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ABSTRACT

The approximation of an ideal frequency response
by a realizable filter has wide applications in Engineer-
ing. This topic is treated in this study. The general
approach used is to convert the problem into the time
domain and to find a filter satisfying the desired impulse
response such that the error in the frequency domain is
minimized. The error criteria used are the Least Integral
Squared Error and the Maximum Deviation, in the frequency
domain. The Integral Squared Error (ISE) in frequency
domain is related to that in time domain by the relation

1 4o

e LalFG0) - HGw) [ 2aw = *7)E0e) - ne) |2at

where F(jw) and H(jw) are the desired and approximate
frequency responses and f(t) and h(t) are the correspond-
ing impulse responses respectively, The minimization of
ISE alone need not limit the maximum deviation in fre-
quency domain., The deviation in frequency domain is
related to the average error in time domain by the rela-

tion
[F(3w) - 8w} | < SI2[£(8) - h(t)[at

This relation is used to control the frequency domain
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¢aviation, It has been shown that the minimization of
deviation in the frequency domain can be achieved while
keeping the ISE wi£hin allowable limits.

The approximation is carried out using a set of
'orthonormal functions of exponentials. The numerical
evaluation of the time domain representations of these
orthonormal functions are carried out by a novel method.
This method makes the computer evaluation of the transi-
ent response of ‘any rational function of complex frequency
simpler and more efficient.

~ The theory developed in this dissertation is
applied to the specific example of approximating the ideal

low pass filter.
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CHAPTER 1

INTRODUCTION

In recent years there has been a renewed inter-
est in the approach of approximating a desired frequency
domain characteristic by converting the problem into one of
time domain approximation (1-4). This has led to the possi-
bility of realizing filters using least integral squared
error criterion in the frequency domain, The family of
filters having this frequency domain criterion have not
received wide attention. This is partly due to certain
problems arising in the solution of the optimum filter
parameters, This research is intended to fill this gap.
The general approach employed in this work is to convert
the problem into a time domain approximation. The least
square criterion does not take into account the maximum
deviation of the achieved response from the desired fre-
quency response, This work develops a new method of de-
sign which minimizes this deviation in the frequency do-
main while keeping the integral square error within allow-
able limits, Thus this new method makes use of a combina-
tion of least square and Chebyshev criterions in the fre-
quency domain, One problem encountered in this approach
is the need to compute on digital computer the transient
response of a Laplace transform expressed as rational func-

tion., This has been solved by a novel method (5).
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Having broadly outlined the scope of this work
in this chapter, the basic problem of least square design
in the frequency domain is presented in Chapter 2. The
conversion from frequency domain to time domain and the
equivalent time domain approximation by using a set of
orthonormal functions of exponentials are discussed in this
chapter. The concept of complimentary filter and the
evaluation of the integral squared error using this f£il-
ter are also reviewed in this chapter. Chapter 3 gives a
summary of recent works concerned with this problem.
Chapter 4 gives the mathematical basis of the new method
of frequency domain design based on minimizing the devia-
tion in the frequency domain while keeping the integral
squared error within allowable limits. The basic theory
of the new method of numerical evaluation of the transi-
ent response is given in Chapter 5. The convergence pro-
perties and comparative merits and demerits of this new
method are also discussed in this chapter. The implemen-
tation of the new method of design on digital computer
is done in Chapter 6. The computer algorithm that is used
to determine the optimum poles of the filter by minimizing
the integral squared error is reviewed in this chapter.
The results obtained by applying this new technique to a
specific example are also discussed here. Chapter 7 gives

a summary of the entire dissertation and discusses the
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conclusions of this research work. The areas of further

work are also mentioned in this chapter.



CHAPTER 2

LEAST INTEGRAL SQUARED ERROR FILTERS

aND

EVALUATION OF INTEGRAL SQUARED ERROR

INTRODUCTION

In this chapter we define "Least Integral Squared
Error Filters" and outline the technique of realizing such
filters, The theory of evaluating the "Integral Squared
Error" (ISE) by a simple filtering operation is also dis-
cussed.

Let us consider the problem of approximating an
ideal frequency response F(jw) by a physically realizable
filter. The impulse response of any physically realizable
filter can exist only for positive values of time (6). Let
H(jw) be the frequency response of such a filter. If £(t)
and h(t) are the inverse Fourier Transforms of F(jw) and

H(jw) respectively, we have
40 .
F(ju) =/ £(t)e 4%t
+00 -
and H(ju) = L h(t)e I%Fat
Ty e -dut
= [oh(t)e %%t (2.1)

Let E(jw) be the error in the frequency domain and e(t)
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be the error in time domain.

Then

E(jw) = F(jw) = H(jw)

and e(t) = £(t) - h(t) (2.2)

There exists a vast body of literature on approximating
specific examples of F(jw) by making use of purely fre-
quency domain techniques (7-10). This research develops
a general technique of design of filters that can be

adopted to any specific example without difficulty. It
may also find application in the design of optimum fil-

ters in signal theory (11).

LEAST INTEGRAL SQUARED ERROR FILTERS

311l methods of approximating F(jw) by H(jw) try
to minimize the error E(jw) in equation (2.2) in some
sense., The family of filters having minimum integral
squared error in frequency domain has not received atten-
tion until recently (1-2). This work develops a method of
design based on minimizing the integral squared error
Z:IE(jw)Izdw. The filters satisfying this criterion are
defined as Least Integral Squared Error Filters.

The integral squared error (ISE) in frequency

domain and time domain are related by Parsevel's theorem
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(12, 16). It can be easily shown that, if e(t) belongs

to L(~», °°))

+w ©
2 |E (3w | 2w = *le(t) | at (2.3)

where e(t) and E(juw) are defined in equation (2.2). The
function h(t) in equation (2.2) exists only for t > 0.
Hence it cannot be used to approximate £(t) for t < 0.
Therefore it is assumed that f(t) vanishes for negative

values of t. Equation (2.3) can now be written as

+o )
L B | Pae = 1 e(8) | %at (2.4)

Equation (2.4) converts the problem of least square design
in the frequency domain to a problem of least square de-
sign in time domain. This makes it possible to use time
domain approximation theory for frequency domain design.
If £(t), the inverse of F(jw), is known the problem of
design in the least ISE sense reduces to finding h(t)
which minimizes the expression ﬁr|e(t)|2dt. The choice
of h(t) is governed by the factor that the filter is to
be realized from passive, lumped linear circuit elements.
This requires that H(s), the Laplace transform of h(t),
be a rational function of s with all the poles lying in

the left half s plane. The impulse response of such cir-
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cuits can only be a finite sum of damped exponentials.
(The case of multiple poles is exceptional and is not con-
sidered.) This suggests that the best form of approxima-

tion for f(t) is by a sum of damped exponentials.

EXPONENTIAL APPROXIMATION

Let f£(t) be approximated by h(t) which is a lin-
ear combination of N damped exponentials.
t

N
hit) = 1 g.e%i

2.5
1Z18s (2.5)

s; is, in general, a complex number with Re(si)<0. Let I
be the time domain integral squared error,

Then

- N .
I= (8w - 1 8.e5it%at (2.6)
j=1 1

The parameters {Bi}§=l and {si}§=l have to be determined
such that I is a minimum., This problem was first dis-
cussed by Aigrain and Williams and they formulated a set
of equations known as Aigrain and Williams equations (13).
These equations are of classical interest and are neces-
sary to understand the complexity involved in exponential

approximation.

Differentiating the ejuation (2.6) with respect
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to Bk and s, we get,

31 y L@ N S:t,2
= fo {£(t) - I B.e"i-}°dt
'S'Ek WF j=1 &
) N s:t Skt
=2f {£(t) - iglsie 1%} (-e"X7)dt (2.7)
3T _ N o osity,_ . .Skt
53; = 2fo{f(t) - iElBie 17} B te"k)dt (2.8)
For I to be minimum,
3L _
8y
(2.9)
%%k =0, k=1,2,...N

It is possible to simplify the equations (2.7-2.9) as
follows,

By definition,
78 () e®ktat = F(-sy) (2.10)
where F(s) is the Laplace transform of f(t).

Similarly,

—_t
sk + si

re8it o5kt gt = (2.11)



@ skt., _ d - -
L tf(t)e ™k dt = HEF(S) at s Sy
= F'(-Sk) (2.12)
and
o (55 + sg)t.. _ 1
hte’1 dt = T2 (2.13)
i k

Substituting equations (2.10) and (2.1l) in equations
(2.7) and (2.9) we get,

N B.
l = - - =
1£l W— F( Sk), k 1,2,.‘.N (2.14)
Similarly substituting equations (2.12) and (2.13) in

equations (2.8) and (2.9),

N 8,
izl G—Tlg-yz = -F'(-s;), k = 1,2,...N  (2.15)
= i k

Equations (2.14) and (2.15) are known as Aigrain and
Williams equations (13). There are 2N unknown complex
parameters and 2N equations. The analytical solution of
these 2N nonlinear simultaneous equations is extremely
difficult; but these equations suggest the probable exis-
tence of a set of parameters {Bi}§=l and {si}l;.]_=1 which
will make the ISE, I, a minimum, Moreover any direct

solution of these equations requires the availability of

F(s) and F'(s) at any point. Because of these factors no
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attempt is made to solve these equations. Young and
Huggins have shown that the complexity involved in tack-
ling these equations could be greatly reduced by making

use of orthonormal functions of exponentials (18-21).

ORTHONORMAL FUNCTIONS OF EXPONENTIALS
Let {¢i(t)}z=l be a set of orthonormal functions

defined over (0, »). Then

fop; (68, (t)at = 1, if i =3
(2.16)

0, if i # ]

Any real function £(t), te(0,®), for which 4°|£(t)]%dt < =
can be expanded in terms of these orthonormal functions.
If the set of orthonormal functions is complete and if

the series i§1Ci¢i(t) converges uniformly, we have (12,

14)

£(t) i£10i¢i(t) (2.17)

where

(@]
U}

kwf(t)¢i(t)dt (2.18)

If f£(t) is approximated by N terms, the approximation h(t)

is given by

N
h(t) = I Co;(t) (2.19)
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The error of approximation is

e(t)

f(t) - h(t)

N
f(t) - i-’z'-:lci¢i (t) (2-20)

It can be shown that ISE is given by, (14),

2

N
1= ]e(t)|%at = 7] £(t)]%at - 'Lzlci (2.21)
i=

It is possible to construct a set of orthonormal functions
of exponentials by Gram-Schmidt process (12, 14). Another
method of greater practical value was developed by Kautz
(17) which was later improved by Young and Huggins (18-
20) and Ross (21). This has been widely used in the ana-
lysis of speech signals (22-23) but has not been adapted
and made use of in filter design. This dissertation makes
use of these orthonormal functions.

Let it be required to construct a set of N ortho-
normal functions from N exponentials of which there are
r real exponentials and c pairs of complex conjugate ex-
ponentials. It is assumed that all the exponentials have
negative real parts.

Consider the frequency domain representations

of N functions as given below.
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= /75T 1
9, (s) = 51 5= 5;
(s} ir_l s + sii J-Zsr
o _(s) = {.w
r i=1 § = 8;) 8 - S,
r S+si Vipls
®r+1(s) = 3121 s - s.§ S2 + o5 +
: P 9
o = | ]
s) = (T
r+2 i=1 8 - s;| (2
1) s” + pls + 9
where
Py = =(sp4y ¥ Spea)
_ 2 _ 2
q = Ispal” = Isl™
Srel and Sp4o form a pair of complex conjugate exponentials

. N-2 8 + 8, V2p, S
QN-l(s) = %-“ s -8 i 2
i=1 i) ™ + P.S t 4
N-2 S+ 8 /2p 4,
o (s) = ).n ra— : 5 {(2.22)
i=1 i)s
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where
Po = ~(Syo1 * 8y
2 (o (2
9 = ISN_lI = |SN| ’
Sn-1 and Sy form the last pair of complex conjugate expo-

nentials.
Functions ¢l to °r correspond to the set of real exponen-

tials, ¢ and ¢r+ to the first pair of complex exponen-

r+l

tials and ®y-1

tials, It will now be proved that the corresponding time

2
and QN to the last pair of complex exponen-

domain functions {¢i(t)}Ni=l form an orthonormal set.
This is done by using Parsevel's theorem. By this theo-

rem we have,

Rogte)g (e1at = zzr 0 ()0 (-s)ds (2.23)

where j = /=1.
(s)

Consider two functions ¢r+21_1(s) and @, o4

corresponding to a pair of complex conjugate exponentials

Sr42i-1 and S 424" Using equation (2.22) we get,
¢ (s)@ (-s) M (2.24)
r+2i-1'8%p42i 1780 = 73 ) .
(s® + pys + q;) (s” - p;s + q)
2 - - -
where (s° + p;S + qi) = (s sr+21_l)(s sr+2i) (2.25)
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. +jo -
The evaluation of f—jw¢r+2i-l(s)¢r+2i( s)ds may be done
by taking the closed contour consisting of the imaginary
axis and left side semicircle at infinity., Thus by

Cauchy residue theorem (25) we have

7% (s)®

~jo’re2i-1 (-s)ds = 213 (R + R))  (2.26)

r+2i

where R, and R, are the residues of {®r+21_l(s)¢r+21(-s)}

at and s respectively., Evaluating the resi-

Sr+2i-1 r+2i
dues it can be easily shown that (Rl + R2) is zero. This

proves that functions ¢r+2i-l(t) and ¢ (t) are orthog-

r+2i
onal to each other, Similarly

b . (s)e_, .. (-s) Pid (2.27)
r+2i '8 P42 (781 = = 2 :
(S + pis + ql) (S = pis + ql)
and
-2pis2
4251800455 1(-8) = —;

2
(8" + pys + q;) (5" - p;s + q,)

(2.28)

Integrating these functions along the closed contour enclo-

sing the left half s-plane it can be shown that

1 i _
Tr5 -3elranq (8)0pp; (-8)ds = 1
(2.29)
and L 3=y (s)® (-s)ds = 1
2137 =jo r+2i-1 r+2i-1
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Thus the orthonormality of the functions ¢r+21-1(t) and
¢r+21(t) is proved.

If any two functions mm(s) and ¢n(s), which do
not belong to the special case discussed above, are con=
sidered it can be shown by pole-zero cancellation, that
all the poles of Qm(s) @n(-s) lie only on one half (left
or right) of s-plane and the function is hence analytic
in the opposite half of s-plane. Therefore it can be
proved that

+j - -
(818 (-s)ds = 0 (2.30)

Considering any function @i(s), which is formed from real
poles only, we have

2s.
%, ()0, (-s) = T"J:T (2.31)

- 8.
5 1

Evaluating the countour integral by Cauchy Residue theorem

We can prove

1 +je _ _
iiiJ-jwci(s)Qi( s)ds =1 (2.32)

Thus the orthonormality of functions {¢i(t)}?=l is proved.
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COMPLIMENTARY FILTER AND ISE
When ISE is minimum with respect to the para-

N .
meters {Bi, si}i=l of equation (2.5)

oI =0
§Bi
91

and —— = 0
asi

From equations (2.7) and (2.8) we get

?TIB._ = —2f°°°e(t)esitdt = 0, i = l,2,...N
i
(2.33)

and §§7 = -28, he(t)te®itat = 0, 1 = 1,2,...N
1

Equation (2.33) gives the condition for I to be a minimum
as

fre(t)e®itat 1,2,...N

i}

(2.34)

and  fe(t)te®itat =0, i =1,2,...n

In other words, the condition for I to be minimum is that
e(t) should be orthogonal to {esit}§=l and {tesit}?=l.
These properties of e(t) are made use of by Young and
Huggins (18-20) in developing a simple method of evaluat-

ing ISE. This is now discussed.
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In the formation of the orthonormal functions
@k(s), it is observed that each ¢k(s) has an all pass

nS'*'S-

factor of the form {,nl E—:-Ei}. The degree of this fac-
i= i

tor successively increases, If N exponentials are used
for the approximation and it is required to add one real
pole or a pair of complex poles, the all pass filter
appearing in the corresponding orthonormal function or

. s + s,
functions will be { T, —=}. This all pass factor is

j=1 § - 8,
called the complimentary filter of Nth degree approxima-
tion (18-20), This filter has the interesting property
that if the function f£(t) is time reversed and filtered
using this complimentary filter, say G(s), the integrated
squared error can be directly evaluated from the output

of G(s) (18-20). This property can be proved as follows.

Let v(t) be the time reversed signal of f(t).

v(t) f(-t), -~<t<0

(2,35)

i}
o

v(t) ; £50

‘'The approximation h(t) may also be reversed to get the

corresponding approximation va(t) of v(t). Hence,

v, (£) = h(-t), =e<t<0
(2.36)

0, 50

and va(t)
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N
Since h(t) = i£1Ci¢i(t)
(2.37)
_ N
h('t) - i-_z-:-lcid,i(-t)

Since h(t) can also be expressed as a sum of exponentials
as in equation (2.5),
£

N g
h(-t) = I B.e °i

2.38
i=1'1 (2.38)

Comparing equations (2,37) and (2.38) it is seen that the
approximation of v(t) can be done solely on negative time
using growing exponentials as against the decaying expon-
entials used for approximation in positive time. In the
frequency domain the corresponding functions will be
{Qi(—s)}§=1 instead of {@i(s)}§=l. Two-sided Laplace
transform is used to get the frequency domain functions
of negative time functions (24).

