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Abstract

HAL (Hyperspace Analog to Language) is a high-dimensional model of semantic
space that uses the global co-occurrence frequency of words in a large corpus of
text as the basis for a representation of semantic memory. In the original version
of the HAL model, many of its parameters were set without any a priori rationale.
We took an empirical approach to understanding the influence of the parameters on
the measures produced by the HAL model. In particular, we wanted to investigate
the power of the HAL model’s measures of neighborhood density in predicting re-
action times in lexical decision and semantic decision tasks. After exploring HAL’s
parameter space we found that there are optimal sets of parameters for predicting
reaction time from HAL neighborhood density. Importantly, these new parameter
sets give us measures of semantic density that predict behavioral measures better

than the original HAL parameters.
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Chapter 1

Introduction

Psycholinguistics aims to develop theories of linguistic behavior. One of the key
components of language is semantics, the comprehension of the meaning of words.
This work investigates a class of models of lexical semantics stemming from HAL
(Hyperspace Analog to Language, Lund & Burgess, 1996), a mathematical model
of the representation of word meaning. This chapter provides a short summary
of the previous research in lexical semantics and mathematical models of word
meaning. The second chapter introduces the HAL model and the changes that we
have made to it. The third chapter reports on our explorations of the HAL parameter
space, and how certain HAL parameter sets can predict behavior in psycholinguistic

experiments. The fourth and final chapter contains-our conclusions.

1.1 A short history of distributional semantics, Pre-
HAL

Distributional semantics aims to use word co-occurrence information to represent
word meaning. In essence, substitution regularities are taken to provide information -
about word meaning. Another way of expressing this concept is that the context sur-
rounding a word conveys important information about its meaning (Harris, 1968).
Before there was a formal, mathematical description of this concept, there was

philosophical argument for an evidence-based model of word meaning. Wittgen-



stein (1958) proposed that a word’s meaning was defined solely by its usage. He
felt that words were similar if they were used in similar ways. In his final work,
Philosophical Investigations, he addressed the long running philosophical debate
about the meaning of words. Wittgenstein proposed that the meaning of a word
is not determined by the object that it names (the word “chair” does not always
mean a device to sit on). This raises the question: Is it possible to write down the
meanings of words? Dictionaries contain definitions, but the use of words is not
limited to the usages listed in dictionaries. Wittgenstein made a bold argument: the
meaning of a word is completely dependent on its context. His philosophy of mean-
ing did away with word/meaning duality, and opened the door to psycholinguistic
theories of meaning that would use contextual information in models of semantic
representation.

In the era before modern computing, there were attempts to build many types
of semantic models. Osgood, Suci, and Tannenbaum (1957) took an approach that
used sets of semantic features to model semantic similarity judgments. After col-
lecting enormous numbers of human judgments of a word’s rating on 50 different
scales (ex: wet — dry, rough — smooth), similarity was calculated as a distance
between two words in this feature space of 50 dimensions (1 dimension for each
scale). The number of scales used was relatively small, but the technique proved to
be useful.

Modern distributional semantics uses the same idea of geometric distance in a
space, but instead of using a small, hand-made semantic feature space, it uses a
corpus-derived context space that has many thousands of dimensions. There has
been much debate about the plausibility of large vectors in psychological models.
As we will see later, Churchland and Sejnowski (1992) have argued that vector
coding is biologically plausible as well as being a very effective way to model many

types of psychological processes. The aesthetic and philosophical debates about



these ideas are ongoing, but the prowess of high-dimensional models of language
is hard to refute.

There are psycholinguists who do not agree with the Wittgensteinian idea of
distributional semantics, and they have proposed alternate theories of word mean-
ing. Jackendoff (1983, 2002, 2007) prefers rule systems that allow for semantic
categorization. The semantic representations that he proposes are sets of preference
rules, applied in a certain order, which he called the Parallel Architecture. This type
of representation does not include any statistical information about a word’s usage.
Rather, Jackendoff sees phonology, syntax and semantics as three parallel systems.
Each of the three systems generates representations by formation rules and then all
the different types of representations are linked by interface rules. Words must be
held in working memory along with their interface rules, which are used to build
hierarchical structures. This amount of complexity makes the Parallel Architecture
difficult to accept when compared with a more parsimonious model. HAL is an ex-
tremely simple model that relies on the complexity of its input. In most cases, large
amounts of written text are used to build a model, but the model is a very simple
combination of memory for co-occurrence and geometric distance.

One question raised by co-occurrence models concerns the size of the input
corpus. Is a 160 million or 300 million (or multi-billion) word corpus a reason-
able size to model human performance? The original HAL corpus is indeed very
large, but the amount of text used in HAL is large because of the perceptual poverty
of text. Compared to the full spectrum of sensory input, text is a poor substitute.
Distributional models currently have no way to incorporate sensory-motor repre-
sentations, and there has been strong evidence that modality-specific systems are
involved in the representation and use of conceptual knowledge (e.g Barsalou, Sim-
mons, Barbey, & Wilson, 2003). A response to this criticism is obvious: there are

no theoretical barriers to extending the input to distributional models beyond writ-



ten text. Transcripts of spoken language can be used, once they reach the necessary
size. It could be possible to create a rich corpus of linguistic and sensory-motor in-
formation and provide this information to HAL. This process has begun. Roy et al.
(2006) has recorded all the sights and sounds that were perceived by a child (Roy’s
own son) from birth to age two, and will analyze this data to better understand how
linguistic and non-linguistic input contribute to language acquisition.

In essence, distributional semantics is a way of representing statistical patterns
of temporal co-occurrence in any type of sensory input or motor activity. Language
is made of of comprehension and production which are based on sensory input and

motor control. From this point of view there is a potential connection between

language, the body, and the statistical properties of word meaning.

1.2 The Theoretical underpinnings of HAL

A mathematical model of language, like HAL, is by its nature, abstract. A criticism
that is often aimed at HAL, LLSA, and other mathematical models of language is
that they have a weak theoretical position. Unlike other psychological models,
such as edge detection in visual processing, HAL does not have a well developed
neurophysiological foundation to build on. This situation may leave the reader
with an uncomfortable feeling: no obvious justification of the architecture from the
“bottom up”, and evidence from “top down” experimental data that can sometimes
be explained by non-vector models. Is there any reason to expect HAL and other
vector models to have any relevance at all? Does the model exist in a theoretical
vacuum?

An answer to this question has been put forth by neurocomputational philoso-
pher Paul Churchland. Churchland strongly supports the idea of vector represen-
tation and mathematics as a neurologically and psychologically plausible model of

psychological processing. In his book “A Neurocomputational Perspective: The



Nature of Mind and the Structure of Science” (Churchland, 1989) he explained
the connection between vector models of cognition and neurophysiology. At the
same time, he demonstrated that vector-based models can shed light on a variety of
psychological processes, including perceptual recognition and explanatory under-
standing (Churchland, 1989, p. 197). In this section, I will give a brief summary of
Churchland’s arguments, and how they support HAL’s theoretical underpinnings.

Churchland (1989) bases his theory on the cortical architecture of the human
brain. In the cortex, the sensory input layers process information in parallel, with a
topographic map that corresponds to the physical world. For example, visual input
is mapped by retinal position onto visual space in the visual cortex, and auditory
input is mapped by frequency onto the auditory cortex. Connections from these
map-like areas of the cortex project into association cortex. The information enter-
ing the sensory areas can be very easily represented as a vector of numbers (in the
same way that an image can be represented by a vector of numbers, with one num-
ber for each pixel in a digital video camera). The input from perceptual layers can
then be fed forward to other cortical networks that predict or calculate action. What
Churchland asks is: Are there simple mathematical vector operations that can sim-
ulate the processing of the input to a biological system that will help us understand
its behavior?

To find an answer, he looks at the field of neural network models of cognition
(also known as connectionist or Parallel Distributed Processing/PDP architectures).
The first step of this type of modeling is to reduce the sensory input to a list of

numbers. The PDP models perform perceptual recognition by connecting the input

and output units using one or more layers of hidden units. This layer corresponds to
the cortical areas connected to the sensory areas. These hidden units are connected
and trained using a learning algorithm. After training, they are able to perform

operations on the input vectors, operations which show that they can recognize and



categorize different inputs, even if they are different from the training data. This
means that the connection weights of these internal, hidden units are equivalent
to a vector of numbers that represent the activation of a prototype pattern related
to the input that the model is trying to recognize. The values of this vector can
be also understood as a point in a high-dimensional state-space. As the input to
the model changes, the network moves to different positions in that state-space.
The calculations done by the network can be framed as matrix multiplication that
accomplishes coordinate transformations in state-space.

Based on the success of PDP models, Churchland (1989) extrapolates that vec-
tor mathematics may be able to explain many types of cognition. Similar to human
cognition, PDP models can process vectors with enormous numbers of elements
(just Jooking at the number of neurons and connections in the brain, the number
of elements that the brain can process in parallel is very large, approximately 10!
non-sensory neurons). The determinant of processing speed is the number of layers,
not the number of elements (the size of the vector). The weights of the connections
allow the network to partition input state-space, no matter how many dimensions
it has. When there is any type of covariance or cohesion in the structure of the
input to the system, the right kind of neural network will learn how to partition up
the state-space. Internal to the network, in the hidden layers, are the association
vectors that associate input with output. Association vectors need not necessarily
be conceived of only as an implementation detail, but may plausibly be implicated
directly in cognitive processing. These association vectors are representations of
basic prototypes, and coordinate space transformations show that the input may be
close or far from the prototype in state space.

Churchland (1989) also links prototypes with the concept of attractors in a high-
dimensional state-space. Attractors are a set of states that a system will settle into

over time. A neural network may settle into a different state if the initial conditions



of input change. However, the network may also enter the same state in response to
different (but similar) input states, due to the presence of an attractor. The reason
is that more units are involved in the process than just those that are required for
mapping the input. If many units in a neural network change on the basis of (for
example) some visual input, some of those changes will have nothing to do with the
visual form of the object. They will rather relate that form to other aspects of the
current state. This ability to generalize across similar inputs by entering the same
attractor space amounts to prototype recognition, and endows high dimensional
models with explanatory power.

The HAL model is in many ways mathematically equivalent to an artificial neu-
ral network model with unsupervised training algorithm. The information that is
contained in hidden unit connections in a neural network is instead stored in the
global co-occurrence vectors for each word. Burgess and Lund (2000) noted that
using HAL with a very small window size produces similar results in word meaning
clustering to an Elman Simple Recurrent Network (Elman, 1993). If each word in
a language is considered to be a prototype, then the mathematics of calculating a
distance in HAL space are not only reasonable to assume, they may by of the same
type that underly all types of cognition, according to Churchland. To take this one
step further, all language processing may boil down to operations in word space
and sentence space. Semantic qualia may be taken to be similar to sensory qualia:
a unique set of levels of activation at certain layers in coritcal circuits.

Using Churchland’s logic, we can bridge the theoretical gap between neurobi-

ology, psycholinguistics and vector models of language (Churchland, 1989). The

philosophical and the experimental are converging towards a statistical, distributed
model of cognition, and as more experimental evidence accumulates, the power of

these types of models will become evident.



