streak strength exists in the canine family, although it appears
that wild species living in open terrain (e.g., wolf) have the expected strong visual

streaks. Domesticated dogs, however, vary greatly, even within the same litter. It
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has been proposed that extensive breeding in the history of domesticated dogs has
introduced a wide variety of visual streak expressions. If returned to the wild, the

pressures of natural selection might eventually reduce streak variability [48].

3.24 ,,Q Optic Discs

The arrangement of the layers of cells in vertebrate retinae requires the optic nerve
to pass through the photoreceptor layer, creating an optic disc, or “blind spot.”
However, the shape and position of the optic disc is also often clearly related to the
animal’s ecology. Some prairie dogs and squirrels have thin elongated optic dises.
Such specializations are for coping in the darker environment of diurnal activitics and
the need to reduce the risk of any object going undetected by falling entirely within
the blind spot.

Cephalopods (e.g., octopuses, squids) have a different layering arrangement. in
their retinae which does not produce blind spots [74]. Certainly this specialization
is the optimal solution to reducing the negative effect of operating with a blind area

within the visual field.

3.2.5 Multiple Optic Paths

The purpose of multiple optic paths is most often related to the need for the visual
system to operate well within two different media, air and water. The refraction
of light is different for each, posing a problem. By using multiple optic paths, the
eye can be structured such that one path works well in cach medium. For example,
the penguin has an egg shaped lens that focuses the light differently on two arcas
of the retina. When below water, the penguin can concentrate on the visual data
received clearly on one part of the retina. When above waler, it can concentrate on
the other retinal area, now in focus. The dolphin similarly uses two arcas of its retina
— however, it directs the incoming light by appropriately constricting its pupil in a

very irregular manner [1]. The bifoveate kingfisher bird also uses one fovea (temporal)

while hunting under water and the other (nasal) while in the ajr.
Several fish (e.g., Atlantic flying fish, Dialommus fuscus, Anableps anableps) also

require clear vision both in and out of water. Their eyes have divided retinae and
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separate corneal facets to compensate for their respective media. For Anableps an-

ableps, the “top” retina can be used to scan for predatory birds in the air and the

Mice within the genus mus have a divided retina as well. Here the purpose is
not to sce through multiple media, but rather to take advantage of the generally
constant but different colours of the sky (blue) and the ground (green). A predator
is more easily scen against a rich blue or green background if the appropriate area of
the retina has predominantly green or blue sensitive cones. To this end, the top and

bottom arcas of the retina are divided.

3.3 Biological Prioritization

sion, and processing. The system contains a natural information communications
network, transmitting visual data in the form of electrical pulses from the retinae,
along the optic nerve, to the occipital lobe of the brain. Like all computer networks,
the biological system is prone to bandwidth limitations, damage, errors, and numerous
malfunctions. Studies have shown that one method of coping with such constraints
that is utilized by animate visual networks involves the concept of data prioritization
with respect to the foveae. At many levels, the biological model prioritizes visual
information provided by the fovea or macular area of the retina, as this information

is assumed to be of primary importance.

3.3.1 Retinal Resilience

Research with rodents, goldfish, quail, and humans has demonstrated that peripheral
photoreceptors in the retina are more susceptible to light damage when exposed to

spatially homogeneous lighting conditions than those in foveal areas [91)3. Recent

studies suggest that aging retinae steadily lose peripheral cones, while foveal cones
remain stable [38]. During adulthood, less sensitive rods, but not cones are lost in

the fovea [26].

31t is believed the fovea is presei-;ed because the macular pigment is a carotenoid antioxidant
that decreases light-initiated lipid peroxidation, reducing the damaging effects of photochemical
reactions [57].
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3.3.2 Optic Nerve

The optic nerves connecting the retinal sensors and the occipital lobe can usually
be viewed as a robust, static network. However, the human visual system has the
ability to manage trauma intelligently and continue to function when this network is
compromised.

The foveal data is transmitted through the core of the optic nerve, along the optic
pathway. It is cushioned by the surrounding neurons which carry the peripheral data

(see Figure 3.3). Many injuries or degenerative discases which may damage the optic

pathway would affect the periphery before reaching the fovea [55].

Figure 3.3: Arrangement of six areas of the visual field within the retinac (A) and
the optic nerve (B). Cardinal numerals refer to the left half of the visual field, prime
numerals to the rigl.: half (from [55] p. 24).

3.3.3 Blood Supply to the Occipital Lobe

Prioritization is also involved within the brain itself. The portion of the occipital

lobe which processes foveal information has a dual blood supply, from both the mid-
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dle cerebral and posterior cerebral arteries. The peripheral portions of the occipital
lobe have only one nourishing artery. Therefore, in situations of head trauma, vas-
cular disease, or temporary drop in blood pressure, the foveal information will often
continue to be processed where the periphery will not be. This explains the com-

mon occurrence of gradual peripheral vision failure prior to fainting as well as the

Therefore, in many traumatic situations where biological visual system networks
experience gradual impairment, peripheral information is increasingly lost until only a
siall, blurred area remains in the center of the field of view. Human subjects relating

experiences of gradual visual impairment often describe darkness “closing in” from

to this effect, known as tunnel vision. Total blindness is a possible final stage.
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Chapter 4
Established Biological Modelling

The image compression schemes described in Section 2.3 treat the entire image uni-
formly, and we can infer from the information presented in Section 3.2 that this is
not always necessary nor desirable. Studies have shown that animate vision has much
higher resolution in the center of the visual field than in the periphery. In this chap-
ter we describe several computer implementations of variable resolution algorithms.
Although most of the methods are, to some degree, based on animate visual systems,
the actual implementations have usually taken some simplifying libertics.

In Section 4.1.1, a review of the motivation for investigaling animate vision is

given. The cortical projection transform is discussed in Section 4.2, along with the

Section 4.4 presents a unique transform with varying resolution in only one dimension.
The fish eye transform is presented in Section 4.9, and a modified version which
produces square images is described in Section 4.6. It is this last method that is the

starting point for our research.

4.1 Preliminaries

4.1.1 Anthropomorphic Benefits

Section 1.1 clearly outlined the need for image compression, Chapter 2 noted that
effective compression methods spring from a solid understanding of the data under
consideration. When working with computerized images, there are two main reasons

we should look to animate visual systems for inspiration:
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® Animate visual systems are the only natural systems that are able to perform
complex manipulations and operations with detailed optic data. The way these
systems function using images may provide important clues to the nature of

visual data itself.

e Many of our image processing and compression methods will be used on data
specifically intended for human viewing. Considering the user’s visual system
may allow us to tailor our algorithms, taking advantage of biological fixation

and visual characteristics.

4.1.2 Pre-computational Modelling

The foveated aspect of human vision was recognized long before modern computers
were invented. In fact, Johannes Vermeer van Delft, a painter, experimented with
the camera obscura in the mid-seventeenth century in order to model the optics of
the human eye. He joined several other Dutch painters and began the Delft school of
painting, which sought optical accuracy within their work. Figure 4.1 is an example
of Vermeer’s work from the Louvre in Paris. It demonstrates the approximation the
effect of the fovea on human vision. Vermeer intentionally painted finer detail around
the regions of interest (hands, face) while purposely blurring the foreground, ball of
string, and periphery.

The arrival of computers has empowered us to investigate and model biological
visual systems with greater precision. JPEG and other schemes have utilized the
fact that humans cannot detect changes in chrominance as well as they can detect
changes in intensity. While such knowledge is useful, our research has concentrated
primarily on the specific characteristics of spatial subsampling. Retinal layout and
cortical projections provide us with the basic knowledge in this area.

At present, there are several computational models of some of the biological visual
characteristics described in Section 3.1. However, until now, only the simplest of
retinal topographies have been attempted. We will describe the methods of Schwarts’
Cortical Projection, the Log Polar transform, the Reciprocal Wedge transform, the
Basic Variable Resolution (BVR) transform, and the Stretched Variable Resolution
(SVR) transform.
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Figure 4.1: The Lacemaker by Johannes Vermeer van Delft, circa 1660. In pursuit, of
optical accuracy, he approximates the affect of the fovea on human vision.



4.1.3 Essential Characteristics

Keep in mind that when accurately modelling the animate visual system three main

systems:

¢ Fovea: While animate systems differ in the number, shape, or location of
foveace, the information transmitted from the retina to the brain is usually of

non-uniform spatial resolution.

e Continuity: Many biological visual systems maintain image continuily up to
and sometimes including the projection of image data onto the cortex. Typi-

cally, while the true image may be transformed in many ways, information from

e Anisotropism: While one might simplify the human visual compression into
an isotropic transformation, closer inspection of the range in the animal kingdom
indicates a wider variety of retinal topographies among other species. Indeed,
the human eye is almost isotropic, but in general, the radial symmetry of an
animal’s eye closely reflects its habitat and function within daily activities. It is
not isotropism itself that is important to achieve, but rather the match between

topography and task.

4.1.4 Coordinate Systems

An image may be indexed using polar or Cartesian coordinate systems. A simple
transformation indexes a point from one frame of reference to another. Formally,
the mapping function from the Cartesian (z,y) coordinates to the log polar (r,#8)

coordinates is given by

ro= a2 4y (4.1)
0 tan™!(y/z) (4.2)

The decision as to which system to use depends on the actions being performed on

the image. Image processing methods based on biological visual systems frequently



lend themselves well to the use of polar coordinates. One of the reasons for this is

the virtual isotropic nature of the retina found in the human eve.

4.2 Schwartz’ Cortical Projection

Figure 4.2: Schwartz’ cortical projection:

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map. (The numbers give
the sampling density in percent.)

Schwartz researched variable resolution models of vision. His rescarch concluded that,
the retinal image mapped onto the visual cortex (occipital lobe) of the brain is ap-
proximated by a conformal log polar mapping [84, 85]. Figure 4.2 illustrates how this
retinal mapping maintains a wide field of view, a single acute foveal arca, significant,
data reduction, and reasonable resolution [82]. Schwartz preferred to express this

transformation using complex variables, defined as

z = x4y (1.3)
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Sampling Density Curve for Schwartz’ cortical projection
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Figure 4.3: Schwartz’ cortical projection: This sampling density map is the three
dimensional representation of the topographical isosampling map shown in Figure 4.2.

w = z'+iy (4.4)

where = expresses the coordinates in the original image, and where w expresses the
coordinates in the transformed image. Note that if initially polar coordinates are

used, as defined in Equations 4.1 and 4.2, Equation 4.3 can also be defined as
— 0
z = rev’, (4.5)

With these complex variables, Schwartz’ cortical projection (or “global retinotopic

transformation”) is expressed as
w = In(z+a) (4.6)

where a is a shifting parameter that eliminates the singularity otherwise present at
the origin. A practical disadvantage of Schwartz’ cortical projection is that continuity
along the vertical meridian is lost. Boundary checks for wraparound conditions must
be made when traversing through an image; filtering and correlation calculations

become more complex.
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4.3 Log Polar Transform

The log polar transformation is another example of a system that is best expressed

using polar coordinates (Figure 4.4).

Top row: Original; compressed (to scale); compressed (magnified).
Bottom row: Decompressed; topographical 1isosampling map (grey area is unsam-
pled).

The log polar transform is a popular simplification of Schwartz’ com plex logarith-
mic mapping, and is defined as

r" = Inr (4.7)

v =0 (1.8)

where r and 6 are the coordinates in the original image, and where ' and ¢ are the

coordinates in the transformed image. It is shown in [106] that within this coordinate

system scaling becomes a simple shift operation in the r/ dimension, and rotation

a simple shift operation in the 8 dimension. These properties make the log polar
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Sampling Dansity Curve for the Log Polar Transform
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Figure 4.5: Log Polar transform: This sampling density map is the three dimensional
representation of the topographical isosampling map shown in Figure 4.4,

transform an attractive method for two dimensional object recognition [81], the esti-
mation of depth from motion [94], and the evaluation of time-to-impact from optical
flow [95].

There are some major drawbacks to log polar systems used in practice, as ad-
dressed in [35, 96]. Here, in a rectangular array indexed by r and 8, continuity along
the left half of the horizontal meridian is lost, similar to Schwartz’ cortical projection.

Boundary checks for wraparound conditions must be made when traversing through
an image. As well, a singularity exists around the origin, usually requiring a small
extra patch or a shift parameter [79, 85], and complicating any image manipulation
process. It is often noted that, although it is the most important section of the image,
the foveal patch is not included in many applications for the sake of simplicity [83].
Isotropic variable resolution sensors capable of capturing images in polar coor-
dinates have also been developed, avoiding the use of mathematical transforma-
tions [58, 101]. During fabrication, however, such cameras require expensive variable

sampling and circular sensors.
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4.4 Reciprocal Wedge Transform

In [96], another space variant transform is proposed as an alternative to the log polar
transform. While the log polar transform simplifies many centric transformations
such as rotation and scaling about the origin, it complicates other linear functions
into logarithmic sine curves [106]. Also, polynomial curves may change their degree
after the log polar transform; they retain their degree using the Reciprocal Wedge
Transform (RWT) (Figure 4.6).

Figure 4.6: Reciprocal Wedge transform:
Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map (grey arca is unsam-
pled).

Although the RWT is anisotropic, it preserves horizontal scaling, loses resohition
predominantly in one dimension, and is better suited to working with lincar move-
ments like translations. This transform was not developed for use with image com-
pression, but primarily for line detection, stereo correspondence, and lincar motion

estimation in robotic navigation and on assembly lines [97].
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Figure 4.7: Reciprocal Wedge transform: This sampling density map is the three
dimensional representation of the topographical isosampling map shown in Figure 4.6.

The RWT is defined as a mapping from (z, y) to (z',3’) such that

= 1/z (4.9)
y = y/z (4.10)

The RWT also is not continuous; the transformed image is divided along the
vertical meridian. The singularity at z = 0 affects the center vertical strip intersecting
the origin. The range of this strip is usually omitted from any processing [97], to
simplify calculations. To operate on the entire image, either a center patch must be

included, or a shift parameter @ must be added to the equations 4.9 and 4.10 1.

g = 1/(z+a) (4.11)
¥ = y/lz+a) (4.12)

In either case, the calculations become more complex.

!The effect of a is a shift of the Cartesian image along the horizontal axis.
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4.5 Basic Variable Resolution Transform

The Basic Variable Resolution (BVR) transform is the starting point for much of our

research, and is often referred to as the Fish Eye Transform (FET) (Figure 4.8).

