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Abstract

Graph-based Knowledge Bases (KBs) are composed of relational facts that can be

perceived as two entities, called head and tail, linked through a relation. Processes

of constructing KBs, i.e., populating them with such facts, as well as revising and

updating them are of special importance. Such tasks require automatic methods

and procedures, especially in the case when the main sources of facts are textual

documents.

This research aims at applying Machine Learning and Computational Intelligence

methods for the analysis of textual data and recommending a methodology for ex-

tracting structured information from unstructured text. The goal is to design and

propose a method to extract triples from sentences in the form of <head, relation,

tail>. These extracted triples from the text can be used to build a graph-based KBs

or update the existing ones.

For the first part of this research, a task of Relation Extraction (RE), i.e., predict-

ing a relation that links two entities mentioned in a sentence, is investigated. Using

RE processes, new relational facts from unstructured texts should be extracted. In

this part, we develop a new method for RE which is based on cleaning the input

sequence that is fed to the model. This is obtained by removing noisy tokens from

the sentence using dependency tree. This helps the model to focus more on the to-

kens that contribute more to identifying the relation. We also utilize entity type

information and inject that to the model to get a better performance. Our method is

tested on the widely used NYT dataset and compared to other state-of-the-art meth-

ods in RE. Experimental results prove the effectiveness of the developed procedure
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compared to other methods.

For the second part of this research, we focus on a triple extraction task. The

main difference between triple extraction and relation extraction is that in a triple

extraction process entities are not identified and they should be extracted from sen-

tences along with relations between them. The main goal of triple extraction task

is to convert unstructured text to a structured representation in the from of <head,

relation, tail>. For this task, we developed a sequence to sequence model based

on transformers, to generate the triples. The model encompass encoder and decoder

which are initialized using publicly available checkpoints from other transformer mod-

els. We compared our model with other state-of-the-art models and showed that our

approach achieves great results in generating triples from the input sequence.

Finally, we propose a procedure to create a knowledge graph from extracted triples.

We take the extracted triples from the WebNLG dataset and build a weighted knowl-

edge graph out of them.
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”Life is like riding a bicycle. To keep your balance, you must keep moving.”

- Albert Einestein
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Chapter 1

Introduction

1.1 Motivation

The growing amount of information accessible to users generates several challenges

related to its utilization. In most cases, the information is stored as text – sequences

of words – that is impossible for machines to understand and take full advantage of

it.

The introduction of the Semantic Web, particularly a graph-based data format, has

enabled an attractive form of storing different types of information. The basic building

block of this format is a triple. Each triple is made of a pair of entities – head and tail,

connected together via a relation [1]. Large repositories of data represented as triples

become new types of Knowledge Bases (KBs). Freebase [2], DBpedia [3] or Wikidata

[4] are examples of well-known KBs that hold useful information represented in such

a format. Sets of triples are highly interconnected, which allows for representing

semantically rich information. Consequently, the information stored in KBs has been

successfully used in multiple application domains: question-answering systems [5],

recommendation systems [6], as well as knowledge discovery [7], to name just a few.

Despite many advantages, the construction and maintenance of KBs impose some

challenges. For example, suppose a set of documents requires its ‘translation’ into

triples to construct a new graph or update an existing one. Such processes – called

in general relation extraction – are needed to build relevant KBs or keep the already
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created graphs up to date. In most situations, such a process is performed manually,

which is very costly and time-consuming. Therefore, a dedicated and automated

process is necessary to extract relational facts – ⟨head, relation, tail⟩ – from the text

and represent them in the structured format. The extracted facts are then added to

KBs without human supervision. Therefore, it is imperative to have such processes

in place to create Knowledge Graphs (KGs) automatically.

1.2 Objectives

This thesis focuses on designing a model/system to extract relational facts from plain

text without human intervention. Processes of automatic extraction of knowledge

facts can be perceived as having two activities. First, whenever new information is

released, the unstructured information should be rapidly changed into a structured

format <head, relation, tail> without human supervision. Second, the obtained struc-

tured information – triples – should be used to build new or update existing KGs.

Such methods would ensure that KGs are always up to date and can be used in many

applications.

The ultimate goal is to develop and validate a comprehensive system for extract-

ing relational facts from plain text and use these extracted facts to build or update

knowledge graphs (KGs). To accomplish the goal, the following objectives are iden-

tified.

1.2.1 Relation extraction (RE)

RE is a task to find a relation between a pair of entities already mentioned (identified)

in a sentence. It can be modelled as a classification task that assigns a relation to a

pair of entities mentioned in the text. The intent is to develop a novel neural-based

model for relation extraction that uses information about entities and syntactic infor-

mation from dependency trees as the input. We state that auxiliary information, like

types of entities, can improve the RE performance based on performed experiments.
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Also, dependency parsers that find syntactic dependencies between different tokens

of a sentence should contribute to better performance. In general, rich structural

information embedded in dependency trees has proven helpful for RE tasks. Such an

approach has not gained much attention in the literature.

1.2.2 Triple Extraction

In contrast to RE, this process enables the extraction of triples from a text without

entities being mentioned (identified/marked) in the sentences. In other words, the

triple information extraction is the task of ‘finding’ triples: <head, relation, tail> in

sentences. It is a domain-independent task where two entities and their corresponding

relation are extracted simultaneously. Unlike in the case of RE, the process requires

extraction of all possible entities, and it should be able to predict the most accurate

relation between them. There could be more than one triple in a single sentence. The

triples can share the same entity pairs. We aim to develop a transformer-based triple

extraction model that can extract all types of triples in the sentence.

1.2.3 Constructing Knowledge Graph

Nowadays, Knowledge graphs(KGs) have attracted so much attention as a way to

integrate data. KG is a great visualization tool that can be used to find a path

between different entities and follow this path to find patterns between them. The

graph-based database collects data from different types and sources and merges them

through nodes and links. After merging all the data, we end up having a network of

entities (nodes) that are linked together via relation(s). We plan to apply the triple

extraction model to a text and generate multiple triples. Then, we aim to construct

a knowledge graph via processing and connecting the triples.

1.3 Outline

The thesis is structured into 4 main chapters as follows:
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In Chapter 2, we discuss all necessary background information that is required

and the main ideas of this thesis are built on. Some of the information that will be

discussed in this chapter are as follows:

• Recurrent Neural Networks that will be used for the proposed RE method.

• Dependency Tree that include useful syntactic information about the text.

• Transformers that have achieved state of the art on many natural language

processing tasks.

• Tokenization that is necessary to tokenize the text and convert tokens to

number.

• RE task and a reviewing some literature about that.

• Triple Extraction task and some related works about it.

Chapter 3 discusses the proposed RE method, which is a neural network model

that is proposed to improve RE process. We develop a procedure using syntactic

information obtained from dependency trees to remove noisy tokens from sentences

and pick the most relevant ones that help extract correct relations. This method also

utilizes entity type information, which is fed to the proposed model.

In Chapter 4, we will develop a triple extraction method. We treat triple extraction

task, as a sequence to sequence task that the input is a input sentence that we want

to extract all triples out of it and the output is a sequence of all possible triples in

the input sequence.

In Chapter 5 we propose a method to build a knowledge graph from extracted

triples. This will help us to apply queries on the triples in a nice visualise environment.

Finally, in Chapter 6, a summary of the significant results that are achieved in this

thesis are listed and discussed.
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Chapter 2

Background

In this chapter we provide a brief introduction for the concepts that this thesis is built

on. In addition to that we investigate the recent approaches and methods, addressing

relation extraction and triple extraction.

2.1 Recurrent Neural Networks

Text is a sequence of words which each word in this sequence relies on the previous

words in the sequence. If an incomplete sentence is given to humans, probably they

can complete the sentence based on the previous words given in the sentence, because

their thoughts have persistence and use the information from the previous words in

the sentence. However traditional neural networks assume all inputs and outputs are

independent from each other and there is no connectivity between them. This is a

major shortcoming for traditional neural models.

Recurrent Neural Networks (RNNs) address this issue by having a “memory” which

allows them to capture the information from the current step of the sequence and pass

it on through the next step [8]. Therefore the output of each step is dependent on the

output of the previous step. Fig. 2.1 depicts RNN architecture. Given the sentence

X = {x1, x2, ...., xT}, each word is projected into embedding space {e1, e2, ...., eT},

where eT ∈ IRD and D and T are word vector dimension and the number of words

in the sentence respectively. These embedding vectors are fed to the recurrent layer
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Figure 2.1: RNN structure

step by step. At the step t, RNN takes the embedding vector et and the output of

the previous step hfw
t−1 as inputs and calculates the output for the current step hfw

t

[9]:

hfw
t = tanh(W fw.et + U fw.hfw

t−1 + bfw) (2.1)

Where hfw
t ∈ IRM , W fw ∈ IRM ×D, U fw ∈ IRM ×M , bfw ∈ IRM and M is the dimension

of the feature vector. hfw
t includes information for the sequence of words up to word

{x1, x2, ...., xt}. W fw, U fw and bfw are the parameters of the model and tanh(.) is

the nonlinear transformation function. This function is usually ReLU or tanh. All

the steps in RNN share the same W , U and b. Therefore, for each step just the input

changes. This reduces the number of parameters needed to learn significantly.

Fig. 2.1 depicts the RNNs. This diagram has output for each time step which is

not necessary for all the tasks. For example if we want to do text classification, we

just need the output of the last step for classification.

2.1.1 Bi-directional RNNs

The main drawback of one directional RNNs is that we cannot utilize the information

from future words and use them to predict a word in the middle of the sequence.

Utilizing both past and future words for predicting the semantic meaning in the

middle of a sentence can boost the performance. For example when we are asked to

predict a missing word in the sentence, we may take a look at both left and right
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words of the missing words to predict better. The solution is using bi-directional

architecture which utilizes both past and future words to make predictions. The

output at the time step t during the backward processing is obtained by:

hbw
t = tanh(W bw.et + U bw.hbw

t−1 + bbw) (2.2)

Where hbw
t , U bw, W bw and bbw have the same dimension as hfw

t , U fw, W fw and bfw

respectively. Backward and forward RNNs are trained simultaneously during the

training phase. With the bidirectional RNN architecture, the output at the time step

t is obtained by concatenating hbw
t and hfw

t together.

2.1.2 Long Short Term Memory Networks

The main idea behind RNNs architecture is that they may be able to connect infor-

mation from the previous steps to the current step. For example, for predicting the

next word in a sentence, we may need the words coming before the missing word. But

what if for predicting the missing word, we need the context which is so further back.

For instance, in the sentence “I was born in France, which is a very beautiful country

and that’s why I can speak (A) fluently.” we know the word A is a language but for

predicting it we need the word France from the sentence which there is a large gap

between them. Unfortunately RNNs are not capable of handling long term depen-

dencies and they suffer from vanishing gradient problem [10]. For solving this issue

Long Short Term Memory(LSTM) networks are introduced [11] which are a special

kind of RNNs.

LSTMs are designed to solve long term dependency problem and therefore can

remember information for a long period of time. The main idea is to provide a gating

mechanism for each unit, which decides to keep the information from previous states

or not. LSTMs include 4 components: an input gate (it), a forget gate (ft), an output

gate (ot) and a memory cell (ct). These components are shown in Fig. 2.2. We can
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write equations for these components as below [12]:

it = σ(Wi.et + U i.ht−1 + bi)) (2.3)

ft = σ(Wf .et + U f .ht−1 + bf ) (2.4)

ot = σ(Wo.et + U o.ht−1 + bo) (2.5)

ct = it ⊗ gt + ft ⊗ ct−1 (2.6)

gt = tanh(Wg.et + U g.ht−1 + bg) (2.7)

Here gt extracts the feature vector for the current step in LSTM. ct is the memory

cell state for the current step and is computed based on the previous cell state and

gt. The hidden state computed for each LSTM unit equals to:

ht = ot ⊗ tanh(ct) (2.8)

In all of the equations mentioned above, ⊗ is the sign for element-wise multiplication

and σ is the sigmoid transformation function. As we can observe from the equations

above, memory cell state is updated in each step and LSTMs can learn to forget

previous states information or just keep them and pass it to the next step.

2.2 Dependency Parsing

Dependency parsing is the task of analyzing the grammatical structure of the sen-

tence and building relation among the “head” word of the sentence and other words

modifying it [13]. Parsing resolves the structural ambiguity of the sentence in a form.

Fig. 2.3, depicts typed dependency structure for the sentence ”I take the bus every

day to school”. An arrow from the “take” towards “I” indicates that the word “I”

is modifying the word “take”. Each of the arrows in the Fig. 2.3 has a label which

indicates the relationship between words.

Dependency parser can simply transfer a sentence into the dependency tree. De-

pendency tree is a structure in a graph format with |V | nodes and |A| links. V is
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Figure 2.2: LSTM unit. h: hidden unit. c: memory cell. i: input gate. f : forget
gate. o: output gate. g: candidate cell. ⊗ :element-wise multiplication. ∼: activation
function.

the number of the words in the sentence which are connected through the links. A

describes the dependency relation between words of the sentence. For example in the

link h→ d, h is the head word and d is the dependent. Root is the head for all other

nodes in the tree (directly or indirectly) and therefore is the most important node in

the tree. Fig. 2.4 depicts the dependency tree structure for the mentioned sentence

above.

2.3 Precision-Recall Curve

Precision can be defined as the number of true positive (Tp) samples divided by the

summation of true positive and false positive (Fp) samples. However, recall can be

defined as the number of true positive samples divided by the summation of true
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I take the bus every day to school

root

nsubj det det case

obj

obl:tmod

obl

Figure 2.3: Typed dependency structure for the sentence ”I take the bus every day
to school”

positive and false negative (Fn) samples.

P (Precision) =
TP

TP + FP

(2.9)

R(Recall) =
TP

TP + FN

(2.10)

Precision-Recall curve is a metric to measure how successful our classifier was. This

metric is extremely useful when our dataset is highly imbalanced. This curve plots

precision and recall when the threshold changes from 1 to 0. When precision and

recall are both high, it means the area under the curve is high too. Higher precision

means few numbers of false positive samples and high recall means few numbers of

false negative samples.

2.4 Word Embedding

Machine learning algorithms and deep learning architectures are not able to process

raw string or plain text. Therefore, texts should be converted into real vector numbers

to be understood for neural networks as an input feature. Word embedding is the

process of converting each word in the document into a vector using a dictionary. For

example in the sentence “I go to school by bus”, the easiest way to represent words

in using one hot vector for each word in the sentence. In this case our dictionary is
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Figure 2.4: Dependency tree structure for the sentence ”I take the bus every day to
school”

[‘I’, ’go’, ’to’, ’school’, ’by’, ’bus’] and then the vector representation for the word

“I” is [1, 0, 0, 0, 0, 0] and etc. But this is the simplest form we can represent words as

vectors. There are different methods for word embedding which we mention some of

them in this section.

2.4.1 Count Vector

consider a corpus D which includes N documents. In this corpus we can extract all

unique tokens and form a dictionary. Let’s say we have T unique tokens. Then we

can count the frequency of each token for each document and build a count matrix

M , which is in the size of N ×T . Each column of M , represents the word embedding

for different tokens and each row in M represents the frequency of different tokens in

each document. For instance let’s say we have the following corpus:

D=[”This is the first document”,

”This is the second document”,

”This is the third one”]
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There are 3 documents in D and our dictionary will be [‘This’, ’is’, ’the’, ’first’,

’document’, ’second’,’third’, ‘one’]. The matrix M is the size of 3× 8 which is shown

below:

Table 2.1: Word count for the document D

This is the first documentsecond third one

D1 1 1 1 1 1 0 0 0

D2 1 1 1 0 1 1 0 0

D3 1 1 1 0 0 0 1 1

The first row of M represents the frequency of each word in the dictionary in

the first document and the first column of M represents the vector representation

obtained for the word “This”. Using this method may lead to a sparse matrix for M

specially if we have a large corpus and therefore many unique tokens. In this case we

will have lots of zeros in M and is not efficient for computation.

2.4.2 TF-IDF Vectorization

The main idea behind this method is applying higher weight to more important tokens

in the corpus and lower weight to less important one. If we have a large corpus, words

like “the”, “is”, “a” appear in most of the documents. So, these words are not suitable

for classifying documents. In the count vector method, these words are not sparse,

claiming they carry lots of information. In the TF-IDF method, we want to lower the

importance of these tokens by applying a weight to them:

TF − IDF (term, document) = TF (term, document) ∗ IDF (term) (2.11)

The first term is term frequency (TF ) which indicates the occurrence frequency of

each term in the document. This means the number of times each word occurs in the

document divided by the number of words in the document and is obtained as follow:

TF (term, document) =
ni∑︁V
k=1 nk

(2.12)

12



The second term is inverse document frequency (IDF ) and indicates the inverse of

the number of documents that each term appears in. This is obtained as follow:

IDF (term) = log
N

nt

(2.13)

Take a look at the corpus D shown in the previous section. We can calculate

TF-IDF for the two words “this” and “first” in the first document as follow:

TF − IDF (”this”, document1) =
1

5
× log

3

3
= 0

TF − IDF (”first”, document1) =
1

5
× log

3

1
= 0.0954

As we can see, this method penalizes the word “this” significantly as it appears in

all the documents and so does not carry too much information. But we assign higher

weight to the word “first” because it just appears in the first document. Now we can

get to the word vector representation by replacing elements of matrix M from the

previous section with their respective TF-IDF elements.

2.4.3 Word2Vec

Word2vec [14] is the first neural embedding model. This method is a predictive based

model which calculates probability for each token. This method was also the first

method to achieve the task Germany-Berlin=France-Paris, which was a big move

for embedding methods. Word2vec is a combination of two different techniques:

CBOW(continuous bag of words) and skip-gram model. Both techniques use shallow

neural networks which map word(s) into word(s). Both techniques learn weights which

can be interpreted as word vector representations. Both methods are explained in

the following:

CBOW:

CBOW predicts the probability of a word given a context. Context can be a single

word or multiple words. Let’s say the context in a single word for simplicity. The
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Figure 2.5: Shallow neural network used in CBOW (single word context) [15]

input is the one-hot encoder of the context which is in size of 1 × V and V is the

vocabulary size. This input is fed to a shallow neural network (Fig. 2.5) which has

just one hidden layer. Input weight is in size of W = V × N . The output vector

is also in size of 1*V and output weight is in size of W
′

= N × V . N is a hy-

perparameter which we use to choose the dimension of word vector representation.

After training the neural network, we take W and W
′
as a word vector representation.

Skip-gram Model:

Skip-gram model has the same architecture as CBOW but it has been flipped. Skip-

gram predicts the probability of context given a word as input. Simply, we want

to predict the context around, given the center word. Input is a one hot encoder

vector of size 1 × V . Hidden layer has N neurons which is the size of word vector

representation. Output is in size of C[1 × V ] where C is the context size. Fig. 2.6

Depicts skip-gram model.

2.4.4 Glove

After [14] released their word2vec method, many articles were published about word

embedding. One of the best articles in this area was Glove (Global Vectors for
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Figure 2.6: Shallow neural network used in Skip-gram [15]

Word Representation)[16] which reformulated word2vec algorithm as a special kind of

factorization for word co-occurrence matrix. Glove tries to capture word embedding

by observing the whole corpus. Word frequency and co-occurrence counts are the

main things that Glove makes use of them. Glove form co-occurrence matrix X

which element Xij in this matrix indicates the number of times word j has been in

the context of word i. As a result:

Pij = P (j|i) =
Xij

Xi

(2.14)
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Where Pij is the probability that word j occurs in the context of word i. The loss

function that Glove minimizes it is:

J =
V∑︂

i,j=1

f(Xij)(w
T
i w̌j + bi + bj − logXij)

2 (2.15)

Where f is a weighting function which is created manually and Wi and Wj are word

vectors for words i and j respectively. Glove is trained on a global co-occurrence

matrix to minimize the loss function by minimizing the least square error and produce

word embedding vectors in meaningful space.

2.5 Transformers

Nowadays, Transformers [17] have become popular in different artificial intelligence

fields such as: Natural Language Processing (NLP), Computer Vision (CV) and

Speech Processing. The first Transformer was proposed in [17] which was utilized

towards a machine translation model. After that, researchers came up with the idea

of using the vanilla model as an initial design and adopt it through different ar-

chitectures, which resulted in state-of-the-art for different NLP tasks. Some of the

new models which are based on the vanilla architecture are BERT[18], GPT[19] and

RoBERTa[20]. These models are pretrained on large datasets and then fine-tuned

on the downstream tasks. In the following sections, we first describe the vanilla

transformer architecture and then investigate different variants of it.

2.5.1 Vanilla Transformer

Vanilla Transformer is a sequence to sequence model which was introduced for ma-

chine translation [17]. This sequence to sequence model is made up of an encoder

and a decoder, each consisting of identical blocks. Each encoder block is made up of

a bi-directional Multi-Head-Self-Attention module and a position-wise feed forward

network (FFN). For making a deeper model, a residual connection [21] and a nor-

malization layer [22] are added around each module. This proved to improving the
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Figure 2.7: Structure of a vanilla encoder-decoder transformer [17]

performance of the model.

Structure of the decoder is the same as the encoder with some minor changes.

The Multi-Head-Self-Attention block in the decoder is unidirectional, which prevents

each position from attending subsequent positions for calculating the attention score.

In addition, the decoder block has a cross attention layer between the outputs of

the encoder and the output of the decoder’s self-attention block. Fig. 2.7 depicts

the architecture of a vanilla transformer. Vanilla Transformer consists of 6 stacked
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encoder block and 6 stacked decoder block.

Different modules that are used in the transformer’s architecture is described in

the following sections:

Attention Modules

When an input sequence is thrown to the transformer, the self-attention module tries

to extract the relationship between different words (positions) in the sequence. To

calculate the self-attention, three vectors: query(Q), key(K) and value(V ) should be

created for the input sequence. These vectors are created by multiplying the word

embedding matrix by query (WQ), key(WK) and value(WV ) matrices respectively.

These matrices are optimized toward optimal values during the training process.

After obtaining Q ∈ R(N×dk), K ∈ R(M×dk) and V ∈ R(M×dv) for the input sequence,

the next step is calculating attention scores as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.16)

Where dk, M and N represent the length of the query matrix, dimension of the

key matrix and dimension of the query matrix respectively. As it can be seen from

Equation (2.16), the dot product of Q and KT is divided by
√
dk, to prevent gradient

vanishing problem which results in poor performance.

To improve the performance of self attention layer, [17] proposed using multi-head-

attention design which has some advantages over single-head-attention one:

1. it helps the model to focus on different positions of the input sequence. In this

case, all the input tokens collaborate to the final representation, which prevents

it from being dominated by the words in a specific position

2. There will be multiple sets of query, key and value matrices (one for each at-

tention head) which are used to project the embedding matrix into different

representation subspaces which improves the attention functionality.
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For each attention head, the attention is calculated using Equation (2.16) and then

all outputs are concatenated back together to build the final attention matrix.

