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Abstract

The affine vertex superalgebra A = L1(D(2, 1;− v
w
)) plays a key role as the

geometric Langlands kernel VOA for SVOAs associated to so(3), osp(1|2) and

other rank one Lie superalgbras. Since D(2, 1;α) is an extension of the direct

sum of 3 copies of sl(2), A can be naturally realized as an extension of L1 =

Lk(sl(2))⊗Ll(sl(2))⊗L1(sl(2)) for admissible levels k = u
v
− 2 and l = u

w
− 2.

Here, I use constructions of gluing VOAs to realize A as an L1 extension, and

the theory of VOA extensions to classify irreducible modules in A-wtmod≥0.

Using the ‘Adamovic procedure’, an alternate realization of A is given as a

subalgebra of Lk−1(sl(2)) ⊗ Bl, where the SVOA Bl is constructed from a

‘half-lattice’ and L1(sl(2)). This allows calculation of modular S-matrices for

A modules induced from relaxed highest weight L1 modules.
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Chapter 1

Introduction

Vertex operator algebras or VOAs are a structure of great interest, both for

physicists and mathematicians. Originally motivated as a formalization of

symmetry algebras in two-dimensional conformal field theories, VOA represen-

tations provide a tractable way to study certain infinite dimensional Lie alge-

bras and their representation theory, while the VOAs themselves also serve as

a sort of ‘almost commutative’ algebra. The associated categorical behaviour

is exactly that relevant to topological invariants of 3 manifolds, realizing the

connection between three-dimensional topological quantum field theories and

the conformal field theories that appear on their boundaries. As well as their

topological appeal, VOAs have geometric relevance, as they appear naturally

within the Langlands program for loop groups [32].

VOA representation theory serves as a common point for exciting mathe-

matics, with many results from each of these analogous areas, both in physics

and mathematics, translating to the setting of VOAs, perhaps with additional

interesting subtleties.

The results of gauge theory extend to relevant constructions for VOAs,

providing an example of such a translation. For an affine vertex operator

superalgebra Lk(g), the ‘Hamiltonian reduction’ [57] process of gauging un-

physical symmetries allows for the construction of certain new SVOAs, called

W-algebras [52] and denoted by

Wk(g, f)
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where f is a nilpotent element in g. When f is the principal nilpotent, this

is called the principal W-algebra associated to g at level k, and denoted by

Wk(g). The principal W-algebras exhibit isomorphisms

Wk(g) ≃ W l(Lg)

called Feigin-Frenkel duality [30], where Lg is the Langlands dual to g. For sim-

ply laced g, the associated W algebras may alternatively be realized through

a coset construction [4].

Further motivated by the study of gauge theory, Gaiotto and Rapcak con-

structed families of vertex algebras at a 2-dimensional ‘corner’ intersection

of three 4-dimensional gauge theories [37]. Due to symmetries of these gauge

theories, these VOAs were conjectured to exhibit a triality, simultaneously gen-

eralizing both the Feigin-Frenkel duality and the coset realization of certain

W algebras, called ‘hook type’, later proven in [21][22].

These 4-dimensional gauge theories also enjoy an ‘S-duality’, giving a phys-

ical analog of the geometric Langlands program [54]. VOAs appear again in

this context [8][34]. The effect of these S duality transformations on the level of

VOAs can be realized as a convolution, given by a cohomology of the relevant

W-algebra with another ‘geometric Langlands kernel’ VOA [23].

These convolutions act not only to give the desired isomorphisms, but also

on the corresponding modules. Then modules for the kernel VOA give functors

between categories of modules for related vertex algebras (in both directions),

hopefully allowing certain equivalences of blocks of modules and intertwining

operators to be proven.

One would hope that these correspondences also hold on the level of con-

formal blocks. This has already been demonstrated in many cases from the

physics perspective by using the path integral formalism to justify certain

equivalences of correlators in the relevant conformal field theories [10] [12]

[11]. This includes my own work with collaborators [13], demonstrating an

equivalence between a coset of a sl(n) subregular W algebra theory and an

sl(n|1) theory.
The affine vertex superalgebra L1(D(2, 1;− v

w
)) is interesting not only in its
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own right, but especially for its relevance in this context. The role of geometric

Langlands kernel VOAs for g = gl(2), g = so(3) and g = osp(1|2) are played

by L1(D(2, 1;− 1
k+1

))⊗π, L1(D(2, 1;−2k)) and L1(D(2, 1;− 1
k+1

)), respectively,

and the cases of other rank 1 g are similarly realized using L1(D(2, 1;α)) or

some mild extension of it. Then the representation theory of L1(D(2, 1;α))

is exactly the relevant information that would allow us to explore these con-

volution equivalences of categories of modules, intertwining operators, and

conformal blocks.

In this work, I provide a classification for irreducible modules in Lk(D(2, 1;− v
w
))-

wtmod≥0, as well as lower bounded modules in the Ramond sector.

Noting that the Lie superalgebra D(2, 1;α) contains sl(2)⊕ sl(2)⊕ sl(2) as

a subalgebra, we suspect that L1(D(2, 1;− v
w
)) should be realized as an exten-

sion for the tensor of three copies of Lk(sl(2)) at appropriate levels, obtained

using gluing results for vertex algebras. This allows for completion of the

classification as modules induced from Lk(sl(2))⊗ Ll(sl(2))⊗ L1(sl(2)) using

the theory of VOA extensions. This realization of L1(D(2, 1;− v
w
)) is the first

major result of this thesis, and the classification is the second.

Theorem 5.5.12. Suppose that k, l are non-integral admissible levels for sl(2)

k + 2 =
u

v
l + 2 =

u

w
(1.1)

with u = v + w. Then we have the following isomorphism as Lk(sl(2)) ⊗
Ll(sl(2))⊗ L1(sl(2)) modules:

L1(D(2, 1;− v

w
)) ≃

u−1⊕

r=1

Lk
r,0 ⊗ Ll

r,0 ⊗ L1
r,0 (1.2)

Theorem 5.6.6. For v, w ∈ Z≥2, a complete list of representatives for isomor-

phism classes of irreducible modules in L1(D(2, 1;− v
w
)-wtmod≥0 (resp. Ra-

mond twisted lower bounded modules for L1(D(2, 1;− v
w
)) is given by

(L,N)0,0s1,λ1,s2,λ2,b

for labels L,N, s1, λ1, s2, λ2 as in the table 4.2.15 and b = 0 (resp. b = 1 for
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Ramond twisted). These are non-isomorphic for distinct labels.

The ‘Adamovic procedure’ gives a realization of Lk(sl(2)) as a subalgebra in

the product of a Virasoro VOA Lk(Vir) with a ‘half-lattice’ VOA Πk(0). From

this perspective, the relaxed highest weight modules for Lk(sl(2)) take a par-

ticularly simple form. Along with our previous realization of L1(D(2, 1;− v
w
))

modules as induced modules, this gives means to calculate modular data for

characters and super characters of L1(D(2, 1;− v
w
)) modules using the rele-

vant transformations for Lk(sl(2)) and the half-lattice Πk(0). We notice that

these modular S-matrices for induced L1(D(2, 1;− v
w
)) modules take a partic-

ularly nice form: a constant multiple of the S-matrices of the L1 modules they

were induced from, providing additional support for a Verlinde formula for

L1(D(2, 1;− v
w
)).

Theorem 6.2.6. Modular transformations of L1(D(2, 1;− v
w
))-module charac-

ters and supercharacters induced from relaxed highest weight modules are given

by

(supercharacter, local)

S{ch−[(E , E)t1,t2s1,λ1,s2,λ2,0
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,0

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
ch−[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
]dλ′1dλ

′
2 (1.3)

(supercharacter, Ramond)

S{ch−[(E , E)t1,t2s1,λ1,s2,λ2,1
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,1

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
ch+[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
]dλ′1dλ

′
2 (1.4)

(character, local)

S{ch+[(E , E)t1,t2s1,λ1,s2,λ2,0
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,0

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
ch−[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
]dλ′1dλ

′
2 (1.5)
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(character, Ramond)

S{ch+[(E , E)t1,t2s1,λ1,s2,λ2,1
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,1

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
ch+[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
]dλ′1dλ

′
2 (1.6)

Where the S matrices are

St1,t2
s1,λ1,s2,λ2,b

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,b

′

=
ue

2πi
τ

2
√
2 sin

(
wπ
u

)
sin
(
vπ
u

)Sk
(t1,λ1;∆1,s1 )(t

′
1,λ

′
1;∆1,s′1

)S
l
(t2,λ2;∆1,s2 )(t

′
2,λ

′
2;∆1,s′2

)S(p+b)(p′+b′)

(1.7)
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Chapter 2

Categories

Categories of representations for Lie algebras have linear and monoidal struc-

tures, which are already quite interesting. In many ways, this setting is too

restrictive for interesting categories to appear.

Categories of modules for vertex algebras greatly resemble those for Lie

algebras, from which they are often built, but allow for much richer structure,

since the associativity and commutativity restrictions on the tensor product of

vertex algebra modules is weaker than those on vector spaces, and the tensor

product for VOA modules allows more interesting objects to be contained in

smaller (and hence more easily studied) monoidal categories.

We begin by introducing the monoidal and enriched category structure that

appears in both settings, before proceeding to the richer braided structures

that appear in the study of vertex algebra representation theory.

Note that for a category C, I will use the notation A ∈ C to indicate that

A is an object in the category C.

2.1 Monoidal and enriched categories

Definition 2.1.1. A monoidal category V consists of

1. A category V

2. A functor ⊗ : V × V → V (product)
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3. An object 1 ∈ V (unit)

4. Natural isomorphisms

� aXY Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) (associators)

� lX : 1⊗X → X (left unitor)

� rX : X ⊗ 1 → X (right unitor)

Subject to coherence axioms, expressed by commutativity of the following

diagrams

� (pentagon axiom)

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ (X ⊗ (Y ⊗ Z))

aa

a⊗1

a

1⊗a

(2.1)

� (triangle axiom)

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

a

r⊗1 1⊗l
(2.2)

Definition 2.1.2. A vector superspace is a Z2 graded vector space V = V0⊕V1.
Elements v ∈ Vi are called homogenous, and we denote their parity by |v| = i.

Elements in V0 and V1 are called even and odd, respectively.

Example 2.1.1. Let F be a field with char(F) ̸= 2. Define the category SVecF
whose objects are vector superspaces V = V0 ⊕ V1, and morphisms are

HomSVec
F
(V,W ) = HomF(V0,W0)⊕ HomF(V1,W1) (2.3)
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which we call the even morphisms. We suppress the label F when context

allows. Define functor ⊗ : SVec× SVec→ SVec by

(V ⊗W )0 = V0 ⊗W0 ⊕ V1 ⊗W1 (2.4)

(V ⊗W )1 = V0 ⊗W1 ⊕ V1 ⊗W0 (2.5)

(f ⊗ g)(v ⊗ w) = f(v)⊗ g(w) (2.6)

Then SVec is a monoidal category.

Definition 2.1.3. For monoidal category V, a category C enriched over V or

V-category consists of

1. a set ob(C) of objects

2. hom-objects HomC(A,B) ∈ V for every A,B ∈ C

3. a composition law

◦ : HomC(B,C)⊗ HomC(A,B) → HomC(A,C) for every A,B,C ∈ C

4. an identity element jA : 1 → Hom(A,A)

These data are subject to associativity and unit consistency axioms. See [55].

Definition 2.1.4. For V-categories C, C ′, V-functor F : C → C ′ is a map

F : ob(C) → ob(C ′) (2.7)

and maps

F : HomC(A,B) → HomC(F(A),F(B)) (2.8)

subject to composition and unit consistency conditions. See [55].

Definition 2.1.5. For V-functors F ,F ′ : C → D, a V-natural transformation

η : F → F ′ is a family of components

ηA : 1 → HomC′(F(A),F ′(A)) (2.9)

subject to unit consistency conditions. See [55].
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2.2 Braided tensor categories

Definition 2.2.1. A tensor category is a monoidal category C enriched over

the category of vector spaces, satisfying the following conditions

1. Finite biproducts exist (including the empty biproduct 0 ∈ ob(C))

2. Every morphism has a kernel and cokernel

3. Every monomorphism is a kernel and every epimorphism is a cokernel

Definition 2.2.2. Let C be a monoidal category with tensor product ⊗, unit

1 and associators a.

� We say that X∗ is a left dual of X if there exists morphisms

evX : X∗ ⊗X → 1 coevX : 1 → X ⊗X∗ (2.1)

such that the following compositions are the identity:

X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X
coevX⊗idX a idX⊗evX

(2.2)

X∗ X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ X∗idX∗⊗coevX a evX⊗idX∗

(2.3)

� We say that ∗X is a right dual to X if there exists morphisms

ev′X : X ⊗ ∗X → 1 coev′X1 → ∗X ⊗X (2.4)

such that the following compositions are the identity:

X X ⊗ (∗X ⊗X) (X ⊗∗ X)⊗X X
idX⊗coev′X a ev′X⊗idX

(2.5)

∗X (∗X ⊗X)⊗ ∗X ∗X ⊗ (X ⊗ ∗X) ∗X
coev′X⊗id∗X a id∗X⊗ev′X

(2.6)

� We say that X is rigid if it has left and right duals.
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� We say that a monoidal category C is rigid if all of its objects are rigid.

� For X, Y ∈ C with left duals and morphism f : X → Y , we define the

left dual f ∗ of f by:

f ∗ = Y ∗ (Y ∗ ⊗X)⊗X∗

(Y ∗ ⊗ Y )⊗X X∗

a−1◦(idY ∗⊗coevX)

(idY ∗⊗f)⊗idX∗ evY ⊗idX∗

(2.7)

� For X, Y ∈ C with right duals and morphism f : X → Y , we define the

right dual ∗f of f by:

∗f = ∗Y ∗X ⊗ (X ⊗ ∗Y )

∗X ⊗ (Y ⊗ ∗Y ) ∗X

a◦(coev′X⊗id∗Y )

id∗X(f⊗id∗Y ) id∗X⊗ev′Y

(2.8)

The complex ‘not quite commutative’ structure of vertex algebras also im-

poses some exceptions to commutativity on the categorical level. In particular,

the tensor product is commutative or associative only up to isomorphism. This

notion gives braiding structure to categories of VOA modules.

Definition 2.2.3. A braided monoidal category is a monoidal category V with

natural isomorphism

RX,Y : X ⊗ Y → Y ⊗X (2.9)

subject to coherence axioms expressed by commutativity of the following dia-

grams:

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

a

R⊗1

R

a

a 1⊗R

(2.10)
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X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

a−1

1⊗R

R

a−1

a−1 R⊗1

(2.11)

The braiding structure exactly describes the data needed for ‘tying knots’

in 3 dimensions [64], hence the name. This structure for VOAs is unsurprising,

considering the relationships between vertex algebras and topological quantum

field theories. From this perspective, we also expect that categories of VOA

modules should inherit more topological structure, such as a twist, which is

consistent with the braiding.

Definition 2.2.4.

� A twist on a braided rigid monoidal category is θ ∈ Aut(idC) such that

for all objects X, Y ∈ C

θX⊗Y = (θX ⊗ θY ) ◦RY,X ◦RX,Y (2.12)

� We call a twist a ribbon structure if (θX)
∗ = θX∗.

� A ribbon category is a braided rigid monoidal category with ribbon struc-

ture.

� On a ribbon category, we can define the trace of a morphism f : X → X

by:

tr(f) = evXRXX∗((θXf)⊗ idX∗)coevX : 1 → 1 (2.13)

By nature as a description of conformal field theories, we also expect that

categories of VOA modules should enjoy some form of conformal invariance.

In appropriate cases, this appears as an action of the modular group.

Definition 2.2.5.

� A fusion category is a semisimple rigid braided tensor category with finitely

many isomorphism classes of simple objects.
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� Suppose C is a ribbon fusion category. The associated S-matrix has en-

tries given by SXY = tr(RY,X ◦RX,Y ) for X, Y representatives of isomor-

phism classes of simples.

� A modular tensor category is a ribbon fusion category whose S matrix is

nondegenerate.

2.3 Supercategories

In the following, we study not only vertex algebras, but vertex superalgebras.

This is most natural with both even and odd morphisms, for which we require

the notion of supercategory.

Definition 2.3.1.

� A supercategory is a category enriched over SVec.

� A superfunctor is an SVec-functor.

� For supercategory S, we denote by S the underlying category: the wide

subcategory with only even morphisms.

� A monoidal supercategory SC consists of a supercategory SC with su-

perfunctor ⊗ : SC × SC → SC and SVec-natural isomorphisms a, l, r

subject to conditions expressed by commutativity of the diagrams 2.1 and

2.2. That is, it is a monoidal category with all data replaced with their

‘super’ equivalent.

Example 2.3.1. Suppose that C is a braided tensor category.

� Let SC be the category whose objects are ordered pairs W = (W0,W1)

with W0,W1 ∈ C and morphisms are:

HomSC(W
1,W 2) = HomC(W

1
0 ⊕W 1

1 ,W
2
0 ⊕W 2

1 ) (2.1)

� For W ∈ SC, the parity involution of W is given by:

PW = 1W0
⊕ (−1W1

) (2.2)
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� We say that morphism f ∈ HomSC(W
1,W 2) is has parity |f | ∈ Z/2Z if

f ◦ PW 1 = (−1)|f |PW 2 ◦ f .

Note that each f ∈ HomSC(W
1,W 2) can be written uniquely as f = f0 +

f1 where |fi| = i. Then SC is a supercategory with the parity grading on

HomSC(W
1,W 2).

Example 2.3.2. Following 2.3.1, we construct the category SVec. Our no-

tation is consistent, since the underlying category SVec coincides with SVec
introduced in 2.1.1. SVec× SVec is a supercategory with composition

(f1, f2) ◦ (g1, g2) = (−1)|f2||g1|(f1 ◦ g1, f2 ◦ g2) (2.3)

where f2, g1 are parity homogenous. Define superfunctor ⊠ : SVec× SVec →
SVec which on objects is as in 2.4, 2.5 and on morphisms is

(f ⊠ g)(v ⊠ w) = (−1)|g||v|f(v)⊠ g(w) (2.4)

Then SVec is a monoidal supercategory.
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Chapter 3

Lie Theory

Much of the representation theory of vertex algebras resembles that of Lie

algebras, particularly in the cases of affine vertex algebras that we study here.

In the following I will establish notation and provide examples that will be

needed for later constructions.

3.1 Lie superalgebras

Definition 3.1.1. A superalgebra is a Z2 graded vector space A = A0 ⊕ A1,

with bilinear product satisfying

AiAj ⊂ Ai+j

Example 3.1.1. Suppose that V is a vector superspace. Then End(V ) is an

associative superalgebra, with product given by composition.

Example 3.1.2. Suppose that V is a vector space with bilinear form ⟨·, ·⟩.
Let T (V ) be the tensor algebra over V , and 1 be its unit. The associated

Clifford algebra is

C(V ) = T (V )/⟨u⊗ v + v ⊗ u− 2(u, v)1⟩ (3.1)

with the natural inclusion i : V → C(V ). We suppress the tensor product

symbol and simply write u⊗v = uv. T (V ) is a Z graded algebra, and the ideal
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⟨u⊗ v + v ⊗ u− 2(u, v)1⟩ is generated only by even elements. This induces a

Z2 grading on C(V ). Then C(V ) is an associative superalgebra, satisfying the

relations

[i(u), i(v)] = 2(u, v)1

for u, v ∈ V .

Definition 3.1.2. A Lie superalgebra is a superalgebra g with bilinear product

[·, ·] : g× g → g called the Lie bracket, satisfying

� super skewsymmetry

[u, v] = −(−1)|u||v|[v, u]

� super Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]]

for homogenous u, v, w ∈ V .

Definition 3.1.3. A homomorphism of vertex superalgebras a, b is a vector

superspace morphism ϕ : a → b satisfying

ϕ([u, v]) = [ϕ(u), ϕ(v)]

Example 3.1.3. Cx has Lie algebra structure given by Lie bracket [x, x] = 0

Example 3.1.4. The Lie algebra sl(2) is given by 3 dimensional (even) vector

space. For basis e, h, f , the Lie bracket is given by

[h, e] = 2e [h, f ] = −2f [e, f ] = h (3.2)

Example 3.1.5. The Lie superalgebra osp(1|2) has even part sl(2) with basis

e, h, f as before, and the odd part has basis x, y with relations

[h, x] = x [h, y] = −y [f, x] = −y [e, y] = −x (3.3)
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[x, x] = 2e [x, y] = h [y, y] = −2f (3.4)

Example 3.1.6. Suppose that A is an associative superalgebra. Then A is

naturally a Lie superalgebra, with bracket given by

[u, v] = uv − (−1)|u||v|vu (3.5)

For homogenous u, v ∈ A. In particular, for vector superspace V , End(V ) is

naturally a Lie superalgebra.

