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Abstract. The forage maturation hypothesis (FMH) proposes that ungulate migration is
driven by selection for high forage quality. Because quality declines with plant maturation, but
intake declines at low biomass, ungulates are predicted to select for intermediate forage
biomass to maximize energy intake by following phenological gradients during the growing
season. We tested the FMH in the Canadian Rocky Mountains by comparing forage
availability and selection by both migrant and nonmigratory resident elk (Cervus elaphus)
during three growing seasons from 2002–2004. First, we confirmed that the expected trade-off
between forage quality and quantity occurred across vegetation communities. Next, we
modeled forage biomass and phenology during the growing season by combining ground and
remote-sensing approaches. The growing season started 2.2 days earlier every 1 km east of the
continental divide, was delayed by 50 days for every 1000-m increase in elevation, and
occurred 8 days earlier on south aspects. Migrant and resident selection for forage biomass
was then compared across three spatial scales (across the study area, within summer home
ranges, and along movement paths) using VHF and GPS telemetry locations from 119 female
elk. Migrant home ranges occurred closer to the continental divide in areas of higher
topographical diversity, resulting in migrants consistently selecting for intermediate biomass at
the two largest scales, but not at the finest scale along movement paths. In contrast, residents
selected maximum forage biomass across all spatial scales. To evaluate the consequences of
selection, we compared exposure at telemetry locations of migrant and resident elk to expected
forage biomass and digestibility. The expected digestibility for migrant elk in summer was
6.5% higher than for residents, which was corroborated with higher fecal nitrogen levels for
migrants. The observed differences in digestibility should increase migrant elk body mass,
pregnancy rates, and adult and calf survival rates. Whether bottom-up effects of improved
forage quality are realized will ultimately depend on trade-offs between forage and predation.
Nevertheless, this study provides comprehensive evidence that montane ungulate migration
leads to greater access to higher-quality forage relative to nonmigratory congeners, as
predicted by the forage maturation hypothesis, resulting primarily from large-scale selection
patterns.
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selection; migration; MODIS; NDVI; partial migration; phenology; Rocky Mountains, Alberta, Canada.

INTRODUCTION

Migration is thought to have evolved as a strategy to

maximize fitness in the face of seasonal and spatial

variation in resources (Boyce 1979, Swingland and

Greenwood 1983). Large vertebrate herbivores, such as

ruminant ungulates, are often migratory (Berger 2004).

While migration can also reduce predation risk (Fryxell

et al. 1988), selection for forage quality is proposed as

the primary mechanism driving migration in ungulates

(McNaughton 1985, Fryxell et al. 1988, Albon and

Langvatn 1992). Migration allows ungulates to exploit

forage quality to maximize intake rate over larger spatial

scales than nonmigratory residents. This is because even

modest increases in forage quality can increase nutrient

intake for ruminants because of the multiplier effects of

higher nutrients and accompanying reductions in

rumination and passage time (White 1983). Forage

quality is highest in new plant growth because of high

cell soluble content, which declines as plants mature and

fiber accumulates (Van Soest 1982). Thus, by following

spatiotemporal patterns in new plant growth, migratory

ungulates are expected to maximize energy intake rates

(e.g., Fryxell et al. 2004).

Recent studies, however, suggest energy intake is not

simply a function of quality, but of trade-offs between

quality and quantity (Fryxell 1991). Daily intake rates

are constrained by either plant cropping or handling

time (Spalinger and Hobbs 1992, Gross et al. 1993),

which change in importance as biomass increases. As

plant biomass increases, encounters with potential bites
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are not limiting, and energy intake becomes constrained

by processing (e.g., chewing; Spalinger and Hobbs 1992,

Pastor et al. 1999). As plant biomass matures, however,

digestibility and passage rates decline because of changes

in cell-wall composition and structure (Spalinger and

Hobbs 1992, Gross et al. 1993). The effects of the

combined cropping and digestive constraints on net

daily intake are shown in Fig. 1 (adapted from Fryxell

1991), which reveals that the maximum net intake rate

occurs at an intermediate biomass where the two

constraints intersect. The hypothesis that energy intake

is maximized at intermediate forage biomass was coined

the ‘‘forage maturation hypothesis’’ (FMH), and has

been proposed as the main reason for observed patterns

in ungulate migration (McNaughton 1985, Fryxell

1991).

Empirical evidence that migratory ungulates select for

intermediate forage biomass (IFB) comes primarily from

savannah ecosystems, where forage growth is driven by

seasonal rainfall (McNaughton 1985). Wilmshurst et al.

(1999) showed migratory wildebeest (Connochaetus

taurinus) in the Serengeti selected for IFB at landscape

scales, but not at finer scales, revealing scale-dependence

in selection for IFB. Wilmshurst et al. (1999) proposed

that large-scale selection patterns constrained availabil-

ity such that at smaller scales, only low biomass, high-

quality forage was available.

In temperate montane ecosystems, forage phenology

varies with topographic and elevational gradients that

affect snowmelt and the start of plant growth (e.g.,

Bennett and Mathias 1984, Walker et al. 1993).

Consistent with the FMH, migratory populations of

montane ungulates often have access to higher diet

quality (Oosenbrug and Theberge 1980, Albon and

Langvatn 1992, Sakuragi et al. 2004). For example,

Albon and Langvatn (1992) found crude protein was

higher in plants available to red deer at higher elevations

in Norway. And in a later study, Mysterud et al. (2002)

confirmed that red deer at higher elevations in the same

study area had higher body mass (Mysterud et al. 2002),

inferential support for the importance of migration to

ungulates. To date, however, there have been no direct

tests in montane systems of selection for intermediate

forage biomass, in part, because of the difficulties of

quantifying mixed-plant community biomass at large

scales in spatially complex environments (Merrill et al.

1993).

In this paper we examine evidence for the forage

maturation hypothesis in a partially migratory elk

(Cervus elaphus) population in the Canadian Rocky

Mountains of Alberta, Canada. Partially migratory

populations, where some individuals migrate seasonally

and others are resident, have been largely overlooked in

the study of migration (but see Nicholson et al. 1997,

Ball et al. 2001). Yet these systems provide a powerful

comparative experimental design to test for differences

in forage selection by comparing migrant and resident

forage selection (Kaitala et al. 1993). We test the general

prediction of the FMH that migrant elk should show

stronger selection for intermediate forage biomass,

lower than that selected by nonmigratory residents.

Our approach is comprehensive and multi-scale. We

start by examining mechanisms of differences in plant

phenology that dictate availability of forage quality

available to migrant and resident elk. We use these

mechanistic drivers of forage quality to build spatio-

temporally dynamic models of forage biomass and

quality available to elk at large, landscape scales. With

the foundation of understanding the availability of

forage biomass and quality to migratory and resident

elk, we next examine multi-scale forage-selection pat-

terns using advanced radio-telemetry methods to test

predictions of the forage maturation hypothesis at

different scales. Finally, we examine consequences of

selection patterns to ask whether migrant elk have

greater exposure to high forage quality based on our

spatiotemporal forage models (sensu Albon and Lang-

vatn 1992), and whether this results in higher quality

plant species in the diet and higher fecal nitrogen

content for migrant elk.

Multi-scale predictions of the forage

maturation hypothesis

We develop specific predictions of the forage matu-

ration hypothesis to test at each stage of our compre-

hensive and multi-scale approach. These are presented

FIG. 1. Schematic showing general mecha-
nisms of the forage maturation hypothesis
(FMH). (a) Foraging constraints of daily crop-
ping (solid line) and digestion (dotted line) that
result in (b) maximum net daily energy intake at
an intermediate forage biomass (IFB). The figure
is adapted from Fryxell (1991).
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here and summarized in Fig. 2. First, we start by testing

whether the trade-off between forage biomass and

quality, necessary for the FMH to hold (Fryxell et al.

1988), held in our montane study area. Second, we

extend the approach of Albon and Langvatn (1992) to

model the landscape-scale availability of forage biomass

and quality (measured by percentage digestibility) by

combining ground sampling, remote sensing, and

geographic information systems (GIS) to make spatio-

temporally explicit predictions of forage biomass avail-

able across the whole study area. We test phenological

mechanisms for forage-quality differences between

migrant and summer ranges with repeat sampling during

the growing season. We test the prediction of the FMH

that migrant ranges will have delayed phenology and

higher forage quality because they occur at higher

elevations and in more complex mountainous topogra-

phy (Albon and Langvatn 1992, Post and Klein 1999,

Post and Stenseth 1999, Mysterud et al. 2002). Next, we

test whether migratory elk were more likely to select

FIG. 2. Hierarchical framework for testing the forage maturation hypothesis at multiple spatial scales in a partially migratory
elk (Cervus elaphus) herd, with scale-specific predictions made for elk forage selection and forage resources across scales. Black
ovals represent telemetry locations, and gray triangles represent random locations.
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areas of intermediate forage biomass than resident elk

using resource-selection functions (RSF; Manly et al.

2002) by contrasting used and available forage biomass

across multiple spatial scales. We examine forage

selection across scales because previous studies demon-

strated ungulates can adopt selection strategies at more

than one scale (Wilmshurst et al. 1999, Johnson et al.

2002, Boyce et al. 2003), and adopt Johnson’s (1980)

hierarchy of scales of selection to guide our analyses.

At the landscape or study-area scale (the second order

of Johnson [1980]), we predicted migrant elk would

select IFB (Wilmshurst et al. 1999), whereas resident elk

would select higher forage biomass by remaining year-

round on low-elevation winter range, foregoing benefits

of migration (Fig. 2). Within summer home ranges and

along movement paths (Johnson’s [1980] third-order

scale), we expected migrants to relax selection for IFB

because selection at larger scales had already con-

strained availability of forage biomass to be low, and

thus, forage quality to be high (e.g., Wilmshurst et al.

1999). In contrast, residents were expected to display

stronger selection for IFB within summer home ranges

and at the movement scale to attempt to compensate for

lower availability of higher forage quality compared to

migrants (Fig. 2). To test the consequences of selection

at the plant-patch scale, we compared migrant and

resident elk exposure to predicted forage biomass and

percentage digestibility of forage at telemetry locations,

with the prediction under the FMH that migrants

should have significantly higher availability of high

forage quality. Finally, because exposure, as measured

by telemetry locations, may not reflect actual intake, we

compared diet composition and quality indices between

migrant and resident elk at the plant-patch scale (Fig. 2).

We predicted the diet of migrants to have higher

composition of high-quality forage classes, and thus

higher fecal nitrogen (Fig. 2).

STUDY AREA

The study area encompassed the front and main

ranges of the eastern slopes of the Canadian Rocky

Mountains in and adjacent to Banff National Park

(BNP; 518300 N, 1158300 W), and was defined by the

movements of the Ya Ha Tinda (YHT) elk population

over a 6000-km2 area (Fig. 3, elk telemetry was buffered

by 5 km [Hebblewhite et al. 2006]). Elevations range

from 1600 m in valley bottoms to 3500 m in the western

study area near the continental divide. Climate is cold

continental, and strongly influenced by the North Pacific

Climate Index (Trenberth and Hurrell 1994). The study

area is dominated by pronounced east-to-west gradients

in elevation, precipitation, and topographic complexity,

all of which are greater in the western part of the study

area (Holland and Coen 1983). Growing-season length

is reduced at higher elevations and in the western part of

the study area due to delayed snowmelt and reduced

temperatures (Holland and Coen 1983).