Multi Head Attention(Q,K, V ) = concat(head1, · · · , headn) (2.17)

headj =Attention(QQ
j , K

k
j , V

V
j ) (2.18)

Vanilla Transformer has 8 attention heads. hence, n in Equation (2.17) is equal to

8.

Three different attention mechanisms that are applied in transformer structure are

as follows:

1. Self Attention: Which is used in the encoder. In this type, each query is al-

lowed to attend keys from all positions in the input sequence. So, forward and

backward tokens participate in the attention calculations.

2. Masked Self Attention: Which is used in the decoder. In this type, each query

is just allowed to attend previous positions and itself. To make this possible, an

upper triangular matrix (Mask matrix) should be created which its size is equal

to the length of the output sequence. Matrix’s elements are filled as follow:

Mij = −∞ if i < j ,

else Mij = 0
(2.19)

Where M is the mask matrix. This type of attention can be called with differ-

ent names such as: casual attention, auto-regressive attention or unidirectional

attention.

3. Cross attention: which is used in the decoder. This layer is located after the

masked-self-attention layer and calculates the attention between the outputs of

the encoder (keys) and the outputs of the masked-self-attention layer (queries).
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Position-wise Feed Forward Network

Position-wise Feed Forward Network (FFN) (in which its parameters are shared

among different positions) is a fully connected feed forward network. It’s called

position-wise because the same network would be applied to each position of the

sequence:

FFN(H
′
) = ReLU(H

′
W1 + c1)W2 + c2 (2.20)

In Equation (2.20), H
′

is the output of the previous layer and W1 ∈ R(Dm×Df ),

W2 ∈ R(Df×Dm), c1 ∈ RDf and c2 ∈ RDm .

Residual and Normalization Module

If we take the self attention and position-wise FFN layers as a combined package,

connection[21] and normalization[22] module are connected to each package which

allows gradients to pass through the model easier. This will reduce the training time

significantly.

H
′

= LayerNorm(SelfAttention(X) + X) (2.21)

H = LayerNorm(FFN(H
′
) + H

′
) (2.22)

Position Encoding

When the input sequence is fed to the transformer, since there is no recurrence in

the architecture of Transformer, order of the words might be missing. To prevent

this, a positional embedding vector is added to each word’s embedding vector. The

idea behind this is tracking the positions of different tokens such that there will be a

meaningful distance between different words in the sequence, when their embedding

is projected into Q, K and V matrices.

20



In the vanilla Transformer, positional information vector is obtained using absolute

sinusoidal position encoding. For example, for obtaining the position vector at the

position t, the following formula is used:

PE(t)i =

{︄
sin(ωti) if i is even

cos(ωti) if i is odd
(2.23)

Where i varies from 0 to Dm. ω is the frequency of the sinusoidal function and is

pre defined.

2.5.2 Different Transformer Architecture

There are three different variant, that transformers can be used:

1. Encoder-Only Transformer: where there is no decoder and we just have the

encoder in the architecture. Outputs of the encoder can be used as a represen-

tation for each word in the input sequence. This model is useful in sequence

classification or word labelling tasks such as Name Entity Recognition.

2. Decoder-Only Transformer: where there is no encoder in the architecture. Since

there is no encoder, the cross attention layer is withdrawn from the decoder.

This variant is good for sequence generation tasks.

3. Encoder - Decoder Transformer: Both encoder and decoder exist in the archi-

tecture like vanilla Transformer. This model is good for sequence to sequence

tasks such as machine translation or text summarization tasks.

We will mention and discuss some variants of Transformers in the following parts:

BERT

BERT(Bidirectional Encoder Representation from Transformers)[18] is an encoder-

only transformer which achieved state-of-the-art results for some NLP tasks such as:

Question Answering (SQuAD v1.1) and Natural Language Inference (MNLI).
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BERT’s game changing idea was proposing the Masked Language Modelling (MLM)

method, which enabled BERT to train transformers for language modeling in a bidi-

rectional manner. Before BERT, transformers were trained in a single direction (from

left to right or from right to left). Training Transformers in a bidirectional manner,

helps the model to have a deeper and better understanding of the text. Having this,

the model learns the representation of each word using all its surrounding context

(both left and right context) and can perform better on downstream tasks.

The main challenge of the BERT is how to make bidirectionality possible during

the training. Usually other methods train their language models through the next

word prediction task. However, the next word prediction task limits the ability of the

model to have access to all the surrounding text around the word and just have access

to the previous context. To avoid this problem, BERT utilizes the MLM method.

MLM is a crucial part in BERT architecture. When feeding the input sequence

to the BERT, %15 of tokens are randomly masked. When a token is masked, it

is replaced with the token [MASK]. Now the model should try to predict these

masked tokens and find out their original values. Hence, we should add a classifier

and softmax layer on top of the BERT’s output vectors. It should be noted since

BERT just predicts the masked tokens, thus just the prediction of masked tokens in

the output are considered in the loss function and prediction of non-masked tokens

are ignored.

Another task that BERT performs during the training is the Next Sentence Pre-

diction (NSP) task. This part helps the BERT to achieve better performance for

sequence to sequence tasks. The input sequence feeding to the BERT, is a pair of

sentences which we can call sentence A and sentence B. During the training phase,

BERT predicts if the sentence B is the subsequent sentence of A in the original doc-

ument or not, based on the meaning. During the training 50 percent of times, B is a

subsequent sentence of A and for the other 50 percent, B is just a random sentence

chosen from the corpus.
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The input sequence <”my dog is cute. He likes playing”> feeding to the BERT

is shown in the fig. 2.8. Each input token is converted to a vector by summing its

position embedding vector, segment embedding vector and token embedding vector.

Segment embedding vector demonstrates if the token is in sentence A or sentence

B. Also, [CLS] token is added to the beginning of the sequence and [SEP ] token is

added to the end of each sentence. The output representation of [CLS] token can

be used as a sentence embedding vector that embeds the representation of the whole

sequence. [CLS] token is used in the training phase to perform the NSP task.

Figure 2.8: How different vectors are concatenated to build the input of the BERT
model [18]

Fine-tuning BERT on Downstream task: When BERT is pretrained on large

corpus using two discussed strategy: MLM and NSP, the next step is fine-tuning the

pretrained BERT on downstream NLP tasks. In this section we briefly discuss how

some NLP tasks are fine-tuned using BERT:

1. Sequence classification tasks such as sentiment analysis can be done by adding

a classification layer on top of the [CLS] token representation.

2. Name Entity Recognition (NER) task can be done by adding a classification

layer on top of each token’s output representation. Hence, each token is classified

as one of the existing name entity tags.

3. For question answering task, the model has to learn two vectors that specify

the beginning and end of the answer in the document.
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Figure 2.9: Pretraining BERT using MLM and NSP and fine-tuning on the down-
stream tasks [18]

BERT parameters: Two different BERT models were explained in [18]: Base

model and Large model. Base model has 12 stacking encoder blocks, 12 attention

heads and hidden size of 768, which in total results in 110M parameters. On the other

hand, Large BERT has 24 stacking encoder blocks, 16 attention heads and hidden

size of 1024, which in total has 340M parameters.

Generative Pretrained Transformers

Generative Pretrained Transformers(GPTs) are decoder-only transformers that are

pretrained in unsupervised manner for language modeling. GPTs are used for se-

quence generation tasks in NLP such as text summarization and question answering.

There are three different GPTs released so far which we discuss in this section:

GPT-1: GPT-1 was proposed in[19]. In this paper, a generative language model was

proposed that is trained using unlabeled data (unsupervised manner). After training

the language model, we can fine-tune it on downstream tasks providing few supervised

examples. Hence, this approach is a semi-supervised learning method (unsupervised

language model pretraining and supervised downstream task fine-tuning).

1. Unsupervised Language Modelling: Which is used in pretraining process and

its objective is as follows:
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L1(J) =
∑︂
i

logP (ji|ji−k, · · · , ji−1; θ) (2.24)

Where ji represents the token at position i and θ is the set of all parameters of

the model.

2. Supervised fine-tuning: In this part, the model is fine-tuned on downstream

tasks in a supervised manner. Therefore the objective formula can be written

as follows:

L2(D) =
∑︂
x,y

log(y|x1, · · · , xn) (2.25)

Where D is the labelled dataset, y is the labeled output and X is the set of all

features. In[19], it is recommended to use an auxiliary learning objective which

is written as follows:

L3(D) = L2(D) + λL1(D) (2.26)

Where L1(D) is the learning objective related to the language model and λ is

a weight given to this objective and equals to 0.5. For fine-tuning GPT on

downstream tasks, a linear and softmax layer should be added on the top of the

transformer’s output.

3. Input Format for Each Task: In order to make the input sequence ready for the

GPT, some changes are done on the sequence. Such as: start and end tokens

are added to the sequences and also a special (delimiter) token is added between

different parts of the training example to make sure that the input is fed to the

model in an ordered manner.
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GPT-1 is pretrained on the Books-Corpus dataset. It has 12 stacked decoder

blocks with 12 attention heads. The hidden size of the model is 768 and it has total

parameters of 117M.

GPT-2: After GPT-1, GPT-2[23] was released. GPT-2 was pretrained on a larger

dataset compared to GPT-1 and had more parameters such that it has a stronger

language model. There are two important concepts relevant to GPT-2:

1. Task Conditioning: Training objective for language models can be formulated

as maximizing the probability, p(output/Input) which means maximizing the

probability of the desired output, given the input dataset. However, GPT-2 tries

to learn multiple tasks. So, the training objective for GPT-2 can be written

as p(output/Input, task), so the task is also added to the optimizing process.

This implies that our language model should generate different outputs for the

same input sequence but related to different tasks. This characteristic is known

as task conditioning. In language models, task conditioning is conducted by

providing a specific instruction about each task to the model.

2. Zero Shot Transfer Learning: One of the main characteristics of GPT-2 is

its capability to perform a zero shot task transfer. In zero shot task transfer, the

model understands the task without any given example and just by providing

an instruction about that specific task. For example if we want the model to

do an English-Chinese translation task, we can just pass the English sentence

to the model followed by “Chinese:” word and therefore the model understands

this is a translation task and performs the task.

GPT-2 dataset: Dataset used for training GPT-2 is WebText which has around

40GB of text. Only high quality text and articles are included in WebText and low-

referenced articles are removed. Also, all Wikipedia articles are removed from the
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dataset as test set contains many Wikipedia articles. Compared to the Book Corpus

which GPT-1 was trained on, this dataset is much larger.

GPT-2 Architecture: GPT-2 has 48 stacked decoder blocks and the size of its

word embedding is 1600. It has a larger vocabulary size compared to GPT-1 which

equals to 50257. The length of the input can be as long as 1024. The position of the

normalization layer is changed in GPT-2 and is moved to the input of each sub-block.

GPT-2 was trained in 4 different cases (different model sizes), 117M parameters,

345M, 762M and 1.5B. Results demonstrate that model performance gets improved

by increasing the number of parameters.

GPT-2 proved that increasing the capacity of the model and training on larger

dataset, can increase the performance of the model significantly in zero shot setting

and reduce perplexity. Another interesting observation was that GPT-2 under-fitted

the WebText dataset, which means by increasing the capacity of the model even

further, the performance improves more and perplexity decreases further.

GPT-3: GPT-3 was proposed in[24]. GPT-3 has 175B parameters which is 10 times

larger than GPT-2. in addition to the the larger model, GPT-3 was pretrained on

a larger dataset. This huge capacity and the large dataset that GPT-3 was trained

on, makes it a very strong and powerful language model, which performs well on

downstream tasks in zero shot settings. Due to GPT-3’s large capacity, it can perform

well on tasks which it wasn’t trained on such as writing different programming codes

like python, just by providing natural language description of the task.

Learning Objectives for GPT-3: There are two objectives, that GPT-3 is

trained based on them:

1. In context learning: GPT-3 was trained on a very large dataset. During

the training phase, GPT-3 is learned to predict the next word in the sentence.
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However, it will start learning about the overall structure of the text and its

different patterns. This helps the model to perform well on zero task transfer,

when a few examples or a description about the task is provided. What the

model does is to compare the given examples with what it has learnt from

the past and so find a similar pattern between them. It is clear that when

the capacity of the model increases, the model’s ability to perform zero setting

learning increases.

2. Zero shot, Few shot and One shot setting: Zero shot, few shot and one

shot settings are a subset of zero task transfer. In the zero shot setting, the

model is provided with no example and just a description about the task, in one

shot setting, the model is provided with an instruction and one example about

the task. In the few shot setting, the model is provided by an instruction and

so many examples as it fits into the context window size of the model.

Dataset: GPT-3 was trained on 5 different datasets. These datasets are Books1,

Books2, Wikipedia, Common Crawl and WebText2. Datasets that have higher quality

and more trustable, are given a higher rate in the training such that the model is

trained on them for more than one epoch.

GPT-3 Architecture: GPT-3 has 96 layers with 96 attention heads in each

layer. Word embedding dimension is 12888 which is around 8 times more than GPT-

2. Also, the size of the context window is increased to 2048. In GPT-3 locally banded

sparse attention is used which improve the performance of the model.

GPT-3 was evaluated on some language modeling dataset and it achieved better

results on LAMBADA and Penn Tree Bank datasets in both few shot and zero shot

settings. In addition, it achieved state of the art results on some NLP tasks like

question answering and translation. However, the model’s performance is better in

few shot setting compared to zero or no shot setting in most of the cases.
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RoBERTa: RoBERTa was proposed in [20] and is a short term for Robustly Opti-

mised BERT Pre Training Approach. RoBERTa has relatively the same architecture

as BERT. The main goal of RoBERTa was optimizing the training process of BERT

in order to achieve better results on downstream tasks. Some modifications that are

performed on BERT are mentioned below:

1. Discarding Next Sentence Prediction (NSP) part: In BERT, one of the

objectives in pretraining is NSP. Any input sequence is a pair of two sentences

which BERT tries to predict if the second sentence is the subsequent of the first

sentence in the original document or not. In RoBERTa NSP loss is removed

from the model loss and they noticed that by doing this, they achieve better

results on downstream tasks.

2. Increase the batch size in pretraining: BERT is trained for 1M steps with

a batch size of 256. On the other hand, RoBERTa is trained for 125 steps with

a batch size of 2k and 31k steps with a batch size of 8k. Larger batch size

decreases the perplexity of the language model and therefore achieves better

performance on downstream tasks. The other good thing about batch size is

making parallel training easier.

3. Changing masked words for different epochs: In BERT, masked words are

assigned once and randomly and they stay the same during the whole training

phase. However in RoBERTa, training data is trained for 40 epochs and each

4 epochs, a different masking strategy is utilized. This can be called dynamic

masking.

Dataset: For training RoBERTa, 4 different datasets are used. BOOK CORPUS

and English Wikipedia dataset (16GB of text), CC-NEWS (76GB of text), OPEN

WEBTEXT (38GB of text) and STORIES (31GB of text). Among these, BOOK

CORPUS and English Wikipedia dataset were used for BERT training as well.
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RoBERTa’s Performance: Following are the results of applying RoBERTa on

different datasets:

1. RoBERTa achieved better results on the RACE dataset compared to BERT

large and XLNet[25].

2. RoBERTa achieved state of the art results on 4 GLUE datasets: MULTI Natural

Language Inference (MNLI), Semantic Textual Similarity (STS), QuestionNLI

and Recognize Textual Entailment (RTE).

3. RoBERTa achieved the same results as XLNet on SQUAD 1.0 and SQUAD 2.0

datasets.

T5 Model: T5 or Text-to-Text-Transfer-Transformer was proposed in [26]. In T5,

a large empirical study is performed to compare different transfer learning methods

that were proposed up to that date and based on that propose a new model that is

called Text-to-Text-Transfer-Transformer or T5. In addition to that, a new dataset

was released which is called Colossal Clean Crawled Corpus (C4) dataset. T5 was

pretrained on this dataset and achieved state-of-the-art results on most of the NLP

benchmarks.

In T5, all NLP tasks are converted into a text to text problem where input and

output are both text strings. This is different from BERT where the output could

be just a class label or a span of the input text. T5 is a model that combines all

NLP tasks (including machine translation, sentiment analysis, question answering

and summarization) into a unified model, which all use the same loss function and

hyperparameters. The output of T5 is a text, however we can output a number as

well in T5. This can be done by converting the output number into a string text.

Therefore, T5 can be also used for regression problems. Fig. 2.10 depicts the proposed

framework of T5 model.
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Figure 2.10: T5 framework where multiple NLP tasks are combined into one model
[26]

Dataset: One of the main important steps in transfer learning is pretraining on

the unlabelled dataset. To increase the performance of the model on downstream

tasks, pre-training dataset should be large, clean and diverse. For example, the

Wikipedia dataset is clean, but not diverse and large. On the other hand, the Common

Crawl web scareps dataset is large and diverse, but not clean. To address these issues,

T5 was pre trained on the Colossal Clean Crawled Corpus (C4) dataset which is a

clean version of the Common Crawl web scareps dataset. In the cleaning process,

duplicate sentences are removed, incomplete sentences are removed and also offensive

sentences are removed. This will give us a clean, diverse and large dataset which is

larger than Wikipedia dataset.

Studying previous transfer learning methods: When the T5 model is cre-

ated and pretrained on the C4 dataset, the authors investigate previous transfer

learning methods. They conducted experiments on the followings:

1. pre training objective: In BERT, MLM was proposed where the model was

supposed to find the masked word, however in other language models, next word

prediction was used as a self-supervised task. Authors in T5 noticed that if the

objective is recovering the missing (masked) words, the model achieves better

results.
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2. Model Architecture: It was found that models with encoder-decoder archi-

tecture achieve better results compared to decoder-only transformers.

3. Pre Training dataset: It was found that if the unlabelled dataset used for

pretraining is small, it can lead to over-fitting which is not good. On the

other hand, training on the in-domain dataset can be good for the model’s

performance.

4. Training strategies: Authors in [26] found out that multitask learning strat-

egy can lead to competitive performance compared to pretraining and then fine

tuning learning strategy. However, when using multitask strategy, we should

be careful about how much time we should train the model for each task.

5. Model Size: In [26], authors investigated the size of the model and training

time and noticed that by increasing the model size and training time, they can

get better results.

After investigating previous transfer learning methods and trying different set-

tings, the best approach is selected based on the results. The largest model that was

achieved from combining the best methods had 11B parameters and achieved state of

the art on CNN/Daily Mail, GLUE, SuperGLUE and SQuAD datasets. One interest-

ing observation was that the model achieved close to human score on the SuperGLUE

dataset which is a natural language understanding dataset.

T5 Modification on New NLP Tasks: T5 can be easily modified on other

NLP tasks that are not mentioned in [26]. Here are two tasks that T5 is applied on:

1. Question Answering: Reading comprehension is a task where the model is

given a context and a question about the context, and so the model should

extract the answer of the question from the given context. T5 achieved state of

the art results for this task on SQuAD dataset.
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T5 was also trained on the close-book question answering task. In this task, the

model is given a question without any context, and the model should find the

answer to that question. Hence, the model should find the answer based on its

pretrained knowledge that is stored in the model’s parameter. T5 surprisingly

achieved significant results on this task. T5 achieved the score of 50.1% on the

Trivia-QA dataset, 37.4% on Web-Questions dataset and 34.5% on Natural-

Questions dataset.The score of 50% means that 50% of the answers generated

by the model, matches with the exact true answers to the question.

2. Fill in the Blank Text Generation: The pretraining objective for the T5

model is to predict missing words from the document. This made the authors in

[26] to create a new task that should fill in the blank parts of the sentence with

a specific number of words given to the model. For example in the sentence, “I

like to play — in park.” the model should fill in the blank with approximately

words. By looking at the results generated by the model, we can conclude that

the model has a perfect capability in the language modeling.

APPLICATIONS OF TRANSFORMER:

Transformers were first introduced for machine translation as a sequence to sequence

model. Due to its strong performance and novel architecture, many researchers tried

to utilize Transformers into various fields such as NLP, CV and audio processing.

1. Natural Language Processing: Transformers have been used in many NLP

tasks such as machine translation [26–28], name entity recognition [29] and

language modeling [30–32]. Pretrained transformers which are trained on large

scale text corpora have pushed different NLP tasks into the state-of-the-art

results.

2. Computer Vision: Transformers have been used in vision tasks such as image

classification [33], video processing and object detection [34].

33



3. Audio Programs: Transformers have been adopted for audio related tasks

like music generation [35], speech recognition [36, 37] and speech enhancement

[38].

2.6 Tokenization

In NLP most of the data that we work on are raw texts. However, machine learning

models cannot handle them as they just understand numbers. The process of convert-

ing raw texts into numbers is called tokenizing. Therefore, most NLP projects contain

a tokenizer block at the beginning of their model to transform text (raw data) into

numbers. There are several ways to perform this conversion and the goal is to find

the most meaningful representation. We can categorize tokenizers into three main

buckets:

• Word-Based Tokenizer

• Character-Based Tokenizer

• Subword-Based Tokenizer

2.6.1 Word-Based Tokenizer

Splitting a sentence into smaller pieces is not as easy as it looks. For instance, look

at the sentence “Don’t play soccer!”. One simple approach to split this sentence into

smaller chunks is to split up the sentence on each space we have in the sentence. As

a result, we will get [Don’t, play, soccer!] as the list of the tokens and then a specific

number can be assigned to each token. At the first glance this looks good but the

main problem is that punctuations are attached to the words, Like “soccer!”.

As a solution, We should teach the model to learn separate representations for

punctuations as well. This will help to reduce the total number of words learnt by

the model. Taking punctuation into account, the list of the tokens for the mentioned

sentence will be [Don, ‘, t, play, soccer, !]. This looks better. However, the way
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tokenizer dealt with the word “Don’t” is the drawback for this method. “Don’t” can

be tokenized in different ways, ([Don,’t],[Do,n’t],[Do, not]), depending on the rule we

define for tokenization. This makes everything complicated because each model gets

its best performance when the tokenization method used for its input is the same as

the method used in its pretraining process.

Another problem that arises from using word-base tokenizers is that the two words

“dog” and “dogs” get different numbers and therefore the model learns different em-

beddings for them. This is unfortunate because these two words have similar meanings

and one of them is the plural form of the other.

In the word-based tokenizer, we should limit the total number of the words that

the model wants to learn their embeddings in order to avoid extremely heavy models.

As a result, we just take the most frequent words into the model and take the less

frequent ones as out of vocabulary words and show them with the symbol “UNK”.

Unfortunately, this idea introduces a new problem. For example it is possible that in

a document, two words “wanna” and “malfunction” are not repeated frequently and

so the model takes both as an “UNK” symbol in the vocabulary. However, these two

words have entirely different meanings.

2.6.2 Character-Based Tokenizer

Character-based tokenizer is another model that can be used for tokenizing raw text.

This model is very simple and decreases the model size and its time complexity sig-

nificantly. In this model we split the text on each character instead of spaces and

therefore individual characters get different ids. This idea has an advantage com-

pared to the word-base tokenizer and that is smaller vocabulary size. The maximum

vocabulary size that we get is 256 which includes all characters, numbers and special

characters. Another advantage that we will get is less out of vocabulary words.