Example 3.1.7. The infinite dimensional Lie algebra DerC((z)) of deriva-

tions of C((z)) has basis and Lie bracket given by

Ln = −zn+1∂z [Ln, Lm] = (m− n)Lm+n (3.6)

For n ∈ Z. This has unique nontrivial one dimensional central extension

0 → CC → Vir → DerC((z)) → 0 (3.7)

called the Virasoro algebra, where C is central and relations are given by

[Ln, Lm] = (m− n)Ln+m +
C

12
(m3 −m)δm+n,0 (3.8)

We denote by Vir≥0 the subalgebra generated by C and Ln with n ≥ 0.

The Virasoro algebra is associated to infinitesimal conformal transforma-

tions of a 1 dimensional complex surface, making it essential to the study of

conformal field theories and the vertex algebras that describe them.

3.2 Representations

We introduce Lie superalgebra representations and define the typical algebraic

constructions associated with them.

Definition 3.2.1. A representation (V, ϕ) of Lie superalgebra g is a vector
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superspace V with homomorphism

ϕ : g → End(V ) (3.1)

We will often denote a representation (V, ϕ) simply by V , leaving the homo-

morphism ϕ implicit.

Example 3.2.1. The standard representation st of sl(2) on two dimensional

vector space is given by

e 7→
(

0 1

0 0

)
h 7→

(
1 0

0 −1

)
f 7→

(
0 0

1 0

)
(3.2)

Example 3.2.2. The adjoint representation of Lie superalgebra g is the Lie

algebra homomorphism

ad : g → End(g) adv = [v, ·] (3.3)

The adjoint representation restricted to Lie supalgebra g0 gives a representation

of g0 on g1.

Definition 3.2.2.

� A subrepresentation W of V is a vector subspace W ⊂ V that is closed

under the action of g.

ϕ(g)(W ) ⊂ W

� An irreducible representation V is a representation whose only subrepre-

sentations are 0 and V .

Definition 3.2.3. A Lie superalgebra g is called simple if its adjoint repre-

sentation is irreducible.

Definition 3.2.4.

� Suppose that g is a Lie superalgebra and V,W are g representations. The

direct sum V ⊕W is given by the direct sum of vector superspaces, with

action given by

g(v, w) = (gv, gw)
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for g ∈ g, v ∈ V and w ∈ W .

� A g representation V is called completely reducible if it is the direct sum

of irreducible representations.

3.2.1 The Killing form

Definition 3.2.5. For bilinear form ⟨·, ·⟩ : g× g → C, we say that ⟨·, ·⟩ is

� invariant if, for homogenous u, v, w ∈ g

⟨u, [v, w]⟩ = ⟨[u, v], w⟩

� supersymmetric if for homogenous u, v ∈ g

⟨u, v⟩ = (−1)|u||v|⟨v, u⟩

� consistent if for u ∈ g0, v ∈ g1

⟨u, v⟩ = 0

Proposition 3.2.3. [49] An invariant bilinear form on simple a Lie superal-

gebra g is either non-degenerate or identically 0. Any two invariant bilinear

forms on simple g are proportional.

Definition 3.2.6. [49] Lie superalgebras have an invariant, consistent, super-

symmetric bilinear form given by the Killing form.

⟨u, v⟩ = str(aduadv)

Proposition 3.2.4. [49]

A Lie superalgebra with nondegenerate Killing form splits into an orthogo-

nal direct sum of Lie superalgebras with nondegenerate Killing forms.
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3.2.2 The Casimir element

Definition 3.2.7. Let T (g) be the tensor superalgebra over g with the induced

Z2 grading. Define the universal enveloping superalgebra.

U(g) = T (g)/⟨u⊗ v − (−1)|u||v|v ⊗ u− [u, v]⟩ (3.4)

We will suppress the tensor product symbol and write u⊗ v = uv.

Theorem 3.2.5 (Poincaré-Birkhoff-Witt). Let g = g0⊕g1 be a Lie superalge-

bra, and J1, ..., Jn, a basis for g0, J
n+1, ..., Jd a basis for g1. Then monomials

of the form

J i1 . . . J im (3.5)

with m ∈ Z, ij ≤ ij+1, and for n < ij, ij < ij+1 form a basis for U(g).

Remark 3.2.6. T (g) is an associative superalgebra, and hence a Lie superal-

gebra as in 3.1.6. The inclusion g → T (g) induces a homomorphism i→ U(g).

For Lie algebra homomorphism ϕ : g → a, there exists unique ϕ̃ satisfying the

following commutative diagram

U(g) a

g

ϕ̃

i
ϕ

In particular, a g representation is equivalent to a U(g) module. We will often

refer to a g representation instead as a g module.

Definition 3.2.8. [63] Let ⟨·, ·⟩ be a nondegenerate invariant bilinear form

on a finite dimensional Lie superalgebra g. Let {J i}i=1,...,d be a homogenous

basis for g, and {Ji}i=1,...,d be a dual basis such that ⟨J i, Jk⟩ = δjk. The

Casimir element is given by

C =
d∑

i=1

JiJ
i ∈ U(g) (3.6)

This is dependent on the chosen bilinear form. C is central in U(g).
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Proposition 3.2.7. [63] The Casimir is independent of choice of basis. In

particular, choosing basis Ji and noting that ⟨Ji, J i⟩ = (−1)|J
i||Ji|, so the dual

to Ji is (−1)|J
i||Ji|J i, we have

C =
d∑

i=1

(−1)|J
i||Ji|J iJi

Corollary 3.2.8.

d∑

i=1

[Ji, J
i] =

d∑

i=1

JiJ
i − (−1)|J

i||Ji|J iJi = C − C = 0 (3.7)

Example 3.2.9. The Killing form on sl(2) has nontrivial relations given by

⟨h, h⟩ = 2 ⟨e, f⟩ = 1 (3.8)

and the Casimir for sl(2) is

C =
1

2
h2 + ef + fe (3.9)

3.3 Classification of classical Lie superalgebras

Simple classical Lie superalgebras have been classified, and this result will be

necessary in the following work. See [49] for a complete classification and

construction of these Lie superalgebras. I introduce only D(2, 1;α) here, as

we shall not need the explicit form of the others.

Example 3.3.1. [49] There is one parameter family D(2, 1;α), α ∈ C\{0,−1}
of 17 dimensional simple Lie superalgebras with even part given by 3 copies

of sl(2) and odd part given by the tensor product of 3 copies of the standard

representation

D(2, 1;α)0 = sl(2)⊕ sl(2)⊕ sl(2) D(2, 1;α)1 = st⊗ st⊗ st (3.1)

We follow the conventions and notation of [8][31] aside from a rescaling of hi
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by 2 and rescaling of the ei, f i by −1 in the below. For parameter α, we specify

α−1
1 = −1− α−1 α−1

2 = −1− α α3 = 1 (3.2)

For the even part, we give basis ei, hi, fi for i = 1, 2, 3, with nonzero brackets

[hi, ei] = 2ei [hi, f i] = −2f i [ei, f i] = hi (3.3)

For odd part, we give basis ψ(β, γ, δ) where β, γ, δ = ±. Nonzero brackets with

the even part are given by

[h1, ψ(±, γ, δ)] = ±ψ(±, γ, δ) [h2, ψ(β,±, δ)] = ±ψ(β,±, δ) (3.4)

[e1, ψ(−, γ, δ)] = ψ(+, γ, δ) [e2, ψ(β,−, δ)] = ψ(β,+, δ) (3.5)

[f 1, ψ(+, γ, δ)] = ψ(−, γ, δ) [f 2, ψ(β,+, δ)] = ψ(β,−, δ) (3.6)

[h3, ψ(β, γ,±)] = ±ψ(β, γ,±) (3.7)

[e3, ψ(β, γ,−)] = ψ(β, γ,+) (3.8)

[f 3, ψ(β, γ,+)] = ψ(β, γ,−) (3.9)

We introduce the notation

Oi
++ = −2ei Oi

−− = −2f i Oi
+− = Oi

−+ = −hi (3.10)

ϵ+− = −ϵ−+ = 1 (3.11)

Then the bracket on the odd basis is:

[ψ(β1, γ1, δ1), ψ(β2, γ2, δ2)]

= α1O
1
β1β2

ϵγ1γ2ϵδ1δ2 + α2O
2
γ1γ2

ϵβ1β2ϵδ1δ2 + α3O
3
δ1δ2

ϵβ1β2ϵγ1γ2 (3.12)

The Killing form on D(2, 1;α) is completely degenerate, but there is still in-

variant form ⟨·, ·⟩ with nontrivial relations given by:

⟨ei, f j⟩ = δij
αi

⟨hi, hj⟩ = 2δij
αi

(3.13)

21



⟨ψ(β1, γ1, δ1), ψ(β2, δ2, γ2)⟩ = −2ϵβ1β2ϵγ1γ2ϵδ1δ2 (3.14)

Rescaling all 3 of the parameters α1, α2, α3 by a common factor amounts to a

rescaling of the odd generators ψ(β, γ, δ).

Definition 3.3.1. A Lie superalgebra g is called classical if it is simple and

the representation of g0 on g1 is completely reducible.

Theorem 3.3.2. [49] A classical Lie superalgebra is isomorphic to either

one of the simple Lie algebras An, Bn, Cn, Dn, F4, G2, E6, E7, E8 or to one of

A(m|n), B(m|n), C(n), D(m|n), D(2, 1;α), F (4), G(3), P (n) or Q(n).

3.4 Representation categories

We now demonstrate much of the categorical structure of section 2 in the

case of Lie superalgebras. The representation theory of vertex algebras will

extensively resemble much of the following.

Definition 3.4.1. For g representations V,W , we say that vector space mor-

phism ϕ : V → W is a homomorphism of g representations if

gϕ(v) = ϕ(gv)

for v ∈ V , g ∈ g.

Definition 3.4.2. Suppose that g is a Lie superalgebra and V,W are g repre-

sentations. The tensor product V ⊗W is given by the tensor product of vector

superspaces, with action given by

g(v ⊗ w) = gv ⊗ w + v ⊗ gw (3.1)

for g ∈ g, v ∈ V and w ∈ W .

Definition 3.4.3. [50] For classical Lie superalgebra g,

� A Cartan subalgebra h is a maximal commutative subalgebra of g.
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Let h be a Cartan subalgebra of g. For α ∈ h∗, denote

gα = {e ∈ g|∀h ∈ h [h, e] = α(h)e}

� We call nontrivial α ∈ h∗ a root of g if gα ̸= 0. The roots of g generate

the root lattice, which we denote by Q ⊂ h∗.

Remark 3.4.1. ⟨·, ·⟩ induces an invariant bilinear form on h∗, which we will

denote again by ⟨·, ·⟩. g always has simple (even) Lie algebra direct summand

g̃. If there are multiple, we choose g̃ to have maximal rank, and if all ranks

are equal, we choose arbitrary such g̃.

Here and in the following, we normalize the invariant form ⟨·, ·⟩ such that

long roots of g̃ have norm 2 with respect to this form, unless otherwise specified.

� For root α ∈ Q, there is α∨ ∈ h satisfying ⟨α∨, ·⟩ = α(·). We call α∨ the

coroot associated to α. The coroots generate a coroot lattice, denoted by

Q∨.

� The weight lattice P is the lattice dual to Q∨ with respect to ⟨·, ·⟩, and
the coweight lattice P∨ is dual to Q.

� A Borel subalgebra b of g is a maximal solvable subalgebra.

Let b0 be a Borel subalgebra of g0 containing h and extend to a Borel subalgebra

b = b0 ⊕ b1 of g.

� Diagonalizability of the adjoint representation gives the Cartan decomposition

g = n− ⊕ h⊕ n+

� A root α is called positive (resp. negative) if gα∩n+ ̸= 0 (resp. gα∩n− ̸=
0). Positive roots span the positive root lattice Q+.

� We define the dominant weights

P+ = {λ ∈ P |⟨λ, µ⟩ ≥ 0 for all µ ∈ Q+}
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� For g representation V , the vector v ∈ V is called highest weight if n+v =

0.

Definition 3.4.4. A g module M is called weight if h acts semisimply on g.

M =
⊕

λ∈h∗

Mλ

where Mλ = {m ∈M |hm = λ(h)m} is the weight space associated to λ.

Definition 3.4.5. Suppose that g is a Lie superalgebra, h is a subalgebra, and

V is an h representation or equivalently, a U(h) module. Then

U(g)⊗U(h) V

is naturally a U(g) module or g representation, called the induced module or

induced representation, where we define action

g(p⊗ v) = gp⊗ v

for g ∈ g, p ∈ U(g) and v ∈ V .

For λ ∈ h∗, we can define weight representations of highest weight λ. These

are constructed as follows:

Definition 3.4.6. Pick Cartan subalgebra h of g, and Borel subalgebra b ⊃ h.

Then b = h⊕ n+. Pick λ ∈ h∗. Define one dimensional b representation C|λ⟩
by

h|λ⟩ = λ(h)|λ⟩ h ∈ h n+|λ⟩ = 0 (3.2)

With ||λ⟩| = 0. Define

V (λ) = U(g)⊗U(b) C|λ⟩ (3.3)

Note that by universal property of tensor product, for any g representation V

with highest weight vector of weight λ, we have morphism V (λ) → V .
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V (λ) has unique maximal subrepresentation I(λ). Then we define

L(λ) = V (λ)/I(λ) (3.4)

which is an irreducible representation of highest weight λ.

Theorem 3.4.2. [50] Suppose that g is a classical Lie superalgebra excluding

A(n, n). Then

� Any quotient of V (λ) is weight, with finite dimensional weight spaces.

� |λ⟩ is the unique highest weight vector in L(λ).

� Hom(L(λ), L(µ)) ≃ Cδλ,µ.

� Any finite dimensional irreducible g module is isomorphic to some L(λ).

Then the representations L(λ) are a complete list of simple objects in

an appropriate category, and they are uniquely determined by their highest

weight λ. We proceed by introducing interesting categories of modules for Lie

superalgebras.

Theorem 3.4.3. [50] For (even) Lie algebra g, L(λ) is finite dimensional iff

λ ∈ P+.

Definition 3.4.7. A g representation (ϕ, V ) is called integrable if it integrates

to a representation of the associated Lie group.

We denote by Intg the category whose objects are integrable representations

for g and morphisms are homomorphisms of g representations.

Proposition 3.4.4. Simple objects of Intg are isomorphic to L(λ), λ ∈ P+,

and tensor products of simple objects in Intg are finite direct sums.

We sketch explicitly for sl(2). By 3.4.2, the simple objects of Intg are given

by L(λ) with λ ∈ P+ ≃ Z≥0. By induction, we confirm for any λ ∈ h∗

ef i|λ⟩ = i(r − i+ 1)f i−1|λ⟩
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Then for for 0 ≤ n ≤ min{r, p}

∑

i,j∈Z≥0

i+j=n

(r − i)!

i!

(r − j)!

j!
f i|r⟩ ⊗ f j|p⟩

is annihilated by e, and hence is a highest weight vector in L(r) ⊗ L(p) with

weight r + p− 2n. This gives family of highest weight vectors in L(r)⊗ L(p),

generating subrepresentations of L(r)⊗L(p) of highest weight r+ p− 2n that

intersect only at 0. Counting dimensions, we have

L(r)⊗ L(p) ≃
min{r,p}⊕

n=0

L(r + p− 2n)

Definition 3.4.8. We define the category O of g representations, whose ob-

jects are g representations M such that

1. M is weight

2. M is finitely generated as a U(g) module

3. Each v ∈M generates a finite dimensional n+ module

We again sketch monoidal structure for g = sl(2). Simple objects of O are

isomorphic to Lλ for λ ∈ h∗ ≃ C. In Lλ ⊗ Lµ

∑

i,j∈Z≥0

i+j=n

i!j!

(
r − i

j

)(
λ− j

i

)
f i|λ⟩ ⊗ f j|µ⟩

is annihilated by e and hence is a highest weight vector of weight λ+ µ− 2n,

where

(
λ

j

)
=
λ(λ− 1) . . . (λ− j + 1)

j(j − 1) . . . 2 · 1

(
λ

0

)
= 1 (3.5)

is the binomial coefficient. We note that if λ ∈ P+ ≃ Z+ and µ ̸∈ P+, we get

finite direct sum
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L(r)⊗ L(µ) ≃
r⊕

n=0

L(r + µ− 2n)

If both λ, µ ̸∈ P+, we obtain countable direct sum

L(λ)⊗ L(µ) ≃
∞⊕

n=0

L(λ+ µ− 2n)

Despite the representations L(λ) being quite nice, we notice that their tensor

products already give much larger representations which are not in the category

O. Then we have to work with much less friendly categories in order to have

monoidal structure. This problem is only exacerbated with more interesting

simple objects.

Definition 3.4.9. For weight module M of g, the weight support of M is

{λ ∈ h∗|Mλ ̸= 0}

Definition 3.4.10. A weight module M with support inside one Q-coset is

called admissible if dimMλ is uniformly bounded.

Definition 3.4.11. [59] Let g be a finite dimensional simple Lie superalgebra.

A coherent family is a weight module C for g such that

� There exists d ∈ Z≥0, called the degree of C, such that dim Cλ = d for all

λ ∈ h∗.

� For any c ∈ U(g)h, the function taking λ ∈ h∗ to trCλc is polynomial in

λ.

Coherent families decompose as

C ≃
⊕

λ∈h∗/Q

C(λ) (3.6)

where each of the C(λ) is admissible. We demonstrate explicitly for sl(2).
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Consider one dimensional CC ⊕ Ch module C|λ,∆⟩ on which

h|λ,∆⟩ = λ|λ,∆⟩ C|λ,∆⟩ = ∆|λ,∆⟩ (3.7)

Define g module

E(λ,∆) = U(g)⊗CC⊕Ch C|λ,∆⟩

Then E(λ,∆) is generated by the action of e, f on |λ,∆⟩ and finally, define

C(∆) =

∫

λ∈h∗/Q

E(λ,∆)

Then C(∆) is a coherent family. We see that tensor products of the E(λ,∆)

are already extremely large, let alone those of coherent families.

3.5 Affine Lie algebras and Virasoro

We may now begin working towards the construction of vertex algebras. To

this end, we introduce families of infinite dimensional Lie superalgebras whose

representation theory resembles their finite dimensional counterparts.

Definition 3.5.1. Let g be a finite dimensional simple Lie superalgebra with

nondegenerate, supersymmetric, invariant bilinear form ⟨·, ·⟩. Consider g((t)) =
g⊗C((t)) and for g ∈ g denote gn := g⊗ tn. We have one dimensional central

extension ĝ of g, called the affinization of g

0 → CK → ĝ → g((t)) → 0

with nontrivial commmutation relation given by:

[an, bm] = [a, b]n+m +Kn⟨a, b⟩δn+m,0

Remark 3.5.1. We note that g[t] ⊕ CK is subalgebra of ĝ, and ĝ includes g

as a Lie subalgebra, given by the 0 modes g0 ∈ g⊗ C.

Affine Lie superalgebras also have a family of automorphisms which can

be used to twist their action on modules, which we will see often reduces the
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study of larger categories to that of smaller ones.

Definition 3.5.2. Let h be a Cartan subalgebra of g. h extends to a Cartan

subalgebra ĥ = h⊕KC of ĝ. For λ ∈ P∨, we define the spectral flow automorphism

[7] σλ of ĝ by

σλ(en) = en−α(λ) e ∈ gα (3.1)

σλ(hn) = hn −Kδn,0⟨λ, h⟩ h ∈ h (3.2)

σλ(K) = K (3.3)

We can begin to introduce the notation for affine vertex superalgeras and

their representation categories.

Definition 3.5.3. Let ĝ be an affine Lie superalgebra, and M a ĝ module.

� M is called smooth if for every m ∈ M and x ∈ g, there exists N ∈ Z

such that xnm = 0 for all n > N .

� M is called lower bounded if the generalized C eigenspaces satisfy, for

all ∆ ∈ C, M∆+m = 0 for m ∈ Z sufficiently negative.

� M is said to have level k ∈ C if K acts as multiplication by k.

� SupposeM is weight. v ∈M is called relaxed highest weight if tg[t]v = 0.

� M is called a relaxed highest weight module if it is generated by a relaxed

highest weight vector.

Definition 3.5.4. We define the following categories of ĝ modules

� Vk(g)-wtmod: the category of finitely generated smooth weight ĝ modules

at level k, such that M is bigraded by weight and conformal weight,

M =
⊕

λ,∆

Mλ,∆

with each Mλ,∆ <∞ and for each λ, there exists hλ such that Mλ,∆ = 0

when Re(∆) < Re(hλ).
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� Vk(g)-wtmod≥0: the full subcategory of Vk(g)-wtmod whose objects are

lower bounded.

� Vk(g)-wtmodKL: The full subcategory of Vk(g)-wtmod≥0 of objects that

are in the category O as g modules, and have finite dimensional confor-

mal weight spaces.