Figure 4.8: Basic Variable Resolution transform with fovea on the face. Central
clarity is maintained while the edges become blurred.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

This transform is a simplification of Schwartz’ complex logarithmic mapping [12,
13]. It concentrates on providing greater detail around the fovea while maintain-
ing continuity throughout the image. A shift value of 1 is added in the logarithm,
avoiding a singularity at the origin. While the exact method outlined by Schwartz is
clearly discontinuous across the vertical meridian, the BVR transform is not [14]. The
algorithm is isotropic and based on polar coordinates. For our discussions, let (r,0)
represent the polar coordinates of the point (z,y) in the Cartesian domain, where

they share the same origin at the fovea.
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Sampling Density Curva for the BVR Transfom
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Figure 4.9: Basic Variable Resolution transform: This sampling density map is the
threc dimensional representation of the topographical isosampling map shown in Fig-
ure 4.8,

o2 g2 (4.13)
0 = tan~1(¥) (4.14)
I

~
H

=
I

The BVR equations, then, transform the point (r,0) to the polar coordinates

(r',0') using the equations:

r' = sln(ra+1) (4.15)
0 = ¢ (4.16)

The Cartesian coordinates after the transform are therefore
7

' = r'cosf (4.17)
y = r'sing (4.18)

To restate, the pixel value has moved from a distance of r to 7/ away from the fovea

al its original angle. The value s is a scaling factor which controls the compression
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ratio, while o controls the distortion effect of the fovea. A high a value will cause
the resolution of the periphery to drop substantially as compared to the foveal region
(strong fovea). A low o value causes the resolution of the periphery to drop only

slightly as one moves out from the fovea (weak fovea).
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An additional transforin is presented in [60], called the Polynomial Fish Eye Trans-
form (PFET). The purpose is the same as the FET, but PFET uses different, equations

for deriving r'. Here, r' = F(r), where F(r) is of the form

F(r)=as+air +ayr® + -+ 4 a, " = Z ajjrj (1.25)

No simple inverse transform of the PFET exists.

The specific values of n and a, can be changed to achieve diflerent, distortion
and compression ratios. Good approximations to fish eye lenses were achieved with
n =5 [60]. While the exact effects of changing « and s in the FET were known,
coeflicients must be modified simultaneously. Under detailed analysis, however, the
PFET does seem to provide better approximations of transformations done by wide

angle or fish eye lenses.

4.6 Stretched Variable Resolution Transform

Notice that one of the features of the BVR transform is non-rectangular compressed

images, similar to some of the other methods presented. We will address this in more
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Figure 4.10: Stretched Variable Resolution transform with fovea on the face. Central
clarity is maintained while the edges become blurred.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

detail in Section 5.1

The Siretched Variable Resolution (SVR) transform, as presented in [16, 89] is
based on the BVR transform, but produces rectangular images by using multiple
scaling factors. The SVR transform varies s for each point, depending on its polar
coordinate angle 6 (See Equation 4.26).
image, Tmax, and the maximum distance in the compressed image, r} ., [16]. These
will, obviously, depend on the location of the fovea (or origin). The desired compres-
sion ratio will determine the dimensions of the compressed image, setting r/,,..

For each 0, then, the scaling factor becomes:

™ o
= —Mmax_ 4,26
$ In(armax + 1) (4.26)

This maps the entire original image to a rectangular compressed image for any
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Sampling Density Curve for the SVR Transform
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Figure 4.11: Stretched Variable Resolution transform: This sampling density map is

the three dimensional representation of the topographical isosampling map shown in
Figure 4.10.

value of & or any location of the fovea. The compressed image is ellectively strelehed
to fill the entire rectangle. The SVR transform is not isotropic.

Figure 4.10 illustrates the SVR transform used in the compression of an image.
This method does a reasonable job of maintaining the anthropomorphic foveal prop-
erties of the BVR formulae, but is relatively complex.

The affect of a within the SVR equations is similar to it affect within the BVR

the affect of increasing o while maintaining a constant compression parameter value
(here, at 95). Notice how the higher a values will cause the resolution of the periphery
to drop more rapidly as compared to the foveal region (strong fovea). The lower o
values cause the resolution of the periphery to drop only slightly as one moves ont,

from the fovea (weak fovea).






C) a = 0.2 D)a=10

Figure 4.13: Zoo example with different o settings: Compression is constant at 95%.

A single fovea on the face increases in strength with o, at the expense of the peri phery.
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Sampling Density Example: Alpha=0.2 (95% Compression)
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Figure 4.16: Sampling densiiy map for o = 0.2 (see Figure 4.13 C).
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Figure 4.17: Sampling density map for a = 1.0 (see Figure 4,13 D).



Chapter 5

Foveated Transform Enhancements

In this chapter, we introduce original doctoral thesis material. We indicate the areas
in which work has been done, as well as indicate areas in which further research is
warranted. Results, tools, and algorithms are also described. Chapter 7 outlines
several applications based on the present research.

In Chapter 3 we saw the great variety of visual systems present in the animal
kingdom. It is clear that while most share the feature of ‘a fovea to some degree,
there are many variations. The methods presented in Chapter 4 almost exclusively
modelled monofoveate systems. If we wish to evaluate the comparative quality of
these systems, we cannot do this without taking their environments and tasks into
consideration. Biologically, each type of eye is equipped with the special features
necessary for its purpose within its ecology. Computer vision systems also have unique
tasks and environments. By modelling a simple fovea, multiple foveae, visual streaks,
optic discs, and multiple optic paths we can build the tools necessary to adapt our
computer systems properly for a much wider range of specific purposes. These five
features will be addressed in that order.

The first issue we notice, as we move from the animate to the computing domains

is the natural digital affinity towards rectangular image shapes.

9.1 Irregularly Shaped Images

While the biologically based image transforms introduced in Chapter 4 are generally
accurate, all but the last two methods are discontinuous somewhere within the image.

Also, except for SVR, the transforms do not produce both rectangular compressed
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and rectangular decompressed images from standard rectangular input. One great
distinction between the biologically based image transforms introduced in this section.
and the previous ones, is the shape of the compressed image.

As an example, the BVR transform of a rectangular image is not a rectangular
image, as illustrated in Figure 5.1. This problem is magnified when the fovea is not

located near the center of the image, or when high a values are used.

Y

BVR Trapsformed
Image

Original Image

X

Bounding Box

Figure 5.1: The BVR transformation of a rectangular image.

Currently, most computer applications that work with images expect them to be
rectangular. It is often inconvenient to work with non-rectangular images. The trans-
mission of irregularly shaped images involves also transmitting boundary information.
In addition, the BVR compression method might be intended to preprocess an irmage
being sent to another function. If this function (such as one of the standard image
compression methods) requires rectangular images, we must find a remedy. Notice
that Figures 4.2 to 4.8 all must be padded with white areas to fit into a rectangular
array.

While padding the images solves the immediate problem of irregular shape, it,
increases the image’s size with useless data, opposing the compression we wish to
achieve (Figure 5.2). If we truncate (crop) the compressed image to fit a smaller
rectangle, the decompressed image will no longer be rectangular, having lost complete

parts of the image (Figure 5.3). This also is not acceptable. Alternatively, information
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Figure 5.2: Using padding to handle irregularly shaped images.

Top row: Log Polar transform.

Bottom row: BVR transform.

Left to Right: Original, compressed, and decompressed images. Notice the white
pixels (unused padding) around the edge of the compressed images.

about the shape of the image (the border) can be coded and transmitted along with
the data itself, also increasing the amount of data needed to store or transmit the
image. Thus, it is often inconvenient to work with non-rectangular images, and
solutions involving padding with useless data or image cropping are often counter

productive and not acceptable.

5.1.1 Isotropic and Conformal Mapping Properties

Certain mathematical transformations maintain the properties of isotropic and con-
formal mapping. Log polar is an example of this type of transform. The benefits of
conformal mapping include simpler feature detection, tracking, and other mathemat-
ical image processing operations on the image which rely on the consistency of all

angles within an image. Isotropic transforms also allow for simpler operations with
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Top row: Log Polar transform.
Bottom row: BVR transform.
Left to Right: Original, compressed, and decompressed images. Note the lost

object rotation and scaling. The human eye is also roughiy modelled with isotropic
properties.

These benefits, however, generally do not arise in image compression. Compression
schemes work on any input image, regardless of its transformation history. Frequency
domain based compression methods such as JPEG and MPEG are affected by image
discontinuities which some transforms could produce, however.

The SVR transform, as presented, is not isotropic, nor is it a conformal mapping.
Tracking simple object paths in the transformation space, therefore, may become
more complex. The human eye is also less closely modelled with respect to isotropisin.
These drawbacks, while they must be identified, are a result of the effort to obtain

rectangular compressed images, which is of great benefit. Certainly the case with
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ods outweighs the increased complexity of certain image processing tasks, especially
when these tasks are not even attempted in the subsequent standard compression
algorithms.

Anisotropism is the norm within the animal kingdom and therefore should not be
considered inherently detrimental. It was noted in Section 4.1.3 that animate visual
systems seem to match the possible non-conformal anisotropic topography of their
retina to their habitat or some specific function. Biological anisotropism reflects the
task and domain of the animal in the same way the anisotropism of SVR reflects the
digital image domain and the prevalent necessity of rectangular images and Cartesian

coordinate systems. Even in situations where strict isotropism might be considered

anisotropic nature of the SVR transform.
9.1.2 Stretched Variable Resolution Transform Solution

We have seen that with the BVR. transform, the problem of irregularly shaped images
is magnified when the fovea is not located near the center of the image, or when high
o values are used.

One approach to solving the problem of irregularly shaped iiiages used in the
SVR algorithm was the use of multiple scaling factors (See Section 4.6).

The entire original image was mapped to a rectangular compressed image, stretch-
ing it out at the corners. Isotropic properties were not maintained, but the previously
unused padded corners now held useful information.

The SVR method produces situations where particular pixels receive anomalous
colour values when the popular bilinear interpolation method is used. The effect, al-
though minimal, appears as spotty noise, mainly along the diagonals. Simply search-
ing for the four nearest neighbours of sampled pixels that enclose an unsampled point
does not always properly restrict the solution to the bilinear system of equations.
The SVR method suffers from this difficulty, as it does not sample points in a regular
pattern, requiring lower quality or more complex interpolation methods.

The SVR transform from [89] was promising and definitely worth closer inspection,
such as exploring the many possible enhancements and adjustments to its original

implementation, including the nearest neighbour search method, interpolation, and



scaling factor arrays.

SVR Interpolation Methods

The research and analysis of SVR in [89] used straight pixel sampling — selecting
one pixel to be representative of its nearest neighbours. However, improved picture
quality may be obtained by other interpolation methods.

The original method simply worked outward from the point, looking for a neigh-
bour. As it searched a line of pixels, it started at one end and worked towards the
other end. One change made in our work was simply to start in the center of the
line and search towards the ends. This does not give perfect results, and gives more
accurate results in only some of the cases but even this small modification improves
the signal to noise ratio quite significantly. More recently, a look-up table determining
the exact order in which to search neighbouring pixels has been used by the author,
but formal comparative analysis have not been done.

Several alternate interpolation methods were implemented and compared, includ-
ing bilinear and weighted average. A visual inspection of the images resulting from
the search enhancements and added interpolation methods showed a noticeable dif-
ference. It is clear from our results that the original methods used in [89] could he

significantly improved upon with a little more computation.

Scaling Factor Arrays

Another important aspect of the SVR, implementation used in [89] is the data struc-
tures used to hold scaling factors. Each point within the image requires a scaling
factor, unique to the coordinate angle made with the fovea locations (See Equa-
tions 4.26). While this could be calculated separately for cach pixel location, it is
clear that the full range of scaling factors can be calculated for each angle in ad-
vance, and stored in array for quick access. This was previously accomplished using
4 separate arrays conceptually around the perimeter of the image.

This approach was successful for the simplest cases, but invelved additional cal-
culations to determine the correct array to access from the four options. An alternate
approach implemented by the author generated a single, circular array, as depicted

in Figure 5.4. This eliminated the boundary and indexing checks necessary in the
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original method.

Circular
Perimeter Array Array

Image

Fovea

Point

Scaling Scalin,
Factor Factor

Figure 5.4: Perimeter and circular scaling factor arrays.

In addition to simplifying the step of calculating scaling factors, this enhancement
also opened up the possibilities of alternate implementations of multiple foveae. For
example, the image segment boundaries required to calculate the scaling factors nec-
cssary for competitive multiple foveae, (see Section 5.2.1), are not always horizontal
or vertical, but could be located at any angle, any length, and any position within
the image. The eflort required to implement these scaling factors with perimeter
arrays is prohibitively great, and vastly more cumbersome than necessary. Circular
arrays allow one array per fovea to be calculated and accessed in an identical manner,

regardless of the number and position of the foveae.

5.1.3 Cartesian Variable Resolution Transform Solution

I'he BVR model, as described in Section 4.5, produced irregular shaped compressed
mages. The SVR method addressed this issue, although in a relatively computation-
uly complex manner. We have also seen how SVR’s irregular sampling is problematic
or bilinear interpolation. The complexity can be reduced with the Cartesian Vari-
tble Resolution transform (CVR). The CVR method does not suffer from noise with
ilinear interpolation, as all points are sampled in a regular pattern. It also pro-

'uces continuous rectangular compressed and decompressed images. Like the SVR
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method, CVR is non-conformal and anisotropic, accurately reflecting the domain of
rectangular images in which it is designed to operate. The same reasoning with re-
spect to isotropism and conformal mapping used in Section 5.1.1 applics here as well,
as the gain of rectangular compressed images outweighs its possible aisadvantages.
The CVR method does a reasonable job of maintaining the anthropomorphic foveal
properties of the original formulae, although it is simpler to compute.

The SVR approach to dealing with non-rectangular compressed images was to
adapt the polar coordinate formulae. The CVR method greatly simplifies the formulae
by isolating the vertical and horizontal components without ever operafing with polar

coordinates. Figure 5.5 demonstrates this approach.

Figure 5.5: Cartesian Variable Resolution transform with fovea on the face. Central
clarity is maintained while the edges become blurred.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

For a given image with the fovea located at (Zo, Y0), for every pixel (z,y) in the

original image, we define the distance from (z,y) in z and y directions as dz and dy
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Sampling Density Gurve for the CVR Transform
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Figure 5.6: Cartesian Variable Resolution transform: This samp
the three dimensional representation of the topographical isosam

Figure 5.5.

respectively, from the following equations:
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Therefore, (2,y) is mapped to the point (z',y') where:

¥ = x9+s,In(adz + 1)

Y = wo+s,Inflady+1)

ling density map is

(5.1)

(5.2)

(5.3)
(5.4)

In other words, here a pixel is moved from dz and dy to dz' and dy’ units away from

the fovea in z and y directions, where
dr' = s;ln(edz+1)
dy' = syln(ady+1)

(5.5)
(5.6)

This transformation can be easily reversed, allowing dz and dy to be defined in terms

of da' and dy':

ds!
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As in the BVR model, the values s, and sy are scaling factors used to control
the overall compression ratio. For each dimension we can calculate the maximum
distance to the edge of the original image, drmax, dYmax; and the maximum distance

to the edge of the compressed image, dz),

] [ & s 7767 1216 T4l L]
axs QYmax- For each dimension, then, the
scaling factors become:

G (5.9)
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The CVR method can vary the scaling factors, both horizontally and vertically, de-
pending on the position of the fovea and the compression ratio desired. (The com-
pression ratio will determine the dimensions of the compressed image, setting dx!, .
and dy;,,,.)