Let

$k(s) = o (-5) (2.39)

The approximation Va(s) is

N
v, (s) = iElci?éi(s) (2.40)

Let ¢(t) be the error in approximating v(t). Then,
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v(t) = v, (t) + e(t), =o<tg0 (2.41)
ISE, I is given by
1= /%e(t) |2t = £ _|e(t)|2at (2.42)
The complimentary filter of Nth degree approximation is

s + s,
1

G(s) = (2.43)

'n‘ ——
i=1 8 = §;
Let a(t) be the output of this filter when v(t), the time
reversed f(t), is applied as an input. The output a(t)
exists for t extending from - to +x, The Laplace trans-

form A(s) of a(t) is obtained as

A(s)

il

ziglcizi(s) + E(s)‘G(s)

NS+S- N

- 1 -
= ;121 g-:fg;' iglci$i(5); + €(s)G(s) (2.44)

where € (s) is the Laplace transform of e(t).

Any %k(s), formed from real roots alone is given by

¥ k-1 =S + 8, /-Zsk
(8) = ¢, (-s) = (2.45)
k k i=l =8 ~— 8; -8 =8

Any pair of orthonormal functions $r+2k—l(s) and ¥r+2k(s)

corresponding to a pair of complex conjugate exponentials
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S,.42k-1 2nd S.42x 3re given as

$

r+2k-1(8) = Spiop_q (-8)

r+2k-2 -s + 84 /Epk (=s)
= . m -S =8 } 2
i=1 ils® - Pys * qg
and $r+2k(s) = 0,5 (-5) (2.46)

r+2k-2 -s + S /Zpqu
T -5 - s.}
i=1 1)s” - ps + g
where (s2 + Pys + qK) = (s - sr+2k-l)(s - sr+2k)

Examining equations (2.44), (2.45) and (2.46) it is seen

that in the expression for A(s), any term like

¢ ()

ﬁ S+Si§
i=1 8 © 8;

has all numerator factors of %k(s) getting cancelled with
denominator factors of G(s) and all the denominato: fac-

tors of %k(s) get cancelled with numerators of G(s). Hence

the poles of any term like

!i\r]s"l"si
l:ls*si

%k(s)

are solely determined by the remaining denominator factors
N S + s,
of '« =, It can thus be concluded that the expres-

=1 S - S,
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sion

1c
G(s) iglci i(s)
in equation (2.44) has all its poles lying in the left
half s plane., The remaining term in equation (2.44),
namely, €(s)G(s) may now be considered. Since e(t) has

been proved to be orthogonal to {e i

=l,s(t) is orthog-
~sitN
onal to {e }i=l'
Or
0 -s:t :
J_,elt)le "17dt =0, i=1,2,...N (2.47)

This orthogonality expressed in the frequency domain

becomes

e lelgmgds = 0, 1= 1,2, (2.48)
1l

Evaluating this integral we get
-E-(Si) = 0, i = l,2,...N (2049)

This proves that €(s) has zeros at {si}§=l'

Considering the factor G(s)e(s), it is found that
all the denominator factors of G(s) get cancelled with the
zeros of €(s). Hence all the poles of G(s)e(s) are deter-

mined by the poles of t(s) and so G(s)e(s) has poles only

in the right half s-plane. Thus A(s) can be split into
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two terms A'(s) and A''(s) such that
A(s) = A'(s) + A''(s) (2.50)

where A'(s) = G(s)e(s) has all poles in the right half s-
plane and A''(s) = G(s)ig Cigi(s) has all poles in the
left half s-plane. The output I(t), of the complimentary
filter, with reversed f(t) as input, extends from ~-» to

+o, This is also split into two parts such that

alt) = a'(t) +a''(t)
a'(t) =0, t0
and a''(t) =0, t<o, (2.51)

a'(t) and a''(t) correspond to A'(s) and A''(s) respec-
tively. It is easily seen that a'(t) is the output of
the complimentary filter during negative time and a''(t)
during positive time.

By Parsevel's theorem

L

2T)

%00 (s)a" (-s)ds

-joo

0
/__la'(t)|%at

7%-Jr-ffg::c;(s)E(s)G(-s)E(s)ds

Since G(s)G(-s) = 1, we obtain
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P lar ey (2qp = L e = =
[_ola'(t)]“at = 753/ -jw C(S)E(-s)ds
’ 2
= [_ Je(t)|“dt
w 2
= L |e(t)]“at.
Hence ISE is given by
= (® 200 = 1 |Z(e1]2
I=h |e(t)]|dt = s__|3(t)]|%dt (2,52)

where a(t) is the output of the complimentary filter with

reversed f£(t) as input.

This is schematically represented in Fig. (2.1). Methods

of implementing this on digital computer are discussed in

Chapter 6.
v(t) N ST FW 0 =24 |y ISE
reversed f(t) G(s) = ill 5 -5, J_ lalt)] dt-)——f—

Figure 2.1. Schematic diagram for evaluating ISE

The advantage of employing this technique of com-
puting I is that it can be directly evaluated from the

pole positions even without forming the functions {¢i(t)}?=l
N
i=1"

minimizing I, as given by Fig. 2.1, we need only consider

and evaluating the coefficients {Ci} Moreover, in
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N parameters, instead of the original 2N parameters of

equations (2.14) and (2.15).
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CHAPTER 3

A SURVEY OF PREVIOUS RESEARCH

In this chapter we discuss some of the impor-
tant methods that have been used to determine the para-
meters of H(s) in the least square sense. Some of these
methods tackle the problem purely as a time domain approx-
imation, while others take the frequency domain behaviour

into consideration.

PRONY'S METHOD
The first attempt to approximate a time function
by the sum of weighted exponentials was due to Prony (26).

Prony chose the function

N s:t
h(t) = 1§ g,e°1
i=1 1

(3.1)

such that h(t) passes through 2N equally spaced points of

the function f(t) where f(t) is the function to be approx-
imated by h(t). Let f£(t) be specified at points {ti}izal

where ti = iT, T being the interval between two succes-

sive points. We then have,



26.

= Sitk
h(tk) iglsie
_ N s:T
= iElBi(e l)
= f(tk)' k = 0,1,...,2N'1 (3.2)
Let esiT = X,. Equation (3.2) can now be written as
T k=0,1,...,2N-1 3.3
i=lBixi = (tk)' =0,1,00¢,2N~ (3.3)

Equation (3.3) is nonlinear in Xg This nonlinearity can
be removed by the following procedure.

Let { ai}lz:o be a new set of variables defined

by

N i N
iEOaix = iEl(x - xi), OGN =1 (3.4)

where {xi}§=l are the roots of the equation

N .
L a.xl
i=0 1

1]
o

(3.5)
Hence we have

N .
I o.x- =0,k

i—o lk- 1,2,.-‘,N (3.6)

Multiplying both sides of equation (3.3) by o and chang-

ing the index k to k+i, equation (3.3) can be expressed as
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‘ N k+i

aif(tk+i) = a, jilijj (3.7)
From equation (3.7) we get
N Noox¥ i
o f£(t, ,.) = I B.x, I O.x
120% % et j=1BJxJi=0 1%
. . N i
Since, by equation (3.6), _Zoaixj = 0 we have
1=
b f =0, k=0,1 1 3.8)
iE'-Oai (tk+i) =V, =0,1,...,N- (3.

Since Uy is assumed to be unity, equation (3.8) may be

written as

N-1
ian,if(tk+i) = ~f(tk+N) k=0,1,...,N-1 (3.9)

Equation (3.9) gives N simultaneous linear equations in N

unknowns (ai)g;%. Once ai's are known, the solution of

the polynomial equation (3.5) gives (eSiT)I;]=l and the Bi
values are obtained as the solution of (3.3).

The basic philosophy of Prony's approach is made
clear by equations (3.9) and (3.5). Equation (3.9) defines
a difference equation and (3.5) cérresponds to the charac-
teristic equation of this difference equation. This idea

of determining the exponentials of the approximation from
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the coefficients of an equivalent difference or differen-
tial equation is common to most of the methods reviewed
in this chapter. Prony's method has also been extended to
the case where the available number of points of £f(t) is

more than 2N, the number of unknown parameters.

KAUTZ'S METHOD (17)

If £(t), the function to be approximated is the
sum of N weighted exponentials, then £(t) is the solution
of an Nth order, constant coefficient linear differential

equation. This means

N i o )

[T

where D = I

The characteristic equation of equation (3.10) is

N
L o.s =0 (3.11)

and the solution of equation (3.11) gives (si)§=1.
But, in general f(t) is not an exact sum of
exponentials and equation (3.10) is not satisfied. Equa-

tion (3.10) is now modified as
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N i
iioaiD £(t) = e(t), ag =1 (3.12)

Here e(t) is not the exact error of approximation but is
a measure of how closely f(t) can be expressed as a sum
of N exponentials. The (ai)?;% are chosen so that
Lr|e(t)|2dt is minimum. Differentiating the expression
for I?]e(t)|2dt with respect to a, and equating it to

zero we get,

so—l5|e(t) | %at = 2/7e(t) e (t)at = 0 (3.13)
k k
k = 0,1,.00,N"'l
Substituting equation (3.12) into (3.13) we obtain

N-1 © 1 [
5 {fole(t)Dkf(t)dt}a. = -r70% (£)D"e (t) at (3.14)
i=0 i

k = 0,1,---,N—l

Equation (3.14) gives N equations in N unknowns., If N
derivatives of f(t) are known, equation (3.14) can be

solved for {a.}N-%

iYi=0° Hence the method is useful when f(t)

is analytically known.
This method obviously cannot claim to have mini-
mized the ISE between f(t) and the approximation h(t).

If £(t) has any discontinuity, the derivatives of f(t) at
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these points of discontinuity are undefined and hence the
method has to be modified. Another point worth noting is
that, instead of %y = 1 in equation (3.12) any of the ¢,
can be taken as unity and this will lead to a different
set of solutions for the exponentials (26). An interest-
ing review of this and similar methods, which basically
make use of the approach due to Prony, can be found in

McDonough (26).

YENGST'S METHOD (27)

Yengst's method resembles the approach of Prony
in that he assumes a difference equation, the solution of
which gives h(t), which approximates the desired function
f(t). The Nth order difference equation used by Yengst
is

=h,, i»N (3.15)

a,f + a,f oot at o i

17i-1 27i-2

where fi—l' fi-2' ey fi-N are equally spaced values of
f(t) at times (i-1)T, (i-2)T, ..., (i-N)T and hi is the
value of the approximation at time t = iT. (T is the
interval between two consecutive points.)

The error at the i'th instant is

e, = £, - h; (3.16)
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Let g be the total number of samples of f(t) available.

The coefficients (a.)N_ are so chosen that _g e? is min-
i'i=1 i=N 1

imized. Substituting equation (3.15) into (3.16) we

h'a“ e’
e. = Z f- Z alft ] (3-1;)

Equating the derivatives with respect to the coefficients

(aj)?=1 to zero,

3 3 N 2
EEAEN kilakfi-k) =0
J - 1,2'.|-N
Or
q N
'EN fi - kElakfi_k fi-j =0
This gives
g ? £,  f g £.£ (3.18)
a R . = L. .
i=N k=1 k7i-k"i~j j=Ny 1t i-]

‘

j = l'zlvco’ N

Equation (3.18) can be expressed as a matrix equation

as follows



2
q
(EyFi-1fi-2
q
-1

- -
g £.£
I Eifi
i=
S

q q
9, q
‘ENfi-z R I B A I iENfi-zfi-N
q g 2
iENfi—lfi-N o000 008 iEN i—N

(3.19)

If the N x N matrix of equation (3.19) becomes singular

no solution for (a,)

N
ili=

1 exists. This means that the given

function f(t) can be approximated by a smaller number of
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exponentials, If the matrix is non singular, equation

(3.19) can be solved for (a.)V

i)i=1" The exponentials are

then obtained from the solution of the polynomial equa-

tion
n n-1 -
Z + alZ + es e + a.N_lz + a.N = 0 (3.20)

Yengst (27) has shown that (esiT)I;_I=l are the solutions of
the equation (3.20), It may be noted that equation (3.20)
corresponds to the characteristic equation of the differ-
ence equation (3,15).

In Yengst's method, the zeros of H(s) are deter-
mined by the successive application of the initial value
theorem to obtain expressions of initial values of h(t)
and its (N-1) derivatives at origin. These are then
equated to the corresponding values of f(t). The solution
of the N simultaneous linear equations, thus formed, gives
the zeros of H(s). This method is easy to apply if £(t)
is known analytically. If £(t) is specified as samples,
Yengst suggests a polynomial interpolation of f(t) at

t = 0, This method of determination cf zeros is not very

convenient when f(t) is not known analytically.

METHOD OF PERDIKARIS AND LAGO

A recent paper by Perdikaris and Lago (28), on



34.

time domain synthesis, is very closely related to the
method of Yengst. This paper makes use of Z-domain
approach instead of the s-domain approach of Yengst. An

Nth order difference equation is first assumed.

N
Iay , Ng¢igq (3.21)

y . -
1 k=1

Yy = £;_y is the (i-k) B sample of f(t).

Equation (3.21) can be expressed as

N
z
k=1

0 < ng g-N (3.22)

yN+n = akyN+n-k

By making use of the properties of Z-transforms (29) we

get
N Nelo
z(yn+N) =2 |Y(2) - ¢ Yy 2 (3.23)
k=0
where z(yn) = Y(2).
Equations (3,22) and (3.23) give
N - N—l o4 N N-k—l P
2N -3 a2 *)y(z) = ;1 y, 2N - g a Iy 2 Fh (3.2
k=1 i=0 k=1 © i=0 *

If we consider H(Z) as the equivalent Z-transform of H(s)

we have
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N-1 N N-k-1 .
pyav o g e 1oy aNE
i=0 T k=1 K j=0 1L
H(Z) = Y(2) = s (3.25)
Nl akzN'k
k=1

The error criterion used by Perdikaris and Lago for deter-
mining (ai)Ni=1 is exactly the same as used by Yengst.

: N 2
Hence the error defined as igN(yi - kElakyi_k) leads to
the same set of equations as those arrived at by Yengst in
equation (3.19). Once (ai)§=l are known the poles in the

Zz-domain are determined and the corresponding poles in s-

domain are found from the relation

1
s; = 7log 7, (3.26)

The Z-transform expression of equation (3.25) is made use

of to find the zeros of H(s). Since we have the relation
H(Z) + H(s) (3.27)

and H(Z) is completely known from equation (3.25), the

zeros of H(s) can be found by splitting H(Z) into partial
fractions. The typical factors appearing in the partial
fraction expansion of H(Z) and their s-domain equivalents

are as below.
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z L, _1
7 - -al s + a
22 - 3e”3 ospr s+ a
2 -aT -2aT 2 2 (3.28)
2% - 2Ze ""cosbT + e (s +a)*+b
and
76" sinbT R b

22 - 226 8T oosbT + 22T ks + a) + X

By making use of the partial fraction expansion of H(Z)
and equation (3.28), H(s) can be found.

An alternate method of determining zeros of
H(s), suggested by Perdikaris and Lago, is to force h(t)
to pass through N points as specified by the desired
function £(t). Since the poles of H(s) are already known,
h(t) can be expressed as a sum of damped sine, cosine and
exponential terms., The coefficients of these terms con-
stitute the N unknowns which determine the zeros of H(s).

Hence N equations are formed by choosing h(t) such that
h(ti) = f(ti), i=1,2,...N (3.29)

The solution of equation (3.29) gives these coefficients
and the zeros of H(s) are found from them. This method
has the advantage that h(t) can be mads to approximate

f(t) very closely in a short range but h(t) may deviate
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from £(t) considerably in other regions.,

METHOD OF VASILU

A different approach of time domain synthesis is
found in a paper by Vasilu (30). 1In this method the im-
pulse response of a pulse transfer function H(Z) approxi-
mates the desired function f(t). The poles of the func-
tion H(Z) are assumed to be uniformly distributed on a
circle of radius smaller than unity. Thus H(Z) has the

form

by?' + by 3" L4 L 4 b2
B Z - ap

where |ap| < 1.

The choice of @y is made arbitrarily. It is proved in
(30) that if f(t) is zero for t > To, the error in the
range t > Ty can be reduced by choosing a very small.,
But too small a value for a, will result in larger errors
for £t < Ty. The parameters (bi)lg=l are chosen §o that
the mean square error between the impulse response of
H(Z) and the desired function f(t) at sampling instants

is minimized.
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METHODS OF McDONOUGH AND HUGGINS (26-31)

All the methods discussed so far do not minimize
the actual ISE as defined by equation (2.6). We will now
review some of the recent methods which minimize the ISE.