Definition 3.5.5. Let M be a smooth ĝ module. Define the spectral flow twist

σ∗
λ(M)

to be isomorphic to M as a vector space, with isomorphism σ∗
λ, and action

given by

xσ∗
λ(m) = σ∗

λ(σ−λ(x)m)

for x ∈ ĝ and m ∈M . Note that σ∗
λ(M) is again a smooth ĝ module.

Theorem 3.5.2. [36] Suppose that g is an (even) Lie algebra, k ̸= 0 and

M ∈ Vk(g)-wtmod is irreducible. Then there exists λ ∈ P∨ such that σλ(M) ∈
Vk(g)-wtmod≥0.

We may construct ĝ modules from g modules in a natural way. Here we

give this construction and establish our notation.

Definition 3.5.6. Suppose that N is a weight module for g. For k ∈ C non-

critical, N is naturally a g[t]⊕ CK module of level k, with

tg[t]v = 0 (3.4)

This induces to ĝ module, which we denote by:

Mk(N) = U(ĝ)⊗g[t]⊕CK N (3.5)

Definition 3.5.7. Suppose that M is a ĝ module with minimal conformal

weight.

� Denote by Mtop its subspace of minimal conformal weight.
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� Let I be the sum of all submodules that intersect Mtop trivially. Define

the almost irreducible quotient of M to be M/I.

� Denote the almost irreducible quotient of Mk(N) by Lk(N).

� For λ ∈ P , we denote

Vk(λ) =Mk(L(λ)) Lk(λ) = Lk(L(λ)) (3.6)

While Vir is not an affine Lie algebra, we may construct modules for it in

a very similar fashion to what we have done in the affine case.

Definition 3.5.8. For c, h ∈ C, consider one dimensional Vir≥0 module C|h⟩,
on which

L0|h⟩ = h|h⟩ C|h⟩ = c|h⟩ Vir>0|h⟩ = 0 (3.7)

Define the Vir module

Ṽc(h) = U(Vir)⊗Vir≥0
C|h⟩ (3.8)

Note this has PBW basis. Denote the simple graded quotient of Ṽc(h) by L̃c(h).
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Chapter 4

Vertex algebras

4.1 Basic notions

We may now introduce the machinery needed for vertex algebras. This be-

gins with formal distributions A(z1, ..., zn) ∈ R[[z±1 , ..., z
±
n ]] for ring R. Notice

that the product of formal distributions is not always well defined, but for

A(z1, ..., zn) ∈ R[[z±1 , ..., z
±
n ]] and B(w1, ..., wm) ∈ R[[w±

1 , ..., w
±
m]], the product

A(z1, ..., zn)B(w1, ..., wm) is always a well defined object ofR[[z±1 , ..., z
±
n , w

±
1 , ..., w

±
m]].

The delta distribution, which becomes critical in the study of ‘local operators’

that appear in conformal field theories, is an example of such a distribution in

R[[z±, w±]].

Definition 4.1.1. The formal delta distribution is

δ(z − w) =
∑

n∈Z

znw−n−1 (4.1)

For any formal distribution A(w) ∈ R[[z±]] we may calculate the product

A(w)δ(z−w) = A(z)δ(z−w). In particular (z−w)δ(z−w) = 0. Differentiating

and proceeding by induction, we see

(z − w)n+1∂nwδ(z − w) = 0 (4.2)

Lemma 4.1.1. [51] Let F (z, w) ∈ R[[z±, w±]] formal distributions such that
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(z − w)NF (z − w) = 0. Then F (z, w) can be written uniquely as

F (z, w) =
N−1∑

n=0

fn(w)∂
n
wδ(z − w) (4.3)

A ‘local operator’ as it appears in physics, should be a vector space mor-

phism, depending on an ‘insertion point’ parameter z, which does not ‘interact’

with operators inserted at distinct point w ̸= z. This notion is formalized in

the following way:

Definition 4.1.2. Let V be a vector superspace. Then End(V )[[z±]] is a vector

superspace.

� A field on V is A ∈ End(V )[[z±]] satisfying A(z)v ∈ V ((z)) for all v ∈ V .

� The supercommutator of fields is:

[A(z), B(w)] = A(z)B(w)− (−1)|A||B|B(w)A(z) (4.4)

� We say that fields A(z), B(w) are mutually local if there is N ∈ Z≥0 such

that:

(z − w)N [A(z), B(w)] = 0 (4.5)

as distributions in End(V )[[z±, w±]].

� The normally ordered product of fields is given by:

: A(z)B(w) := A(z)+B(w) + (−1)|A||B|B(w)A(z)− (4.6)

where

A(z)− =
∑

n<0

Anz
n A(z)+ =

∑

n≥0

Anz
n (4.7)

In this way, operators ‘do not interact’ if they commute, and they commute

unless z = w. Lemma 4.1.1 then tells us that a commutator of mutually local

fields is given by the sum of products of fields in one parameter with derivatives
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of the delta distribution. We may are now prepared to introduce the notion

of a vertex superalgebra.

Definition 4.1.3. A vertex superalgebra is a quadruple (V, |0⟩, T, Y ) such that

1. (space of states) V = V0 ⊕ V1 is a vector superspace

2. (vacuum vector) |0⟩ ∈ V0

3. (translation operator) Even T : V → V

4. (vertex operator) Even Y (·, z) : V → End[[z±]]

Y (v, z) =
∑

n∈Z

v(n)z
−n−1

5. (vacuum axioms)

(a) Y (|0⟩, z) = IdV

(b) Y (v, z)|0⟩ ∈ V [[z]]

(c) Y (v, 0)|0⟩ = v

6. (translation axioms)

(a) [T, Y (v, z)] = ∂zY (v, z)

(b) T |0⟩ = 0

7. (locality) All fields Y (v, z) are mutually local.

From a physics perspective, this gives a formal notion of the symmetry al-

gebra for a 2 dimensional quantum field theory: a vector space of even bosonic

and odd fermionic states, associated local fields acting on a vector space, a

means to ‘translate’ the insertion points of local fields, and a ‘homogenous’

vacuum state.

From a mathematical perspective, this is an ‘almost commutative superal-

gebra’ with derivation T , in the sense that we have bilinear product given by

the operator Y , which is commutative when z ̸= w, and identity object |0⟩.
We introduce a natural (and physically necessary) notion of 1

2
Z grading on

a vertex superalgebra.
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Definition 4.1.4. Suppose that V is a 1
2
Z graded vector space V =

⊕
n∈ 1

2
Z Vn.

� We say that linear operator ϕ : V → V is homogenous of degree m if

ϕ(Vn) ⊂ Vn+m.

� Suppose that V is a vertex algebra. V is a 1
2
Z-graded vertex algebra if

1. |0⟩ ∈ V0

2. T is homogenous of degree 1

3. For v ∈ Vm and associated field Y (v, z) =
∑

n∈Z vnz
−n−m, the modes

vn are homogenous of degree n.

Keeping with the analogy of a vertex superalgebra as an almost commu-

tative superalgebra, we would like to have some notion of associativity. This

role is played by the Jacobi identity. It can be proven that this is equivalent

to locality in the presence of the other vertex superalgebra axioms.

Theorem 4.1.2 (Jacobi Identity). [33] For V a vertex algebra and homogeous

a, b, c ∈ V , the three expressions

Y (a, z)Y (b, w)c ∈ V ((z))((w)) (4.8)

(−1)|a||b|Y (b, w)Y (a, z)c ∈ V ((w))((z)) (4.9)

Y (Y (a, z − w)b, w)c ∈ V ((w))((z − w)) (4.10)

are expansions in their respective domain of the same element of

V [[z, w]][z−1, w−1, (z − w)−1]

From a physics perspective, this notion of associativity gives us means to

expand products of fields inserted near each other as sums of fields inserted

only at one point, weighted by the distance between insertions z − w.

Proposition 4.1.3. [51] Let ϕ(z), φ(w) be homogenous fields on vector super-

space V . The following are equivalent:

1. In End(V )[[z±1, w±1]] we have:

(z − w)N [ϕ(z), φ(w)] = 0
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2. For some fields γn(w) and (z−w)−1 expanded in positive powers of w/z,

we have:

ϕ(z)φ(w) =
N−1∑

n=0

γn(w)

(z − w)n+1
+ : ϕ(z)φ(w) : (4.11)

The same equality holds for (−1)|φ||ϕ|φ(w)ϕ(z), with (z−w)−1 expanded

in positive powers of z/w.

Proof. We prove for homogenous fields ϕ, φ. Note that

ϕ(z)φ(w) = ϕ(z)−φ(w) + ϕ(z)+φ(w)

= ϕ(z)−φ(w)− (−1)|ϕ||φ|φ(w)ϕ(z)− + (−1)|ϕ||φ|φ(w)ϕ(z)− + ϕ(z)+φ(w)

= [ϕ(z)−, φ(w)]+ : ϕ(z)φ(w) : (4.12)

Assume 1. above. By 4.1.1 we have fields γn(w) such that:

[ϕ(z), φ(w)] =
N−1∑

n=0

1

n!
γn(w)∂

n
wδ(z − w) (4.13)

Looking at only negative powers in z we have:

[ϕ(z)−, φ(w)] =
N−1∑

n=0

1

n!
γn(w)∂

n
wδ(z − w)−

Then the first form of 4.11 follows by noting that 1
n!
∂nwδ(z−w)− is the expansion

of (z − w)n+1 in C((z))((w)). The formula for φ(w)ϕ(z) is obtained similarly

using (−1)|φ||ϕ|φ(w)ϕ(z) = [ϕ+(z), φ(w)]+ : ϕ(z)φ(w) :.

Assuming both forms of 4.11 above and taking the commutator, we see that

the normal order portions cancel and we are left with the sum of δ(z − w)−,

and δ(z − w)+, recovering the expression in 1. above.

We call 4.11 the operator product expansion of fields ϕ(z), φ(w). By the

previous theorem, data of operator product expansions is equivalent to the

data of commutators of fields.

Comparing the expressions 4.11 with 4.10 for Y (a, z), Y (b, w), and using
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Taylor’s theorem to expand Y (a, z), we obtain:

∑

n∈Z

Y (a(n)b, w)

(z − w)n+1
=

N−1∑

n=0

γn(w)

(z − w)n+1
+

∞∑

m=0

(z − w)m

m!
: ∂mw Y (a, w)Y (b, w) :

Then the following expressions hold for n ≥ 0:

Y (a(n)b, w) =: ∂−n−1
w Y (a, w)Y (b, w) :

γn(w) = Y (a(n)b, w) (4.14)

This motivates the following theorems.

Theorem 4.1.4. [33] For vertex algebra V and a, b ∈ V , we have mode com-

mutation relations:

[a(m), b(k)] =
∑

n≥0

(
m

n

)
(a(n)b)(m+k−n) (4.15)

Proof. With 4.13 and 4.14 we have:

[ϕ(z), φ(w)] =
∞∑

n=0

1

n!
Y (a(n)b, w)∂

n
w(z − w)

=
∞∑

n=0

∑

m∈Z

(
m

n

)
Y (a(n)b, w)z

−m−1wm−n

Theorem 4.1.5 (Reconstruction). [33] Let V be a vector space, |0⟩ ∈ V a

nonzero vector, and T an endomorphism of V . Suppose that {Jα}α∈S is a

collection of vectors in V , and we are given fields

Jα(z) =
∑

n∈Z

Jα
(n)z

−n−1

Satisfying the following conditions

1. For all α, Jα(z)|0⟩ = Jα + z(...)

2. T |0⟩ = 0 and [T, Jα(z)] = ∂zJ
α(z)
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3. All fields Jα(z) are mutually local

4. V is spanned by vectors

Jα1
j1
...Jαm

jm
|0⟩ ji < 0

Then

Y (Jα1
j1
....Jαm

jm
|0⟩, z) = 1

(−j1 − 1)!...(−jm − 1)!
: ∂−j1−1

z Jα1(z)...∂−jm−1
z Jαm(z) :

(4.16)

Defines the structure of a vertex algebra on V , and this is the unique vertex

algebra structure on V satisfying (1), (2), (3), (4) such that Y (Jα, z) = Jα(z).

This theorem gives two powerful tools: first, it gives a uniqueness result

that allows us demonstrate that two vertex superalgebras are isomorphic by

looking only at a generating set and a limited number of relations. Secondly,

it gives us means to practically construct the large amounts of data associated

to a vertex superalgebra. In order to recover all relations from the generating

ones, we will need some means to calculate the commutator of a field with a

normally ordered product. This is given by Wick’s theorem.

Theorem 4.1.6. For homogenous fields A(z), B(z) and C(w), we have

[: A(z)B(z) :, C(w)] = (−1)|B||C| : [A(z), C(w)]B(z) : + : A(z)[B(z), C(w)] :

(4.17)

where the normal ordered product is with respect to powers of z.
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Proof.

[: A(z)B(z) :, C(w)]

=
∑

m,l
n<0

[A(n)B(m), C(l)]z
−n−m−2w−l−1 +

∑

m,l
n≥0

[B(m)A(n), C(l)]z
−n−m−2w−l−1

=
∑

m,l
n<0

(
(−1)|B||C|[A(n), C(l)]B(m) + A(n)[B(m), C(l)]

)
z−n−m−2w−l−1

+
∑

m,l
n≥0

(
(−1)|A|(|B|+|C|)[B(m), C(l)]A(n) + (−1)|B||A|B(m)[A(n), C(l)]

)
z−n−m−2w−l−1

=: A(z)[B(z), C(w)] : +(−1)|B||C| : [A(z), C(w)]B(z) : (4.18)

Where the red portion becomes the second term in the last line and the blue

portion becomes the first.

Example 4.1.7. Suppose that g is a Lie superalgebra with nondegenerate,

invariant bilinear form ⟨·, ·⟩, and k ∈ C.

� Let {J i}i=1,...,d be a basis of g with J i ∈ g0 for i ≤ n and J i ∈ g1 for

i > n.

� Consider affinization ĝ and module Vk(0), note it has PBW basis.

� Define operator T on Vk(0) by:

T |0⟩ = 0 [T, Jα
n ] = nJn−1 (4.19)

� Define fields:

J i(z) =
∑

n∈Z

J i
nz

−n−1 (4.20)

using bracket of modes, these fields have commutator:

[Jα(z), Jβ(w)] = [Jα, Jβ](w)δ(z − w) +K⟨Jα, Jβ⟩∂wδ(z − w) (4.21)

By reconstruction, this defines vertex superalgebra structure (Vk(0), |0⟩, T, Y ),
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which we call the universal affine vertex superalgebra associated to g, and de-

note by Vk(g).

This also defines vertex algebra structure on Lk(0), which we call the affine

vertex superalgebra associated to g, and denote by Lk(g).

As it turns out, affine vertex superalgebras are the prototypical example, as

they demonstrate many of the properties present in all vertex superalgebras,

and all known vertex superalgebras are given somehow by beginning with an

affine vertex superalgebra and performing various constructions to obtain one

vertex superalgebra from another.

We may perform a similar construction using the Virasoro algebra in place

of an affine Lie algebra.

Example 4.1.8.

� Consider the Vir module Ṽc(0).

� Define operator T = L−1.

� Define field:

T (z) =
∑

n∈Z

Lnz
−n−2 (4.22)

By bracket of the modes, this has commutator:

[T (z), T (w)] =
C

12
∂3wδ(z − w) + 2T (w)∂wδ(z − w) + ∂wT (w) · δ(z − w)

(4.23)

by reconstruction, this defines vertex algebra (Ṽc(0), |0⟩, T, Y ), which we will

call the universal Virasoro vertex algebra and denote by Ṽc(Vir).

This also defines vertex algebra structure on L̃c(0), which we call the Virasoro

vertex algebra and denote by L̃c(Vir).

Because the Virasoro algebra plays the role of conformal symmetry in two

dimensions, the Virasoro vertex algebra should be present in any vertex su-

peralgebra consisting of symmetries for some 2 dimensional conformal field

theory.
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Definition 4.1.5. Consider 1
2
Z graded vertex algebra V =

⊕
n∈ 1

2
Z Vn. We call

V a conformal vertex algebra or vertex operator algebra if there exists conformal

vector ω ∈ V2 with

Y (ω, z) =
∑

n∈Z

Lnz
−n−2 (4.24)

Such that:

1. The modes Ln satisfy the defining relations of the Virasoro algebra.

2. L−1 = T .

3. L0 is the ‘grading operator’ on V , L0|Vn
= nId. We call the L0 eigen-

values conformal weights.

As before, affine vertex superalgebras are the prototypical example, as

(nearly all) affine vertex superalgebras have a natural conformal structure.

Theorem 4.1.9 (Segal-Sugawara). Let k ̸= −h∨ where h∨ is the dual Coexeter

number of g. Pick parity homogenous basis {J i}i=1,...,d of g and dual basis

{Ji}i=1,...,d with respect to the invariant bilinear form ⟨·, ·⟩. Define:

J i(z) =
∑

n∈Z

J i
(n)z

−n−1 Ji(z) =
∑

n∈Z

Ji,(n)z
−n−1 (4.25)

We define the following weight two vector:

ω =
1

2(k + h∨)

d∑

i=1

Ji,(−1)J
i
(−1)|0⟩ (4.26)

Then ω is a conformal vector in V k(g) with central charge:

c(k) =
k dim g

k + h∨
(4.27)

The Virasoro field has form:

T (z) = Y (ω, z) =
1

2(k + h∨)

d∑

i=1

: Ji(z)J
i(z) : (4.28)
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Then every affine vertex superalgebra associated to simple Lie superalgbra is

conformal away from critical level k = −h∨. Note that the mode L0 is the

Casimir of g, with modifications in higher degrees.

Proof. Put S = (k + h∨)ω so S(z) =
∑

n∈Z Snz
−n−2 = (k + h∨)L(z). For

J ∈ g, we claim that

SnJ(−1)|0⟩ = 0 n ≥ 1

S0J(−1)|0⟩ = (k + h∨)J(−1)|0⟩
S−1J(−1)|0⟩ = (k + h∨)J−2|0⟩

We note the following relations

Sn =
1

2

d∑

i=1

(
∑

m<0

Ji (m)J
i
(n−m) + (−1)|J

i||Ji|
∑

m≥0

J i
(n−m)Ji (m)

)

J i
(l)J(−1)|0⟩ = (−1)|J

i||J |J(−1)J
i
(l)|0⟩+ [J i, J ](l−1)|0⟩+ klδl,1⟨J i, J⟩|0⟩

and similarly for lower indices Ji. In particular, we have the following for

l ≥ 2:

J i
(l)J(−1)|0⟩ = 0 J i

(1)J(−1)|0⟩ = k⟨J i, J⟩|0⟩ J i
(0)J(−1)|0⟩ = [J i, J ](−1)|0⟩

(4.29)

and similarly for the lower indices Ji. Assume that J is homogenous. We

consider the case n ≥ 2. In this case, all terms in SnJ(−1)|0⟩ except those with

m = 0, 1 vanish from the rightmost mode in Sn. The terms m = 0, 1 vanish

from the action of J i
(n−m).