The BVR transform of a rectangular image is not a rectangular image as illustrated
in Figure 5.1. The exact position of the boundaries depends on the VR parameters
and the location of the fovea. The CVR method addresses this issue, producing

rectangular compressed images regardless of the location of the fovea.

5.2 Multiple Foveae

So far we have concentrated on transforms with one center of attention — one fovea.
There may also be circumstances where there is more than one arca of interest to
the observer. This situation requires multiple foveae, where two or more regions are
displayed with higher resolution than the remainder of the image.

When one introduces additional centers of attention, a decision must be made to
either reduce the resolution around each fovea to compensate, or retain additional in-
formation for each additional fovea, thus reducing the compression ratio. The quality
of an image then depends on the relative position of multiple foveae.

As previously noted, natural visual systems contain numerous examples of multi-
ple foveae. Some include a visual streak, while others do not. One can clearly define
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the mathematical relationship between multiple foveae depending on the desired prop-
erties. Two distinct approaches are cooperative and competitive foveae. The former
approach approximates the visual systems which include a visual streak, while the
latter approximates divided retina such as Anableps anableps’. Both are extensions to
the SVR formulae, and both are implemented using the circular scaling factor arrays,

presented in Section 5.1.2.

9.2.1 Cooperative Multiple Foveae

Figure 5.7: Cooperative foveae placed on the outer faces, Note the visual streak
clarity across all faces.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

A multifoveate method which works well calculates the possible locations of a point
in the transformed image with respect to each fovea separately. The true location
is then found by weighting the estimated positions according to the distance of the

original point from the fovea. A higher weight is given to the location calculated
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Sampling Density Curve for Cooperative Foveas
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Figure 5.8: Cooperative fovea: This sampling density map is the three dimensional
representation of the topographical isosampling map shown in Figure 5.7.

using the closer fovea. The formula for the actual location of each point, is:
la-:tu:al = Z (lz (l - rl;/w)) (5;] ])
VY foveae i

where,

w= Z d;

¥ foveae

—
-~
AN

st

and where /; represents the coordinates of a point calculated using fovea 1, and d,
represents the distance to fovea i. The method is termed cooperalive because all fovea
contribute to the calculation of the position of a point in the transformed image.

A unique property of cooperative foveae is the existence of visual streaks between
them. The area of highest quality in the scene will not only be at the foveae, but also
in the area between the foveae, F igure 5.7 generates a banana shaped visual stroak
to cover all the faces in the image.

If two of several foveae lie on exactly the same location, the transformed image will
not always be the same as if only one fovea had existed at that spot. LEach contributes

to the final positioning of each point in the transformation, no matter where it lies.
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Only when zll foveae reside at the same location will they exhibit identical behaviour

to a single fovea.

Figure 5.9: Competitive foveae placed on the outer faces. Note the foveal clarity on
the outer faces only.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

The definition of competitive foveae comes from the fact that all foveae compete to
calculate the location of each point in the transformed image. The fovea which is clos-
est to any point in the original image will be the cne that determines its transformed

position.

lactual = {li : V foveae I JF1, di < d;} (5.13)

Again, /; represents the coordinates of a point calculated using fovea 7, and d;

represents the distance to fovea 1.
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: This sampling density map is the three dimensional

representation of the topographical isosampling map shown in Figure 5.9.

angular compressed image, the maximum distances used in the formula are not the
edges of the image. Instead, a simple Voronoi tessellation is generated around the
foveae and the maximum edge of each voronoi area is used. Figure 5.9 demonstrates
two foveae covering the outer faces in the image.

The visual streaks do not appear between competitive foveae, as the image is
essentially broken up into separate regions, each with only one fovea contri buting to
the compression. This can closely resemble the divided retina of animals with multiple
optic paths. There is no noticeable transition between regions, as the boundary is
equidistant from the contributing foveae, by its definition.

Here, the quality of an image not only depends on the proximity to a fovea, hut
also on the relative position of all the foveae. If the total compression ratio is set to a
given constant, then the overall quality of the image will increase as two foveae move
closer. This effect is more pronounced in the periphery of the scene. If two foveae are
centered on the same location, then they act exactly as a single fovea would in that

position. Common monofoveate visual systems can therefore be easily modelled with
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this method.

5.2.3 Weighted Multiple Foveae

Figure 5.11: Weighted Cooperative foveae placed on the outer faces. The left fovea
is weighted three times stronger than the right fovea.

Top row: Original; compressed (to scale); compressed (magnified).

Bottom row: Decompressed; topographical isosampling map.

In either competitive or cooperative multiple foveae systems, the effect of each fovea
might not be equal. Most animals that have multiple foveae have one primary and
one or more secondary foveae. To achieve this within our current systems, it is
necessary to weight the distances to the foveae mathematically, according to their
relative dominance. In these cases, the calculation of d; is no longer simply the
distance of a point from fovea i, but rather the distance divided by the weight assigned

to that fovea. (A higher weight indicates a stronger fovea.)

" relative weight of fovea ¢

distam:e to fqvea. ] (5.14)
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Sampling Density Curve for Waighted Cooperative Foveas
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Figure 5.12: Weighted Cooperative foveae: This sampling density map is the three di-

mensional representation of the topographical isosampling map shown in Figure 5.11.

The calculations using d;, such as Equation 5.12, may remain unchanged.
Figure 5.11 illustrates two weighted cooperative foveac. A ratio of 3:1 was used
with these foveae. The left fovea is clearer than the right, although both foveae

maintain a higher resolution along the faces to some degree.

5.3 Visual Streaks

As noted in Section 5.2.1, one of the desired eflects of the cooperative SVR foveae
method is the modelling of visual streaks. With the proper positioning of multiple
foveae in this technique, streaks of various lengths, positions, and strengths can be
generated. A larger exponent in the formula that calculates pixel distances from the
foveae will create increasingly weaker visual streaks. If a visual streak is located
between differently weighted foveae, it will result in a teardrop shape, as desired.
From the transforms described in Chapter 4, only one of the methods not, pro-
posed by the authors exhibits some characteristics of a biological visual streak (Sec

Figure 4.6). The Reciprocal Wedge Transform [96, 97] retains clarity along the ver-
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tical meridian of the image. A singularity exists along this line, therefore a shift
factor or a patch must be included to avoid the loss of central information. While
this transform could be rotated to resemble biological horizontal visual streaks more
closely, there would still be some aspects difficult to model. Biological systems do
not have a discontinuity along the visual streak and usually do not extend across the

entire field of view.

5.4 Optic Discs

Section 3.2.4 described some of the variations in optic disc size, shape, and location
within the animal kingdom. Some are dorsal to the fovea; some are veniral. In some
cases blind spots are circular, while others are elongated. Such variation is motivated
by the need to reduce the risk of any object going undetected by falling entirely within
the blind spot.

In the same vein, we do not wish to eliminate any part of the images we work
with. Figure 5.3 shows how cropping compressed images creates undesirable “blind
spots” around the edges of the decompressed images. As well, it was noted that
singularities in the transformation formulae of the RWT and Log Polar transforms
without shift parameters produce particularly disturbing blind spots directly over the
fovea (Figures 4.6 and 4.4). Certainly, this is the most inappropriate location for an
optic disc. Solutions to these problems which involve the use of a separate, smaller
image to patch the missing areas add complexity.

Sections 5.1.2 and 5.1.3 clearly demonstrate that our transforms do not include
blind spots when appropriate shift parameters are used. Like cephalopod eyes, there

are no areas in the image to which the transforms are blind.

5.5 Multiple Optic Paths

As described in Section 3.2.5, there are two fundamental ways of modelling a visual
system with a divided retina, based on whether or not the different sections of the
retina are used concurrently.

The somewhat strange looking “four eyed fish” (Anableps anableps) actually has

only two eyes, with divided retina. It swims with half the eye above the water and

65



half below. The optics of the eye allow a clear projection of images onto both sections
of the retina in this situation. In other words, both centers of attention, below and
above the water, are of interest at the same time. The competitive SVR foveae
method, as described in Section 5.2.2, models the concurrent use of multiple optic
paths. Different sections of the image are influenced by a single fovea, or arca, at a
time.

A simpler transform can be used in situations where an animal alternates atten-
tion among multiple optic paths according to the circumstances. Animals such as
penguins, dolphins, and kingfishers are capable of clear sight both above and below
water, but not at the same time. They achieve this by shifting their focus of attention
to the portion of the retina which is receiving a clear image at that time. When their
surrounding medium changes, their concentration also changes to the other section
of the retina. In this way, they are conceptually using only one part of the retina, or
fovea, at a time while ignoring the other. This can be modelled by a transform with

a single fovea and a method of changing that fovea’s location at will.

which they shift their attention, in our computing domain we do not have such re-
strictions. There is no limit to the number of locations, nor must we predetermine

these locations as we move through a sequence of images.

5.5.1 Dynamic Foveae

When used to compress several images in a continuous sequence, the position of the
fovea need not be the same for each image. If the positions do differ, the fovea
will appear to move when the images are viewed in sequence, and may be called a
dynamic fovea. Animals will move their eyes or shift their attention among several
foveae continuously to track objects of primary importance [19, 42].

One obvious place this capability would be useful in computer vision is in a video-
phone application. The location of a fovea could follow the person’s face, keeping it
as the clearest part of the image. As the individual moved through the scene, so, oo,
would the fovea.

Section 2.4 described important characteristics image sequences possess that could

assist in compression. While any of the single image compression schemes, siuch as
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SVR, could be applied to each image in the sequence separately, they would not
take advantage of temporal redundancies that exist. As well, SVR in particular in-
cludes significant overhead of look-up table calculations based on the location of the
fovea (e.g., Equation 4.26). If the location of the fovea changes between each im-
age in the sequence, the number of recalculations required would be unacceptable.
This was the approach used in [89]. For a stationary point of interest this approach
seemed sufficient, but no research was done on moving foveae. More accurately mod-
clling multiple optic paths or developing an image sequence compression algorithm
incorporating the saccadic movements of animate visual systems would necessitate
a method of implementing a dynamic fovea with little or no overhead calculations
between each frame.

To this end, it is worth noting that the CVR method is similar to the SVR method
in that variable scaling factors can be used. The CVR method can adjust the scaling
factors, both horizontally and vertically, depending on the position of the fovea (See
Equations 5.9 and 5.10). The look-up tables (LUT) constructed using this method
will then be dependent on the position of the fovea, but the resulting compressed
images will be of constant size. If, however, the scaling factors used vertically and
horizontally are computed independent of the position of the fovea, the compressed
images will vary in size, depending on the fovea location. The advantage of the latter
method is that to generate rectangular images, the tables need not be recomputed
cach time the fovea changes location. This is certainly important when implementing
dynamic foveae. Figure 5.13 demonstrates how the same LUT is used with several
different fovea locations; no additional tables are necessary.

In order to compute the look-up table once, independently of the location of the
fovea, we must take into consideration all possible coordinates. By creating a LUT
four times as big as the image size, we can align the fovea’s coordinates on the image,
wherever it is, with the center of the LUT and still have valid LUT entries for each
pixel in the image. Figure 5.14 depicts the effect of movement of a fovea from location
Il to ['2.

We can also use the fact that the LUT will be symmetric to reduce the necessary

quadrants are symmietric over the axes. All the points in the image lie in the first

67



Figure 5.13: The CVR method used with a moving fovea. (Approximately 91%
compression.) Notice how the face remains clear as it moves through the scene.
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Figure 5.14: Foveal movement within a look-up table.

quadrant when the fovea is in the left bottom corner of the image (fovea location 1°1).
In this case the number of entries in the LUT is equal to the size of the image. For
the fovea location F2, only some of the points of the image lic directly in the first
quadrant. In this case we have a problem with the points in the other quadrants,
Their entries can, however, be obtained by folding the image over hoth axes and

referring to their respective positions in the top left corner.
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Not only is the CVR transform symmetric, but the sampling pattern is also very
regular. This allows an even greater memory savings in addition to the folding. Only
one linear array 1/2 the length of the LUT is required to store values necessary for
computing all the LUT entries, as both horizontal and vertical components are also
sytnimetrical.

To compress the image, the relative coordinates of the pixels in the image are
obtained. Then the transform of the points (Tmaz, 0) and (0, Ymaz) can be computed
to obtain the dimension of the compressed image.

It is clear that o decompress any of the frames using this implementation of the
CVR method, one needs to know only the location of the fovea and to have calculated

the look-up tables ahead of time, once, for all frames.

5. .z Scene Construction

Sections 3.1.2 and 3.1.4, outline the methods the human visual system uses to assim-
ilate information gathered over time. An inner model of the world, or of a scene, is
slowly built up in our minds as our eyes scan our surroundings. This method of scan-
ning is linked intrinsically to the presence and use of a fovea. The fovea is placed over
arcas in the scene where more detail is required. The eye’s movements compensate
for the relatively small number of neurons carrying information to the brain.

Image sequences, or videos, contain temporal information, while single images do
not. It is possible that the human visual system’s ability to gather information over
time can be used as a model for VR scene reconstruction. Compression based on the
use of a fovea must determine where that fovea should be located. Taking the method
of scanning into consideration, the fovea could change its location within the scene
over time.

[t is obvious, however, that some type of memory is required for humans to re-
main oriented during rapid eye movements. Each moment of visual sensing is not
merely processed in isolation, but with respect to that which has been previously
seen. In the same way, it would not be appropriate for an image sequence compres-
sion method utilizing a scanning fovea to deal with each image independently. Such

an approach would result in the area of clarity within the scene shifting, which would
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It would be more suitable, then, to decompress the image based on a series of
previous images. Clearly, the information received from the most recent image would
be used in its entirety, but there would be areas in the scene where little detail would
be provided. In these areas, the scene could be reconstructed using previous images.
One of the recent earlier images may have had a fovea placed on a different arca.
Therefore, by appealing to these previous images we can gather detailed information
in the areas where such information in the current image is lacking. Without testing
the implementations, it is unclear as to exactly which method of combining the data
over time is the best one. Weighting the data with respect to its age may suflice, as
this seems most natural. The older the information, the less useful it may be.

Scanning patterns also would determine the final quality of the system. Random
placement of the fovea does not seem intelligent. Placing the fovea predominauntly
in the area of interest with small saccadic movements, as in humans, would help
spread individually sampled pixels, even in the periphery. In [requent larger saceades
to border regions, also modelled after humans, would provide the occasional detail
necessary for the periphery to remain clear at all times.