McDonough and Huggins make use of the complimen-
tary filter to find a set of optimum poles. From equation

(2,52) we have
TR 200 _ 0 1oy 12
I=/y|E(t) - h(t)|“at = /__|a(t)|%at (3.31)

where a(t) is the output of the complimentary filter G(s)

when the reversed signal f(-t) is applied as an input.

s + s,
N 1

G(s) = i:l 5 s, Eft)

LU
I ECIR e

v(t) = £(-t)

Figure 3.1 Evaluation of ISE

Figure 3.1 shows how to evaluate I for a set of
N exponentials. One method of computing the exponentials
by minimizing I is to use gradient techniques. But, it
is found that error I is very insensitive to pole positions
over a wide range around the optimum poles (26). The
values of the gradients at thesé points are nearly zeros.
Hence gradient techniques are not suited to minimize I.
This has led to the development of various iteration

schemes of computing the best pole positions. These are
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now discussed.
The condition for I to be minimum with respect

N N .
to (Bi)i=l and (si)i=l are expressed as (equation (2.34))

[Pe(t)eSitat = 0 (3.32)
P (t)teditat = o (3.33)
i=1,2,...N

McDonough and Huggins (26, 31) make use of equations (3.32)
and (3.33) to develop an iterative scheme as follows

Let £(t), defined over (0, ») be a signal vector
sit)N

in a Hilbert space S. The exponentials (e j=1 Span a

subspace SN of S. Equation (3.32) implies that for I to
be minimum the projection of e(t) on Sy should be the null
vector. Let us now consider a subspace S2N of S such that

s:t,N

S... is spanned by (esit)lz=l and (te’17), ;. Equations

2N
(3.32) and (3.33) imply that, for I to be minimum, e(t)
has to be orthogonal to the subspace SZN‘ Let us assume
that e(t) is always chosen such that equation (3.32) is
satisfied.

Since e(t) = £(t) - h(t), h(t) is the projection
of £(t) on SN‘
be the same as the projection of e(t) on S2N - Sy This

If e(t) has a component on SZN’ it has to

is because e(t) is always chosen as orthogonal to SN.
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Hence we have,

Projection of e(t) on S2N - sN

= (Projection of f(t) on SZN - SN) - (Projection of

h(t) on S2N - SN)

Since h(t) lies entirely on Sy h(t) has no com-

ponent on S, - S Thus we get a modified condition for

Nl
optimality of the poles. This condition is that, for ISE

to be minimum, £(t) has to be orthogonal to the subspace

SzN - SN. ,.‘

McDonough and Huggins chose a set of orthonormal

functions as bases for space S2N - SN as follows (31).

The functions {¢i(t)}§=l are already chosen as bases for

s{tyN Sit N
)i=l and (te )i=l'

§§N+l are defined
sit\N
i

s;t\N ; -
(te”17),_;, then these functions are bases for S,y - Sy-

S S.,, is the space spanned by (e

N* 2N
If a set of orthonormal functions {¢i(t)}
such that they are linear combinations of (e and

Let us consider the following functions

¢N+i(s) = G(s)@i(s), i=1,2,...N (3.34)
where
N s + Si
G(s) = -
j=1 5 78
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and ¢i(s), i=1,2,...N are as defined by equations 2.22.

Hence the denominator of ¢N+i(s) has terms like (s - si)z.
. . . . s.t\N

i
Therefore ¢N+i(t) is a linear combination of (e )i=l

and (tesit)§=l. Moreover

1% (8) g, (-5)ds

+jo _
-jeo N+ f_ij(s)éi(s)G(-s)¢k( s)ds

+ie -
f_jwéi(s)ok( s)ds

[

2136, (3.35)
where j = /=T

Hence ¢k(t), k=1,2,...2N form an orthonormal
set and ¢k(t), k = N+1, ..., 2N are bases for the sub-

space S2N - SN.

The condition for f(t) to be orthogonal to the subspace

S2N -"SN can -how be stated as

f?f(t)¢N+i(t)dt =0,i=1,2,...N (3.36)
where ¢N+i(s) = G(s)@i(s)

Equation (3.36) can be written as follows
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© 0
Jof(E) gy, (B)dE = [ E(-T)dy,, (-T)dr

SEE(-D) gy, (t - D)dT at £ = 0

0’ i = l,z,..., N (3.37)

If we consider the reversed signal of f(t) as
v(t) = £(-1), =2 < T <0 (3.38)

Equation (3.37) can now be written as

[TE (6 by (B)GE = SE v () gy, s (t = T)dn

(3.39)

L4
Q

The right hand side of equation (3.39) can be described as

a filtering operation as shown in Figure 3.2

Sample
o .. (s) ) at -753*—-

T e
v(t) = £(-1) N+i £ =0 §

Figure 3.2 Evaluation of fff(t)¢N+i(t)dt by filtering
operation
Since ¢N+i(s) = G(s)éi(s), the filtering operation of

Fig. 3.2 can be modified as shown in Fig. (3.3).
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N Sts; Sample
G(s) = m

vit)=£f (-1) s -8, a(t)’l'i £ = 0 d

Figure 3.3 Simplified diagram to evaluate f?f(t)¢N+i(t)dt
by filtering operation ’

The optimality condition is stated as

di = 0, i = l,z,-.uN (3.40)

The evaluation of the output of the filter with
reversed f(t) as input is not difficult. In all practical
cases f(t) can be assumed to be zero for t > T, where To
is the duration of the signal f(t).

N
McDonough defines a function I di and computes

i=1
the zeros of this function (26). It is found that the
N
analytical expression for X di is too difficult to work

i=1
with even for N = 3. The method is found to lead to com-

putational difficulties for larger N (26).
McDonough and Huggins later modified their method

into an iterative scheme (31).

Let
- N i
G(s) = I g,s7/D(s)s gy = 1 (3.41)
i=0
where N
D(s) = T (s = si) (3.42)
i=1

If G(s) is used for the filtering operation of Fig. 3.3,
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instead of G(s), the sample at t = 0 is given by

+joo N i ds
k = [ J°°F( s){iiogis /D(s)}@k(s)iF? (3.43)
k=1,2,...N

where F(s) is the Laplace transform of £(t).

If dk satisfies the optimality condition, equation (3.43)
can be written as

N-1 ds
Lo JERISD 37—)'4’ £21r3 9

l—

ds k=1,2,...N (3.44)

= -f_ J oF (- S),BY—T@k( )t

llf

Equatlon (3.44) gives N linear equations in (g )
(g. )l 0, as obtained by solving equation (3. 44), satisfy

the condition,

(1) "D(~s) (3.45)

]

L g.s
i=0 i

we get

G(s)

G(s) (3.46)

and the corresponding values of (s ) =1 give the optimum
point,

An initial estimate of (si)I;]=l is substituted
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into D(s) and @k(s), k=1,2,...,N, Equation (3.44) can
now be solved for i1 i=0,1,...(N-1). When equation

(3.45) is satisfied the iteration is stopped. Otherwise
these 93 values are used to make a new estimate of (si)I:=1
and a new set of values of g, are found and the iteration

is continued.

The evaluation of expressions like

i
7%, (s)
+3 K ds
S S’,WF?‘H

can be done by the filtering scheme similar to that in
Fig. 3.2. Some numerical difficulties are reported in the
i
. . N S N
realization of f11ter§ 5(sT" and ¢k(s) in cascade (31).
The initial estimate of pole positions has to be near the
optimum to achieve convergence. When f(t) is nearly

exponential the convergence is fast,

SEAR'S METHOD
An iterative scheme, similar to the one dis-
cussed above, was first suggested by Sears (32).

From equation (3.31)

0
I_ |3 [2at

H
n

where A(s) = F(-s)G(s)

Sears assumes a set of even number of exponentials.
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Therefore

(3.47)

sV + NZl(-l)laisi
a(t) = L HE(-5)6(s)} = 170 F(-s) e
sN + I aisl
i=0
(3.48)

where L_l stands for the inverse Laplace transform.

For I to be minimum

%-i—= 0, k= 0,1,...N-1 (3.49)
k
31 0 - d =
= =2/_alt)z— a(t)dt
aak Bak
N-1 .
. sN + I (-l)la sl
=27 3t )L HL[F(-s) i=0 dt
-0 aak N N-1 i
s + I a,s
, 1
i=0

=0 (3.50)
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Equation (3.50) may be expressed as

SN+k[(_1)k_l]+NEl [( 1% (o1 ] Stk

0 - — -
;MR ) 1HE (-8 e - dt
N+ 1 as 12
1-0
=0, k=0,1,...,N-1 (3.51)
Let sk
s + X ais
i=0
N-1 . .
gk [( 1)k ] I [ Dk (-1 Ha;stE
:ﬁfl = GK(S) (3.53)

(s + I a.,s )
i=0 i

Using equation (3.52) A(s) can be expressed as

N-1
E(s) = F(- s)W (s) + & (-1) F(-s)W (s)a
i=0

Hence (3.51) can now be written as

o -1 N-l o -1 _
JLLTECs e ¢ B () wi(s)F(-s)ai}L {ck(s)F(-s)}dt =0

k = 0,1,2,...N"'1
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Or
N-1

'50(-l)iaifimL-l{Wi(s)F(-s)}L-l{GK(s)F(-s)}dt

0 - ’ -
= 1 p HE(=s) ty ()} L7 o ()P (-s) fae (3.54)
k=20,1,...N-1

The equation (3.54) can be expressed in a matrix form as
- —0 ) _ -]
ag | f_ oL 1{F(-S)‘I‘N(s)}L L{Go (s)F(-s) Jat

S | -1
a; [ L {F(-8) ¥y (8)JL77{Gy (s)F(-s) }dt
= (3.55)

L aN-:!.-l L:ro_<:c:]"'--l{]?‘ ("S)WN (s) }L-l{GN_l(S)F(‘S) }dt

where P is a N x N matrix.

The (&, j)th element of P matrix is given by

- o - -
By = (DY ()R (-8 b Mo, ()P (-s) Jat (3.56)

1f (ai)g;% are known, the P matrix and the vector on right

hand side of equation (3.55) can be calculated. If these
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values of a, i=0,1,...,N-1 are at the optimum point,

equation (3.55) is satisfied, If not, the solution of
N-1
. i=0°
ation of terms like f_wL-l{F(-s)?i(s)}L‘%{F(-s)GK(s)}dt

this equation gives a new estimate of (ai) The evalu-

is carried out as follows,

Let

-1
LY (8)F(=s)} = y, . (¢)

(3.57)

and LG, (5)F (-8)) = g, (t)

wif(t) and gkf(t) can be generated by the filtering oper-
ations shown in Fig, 3.4, The evaluation of the expres-

sion is done by integrating the product of wif(t) and gkf(t).

f(-t)ilwi(s) Vg (=)

£(<t) ] Gk (s)]|

Figure 3.4. Schematic diagram to evaluate wif(t) and

I g (t)
Convergence properties of this method are dis-

cussed in (33). It has been proved that if the first
step of interation gives a reduced error the method will

converge. If not, the initial estimate is changed and
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the iteration is repeated, Hence the success of the
method depends on making a 'good' initial estimate of the
pole positions.

The methods of McDonough, Huggins and Sears are
very important. None of the previous techniques reported
in the literature sought to find an exact solution of the
exponential representation of signals by minimizing the
actual ISE. The new methods are computationally more
tedious than the previous methods, but this is inherent
in the very nature of the problem as indicated by Aigrain
and Williams equations.

In all of these new methods the zeros of H(s)
are found by first determining the coefficients of the
orthonormal ‘expansion, as given by equation (2.18), that

is
C; = fof(t)¢i(t)dt

The evaluation of Ci is done by a filtering operation sim-
ilar to the one in Fig. 3.2 (33). The actual scheme for

evaluating Ci' i=1,2,...,N is shown in Fig. 3.5.

Sample
“——‘—5‘®i(s) at —>

£(-¢) =0l %

Figure 3.5. Evaluation of orthonormal coefficients
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Once Ci values are found,

N
H(s) = iilciéi(s) (3.58)

Equation (3.58) gives the zeros of H(s).

MSS METHOD

An alternate approach to arrive at an exact
solution was suggested by McBridge, Schaefgen and Steiglitz
in (34). (For convenience this will be called MSS method).
In this method, a rational Laplace transform H(s) is first

assumed

b sN-l SN-Z

l + L +b

+ b2 N
N N-1
s + als + e + aN

H(s)

- bls'l + bzs'2 +oaae t sz-N
1+ als"l +oaal aNs-N
- 38 (3.59)
The ISE is given by
I=/7]€(t) - n(t)|%at (3.60)

where h(t) is the impulse response of H(s).
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Considering the error e(t)

e(t) = £(t) - h(t)
E(s) = F(s) - H(s)
-1 -2 =N
b,s " +b,s "+ ,.. + b.s
1 2 N
T Fle - 1+as ™ +as?+ +as™N (3-63)
als 2 LN ) aN
JE(s) _ _ g1 _
%, - by - “Ppil®)
(3.62)
9E(s) _ s N(s) _
ba, - D(e) - fail®
From equation (3.62) we get,
= - ae(t)
Ppi (t) = = .
1 (3.63)
an
- de(t)
Pai(t) = 93,

Since I = f:ez(t)dt, I is minimum when,

3 = 2fe()¥eltar
1l 1
= -2/ge(t)p,, (t)dt
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and g%T - zf?e(t)ae;?) ¢
kg 1l
= 2/ge(t)p,; (t)dt
=0 (3-64)
i = l,z,...N

An analytical solution of equation (3.64) is difficult
because of the nonlinearity. An iterative solution was
suggested in MSS method by defining a new error el(t)

such that el(t) tends to e(t) as the final solution is

approached. The new error el(t) is defined as

D. (s) N. (s)
E,(s) = *—J-T—TF(S) - "J—T—T (3.65)
1 Dj-l s Dj-l s

where j is the number of iteration. When final solution
is reached Dj(s) = Dj_l(s) and E,(s) = E(s). A new ISE

is defined as

I, = fTei(t)dt (3.66)
aEl(s) g1
ab; - By (8]~ “Pp (&)
(3.67)
3E, (s) -i
1 _ S8
i Ok (s) = Pg;(s)



54.

In deriving equation (3.67) it is assumed that the para-
meters of Dj_l(s) are not varied in the jth iteration.

El(s) can now be written as,

1+ asta .+ aNs-N b.s™L + b §2 4.+ b.s
El(s) = - D (s) Fs) - - D - (s) s
j=1 j-1
= Pao(s) + alPal(s) + .. + aNPaN(s)

The following 2N dimensional vectors A and p(t) are

defined
A=lay @, oo 3y by by .us —bN]t
and  B(t) = [Py (8) Pay(t) vov Boy(t) By (£) Ry (E)
coerppy(0)1° (3.69)

where At is the transpose of A.

el(t) can now be expressed as a matrix equation

e, (t) = A" B(t) + pq(t) (3.70)

1= SRE B ey, (371

1

From equations (3.70) and (3.71) we obtain
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Grad I, = 2[/5P(t)P°(£)atIr + 2/5p_, (£)B(t)dt
= 2P + 2C (3.72)
where
P = /op(t)pt(t)dt is a 2N x 2N matrix
and C = f?pao(t)ﬁ(t)dt is a 2N vector, (3.73)

Equating Grad H_ = 0 in equation (3.72) an iteration equa-

tion is obtained
A= PC (3.74)

Examining equations (3.62), (3.64), (3.66) and
(3.67) it is found that Grad Il # Grad I. Hence this
method cannot converge to the true minimum of I. This

difficulty is overcome by making the following changes.

Let s N._l(S)
3 (S) =
ai % (o) (3.75a)
j=1
Then oI © v
3L e, (t)p. . (t)dt (3.75b)
ab; 081 VHIPp; ’

The vector p(t) is changed by replacing P, (t) by Bai(t).
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pao(t) is also replaced by Bao(t). Corresponding changes
are made in the matrix P and vector C.

The second method of MSS cannot be started with
an initial estimate of zero or unity for H(s). In general
it is found that method 1 is well suited for initial points
far from optimum and method 2 converges faster near the
optimum. It should be pointed out that in MSS method the
iteration is to be carried out for 2N variables while in

previous methods only N variables needed to be considered.

MILLER'S METHOD (35-36)

Miller modifies the MSS method by introducing
Aigrain and Williams equations to the error El(s). Using
equations (2.7), (2.8) and (2.9) we obtain a different

form for Aigrain and Williams equations. These are

n
o

E(-si) F(—si) - H(-si)

il
o

E' (-s;) = F' (-8;)-H' (=s;) (3.76)
where E'(s) = g—gsm, i=1,2,...N

Assuming that El(s), as defined by equation (3.65) should

satisfy equation (3.76) at the optimum point, we get

(3.77a)

|
o

El(-si) =

(3.77b)

]
o

Ep'(-s)



57.

where (si)§=l‘give the exponentials for minimum ISE. Sub-

stituting El(s) and El'(s) from equation (3.65) into equa-

tion (3.77)
Dj(-si)F(-si) - Nj(-si) =0
F'(-si)Dj(-si) + F('si)Dj('si)‘= Nj('si) (3.78)
i=1,2,...N

Dj-l(s) used in equation (3.65) does not appear in equa-
tion (3.78). Miller has shown (35) that equation (3.78)
can be directly derived from Aigrain and Williams equa-
tions as given by equation (3.76). If (si)?=l are con-
sidered as an estimate of the pole positions, equations
(3.78) gives 2N simultaneous linear equations in 2N un-
knowns (ai, bi)§=l' The solution of equation (3.78) thus
gives a new estimate of the pole positions. Iteration is
continued until there is no further change in pole posi-
tions.