However, this algorithm has two significant drawbacks. The first one is that charac-

ters do not hold that much information individually as words will hold. For example,
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learning an embedding vector for the word “hello” is much easier than finding a

meaningful embedding vector for the character “h”.

The second problem of character based models is the length of its input sequences.

As this model splits the input based on characters, the length of input sequences can

be very large because sequences are translated into a significant amount of tokens.

This reduces the size of the text that is fed to the model as input which is not good.

2.6.3 Subword-Based Tokenizer

To have a better understanding why subword tokenizer was proposed, we should

take a look at the disadvantages of word-based and character-based tokenizers. In

the word-based tokenizers, we end-up having a large vocabulary with lots of out of

vocabulary tokens. In addition, this algorithm cannot distinguish between two tokens

“apple” and “apples” and assign two different IDs to them. Therefore, this method

learns two different representations for these similar tokens.

Character-based tokenizers end up producing long sequences as an input to the

model which limits the length of the input sequence to the model. Another down-

side of this algorithm is that individual tokens are less meaningful because the model

cannot learn too much about a token, based on its characters. To tackle these prob-

lems, subword tokenizer was proposed. The structure of this model is based on the

followings:

1. Frequently used words should not be split into subword tokens

2. rare words should be decomposed into meaningful subwords

For example, for the word “dog” the tokenizer assigns a single id to it and doesn’t

split it. However, for the word “dogs”, the tokenizer decomposed it into two different

tokens “dog” and “s”. Another example for this is the word “civilization” which is

divided into “civil” as the root of the word and labeled as the start of the word, and
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“ization” which is an additional information that changes the meaning of the root

token and is labeled as the completion of the word.

Most models that achieve state of the art in the English language, use some type of

subword tokenization. There are different models that can be used for subword tok-

enizers such as WordPiece (used by BERT and Distil-BERT [39]), Unigram (used by

XLNet [29] and Albert [40]) and Byte-Pair Encoding (used by GPT-2 and RoBERTa).

The most important advantage of Subword tokenizer is reducing the vocabulary size

while being able to learn meaningful context independent representation for different

tokens. Now, let’s talk about different kind of subword tokenizers

Byte-Pair Encoding (BPE)

This algorithm was first introduced in [41]. The first step in BPE is based on a

pre tokenizer block that decomposes the training data into words. Different models

use different pre tokenizer blocks. For instance, GPT-2 and RoBERTa use space

tokenizer. XLM [42] and FlawBERT [43] use rule based methods and GPT which

uses Spacy [44] to split training data into unique words and count them.

When pre tokenization is over, we should have a set of unique words with the

number of times that they are repeated in the training data. Now, BPE creates a

base vocabulary that contains all symbols that exist in the unique words. After this,

BPE tries to learn merge rules to merge two symbols from the base vocabulary into

one symbol and continue to do so until the vocabulary size is something desirable. It

should be noted that vocabulary size is a hyperparameter that can be tuned during

the training.

For the purpose of demonstration, Below is explained the workflow of BPE proce-

dure 1:

1. After pre tokenization, we have the set of following unique words with the

mentioned frequency:

1https://huggingface.co/docs/transformers/tokenizer summary
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Table 2.2: Frequency of unique tokens

Word Frequency

hug 10

kun 12

kug 5

bun 4

hugs 5

2. based on the unique words in the last step, we can build up the base vocabulary

which is as follows:

Base vocabulary = [h, u, g, k, n, b, s]

As we have the base vocabulary built, the unique words in the first step can be

split up into the symbols in the base vocabulary. This will give us the following:

Table 2.3: Frequency of unique symbols

Symbol Frequency

h 15

u 36

g 20

k 17

n 16

b 4

s 5

3. In this step, BPE tries to find the combination of symbols that occur more

often in the training data and make a new symbol out of them by joining

them together. For example, ”ku” occurs 17 times in the document (5 times in

”kun” and 12 times in ”kug”). However, the most common combination in the
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document is “ug” which happens 20 times (10 times from ”hug”, 5 times from

”kug” and 5 times from ”hugs”). Thus, ”ug” will be the first symbol that is

added to our vocabulary.

4. In this step, BPE goes over step 2 again and repeats steps 2 and 3 until the algo-

rithm stops joining symbols. For instance, after adding “ug” to the vocabulary,

our updated vocabulary looks like table 2.4:

Table 2.4: Frequency of unique symbols after one joining step

Symbol Frequency

h 15

u 36

g 20

k 17

n 16

b 4

s 5

ug 20

As we can see from the table 2.4, ”ug” is added to the vocabulary. BPE next

tries to find another most common pair in the document. Here it is ”un” which

is repeated 16 times (12 times from ”kun” and 4 times from ”bun”). Therefore,

”un” is added to the vocabulary. The next most common pair will be ”hug”

which is made from merging two symbols ”h” and ”ug”.Let’s assume that the

training of BPE ends at this point. Hence, we will end up with the following

vocabulary:

updated vocabulary = [h, u, g, k, n, b, s, ug, un, hug]

5. As our vocabulary is built based on the merge rules during the training, BPE

can be applied to new words. For example, the word “sun” can be represented
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as [“s”, “un”]. Also, the word “pun” is tokenized to [“unk”, “un”]. As you

can see, since the letter p is not in our vocabulary, we show it as an < unk >

symbol.

The size of the vocabulary is a hyperparameter and can be different for various

models. For example, GPT has 478 base symbols and BPE finishes training

after 40000 merges. So, it’s vocabulary size is 40478.

Byte-level BPE

In Byte-pair Encoding, the base vocabulary can become very large, especially if we

consider special characters and unicodes in our vocabulary. To address this problem,

GPT-2 utilizes byte as the base vocabulary. This would limit the size of the base

vocabulary to be 256 and at the same time it includes all base characters in the

base vocabulary. GPT-2 uses Byte-level BPE as its tokenizer and it can tokenize

any sentence without requiring to add the < unk > symbol to the vocabulary. After

the merging process, GPT-2’s vocabulary size equals to 50257 which decomposes into

50000 for the merging numbers, 256 for the number of the base characters and 1 for

the end of sentence token < EOS >.

WordPiece

WordPiece is tokenization method which is used in BERT and Distil-BERT and was

first introduced in Japanese and Korean Voice Search [45]. This tokenizer is very

similar to BPE with some minor differences. Just similar to BPE, WordPiece first

builds a base vocabulary by including every character that exists in the training data.

Next, it learns merging rules to merge the base characters together and add them to

the vocabulary. However, the merging rule that is used here, is different from the one

that BPE uses. As it was mentioned before, BPE chooses the merging rules based

on the frequent symbol pairs, but WordPiece chooses the one that maximizes the

likelihood of the training data.
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But, what’s the definition of maximizing the likelihood of the training data? Word-

piece, selects a symbol pair, which its probability divided by the probability of the

first symbol followed by the second one, is the greatest among other symbol pairs

possibilities. For example, in the case that was explained in the BPE section, ”u”

and ”g” are merged just when the probability of ”ug” divided by the probability ”u”

followed by ”g” is higher than other possible symbol pairs.

Unigram

Unigram is another tokenization method which is defined under the subword-based

tokenization category. This algorithm was first proposed in [46], Unlike BPE and

WordPiece which the base vocabulary was initialized first and then new symbols

were added by merging the symbol pairs, In Unigram, the base vocabulary is set to

a very large size initially and then its symbols are removed gradually to obtain a

smaller vocabulary. For example, the initial base vocabulary in Unigram can include

all possible characters and pre tokenized words. It should be noted that Unigram

doesn’t remove the base characters from its base vocabulary, so that all new words

can be tokenized.

But how does Unigram select the symbols that should be deleted from the initial

base vocabulary? Unigram defines a loss over the training data considering the current

vocabulary at each training step. Next, the algorithm computes the amount of loss

increase for each symbol, if they would have been removed from the vocabulary set

and then rank them. After calculating loss value for each symbol and ranking them,

Unigram deletes p (which is around 10% to 20%) percent of the symbols which removal

is the least compared to others.

As Unigram doesn’t use merge rules for creating its vocabulary, each new word can

be tokenized in different ways. Let’s say the following vocabulary set is created after

the training:

V ocabulary set = [s, u, n, a, b, c, d, sun]
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Now we want to tokenize the word “sun” according to the vocabulary set mentioned

above. We can do this in two different ways: [“s”, “u”, “n”], [“sun”,”s”]. But which

one does unigram use? To answer this question, we should know that Unigram stores

the probability of each token in the training data, besides storing the vocabulary set.

By having each token’s probability, Unigram can calculate the probability of each

tokenization option and choose the most probable one.

SentencePiece

The next tokenization algorithm that we are going to cover is SentencePiece. Sen-

tencePiece tokenizer is a solution to tokenizing languages which their words are not

separated by spaces. So far, all the described methods assume that words are sep-

arated by spaces which is not the case for all languages. SentencePiece was first

introduced in [46]. This algorithm considers spaces as a character as well and there-

fore takes the input text as a full stream. Afterward, it uses BPE or Unigram to

build its vocabulary. Different transformer models utilizes SentencePiece as their

tokenization method which we can refer to T5 and ALBERT as an example of them.

2.7 Knowledge Graphs

Knowledge graphs (KGs) consist of some nodes that are connected together through

some edges [47]. Both edges and nodes are labeled and the direction of the edges are

from one node to another. Nodes can represent anything like people, organizations,

places or cities. Each edge connects two nodes together via a relation that represents

the semantic connection that exists between the nodes. For example, if < Rome >

and < Italy > are two different nodes in a KG, then the relationship between these

two nodes is < Is the capital of > and its direction is from Rome to Italy. A pair of

nodes that are connected together through an edge, are called a triple. In a general

way, if we have a set of nodes E and a set of edges R, then a KG is a subset of

E×R× E.
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Figure 2.11: Triple representation as a graph

In the Figure 2.11, a triple is shown in a KG. e1 and e2 can be named differently

based on the application of the KG. However, most of the KGs name e1 as a subject,

e2 as an object and the r as a predicate.

When we move along different nodes in a KG, we are basically making a path.

In a KG, different paths can be defined such as simple path and cycle path. Simple

path is a path that is made when we move along different nodes but we don’t cross

repetitive nodes. However, in a cycle path, the first and the last nodes of the path

are identical.

2.7.1 Resource Description Framework

Resource Description Framework (RDF) [48] is an essential part for data represen-

tation in semantic web, which was defined and developed by World Wide Web Con-

sortium (W3C). In RDF, triples are used to represent and link different resources of

data together. Each triple represents an RDF statement and can be in the form of

< subject, predicate, object > or < entity, attribute, value >. Subject and object in a

RDF statement belong to the category of (rdf:resources) and are represented by a Uni-

form Resource Identifier (URI). However, the predicate goes under the (rdf:property)

category and is also represented using a URI. The predicate links the object and

subject together using a relationship. It should be noted that sometimes the object

can be a literal value and so does not have a URI.

One of the main problems of RDF is that subject, object or predicate can get

anything that is asserted to them. This may cause creating RDF statements that
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don’t make any sense. For example < Italy, has the nationality of, Rome >. This

triple can exist in RDF but doesn’t have any meaning and is a false statement. To

overcome this challenge, W3C introduced RDF Schema (RDFS) which defines some

vocabulary on top of the RDF by creating classes and therefore restricts the URIs

that can be asserted to a RDF statement.

2.7.2 Knowledge Bases

There are some Knowledge bases (KBs) available on the web which can be used as a

source of knowledge for different applications such as question answering. These KBs

put vocabularies and information in a structured way which makes it easy to search

through their databse in the web. In the following, we introduce some of the famous

KBs.

DBpedia

DBpedia [49] is manually created using the cross domain data taken from the struc-

tured parts of Wikipedia information such as info boxes and tables. It has a limited

ontology and allows users to customize annotations to their individual needs.

YAGO

YAGO [50] is another KB that takes the knowledge from Wikipedia and combines

them with the information that exists in the WordNet [51] and [52]. There are about

10 millions entities in YAGO and around 120 millions triples linking entities together.

Wikidata

Wikidata [53] is a big, controlled open domain knowledge graph that relies on crowd-

sourcing to populate data into the KB. The information that exists in the Wikipedia

is also included into the Wikidata. The possibility for the people to change and edit

the data easily is one of Wikidata’s primary features. Another good thing about

44



Wikidata is that valid facts and triples from other sources can be integrated into its

KB.

Freebase

Freebase [54] was a large KB that was controlled and edited by the community.

There were many facts and information included in this KB. It had a diverse and

cross-domain knowledge and at the same time, the size of the knowledge was huge.

It had more than 2 billions triples which were related to a huge number of domains.

However, this project stopped in 2016 but its data is available online.

2.8 Extracting Information from Text

Natural Language Processing (NLP) points to the processing of textual data and

analyzing them. In order to inspect textual data, many NLP tasks have been in-

troduced including question answering [55], machine translation [56] and information

extraction [57].

Information Extraction (IE) is one of the important tasks in NLP that aims to

extract meaningful information from plain text. IE converts unstructured text into a

structured one by identifying existing entities in the text and their linking relations

[58].

Structured information extracted by IE can be used to populate knowledge bases

(KBs) such as DBpedia, Freebase and Wikidata. These KBs are a collection of

different entities that are linked together through different relations. This structured

format can be used in many NLP tasks such as question answering, relation extraction

and search engines. Therefore, the final goal of IE is to take plain text as input and

then extract relevant facts and information from the text and then upgrade or create

knowledge based on these information.
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2.9 Name Entity Recognition

Name Entity Recognition(NER) [59] is a crucial task in NLP that can be useful

in many other applications including IE, question answering, information retrieval

and text summarization. The purpose of NER is to identify and extract all possible

entities from the text. Entities can be domain independent such as person, location

and organization or they can be domain dependent such as medical entities including

the name of drugs or the name of diseases [60].

Performing NER task may be challenging due to some reasons such as mixed

entities, unclear text, missing data and different structures for different languages

[61]. NER can be done in different ways such as Rule-Based methods, Learning-

Based methods or a combination of both. However, deep learning methods such as

CNN [62] are proven to have a better performance [63] in extracting entities.

Different works have been proposed to address NER task. [64] introduce a method

to enhance the performance of NER for medical data. The dataset that is used

contains 19378 samples of patient records. They suggest a model based on the com-

bination of CNN, LSTM and CRF [65] to achieve better results. [63] proposed an

algorithm based on the combination of CNN, Bi-LSTM and CRF to improve the

scores of NER task. The main goal here was to perform NER without doing Featur-

ing engineering. Their dataset was collected from online medical diagnosis records

and contains 320000 samples.

[66] utilizes rule based methods such as grammar rules to Identify the entities in the

text. However this approach achieves low precision. [67] suggests utilizing unsuper-

vised machine learning methods such as clustering to extract entities. They examined

their method on Facebook posts and noticed that spectral clustering achieves bet-

ter results compared to other clustering techniques. In [68] some rules are learned

to identify entities. This method can be called a hybrid method since the rules are

generated automatically. The dataset used here is related to the medical domain
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and is collected by Electronic Health records (EHR).[61] proposes a sequence labeling

technique followed by a Support vector Machine (SVM)[69] classifier. The results

demonstrate that CRFs achieve higher precision, however SVM obtains higher recall.

In addition, CRFs are proven to have better performance in case feature engineering

is not done well.

2.10 Relation Extraction

Relation Extraction (RE) is an important task in NLP and is a crucial part of knowl-

edge graph construction. The goal in RE is to identify the set of relations linking

different entities together in the text. However, extracting these predicates is not as

easy as it shows, because textual data can be expressed in different formats. The

performance of a relation extraction model, is highly dependant on its ability to

understand the text.

Traditional approaches rely on feature engineering to extract the relations in text.

The features are extracted based on words and expressions in the text. However this

method requires lots of effort to define efficient features for each relation and also it

may not perform well when the text is ambiguous.

Nowadays, deep neural networks have been used in many applications and they

have shown prominent results in many tasks. Neural networks have non-linear acti-

vation functions which give them the ability to learn feature representation from the

input data without the need to define the features manually. As a result, neural net-

works can learn different features, even the complex ones by their own nature. This

concept has been used broadly for many NLP tasks including relation extraction.

RE can be classified into three different levels:

1. Sentence-level RE which identifies the relation that connects two different

entities in a sentence.

2. Document-level RE which sometimes is called “cross sentence RE”. In this
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category, the goal is to detect the relation between an entity pair that can

repeated multiple times in a document and in different sentences.

3. Corpus-level RE which detects the relation between an entity pair without

considering the text that includes the entity pair.

Some researches utilize other kind of method to conduct RE task, such as dividing

the task into Pre defined Relation Extraction and Open Relation Extraction which

are explained below:

1. Pre defined RE: In this type of RE, the set of relations to be extracted be-

tween pairs of entities, are known and the task is to pick one of them for each

entity pair. This can be interpreted as a classification task.

2. Open RE: In this type of RE, there is no predefined set for the relations.

Therefore, the extracted relations are textual expressions extracted from the

text that can be interpreted as a relation.

2.10.1 Incorporating Neural Network for Relation Extrac-
tion

Neural Networks has shown to achieve strong results in. many NLP tasks. Different

neural networks have been used to perform RE task in different researches. Convolu-

tional Neural Networks, Long Short Term Memory Networks, Graph Neural Networks

and attention based methods are different variation of neural networks. In the fol-

lowing we describe different researches that have utilized different types of neural

networks for RE.

Convolutional Neural Networks in RE

A CNN based model has been proposed for RE in [70]. In this method, each token in

the sentence has been converted into a low dimensional vector which is called word

embedding. Different types of word embeddings can be used to represent each token,
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such as: Word2Vec [71], Glove Embedding [16] or Facebook Fast-text embedding [72].

In addition to word embedding, relative positional embedding for each token is used

and concatenated to word embedding. When vector representation is calculated for

each token in the sentence, convolution operations are applied on token vectors to

extract local features from the sentence. After extracting local features, we perform

a pooling function to extract the most beneficial feature from each feature set.

Authors in [73] proposed a piecewise convolutional neural network (PCNN) to get

better results compared to the method suggested in [70]. PCNN divides each sentence

into three sections: before the first entity, between two entities and after the second

entity. After this division, we apply a convolution filter and max pooling function

separately on each division to extract the most important feature from each section.

Another variation of CNN is proposed in [74] to extract sentence level features for RE.

The model is called ranked based CNN (CR-CNN). They proposed a new ranking

loss function which is useful to diminish the effect of fake classes and is described as

follows:

L = log(1 + exp(γ(m+ − sθ(x)y+))) + log(1 + exp(γ(m− − sθ(x)c−))) (2.27)

In [75] a combined CNN with an attention mechanism is proposed to perform RE.

The main goal of the attention mechanism is to extract the most important features

from the sentence that is beneficial for RE. The attention structure is composed of

two different levels. The first level can be described as follows:

αj
i =

exp(Aj
i,i)∑︁n

p=1 exp(Aj
p,p)

(2.28)

ri = zi
α1
i + α2

i

2
(2.29)

The second level of attention mechanism has the purpose of pulling out more intel-

lectual features from the sentence.

The previous methods do not incorporate syntax information into their model.

For addressing this issue, in [76] a CNN model is proposed which integrates syntax
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information as well. This helps the model to obtain a better interpretation of entities

and boost the RE performance.

Recurrent Neural Network In RE

Just like CNNs, Recurrent Neural Networks (RNNs) can also be used to extract

feature representation of a sentence and then utilize this feature representation to

extract the valid relation in the sentence. In recent years, Long short term memory

networks (LSTM) which are a variation of RNNs, have become popular models in

various NLP tasks. LSTMs alleviate some of RNNs challenges including gradient

vanishing problem by integrating gate function and cell memory into the model.

Standard LSTM analyzes sequences just in one direction (forward or backward).

Therefore, Bidirectional LSTM (BILSTM) networks are proposed which can analyze

sequences in both directions at the same time. Hence, they will produce a better

feature representation from the input sequence and RE task can be executed better.

authors in [77] applied BILSTM on the input sentence to get the feature represen-

tation of both forward and backward directions. Then, these two representations are

concatenated to each other to obtain the final feature representation of the sentence.

The final representation is fed into a softmax classifier to extract the relation. In

[12] a syntactic tree is built based on the input sentence using Stanford parser [78].

They applied LSTM on the built tree to obtain the feature representation of the in-

put sentence. In addition to the syntactic tree, some other information is fed into

the model, including part of speech tagging and WordNet hypernym. In [79] a new

variation of LSTM is introduced which is called context aware LSTM. This model

can learn the representation for all the relations that occur in a single sentence all in

once. In [80] some LSTMs are combined together using adaptive boosting method.

By applying this ensemble technique over LSTMs, the final model can learn semantic

representation of the input sentence better and therefore we will get higher quality

for relation extraction.
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Attention Based Methods in RE

Attention algorithm is a very important concept in NLP that has been used in many

tasks including machine translations and text classification. Therefore, some re-

searchers have integrated attention into RE task. In [81], it is proposed that for

extracting the target relation in a sentence connecting a pair of entities, Some words

in the sentence are more important than the others and the model should put more

weights on them while extracting the relation. In [82] BILSTM based attention mech-

anism model is introduced. In this model, first feature representation of the input

sequence is extracted using BILSTM, and then an attention mechanism is applied on

the features, so that the model puts more weight on the important sections of the

sentence. In [83], authors proposed a new attention mechanism which is based on a

hierarchy. The output of this hierarchical attention model is a 2 dimensional matrix

which each of its row, focuses on a specific aspect of the input sequence.

Application of Transformers in Relation Extraction

Lately Transformers have become a very trendy method for various NLP tasks. Trans-

formers were first introduced in [17] for machine translation and after that, it was

used in other NLP tasks, which showed exceptional results. Most of the methods sug-

gested for RE use static word embeddings such as GloVe or Word2Vec for their token

representation. In recent years, contextualized word embeddings have gained inter-

est among researchers. Contextualized word embeddings can be taken from different

models such as BERT or ELMO. Utilizing these word embeddings and integrating

them into the model, can boost the results for RE significantly.

In [84] a generative pretrained transformer (GPT) was employed to extract rela-

tions from the sentence. Transformers can learn semantic and contextualized rep-

resentation of the sentence at a very high level, which helps the model to extract

difficult and long relations as well.

In [85] BERT model is used to extract all the relations in the sentence along with
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their corresponding entity pairs. In [86], BERT embeddings were used instead of

GloVe for RE, and the results proved that contextualized embeddings increase the

performance substantially. SpanBERT was proposed in [87] for the RE task. They

used BERT architecture as the backbone of their model with some modification. For

detecting the valid relation between head and tail entities in the sentence, a linear

classification model is added on top of the [CLS] token. In [88], a fine tuned BERT

model is used for RE task. In the first part, they fine tuned BERT to see if there

is any relation in the sentence connecting entity pairs together. If in the first step

the model confirms a relation, then in the second part BERT is fine tuned again to

identify the relation.Authors in [89], utilized BERT for document level RE and the

results were outstanding.