It is obvious that the more time we have to survey our surroundings, the more
detailed our internal model of the world will become. In the same way, the more time
this computer application is given to view a scene, without it changing, the more
accurate the construction will be. The effect of a rapidly changing scene, however, is
peripheral inaccuracies. When the ahove VR methods, such as CVR, are employed,
movement within the area indicated as being of interest will be accurately reflected,

while ghosting will appear around rapid movement along the periphery. However, for

5.6 A Tool for Modelling Visual Systems

As new types and uses of digital information rise in popularity, rescarch must be

directed to specifically tailor digital image processing and compression methods. By

rate the biological image compression models previously described to suit a specific

purpose. For example, Figure 5.15 shows how certain settings of cooperalive SVR

70



foveae can closely model the retinal topography of the eagle, if necessary.

IFigure 5.15: Left: Ganglion cell isodensity map for the eagle. (See Figure 3.1.)
Right: Topographical isosampling map with settings approximating that of the eagle.

A tool developed to aid in this task is shown in Figure 5.16. Default settings for
modelling the visual systems of several animals can be used, or the user can specify
the settings manually. Arbitrary isosampling maps, not taken from biology, can also

be modelled and tested easily with this tool.



Figure 5.16: An animate retina modelling tool.
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Chapter 6

VR Image Compression Analysis
Issues

Two important issues must be considered when assessing the merits of VR compres-
sion methods. First, Section 1.1 indicated that the VR compression techniques under
discussion operate entirely within the spatial domain, allowing them to be used in ad-
dilion to other popular compression methods not focussed primarily in this domain.
Comparisons between VR compression methods alone and methods such as JPEG
or Wavelet do not do justice to the advantage which can be gained by our research.
Used properly, VR should be judged for its merit in assisting other image compression
schemes. In this light, VR hybrid compression is a promising development.

Second, the results of image compression are often analyzed using a mathematical
quality measure, such as the signal to noise ratio or the mean squared error metrics.
Upon reflection it appears that these measures, while accurate in reflecting human
visual quality assessment in many general cases, are not as useful with the class of
images with which we are concerned: foveated scenes. A well suited error metric is

necessary for mathematical analysis to be meaningful.

6.1 Hybrids

Today, the most popular image compression techniques (e.g., GIF, TIFF, JPEG,
Wavelet, Fractal, px64, MPEG) concentrate on eliminating details difficult for the
human eye to detect, or on taking advantage of properties such as image continu-

ity. Entropy encoding techniques or dictionaiy tables are then used in the process of
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compressing the resulting data structures further. These compression schemes treat
the entire image uniformly, whereas we have seen that this is not always necessary or
desirable [21-23]. The successful use of variable resolution models in animate vision
indicates that some situations may support a much higher resolution in the center of

the visual field than in the periphery, or other variations. Combining two compres-

method alone. The most popular compression methods typically work outside the
spatial domain, making it difficult to create hybrids between themselves. VIR com-
pression does operate within the spatial domain. A hybrid with any other compression
method is often possible without any modification at all to the second method, if VR
is used as a preprocessing function on the image.

For example, JPEG, MPEG, and other schemes have utilized the fact that humans
cannot detect changes in chrominance as well as they can detect changes in intensity.
While such knowledge is useful, our research has concentrated primarily on the specific
characteristics of spatial subsampling. Retinal layout and cortical projections provide
us with the basic inforr - - .- this area. Figures 6.1 and 6.2 show how much quality

can be retained at high cou.pression ratios if both of these redundancies are taken

into account, together.

Figure 6.1: SVR/JPEG: Taking advantage of two compression methods which operate
on reducing separate data redundancies. A) The original image (115738 hytes).
B) After JPEG compression only (1997 bytes). C) After both SVR and JPEG
compression (1992 bytes).

With similar reasoning, other combinations between different VR and popular

compression methods also achieve improved performance. Figure 6.3 demonstrates
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Figure 6.2: A second example of SVR/JPEG hybrid performance. A) The original
image (262184 bytes). B) After JPEG compression only (3798 bytes). C) After both
SVR and JPEG compression (3776 bytes).

the use of CVR with Fractal compression, while Figure 6.4 gives an example of
CVR/Wavelet hybrid compression results. To varying degrees, the clarity of the

face is higher in the images compressed with hybrid methods.

Figure 6.3: An example of CVR/Fractal hybrid performance. A) The original image
(65717 bytes). B) After Wavelet compression only (1290 bytes). C) After both CVR
and Wavelet compression (1287 bytes).

6.2 Quality

When designing new compression methods, it is essential to assess their relative qual-
ity and merit. In this section, different areas of comparison are discussed, and per-
formance measures are evaluated on their suitability to our domain of images.

With reference to the domain of digital images, it is important to note that pixels

are discrete elements. Thus, when reducing the size of an image via the VR transform,
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Figure 6.4: An example of CVR/Wavelet hybrid performance. A) The original image
(262184 bytes). B) After Wavelet compression only (2103 bytes). C) After both CVR.
and Wavelet compression (2237 bytes).

one VR pixel may represent several pixels in the original image. Several interpola-
tion methods have been tested for use with decompression. Bilinear Interpolation or
Lagrange Interpolation have proved to be best suited for our purposes and have been
used throughout our research.

In the area of image quality, many standard measures attempt to quantifly the
degradation process objectively. While most research has relied on mathematical
standards, clearly there are some cases where such measures do not accurately re-
flect actual visual assessment. Some images might have only a slight mathematical
difference in quality, but the difference in (subjective) visual quality is large. (See
Figure 2.1 for an example of several images with similar signal to noise ratios that,
clearly do not appear similar in quality.) Also, images with a large mathematical
difference can sometimes be nearly indistinguishable when visually compared. The
problem is that the noise caused by digital compression schemes is non-statistical, so
it cannot be determined in the same way as noise caused by analogue systems (e.g.,
Gaussian noise).

For this reason, the author feels that the best way of evaluating the performance
of a digital compression method is by looking at the final decompressed image and
comparing it to the original. One must visually compare sample images from several
compression schemes in order to reach a satisfactory conclusion. This may be done

by the individual researcher or, more rigorously, by a group of test persons [20].
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6.2.1 Standard Quality Measures

In attempting to make objective comparisons of lossy image transmission schemes,
most research has relied on mathematical standards. While subjective personal visual
inspection of the images might be preferable, we often do not have that luxury.
Numerical quality measures are more practical. When choosing a measure of quality,
there are several standards we must consider [40].

There is a family of quality standards in data compression that measures the error
in L norms. It is argued in [29] that the flexibility offered by varying p can allow the
choice of an L? norm that matches the Contrast Sensitivity Threshold curve of the

human visual systern for high frequencies (where one introduces the most error). It

Other common names for error measures are listed below. The;r equations are
based on an M by N image, where a pixel in the original image is indicated by

J(z,y), and a pixel in the decompressed image is indicated by f'(z,y):
® The mean absolute error (MAE) is also known as the L! (or Lp-1) norm.

ll/l-l -1 S
€abs = =0 y—-O ILS;BI y) f(I:iyﬂ (61)

® The mean square error (M3E) is also known as the Euclidean error, and the L2
(or Lp-2) norm.
1 M~-1N- 7 7
eme = 5 3 - (/(229) - F(2,0) (62)
z=0 y=0
® The root mean square error (RMSE) is more sensitive to large errors in single

pixels than the MAE measure.

€rms = \/Cms (6‘3)

® Normalized Mean Square Error (NMSE)
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® Peak Mean Square Error (PMSE)

o TMG SN ) - Sap)? 63)
pme 2552 MN 0.0,

* The signal to noise ratio (SNR), as a function of the MSE, is probably the most

popular quality measure.

Z‘"} ;}:Jl fl?(l, lj)
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® The root signal to noise ratio (RSN R) can be calculated from
RSNR,,, = (6.8)
® Peak Signal to Noise Ratio (PNSR)
PS'NRﬁmg = —10 ngID(Epms) (h(})
or
1
Crms

6.2.2 A Foveated Quality Measure: VRMAE

There is one main problem in using any of the standard error measures in evaluating
VR based techniques. While these measures weight the pixel errors equally, regardless
of location within the image, this does not accurately reflect how foveated scenes
are perceived by humans. Figure 6.5 illustrates the maximum spatial resolution of
the human retina afforded by gunglion cell density [4, 9, 25, 46]. Notice how the
slight naso-temporal asymmetry occurs only in the periphery and does not appear in
balanced binocular vision.

For this reason of non-uniform acuity in the human visual system, new quality
measures are necessary where centers of focus are known. OQur research deals with a
restricted domain of digital images, specifically those with identifiable arcas of greater

interest, therefore, performance measures suitable to foveated scenes must be used.
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Figure 6.5: Maximum spatial resolution of the human retina afforded by ganglion cell
density as a function of retinal eccentricity along the horizontal meridian. Note the
nasal blind spot at approximately 15 degrees.

If'it is assumed that the foveated error measure we propose is used appropriately,
these scenes will have to include foveae locations and strengths which indicate the
primary areas of interest within the image. Image quality and pixel accuracy around
the centers of interest should have a higher weight than those in the periphery. (If
the foveae are not positioned in the correct locations, it is not proper to discredit the
that located the foveal positions.) Note that for the error measure, there is no need
for anisotropic properties as there was with the issue of irregularly shaped images in
Section 5.1. True estimation of human visual perception dictates the standard VR
cquations presented in [16] are sufficient for pixel error weighting. In this light, a
foveated quality measure has been developed as an extension of the standard Mean
Absolule Error (MAE) quality measure.

The error at each pixel is weighted according to its distance from the closest fovea.
This weight is in the range of [0, 1], 1 being exactly on a fovea, and 0 being at the
maximum distance any pixel is from its nearest fovea. The equations are based on
an M by N image, where a pixel in the original image is denoted by f(z,y), and a

pixel in the reconstructed image is denoted by f'(z,y):
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Here d, is the shortest distance between (z,y) and its nearest fovea, and d

'y 15

the maximum value of d,,, V (z,y). The value s is a scaling factor, while o controls
the distortion effect of the fovea. A high a value indicates a relatively strong foveal
region and a low & value means that a fovea is only of slightly greater significance
than its periphery. We assume that each fovea location we are supplied with also
comes with its corresponding a value. For example, Figure 6.6 shows the weights

the similarity in shape between Figures 6.5 and 6.6. The steepness of the peak is

controlled by the a value.

VRMAE weighting graph for ‘alpha’ = 0.2
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1
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Figure 6.6: A three dimensional representation of VRMAR weights with o
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6.2.3 Quality Analysis
Fxperimental statistics comparing the hybrid compression schemes being developed
to existing methods are presented in this section. The parameters involved in each
experiment are numerous, making comprehensive comparisons infeasible. Factors to
be considered when comparing the traditional and novel VR techniques include:
: N

e The exact compression methods used.

e The type of machine used in the compression.

o The size of the test image.

® The content of the test image.

e The number of foveae and their locations.

e The interpolation methods used.

e The crror measurements used.

The timing measurements used.

e The Q values used in JPEG and their rate of change.
o The compression and o values used in VR and their rate of change.

o The combination of compression parameter values used in hybrid methods, and

their rates of change.

We have decided to narrow our analysis to what we feel are acceptable typical
values for most of these factors. Qur comparisons are between the three SVR, JPEG,
and SVR/JPEG methods, run on a Solaris workstation. The test image is a 256x240
pixel standard facial image with a moderately detailed office background (see Fig-
ure 6.7). One fovea was specified in the center of the face. Bilinear interpolation was
chosen for image reconstruction and the VRMAE metric was used to measure image
quality. The speed of the processes are gauged in CPU seconds.

For the series of compression experiments. the JPEG Q value was varied between

its maximum and minimum values, 100 and 1. For the SVR series, o was maintained
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Figure 6.7: The original facial image used in analysis.

at a constant value of 0.2 (see Figure 4.13) while the compression value was varied
between 0 and 100. The question of how to vary these parameters simultancously in
testing the SVR/JPEG hybrid method requires closer inspection of the effects of all

combinations.
The Variation of SVR/JPEG Hybrid Compression Parameters

When using the SVR/JPEG hybrid compression method, both the JPEG Q and the
SVR compression value must be set between 0 and 100. (JPEG’s parameter operates
in the reverse direction from SVR’s compression parameter because the Q parameter
is actually intended to control the image quality ~ in opposition to compression.)
The implications of the combinations of both com pression parameter setlings become
clearer with graphical representation.

Figure 6.8 shows the gradual increase in compression ratio for the lower compres
sion values of both SVR and JPEG and a more rapid increase in compression ratios
to the extreme. This rapid increase is more evident along the SVR. axis.

Figure 6.9 shows the increase in image error over the same full range of the com-
bination of the two compression parameters. The shape of the surface is generally
comparable to Figure 6.8, but one can clearly notice the steeper slope of the surface
along the SVR axis at low compression ratios.

In order to choose a combination of SVR/JIPEG compression parameters wiscly,
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Figure 6.8: A graphical representation of compression ratio versus both SVR/JIPIG
hybrid compression parameters.

Hybrid Image Errors

Figure 6.9: A graphical representation of image crror (VRMAE) versus hoth
SVR/JPEG hybrid compression parameters.
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one wonld be looking for as little image error as possible with increasing compression
ratios. Figure 6.10 combines the information in Figures 6.8 and 6.9 to represent the
level of image error (VRMAE) per compression ratio achieved for all parameter set-
tings. In this respect, a lower value is more desirable, as a lower VRMAE error is
incurred per compression ratio. An optimal path from the lowest to highest compres-
sion sctiings (from corner to corner in Figure 6.10) would follow the lowest possible
height. Note how the large wave in the foreground was anticipated when the steeper

slope in that arca was noted in Figure 6.8 when compared to Figure 6.9.

Hybrid VRMAE image Error per Compression Ratio

0z-
VRMAE / Comprassion Rafio

0.15

Figure 6.10: A graphical representation of VRMAE per compression ratio versus both
SVR/JPEG hybrid compression parameters.

The graphs clearly indicate that a nearly diagonal path of compression parameter
assignments approximates the optimal combinations. The SVR compression value
must be adjusted at only a slightly accelerated rate in comparison to JPEG’s Q value
to achieve the best combination over their entire ranges. For our experiments the
SVR/JPEG hybrid values were varied in this exact manner, at a constant rate —

SVR compression between 0 and 100, and Q between 100 and 10!,

"The far righit.— side of Figure 6.11 also includes the values of the most extreme compression settings
of both methods in the hybrid, to give completeness to the graph.
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SVR/JPEG Experimental Results

The experiments were completed with the previously outlined parameters. The ro-
sulting compression ratios and VRMAE errors can be seen in Figure 6.11. Before
further analysis is done on the data as presented, certain clarifications must be made

with respect to the quality ineasure used (VRMAE).

image Error versus Comprassion Ratio
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JPEG Compression -~ /
6 SVR/JPEG Comprassion — A
.’}j:
5t J f ;{i
/ I
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o 174 e —— . - . .
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Compression Ratio (X:1)

Figure 6.11: Three different image compression techniques, compared in a graph.,

First, while error measurements are mathematically correct at cach point. in the
graph, it becomes meaningless to discuss results with a clearly unacceptable error
level. For example, Figure 6.12 shows an image with an error value of more than
6. Upon close visual inspection of the images produced in the experiment,, it, is clear
that images with a VRMAE value of greater than 2.5 are well beyond any practical
value.