Vegetation was classified into three ecoregions:

montane, subalpine, and alpine (Holland and Coen

1983). The montane ecoregion is dominated by lodge-

pole pine (Pinus contorta) interspersed with Engelmann

spruce (Picea engelmanii)–willow (Salix spp.), aspen

(Populus tremuloides)–parkland, and grasslands. The

principal winter habitat for this elk herd is the Ya Ha

Tinda (YHT) montane winter range outside of BNP

(Fig. 3). The YHT is dominated by rough fescue

(Festuca campestris) grasslands, mixed with trembling

aspen, open conifer forests, and willow–bog birch

(Betula glandulosa) shrublands. The subalpine ecoregion

consists of Engelmann spruce–subalpine fir (Abies

lasiocarpa)–lodgepole forest interspersed with willow–

shrublands, subalpine grasslands, and avalanche terrain,

grading to open shrub–forb meadows in the alpine

ecoregion (Holland and Coen 1983). The study area

contained ;200 km2 of prescribed and natural fires from

1970 as a result of Parks Canada and Alberta fire-

restoration policy (White et al. 2003). Elk forage

biomass was enhanced by fire in the study area (Sachro

et al. 2005).

Elk were the most abundant ungulate, numbering

between 1500 and 2500 individuals (Holroyd and Van

Tighem 1983). This elk population was partially

migratory. Migrant elk (;60%) left the winter range

during summer in late May and early June and returned

from late September to December. Most migrants

(;90%) migrated into BNP and the main ranges during

summer (Fig. 3, Hebblewhite et al. 2006). In contrast,

resident elk (40%) remained year-round on the winter

range (Hebblewhite et al. 2006). Accordingly, we

considered the main ranges within BNP and the front

ranges in the province of Alberta as migrant and

resident ranges, respectively (Fig. 3). Although elk were

the dominant ungulate, white-tailed deer (Odocoileus

virginanus), moose, mule deer (O. hemionas), bighorn

sheep (Ovis canadensis), mountain goats (Oreamnos

americanus), and a remnant herd of 5–8 mountain

caribou (Rangifer tarandus) also occurred. Elk were the

most important prey for the area’s large predators,

comprising 40–70% of wolf diet (Hebblewhite et al.

2004) but were also important to grizzly bear (Ursus

arctos) diet (Hebblewhite 2006). Other less important

carnivores in the study area included black bears (Ursus

americanus), cougars (Felis concolour), wolverines (Gulo

gulo), and coyotes (Canis latrans) (Hebblewhite 2006).

METHODS

Our methods are divided into three separate steps.

First, we examined mechanisms driving patterns of

forage biomass and quality, testing predictions of the

forage maturation hypothesis (FMH) across the study

area. We linked a spatial model of forage biomass

availability to temporally dynamic forage availability

using remote-sensing tools (Table 1). This allowed us to

develop a spatiotemporally dynamic forage-biomass

model for our study area. We also determined mecha-
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nisms driving differences in forage quality in our study

area. In our second step, we used the dynamic forage

biomass model to examine multi-scale elk selection for

forage biomass across three different spatial scales for

elk using radiotelemetry. Lastly, in our third step, we

examined the consequences of selection to the exposure

of migrant and resident elk to forage quality by looking

at predicted forage biomass and quality at elk telemetry

locations using the dynamic forage model combined

with diet and fecal-nitrogen analyses.

Forage-maturation–biomass-quality relationships

A key prerequisite for the FMH is that forage quality

declines with increasing forage biomass during growth

(Fryxell et al. 1988). This allows digestible energy to be

maximized at intermediate forage biomass above a

threshold intake rate because of the trade-off between

intake rate and declining quality (Fig. 1). In this section,

we estimate the relationship between forage biomass and

forage quality, measured by dry-matter digestibility

(DMD) (Van Soest 1982) to confirm this relationship

for plant communities during the growing season (Table

1). All herbaceous species were included because elk are

herbaceous generalists (Cook 2002, Hebblewhite 2006),

whereas only the 13 species of shrubs consumed by elk in

this study were included (Hebblewhite 2006).

Forage growth.—Changes in forage biomass over the

growing season were documented by repeatedly sam-

pling 30 sites each month between 1 May (or after

snowmelt) and 1 October, 2002–2004 (3.4 times/site/

season, n ¼ 254 total samples, Table 1). Sites were

stratified by major factors influencing seasonal plant

FIG. 3. Study area location on the eastern slopes of the continental divide in the front and main ranges of the Canadian
Rockies, Alberta, Canada. Shown is an example of the spatially dynamic forage-biomass model, the predicted total herbaceous
forage biomass (g/m2) during 2003 at the peak of the growing season (4 August); darker areas signify higher herbaceous forage
biomass. Each symbol represents an individual elk; resident elk (�) remain on or near the Ya Ha Tinda Ranch (outlined in white)
during summer in the front ranges, while migrants (þ) migrate throughout the 6000-km2 study area, mostly to the main ranges in
Banff National Park (BNP), as shown by VHF telemetry data for summer 2002–2004.
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ecology, including open/closed-canopied vegetation

types (defined in Appendix A), low/high elevation (.

or ,2000 m), three aspect classes (north: 08–112.58 and
292.58–3608; south: 112.58–292.58; flat), and position in

either the front or main ranges of the Canadian Rockies

(Fig. 3). During each sampling period, total (green þ
dead) herbaceous forage biomass (g/m2) was estimated

within 10, 1-m2 quadrats from the height of a disc

pasture meter (Dorgeloh 2002) and a disc height–total
biomass regression model (Hebblewhite 2006). The total

herbaceous biomass then was converted to green

biomass using percentage cover of green growth, which
we visually estimated in each quadrat. Predicted

herbaceous biomass values were averaged across the 10

quadrats for each site and sampling occasion.

Shrub leaf and twig biomass (current annual growth,
g/m2 up to 0.7 mm twig diameter) was estimated at the

peak of the growing season in 2002 and 2003 as the

product of stem density (no. stems/0.25 m2) and
biomass/stem (g/stem) measured in three 0.25-m2 quad-

rats/site. Biomass/stem of each shrub species was

estimated from allometric equations derived by Visscher
et al. (2006) in an adjacent study area, supplemented by

Hebblewhite (2006). Peak leaf and twig biomass was

adjusted for seasonal changes using percentage of
maximum leaf and twig biomass present during May

to October that was derived from measurements of 5

stems/shrub species in 3 quadrats/site (n ¼ 15 samples/
site), and averaged for each time period.

Forage quality.—Dry-matter digestibility (DMD, in

%; Van Soest 1982) was analyzed for the 64 most

abundant plant species (72% of all plants consumed)

found in the diets of elk (Hebblewhite 2006). We

collected samples (�2 cm in height) of each species in

four phenological classes from 4–10 sites (total n ¼ 384
samples) at forage growth plots across the study area

(Table 1). Phenological classes were: previous year’s

growth, newly emergent, matured (included fruiting/
flowering and mature growth), and cured (i.e., Griffith et

al. 2002). Plant samples were combined into one

composite sample per site and dried at ,608C for 48

h. DMD was determined using detergent fiber analysis
(Van Soest 1982) at the University of Guelph (Ontario,

Canada). For species known to be high in tannins (n ¼
24 species; Robbins 1994), tannin concentrations and
crude protein were analyzed using a bovine serum assay

(BSA) and Kjeldahl method (Van Soest 1982) at the

Wildlife Habitat Nutrition Laboratory (Pullman, Wash-
ington, USA). We calculated DMD, adjusted for tannin

content, using Eqs. 1 and 2 of Hanley et al. (1992:538);

details are given in Hebblewhite (2006). This approach
assumes constant tannin concentration during the

growing season, which may not be valid (Hanley et al.

1987, Happe et al. 1990), a point to which we return in
the Discussion. During each repeat-sampling period,

DMD for a plot was calculated as a weighted average

for the 10, 0.25-m2 quadrats, with weights derived based
on percent cover of species in each phenological stage

and species-specific forage-quality estimates.

Forage biomass–quality relationships.—The relation-

ship between DMD and biomass (g/m2) was estimated
separately for herbaceous and shrub biomass using

linear and nonlinear regression (Table 1). DMD–

quantity relationships were estimated for: (a) the entire

TABLE 1. Description of steps used to develop a spatiotemporal model of forage availability to estimate forage biomass and dry-
matter digestibility (DMD) at locations of migrant and resident elk (Cervus elaphus) in and adjacent to Banff National Park
(Alberta, Canada) during the growing seasons of 2002–2004.

Forage-model component General description of methods and data Unit of measure

Forage biomass-quality model

Forage growth biomass of herbaceous and shrub measured repeatedly
(3.4 times/site) at 30 plots growth from 1 May to 1 October

g/m2

Forage quality estimated percentage (DMD) of plant species over the growing
season in four phenological classes

% digestibility (DMD)

Quality–quantity model linear and exponential models for the growing season and
within each 16-d MODIS interval; used to convert biomass
exposure to DMD

DMD vs. g/m2

Dynamic forage biomass model

Peak forage biomass forb, graminoid, and shrub biomass measured at July/August
(n ¼ 983 sites)

g/m2

Peak forage model modeled peak forage biomass using GLM to extrapolate to
unsampled areas using a GIS

g/m2

Seasonal growth adjustment

Open habitats ratio of forage growth from May through October to the
maximum forage growth, indexed by NDVI derived from
MODIS satellite data in 12, 16-d intervals

NDVI (�1 to 1)

Closed-canopy habitats ratio of predicted forage biomass from May to October to
predicted peak; developed using forage growth plots to
estimate GLM model for study area; predictions made for
midpoint of each 16-d interval.

g/m2

Seasonal forage model predicted herbaceous and shrub modeled for each growing
season 2002–2004 using annual peak forage biomass model
and fixed peak forage adjustments

g/m2
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growing season, (b) each 16-d MODIS (see Spatial–

temporal. . .: Adjusting for seasonal forage growth, below)
interval during the growing season, and (c) spatially
between the front and main ranges of the Rocky

Mountains.

Spatial–temporal dynamics of forage biomass

To determine elk selection for forage biomass at

radiotelemetry locations of elk, we modeled the spatio-
temporal dynamics of herbaceous and shrub biomass

across the study area from 1 May 2002 to 30 October

2004 in two steps (Table 1). Our approach builds on the

earlier pioneering work of Albon and Langvatn (1992)
who predicted crude protein availability to red deer in

Norway as a function of elevation. We extend this

approach to multiple forage classes over the whole
season as a function of multiple variables in addition to

elevation. First, we modeled forage biomass available at

the height of the growing season using an extensive
random stratified design to sample many different

habitat types throughout the study area to capture

spatial variation in forage biomass (sensu Frair et al.
2005). Second, we used an intensive sampling design

approach to link ground-based measures of forage

biomass to remote sensing indices of primary produc-
tivity to adjust the spatial variation in peak biomass for

temporal variation in closed and open habitats. We then

related forage biomass from spatial models to predicted
forage quality using biomass–quality relationships

developed above to be able to evaluate forage-quality

differences between strategies (Table 1, Fig. 4).

Peak-season forage biomass.—We modeled herba-

ceous and shrub biomass (g/m2) at the peak of the

growing season using a similar approach to Frair et al.