We consider the case n = 1. All terms vanish from the rightmost mode in

Sn except those with m = 1, 0. The term with m = 1 again vanishes from the
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action of of J i
(n−m). Recalling 3.2.8

S1J(−1)|0⟩ =
1

2

d∑

i=1

(−1)|J
i||Ji|J i

(1)Ji (0)J(−1)|0⟩

=
1

2

d∑

i=1

(−1)|J
i||Ji|k⟨J i, [Ji, J ]⟩|0⟩ =

k

2

〈
d∑

i=1

(−1)|J
i||Ji|[J i, Ji], J

〉
|0⟩

=
k

2

〈
d∑

i=1

[Ji, J
i], J

〉
|0⟩ = 0 (4.30)

We now consider the case n = 0. Again, all terms except those with m =

0, 1,−1 immediately vanish due to the above relations. We are left with

S0J(−1)|0⟩ =
1

2

d∑

i=1

(
Ji (−1)J

i
(1) + (−1)|Ji||J

i|
(
J i
(−1)Ji (1) + J i

(0)Ji (0)

))
J(−1)|0⟩

=
k

2

d∑

i=1

(
Ji (−1)⟨J i

(−1), J⟩+ J i
(−1)⟨J, Ji⟩

)
|0⟩+ h∨J(−1)|0⟩ = (k + h∨)J(−1)|0⟩

(4.31)

where we note that the m = 0 term is exactly the Casimir constructed out of 0

modes, so it acts as the Casimir does on the adjoint representation. Finally,

we consider the case n = −1. All terms except those with m = 1, 0,−1,−2

vanish from the action of the rightmost mode. We are left with
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S−1J(−1)|0⟩

=
1

2

d∑

i=1

(
Ji (−2)J

i
(1) + Ji (−1)J

i
(0) + (−1)|J

i||Ji|
(
J i
(−1)Ji (0) + J i

(−2)Ji (1)

))
J(−1)|0⟩

= kJ(−2)|0⟩+
1

2

d∑

i=1

(
Ji (−1)[J

i, J ](−1) + (−1)|J
i||Ji|J i

(−1)[Ji, J ](−1)

)
|0⟩

= kJ(−2)|0⟩+
1

2

d∑

i,k=1

(
Ji (−1)⟨[J i, J ], Jk⟩Jk

(−1) + (−1)|J
i||Ji|+|J ||Ji|J i

(−1)⟨[Jk, J ], Ji⟩Jk (−1)

)
|0⟩

= kJ(−2)|0⟩+
1

2

d∑

i,k=1

(
(−1)|J

i||Ji|⟨Jk, [Ji, J ]⟩[J i, Jk](−2)

)
|0⟩

= kJ(−2)|0⟩+
1

2

d∑

i=1

(
(−1)|J

i||Ji|[J i
(0), [Ji (0), J(−2)]]

)
|0⟩

= kJ(−2)|0⟩+
1

2

d∑

i=1

(−1)|J
i||Ji|J i

(0)Ji (0), J(−2)|0⟩ = (k + h∨)J(−2)|0⟩ (4.32)

Using the OPE formula 4.1.3, these results gives us:

L(z)J(w) =
∞∑

n=−1

Y (LnJ(−1)|0⟩, w)
(z − w)n+2

+ : L(z)J(w) :

=
J(w)

(z − w)2
+
∂wJ(w)

z − w
+ : L(z)J(w) : (4.33)

Using Wick theorem, we obtain the OPE:

L(z)L(w) ∼ c

2(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

z − w
(4.34)

With c = ksdimg

k+h∨ . The mode commutation relations 4.1.4 then give us the L−1

derivative and L0 grading properties from L(z)J(w), and the Virasoro relations

of modes from L(z)L(w).

We can now present a number of examples of vertex superalgebras that

will be necessary for later constructions here. The simplest of these is the free
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bosons associated to a lattice, the typical Lie theoretic example of sl(2), and

finally the free fermionic counterpart of the free boson, which we may associate

to a Clifford algebra.

Example 4.1.10. Let L be a finite rank lattice with basis {hi}i=1,..,d and sym-

metric bilinear form ⟨·, ·⟩ : L× L→ Z.

Consider commutative Lie algebra h = L ⊗Z C. The form ⟨·, ·⟩ induces to

a bilinear form on h, which we again denote by ⟨·, ·⟩.
Then πL = V1(h) is the Heisenberg or bosonic vertex algebra associated to

the lattice L. It has generating fields hi(z) with relations:

hi(z)hj(w) ∼ ⟨hi, hj⟩
(z − w)2

(4.35)

In particular, if L is the rank one lattice generated by h with form ⟨h, h⟩ = 1,

then we call V1(h) simply the free boson.

Example 4.1.11. The affine vertex algebras Vk(sl(2)), Lk(sl(2)) have gener-

ating fields e(z), h(z), f(z) with nontrivial relations:

e(z)f(w) ∼ h(w)

(z − w)
+

k

(z − w)2
h(z)e(w) ∼ 2e(w)

z − w
(4.36)

h(z)f(w) ∼ −2f(w)

z − w
h(z)h(w) ∼ 2k

(z − w)2
(4.37)

The Segal-Sugawara Virasoro field is given by:

T (z) =
1

2(k + 2)

(
1

2
: h(z)h(z) : + : e(z)f(z) : + : f(z)e(z) :

)

Example 4.1.12. We introduce odd modes ψ(n) for n ∈ Z with nontrivial

(anti)commutation relations

[ψ(n), ψ(m)] = δn+m+1 (4.38)

The free fermionic Fock module F has basis:

ψ(n1) . . . ψ(nm)|0⟩
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with n1 < · · · < nm. We define the field:

ψ(z) =
∑

n∈Z

ψ(n)z
−n−1

with nontrivial OPEs given by:

ψ(z)ψ(w) ∼ 1

z − w
(4.39)

This has Virasoro field:

T (z) = −1

2
: ψ∂ψ : (z) =

∑

n∈Z

Lnz
−n−2 (4.40)

of central charge c = 1
2
and we define the translation operator T = L−1 and

grading operator L0, with respect to which ψ has weight 1
2
. By reconstruction,

this defines conformal vertex superalgebra structure (F, |0⟩, T, Y ), which we will

denote again by F and call the Majorana free fermion.

Example 4.1.13. We consider the tensor product of two Majorana free fermions

F1 ⊗ F2, denoting the generators by ψ1 and ψ2. We define:

ψ(z) =
1√
2
(ψ1(z)− iψ2(z)) ψ†(z) =

1√
2
(ψ1(z) + iψ2(z)) (4.41)

with nontrivial OPEs given by:

ψ(z)ψ†(w) ∼ 1

z − w
(4.42)

which we call the charged free fermions. This has family of Virasoro fields:

T (z) = −a : ψ(z)∂ψ†(z) : −(1− a) : ψ†(z)∂ψ(z) :

for a ∈ [0, 1], with central charge 1−12(a− 1
2
)2. With respect to this conformal

structure, ψ has conformal weight a and ψ† has conformal weight 1− a.

In particular, taking a = 1 and denoting b = ψ and c = ψ†, we have
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Virasoro field:

T (z) = − : b∂c : (z)

with which b has weight 1 and c has weight 0. We call this sVOA the fermionic ghosts

and denote it by bc.

Similarly, we denote by bctw the charged free fermions with conformal struc-

ture corresponding to a = 0, with respect to which b has weight 0 and c has

weight one.

4.2 Modules

The conformal vertex superalgebra only plays the role of the symmetries of a

2 dimensional conformal field theory. Then we also need some notion for how

such an algebra should act on other ‘states’. This is again natural from the

almost commutative algebra perspective.

Definition 4.2.1. Let (V, |0⟩, T, Y ) be a conformal vertex superalgebra. Then

� A weak V -module is (M,YM) such that

1. M is a vector superspace.

M =M0 ⊕M1 (4.1)

2. YM : V ⊗M →M [[z±1]] is even.

v ⊗m 7→ YM(v, z)m =
∑

n∈Z

vnmz
−n−1 (4.2)

3. YM(|0⟩, z) = IdM .

4. For any v ∈ V , m ∈M ,

YM(v, z)m ∈M((z))

5.

YM(Tv, z) = ∂zYM(v, z)
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6. For parity homogenous a, b ∈ V :

δ((z1 − z2)− z0)YM(a, z1)YM(b, z2)

− (−1)|a||b|δ((−z2 − z1)− z0)YM(b, z2)YM(a, z1)

= δ((z1 − z0)− z2)YM(Y (a, z0)b, z2) (4.3)

7. If we denote:

YM(ω, z) =
∑

n∈Z

Lnz
−n−2

Then the Ln satisfy the Virasoro relations, with c is the central

charge of V .

[Ln, Lm] = (m− n)Lm+n +
m3 −m

12
δm+n,0c (4.4)

� A generalized V -module is a weak V -module such that:

1. M is a C-graded vector space.

M =
∐

h∈C

M[h] (4.5)

2. For i = 0, 1,

Mi =
∐

h∈C

Mi,[h] Mi,[h] :=Mi ∩Mi,[h] (4.6)

3. M[h] is the generalized eigenspace of L0 with generalized eigenvalue

h.

� A grading-restricted generalized V module is a lower bounded generalized

V module M with M[h] <∞ for any h ∈ C.

In the following, we shall refer to a generalized module simply as a module.

We can now introduce the standard algebraic notions for vertex superalgebra

modules.
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Remark 4.2.1. A Vk(g) module is equivalent to a smooth ĝ module, with YM

given by the fields 4.20 and 4.16.

Definition 4.2.2. Let V be a vertex superalgebra. A V moduleM is indecomposable

if it is nonzero and can not be written as a direct sum of two nonzero submod-

ules.

Definition 4.2.3. For (M1, YM1), (M2, YM2) generalized V modules, a parity-

homogenous homomorphism f : M1 → M2 of vertex superalgebra modules is

parity homogenous linear map satisfying:

f(YM1(v, z)m) = (−1)|f ||v|YM2(v, z)f(m) (4.7)

for all parity homogenous v ∈ V and m ∈M . A homomorphism of generalized

modules is a sum of even and odd homomorphisms.

For the physically relevant quantities: the ‘correlation functions’, it is also

necessary to have a notion of product for two states in different modules. This

is given by an intertwining operator.

Definition 4.2.4. For M1,M2,M3 modules for conformal vertex superalge-

bra V , a parity homogenous intertwining operator of type
(

M3

M1 M2

)
is parity

homogenous linear map:

Y :M1 ⊗M2 →M3[log z]{z} (4.8)

m1 ⊗m2 7→ Y(m1, z)m2 =
∑

n∈C

∑

k∈N

(w1)
Y
n:kw2z

−n−1(log z)k (4.9)

satisfying the following conditions:

1. For m1 ∈M1, m2 ∈M2, n ∈ C:

(m1)
Y
n+m,km2 = 0

for sufficiently large m ∈ N, independent of k.
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2. For m1 ∈M1 and v ∈ V :

(−1)|Y||v|δ((z1 − z2) + z0)YM3(v, z1)Y(m1, z2)

− (−1)|m1||v|δ((z2 − z1)− z0)Y(m1, z2)YM2(v, z1)

= δ((z1 − z0)− z2)Y(YM1(v, z0)m1, z2) (4.10)

for parity homogenous v ∈ V , m1 ∈M1.

3. For any m1 ∈ W1:

Y(Tm1, z) = ∂zY(m1, z)

An intertwining operator of type
(

M3

M1 M2

)
is a sum of an even and odd inter-

twining operator of this type.

There is a natural template which we would hope to use to construct

monoidal and braiding structures on categories of conformal vertex algebra

modules. Verifying that such structures do exist becomes one of the most

challenging problems in the study of VOAs.

These notions were introduced by Huang, Lepowsky and Zhang in[41]-[48],

and we call this the HLZ tensor category structure.

We would like to think of products of intertwining operators

Y1(v1, z1)...Ym(vm, zm)|0⟩

as giving us some physical state depending on insertion points z1, ..., zm ∈ C.

However, Y(v, z)m need only live in some completion of the ‘target’ space of

the intertwining operator Y .

Definition 4.2.5. For M =
⊕

h∈CM[h], we define the algebraic closure to be:

M = Πh∈CM[h] (4.11)

This is naturally a vector superspace, with M i = Mi for i = 0, 1. Denote the

projection by:

πh :M →M[h]
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Definition 4.2.6. For M1,M2,M3 modules for conformal vertex superalge-

bra V , a parity homogenous P (z) intertwining map of type
(

M3

M1 M2

)
is parity

homogenous linear map:

I :M1 ⊗M2 →M3 (4.12)

satisfying the following conditions:

1. For m1 ∈M1, m2 ∈M2, n ∈ C:

πn−m(I(m1 ⊗m2)) = 0

For sufficiently large m ∈ N

2.

(−1)|I||v|δ((x1 − z)− x0)YM3(v, x1)I(m1 ⊗m2)

− (−1)|v||m1|δ((z − x1) + x0)I(m1 ⊗ YW2(v, x1)m2)

= −δ((x1 − x0)− z)I(YM1(v, x0)m1 ⊗m2) (4.13)

for m2 ∈M2 and parity homogenous v ∈ V , m1 ∈M1.

A P (z)-intertwining map of type
(

M3

M1 M2

)
is a sum of an even and odd P (z)

intertwining map of this type.

The physically relevant objects are not the ‘states’ themselves: the vectors

of in a module. Rather it is their corresponding fields: the intertwining op-

erators. Then the tensor product of vector spaces underlying modules (as we

would expect for Lie algebras) is too large. Here we arrive at the appropriate

notion of tensor product.

Definition 4.2.7. Suppose that M1,M2 are V modules in the category C and

z ∈ C×. A P (z) tensor product of W1 and W2 in C is

1. A module M1 ⊠P (z) M2 ∈ C.

2. An even P (z) intertwining map ⊠P (z) of type
(
M1⊠P (z)M2

M1 M2

)
.
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3. For any M3 ∈ C and P (z) intertwining map I of type
(

M3

M1 M2

)
, there

exists unique homomorphism ηI :M1⊠P (z)M2 →M3 so that the following

commutes:

M1 ⊠P (z) M2 M3

M1 ⊗M3

ηI

⊠P (z) I

Where ηI is the natural extension of ηI to M1 ⊠P (z) M2.

If we have morphisms f1 :M1 →M ′
1 and f2 :M2 →M ′

2, then ⊠P (z) ◦ (f1⊗ f2)

is an intertwining operator of type
(
W ′

1⊠P (z)W
′
2

W1 W2

)
. Define

f1 ⊠P (z) f2 W1 ⊠P (z) W2 → W ′
1 ⊠P (z) W

′
2

to be the unique morphism induced by the universal property of the P (z) tensor

product.

We may now introduce the means by which we might arrive at a natural

braided tensor category structure on categories of vertex superalgebra mod-

ules, and sufficient conditions for such a structure to arise.

Remark 4.2.2. When it is possible to obtain the structure of a monoidal

category on C, we pick in particular the P (1) tensor product, which we simply

denote by ⊠.

Definition 4.2.8. For V a conformal vertex algebra and M a V -module, a

twist on M is defined by:

θM = e2πiL0

Definition 4.2.9. Let V be a conformal vertex superalgebra and M be a V

module. We define:

C2(M) = {v(−2)m|v ∈ V, m ∈M} (4.14)

We say that M is C2 cofinite if C2(M) has finite codiminsion in M.

Definition 4.2.10. We say that a conformal vertex algebra V is rational if
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1. There are only finitely many irreducible V modules.

2. Every V module is a finite direct sum of irreducible V modules.

3. All fusion rules for V are finite.

Theorem 4.2.3. [39] Let V be a simple conformal vertex algebra satisfying:

1. Vn = 0 for n < 0, V0 = C|0⟩, and the contragradient V ∨ ≃ V .

2. V is rational.

3. V is C2 cofinite.

Then the category of V modules is a modular tensor category with respect to

the HLZ structure.

4.2.1 Fock modules

We begin with the simplest examples of braided tensor category structure for

vertex algebras: those associated to the Heisenberg vertex algebras πL.

Example 4.2.4. Suppose that L is a finite rank lattice with symmetric bilinear

form ⟨·, ·⟩ : L × L → Z, h = L ⊗Z C and πL the associated Heisenberg vertex

algebra. Let λ ∈ h, and identify λ with ⟨λ, ·⟩ ∈ h∗. Then we define the

Fock modules:

πL(λ) = V1(λ)

The πL(λ) are form a complete list of isomorphism classes of simple πL mod-

ules, and the gradation is given by deg |λ⟩ = ⟨λ,λ⟩
2

and for h ∈ h, deg h(n) = −n.

Proposition 4.2.5. [27] Let λ, µ ∈ h∗. Then the tensor product of πL(λ) and

πL(µ) exists, and we have the isomorphism:

πL(λ)⊠ πL(µ) ≃ πL(λ+ µ) (4.15)

Theorem 4.2.6. [17][25] Let C be the semisimple category generated by the

Fock modules πL(λ). Then C is a vertex tensor category with respect to the

HLZ structure.
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4.2.2 Admissible level Lk(sl(2))

Definition 4.2.11. We define the following categories of affine vertex algebra

modules

� Lk(g)-wtmod: the full subcategory of Vk(g)-wtmod whose objects are

Lk(g) modules.

� Lk(g)-wtmod≥0: Lk(g)-wtmod ∩ Vk(g)-wtmod≥0.

� Lk(g)-wtmodKL: Lk(g)-wtmod ∩ Vk(g)-wtmodKL.

This brings us to the details most relevant for the study of representation

theory of L1(D(2, 1;− v
w
)).

Definition 4.2.12. We say that the level k ∈ C is admissible if k = u
v
− 2

with (u, v) = 1 and u ∈ Z≥2 and v ∈ Z≥1. In the following, we will assume

that k is an admissible level.

Remark 4.2.7. Let ω ∈ P∨ be the fundamental weight of sl(2). For λ ∈ C,

we identify λ with ⟨λω, ·⟩ ∈ h∗. Define:

λr,s = r − 1− u

v
s (4.16)

Remark 4.2.8. We note that for modules of highest weight λ, the form of the

Segal-Sugawara conformal vector gives minimal L0 eigenvalue:

∆ =
(λ+ 1)2 − 1

4(k + 2)
(4.17)

If |λ,∆⟩ is a state with weight λ and conformal weight ∆, then weights and

conformal weights of the spectral flow are given by:

h0(σ
t)∗|λ,∆⟩ = (λ+ tk)(σt)∗|λ,∆⟩ (4.18)

L0(σ
t)∗|λ,∆⟩ =

(
∆+

1

2
tλ+

1

4
t2k

)
(σt)∗|λ,∆⟩ (4.19)

We establish notation and give an overview of each of the categories defined

above in the case of admissible level sl(2), including their simple objects, tensor

category structure, and fusion products.
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Theorem 4.2.9. [14] For admissible level k, the category Lk(sl(2))-wtmodKL

is a semisimple rigid braided tensor category, and any irreducible object is

isomorphic to one of

Lr,0 = Lk(λr,0) (4.20)

for r ∈ {1, ..., u− 1}.

Definition 4.2.13. We introduce the notation:

D+
r,s = Lk(L(λr,s)) (4.21)

Define the modules D−
r,s to be the conjugates of D+

r,s, obtained by twisting the

action of Lk(sl(2)) by the Weyl reflection of sl(2).

Theorem 4.2.10. [2] For admissible level k, any irreducibles in Lk(sl(2))-

wtmod≥0 is isomorphic to one of

Lr,0 D±
r,s Eλ;∆r,s

= Lk(E(λ,∆r,s)) (4.22)

for r ∈ {1, ..., u− 1} and s ∈ {1, ..., v − 1} and λ ̸= λr,s mod 2Z.

Theorem 4.2.11. [2] For admissible level k, any irreducible object in Lk(sl(2))-

wtmod is isomorphic to one of the spectral flows

σt(Lr,0) σt(D±
r,s) σt(Eλ,∆r,s

) (4.23)

for t ∈ Z,(with some redundancy), where we define σt = σ∗
tω.

Proposition 4.2.12. [1] There exist indecomposable modules σt(E±
r,s) satisfy-

ing the nonsplit exact sequences:

0 σt(D+
r,s) σt(E+

r,s) σt(D−
u−r,v−s) 0 (4.24)

0 σt(D−
r,s) σt(E−

r,s) σt(D+
u−r,v−s) 0 (4.25)

for r ∈ {1, ..., u − 1}, s ∈ {1, ..., v − 1}. There exist indecomposable modules
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σt(P±
r,s) satisfying the nonsplit exact sequences:

0 σt(E+
r,s) σt(P+

r,s) σt+1(E+
r,s+1) 0 (4.26)

0 σt(E−
r,s) σt(P−

r,s) σt+1(E−
r,s+1) 0 (4.27)

for r ∈ {1, ..., u− 1} and s ∈ {1, ..., v − 2}.

Theorem 4.2.13. [7] For admissible k, Lk(sl(2))-wtmod is finite length and

any indecomposable projective module is isomorphic to one of

σt(Eλ;∆r,s
) λ ̸= λr,s mod 2Z r ∈ {1, ..., u− 1} s ∈ {1, ..., v − 1}

σt(P±
r,s) r ∈ {1, ..., u− 1} s ∈ {1, ..., v − 2}

Theorem 4.2.14. [6] Lk(sl(2))-wtmod is a vertex tensor category, with the

following fusion products when v > 1.

Lr,0 ⊠ Lr′,0 ≃
u−1⊕

r′′=1

N
(u) r′′

r,r′ Lr′′,0 (4.28)

Lr,0 ⊠D±
r′,s′ ≃

u−1⊕

r′′=1

N
(u) r′′

r,r′ D±
r′′,s′ (4.29)

Lr,0 ⊠ Eλ;∆r′,s′
≃

u−1⊕

r′′=1

N
(u) r′′

r,r′ Eλ+λr,0;∆r′′,s′
(4.30)

Where we define:

N
V ir (r′′,s′′)
(r,s)(r′,s′) = N

(u) r′′

r,r′ N
(v) s′′

s,s′ (4.31)

N
(u) r′′

r,r′ =





1 if |r − r′|+ 1 ≤ r′′ ≤ min{r + r′ − 1, 2u− r − r′ − 1}

and r + r′ + r′′ is odd

0 otherwise

(4.32)
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We make note of the following identities:

N
(u) r′′

1,r′ = δr′,r′′ N
(u) u−r′′

r,u−r′ = N
(u) r′′

r,r′ (4.33)

and for r′ ̸= 1, u− 1:

N
(u) r′′

2,r′ = δr′+1,r′′ + δr′−1,r′′ (4.34)

Remark 4.2.15. Notice that many properties of irreducible modules in Lk(sl(2))-

wtmod, including generating conformal weights and the forms of some fusion

products, depend only on their coherent family and not on the particular form

of the module.