Miller's approach could be used only when F(s)
and F'(s) are known. When f£(t) is enalytically known
this method is useful., Miller establishes the link between
MSS method and Aigrain and Williams equations. Equations
(3.78) gives an iterative method of solving the Aigrain

and Williams equations, Both MSS and Miller methods con-
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verge slowly (36).

APPROXIMATION TO IDEAL LOW PASS FILTER USING TIME DOMAIN
APPROACH

Two different methods of approximating the ideal
low-pass filter, by time domain techniques have been
reported in the literature (1-3). In (3) Ulstad approxi-

mates the delayed and truncated Slﬁ t function by the sum

of damped sine and cosine functions. -The techniques of
nonlinear programming are used to find the sine and co-
sine functions and their weights such that ISE is mini-
mized. These values are then used as the starting point
for minimizing the Chebyshev error in time domain.

In a recent paper, Pottle and Wong make use of
time domain techniques to achieve optimum least-squares
approximations to ideal low-pass filter (2). The approxi-
mation is by means of orthonormal functions ¢k(t), k=1,
2,...N discussed in Chapter 2. The ISE in the frequency

domain and time domain are given as follows

[ |
]

/TR Ge) - B |2au

/2188 - hit) |%at (3.79)

F(jw) is the desired frequency response and H(jw) is the
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approximation. The functions £(t) and h(t) are the in-

verse of F(jw) and H(jw) respectively.

N
h(t) = I C,o,(t)
i=1 *t
N (3.80)
and H(jw) = I C,9. (jw)
i=1 + Y
C, = [oE(E)¢, (t)dt
g = JoE(E)0;
= 140 (<ju) e, (fu)dw (3.81)
L e A A '
The expression for I can be written as
= L p(0) 200 - 3 c2 (3.82)
27" =-» S | '

i=1

The frequency response considered by Pottle and Wong in

(2) is
F(jw) = e‘jwto, lw] <1
(3.83)
=0, lw] > 1
The inverse f£(t) of F(juw) is
1 sin(t - to)
f(t) = th—_gp— (3.84)

Equations (3.81) and (3.82) can be written as
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_ 1 41 jut .
C, = 3=/ 7e 0¢i(3w)dw (3.85)
_1 N 2
and I = = - ~£ ci (3.86)

The problem of choosing the parameters of H(s) by minimiz-
ing I in equation (3.86) was. first discussed by Pottle and
Thorp in (i)4and recently by Pottle and Wong in (2). Pottle
and Thorp make use of the steepest descent technique and
Newton's method of minimization. The optimization is done
with respect to the parameters P; and q; of functions
Qi(jm), i=1,2,...N, The delay t0 in equation (3.83)

may be kept constant or may be considered as another para-
meter.,

The results obtained by Pottle and Thorp by
applying this minimization technique are not satisfactory.
It is found that in most cases reported in (1) the optimum
point has multiple poles. This, obviously, is a contradic-
tion because the orthonormal functions ¢i(t), i=1,2,...N
are only linear combinations of (esit)lz=l and hence ¢i(s)
i=1,2,...,N cannot have multiple poles.

An improved version of this method appears in
the recent paper by Pottle and Wong (2). The general
approach in (2) is the same as in (1). The minimization

is carried out by using Fletcher-Powell algorithm, The

optimum points, as reported in (2), do not have multiple
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The following points may be noted in connection

with the methods in (1) and (2).

1,

The function f(t) in equation (3.79) exists for -« <

t < », The orthonormal functions ¢i

(t), i = 1,2,.0.,

N and h(t) exist only for t > 0. Hence the condition

of completeness, required for any orthonormal expan-

sion, is not satisfied (14).

The ISE evaluated by equation (3.82)

the total error for -« < t < =,

The coefficients (Ci)§=l correspond

part of £(t) for which t > 0.

Whenever a pair of poles occur near
axis, Qi(jm) will have peaks at the
values of w. This leads to serious
the numerical evaluation of (Ci)lz=l

(1,2).

The paper by Pottle and Thorp

attempt, reported in the literature, to

desired frequency response in the least

corresponds to

only to that

the imaginary
corresponding
difficulties in

and the gradients

(1) is the first
approximate a

integral squared
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error sense. This method and its later modification by
Pottle and Wong (2) have the advantage that when the sig-
nal is band limited, all integrations over the semi infin-
ite time axis could be converted to finite integrations

in the frequency domain. But the numerical difficulties
reported in both (1) and (2) limit the applications of

the method.

All the methods reviewed in this chapter approx-
imate a given impulse response by the inverse of a rational
Laplace transform H(s). In most cases the poles and
zeros of H(s) are determined in the least square sense.

In some cases, the poles are located first and the zeros
are then chosen to satisfy certain conditions in the time
domain, The determination of optimum poles always involve
tedious computations which sometimes lead to numerical
difficulties. The problem of finding H(s) so as to sat-
isfy specific conditions in the frequency domain, in addi-
tion to the conditions on ISE, has not yet been reported

in the literature.
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CHAPTER 4

IMPROVING THE FREQUENCY RESPONSE BY MINIMIZING

AVERAGE ERROR IN TIME DOMAIN

It has already been shown that minimizing the
ISE in the time domain is equivalent to minimizing the
ISE in the frequency domain. From the point of view of
the frequency domain performance the minimization of ISE
alone need not produce the best result. For example, at
some value w, the magnitude response of H(jw) may have a
sharp deviation from the desired response even if the ISE
is a minimum (2). This chapter develops a new method of
minimizing this deviation, keeping the ISE within allow-

able limits,

PROBLEM STATEMENT
Let F(jw) be the ideal frequency response to be
approximated and H(juw) be the approximation. The devia-

tion E(jw) for -» < w < » is defined as
E(jw) = F(jw) - H(jw) (4.1)

The problem is to find the parameters of H(jw) such that
the upper bound of [E(juw)|, we(-®, ) is minimized sub-
ject to the condition that the ISE is less than a pre-

assigned value. The problem as stated above considers
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both the ISE and the deviations in the frequency response.
The solution of this problem, thus offers a compromise
between the least square and Chebyshev criteria in the

frequency domain.

AN UPPER BOUND ON DEVIATION

The error E(jw) is defined as

F(jw) - H(ju)

E(juw)

where e(t) £(t) - h(t) (4.2)

E(jw) can be expressed as

E(ju) = /7% (t)e 0%t

ft: [e (t) e_:’wt] C [e (t) e-jwt] gt
Since e(t)eLz, we can apply Schwarz's inequality giving

IEGw) | < [f’jj‘;l{e(t)e'j““'—}*‘|2<alt]"[f‘j::|{e(t)e'j‘*’t}”|2dt]!i

ft:l{e(t)e'jwt}%|2dt

Ile(t) |at
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Thus we have
|E(3u) | ¢ /T2le(t) |at (4.3)

The function h(t) of equation (4.2) is formed from a set
of N exponentials as discussed in Chapter 2. Hence
h = 3 4
(t) = I Ci¢;(t) (4.4)
i=1
where ¢i(t), i=1,2,...,N are the N orthonormal functions.
Using equation (4.4) equation (4.2) can be expressed as

e(t) = £(t) - .§lci¢i(t) (4.5)
i=

Therefore

© o N
ftmle(t)ldt ftm|f(t) - 3 ci¢i(t)$dt
i=1

N

o to, N
J_ E(t)]|at + f-wliilci¢i(t)|dt

N

{+o] N 0
Al fae + 3 [ [sI0]g; (0 |at
i=1 1

]

o N -
218 |at + .leci|f°l¢i(t)ldt (4.6)
i=

Each of the functions ¢i(t), i=1,2,...N is a sum of
damped exponentials and exists only for t » 0. From Chap-

ter 2, we have



66.
¢k(t) = I Rie

{Re(s,) + jIm(s,)}t
A (4.7)

where Ry is a complex constant and 1 < k ¢ n ¢ N.

. D {Re(s,) + jIm(s,)}t
Ii] I Ree 1 :
i=1

Io4y (£) |at |dt

N

n ]
1 |R,|feeRe (5%t
N 1
i=1

0 .
1
= I |R,|= (4.8)
jo1 1+ ReZsiS )
By using equation (4.8) we get
N ®
lc;1 /oo, ()AL < = (4.9)
i=1

(assuming each C, to be finite)

Using equations (4.6) and (4.9) we have the result that
ft:|e(t)|dt is finite, when ft:lf(t)|dt is finite. This
leads to the conclusion that the deviation E(jw) has a
finite upper bound when ft:|f(t)|dt exists. Moreover if
e(t) is unidirectional ft:|e(t)|dt is the same as the mag-
nitude of the deviation at w = 0. Hence, in the most gen-
eral case ft:[e(t)|dt is the leasérupper bound of |E(juw)|.

This expression, ft:|e(t)|dt, is defined as the average
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error of approximation. Thus the minimization of average
error offers a method of minimizing the deviation in the
frequency domain. This is now considered in greater
detail.

Since ¢i(t) = 0 for t < 0, equation (4.6) can be

modified as follows.

00 ) N
[ole(e)|at = sI2E(R) - 2 cyg;(t)fdt
i=1

0 © N
[ lE(t)]at + Solf(t) - 3 C.o.(t)[dt (4.10)
i=1

Examining equation (4.10) we see that the choice
of Ci¢i(t)’ i=1,2,...N has no influence over the term
fimlf(t)|dt. For a causal system f(t) = 0 for t < 0 and
this term vanishes. Hence in order to minimize the aver-
age error we need only consider the expression f?lf(t) -

z Ci¢i(t)]dt. Let y represent this average error
i=1

N
Y = [o£(t) - I Cio,(t)]at (4.11)
i=1

The problem of minimizing the upper-bound of
deviation in frequency domain subject to a constraint on
ISE can now be restated as follows.

Choose the parameters of h(t) = .

N 1

that the average error y = [y |f(t) - I C,9,
i=1

Ci¢i(t) such

o=

1
(t)]dt is
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minimized subject to the condition that the integral squared

©, . N
error I = [o|f(t) - =

C.6, (t)|%at < U, where ¥ is the
=1 1

allowable ISE.

MINIMIZATION OF AVERAGE ERROR

The determination of the parameters of H(s) =
iglciéi(s) is carried out in two steps. The first step
is to find a set of poles of H(s) which will minimize the
ISE. These poles are the solution of the Aigrain and
Williams equations (2.14-2.15). Even though the unique-
ness of the solutions of equations (2.14-2.15) has not
yet been proved mathematically, all the researches re-
viewed in Chapter 3 have reported that in all of the cases
considered the various iterative schemes have converged
to the same point. Hence it may be assumed that the solu-
tion of the Aigrain and Williams equations or equivalent
equations gives a set of poles yielding the least ISE.
Once the poles (si)§=1 are known a set of orthonormal
functions ¢i(t), i=1,2,...N can be formed. The second
step is the determination of the coefficients (Ci)lg=1
such that y is minimized, subject to the constraint on
ISE.

Let (si)§=l be the set of poles giving the least

ISE and ¢i(t), i=1,2,...N be the corresponding ortho-
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LY
normal functions. Let I be the least ISE and (Ei)§=l

be the coefficients of orthonormal expansion at the least

ISE.
¢, = Sof(t)y, (B)at (4.12)
The expression for the least ISE is

o N
Y= few e - T ¥ (4.13)
i=1

Let I be the ISE at some other set of N coefficients
)N

(€321

, . Then,
i

N
© 2
I=/[3|E(t) - I C,p,(t)|“dt
ol i=1 11 | (4.14)

N 2
I Cioy(t)dt

-} 0 N ©
= fo|f(t)|2dt - 2f°f(t){ z Ci¢i(t)}dt + fo{
i=1 i=1

Using equation (4.12)

© N N o
fof(t){izlci¢i(t)}dt = iilcif°f(t)¢i(t)dt
N
= Elciﬁi (4.15)
ooN (X)N
fn{iﬁlci¢i(t)}2dt = fo{izlc§¢f<t) dt

(4.16)

s o) ¥ ¥ ococ (£) 6. (t)}dt
"Vid1 4o 1% *
31
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Since the functions ¢i(t), i=1,2,...N are orthonormal

/e85 (Brat

1,
and [09; (£)65(t) =0, i # 3

i=1,2,...n

l,Z,IQIN

-
[}

Substituting equation (4.17) into (4.16)

2., _ N 2
Ci¢i(t{} dt = I o

of W
Jol E
i= i=1

i=1

Equation (4.14) can now be written as

© N N
r=slew et - 25l + § 2

i=1 i=1 *t

From equation (4,13)

[l %t =Y + &} &
i=1

Thus the expression for I is obtained as

v2 N o N 2
Ci -21 CiCi + 1 Ci
1 i=1 i=1

—
i}
He
+

0 =]

i

(4.17)

(4.18)

(4.19)

(4.20)

If y is the allowable ISE, the expression for the coeffi-

cients (Ci)lz=l which will yield an ISE ¢ y can be obtained

from equation (4.20). That is,
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N a2 2, _
Y+ iﬁl(ﬁi - zciE:.L +c)=Igu (4.21)
Equation (4.21) can be written as
N 2 2
I, =8¢ -1 =3 (4.22)

Obviously, u can only be chosen such that u > T,
We now prove the following theorem on the exis-
tence of a minimum of the average error with a constraint

on ISE.

THEOREM

If a function £(t), £(t)eL, is approximated by
a function h(t) = ‘§ C;9; (), where ¢i(t), i=1,2,...,N
are N orthonormal ;;ictions constructed from a set of N
distinct exponentials giving the least ISE T, then for
every ISE u » T, there exists at least one set of coeffi-
cients (Ci)I;=l such that the average error y at this set

of coefficients is a minimum.

PROOF

For every ISE y » T, the coefficients (Ci)I;=l
are given by equation (4.22). According to this equation
the point (Ci)I:=l lies inside or on the sphere of radius

6, in the N dimensional Euclidean space. This sphere,
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defined by equation (4.22), forms a compact set in a metric
space. We will prove that the average error Y, considered
as a function of (Ci)§=l’ is continuous on this compact
set. Since any real valued continuous function defined

on a compact set in a metric space has its infimum and
supremum on that set (37, 38) y has at least one minimum
inside or on the sphere defined by equation (4.22).

By definition,

fole(t)|at

-2
H

o N
Jo lf(t) = iilci(bi(t) ]dt

Here y may be considered as the Ll norm of e(t). Let us

define the norm of e(t) as
|le(t)]] = fo|e(t)]at (4.23)
y can be considered as a function of a vector C where

T=10C, C Cy werens cN]t (4.24)

1 "2

Hence

Y@ = ||e®)]|

I[£(8) - .§1Ci¢i(t)|| (4.25)
i=
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Let Cl and Eé be two points satisfying equations (4.22).
Hence ISE at Ei or Eé is less than or equal to .
= _ t
Let Ty =[Cy; Cyy Cqp »eve Cgyl
=~ t
Then
-\ N
v(C)) = [[£(t) - izlcil¢i(t)l|
- N
and ,Y(Cz) = ||£(t) - iElci2¢i(t)|| (4.27)
- - N
CARRCAT R ORI ERCT
N (4.28)
T IEE) = X Cip05 (BN ]|
Let t) = £(t 3 C (t
a (t) = £(t) - 1 C..o:(t 4.29)
an e, (t) = £( izl 1204 (8 (
From the properties of norms,
[leg (Y]] = []eq(£) = e (t) + e, (t)]]

< [leg(8) = eyt)[| + ||ey(t) || (4.30)

Similarly

ey (@11 < [ley(0) = ey(e1[] + |[ey(0)]]

(4.31)
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From equations (4.30) and (4.31) we get

[leg ()| = |leytt) | <
wa  |le,®]] - [ley(e]] ¢
Since [lett) || =

[leg(e) ]| = [leg(e)[]] <

Using equation (4.33), equation

N

1]

N

1}

IN

By definition

]

1o (t) ]

|Jeg (t) = ey(t)]]

[ley(t) = eg (e[| (4.32)
| [-e(t)]]

[leg(£) = ey(t) ]| (4.33)

(4.28) can be written as
leyt®]1 - Heytw 1]

|ley (£) - ez(t)ll

N
||i§1(cil‘°12’¢i(t)||
iglll(cil'ciz)¢i(t)ll

N
2 G

o 81|

Max |C.1=C,o| & |05 (t)]]
i=1,N il mi2t, ot

(4.34)

fole, (£)|at (4.35)
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By equation (4.8)

© n
fn,¢i(t)ldt < kEllel:lﬁg;T (4.36)
lgig¢ngN

where Ry is a complex constant and Sk is the kth exponen-

tial, Hence |[¢, (t)|| is finite for i = 1,2,...N.

N
Let Eloj(e)]] <k (4.37)
=1

1

where K is a positive constant.

Equation (4.34) can now be written as

lY(€)) - v(@©)] <& Max ICi1 - €4l (4.38)
i=1,N
Equation (4.38) may be interpreted as follows.
Given a £ > 0, there exists A > 0 such that
Y€)= Y&, <¢
e e el < w5
where % < A

Hence y(C) is a continuous function of T (39). By assump-

tion the points Ei and Eé are in the compact set defined
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by the sphere of equation (4.22). By equation (4.39),

Y(C) is a continuous function on the compact subset defined
by the above sphere. Hence y has an infimum value on this
compact subset. This proves that in every sphere defined

by eéuation (4.22) y has at least one minimum value.