Graph Based Neural Networks in RE

LSTMs and CNNs are good fit for sequential data. However, some data doesn’t have

sequential nature such as the dependency tree which is obtained from the sentence.

Dependency tree has a graph-like representation and it contains rich syntactic in-

formation about the sentence. To analyze this type of data, we need Graph Neural

Networks(GNNs) [90].

In [91] Graph Convolutional Network (GCN) is employed for relation extraction.

They first build the dependency tree of the input sentence and then pool information

from the dependency graph in a parallel manner. In [92] the attention mechanism

is combined with GNN to choose the most relevant parts of the dependency tree for

relation extraction. In [93] another variant of GNNs is introduced which is called edge

oriented graph neural network. This model builds a graph based on various types of

edges. In [94] relation extraction is applied on the medical domain. For this purpose,

they build a dependency forest to extract input features. To analyze the dependency

forest, GNN is utilized to select the relevant parts of the forest and remove irrelevant

parts.
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Incorporating Few Shot Learning in Relation Extraction

Some researchers have recommended using a few shot learning model for relation

extraction. In [95] few shot learning is incorporated into RE. They proposed a proto-

typical network in their model and also applied attention in sentence level as well as

relation level to choose those sentences that are actually representing a relation. In

[96] few shot learning is used to learn the relation features from the plain text. In [97]

few shot learning is utilized to learn new relations from few gold training sentences

representing those relations. They utilized the bootstrapping method to transfer the

knowledge from already learnt relations into the process of learning the new relations.

By doing so, the model can learn the new relations by just looking at a few sentences

and therefore find all relevant sentences from the unlabelled dataset.

2.10.2 Weakly Supervised Methods for Relation Extraction

In this section, we will describe weakly supervised methods and investigate different

solutions to handle weakly supervised dataset. In these methods, training data are

generated using some heuristic rules and some predefined triples in the knowledge

base to label sentences with different relations. But as we use heuristic rules to label

the sentences, we will have noises in our labeling process. To address these noises,

different approaches have been presented which we will go over in this section.

Distant supervision approach is proposed in [98] to label the training instances. In

this method, they assume if <e1, r, e2> is a triple in the knowledge base, then all

the sentences that contain e1 and e2, express the relation r and so can be labeled as

r. All the sentences that contain e1 and e2 will go in one set and the set is called

a bag. However, distant supervision introduces noise into the training data. The

main problem of this method is that, not all the sentences that contain e1 and e2,

necessarily express the relation r. But, distant supervision labels all these sentences

with the relation r. To alleviate the effect of noisy sentences, different approaches

have been proposed.
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Multi Instance Learning

Multi Instance Learning assumes that at least 1 sentence in the bag represents the

true relation. In [73] Multi Instance Learning is used in their proposed model. They

utilized PCNN to extract feature representation of the sentence and then choose a

sentence from the bag which most likely represents the valid relation as the training

data and ignore the remaining sentences. This can be formulated as follows:

J(θ) =
T∑︂
i=1

logp(yi|mj∗

i ; θ) (2.30)

j∗ = argmaxjp(yi|mj
i ; θ) (2.31)

Where mj
i represents the jth sentence in the bag i and T is the number of the bags.

Attention Mechanism

Selecting just one sentence out of the bag for training, leads to a significant amount of

information loss which may ruin the model’s performance. For addressing this issue,

sentence level attention mechanism is proposed in [99, 100]. They showed that by

applying attention over the bag sentences, noisy sentences are assigned with smaller

weight but on the other hand, true sentences that represent the true relation get

higher weight. In [101], word and relation level memory networks are proposed to

increase the accuracy of attention’s weight computation.

Reinforcement Learning

Some papers included Reinforcement Learning (RL) [102] into RE task. Instead of

relying on attention weights to remove noisy instances from training data, RL methods

use a hard selection strategy. In [103] A RL method is proposed that includes two

different parts: sentence picker and relation selector. The sentence picker part, picks

true labeled sentences from a bag and passes them to the relation selector part.
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Relation selector part selects the valid relation for these sentences and gets a reward.

This reward is calculated based on the probability scores for each relation.

[104] introduced a deep RL method for relation extraction. The main difference

of this model with the one presented in [103], is the reward calculation process. In

[104] the reward of RL is calculated based on how well the relation selector part is

doing. More its performance improves, the higher the reward for the model. [105]

proposed a method to take false negative instances into consideration. They believed

that some of the false negative instances are labeled wrongly and they actually have a

valid relation to classify. In their model, noisy data are divided into correctly labeled

data and wrongly labeled data. The model learns to separate them via reinforcement

learning and so improves the quality of the labeled training set. In [106] RL is used

to determine the relation of a bag. The process is in a way that if all the sentences in

the bag represent the relation NA, then the bag also takes the NA relation. However,

if just one of the sentences in the bag doesn’t represent the NA, then the bag is

transferring some semantic information and can be labeled as a valid relation. When

the model assigns a relation to a bag, the reward of the RL model is calculated by

comparing this relation to the gold relation of the bag.

2.11 Triple Extraction

Triple extraction means extracting a pair of entities (head and tail) and the corre-

sponding relation between them from a sentence or document. These triples can be

used to enrich different KBs such as DBpedia or Wikidata. KBs contain many dif-

ferent triples that look like a database of information. In most of the existing KBs,

triples are added to the database using crowd-sourcing. Therefore, adding new triples

to the database or updating it, requires so much time and hard-work. Therefore, re-

searchers were looking for a way to extract triples from the text automatically without

human intervention. This will make it much easier to add new triples to KBs or build

a KB from a scratch.
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2.11.1 Task Description

Triple extraction can be described as a box that takes a sentence and a set of relations

“R” as input, and the output is a set of triples “T” extracted from the sentence. Some

methods are pipeline based which means they divided the task into two different

assignments:

1. Identifying all entities in the text which can be called named entity recognition

task.

2. identifying the valid relations between different entities which can be named as

relation classification task. It should be noted that between some entities there

is no relation and so in this case “NA” relation is assigned.

Beside pipeline approaches, there are joint-extraction approaches as well which

extract entities and relations in a joint manner. Joint methods extract all possible

triples from the text all in once. In these methods, “NA” relations won’t be extracted

and hence, just valid triples are identified. Extracted triples can be divided into three

different classes:

1. No Entity Overlap (NEO): In this case one or more triples are extracted

from the text but their entities are totally different from each other.

2. Single Entity Overlap (SEO): In this case more than one triple is extracted

from the text, however two or more triples share one entity among each other.

3. Entity Pair Overlap (EPO): In this case more than one triple is extracted

from the text, however two or more of them share the same entity pair. The

shared entity pair can be in the same order or reverse.

These three classes are shown in the Table 2.5.
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Table 2.5: Different triple categories based on entity overlap

Class Text Valid Triples

NEO Sahand was raised in
Sanandaj.

(Sahand, place lived, Sanandaj)

SEO Alex was born in
Tehran but raised in
Paris.

(Alex, place of birth, Tehran),
(Alex, place lived, Paris)

EPO Paris is the capital of
France.

(France, capital, Paris),
(France, contain, Paris)

2.11.2 Triple Extraction Methods

In the previous sections, we talked about relation extraction (RE) methods and we

mentioned that RE approaches assume that entities are already assigned in the sen-

tence and so, they just do the relation classification part between pairs of entities.

However, the accuracy of the extracted triples in this case, highly depends on the

name entity recognition system. To overcome this issue, joint extraction approaches

are proposed which extract entities and relations at the same time. [107, 108] used

the same network to extract entities and relations. In the first step, they extracted

entities from the text and in the second step identified a relation between all pairs of

entities. In this case the name entity recognition model and RE model share the same

parameters. However, these methods still look like pipeline approaches and ignore

the possible connection between the two steps.

In [109] a sequence tagging model is proposed to extract triples from the text.

They create a set of tags that include entity and relation information. The main

drawback of this method is its inability to extract triples that have entity overlap.

An encoder-decoder method is proposed in [110], which is combined with a copy

mechanism. Their model is able to extract triples including overlap triples, however,

they need to use a separate decoder for each extracted triple. The main problem of

this approach is setting a value for the number of decoders in the model. In addition,
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the model cannot extract the full entity token and just extract the last part of the

entity. For solving this issue, CopyMTL model was proposed in [111] which utilizes

sequence tagging framework. This helps the model to extract the full entity and not

just a part of it.

Graph convolutional network (GCN) is proposed for triple extraction in [112]. In

this model a graph is built in a way that its nodes are sentence tokens and its con-

nections are relation between different tokens. In [113], authors proposed an encoder

decoder model that a N gram attention approach is integrated into the model. In

[114] an encoder decoder network is proposed for triple extraction where the decoding

is at the word level. They also utilized a pointer model in their method. In [115] the

triple extraction task is divided into two different steps. The first step is extraction

of the head entity in the triple, and the second step is extraction of the tail entity

and the relation together. In [116] a sequence labeling framework is proposed for

this task that integrates attention model into the relations. In [117], a reinforcement

learning (RL) method is proposed. They applied RL on the input sentence in two

steps. In the first step, RL is responsible to extract the relations from the sentence

and in the second step, RL is responsible to extract the head and tail entities for the

identified relation in the first step. Sequence labeling framework is applied to extract

the entities. They will go over this procedure many times so that all the triples are

identified in the sentence.

In [118], a new loss function is introduced so that the performance of triple ex-

traction is improved. They called the function bipartite matching loss and applied

it on a encoder decoder model. In [119] a model is proposed which is based on two

different encoders, sequence encoder and table encoder. The former one is respon-

sible for identifying the entities in the sentence and the latter one is in charge of

relation extraction. The main problem of pipeline approaches for triple extraction

was neglecting of the possible interconnection between entity recognition and relation

classification. For solving this issue, [120] proposed a multi-task learning framework
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that considers the possible connection of these two steps in the model. In [121], the

input sentence is divided into different spans and in each span, a multi head attention

mechanism is applied.

Some methods [118, 122–124] have employed BERT embeddings in their model for

triple extraction. In these models, the vectors of the last layer in the BERT network

are used for token representations instead of static word embeddings such as GloVe.

By doing this, the results for triple extraction get boosted remarkably.
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Chapter 3

Relation Extraction with Sentence
Simplification Process
and Entity Information

Graph-based Knowledge Bases (KBs) are composed of relational facts that can be

perceived as two entities, called head and tail, linked via a relation. Processes of con-

structing KBs, i.e., populating them with such facts, as well as revising and updating

them are of special interest. These should be performed automatically, especially in

the case when the main sources of facts are textual documents. For this reason, a task

of Relation Extraction (RE), i.e., predicting a relation that links two entities men-

tioned in a sentence, is one of the most important activities. Using RE processes, new

relational facts can be extracted, and KBs can be built and updated using unstruc-

tured information. In this chapter, we propose a novel procedure for RE. It is based

on a sentence distilling technique that works on dependency trees and removes noisy

tokens from sentences while preserving the most relevant and useful ones. In addition,

the proposed procedure utilizes information about types of linked entities, it means

types of relations’ heads and tails. Our neural network model using processed and

new input information is evaluated on the widely used NYT dataset and compared

to other state-of-the-art RE methods. Experimental results show the effectiveness of

the proposed procedure against other methods.
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3.1 Introduction

Knowledge Bases (KBs), such as Freebase [2], DBpedia [3] or Wikidata [4], are well-

known repositories of information triples [1]. Each triple is a pair of entities – head

and tail – linked together via a relation. Semantically rich information stored in KBs

is used in various application domains tasks such as biomedical knowledge discovery

[7], semantic search, and question-answering systems [5]. However, the information

stored in KBs is not complete and should be updated on regular basis. When new

information becomes available, it should be added to KBs while old information

should be revised or discarded. Therefore, processes of constructing triples – <head,

relation, tail> – and adding them to KBs in a structured form are necessary. Relation

extraction (RE) is an activity that addresses this by extracting relations between

entity pairs from a plain text. RE can be modelled as a classification task that

assigns a relation to a pair of entities mentioned in the text.

Most of the supervised RE methods require large amounts of annotated training

data, which is very time consuming and not efficient to build. [98] proposes a dis-

tant supervision to automatically label training data based on existing information

available in KBs. The method assumes that if <head, relation, tail> is a relational

fact existing in a given KB then all sentences that include entities heads and tail,

are linked with the relation relation. For example, <Barack Obama, place-of-birth,

Kenya> is a triple. The distant supervision assumes that any sentence that contains

Barack Obama and Kenya, expresses the relation place-of-birth and can be taken as

a training data for the relation place-of-birth.

Although the distant supervision is a convincing method for labelling instances,

it suffers from a problem of incorrect labelling. For instance, any sentence which

contains Barack Obama and Kenya does not necessarily express the relation place-

of-birth. For example, “Barack Obama travelled to Kenya last year” contains both

entities, but we cannot infer that this sentence convey place-of-birth relation. Yet,
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distant supervision recognizes this sentence as a part of a training dataset. To alle-

viate this problem, [125] adopt multi-instance learning. The main drawback of these

methods is that they use NLP tools such as POS tagging for extracting features.

These tools are not error free and their mistakes hinder the RE performance.

Auxiliary information, such like the type of entities, can improve the RE perfor-

mance. For example, in the relational fact <Barack Obama, place-of-birth, Kenya>,

Barack Obama is an entity of type Person and the type of Kenya is City/Country.

Therefore, in any sentence that expresses the relation place-of-birth, the pair of enti-

ties should be of the type (person, city/country). Any constrains imposed on types of

entities provide an extra support in extracting the correct relation from a sentence.

Dependency parsers find syntactic dependencies between different tokens of a sen-

tence. Rich structural information embedded in dependency trees, have been proven

to be useful for RE tasks. Yet, the full information provided by a dependency tree

is not useful and in some cases it may introduce unneeded noise. To address this,

we can breakdown the tree into smaller parts and crop a substructure of the tree

containing the most valuable information required for RE. By doing this, we pick the

most useful tokens from the sentence and ignore the rest. For example, let us take a

look at the sentence “Three years ago when I was 13, John was born in Canada”.

For the purpose of extracting the triple <John, place-of-birth, Canada>, it is enough

to use “John was born in Canada” instead of the full sentence.

In this chapter, we propose a neural network model to improve the distant su-

pervision RE process. We develop a procedure using syntactic information obtained

from dependency trees to remove noisy tokens from sentences and pick the most rel-

evant ones that help extract correct relations. This method also utilizes entity type

information, which is fed to the proposed model. Entity type information is obtained

from KBs. We evaluate our model on the NYT benchmark dataset. The experimental

results show that our new model leads to a significant improvement over the other

state of the art neural models for the RE task. The summarized contribution of this
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chapter is as follows:

• utilization of dependency trees to eliminate irrelevant and noisy tokens from

sentences in order to keep only relevant words useful for the RE task;

• inclusion of entity type information, obtained from KGs, as an entity type

embedding to the neural network model.

3.2 Related Work

Relation extraction is an important task in Natural Language Processing (NLP). Per-

forming RE tasks in a supervised manner requires large amounts of labelled training

data. To solve this issue, [98] propose distant supervision, which heuristically aligns

plain text with relational facts from a KB like Freebase. This creates a large an-

notated dataset. However, this method suffers from mistakenly labelled sentences.

[126] addresses this by using a multi-instance single label technique, while [125] pro-

pose a multi-instance multi-label procedure. All these approaches require feature

engineering, and this can affect their performance negatively.

To avoid feature engineering, neural network models have been proposed. They

have shown favourable results on RE tasks. [70, 73] extract sentence features using

convolutional neural networks (CNN) instead of relying on traditional NLP tools. [70]

propose an end-to-end CNN which can extract sentence-level features automatically.

[73] introduce a piecewise CNN (PCNN) that breaks down a sentence into three parts:

before the first entity, between two entities, and after the second entity; and extracts

features for each part individually. The authors use a multi-instance learning strategy

but assume that only one sentence holds the true relation for each entity pair. This

would to the lost of information from neglected sentences. [127] use another popular

architecture recurrent neural network (RNN) for the RE task. However, RNNs are

affected by a vanishing gradient problem. [107] employ Bidirectional Long Short Term

Memory (BiLSTM) to alleviate the RNNs problems. To alleviate introduction of noisy
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data seen in distant supervision, attention mechanism is used. [82] use attention to

learn about a given entity pair based on all valid sentences. These methods use full

sentences, including irrelevant parts, to extract relations between pairs of entities. In

addition, attention mechanisms are applied on sequences of words and are not able

to capture information about their grammatical structure [128].

Dependency trees are able to capture syntactic information which is not local [91].

Employing this information obtained from dependency trees has shown prominent

results. [129] utilize dependency tree in their deep learning model to jointly predict

dependency and semantic relations. Some models use pruning strategies to extract

the most relevant information from dependency trees. [107] propose Lowest Common

Ancestor (LCA) between entities of a sentence to reduce a full tree to a subtree. Some

models apply graph convolutional networks (GCNs) over a subtree to enhance the RE

performance [91].

[100] use entity descriptions extracted from KBs to improve the RE results. [130]

use entity type information in a model they propose. [131] employ KB embedding to

link an RE task with a process of KB embedding.

3.3 Problem Statement

In this section, we provide a brief description of distant supervision which is used to

annotate datasets. We also formally specify the problem we address in the chapter.

3.3.1 Distant Supervision for RE

A distant supervision process can be presented as a process of preparing data by

labeling sentences with relational facts from a known Knowledge Base (KB). Let Φ

be a KB composed of triples (h(head), r(relation), t(tail))Φ where h, t ∈ EΦ and r ∈

RΦ. Further, EΦ, RΦ are sets of entities and relations defined in the Φ, respectively.

If (h, r, t)Φ is a relational fact in the Φ, then each sentence that contains both entities

h and t, is labelled with the relation r. In order to mitigate a problem of incorrect
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labelling, a set of sentences Sr = {si}Nr
i=1 where each si mentions both h and t is called

a bag, and the whole bag is labeled with the relation r. Bags can have different sizes,

Nr, yet for the purpose of computational efficiency, we normalize each bag to the

length of T by splitting larger bags and oversampling smaller ones [131].

3.3.2 Problem Definition

The goal of RE is to predict a relation, defined in the Φ, that links two entities in a

sentence. Given a set of sentences Sr = {si}Nr
i=1 and a pair of entities h and t mentioned

in each sentence si∈Sr, the aim is to predict the probability p
(︁
r|h, t, {si}Nr

i=1

)︁
of

assigning r ∈ R∗
Φ ∪ {NA} to each bag, i.e., each set Sr. R∗

Φ is a subset of relations

RΦ defined in the KB Φ, while NA represents a relation that does not exist in RΦ.

The input to the RE task is composed of: a KB Φ, a subset of relations defined in the

KB R∗
Φ, and a training dataset with annotated automatically sentences using distant

supervision. As a result of the task, a relation r ∈ R∗
Φ that holds for h and r is

assigned to a bag, or the bag is labeled with r = NA if its sentences do not have a

relation from R∗
Φ.

3.4 Methodology

This section includes an explanation of our proposed model. First, a new distilling

strategy is introduced. Its goal is to extract the most useful tokens from sentences

based on analysis of their dependency trees. Once sentences are simplified, vector

representations of sentences and groups of sentences, i.e., bags are determined. Fi-

nally, we describe incorporating information about types of relation entities in order

to improve the RE task. Figure 3.1, depicts the proposed model.

3.4.1 Sentence Simplification

Dependency parsers have been proven to be useful for the RE task. They provide an

important information about agents and actions contained in sentences. Dependency
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Algorithm 1 Sentence Simplification Algorithm
Input: sentence string Si

head h and tail t
set of Core Arguments: Nominals and Clauses:
CoreArg = { nsubj, obj, iobj,

csubj, ccomp, xcomp }
Output: simplified sentence SmpSi

1: generate dependency tree: DPi ← Si

2: p← path(h to root in DPi)
3: setH = string2set(p)
4: for each wj ∈ setH \ root do
5: setH ← setH + child of wj

6: p← path(t to root in DPi)
7: setT = string2set(p)
8: for each: wk ∈ setT \ root do
9: setT ← setT + child of wk

10: create set setDT of words wm at nodes from CoreArg
11: for each: wm ∈ setDT do
12: setDT ← setDT + ancestor of wm

13: setAll = setH ∪ setT ∪ setDT

14: SmpSi = [ ]
15: for each wp from Si do
16: if wp ∈ setAll then
17: SmpSi ← SmpSi.append(wp)

66



W1 W3W2 ......….. Wm

Position 
embedding

Word 
embedding

BiLSTM

Ɗ1 Ɗ2 Ɗ3 Ɗm

f1 f2 f3 fm

Word-Level-Attention

Sr

Sentence Encoding

Sr1

Sr2

Srn

.…
.

S
entence-Level-A

ttention

Br

Bag Encoding

Br

Entity-Type-
Embedding

      (predicted relation) r̂ 

   Softmax

Entity-Type-Information

                     Classification

…..…..

…...…..

Removing Noisy Tokens Using 
Dependancy Parser Tree

{W1, W2, W3, ….., Wm}

Sentence

Sr

^

^ Sr
^

si

siN

 ^

si1 

si2^

^
r

Bem

Figure 3.1: Outline of the proposed method. Each sentence is simplified using the
proposed distilling strategy. Word embedding and position embedding of each token
in the simplified sentence are combined together and fed into the BiLSTM. Sentence
embedding for each sentence is obtained by applying word level attention over output
vectors of the BiLSTM layers. After that, each bag of sentences is encoded via
applying sentence level attention over the embeddings of all sentences of the bag.
Finally, bag embedding is combined to type embedding of head and tail entities; all
this is fed into a softmax classifier to predict a relation for the bag.

paths built by traversing the tree are informative. We propose and describe a new

method to refine sentences via processing their dependency trees and extracting the

most relevant tokens. This diminishes the impact of less relevant – noisy – tokens.

To better explain our method, take a look at Figure 3.2. It contains a dependency

tree of the sentence “But now Spanish entrepreneurs want to join Europe’s boom in

large wind farms offshore.” where Spanish and Europe are head h and tail t entities.

Our sentence simplification method, shown as Algorithm 2, can be explained in the

following way.

L: 2-6 Starting at the token representing head entity h, we go up the tree to the root

node, want in our case. The obtained path is (Spanish → entrepreneurs
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→ want). We create setH of all tokens from the path. For each word

in setH, we add tokens of its children, except for the tree root (want).

Spanish does not have any children tokens. For the word entrepreneurs, the

child token is Spanish which is already in setH. As a result, we obtain:

setH={Spanish, entrepreneurs, want}.

L: 7-11 We repeat the previous step for the tail entity token t. The obtained path is

(Europe → boom → join → want). We create setT. Similar to the first

step, for each token we add its children tokens. In the presented case, chil-

dren tokens for Europe, boom and join are (‘s), (Europe) and (offshore, to,

boom) respectively. We have: setT={Europe, ‘s, boom, join, offshore,

to, want}.