(2005). We sampled 983 sites in 2001–2004 during the
peak (July/August) of the growing season based on a

proportional allocation design using key landcover and

topographic strata (Table 1). Land cover type was based
on Franklin et al. (2001) and is described in Appendix A

and Hebblewhite (2006) in detail. Predictive generalized

linear models (GLM) were then developed for forb,

graminoid, and shrub biomass as a function of spatial
covariates, and the top model was selected using

backward-stepwise model selection. Spatial covariates

included land cover type, year, aspect, hill shade
(indexing xeric sites with high solar incidence), a soil

drainage index (indexing the area draining into a pixel),

slope (8), elevation (m), and distance to the continental
divide in kilometers (see Hebblewhite [2006] for covar-

iate details). A small portion of adjacent British

Columbia (used by one elk) was not covered by land
cover mapping, and so we did not estimate forage

biomass for this area (Fig. 3). We then used the top

GLM to spatially predict herbaceous (forbþ graminoid)
and shrub biomass (g/m2) in a GIS at a 30-m2 pixel

resolution for 2002–2004 using RASTER calculator in

ArcGIS 9.0 (ESRI 2002). We cross-validated predictions

of herbaceous (forb þ graminoid) and shrub biomass
(g/m2) using a randomly withheld 20% sample of the

original data not used in model development. Top

models for each biomass component are summarized in
Appendix A – herein we only use forage models to

predict biomass exposure for elk telemetry locations.

Predicted and observed biomass was correlated for forbs

TABLE 1. Extended.

Time unit Spatial unit

sampled 1/month from 1 May to 1 Oct, annually 30 m2, measured with 1 plot of 10 3 0.25-m2 quadrats

four temporal phenology classes plant samples (n ¼ 64 plants per class; n ¼ 256 total plant samples)

growing season, 16-d interval 30 m2

annually for 2001–2004 at 4 August 30-m2 scale; measured with 1 plot of 3 or 5 3 0.25-m2 quadrats

from 22 April to 15 October 2002 250 m2

from 22 April to 15 October 2002 30 m2, measured with 1 plot of 10 0.25-m2 quadrats

22 April to 15 October 2002–2004 30 m2 (open habitats adjusted for growth at 250 m2)
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(Pearson’s r ¼ 0.55, P , 0.005) and graminoids

(Pearson’s r¼ 0.56, P , 0.005). The total shrub biomass

model showed weaker predictive capacity (Pearson’s r¼
0.37, P , 0.001) because of high variability in shrub

biomass (Hebblewhite 2006).

Adjusting for seasonal forage growth.—Seasonal ad-

justments of biomass at peak season were made using

different approaches in open- and closed-canopied cover

types (Table 1). In open habitats we used the normal-

ized-difference vegetation index (NDVI), an index of

primary productivity (Tucker and Sellers 1986), derived

from MODIS (moderate-resolution imaging spectrora-

diometry) satellite imagery (Huete et al. 2002) to predict

forage growth. NDVI values from MODIS were

obtained at a 250-m2 resolution in 16-d interval

composite images from 22 April to 30 October 2004

(see Appendix B; MODIS imagery available online).4 To

reduce noise caused by occasional cloud or other

atmospheric attenuation factors present in the NDVI

time series, we adopted a noise-reduction algorithm over

a smoothing window of three time intervals for each

MODIS pixel (Kawamura et al. 2005, Pettorelli et al.

2005b). Our smoothing algorithm consisted of first

screening pixels of low quality using the MODIS data

quality field (Huete et al. 2002). Next, we screened pixels

in a three-window sequence based on pixel values before

and after, and the trend in growth (i.e., whether the pixel

was before or after the peak in NDVI) using a 25%

decline threshold (Kawamura et al. 2005, Appendix B).

The estimated biomass (Bij) for a 30 m2 pixel, i, for each

16-d interval, j, was then estimated as

Bij ¼ Bpi
NDVIj

NDVImax

ð1Þ

where Bpi was the modeled biomass at peak season in

cell i, NDVIj is the NDVI value for a 250-m2 MODIS

pixel encompassing the site pixel i for the 16-d time

period j, and NDVImax is the maximum NDVI value

observed for the pixel during a season j. Bij was

calculated for both herbaceous and shrub biomass. This

approach was justified because ground estimates of

herbaceous biomass were correlated with NDVI from

MODIS (Appendix B), and the peak of shrub and

herbaceous growth was correlated (Pearsons’ r¼ 0.51, P

¼ 0.001, N¼ 311 plots, Hebblewhite 2006). Additionally,

our approach assumed that seasonal changes in forage

growth in the year we obtained NDVI data (2004) were

similar to 2002 and 2003. We test this assumption in the

Growing-season characteristics section, below.

Because NDVI does not predict understory growth

under closed forest canopies (Chen et al. 2004), we

modeled forage growth in closed-canopied areas using

data from the 30 repeatedly sampled vegetation sites

described in the Forage-maturation and biomass-qual-

ity. . .: Forage growth section, above (Table 1). Green

herbaceous biomass (Y ) was modeled for a 30-m2 pixel

as a quadratic function of Julian sampling date (JD; day

1 is 1 January), year, and landscape covariates in a

Gaussian GLM as follows:

Yijk ¼b0 þ b1ðJDkÞ � b2ðJDkÞ2 þ b3ðYEARÞij

þ b4X4i þ � � � þ bnXni þ e ð2Þ

where i¼ sites 1. . .n, and j¼ sampling year 1. . .m, and k

¼ within-season sampling time 1. . .p, and Xi were

elevation, slope, aspect class, and distance to continental

divide. The top model was used to predict forage

biomass in closed-cover pixels for the midpoint JD of

each time 16-d interval, i¼ 1 to n. The ratio of predicted

biomass at time interval i to the maximum value

FIG. 4. Schematic of how modeling the spatial distribution of forage biomass in the study area at the peak of the growing
season was adjusted for seasonal forage growth (percentage of maximum forage in the second panel) on a pixel-by-pixel basis using
the relationships between ground biomass and NDVI to create a dynamic spatiotemporal model of forage biomass across the study
area. In this example, peak biomass at 8 August 2004 (time 2) is adjusted for the lower percentage of maximum biomass at 8 May
2004 (time 1) to model lower forage biomass at time 1 across the study area, on a pixel-by-pixel basis. As in Fig. 3, darker areas
signify higher herbaceous forage biomass.

4 hhttp://modis.gsfc.nasa.govi
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observed at the peak of the growing season (i.e.,

Biomassi/Biomassmax) was then used to adjust peak

biomass within season following Eq. 1 as for NDVI.

Where predicted biomass ,0 g/m2, such as at high

elevations early and late in the growing season, the value

was set to 0 g/m2. This functionally allowed the start and

end date of the growing season to vary for each pixel

until biomass .0.

Dynamic seasonal forage model.—To derive tempo-

rally dynamic estimates of herbaceous and shrub

biomass (g/m2) in a 30-m2 pixel during the growing

season, we combined the closed and open-habitat

models (Table 1, Fig. 4). We multiplied peak biomass

for each pixel for each growing season (2002–2004) by

the appropriate percentage of maximum ratio for open

and closed habitats for each 16-d MODIS interval

(Table 1). Note that peak biomass was modeled at a fine

scale (30 m2), but adjusted in open habitats for seasonal

growth using NDVI at a larger 250-m2 scale. This

allowed for spatial variation based on empirical NDVI

measurements in open habitats (more important for elk

foraging, Cook 2002) than the statistical approach for

closed habitats which assumed similar relationships

based on Eq. 2 across the study area.

Growing-season characteristics

To test for the phenological mechanisms of differences

in plant forage biomass and quality, we compared

characteristics of the growing season (start, end,

duration) and plant phenology between migrant and

summer home ranges of elk. We developed individual

forage growth curves for green herbaceous biomass for

each of the 30 repeat sampled sites using quadratic

GLM’s (identity link) of the following form:

Yijk ¼ b0 þ b1ðJDijkÞ � b2ðJDijkÞ2 ð3Þ

where i ¼ site 1. . .n, j ¼ sampling year 1. . .m, and k ¼
sampling occasion 1. . .p. Growing-season start and end

dates were defined following Jobbagy et al. (2002) (see

Appendix C). Peak date of green forage biomass was

estimated by taking the derivative of Eq. 3 with respect

to Y for each site. The influence of environmental

covariates on each of the four phenological parameters

(start, end, peak, and length of growing season) was

examined using the Gaussian GLM:

hij ¼ b0 þ b1ðYEARÞij þ b2X2i þ � � � þ bnXni þ e ð4Þ

where hij is the phenological parameter at site i in year j

(start, end, peak, duration), and X2.n are the independent

variables year, open/closed, north, south, and flat

aspects, elevation (m), and distance to continental divide

(km) for site i. The best predictive model with the

highest r2 was selected using backward-stepwise model

selection, clustering on sites (Pendergast et al. 1996).

Plant phenology.—Differences between migrant and

resident elk in the phenology of forbs, graminoids, and

shrubs were tested using the 30 repeatedly sampled sites

described above. The average percent species cover was

recorded in 10 quadrats during each sampling occasion

in four phenological classes: old growth, newly emer-

gent, matured (included fruiting/flowering and mature

growth), and cured. Following Griffith et al. (2002),

each phenology class was assigned an ordinal score: 1¼
previous year vegetation, 2 ¼ newly emergent, 3 ¼
mature, and 4¼ senesced/cured. The frequency-weighted

phenology score was then calculated for each species,

and then by site, to derive the median phenology score

by sampling date. Median phenology scores indexed

younger plant growth, but not necessarily plant quality

because old and cured plants would have similar quality,

but phenology scores of 1 and 4. Differences in median

phenology scores were tested using ANOVA with

migrant summer range in the front or main ranges,

open/closed, and month as categorical variables, clus-

tered on sample sites as above. Two-way interactions

were included, and Bonferroni post hoc tests were used

to test which months and month–migratory status

interactions were significant (Zar 1995). To test that

differences in median phenology scores also translated

to real differences in exposure to the most nutritious

forage class, the proportion of newly emergent plants

was compared between front and main ranges of the

Rocky Mountains, open- and closed-canopied areas,

and high and low elevations.

Elk forage selection at multiple scales

In the second major section of our methods, we use

the dynamic model of seasonal forage biomass and elk

telemetry locations to develop elk resource-selection

functions for forage biomass by migrant and resident elk

to test forage-selection predictions of the FMH at

multiple spatial scales (Fig. 2).

Elk telemetry-data collection.—Elk were captured

during winter (15 January to 31 March) from 2002 to

2004 at the Ya Ha Tinda winter range using corral traps

baited with alfalfa hay (95% of all elk) or on secondary,

more isolated winter ranges, using helicopter net

gunning (5%) (University of Alberta [Edmonton,

Alberta, Canada] Animal Care Protocol number

353112). We outfitted 119 individual female elk with

101 VHF (very high frequency) radio collars and 27

GPS collars (LOTEK, Aurora, Ontario, Canada); 9 elk

wore both VHF and GPS consecutively during the

study. Eighty percent of collared elk were adult females

(.2.5 years old), 10% were subadults (,2.5 years old),

and 10% were yearlings (,1.5 years old); 59% were

migrant (n¼ 70 individuals) and 41% were resident (n¼
61 individuals). Both GPS- and VHF-collared elk were

located again aerially or from the ground weekly

between 1 May and 31 October 2002–2004. Mean

location error from the Cessna Skymaster 337 telemetry

aircraft was 218 m (n ¼ 20 blind trials). Using a Bessel

function to model GPS collar error, we found 50% of

locations were within 34 m of the true location, and 95%
were within 113 m (Hebblewhite 2006). Habitat-induced
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GPS bias was low enough with LOTEK GPS collars

(,10%; Hebblewhite 2006) not to influence habitat

analyses (e.g., Frair et al. 2004). VHF data were

screened so that elk had �10 VHF locations per

summer, and GPS-collar data were resampled to a

consistent 2-h location schedule among individuals. We

obtained an average of ;29 VHF locations per summer

per elk from 57 and 44 VHF-collared migrant and

resident elk, respectively, and an average of 1545

locations/summer/elk from 19 and 8 GPS collared

migrant and resident elk, respectively. During each 16-

d interval an average 2.6 VHF locations and 144 GPS

locations were collected per elk. We defined ‘‘migration’’

as movements between nonoverlapping seasonal sum-

mer ranges (Craighead et al. 1972), and for nonmigra-

tory resident elk, used the mean spring and fall

migration dates of migrants to determine summer

resident locations used in analyses.