UNIQUENESS OF THE APPROXIMATION

We can make use of the general theory of approx-
imation in the mean (37, 38) to discuss the quality of the
above approximation. By Jackson's theorem (38) the expres-

sion

I N
Yy = Jo|E(t) - iilCi¢i(t)|dt

possesses a unique best approximation, if ¢i(t), i =_l,2,
...N satisfy the Harr Condition. The Harr condition is
stated below.

Let ¢i(t), i=1,2,...,N be a set of functions

in C[a, b]. These functions satisfy Harr condition if

010t 0y (E))  euee gy(Ey)
01(t))  0p(ty)  eeen Gy (ty)
D= S 8060 8 000D ESCBEIEOIBRINREESIOECOENTOSS #0

byl 0, (k) by () (4.40)
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for all ti' i=1,2,.,..N such that

a g t1

In our case a = 0 and b tends to », The functions ¢i(t),
i=12,...N are, in general, oscillatory and cross the
t-axis many times. The determinant D is zero if any col-
umn of the determinanf becomes zero. This happens when
any function ¢i(t) has N zero crossings. Hence, in gen-
eral, the Harr condition is not satisfied.

However, we always approximate the semi infinite
interval [0, »] by a finite interval [0, TO]‘ Hence it is
sufficient if the Harr condition is satisfied in this
interval. The functions ¢i(t), i=12,...,N are linearly
independent by definition. Hence if none of the functions
¢i(t), i=1,2,...,N has more than (N-1) zero crossings in
the interval [0, Tyl there exists a unique best approxima-
tion., Since y is the L1 norm, and Ll norm forms a convex
set,this unique best approximation is the same as a local
minimum of y (37 - 38). But this best solution of y with
respect to the coefficients (Ci)Ni=l need not lie inside or

on the sphere of equation (4.22). Since Yy, the L. norm

1
of e(t), considered as a function of (Ci)lg=l is a contin-
uous convex function, y should have a best approximation

in every sphere of equation (4.22) even if the unconstrained
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unique minimum lies outside this sphere,

THE GRADIENT OF AVERAGE ERROR

In the previous sections the existence and
uniqueness properties of the minimum of Y with a constraint
on ISE are discussed. In order to compute the minimum

point we can make use of the fact that at a local minimum

Grad y = [0] (4.41)
where t
= |8 3y ... 3y

Since gg—le(t)ldoes not exist when e(t) = 0 it is neces-
k
sary to consider the computation of Grad Y in some detail.

® N
fol£(t) - I cyo,(t)]at

‘Y =
i=1
& -2 ey - 3 C.¢. (t) |dt (4.43)
3C, ~ 3C, o j=1 74 |

N
If at any point (Ck)§=l’ gé“lf(t) = LCi9,(t)| is contin-
k i=1
uous with respect to Ck and t, te[0, «], %%— exists at
k
this point and hence the differentiation and integration

in equation (4.43) can be interchanged (39).



N
Assuming |f(t) - Ci¢i(t)| # 0
i=l

d N 9

N
where Sgn e(t) = Sgn{f(t) - I
i=1
If e(t) > 0
3 N
5E;|f(t) - izlcl¢i(t)l = =9 (£)
If e(t) < O

2 g -
5E;|f(t) - iilci¢i(t)| = 9y (t)

From equations (4.45) and (4.46)

BCk i=1 i7i

N

i=1

-lee) - ¥ co 0] = -sgn e(t)do, (8)

c;

Ci¢i(t)§ = tl, e(t) 2
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;)

(4.44)

0

(4.45)

(4.46)

(4.47)

We are approximating the semi infinite interval [0, =] by

a finite interval [0, To]. For some (Ci)§=1' let e(t) = 0,

at t,, t tx such that

l, 2, e

<t, <t

Yy car be written as



80.

- t,-¢
Yy=Jot Jett)]dt + s +£]e(t)|dt TR +€|e(t)]dt
(4.48)
where § =
Therefore
t.-¢ ~£
oy _ 9 1 ) 2
S—CT("-E};JQ |e(t)ldt+a—czftl+gle(t)|dt+ ces
)
vee + -a-tz t +£|e(t)|dt (4.49)

Let us consider any one of the above intervals,
say t, <t <t,. Since in this interval the error |e(t,CK)|
is a continuous function of t and C, we can always
find a neighbourhood of Ck.such that for any te(ty, tz),
{Sgn e(t)}¢, (t) is a continuous function of t and C, in

this region. Hence in this neighbourhood

t,-¢
0
'a—-]; +g|e(t 'dt

exists and is given by

t -f t -f
3 . z v ° 9

ot e(t)ldat = s ¥ " le(t)|at

3C, ty+gl | ty+gack| |

t -t
ft;+g-{8gn e(t)}g (t)at  (4.49)
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Hence %%— can be written as
k
) £t £p7
5%; = foo -{Sgn e(t)}g, (t)at + ftl+E-{Sgn e(t)}o, (t)dt
T
+oae. ft:{+€-{3gn e(t) }o  (t)at (4.50)

where § = 0.

Assuming that the integral in the following equation is

always evaluated as given in equation (4.50) we can write

% - /Tro(sgn e(t))g, (B)at (4.51)
k
Hence
Grad y = [21_ 9Y  eee 3 ]t
acl 8C2 acN

: t
~/3® sgn e(t)[¢1<t) by (t) wun ¢N<t)] (4.32)

In this chapter we have developed a method of
minimizing the upper bound of the deviation in the fre-
quency domain, keeping ISE within allowable limits. The
implementation of this method requires the computation
of the best pole positions of least ISE and the availab-
ility of the orthonormal functions ¢k(t), k=1,2,...N in
the time domain. The next chapter develops a new method

of obtaining the time domain representations of functions
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like ¢k(s). The minimization of average error with con-

straints on ISE is discussed with examples in Chapter 6.
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CHAPTER 5

EVALUATION OF TRANSIENT RESPONSE

INTRODUCTION

This chapter develops a new numerical method of
computing the transient reéponse of a Laplace transform,
expressed as a rational function of complex frequency.
This method was primarily developed to compute the time
domain representations of functions @k(s), k=1,2,...N
discussed in previous chapters, However this new tech-
nique of computing the transient résponse is very general
and computationally more efficient than some of the pre-

vious methods (5).

A BRIEF SURVEY OF PREVIOUS INVESTIGATIONS ON COMPUTATION
OF TRANSIENT RESPONSE

The evaluation of the inverse of a Laplace trans-

form expressed as

-y a; # 0 (5.1)

is commonly encountered in many branches of Engineering
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and Science. The classical approach of evaluating the
transient response is to express the rational function
Y(s) as partial fractions and find the inverse of each
factor., Generally this method is very complicated. More-
over when two of the roots of the denominator are very
close to each other, the evaluation of the corresponding
residues of the partial fraction expansion leads to num-
erical difficulties., Because of these problems, other
numerical methods of evaluating the transient response
have been developed.

Corrington proves (40) that a rational opera-
tional form of equation (5.1) leads to a linear n-term
difference equation of the form given below

1+lF

_ n
yl£) = 2 (-1)7°F

iy(t - iAt), t > niAt (5.2)
i=1l

The coefficients F 4 are real constants, independent of
!

t but dependent on At. These coefficients may be found

from the following relation,

s, At n
% (s + e k ) = 1 Fn
k=1 k=0 '

n-k
K5 (5.3)
where (sk)ﬁ=1 are the n poles of ¥(s). Corrington suggests

an easier way of determining the coefficients Fn it i=
) ’

1,2,...n, In this method Y(s) is expressed as
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© Ci

Y(s) = I -m (5.4)
=0 s

The coefficients Cir i=1,2,...n are found by dividing

the denominator into the numerator. If the c; coeffici-

ents are known y(t) can be written as
y(€) = I = (5.5)

Equations (5.2) and (5.5) are used to form the (n-1) simul-

)n"'l
n,i i=l.

taneous equations inw(F Since Fn,n is readily
known from equation (5.3), these (n-1) equations can be
solved to find Fn,i’ i=1,2,...(n-1), Further computa-
tions of y(t) are carried out by using equation (5.2).
Aaron and Kaiser have pointed out some of the numerical
difficulties one encounters while using this method (41).
The division of two polynomials to find the c; coeffici-
ents is difficult and leads to large errors (41).

Another method of evaluating the transient
response is reported by Liou (42). This method makes use
of the state space approach. Liou considers the differ-
ential equation which gives rise to the rational function
Y(s) of equation (5.1). This differential equation is

0 .
Dy (t) + 2 a, D" y(t) =0 (5.6)
i=1
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. i
where Dly(t) = Q—Ey(t). The numerator coefficients of
dt
equation (5.1), (bi)2=l, may be expressed in terms of the
initial values of y(t) and its first (n-1) derivatives.

Let Y(t) be a n-dimensional vector defined as
T(t) = [y(t) Dy(t) .... 0" Lyt (5.7)

¥(t) can be expressed as a state space equation

¥(t) = A¥(t) (5.8)
where Y(t) = %?Y(t) and A is a nxn matrix. A is given as,
T 1 Oveveenresasd O |
0 0 l.......-...o 0
A=| . . ) .. (5.9)
0 6 6'.."“.!..6 i-
[ -1 "%a-2 "3 T3
The solution of the state space equation (5.8) is
T(t) = At (0h) (5.10)

where Y(0+) is the initial condition vector. If we con-

sider two points t = iT and t = (i + 1)T, we have
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v(ir) = 2Tyt
| (5.11)
T(i+ 17} = AE+ DT ot
Equations (5.11) give,
Y+ 1)1 = ATy (5.12)

Once the initial vector Y(O+) is known, successive values
of Y(iT) can be computed using equation (5,12). The ini-

tial vector Y(0') is given by

L _ _
y(0") b,
+ +
y'(o) b, - a,y(0")
T(0") = =% 1 (5.13)
:yn-l(0+1 _bn - alyn 2(0 ) .. an-1Y(°+[J
. i
where yl(0+) = é—vy(t)
att .
t=0

The transient response y(iT) is given by the first
element of the vector Y(iT).

One difficulty of the method is the necessity of
evaluating the state transition matrix eAT. Liou suggests
the power series evaluation of this matrix. el jg expan-

ded as follows.
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(5.14)

where A° = I, Identity matrix.

AT

The matrix e~ is approximated by a matrix M, where

e * M= I = (5.15)

Liou has developed a technique of choosing K

such that the error involved in the approximation ™t as

in equation (5.15) is within a specified limit.
The computation of Pt can be simplified by us-
ing the relations between the last column and other col-

AT

umns of e matrix. These relations are proved by

Thomson (43).
Let min(t), i=1,2,...,n be the last column of
AT matrix., Thomson proves (43)

© k
Pin(® = Lo T (3.16)
where ¢, = €)= v = 5=0,¢c ;=1
and n
¢ = ;ilajck_j, k>n (5.17)

The elements of the other columns of eAT matrix can be
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expressed in a recursive form as follows

. . = In, . + .m. $1gj <
i, i+l,3+1 an-JmJ.n' l¢icj<n

mi,l = _anmi—l,n l<ign (5.18)

i3 7 ™-1,3-1 7 %n-g41Mg-1,pe LI i S

Valand makes use of the results of Thomson to
modify the approach of Liou in order to avoid the compu-
tation of eAT matrix (44).

Equation (5,1) can be expressed as

n n-i
Y(s) = I b.s" “Y_(s) (5.19)
, 1 L
i=1l
1
where YL(s) = a (5.20)
s+ 5 a,s®?
. i
i=1

The initial vector of YL(s), as defined by Liou is
-+ t
YL(O ) = [0 0 ... 1] (5.21)

Making use of equation (5.10) we obtain

Since YL(U+) has unity for the last element and all other

elements are zeros

(t) ... m__(t)] (5.23)

ii(t) = [mln(t) mZn nn
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h

where min(t) is the element of it row and nth (last)

t

column of e**, From the definition of YL(t) in equation

(5.7), we have
di

From (5.19),

y(t)

]
o
o’

'_l.
[

n n-i
E byD" Ty (£) (5.25)

i=1
Substituting (5.24) into (5.25)

n
y(t) = I b,m

joq & n-i+l,n(t) (5.26)

In this method the ¢, values are computed first, using

k
equation (5.17). Factors like (ck+i_1/i!) are then com-
puted for i = 0, 1, ... (n-1) and stored. The values of
min(t), i=1,2,...,n can now be computed using equations
(5.16) and y(t) is obtained from equation (5.26). This
method does not involve the computation of eAT matrix.
However the terms min(t), i=1,2,...,n must be found for

each value of t. This involves the summing of n series

at each value of t.
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NEW METHOD
In the new method, y(t) is regarded as the out-

put response of the system

when an impulse input is applied. Let us consider a gen-

eral system

n -
X bisn 1
Y(s) _ __i=0 (5.27)
U(s) n n-i )
s+ I a.s
i=1 1

where Y(s) and U(s) are the Laplace transforms of the
system output and input respectively. The system output
may be evaluated by using the state space approach (45-
46). The general differential equation of the system

represented by the equation (5.27) is

b, D" 1y (¢) (5.28)

n n n-i B
Dy (t) + ¥ a;0"'y(t) = I b,

i=] i

I s

0
Let a new variable z(t) be defined such that

* a, DM iz ()

n
D'z (t) + ¥ i u(t) (5.29a)
i=1
n

5

and

o
S
)
1
'—l-
n
o
!

y(t) (5.29b)
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Substituting y(t), as given by equation (5.29) into (5.28)

n y
DUy (t) + I a, D" My (t)
i=1

n -u
+ I a.Dn 1

. i

i=1

? b Dn-kz(t4

k=0 K

n -
Dnz I b, D" kz(t)
k=0

n -
I b 0" k3Dnz(t)

n - n -
+ 3 ka“ kz $ a. D" lz(t);
i 1

k=0 k=0 i=1
n - n -i
= 3 kan KDz () + % aiDn lz(t)z
k=0 i=1
n -
= Ipo" Ka(t) (5.30)
k=0

Equation (5.30) shows that equations (5.28) and (5.29)
are equivalent. Hence if we solve z(t) from equation
(5.29a) and substitute into (5.29b), y(t) can be obtained.

Consider the equation

D"z (t) + z ainn'iz(t) = u(t) (5.31)
i=1

Let us define a set of state variables yi(t), i=1,2,004,

n such that
i-1
yi(t) = D7 Tz (t) (5.32)

We then have
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g, (t) = Dz(t) = y,(t)

i) =
Dz(t) =y, (t)

e
G
[}

LR R B R R R A N N BN BB B A B I Y ] (5033)

g (€) = D"2(t) = - 1§ a.p™z(e) + u(t)
i=1*

n
=1~z

laiyn-i+l(t4 +ult)
i

Equation (5.33) may be expressed as a state space equa-

tion.
-u 7 B —]'— 7
Y1(t) 0 l OOOIOOCIIOIO 0 yl(t)
92(t) 0 o L N A 25
Qn_l(t) 0 0 Ouevvenneesd 1 f1y o (f)
y, (t) “a, =A@ geeeeeemdy =39y (E)

0

0

+ 1. | u(t) (5.34)
0
1
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or

.
-

¥ = AY + Bu(t) (5.35)

where &
T=lyy ¥y oo ¥yl

and B=[0 0....1°

The A matrix is the same as the one defined by equation

(5.9). The output y(t) is obtained from (5.29) as

1]

n -l
T biDn Lz (t)
i=0

y(t)

n n
bgP z(€) + iﬁlbiyn-i+1‘t’

n n
0§i=l ifn-i+l i=1 ifn-i+l
=13 b b b 5.36
- iil( i - ai O)Yn-i+l(t) + ou(t) ( D )
Equation (5.36) may be written as
y(t) = c¥ + bou(t) (5.37)
where
b ]
bn anbO
ct = b, - ab (5.38)
i i~0 *

b

Py - P

0



95.

The equations (5.35) and (5.37) can be made use of to com-
pute y(t) for any input u(t). The solution of the state

space equation (5.35) is given as (45-46)
7(t) = ePtr(o) + rERE Day(n)an (5.39)

The output y(t) is then given by

y(t) = {cePte(o) + crbeP D pu(ryar) + boa(t) (5.40)

For the special case of the transient response of the sys-
tem defined by equation (5.1) bO = 0 and u(t) = &§(t), the
impulse at t = 0. The initial vector ¥Y(o) can be consi-

dered as that at t = 0 . Hence

Y(o) = ¥(07) = [o] (5.41)
This gives
y(t) = crf P Tpg(r)ar
= cePts (5.42)
where
C=1[b b ;... bl (5.43)

The matrix A and vector B are given by the equations

(5.9) and (5.35) repsectively.