1.3 HAL and its progeny

HAL (Lund & Burgess, 1996; Burgess & Lund, 1997; Burgess, 1998; Burgess,
Livesay, & Lund, 1998; Burgess & Lund, 2000) uses word co-occurrence to build a
vector space that contains contextual information for every word in the language. A
vector space is a geometric representation of data that has an ordered set of numbers
associated with each point in the space. Each set of numbers defines the point’s
location in the space, and is called its vector. Each vector has a dimensionality that
is equal to the number of numbers in the vector. HAL space is made up of vectors
with one dimension for each word in the language. These HAL vectors are much
larger than most vectors used in psychological models. For example, instead of
requiring three numbers, x, y and z, as we would use to define a point in the three
dimensional space we inhabit, we use N numbers to define a word’s position in
HAL space, where NN is the number of words in the language. In the original HAL
work, these word vectors had more than 100,000 dimensions.

The HAL model uses the context of a word’s usage to find the neighbours of
a word by calculating the distance between all word vectors in this space. This
model has been adopted and modified by various researchers since it was proposed
in 1996. The following section is a survey of the work done on the HAL model by
psychologists and computer scientists since its inception.

There were some psycholinguists who collaborated with Curt Burgess in the
early days of the HAL model. Buchanan, Burgess, and Lund (1996) used HAL to
model deep dyslexia. They found that words with denser neighborhoods produced
more errors in deep dyslexics than words with sparser neighborhoods. Buchanan,
Westbury, and Burgess (2001) looked at HAL neighborhood effects on lexical de-
cisions. They found that the HAL neighborhood size was a reliable predictor of
lexical decision reaction time. Even after removing the contributions of ortho-

graphic variables and imageability, there was significant explanatory power from

8



HAL neighborhood size.

Siakaluk, Buchanan, and Westbury (2003) investigated the ability of HAL to
predict performance in a categorization task. They found that HAL semantic den-
sity influenced the decision time on a go/no go task that required participants to
classify a word as being animal or non-animal. The influence of density was found
to be facilitative, where words with denser semantic neighborhoods were processed
faster. Yates, Locker, and Simpson (2003) found a similar facilitatory effect of
high-density neighborhoods in a lexical decision task that included pseudohomo-
phone foils.

Many computer scientists have taken this kind of memory model and modified
it to solve problems in the field of artificial intelligence. Song and Bruza (2001),
Song, Bruza, Huang, and Lau (2003), and Song, Bruza, and Cole (2004) have ap-
plied the HAL model to problems of concept learning, inference, and information
flow. They were able to use HAL vectors as part of an intelligent software agent that
makes “aboutness” judgments such as: the sentence “Welcome to the City of Red
Deer, Alberta” has nothing to do with a certain ungulate known as Cervus elaphus.
They do this by combining the vectors for all the words in the sentence and then
comparing it to the vector for the concept in question (in this case, “deer”).

During the investigations that are reported in this thesis, other researchers have
proposed models that are similar to HAL. We describe three of these very recently
reported models here:

Rohde, Gonnerman, and Plaut (2007) created the COALS (Correlated Occur-
rence Analogue to Lexical Semantic) model. It is identical in design to HAL except
in the following respects: it uses a correlation operation for both vector normaliza-
tion and similarity measures, and it removes closed class words from the model. It
also uses SVD (Singular Value Decomposition) to reduce the dimensionality of the

co-occurrence matrix. SVD is a factorization technique that can be used to calculate



a lower-dimensionality approximation of the original, larger matrix. Rohde et al.
(2007) show that HAL performs very well on word similarity tasks such as those in
TOEFL exam and other similar tests when SVD is applied to the model.

Bullinaria and Levy (2007) analyzed different influences of excluded closed
class words, corpus size, window size and distance metrics. They proposed using
an information-theoretic metric, Pointwise Mutual Information (PMI) instead of
Euclidean distance, and found that PMI improved the accuracy of their model in
their semantic task simulations. PMI is a measure of association that is calculated
as the ratio between the probability of two words co-occurring given their joint
distribution versus the probability of their co-occurrence given only their individual
distributions and assuming independence.

Recently Jones and Mewhort (2007) and Jones, Kintsch, and Mewhort (2006)
have built a holographic model of lexical memory that they call BEAGLE (which
is an acronym for bound encoding of the aggregate language environment). It uses
a convolution function as a way to model associative memory (Murdock, 1982).
Convolution is a mathematical operation that can be applied to any type of co-
occurrence vector to encode it into a memory trace vector. Later, the information
can be extracted from the memory trace by calculating the correlation between a
probe item and the combined memory trace. In BEAGLE, this function is applied
to language in such a way that word order information and global co-occurrence
information are simultaneously encoded into each vector. BEAGLE has been able
to account for many different types of semantic priming effects when the prime-
target pairs are related by both pure semantic relationships and associations (Jones
et al., 2006). It has also been used to model sentence completion and semantic

categorization (Jones & Mewhort, 2007).

1.4 Our goals

10



The HAL model has much untapped potential. It is able to predict many different
kinds of linguistic behavior, and may have the ability to explain new phenomena.
The research that we will present is intended to take the HAL model and under-
stand it better. We will explore HAL’s parameter space and find out if there are
certain areas in that space that produce more accurate predictions of human behav-
ioral measures than HAL’s default parameter set. We will also introduce two new
semantic decision tasks, and use HAL to explain the the experimental results we

obtain from these tasks.
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Chapter 2
The HAL model in detail.

The HAL class of models are all based on the original model described by Lund
and Burgess (1996). In this chapter I will describe the original HAL model, and

then describe HiDEX, a program that implements the HAL model as well as many

other very similar models.

2.1 The original HAL model

HAL is a very simple model in many ways. Lexical co-occurrence is captured by
keeping track of the number of times all words co-occur with each other within a
small window. Words can co-occur when they are adjacent, or when they are sep-
arated by other, intervening words. The maximum distance between words consid-
ered to co-occur is called the window size. Lexical memories in the HAL model are
built by making the model read words in text one window at a time, and then slid-
ing the window forward one word. This process of counting local co-occurrences
is illustrated in the Figure 2.1. After reading a whole corpus and counting the lo-
cal co-occurrences, the data is stored in a raw co-occurrence matrix containing the
frequencies of co-occurrence for all possible combinations of words in all possible
positions in the window. This matrix can become a very large set of numbers. For
example, with a 100,000 word lexicon and a 30 word window, the number of data

points in the matrix would be 300 billion.
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The majority of these data points will contain the number zero, because most
words never co-occur with each other. This means that the data in the raw co-
occurrence matrix is very sparse. To do any meaningful work with the data, it will
be condensed or consolidated into a more compact form in the consolidation phase
of the HAL model. This consolidation, or aggregation, is done by simply summing
the frequencies in the window. There are two parts to the window, the forward part
and the backward part, and these two parts are each summed separately. This means
that each word will have two numbers for each co-occurrence (See Figure 2.2). The
original HAL model used a linear weighting function, called a linear ramp, as a
multiplier to give more weight to the words that co-occurred closer to the center of
the window. This aggregation reduces the data set from 100 billion to 5 billion data
points (by reducing a three dimensional matrix of size 20 x 50,000 x 100,000 to
a two dimensional matrix of size 50,000 x 100,000). Each word now has a vector
associated with it that contains the aggregate co-occurence for both the forward and
backward parts of the window (each vector containing 100,000 numbers)

These vectors are not yet usable due to the the influence of orthographic fre-
quency. Due to the non-linear nature of the distribution of word usage (Zipf, 1935,
1949; R. H. Baayen, 2001), a small number of words will have very high ortho-
graphic frequencies, and consequently very high co-occurrence frequencies. The
vast majority of the words in a language, on the other hand, will have low frequen-
cies and co-occurrence frequencies. Due to this bias, high frequency words will
have vectors that are very dense with large values, and therefore they will be much
closer in context space to all words than low frequency words. The original HAL
model dealt with this frequency issue by normalizing each vector, by dividing each
element in the vector by the vector’s length. As we shall see, normalizing vectors
in this particular ways leads to a systematic frequency bias, and will not be used in

our implementation of the model (Shaoul & Westbury, 2006).
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The final stage in preparing the vectors for distance calculations is the elimina-
tion of the noisy, sparser parts of the matrix. This is done in the original HAL model
by only retaining vectors for the words with the greatest row variances. If only the-
rows with the top 10,000 most variant words are used, the forward and backward
aggregates create rows of 20,000 elements. This reduces the size of the final matrix
from 50,000 x 100,000 (5 billion elements) to 50,000 x 20,000 (1 billion elements).
This matrix is smaller and denser than previous matricies. It is now small enough
to fit into the memory of modern computers, making the calculations tractable.

At this point in the process each word in the lexicon has a representation that
consists of 20,000 elements (equivalent to 20,000 dimensions). The HAL model
uses the Euclidean distance metric to calculate the distance between any two words
in the space. For every element j in the vectors for words a and b, d = {/3°;(a; — b;)2.
This distance expresses how similar the contexts of usage of the two words are. If
the words have similar values in the same dimensions, they will be closer together
in the space. To find the neighbors of a word in context space we calculate the dis-
tance between the word and all the other words in the language. The closest words
are considered as neighbors in HAL space. The neighborhood density is a measure
of how tightly packed the words in the neighborhood are. The density measure in
the original HAL work was calculated by averaging the distances between the word
and its 10 closest neighbors. This produced a density value for each word, con-
ceptually similar to the orthographic neighborhood density, but in a semantic space

instead of an orthographic space.

2.2 HiDEx and our modifications to HAL

We have created a novel implementation of the HAL model called HiDEx (High
Dimensional Explorer). HiDEx is capable of running the HAL model using the

identical calculations that were specified in the work of Lund and Burgess (1996),
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but it is also able to use slightly different algorithms and parameters. Alternative
algorithms include: new normalization algorithms, new weighting algorithms, and
new neighborhood membership algorithms. Alternative parameters include new
window sizes and context sizes. In this next section we will outline the modifica-

tions we made to HAL, and why we made them.

2.2.1 Lexicon choice

The lexicon that we chose to use for HIDEx was derived from the CELEX database
(R. H. Baayen, Piepenbrock, & Gulikers, 1995) by choosing all the words that had
an orthographic frequency of two occurrences per million or greater. This lexicon
contains approximately 45,000 words, which is less that the 70,000 word lexicon
used by Lund and Burgess (1996). The choice to reduce the lexicon size was made
for two reasons: 1) the amount of information contained in the contexts of low
frequency words is small, and does not have much influence on the distances be-
tween most words in the space, and 2) the computational complexity of the model

increases greatly with the size of the lexicon.