Landscape-scale selection of summer home ranges.—

Because both migrants and residents have equal

availability of areas to select summer ranges at the scale

of the study area, the decision to migrate reflects

selection at Johnson’s (1980) second-order scale (Fig.

2). To compare selection at the second-order scale, we

contrasted landscape covariates of resident and migrant

elk summer home ranges that were derived from a

multiyear 100% minimum convex polygon for each

individual elk using Hawthtools 3.19 (Beyer 2005).

Landscape covariates included elevation (m), distance

to the continental divide (km), herbaceous and shrub

biomass on 4 August, growing-season length, start of

growing season, and the richness of 100-m elevation

classes and nine cardinal aspect classes surrounding each

pixel (e.g., Mysterud et al. 2002). Elevation- and aspect-

class richness (number of unique values) was calculated

within a 1900-m radius (mean 24-h movement rate; M.

Hebblewhite, unpublished data). Average growing-sea-

son start and length within each minimum convex

polygon were estimated using GIS extrapolations of Eq.

3. Differences in multiple covariates between migrant

and resident summer home ranges were tested using

MANOVA (Zar 1995). Correcting for multiple compar-

isons, a one-way ANOVA was subsequently used to test

each covariate for the magnitude of the difference (Zar

1995).

Selection within summer home ranges.—We assessed

elk resource selection at two levels within summer home

ranges: within the entire home range and along

movement paths. For these finer scale analyses, we used

only GPS locations from 18 migrant and 8 resident elk

collared in 2002–2004. Within summer ranges, we

evaluated selection for forage biomass using resource-

selection functions (RSF) based on a use/availability

design (Manly et al. 2002). We measured forage

availability using a constant density of 10 random

points/km2 of elk summer range area for each elk’s

annual 100% minimum convex polygon. For time-

specific covariates, like forage biomass, values were

derived from the 16-d interval matching each elk

location, or at random for the availability locations

during the same period. The RSF was estimated as

ŵðxÞ ¼ expðb̂1x1 þ b̂2x2 þ � � � þ b̂nxnÞ ð5Þ

where ŵ(x) is the relative probability of use as a function

of covariates x1. . . n, and b̂1. . . n are the coefficients

estimated from logistic regression (Manly et al. 2002).

See Manly et al. (2002) and Johnson et al. (2006) for

discussion of the use of logistic regression to estimate the

exponential RSF model.

Second, elk resource selection along movement paths

(Fig. 2) was analyzed using conditional fixed-effects

logistic regression (Hosmer and Lemeshow 2000). In

conditional fixed-effects logistic models, responses (e.g.,

0, 1) are constrained by pairing used and available sites

(Hosmer and Lemeshow 2000, Compton et al. 2002).

Five available sites were paired to each elk GPS location

by generating random locations at the same distance as

the observed step length for each individual GPS

location using Hawthools 3.19 (Beyer 2005). Using the

conditional logit model, the conditional RSF, ŵ(xij), was
estimated following

ŵðxijÞ ¼ expðb̂1xij1 þ b̂2xij2 þ � � � þ b̂nxijnÞ ð6Þ

where ŵ is the relative probability of the jth resource

unit being selected at the ith group for covariates xn, and

b̂1. . . n are the coefficient estimates for each covariate.

Each GPS location represents the ith group, at which an

elk makes one of j choices from the five random points.

In conditional logit (CLOGIT) models n is the number

of groups of matched locations for model selection

(Pendergast et al. 1996). We estimated CLOGIT models

using STATA 8.0 (StataCorp 2003)

To test whether elk were selecting for intermediate

levels of forage biomass at each spatial scale, we

evaluated an a priori set of candidate models for

resident and migrant elk selection for herbaceous and

shrub forage biomass separately, and compared linear,

quadratic, and the best-fitting nonlinear fractional

polynomial (Hosmer and Lemeshow 2000) functions

using AICc (Burnham and Anderson 1998). Because of

low model-selection uncertainty (all AIC weights wi .

0.85; Hebblewhite 2006), for brevity we only report the

top overall summer and monthly models for both within

home ranges and movement-path scales. We considered

evidence for selection of intermediate forage biomass to

be a positive quadratic function where selection peaks at

intermediate biomass. We estimated the quadratic

selection peak by taking the derivative with respect to

forage biomass (Y ) to determine the value of X

(biomass) selected for by elk. Both herbaceous and

shrub biomass were considered simultaneously in model

selection. While assessing elk selection for intermediate

biomass in this analysis, we controlled for the effects of

the independent covariates of elevation, hill shade, soil

moisture, slope, and land cover types, but report this
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elsewhere (Hebblewhite 2006), herein focusing only on

testing the FMH. Thus forage coefficients are the partial

slopes of forage selection, holding all other covariates

(including the other forage type, shrub or herbaceous)

constant (Hosmer and Lemeshow 2000). At the summer

home-range scale, we accounted for within-elk hetero-

geneity using clustering (Pendergast et al. 1996). At the

path scale, however, because neither clustering nor

random effects can be implemented in CLOGIT models,

we controlled for unbalanced sampling between individ-

ual elk using sample weighting (Pfefferman 1993,

StataCorp 2003).

Validating RSF models.—Model validation was used

to assess the generality and predictive capacity of the top

RSF models (Boyce et al. 2002). At both scales the top

models for the summer and monthly periods were

validated using VHF telemetry data from 58 migrant

and 43 resident elk by comparing the area-adjusted

frequency of used VHF locations to the area-adjusted

frequency of available predicted probabilities within 10

equal availability ‘‘bins,’’ similar to k-folds cross-

validation (Boyce et al. 2002). The correspondence

between the ranked RSF-availability bins and frequency
of predicted VHF use was compared using Spearman’s

rank correlation (rs).

Exposure of elk to forage biomass and digestibility

Ultimately, from the individual elk’s perspective, what
matters is not the mechanism of selection so much as the

actual exposure to forage quality that occurs at the

smallest scales. If residents were capable of compensat-

ing for foregoing migration by adopting forage selection

strategies within the summer home range, final exposure

to forage biomass and quality may not differ between
migrants and residents. Thus, in the third major step in

our methods, we examine the consequences of forage-

selection patterns to elk’s exposure to forage quality and

biomass. Forage exposure was defined as the forage

biomass (g/m2) or DMD available at elk telemetry

locations for all 67 collared migrant and 47 collared
resident elk (including GPS and VHF collars) during the

growing seasons of 2002–2004. First, we estimated

exposure to herbaceous (forb þ graminoid) and shrub

forage biomass using forage models developed above by

matching the location with the corresponding 16-d

forage biomass prediction. Then, we converted total
biomass to expected herbaceous forage quality (DMD)

using forage quality–biomass relationships developed in

the Forage-maturation–biomass-quality relationships:

Forage biomass-quality relationships section, above.

For herbaceous biomass we used quality–biomass

relationships for each individual 16-d MODIS interval
to convert corresponding biomass estimates to DMD

(Appendix D). For shrub biomass, which did not vary in

DMD within 16-d intervals (see Results, below), we used

mean DMD values for each interval.

We tested for differences between migrant and

resident elk for exposure to (a) herbaceous biomass,

(b) shrub biomass, and (c) DMD using linear mixed-
effects models (Skrondal and Rabe-Hesketh 2004). We

tested for main effects of migratory strategy and time

(16-d intervals), and their interaction. We also con-

trolled, if necessary, for annual differences and open/

FIG. 5. Dry-matter digestibility (DMD) as a function of
herbaceous forage biomass from phenology plots repeat-
sampled over the course of growing seasons 2002–2004.
Herbaceous biomass is shown with the best-fit exponential
decline model for the entire growing season for the main (R2¼
0.36, P , 0.005) and front (R2¼ 0.33, P , 0.005) ranges. There
was no relationship between percentage digestibility and
biomass for shrubs.

TABLE 2. Percentage dry-matter digestibility (DMD) for five phenological stages for forbs, graminoids, and shrubs, including
twigs and leaves, during growing season 2004.

Phenological stage

Forb DMD (%) Grass DMD (%) Shrub twig DMD (%) Shrub leaf DMD (%)

n Mean 6 SD n Mean 6 SD n Mean 6 SD n Mean 6 SD

New 55 66.1 6 6.7 25 61.5 6 9.8 19 66.4 6 4.9 6 71.2 6 5.9
Flower 40 65.0 6 8.1 13 54.5 6 4.8 9 68.3 6 3.1 6 69.6 6 4.9
Fruit 33 61.6 6 8.9 24 47.7 6 8.1 14 59.5 6 6.7 3 71.4 6 5.4
Mature 48 62.9 6 9.1 22 48.3 6 6.1 17 63.7 6 9.1 3 65.4 6 8.5
Cured 18 46.7 6 9.8 29 38.7 6 6.2 n.a. 58.0 n.a. n.a. n.a.
Mean 63.4 43.8 63.1 65.9

Notes: Percentage DMD was calculated following methods of Hanley et al. (1992) that account for tannin digestion inhibition of
forbs and shrubs; n.a.¼ not applicable.
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closed habitat type. A random intercept was included to

account for heterogeneity between individual elk

(Skrondal and Rabe-Hesketh 2004), and a term (AR1)

to account for autocorrelation within elk (Baltagi and

Wu 1999), using XTREGAR in STATA 8.0 (Baltagi

and Wu 1999, StataCorp 2003). Herbaceous biomass

was ln-transformed to satisfy normality assumptions,

while shrub biomass and DMD was normally distribut-

ed (tested with normal P–P (probability–probability)

plots). Backward-stepwise model selection was used to

select the best model.

Diet composition and fecal nitrogen.—Because elk

exposure to forage quality may not reflect actual intake,

we also determined whether the above patterns in forage

exposure reflected expected differences in diet quality

observed in dietary composition and fecal nitrogen at

the plant-patch scale. We were unable to observe

individual plants that migrants and residents fed on,

and thus consider diet composition and fecal nitrogen as

aggregates at the plant-patch scale.

Pellet samples were collected for diet-composition

analyses during June to September 2002. Each sample

constituted a composite of five individual pellets selected

from 10 pellet groups in a 2–5 ha area, stratified by

migrant and resident ranges. Fecal plant-fragment

analyses were conducted at the Wildlife Habitat

Nutrition Laboratory (Pullman, Washington, USA).

Plant species composition was collapsed to the forage

class level (forb, graminoid, shrub) for resident and

migrant elk (see Hebblewhite [2006] for species-specific

details). Differences between migrant and resident elk

plant composition were analyzed using ANOVA with

main effects as migration status, month, and forage

class, with all two-way interactions in Stata 8.0

(StataCorp. 2003). Percentage was arcsine square-root

transformed to meet normality assumptions (Zar 1995).

We used Bonferroni post hoc multiple comparisons with

an experiment-wise error rate of a ¼ 0.10 to test for

differences between migratory strategies by month and

forage class, and their interaction (Zar 1995).