Let eAt in equation (5.42) be approximated by
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K terms. The approximate y(t) is then given by

K-1 .i.i
Cj atet

y(t)

z =T B
i=0

CI+-1—'-+ 2, + ... +—(RTIT-!—-B (5.44)

i
Since factors 1like %T are scalars y(t) can be written as

2 K-1
y(t) = clB + %t + A-,Etz Foaaa + %{-:I%rtK'l (5.45)
The matrix inside the bracket in equation (5.45) can be
expressed as the product of a partitioned matrix and

another vector. Thus we get

y(t) = [IB'AB'AZB. ------- éAK-lB:l[ %"‘%‘%T_KI;"'] (5.46)

Since the vector B has zeros for the first (n-1) elements

and unity for the last element we have

JNRNC IR 1 ] = [agia,ayh -
[IB:AB'A B. i7" 7B = | A Al'AZ. ;AK_l]— ¢

(5.47)

where Ai is the last column of A* matrix, A’ = I, the Identity

matrix and ¢ is a nxK matrix. The ith column of the ¢

matrix is the last column of the matrix Al'l. Hence there
exists a recursive relation between any two successive

columns of the ¢ matrix. This relation is proved as fol-
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lows.

al = (5.48)

1

Let the last column of A*™" be given in terms of the ele-

ments of the & matrix. That is

. £
Aoy = [og; g5 «v Oyl (5.49)

where ¢jk is the element of jth row and kth column of ¢

matrix.

From equation (5.48) we get

Ay =B A
That is
- — e
¢l,i+l-} 0 l 0..0.-.-.0 0 ¢li-1
¢2’i+1 0 0 l.c.-luuoo 0 ¢2i
A' = . = L] . L] L] . -
1
L[] .l...lllo 1 L[]
[fn,i+1 Jay Ay T@jpeerTdy TR fni

(5.50)
The evaluation of equation (5.50) gives the recursive

relation as
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#1141 %2,1
92,141 #3,1
= . (5.51)
0 Ia¢
. -1 a, . .
i n,1+lJ’ | i=1 1 n-1+l,1J
This recursive relation can also be expressed as
¢j,i+1 = ¢j+l,i’ J = l,2,...,(n-l) (5.52)
n
and ¢n,i+1 - ;Elai¢n—i+l,i

The relation (5.52) is valid for all values of i. Hence
knowing the first column of ¢, which is the last column
of A°, that is, the last column of the Identity matrix,

the transient response can be computed from

y(t) = Coy (5.53)

2 k-1
¢ (R-I)Y

rfo
NI ot
ot
| S
prs

where y = [l v

Expanding C¢, we have

(5.54)
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Using equations (5.53) and (5.54) y(t) can be expressed

as

K 3 -
g&) = & nt (5.55)
=1

) /(i-1) 3 (5.56)

where hi = (bj¢n—j+1,1

z
j=1
The evaluation of each column of ¢ matrix and the corres-
ponding hi coefficient may be done simultaneously. Once
the hi coefficients are computed and stored the transient
response y(t) can be evaluated for any t.

The error involved in approximating y(t) in the
above manner is now studied. We make use of the approach
of Liou (42) to find an upperbound of the error. The

exact expression for y(t) is

y(t) = CeAtB
i

_cle é,_‘f_gg
1] l'
i=0
K-l il [e'+) ii

= c% 3 §I$- B+ C{3 513-3 (5.57)
i=0 i=x

We are approximating y(t) by the first term of the right

hand side of equation (5.57)

K~-1 Altl
y(t) = C{ L —Ir-%B (5.58)
i=0 '
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The error e(t) is given by

o
e(t) =C 1 §I$- B (5.59)
i=g 1
= CRB
o .ild
where R= 3 Alt (5.60)
i=g 1t

R is a nxn matrix.

If'rmax 1s an upper bound of each element rij of R so

that

lr §r (5.61)

ijI max

we obtain from equation (5.59)

le(t)| ¢

n
Thax (.lebil) (5.62)
l:

An upperbound Tnax can be found by defining a suitable

norm for the matrix A, Liou suggests the norm as

n
All = L |oy. (5.63)
4] = | B ey

where aij is the (i,j)th element of A matrix (42). Later

he has modified this definition of ||A|| (46) as,

la]] = max (.§ |a
i j=1

150 (5.64)
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It is found that in most cases K, the number of
terms estimated by using the definition of ||A|| in equa-
tions (5.63) and (5.64) is much larger than what actually
is required. Hence we make use of a modified definition

of the norm of A as

n
[|A]] = max (T |o,.]) (5.65)
P e
j i=l
According to this definition, the norm of A matrix of
equation (5.9) is
[1a]] = max (la |, 1+ la;|) (5.66)
i=l,n-l
If lail >> 1, then the norm of A is equal or approximately
equal to the largest magnitude of a, i=12,...,n. We
now prove that the definition of equation (5.65) satis-

fies all the conditions of a norm. These conditions are

1) A # 0 implies [|A]] > 0
2) ||eal| = |a| [|A]|, @ is a scalar

3 1ag + Al < 1Iagl] + ([ l]

where Ax and Ay are any two (nxn) matrices.
By definition (ai)ril=l are not zeros. Hence con-

dition 1 is always satisfied.
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For Condition 2, let

n
A = \
||al] iillalpl
Then
n
|loa|] = iillwipl
o] 2 oy |
= o o,
i=1 *P
= |a] ||A]] (5.68)

This proves Condition 2.

Condition 3 is proved as follows. Let o, . and Bij be the

j
(i,j)th element of the matrices A, and Ay respectively.

Then

|12+ Al

n 1]
= 1l
s =]
s

N
o1
Q

N

(?w D+ (?lel
max |. T max .o
j=1,n\i=1 * j=1,n\i=1 13>

[1agll + [l

or f]Ax + Ay]|

/N

[1agll + 11l (5.69)
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A fourth condition necessary in finding an upperbound of

r.. is
1]

A5 < 11al)" (5.70)

+ ,
Let ak 1 and ak be the (i, j)th elements of the matrices

ij ij
Ak+l and Ak respectively. Then

k+1 _ 0, k
it £ oL 5.71
iy 7k “ip%py’ (5.7
Hence
k+l n . k
03571 < Pfllaip“pJI
n o
= : . 5.72
pillalp' |apJ| ( )
Therefore
nok+l, B/ Dk
et g
i=1|°tlJ < 121(19—1l ipl IGPJI)
_n n  k
pml is1 [#p I3
DLk
A
A [AT]] o]
k,, n
= ||& ™
I llpﬁllapjl

K
Fla™|] []a]] (5.73)

IN
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Equation (5.73) is true for any column of Ak+l and hence
we get
k+l k
A7 < AT | [A]
< ||a]<? (5.74)

Applying the above properties of the norm to equation

(5.60) we obtain

N
fl M8
:

'—l-
".‘.

=

lrij| s ||R[]

i=K 1,
K. K 2,2
_ Liaj|% Allt All%t
=1 %K U (_—11( +'lTH-K_+"'25 teed)
(5.75)
Let %(J%L{E = x (5.76)

Then A 2t2 < x2
ZK+1)£K+2)

Hence we get

K. K
< lJE%A—Ji—(l x4 x4+ ceees) (5.77)

If x| <1,

Tiar KK
IlA&! : 1 E X (5.78)

17351 <

Thus we get an upperbound on ¢(t) as
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le(t)] s (llA%gKtK : E x)(igllbil) (5.79)

By making use of equation (5.79) it is possible to choose
K such that the error is within allowable limits.

This method of computing the transient response
has many advantages. It is not necessary to compute eAT
matrix and the initial vector as required in Liou'é method
(42) . The method suggested by Valand involves the manipu-
lation of n series while the new method involves only one
series for all values of n., The distribution of the
eigenvalues of the system does not affect the method. For
example, even if two poles are identical or very close
to each other the method is capable of giving the response
without any further modification. Since y(t) is expressed
as a power series in t the derivatives at any value of t
are easily obtainable. The round off errors of computa-
tion do not propagate with increasing values of t. This is
because y(t) is evaluated at each t by the power series
and hence is exact.,

However, when ||A|| is very large and it is
required to compute y(t) at a large value of t some dif-
ficulties are encountered. Under such circumstances it
is necessary to consider a large number of terms. One

method of solving this problem is to split Y(s) into
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smaller factors. The denominator of these factors of
Y(s) can be formed from the poles of the system. The
numerator coefficients of the factors of Y(s) may be
found by solving the n simultaneous equations obtained by
substituting n values of s. But a better way of doing
this is to form n simultaneous equations by using the
initial value of y(t) and its first (n - 1) derivatives.
These values are easily obtained by finding the first n
coefficients of y(t) as discussed in these chapters.
These coefficients are equated to the corresponding coef-
ficients of the factors to obtain the n simultaneous
linear equations. The solution of these equations deter-
nine the above factors. As ||A|| of each of these fac-
tors has smaller value, the number of terms K necessary
in each case is also smaller. The transient response
y(t) is then obtained as the sum of the transient responses

of the individual factors of Y(s).
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CHAPTER 6

COMPUTER ALGORITHMS AND NUMERICAL EXAMPLES

INTRODUCTION

In this chapter we first discuss the computa-
tional techniques employed to £ind the best pole posi-
tions by minimizing the ISE. Instead of employing any of
the iterative techniques discussed in Chapter 3, we rely
on efficient numerical methods of minimizing functions of
several variables without calculating derivatives (47,
48). This avoids the complicated filtering operations
required in all the exact methods of minimizing ISE
reviewed in Chapter 3. The minimization of average error,
with constraints on ISE, is done by using the penalty
function approach (51). Finally the method is applied

to a specific example which is an ideal low pass filter.

COMPUTATION OF ISE
The concept of the complimentary filter is used
to compute the ISE for any set of pole positions. The

expression for the ISE, as given in Chapter 2, is
Y=y 12
ISE = I = /__|a(t)|“at (6.1)

where a(t) is the output of the complimentary filter when
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v(t), the reversed f(t), is applied as an input. This
relation was discussed in detail in Chapter 2. The com-
plimentary filter G(s) is given by

N S*s; s -as o+l 4+ (-l)a

G(s) = 1 - = —
i=1 S s; N N-1 B (6.2)

The scheme for evaluating the ISE is shown in Fig. 2.1,
The given function f£(t) is time reversed and applied to
the filter G(s). Since any physical signal vanishes for

some t > TO' the reversed signal v(t) may be considered

as starting at t = 0 and extending to t = TO. The expres-
sion for the ISE then becomes
Isi = I = /3°|3(t)|%at (6.3)

The output a(t) of the complimentary filter is computed
by using equation (5.36). This equation gives the general
expression for the output of any filter G(s) which has

the form given by equation (6.2). Thus the expression

for a(t) is

N .
i) = ['il{ (-n* - l}ain_i+l(t)J +v(t)  (6.4)

Equation (6.4) involves the evaluation of the state vari-

ables (yi)§=l.

(5.31 - 5.34). The solution of equation (5.34) gives the

These variables are defined by egquations
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values of (y.)N This is accomplished by the Runge-Kutta

i%i=1"
method which is written up as a standard subroutine in
the IBM Scientific Subroutine Package Library. The ini-
tial values of Yir are zeros. Once a(t) is known the ISE
is computed by evaluating the integral of equation (6.3).
The integration uses the Five point Quadrature formula.
A subroutine ERROR is written in Fortran IV. This sub-
routine accepts a set of coefficients (ai)§=l’ the reversed
signal v(t) and computes the corresponding ISE of least

square representation. This program is given in Appendix

I.

MINIMIZATION OF ISLE

The general approach employed in minimizing the
ISE is to consider the ISE as a function of the parameters
of the complimentary filter and to find these parameters
such that the ISE is minimized, This has the advantage
of reducing the original 2N variables of Aigrain and
Williams equations to N variables of the complimentary

filte¥. Another advantage of this approach is that, if

(ai)l\i]=1 are considered as the variables, the operations
involving complex numbers can be completely avoided.

A direct method of minimization is to use any
one of t:2 gradient technigues. Unfortunately, as

reported in Chapter 3, the ISE is very insensitive to
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pole positions over a wide range near the optimum point,
This makes the gradient techniques very inefficient in
minimizing the ISE. Since we want to avoid the compli-
cated filtering operations necessary for the various
iterative schemes, a new method of minimization was tried
and found to be very useful. This method does not require
the computation of the gradients. The basic approach
employed is due to Powell (47). Powell uses the method

of conjugate directions to minimize functions of several
variables., Zangwill has pointed out (48) certain draw-
backs in Powell's method and has suggested a new algorithm,
This algorithm incorporates all the basic features of
Powell's method but does not suffer from the difficulties
pointed out by Zangwill. We have made use of the Zangwill
algorithm with some modifications, to minimize ISE. The

basic theory of these algorithms is now discussed.

FUNCTION MINIMIZATION WITHOUT CALCULATING DERIVATIVES

(1) Powell's Method

The minimization of a function of several vari-
ables without calculating derivatives has attracted the
attention of several investigators (47-51). Among these
the method of Powell (47) is considered the best as this
will minimize a quadratic function of n variables in n

iterations., Powell considers the minimization of a quad-
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ratic function Q(X), of a n-vector X.

Let

t

Q(X) = X°PX + B + ¢ (6.5)

where P is a nxn matrix, B- is a n- vector and ¢ a scalar
constant., Let (Ei)?=l be n conjugate directions such

that
epe. =0, i# 3 (6.6)
i3

Let X, be an initial point. Any point X may be expressed

in terms of these conjugate directions,

Let
X=X, + % £
= o.E.
0 i=1 i°1
Q(X) Q(X g £:)
= + 0. &
0 i=1 i°i
X+ T aE)tPx + I L)
= a' : ul .
0 i=1 i°1i 0 i=1 i°i

+ B® 3
B (X0 + .E aiEi) + c
i=1

Simplifying by using equation (6.6), we obtain

n
Q(X) = Q(Xg) + iilai(xgpgi + £2X )

n t n 2.t
+ [ o,BE, + L o E./PE, (6.7)
jep b b gop iV
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Examining equation (6.7) it is found that minimization of
Q(X) by searching in one of the conjugate directions is
independent of the ofher conjugate directions, Hence
minimum of Q(X) may be found by searching along each of
the conjugate directions only once. The problem of mini-
mizing a quadratic function is thus reduced to the prob-
lem of finding n conjugate directions., Powell suggests

a method of determining these conjugate directions. Let

X, and X, be two points such that the quadratic Q(X) is
minimum at XO and X1 along a direction n. This means
E—Q(X +on) =0 ata=20
9070
3 = -
and EEQ(Xl +on) =0 ato=0 (6.8)
_ t t
Q(x0 + an) = (X0 + on) P(x0 + on) + B (X0 + o) +c¢
_ ot t t 2 t
= XOPX0 + an PX0 + axOPn + o'n Pn
t
+ B (X0 + on) + ¢
] . t t t
T5R (X, + an) = n"PX, + X;Pn + 2anPn + B (6.9)
and
9 _ .t t t t
EEQ(XI +on) =n le + Xan + 20n Pn + BT (6.10)

o

Substituting o = 0 and using equation (6.8) we obtain
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L}
o

t t
nR(X; - Xy) + (X, - X)) Pn

Hence

t
n P(X1 - XO) 0 (6.11)

By equation (6.11) the direction (Xl - XO) is P conjugate
to n. Based on this theory Powell suggests an algorithm
to minimize Q(X).

Let X, be an initial point. The initial direc-
tions of search (Ei)?=l are chosen as the co-ordinate dir-
ections even though they are not P conjugate directions.
At the end of n searches along these directions a point

Xl is obtained. A new direction En+l is chosen such that

= X, =X

tne1 = X1 7 X (6.12)

The function is minimized along Enel to yield a new start-
ing point Xge The directions are rearranged according to

the rule
Ei =-Ei+l' ig<n (6.13)

The iteration is repeated until the function values does
not change.

The function Q(X) will be minimized in n itera-
tions is proved as follows. At the end of n linear

searches of each iteration a new direction is chosen by
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using the relation (6.12). The function Q(X) is minimum
at X, and X, along the direction §,+ Hence the new direc-
tion chosen at the end of any iteration is P conjugate to
En' Thus at the end of n iterations the function Q(X)
has been minimized along n mutually conjugate directioné
and so the minimum of Q(X) has been obtained.

One drawback of the method is that the new direc-
tions chosen need not be linearly independent., The n
direction generated need not span ‘the n dimensional space,
in which case the method will not give the minimum of
Q(X). Zangwill has shown with a counter example that
Powell's method does not converge in the case of a partic-
ular function which is strictly convex, quadratic and has
a unique minimum (48). This led him to suggest a new
algorithm. This new algorithm with some modifications,

is now discussed,

(2) Zangwill's Method

This method incorporates the quadratic conver-
gence properties of Powell's method and guarantees that
in the case of a quadratic function the new directions
chosen are linearly independent. This is achieved by
ensuring that any new direction chosen can never be zero.
The algorithm, as modified to suit our problem, is as

follows.
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Let (ri)2=l be the n normalized co-ordinate

directions and (5?)?=1 be the n normalized conjugate direc-

tions used in the

Kth iteration. Initial conjugate direc-

tions are chosen as the co-ordinate directions. X0 is

the initial point

Eucledian norm,

2
i

%

is the usual

and ||X|]| = (% x%)
i=1

It is assumed that P matrix is positive

definite. (X?) denotes a point obtained by minimizing

along ith conjugate direction in K

th iteration and (Xg)

denotes the starting point of Kth iteration.