L: 12-15 In this step, we analyze dependency relation types of sentence tokens and

create a set setDT. If a dependency relation type of a given token is one of

the core arguments of universal dependency relations, such as: nsubj, obj,

iobj, csubj, ccomp or xcomp [132], we add this token to setDT. As it is shown

in Figure 3.2, the dependency relations for the three words entrepreneurs,

join, boom are nsubj, xcomp and obj, respectively. In addition, for each of

these words, their ancestor tokens are also added to the set. The ances-

tor tokens for entrepreneurs, join and boom are want, want, and join. So:

setDT={entrepreneurs, join, boom, want}.

After performing all three steps, the final task is combine the sets: the final set is

setall=(setH ∪ setT ∪ setDT)={Spanish, entrepreneurs, want, to, join, Eu-

rope, ’s, boom, offshore}. Finally, the distilled sentence which is fed to RE model

is created based on setall (Algorithm 2, lines 14 to 17). In our example it is“Spanish

entrepreneurs want to join Europe’s boom offshore”. Predicting a relation between

two entities Spanish and Europe in this simplified sentence is much easier due to re-

moving irrelevant, noisy tokens from the original sentence. In this work, Stanza [133]
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is used to construct a dependency tree for each sentence.
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Figure 3.2: dependency tree for the sentence “But now Spanish entrepreneurs want
to join Europe’s boom in large wind farms offshore.”

3.4.2 Sentence Encoding

After simplification, we construct a vector representation for each sentence. For the

sentence si with m tokens {w1, w2, ...., wm}, each token is represented with the pre-

trained dw-dimensional GloVe embedding [16]. Based on the relative position of each

token in the sentence with respect to head h and tail t entities, each word’s embedding

is concatenated with 2 ∗ dp-dimensional position embedding [70]. By stacking both

word and position embedding, we obtain the vector representation D ∈ IRm ∗ (dw + 2 ∗ dp)

of all tokens of the sentence. Afterward, D is fed to a bidirectional LSTM with a

hidden unit size of dh. As a result, we obtain an output for each layer of the LSTM

F = [f1, f2, ..., fm], F ∈ IRm ∗ 2dh .

After obtaining the output vectors, word-level attention mechanism is applied over
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{fi}mi=1. For each vector f i ∈ IR1 ∗ 2dh , an attention weight is calculated as follows:

αi =
exp (ui)

m∑︁
j=1

exp (uj)
where, ui = f i.q (3.1)

here, q is a query vector, ui is the score assigned to each token, and αi is atten-

tion weight calculated using softmax over ui scores. The final representation of the

sentence si after applying the word-level attention is obtained:

ŝi =
m∑︂
i=1

αi ∗ f i (3.2)

with ŝi ∈ IR1 ∗ 2dh and m the number of sentence tokens.

3.4.3 Bag Encoding

After encoding each sentence and obtaining its feature vector, a feature representation

for each bag is established. As explained earlier, each relational fact in the KB Φ,

which is in the form of triple (h, r, t)Φ, is used to label a set of sentences that all

contain both entities h and t. These sets of sentences form a bag and the whole bag

is labelled r. Each bag includes different sentences and some of them may be labelled

wrongly as our dataset is distantly supervised. To alleviate wrong labelling problem,

a sentence level attention mechanism is used to combine the embedding vectors of

these sentences and drive the embedding representation for the entire bag. Attention

weight for each sentence in the bag is calculated as below:

α
′

i =
exp (ŝi.p)

Nr∑︁
j=1

exp (ŝj.p)

(3.3)

where ŝi is the feature vector for each sentence in the bag, p is a random query vector,

and Nr is the number of sentences in the bag. The final representation for the bag is:

Ŝr =
Nr∑︂
i=1

α
′

i ∗ ŝi (3.4)

with Ŝr ∈ IR1 ∗ 2dh .
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3.4.4 Entity Type Information

Each relation defines permissible types for its head and tail entities. For example,

the relation Place-of-Birth defines a head entity to be of a type Person and a

tail entity to be of a type Location . As we use distant supervision for labelling a

dataset from a particular KB, the information about types of relation entities can be

obtained from the KB.

In this work, 14 different entity types taken from Stanza [133] are used. Each entity

type, is converted into an Ed-dimensional embedding. The types for h and t could

differ between sentences from a single bag. Therefore, we average type embeddings

over all sentences from the bag. For example, Canada can be Location in one

sentence and GPE(country) in another. So for this example, an average over the

embeddings of types Location and GPE is used as final type embedding for the

entity type of the word Canada.

The obtained type embeddings of head and tail entities for each bag are concate-

nated with the final bag representation Ŝr (see the previous section) and Bem is

obtained:

Bem = [Ŝr; head-type-embedding; tail-type-embedding]

Bem will be fed to the softmax classifier to predict the probability for each relation.

The predicted relation is:

r̂ = argmax p(r|h, t, Sr; Θ) (3.5)

r ∈ R∗
Φ ∪ {NA} (3.6)

where Sr is the set of sentences for the bag linked with the relation r, and Θ are

parameters of the model that are learned during the training process.
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3.5 Experiments

3.5.1 Dataset

In this thesis, we utilize the NYT [126] dataset, which is widely used for the RE task.

This dataset is annotated using the distant supervision method by aligning relational

facts from Freebase to plain texts in New York Times articles. Articles from the

years 2005 - 2006 are used for training, while articles from the year 2007 are used for

testing.

3.5.2 Evaluation criteria

Similar to the previous work [98], the proposed model is evaluated using held-out

evaluation. This means, relations predicted from our model are compared to the

Freebase relations. Precision and Recall can be calculated without conducting time-

consuming human evaluation. We measure the performance by plotting the Precision-

Recall curve and reporting the top-N Precision (P@N) metric. It should be noted that

the probability predicted for an NA relation is neglected while reporting the results.

3.5.3 Hyperparameter Settings.

We randomly select 15% of the training dataset and treat it as a validation set. This

validation set is used for tuning hyperparameters of the model. With each specific

hyperparameter, we run the model five times and report the average P@N. The model

with the highest average will be selected to determine the values of hyperparameters.

With the well-tuned hyperparameters, the model will be trained over all the training

dataset.

3.5.4 Baselines Evaluated.

To evaluate the proposed model (Proposed-Model), we compare it against other

methods including the previous state of the art neural models, i.e., PCNN [73],
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PCNN+Attention [134] and BiLSTM+Attention [82]. We also evaluate the per-

formance of a simpler version of the proposed model (Proposed-Model-Simple),

which incorporates only the proposed distilling strategy, i.e., simplification of sen-

tences by deleting noisy and irrelevant tokens, without incorporating the entity type

information.
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Figure 3.3: The Precision-Recall curve for the state-of-the-art and the proposed
model.

Table 3.1: P@N metric for different models.

P@N(%) 10% 30% 50%

PCNN 69.2 55.5 46.1

PCNN+ATT 77.1 62.2 52.9

BiLSTM+ATT 79.4 68.6 59.3

Proposed-
Model-
Simple

81.3 70.3 63.6

Proposed-
Model

84.4 73.6 66.8
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3.5.5 Analysis.

Figure 3.3 includes Precision-Recall curves obtained for different methods. As it

can be seen, Proposed-Model-Simple has higher values of Precision for the entire

range of Recall values compared to the previous state-of-art neural models. Although

Proposed-Model-Simple and BiLSTM+ATT use the same neural model struc-

ture and utilize attention mechanisms, the Proposed-Model-Simple significantly

outperforms the latter one. This proves that removing of noisy and irrelevant tokens

from sentences, using the proposed pruning technique, improves the RE task. How-

ever, Proposed-Model-Simple performs worse compared to Proposed-Model and

has lower Precision values for the entire range of Recall values. This shows that in-

corporating head and tail type information further improves the results.

Also, as seen in Figure 3.3, PCNN has the lowest Precision values for the entire

range of Recall, compared to the other models. PCNN selects one sentence from each

bag as a representation for the entire bag and does not apply sentence-level attention

mechanisms to the sentences. It leads to the loss of important information. This

can be prevented using attention, especially for the NYT dataset which is a weakly

supervised dataset that contains noisy information. Thus, PCNN+ATT performs

better compared to PCNN.

Table 3.1 reports the P@N metric for different models. As it is shown, the model

proposed in this chapter achieves higher P@N which indicates its efficiency.

3.6 Conclusion

In this chapter, we propose and describe a new model for the RE task. We use

dependency trees to introduce a new filtering technique that removes noisy tokens

from sentences and keeps the most relevant ones for the RE task. Noisy tokens are

words that have no impact on prediction of relations linking head and tail entities

in sentences. We also utilize entity type information. As each relation imposes con-
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straints on the type of its head and tail entities, the inclusion of this information leads

to an actual improvement of the RE task. The experimental results obtained using

the NYT dataset indicate that our model outperforms other state-of-the-art neural

models and achieves higher values of Precision over the entire range of Recall values.
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Chapter 4

Triple Extraction using Sequence
to Sequence Transformers

Extracting relational facts from unstructured text is a crucial task in natural lan-

guage processing used in many applications, particularly the construction of knowl-

edge graphs. Relational facts are represented as triples in which two entities are

connected through a relation. This chapter introduces a new and effective end-to-end

method to generate triples from the input text. In the proposed method, we develop

an encoder-decoder-based transformer model and warm-start both encoder and de-

coder with pretrained checkpoints that are publicly accessible. These checkpoints can

be taken from different models such as BERT, GPT-2, and RoBERTa. Experimental

results show that our method achieves better results for triple extraction on publicly

available datasets (NYT and WebNLG) than the other state-of-the-art techniques.

4.1 Introduction

Triple extraction is an important part of natural language processing (NLP), leading

to the construction of knowledge graphs (KGs). Data repositories built based on KGs

– called Knowledge Bases (KBs) – such as Freebase [2], DBpedia [3] or Wikidata [4],

are well-known resources of relational facts represented as triples [1]. Each triple is a

pair of entities connected through a relation. For example, ⟨Rome, Capital-of, Italy⟩

is a triple stating the fact that Rome is the capital of Italy. A considerable effort is
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being made to derive triples and build KBs using them. The goal of a triple extraction

process is to extract triples from sentences automatically.

Previous works are mainly based on the pipeline approach to tackle the triple

extraction problem [135–137]. These methods break down the triple extraction into

two separate tasks: named entity recognition (NER) and relation classification (RC).

First, they extract all possible entities from each sentence and then identify a valid

relation for every pair of entities. Their main drawback is that both tasks are related,

and performing these tasks independently leads to a propagation of errors occurring

in NER to the RC process and its results.

To overcome this problem, a joint extraction of entities and relations is proposed.

Some studies introduce feature-based methods [138, 139] while others neural-network-

based models [112, 140]. The latter achieve notable results in a joint triple extraction.

The authors of [110] have proposed an encoder-decoder method based on a recurrent

neural network (RNN). They treat the triple extraction as a sequence to sequence

(seq2seq) task [26] and generate triples in an end-to-end manner. Such an approach

to the extraction of triples addresses the error propagation problem. Encoder-decoder

models based on RNNs are effective models in NLP and have been used in many tasks

such as text summarization [141], and machine translation [142]. However, recurrent

models suffer from a significant drawback of capturing long-range dependencies. This

results in losing important information in the case of long sentences.

In this chapter, we present a transformer based encoder-decoder model for triple

extraction. Both encoder and decoder are initialized with pretrained publicly available

checkpoints from different models such as: BERT [18], GPT-2 [19, 23] and RoBERTa

[20, 143]. The applied idea is to treat the process of generating triples as a translation

of sentences into simple sentences that represent extracted triples. This means that

we convert each triple to a simple sentence that includes the pair of entities and the

relation between them for training purposes. For example, the triple ⟨Rome, Capital-

of, Italy⟩ is converted into the sentence Rome is the Capital of Italy. Then our model
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is trained to generate such sentences as the output.

Once the simple sentences are extracted, they are converted to triples, further

processed, and used to construct a knowledge graph. As a result, we build a graph-

based representation of the processed text. Additionally, we obtain information about

the strength of the extracted relations that represent the levels of confidence in the

relations.

The main contributions of our work are as follows:

• transforming a triple extraction process into a sequence to sequence task where

triples of the training data set are transformed into simple sentences;

• utilizing a transformer-based encoder-decoder model as a foundation of the

proposed method, and warm-start both encoder and decoder with available

pretrained checkpoints taken from different models;

• evaluating our model on two publicly available datasets showing an improved

performance when compared with baselines models, what proves the efficiency

of our proposed method;

4.2 Related Work

4.2.1 Relational Fact Extraction

Extracting relational triples from unstructured text is essential for building large KGs

automatically. Multiple different techniques have been proposed so far.

One of set of methods use pipeline approach [73, 136, 144, 145]. It means the

triple extraction task is performed as two sequential subtasks: 1) identification of all

entities in a sentence; and 2) relation classification (RC) to determine a valid relation

between pair of entities. The pipeline approaches’ main disadvantage is ignoring the

interrelation between NER and RC, resulting in error propagation.

To address this problem, some researchers have proposed methods that combine
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both tasks – extracting entities and extracting relations. Some of them are feature-

based techniques [139, 146] that require feature engineering, which makes them ineffi-

cient. To mitigate this, neural network-based models have been proposed. They have

led to significant improvements. [117] has proposed a reinforcement-learning based

method for triple extraction. [109] present a unified tagging scheme by revisiting the

triple extraction task and treating it as an end-to-end sequence tagging problem. [147]

make use of triplet attention to find the connections between the pair of entities and

their related relation. [112] propose a graph convolutional networks (GCNs) model

to extract triples while [122] introduce a joint decoding method by presenting a novel

cascade binary-tagging setup.

The problem of overlapping entities has been addressed by proposing an end-to-

end model [110]. The model uses CopyRE to generate triples from the input text.

This has been the first work that converts the triple extraction task into a sequence to

sequence task in a generative manner. After that, some improvements in the efficiency

of CopyRE have been proposed. [111] introduce multi-task learning equipped with

CopyRE to address the weakness of CopyRE. [124] present a contrastive generative

transformer (CGT) to ensure that generated triples are faithful. They utilize UniLM-

base-uncased model [148] as their architecture.

4.2.2 Text Generation

Recently, many researchers have utilized transformers for Natural Language Under-

standing (NLU) and language modeling. Transformers have been first introduced in

[17] – they have presented an encoder-decoder-based transformer for machine trans-

lation. GPT-2 [19, 23] is a decoder only transformer which is used for text generation

while BERT [18] is an encoder only transformer used to encode the text representa-

tion for NLU tasks. Some works have been presented to enable BERT for sequence

generation. [149] introduce Conditional Masked Language Modeling (C-MLM) to

fine-tune BERT for text generation tasks. In [150], BERT has been reformulated as
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a Markov Random Field language model, and the first findings on a text generation

with increased variety are shown. [151] propose Masked seq2seq (MASS) model for

text generation, and the results are meaningful on tasks of unsupervised machine

translation and text summarization.

4.3 Problem Statement

In this section, we provide a brief description of our proposed model and its various

components.

4.3.1 Objective

The main goal of this chapter is to introduce a novel method for extracting all possible

triples from sentences. In order to better procure the correlation between NER and

RC, we extract entities and their corresponding relations during the same process, i.e.,

in a joint manner. Hence, we transform the triple extraction task into a sequence-to-

sequence (seq2seq) problem. In other words, we treat the process of extracting triples

as translating input sentences into simple sentences that contain triples representing

relations between entities found in the input sentences.

In the first step to train a sequence-to-sequence model, we construct output sen-

tences. It means we convert each triple existing in the input sequence into a short

sentence and then concatenate these short sentences together via the conjunctive word

and.

To illustrate this idea, we provide a simple example, Table 4.1. It includes the

Input Sentence and two ‘gold’ triples that are embedded in this sentence. Each triple

is converted into its equivalent t-Sentence, and both t-Sentences are concatenated

into – what we call – Label Sequence. Additionally, two tokens Beginning Of Sentence

[BOS] and End Of Sentence [EOS] are added to the beginning and end of both input

and output sequences.
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Table 4.1: Generation of a Label Sequence for the training phase based on two Gold
Triples embedded in the Input Sequence.

Input Sequence : [BOS] Alan Bean, who was part of Apollo 12, was born in Wheeler, Texas. [EOS]

Gold Triple 1 : ⟨ Alan Bean, was a crew member of, Apollo 12 ⟩ conversion to−−−−−−−−−−→
t-Sentence

”Alan Bean was a crew member of Apollo 12”

Gold Triple 2 : ⟨ Alan Bean, BirthPlace, Texas ⟩ conversion to−−−−−−−−−−→
t-Sentence

”Alan Bean was born in Texas”

Label Sequence : [BOS] Alan Bean was a crew member of Apollo 12 and Alan Bean was born in Texas [EOS]
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d2
<latexit sha1_base64="U6IYlsL4xKR1llAK+gC8mZQO7CE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWw2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKUw6LpfTmFldW19o7hZ2tre2d0r7x+0TJJpxpsskYnuBNRwKRRvokDJO6nmNA4kbwejm5nffuTaiEQ94DjlfkwHSkSCUbTSfdg/75crbtWdg/wlXk4qkKPRL3/2woRlMVfIJDWm67kp+hOqUTDJp6VeZnhK2YgOeNdSRWNu/Mn81Ck5sUpIokTbUkjm6s+JCY2NGceB7YwpDs2yNxP/87oZRlf+RKg0Q67YYlGUSYIJmf1NQqE5Qzm2hDIt7K2EDammDG06JRuCt/zyX9I6q3oX1dpdrVK/zuMowhEcwyl4cAl1uIUGNIHBAJ7gBV4d6Tw7b877orXg5DOH8AvOxzfzH42X</latexit>

d3
<latexit sha1_base64="F5JVEXEVUwvOZyuZGg6hR+iTKyk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWw2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O4W19Y3NreJ2aWd3b/+gfHjU0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC28Hodua3n1BpnshHM07Rj+lA8ogzaqz0EPZlv1xxq+4cZJV4OalAjka//NULE5bFKA0TVOuu56bGn1BlOBM4LfUyjSllIzrArqWSxqj9yfzUKTmzSkiiRNmShszV3xMTGms9jgPbGVMz1MveTPzP62YmuvYnXKaZQckWi6JMEJOQ2d8k5AqZEWNLKFPc3krYkCrKjE2nZEPwll9eJa2LqndZrd3XKvWbPI4inMApnIMHV1CHO2hAExgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gBMmo3S</latexit>

dn

<latexit sha1_base64="lf14sa2ZeOrAnXKpVVGkJQAkBs8=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ie0IWy2m3bp7ibsboQS8iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uZ353SeqNIvlg5km1Bd4JFnECDZWeuwFWSfIZJ4H1Zpbd+dAq8QrSA0KtILq12AYk1RQaQjHWvc9NzF+hpVhhNO8Mkg1TTCZ4BHtWyqxoNrP5gfn6MwqQxTFypY0aK7+nsiw0HoqQtspsBnrZW8m/uf1UxNd+xmTSWqoJItFUcqRidHsezRkihLDp5Zgopi9FZExVpgYm1HFhuAtv7xKOhd177LeuG/UmjdFHGU4gVM4Bw+uoAl30II2EBDwDK/w5ijnxXl3PhatJaeYOYY/cD5/ACdfkKc=</latexit>

XVn

<latexit sha1_base64="lAEfPGu3rjYflb63rAG2cN1mBeQ=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ie0IWy2m3bp7ibsboQS8iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244uZ353SeqNIvlg5km1Bd4JFnECDZWeuwFWSfIvDwPqjW37s6BVolXkBoUaAXVr8EwJqmg0hCOte57bmL8DCvDCKd5ZZBqmmAywSPat1RiQbWfzQ/O0ZlVhiiKlS1p0Fz9PZFhofVUhLZTYDPWy95M/M/rpya69jMmk9RQSRaLopQjE6PZ92jIFCWGTy3BRDF7KyJjrDAxNqOKDcFbfnmVdC7q3mW9cd+oNW+KOMpwAqdwDh5cQRPuoAVtICDgGV7hzVHOi/PufCxaS04xcwx/4Hz+AMpikGo=</latexit>

XV1

<latexit sha1_base64="rZ9HccM26lJJ2fJwE3Zd/rEUleQ=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHoxWMF+yFtCJvtpl26uwm7G6GE/AovHhTx6s/x5r9x2+agrQ8GHu/NMDMvTDjTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0XGqCG2TmMeqF2JNOZO0bZjhtJcoikXIaTec3M787hNVmsXywUwT6gs8kixiBBsrPfaCrBNk9TwPKlW35s6BVolXkCoUaAWVr8EwJqmg0hCOte57bmL8DCvDCKd5eZBqmmAywSPat1RiQbWfzQ/O0blVhiiKlS1p0Fz9PZFhofVUhLZTYDPWy95M/M/rpya69jMmk9RQSRaLopQjE6PZ92jIFCWGTy3BRDF7KyJjrDAxNqOyDcFbfnmVdOo177LWuG9UmzdFHCU4hTO4AA+uoAl30II2EBDwDK/w5ijnxXl3Phata04xcwJ/4Hz+AMvokGs=</latexit>

XV2

<latexit sha1_base64="snNqXfbCsrN4cXcLeiiamHdReXA=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KokW9Vj04rGC/ZA2hM120y7d3YTdjVBCfoUXD4p49ed489+4bXPQ1gcDj/dmmJkXJpxp47rfzsrq2vrGZmmrvL2zu7dfOThs6zhVhLZIzGPVDbGmnEnaMsxw2k0UxSLktBOOb6d+54kqzWL5YCYJ9QUeShYxgo2VHrtB1g6yizwPKlW35s6AlolXkCoUaAaVr/4gJqmg0hCOte55bmL8DCvDCKd5uZ9qmmAyxkPas1RiQbWfzQ7O0alVBiiKlS1p0Ez9PZFhofVEhLZTYDPSi95U/M/rpSa69jMmk9RQSeaLopQjE6Pp92jAFCWGTyzBRDF7KyIjrDAxNqOyDcFbfHmZtM9r3mWtfl+vNm6KOEpwDCdwBh5cQQPuoAktICDgGV7hzVHOi/PufMxbV5xi5gj+wPn8Ac1ukGw=</latexit>

XV3

<latexit sha1_base64="xnaQPIqJpWMQrVWqsB9zqw6XPmk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7GyGE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByN/M7T6g0j+WjyRL0IzqSPOSMGiu1skHuTgfVmlt35yCrxCtIDQo0B9Wv/jBmaYTSMEG17nluYvycKsOZwGmln2pMKJvQEfYslTRC7efzY6fkzCpDEsbKljRkrv6eyGmkdRYFtjOiZqyXvZn4n9dLTXjj51wmqUHJFovCVBATk9nnZMgVMiMySyhT3N5K2JgqyozNp2JD8JZfXiXti7p3Vb98uKw1bos4ynACp3AOHlxDA+6hCS1gwOEZXuHNkc6L8+58LFpLTjFzDH/gfP4A0zeOtQ==</latexit>y0
<latexit sha1_base64="Pc0hy7dHA1yhUUcvsCW64KRc7vs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDbbSbt0swm7GyGE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByN/M7T6g0j+WjyRL0IzqSPOSMGiu1skHuTQfVmlt35yCrxCtIDQo0B9Wv/jBmaYTSMEG17nluYvycKsOZwGmln2pMKJvQEfYslTRC7efzY6fkzCpDEsbKljRkrv6eyGmkdRYFtjOiZqyXvZn4n9dLTXjj51wmqUHJFovCVBATk9nnZMgVMiMySyhT3N5K2JgqyozNp2JD8JZfXiXti7p3Vb98uKw1bos4ynACp3AOHlxDA+6hCS1gwOEZXuHNkc6L8+58LFpLTjFzDH/gfP4A1LyOtg==</latexit>y1