2.2.2 Corpus Choice

Lund and Burgess (1996) used a corpus 160 million words of USENET (Fristrup,
1994) text. It is well known that the balance of registers and genres in a corpus has
a strong effect on the HAL vectors produced (Shaoul & Westbury, 2006; Bullinaria
& Levy, 2007; Rohde et al., 2007). In order to make our results comparable to
the majority of studies done on the HAL model, we chose to replicate as closely
as possible the USENET corpora used by Lund and Burgess (1996), Burgess and
Lund (1997), Burgess (1998), Burgess and Livesay (1998), Burgess et al. (1998)
and Burgess and Lund (2000). We collected 12 billion words of USENET text from
2005 to 2007 (Shaoul & Westbury, 2007), and use a 1 billion word subset of this

corpus to build our models. The same benefits that were described by Lund and
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Burgess (1996) are true for this corpus: USENET text contains a very broad variety
of genres and topics, and most of the text is in a very conversational style, similar
in some ways to spoken language. We chose not to use a corpus of 160 million
words in size because we found that there were many words in our 50,000 word
lexicon that had one or less occurrence in this corpus. To obtain observations of
multiple occurrences of all the words in our lexicon, it was necessary to use a larger
corpus. Due to the computing time required to run all the experiments in this study,
it was impossible to do a comparison of the results based on different sized corpora.
In addition, Bullinaria and Levy (2007) did a very thorough analysis of the impact
of corpus size on HAL. They found that their measures of performance increased
as corpus size increased, but the amount of improvement was mostly at ceiling for
corpora of 90 million words or greater. This result leads us to believe that our choice
of corpus will not greatly impact our results, and will allow us to compare them to

previous work with USENET corpora of smaller size.

2.2.3 Frequency issues/Normalization

Shaoul and Westbury (2006) showed that there was a problem with the original
HAL model that allowed a word’s orthographic frequency to influence its neigh-
borhood density. If HAL neighborhood density is used to predict psycholinguistic
phenomena, it would be unfortunate if HAL density measures covaried with ortho-
graphic frequency, one of the most powerful predictors of lexical access (Balota &
Spieler, 1999). Shaoul and Westbury (2006) found that the normalization procedure
used in the original HAL, dividing each vector by its variance, did not eliminate fre-
quency effects. Buchanan et al. (2001) proposed using the orthographic frequency
of each word as the word’s vector’s divisor, and Shaoul and Westbury (2006) did ex-

actly that. Words with high frequency would see their co-occurrence values shrink,

and words with low frequency would see their values amplified. Shaoul and West-
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bury (2006) found that the neighborhood densities made with this new normaliza-

tion technique were no longer correlated with orthographic frequency.

2.2.4 Weighting and Window Size

Lund and Burgess (1996) used one method for assigning weights to the co-occurrence
counts, the linear ramp, without describing any a priori justification for their choice.
The original HAL model used 10 word windows, and the values were multiplied by
the distance from the end of the window. This meant that the count for the word
appearing directly adjacent would be multiplied buy 10, then the next one out by 9,
and so on. We introduced 8 alternative weighting functions. For a detailed descrip-
tion of the functions, please see Table (2.1). We also allow the size of the forward

and backward windows to be set independently to any size.

Function Name Function w = window size, Sample Vector
p = position (1 to w) of Weights (sym-

metric 4-word
windows)

Flat Weights r=1 [11111111]

Linear Ramp z=(w-p+1) (12344321}

Exponential Ramp z=(w—-p+1)> (149161694 1]

Forward Linear Ramp, z=1,z=(w—-p+1) [11114321]

Backward Flat Ramp

Forward Flat Weights, z=(w—p+1),z=1 [12341111]

Backward Linear Ramp

Inverse Linear Ramp r=p [43211234]

Inverse Exponential z = p? [1694114916]

Ramp

Second Word Weighting ifp=2,2 =10,elsex =1 [1110111011]
Third Word Weighting ifp=3,z=10,elsez =1 [1101111101]
Fourth Word Weighting ifp=4,z=10,¢lsex =1 [1011111110]

Table 2.1: List of Weighting Functions Implemented in HiDEx.
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2.2.5 Context Size

One key part of the HAL model is the reduction of the size of the global co-
occurrence matrix after the weighting scheme has been applied and the windows
have been summed. The original HAL model sorted all the vectors by variance,
and only retained the /V vectors with the highest variance.

In the original HAL model N was set to 200, using the 200 most variant word
vectors (Lund & Burgess, 1996). HiDEx allows this parameter, which we call con-

text size, to be set to any value less than the lexicon size.

2.2,6 Neighborhood size, neighborhood membership threshold

Another extension to HAL proposed by Shaoul and Westbury (2006) was the con-
cept of a neighborhood membership threshold. Unlike HAL, which used a fixed
number of the closest neighbors as the neighborhood, we calculated a number,
called the membership threshold, that was used as the criterion for neighborhood
membership. This threshold is calculated by randomly sampling many millions
(usually billions) of word pairs and calculating their inter-word distances to find
the standard deviation of this distance distribution. The neighborhood membership
threshold was set to: 1 + 1.50 and is used for all future neighborhood calculations.
Note that this threshold has to be re-calculated every time any other parameter in
the model is changed since the average distance between words will be affected
by any parameter change. A consequence of this new definition of neighborhood
membership is that some words may have more neighbors than others, and some

words may have no neighbors.

2.2.7 Two new measures: NCOUNT and ARC

Shaoul and Westbury (2006) introduced two new measures of semantic density that

depend on this threshold. The first, Average Radius of Co-Occurrence (ARC) is
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calculated by taking the mean of the distances between the word in question and all
the neighbors with the threshold. The second, Neighbor Count (NCOUNT) is the
number of neighbor words in the threshold. These two new measures both relate
information about the density of the context neighborhood of words (See Figure

2.3). In later sections, we will be doing analyses of value called NCOUNT-INV,

which is defined as:
1
NCOUNT +1

@.1

This produces a value of one for words with no neighbors, and smaller numbers for

words with more neighbors.
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2.2.8 Computational Complexity

To give the reader some perspective on the scale of calculations performed by

HiDEXx, here is a broad, slightly simplified explanation of the process.

¢ Build Data Set: At the beginning of a set of HiDEx experiments, we must
build a Data Set. This step is usually done once, and the Data Set is then

re-used for many experiments.

- Collect documents into a corpus. In our case, we used USENET text as

described in Shaoul and Westbury (2007).

~ Initialize with the number zero a matrix thatis L x L x N in size, where
L is the size of the lexicon, and N is the maximum size of the window
that can be used by HiDEx. In the experiments described here L =
50000 and N = 30, 15 ahead of the center word, and 15 behind. The

number of elements in this matrix is 75,000,000,000.

— Note all word co-occurrences for the center word and each of the other
words in the window, and increment the values in the co-occurrence

matrix.

— Slide window forward by one word. Repeat until reaching the end of

the corpus.

— Save this matrix as a Data Set (Approximate Size: 63Gb)
e Calculate Semantic Distances/Densities for a list of words:

~ Load Data Set, and any list of words in the lexicon.
- Load the desired parameters (window size, weighting scheme, etc)

- Apply the window size and weighting scheme to the Data Set, consol-
idating it, creating the global co-occurrence vectors. Retain only the

vectors for words with the highest orthographic frequency.
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— Normalize the vectors.

— Generate the neighborhood membership threshold by calculating 5% of
all the possible pairwise distances (typically on the order of 2 billion

distances).

— Calculate distances and neighborhoods for all words in word list.

The process of building a dafa set currently takes four days of continuous pro-
cessing by a supercomputer. The process of calculating neighborhoods on a super-
computer takes approximately two hours per parameter set, more if the length of the
word list is larger than 500 words. This performance depends on using many CPUs
in parallel. HiDEx was designed to take advantage of multi-CPU supercomputers,
and has been run using 64 CPUs and 256 gigabytes of memory. The sheer number
of calculations required to run these models is enormous, and has deterred many
from doing research in this field. The software engineering required is daunting,

but we feel that the rewards of this line of inquiry are worth the effort.
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Chapter 3

Exploring Parameter Space

The parameters used in the original HAL work were chosen arbitrarily. There was
no empirical or theoretical justification given for the choice of window size, weight-
ing function or context size. The questions we wanted to address are: Is there a new
set of parameters that will create a better model of word meaning? Will this new
parameter set give HAL more explanatory power? Will it shed light on the structure
of the mental lexicon? We explored HAL parameter space to find the answers to

these questions.

3.1 A coarse-grained exploration of the space

The parameter space of the HAL model that we have implemented is very large; that
is, there is a very large number of possible unique combinations of the parameters
we have described above (corpus type, corpus size, window sizes, weighting func-
tions, context sizes and others). To evaluate all the possible combinations would
take centuries of computation on the supercomputers available to us. We decided to
make a preliminary, coarse-grained traversal of the parameter space. We then used
a fitness function to find the parameter set that best fit the experimental data. Dur-
ing this exploration, only two parameters were varied at a time while all the other
parameters were held constant at their default HAL values. This strategy allowed

us to find out how these two parameters influenced the model individually, and how
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they interacted. Processing time constraints prevented us from exploring three-way
or higher interactions, but there is no logical reason to discount their existence. This
research is undeniably exploratory in nature, and this coarse-grained approach will

allow us to understand how two parameters influence the output of the model.

3.1.1 Parameters that were varied

The two parameters that were varied in this initial exploration of parameter space
were window size and weighting function. We chose these two parameters because
they are the two parts of the HAL model that have the most potential to change
the contextual information stored about words. The size of the window is the only
parameter that can change which words are considered to share context. Smaller
windows will prevent long-distance contextual relationships from forming. For ex-

ample consider the following sentence:

Mathematics, rightly viewed, possesses not only truth, but supreme
beauty — a beauty cold and austere, without appeal to any part of our
weaker nature, without the gorgeous trappings of painting or music,
yet sublimely pure, and capable of a stern perfection such as only the

greatest art can show.” (Russell, 1910, p.73)

If the window size was only 5 words behind or ahead, there would not be any co-
occurrence trace from this sentence for the words “MATHEMATICS” and “BEAUTY”.
The weighting scheme that is used to aggregate local co-occurrence across
the co-occurrence window has a very slightly different influence on the model’s
structure. By emphasizing the contextual importance of different parts of the win-
dow, it can boost or shrink the influence of proximally co-occurring words. In the
above quote, the co-occurrence frequency of “PAINTING” and “MUSIC” could be
weighted by a factor of 10 (using the Second Word scheme) or 2 (using the Inverse

Ramp scheme). This difference in weighting could significantly change the distance
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between "PAINTING” and other words in context space, altering the neighborhood
and the neighborhood density.

To explore the influence of these two parameters we created a list of all the pos-
sible combinations of forward and backward window sizes of zero, five or ten and
all the weighting functions listed in Table 2.1. This list contained 73 sets of param-
eter combinations. In Experiments 1, 2, and 3 we compared the relative predictive
power of these 73 parameters sets using two different fitness functions, described

in the following section.

3.1.2 Fitness functions

A great virtue of the HAL model is that it is simple and flexible: it will take as input
any type of textual material, and produce as output inter-word distances and con-
text neighborhoods. Unfortunately, this flexibility of input makes it very difficult
to compare the output of the model when used by different researchers. The rel-
ative merits of different model parameters were compared by Bullinaria and Levy
(2007). Bullinaria and Levy (2007) used four different methods to compare the fit-
ness of their models: the TOEFL test (using HAL to choose the one word as the
correct answer in a multiple choice exam), a Distance Comparison test (comparing
interword differences between known semantically related pairs and random pairs),
a Semantic Category test (testing if words are closer to the name of their category
than to the names of other categories) and a Syntactic Categorization test (testing
if a word was closer to its syntactic category center than to other syntactic category
centers). These tests provide some information about how the model performs in
capturing the structure of the human semantic space. The weakness of these tests is
that they depend on handpicked word lists that do not generalize to the rest of the
language.