Second, images with extremely low error values are practically indistinguishable
from the original, and hence also of little interest in comparison results. The errors
that do appear in these images are minute, and relatively small differences in VRMALR
values do not indicate a significant visible difference in image quality. Images with a

VRMAE number below 1 have extremely high accuracy (See Figure 6.13).
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Figure 6.12: Image compressed beyond any reasonable usefulness. (VRMAE = 6.77)

Figure 6.13: Image compressed with few visible errors. (VRMAE = 0.79)

Third, while the VRMAE does detect individual pixel errors, it is not sensitive
to particularly disturbing blocky artifacts, present in some JPEG images. As well,
while the VRMAE does weight errors occurring near the fovea higher than errors
in the periphery, in some cases the VRMAE value is not as close to the subjective
visual quality as in other cases. For our experiments, both these situations occur
between the moderate VRMAE values of approximately 1 to 1.4. This means that the
graph actually shows the SVR/JPEG compression as performing nearly equivalent to

JPEG compression, where such does not appear to be the case upon visual inspection.
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Figure 6.14: Comparing i images with similar moderate VRMAE values,

approximately 1.2) Left: JPEG. Right: SVR/JPEG.

(VRMAL

Mcderate VRMAE Values (see Flgure 6.14)

Compression Method JPEG SVR/JPEG

JPEG Q value } 11 36

SVR compression value T “NJ/A 63

SVR « value ~N/A 0.2

Original Image Size (bytes) 61523 || 61523

Compressed Image Size (bytes) 3269 3358

' Compression Ratio 18.82:1 18.32:1

VRMAE (error value) 122 T1.20 7 7
Interpolation Method ] N/A Vilinear | Nearest
SVR CompLUT Time (CPU seconds) || N/A | 1.20 1.20
SVR DecompLUT Time "N/A 13.20 11.03
'SVR Compression Time . - N/A 0.00 0.00
JPEG Compression Time 0.08 ~0.04 0.04
JPEG Decompression Time || 0.06 003 0.03
SVR Decompression Time - N/A 0.19 000
Total Camp/Dgcamp Time - 0.14 - 0.26 - 0.11

Instead, SVR/JPEG images appear to be of superior quality to JPEG ima

Figure 6.15: Statistics for the example in Figure 6.14.

ges with

similar VRMAE values. For example, Figure 6.14 shows two images with VRMAE

values of approximately 1.2, but clearly the greater number of peripheral errors
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the SVR/JPEG image are not as disturbing as the foveal errors and blocky artifacts
in the JPEG image.

After the limitations of the strictly mathematical analysis of the experimental data
have heen taken into account, we can begin our meaningful analysis by limitirg our
graph 1o the range of practical VRMAE values: 1.2 to 2.5. This range is illustrated

in greater detail in Figure 6.16.
lmagiéiErfgr versus Cormpression Ratio
- . ———

24 JPEG Compression ~—-— y
SVR/JPEG Comprassion — /

1.8

image Error (WRMAE)

16 f
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12 L4l — = — == === — = — —
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Compression Ratio (X:1)

Figure 6.16: JPEG and SVR/JPEG image compression techniques, compared in a
graph covering practical value scenarios.

Several observations can now be drawn from the gathered data. In terms of quality,
SVR alone is inferior, as it does not even appear on the graph in this compression ratio
range. This result was anticipated in Section 6.1. It also appears that the SVR/JPEG
method increasingly outperforms JPEG as the compression ratio demanded increases.
Some specific examples, shown visually, underline this point.

Figure 6.17 shows JPEG and SVR/JPEG images at approximately the same com-
pression ratio of 35:1. The hybrid compression scheme is clearly superior in this range
of high compression. One can conclude that if some application demands high com-
pression, higher image quality can be achieved using the SVR/JPEG hybrid versus

JPEG compression.



Figure 6.17:

Comparing images with similar high compression ratios (35:1).
Left: JPEG. Right: SVR/JPEG.

High Compression

(see Figure 6.17)

Compression Method JPEG || SVR/JPEG

JPEG Q value 3 20

SVR compression value N/A 85

SVR a value N/A 0.2

Original Image Size (bytes) 61523 61523

Compressed Image Size (bytes) 1718 1676

Compression Ratio 35.81:1 36.71:1

VRMAE (error value) 2.52 2.06

Interpolation Method N/A Bilinear Nearest
SVR CompLUT Time (CPU seconds) N/A 0.46 0.46
SVR DecompLUT Time N/A 15.88 12.84
SVR Compression Time N/A 0.00 0.00
JPEG Compression Time 0.08 0.03 0.03
JPEG Decompression Time 0.05 0.01 0.01
SVR Decompression Time N/A 0.21 0.03

Total Comp/Decomp Time

0.13 0.25

Figure 6.18: Statistics for the example in Figure 6.17.

Figure 6.19 shows JPEG and SVR/JPEG images at approximately the
VRMAE values of 2.2. While both images do appear to be pushing the limit of

reasonable image errors, their errors do not appear in the same areas. JPEG
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Fignre 6.19: Comparing images with similar high VRMAE values (2.2). Left: JPEG.
Right: SVR/JPEG.

ngh VRMAE Values (see Figure 6.19)

Compression Methad . JPEG || SVR/JPEG

JPEG Q value ) 4 19

SVR compressmn value e N/A - 87

SVR a value ] N/A 0.2

Original Image Size (bytes) 7 ] 61523 - 61523

Compressed Image Size (bytes) 1911 1518

Compression Ratio ’ 32191 40.53:1

VRMAE (error value) ~ F2a7 | 218 , 7

Interpolation Method - N/A | Bilinear Nearest

SVR CompLUT Time (CPU secands) N/A 044 | 044

SVR DecompLUT Time 7 N/A 17.24 13.02

SVR Compression Time N/A || 0.00 0.00

JPEG Compression Time ' 0.08 || 0.02 0.02

JPEG Decompression Time - 0.05 0.01 0.01

SVR Decompression Time ~ N/A - 0.22 0.03 _
| Total Comp/Decomp Time || 0.13 - 0.25 ~ 0.06 :

Figure 6.20: Statisiics for the example in Figure 6.19.

maintained a higher image quality around the periphery at the expense of the fovea.
The opposite is true for the SVR/JPEG method. A clearer face (with much clearer

eyes and nose) is achieved at the cost of most of the peripheral details. Compared
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to JPEG, the hybrid method has also reduced the size of the compressed image by
almost 1/4 - increasing the compression ratio from 32:1 to 41:1. One can conelude
that if an application is operated at the maximum acceptable image error level, the
SVR/JPEG hybrid can achieve significantly better compression ratios than JPEG

compression.

6.3 Speed

When measuring the time a compression or decompression method takes in complet-
ing a task, it is often beneficial to time different parts of the process separately. Some
computations must be made separately for each image processed, while others must
be niade only once, if a series of images are being handled, Our VR techniques require
the use of a LUT, both for compression and decompression. These [,UTs only need
to be computed once for a series of images, and are therefore timed separaely.

The optimization of code also plays a large role in its execution time. The stan-
dard JPEG code used has been in existence for some time and has presumably heen
optimized to some detail. The SVR code used in our research, however, has not, heen
optimized for timing performance. There are many areas where the code has not, been
designed for efficiency, particularly in the implementation of interpolation methods.

The interpolation methods required by SVR decompression also vary in execntion
time. Bilinear interpolation is more complex than Nearest Neighbour interpolation,
taking more time to execute. Therefore one must take into account what interpolation

method is being used when analyzing SVR timing statistics.

6.3.1 Speed Analysis

The VR transforms are extremely fast. Typical compression times (measured in CPU
seconds on a Solaris workstation) for the compression algorithm on images used as
examples in this work were in the range of 0.00 to 0.01 scconds — often too small
to even register any time at all. In comparison, JPEG is a relatively slow algorithm.
Typical JPEG compression times fell in the range of 0.5 to 1.3 seconds. (Other
implementations may be faster, but often require additional special hardware.)

Because the VR compression schemes result in an intermediate image still in
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the spatial domain, other algorithms such as JPEG can be run on these as well,
compressing the image even further. In addition to the speed of Vit itself, when used
in a hybrid it can substantially reduce the amount of time required for secondary steps.
(A typical value: compression with SVR by 70% can reduce the total processing time
taken by more than 1/2.)

Fignres 6.15, 6.18, and 6.20, provide us with example execution times for several
JPEG and CVR/JPEG compression scenarios. Figure 6.21 graphically illustrates the

timing values contained in Figure 6.18.

7 High Compression
3 Timing Results

CPU . SVR Compression
seconds

JPEG Compression

2 - JPEG Decompression
l:l SVR Decompression

JPEG  SVRIPEG SVR/PEG

(bilinear) (nearest neighbour)

Figure 6.21: Timing results for the high compression example of Figure 6.18.

The first conclusion one can draw from the timing data is that the time required to
build the LUTs for SVR compression are much larger than any of the times for other
computations. If a situation would require frequent rebuilding of LUTs, SVR/JPEG
compression is much slower than JPEG compression. However, if we ignore the LUT
computation time, as we can when compressing a large number of images at once, or

compressing an image sequence, JPEG may not always be the fastest method.
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If compression time were the only factor. the SV R/IPEG algorithm is clearly

superior in these circumstances. If dEanlpl‘t‘sslml is also important, the time taken

by the interpolation method largely determines the speed. Figure & 21 clearly shows

how using the simpler nearest neighbour method of interpolation instead of the more
complex bilinear method reduces the necessary decompression time. \ tradeofl he-
tween image quality and decompression time exists when considering interpolation
methods. Application designers must decide where priorities lie when deciding on

which compression method, hybrid ratio, and interpolation method to use.



Chapter 7

Applications

As observed previously, multimedia systems often rely heavily on the use of digital
images. Image compression is of significant concern. VR compression techniques
are suitable for any scene where perfect image quality is not required and points
of primary interest can be determined. VR methods do not seem appropriate for
unpredictable, rapidly changing scenes (like unstructured live television).

In this chapter, several practical applications will be outlined. Section 7.1 jl-
lustrates how VR technology can benefit archjval systems. Section 7.2 describes a
video compression and decompression tool using a hybrid compression method. In
Section 7.3, a videophone utilizing VR, compression is proposed. A general VR tele-
conferencing system is described in Section 7.4. Finally, Section 7.5 describes an
application of foveal based data prioritization for ATM network transmissions and
an implemented simulation and Section 7.6 outlines some generalized advantages of

foveal prioritization.

7.1 Mug Shot Database: FaceBase

Many organizations maintain an image archival system consisting of people’s faces
(mug shots). Some are used for security reasons, while others are merely kept as part
of personnel files. These mug shots must be stored in a compressed format so as not
to consume excessive resources. While the background may not be necessary, merely
storing the information on the face may not be an aesthetically feasible solution.
Variable resolution compression allows the entire image to be stored. The face remains

of high quality, while the lower quality periphery still provides the overall context.
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7.1.1 Hybrids: SVR/PGM and SVR/JPEG

In the process of developing a complete mug shot database svstem called Faee Base,
new encoding standards utilizing VR techniques were developed. Hybrids between
SVR and both Portable Graymap (PGM) and JPEG file formats were designed and
implemented.

A complete library of file access functions for both hybrids was written. Tmple-
mented in C code, simple function calls both read and write the desired file forniat .
incorporated some software supplied by the official Independent JPEG Group'.

These new formats tried to remain as close to the standard format as possible,
so as to work seamlessly with all existing image processing software. This was in
fact accomplished by encoding the required SVR parameters within the annotation
features already present in the standard. Within bounding comment markers, the

parameters necessary for the SVR part of the hybrid are:
e compression value,
o o value,
e decompressed size: rows, columns,

e exponent power (exponent for visual streak strength),

number of foveae,

e position of each fovea: x, y,

SVR method (cooperative or competitive).

Appendix B contains an example of the exact file header syntax of the SVR/PGM
format (called VR3). The SVR/JPEG header format is identical in structure, but,
utilizes the JPEG COM markers in binary, which do not lend themselves well to

being viewed directly.

'While the actual caﬁlpressian parts of the JPEG code was not altered, the interface was exton-
sively modified to, among other things, correctly preserve COM markers according to official JPEG
specifications.



7.1.2 An Image Database Interface Tool

A complete Image Database Tool was implemented, using the SVR technologies?.
Figure 7.1 shows the main window of the application and Figure 7.2 shows several of

the other control windows.

Figure 7.1: Example: Main FaceBase application window. (Cross-hatches indicate
the three foveae locations. )

Many significant features included in this tool are listed below.

*The majority of the work on this application was completed by the author. However, some work
on the user interface and implementation of powers of cooperation was provided by Kirill Richine.
Anup Basu also direcied Kirill in helping to interface this code with Gloria Chow’s feature detecting
code. As mentioned in Section 5.1.2, some of the SVR code originated from Allan Sullivan’s original
SVR code, but was significantly modified.
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Figure 7.2: Example: control windows for the FaceBase application.

® FaceBase utilizes a simple, easy to use Motif user interface.

© Many of the SVR alternatives are provided as options. Both cooperalive and
competitive foveae are available, with all parameters casily modified and dis-

played. The JPEG Q parameter is also available.

¢ Up to 10 foveae are supported.

o Fovea positioning can be done manually either by clicking a mouse directly on

the image or entering exact coordinates with the keyboard.
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e Fovea positioning can be done automatically, using feature detection routines
written by Gloria Chow. With this method, three foveae are automatically

placed on the left eye, right eye, and the mouth, if possible.

¢ The display window can be toggled between the original, compressed, and de-
compressed images.

e The location of the fovea can be displayed, if desired, as cross-hatches over
the image. Both the compressed and decompressed images can have the fovea
positions marked.

e Multiple file formats are supported. These include JPEG, PPM, PGM, BMP
(bitmap), Targa, GIF, 082, as well as both SVR/PGM and SVR/JPEG for-
mats. Both reading and writing of files is supported, although colour images are
converted to greyscale when they are loaded. File type is also automatically de-

tected when loading. Directory listing, filtering, and file searching features are
images can both be loaded and saved.
e Scrollbars automatically appear for use with large images.

e Scveral Help windows are available for assisting users.

¢ Command line options allow a series of compressions to be carried out on one
image, in batch mode. The range and progression of JPEG Q values and SVR

Comp values can be specified on the command line as well.

With this tool, maintenance of an image database becomes less difficult. Directo-
ries of files in the hybrid formats can be quickly viewed, updated, and modified. The
faces of all faculty, staff, and students in the Computing Science Department at the

University of Alberta were placed in a Face Database using this tool.