Monthly migrant and resident fecal nitrogen values

were compared from pellets collected from June to

August 2004 as an index of diet quality. Only fresh fecal

samples (.50% were ,10 min old, remainder ,2 d old)

were sampled from migrant and resident ranges, and

represented composite collections from different indi-

vidual pellet groups. Samples were immediately dried at

508C for 48 h, and later analyzed for nitrogen content at

the Wildlife Habitat Nutrition Laboratory (Pullman,

Washington, USA). We tested for the main and

interactive effects of month (June, July, August) and

migratory strategy in a two-factor ANCOVA with

distance to continental divide as a continuous covariate.

RESULTS

Forage-maturation—biomass-quality relationships

Digestibility of green herbaceous biomass declined

exponentially as biomass increased (Fig. 5) over the

entire growing season. Early in the growing season

(before 25 June) when forage quality overall was high

and biomass was low, there was a weak or no

relationship between biomass and forage quality (Ap-

pendix D). There was no difference in the rate of decline

in herbaceous-forage quality with increasing biomass

between the front and main mountain ranges, (P¼0.43).

Digestibility of total shrub biomass was a constant

function of biomass over the growing season (linear

regression P¼ 0.55) and within individual 16-d intervals

(Appendix D). There was a small (1.5% higher,

Appendix D) but significantly higher mean digestibility

of shrub-leaf DMD (dry-matter digestibility) (F1,17 ¼
3.47, P ¼ 0.002), but not twig DMD (F1,17 ¼ 0.32, P ¼
0.57) in the main ranges. DMD was highest for forbs

and shrub leaves and lowest for graminoids during

almost all phenological stages (Table 2). Shrub leaves

were consistently (average of 2.7%) higher in DMD than

were twigs (Table 2).

Spatiotemporal dynamics of forage biomass

Seasonal forage growth.—Under closed canopies,

herbaceous biomass peaked consistently on 7 August

in every year of the study (no differences between years).

The top combined herbaceous-forage growth model

(F6,24 ¼ 16.2, P , 0.0005, n ¼ 30 plots) indicated that

TABLE 3. Summary of top forage-growth models for the eastern slopes of Banff National Park, during the growing seasons, 1 May
to 15 October 2002–2004.

Parameters P R2

Variable estimates, mean (SE)

F df Intercept Dist. divide (km)� Elevation (m) Open

a) Growing-season start 22.12 4, 9 ,0.00005 0.59 65.5 (17.11) �0.45 (0.095) 0.051 (0.008) �16.7 (4.53)
b) Peak forage-biomass date 5.49 2, 26 0.0024 0.28 196.6 (5.88) n.a. n.a. 12.8 (4.37)
c) Growing-season end 0.01 9, 24 n.a. n.a. 281.6 (1.79) n.a. n.a. n.a.
d) Growing-season length 11.71 4, 24 ,0.00005 0.51 262.6 (24.29) 0.59 (0.181) �0.54 (0.010) 22.9 (7.02)

Notes: Parameter estimates for the top models are shown (with associated robust SE in parentheses). Coefficients are interpreted
as delaying the start or date of peak biomass or lengthening the growing season if their coefficients are negative. Models were
estimated clustered on individual plots across years to reduce autocorrelation. Reference categories for the intercepts of models are
(a) the start of the growing season, for flat and north-facing closed-canopy habitats; (b) the date of peak, for flat closed-canopy
habitats during 2002 and 2003; (c) the end of growing season, for flat/south-facing closed-canopy habitats; and (d) season length,
for closed-canopy south-facing and flat habitats (n.a.¼ not applicable).

� Distance from the continental divide.
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herbaceous-forage growth decreased at higher elevations

(Elev) and drier sites (Hillshade) but increased on south

aspects (South), explaining 57% of the variation in

herbaceous biomass (H, in g/m2):

H ¼ 37:7þ 1:90ðJDÞ � 0:0043ðJD2Þ � 0:10ðElevÞ
þ 20:3ðSouthÞ � 0:20ðHillshadeÞ ð7Þ

where JD¼ Julian date (day 1¼ 1 January). Using Eq. 7

we predicted herbaceous biomass at the midpoint JD for

each 16-d interval for each closed-canopy pixel.

Growing-season characteristics

Growing season.—Mean growing-season start date

was JD ¼ 124, or 3 May, and the top model explained

50% of the variance in start date (Table 3). Start dates

were not different between any years of the study,

confirming similar annual phenological trends. The

growing season started 2.2 days earlier every 1 km east

of the continental divide (Table 3), and was delayed by

almost 50 days for every 1000-m elevation gain. The

start of the growing season was 8 days earlier on south

relative to flat and north aspects, and 17 days earlier in

open habitats (Table 3). Mean peak of forage biomass

occurred on 3 August (JD¼ 216). The linear regression

model for peak date explained 28% of the variance in

peak date (Table 3). Forage biomass peaked 17.2 days

later on north aspects, and 8.3 days later on south

relative to flat aspects, although south aspects were

variable (Table 3). Biomass in open-canopied habitats

peaked 12 days later than closed-canopied habitats. The

only year that differed phenologically was 2004, when

the growing season peaked 10.6 days later than in 2002

or 2003, but this difference was still ,1 MODIS interval.

Notably, elevation and distance to the continental divide

did not influence the date of peak growth, indicating

that growth peaked consistently across the study area,

even though growth started earlier in the eastern

portions of the study area. Most sites had not crossed

the end of the growing-season threshold by 15 October

of each year (71% of sites), and the best end-of-growing-

season model predicted a constant end to the growing

season of JD¼ 283, or ;9 October (Table 3). Modeling

the length of the growing season was more successful,

with the best model explaining 51% of the variance in

growing-season length (Table 3). Growing-season length

increased by ;1 day for every 2 km east of the

continental divide and decreased almost 54 days with

every 1000-m elevation gain. Growing-season length was

almost 22 days longer in open habitats compared to

closed, but was 14 days shorter on north-facing aspects

compared to flat or south-facing aspects (Table 3).

TABLE 3. Extended.

Variable estimates, mean (SE)

North aspect South aspect 2004 2003

n.a. �8.0 (4.25) n.a. n.a.
17.2 (6.28) 8.3 (6.29) 10.7 (5.89) n.a.

n.a. n.a. n.a. n.a.
�14.1 (5.55) n.a. n.a. n.a.

FIG. 6. Mean (a) graminoid, (b) forb, and (c) shrub forage
species phenology scores (1 ¼ old, 2 ¼ newly emergent, 3 ¼
mature, 4 ¼ cured) in the front (resident elk area) and main
(migrant elk area) ranges, by open vs. closed-canopy habitat
type on the eastern slopes of Banff National Park, 2002–2004.
Note that for clarity SE bars are only displayed for open
habitats; varied shades of gray are used for legibility.

May 2008 153UNGULATE MIGRATION AND FORAGE MATURATION



Average growing-season length was 157 days, or ;5.3

months.

Species phenology.—The best models for predicting

the median phenology score of shrubs forb (F9,18¼ 62.8,

P , 0.00005), graminoid (F11,18 ¼ 573.1, P , 0.00005),

and shrub (F6,19 ¼ 69.1, P , 0.0005) explained 71%,

49%, and 56% of the variance in each, respectively. The

main ranges had consistently lower median phenology

scores (e.g., delayed growth) than front ranges for forbs

(bmain¼�0.52, P , 0.0005), graminoids (bmain¼�1.09,
P ¼ 0.034), and shrubs (bmain ¼ �0.15, P ¼ 0.15),

although the difference was not significant for shrubs.

Phenological differences in graminoids between main

and front ranges remained during the entire growing

season (Fig. 6) until September when graminoids cured

rapidly on both ranges. Forb phenology was delayed in

the main ranges in June (P¼ 0.025) and July (P¼ 0.03),

but only in open-canopy habitats. Shrub phenology

scores were the same in open- and closed-canopy

habitats, and between the front and main ranges

(Fig. 6).

Differences in median phenology scores translated to

prolonged duration and higher proportion of newly

emergent graminoid and forb biomass in the main

ranges compared to the front ranges (Fig. 7). At low

elevations in the front ranges, the proportion of newly

emergent forbs had already peaked by May in open-

canopied sites, while they peaked in July/August in

closed-canopied sites (Fig. 7a). At high elevations, newly

emerged forbs in both open- and closed-canopied sites in

the front ranges peaked in May and declined steadily,

whereas on the main ranges they peaked in July (open-

canopied sites) and in August (closed-canopied sites)

(Fig. 7c, d). The percentage of newly emerged grami-

noids at low elevations of the front ranges was most

advanced in the open-canopied sites and declined

rapidly at these sites, while graminoid growth was

considerably delayed in the closed-canopied sites at low-

elevation sites. In contrast, at the high-elevation sites in

FIG. 7. Proportion of forage cover (biomass) in the newly emergent (highest forage quality) growth stage in the front (resident
elk area) and main (migrant elk area) ranges for forbs at (a) low and (b) high elevations, and for graminoids at (c) low and (d) high
elevations, on the eastern slopes of Banff National Park, summers of 2002–2004.
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the main ranges there was little difference between

phenological growth of grasses (Fig. 7c) while on the

front ranges growth in closed-canopied sites was

delayed.

Elk forage selection at multiple scales

Landscape-scale selection of summer home ranges.—

Migrant and resident summer home ranges differed for

all eight landscape covariates (MANOVA F7, 109¼64.74,

P , 0.0005, Wilks’ k ¼ 0.349) even after adjusting for

multiple-comparisons (Table 4). Consistent with predic-

tions of the forage maturation hypothesis (FMH; Fig.

2), migrant ranges had 30–40% lower total herbaceous

and shrub biomass than residents, were ;266 m higher

in elevation than residents, and had higher elevation and

aspect richness (Table 4). The start of the growing

season on migrant ranges was 23 days later and twice as

variable (SD ¼ 19.3 vs. SD ¼ 9.5) than residents ranges

(Table 4). Similarly, average growing-season length on

migrant ranges was shorter (170 vs. 200 days), but again,

twice as variable (SD¼ 15.5 vs. SD¼ 7.5) as on residents

ranges (Table 4).

Selection within summer home ranges.—Within sum-

mer ranges, both migrants and residents selected for sites

of intermediate herbaceous biomass in June to August,

but not in September when elk selected low biomass

(Table 5). Solving the quadratic selection function for

the whole summer revealed migrants selected an

intermediate herbaceous biomass of 70g/m2, whereas

residents selected a much higher intermediate herba-

ceous biomass of 114 g/m2 (Table 5). Migrants

consistently selected a lower intermediate herbaceous

biomass than residents during every month and overall

(Table 5, Fig. 8). When we considered frequency of use

compared to availability, migrants used lower herba-

ceous biomass than residents at the summer home-

ranges scale (Fig. 8), corresponding to selection analy-

ses. In open habitats, migrant elk selected an optimum

less than the expected maximum (35 g/m2), whereas the

predicted relative probability of use for residents was

distributed across the range of available herbaceous

biomass (see figures in Appendix E). In terms of

selection for shrub biomass, migrant and resident elk

showed similar shrub-biomass selection patterns within

home ranges except during September. Instead of

selecting for intermediate shrub biomass, migrant and

resident elk avoided areas of high shrub biomass early in

the growing season (June) and selected for sites of high

shrub biomass during July and August (Table 5). During

September residents selected maximum whereas mi-

grants selected minimum shrub biomass. Out-of-sample

VHF data closely matched predictions of resource-

selection function (RSF) models at the home-range

scale. Predictive capacity (rs) of migrant models were all

rs . 0.62, and residents were rs . 0.81, except during

September when rs¼�0.06 (Table 5) for both migratory

strategies.