We are more interested in how the HAL model can be used to understand the
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organization of the mental lexicon, and so we used fitness functions that were based
on the correlation between our measurements from the HAL model and behavioral
measures of lexical access. The first fitness function was the correlation between
a word’s ARC, and the average LDRT (lexical decision reaction time) provided by
Balota et al. (2002). The lexical decision task has been shown to involve automatic
retrieval of semantic information (Balota, Black, & Cheney, 1992). If HAL mea-
sures, such as ARC, could explain a heretofore unexplained proportion of the RT
variance, then it would validate its ability to model semantic memory. The param-
eter sets were explored in Experiment 1.

In Experiments 2 and 3, we collected our own SDRT (semantic decision reaction
time) data from a semantic decision task. There has been no previous research
on how the HAL model can be used to predict semantic decision reaction time.
We proposed the following HAL measures as potential candidates that might be

predictive of semantic decision reaction time:

o Inter-word distance: This is the distance between any two words in HAL
space. This HAL measure may influence reaction time by facilitating the
retrieval of lexical semantics due to the priming effects of the retrieval of two

words with similar contextual history.

o ARCs and NCOUNTS: These are the ARC and NCOUNT measures for each
word in the pair of words. The ARC and NCOUNT measures for the first and
second words in a pair could influence reaction time as well. From previous
work with LDRT (Buchanan et al., 2001, Shaoul & Westbury, 2006), we saw
that words with sparser neighborhoods showed faster lexical decision reac-
tion times (if other lexical factors are all held equal). This could imply that
the ARC or NCOUNT of either word could influence the semantic decision

reaction times in experiments 2 and 3.
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¢ ARCSUM and NCOUNTSUM: These are the sum of the ARCs and NCOUNTSs
for the words that make up the pair. The summed ARC and NCOUNT capture

the combined densities of the words in the pair.

We used the same 73 parameter sets to calculate the above seven context mea-
sures and then tested the strength of the relationships between these measures and
the mean SDRT of each item. As this is uncharted territory, the only way to find
out if any of these measures are useful in predicting SDRT is to calculate their
values using different HAL parameter sets, and compare the relationships using a
correlational analysis.

Our prediction is that these measures of contextual similarity, neighborhood
density and combined neighborhood size will explain the variability in reaction
times for semantic decisions. In the following experiments we will explore the
ability of HAL measures to predict lexical decision and semantic decision perfor-

mance.

3.2 Experiment 1: Predicting Lexical Decisions Re-
action Time

3.2.1 Method

For our first experiment, we chose to use the LDRT data from the English Lexi-
con Project (Balota et al., 2002) as our dependent measure. We obtained averaged
LDRT data for 40,481 words (averages for each word across participants) and used
this data to run simulations of lexical decision experiments. In each simulation, a
random subset of 500 words was sampled from the 40,481 in the list. Then HiDEx
was used to calculate the the ARC and NCOUNT-INV for these 500 words using
one set of parameters. This process was repeated 73 times, with different random
lists of 500 words and all the desired parameter sets. We used the technique of

sampling randomly from a large set of words to avoid over-fitting our model.
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R2 of ARC/NCOUNT-INV with LDRT for different weighting functions and window types.

0B10A OB5A 10BOA 10B10A 10B5A sébA 5B10A 5B5A OB1DA OB5A 10BOA10B10A 10BSA 5B0A 5B10A 5BSA
] 1 | | ] 1 ] | !

1 | | i t 1 1 |
Backward_Rarig Exponential _Ramp
0.25 — =~ 0.25
0.20 — [o} ~ 0.20
° o
0.15 — ° o ° 0.15
. o e o o N ° X
o e ©
0.10 o g ° © e ° o - 010
Py o < o
Flat Forward_Ramp
0.25 ° - 0.25
0204 g © 8 ° o o2
© < S o© o 8 <
o] o o (o] o
0.15 — o © 8 - 0.15
— ) < o
% 0.10 — O o — 0.10
I ! P
¢ 0z Fourth_Word._ inverse_Exponential_Ramp 025
Z ° o ° o o
[_1. 020 4 4 o g o o o o = 0.20
pd o o 0 o o
D o154 © © o © o ° o 8 m 015
8 ) o
% 0.10 — M ° L 0.10
T s -
< Inverse_Ramp_ Linear_Ramp
5 025 S 3 - 0,25
o o o
C 020 — 6 o o o o o o o [0
o < ° © < o [o] <o
0.15 — o o ° [o] t~ 0,15
8
< o o]
0.10 — Lol o .~ 0.10
. ¢
05 Second_Word Third_Word 025
o o
o o o o
0.20 ~ o o ° o o o © g - 0.20
8 ¢ o o o
0.15 — <& © o} o [ - 0.15
o < <
¢ <o
0.10 & ~ 0.10

1 T ] T I i T ] I T T ! T T T T
OB10A 0B5A 10BOA 10B10A 10BSA BBUA 5B10A 5B5A  0B10A OBSA 10BOA 10B10A 10B5A 5BOA 5B10A 5BSA

Window Types

. Key
o NCOUNT-INV  Window Type 10B10A =
o ARC 10 Words Behind, 10 Ahead

Figure 3.1: Overview of R? of NCOUNT-INV and ARC with LDRT for different
weighting functions and window types. All correlations are significant (p < 0.001)
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3.2.2 Results and Discussion

We computed the correlation between LDRT and ARC for each of the 73 pa-
rameter sets. There was a large amount of variation in the correlations between
LDRT and ARC and NCOUNT-INV for the sets of parameters we tested. The
means, ranges and standard deviations of the regressions of ARC were g2 =~ =
0.14, OR:.., = 0.041, ranging from 0.04 to 0.25. The means, ranges and stan-
dard deviations of the regressions of NCOUNT-INV were pip2 = 0.17,

NCOUNT-INV

=0.035, ranging from 0.08 to 0.24.

O p2
Rycount—Inv

The most important correlations are shown in Figure 3.1. The three window
sizes with the highest median R? with LDRT were 0B10A!, SB10A, and 5B5A,
and the weighting functions that performed well with many different window sizes
were: Inverse Linear Ramp, Inverse Exponential Ramp, Third Word and Fourth
Word. The best combination of parameters for LDRT predicting ARC were: Inverse
Exponential, 10BOA (R% 5. = 0.26). The original HAL parameters (Linear Ramp,
10B10A) produced a much smaller correlation (R = 0.11). For NCOUNT-INV,
Inverse Exponential, 0B10A was the most predictive (R%count—inv = 0.25). The
original HAL parameters again produced a much smaller correlation (R3,cop n7—1nv
= 0.14). Graphs of the parameter sets sorted by median R? are shown in Figures
3.2,3.3,3.4, and 3.5.

Since we used a random sample of words in each of these simulations to demon-
strate the generalizability of HAL to the whole lexicon, we cannot directly compare
the correlations that we have calculated to test for statistical significance. In order
to confirm the increase in correlation for our parameter sets, we chose a random
subset of 5000 words from the lexicon, and calculated the neighborhoods for these
words using two parameter sets of interest: the original HAL parameter set, and

one of the best of our 73 parameter sets (Inverse Ramp, 10B5A). The results of this

'This notation, 0B 10A, is a condensed expression of “No words behind, 10 words ahead”

31



comparison are shown in Table 3.1. The difference between the explanatory power
of the two models can be seen in the size of the AIC (Akaike Information Criterion)

value. The AIC is calculated using the following equation:
AIC = 2k — 2log-likelihood (3.1)

where k is the number of parameters and log-likelihood is the natural logarithm of
the likelihood function of the model in question. There is a difference of over 100
between the AIC scores for both the ARC and NCOUNT-INV models , meaning
that we can select the optimal models over the original models because they are

much more likely given the data.?

Parameter Weighting Ripc AIC  Ricount_iny AIC

Set Function, (ARC) (NCOUNT)
Window Size

Original Linear Ramp, 0.12 61660 0.17 61349

HAL 10B10A

Optimized Inverse Ramp, 0.15 61440 0.18 61231

HAL 10BSA

Table 3.1: Comparison of correlations between LDRT and ARC/NCOUNT-INV for
the original HAL parameters and an optimized set of parameters

Are these relationships stable? To avoid any contamination of the results by spu-
rious correlations, and to validate the results we obtained, we needed to be certain
that our results were stable across different subsets of the lexicon. We measured
the stability of these correlations across two different sets of words. The same
sets of parameters were re-run with different random sets of 500 words, and the
average absolute difference in R? between runs was 0.04 (LDRT-ARC) and 0.03
(LDRT-NCOUNT-INYV). This small amount of difference between runs shows that

the correlations are stable across different random samples of words.

2We also calculated the BIC (Bayseian Information Criterion) for these models, and saw the
same result: the optimized models had smaller BIC values. For ARCs, the BICs were 61680 and
61460 and for NCOUNT-INV the BICs were 61369 and 61251.
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R? with LDRT for different window sizes.
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Figure 3.2: R? of NCOUNT-INV with LDRT, sorted by median R? for each window
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B2 of ARG #ith LDRT for different window sizes.
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To make the relative impact of window size and weighting scheme more easily
understandable, all the data that is plotted in Figure 3.1 was sorted by highest me-
dian correlation, and then plotted in Figures 3.2, 3.3, 3.4 and 3.5. From these plots
it appears that the best parameters judged by median correlation are 10B10A for
window size, and Third Word or Inverse Ramp for weighting function.

The goal of this experiment was to explore the HAL parameter space and find
the set of parameters that produced ARC and NCOUNT-INV measures that had
the strongest correlation with experimental data from the English Lexicon Project
(Balota et al., 2002). After much computation we found that our exploration of
parameter space allowed us to achieve our first goal: to find out if these parameters
make a difference or not. We found that there were large differences between the 73
parameter sets we tested. Do the parameters that we varied have a positive influence
on the output of the model? By changing the window type and the window size we
can change the R? between LDRT and ARC by up to 0.15. This implies that some
parameter sets can explain up to 15% more of the variance than others, an extremely
encouraging result. Certain parameters proved to be better at predicting LDRT than
others, and these parameter sets deserve further study.

We found that when averaging across all the different weighting functions, the
window size that consistently produced the greatest correlations with LDRT was the
10B10A, the window size used in HAL. However this window size did not produce
the peak correlation, but rather 10BOA did. The combination of the 10BOA window
size with the Fourth Word weighting scheme produced the highest correlation. The

original HAL window size, 10B10A, was one of the best window sizes that we

looked at.
As for the weighting scheme, the outcome was quite different. The original
HAL weighting scheme, the Linear Ramp, fared poorly. It consistently had low

correlations with LDRT. The Inverse Ramp weighting scheme performed consis-
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tently better. This may be due to the ability of the Inverse Ramp to give more
weight to words that are further away in the window. These words can be more in-
formative than the words that are directly adjacent which can often be closed class,
function words. By de-emphasizing the minimal semantics of closed class words,
the model may be improving the categorical relationships between words.