7.1.3 User Identification in Collaborative Work Environments

The author’s research included working on an application which provides a real-time

collaborative work environment for multiple users [75] (See Figure 7.3). One aspect

98



of this project is a central Face Database. Fach user who connects to the application
can request the images of any or all of the other participants (See Figure 7.1). Also,
when discussion groups are established, the image of the speaker is placed on the side

of each window (See Figure 7.5).

alk Status; AllSessions
—_— — | My Sessions
Create Session Succ =il AllUsers
Accept invitation! ['Jii usersinSession
Leave Success

Accept invitation!

Reject invitation!

Banlist Failure!

Super user - - joan -- for chat
successful!
Terminate Success

Figure 7.3: The main control window from the Collaboratjve Work Environment,
application.

The database is maintained with the FaceBase tool. The server and client, pro-
grams of the collaborative application use the library of functions to access and de-
compress the SVR/JPEG images. Extreme compression is required to reduce the

bandwidth and time required to transmit the facial images from the server to the re-
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 xiagolin

Close

Figure 7.4: Multiple face display window from the Collaborative Work Environment
application. (Note: Approximately 20:1 compression ratio achieved. Nearest neigh-
bour interpolation is used.)

mote clients. The images are transmitted in the compressed format and decompressed

“on the fly” at the client’s location.

7.2 Video Compression: CVR/MPEG Hybrid

Video compression takes a sequence of still images and compresses it into a single file.
Video decompression then takes this compressed file and reconstructs the sequence of
images. The results produced by the video decompression can be saved in separate
image files, but it is most commeonly displayed directly to the user.

Section 2.4.2 outlined one of the currently most popular video compression stan-
dards, MPEG. Figure 7.6 (Top) illustrates how MPEG takes the input image se-
quence along with the required compression parameters to produce a compressed
video file. Figure 7.6 (Bottom) outlines the process of decompressing an MPEG
file®.

In a method similar to the SVR/PGM and SVR/JPEG hybrids presented in Sec-
tion 7.1.1, the CVR compression techniques were combined with MPEG to produce

the hybrid CVR/MPEG video compression format. Figure 7.7 (Top) illustrates how

3Software to 7impleix;1entil;x:th these functions were obtained from University of California at
Berkeley, with permission.
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Let’s talk
| want to talk with you about the paper.

to the meeting.
The program is working well.
1 will add more functions.

Figure 7.5: The talk window from the Collaborative Work Environment applica-
tion. (Note: Approximately 20:1 compression ratio achieved. Bilinear interpolation
is used.)

the input image sequence is passed first through the CVR routines before being lur-
ther compressed by the MPEG algorithm. Figure 7.7 (Bottom) outlines the process
of decompressing a CVR/MPEG file.

The software used to implement MPEG was not altered. Notice, however, that
the CVR parameters are not encoded in a comment in the header, as they were with
the single image hybrids presented in Section 7.1.1. The CVR parameters are instcad
included in a separate file and paired with the compressed video file. The necessary

parameters include the decompressed image dimensions as well as the compression
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MPEG Compression Data Flow:

Standard MPEG Algorithms

---3] MPEG __;E_iéi,‘ )ﬂi}‘k
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Input Image Sequence

MPEG Decompression Data Flow:

Standard MPEG Algorithms
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Figure 7.6: Top: MPEG video compression. Bottom: MPEG video decompression.
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CVR/MPEG Compression Data Flow:

Standard MPEG Algorithms

A

Input Image Sequence Output CVR Parametars

CVR/MPEG Decompression Data Flow:

Standard MPEG Algorithms e 1
L R I T T §
Display Output

Input MPEG Video

Input CVR Parameters

2

Output Image Sequence

Figure 7.7: Top: CVR/MPEG video compression. Bottom: CVR/MPEG video
decompression.



parameter, a, and the fovea location values for each image. The last four values need
only be included if they change from the previous image, so there will be at least one
set of them, and at most one for each frame. This file may typically be only a few
bytes long.

Recall that the CVR compression method was designed to operate efficiently with
dynamic foveae. To assist in utilizing this capability, numerous automatic fovea
locating features were implemented. These options, as well as the general compression
parameters can be included in the standard MPEG parameter file (see Appendix C).

The options include:

® Using CVR compression: if this option is not chosen, the CVR steps will he
bypassed and standard MPEG compression will be done. Also, in order to fulfill
MPEG?’s input size requirements, we must either pad or crop the images to the
correct size of a multiple of 16 pixels for each dimension. The necessary line in

the input parameter file to choose cropping is:

USE_CVR CROP

The necessary line in the input parameter file to choose padding is:

USE_CVR PAD

e Sctting the compression value: for example, the necessary line in the input

parameter file to set the compression value to 95 is:

CVR_COMP 95

e Setting the o value: for example, the necessary line in the input parameter file

to set o to 200 is:

CVR_ALPHA 200

104



o Setting a static fovea: the user can specify that every image will have the same
fovea location. For example, the necessary line in the input parameter file to

set the static fovea to (176, 144) is:

CVR_FOVEA  STATIC 176 144

o Centering a dynamic fovea: the user can specify that the fovea be in the center
of every image. For example, the necessary line in the input parameter file to

center a dynamic fovea is:

CVR_FOVEA DYNAMIC CENTER

e Setting a dynamic fovea on a human face: the user can specify that the fovea
track a human face t}irough the entire sequence. The face detection algorithms
used here are the same as those used in Section 7.1.2 and require a size parameter
which indicates the size of face to search for. For example, the necessary line
in the input parameter file to position a dynamic fovea on a face in each image

with the scale value at 300 is:

CVR_FOVEA  DYNAMIC FACE 300

e Setting a dynamic fovea on movement within the scene: the user can specify that,
the fovea track movement through the entire sequence. The fovea is placed in
the center of the first image, and thereafter a motion detectjon algorithm written
by the author is used. This algorithm simply performs an image subtraction
followed by a thresholding. The center of mass is calculated on the resulting
pixels of motion. This algorithm requires a threshold parameter which sets the
minimum greyscale change that would classify as motion, and a scale parameter
which indicates the level of detail to search. For example, the necessary line in
the input parameter file to position a dynamic fovea on an area of motjon in

each image with the threshold value at 30 and the scale value at 4 js:
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CVR_FOVEA DYNAMIC MOTICON 30 4

e Sctting a dynamic fovea with user defined locations: the user can specify the
exact location of the fovea in each image, through the entire sequence, if desired.
In this case the user must provide a text file with all the locations listed sequen-
tially. For example, the necessary line in the input parameter file to position a

dynamic fovea on the locations specified in file “movie.fov” is:

CVR_FOVEA  DYNAMIC FILE movie.fov

The current CVR/MPEG programs were designed in such a way so the fovea location
lunctions can easily be extended in the future. More features of this nature can be

added at any time with no changes to the compression code being necessary [47, 112].

Figure 7.8: Example image from the original Salesman video.

One of the image sequences used to test this program was the widely available
“salesman” video. Figure 7.8 is an example of one of the images in this sequence. Fig-

ure 7.9 demonstrates MPEG compression of this sequence at a high compression ratio
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(70:1). Figure 7.10 demonstrates the CV R/MPEG compression method used on the
same sequence with the same resulting compression ratio. Clearly the CVR /MPEG

hybrid outperforms MPEG alone in this example.

Figure 7.9: Example image from the MPEG compressed Salesman video. (Compres-
sion ratio is 70:1.)

7.3 Videophone

Videophone applications require the real time compression and transmission of im-

ages. They are prime applications for VR, compression schemes for several reasons:

e Videophones require fast compression of images
e High image quality is not a high priority
o The typical telking head scene provides an ideal fovea location
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Figure 7.10: Example image from the CVR/MPEG compressed Salesman video.
(Cornpression ratio is 70:1.)

¢ VR methods can provide constant compression, suitable for transmission of
I 1

images over channels with a fixed bandwidth.

A tradeofl between the refresh rate and image quality can easily be achieved by
varying the compression parameters.

To date we have not implemented a complete videophone application utilizing VR
compression methods. While tools suitable for real time audio and video compression
cxist, they were not available to the author. The videophone, however, can be viewed
as an application with a subset of the features present in a general videoconferencing
tool as outlined in the following section. Section 7.2 demonstrated the technical

validity of incorporating the CVR algorithm with standard MPEG video compression.
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7.4 Videoconferencing

As with the use of videophones, teleconferencing involves the compression and trans-
mission of images. Unlike videophones, the scenes may not always contain simple
head shots, but are usually situated in structured environments. A typical view may
be of several people seated and/or a speaker in front of an overhead or blackboard.
In such a situation, a fovea cannot be placed in the center of the umage automati-
cally, but may require the user to place multiple fovcae where appropriate, possibly
indicated by pointing with a mouse, or automated in some way. Arcas of interest
could include the faces of people in the scene, the blackboard area, and so on. Some
foveae could be static (as with seated individuals) while sther dynamic foveae could
use existing tracking algorithms to follow the motion of an individual through a scene

(as with a speaker moving back and forth).

7.4.1 A Prototype Videoconferencing System

Research done on the SVR compression method in the past has included a rudi-
mentary prototype of a videoconferencing system [89]. The author’s rescarch has
enhanced this implementation significantly. The system can function in a generic en-
vironment with little or no additional hardware. Such a system is inexpensive, casy
to upgrade and maintain, and portable across many systems.

Much of the original prototype code was rewritten, modularized, and optimized.
The source code has also been rewritten to be portable between several platforms,
such as Sun 3 workstations, Sun 4 SPARCstations, Solaris workstations, and SGI
workstations. Support for additional camera, systems (e.g., IndyCam) was added.
Both XView and Motif interfaces were added. The number of grey levels being
handled was doubled, from 128 to 256 levels. Improvements to the multiple foveae
features and interpolation methods were made. The dynamic foveae feature was
added, using the new CVR transform. Canabilities for automatic feature tracking
were added, and saccadic, self-directed foveal movement functions were implemented.

The current videoconferencing prototype is able to transmit greyscale images from
an image server to a display or viewer process. The server process is responsible for

capturing, compressing, and transmitting the image. The display process accepts
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compressed images, decompresses them and displays them on a screen. Figure 7.11

ilustrates the videophone organization,
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Figure 7.11: Diagram of a videoconferencing prototype.

In addition to the CVR encoding, additional compression is provided by an in-
traframe difference encoding routine. The difference between pixels in successive
frames is found (most pixels will not change if the image is static) and only changed
pixel values are transmitted, in Run Length Encoded (RLE) format.

Currently, frame rates on the order of § - 15 frames per second have been achieved
across an Ethernet, up from 1.5 - 2 frames per second in the original prototype
presented in [89]. With the compression values obtained while maintaining reasonable
image quality(up to 98% with interframe encoding) the network can easily handle
much higher frame rates while sustaining acceptable quality. Especially worth noting
is that the system is based entirely on software; thus, no special compression hardware
is required.

The videoconferencing component operates on the same principle as the biological
systems researched — however, multiple foveae can be placed at the user’s discretion.
Dynamic foveae have been implemented, and algorithms can be provided which au-
tomatically track any person or other moving object in a scene, as chosen by the

observer. Current options include stationary foveae, random saccadic movements
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around the original location, and simple path following. Face and eye tracking, and
moving object tracking are also possibilities. Several programs which track ohjects
or features within an image sequence already exist [47, 112]. Such programs could
be used effectively to control the movement of a fovea automatically. Buttons which
provide a real-time choice between these and possibly other automatic foveal con-
trols can easily be added, but at present these choices must be made at the time the
prototype is compiled.

The videoconferencing system can be cheaply and easily run over an existing

network with no additional hardware cost other than camera equipment,.

7.4.2 Details

H\

'he user interface has been rewritten from X View to Motif based. This was done

=

or reasons of aesthetics and pQrtabxllty Several tools have been added to the main

window, allowing greater user control.

Compression

Parameter Control

Message Area —

Image Display Area ————gu=

Figure 7.12: Example videoconference window,

Single frames can be saved to a file, if requested by pressing the Save button. The
system can also be run step by step, if the Step button is pressed. This will send only

one image at a time, until another s similarly requested. Run will resume normal
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operation. Several foveae can be selected using the mouse, after Fovea is selected.

Cornpression and « parameters are associated with sliders.

Feature Tracking

One might also find situations where an option to track features is required. For the
hearing impaired, or those users who wish to read lips, it would be convenient to have
a fovea located on the mouth in the image. Rather than having the user constantly
move the fovea whenever the person being viewcd changes position, a fovea could
place itself over the mouth automatically, regardless of absolute position within the
scene. This feature could also be extended to hands, if sign language was being used.

In both of these examples, when compared to typical videophone usage, a signif-
icant difference in the tradeoff between quality and speed would be required. The
sliders controlling the compression and a values already allow for this flexibility. A
user wishing to read lips may require an extremely high frame rate, and would con-
centrate almost entirely on the mouth. This user can then increase the compression
ratio dramatically, reducing the bandwidth to increase the frame rate. The a value
can also be greatly increased, making the fovea more prominent and causing the ma-
Jority of quality loss to be taken along the periphery. The mouth would maintain an
acceptable degree of clarity.

These specific tracking features have not been added to the prototype to date, but
all that is necessary is the actual feature tracking code. An interface for self-directed

dynamic foveae exists and has been successfully tested with simple fovea] placement

algorithms.

7.5 Foveated Scene Transmission over ATM Net-
works

7.5.1 Motivation

It seems natural to research data prioritization within computer image encoding
schemes for scenes with spatially non-uniform importance. As with biological vi-
sual systems, congested networks could result in peripheral information being lost

gradually, until total network failure results in ‘blindness’. ATM networks allow data
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cell prioritization to control such loss.

An experiment was conducted with our anthropomorphically motivated telecon-
ferencing schemes over simulated extreme network conditions. The study of the effects
of serious packet loss provided insight into the viability of these methods in varions
levels of traffic congestion. If a videophone implementation similar to the prototype
introduced in Section 7.4.1 e..iployed a VR compression technique and packet prioriti-
zation as outlined in Section 7.5.4, the author would expect scene degradation similar
to that which may be experienced by a failing human visual system. Our simulation
results provide support to this expectation.

Although mimicking biological visual systems perfectly may not always be desir-
able or optimal, nature provides us with the only objective standard outside com put-
ing with which we can gauge our success. Experimental simulation results might also
prompt new theories on how the brain prioritizes visual data, thereby adding to our

understanding of ourselves.
7.5.2 Goals

A goal in the transmission of image or video data is to reduce the bandwidth required
while preserving reception quality. Data compression results in a smaller number of
bytes encoding information, but may degrade image quality. As previously mentioned,
there exists a large class of scenes (still images or video sequences) that are com posed
of particular areas of primary interest. While the remainder of the scenc is necessary
for reasons such as texture, context, aesthetics, or motion detection, its importance
is significantly less than that of the primary arca. Each scene is coupled with Joveae,
which mathematically delineate the positions and relative interest of cach aren. The
VR single image compression techniques that have been presented in Chapters 5 and
6 appear to be successful in balancing required bandwidth and image quality for the
transmission of foveated scenes [16] (sce Figures 6.1 ~ 6.4).