INITIALIZATION

\ 0 1
Let us define Xn+l and X0 as

0

Xn+l

R

and

ITERATION K
(a) Minimization
For i =

K K, .
Q(xy , + aigi) is

At the end of the

= X = X;, initial point,
=1, i=12..n (6. 14)
1

1, where K and j are indeces.

along conjugate directions.
1,2,...,n compute o, such that

minimized and define
KK = xK X (6.15)

above n searches choose a new direction
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such that

K _ K K-1 K _ k-1
g].'H':L - (Xn Xn-l-l)/l an Xn+l” (6.16)

. K K . . .
Find G4l so that Q(Xn + ah+lgn+l) is minimum and define

K

n+l (6.17)

X

K K
Xn * an+lgn+l
The new conjugate directions for the next iteration are

chosen as

+
g+l

i = EI;+1’ i=1,2,...yn (6.18)

(b) Minimization along co-ordinate directions.
e e s K _
Choose o to minimize Q(xn+l + arj). If o =0
and j = n, repeat (b) with j =1. If a =0 and j #n,
repeat (b) with j = j + 1. If (b) is repeated n times

. . K . . .
in succession Xn+l is a minimum point, If o # 0, choose

K+l _ K
XO = Xn+l + arj
j=3+1
and K=K+ 1 (6.,19)

Parts (a) and (b) of iteration K are repeated in succes-
sion until the minimum point is obtained.

In the above algorithm the function is first
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minimized along the n conjugate directions and then along
one of the co-ordinate directions. If the function does
not change along this co-ordinate direction the next co-
ordinate direction is tried., If all the n co-ordinate
directions are tried in succession and there is no change
in Q(X), Grad(Q) at this point is zero and hence a local
minimum is obtained. The major improvement of this method
over Powell's method is in the choice of the new direc-
tion £§+l in step (a) of iteration K as given by equation
(6,16). This ensures that E§+l is always different from
zero, except for iteration 1, If 5i+1 = [0], it means
that the initial point is a minimum point and the search

can be immediately terminated. For K > 1 we note that

R-1

n+l) (6.20)

K K
QX)) < QX)) < Q(x

K K-1 . K . .. X
and hence Xn # xn+l‘ The point Xn is a minimum along En

and the point Xgli is also a minimum along the same direc-
tion, Therefore £§+l is P conjugate to Ei. Since E§+l
and Eg are non zero vectors and the matrix P is positive
definite, it follows that these directions are also lin-
early independent. Hence the quadratic function Q(X) can
be minimized in n iterations.,

It can also be proved that if the function Q(X)

is strictly convex, is continuously differentiable for
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all X and has a greatest lower bound, the method converges

to an optimal point. Consider the sequence of points
K)oo
n+l’K=
ence let us define

(X 1 generated during each iteration. For conveni-

K K
=Xn+l’ K= l,2’l.lm'
The method guarantees that
+
o= < o2%) (6.21)

Since Q(X) has a greatest lower bound, the relation (6.21)

gives
lim Q(2¥*Y) = 1im 0(25) (6.22)
K-> K+
Let us define
. o+
lim 0 (=5*) = o(=™*)
K+
. K _®
and lim Q(X) = Q(% ).
K-+
. K+1
We are always selecting X such that
o gk, g (6.23)

where nK is some conjugate direction and Q(xK + aKnK) is

minimum along nK. Since Q(X) is continuously differenti-
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able we have in the limit

g+l

QIETT) = (% +an’) £ QE + m) (6.24)

where B is any scalar.

Since Q(X) is strictly convex there should be at
least one point between %" and 2m+l, along n, such that

oot ]

at this point X, Q(x) is less than Q(Rm) or Q(® 7). As

this is not possible,
g =g (6.25)

The point xm+l is arrived at, after competing step (b)

of iteration K of the algorithm. Hence

o]

QX T) € Q&+ gr), i=1,2,...m (6.26)

Equation (6.26) ensures that the final point X~ is an opti-
mum point.

The original method of Zangwill requires the
availability of n normalized directions different from co-
ordinate directions to start with (48). The method as
given here does not require this. The algorithm has been
suitably modified so that the co-ordinate directions alone
are sufficient to start with.

A digital computer program ZAGMIN is written in

FORTRAN IV which will minimize any function of several
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variables using the above method. It is found that the
criteria for terminating the minimization as suggested in
the algorithm is too strong. Hence the program is also
made to terminate when the change in function value in
successive iterations is less than a preassigned value.
The initial step of the l‘near search is to be specified.
This step is doubled or halved at each search point until
the minimum is passed. Three points at equal intervals
between which the minimum lies are found and the minimum
point is computed by quadratic interpolation (47, 51).
If the function value at this point is not less than that
at the middle point, the computed point is ignored and the
middle point is taken as the minimum,

The ISE, I, is considered as a function of the

§=1 and is minimized for different functions

variables (ai)
using the above program, It is found that the new method
is more efficient than the original method of Powell in
minimizing the ISE. The values of the parameters (ai)Ni=l
at the minimum ISE give the best pole positions. These
poles are used throughout the subsequent analysis and
design,

Once the poles are determined, the orthonormal
functions @k(s), k=1,2,...N can be found. The order of

the poles is not important in forming these orthonormal

functions. In the examples considered the real poles are
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taken first, followed by the complex pole pairs. A digi-
tal computer program for computing the numerator and
denominator coefficients of the orthonormal functions
@k(s), k=1,2,...N, is given in Appendix I. The inverse
of these functions ¢k(t), k=1,2,...N are computed using
the methods discussed in Chapter 5. The subroutine

SERIES takes in the numerator and denominator coefficients
of any rational function @k(s) and computes the coeffici-
ents of the series expansion of ¢k(t) in powers of t. The
maximum value of t at which ¢k(t) is required is also given
as an input to SERIES. If this maximum value t2 > 1, the

series expansion is made with respect to a new variable Tt

such that
T = t/tz (6.27)

The total number of terms necessary can be calculated by
using the relation (5.79). Another method of determining
the number of terms is to make use of the condition that

the absolute value of nth

term of the series expansion

tends to zero as n tends to infinity. As all computations

are carried out in double precision arithmetic the compu-
tation of the coefficients is terminated when the terms '
become less than 10™%, The relation (5.79) is used as a

general guide to find the total number of terms required.
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The function subprogram VAL uses these coefficients and
maximum value of t to compute the inverse at any point t.
The subroutine SERIES and function subprogram VAL are

given in Appendix I.

MINIMIZATION OF AVERAGE ERROR
It has been proved in Chapter 4 that the fre-
quency response of H(s) can be improved by minimizing the
average error, Hence the approximation
N
h(t)=1ZI C,¢, (t) (6.28)
AP A |
i=1
is to be so chosen such that the average error y is mini-
mized subject to the condition that ISE is less than a
preassigned value u. This can be achieved if the minimi-

zation of y is done such that (Ci)Ni=l are always chosen

to satisfy equation (4.22). This equation is
N S v 2
z (C1 - Ci) g (u~-1I) =26 (6.29)
i=1
where
n

C; = [of(t) ¢, (t)dt

N
and T is the minimum ISE.

Thig constraint on the choice of (Ci)l\i]=1 can be incorporated

into the expression of average error by the penalty func-
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tion approach (51). The expression for the average error

is modified as follows

N N v 2
E Ci¢;(t)|at + wo| T (C; =€) -8

i=1l

Y, = JolE(t) - 2|2

1

(6.30)

where w is a weight factor and p is a constant defined as

N ) 2
p=0when I (C, -C,)" g6
. i i
i=1
N L) 2
and p=1when I (C, -C,)* > 38 (6.31)
i=1 * 1

The value of the weight factor w may be changed as desired
(51). The choice of p as in equation (6.31) ensures that
when (Ci)li=l is inside or on the sphere defined by equa-
tion (6.29), Yy and Y are the same and whenever the search
point goes outside this sphere, Yy is made greater than Y.
The actual value of Yy is controlled by a proper choice of
w. It has been proved in Chapter 5, that y has a minimum
value in the sphere defined by equation (6.29). Hence as
the minimization of Yy is continued the points of search
approach this sphere and finally converge to a point within
or on this sphere,

Any of the gradient techniques may be used to

minimize Y
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N n
Grad (yn) = Grad (y) + prradl'Zl(Ci - Ci) -6
l:

th

The k™ component of Grad (yn) is given as

oY LY N N
2= 8 4 gwp(c, - ck){ (e, - C)% - 52} (6.33)
i=1

The term %%— is computed as discussed in Chapter 4. This
k

is given as,

3L = ri'sgnle(t) Moo, (t) 1t (6.34)
k
where e(t) = £(t) - g Ci¢i(t)
i=1

The interval [0, TO] is divided into small intervals and
the integral in each interval is evaluated using Gauss
quadrature formula. The error involved in evaluation of
the gradient due to the discontinuity of Sgn(e(t)) can be
made negligible by choosing the subinterval to be very
small. This avoids the determination of the zero cros-
sings of e(t) for each set of coefficients (Ci)§=l. Simi-
larly the time of computation of average error and gradi-
ent is considerably saved by computing and storing the
values of the functions ¢i(t), i=1,2,...,N at those points
as required by Gauss quadrature formula. This need be

done only once at the beginning of the minimization. The
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subroutine MDQG makes use of these values and computes

Yn and Grad (yn) for any point (Ci)?=l' In the following
numerical examples the actual minimization of average
error was carried out by using Fletcher-Powell algorithm
(52).

The subroutine MDQG and a program for minimiz-
ing the average error are given in Appendix 1. The mini-
mization of average error makes use of the standard
Fletcher-Powell algorithm available in the IBM Scientific

Subroutine Package Library.

NUMERICAL EXAMPLES

The method developed in this dissertation was
used to approximate the ideal low pass filter. The rea-
son for choosing this example is that it can be made use
of to check the comparative merits and demerits of the
new method.

The frequency response of an ideal low pass is

defined as

|
o

F(jw) =
=0 ' le > 1 (6.35)

The corresponding time function f(t) is given as
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(6.36)
(t - t05

f(t) is obtained by delaying the sint/t function by to.
These functions are shown in Fig. 6,1,
Theoretically F(jw) is not realizable. This is

because f(t) exists for negative vdlues of t. The func-

tion f(t) is not absolutely integrable. Hence f(t) does
not satisfy the assumptions made in Chapter 4., But even
though F(jw) is not physically realizable, it is possible
to obtain a satisfactory approximation of F(jw) by suit-
ably truncating f(t). Two different versions of f(t) are

used to approximate F(jw). They are

) £(t) =2 3REZTopg, 3
=0 , 210, 31] (6.37)
2) £(t) = 2 SBE 20 oy g

=0 ¢+ tg[0, 4r] (6.38)

f(t) as defined by equations (6.37) and (6.38) are physi-
cally realizable, These functions are shown in Fig. 6.2a
and Fig. 6.2b respectively. Each of these functions is
approximated by Sth order and Sth order filters. These

approximations are now given.
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Figure 6.2. Truncated Impulse responses of ideal low-

pass filter.
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The following notations are used in the results.
E(s) - Least square filter.
H(s) - Filter obtained by minimizing average error y
with constraints on ISE,

n "
(bi)§=l - The numerator parameters of H(s).

(bi)§=l - The numerator parameters of H(s)
)N

"
(a i=1 - The denominator parameters of H(s) and H(s).

i
N
(Ci) - The coefficients of orthonormal functions at

minimum ISE,

(Ci)§=l - The coefficients of orthonormal functions
at minimum average error with constraints
on ISE.

N N

(si)i=l - The poles of H(s) and H(s).

n . N
h(t) and h(t) are the time functions of H(s) and
H(s) respectively.

g(t) and e(t) are the corresponding error functions.

The orthonormal functions for each case are

~given in Appendix II.

Example 1
_ 1l sin(t - m)
f(t) = -TF T:TT—- ’ tE[O, 311']

The function f£(t) is shown in Fig, 6.2a.
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H{(s)

H(s)
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a) Order of filter, N =5

[2.04708
3.36562

3.27161 | ; Sy
1,92788 Sy

0.6517
N )
by 0.00355
N

b, 0.07107
N

b, 0.37711
N

b, 0.21931
%5 0.68641
rr - p— —
81 0.20352
82 -0.16866
83 ~0.4689
84 -0.04183
85 0.05637
L~ L _

; Minimum ISE = 0.00021

; Minimum y = 0,06163,

ISE < 0.0005

= -0.79076
= -0.39496 t j 0.64967
S = -0.2332 £ j 1.17103

bl 0.00807
b2 0.06382
; b3 = 10,38919
b4 0.21292
_b5_ _p.68873~
Cl 0.20407
C2 -0.16752
; C3 = |=-0.46892
Cy -0.03934
Cg 0.05305
— - - -
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The frequency responses of ﬁ(jw) and H(jw) are given in
Fig. 6.3 and Fig. 6.4 respectively. The least square
approximation ﬁ(t) and the error function g(t) are given
in Fig. 6.5. Fig. 6.6 gives the function h(t) and the
corresponding error function e(t) for minimum Yy with con-

straints on ISE,
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b) Order of

ny
H(s)

8
I bis
i=1

8-1

filter, N = 8

+

[ 4,20363]
10.54344
20.47894
24.75407
23,68999
12.88635
4,44377
0.04039

o2 e be e be be be U2

I

-

~] &N U1 s W N

©

-

l

-

-0.01818
0.08441
0.60015
0.90200
3.49263
1,63849
4,53701
0.04189

-

; Minimum ISE

; Minimum y =

ISE ¢ 0

-0.00934

-2.10856

+

-0.37017

0.000057

.02058

.0005

j 1.09699

-0.2006 = j 1.67774

-0.47209 ¢

-

-0.01526
0.07433
0.62983
0.85798
3.54706
1.60465
4.55149

0.03984

3 0.55961

=

-
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El i 0.13891 Fcl !— 0.13577
¢, 0.03703 C,| ' 0.03763
& 0.1587 c, . 0.15864
84 -0.26183 Cy| ! -0.26248
85 0.01719 Cs| | 0.01604
36 -0.18327 Ce ~0.18415
37 -0.2203 c, ~0.21827
& -0.31303 c ~0,31454
8 L ] 8 [ ]
8L L L ]

The frequency responses of E(jw) and H(jw) are given in
Fig, 6.7 and Fig. 6.8 respectively, The least square
approximation ﬁ(t) and the error function g(t) are given
in Fig. 6.9, Fig. 6.10 gives the function h(t) and the
corresponding error function e(t) for minimum vy, with

constraint on ISE.
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Examgle 2

_ 1 sin(t - 2m)

£(t) m t - 27

, te[0, 47]

The function f£(t) is given in Fig. 6,2b,

a) Orxder of filter, N = 5,

5 .
) biss_l
H(s) = izl . ; Minimum ISE = 0.00077
s+ 1 a.gt
2
5 .
L b.so"t
i=1 t
H(s) = 5 ; Minimum y = 0.25125
°+ 1t ISE < 0.035
i=1 s U
a 1.44778 s, = =0.43095
a, 1.99895 | s, s3 = -0.30148 + j 0.53016
aj|=|1.39288 | ; s,, s; = -0.20693 * j 0.94678
ay| | 0.65976
2y _0.15055_
-—-’\’— e — pom —-— — -
B, 0.01695 by 0.01308
%2 -0.12350 b, -0.06371
BB 0.06757 b, 0.05126
%4 -0.28401 b, -0.17422
N i
B . 0.13778 b 0.13778
5] L g L5 i




139.

¢, 0.01884 oA o.023291
¢, 0.17006 c, 0.10712
¢yl = |-0.47941] ;| cy| = | -0.31375
¢, -0.20586 | c, ~0.13867
_§5~ Lj0.01208‘ _Cs_ __0°004S4J

The frequency responses of ﬁ(jw) and H(jw) are given in

Fig. 6.11 and Fig, 6.12 respectively. The least square

approximationnﬁ(t) and the error function 2(t) are given
in Fig. 6.13, Fig. 6.14 gives the function h(t) and the
corresponding error function e(t) for minimum y,_with

constraints on ISE.
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Figure 6.12 Magnitude and Phase responses of H({ju), N=5, Delay=2n, Minimum y=0,25125, ISE¢0,035,
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b) Order of filter, N = 8

N(s) =

lord

]

It ™ oo

i=1

8-i

8
s8 4 b ais8_l
i=]1
8
5 bis8’l
i=1
8
L aiSS'l
i=1]
4,15279 Sl,
16,39557 83,
22,5592 SS'
28.67467 S7,
20.43117
11.10009
3.28816
0.44341
_ J

; Minimum ISE

; Minimum y =

ISE g

~0.26537
-0.27231
-0.18275

-1.35596
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= 0.00052

0.232

0.03

+

I+

j 0.15885
j 0.60108
j 1.00335
j 2.8976
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n . .
B 0.0232 b, -0.00352
BZ -0.08829 | | b, -0.02243
83 0.00813 | | b, -0.09383
%4 -1.49849 | | b, -0.5897
= : =
%5 -0.03038 | | by -0.10756
BG -2.33046 | | by -1.28322
87 0.54567 | | b, 0.36157
BB 0.39488 | | bg 0.39488
. J L_ d L. - . o
e T T T n
81 -0.21314 | ¢, -0.1409
82 0.3121 c, 0.22583
83 0.35736 | | cC, 0.23957
84 -0.04933 | | c, -0.02398
= ; =
85 -0.14889 | | C; ~0.1167
86 -0.08089 | | C -0.04878
87 -0.00124 | |c, ~0.0037
¢ -0.0045 c 0.00062
8 8
- . 4 L L 4

The frequency responses of ﬁ(jw) and H(jw) are given in
Fig. 6.15 and Fig. 6,16 respectively. The least square
approximation k(t) and the error function g(t) are given
in Fig. 6.17. Fig. 6.18 gives the function h(t) and the
corresponding error function e(t) for minimum Yy, with

constraints on ISE,
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SUMMARY AND CONCLUSIONS OF NUMERICAL EXAMPLES

The numerical examples show that it is possible
to improve the frequency response by minimizing the aver-
age error. In examples 2a and 2b there is considerable
improvement in the frequency response while in examples
la and lb this improvement is not significant. In example
1 it was possible to reduce the ISE to a very low value
and hence the unconstraint minimum of average error was
very close to the centre of the sphere of equation (6.29).
Therefore the minimization of average error gave a set of
coefficients very close to those at minimum ISE. But in
example 2, it was not possible to reduce the ISE to such
low values as in the first example. The coefficients
giving the unconstrained minimum of average error, were
not close to the centre of the sphere of equation (6.29).
In this case it was possible to improve the frequency
response by minimizing the average error while keeping
the ISE less than some suitable value. It was observed
that the magnitude characteristics of these improved
responses had a constant attenuation at the low frequency
(w < 1). This was due to the relaxing of the condition
on ISE. This cculd be overcome by any one of the fol-

lowing three methods.
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(1) By reducing the radius of the sphere giving the con-

straint on ISE; that is, by reducing ISE,
(2) By multiplying H(s) with a suitable constant.