One constant across all of the results for these different parameter sets was the
direction of the relationship between LDRT and ARC/NCOUNT-INV. The slopes
produced by a linear regression of ARC or NCOUNT-INV on LDRT were uni-
formly greater than zero. In other words, the denser the neighborhood, the faster
the reaction time. This type of facilitatory effect was reported by Buchanan et al.
(2001). In experiment 4, Buchanan et al. (2001) used a factorial design (words with
dense neighborhoods versus words with sparse neighborhoods) to investigate the
relationship between neighborhood density and LDRT. They found that words with
denser semantic neighborhoods had faster reaction times in a lexical decision task.
The stimuli in this experiment were closely matched on orthographic neighborhood
size and orthographic frequency, eliminating the influence of these lexical proper-
ties. The results presented here replicate the results of Buchanan et al. (2001) using
a correlational design, and a larger set of stimuli (500 words versus 128 words) sam-
pled from a larger pool of stimuli (32,000 mono- and multi-syllabic words versus
1,570 mono-syllabic words).

This experiment provided insight into the workings of HAL’s parameters. To
examine how this model could be applied to a task of greater psychological validity
we moved beyond lexical decisions. We are bound by the shallow depth of semantic
retrieval and processing that is inherent in LDRT data. In the next two experiments
we will introduce a semantic decision task that we hope will help us gain greater

insight into the representation and organization of lexical semantic memory.
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3.3 Experiments 2A and 2B: A Semantic Decision Ex-
periment

We devised two paired experiments to gather data relating to the semantic process-
ing of words and cognitive load of a semantic decision task. Experiment 2A was a
speeded forced choice semantic decision task that required participants to decide if
words were related or unrelated. Experiment 2B was a judgment task where partici-
pants were asked to rate how related two words were. The design of this experiment
was continuous and correlational: the stimuli were not separated into two categories
for contrast. Rather, the stimuli were chosen to vary continuously over the range of
HAL distances.

The aim of these experiment was to find out if there is a relationship between
HAL measures of context distance and reaction times in a semantic task. The stim-
uli were chosen to represent a broad range of inter-word HAL distances. Our pre-
diction was that the reaction times collected in experiment 2A would have a re-
lationship with inter-word distance, and that the HAL measure produced by best
parameter combinations found in experiment 1 would give better predictions than
the default HAL parameters. Our intention was that the ratings collected in experi-

ment 2B would allow us to compare the predictive power of subjective measures of

relatedness with objective measures produced by HAL.

3.3.1 Subjects

64 undergraduate students enrolled in introductory psychology courses at the Uni-
versity of Alberta participated in this study for course credit (37 women, 27 men).

Their mean age was 19.4 years old, and the standard deviation was 4.4 years.
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3.3.2 Stimuli

300 pairs of words were chosen; 100 that were listed as associates in the Nelson
Association Norms (Nelson, McEvoy, & Schreiber, 1998), 100 that were from the
idiosyncratic (low frequency) responses list from the Nelson data, and 100 unrelated
words. We built the stimuli sets with the goal of avoiding the dichotomy that is
possible with semantically related word lists.

To make sure that our stimuli would cover a broad range of semantic relation-
ships, we selected our stimuli very carefully. We built a very large set of pairs from
which we chose smaller stimuli sets using a criterion of non-correlation. Two large
sets of word pairs were all chosen from the full lists of word pairs from the Uni-
versity of Florida Nelson Norm databases. We started with the full list of 69,000
associated pairs (which we will call ASSOC) and the full list of 112,000 idiosyn-
cratic responses (which we will call IDIO). The third large set was a list 200,000
word pairs that we generated ourselves by picking words randomly without replace-
ment from a dictionary of English words with a frequency greater than 10 words
per million (UNREL).

We measured the orthographic frequency (OF), orthographic neighborhood (ON)
and word length (LLEN) for all the words in these 287,000 pairs. We also calculated
the inter-word distance in HAL space using the default HAL parameters. We then
matched subsets of the three sets of word pairs so that for each ASSOC word pair,
there would be an IDIO and an UNREL pair that were matched for OF, ON, LEN
and HAL distance. The matching algorithm used was the following: all measures
were converted into standard scores, and then the Euclidian distance between each
pair and all the other pairs was calculated. The pairs with the smallest distance
in z-score space were stored as a match and immediately removed from the input
lists. This created three lists of approximately 1000 entries each, and from these

lists, we picked the 300 pairs that satisfied the following criteria: pairs could not
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contain proper names, the UNREL pairs were not judged by either of two judges
to be semantically related, and the HAL distance between all pairs was distributed
evenly across the range of inter-word distance values.

To reduce the length of time that it took to participate in the experiment, we split
the 300 pairs into two equal sets of 150 pairs (Parts X and Y) for use in Experiment
1 and 2 to counter balance the order of presentation. Equal numbers of participants
did experiments 2A.X, 2B.X, 2A.Y and 2B.Y in both orders (Experiment 2A, then
2B, and vice versa).

The full stimuli set is available in Appendix A.

3.3.3 Method

In experiment 2A , stimuli were presented on an LCD display connected to a Mac-
intosh computer (Mac OS X v. 10.3.9) using ACTUATE (Westbury, 2007). All
words were displayed in lowercase letters in the Times Roman font. Participants
were asked to make a judgment about two words that were to appear sequentially.
The first word appeared in black at the top of a 500 pixel by 500 pixel white square
for a duration of 2000 to 3500ms (this value varied randomly between all trials).
Then, at the bottom of this square, a fixation point, the “+” symbol appeared for a
duration of 500 to 1500ms (again, varying randomly), at which point the “+” sym-
bol disappeared, and was replaced with the second word in the pair. This period of
time, 2500 to 5000 ms, provided sufficient time for the participants to read the first
word and access its meaning.

Once the second word appeared, participants were requested to make the fol-
lowing semantic decision (as explained in the instructions): ”In your opinion, are
these two words related?”, as quickly and as accurately as possible. One of two
keys on the computer keyboard, (”X” for No and "M” for Yes) were pressed, and

the reaction time was measured.
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For experiment 2B, participants were asked to do a slightly different task using
the same apparatus and software as described for Experiment 2A. They were shown
all the word pairs with both words appearing simultaneously, and were then asked
to rate the relatedness of the words. The participants used a mouse to drag a sliding
marker on a line on the screen. This line had the word “UNRELATED” over the left
end of the line, and the words “HIGHLY RELATED” over the right side of the line.
They were asked to take as much time as they needed to rate each pair of words.
The software measured the position of the marker on the line and recorded O for

UNRELATED and 100 for HIGHLY RELATED, as well as the time taken to do the

rating.

3.3.4 Data Trimming and Analysis

We removed observations from experiment 2A that had an RT of less than 300ms
or greater than 4500ms (two standard deviations from the mean). These outliers
made up 1% of all observations. The distribution of reaction times, after removing
outliers, is shown in Figure 3.6.

To do further analysis using measurements from our HAL model, we needed

42



to calculate the mean RT for each item, but before we could calculate this statistic,
we needed to remove data from trials where our participants made errors. We re-
moved reaction times for ASSOC word pairs when the participant considered them
unrelated. We also removed reaction times for UNREL items when the participant

considered them to be related (see Table 3.2).

3.3.5 Results and Discussion

There was a strong effect of category on the reaction time that confirms that the
stimuli were causing the desired pattern of cognitive load. As shown in Table 3.2,

most of the ASSOC pairs were judged to be related in experiment 2A. The same

held true for the IDIO pairs. For the UNREL pairs, they were mostly judged to be

unrelated.

Category Semantic De- Number of obs. Mean SDRT StdDev SDRT
cision (% of total) (ms) (ms)

ASSOC Related 2595 (81%) 1006.2 466.6
Unrelated 575 (19%) 1210.1 544.5

IDIO Related 2098 (66%) 1116.2 513.0
Unrelated 1080 (34%) 1257.5 578.8

UNREL Related 405 (13%) 1426.3 725.9
Unrelated 2771 (87%) 1152.2 506.4

Table 3.2: Categorical distribution of the 300 Word Pairs with descriptive statistics

To assess the predictive power of the relatedness ratings in relation to the default
HAL distances, we first analyzed the relationship between word ratings and reaction
times.

For the relatedness ratings, we used the median rating for each word pair to
analyze subjective relatedness. We did not use the mean so as to avoid the influ-
ence of extreme ratings. After a visual inspection of the scatterplot, we noticed
a strong quadratic relationship (see Figure 3.7) between Mean SDRT and Median
Relatedness Rating (MRR) for the 300 word pairs, characterized by the following
regression equation, R? = 0.40, F(2,297) = 97.3, p < 0.001:
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Mean SDRT for 300 wof& pairs as a function of Relatedness Ratings
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Figure 3.7: Mean SDRT for 300 word pairs as a function of relatedness ratings with
quadratic least squares fit

psprr = 1031.37 + 12.4MRR — 0.14MRR? (3.2)

This nonlinear, reverse U—shaped curve reconfirms our intuitive understanding
of this semantic decision task. Words that are very unrelated or very related are
quicker to process because they have meanings that are clearly convergent or di-
vergent. Words that are rated as béing weakly related have the slowest reaction
times. This result highlights the difference between semantic priming in automatic
retrieval/lexical decision versus seitiantic decision. In lexical decision semantic
priming, unrelated words provide 1o facilitation of processing (Lucas, 2000). For
this reason it is unwise to directly compare this semantic decision task with lexical

decision semantic priming tasks,
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Mean SDRT for 300 wiérd pairs as a function of HAL Distance
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Figure 3.8: Mean SDRT for 300 word pairs as a function of HAL Distance
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Figure 3.9: Overview of I?? of NCOUNT-INV with SDRT for different weighting
functions and window types. The p value for each reliable regression is shown
below each point.

The increase in processing time from borderline words was seen by Vigliocco,
Vinson, Damian, and Levelt (2002). They found that there there were graded se-
mantic interference in a picture naining task depending on the semantic distance
between the targets and distractors. They used a feature based semantic network
with a small number of dimensions to calculate semantic distance.

The first HAL measure that we u$ed in our analysis was the inter-word distance
calculated with the default parameters from Lund and Burgess (1996). The linear
regression for mean SDRT and this inter-word HAL distance was reliable but not
strong, R? = 0.016, F'(1,298) = 5.92, p < 0.02 (see figure 3.8).

Using HiDEx, we calculated all the measures described in section 3.1.2 for all
the word pairs in the stimuli set, We selected the most promising 40 parameter sets

from the 73 parameter sets used in Experiment 1. These were all the parameter
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sets that included the following weighting schemes: Linear Ramp, Inverse Ramp,
Second, Third and Fourth Word.

The only measure that had a significant correlation with SDRT was the seman-
tic density for the first word, NCOUNT1-INV. In Figure 3.9 we see that the only
two weighting functions to achieve statistically significant correlations were Fourth
Word and Inverse Ramp. The most consistent window type was the 10BOA window.
The best result was obtained from the combination of Fourth Word and 10BOA,
r = —0.14, R* = 0.02, F(1,298) = 6.136, p = 0.01. Since the slope of this rela-
tionship is negative, SDRT is predicted to decrease as the semantic density around
the first word decreases (that is, as NCOUNT-INV increases). This result is con-
gruent with the results from experiment 1 because the time required to access the
meaning of the word pair and process the semantic information was less for words
that had sparser neighborhoods.

In summary, we used a novel semantic decision task in Experiment 2 that al-
lowed us to test predictions about the influence of HAL’s parameters on reaction
time. We presented two words, one after the other, and asked participants to decide
if two words were related. We found that for small number of parameter sets, the
density of the HAL neighborhood of the first word was a significant predictor of
RT. The strength of the relationship was much less than that for the LDRT data in
Experiment 1.