<latexit sha1_base64="cnZo6gGQvzpr1ZXYiIlc1BHLerg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4rmLbQhrLZbtqlu5uwuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vZv73SeqNIvlo8kSGgg8lixiBBsr+dkwb8yG1ZpbdxdA68QrSA0KtIfVr8EoJqmg0hCOte57bmKCHCvDCKezyiDVNMFkise0b6nEguogXxw7QxdWGaEoVrakQQv190SOhdaZCG2nwGaiV725+J/XT010E+RMJqmhkiwXRSlHJkbzz9GIKUoMzyzBRDF7KyITrDAxNp+KDcFbfXmddBp176refGjWWrdFHGU4g3O4BA+uoQX30AYfCDB4hld4c6Tz4rw7H8vWklPMnMIfOJ8/1kGOtw==</latexit>y2
<latexit sha1_base64="OvFoUU76a5ZJAD39Upev+vWE8v8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBiyWRoh6LXjxWsB/QhrLZbtqlu5uwuxFC6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzgpgzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C73u09UaRbJR5PG1Bd4LFnICDZW6qbDTFx4s2G15tbdOdAq8QpSgwKtYfVrMIpIIqg0hGOt+54bGz/DyjDC6awySDSNMZniMe1bKrGg2s/m587QmVVGKIyULWnQXP09kWGhdSoC2ymwmehlLxf/8/qJCW/8jMk4MVSSxaIw4chEKP8djZiixPDUEkwUs7ciMsEKE2MTqtgQvOWXV0nnsu5d1RsPjVrztoijDCdwCufgwTU04R5a0AYCU3iGV3hzYufFeXc+Fq0lp5g5hj9wPn8ADGOPZA==</latexit>ym�1

<latexit sha1_base64="CqBNX6SgkAymp+GPCOJAgNuDNfc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5zX7uTfvVmlt35yCrxCtIDQo0+9Wv3iBhWYzSMEG17npuaoKcKsOZwGmll2lMKRvTIXYtlTRGHeTzY6fkzCoDEiXKljRkrv6eyGms9SQObWdMzUgvezPxP6+bmegmyLlMM4OSLRZFmSAmIbPPyYArZEZMLKFMcXsrYSOqKDM2n4oNwVt+eZW0LureVf3y4bLWuC3iKMMJnMI5eHANDbiHJvjAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBlfSOjQ==</latexit>

P1
<latexit sha1_base64="L0zCOA2/tmVbUHBKu6f4Y2GZpT8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4rmLbQhrLZTtulm03Y3Qgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJS8epYuizWMSqE1KNgkv0DTcCO4lCGoUC2+Hkbu63n1BpHstHM00wiOhI8iFn1FjJb/az2qxfrrhVdwGyTrycVCBHs1/+6g1ilkYoDRNU667nJibIqDKcCZyVeqnGhLIJHWHXUkkj1EG2OHZGLqwyIMNY2ZKGLNTfExmNtJ5Goe2MqBnrVW8u/ud1UzO8CTIuk9SgZMtFw1QQE5P552TAFTIjppZQpri9lbAxVZQZm0/JhuCtvrxOWrWqd1WtP9Qrjds8jiKcwTlcggfX0IB7aIIPDDg8wyu8OdJ5cd6dj2VrwclnTuEPnM8fl3mOjg==</latexit>

P2
<latexit sha1_base64="pCsC2CeXNO2/a4mtM+U8456RTYA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48VTFtoQ9lst+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNHGqGfdZLGPdDqnhUijuo0DJ24nmNAolb4Xju5nfeuLaiFg94iThQUSHSgwEo2glv9HLLqe9csWtunOQVeLlpAI5Gr3yV7cfszTiCpmkxnQ8N8EgoxoFk3xa6qaGJ5SN6ZB3LFU04ibI5sdOyZlV+mQQa1sKyVz9PZHRyJhJFNrOiOLILHsz8T+vk+LgJsiESlLkii0WDVJJMCazz0lfaM5QTiyhTAt7K2EjqilDm0/JhuAtv7xKmhdV76pae6hV6rd5HEU4gVM4Bw+uoQ730AAfGAh4hld4c5Tz4rw7H4vWgpPPHMMfOJ8/mP6Ojw==</latexit>

P3
<latexit sha1_base64="RDoRzzhyeTNp6SkhAuYl79qgB5c=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKqMeiF48V3LbQLiWbZtvQJLskWaEs/Q1ePCji1R/kzX9j2u5BWx8MPN6bYWZelApurOd9o9La+sbmVnm7srO7t39QPTxqmSTTlAU0EYnuRMQwwRULLLeCdVLNiIwEa0fju5nffmLa8EQ92knKQkmGisecEuukoNnP5bRfrXl1bw68SvyC1KBAs1/96g0SmkmmLBXEmK7vpTbMibacCjat9DLDUkLHZMi6jioimQnz+bFTfOaUAY4T7UpZPFd/T+REGjORkeuUxI7MsjcT//O6mY1vwpyrNLNM0cWiOBPYJnj2OR5wzagVE0cI1dzdiumIaEKty6fiQvCXX14lrYu6f1W/fLisNW6LOMpwAqdwDj5cQwPuoQkBUODwDK/whhR6Qe/oY9FaQsXMMfwB+vwB8SCOyQ==</latexit>

Pm

<latexit sha1_base64="7s4zCFQrtSwLUhCZ2DOVCrxJBRU=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY+lXjxWsB/SriWbZtvQJLskWbEs+yu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvp767UeqNIvknZnE1Bd4KFnICDZWun/qp172kNazfrniVt0Z0DLxclKBHI1++as3iEgiqDSEY627nhsbP8XKMMJpVuolmsaYjPGQdi2VWFDtp7ODM3RilQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oZEPwFl9eJq2zqndRPb89r9TqeRxFOIJjOAUPLqEGN9CAJhAQ8Ayv8OYo58V5dz7mrQUnnzmEP3A+fwDbz5B1</latexit>

xB
1

<latexit sha1_base64="TEHzSnf3W2rd4mNYad7ovOMdZnY=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmLiiewSoh4JXjxiIh8GVtItBRra7qbtGslmf4UXDxrj1Z/jzX9jgT0o+JJJXt6bycy8IOJMG9f9dnJr6xubW/ntws7u3v5B8fCopcNYEdokIQ9VJ8CaciZp0zDDaSdSFIuA03YwuZ757UeqNAvlnZlG1Bd4JNmQEWysdP/UTyrpQ1JP+8WSW3bnQKvEy0gJMjT6xa/eICSxoNIQjrXuem5k/AQrwwinaaEXaxphMsEj2rVUYkG1n8wPTtGZVQZoGCpb0qC5+nsiwULrqQhsp8BmrJe9mfif143N8MpPmIxiQyVZLBrGHJkQzb5HA6YoMXxqCSaK2VsRGWOFibEZFWwI3vLLq6RVKXsX5epttVSrZ3Hk4QRO4Rw8uIQa3EADmkBAwDO8wpujnBfn3flYtOacbOYY/sD5/AHdWJB2</latexit>

xB
2

<latexit sha1_base64="MqaSuPLcm6B+QUjZIUx1gfDa2IM=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKexqUI8hXjxGMA9J1jA7mU2GzMwuM7NiWPYrvHhQxKuf482/cfI4aGJBQ1HVTXdXEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsYXU/81iNVmkXyzoxj6gs8kCxkBBsr3T/10vPsIa1lvWLJLbtToGXizUkJ5qj3il/dfkQSQaUhHGvd8dzY+ClWhhFOs0I30TTGZIQHtGOpxIJqP50enKETq/RRGClb0qCp+nsixULrsQhsp8BmqBe9ifif10lMeOWnTMaJoZLMFoUJRyZCk+9RnylKDB9bgoli9lZEhlhhYmxGBRuCt/jyMmmelb2LcuW2UqrW5nHk4QiO4RQ8uIQq3EAdGkBAwDO8wpujnBfn3fmYteac+cwh/IHz+QPe4ZB3</latexit>

xB
3

<latexit sha1_base64="XeEQTaAJ/gO3kgFmuGI4xqs/Ic8=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtS1GOpF48V7Ie0a8mm2TY0yS5JVizL/govHhTx6s/x5r8xbfegrQ8GHu/NMDMviDnTxnW/nZXVtfWNzcJWcXtnd2+/dHDY0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsYX0/99iNVmkXyzkxi6gs8lCxkBBsr3T/102r2kNazfqnsVtwZ0DLxclKGHI1+6as3iEgiqDSEY627nhsbP8XKMMJpVuwlmsaYjPGQdi2VWFDtp7ODM3RqlQEKI2VLGjRTf0+kWGg9EYHtFNiM9KI3Ff/zuokJr/yUyTgxVJL5ojDhyERo+j0aMEWJ4RNLMFHM3orICCtMjM2oaEPwFl9eJq3zindRqd5Wy7V6HkcBjuEEzsCDS6jBDTSgCQQEPMMrvDnKeXHenY9564qTzxzBHzifP+BqkHg=</latexit>

xB
4

<latexit sha1_base64="si5aZD7LHWnPEKzNlNdy5SCOF8s=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVUY+lXjxWsB/SriWbZtvQJLskWbEs+yu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvp767UeqNIvknZnE1Bd4KFnICDZWun/qpzJ7SOtZv1xxq+4MaJl4OalAjka//NUbRCQRVBrCsdZdz42Nn2JlGOE0K/USTWNMxnhIu5ZKLKj209nBGTqxygCFkbIlDZqpvydSLLSeiMB2CmxGetGbiv953cSEV37KZJwYKsl8UZhwZCI0/R4NmKLE8IklmChmb0VkhBUmxmZUsiF4iy8vk9ZZ1buont+eV2r1PI4iHMExnIIHl1CDG2hAEwgIeIZXeHOU8+K8Ox/z1oKTzxzCHzifPzmDkLI=</latexit>

xB
n

<latexit sha1_base64="4GuSMONn7DQWH3ISekAh+SwqDgY=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyXRoh5LvXisYD+gjWGz2bRLN5uwuxFqyC/x4kERr/4Ub/4bt20O2vpg4PHeDDPz/IRRqWz72yitrW9sbpW3Kzu7e/tV8+CwK+NUYNLBMYtF30eSMMpJR1HFSD8RBEU+Iz1/cjPze49ESBrzezVNiBuhEachxUhpyTOrQx+JLPCyi/wha+W5Z9bsuj2HtUqcgtSgQNszv4ZBjNOIcIUZknLg2IlyMyQUxYzklWEqSYLwBI3IQFOOIiLdbH54bp1qJbDCWOjiypqrvycyFEk5jXzdGSE1lsveTPzPG6QqvHYzypNUEY4Xi8KUWSq2ZilYARUEKzbVBGFB9a0WHiOBsNJZVXQIzvLLq6R7Xncu6427Rq3ZKuIowzGcwBk4cAVNuIU2dABDCs/wCm/Gk/FivBsfi9aSUcwcwR8Ynz8JQpNZ</latexit>

d̄B
3

<latexit sha1_base64="ZDCQNXkfiB/qKKmSrG7HMYnM+VA=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoioh5LvXisYD+gjWGz2bZLN5uwuxFqyC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/tV++Cwo+JUEtomMY9lL8CKciZoWzPNaS+RFEcBp91gcjPzu49UKhaLez1NqBfhkWBDRrA2km9XBwGWWehnbv6QNfPct2tO3ZkDrRK3IDUo0PLtr0EYkzSiQhOOleq7TqK9DEvNCKd5ZZAqmmAywSPaN1TgiCovmx+eo1OjhGgYS1NCo7n6eyLDkVLTKDCdEdZjtezNxP+8fqqH117GRJJqKshi0TDlSMdolgIKmaRE86khmEhmbkVkjCUm2mRVMSG4yy+vks553b2sX9xd1BrNIo4yHMMJnIELV9CAW2hBGwik8Ayv8GY9WS/Wu/WxaC1ZxcwR/IH1+QMGLpNX</latexit>

d̄B
1

<latexit sha1_base64="KzUm/KR8oeMKYUf5ihr6VoeGmAw=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyUpRT2WevFYwX5AG8Nms2mXbjZhdyPUkF/ixYMiXv0p3vw3btsctPXBwOO9GWbm+QmjUtn2t1Ha2Nza3invVvb2Dw6r5tFxT8apwKSLYxaLgY8kYZSTrqKKkUEiCIp8Rvr+9Gbu9x+JkDTm92qWEDdCY05DipHSkmdWRz4SWeBljfwha+e5Z9bsur2AtU6cgtSgQMczv0ZBjNOIcIUZknLo2IlyMyQUxYzklVEqSYLwFI3JUFOOIiLdbHF4bp1rJbDCWOjiylqovycyFEk5i3zdGSE1kaveXPzPG6YqvHYzypNUEY6Xi8KUWSq25ilYARUEKzbTBGFB9a0WniCBsNJZVXQIzurL66TXqDuX9eZds9ZqF3GU4RTO4AIcuIIW3EIHuoAhhWd4hTfjyXgx3o2PZWvJKGZO4A+Mzx8HuJNY</latexit>

d̄B
2

<latexit sha1_base64="7lQyTnzOjCs3POpMfKbdLRUNUbE=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJ4kLIrRT2WevFYwX5Au5Zsmm1Ds9klyYol7N/w4kERr/4Zb/4b03YP2vpg4PHeDDPzgoQzpV3321lZXVvf2CxsFbd3dvf2SweHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H45up336kUrFY3OtJQv0IDwULGcHaSj3z1Dde9mDO61nWL5XdijsDWiZeTsqQo9EvffUGMUkjKjThWKmu5ybaN1hqRjjNir1U0QSTMR7SrqUCR1T5ZnZzhk6tMkBhLG0JjWbq7wmDI6UmUWA7I6xHatGbiv953VSH175hIkk1FWS+KEw50jGaBoAGTFKi+cQSTCSztyIywhITbWMq2hC8xZeXSeui4l1WqnfVcq2ex1GAYziBM/DgCmpwCw1oAoEEnuEV3pzUeXHenY9564qTzxzBHzifPxGskbc=</latexit>

x,B
1

<latexit sha1_base64="cj5zq4f5hdehNazIjL1BXp1me2k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkFPVY6sVjBfsBbSyb7aZdutmE3Y1YQv6GFw+KePXPePPfuE1z0NYHA4/3ZpiZ50WcKW3b31ZhbX1jc6u4XdrZ3ds/KB8edVQYS0LbJOSh7HlYUc4EbWumOe1FkuLA47TrTW/mfveRSsVCca9nEXUDPBbMZwRrIw2Sp2FSSx+Si2aaDssVu2pnQKvEyUkFcrSG5a/BKCRxQIUmHCvVd+xIuwmWmhFO09IgVjTCZIrHtG+owAFVbpLdnKIzo4yQH0pTQqNM/T2R4ECpWeCZzgDriVr25uJ/Xj/W/rWbMBHFmgqyWOTHHOkQzQNAIyYp0XxmCCaSmVsRmWCJiTYxlUwIzvLLq6RTqzqX1fpdvdJo5nEU4QRO4RwcuIIG3EIL2kAggmd4hTcrtl6sd+tj0Vqw8plj+APr8wcTN5G4</latexit>

x,B
2

<latexit sha1_base64="qWF2IC2QljrLXosIOtAwnDgHMpU=">AAAB83icbVBNS8NAEJ3Ur1q/oh69LBbBg5REi3os9eKxgv2ANpbNdtMu3WzC7kYsIX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zM82POlHacb6uwsrq2vlHcLG1t7+zu2fsHLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745up336kUrFI3OtJTL0QDwULGMHaSL30qZ9eZA/pWT3L+nbZqTgzoGXi5qQMORp9+6s3iEgSUqEJx0p1XSfWXoqlZoTTrNRLFI0xGeMh7RoqcEiVl85uztCJUQYoiKQpodFM/T2R4lCpSeibzhDrkVr0puJ/XjfRwbWXMhEnmgoyXxQkHOkITQNAAyYp0XxiCCaSmVsRGWGJiTYxlUwI7uLLy6R1XnEvK9W7arlWz+MowhEcwym4cAU1uIUGNIFADM/wCm9WYr1Y79bHvLVg5TOH8AfW5w8UwpG5</latexit>

x,B
3

<latexit sha1_base64="tU1sBanWA0pZ0eI/aF2EneGrSGM=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJ4kLIrRT2WevFYwX5Au5Zsmm1Ds9klyYol7N/w4kERr/4Zb/4b03YP2vpg4PHeDDPzgoQzpV3321lZXVvf2CxsFbd3dvf2SweHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H45up336kUrFY3OtJQv0IDwULGcHaSj3z1DfV7MGc17OsXyq7FXcGtEy8nJQhR6Nf+uoNYpJGVGjCsVJdz020b7DUjHCaFXupogkmYzykXUsFjqjyzezmDJ1aZYDCWNoSGs3U3xMGR0pNosB2RliP1KI3Ff/zuqkOr33DRJJqKsh8UZhypGM0DQANmKRE84klmEhmb0VkhCUm2sZUtCF4iy8vk9ZFxbusVO+q5Vo9j6MAx3ACZ+DBFdTgFhrQBAIJPMMrvDmp8+K8Ox/z1hUnnzmCP3A+fwAWTZG6</latexit>

x,B
4

<latexit sha1_base64="yzRt+Eq1JMAJazjB2SSrMM+mhIo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJ4kLIrRT2WevFYwX5Au5Zsmm1Ds9klyYol7N/w4kERr/4Zb/4b03YP2vpg4PHeDDPzgoQzpV3321lZXVvf2CxsFbd3dvf2SweHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H45up336kUrFY3OtJQv0IDwULGcHaSj3z1DciezDn9Szrl8puxZ0BLRMvJ2XI0eiXvnqDmKQRFZpwrFTXcxPtGyw1I5xmxV6qaILJGA9p11KBI6p8M7s5Q6dWGaAwlraERjP194TBkVKTKLCdEdYjtehNxf+8bqrDa98wkaSaCjJfFKYc6RhNA0ADJinRfGIJJpLZWxEZYYmJtjEVbQje4svLpHVR8S4r1btquVbP4yjAMZzAGXhwBTW4hQY0gUACz/AKb07qvDjvzse8dcXJZ47gD5zPH2/LkfQ=</latexit>

x,B
n

<latexit sha1_base64="v9t0jYrQVDnnRCjr5HZXzJqe8fM=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBQymJFPVY6sVjBfsBbSyb7aZdutnE3U2xhPwOLx4U8eqP8ea/cdvmoK0PBh7vzTAzz4s4U9q2v63c2vrG5lZ+u7Czu7d/UDw8aqkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbG9/M/PaESsVCca+nEXUDPBTMZwRrI7nJUz9x0oekXK6nab9Ysiv2HGiVOBkpQYZGv/jVG4QkDqjQhGOluo4daTfBUjPCaVroxYpGmIzxkHYNFTigyk3mR6fozCgD5IfSlNBorv6eSHCg1DTwTGeA9UgtezPxP68ba//aTZiIYk0FWSzyY450iGYJoAGTlGg+NQQTycytiIywxESbnAomBGf55VXSuqg4l5XqXbVUq2dx5OEETuEcHLiCGtxCA5pA4BGe4RXerIn1Yr1bH4vWnJXNHMMfWJ8/fVqR7Q==</latexit>

x,,B
1

<latexit sha1_base64="fQla0jrWUGH2+Mqy+epE75noAxw=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KCUpRT2WevFYwX5AG8tmu2mXbjZxd1MsIb/DiwdFvPpjvPlv3LY5aOuDgcd7M8zM8yLOlLbtb2ttfWNzazu3k9/d2z84LBwdt1QYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47TtjW9mfntCpWKhuNfTiLoBHgrmM4K1kdzkqZ9U0oekVKqnab9QtMv2HGiVOBkpQoZGv/DVG4QkDqjQhGOluo4daTfBUjPCaZrvxYpGmIzxkHYNFTigyk3mR6fo3CgD5IfSlNBorv6eSHCg1DTwTGeA9UgtezPxP68ba//aTZiIYk0FWSzyY450iGYJoAGTlGg+NQQTycytiIywxESbnPImBGf55VXSqpSdy3L1rlqs1bM4cnAKZ3ABDlxBDW6hAU0g8AjP8Apv1sR6sd6tj0XrmpXNnMAfWJ8/fuaR7g==</latexit>

x,,B
2

<latexit sha1_base64="3IL55ok8lD/MvFkrvZcB2S9A1G8=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJ4KCXRoh5LvXisYD+gjWWz3bRLN5u4uymWkN/hxYMiXv0x3vw3btsctPXBwOO9GWbmeRFnStv2t7Wyura+sZnbym/v7O7tFw4OmyqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRjdTvzWmUrFQ3OtJRN0ADwTzGcHaSG7y1Esu0oekVKqlaa9QtMv2DGiZOBkpQoZ6r/DV7YckDqjQhGOlOo4daTfBUjPCaZrvxopGmIzwgHYMFTigyk1mR6fo1Ch95IfSlNBopv6eSHCg1CTwTGeA9VAtelPxP68Ta//aTZiIYk0FmS/yY450iKYJoD6TlGg+MQQTycytiAyxxESbnPImBGfx5WXSPC87l+XKXaVYrWVx5OAYTuAMHLiCKtxCHRpA4BGe4RXerLH1Yr1bH/PWFSubOYI/sD5/AIByke8=</latexit>

x,,B
3

<latexit sha1_base64="mCp2P+OrB119Fhn6n6iaQfitjS8=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0mkqMdSLx4r2A9oY9hstu3SzSbsboQa8ku8eFDEqz/Fm//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YOKfXjUUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wuZn53UcqFYvFvZ4m1IvwSLAhI1gbybcrgwDLLPSzev6QNfPct6tOzZkDrRK3IFUo0PLtr0EYkzSiQhOOleq7TqK9DEvNCKd5eZAqmmAywSPaN1TgiCovmx+eozOjhGgYS1NCo7n6eyLDkVLTKDCdEdZjtezNxP+8fqqH117GRJJqKshi0TDlSMdolgIKmaRE86khmEhmbkVkjCUm2mRVNiG4yy+vks5Fzb2s1e/q1UaziKMEJ3AK5+DCFTTgFlrQBgIpPMMrvFlP1ov1bn0sWtesYuYY/sD6/AEKzJNa</latexit>