It is then practical for us to introduce some notation so that these forms

can be treated uniformly, and specify these properties. We denote:

σt(Mλ,∆r,s
) (4.35)

where M stands in for the labels L,D±, E and the labels λ,∆r,s are as in the

following table.

L D± E
λ λr,0 λr,s s ̸= 0 λ ∈ R/2Z λ ̸= λr,s mod 2
∆ ∆r,0 ∆r,s s ̸= 0 ∆r,s

We denote:

∆(σt(Mλ,∆r,s
)) = ∆r,s +

1

2
tλ+

1

4
t2k ∈ C/Z (4.36)

to be the conformal weight of any vector in σt(Mλ,∆r,s
) modulo integer, in

this case calculated using the conformal weight of a generating vector. The

following fusion products also depend only on the coherent family.

Lr,0 ⊠ σt(Mλ,∆1,s) ≃ σt(Mλ+r−1,∆r,s
) (4.37)

Lr,0 ⊠ σt(Mλ,∆u−1,s) ≃ σt(Mλ+r−1,∆u−r,s
) (4.38)

L2,0 ⊠ σt(Mλ,∆1,s) ≃ σt(Mλ+1,∆2,s) (4.39)
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L2,0 ⊠ σt(Mλ,∆u−1,s) ≃ σt(Mλ−1,∆u−2,s) (4.40)

and for r ̸= 1, u− 1

L2,0 ⊠ σt(Mλ,∆r,s
) ≃ σt(Mλ−1,∆r−1,s)⊕ σt(Mλ+1,∆r+1,s) (4.41)

Proposition 4.2.16. We have the following isomorphism as L1(sl(2))⊗L1(sl(2))

modules

bc⊗2 ≃ L1
1,0 ⊗ L1

1,0 ⊕ L1
2,0 ⊗ L1

2,0

Proof. Denote generators of bc⊗2 by b1, c1 and b2, c2. We give generators for

L1
1,0 ⊗ L1

1,0 as:

h1 =: b1c1 : + : b2c2 : e1 =: b1b2 : f1 = − : c1c2 : (4.42)

h2 =: b1c1 : − : b2c2 : e2 =: b1c2 : f2 = − : c1b2 : (4.43)

It can be confirmed using Wick’s theorem that these satisfy generating relations

for sl(2). By uniqueness from reconstruction, this gives a L1(sl(2))⊗L1(sl(2))

subalgebra of bc⊗2.

We also check with Wick’s theorem that b1, c1, b2, c2 transform in the tensor

product of two copies of the standard representation of sl(2). Then bc⊗2 has

L1(sl(2))⊗ L1(sl(2)) submodule L1
1,0 ⊗ L1

1,0 ⊕ L1
2,0 ⊗ L1

2,0.

Since bc⊗2 is generated by this submodule under the action of L1(sl(2)) ⊗
L1(sl(2)), we conclude the isomorphism.

4.2.3 Virasoro minimal models

We now give an overview of results for the Virasoro vertex algebra at central

charges relevant for our work at admissible level. For sl(2) admissible levels

k = u
v
− 2 with v ̸= 1, consider the central charge values:

cu,v = 13− 6
(u
v
+
v

u

)
= 13− 6

(
k + 2 +

1

k + 2

)
(4.44)
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For such admissible levels k, we introduce the notation:

Vk(Vir) := Ṽcu,v(Vir) Lk(Vir) := L̃cu,v(Vir) (4.45)

Definition 4.2.14. Denote by Ofin
k the category of finitely generated Lk(Vir)

modules.

Theorem 4.2.17. Let k = u
v
− 2 be a nonintegral sl(2) admissible level. Then

Lk(Vir) is rational [65] and C2 cofinite [28]. In particular, by 4.2.3, Ofin
k is a

modular tensor category. The modules

Mk
r,s = L̃cu,v(hr,s) (4.46)

are representatives for a complete list of isomorphism classes of irreducibles in

Ofin
k , where we define:

hr,s =
(vr − us)2 − (v − u)2

4vu
1 ≤ r ≤ u− 1, 1 ≤ s ≤ v − 1 (4.47)

Fusion products are given by:

Mr,s ⊠Mr′,s′ =
u−1∑

r′′=1

v−1∑

s′′=1

N
Vir (r′′,s′′)
(r,s)(r′,s′) Mr′′,s′′ (4.48)

Definition 4.2.15. Denote by Ofin
k,L the full subcategory of Ofin

k whose objects

are direct sums of the modules Mk
r,1.

Theorem 4.2.18. Let k = u
v
− 2 be a nonintegral sl(2) admissible level. Then

Ofin
k,L is a rigid braided tensor subcategory of Ofin

k and the Mk
r,1 are represen-

tatives for a complete list of isomorphism classes of irreducibles.

Proof. Ofin
k,L is a full subcategory of a modular tensor category, and closed

under direct sum, duals, and fusion products.
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Chapter 5

Constructing new vertex

algebras

It is generally quite difficult to find explicit examples of vertex superalgebras.

In order to obtain more exotic algebras than those already constructed, it is

desirable to have some means to construct new examples of vertex superalge-

bras from known ones. Here, I give an overview of some of these constructions,

and details relevant to study the representation theory of L1(D(2, 1;− v
w
)).

5.1 The coset construction

Definition 5.1.1. Suppose that we have vertex algebra V with vertex subalge-

bra W ⊂ V . We define the coset or commutant as:

Com(W,V ) = {v ∈ V |∀m,n ∈ Z, w ∈ W [w(m), v(n)] = 0}

Note that |0⟩ ∈ Com(W,V ), T preserves Com(W,V ), and if v ∈ Com(W,V ),

then Y (v, z) preserves the subspace Com(W,V ). Then Com(W,V ) is a vertex

subalgebra of V .

Theorem 5.1.1. [38][4] Suppose that k = u
v
−2 is an admissible level for sl(2),

and consider Lk−1(sl(2))⊗L1(sl(2)) and the subalgebra Lk(sl(2)) generated by

the diagonal action of ĝ on the vacuum vector |0⟩k−1 ⊕ |0⟩1. Then
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� For l satisfying
1

k + 2
+

1

l + 2
= 1 (5.1)

we have the following isomorphism of conformal vertex algebras:

Ll(Vir) ≃ Com(Lk(sl(2)),Lk−1(sl(2))⊗ L1(sl(2))) (5.2)

� Lk(sl(2))⊗ Ll(Vir) is a vertex subalgebra of Lk−1(sl(2))⊗ L1(sl(2))

� We have the following isomorphism of Lk(sl(2))⊗ Ll(Vir) modules:

Lk−1
r,0 ⊗ L1

r′,0 ≃
u−1⊕

r′′=1
r′′−r−r′−1 even

Lk
r′′,0 ⊗Ml

r′′,r (5.3)

5.2 Hamiltonian reduction

In physics, we often run into theories with non-physical ‘gauge’ symmetries.

These redundant symmetries can be removed via Hamiltonian reduction, which,

can be realized for vertex superalgebras as a cohomology. We will only need

this construction in the simplest case of Lk(sl(2)).

Definition 5.2.1. For affine vertex algebra Lk(sl(2)) and Lk(sl(2)) moduleM ,

consider the vertex algebra C•
k(sl(2)) = Lk(sl(2)) ⊗ bc, and C•

k(sl(2)) module

C•
k(M) = M ⊗ bc, each with additional charge gradation given by char b =

−char c = 1. Define the odd field

Qs(z) = e(z)b(z) +
∂szb(z)

s!
(5.1)

The OPE Qs(z)Qs(w) is regular at z = 0, so Q2
s (0) = 0. Then C•

k(M) is a

complex with differential Qs (0). We denote the cohomology of (C•
k(M), Qs (0))

as follows, and introduce in particular notation in the case M = Lk(sl(2)):

H•
k,s(M) Wk(sl(2)) = H0

k,0(sl(2)) (5.2)

Wk(sl(2)) obtains the structure of a Z graded vertex algebra, called the W-algebra
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associated to sl(2) at level k, and H0
k,s(M) is naturally a Wk(sl(2)) module.

Theorem 5.2.1. [35]Suppose that k = u
v
− 2 is a non-integral admissible level

for sl(2). We have the following isomorphism of conformal vertex algebras:

Wk(sl(2)) ≃ Lk(Vir) (5.3)

and Lk(Vir) module isomorphisms:

H0
k,s(Lr,0) ≃ Mk

r,s+1 (5.4)

There is an appropriate sense in which tensoring by an affine Lie algebra

at level one commutes with Hamiltonian reduction. Applying this to the coset

result 5.1.1, we obtain the following theorem.

Theorem 5.2.2. [3] Suppose that k and l non-integral admissible levels for

Lk(sl(2)) satisfying:
1

k + 2
+

1

l + 2
= 1 (5.5)

Then we have the following isomorphism of conformal vertex algebras:

Lk−1(Vir)⊗ L1(sl(2))tw ≃
u−1⊕

r=1
r odd

Mk
r,1 ⊗Ml

r,1 (5.6)

and the following isomorphism as Lk(Vir)⊗ Ll(Vir) modules:

Mk−1
s,s′ ⊗ L1

p,0
tw ≃

u−1⊕

r=1
r−s−s′−p even

Mk
r,s′ ⊗Ml

r,s (5.7)

for p = 1, 2, where by L1(sl(2))tw we mean the affine vertex algebra of sl(2)

with Urod conformal structure, and by L1
p,0

tw
we mean the module L1

p,0, viewed

as an L1(sl(2))
tw

module. See [3] for details.

Remark 5.2.3. The relations of 4.2.16 also give an isomorphism of conformal

vertex superalgebras

bc⊗ bctw ≃ L1(sl(2))⊗ L1(sl(2))tw ⊕ L1
2,0 ⊗ L1

2,0
tw

(5.8)
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We introduce the notation:

bc⊗2,tw = bc⊗ bctw (5.9)

5.3 Orbifolds

Definition 5.3.1. Suppose that V is an SVOA, and G is a subgroup of the

automorphism group of G. Then V G = {v ∈ V |gv = v} has the structure of

an SVOA, called the orbifold.

Definition 5.3.2. Suppose that V is an SVOA. A simple current of V is a V

module J which is invertible with respect to the tensor product. That is, there

exists V modules J−1 with J ⊠ J−1 ≃ V .

Theorem 5.3.1. [17][60] Suppose that V is a VOA with HLZ structure. Sup-

pose G is a finitely generated abelian subgroup of the automorphism group of

V , and V decomposes as:

V =
⊕

χ∈I

Vχ (5.1)

Where χ ∈ I are one dimensional representations of G, and

Vχ = {v ∈ V |gv = χ(g)v}

Then the orbifold V1 = V G is a simple vertex subalgebra of V , and the Vχ are

simple currents for V1.

5.4 Vertex algebra extensions

In many of the earlier sections, I have given the analogy of vertex superalgebras

as ‘almost commutative’ superalgebras. This perspective is most apparent

on the from their categories of modules, where many results of commutative

algebra have direct analogs for vertex superalgebras.

This machinery is key for the exploration of L1(D(2, 1;α)) representation

theory. Since the Lie superalgebra D(2, 1;α) is itself an extension of 3 copies
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of sl(2), our goal is to realize L1(D(2, 1;− v
w
)) as an extension of 3 copies of

Lk(sl(2)) at appropriate levels.

We now define the notion of a superalgebra in a braided tensor category,

and explore how such an algebra is related to extensions of vertex algebras.

Definition 5.4.1. A superalgebra in the braided tensor category C is an object

A = (A0, A1) in SC with even morphisms µ : A ⊠ A → A and ιA : 1 → A in

SC satisfying:

1. Associativity: µ◦ (µ⊠1A)◦aA,A,A = µ◦ (1A⊠µ) as morphisms A⊠ (A⊠

A) → A.

2. Supercommutativity µ ◦RA,A = µ as morphisms A⊠ A→ A.

3. Unit: µ ◦ (ιA ⊠ 1A) ◦ l−1
A = 1A as morphisms A→ A.

Definition 5.4.2. Given a superalgebra A in C, define RepA to be the category

with objects (W,µW ) where W ∈ SC and µW : A ⊠ W → W is an even

morphism satisfying:

1. Associativity: µW ◦ (µ ⊠ 1W ) ◦ aA,A,W = µW ◦ (1A ⊠ µW ) as morphisms

A⊠ (A⊠W ) → W .

2. Unit: µW ◦ (ιA ⊠ 1W ) ◦ l−1
W = 1W as morphisms W → W .

RepA is a monoidal supercategory with tensor product ⊠A based on the con-

struction of [56], coming from the monoidal structure on C. See [19] section

2.3 for details.

Definition 5.4.3. Define Rep0A to be the full subcategory of RepA consisting

of objects (W,µW ) satisfying:

µW ◦RW,A ◦RA,W = µW : A⊠W → W

Rep0A is a braided monoidal supercategory with tensor product ⊠A, unit (A, µ),

left unit isomorphism lA, right unit isomorphism rA, associativity mophisms

aA, and even braiding isomorphisms RA. See [19] section 2.6 for details. We

call this the KO braided tensor category structure on Rep0A.
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Definition 5.4.4.

� We call W ∈ Rep0A a local or Neveu-Schwarz A module.

� W ∈ RepA is said to Ramond if the double braiding acts as the parity

involution RW,A ◦RA,W = PW .

Definition 5.4.5. The induction functor F : SC → RepA is given on objects

W ∈ SC by:

F(W ) = A⊠W µF(W ) = (µ⊠ 1W ) ◦ aA,A,W (5.1)

and on morphisms f ∈ HomSC(W1,W2) by

F(f) = 1A ⊠ f (5.2)

F is a tensor functor [56, 19].

Definition 5.4.6. We let SC0 denote the full subcategory of objects in SC that

induce to Rep0A.

Proposition 5.4.1 ([19] proposition 2.65). For M ∈ SC, M ∈ SC0 if and

only if RM,A ◦RA,M = 1A⊗M .

Theorem 5.4.2 ([19] theorem 2.67). SC0 is an F-linear braided monoidal

supercategory with structures induced from those on SC, and induction defines

a braided tensor functor F : SC0 → Rep0A.

Definition 5.4.7. The restriction functor G : RepA→ SC is given for objects

(W,µW ) and morphism f by:

(W,µW ) 7→ W f 7→ f (5.3)

When SC is a category of modules for some vertex algebra V and it is not

otherwise clear from context, we will denote G by GV .

Lemma 5.4.3 ([29] lemma 7.8.12). Induction is left adjoint to restriction.

That is for M ∈ SC and W ∈ RepA there is natural isomorphism

HomRepA(F(M),W ) ≃ HomSC(M,G(W )) (5.4)
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called Frobenius reciprocity.

This gives the necessary categorical notions for extension. The following

theorems give the relationship between a superalgebra A in a category C of V

modules, a vertex superalgebra extension of V , and the two natural braided

tensor category stuctures on Rep0A, coming from the ‘categorical side’ (the

KO structure) and the ‘vertex algebra side’ (the HLZ structure).

Remark 5.4.4. For the following theorems, suppose that V is a Z graded

vertex operator algebra, and C is an abelian category of V modules with ver-

tex tensor category (and hence braided tensor category) structure of [41]-[48],

which we call the HLZ braided tensor category structure.

Theorem 5.4.5. [40, 15] Vertex operator superalgebra extensions A of V in

C such that V ⊂ A0 are precisely superalgebras (A, µ, ιA) in the braided tensor

category C which satisfy:

1. ιA is injective.

2. A is 1
2
Z-graded by conformal weights: θ2A = 1A where θA = e2πiLA,(0).

3. µ has no monodromy: µ ◦ (θA ⊠ θA) = θA ◦ µ.

Theorem 5.4.6. Suppose that C is a category of grading-restricted generalized

V modules, and suppose that W is a vertex superalgebra extension of V such

that V ⊂ W0, with corresponding superalgebra object A ∈ C. Then:

1. Rep0A is the category of grading-restricted generalized W -modules in C.
[40, 15]

2. Rep0A has HLZ braided tensor category structure, and this is isomorphic

to the KO monoidal tensor category structure introduced in 5.4.3. [19]

Finally, for the study of representation theory, we will need sufficient con-

ditions for an induced module to be simple.
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Proposition 5.4.7. [19] Let A be a simple vertex operator superalgebra ex-

tension of simple vertex algebra V with V ⊂ A0 and

A =
⊕

i∈I

Ai

Suppose that M is a simple V module. If

1. Each Ai is a simple V module.

2. Each nonzero Ai ⊠V M is simple.

3. Ai ⊠V M ̸≃ Aj ⊠V M for i ̸= j.

Then F(M) is a simple object in RepA.

This leads us to the first example of vertex algebra extension: the lattice

vertex algebras.

Example 5.4.8. Let L be a finite rank integral lattice with symmetric bilinear

form ⟨·, ·⟩, and πL the Heisenberg vertex algebra associated to the lattice L.

1. Define:

VL =
⊕

λ∈L

πL(λ) (5.5)

2. Define µ : VL ⊠ VL → VL such that:

µ|πL(λ)⊠πL(ν) : πL(λ)⊠ πL(ν) → VL

is given by the isomorphism πL(λ)⊠ πL(ν) → πL(λ+ ν).

3. Define ιVL
: πL → VL to be the natural inclusion, noting that πL ≃ πL(0).

It is clear that ιVL
is injective, and each πL(λ) is

1
2
Z graded since ⟨λ, λ⟩/2 ∈ 1

2
Z.

Finally,
⟨λ+ ν, λ+ ν⟩

2
≡ ⟨λ, λ⟩

2
+

⟨ν, ν⟩
2

mod Z

So µ ◦ (θVL
⊠ θVL

) = θVL
◦ µ. Then VL is a conformal vertex superalgebra

extension of πL, called the lattice vertex algebra associated to L.
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For our purposes, we will make use of a ‘half lattice’ vertex algebra, con-

structed again as an extension of a Heisenberg vertex algebra associated to a

lattice, but in this case, extended only along one direction in the lattice.

Example 5.4.9. Consider the lattice L generated by c, d with symmetric bi-

linear form

⟨c, d⟩ = 2 ⟨c, c⟩ = ⟨d, d⟩ = 0 (5.6)

with h = C⊗ZL and πL the Heisenberg vertex algebra associated to this lattice.

We define new conformal vector:

ω =

(
1

2
c(−1)d(−1) −

1

2
d(−2) +

k

4
c(−2)

)
|0⟩ (5.7)

with central charge c = 6k + 4, and in the following, the conformal structure

on πL is given by this ω. Identify λ ∈ h with ⟨λ, ·⟩ ∈ h∗.

1. Define:

Πk(0) =
⊕

n∈Z

πL(nc) (5.8)

2. Define µ : Πk(0)⊠ Πk(0) → Πk(0) such that:

µ|πL(nc)⊠πL(mc) : πL(nc)⊠ πL(mc) → Πk(0)

is given by the isormorphism πL(nc)⊠ πL(mc) → πL((n+m)c).

3. Define ιΠk(0) : πL → Πk(0) to be the natural inclusion, noting that πL ≃
πL(0).

It is clear that the inclusion is injective. Note that L0|nc⟩ = n|nc⟩, so the

twist on Πk(0) is trivial, and µ has no monodromy. Then Πk(0) is a Z graded

conformal vertex algebra extensions of πL.

Proposition 5.4.10. Define the Heisenberg field h = k
2
c+d. Then ⟨c, h⟩ = 2,

⟨d, h⟩ = k and ⟨h, h⟩ = 2k. For every r ∈ Z and λ ∈ C, the induced Πk(0)

module:

Πk
(t)(λ) = F

(
πL

(
λ

2
c+

t

2
h

))
(5.9)
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Whose restriction as to a πL module decomposes as:

G(Πk
(t)(λ)) =

⊕

n∈Z

πL

(
nc+

λ

2
c+

t

2
h

)
(5.10)

is an irreducible Π(0) module on which c(0) acts as tId [1], and conformal

weights are:

(t+ 1)
λ

2
+
t2k

2
+ Z

Proof. Note that

L0 =
1

2
d(0) −

k

4
c(0) +

1

2

∑

n∈Z

: c(n)d(−n) :

where the normal order product of modes is defined as the composition with

positive modes on the right. In particular

L0

∣∣∣∣nc+
λ

2
c+

t

2
h

〉
=

(
(t+ 1)n+ (t+ 1)

λ

2
+
t2k

4

) ∣∣∣∣nc+
λ

2
c+

t

2
h

〉

and deg c(n) = deg d(n) = −n. The conformal weight claim follows.

Example 5.4.11. Consider the vertex algebra B0 = L1(sl(2))⊗Π(0)⊗L1(sl(2)).