Why did our HAL measures explain so much less of the variability in this task
than in the lexical decision task? One possibility is that there was mismatch be-
tween the questions we wanted to answer and the task we chose to use. The task
that we used in this experiment was a very complex one. From the presentation of
the first word until the presentation of the second word, the participants presum-
ably accessed semantic information about the first word. When the second word is

displayed, the reaction time measured will capture the time it takes to do at least
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two activities: retrieve the semantic information about the second item, and make
a semantic decision. The SDRT we capture should be a function of the lexical re-
trieval of the second word, the complexity of the semantic memory traces for the
two words, the type and number of relationships between the words, and the strat-
egy/strategies that the participant used. We hypothesized that our HAL measures
would provide an indirect measure of the complexity of the semantic traces and the
relationship between the words (through their shared context). We have no data that
will help us predict which strategies would be used to make these semantic deci-
sions. This opens the door for variability that we will not be able to account for in
our model.

Our concerns about the appropriateness of this forced choice task gave us the
incentive to seek a better semantic decision task. This experiment and its results are
described in the next section. We will reserve further discussion of the findings for

the General Discussion,

3.4 Experiment 3: A Go/No-Go Semantic Decision
Experiment

The task used in Experiment 2 was a forced-choice task (”Are these words related
or unrelated?”). In Experiment 3 we attempted to replicate the semantic decision
reaction time effect that we were interested in using a slightly different task. We
chose a task that Siakaluk et al. (2003) found to be superior in eliciting semantic
distance effects: the Go/No-Go semantic decision task. Siakaluk et al. (2003)
used both a forced choice and a Go/No-Go task in a semantic decision experiment
(Animacy: “Is this alive or not?”), and they noted that the time-constrained nature

of the Go/No-Go task made it superior to other tasks for semantic decisions.
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3.4.1 Subjects

35 undergraduate students enrolled in introductory psychology courses at the Uni-
versity of Alberta participated in this study for course credit (21 women, 14 men).
Their mean age was 20.7 years old, and the standard deviation was 2.9 years. None

of the subjects had participated in the previous experiments.

3.4.2 Stimuli

The stimuli used in this experiment were identical to those used in Experiments 2A

and 2B.

3.4.3 Method

The laboratory equipment was identical to that used in Experiment 2. The only part
of the procedure that was changed in Experiment 3 was the type of response that
we requested of the participants after the second word appeared on the screen. The
participants were instructed to press the space bar only if the words were related.
If the words were unrelated, they were instructed to do nothing. If no input was
detected after 3500ms, the next trial was initiated, and a No-Go result was recorded.
17 participants were show 150 pairs, and 18 participants were shown the remaining

150 pairs. Order of presentation was randomized for each subject.

3.4.4 Results and Discussion

The 35 participants performed a total of 5250 trials of which 57% were “Go” re-
sponses, and 43% were “No-Go” responses. We will only analyze the “Go” re-
sponses, as it is unclear how to interpret the lack of a response.

263 of the 300 word pairs were given at least one “Go” response. There is a
strong possibility that some participants may have pressed the space bar hastily or

unintentionally during the experiment. One way to detect unintended responses is
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to look for items that produced very few “Go” responses. Any words with responses
from less than 20% of the participants were removed (equivalent to 3 participants or
less providing “Go” responses per item). After removing observations for these 56

items (3% of total number of observations), we analyzed the data for the remaining

207 word pairs.
Category Number of Number of Mean SDRT StdDev SDRT
obs. (% of Word Pairs (ms) (ms)
total) (% of total)
ASSOC 1565 (55%) 100 (49%) 1089.5 5154
IDIO 1267 (43%) 94 (45%) 1249.6 573.8
UNREL 160 (2%) 13 (6%) 1812.8 783.3

Table 3.3: Categorical distribution of the 207 Word Pairs with descriptive statistics

As with the forced choice task, the ASSOC reaction times were the fastest, with
the IDIO pairs having slower reaction times and greater variability. Due to the
nature of the task, and non-responses, we were only able to collect reliable reaction
times for a select few erroneously accepted UNREL words, and these reaction times
were the longest and had the most variability.

To understand the relationship between the tasks in Experiments 2 and 3, we
looked at the relationship for the mean SDRT for the 207 items that both experi-
ments shared (see Figure 3.10). We found a very strong correlation between the
logged reaction times of the two experiments R? = 0.46, F'(1,205) = 1724, p <
0.001. We also found a strong quadratic relationship between the median related-
ness ratings from Experiment 2 and the SDRT data from Experiment 3 R? = (.46,
F(1,204) = 88.19, p < 0.001 (see Figure 3.11). There is a strong correspondence
between the reaction times for items in Experiments 2 and 3. Across the experi-
ments, there was no significant difference between the mean SDRT for the ASSOC
stimuli (¢(198) = 1.195,p = 0.23) or IDIO stimuli (¢(198) = 1.73,p = 0.09).
There was a significant difference of 386ms between the means for the UNREL

stimuli in Experiment 2A and the means for the UNREL stimuli in Experiment 3
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Figure 3.10: Log mean SDRT of the 207 Items in the Go/NoGo task as a function
of Log mean SDRT in the Forced Choice task.
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Figure 3.11: Log mean SDRT of the 207 Items in the Go/NoGo task as a function
of median relatedness rating

(t(198) = 3.62,p < 0.001), showiiig the predicted increased depth of processing
for unrelated, difficult to process wotds.

The final step in the analysis is to study the relationship between SDRT in Ex-
periment 3 and the measures calculated by HiDEx. We calculated the item regres-
sions for mean SDRT and our seveit measures for the same 40 parameter sets that
were analyzed in Experiment 2. The results of this analysis are shown in 3.12.
There was no significant correlatioii between mean item SDRT and the majority
of the parameter sets. In particular, the original HAL parameters (10B10A, with
the linear ramp weighting function) did not produce a significant correlation. As in

Experiment 2, the only measure that had any significant correlation with a SDRT
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Figure 3.12: Overview of R? of NCOUNT-INV with SDRT in the Go/NoGo task
for different weighting functions and window types. The p value for each reliable
regression is shown below each point.

was NCOUNT-INV, the inverse of the number of neighbors plus one. The only
two weighting functions that produced significant correlations with this measure
were the Inverse Ramp and the Fouith Word functions. Both of these functions also
performed well in our analysis of Experiment 2. The window types involved in
the parameters sets that were 10BOA, 10B5A for the Inverse Ramp and 0B5A for
Fourth Word.

The results obtained in Experiment 3 replicated the results from Experiment 2.
There were three parameter sets that had significant linear relationships between

neighborhood density and mean SDRT, and the amount of variance explained by
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these relationships was small. The implications of these results are discussed in the

following section.

3.5 General Discussion

In Experiments 1, 2 and 3, we used LDRT and SDRT data to find optimal parameter
sets for the HAL model. We found that certain weighting functions and window
sizes fared much better than others at predicting reaction times. There was a clear
consensus across all the experiments: the original HAL parameters do not create
the best measures of neighborhood density for predicting lexical-semantic access
time. There was an encouraging convergence in Experiments 2 and 3 that found
that a small number of parameter sets produced the strongest correlations with a
semantic decision task. The best weighting function for Experiments 2 and 3, the
Inverse Ramp, was also the best for Experiment 1 (see Figure 3.4). The best window
types were those that contained 10 word behind and O or 5 words ahead. These
results suggest that there is a very important function served by the Inverse Ramp
weighting function. What could be the reason for its superiority?

Unlike the Linear Ramp, greater significance is given to words that are located
further away in the window from the word in question. This has the effect of re-
ducing the impact of the words closest to the target word. What kinds of words
are usually found in these positions? The intuitive answer is “function words” or
“closed-class words”. Unlike nouns adjectives, adverbs and verbs, these are words
cannot have any new members to their class (hence the “closed” class). They con-
tain little semantic information about the words they appear next to, but do create
semantic relationships between words in a sentence.

Are our intuitions correct about closed class words? In a cursory analysis of a
1 trillion word corpus of English culled from web pages (Brants & Franz, 2006)

we found some interesting clues. Using a corpus-specific list of closed-class words
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of the 114 most frequent closed-class words in this corpus (see Appendix A.4 for
this list), we counted the number of 2-grams in the corpus that contained at least
one of these closed-class, ultra-high frequency words. We found that in the set of
the 10,000,000 most frequent 2-grams, 50% of them contained at least one of these
114 words. This means that a very large proportion of the corpus is composed of 2-
grams that contain closed-class words. Weighting schemes that reduce the weight
given to closed-class word contexts may be better at capturing semantic context
relationships because of the decrease in closed-class contextual information. This
makes sense when we look at an example: the similarity between the contexts of
“cat” and “dog” are more informed by “pet cat” and “pet dog” than by “the cat” and
“the dog”. By changing the weighting scheme, we changed the relative importance
of closed-class word context, and made the model better.

Of particular note: in the semantic decision experiments, the neighborhood den-
sity of first word (and never the second word) in our word pairs produced the only
significant relationships with SDRT. The denser the neighborhood of the first word,
the longer the semantic decision took. This can only mean that the contextual rich-
ness of the first word is influencing the processing of the semantic decision, causing
it to take longer. This relationship is in the opposite direction of the the relation-
ship reported by Buchanan et al. (2001) and by Siakaluk et al. (2003). In these
studies, a denser contextual neighborhood density was found to facilitate lexical
access. A parallel phenomenon is seen in morphological family size (R. Baayen,
Feldman, & Schreuder, 2006). There are also non-semantic neighborhood effects in
lexical access, such as number of orthographic neighbors (Forster & Shen, 1996),
that produce a similar effect of facilitation. In contrast, in our semantic decision
experiments the opposite effect was seen: denser neighborhoods cause a slow down
in reaction time. This type of competitive, or inhibitory, relationship has been found

in some of the auditory lexical decision reaction time research as a function of the
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number of phonological neighbors (Luce & Pisoni, 1998). Our results indicate that
a higher co-occurrence neighborhood density facilitates lexical access while simul-
taneously increasing the cognitive load of semantic decision processing.

The apparent contradiction between facilitatory and inhibitory effects of dense
neighborhoods has recently been analyzed by Mirman and Magnuson (2007). They
compared different models of semantic neighborhood density to find out if there
were consistent facilitatory/inhibitory effects across different neighborhood density
measures. They compared feature-based models, using data from Cree, McNorgan,
and McRae (2006), association-space models, using data from Nelson et al., 1998,
and co-occurrence models, using data from COALS (Rohde et al., 2007). They
found that certain neighborhood measurements were correlated with facilitation
while others were correlated with inhibition in both lexical decision and seman-
tic decision tasks (living/non-living and abstract/concrete). In particular they found
that a single measure of neighborhood density was unable to account for the pattern
of results. Instead, they found that both the number of neighbors, and the distance
of those neighbors was needed to understand the seemingly contradictory results.
They reported that words with many near neighbors were categorized more slowly
in a semantic decision task than words with few near neighbors. They also found
that words with many distant neighbors were categorized in the same task more
quickly than words with few distant neighbors. Mirman and Magnuson (2007) then
go on to model this phenomenon with a feature vector based attractor model (a type
of neural network model; see Cree et al., 2006 for the model’s architecture). In light
of this work by Mirman and Magnuson (2007), we propose an alternative interpre-
tation of our results from Experiments 2 and 3: since our NCOUNT-INV measure is
built using a threshold, and it only counts the nearest neighbors, it is also capturing

data about how many nearby neighbors a word has. Independently, we have found

an identical inhibitory effect for neighborhood density to the one that was found by
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Mirman and Magnuson (2007), despite the fact that we used a relatedness judgment
task while they used other semantic categorization tasks.