At the movement-path scale, selection for intermedi-

ate herbaceous biomass was weaker for both migrants

and residents (Table 5 vs. Table 6). Migrants selected

sites with maximum herbaceous biomass in June and

September. In contrast, during July and August

migrants selected sites to minimize herbaceous biomass

(Table 6; see also Appendix E). Over the entire summer,

migrants selected for minimum, not intermediate,

herbaceous biomass (Table 6). In contrast, resident elk

consistently selected for sites of intermediate herbaceous

biomass or minimal biomass at the peak of the growing

season during July and August (Table 6). Solving the

quadratic for the intermediate herbaceous biomass

maximum showed, however, that residents really were

selecting for very high (e.g., Table 6) herbaceous

biomass near a maximum of 140g/m2 (Appendix E,

Table 6). In terms of shrub selection at the path scale,

both strategies followed the same tactic as the home-

range scale of selecting for the highest shrub biomass

over the whole summer, and for all months except

September. In September, they both switched to select

TABLE 4. Differences in landscape and phenological covariates between migrant and resident elk summer ranges, 2002–2004, at
the second-order home-range scale.

Parameter

Migrant (n ¼ 44) Resident (n ¼ 67) Univariate ANOVAs�

Mean SD Mean SD F1, 109 P R2

Elevation (m) 2045.6 186.19 1779.3 143.19 64.74 ,0.00005 0.37
Distance from continental divide (km) 39 15.71 56.6 3.79 45.08 ,0.00005 0.29
Aspect richness� 5.11 0.89 3.79 0.91 57.59 ,0.00005 0.35
Elevation richness� 3.12 0.52 2.02 0.49 124.17 ,0.00005 0.54
5 Aug. herbaceous biomass (g/m2) 16.9 5.3 27.7 7.97 31.15 ,0.00005 0.23
5 Aug. shrub biomass (g/m2) 208.9 46.8 268.5 50.14 113.1 ,0.00005 0.54
Growing-season length (d)§ 172.98 15.32 200.53 7.07 105.9 ,0.00005 0.49
Growing-season start (JD)§ 160.45 19.32 137.22 9.53 55.4 ,0.00005 0.55

Notes: Means are the average availability within the 100% summer range calculated using zonal statistics in ESRI’s ArcGIS 9.0
(ESRI 2002); n is the number of radio-collared elk. The overall MANOVA for covariates indicated significant differences between
migrants and residents.

� Univariate ANOVA results for each covariate. P values were evaluated at an experiment-wise error rate adjusting for multiple
comparisons of P¼ 0.05/8¼ 0.00625.

� Defined as the number of different aspect or 100-m elevation classes within 360 m of each pixel.
§ Defined based on growing-season parameter models. JD is Julian date, where day 1 is 1 January.
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minimum shrub biomass (Table 6). At the movement-

path scale, for cross-validation of migrant models, all rs
. 0.82, and for residents all rs . 0.78, except during

September when rs ¼ 0.24 for migrants and rs ¼�0.333
for residents (Table 6).

Exposure of elk to forage biomass and digestibility

Forage-biomass exposure.—Here we present only the

details of differences between migrants and residents;

full model details are given in Appendix F. Residents

were exposed to higher overall forage biomass in a

manner that varied seasonally (Fig. 9). The top model

explained about 78% of the total variance in exposure to

herbaceous biomass. Herbaceous-biomass exposure did

not differ between migrant and resident elk prior to

migration nor after elk returned to the ranch in the fall

(Fig. 9a, Appendix F). On summer ranges, however,

migrants were consistently exposed to 25–40% lower

herbaceous biomass (biomass reduction for migrants b¼
�11.5 6 1.84 g/m2 (mean 6 SE); P , 0.0005) (Fig. 9a).

Overall exposure to herbaceous biomass was also higher

during 2004 (effectþ31.3 6 1.35 g/m2 (Fig. 7a), whereas

biomass exposure in 2003 and 2002 was similar.

Exposure to total shrub (twig þ leaf), and leaf-only

shrub biomass was similar for both migrants and

residents (overall resident effect b ¼ þ0.67 6 1.16

g/m2, P¼ 0.67) except 9 June (b¼þ7.54 6 3.24 g/m2, P

¼ 0.04) and 25 June (b¼þ6.67 6 2.46 g/m2, P¼ 0.007)

when migrants had higher exposure to leaf forage

biomass (Fig. 9b, Appendix F). The best linear mixed-

effects shrub-biomass exposure models explained less

variation than herbaceous models (overall total shrub r2

¼ 0.26, overall leaf r2 ¼ 0.36) because of the higher

variance in individual elk exposure to shrub biomass.

Forage-quality exposure.—Migrant elk had consis-

tently higher exposure to forage of higher digestibility

from 9 June through to the end of the 28 August 16-d

interval (i.e., 12 September) in the top linear mixed-

effects model for DMD exposure (b’s for 9 June to 28

August intervals ranged from þ3.7% to þ10.4%, all P

values ,0.04, Fig. 9c). The greatest difference in forage-

quality exposure occurred during the 25 June interval,

when migrants had þ10.4 6 0.97% (mean 6 SE, P ,

0.0005) higher forage quality (Fig. 9c). Exposure to

DMD was more variable than herbaceous biomass; only

41% (overall r2) of the variance in DMD was explained

by the combination of migratory status, interval, and

migrant 3 status interactions (see Appendix F for full

model details). The reduced forage-biomass exposure of

migrant elk translated to consistent exposure to higher

forage quality, averaging 6.5% (range: 3.7–10.4%) higher

forage digestibility in the six statistically different

intervals (Fig. 9c). Decomposing DMD to its contribu-

tions from herbaceous and shrub components indicated

little difference in shrub DMD exposure between

strategies, but larger differences in herbaceous DMD

that drove overall higher DMD for migrants (Fig. 9c).

Diet composition and fecal nitrogen.—Graminoids

were the dominant forage class consumed by both

residents and migrants, constituting �50% of the diet

(Table 7). Diet composition changed seasonally by

forage class (P , 0.0005) as well as between migratory

strategies (P , 0.06; overall ANOVA F13,76¼35.84, P ,

0.0005, r2 ¼ 0.84). Migrants consumed less graminoids

and more high-quality shrubs (Table 2) during June and

July than residents (Table 7), but not during August

when both resident and migrant shrub consumption

increased to 30% at the expense of graminoid consump-

TABLE 5. Top-ranked RSF (resource-selection function) models within home-range scale, June–September 2002–2004.

Elk population
and month n used, n available� rS (SE)

Coefficient of biomass, b (SE)

Forage shrub biomass Herbaceous biomass (Herbaceous biomass)2

Migrant elk

Overall 18 736, 36 119 0.78 (0.01) 0.0024* (0.0001) 0.075* (0.001) �0.0004* (0.00001)
June 5514, 9791 0.87 (0.03) �0.0031* (0.0004) 0.133* (0.003) �0.0006* (0.00003)
July 4970, 9811 0.62 (0.08) 0.0003 (0.0004) 0.186* (0.01) �0.000831* (0.000049)
August 4412, 9676 9.77 (0.02) 0.006* (0.0003) 0.148* (0.004) �0.0007* (0.00003)
September 3840, 9841 0.78 (0.01) �0.001* (0.0003) �0.0156* (0) n.a.

Resident elk§

Overall 8736, 26 966 0.97 (0.03) 0.0045 (0.0004) 0.0805 (0.0023) �0.0004 (0.00002)
June 2601, 6730 0.89 (0.06) �0.0017 (0.0009) 0.1697 (0.0074) �0.0007 (0.00005)
July 2391, 6758 0.95 (0.04) 0.0051 (0.001) 0.1633 (0.0068) �0.0006 (0.00003)
August 2072, 6650 0.81 (0.01) 0.0106 (0.0009) 0.1258 (0.0064) �0.0005 (0.00005)
September 1672, 5288 �0.06 (0.09) 0.0012 (0.0006) �0.0116 (0.0018) n.a

Notes: Models were estimated using logistic regression, with the coefficient(s) for forage-biomass selection reported, holding
effects of other covariates constant. Note that for all models the likelihood-ratio test indicated significant model fit, P , 0.0005.
Shown for each season-strategy model are the k-fold Spearman rank correlation model-validation test (rS) for VHF elk locations,
the coefficients for shrub and herbaceous biomass selection, and their form, whether maximization, minimization, or selection for
intermediate (quadratic); n.a.¼ not applicable.

* Coefficient significant at P¼ 0.05.
� The number of groups in the CLOGIT (conditional logit) model.
� Peak biomass was calculated by taking the derivative of the quadratic function, logit(Y )¼XþX2, where logit(Y ) is the relative

probability of use and Xþ X2 are the quadratic functions for forage biomass.
§ For resident elk, the number of parameters is 18 (see Appendix B).
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tion. Besides this trade-off between shrub and grami-

noid, composition of high-quality forbs was higher for
residents in July, but increased over summer for both

strategies (Table 7).
Nitrogen concentration of feces (FN) of both

migrants and residents declined over the growing season
(F2,32 ¼ 3.77, P ¼ 0.04). While FN of migrant elk was

always higher than residents, the difference was not
statistically significant (F1,32 ¼ 1.01, P ¼ 0.32) except

during the month of July where migrant FN was 15%
higher than that of residents (interaction; F2,32¼ 5.63, P
¼ 0.008). Regardless of the nonsignificant main effect of

migratory strategy, FN was lower in the eastern part of
the study area (F1,32¼ 3.80, P¼ 0.05) with FN declining

by�0.8% 6 0.04% (mean 6 SE, P¼ 0.004) for every 10
km east of the continental divide, confirming that elk

that migrated to western portions of the study area
benefited from increased diet quality.

DISCUSSION

Our study was among the first to demonstrate that

fine-scale mechanisms of plant phenology, quality, and
abundance can predict landscape-scale resource selec-

tion of migratory elk, consistent with predictions of the

forage maturation hypothesis (FMH) that ungulates

migrate to maximize forage quality (Fryxell et al. 1988).

Using this approach, we confirmed that migratory elk

used resource-selection strategies that exploited fine- and

landscape-scale differences in the availability of forage

quality to achieve an average of 6.5% higher forage-

quality exposure by migrating, in comparison to

nonmigratory resident elk. Certainly, other studies have

shown migratory ungulates selected intermediate forage

biomass in small-scale controlled studies (Wilmshurst et

al. 1995, 1999), inferred higher diet quality arising from

migration (Morgantini and Hudson 1989, Albon and

Langvatn 1992, Yokoyama et al. 2000, Sakuragi et al.

2004), shown habitat-selection patterns that were

consistent with migratory benefits (Oosenbrug and

Theberge 1980, Mysterud et al. 2002), or used large-

scale indices such as NDVI to infer migratory gain

(Thomas et al. 2006). However, these previous studies

often examined only one component of the link from

plant-phenology mechanisms to the consequences of elk

resource-selection strategies for forage-quality differenc-

es. And no previous studies compared migratory and

resident animals to explicitly test the hypothesis against

a suitable ‘‘control’’ group. In contrast, our study was

unique in providing a comprehensive framework to test

the FMH by (1) linking landscape differences in

phenology to availability of forage quality for migrant

and resident elk through spatial biomass modeling and

bi-weekly (every two weeks) quality–quantity trade-off

models, (2) evaluating resource-selection strategies of elk

at multiple spatial scales to test for intermediate forage-

biomass selection, and (3) employing a comparative

approach using 119 elk where migrant foraging strate-

gies were contrasted with nonmigratory residents to

definitively test the FHM. Certainly, future studies could

improve upon our approach by using improved spatio-

temporal forage-quality predictions using recent ad-

vances in hyperspectral remote-sensing applications

TABLE 5. Extended.