d̄B
4

<latexit sha1_base64="tGtU7G5XZVe+9YgUQXs+K37ypMk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkoioh5LvXisYD+gjWGz2bZLN5uwuxFqyC/x4kERr/4Ub/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/tV++Cwo+JUEtomMY9lL8CKciZoWzPNaS+RFEcBp91gcjPzu49UKhaLez1NqBfhkWBDRrA2km9XBwGWWehnIn/Imnnu2zWn7syBVolbkBoUaPn21yCMSRpRoQnHSvVdJ9FehqVmhNO8MkgVTTCZ4BHtGypwRJWXzQ/P0alRQjSMpSmh0Vz9PZHhSKlpFJjOCOuxWvZm4n9eP9XDay9jIkk1FWSxaJhypGM0SwGFTFKi+dQQTCQztyIyxhITbbKqmBDc5ZdXSee87l7WL+4uao1mEUcZjuEEzsCFK2jALbSgDQRSeIZXeLOerBfr3fpYtJasYuYI/sD6/AFkEJOU</latexit>

d̄B
n

<latexit sha1_base64="CkGjK+4mxZmZeNjc7mEetuVgMac=">AAAB83icbVBNSwMxEJ31s9avqkcvwSJ4KGVXinosevFYwX5Au5Zsmm1Ds9klyYol7N/w4kERr/4Zb/4b03YP2vpg4PHeDDPzgoQzpV3321lZXVvf2CxsFbd3dvf2SweHLRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0H45up336kUrFY3OtJQv0IDwULGcHaSj3z1Dde9mAqlSzrl8pu1Z0BLRMvJ2XI0eiXvnqDmKQRFZpwrFTXcxPtGyw1I5xmxV6qaILJGA9p11KBI6p8M7s5Q6dWGaAwlraERjP194TBkVKTKLCdEdYjtehNxf+8bqrDK98wkaSaCjJfFKYc6RhNA0ADJinRfGIJJpLZWxEZYYmJtjEVbQje4svLpHVe9S6qtbtauX6dx1GAYziBM/DgEupwCw1oAoEEnuEV3pzUeXHenY9564qTzxzBHzifP/AZkaE=</latexit>

x,,
1

<latexit sha1_base64="96MnID8bl6eDQMcw09+FwHZkfn8=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBQylJKeqx6MVjBfsBbSyb7aZdutmE3Y1YQv6GFw+KePXPePPfuGlz0NYHA4/3ZpiZ50WcKW3b31ZhbX1jc6u4XdrZ3ds/KB8edVQYS0LbJOSh7HlYUc4EbWumOe1FkuLA47TrTW8yv/tIpWKhuNeziLoBHgvmM4K1kQbJ0zCppw9JtZqmw3LFrtlzoFXi5KQCOVrD8tdgFJI4oEITjpXqO3ak3QRLzQinaWkQKxphMsVj2jdU4IAqN5nfnKIzo4yQH0pTQqO5+nsiwYFSs8AznQHWE7XsZeJ/Xj/W/pWbMBHFmgqyWOTHHOkQZQGgEZOUaD4zBBPJzK2ITLDERJuYSiYEZ/nlVdKp15yLWuOuUWle53EU4QRO4RwcuIQm3EIL2kAggmd4hTcrtl6sd+tj0Vqw8plj+APr8wfxpJGi</latexit>

x,,
2

<latexit sha1_base64="JoBxaYbykmgiUacu0SFXkxAXzKc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBQymJFvVY9OKxgv2ANpbNdtMu3WzC7kYsIX/DiwdFvPpnvPlv3LQ5aOuDgcd7M8zM8yLOlLbtb6uwsrq2vlHcLG1t7+zulfcP2iqMJaEtEvJQdj2sKGeCtjTTnHYjSXHgcdrxJjeZ33mkUrFQ3OtpRN0AjwTzGcHaSP3kaZCcpw9JtZqmg3LFrtkzoGXi5KQCOZqD8ld/GJI4oEITjpXqOXak3QRLzQinaakfKxphMsEj2jNU4IAqN5ndnKITowyRH0pTQqOZ+nsiwYFS08AznQHWY7XoZeJ/Xi/W/pWbMBHFmgoyX+THHOkQZQGgIZOUaD41BBPJzK2IjLHERJuYSiYEZ/HlZdI+qzkXtfpdvdK4zuMowhEcwyk4cAkNuIUmtIBABM/wCm9WbL1Y79bHvLVg5TOH8AfW5w/zL5Gj</latexit>

x,,
3

<latexit sha1_base64="YJ81BdwEtSMhhsR8fnXts1mXFig=">AAAB8nicbVDLSgNBEJz1GeMr6tHLYBA8SNjVoB6DXjxGMA/YrGF2MpsMmZ1ZZnrFsOxnePGgiFe/xpt/4+Rx0MSChqKqm+6uMBHcgOt+O0vLK6tr64WN4ubW9s5uaW+/aVSqKWtQJZRuh8QwwSVrAAfB2olmJA4Fa4XDm7HfemTacCXvYZSwICZ9ySNOCVjJz5662Xn+kJ3mebdUdivuBHiReDNSRjPUu6WvTk/RNGYSqCDG+J6bQJARDZwKlhc7qWEJoUPSZ76lksTMBNnk5BwfW6WHI6VtScAT9fdERmJjRnFoO2MCAzPvjcX/PD+F6CrIuExSYJJOF0WpwKDw+H/c45pRECNLCNXc3orpgGhCwaZUtCF48y8vkuZZxbuoVO+q5dr1LI4COkRH6AR56BLV0C2qowaiSKFn9IreHHBenHfnY9q65MxmDtAfOJ8/h62RbQ==</latexit>

x,
3

<latexit sha1_base64="pKETMhp782olJJO1MOeOcEF9UOI=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBg5RdKeqx6MVjBfsB7VqyabYNzSZLkhXLsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Gbqtx+p0kyKezOJqR/hoWAhI9hYqZs+9VMve0jPsqxfrrhVdwa0TLycVCBHo1/+6g0kSSIqDOFY667nxsZPsTKMcJqVeommMSZjPKRdSwWOqPbT2ckZOrHKAIVS2RIGzdTfEymOtJ5Ege2MsBnpRW8q/ud1ExNe+SkTcWKoIPNFYcKRkWj6PxowRYnhE0swUczeisgIK0yMTalkQ/AWX14mrfOqd1Gt3dUq9es8jiIcwTGcggeXUIdbaEATCEh4hld4c4zz4rw7H/PWgpPPHMIfOJ8/hJmRaw==</latexit>

x,
1

<latexit sha1_base64="p1AyUzfNT8yU/IGQghnMgFs33Q4=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSJ4kLJbinosevFYwX5Au5Zsmm1Ds8mSZMWy7M/w4kERr/4ab/4b03YP2vpg4PHeDDPzgpgzbVz321lZXVvf2CxsFbd3dvf2SweHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDP1249UaSbFvZnE1I/wULCQEWys1E2f+mk1e0jPs6xfKrsVdwa0TLyclCFHo1/66g0kSSIqDOFY667nxsZPsTKMcJoVe4mmMSZjPKRdSwWOqPbT2ckZOrXKAIVS2RIGzdTfEymOtJ5Ege2MsBnpRW8q/ud1ExNe+SkTcWKoIPNFYcKRkWj6PxowRYnhE0swUczeisgIK0yMTaloQ/AWX14mrWrFu6jU7mrl+nUeRwGO4QTOwINLqMMtNKAJBCQ8wyu8OcZ5cd6dj3nripPPHMEfOJ8/hiORbA==</latexit>

x,
2

<latexit sha1_base64="crBgTP6FVXPv6LEzuFl5JLcWFzA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcquFPVY9OKxgv2Adi3ZNNuGZpMlmRXLsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LBDbjut1NYWV1b3yhulra2d3b3yvsHLaMSTVmTKqF0JyCGCS5ZEzgI1ok1I1EgWDsY30z99iPThit5D5OY+REZSh5ySsBK3fSpn9ayh/Qsy/rlilt1Z8DLxMtJBeVo9MtfvYGiScQkUEGM6XpuDH5KNHAqWFbqJYbFhI7JkHUtlSRixk9nJ2f4xCoDHCptSwKeqb8nUhIZM4kC2xkRGJlFbyr+53UTCK/8lMs4ASbpfFGYCAwKT//HA64ZBTGxhFDN7a2YjogmFGxKJRuCt/jyMmmdV72Lau2uVqlf53EU0RE6RqfIQ5eojm5RAzURRQo9o1f05oDz4rw7H/PWgpPPHKI/cD5/AIk3kW4=</latexit>

x,
4

<latexit sha1_base64="KIuCBfLQrWhp2Y7dj4qzao+Hhbc=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBg5RdKeqx6MVjBfsB7VqyabYNzSZLkhXLsj/DiwdFvPprvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewsrq2vlHcLG1t7+zulfcPWlomitAmkVyqToA15UzQpmGG006sKI4CTtvB+Gbqtx+p0kyKezOJqR/hoWAhI9hYqZs+9VORPaRnWdYvV9yqOwNaJl5OKpCj0S9/9QaSJBEVhnCsdddzY+OnWBlGOM1KvUTTGJMxHtKupQJHVPvp7OQMnVhlgEKpbAmDZurviRRHWk+iwHZG2Iz0ojcV//O6iQmv/JSJODFUkPmiMOHISDT9Hw2YosTwiSWYKGZvRWSEFSbGplSyIXiLLy+T1nnVu6jW7mqV+nUeRxGO4BhOwYNLqMMtNKAJBCQ8wyu8OcZ5cd6dj3lrwclnDuEPnM8f4nuRqA==</latexit>

x,
n

<latexit sha1_base64="iRkgC2m9UkZ1o/cfcP7/34hp2uc=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4kJJIUY9FLx4r2A9oY9lsN+3SzW7Y3Qgh5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QcyZNq777aysrq1vbJa2yts7u3v7lYPDtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ36nSeqNJPiwaQx9SM8EixkBBsr9bJ0kLn5Y3ae54NK1a25M6Bl4hWkCgWag8pXfyhJElFhCMda9zw3Nn6GlWGE07zcTzSNMZngEe1ZKnBEtZ/NTs7RqVWGKJTKljBopv6eyHCkdRoFtjPCZqwXvan4n9dLTHjtZ0zEiaGCzBeFCUdGoun/aMgUJYanlmCimL0VkTFWmBibUtmG4C2+vEzaFzXvsla/r1cbN0UcJTiGEzgDD66gAXfQhBYQkPAMr/DmGOfFeXc+5q0rTjFzBH/gfP4AhJyRaw==</latexit>

y,
0

<latexit sha1_base64="e/Bg5gXATzP5S69WxzWRyiuCuqU=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4kJJIUY9FLx4r2A9oY9lsN+3SzW7YnQgh5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QSy4Adf9dlZW19Y3Nktb5e2d3b39ysFh26hEU9aiSijdDYhhgkvWAg6CdWPNSBQI1gkmt1O/88S04Uo+QBozPyIjyUNOCVipl6WDzMsfs/M8H1Sqbs2dAS8TryBVVKA5qHz1h4omEZNABTGm57kx+BnRwKlgebmfGBYTOiEj1rNUkogZP5udnONTqwxxqLQtCXim/p7ISGRMGgW2MyIwNoveVPzP6yUQXvsZl3ECTNL5ojARGBSe/o+HXDMKIrWEUM3trZiOiSYUbEplG4K3+PIyaV/UvMta/b5ebdwUcZTQMTpBZ8hDV6iB7lATtRBFCj2jV/TmgPPivDsf89YVp5g5Qn/gfP4AhiaRbA==</latexit>
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Figure 4.1: Initializing encoder and decoder using the BERT’s pretrained checkpoint.

4.3.2 Model Overview

The process of constructing our proposed sequence-to-sequence model requires differ-

ent phases and components. Let us provide their short introductions.
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Conversion of Triples into Sentences.

In order to train our model, we convert ‘gold’ triples of input sentences into simple

sentences that include the pairs of entities and relations between them. Details in

Section 4.4.1.

Input Preparation.

We tokenize each sequence, both input and constructed one, using an appropriate

tokenizer. The type of tokenizer depends on the checkpoint used to initialize both

encoder and decoder.

Model and Its Initialization.

Models built only with encoder or decoder are not suitable for seq2seq tasks. Encoder-

only models, like BERT [18], need to know the length of the output sequence in ad-

vance, and thereby they are not suitable for the triple generation task. Also, although

decoder-only models, like GPT-2 [26], perform very well in language generation but

they are not well suited for the conditional generation, which limits their application

for the triple generation task.

In this work, we employ the seq2seq architecture that is based on an encoder-

decoder transformer, Figure 4.1. Seq2seq models have been proved to function better

on text generation tasks. Both encoder and decoder are built of transformer layers

[17]. We initialize parameter weights of both encoder and decoder using pretrained

checkpoints taken from different models such as GPT-2, BERT, and RoBERTa. The

encoder will encode the input sequence into a contextual representation vector, and

the decoder will try to generate all possible triples existing in the input sequence in

an auto-regressive manner. We will investigate different combinations of checkpoints

for warm-starting both encoder and decoders to see which combination performs the

best for the triple extraction task.
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Algorithm 2 Converting Triples into Label Sequences

Input:
Set of Gold Triples occurring in Input Sequences:
STr={(h1, r1, t1), . . . , (hn, rn, tn)}
LookUp Table:
{⟨rj, vpj⟩ for j = 1, . . . , number of relations }

Output:
Set of Label Sequence: SLS

1: SLS ← ∅
2: for each tri ∈ STr do
3: e1 ← extract head ent(tri)
4: e2 ← extract tail ent(tri)
5: ri ← extract rel(tri)
6: vpri ← LookUp Table(ri)
7: Stri ← create label seq(e1, vpri , e2)
8: if tri = trn then
9: SLS ← SLS ∪ Stri

10: else
11: SLS ← SLS ∪ concatenate label seq(Stri , and)

12:

4.4 Methodology

This section describes the proposed model in detail. First, we discuss how to convert

‘gold’ triples into simple sentences – Label Sequences. Second, we show how the input

and label sequences are tokenized and what kind of tokenizer is used in the encoder

and decoder. Third, we investigate the proposed transformer based encoder-decoder

model for the triple extraction task. Also, we discuss the effect of warm-starting both

encoder and decoder with pretrained checkpoints.

4.4.1 Converting Triples into Sentences

The essential step of the proposed approach is the processing of training data. It

means the generation of simple sentences, called Label Sequences, from ‘gold’ triples

that are embedded in the sentences – Input Sequences – of the training data.

83



Table 4.2: Sample of relations from the NYT dataset and their corresponding verbal
phrases.

Header(s) – Relation (r) Verb Phrase (vpr)

\people\person – place-of-birth was born in

\people\person – nationality is the nationality of

\business\company – place-founded was founded in

\location\neighborhood – neighborhood-of is in the neighborhood of

As the first step, we construct a lookup table containing pairs: relation – verbal

phrase (vp). It means we assign to each relation that appears in the sentences of the

training dataset a single verbal phrase (vp). The vp’s are chosen in such a way that

they transfer the meaning of the relation embedded in the input sentences. Table 4.2

shows a fragment of the lookup table with a few examples of the relations from NYT

dataset and the vp’s assigned to them.

For converting triples ⟨hi, ri, ti⟩ – gold triples – associated with an Input Sequence

(IS) into a sentence, we execute the following process, Algorithm 2. We extract

the vp corresponding to the ri from the lookup table; we attach hi and ti before

and after vp. By doing this, a sentence is generated – we call it t-Sentence – that

is the counterpart sentence for the ‘gold’ triple. In a case, there is only one triple

this becomes Label Sequence. In a case there are more than one ‘gold‘ triple in the

input sequence, we create a t-Sentence for each triple, and then we concatenate all

constructed t-Sentences together via a conjunctive word and to form a single final

sentence – called Label Sequence.

Additionally, we add special tokens [BOS] and [EOS] to mark the start and end

of the sentence. Such created a set of label sequences constitute a training dataset

fed to the model.
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4.4.2 Input Encoder

We tokenize input and label sequences using different tokenizers. The selection of the

tokenizer depends on the model we use in our encoder-decoder architecture. For ex-

ample, if the encoder is initialized using BERT pretrained checkpoint, then the input

sequence is tokenized using WordPiece [152]. On the other hand, if the decoder is ini-

tialized using GPT-2 checkpoint, then the label sequences are tokenized by Byte Pair

Encoding (BPE) [41], which matches the GPT-2 vocabulary. In the case RoBERTa

checkpoint is used for initializing, BPE is used as a tokenizer. Therefore, the type

of tokenizer used for input and label sequences depends on the pretrained checkpoint

utilized for initializing the encoder and decoder, respectively.

4.5 Model Architecture

The details of the architecture of our model including its initialization approaches are

presented here.

4.5.1 Seq2seq Architecture

The backbone of our encoder-decoder architecture is the model presented in [17] which

is an encoder-decoder based transformer model. Given the tokenized input sequence

X = {x1, x2, ..., xn}, the encoder encodes each token into a contextualized vector

representation D = {d1, d2, ..., dn}. The decoder exploits D to generate the output

sequence Y = {y1, y2, ..., ym}, in an auto regressive manner. This can be written in

mathematical way using the Bayes’ rule as follows:

pθenc,dec
(Y |X) = pθdec(Y |D) =

m∏︂
i=1

pθdec(yi|Y0:i−1, D)

where : D = fθenc(X)

(4.1)

Therefore, the conditional probability of generating a word in each step can be
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obtained by applying softmax over the output of the top-most layer – logit vector P :

pθdec(yi|Y0:i−1, D) = Softmax(Pi) (4.2)

Encoder and decoder are both composed of stacked transformer layers.

Tokens of the input sequence X are first embedded into vectors XV(0)
=

{XV1 , XV2 , ..., XVn}, by summation of token embedding and position embedding to-

gether. Afterward, XV(0)
passes through transformer layers one by one to be encoded

into a contextualized representation vector D:

XV(j+1) = transformer(XV(j)) (4.3)

In each transformer block, bi-directional self-attention is applied to the input se-

quence. For this, three matrices are created from each block’s input. They are called:

query Q, key K, and value V . These matrices are calculated by multiplying XV by

query weight matrices, key weight matrices, and value weight matrices (WQ,WK ,W V )

respectively.

Qj+1 = XVj
WQ

j+1, Kj+1 = XVj
WK

j+1,

Vj+1 = XVj
W V

j+1

(4.4)

Zj+1 = Softmax(
Qj+1K

T
j+1√

dk
)Vj+1 (4.5)

where Zj+1 is output of the self attention layer in the block j + 1 and dk is the

dimension size of Kj+1. In each transformer block, there are multiple attention heads

that improve the model ability to focus on different positions. Each head has separate

weight matrices for query, key and value what leads to a different Q,K and V matrices

in each head.

An architecture of the decoder is also made of stacked transformer layers with some

differences when compared to the encoder:

1. Encoder’s bidirectional self attention layers should be changed to unidirectional
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self attention (casual attention) to be fit with auto-regressive style of the de-

coder. So, Eq. 4.5 is rewritten as follows:

Zj+1 = Softmax(
Qj+1K

T
j+1√

dk
+ M)Vj+1 (4.6)

where M is a masking matrix: it is 0 for the left side context to allow them to

attend the attention, and it is −∞ for right side context to prevent them from

attending the attention.

2. Decoder utilizes the encoder’s final block output (contextualized encoded se-

quence, D) to generate output at each time step. This is obtained by adding a

cross attention layer in the decoder.

3. On top of the final decoder’s block, the Language Model Head (LM Head) layer

is added to generate a token with the highest probability at each time step.

4.5.2 Applying Pretrained Checkpoints

The architecture of the proposed model is the same as BERT-base that is slightly

different from the vanilla transformer employed in [17]. BERT uses GELU [153] as

an activation function other than RELU. Also, BERT-base has 12 transformer layers

compared to [17], which has just 6 layers.

In this work, transformer layers are warm-started using freely obtainable pretrained

checkpoints [143]. These checkpoints can be taken from different models like: BERT,

GPT-2 and RoBERTa. For example, the encoder is initialized using RoBERTa, while

GPT-2 checkpoints is used to initialize the decoder. In general, both encoder and

decoder can be initialized with ‘any combination’ of checkpoints.

For injecting a pretrained checkpoint into an encoder-decoder-based transformer

model, all the model’s parameters are initialized with the parameters corresponding

to the checkpoint. Let us say we use BERT pretrained checkpoint to initialize both

encoder and decoder as illustrated in Figure 4.1. The following steps should be

followed:
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• Encoder Initialization: For the encoder, we compare BERT’s architecture

to the encoder’s one to identify similarities and differences. Any layer in the

encoder that exists in BERT is initialized using BERT’s counterpart pretrained

weight parameters. However, if there is a layer in the encoder that does not

have its equivalent in the BERT’s configuration, it is initialized randomly. Be-

cause the configuration of the transformer used in this work is the same as

BERT, therefore every encoder layer can be initialized using BERT’s equiva-

lent pretrained weights – so, there is no randomly initialized parameter in the

encoder.

• Decoder Initialization: BERT is an encoder-only transformer. If we want to

initialize the decoder with the BERT’s pretrained checkpoint, some modifica-

tions have to be performed to make the BERT’s architecture compatible with

the decoder’s one. The modifications are:

1. BERT’s self attention layer is bidirectional. This should be changed to

uni-directional to match the auto-regressive fashion of the decoder.

2. BERT does not have a cross attention layer. Yet, the decoder requires

this layer as it is conditioned on the last encoder’s block output (D). So, a

layer should be added to the BERT’s structure right after the self-attention

layer. This layer’s weights are initialized randomly.

3. BERT does not have a language model head layer on top of its last encoder

block. However, as the outputs of the decoder are logit vectors and the

most probable word should be selected from these vectors at each time

step, the decoder needs this layer. So, again, a layer should be added to

the BERT’s architecture. Its weights are initialized with the BERT’s word

embedding matrix, so they are not initialized randomly.

Once the above modifications are performed, both BERT’s and decoder’s archi-
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tectures are identical, and we warm-start the decoder with BERT checkpoint.

4.6 Experiments

4.6.1 Dataset

For evaluation purposes, we will utilize two widely used datasets for evaluating our

model: New York Times (NYT) [126], and WebNLG [154]. NYT dataset was built

using the distant supervision method and used for relation and triple extraction tasks.

This dataset contains 56195 sentences for training, 5000 sentences for testing, and

5000 sentences for validation. Also, it has 24 predefined relations. WebNLG dataset

was initially used for a natural language generation (NLG) task. It consists of 5019

sentences for training, 703 sentences for testing and 500 sentences for validation. This

dataset has 246 predefined relations.

4.6.2 Settings

The encoder-decoder-based transformer architecture is warm-started by pretrained

checkpoints. All applied checkpoints correspond to the base architecture – it means

the one that has 12 layers, 12 attention heads, a filter size of 3072, and a hidden

size of 768. Therefore, whenever BERT pretrained checkpoint is mentioned in the

experiments, that relates to BERT-Base Cased configuration.