How does this result relate to previous research into lexical semantic process-
ing? Our semantic decision task is unlike most semantic psycholinguistic tasks. An
extensive amount of research has been done on semantic priming (for a review, see:
Moss & Tyler, 1995). Unlike most semantic priming experiments, this semantic
task we developed was not a lexical decision task. There is no implicit, subliminal
semantic activation. The facilitation or inhibition in our experiments were the re-
sult of a combination of the semantic relationship between the words in the pair and
the participant’s strategies. This difference in methodology makes comparisons of
effect size between our experiments and lexical decision semantic priming experi-
ments difficult. What about semantic categorization/semantic decision tasks? The
difference between traditional semantic decision tasks and our tasks is that in most
semantic decision tasks, a category, such as “concrete words”, or an exemplar, such
as “an animal”, are used throughout the experiment. The task for the participant is
usually a category membership decision that stays constant throughout the experi-
ment. In our task, the category or exemplar is different in each and every trial. This
makes it difficult to compare our results with with those from traditional seman-
tic decision experiments. For example, it may explain why our reaction times are
much slower than those in experiments which used for semantic decisions for con-
creteness (Binder, Westbury, McKiernan, Possing, & Medler, 2005) and animacy
(Siakaluk et al., 2003).

There is at least one study that used a task very similar to ours (a forced choice
relatedness task) to study semantic processing. Pexman, Hino, and Lupker (2004)
used a relatedness task to investigate ambiguity in semantic processing. They found

that for “no” trials (trials where the two words were not related) there was no ambi-

guity effect, and on related trials, there was an ambiguity disadvantage. They also
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proposed that this disadvantage was due to the semantic decision task itself, and
not the process of retrieving the semantic representations for the words. We did not
collect ambiguity ratings for the words in our stimuli set. This makes it difficult
to compare our experiments with those in Pexman et al. (2004). The relationship
between ambiguity and co-occurrence neighborhood density merits further study.

There are two potential concerns about our experimental paradigm, controlling
imageability and amount of variability explained. We attempted to control for many
psychologically relevant lexical variables in Experiments 2 and 3, but there is (at
least) one variable that we were unable to control for that has been shown to in-
fluence reaction times. It is imageability or concreteness (see reviews by Paivio,
1991; Schwanenflugel, 1991). We were unable to add this variable into our stimuli
selection process because there were insufficient numbers of words with published
imageability ratings to make our stimuli set. There is evidence that imageabil-
ity may influence how words are processed (Binder et al., 2005), and future work
should include more control of stimulus imageability.

A final concern is the small amount of variability explained by our HAL mea-
sure, NCOUNT-INV for the first word, in Experiments 2 and 3. Even with the best
parameter settings, only 2% of the variability is explained by our context density
measure. The meaning of this number needs to be clarified. It is the amount of
variability attributable to NCOUNT-INV after controlling for all the other lexical
variables described in Section 3.3.2. No other model of lexical semantic memory or
processing has ever been used to model this type of task. This amount of correlation

is small but reliable. Perhaps more variability can be explained in the future with
more investigation into the structure of lexical memory and other models of lexical

memory.
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Chapter 4

Conclusions

High-dimensional models of word meaning are very powerful psychological mod-
els of memory, and their vectorial representation of information has a strong the-
oretical foundation in the work of Churchland (1989). By linking neurobiology
with vector computation, Churchland’s framework opens the door to using vectors
to represent our memory of word meaning. The conclusions that follow are based
on the idea that psycholinguistic phenomena can be explained by models that per-
form computations on data from high-dimensional spaces. HAL is one such model,
and we found that there are reliable relationships between the output of a HAL-like
mode! and experimental data from human subjects.

We have presented three experiments that explore the effect of varying two HAL
parameters on modeling semantic processing tasks. Experiment 1 compared the
lexical decsion reaction time predictions of 73 different HAL parameter sets. Ex-
periments 2 and 3 used, respectively, a forced choice task and a Go/NoGo task, to
see if a task with an increased semantic load would show a predictive pattern for
the HAL model. We found that, for certain optimized parameter sets, ARC and
NCOUNT-INV were able to account for a large amount of variability in lexical de-
cision reaction times. We then tested the power of these near-optimal parameter sets
to predict semantic decision reaction time in a novel task. The amount of variability

explained by the optimal parameter sets in the semantic decision model was small

59



in comparison to the lexical decision model, but converged on the same parameter
settings that were found in the LDRT experiments. We have shown that changing
the weighting function and window size parameters of the HAL model can have a
powerful impact on the ability of HAL to predict LDRT and SDRT. Additionally,
the best set of parameters found were not those used in the original HAL model by
Lund and Burgess (1996).

Finally, we found that the best set of parameters for predicting reaction times
were convergent for the SDRT and LDRT data. This finding opens the door to more
research using HAL as a model for predicting behavioral data. Linguistic tasks that
have a large semantic component could be modeled with a HAL-like representation
of semantic information. If these models had their best fit using the same parameters
discussed here, it would point to a general applicability of these parameter settings.

What are we doing when we change these HAL parameters? In a very broad
sense, we are tuning the input to our vector representations. As Churchland (1989)
noted, the input given to a high-dimensional vectorial representation will largely
determine its output. Just as a better-shaped ear will filter out noise and improve
auditory representations, better lexical context representations for HAL will pro-
duce better semantic representations of the words in the model. We will consider
the impact of our parameter tuning on the input as well as the vectors produced
from that input to make our conclusions.

We have looked at how the local co-occurrence frequencies are weighted be-
fore being input into the model. The optimal weighting schemes, Inverse Ramp

and Fourth Word, reduce the influence of the words directly preceding or follow-

ing a word in its context. We analyzed a very large corpus of English, and found
that the vast majority of adjacent words are closed-class words. We speculate that
these closed-class words can act like “noise” in our model, whereas the contextual

information in the open-class words nearby are the “signal”. In practical terms, the
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co-occurence values for closed-class words will be smaller relative to open class
when using the Inverse Ramp or Fourth Word weighting schemes. The weighting
scheme that allowed us to best predict behavior are the ones that filter out informa-
tion about co-occurrence with closed-class words.

If the weighting scheme parameter has a potential psycholinguistic link, what
about the window size parameter? Why is the optimal window setting that we
found, 10BOA, better than the others? The relative importance of the backward
window over the forward window might be due to the way that working memory
stores recently perceived language. Only the most recently heard words are kept
in the phonological loop (Baddeley, 2003) in much the same way that only the
most recently seen words are kept in the 10BOA window. Furthermore, specific
language impairment (SLI) has been linked to impairments of working memory, and
suspected to lead to problems in acquiring the meaning of words (Baddeley, 2003).
If the concept “working memory span” can be considered analogous to the idea
of “window size”, then perhaps the optimum size of a person’s working memory
span for learning the meaning of words can be modeled using HAL. Removing the
influence of preceding words removes half the information from a the original HAL
global co-occurrence matrix, shrinking the actual dimensionality, and therefore the
size of high-dimensional space. The benefits of finding solutions in a space with
less dimensions may be coming into play here.

The potential connections between HAL’s weighting scheme, HAL’s window
size and psychological theories demonstrate the continued relevance of HAL-like
memory models to the theoretical debates about the structure of lexical-semantic
memory. Furthermore, these explanations fit nicely into Churchland’s (1989) frame-
work of vectorial computation. The weighting scheme may improve the quality of
information in the vector representation, and the window size may remove an un-

necessary portion of the vector representation from the model.
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4.1 Other models

Are distributed representations the only choice for representing lexical semantics,
or are there other viable models? HAL (Lund & Burgess, 1996), COALS (Ro-
hde et al., 2007) and BEAGLE (Jones & Mewhort, 2007) are all highly distributed
representations. Some neural network models, such as the SRN model proposed
by Elman (2004) and the feature-based model by Cree et al. (2006) are also dis-
tributed word representations. In contrast, there are also localist semantic represen-
tations, often called “lexico-semantic networks”. These networks were originally
described by Collins and Loftus (1975) as part of their spreading activation model,
and inspire much of the current research that involves semantic networks built from
WordNet (Fellbaum, 1998), which is a handmade data-set of semantic relation-
ships. WordNet-based distance metrics and neighborhood density measures have
been used to predict LDRT, but have produced lower correlations than distributed
representations (Rohde et al., 2007). For this reason we did not include an analysis
of the predictive power of a competing localist representation in this work. There is
still much work to be done before we can intelligently compare the relative merits

of local and distributed representations.

4.2 Future Work

There is much more work to be done based on the results we obtained. The experi-
mental paradigm of the Go/NoGo task could be improved by changing the default,
NoGo response to be for RELATED words. This change would have the effect of
making participants look for the absence of relationships, a profoundly different
task, and perhaps one that would be well modeled by HAL. Another methodolog-
ical improvement could be to use only one exemplar for a set of contiguous trials

instead of changing the exemplar on every trial. This would allow the participant to
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calibrate their criteria for one exemplar and avoid any task confusion.

There may be ways to take the ideas introduced in this research program in new
directions. For example, the relatedness task in Experiments 2 and 3, seen from a
slightly broader viewpoint, is similar to a conceptual combination task. We could
ask future participants: “Do these two concepts combine well?” Future work could
use our high-dimensional models as semantic representation that could be included
in models of conceptual combination, such as CARIN (Competition Among Rela-
tions in Nominals) theory (Gagne & Shoben, 1997).

Beyond representations lies the question of lexical processing. Our research
dealt specifically with two processes that occur concurrently with lexical access
and retrieval: word recognition (Experiment 1) and relatedness recognition (Ex-
periments 2 and 3). Future research could involve looking at models that deal with
semantic information in word processing, and how our results are informed by these
models. Many models of word recognition contain a “semantic” layer, component
or module. The majority of these word recognition models do not impose a re-
quirement on which type of semantic representation is to be used with the model.
We were unable to find any reports of any attempts to compare the impact of local
versus distributed models of representation on word recognition models, but many
connectionist models of word recognition assume a distributed model of represen-
tation. The most relevant models are the Interactive Activation Model (Rumelhart,
1981), the MultiStage Cascade model (Borowsky & Besner, 1993), the Independent
Activation Model (Dixon & Twilley, 1999a , Dixon & Twilley, 1999b, Twilley &
Dixon, 2000) and the Single Mechanism Model (Plaut & Booth, 2000). All of these
models have the potential to incorporate HAL-based semantic vectors into their se-
mantic module, and until such work is undertaken there will no way to see how our
representation will perform in these models.