Herbaceous peak
biomass (g/m2)�

Shrub selection
by elk

Herbaceous
selection by elk

90.4 maximize intermediate
103.9 minimize intermediate
111.6 maximize intermediate
100.0 maximize intermediate
n.a. minimize minimize

114.00 maximize intermediate
116.10 minimize intermediate
133.80 maximize intermediate
115.7 maximize intermediate
n.a. maximize minimize

FIG. 8. Frequency of availability and use vs.
herbaceous biomass for migrant (M) and resident
(R) elk at the summer home-range scale in Banff
National Park, Alberta, Canada. Migrant elk had
lower biomass available to select at this scale in
comparison to resident elk, which had greater
forage availability from which they selected
higher forage biomass.

May 2008 157UNGULATE MIGRATION AND FORAGE MATURATION



(Mirik et al. 2005), by distinguishing foraging behavior

from GPS collar data (Morales et al. 2005), or by

examining diet selection at the individual plant level

(Baker and Hobbs 1982). But no other study to date has

tested the FMH from the plant-patch to the landscape

scale, and none have empirically demonstrated the

mechanisms of forage selection that translate to higher

forage-quality exposure for migrants.

Starting at the plant-patch level, areas to which elk

migrated had delayed and more variable phenological

parameters, such as the start of the growing season, than

did residents. This was because of strong elevation and

topographic gradients in the study area that delayed the

start of the growing season as much as 50 days for every

1000-m elevation gain, and half a day for every

kilometer closer to the continental divide that elk

migrated. Migrant home ranges were on average 240

m higher than resident home ranges, which itself would

delay phenology of and provide access to early emergent

vegetation by 10–15 days. Because herbaceous dry-

matter digestibility (DMD) declined with plant matura-

tion across vegetation communities, as expected under

the FMH (Fryxell et al. 1988, Wilmshurst et al. 1995),

this ensured that migrant elk would have higher

exposure to forage quality merely from selecting home

ranges in areas along these topographic gradients. Shrub

DMD however, remained consistently high during the

growing season, and did not decline with increasing

shrub biomass, contrary to expectations under the

FMH. However, the FMH was originally developed in

savannah, not mixed-plant communities (McNaughton

1985), where shrub biomass contribution was minimal

or absent. The absence of a trade-off between shrub

biomass and DMD points to an underappreciated, yet

important difference between montane and savannah

systems revealed by our study. To maximize exposure to

shrub forage quality under consistently high shrub

DMD, ungulates would be expected to select sites with

maximum, not intermediate, shrub biomass. The high

DMD and structural features of shrubs combine to

emphasize their importance. For example, leaves of

deciduous shrub species, such as Salix spp. (the most

prevalent shrub in elk diet in this system; Morgantini

and Hudson 1989, Hebblewhite 2006) not only maintain

high digestibility, but have high breakdown rates and

permit large bite sizes by leaf-stripping, both of which

can contribute to high daily intake rates (Hobbs et al.

1981, Baker and Hobbs 1982, Spalinger and Hobbs

1992). Thus, we would expect ungulates to be able to

maximize shrub quality under such conditions by

selecting areas of maximum shrub biomass, a novel,

but nuanced prediction of the FMH in mixed-plant

communities.

Regardless of these complexities, resource selection-

analyses confirmed selection for intermediate herba-

ceous biomass by migrants, and selection for maximum

shrub biomass by both migrants and residents. Re-

source-selection function (RSF) models indicated mi-

grants selected for intermediate herbaceous biomass at

the landscape and summer home-range scales, except in

the fall when they avoided areas of high herbaceous

biomass. While residents statistically selected for inter-

mediate herbaceous biomass, in actuality the ‘‘maxi-

mum’’ selected for was much higher than that for

migrants, and was at the higher end of availability across

habitat types (Appendix A). This confirms residents

essentially selected maximum herbaceous biomass.

Results were confirmed when comparing simple mea-

sures of frequency of use between migrant and residents

(Fig. 8). Along movement paths, migrants avoided

herbaceous biomass, though the strength of selection

was weaker (Tables 5 and 6). In contrast, residents

selected intermediate herbaceous biomass along move-

ment paths, but again, the ‘‘optimum’’ was essentially at

TABLE 6. The top-ranked movement-path-scale RSF models, June–September 2002–2004.

Elk population
and month

n used,
n available

Likelihood ratio Correlation Coefficient of biomass, b (SE)

v2 P rS P Forage shrub Herbaceous (Herbaceous biomass)2

Migrant elk

Overall 18 736, 89 875 1698.8 ,0.0005 0.987 ,0.0005 0.005* (0.0002) �0.002* (0.0008)
June 5514, 26 500 309.9 ,0.0005 0.984 ,0.0005 0.002* (0.0003) 0.007* (0.002)
July 4970, 24 255 1040.2 ,0.0005 0.906 0.003 0.01* (0.0004) �0.014* (0.002)
August 4412, 20 885 1624.8 ,0.0005 0.818 ,0.004 0.014* (0.0004) �0.02* (0.002)
September 3850, 18 265 126.6 ,0.0005 0.263 ,0.56 �0.003* (0.0004) 0.006* (0.002)

Resident elk

Overall 2601, 12 575 474.1 ,0.00005 0.987 ,0.0005 0.01* (0.008) 0.008* (0.003) �0.00003* (0.00001)
June 2391, 11 455 158 ,0.00005 0.947 ,0.0005 0.009* (0.0006) 0.015* (0.005) �0.00005* (0.00003)
July 2072, 9605 154.5 ,0.00005 0.794 ,0.006 0.02* (0.0008) �0.005 (0.005)
August 1672, 8070 144.32 ,0.00005 0.802 ,0.005 0.02* (0.0008) �0.02* (0.005)
September 8736, 41 705 88.9 ,0.00005 �0.333 ,0.33 �0.004* (0.0006) 0.04* (0.007) �0.0002* (0.00005)

Notes: Shown for each season-strategy model are the likelihood-ratio test (all P , 0.0005), the k-fold Spearman-rank correlation
model-validation test (rS) for the VHF elk locations, and the coefficients for shrub and herbaceous biomass selection and their
form, whether maximization, minimization, or selection for intermediate (quadratic).

* Coefficient significant at P ¼ 0.05.
� Peak biomass calculated by taking the derivative of the quadratic function.
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the high end of availability. We interpret these multi-

scale comparisons to indicate that migrants were

selecting for intermediate herbaceous biomass at the

landscape and home-range scales. Migrants could

therefore ‘‘relax’’ selection at the movement-path scale

because overall biomass was low, and forage quality

high, as a result of decisions made at larger scales.

Wilmshurst et al. (1999) similarly reported stronger

selection for intermediate forage biomass at larger

spatial scales by Serengeti wildebeest. Similar to

nonmigratory moose (Dussault et al. 2005), resident

elk were forced to be more selective at finer spatial

scales, but still showed selection for high herbaceous-

biomass values. For shrub biomass, both migrants and

residents consistently selected maximum shrub biomass

(Tables 4–6), as expected to maximize energy intake.

The only exception to shrub maximization was during

June when they avoided areas with high shrub biomass,

at a time when herbaceous biomass had the highest

quality. Both migrants and residents also switched

selection patterns in September, selecting areas with

low herbaceous and shrub biomass.

However, shrub and herbaceous-biomass selection do

not occur in isolation. The selection strategies of elk

discussed here statistically represent the selection of

herbaceous and/or shrub biomass given selection for the

other biomass component is held constant (i.e., they are

partial coefficients). Biologically, in our study area,

areas of maximum selected shrub biomass were either

shrub meadows or open coniferous stands, whereas

selected herbaceous communities were burns, grass-

lands, and alpine herbaceous meadows (Appendices A

and F). Thus, in the mixed-plant communities of our

study area, elk were faced with two alternatives,

maximize shrub biomass or ‘‘optimize’’ herbaceous

biomass, compared to only one decision in homogenous

savannah systems (e.g., Wilmshurst et al. 1999). Because

shrubs comprised only a maximum of 30% of the diet

(Table 7) and were patchily distributed, maturation of

herbaceous forage still has the greatest influence on

benefits of migration (e.g., Fig. 9c). In other words,

because shrub quality was always high, migration in

montane systems such as ours still appears driven by

selection for intermediate forage biomass. However, in

the fall when quality of herbaceous forage declined

(Table 2), elk showed stronger selection for areas of

shrub biomass (Appendix F) and shrubs increased to

30% of the diet of elk (Table 7). This suggests that leaf

drop in the fall may be a contributing factor to fall

migration date because after leaf drop, migrants would

no longer benefit from higher shrub-forage quality.

These forage-selection strategies yielded migrant

forage quality that peaked during late June, when

migrants had 10% higher digestibility compared to

residents, coinciding with peak lactation costs for female

ungulates (Cameron et al. 1993, Cook et al. 2004).

During the main migratory period from 9 June to 8

September, migrants were exposed to an average 6.5%
higher forage quality. However, residents could have

compensated for lower quality by selecting high quality

forage at even finer scales than we investigated, for

example, at the microsite or plant-part level (Hanley et

al. 1992, Spalinger and Hobbs 1992). But fecal nitrogen

(FN) for residents was still lower than for migrants

during summer, similar to other dietary studies of

migratory ungulates (Sakuragi et al. 2004). Dietary FN

also increased closer to the continental divide, in

agreement with landscape-scale phenology gradients.

While FN is known to be sensitive to high tannin

content (Robbins et al. 1987), resident consumption of

tannin-containing forages (e.g., forbs and shrubs leaves)

was lower than that of migrants, and mean tannin levels

for forbs and shrub leaves were minimal, only ;0.04 mg

BSA (bovine serum assay)/g forage (Hebblewhite 2006).

Thus we interpret FN differences as real. Direct

behavioral studies of plant-bite selection (e.g., Baker

and Hobbs 1982), difficult to obtain for free-ranging elk

in mixed landcover types, would be required to test for

possible fine-scale dietary selection by residents that

could compensate for foregoing migration. But based on

the above logic, we maintain that resident diet quality

would still be lower in this system even with such fine-

scale selection.

In further support of our results of higher DMD for

migrants, the way in which we estimated forage quality

likely underestimated quality for migrants. We assumed

a constant DMD given a particular species and

phenological class, regardless of seasonal and spatial

variation (e.g., Larter and Nagy 2001, Jorgenson et al.

2002). Forage quality for a species in a given phenology

class would likely increase at higher elevations and

western areas (Bennett and Mathias 1984, Walsh et al.

1997, Kudo et al. 1999). In addition, because migrants

diets were higher in shrub leaves (Hebblewhite 2006),

they would have benefited from reduced tannin content

of newly emergent shrub leaves (e.g., Hanley et al. 1987,

Happe et al. 1990). For these reasons, we consider the

6.5% higher forage digestibility for migrants as conser-

vative. Migrant elk clearly had the nutritional advantage

TABLE 6. Extended.

Herbaceous
peak (g/m2)�

Shrub selection
by elk

Herbaceous
selection by elk

maximum minimum
maximum maximum
maximum minimum
maximum minimum
minimum maximum

140.3 maximum intermediate
141.4 maximum intermediate

maximum minimum
maximum minimum

86.5 minimum intermediate
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because of mountainous landscape gradients in phenol-

ogy and herbaceous quality–biomass trade-offs.

But how significant, biologically, is exposure to forage

that is 6.5% higher in digestibility? In the definitive test

of this question for elk, Cook et al. (2004) experimen-

tally fed captive elk diets of high, medium, and low

forage quality during the summer months (with identical

winter forage) over several years to isolate the effects of

summer forage quality for elk survival and reproduc-

tion. Cook et al. (2004) showed that even when summer

forage DMD was .55%, small increases of 5% were

sufficient to significantly increase calf, yearling, and

adult female weights, reduce pregnancy rates, reduce calf

winter survival, and lead to important lagged effects on

future reproduction and survival (Cook et al. 2004).