Define odd module B1 = L1
2,0 ⊗Π(0)(1)⊗L1

2,0, and notice that Ba ⊠Bb ≃ Ba+b

1. Define:

B = B0 ⊕ B1

2. Define µ : B ⊠ B → B such that:

µ|Ba⊠Bb
: Ba ⊠ Bb → B

is given by the isomorphism Ba ⊠ Bb ≃ Ba+b.

3. Define ιB : B0 → B to be the inclusion.

It is clear that the inclusion is injective. The twist θBa
is (−1)a. Then θBa

⊠

θBb
= (−1)a+b = θBa+b

, so µ is monodromy free on the restriction to Ba ⊠

Bb, and hence monodromy free. Then B is a 1
2
Z graded conformal vertex
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superalgebra extension of B0. We introduce the following notation for induced

modules:

Bk
(t)(λ; a, b) = F(L1

a,0 ⊗ Πk
(t−1)(λ+ k)⊗ L1

b,0) (5.11)

Whose restriction to a B0 module decomposes as:

L1
a,0 ⊗ Πk

(t−1)(λ+ k)⊗ L1
b,0 ⊕ L1

a+1,0 ⊗ Πk
(t−1)(λ+ k + 1)⊗ L1

b+1,0 (5.12)

Theorem 5.4.12. [9] Let k = u
v
− 2 and l̃ = 2u−v

u
− 2 be admissible levels

for sl(2). Then Lk(osp(1|2)) is a Lk(sl(2))⊗Ll̃(Vir) extension with branching

rule;

Lk(osp(1|2)) ≃
u−1⊕

r=1

Lk
r,0 ⊗Ml̃

1,r (5.13)

Let ω be the fundamental weight of osp(1|2). Then:

G(Lk(sω)) ≃
u−1⊕

r=1

Lk
r,0 ⊗Ml̃

s,r (5.14)

Theorem 5.4.13. [18] Let k = u
v
− 2 be an admissible level for (2), and

suppose that we have irreducible, lower bounded relaxed highest weight module

M for Lk(osp(1|2)). Then:

GLk(sl(2))⊗Ll̃(Vir)(M) ≃
u−1⊕

i=1

Nk
λ;∆r,s1

⊗Ml̃
r,s2

(5.15)

For some labels N , λ as in the table of 4.2.15 with s1 ∈ {1, ..., v − 1}, s2 ∈
{1, ..., 2u− v}.

Theorem 5.4.14. [16] Suppose that V is a VOA with HLZ braided tensor

category structure. Suppose that J is an order 2 simple current. If RJJ = 1,

then V ⊕J has the structure of a vertex algebra, and if RJJ = −1, then V ⊕J

has the structure of a vertex superalgebra, with:

(V ⊕ J)0 = V (V ⊕ J)1 = J (5.16)
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Proposition 5.4.15. The Majorana free fermion is a simple current extension

of L− 5
4 (Vir), by order 2 simple current, with

F = L− 5
4 (Vir)⊕M− 5

4
2,1

F0 = L− 5
4 (Vir) F1 = M− 5

4
2,1 (5.17)

Then the category

Rep0Ofin(F )

has HLZ vertex tensor category structure. By 5.4.14, we have RF1,F1
= −1.

Proof. Recall that the conformal structure in F has central charge c = 1
2
, so

F is a module for L̃
1
2 (Vir) = L− 5

4 (Vir) module. Since Ofin is semisimple, we

need only confirm which representations Mr,s appear.

ψ has weight 1
2
in F , and ψ(−1)|0⟩ has minimal half-integer degree. Since

each mode Ln is homogenous of integer degree, we conclude that ψ(−1)|0⟩ is

a highest weight vector for L− 5
4 (Vir) of weight 1

2
= h2,1. Then M2,1 is a

summand of F .

We note that −5
4
+ 2 = 3

4
, so u = 3, v = 4, and N

(3),r′′

2,2 = δr′′,1, N
(4), r′′

1,r′ =

δr, r′′, so that M− 5
4

2,1 is indeed an order 2 simple current.

F is generated by ψ, and we can confirm using the commutation relations

if modes ψn and Lm that L− 5
4 (Vir) ⊕ M− 5

4
2,1 is closed under the action of ψ.

The result follows.

5.5 Gluing

In our case, we will make use of a particular kind of extension, obtained using

by ‘gluing together’ modules of two other vertex algebras, each in equivalent

categories with reversed braiding. A converse also holds: if such a gluing is an

extension, then there is also a braid reversed equivalence of categories.

We shall see that manipulating the two extensions of this form given

in 5.3 and 5.7 using this machinery will give us the desired realization of
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L1(D(2, 1;− v
w
)).

Theorem 5.5.1. [20] Suppose that

� U and V are conformal vertex superalgebras.

� U and V are locally finite abelian categories of modules for U and V

respectively, with HLZ braided tensor category structure.

� U is semisimple.

� V is closed under submodules and quotients.

Define ⟨U ⊗ V⟩ to be the full subcategory of U ⊗ V modules whose objects are

isomorphic to direct sums of M ⊗N with M ∈ U and N ∈ V. Then ⟨U ⊗ V⟩
admits HLZ vertex tensor category structure and is braided tensor equivalent

to the Deligne product U ⊗ V.

This theorem confirms that under certain finiteness and closure conditions,

we can work with the HLZ structure over a product of vertex superalgebras just

as we would expect. In particular, the categories Ofin
k and Lk(sl(2))-wtmodKL

satisfy these conditions.

Remark 5.5.2. For theorems 5.5.3 and 5.5.9, suppose that U ,V are rigid,

locally finite module categories for self-dual vertex operator algebras, U, V re-

spectively, that admit HLZ vertex tensor category structure as in [41]-[48].

Suppose that U is semisimple with {Ui}i∈I representatives of equivalence

classes of simple modules in U , with U0 = U .

Suppose V is closed under submodules and quotients.

Theorem 5.5.3. [20] Suppose that U ,V are ribbon categories satisfying 5.5.2

and

A =
⊕

i∈I

Ui ⊗ Vi

is a 1
2
Z graded conformal vertex algebra extension of U ⊗ V , such that Vi ∈ V

satisfy dimHomV(V, Vi) = δi,0, and there is a partition I = I0 ⊔ I1 such that:

⊕

i∈Ij

Ui ⊗ Vi =
⊕

n∈ j
2
+Z

A(n)
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Define V to be the full subcategory of V whose objects are isomorphic to direct

sums of the Vi. Then:

1. V is a ribbon subcategory of V with distinct irreducible objects {Vi}i∈I .

2. There is braid-reversed tensor equivalence τ : U → V such that τ(Ui) ≃
V ∗
i .

We are now prepared to make use of the relations of 5.3 and 5.7 to construct

braid-reversed and braided equivalences necessary for later constructions.

Remark 5.5.4. In the following, let k, l be non-integral admissible levels for

sl(2)

k + 2 =
u

v
l + 2 =

u

w
(5.1)

With u = v + w. In particular, we have:

1

k + 2
+

1

l + 2
=
v + w

u
= 1 (5.2)

so that the relations 5.3 and 5.7 are satisfied. We establish the notation:

KLk = Lk(sl(2))-wtmodKL (5.3)

For modules Mr indexed by r ∈ {1, ..., p} and s ∈ Z, we use the notation:

Ms =Mr r ∈ {1, ..., p} r = s mod p (5.4)

Lemma 5.5.5. Suppose that k, l are admissible levels for sl(2) satisfying the

conditions in 5.5.4. Then there exists braid reversed equivalence:

τ1 : KLk → Ofin
l ⊗KL1 ⊗Ofin

− 5
4

(5.5)

such that:

τ1(Lk
r,0) ≃ (Ml

r,1 ⊗ L1
r,0 ⊗ Fr+1)

∗ (5.6)
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where Ofin
l ⊗KL1 ⊗Ofin

− 5
4

is the full rigid braided tensor subcategory of Ofin
l ⊗

KL1 ⊗Ofin

− 5
4

whose objects are isomorphic to direct sums of the Ml
r,1 ⊗L1

r,0 ⊗
Fr+1.

Lemma 5.5.6. Suppose that k, l are admissible levels for sl(2) satisfying the

conditions in 5.5.4. Then there exists braid reversed equivalence:

τ2 : Ofin
k,L → KLl ⊗KL1 ⊗Ofin

− 5
4

(5.7)

Such that:

τ2(Mk
r,1) ≃ (Ll

r,0 ⊗ L1
r,0 ⊗ Fr+1)

∗ (5.8)

where KLl ⊗KL1 ⊗Ofin

− 5
4

is the full rigid braided tensor subcategory of KLl⊗
KL1⊗Ofin

− 5
4

whose objects are isomorphic to direct sums of the Ll
r,1⊗L1

r,0⊗Fr+1.

Proof (Lemmas 5.5.5 and 5.5.6). Recall the relations from 4.2.16. We obtain

Lk−1(sl(2))⊗ bc⊗2 ⊗F ≃ Lk−1(sl(2))⊗ (L1
1,0 ⊗L1

1,0 ⊕L1
2,0 ⊗L1

2,0)⊗F (5.9)

We look at the even vertex subalgebra of this. By 5.3

(Lk−1(sl(2))⊗ bc⊗2⊗F )0 ≃ Lk−1(sl(2))⊗ (L1
1,0⊗L1

1,0⊗F0⊕L1
2,0⊗L1

2,0⊗F1)

≃
u−1⊕

r=1
r odd

Lk
r,0 ⊗Ml

r,1 ⊗ L1
1,0 ⊗ F0 ⊕

u−1⊕

r=1
r even

Lk
r,0 ⊗Ml

r,1 ⊗ L1
2,0 ⊗ F1 (5.10)

This gives 1
2
Z-graded vertex algebra extension for Lk(sl(2)) ⊗ Ll(Vir) ⊗

L1(sl(2))⊗ F0

By 4.2.9, KLk is a semisimple ribbon category, with simple objects Lk
r,0 for

r ∈ {1, ..., u− 1}
By 4.2.9, KL1 is a semisimple ribbon category with simple objects L1

r,0 for

r ∈ {1, 2}, respectively.
By 4.2.3, the Ofin

l is a modular tensor category with simple objects Ml
r,1

for r ∈ {1, ..., u− 1}.
By 4.2.3, Ofin

− 5
4

is a modular tensor category.
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Then the category Ofin
l ⊗KL1⊗Ofin

− 5
4

of modules for Ll(Vir)⊗L1(sl(2))⊗F0

is a ribbon category with Ml
r,1 ⊗L1

r,0 ⊗Fr+1 satisfying homspace conditions by

simplicity.

The category Klk ⊗KL1 ⊗Ofin

− 5
4

of modules for Lk(sl(2))⊗ L1(sl(2))⊗ F0

is a ribbon category with Lk
r,1 ⊗ L1

r,1 ⊗ Fr+1 satisfying homspace conditions by

simplicity.

Since conformal weights of any two vectors in Lk
r,0⊗Ml

r,1⊗L1
r,0⊗Fr+1 differ

by integer, it is clear that we can pick a partition of the labels r into Z graded

and Z + 1
2
graded portions. Then both results follows from 5.5.3, although we

note that the roles of k and l are exchanged in the second equivalence.

Lemma 5.5.7. Suppose that k, l are admissible levels for sl(2) satisfying the

conditions in 5.5.4. Then there exists braid reversed equivalence:

τ3 : Ofin
k,L → Ofin

l ⊗KL1 ⊗Ofin

− 5
4

(5.11)

such that:

τ3(Mk
r,1) ≃ (Ml

r,1 ⊗ L1
r,0 ⊗ Fr+1)

∗ (5.12)

Proof. Recall the relations 4.2.16

Lk−1(Vir)⊗bc⊗2,tw⊗F ≃ Lk−1(Vir)⊗(L1
1,0⊗L1

1,0
tw⊕L1

2,0⊗L1
2,0

tw
)⊗F (5.13)

We look at the even vertex subalgebra of this. By 5.7, setting s = s′ = 1

(Lk−1(Vir)⊗bc⊗2,tw⊗F )0 ≃ Lk−1(Vir)⊗(L1
1,0⊗L1

1,0
tw⊗F0⊕L1

2,0⊗L1
2,0

tw⊗F1)

≃
u−1⊕

r=1
r odd

Mk
r,1 ⊗Ml

r,1 ⊗ L1
1,0 ⊗ F0 ⊕

u−1⊕

r=1
r even

Mk
r,1 ⊗Ml

r,1 ⊗ L1
2,0 ⊗ F1 (5.14)

This gives 1
2
Z-graded vertex algebra extension for Lk(Vir)⊗Ll(Vir)⊗L1(sl(2))⊗

F0.

By 4.2.3, the Ofin
k is a modular tensor category with irreducible objects

Mk
r,1 for r ∈ {1, ..., u − 1}, and all other relevant categories are as in the

previous lemmas.
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Since conformal weights of any two vectors in Mk
r,1⊗Ml

r,1⊗L1
r,0⊗F0 differ

by integer, it is clear that we can pick a partition of the labels r into Z graded

and Z+ 1
2
graded portions. The result then follows from theorem 5.5.3.

Proposition 5.5.8. Suppose that k is a non-integral admissible level for sl(2).

Then there is braided equivalence:

µk : KLk → Ofin
k,L (5.15)

such that:

µk(Lk
r,0) ≃ Mk

r,1 (5.16)

Proof. Suppose that k is an admissible level. Then l satisfying 1
k+2

+ 1
l+2

= 1

is also a non-integral admissible level for sl(2). Let τ1 and τ3 be as in 5.5.5

and 5.5.7, respectively. Then

µk = τ−1
3 ◦ τ1 : KLk → Ofin

k,L (5.17)

is a braided equivalence satisfying the conditions of the proposition.

Now that we have obtained the necessary braid-reversed and braided equiv-

alences, we present the result needed to use them in construction of an exten-

sion of Lk(sl(2))⊗ Ll(sl(2)⊗ L1(sl(2)).

Theorem 5.5.9. [20] Suppose that U ,V satisfy 5.5.2, and τ : U → V is a

braid-reversed tensor equivalence with twists satisfying θτ(Ui) = ±τ(θ−1
Ui
). Then

1.

A =
⊕

i∈I

U∗
i ⊗ τ(Ui)

is a simple 1
2
Z graded conformal vertex algebra extension of U ⊗ V .

2. The multiplication rules of A satisfy M
Uk⊗τ(Uk)

∗

Ui⊗τ(Ui)∗,Uj⊗τ(Uj)∗
= 1 ⇐⇒ Uk

occurs as a submodule of Ui ⊗ Uj.

Remark 5.5.10. We introduce the notation

Lr := Lk
r,0 ⊗ Ll

r,0 ⊗ L1
r,0 (5.18)
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In the following, we denote by ∆min(N) the minimal conformal weight of vec-

tors in sVOA module N , when it exists.

Each Lr has highest weight vector |λr,0⟩ := |λkr,0⟩ ⊗ |λlr,0⟩ ⊗ |λ1r,0⟩, which is

of minimal conformal weight in Lr. Then:

∆min(Lr) =
r2 − 1

4

(
1

k + 2
+

1

l + 2

)
+
r2 − 1

12
=
r2 − 1

4
+
r2 − 1

12
(5.19)

Where we define:

r =

{
1 r is odd

0 r is even

Note that ∆min(Lr) ∈ Z, so each Lr is Z graded.

Lemma 5.5.11. Suppose that k, l are admissible levels for sl(2) satisfying the

conditions in 5.5.4. Then

A =
u−1⊕

r=1

Lk
r,0 ⊗ Ll

r,0 ⊗ L1
r,0 =

u−1⊕

r=1

Lr (5.20)

is a simple vertex superalgebra extension of L1 = Lk(sl(2)) ⊗ Ll(sl(2)) ⊗
L1(sl(2)) with:

A0 =
u−1⊕

r=1
r odd

Lr A1 =
u−1⊕

r=1
r even

Lr (5.21)

Proof. Let µk be as in 5.5.8 and τ2 be as in 5.5.6. Then

τ2 ◦ µk : KLk → KLl ⊗KL1 ⊗Ofin

− 5
4

(5.22)

is a braid reversed equivalence such that

τ2 ◦ µk(Lk
r,0) ≃ (Ll

r,0 ⊗ L1
r,0 ⊗ Fr+1)

∗ (5.23)

The twist condition of 5.5.9 is satisfied since the conformal weights 5.19 are

integer, and conformal weights of Fr+1 are half integer. Then we get vertex
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algebra extension

A0 ⊗ F0 ⊕ A1 ⊗ F1 (5.24)

of L1⊗F0. This has Z2 action given by the Z2 action on F , where the nontrivial

automorphism acts on A0 ⊗ F0 as id and on A1 ⊗ F1 as −id. The orbifold

A0 ⊗ F0 is a vertex algebra extension of L1 ⊗ F0, and by 5.3.1 A1 ⊗ F1 is an

order 2 simple current for A0⊗F0. Since A0⊗F0⊕A1⊗F1 is an (even) vertex

algebra, we conclude that id = RA1⊗F1,A1⊗F1
by 5.4.14.

We take the F0 coset. Noting that Com(F0, F0) ≃ C|0⟩, we have

L1 ≃ Com(F0, L1 ⊗ F0) ⊂ Com(F0, A0 ⊗ F0) ≃ A0

Finally, A1 ≃ A1⊗|0⟩ is an A0 submodule, and an order 2 simple current. By

5.5.1 we have:

RA1,A1
⊗ (−idF1

) = RA1,A1
⊗RF1,F1

= RA1⊗F1,A1⊗F1
= id

Then RA1,A1
= −id, and by 5.4.14, A = A0 ⊕ A1 is a vertex superalgebra

extension of A0 with odd part A1.

Theorem 5.5.12. Suppose that k, l are admissible levels for sl(2) satisfying

the conditions in 5.5.4. Then we have the following isomorphism as Lk(sl(2))⊗
Ll(sl(2))⊗ L1(sl(2)) modules:

L1(D(2, 1;− v

w
)) ≃

u−1⊕

r=1

Lr = A (5.25)

Proof. We begin by identifying weight one vectors for A. We note that

∆min(Lr) is always an integer, so A is integer graded. We obtain ∆min(L1) =

0, ∆min(L2) = 1, and for r > 2, we have ∆min(Lr) > 1. Note the fusion

product is as follows for r ̸= 1, u− 1

L2 ⊠ Lr ≃
⊕

i1,i2=±1

Lk
r+i1,0

⊗ Ll
r+i2,0

⊗ L1
r+1,0 (5.26)

Then every Lr appears as a summand in the fusion product of L2 with itself
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sufficiently many times.

Pick m,n ∈ N such that Lr (resp. Lj) appears as a summand in L⊠n
2 (resp.

L⊠m
2 ). Then Lr⊠Lj appears as a summand in L⊠m+n

2 . Let i : Lr⊠Lj → L⊠m+n
2

be the inclusion, and π : L⊠m+n
2 → Lr ⊠ Lj be the projection.

Let Y : A ⊗ A → A[[z]] be the vertex operator on A. Then Y |Lr⊗Lj
is

an intertwiner of type
(

A
Lr Lj

)
. Then by universal property of P (1) tensor

product, there exists morphism ϕ : L⊠m+n
2 → A such that the following diagram

commutes:

L⊠m+n
2 A

Lr ⊗ Lj

ϕ◦π

i◦⊠
Y |Lr⊗Lj

Then A is weakly generated by L2, and certainly it is weakly generated by

L1⊕L2. But L1 is strongly generated by the vacuum and its weight one vectors,

and L2 is strongly generated by its top level, which is also weight 1. Then A

is strongly generated by its vacuum and weight one subspace.

Then A must be an affine vertex superalgebra A ≃ Lν(g) for some Lie

superalgebra g, and g must be simple by simplicity of A.

We recall that the summand Lr is even for odd r and odd for even r. By our

earlier computation, all even weight one vectors fall in L1 and all odd weight

one vectors fall in L2. But 0 modes of weight one vectors in L1 transform as

sl(2)⊗ sl(2)⊗ sl(2), and 0 modes of the top level of L2 transform in the tensor

of 3 copies of the standard representation st⊗ st⊗ st.

By the classification of simple Lie superalgberas [49], we conclude that g =

D(2, 1;α) for some α, and A ≃ Lν(D(2, 1;α)). We need only confirm the

parameters ν and α. Comparing relations from Lν(D(2, 1;α)) with those from

the subalgebra L1(sl(2)):

∂wδ(z − w) = [h3(z), h3(w)] =
ν

α3

∂wδ(z − w) (5.27)

So we conclude that ν = α3 = 1. Finally, comparing relations from Lν(D(2, 1;α)
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with those from the subalgebra Lk(sl(2)):

k∂w(z − w) = [h1(z), h2(w)] =
1

α1

∂w(z − w) (5.28)

We conclude that −α−1 − 1 = α−1
1 = k, so that α = − 1

k+1
. Recalling that

k = v+w
v

− 2 = w
v
− 1, we prefer to write this as α = − v

w
.