All models are trained for 60 epochs with the batch size of 32 for NYT dataset,

and 100 epochs and the batch size of 8 for WebNLG dataset. Adam optimizer is used

with the learning rate of 5 ∗ 10−5, and the beam size is set to 4.

We run our experiments on two NVIDIA TITAN RTX GPUs. All the hyperpa-

rameters are fine-tuned carefully using the validation dataset.

4.6.3 Baselines and Analysis

In this section, we compare the performance of our proposed model with other state-

of-the-art models, such as NovelTagging [109], CASREL [122] and MrMep [147]
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that are categorized as extractive methods, and CGT [124], CopyMTL [111], and

CopyRE [110] that are generative methods.

Our model is a generative method with an architecture that is an encoder-decoder-

based transformer. Both encoder and decoder are initialized with pretrained publicly

available checkpoints obtained from different models. We will evaluate different sce-

narios.

RND2RND – both encoder and decoder are initialized randomly without using

any pretrained checkpoints.

BERT2RND – the encoder is initialized with BERT checkpoint, while the decoder

is initialized randomly. In this case, the tokenizer and the vocabulary used for the

decoder’s sequences (label sequences) are the same as of BERT-base Cased.

RND2BERT – the encoder is initialized randomly, and the decoder is initialized

using BERT checkpoint. In this case, the tokenizer and the vocabulary used for the

encoder’s sequences (input sequences) are the same as BERT-base Cased.

RND2GPT – the encoder is initialized randomly, while the decoder is initialized

using the GP2-2 checkpoint.

RoBERTa2GPT – the encoder is initialized with the RoBERTs checkpoint, while

the decoder is initialized using the GPT-2 checkpoint.

BERT2BERT – both encoder and decoder are initialized by the BERT check-

point.

BERT2GPT – the encoder is initialized with the BERT checkpoint, yet the de-

coder is initialized by the GPT-2 checkpoint.

BERTShared – this one is the same as BERT2BERT, but the parameters of

encoder and decoder are tied together and shared. This reduces the overall parameters

of the model and thereby requires less memory.

RoBERTaShared – both encoder and decoder are initialized using the RoBERTa

checkpoint, and parameters of encoder and decoder are tied and shared.

We use three matrices for the evaluation: Precision (P ), Recall (R), and F1 score
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(F ). We report their values for our method and the baseline methods.

4.6.4 Main Results

The obtained values of P , R, and F1 are presented in Table 4.3. As we can see, the us-

age of a warm-starting encoder and decoder with pretrained checkpoints improves the

performance of the triple extraction task substantially. For both NYT and WebNLG

datasets, our model outperforms other state-of-the-art generative methods. For ex-

ample, for WebNLG dataset, when RoBERTaShared is utilized, our obtained value of

F1 is: 2.5% higher than the one obtained for CGT ; 48.8% more than of CopyRE ;

and 29.5% higher than compared to CopyMTL. Moreover, our model’s performance

on WebNLG dataset is proportional to extractive methods like CASREL.

In the case of NYT dataset, our model provides better F1 score against all gener-

ative and extractive methods. The RoBERTaShared ’s model has the F1 score higher

by 1.4% when compared to the values obtained for CGT, and higher by 0.9% when

compared with the value for CASREL.

The main characteristic of our model that distinguishes it from other baselines is

the high scores of recall (R) without significant degradation of the value of precision.

As it can be seen in Table 4.3, our model achieves significantly higher values of recall

for both datasets.

4.6.5 Initialization Scenarios of Encoder and Decoder

Encoder and decoder can be initialized in different ways. Depending on how they

are initialized, we see variations in the models’ performance, Table 4.3. For instance,

BERT2RND outperforms RND2RND by a large margin, yet RND2BERT has results

comparable to RND2RND. It indicates that the warm-starting of the encoder is a key

factor in improving the model’s performance. However, the warm-starting of the

decoder alone has no significant impact on the results.

Our decoder’s architecture is the same as of GPT-2. Therefore, the initial esti-
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Table 4.3: Values of precision (P), recall (R), and F1 -score for different models.

Model NYT WebNLG

Model Type Model Name P R F P R F

Extractive Methods

NovelTagging 61.5 41.4 49.5 - - -

CASREL 89.7 89.5 89.6 93.4 90.1 91.8

MrMep 77.9 76.6 77.1 69.4 77.0 73.0

Generative Methods

CopyMTL 75.7 68.7 72.0 58 54.9 56.4

CopyRE 61.0 56.6 58.7 37.7 36.4 37.1

CGT 94.7 84.2 89.1 92.9 75.6 83.4

Proposed Method

RND2RND 82.0 76.5 79.1 80.6 78.0 79.3

RND2GPT 77.0 72.1 74.5 65.5 65.6 65.6

RND2BERT 79.6 73.8 76.6 79.0 77.0 78.0

BERT2RND 88.8 86.4 87.5 85.1 84.4 84.7

BERT2GPT 86.5 85.8 86.1 84.6 83.1 83.8

RoBERTa2GPT 89.2 88.7 88.9 85.2 83.0 84.1

BERT2BERT 90.3 88.4 89.4 84.8 84.7 84.8

BERTShared 90.5 89.7 90.1 85.6 85.0 85.3

RoBERTaShared 91.0 90.0 90.5 85.5 86.3 85.9

mate is that the warm-starting of the decoder with GPT-2 should give better results

than warm-starting with BERT. It could be because we have modified the BERT’s

structure to fit with the decoder. Despite that, we see quite a different situation,

Table 4.3. Results of the model with BERT2BERT and RND2BERT initialization

have gained better outcome compared to BERT2GPT and RND2GPT respectively.

Further analysis of results shows a good performance of ‘shared’ models, i.e.,

BERTShared and RoBERTaShared. These models perform better on both datasets

in the comparison to non-shared models. For instance, BERTShared outperforms
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Table 4.4: Performance of model trained on different size of data: RoBERTaShared
as initializer.

Reduction Size NYT WebNLG

Training Dataset P R F P R F

Reduced by: (%)

0 91.0 90.0 90.5 85.5 86.3 85.9

25 89.5 89.5 89.5 76.1 83.2 79.5

50 86.5 88.1 87.3 72.2 77.7 74.8

75 80.6 81.9 81.2 57.7 64.1 60.8

BERT2BERT by 0.7% and BERT2RND by 2.6% in the F1 score on NYT dataset.

4.6.6 Impact of Dataset Size

We also investigate the impact of the size of the training set on the performance of

our model. For this purpose, we reduce the size of both WebNLG and NYT training

datasets by 0%, 25%, 50%, 75%. For instance, 0% means we do not change the size

of the dataset, while 75% means we reduce the size by 75% (use only 25%). The

reduction is performed by random sub-sampling of the original dataset. We sub-

sample the dataset in a way that the number of instances for each predefined relation

is reduced by the same ratio.

The best performing model (RoBERTaShared) is used for the experiment, Ta-

ble 4.4. As it can be seen, by reducing the training set by 75%, the F1 score is

reduced just by 9.3% for NYT dataset and 25.1% for WebNLG dataset. The more

significant decrease for WebNLG can be due to the more significant number of pre-

defined relations in the dataset. The results show that even with a smaller size of the

training set, our model achieves significant results.
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4.6.7 Error Analysis

The fact that the results are very good yet not perfect has triggered a need to analyze

the erroneous cases. We show a few examples of triples generated incorrectly by our

model. Note: we show triples that have been built using a simple process of converting

sentences generated by the proposed model, i.e., Label Sequences, into triples. We

have identified four different groups:

1. Wrong Entity: the head or tail entities are detected incorrectly by the model.

The sample of Group 1, Table 4.5, is an illustration of this case. It results

from an unclear definition of entity occurring in the gold triple – this entity is

expressed implicitly in the input sentence. Therefore, the model fails to generate

the valid triple.

2. Displaced Entity: similar to the previous error – one of the model’s generated

entities, head or tail, is different from the entity of gold triple. However, in this

case, the generated triple is still a valid triple that can be deduced from the

input sequence. For example, let us take a look at the sentence from Group 2,

Table 4.5. The tail entity for the gold triple is Indonesia; however, our model

generates Singapore instead, which can still be a valid triple generation based

on the input sequence. However, as the generated triple differs from the gold

triple, we still count this as a wrongly extracted triple.

3. Dominant Relation: while generated head and tail entities are the same as

in the gold triple, the generated relation is wrong. For the sequence in Group

3, Table 4.5, our model generates ’place lived’ as the relation, however the true

relation is ’place of birth’. This error can be due to an unbalanced training set.

The number of triples with ’place lived’ as the relation is much larger than the

number of triples with ’place of birth’ as the relation. The model is more prone

to generate the dominant relation.
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4. Opposite Relation: the relation generated by our model is the inverse of the

one from the gold triple. The example of that is shown in Table 4.5, Group 4.

As it is seen, the model generates ’followed by’ instead of ’preceded by’ as the

relation. Nonetheless, the generated triple is equivalent to the gold triple and

conveys the same meaning. Despite that, we still count it as a wrong generation

as it is not the same as the gold triple.

Table 4.5: Examples of four different groups of errors

Group 1: Buzz Aldrin is a national of the United States whose leader is Joe Biden. He was born in Glen Ridge,

Essex County, New Jersey.

Gold Triple: ⟨ Biden, leaderName, United States ⟩

Generated Triple: ⟨ Biden, leaderName, New Jersey ⟩

Group 2: Beef kway teow is a dish found in Singapore and Indonesia. Kway teow, beef tender loin, gula Melaka, sliced,

dried black beans, garlic, dark soy sauce, lengkuas, oyster sauce, soya sauce, chilli and sesame oil are main ingredients

in beef kway teow.

Gold Triple: ⟨ Beef kway teow, region, Indonesia ⟩

Generated Triple ⟨ Beef kway teow, region, Singapore ⟩

Group 3: And in fact the Syrian foreign minister, Farouk al-Sharaa, speaking at a news conference in Damascus, also

condemned the attack.

Gold Triple: ⟨ Farouk al-Sharaa, place of birth, Damascus ⟩

Generated Triple: ⟨ Farouk al-Sharaa, place lived, Damascus ⟩

Group 4: Above the Veil, from Australia, is the third book in a series after Aenir and Castle.

Gold Triple: ⟨ Above the Veil, preceded by, Aenir ⟩

Generated Triple: ⟨ Aenir, followed by, Above the Veil ⟩

4.7 Conclusion

In this chapter we proposed a novel approach for extracting triples from the text. We

have converted the triple extraction problem into a sequence to sequence task. The

proposed model is trained on datasets with automatically constructed label sequences.

Triples to be extracted from the input sequences are converted into simple sentences.

It means our model’s task is to generate these sentences as output triples.
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The backbone architecture of the model is a transformer-based encoder-decoder.

Both encoder and decoder are initialized with publicly available pretrained check-

points of different models such as BERT, RoBERTa, and GPT-2. The inclusion of

pretrained checkpoints leads to the significant improvement of the triple generation

process. We have conducted experiments on two widely used datasets to validate the

efficiency of our model. The experimental results confirm that our model achieves

state-of-the-art results compared to other baselines. Also, the proposed model pro-

vides good results when trained on the reduced datasets.
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Chapter 5

Construct Knowledge Graph from
Triples

In this chapter we will explain how we can build a knowledge graph out of extracted

triples from plain text.

5.1 Introduction

Knowledge graph(KG) is a visualization method that recently has attracted lots of

attention for the purpose of visualizing data. The graph-based database, collects data

from different types and sources and merges them together through nodes and links.

After merging all the data, we end up having a network of entities(nodes) which are

linked together via relation(s).

In the chapter 4 we proposed a method a extract triples from plain text. These

triples are a pair of entities that are connected together through a relation.However,

the question is how to utilize these triples for different purposes. In this chapter

we will talk about creating a KG out of extracted triples from WebNLG dataset.

The extracted triples are processed and used to build a knowledge graph. Complete

control of this process allows determining weights of the relations (triples). The

weights reflect the frequency of occurrences facts represented by the relations and

provide the degree of confidence in the facts.
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5.2 Graph Construction

Triples extracted from a text, considered as a part of a larger task of knowledge

extraction, provide useful information that can be applied for variety of purposes.

The obtained structured information can be used to enhance recommendation systems

[155, 156], question-answering tasks [157], or building more comprehensive reasoning

and generative systems [158–161], just to name a few.

In the chapter, we illustrate the utilization of extracted relations to construct a

knowledge graph. We build a graph representing a testing set of WebNLG dataset

[154].

5.2.1 Process Description

The graph construction process we illustrate here involves several processing steps.

All these steps are presented in Algorithm 3. In the beginning, line 2, the generated

by our model Label Sentences are converted into triples – an ‘inverse’ process to

the one presented in Section 4.4.1 is applied. Then, a few steps, lines 3 to 11, are

performed to identify types of entities that constitute subjects and objects of the

triples. For this purpose we use flairNLP library1. It allows us to identify the following

Entity Names: Buildings, Cardinal, Date, Event, Geographical Location, Location,

Organization, Person, Product, Quantity, Work-of-Art, and Other. Once the entities

are identified, triples ⟨−−, is type of, Entity Name⟩ are created and added to the

set of all triples.

An essential part of the process is ‘name normalization,’ lines 12 to 21. Some

entities that represent the same thing can be labeled with variations of their names.

In most cases, it means shorter or longer names. We propose a straightforward

approach to address this issue to normalize them. Once we recognize types of times,

we look at the entities of the same type and determine which names are subsets of

‘full’ names. It means we identify which names are partial ones compared with ‘larger’

1https://github.com/flairNLP/flair
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names. For example, the name ’Alan S’ constitutes a part of ‘Alan Shepard.’ In such

a case, we replace a shorter name with a longer one – ‘Alan S’ is replaced by ‘Alan

Shepard.’ This process is represented by lines 11 to 20, Algorithm 3.

The last stage of the process is dedicated to performing probably the most com-

pelling aspect of the whole graph construction process – assigning weights to triples

and importance to nodes. Extraction of triples from a relatively large text means

that the same triple can occur/be extracted multiple times. We use this to build

a weighted KG. It is important to incorporate information about the frequency of

specific facts. We envision this information being interpreted/perceived as confidence

in the extracted relations. From a common-sense perspective, if a given fact is men-

tioned more often, we assume a higher degree of confidence in it. The steps of this

process are included in lines 22-33, Algorithm 3.

5.2.2 Constructed Knowledge Graph – Overview

The set of triples obtained from a testing part of WebNLG dataset has contained 728

entities and 1554 links between them. Because we perform open-source extraction,

we do not have a standardized vocabulary. In total, there are 116 different relations.

The constructed KG is shown in Figure 5.1. We mark the nodes representing types

of extracted entities. These nodes are connected, via the relation is type of, to nodes

of extracted triples.

5.2.3 Constructed Knowledge Graph – Zoom-in Sample

To illustrate details of the constructed KG, let us take a look at a fragment of the

graph, Figure 5.2. It shows several nodes that are related to the entity NASA of the

type ORGANIZATION. The focus is on the node representing ‘Alan Shepard’ and its

relations with other nodes – all marked in dark blue, and for the illustrative purposes,

their thickness represent their importance, i.e., frequency of occurrence. Besides the

relation is type of , the node ‘Alan Shepard’ is connected to other nodes via different
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Algorithm 3 Processing Triples for Graph Construction

Input:
set of generated Label Sequences by our method : SGenLS

set of recognizable entities: SEntity Types

Output:
set of ‘normalized’ and weighted triples: SF

Tr

1: STr ← ∅
▷ translating Label Sequences to triples

2: STr ← translate(SGenLS)
▷ entity recognition in text

3: for each EnTypek ∈ SEntity Types do
4: create set SEnTypek of entities of type EnTypek

▷ construction of triples with is type of relation
5: for each EnTypek ∈ SEntity Types do
6: for ei ∈ SEnTypek do
7: create triple < ei, is type of, EnTypek >
8: STr ← add newly created triple

▷ entity name normalization
9: for each EnTypek ∈ SEntity Types do
10: for ei ∈ SEnTypek do
11: for ej ∈ SEnTypek do
12: if name of ej part of name of ei then
13: remove ej from SEnTypek

14: replace ej with ei in all triples in STr

▷ adding weights to triples
15: initialize weight wi of each triple to 1
16: SF

Tr ← ∅
17: while STr ̸= ∅ do
18: for each ti from STr do
19: for each tk from STr do
20: if ti == tk then
21: wi+ = 1
22: remove tk from STr

23: remove ti from STr

24: SF
Tr ← ti
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Figure 5.1: Knowledge Graph constructed from extracted triples.

relations extracted from the text. As we see it, the thickness of edges represents the

number of occurrences of a given relation. For example, the relations birthPlace and

deathPlace occurred twelve times, the relations as occupation and crew member five

times, while selected by NASA and nationality four and one, respectively.

As mentioned earlier, these weighted relations allow us to talk about confidence in

facts represented by the relations. For example, the snippet of the graph is a clear

indication that there is a little doubt in the facts that Alan Shepard’s places of birth
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and death are New Hampshire and California, respectively.
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Figure 5.2: Knowledge Graph – fragment – NASA and Apollo missions; the node
’Alan Shepard’ and the relations between it and other nodes are emphasized; numbers
in brackets represent frequency of occurrences of relations.

5.3 Conclusion

In this chapter we showed a simple process of constructing a weighted knowledge

graph based on the triples extracted from a text. Methods for entity recognition,

name normalization, and assigning weights to edges are developed. The obtained

graph represents the text as a set of triples and provides essential information about

the degree of confidence in the extracted facts. Such knowledge can enhance systems

requiring semantics and the importance of facts.
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Chapter 6

Conclusion

6.1 Summary

A constantly growing amount of textual data can be perceived as a drawback from

the users’ perspective. It is almost impossible to be up-to-date with generated infor-

mation. Therefore, the ability to automatically process the data and transform it into

a format easy to analyze and digest by machines becomes increasingly essential. The

introduction of the Semantic Web has created several ideas, concepts, and solutions

that address the issue of intelligent utilization of the web and information stored on

it. One of the most appealing contributions of the Semantic Web is the Resource

Description Framework.

The Resource Description Framework – RDF – is a graph-based format for repre-

senting information. Its basic building block is a triple <head, relation, tail>, where

head and tail are two entities – head being described by tail via a relation that links

them together. One of the most challenging issues related to RDF utilization is the

automatic extraction of triples from textual data.

The main goal of this thesis has been to propose, develop, and validate a com-

prehensive system for identifying and extracting relational facts from plain text and

use these relational facts to create or update knowledge graphs (KGs). This goal

has been approached gradually, i.e., starting with a simple problem that focuses only

on identifying relations between entities, when head and tail are already identified in
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a sentence, and finishing with extracting all components of triples from a sentence

simultaneously.

First, in Chapter 3, we propose a new method for relation extraction (RE) using

syntactic information drawn from a sentence dependency tree in addition to informa-

tion about types of entities. The developed approach analyses a sentence dependency

tree and removes noisy tokens. It cleans the input sentences, and only the most

important tokens related to RE task are left. Noisy tokens are the words that can

be removed from a sentence without affecting the implied relation linking head and

tail in the sentence. The approach also uses entity-type information. As each rela-

tion imposes restrictions on the type of its head and tail entities, incorporating this

information into the model makes an outstanding improvement to the RE task.

A process of extracting a full triple, i.e., all three components of it, has been ad-

dressed next, Chapter 4. We propose a new triple extraction method using sequence

to sequence transformers in this case. We have converted the triple extraction prob-

lem into a sequence-to-sequence translation task. The input to the model is a text

sequence, while the output is a sequence representing head, tail, and relations between

them. A transformer that includes both encoder and decoder is used to obtain such

functionality. Both encoder and decoder are initialized with free available pretrained

checkpoints of different models such as BERT, RoBERTa, and GPT-2.

Finally, in Chapter 5, we demonstrate how a knowledge graph can be built using

relational facts extracted from the text. The developed simple methodology that uses

sequences generated with our transformer-based method from a plain text has been

applied to construct a knowledge graph with human supervision.

6.2 Contributions

The list of original accomplishments described in this thesis can be summarized as

the following:

104



• Proposing a new technique for relation extraction (RE) task using dependency

tree and entity type information. We apply LSTM networks with an attention

mechanism to classify the true relation in each sentence. The experimental

results obtained using the NYT dataset indicate that our model outperforms

other state-of-the-art neural models and achieves higher values of precision over

the entire range of recall values.

• Proposing a novel approach for the triple extraction task. We utilize transformer-

based encoder-decoder models to generate the triples. Both encode and decoder

are initialized using pretrained checkpoints from different models. Applying

pretrained checkpoints on the encoder and decoder leads to a significant perfor-

mance boost in the triple generation task. We have performed experiments on

two widely used datasets: WebNLG and NYT, to demonstrate the efficiency of

our model. The experimental results show that our model achieves state-of-the-

art results compared to other baselines. We have also tested the model with a

reduced dataset size to see its impact on the model. The results confirm the

efficiency of our model even with a reduced dataset size.

• Proposing a procedure to construct a knowledge graph based on the extracted

triples from a text. We used the triples extracted from the WebNLG dataset

and created a weighted knowledge graph. This process is fully automated,

and there is no need for a human to extract the triples or build the graph.

The proposed method also provides information about the strength of relations

between entities. It is determined based on the frequency of occurrences of

triples extracted from the text.

6.3 Future Considerations

In general, the methods proposed in this thesis build a fundamental structure for

future research related to knowledge extraction and construction of knowledge graphs.
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Based on the proposed ideas, one can continue working on information extraction

topic, considering the followings:

• We utilized recurrent neural networks for a relation extraction task. However,

nowadays, transformers are proven to be very useful in many NLP tasks. So,

we can utilize transformer structures and fine-tune them for relation extraction.

• We treated a triple extraction task as a sequence-to-sequence task. We used

the sequence to sequence transformers and initialized them with pretrained

checkpoints from different models. However, the T5 model has shown prominent

results in many NLP tasks. For future work, we can investigate the utilization

of T5 for triple extraction and compare the results with those reported in the

thesis.

• We tested our triple extraction method on WebNLG and NYT datasets. How-

ever, it will be important and beneficial to have other supervised datasets re-

lated to the task of triple extraction. It would enable more experiments and

improve the evaluation strategies. It would be interesting to apply our method

on datasets representing specialized domains such as medical ones.

• We worked with a few datasets. However, creating a supervised dataset for the

triple extraction task is time-consuming and expensive. To overcome this issue,

we can investigate few-shot learner methods for triple and relation extraction.

It would decrease the need for large sizes of training data.
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[84] C. Alt, M. Hübner, and L. Hennig, “Fine-tuning pre-trained transformer lan-
guage models to distantly supervised relation extraction,” arXiv preprint arXiv:
1906.08646, 2019.

[85] H. Wang, M. Tan, M. Yu, S. Chang, D. Wang, K. Xu, X. Guo, and S. Pot-
dar, “Extracting multiple-relations in one-pass with pre-trained transformers,”
arXiv preprint arXiv:1902.01030, 2019.
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