Even more fundamental is the question of language acquisition. HAL is a model
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of representation of semantic knowledge about words. It is by nature a statistical
model which keeps track of first and second order co-occurrence probabilities. An
open question remains: does the statistical nature of the representation imply a sta-
tistical learning paradigm? What are people doing when they learn new words?
They may be looking for statistical patterns in their input. Some initial work on
using statistical patterns to model language acquisition through neural networks
(which are mathematically equivalent to HAL) has been done by Howell, Jankow-
icz, and Becker (2005). There is some reason to speculate that language acquisition
does depend on statistical learning, as seen the the work of Saffran, Aslin, and New-
port (1996) on phonology acquisition by 8 month old infants. There is much work
ahead in order to understand the acquisition of lexical semantic knowledge.
Making HAL and HAL-like models more psychologically plausible is a noble
goal, but a difficult one. HAL does not use any information about word morphology,
phrase structure, or any other non-lexical linguistic information. HAL requires large
amounts of electronic text to function properly. What is truly fascinating is that
despite its inherent simplicity, HAL can model human performance on complicated

semantic tasks fairly well.
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Appendix A

Stimuli used in Experiment 2

A.1 Associated Words sorted by Inter-word HAL dis-

tance
WORDPAIR  HAL DISTANCE
ESSAY - ENGLISH 4197
FACTORY - LABOR 4215
ARREST - SUSPECT 42.55
DIFFER - SIMILAR 43.79
AVERAGE - REGULAR 43.89
BIOLOGY - CELL 43.99
CELL - BIOLOGY 43.99
LEGS - STRETCH 44.11
BOTHER - TROUBLE 44.20
EXPERTS - PANEL 4421
DECENCY - RESPECT 44 .40
WORRY - PANIC 4587
KNIGHT - HORSE 46.09
CORRUPT - LAWYER 48.11
KINGDOM - QUEEN 49.96
FAKE - PRETEND 50.20
LIQUID - DRINK 51.62
FENCE - CHAIN 54.20
ENGINE - LOUD 54.84
DOCTOR - OPERATE 55.88
CLOUD - WEATHER 56.76
SPORTS - STADIUM 57.23
COUNSEL - LAWYER 58.17
PIPE - VALVE 59.95
COWBOY - RANGE 60.20
DEPART - AIRPORT 61.0t
DEPTH - WIDTH 63.90
BEACH - RELAX 64.69
CORRUPT - DESTROY 65.74
ARTIST - TALENT 66.76
RECIFPE - MIXTURE 67.82
MERCURY - PLANETS 69.05
OPENING - VALVE 69.80
FANTASY - PRETEND 71.08
FORTUNE - FAME 71.54
DELIVER - TRUCK 72.02
LICENSE - PERMIT 74.76
COURAGE - COWARD 77.16
BONDAGE - CHAIN 79.88
LAUNCH - MISSILE 81.01
DOORWAY - PORTAL 82.36
ECONOMY - DEFICIT 88.44
WINDOW - SHIELD 91.07
ENGLISH - POETRY 94.08
CHICKEN - RECIPE 96.47
ANCIENT - TEMPLE 101.83
MAILBOX - EMPTY 102.09
WORSHIP - TEMPLE 11210
HELPFUL - USELESS 136.19
SESSION - THERAPY 138.77
Means: 66.56

OF (Word1)
6.58
21.42
20.87
9.30
66.71
11.80
43.69
24.48
29.37
32.77
16.87
37.31
11.39
21.84
27.20
22,34
10.81
11.57
45.61
4530
2177
24.41
14.17
15.14
576
47.06
15.75
29.81
21.84
14.10
10.07
17.50
49.03
20.84
23.52
32.08
36.26
12.84
5.05
20.95
14.02
47.30
62.29
937
17.67
29.78
7.01
27.05
30.30
21.90
26.24

OF (Word2)
93.71
38.80
42.56

110.97
52.13
43.69
11.80
10.13
64.90
2173
65.89

8.72
24.55
27.26
22.20
18.81
29.06
3274
17.12
23.32
2491
18.39
27.26

733
70.58
20.05
87.42

5.61
40.24
19.96

8.12
11.22

733
18.81

9.70
217
14.27
16,95
3274
14.85
14.40
10.45

8.65
11.75
10.07
19.87
65.53
19.87
18.69
12.60
28.60
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A.2 Idiosyncratic Words sorted by Inter-word HAL

L]

distance
WORD PAIR HAL DISTANCE
DRAMA - SERIOUS 29.48
SHARP - HARSH 29.76
NOTION - PURPOSE 3291
ROUTINE - CYCLE 3471
FOOLISH - ACTIONS 36.50
MESS - KITCHEN 38.56
MONDAY - BUSY 42.46
PLASTIC - TREND 42.58
APPLES - TREES 42.86
PRIEST - COLLEGE 43.54
UNITE - APART 44,43
GRAVITY - ROCK 46.24
LUCK - RAINBOW 47.83
PARK - RESERVE 48.67
SELECT - CAREFUL 49.48
WILD - BEAST 51.50
PRAISE - DESTROY 51.52
SUCCEED - LUCKY 52.19
CITIZEN - ARREST 52.45
IMAGINE - SUPPOSE 53.20
PANEL - BUTTONS 58.59
FRIGID - WORRY 58.90
EXPRESS - HURRY 62.19
MORALS - IMMORAL 62.93
PILOT - ERROR 62.95
ADVISE - CONSOLE 63.44
COLLECT - MESS 64.02
SUCCEED - WEALTH 64.35
BREAD - FLOUR 65.67
CEMENT - FLOOR 67.61
ETHICS - VIRTUE 69.22
CURIOUS - MYSTERY 69.95
PASSAGE - MYSTERY 7093
REALIZE - BEAUTY 7148
POVERTY - STUDENT 71.65
REGION - PORTION 73.86
SEVERE - WEATHER 7525
SERVANT - CASTLE 78.03
CAPTURE - STEAL 83.82
FAILURE - DISMISS 84.92
DEFEND - KNIGHT 86.49
CAPTURE - RESCUE 86.77
KINGDOM - MICKEY 87.74
ANCIENT - MAGIC 89.82
FREEDOM - ESCAPE 98.18
COLLECT - ITEMS 10043
CAPTURE - VICTIM 102,03
KINGDOM - BRITAIN 123.04
DECENCY - ETHICS 123.29
SURGERY - MIRACLE 12894
Means: 65.55

OF (Wordl)
7.44
54.36
18.00
21.68
11.77
2112
43.81
21.00
573
20.68
5.49
18.23
4622
39.98
48.43
2848
16.85
13.58
30.55
52.52
2173
5.04
7076
5.06
18.09
1227
16.63
13.58
14.23
5.66
17.97
18.85
15.04
46.44
19.08
48,12
18.96
7.24
17.23
5142
3553
17.23
27.20
29.78
99,08
16.63
17.23
2720
16.87
17.14
25.46

OF (Word2)
96.40
10.53
67.18
39.60
63.83
13.40
24.58
13.83
36.47

11291
3241
44.05

6.92
15.60
25,04
12.66
40.24
28.90
20.87
42.64
26.69
37.31

6.63

8.26
90.28

9.26
2112
26.69

5.57
57.32

9.78
14.33
14.33
15.89
38.64
19.97
24.91
19.66
17.07

6.76
11.39
14.63

6.94
29.47
19.53
5593
29.58
3107
17.97

8.74
28.88
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A3

tance
WORD PAIR HAL DISTANCE
FRUITS - TOWARDS 28.68
SELDOM - VOTES 33.06
BLUNT - REACT 36.97
FOUGHT - OBVIOUS 37.78
HELMET - QUOTE 37.98
RICE - ELEMENT 38.51
BELOVED - QUERY 39.73
SLOWLY - TUBE 40,49
PAYROLL - DIETS 41,07
ESSENCE - PARK 41.57
INVOLVE - SCHEME 42,71
WIND - SIGNALS 43.39
HINT - SANDY 43,74
CIRCUIT - ASPECTS 44.02
BROKEN - REMARKS 44,59
WITNESS - BROAD 50.64
MISS - PATRIOT 51.81
KNEES - ENDED 52.78
TREATY - ANIMALS 53.46
PROPHET - MONTHLY 53.83
DIVORCE - GOTTEN 53.91
VOTED - KNEES 54.37
LINKED - POPCORN 54.89
JUICE - PERFORM 62,49
LEMON - ELECTED 62.78
AWHILE - SUITE 63.21
FINEST - SYMBOL 63.96
SMOOTH - CLARIFY 64,37
APPEARS - FAILURE 65.22
COMPARE - COAST 65.88
ARRIVES - PENALTY 66.52
FEMALE - ENTERED 68.80
CRUELLY - EXPLORE 69.59
PACIFIC - DOZENS 74.17
JOINED - CRYSTAL 75.24
SHUTTLE - FAVOR 75.60
PACIFIC - PACE 76.42
IMAGINE - BENCH 77.85
KNOCK - THIRD 78.32
ENFORCE - STREAM 84.38
CLASSIC - EXPAND 87.31
FRIENDS - GUARDS 9391
PACKAGE - MIRRORS 96.41
MILITIA - UPPER 98.37
BEBAVE - POETRY 99.60
ELEMENT - SCREAM 108.35
ORDERED - ENIGMA 116.38
SOLDIER - FORUMS 122.25
WEEKEND - TACTICS 130.50
CHICKEN - DEPOSIT 152.59
Means: 66.41

OF (Word1)
577
6.12
44.69
18.63

6.27
33.01

8.73
43.56
25.31
11.51
19.59
27.73
13.00
22.77
39.1t
2322
39.46

8.90
1175
24.85
10.60
24.82
18.01

9.40
21.93

7.92
10,78
11.84
61.30
24.68
20.49
45.40
2246
14,58
2391

6.10
14.58
52.52
12.46

9.51
28.89
96.63
45,88
11.51
53,28
20.37
32.55
20.54
30.34
17.67
24.30

OF (Word2)
112.61
24.64
1175
63.98
68.23
2037
38.49
14.47
21.29
39.98
28.70
15.36
8.04
38.59
17.89
2278
13.47
30.91
43.82
68.38
25.83
8.90
15.41
94.95
27.41
33.44
17.62
7.56
51.42
25.98
16.98
23.39
9.80
17.84
17.75
33.87
11.95
7.24
90.50
14.04
16.19
1271
8.27
67.46
11.75
893
19.53
19.75
18.66
14.28
29.06
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A4 114 Most Frequent Closed-Class Words from the

Web1T Corpus
A ABOUT ALL ALSO
AN AND ANY  ARE
AS AT BE BEEN
BUT BY CAN DO
FIRST FOR FROM GET
HAD HAS HAVE HE
HER HERE HIS HOW
I IF IN INTO
IS IT ITS JUST
LIKE MAKE MAY ME
MORE MOST MY NO
NOT NOW OF ON
ONE ONLY  OR OTHER
OUR ouT OVER SHOULD
SO SOME SUCH THAN
THAT THE THEIR THEM
THERE THESE THEY THIS
THROUGH TO UP UsS
WAS WE WERE WHAT
WHEN WHICH WHO  WILL
WITH WOULD YOU YOUR
< /8> <S> @ =
> ? ’ ’S
( ) * +
/ : ;
[ \ ] |
! « # $
% &

All of these words were among the 200 most frequently used words in the WeblT
corpus. < S > and < /S > denote the beginning and end of a sentence.
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