Although Cook et al. (2004) admit their high-quality

treatment (67% DMD) exceeded the average summer-

forage quality available to elk in western North

America, the ;5% difference between their low and

medium diets had significant consequences for survival

and reproduction (Cook et al. 2004). These results were

corroborated in other experimental settings for rumi-

nants. In New Zealand, farmed red deer (males, females,

and calves) fed experimental diets of red clover with 3–

5% higher digestibility had higher body mass at the end

of one year, and females on the high quality diet had

increased milk yield than did a control group (Niezen et

al. 1993, Semiadi et al. 1993). Domestic sheep foraging

on summer diets of high-quality Salix spp. leaves (10%
higher DMD than the control group) in New Zealand

had greater body mass, and had higher pregnancy and

lambing rates at the end of the winter (McWilliam et al.

2005). While few other studies empirically demonstrated

the effect of a ;5% difference in DMD to population

characteristics, the relationship between nutrition and

population parameters is well established in less

controlled field and modeling studies (e.g., Thorne et

al. 1976, Hobbs 1989). Based on these studies, the 6.5%
higher DMD of migrant elk in this study should be

expected to have important population consequences

from a bottom-up forage perspective (Van Soest 1982,

Cook et al. 2004).

As evidence of the population impacts of the higher

forage quality observed in our study, Hebblewhite

(2006) showed mid-winter body mass of 11 resident

female calves in our study area were significantly (P ,

0.05) lower than 8 migrant calves (a 20.6-kg difference),

and adult pregnancy rates of 63 residents that were 7%
lower than 78 migrants (P , 0.05). Differences in

forage-quality exposure observed during our study

appeared to have potentially important population

consequences (Hebblewhite 2006). This is consistent

with other empirical analyses linking duration of

exposure to high-quality forage in spring to juvenile

montane ungulate survival (Pettorelli et al. 2007).

The nutritional benefits of higher forage exposure for

migrants will be mediated by environmental stochastic-

ity, but with different effects between migrants and

residents because of differences in spatial and temporal

variation as a result of the migratory cycle. For example,

 
FIG. 9. Average exposure of individual migrant (M) and resident (R) elk VHF and GPS locations in Banff National Park,

Alberta, Canada, to (a) total herbaceous biomass, (b) forage and leaf-forage shrub biomass, and (c) percentage dry-matter
digestibility (DMD) of herbaceous, shrub, and total forage estimated for migrant (M) and resident (R) elk during May–October,
2002–2004. Asterisks indicate intervals for which migrants and residents differed significantly (P¼ 0.05) in total measures (biomass
or DMD) based on the linear mixed-effects model. Digestibility of herbaceous forage was calculated for average biomass values
based on regressions between percentage digestibility and biomass from Fig. 4 and Table 2 for herbaceous forage. Digestibility of
shrubs was calculated given average percentage digestibility for each MODIS interval from Table 2.

TABLE 7. Relative diet composition by major forage class for migrant and resident elk in the Ya Ha Tinda elk herd, summer 2002.

Elk status,
by month n

Forb (%) Graminoid (%) Shrub (%)

Shrub leaf (%)Mean SE Mean SE Mean SE

June

Migrant 4 7.4a 2.52 70.0a� 10.72 22.6a� 7.23 0.36
Resident 2 7.9a 0.67 85.5a� 0.20 6.6a� 0.08 0.46

July

Migrant 9 8.2a� 1.52 70.8a 3.77 21.0a 2.89 0.41
Resident 5 12.4a� 0.98 72.4a 4.11 15.1a 4.00 0.39

August

Migrant 7 15.4b 3.65 54.6a 6.39 30.0a 4.00 0.32
Resident 3 12.9b 1.46 59.5b 3.33 27.6b 3.30 0.27

Notes: This analysis does not attempt to correct for bias against detecting forbs and shrub leaves in the diet. Lowercase
superscript letters refer to post hoc comparisons following ANOVA within a migratory and forage class, between months; e.g.,
percentage of forbs in the diet of residents was significantly different between June/July and August, when it increased.

� Post hoc comparisons between migrant classes within a month and forage class; e.g., percentage forb in diet differed between
migrants and residents in July. Experiment-wise error was set at 0.10 for post hoc Bonferroni multiple comparisons.
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Wang et al. (2006) revealed opposing effects of increased

variation in climate or forage productivity on the

strength of density dependence in ungulate populations.

Temporal variation in climate increased the strength of

density dependence, whereas spatial variation in forage

production weakened it (Wang et al. 2006). Migrants

should thus experience weaker density dependence due

to forage than residents because migration increased

spatial heterogeneity in forage exposure at the landscape

level (e.g., Table 4). The effects of temporal variability

(i.e., climate) are more uncertain, because of complex-

ities of how climatic variability play out in mountainous

terrain and local climatic downscaling processes (Petto-

relli et al. 2005b). For example, Petorrelli et al. (2007)

showed strong effects of the rate of spring green-up on

juvenile survival in montane ungulates. The relative

tension between spatial and temporal heterogeneity on

population dynamics of migrants and residents will

ultimately depend on finer-scale mechanisms, such as

whether spatial variability manifests in productivity

(biomass) vs. quality (digestibility), and the interaction

of temporal variability with predation (e.g., Lima et al.

2002).

Temporal variability could affect residents to decrease

the strength of density dependence, for example, if

greater variability provided residents greater flexibility

in their foraging strategy. Poorer resident forage quality

could potentially be counteracted by greater foraging

choices provided by the relatively greater variation in

peak biomass. Despite overall higher biomass on

resident ranges, the temporal coefficient of variation in

annual productivity was greater on resident compared to

migrant ranges (in repeat-sample plots the temporal CV

on the front ranges was 135%, n¼ 19 plots, vs. the main

ranges of 69%, n¼ 13 plots). The temporal variability in

biomass was driven by the strong correlation between

summer rainfall and productivity (r¼þ0.87, P¼ 0.09, n

¼ 4 years; see Hebblewhite 2006). In higher rainfall, and

hence higher biomass years, residents may have had

more opportunities to selectively forage for high-quality

plants or plant parts, in effect providing more choices to

residents in high-biomass years. Consistent with this

hypothesis, Nicholson et al. (1997) found that in a semi-

desert system, resident mule deer survival was lower

than that of migrants in drought years but higher in

years with high precipitation, with higher overall

variation in resident survival rates. Thus, residents

may be expected to benefit more from temporal

environmental stochasticity during summer than mi-

grants.

In contrast, increased temporal variability may

increase the strength of density dependence more for

migrants because of different localized climatic down-

scaling processes between migrants and resident ranges

(Pettorelli et al. 2005a). Climate-change scenarios for the

Rocky Mountains predict increased frequency of high

spring precipitation or snowfall (April–May) and

potentially drier later summers (Scott et al. 2002), but

without a consistent trend, just more variation (Stenseth

et al. 2002). High spring precipitation would manifest as

snowfall at higher elevations on migrant ranges (Luck-

man and Kavanagh 2000), but as rainfall at the lower

elevation winter range (sensu Pettorelli et al. 2005a).

While this might benefit residents in terms of higher

biomass production discussed above, migrants and their

calves would be exposed to harsh conditions for calf

survival. On the Isle of Rhum, cold, wet summers

reduced calf survival (Clutton-Brock et al. 1987),

presumably because of increased calf mortality during

cold periods. We found similar evidence that cold, wet

summers reduced elk population growth rate in this

population (Hebblewhite et al. 2006). Temporal vari-

ability in plant phenology, which has the greatest impact

on forage quality (Walsh et al. 1997), could also

negatively influence migrant population dynamics (Post

and Stenseth 1999, Pettorelli et al. 2005a). High spring

snowfalls would delay phenology and migration (Pettor-

elli et al. 2005a, c, Hebblewhite 2006). Delayed migra-

tion would result in peak lactation demands occurring

during adverse forage and climatic conditions. This

could lead to reduced calving synchrony and benefits of

predator swamping, with increased calf mortality (Post

and Klein 1999). These postulated effects of climate on

partial migration represent hypotheses that could be

tested through simulation modeling by varying phenol-

ogy in our spatial forage models and examining

potential population consequences to migratory elk.

While delayed migration may just extend access to

more nutritious forage for migrants, this ignores the

interaction of predation risk and environmental sto-

chasticity (Lima et al. 2002, Testa 2004), something not

considered by Wang et al. (2006). Increased variability

in spring climate will make it more difficult for migrant

female elk to migrate before calving to reduce predation

risk for calves (e.g., Bergerud et al. 1984). Instead,

females with calves at heel will have to run the migration

gauntlet past wolf dens and grizzly bears to high-

elevation summer ranges (Hebblewhite and Merrill

2007). Indeed, Hebblewhite and Merrill (2007) revealed

that wolf predation-risk exposure during migration was

1.7 times higher even than that for residents, and the

highest mortality rates occurred during spring. Disen-

tangling the interaction of stochasticity in top-down

(predation) and bottom-up (forage biomass/quality)

conditions remains a difficult but critical problem for

ecologists (Lima et al. 2002, Testa 2004). Regardless, we

hypothesize for the reasons above that increased

stochasticity due to climate change in our montane

system could be detrimental for migratory ungulates.

Conclusions

Large-scale topographic and climatic differences

drove phenological patterns that promoted access to

higher forage quality for elk that migrated to higher

elevations, closer to the continental divide, and to areas

of higher elevation and aspect diversity. The start of the
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growing season was delayed in these areas, which

delayed plant growth. Because forage quality declined

across the whole study area with increasing plant

growth, forage quality was highest in these phenologi-

cally delayed areas. At the largest spatial scales, migrant

elk selected to locate their home ranges at higher

elevations and closer to the continental divide. As a

result, migrant elk selected intermediate herbaceous

biomass across spatial scales in accordance with the

FMH to maximize exposure to higher forage quality

than residents, and selection was the strongest at the

largest landscape scale, in accordance with predictions

(Table 3). Residents essentially selected for maximum

herbaceous-forage biomass at all spatial scales, not

compensating by selecting intermediate forage biomass

at finer spatial scales as expected (Table 3). However,

both resident and migrant elk switched to shrub biomass

during late summer, likely to compensate for declines in

herbaceous-forage quality. As a result of the difference

in selection strategies for herbaceous biomass in

particular between migrants and residents, migrant elk

realized 6.5% higher forage quality than residents as

predicted, peaking during late June at the time of highest

lactation costs for females. The magnitude of these

differences in forage quality between strategies is

predicted to lead to significant differences in elk body

mass, reproduction, and survival (Cook et al. 2004).

Combined with results of previous studies of montane

ungulates (Albon and Langvatn 1992, Mysterud et al.

2002, Pettorelli et al. 2005a), selection for forage quality

as expected under the forage-maturation hypothesis

(Fryxell et al. 1991) is a convincing mechanism driving

elk migration in mountainous ecosystems. Despite

evidence that elk benefited from migration from a

foraging perspective, however, the decline of migrants

in this system (Hebblewhite et al. 2006) driven by lower

adult female and calf survival of migrants (Hebblewhite

2006) reveals forage does not determine fitness of

migratory strategies in isolation. Elk must balance the

benefits of migration from a foraging perspective with

the costs of mortality from predation (e.g., Swingland

and Lessels 1979, Nicholson et al. 1997, Testa 2004).
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