5.6 Irreducible modules for L1(D(2, 1;− v
w))

We are finally prepared to use the machinery introduced in section 5.4 in our

construction and classification of irreducible modules for L1(D(2, 1;−v
2
)). We

begin by putting restrictions on labels that may appear for inclusions of L1

modules in L1(D(2, 1;− v
w
)) modules.

Lemma 5.6.1. Suppose that M̃ is an irreducible L1(D(2, 1,− v
w
)) module and

that M is a nontrivial irreducible L1 module with L1 morphism M → G(M̃).

Then M has the form

M = σt1(Lk
λ1,∆r1,s1

)⊗ σt2(N l
λ2,∆r2,s2

)⊗ L1
p,0

with p ∈ {1, 2}, N,L ∈ {L,D±, E} and r2 ∈ {r1, u− r1}.

Proof. We first note that all irreducible modules for L1 have the appropri-

ate form, and we need only confirm the restriction on the parameters r1, r2.

Consider first the case that all ψ(βγδ)(0) acts trivially on M .

e1(0) = −1

2
[ψ(+ + +)(0), ψ(+−−)(0)] (5.1)

f 1
(0) = −1

2
[ψ(−++)(0), ψ(−−−)(0)] (5.2)

h1(0) = [e1(0), f
1
(0)] (5.3)

and similarly for i = 2, 3. Then all of the generating 0 modes in L1 act trivially

on M , so M = 0, a contradiction.

Consider the case that not all of the zero modes ψ(βγδ)(0) act trivially on

M . Pick ψ(βγδ) and m ∈ M such that ψ(βγδ)(0)m ̸= 0. The module map
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YM̃(·, z) induces intertwining operator Y of type
(
G(M)
L2 M

)
. By universal property,

there exists morphism

ϕ : L2 ⊠L1 M → G(M̃) Y = ϕ ◦ YL2⊠M (5.4)

By nontriviality:

0 ̸= ψ(βγδ)Y(0)m = ϕψ(βγδ)L2⊠M
(0) m

ψ(βγδ)L2⊠M
(0) and is homogenous of degree 0. Note also L2 ⊗L1 M ≃⊕4

i=1Mi

where Mi are indecomposable or trivial. Noting that indecomposable L1 mod-

ules are Z+ q graded for some q ∈ C, we have

∆(M) ≡ ∆(m) = ∆(ψ(βγδ)L2⊠M
(0) m) ≡ ∆(Mi) mod Z (5.5)

for some i = 1, .., 4 with Mi nontrivial. We recall the fusion products in

4.2.15 and treat the cases r = 1, u − 1 cases uniformly with the others, since

the absence of a second module in fusion in these cases puts stronger conformal

weight restrictions on our parameters than the r = 2, ..., u− 2 case, which we

will see is already sufficient. We define the relevant quantity for our conformal

weight condition:

νkt,r,s(i) = ∆(σt(Mk
λ,∆r,s

))−∆(σt(Mk
λ+i,∆r+i,s

))

= ∆r,s +
1

2
tλ+

1

4
t2k −∆r+i,s −

1

2
t(λ+ i)− 1

4
t2k

= − 2ir + i2

4(k + 2)
+
i(s− t)

2
(5.6)

The conformal weight condition 5.5 reduces to

− i1r1v + i2r2w

2u
+
i1(s1 − t1) + i2(s2 − t2)

2
− 1

4
± 1

4

= νkt1,r1,s1(i1) + ν lt2,r2,s2(i2) + ∆(L1
r3,0

)−∆(L1
r3+1,0) ∈ Z (5.7)

for some i1, i2 = ±1, where we note that ∆(L1
r3,0

) − ∆(L1
r3+1,0

) = ±1
4
and

i21 = i22 = 1. Note that the contribution in blue is always a half integer, so 5.7
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implies the necessary condition:

v

u
(i1r1 − i2r2) +

v + w

u
i2r2 =

i1r1v + i2r2w

u
∈ Z (5.8)

By coprimeness of u and v, this is equivalent to i1r1 − i2r2 ∈ uZ. Since

r1, r2 ∈ {1, ..., u− 1}, we conclude that r2 ∈ {r1, u− r1}. The result follows.

The simple forms of fusion products for modules labeled by 1 or u − 1

suggests that we should begin here in our classification. We confirm that

modules induced in this way are simple.

Lemma 5.6.2. The induction F(M) is simple in RepA when M is an L1

module of the form:

M = σt1(Lk
λ1,∆r1,s1

)⊗ σt2(N l
λ2,∆r2,s2

)⊗ L1
p,0 (5.9)

with r1, r2 ∈ {1, u− 1}, and labels L,N , λ1, λ2,∆r1,s1 ,∆r2,s2 as in the table of

4.2.15.

Proof. A =
⊕u−1

r=1 Lr is a simple vertex superalgebra extension of L1, each Lr

is simple, and M is a simple L1 module. Considering first the case with labels

r1 = r2 = 1, we have

Lr ⊠L1 M ≃ σt1(Lk
λ1+r−1;∆r,s1

)⊗ σt2(N l
λ2+r−1;∆r,s2

)⊗ L1
p+r−1,0 (5.10)

are distinct simple L1 modules. Then by 5.4.7, we find that F(M) is a simple

A module. The other cases follow similarly, noting that N
(u) r′′

r,r′ = N
(u) u−r′′

r,u−r′ .

We will need to introduce more machinery to confirm that modules with

these labels do indeed appear as L1-summands in irreducible L1(D(2, 1;− v
w
))

modules.

Lemma 5.6.3. Let k = u
v
− 2 and l = u

w
− 2 be admissible levels for sl(2).

Then we have the following isomorphism as Lk(osp(1|2))⊗Ll+1(sl(2)) modules

L1(D(2, 1;− v

w
)) ≃

v+w+1⊕

r=1

Lk(rω)⊗ Ll+1
r,0 (5.11)
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Proof. We first note

1

l̃ + 2
= 1− 1

l + 2 + 1
=

u

2u− v

The result follows by applying 5.1.1 and 5.4.12.

L1(D(2, 1;− v

w
)) ≃

u−1⊕

r=1

Lk
r,0 ⊗ Ll

r,0 ⊗ L1
r,0

≃
u−1⊕

r=1

u+w+1⊕

r′′=1
r′′ odd

Lk
r,0 ⊗ Ll+1

r′′,0 ⊗Ml̃
r′′,r ≃

u+w+1⊕

r′′=1

Lk(r′′ω)⊗ Ll+1
r′′,0 (5.12)

Proposition 5.6.4. Consider L1 module of the form

M = σt1(Lk
λ,∆1,s1

)⊗ σt2(N l
λ,∆r2,s2

)⊗ L1
p,0 (5.13)

for labels L,N, λ1, λ2,∆r,s1 ,∆r,s2 as in the table of 4.2.15, p = 1, 2 and r2 ∈
{1, u− 1}.

Then the induction F(M) is a local A module if and only if r2 = 1 and

p = t1 + s1 + t2 + s2 + 1 mod 2Z (5.14)

The induction F(M) is a Ramond twisted A modules if and only if r2 = 1

and

p = t1 + s1 + t2 + s2 mod 2Z (5.15)

Proof. We recall the following special case of the fusion products 4.28:

L1
r,0 × L1

p,0 ≃ L1
p+r−1,0 (5.16)

M induces to a local module iff RM,A ◦RA,M = 1. A is integer graded so it has

trivial twist. The twist on M is given by a constant e2πi∆(M). Balancing then

gives

θA⊗M = RM,A ◦RA,M ◦ (θA ⊗ θM) = e2πi∆(M)RM,A ◦RA,M
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Each of the summands of Lr ⊗M is also irreducible so

θA⊗M |Lr⊗M = e2πi∆(Lr⊗M)

We conclude that A ⊗M is local if and only if ∆(Lr ⊗M) = ∆(M) mod Z

for all r = 1, ..., u − 1, or equivalently ∆(Lr+1 ⊗M) −∆(Lr ⊗M) ∈ Z since

L1 ⊗M ≃M . We define the quantity

νkt,r,s = ∆(σt(Mk
λ+r,∆r+1,s

))−∆(σt(Mk
λ+r−1,∆r,s

))

= ∆r+1,s +
1

2
t(λ+ r) +

1

4
t2k −∆r,s −

1

2
t(λ+ r − 1)− 1

4
t2k

=
2r + 1

4(k + 2)
+

1

2
(t− s) (5.17)

Noting that

∆1
r+p,0 −∆1

r+p−1,0 ≡ −r + p

2
+

1

4
mod Z

The locality condition for the module induced from module of the form 5.13

with r2 = 1 reduces to:

νkt1,r,s1 + ν lt2,r,s2 +∆1
r+p,0 −∆1

r+p−1,0

≡ 2r + 1

4
+
t1 − s1 + t2 − s2

2
− r + p

2
+

1

4
mod Z

=
1

2
(t1 − s1 + t2 − s2 − p+ 1) ∈ Z (5.18)

We note that bosonic states correspond to odd r and fermionic states to even

r. Then the induction is Ramond twisted when

νkt1,r,s1 +ν
l
t2,r,s2

+∆1
r+p,0−∆1

r+p−1,0 =
1

2
(t1−s1+ t2−s2−p+1) ∈ Z+

1

2
(5.19)

Similarly, the locality condition for modules induced from 5.13 with r2 = u− 1
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reduces to:

νkt1,r,s1 + ν lt2,u−r,s2
+∆1

r+p,0 −∆1
r+p−1,0

≡ 2(u− 2r)

4(l + 2)
+

1

2
(t1 − s1 + t2 − s2 − p+ 1) mod Z

=
1

2
w − rw

u
+

1

2
(t1 − s1 + t2 − s2 − p+ 1) ∈ Z (5.20)

for all r = 1, ..., u− 1, and similarly, the Ramond condition reduces to

1

2
w − rw

u
+

1

2
(t1 − s1 + t2 − s2 − p+ 1) ∈ Z+

1

2
(5.21)

In particular, fixing r = 1, these conditions can hold only if w
u
∈ 1

2
Z. Then by

coprimeness of w and u, we conclude u = 2, so r2 = u − 1 = 1. This case is

exhausted by the first case r2 = 1.

Theorem 5.6.5. Let k = u
v
− 2 and l = u

w
− 2 be admissible levels for sl(2).

Suppose that M is an L1(D(2, 1;− v
w
)) module, with M ∈ L1(D(2, 1;− v

w
))-

wtmod≥0 or lower bounded and Ramond. Then

M ≃ F
(
Lk
λ1,∆1,s1

⊗N l
λ2,∆1,s2

⊗ L1
p,0

)

for some p ∈ {1, 2} and for some labels L,N, λ1, λ2,∆1,s1 ,∆1,s2 as in the table

of 4.2.15.

Proof. M ∈ L1(D(2, 1;− v
w
))-wtmod≥0 (resp. M is lower bounded and Ra-

mond) for L1(D(2, 1;− v
w
)). We consider its restriction to a Lk(osp(1|2)) ⊗

Ll+1(sl(2)) module. Then

GLk(osp(1|2))⊗Ll+1(sl(2))(M) ≃
⊕

i∈I

Mi

Where Mi are nontrivial indecomposable Lk(osp(1|2)) ⊗ Ll+1(sl(2)) modules.

Fix i, and pick an irreducible Lk(osp(1|2))⊗ Ll+1(sl(2)) module Mk
osp ⊗M l+1

sl

with nontrivial morphism Mk
osp ⊗M l+1

sl → Mi. Since Ll+1(sl(2)) is even, we

conclude that Mk
osp is local (resp. Ramond twisted). We consider the further
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restriction of Mk
osp as a Lk(sl(2))⊗ Ll̃(Vir) module. By 5.4.13 we see that

GLk(sl(2))⊗Ll̃(Vir)(M
k
osp) ≃

u=1⊕

r=1

Nk
λ;∆r,s1

⊗M l̃
r,s2

for some N ∈ {L,D±, E}. Then:

GLk(sl(2))⊗Ll+1(sl(2))×Ll̃(Vir)(M
k
osp ⊗M l+1

sl ) ≃
u−1⊕

r=1

Nk
λ;∆r,s

⊗M l+1
sl ⊗Ml̃

s,r

Since the isomorphism giving the decomposition of Lk(sl(2)⊗Ll(sl(2))⊗L1(sl(2))

modules as Lk(sl(2)⊗Ll+1(sl(2))⊗Ll̃(Vir) modules does not affect the Lk(sl(2))

factor, GL1(M) must have summand of the form

M̃ = Nk
λ1;∆1,s1

⊗M l
λ2;∆r2,s2

⊗ L1
p,0

By 5.6.1 we conclude that r2 ∈ {1, u− 1} since M is irreducible. By 5.6.4, we

conclude that r2 = 1 and p = s1 + s2 + 1 (resp. p + s1 + s2) since M is local

(resp. Ramond twisted). M̃ is not necessarily irreducible, since Nλ1;∆r,s
may

have the form Eλr,s;∆r,s
, and similarly for L. But in this case, we may pick

irreducible M ′ with the same r1, r2 labels and inclusion M ′ → M̃ . Then there

is nontrivial L1 morphism

M ′ → GL1(M)

By Frobenius reciprocity, there is L1(D(2, 1;− v
w
)) morphism:

F(M ′) →M

By 5.6.2, F(M ′) is irreducible, and we conclude that M ≃ F(M ′) by Schur’s

lemma.

For L1 module M of the form

M = σt1(Lk
λ,∆1,s1

)⊗ σt2(N l
λ,∆1,s2

)⊗ L1
s1+s2+t1+t2+1+b,0

(5.22)

for labels b ∈ {0, 1}, L,N, λ1, λ2,∆r,s1 ,∆r,s2 as in the table of 4.2.15, we intro-
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duce notation for the induced module:

(L,N)t1,t2s1,λ1,s2,λ2,b
= F(M) (5.23)

Whose restriction to an L1 module takes the form:

u−1⊕

r=1

σt1(Lk
λ1+r−1;∆r,s1

)⊗ σt2(N l
λ2+r−1;∆r,s2

)⊗ L1
p+b+r−1,0

(5.24)

For p = s1 + s2 + t2 + t2 + 1.

Theorem 5.6.6. A complete list of representatives for isomorphism classes of

irreducible modules in L1(D(2, 1;− v
w
)-wtmod≥0 (resp. Ramond twisted lower

bounded modules for L1(D(2, 1;− v
w
)) is given by

(L,N)0,0s1,λ1,s2,λ2,b

for labels L,N, s1, λ1, s2, λ2 as in the table 4.2.15 and b = 0 (resp. b = 1 for

Ramond twisted). These are non-isomorphic for distinct labels.

Proof. Suppose that M ′ is irreducible in L1(D(2, 1;− v
w
))-wtmod≥0 (resp. Ra-

mond twisted and lower bounded), By 5.6.5, M ′ ≃ (L,N)0,0s1,λ1,s2,λ2,b
for labels

L,N, λ1, λ2 as in the table of 4.2.15. By 5.6.4, b = 0 (resp. b = 1 for Ramond

twisted).

As L1 modules, by 5.24, G
(
(L,N)0,0s1,λ1,s2,λ2,b

)
share no direct summands

for distinct labels. Then the (L,N)0,0s1,λ1,s2,λ2,b
are non-isomorphic for distinct

labels.

This completes the classification of irreducibles in L1(D(2, 1;− v
w
))-wtmod≥0,

as well as Ramond twisted lower bounded modules.

We expect that some analog of 3.5.2 should hold for Lie superalgebras,

which would also complete the classification for irreducibles in L1(D(2, 1;− v
w
))-

wtmod and the Ramond sector. These should take the form (L,N)t1,t2s1,λ1,s2,λ2,b

with b = 0 for local and b = 1 for Ramond twisted. I have already demon-

strated that these are irreducible.
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Chapter 6

Characters and modular

transformations

Definition 6.0.1. In the following section, we use the following notation for

the delta distribution and the Dedekind eta function (respectively):

δ(z) =
∑

n∈Z

zn η(q) = q
1
24

∞∏

n=1

(1− qn) (6.1)

We can now introduce the notion of characters for vertex algebra modules.

For superalgebras, however, the invariant form does not come from a trace,

but the supertrace. Then we must introduce a notion of character constructed

in this way also, and notation to distinguish our two notions of character.

Definition 6.0.2. Suppose that V is a vertex superalgebra, and M is a V

module graded by L0, h
1
(0), ..., h

n
(0) eigenvalues. Then the supercharacter of M

is:

ch−[M ] = strMq
L0−

c
24 z

h1
(0

1 . . . z
hn
(0)

n (6.2)

and the character of M is:

ch+[M ] = trMq
L0−

c
24 z

h1
(0

1 . . . z
hn
(0)

n (6.3)

When V is an even vertex algebra and M is even, these two notions coincide

and we shall denote them just by ch[M ].
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Proposition 6.0.1. [62] Let k = u
v
− 2 be an admissible level for sl(2). Then

the Lk(Vir) modules Mk
r,s have characters given by:

ch[Mk
r,s] =

1

η(q)

∑

j∈Z

[
q(2uvn+vr−us)2/4uv − q(2uvn+vr+us)2/4uv

]
(6.4)

Proposition 6.0.2. For λ ∈ C, the Πk(0) modules Πk
(t)(λ) have characters

given by:

ch[Π(t)(λ)](z, q) =
ztk+λq(t+1)λ−k

2
+

(t+1)2

4
kδ(z2qt+1)

η(q)2
(6.5)

Proof. The Heisenberg field h was introduced with ⟨h, c⟩ = 2, ⟨h, d⟩ = k, and

⟨h, h⟩ = 2k. The mode h0 commutes with all modes d(n) and c(n). Then on

M = πL
(
nc+ λ

2
c+ t

2
h
)
h0 acts as 2n + λ + tk. Along with the conformal

weight calculations in 5.4.10, we have

chM(z, q) = trzhqL0−
k
4
− 1

6 =
z2n+λ+tkq(t+1)n+(t+1)λ−k

2
+

(t+1)2k
4

η(q)2

The result follows by summing over n.

Proposition 6.0.3. [53] L1(sl(2)) modules for p ∈ 1, 2 have characters given

by:

ch[L1
p,0](z, q) =

1

η(q)

∑

n∈Z

z2n+p+1q

(

n+ p+1
2

)2

(6.6)

and L1(sl(2))tw modules have characters:

ch[L1
p,0

tw
](z, q) =

1

η(q)

∑

n∈Z

z2n+pq(n+
p
2)

2

(6.7)

Proposition 6.0.4. [24] Let k = u
v
− 2 be an admissible level for sl(2) with

v > 1. Then the Lk(sl(2)) modules σt(Eλ,∆r,s
) have characters:

ch[σt(Ek
λ;∆r,s

)](z, q) =
zλ+tkq

t2k
4

+λ t
2 δ(z2qt)

η(q)2
ch[Mk

r,s](q) (6.8)

Remark 6.0.5. Noting that the right hand side is not graded by h0 eigenvalues,
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the result of 5.7 gives the following character identity:

ch[Mk−1
s,s′ ](q)ch[L1

p,0
tw
](1, q) =

u−1∑

r=1
r−s−s′−p even

ch[Mk
r,s′ ](q)ch[Ml

r,s](q) (6.9)

Proposition 6.0.6. We have the following identity of Lk(sl(2)) ⊗ Ll(Vir)

module characters:

ch[σt(Ek−1
λ;∆s2,s1

)](z, q)ch[L1
p+t,0](z, q)

=
u−1∑

r=1
r+s1+s2+p odd

ch[σt(Ek
λ+p−1;∆r,s1

)](z, q)ch[Ml
r,s2

](q) (6.10)

Proof. We first note

(
n+

p+ t

2

)2

=
(
n+

p

2

)2
+ tn+ t

p

2
+
t2

4

and absorb z2nqtn in δ(z2qt)

δ(z2qt)ch[L1
p+t,0

tw
](z, q) =

δ(z2qt)

η(q)

∑

n∈Z

z2n+p+tq(n+
p+t
2 )

2

=
zt+pq

t2

4
+ t2

4
+t p

2 δ(z2qt)

η(q)

∑

n∈Z

q(n+
p
2)

2

= zt+pq
t2

4
+ t2

4
+t p

2 δz2qtch[L1
p,0](1, q) (6.11)
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ch[σt(Ek−1
λ;∆s2,s1

)](z, q)ch[L1
p+t,0

tw
](z, q)

=
zλ+t(k−1)q

t2

4
(k−1)+λ t

2 δ(z2qt)

η(q)2
ch[Mk

r,s](q)ch[L1
p+t,0

tw
](z, q)

=
zλ+p+tkq

t2

4
k+(λ+p) t

2 δ(z2qt)

η(q)2
ch[Mk

r,s](q)ch[L1
p,0

tw
](1, q)

=
zλ+p+tkq

t2

4
k+(λ+p) t

2 δ(z2qt)

η(q)2

u−1∑

r=1
r+s1+s2+p even

ch[Mk
r,s1

](q)ch[Ml
r,s2

](q)

=
u−1∑

r=1
r+s1+s2+p even

ch[σt(Ek
λ+p;∆r,s1

)](z, q)ch[Ml
r,s2

](q) (6.12)

The result follows noting that ch[L1
p+1,0](z, q) = ch[L1

p,0
tw
](z, q)

6.1 The Adamovic construction

Theorem 6.1.1. [1] Let k = u
v
−2 be an admissible level for sl(2). Then there

exists injective homomorphism of conformal vertex algebras:

Lk(sl(2)) ↪→ Lk(Vir)⊗ Πk(0) (6.1)

Then Lk(Vir)⊗ Πk(0) modules are Lk(sl(2)) modules by restriction.