The assumptions with VR compression, however, are that the transmission of
rmage data occurred over reliable, static bandwidth connections. Data loss was not,
considered. Also, the parameters of the compression schemes must be adjusted prior
to transmission in order to match the available or target bandwidth requirements.

Where network charges are calculated on the number of bytes transmitted, any data
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reduction could result in significant dollar-cost savings, depending on the compression

ratio achieved.

may not be the optimal solution. By taking advantage of ATM network characteris-
Lics, we can improve the encoding scheme for certain classes of foveated image and

video data.

7.5.3 Asynchronous Transfer Mode Technology

ATM networks are expected by many to become the most popular medium over which
to transmit real-lime multimedia data. Rather than a continuous stream, ATM is
based on fixed packet sizes of data, or cells. Each cell is 53 bytes, 5 of which hold

header information. Figure 7.13 shows the format of a standard ATM cell [33].

____ Standard ATM Cell (53 Bytes)
Header (5 bytes)

lnfgrfﬁgti@n 7

Generic | VPI/VCI | Payload
Flow Field Type
Control Indicator

Payload

4 bits 24 bits 3 bits 1 bit 8 bits 48 bytes

Figure 7.13: The format of a standard ATM cell.

ATM networks require that connections be established prior to transmission. The
users negotiate with the network and agree on the properties of the connection, in-
cluding quality of service (QoS), bandwidth limits, and service class. QoS dictates the
level of acceptable data loss, and the bandwidth limits bound the data transmission
rate. The costs incurred and the traffic patterns produced by each service class are

different [102].
Service Classes

In guaranteed service classes, such as constant-bit-rate (CBR) and variable-bit-rate
(VBR), the network explicitly guarantees a QoS or does not establish the connection.

Available-bit-rate (ABR) is a best-effort service class in which no such guarantee exists
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[87].

The VR compression and transmission approach to foveated scenes is best suited
to the most expensive class, CBR. Here tha peak bandwidth required for transmission
is requested and the entire collection of data is transmitted with low-loss probability.
The bandwidth reserved for the connection must be paid for, whether or not. it is
fully used.

However, the VR approach could conceivably also be used with VBR class con-
nections. There would be no guarantee that the entire image would be successfully
transmitted. Only the bandwidth used would be paid for, but the risk of data loss
would increase. During bursty periods, some information could be dropped by the
network. The VR methods presented in Chapter 5 do not address this possibility,
and therefore such data loss within the scene would occur spatially independent of
the fovea [77].

The ABR scheme is the least expensive of the th ree, but, there is an even greater
risk of data loss, again randomly throughout the scene. Here one is taking advan-
tage of otherwise unused bandwidth on the network, deferring to higher service elass
connections in times of congestion. The network dictates {he bandwidth allocated
to ABR connections, based on the current traffic load. VR compression schemes are
quite inflexible in dynamically adjusting their bandwidth requirements. It is compu-
tationally expensive to adjust the compression parameters in real-time continually,
based on the network load. Delays in adjustments complicate the process and can
result in data loss. It is also unclear if all current rate, credit, and intelligent, con-
gestion control schemes proposed in the ATM Forum would forward the required
network load status above the ATM switch network layer, to the application itsell ai,
the user layer. A flexible encoding scheme which can operate within these constraints

is required.

Multicasting

While VR compression techniques can be used in broadcast or multicast applications,
they are not particularly suited to heterogeneous link bandwidth scenarios. The

inflexibility of these approaches would force one of several sub-optimal solutions:

—
—
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® Broadcast separate streams over each group of links with the same bandwidth

limit to give the best quality at each destination.

¢ Broadcast one stream over all links at the lowesi capacity. The quality on the

large bandwidth connections would unnecessarily suffer.

® Broadcast one stream over all links at the highest capacity. The connections
with the narrowest bandwidths would lose information randomly within the

scone.,

A simple encoding scheme which is flexible enough to respond to bandwidth require-
ments dynamically and reduce quality intelligently during transmission is required.
An appeal to biological visual systems provides insight into a satisfactory solution.

The VR compression schemes discussed in Chapter 5 have one characteristic that
may be useful in optimizing performance within bandwidth restrictions. By varying
the compression parameter and «, the bandwidth needs of the VR methods pre-
sented carlier will change. Bandwidth requirements also depend on whether static
or dynamic foveae are implemented. It is possible that these choices can be made
automatic, based on network feedback. Such applications would automatically avoid
network congestion as well as make use of unused bandwidth in times of minimal
traffic. They could be flexible enough to run on platforms where there are either
constant or variable bandwidth allocation schemes.
7.5.4 Cell Priority
When information is transmitted over an ATM network, it must be broken up into
cells, or packets of data, which are sent separately. When the network gets congested,
some of these cells must be dropped and are therefore not successfully transmitted.
The network may employ policing to prioritize data cells. A common method, leaky
bucket, assigns Iﬁriarity levels to individual cells based on traffic patterns, negotiated
connection service classes, and network congestion {17, 76]. Under heavy traffic load,
the cells with the lowest priorities are lost first [49].

Il several users have bursty traffic and are using the same ATM network with

the VBR connection class, statistical multiplexing is often implemented. That is, a
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user is permitted to transmit data beyond the average (or sustainable) bandwidth
limits negotiated for its connection during the periods where other users are not, fully
utilizing their assigned bandwidth. This traffic is then regulated with the use of a
policing function setting the Cell Loss Priority (CLP) bit within each data cell. This
bit marks each cell as either high or low priority. If some data nmust be lost, low
priority cells are dropped before high priority cells [64].

Figures 7.14 and 7.15 are examples of image transmissions using 2 priority levels,
suffering from the loss of 83% and virtually all low priority data, respectively. (Ouly
7% of the image data is high priority.) Specifically note the quality difference between
the three final images in both figures, even though they have exactly the samie amount
of successfully transmitted data.

Typically, each user can transmit at whatever rate they wish, but the network
will only set a portion of the data cells as high priority. Those cells which exceed
the agreed bandwidth limit will be indiscriminately set to low priority and will he
dropped if the network is congested (see Figures 7.14 B and 7.15 A).

When transmitting foveated images, it is possible to package data into spatially
logical groups. That is, the images can be divided into sections, and each section
transmitted as a single cell. In this situation, the priority of a cell can be dotermined
by its relative distance from the fovea. The closer the cell’s data is to the fovea, the
more important the information is, and the higher the priority it should be assigned.

Depending on the policing strategy used, one can take advantage of stalistical
multiplexing and the CLP bit within the ATM networks to increasc the quality of
transmitted images. If one sets the CLP bit prior to transmission, restricting the
number of high priority cells to the limit allowed under the VBR. connection agree-
ment, scene degradation similar to that which may be experienced by a failing human

visual system in traumatic situations can be expected (sec Figure 7.15 B).
7.5.5 Priority Dithering

One would expect that prioritizing data based on the distance from the fovea should
result in gradually increasing peripheral quality loss during network congestion. How-
ever, when using only two priority levels, a circular region exists around the fovea,

separating the high and low priority areas. F igure 7.14 B shows that for a moderate
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Figure 7.14: A) Original image. B) All pixels initially set to high priority, adjusted
by the ATM policing function. C) Foveal based pixel prioritization. D) Dithered
pixel priorities.

loss of low priority data (83%), prioritization based directly on the distance from the
fovea is the superior method. The periphery is not completely lost and the circular
threshold does not become apparent. However, Figure 7.15 B demonstrates that upon
extreme loss of low priority data (100%), the quality of the scene in the periphery
deteriorates completely, revealing the threshold as a circular artifact.

To retain the gradual quality loss even during the most extreme network conges-
tion, one must utilize a greater number of priority levels. An increase of CLP bits to
5 would give us 32 priority levels, each level having a different probability of being
dropped under network stress. By allocating the priority of the data based on the
distance from the fovea, each outer ring of data would gradually deteriorate faster

than the inner rings. The more levels available, the more gradual the deterioration
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Figure 7.15: A) All pixels initially set to high priority, adjusted by the ATM policing
function. B) Foveal based pixel prioritization. C) Dithered pixel pricritics.

towards the fovea, therefore modelling the human experience more closely. Total
peripheral loss could thus be further delayed.

However, current ATM standards provide one CLP bit, or two priority levels. One
can simulate multiple priorities with only one bit with the use of dithering [100]. The
advantage of priority dithering over foveal prioritization which is not dithered can he
seen in Figures 7.15 C and 7.15 B, respectively. In both cases virtually all low priority
cells were lost in transmission. Observe that while the periphery has deteriorated in
both cases, it is not completely lost with dithering — as it iis when dithering is not,
used. While dithering does not produce the best results for moderate loss of low
priority data (Figure 7.14), it is clearly superior with extreme levels of low priority

data loss (Figure 7.15).
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7.5.6 Network Simulation

The quality differences between scenes transmitted with foveated and dithered priority
settings can be demonstrated with a relatively simple ATM network simulation. Qur
simulation consisted of sending 255 facial images through the network, with one fovea
placed over the face. These scenes included various conditions of illumination, scale,

background, and head orientation* (See Figure 7.16).

Figure 7.16: Three examples of faces used in the ATM network simulation.

Setup

The simulation was written in C4+4 and gawk, and run on a Solaris workstation. The

test sequences of facial scenes simulated encoding, prioritization, and transmission

4The faces were obtained with permission from the Massachusetts Institute of Technology (MIT)
face database. '
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with the VBR connection class through the ATM network with identical simulated
background traffic. Several competing background VBR video traffic streams were
realistically approximated using a Multiple Markov Poisson Process (MMPP) traffic
generator (44]. The mean duration of a busy period of background traffic was 250
microseconds, while the mean duration of a calm period was 1000 microseconds.

The simulated ATM network contained one switch with an outgoing capacity of
45 Mb/s and a packet transmission time of 8.985731 microseconds per packet. The
incoming traffic shared 100 cell buffers when not occupied by reserved bandwidth.
Images for the test sequences were transmitted at 30 frames per second.

Three prioritization schemes were compared — the ATM policing function auto-

matically adjusts the priority levels of each stream using the leaky bucket method:

(i) All cells are initially set to high priority; no prioritization based on the fovea

location.
(ii) Initial binary prioritization based solely on the fovea location.

(iii) Initial binary dithered foveal prioritization, simulating multiple priority

levels.

Encoding ensured that inter-cell and intra-cell pixel order within cells of the same
priority level were randomized to avoid consecutive sections of the image heing lost,
from either a single lost cell, or consecutive cell loss during bursty network conges-
tion. Simple look-up tables were used to map pixel locations within the image Lo
locations within ATM cells. Each ATM cell contained sequencing and error checking
information along with the image data.

Standard leaky bucket policing and congestion control was used within the ATM
network. The policing function considered the user’s preset priority (if any) for cach
incoming packet and only incremented its counter on high priority packets. The
policing function reduces the priority of the high priority packets when the rate of
incoming cells exceeds the sustajnable bandwidth limit agreed upon at connection
setup time.

Interpolation® was used to reconstruct the images from the cells that successfull y

A Gaussian filter was used.
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passed through the ATM network. After a warmup period, the average cell loss and
image quality were calculated for each level of network congestion. The quality of

cach image was calculated using the error measure developed for foveated scenes.
Foveated Quality Measure

In the arca of image quality, many standard measures attempt to quantify the degra-
dation process objectively. Here our research deals with a restricted domain of digjtal
images, specifically those with identifiable areas of greater interest. Performance
measures suitable to foveated scenes must therefore be used. The foveated quality

measure VRMAE, described in Section 6.2.2, was used for our analysis here.

Analysis

image Error versus Packet Loss
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Transmissien: Fovea & Dithering —
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Transmission: No Fovaa & No Dithering ~—
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Figure 7.17: ATM simulation results.

Figure 7.17 shows the performance of three prioritization methods during increasing
cell loss caused by increasing network loads. Initially, under light congestion and mod-
erate cell loss, both foveated prioritization schemes outperform the standard encoding
method. The dithering method does have a slightly higher error than non-dithering,
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as some cell loss occurs closer to the fovea. In this case, non-dithering produces the
best results.

However, under extreme congestion and cell loss, the total deterioration of the
periphery in the non-dithered scheine becomes unacceptable, both visually and as
expressed by the VRMAE metric. The gradual peripheral quality loss without total
degradation, in the dithered approach, consistently produced better visual resnlts
than the standard method that did not consider foveae. Clearly, in this case, dithering

greatly improves image quality, and is the superior method.

7.6 Foveal Prioritization Advantages

Foveated scenes, such as typical videoconferencing transmissions, possess qualitics
which can be exploited advantageously. Chapter 3 examined biological systems (o
provide insight into how nature compresses image data based on the presence of
foveae. ATM cell prioritization gives us the opportunity to model hiological foveated
scene prioritization. Our simulations show that by prioritizing and dithering encoded
image data based on distance from a fovea, increased network congestion will canse
peripheral deterioration as opposed to spatially independent noise. Two communica-

tions scenarios demonstrate the benefit of this technique.

7.6.1 Frugal Service Classes

The transmission of information over ATM connections requires a QoS contract, in-
cluding a specified service class. While the CBR service class is the most reliable,
and thus will result in the highest quality image, it is also the most expensive. Foveal
prioritization concentrates cell loss to the scene periphery, thus increasing the per-
ceived image quality using lower quality and less expensive service classes such as
VBR and ABR. A user may find that an acceptable QoS on a cheaper service class
is not possible without such prioritization.

Furthermore, complex dynamic encoding techniques are not necessary when us-
ing the ABR service class. Instead of altering the encoding method to reflect, Lhe
current bandwidth limit available to the connection, foveal prioritization will operate

effectively, without adjustments, under all conditions. The policing filter at the en-
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trance to the ATM network will adjust the bandwidth automatically, taking the cell

priorities set by the user into account [37].

7.6.2 Multicasting over Heterogeneous Link Speeds

Simultancously transmitting images to multiple destinations over ATM may include
scenarios where all communication links do not have equal bandwidth capabilities. It
is certainly not desirable to encode and transmit the information separately along each
link speed. 1t may also not be practical to either reduce the single stream to that of
the Jowest link capacity or to transmit at a higher rate, causing spatially independent
scene deterioration along the lowest capacity connections. Video Gateways have been

proposed to address this problem [39, 93].

Video Gateways

Vidco Galeways are elements within the transport level of a network that monitor
video signals being transmitted through that switch. As the video signal enters the
network switch, the video gateway interprets this signal and transmits a (possibly)
altered video stream. Rate-reduction video gateways compress the incoming video
strcam to a lower bandwidth requirement before retransmission.