Theorem 6.1.2. [1] Let k = u
v
−2 be an admissible level for sl(2). Then there

is injective homomorphism of Lk(sl(2)) modules:

Lk
r,0 ↪→ Mk

r,1 ⊗ Πk
(0)(r − 1) (6.2)

Theorem 6.1.3. [1] Let k be an admissible level for sl(2). Then there is

Lk(sl(2)) module isomorphism:

σt(Ek
λ;∆r,s

) ≃ Mk
r,s ⊗ Πk

(t−1) (λ+ k) (6.3)

91



Theorem 6.1.4. Let k = u
v
− 2 and l = u

w
− 2 be admissible levels for sl(2).

Then there are injective homomorphism of conformal vertex superalgebras:

L1(D(2, 1;− v

w
)) → Lk−1(sl(2))⊗ Bl (6.4)

L1(D(2, 1;− v

w
)) → Ll−1(sl(2))⊗ Bk (6.5)

Proof. Using the injections of 6.1.2, and the relations of 5.1.1 on both the

even and odd parts separately, we have:

L1(D(2, 1;− v

w
)) ≃

u−1⊕

r=1

Lk
r,0⊗Ll

r,0⊗L1
r,0 →

u−1⊕

r=1

Lk
r,0⊗Ml

r,1⊗Πl
(0) (r − 1)⊗L1

r,0

≃ Lk−1(sl(2))⊗ L1
1,0 ⊗ Πl(0)⊗ L1

1,0 ⊕ Lk−1(sl(2))⊗ L1
2,0 ⊗ Πl

(0)(1)⊗ L1
2,0

≃ Lk−1(sl(2))⊗ Bl (6.6)

We may similarly obtain an injective homomorphism

L1(D(2, 1;− v

w
)) → Ll−1(sl(2))⊗ Bk

by instead using the injection Lk
r,0 → Mk

r,1 ⊗ Πk
(0) (r − 1).

Lemma 6.1.5. Let k = u
v
− 2 and l = u

w
− 2 be admissible levels for sl(2). We

have the following identity of L1(D(2, 1;− v
w
)) module characters:

ch+[(E , E)t1,t2s1,λ1,s2,λ2,b
](z1, z2, z3, q)

= ch+[σt1(Ek−1
λ1+s1+s2+1,∆s2,s1

)⊗ Bl
(t2)

(λ2 + a; s1 + s2 + t1 + a, p+ a+ b)]

(6.7)

ch−[(E , E)t1,t2s1,λ1,s2,λ2,b
](z1, z2, z3, q)

= (−1)ach−[σt1(Ek−1
λ1+s1+s2+1,∆s2,s1

)⊗Bl
(t2)

(λ2 + a; s1 + s2 + t1 + a, p+ a+ b)]

(6.8)

For a, b ∈ {0, 1}.
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Proof.

ch[σt1(Ek−1
λ1+s1+s2+1,∆s2,s1

)](z1, q)ch
±[Bl

(t2)
(λ2 + a; a+ s1 + s2 + t1, b)](z2, z3, q)

= ch[σt1(Ek−1
λ1−s1−s2+1;∆s2,s1

)](z1, q)ch[L1
a+s1+s2+t1+1,0⊗Πl

(t2−1) (λ2 + a+ l)⊗L1
p+a+b,0](z2, z3, q)

±ch[σt1(Ek−1
λ1−s1−s2;∆s2,s1

)](z1, q)ch[L1
a+s1+s2+t1+1,0⊗Πl

(t2−1) (λ2 + a+ l + 1)⊗L1
b+1,0](z2, z3, q)

=
u−1∑

r=1
r+a odd

ch[σt1(Ek
λ1+a;∆r,s1

)](z1, q)ch[σ
t2(E l

λ2+a;∆r,s2
)](z2, q)ch[L1

p+a+b,0](z3, q)

±
u−1∑

r=1
r+a even

ch[σt1(Ek
λ1+a+1;∆r,s1

)](z1, q)ch[σ
t2(E l

λ2+a+1;∆r,s2
)](z2, q)ch[L1

p+a+b+1,0](z3, q)

Noting that in the first summand, we have a = r−1 mod 2, and in the second

summand, we have a+1 = r−1 mod 2, we obtain in the super character case

= (−1)ach−
u−1∑

r=1

σt1(Ek
λ1+r−1;∆r,s1

)⊗ σt2(E l
λ2+r−1;∆r,s2

)⊗ L1
p+b+r−1,0 (6.9)

and in the character case we have

= ch+
u−1∑

r=1

σt1(Ek
λ1+r−1;∆r,s1

)⊗ σt2(E l
λ2+r−1;∆r,s2

)⊗ L1
p+b+r−1,0 (6.10)

Proposition 6.1.6. Let k = u
v
−2 and l = u

w
−2 be admissible levels for sl(2).

The characters and supercharacters of L1(D(2, 1;− v
w
)) modules M of the form

(E , E)t1,t2s1,λ1,s2,λ2,b
are linearly independent for non-isomorphic module. We have

the isomorphism of L1(D(2, 1;− v
w
)) modules

(E , E)t1,t2s1,λ1,s2,λ2,b

≃ σt1(Ek−1
λ1+s1+s2+1,∆s2,s1

)⊗ Bl
(t2)

(λ2 + a; s1 + s2 + t1 + a, p+ a+ b) (6.11)

Proof. Consider linear dependence
∑

i∈I cich
±[Mi] = 0 for modules Mi =
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(E , E)t1,i,t2,is1,i,λ1,i,s2,i,λ2,i,bi
nonisomorphic for distinct i ∈ I. WLOG we assume that

I is minimal in that there is no linear dependence summing over I ′ ⊊ I. These

characters and supercharacters take the form:

z
λ1,i+r−1+t1,ik
1 q

t21,ik

4
+λ1,i+r−1+

t1,i
2 z

λ2,i+t2,il
2 q

t22,il

4
+λ2,i

t2,i
2

u−1∑

r=1

ch[Mk
r,s1,i

](q)ch[Ml
r,s2,i

](q)
δ(z21q

t1,i)δ(z22q
t2,i)

η(q)4

∑

n∈Z

z2n+pi+bi+r
3 q(n+

pi+bi+r

2 )
2

(6.12)

We first look at the support of distributions in these characters. Since

these are distinct for distinct t1, t2, any minimal linear dependence must have

contributions only from modules with matching labels t1,i = t1,j, t2,i = t2,j.

We notice that the z1, z2, z3 contributions are the same except for the shift

zλ1+t1k
1 zλ2+t2l

2 zb3. In particular, since t1 and t2 labels match, we conclude that

λ1, λ2 and b labels match. The remaining matching of labels then follows from

independence of Virasoro characters.

The isomorphism of modules follows from 6.1.5 and the inclusion 6.1.3.

6.2 Modular transformations

Remark 6.2.1. We write define the parameters τ, ξ such that:

q = e2πiτ z = e2πiξ (6.1)

Proposition 6.2.2. L1(sl(2)) modules have S matrices given by:

Sa,a′ =
1√
2
e2iπ

ξ2

τ (−1)(a+1)(a′+1) (6.2)

L1(sl(2))tw modules have S matrices given by:

Stw
a,a′ =

1√
2
e2πi

ξ2

τ (−1)aa
′

(6.3)
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Proof. We use the conventions of [61] for theta functions. Notice that ch[L1
1,0](ξ, τ) =

θ3(2ξ,2τ)
η(q)

and ch[L1
2,0](ξ, τ) =

θ2(2ξ,2τ)
η(q)

.

ch[L1
1,0]

(
ξ

τ
,−1

τ

)
=

1

η(− 1
τ
)
θ3

(
2
ξ

τ
,−2

τ

)
=

1√
2
e2πi

ξ2

τ

θ3(ξ,
τ
2
)

η(q)

=
1√
2
e2πi

ξ2

τ

(
ch[L1

1,0] + ch[L1
2,0]
)

(6.4)

ch[L1
2,0]

(
ξ

τ
,−1

τ

)
=

1

η(−1/τ)
θ2

(
2
ξ

τ
,−1

τ

)
=

1√
2
e2πi

ξ2

τ
θ4(ξ, τ/2)

η(q)

=
1√
2
e2πi

ξ2

τ (ch[L1
1,0]− ch[L1

2,0]) (6.5)

Theorem 6.2.3. [26] Let k = u
v
−2 be an admissible level for sl(2) with v > 1.

Then S transformations for Virasoro module characters are given by:

S{ch[Mk
r,s]} =

∑

r′,s′

SVir
(r,s)(r′,s′)ch[Mk

r′,s′ ] (6.6)

with S matrices given by:

SVir
(r,s)(r′,s′) = −2

√
2

uv
(−1)rs

′+r′s sin
vπrr′

u
sin

uπss′

v
(6.7)

Theorem 6.2.4. [24] Let k = u
v
−2 be an admissible level for sl(2) with v > 1.

Then the S transformation for standard Lk(sl(2)) modules is given by:

S{ch[σt(Ek
λ,∆r,s

)]} =
∑

t′∈Z

∑

r′,s′

∫ 1

−1

S(t,λ;∆r,s)(t′,λ′;∆r′,s′ )
ch[σt′(Ek

λ′,∆r′,s′
)]dλ′ (6.8)

with S matrices given by:

S(t,λ;∆r,s)(t′,λ′;∆r′,s′ )
=

1

2

|τ |
−iτ e

−iπ(ktt′+tλ′+t′λ)SVir
(r,s)(r′,s′) (6.9)
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Proposition 6.2.5. S transformations for Πk(0) modules are given by:

S{ch[Πk
(t−1)(λ+ k)]} =

∫ 1

−1

SΠ
(t,λ)(t′,λ′)ch[Π

k
(t′−1)(λ

′ + k)]dλ′ (6.10)

with S matrices:

SΠ
(t,λ)(t′,λ′) =

1

2

|τ |
−iτ e

−iπ(ktt′+tλ′+t′λ) (6.11)

Proof. The argument is exactly as in [24] theorem 6.

Theorem 6.2.6. Modular transformations of characters and supercharacters

of L1(D(2, 1;− v
w
)) modules induced from relaxed highest weight modules for

L(sl(2)) are given by:

(supercharacter, local)

S{ch−[(E , E)t1,t2s1,λ1,s2,λ2,0
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,0

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
ch−[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
]dλ′1dλ

′
2 (6.12)

(supercharacter, Ramond)

S{ch−[(E , E)t1,t2s1,λ1,s2,λ2,1
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,1

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
ch+[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,0
]dλ′1dλ

′
2 (6.13)

(character, local)

S{ch+[(E , E)t1,t2s1,λ1,s2,λ2,0
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,0

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
ch−[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
]dλ′1dλ

′
2 (6.14)
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(character, Ramond)

S{ch+[(E , E)t1,t2s1,λ1,s2,λ2,1
]}

=
∑

t′1,t
′
2∈Z

∫ 1

−1

∫ 1

−1

∑

s′1,s
′
2

St1,t2
s1,λ1,s2,λ2,1

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
ch+[(E , E)t

′
1,t

′
2

s′1,λ
′
1,s

′
2,λ

′
2,1
]dλ′1dλ

′
2 (6.15)

Where the S matrices are:

St1,t2
s1,λ1,s2,λ2,b

t′1,t
′
2

s′1,λ
′
1,s

′
2,λ

′
2,b

′

=
ue

2πi
τ

2
√
2 sin

(
wπ
u

)
sin
(
vπ
u

)Sk
(t1,λ1;∆1,s1 )(t

′
1,λ

′
1;∆1,s′1

)S
l
(t2,λ2;∆1,s2 )(t

′
2,λ

′
2;∆1,s′2

)S(p+b)(p′+b′)

(6.16)

Proof. We will calculate S matrices using the character identity in proposition

6.1.5. We must first calculate modular transformations for the Bl
(t2)

(λ2+a; s1+

s2 + t1 + a, p + a + b), which is given by the S transformations of characters

of each of its constituent parts. We begin by identifying any cancellations that

might occur from its even and odd portions. To this end, we identify relations

between S matrices for the even and odd portions, corresponding to replacing

the parameter a with a + 1. We first notice for p = s1 + s2 + t1 + t2 + 1 and

p′ = s1 + s2 + t1 + t2 + 1 we have

S(s1+s2+t1+a)(s′1+s′2+t′1+a′)S(p+a+b)(p′+a′+b′)S
Π
(t2,λ2+a)(t′2,λ

′
2+a′)

= (−1)b
′+1S(s1+s2+t1+a+1)(s′1+s′2+t′1+a′)S(p+a+1+b)(p′+a′+b′)S

Π
(t2,λ2+a+1)(t′2,λ

′
2+a′)

(6.17)

We need only determine the S transformation for ch±[Bl
(t2)

(λ2; s1+s2+ t1, p+

b)], as the additional parameter corresponds only to parity reversal. In the

following, the new parameter a gives the sum over the even and odd portions
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of Bl
(t2)

(λ2; s1 + s2 + t1, p+ b).

S{ch±[Bl
(t2)

(λ2; s1 + s2 + t1, p+ b)]}

=
∑

t′2∈Z

∫ 1

−1

dλ′2
∑

a,a′,b′=0,1

(
S(s1+s2+t1+a)(s′1+s′2+t′1+a′)S(p+a+b)(p′+a′+b′)S

Π
(t2,λ2+a)(λ′

2+a′)

·(±1)ach[L1
s′1+s′2+t′1+a′,0]ch[Π

l
(t′2)

(λ′2 + l + a′)]ch[L1
p′+a′+b′ ]

)
(6.18)

The sum over a then results in a factor (1± (−1)b
′+1). In the supercharacter

case, this is 2δb′,0, and in the character case this is 2δb′,1. We will note that

entirely similarly to before, if we replace the parameter a′ by a′+1 in the second

line, we have:

S(s1+s2+t1+a)(s′1+s′2+t′1+a′)S(p+a+b)(p′+a′+b′)S
Π
(t2,λ2+a)(t′2,λ

′
2+a′)

= (−1)b+1S(s1+s2+t1+a)(s′1+s′2+t′1+a′+1)S(p+a+b)(p′+a′+1+b′)S
Π
(t2,λ2+a)(t′2,λ

′
2+a′+1)

(6.19)

Then in the supercharacter case, the sum over b′ fixes b′ = 0. Summing over

a′ then gives:

S{ch−[Bl
(t2)

(λ2; s1 + s2 + t1, p+ b)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2

(
S(s1+s2+t1)(s′1+s′2+t′1)

S(p+b)(p′)S
Πl

(t2,λ2)(t′2,λ
′
2)

·
(
ch[L1

s′1+s′2+t′1,0
]ch[Πl

(t′2)
(λ′2 + l)]ch[L1

p′ ]

−(−1)bch[L1
s′1+s′2+t′1+1,0]ch[Π

l
(t′2)

(λ′2 + l + 1)]ch[L1
p′+1]

))
(6.20)

98



Then in the case b = 0 we have:

S{ch−[Bl
(t2)

(λ2; s1 + s2 + t1, p)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2S(s1+s2+t1)(s′1+s′2+t′1)
S(p)(p′)S

Πl

(t2,λ2)(t′2,λ
′
2)
ch−[Bl

(t′2)
(λ′2; s

′
1+s

′
2+t

′
1, p

′)]

(6.21)

For b = 1 we have:

S{ch−[Bl
(t2)

(λ2; s1 + s2 + t1, p+ 1)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2S(s1+s2+t1)(s′1+s′2+t′1)
S(p+1)(p′)S

Πl

(t2,λ2)(t′2,λ
′
2)
ch+[Bl

(t′2)
(λ′2; s

′
1+s

′
2+t

′
1, p

′)]

(6.22)

Then in the character case, the sum over b′ fixes b′ = 1. Summing over a′ then

gives:

S{ch+[Bl
(t2)

(λ2; s1 + s2 + t1, p+ b)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2

(
S(s1+s2+t1)(s′1+s′2+t′1)

S(p+b)(p′+1)S
Πl

(t2,λ2)(t′2,λ
′
2)

·
(
ch[L1

s′1+s′2+t′1,0
]ch[Πl

(t′2)
(λ′2 + l)]ch[L1

p′+1]

−(−1)bch[L1
s′1+s′2+t′1+1,0]ch[Π

l
(t′2)

(λ′2 + l + 1)]ch[L1
p′ ]
))

(6.23)

In the b = 0 case we have:

S{ch+[Bl
(t2)

(λ2; s1 + s2 + t1, p)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2S(s1+s2+t1)(s′1+s′2+t′1)
S(p)(p′+1)S

Πl

(t2,λ2)(t′2,λ
′
2)
ch−[Bl

(t′2)
(λ′2; s

′
1+s

′
2+t

′
1, p

′+1)]

(6.24)
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and in the b = 1 case we have:

S{ch+[Bl
(t2)

(λ2; s1 + s2 + t1, p+ 1)]}

= 2
∑

t′2∈Z

∫ 1

−1

dλ′2S(s1+s2+t1)(s′1+s′2+t′1)
S(p+1)(p′+1)S

Πl

(t2,λ2)(t′2,λ
′
2)
ch+[Bl

(t′2)
(λ′2; s

′
1+s

′
2+t

′
1, p

′+1)]

(6.25)

Noting that z1 = 1 corresponds to ξ1 = ±1, this gives the S matrices:

2S(s1+s2+t1)(s′1+s′2+t′1)
S(p+b)(p′+b′)S

Πl

(t2,λ2)(t′2,λ
′
2)

=
√
2e

2πi
τ (−1)(s1+s2+t1+1)(s′1+s′2+t′1+1)S(p+b)(p′+b′)S

Πl

(t2,λ2)(t′2,λ
′
2)

(6.26)

for the B contribution in character, supercharacter, twisted and untwisted cases

(with appropriate choices of b and b′ for each of these cases). We will now focus

on the σt1(Eλ1+s1+s2+1;∆s2,s1
) contribution. We note that

SΠk−1

(t1,λ1)(t′1,λ
′
1)
= (−1)t1t

′
1+t1(s′1+s′2+1)+t′1(s1+s2+1)SΠk

(t1,λ1)(t′1,λ
′
1)

and we have the following identity:

SVir,k
(1,s1)(1,s′1)

SVir,l
(1,s2)(1,s′2)

= 4

√
4

u2vw
(−1)s1+s′1+s2+s′2 sin

(vπ
u

)
sin

(
uπs1s

′
1

v

)
sin
(wπ
u

)
sin

(
uπs2s

′
2

w

)

8

u

√
2

vw
(−1)s1+s′1+s2+s′2+s1s′1+s2s′2 sin

(vπ
u

)
sin

(
wπs1s

′
1

v

)
sin
(wπ
u

)
sin

(
vπs2s

′
2

w

)

=
4

u
(−1)(s1+s1+1)(s′1+s′2+1) sin

(wπ
u

)
sin
(vπ
u

)
SVir,k−1
(s2,s′2)(s1,s

′
1)

(6.27)

Then:

Sk−1
(t1,λ1+s1+s2+1;∆s2,s1 )(t

′
1,λ

′
1+s′1+s′2+1;∆s′2,s

′
1
) = SVir, k−1

(s2,s′2)(s1,s
′
1)
Sπk−1

(t1,λ1+s1+s2+1)(t′1,λ
′
1+s′1+s′2+1)

=
(−1)(s1+s2+t1+1)(s′1+s′2+t′1+1)u

4 sin
(
wπ
u

)
sin
(
vπ
u

) SVir,k
(1,s1)(1,s′1)

SVir,l
(1,s2)(1,s′2)

SΠk

(t1,λ1)(t′1,λ
′
1)

(6.28)
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Combining with the contribution from B, we obtain S matrices of the form

ue
2πi
τ

2
√
2 sin

(
wπ
u

)
sin
(
vπ
u

)Sk
(t1,λ1;∆1,s1 )(t

′
1,λ

′
1;∆1,s′1

)S
l
(t2,λ2;∆1,s2 )(t

′
2,λ

′
2;∆1,s′2

)S(p+b)(p′+b′)

(6.29)

again, with appropriate choice of b and b′ for each of the character, superchar-

acter, twisted and untwisted cases.
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