In the process of reducing video signal bandwidth, three subsampling techniques
arc available to video gateways. Spatial subsampling reduces the dimensions of each
frame of the video. Temporal subsampling reduces the frame rate of the video by
dropping selected frames altogether. Amplitudinal selection reduces the quality of
cach frame.

As well, video gateways can operate at two different levels. Pel level gateways
decode the incoming video stream entirely, up to the pixel (or pellevel. At this level
many methods of subsampling and compression can be utilized as the video signal
is encoded to lower bandwidth requirements. Transform level gateways decode the
incoming video signal to the transform level only, and further compress transform
coeflicients. Only where codec standards allow (i.e. H.261 and MPEG), the concept
of frames can exist at the transform level, allowing spatial and temporal subsampling
at the transform level [27, 28, 99].

All of the above decoding and encoding allows a network with video gateways
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to control the stream bandwidth dynamically at each branch or node within the
network, addressing the multicasting problem at hand. However, such solutions have
significant drawbacks, not the least of which is switch complexity. Each gateway must
contain the necessary information to intelligently monitor available bandwidth as well
as all video decoding and encoding programs. Delays are introduced at cach gateway,
depending at which level the video stream is operated on, the number of cells which
need to be buffered to complete the decoding, and the complexity of the compression

methods used [31, 34].

Foveal Prioritization

Foveal prioritization, on the other hand, allows a single, simple encoding to be trans-
mitted to all destinations without the need for additional video gateway hardware,
Each switch need not know the encoding method used within the video stream, but
simply the priority of each individual packet. Upon entering an ATM network or link
with increased bandwidth constraints, the policing functions already present, at that
switch will automatically reduce the bandwidth of the stream, taking the cells’ preset,
priorities into account. While slower links will obviously have lower quality images,
they will be of a higher quality than that possible without foveal prioritization and
dithering, because the majority of information loss will occur away [rom the fovea.
The simple encoding scheme produces a single outgoing multicast stream for all des-
tinations and would work seamlessly with multiple link speeds and without the added
delay of video gateway technology.

Drawbacks to foveal prioritization stem primarily from the complexity of compres-
sion methods available. Pel level video gateways do not have requirements on their
compression methods to include spatially equivalent data within the same ATM cell,
while prioritization methods based ~n fovea location do rely on such encodings. In
some cases the higher compressior. :.tios achieved by complex video gateways may
outweigh the delay and expense the - incur. However, with a good knowledge of the
network traffic characteristics, a wise choice of prioritization parameters (such as ratio
of high priority cells and dithering rate) may achieve an acceptable level of quality
loss at all multicast destinations.

While our ATM simulations prioritized facia) image data without advanced com-
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pression techniques, their utilization is possible. JPEG and MPEG are good examples

of popular compression techniques which operate locally, in 64 bit blocks. The image

the possibility of encoding them within the same ATM cell exists. In this way data
prioritization based on the location of a fovea is possible. While wavelet compres-
sion in general cannot be combined easily with foveal prioritization methods, special
wavelet techniques that operate on 64 bit blocks do exist, which could take advan-

tage of known foveae locations. One could label this foveal based prioritization of
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Chapter 8
Future Work

Our work, while covering many areas, reveals still more issues that may spawn further

fruitful research.
8.1 Implementation Optimization

Section 5.1.2 described areas where previous SVR image compression code was en-
hanced. Search algorithms, interpolation methods, and internal data structiures were
optimized for speed or image quality. Preliminary comparisons indicale new meth-
ods are indeed promising, but do not prove general application. A wider range of
sample images is necessary in order to be able to draw any significant conclusions.
As well, bilinear interpolation is not the only method one can apply during decom-
pression. Specifically, the speckle artifacts which arise from irregular sampling in the
SVR method do not impact the signal to noise ratio, but are clearly visible. Lagrange,
Gaussian filtering, and weighted average interpolation methods will not, he affected by
irregular sampling, and their use with the SVR transform might also be investigated.

Indeed, all of the code used in applications, simulations, and experiments conld
be further optimized. While most code was written for efficiency, time was not, taken

specifically for thorough inspection and optimization.

8.1.1 Videophone Prototype Performance

For example, more effort is currently underway to improve the performance of the
videophone prototype. While the speed has greatly increased with the en hancement,,

replacement, or optimizing of algorithm implementations, more attention could he
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specifically directed to this area. Also, tradeoffs between speed and quality should be

taken into account when making decisions on interpolation methods to be used.

8.2 Colour Images

Our research has mainly been with greyscale images. The majority of our work could
he almost directly applied to colour images as well. For instance, the image com-
pression techniques could divide an image into its red, green, and blue colour planes
and cach compressed separately with the methods as currently presented. However,
it may be more advantageous to break the image into its luminance and chrominance
colour planes and compress these with different parameters. More work might be
done in intelligently controlling the respective compression ratios, having a greater
reduction in the chrominance data as compared to the reduction of luminance data.
Also, greater o values in the chrominance planes would more closely reflect biological
vision systems. In animate retinae, cone density (colour sensitivity) decreases with

eccentricity from the fovea much more rapidly than rod density (luminance sensitiv-

ity).

8.3 Single Image Hybrids

Scctions 6.1 and 7.1.1 outline research involving hybrid compression schemes using
ithe SVR. transform, PGM, and JPEG methods. Examples of CVR hybrids with CVR
and Wavelet and Fractal are shown in Figures 6.3 and 6.4, but are not analyzed in
the detail SVR/JPEG is, nor are formal hybrid format specifications proposed. This
analysis could be done, not just with these hybrids, but numerous other compression
hybrids could also be investigated. Not only would hybrids with other popular com-
pression methods require future investigation, but single image hybrids with other
combinations of VR compression schemes might also yield interesting results. CVR,
for example, could easily be added to the SVR/JPEG hybrid image format outlined
in Section 7.1.1. This format already ailows for easy extensions to the existing header
syntax. Perhaps the FaceBase tool described in Section 7.1.2 might also benefit from

the added option of CVR, Fractal, or Wavelet based hybrids.
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8.4 Image Sequence Hybrids

Section 7.2 reviewed the implementation of the CVR/MPEG hybrid compression
scheme for image sequences. This program could be extended to compress colour
images, which it does not do at present. As well, the CVR formulae need not be
kept entirely separate from the MPEG section. By integrating these to methods at a
lower level, redundancy is reduced, speed could be gained, and greater quality could
be achieved. The use of other VR methods such as SVR could be investigated here

as well.

8.5 Scaling Factors

Throughout our research, the implementation of all SVR and CVR based transforms
calculated the scaling factors necessary based on a single compression factor provided
by the user. This factor was used to calculate the size and shape of the compressed
image (See Equations 4.26, 5.9, and 5.10). This single factor was quite inflexible in
terms of allowing the user to generate compressed images with a different, rectangular
shape than the original image. The compressed images always have the same width
to height ratio as the original image.

More freedom could be gained by dividing the compression factor into horizontal
and vertical components. This would allow different scaling factors to produce dil-
ferent compression ratios in either direction. Or, the user could supply a parameter
that directly influenced the scaling factors, and the two new compression paramc-
ters could be generated internally with respect to this value. Theorctically, there is

nothing mathematically complex hindering such an improvement.

8.6 FError Measures

Only one VR error measure was presented in this work. While this method appears
superior to the one used in [89], no formal comparison was done. Other crror measures,
possibly based on a Gaussian curve as opposed to the logarithmic function might

provide promising metrics.
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8.7 Temporal Integration

Some rescarch was done in the area of modelling of saccadic eye movements. Fur-
ther study could analyze more complex models and attempt to integrate these into
the existing videoconferencing application presented in Section 7.4. Temporal scene

integration with foveae is an area that also appears to have promise.

8.8 Automatic Arbitrary Isosampling Map Mod-
elling

Note that the tool in Figure 5.16 allows one to model arbitrary visual features, such
as aninate retinae, manually. This could possibly be automated to some degree. For
example, given Figure 3.1, the optimum parameters for a multiple cooperative foveae
transform could conceivably be mathematically determined. This would eliminate
the need for trial and error model fitting. The process could also be extended beyond
animate models to specific situations arising from computer vision applications such

as videoconferencing or assembly line robot tasks.

8.9 ATM Network Implementation

One obvious extension to this research is to implement an actual application which
utilizes foveal priority dithering of image data over an ATM network. Access to an
ATM switch and network with a videophone prototype would be necessary.

As well, the current ATM simulation used a single static fovea. Future work could
generalize this approach and incorporate multiple and dynamic foveae, where appro-
priate. Our rescarch did not use any compression in the simulation, but combinations

of both prioritization and compression could also be examined.
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Chapter 9

Conclusion

Two related issues in the area of image processing and transmission are reducing the
size of the data and dealing with uncontrollable data loss. Both are significant issues
impacting many multimedia applications. It is important that research focus on the
techniques designed specifically to handle new types of digital information. The use
of images and image sequences is becoming more widespread, and biologically based
image processing schemes seem promising.

A survey of biological visual systems introduced us to the concept, of the fovra.
This concept is found in the methods used by nature to compress image data as well
as in those used to cope with data loss over internal animate optic networks. These
methods have been modelled, both in general, and specifically focusing on features
such as anisotropism, multiple foveae, visual streaks, oplic discs, and dynamic foveac,

There are two main reasons why we may be inspired by animate visual systems:

e Animate visual systems are the only natural systems that are able to perform

complex manipulations and operations with detajled optic data. The way they

data itself.

e Many of our image processing and compression methods will be used on data
specifically intended for human viewing. Considering the user’s visual system
may allow us to tailor our algorithms, taking advantage of biological fixation
and visual characteristics.

If we are open to the lessons taught to us while observing and modelling hiological

systems, we will find ourselves in a better position Lo address the specific requirements
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of computer vision in the future. As interest in foveated systems grows, it would be
wise not to restrict ourselves to the concept of a single specialized fovea. Rather, we
should avail ourselves of the plethora of possibilities expressed by the animal kingdom.

Unique approaches to image compression, utilizing the ideas of foveae and spatially
variant sensors, have heen considered. Original, substantive research in this area has
been outlined. It has been shown that the area of primary interest, or fovea, can be
favoured at the expense of the periphery of an image.

The benefits of VR approaches were demonstrated in several settings. Applications
for a mug shol database and videoconferencing system were successfully implemented,
clearly showing the benefit of these techniques. Novel hybrid compression standards
were developed for improved performance in the specific domain of foveated scene
and video compression. An ATM packet prioritization method was simulated, and
the analysis showed that VR prioritization schemes provide improved results.

Variable Resolution (VR) algorithms modelled after biological systems have sev-
cral advantages over traditional compression methods. Looking strictly at implemen-
tation issues, a variety of advantageous characteristics of VR compression include
increased speed, hybrid possibilities, guaranteed minimum compression ratios, and

network bandwidth adaptation capabilities:

» The VR compression methods, if designed with the use of look-up tables, require

no complex calculations and, therefore, are extremely fast.

The VR transforms operate entirely in the spatial domain; any other com-

pression scheme can be run on the compressed images for greater compression

ratios.

Sampling can be adjusted to guarantee minimal compression ratios.

¢ Similarly, sampling can be adjusted to achieve constant bandwidth require-
ments.
e By monitoring network loads or by prioritizing data, bandwidth requirements

can be varied to maximize network utilization.



® In all cases where cell loss will occur due to network congestion or bandwidth
limitations, scene degradation is similar to that which may be experienced by

the human visual system.

By modelling natural systems we have developed several transforms and algo-
rithms with great potential to enhance computer vision in general and image com-
pression specifically. Clearly, our models cannot be used to compress all data, as
frequently the area of primary interest cannot be determined in advance (as with
medical images). Thus, the distortions caused in such cases may be unacceptable,
However, there are some applicatiang such as videoconferencing, where our tech-
niques give superior compression ratios and acceptable image quality for relatively
low computational cost.

The rate at which VR methods it can compress images, especially on machines
with limited processing speed, and the high quality present in the foveal region, make
it ideal for multimedia applications. Our experience with the FaceBase tool and
videophone prototype supports this belief. A significant conclusion from the latter is
that acceptable frame rates can be expected over cither local or wide arca networks
without the need of additional hardware.

Some ideas on remaining areas of future research were outlined in Chapler 8 and
included expanding the research to involve colour images and a greater number of pop-
ular established compression methods. As researchers continue to unlock the myriadl
of mysteries present in our own bmlc:gjcal visual system, more new opportunitics will
unfold. One quickly begins to feel that this aspect of Computer Vision, as in many
of the fields in Artificial Intelligence, is largely a profound exercise in plagiarism of

the Designer.
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Appendix A

Diagram of the Human Eye

Optic nerve

Fovea

Receptor celis
of retina

Figure A.1: Diagram of the human eye.

Diagram A.1' is of a horizontal section through the eyeball, to detail the primary

components and to show position of derivatives of its three primary layers.

!This figure was reprinted from [74] with permission.
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Appendix B
SVR/PGM Image Header Format

Below is a sample header from an image in the hybrid SVR/PGM image format.

(7]

VR3 Image by Kevin Wiebe.
Compression Parameters:

VR3_begin

70 (compression value)

200 (alpha value)

340 340 (decompressed size: rows, columns)
1 (combining power)

3 (number of foveae)

132 146 (position of fovea 1: x y)
186 130 (position of fovea 2: x y)
1568 199 (position of fovea 3: x y)
2 (method: cooperative)

VR3_end

186 186

255

HRERAEER IR T
BrhthrhBSow
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Appendix C

CVR/MPEG Parameter File
Format

Below is a sample parameter file for compressing an image sequence in the hybrid

CVR/MPEG format.
# salesman parameter file

PATTERN IBBPBBPBB
OUTPUT salesman.mpg

BASE_FILE_FORMAT PNM

INPUT_CONVERT  rasttopnm * | pgmnorm | pnmgamma 2
GOP_SIZE 30

SLICES_PER_FRAME 1

INPUT_DIR  /usr/jasper/grad/kevin/VC/MPEG/salesman

INPUT
gs* [000~299]
END_INPUT

PIXEL HALF
RANGE 10

PSEARCH_ALG LOGARITHMIC
BSEARCH_ALG CROSS2

IQSCALE 8
PQSCALE 10
BQSCALE 25

USE_CVR PAD

CVR_COMP 95

CVR_ALPHA 200

# Here is the current choice for foveae locations:
CVR_FOVEA DYNAMIC FACE 200

# Here are some other choices for foveae locations:
# His Face
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#CVR_FOVEA  STATIC 208 104

# His Object

#CVR_FOVEA  STATIC 124 131
#CVR_FOVEA  DYNAMIC MOTION 30 4
#CVR_FOVEA  DYNAMIC CENTER
#CVR_FOVEA  DYNAMIC FILE cvrsale.fov

FORCE_ENCODE_LAST_FRAME
REFERENCE_FRAME DECODED

# Default string has the date in it, bad for tests!
USER_DATA /dev/null
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