(3) By keeping the constant term of the numerator of

ﬁ(s) and H(s) to be the same.

In the exanples 2a and 2b the frequency responses of H(s)
were adjusted by method (3), It was found that this gave
the desired response at low frequencies without affecting
the improvement obtained at higher frequencies.

lThe frequency responses of these filters at higher
frequencies are inferior to those of the corresponding
Butterworth filters. But, these filters have better
frequency characteristics in the transition band., For
example in case 2b (N = 8, Delay = 27, y minimum) the
maximum ripple in the pass band has a value of -43db,
This magnitude is first attained at y = 1.54., The Butter-

h

worth response of 8t order filter at @ = 1.54 is only

-29db (53).
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The problem of approximating an arbitrary fre-
quency response by a realizable filter has been studied
in this research. The general approach employed was to
convert the frequency domain approximation into an equi-
valent time domain approximation. This was done by mak-
ing use of two important relations between the frequency
domain and the time domain errors. These are the equiva-
lence of least square criterion in the frequency domain
and in time domain and the relation between the least
upper bound of the error in frequency domain and the aver-
age error in the time domain. A new method of minimizing
the upper bound of the magnitude of the frequency domain
error with constraints on integral squared error has been
developed. This method made use of a set of orthonormal
functions of exponentials.

One important aspect of the problem was the
determination of the poles of the filter which would yield
the least integral squared error. The concept of compli-
mentary filter was used to evaluate the ISE, This has
the advantage that the ISE corresponding to any set of

distinct poles could be easily computed using a simple
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filtering operation. This did not involve computations
using complex numbers. An algorithm was developed and
implemented to compute the ISE. The minimization of ISE
was carried out by using Zangwill algorithm. This algo-
rithm was an improvement on Powell's method of minimizing
a function of several variables without calculating deri-
vatives. The ISE is very insensitive to variations in
pole positions over a wide range around the optimum point
and hence the gradient methods of minimization was not
successful in minimizing ISE. This led to the use of
Zangwill algorithm, This algorithm with some modifica-
tions was implemented. The mathematical basis of this
method was also reviewed,

A new method of choosing the zeros of the fil-
ter so as to minimize the deviation in the frequency do-
main was developed. It was proved that the average error
in time domain is related to the least upper bound of the
magnitude of the deviation in the frequency domain, This
gave a convenient way of minimizing the deviation in the
frequency domain. However, the minimization of the aver-
age error does not mean the minimization of ISE and vice
versa. It was found that minimization of one of these
errors alone need not give the desired result. This led

to the development of a method of minimizing the average
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error subject to constraints on ISE. This was carried
out by using a set of orthonormal functions of exponen-
tials. The mathematical basis of this scheme of minimiz-
ation was established. It was proved that for every ISE
less than or equal to a preassigned value there exists

a set of coefficients of the orthonormal expansion such
that the average error in time domain at these coeffici~-
ents is a minimum. The uniqueness properties of this
approximation were also discussed. The actual minimiza-
tion was carried out by using the Fletcher Powell algo-
rithm. The constraints on the ISE were implemented by
using the penalty function approach.

In order to implement the above scheme of mini-
mization it was found necessary to compute the inverse of
a Laplace transform expressed as a rational function of
complex frequency. A new method of numerically computing
this inverse was developed. In this method the transient
response was expressed as a series expansion in powers
of the independent variable t. The coefficients of the
series expansion could be easily computed by using the
recursive relations established for this purpose. The
new method was found to be more efficient than some of
the already existing methods of evaluating the transient

response (5). This method makes the approximation of an
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arbitrary frequency response using the time domain approach,
more practical.

The results obtained by applying this technique
to the specific example of approximating the ideal low
pass were very encouraging. The frequency characteristics
of the filters obtained by this method were better than
those of the least square filters. This improvement in
the frequency response is not very marked in the first
example considered (Delay = w) while in the second example
(Delay = 2m) the improvement was very significant. This
was because of the fact that in the first case it was
possible to minimize the ISE to a very low value and
hence the two points of minimum ISE and minimum average
error were close to each other while in the second case

this was not true.

RECOMMENDATIONS FOR FUTURE WORK

In the example considered, the time domain
function of the desired frequency response was analyti-
cally known. In general, when approximating an arbitrary
frequency response the corresponding time domain function
should first be computed. This can be done by using the
Fast Fourier Transform algorithm. It is also possible to

check beforehand by using the inverse FFT whether the
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truncated time function can give a sufficiently close
approximation of the desired frequency response. Once
the time function is known it should be reversed in time
before applying as input to the complimentary filter for
evaluating the ISE,

The extension of the method to the design of
Recursive Digital filters for arbitrary frequency response
offers an interesting field for future work in this direc-
tion, A set of discrete orthonormal functions have al-
ready been developed by Young and Huggins (54) and Broome
(55). The least square error of approximation can be
evaluated by using the concept complimentary filter in
Z-domain (56). All the theories developed in this dis-
sertation can be extended to the discrete system. The
new method of inverting the Laplace transform can be modi-
fied to develop a corresponding numerical method invert-
ing Z-transform. The method of computing transient
response can also be made use of to find the equivalent
Z-transform expression of a Laplace transform (57).

Another field of future work is to use the
optimum poles to construct a set of functions satisfying
the Harr condition and to carry out the minimization of
the average error with respect to the coefficients of

these functions. This will improve the quality of the
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approximation,

This research has shown that it is possible to
get a better frequency response by relaxing the condition
on ISE. This suggests the possibility of directly mini-
mizing the Chebyshev error in the frequency domain without
using the relation between the upperbound in the frequency
domain and the average error in time domain. This involves
the evaluation of an analytical expression for Chebyshev

error in frequency domain.
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APPENDIX I

SUBROUTINE ERROR (NDIM,AC,VALUE,Y,DERY,AUX, RFX)
EXTERNAL FCT,OUTP,RFX
SUBROUTINE ERROR (NDIM,AC,VALUE,Y,DERY,AUX,RFX)
THES SUBROUTINE COMPUTES THE INTEGRAL SQUARED ERROR
(ISE) OF EXPONENTIAL REPRESENTATION BY THE METHOD OF
COMPLIMENTARY FILTER.IT USES THE RKGS SUBROUTINE IN
SSPLIB OF IBM.THE ARGUMENT LIST OF RKGS IS CHANGED BY
ADDING A NEW PARAMETER AC OF N VECTOR.AC IS THE VECTOR
CONTAINING THE COEFFICIENTS OF THE COMPLIMENTARY FIL
TER.A(1l) IS THE COEFFICIENT OF S** (N-1) OF DENOMINATOR
‘OF COMPLIMENTARY FILTER,
THE COMMON STATEMENT IS USED WITH SUBROUTINES ERROR,
ZAGMIN, :FCT,AND OUTP
NDIM # OF THE COEFFICIENTS
AC-NDIM VECTOR CONTAINING THE COEFFICIENTS OF DR OF
COMPLIMENTARY FILTER
VALUE-THIS GIVES THE ISE ON RETURN
Y-VECTOR OF DIMENSION NDIM. CONTAINING THE STATE
'VARIABLES,INPUT VALUES OF THIS VECTOR ARE ZEROS.
DERY-VECTOR OF DIMENSION NDIM . INPUT VALUES ARE
SPECIFIED BY RKGS,
AUX-AS SPECIFIED BY RKGS
RFX- A FUNCTION SUBPROGRAMME GIVING THE TIME REVERSED
SIGNAL
DELT-INTERVAL OF INTEGRATION,ERR- ISE. V-VECTOR OF
DIMENSION 5,A WORKSPACE,
BV,S,KOU ARE WORKSPACES,
TL-DURATION OF SIGNAL
REAL PRMT(6),Y(10),DERY (10) ,AUX(8,10),AC(10),V(5)
COMMON DELT,ERR,BV,V,S,TL,KOU
ERR=0, 0
KOU=0
BV=0,
S=4,*DELT
PRMT (1)=0,
PRMT (2) =TL
PRMT (3) =DELT
PRMT (4)=1.E-4
PRMT (6) =DELT
X=NDIM
XX=1, /X
DO 7 I=1,NDIM
Y(1)=0,
7 DERY (I)=XX
CALL RKGS (PRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUX,AC)
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VALUE=ERR
RETURN
END

SUBROUTINE FCT (X,Y,DERY,NDIM,AC,RFX)

C THIS SUBROUTINE COMPUTES THE DERIVATIVES OF STATE
C VARIABLES OF COMPLIMENTARY FILTER AT X.
C ALL PARAMETERS ARE AS GIVEN IN ERROR.,

C
C
C

EXTERNAL RFX

REAL Y (10),DERY (10),AC(10),V(5)
COMMON DELT,ERR,BV,V,S,TL,KOU
INTEGER KOU

N=NDIM-1

DO 7 I=1,N

II=I+1

DERY (I)-Y (II)

DERY (NDIM)=RFX (X)

DO 8 I=1,NDIM

L=NDIM-I+1

DERY (NDIM)=DERY (NDIM)~AC (I)*Y (L)
RETURN

END

SUBROUTINE OUTP (X,Y,DERY, IHLF,NDIM,PRMT,AC,RFX)
THIS SUBROUTINE COMPUTES THE ISE FROM THE OUTPUT
VALUES OF RKGS.

ALL PARAMETERS ARE AS GIVEN BY ERROR AND RKGS,

1

27

0l

17

11

13

EXTERNAL RFX

REAL PRMT(6),Y(10),DERY (10),AUX(8,10),AC(10),V(5)
COMMON DELT,ERR,BV,V,S,TL,KOU

INTEGER KOU

IF (IHLF.GE,11)WRITE(6,101) IHLF,X

FORMAT('0', 'IHLF=',13,2X,F12.7)

IF ((PRMT(6)-X).LT.(1.E-5))GO TO 17
RETURN

KOU=KOU+1

IF (KOU.EQ.5)GO TO 27

IF (KOU,GE.6)GO TO 30

V (KOU) =RFX (X)

DO 7 I=1,NDIM,2

L=NDIM-I+1

V (KOU) =V (KOU) = (AC (I) *¥ (L) +AC (I) *Y (L))
PRMT (6)=PRMT (6 ) +DELT

RETURN

V (KOU ) =RFX (X)

DO 8 I=1,NDIM,2

L=NDIM-I+1

V (KOU) =V (KOU) - (AC (I) *¥ (L) +AC (I) *Y (L))
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V1=V (5)**2 '
ERR=ERR+ (BV+3.,875% (V (1) **2+V (4) *#%2)+2,625% (V(2) **2
+V(3)**2)+V1)
IF ( (PRMT (2) -PRMT (6) ) .LT. (1,E-6))GO TO 29
PRMT (6) =PRMT (6) +DELT
IF ( (PRMT (2) -PRMT (6)) .GE.S)GO TO 31
KOU=5
BV=V1
ERR=ERR* (DELT/3. )
RETURN

31 KOU=0
BV=V1
RETURN

29 ERR=ERR* (DELT/3.)
PRMT (5)=0.
RETURN

30  V1=RFX(X)

15 DO 9 I=1,NDIM,2
L=NDIM-I+1

9 V1=V1-(AC(I)*Y (L)+AC(I)*Y(L))
V1=V1k#2
ERR=ERR+ (DELT/2, ) * (BV+VL1)
IF ( (PRMT (2) -PRMT (6) ) .LT. (1.E~6))GO TO 32
PRMT (6 ) =PRMT (6 ) +DELT
BV=V1
RETURN

32 PRMT (5)=0.
RETURN
END

FUNCTION RFX (X)
C THIS FUNCTION COMPUTES THE VALUE OF TIME REVERSED SIN
C (X)/X FUNCTION OF DELAY (2*PI)AND DURACTION (4*PI)

DOUBLE PRECISION T,TD,TU,PI,FFX

TD=2,DO*P1

TU=4,DO*P1

PI=3,1415927D0

T=TU-X

RFX=FFX(T,TD,TU)

RETURN

END

FUNCTION FFX(T,TD,TU)
C THIS FUNCTION COMPUTS THE VALUE OF SIN(T)/T FUNCTION
C FOR DELAY (TD) AND DURATION (TU)

DOUBLE PRECISION T,TD,PI,TX,TU,FFX

IF (T.GE,TU) GO TO 3

PI=3,1415927D0



N =

TX=T~TD
IF (DABS (TX) .LT,1.D-7) GO TO 1
FFX=DSIN (TX) /TX

GO TO 2

FFX=1.DO

FFX=FFX/PI

RETURN

FFX=0.DO

RETURN

END

164,
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SUBROUTINE ZAGMIN(N,A,E,ALFA,TALF,EXS,KOUNT,AO,A2,
P,Y,DERY,AUX)
THIS SUBROUTINE MINIMISES A FUNCTION OF N VARIABLES
WITHOUT COMPUTING THE DERIVATIVES.THIS USES THE ZANGWILL
ALGORITHM. ,
SUBROUTINE ZAGMIN(N,A,E,ALFA,TALF,EXS,KOUNT,AO,AZ,P,Y,
DERY, AUX)
N-#OF VARIABLES-INPUT
A-VECTOR OF DIMENSION N,CONTAINING THE INITIAL VALUES
OF THE VARIABLES, '
ON RETURN A CONTAINS THE FINAL VALUES.
E-FUNCTION VALUE
ALFA-INITIAL INCREMENT OF SEARCH, INPUT,
TALF-A SMALL VALUE FOR TESTING THE MINIMUM,IF FUNCTION
DOES NOT CHANGE FOR ANY DISTANCE LARGER THAN TALF THE
POINT IS MINIMUM,
EXS-A SMALL VALUE OF FUNCTION TO TEST MINIMUM, IF
FUNCTION CHANGE IS LESS THAN EXS IN ONE ITERATION
MINIMUM IS FOUND
KOUNT-MAXIMUM # OF ITERATIONS.
A0,A2,Y,DERY - EACH OF DIMENSION N IS WORKSPACE
P-ARRAY OF DIMENSION (N,N) WORKSPACE
AUX-ARRAY OF (8,N).WORK SPACE
THIS SUBROUTINE WILL WRITE THE VECTOR A AND FUNCTION
VALUE AFTER EACH ONE DIMENSIONAL SEARCH,
REAL A(lO),AO(lO),AZ(lO),Y(lO),DERY(lO),AUX(S,lO),
V(5)
REAL P(10,10)
COMMON DELT,ERR,BV,V,S,TL, KOU
INITIALISATION
N1=N+1
N2=N-1
SALF=ALFA
IC=0
KO=0
DO 101 II=1,N
DO 101 JJ=1,N
P(II,JJ)=0.
IF(I1.EQ.JJ)P (II,JJ)=1.
101 CONTINUE
DO 102 K=1,N
A0 (K)=A(K)
102 A2 (K)=A(K)
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
WRITE(G,SOO)N,ERR,(A(IZAG),IZAG=1,N)
500 FORMAT('O','ORDER',I2,1X,'INITIAL ISE',F12,7,1X,
'A=', (8F12,7))
E2=ERR
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OER=ERR
C MINIMISATION ALONG CONJUGATE DIRECTIONS.
1 J=0
I=0
2 J=J+1
IF (J.EQ.N1) GO TO 4
GO TO 5
4 J=N
I=1
5 DO 103 K=1,N
103 A(K)=A2 (K)+ALFA*P (K,J)
WRITE (6,900)J,ALFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
E3=ERR
IF (ERR.LT.E2) GO TO 11
DO 104 K=1,N
104 A(K)=A2 (K)-ALFA*P (K,J)
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
E1=ERR
IF (ERR.LT,E2) GO TO 8
IF (ALFA.LT.TALF) GO TO 10
ALFA=ALFA/2.
GO TO 5
8 ALFA=ALFA
GO TO 11
10 DO 105 K=1,N
105 A(K)=a2(K)
ERR=E2
GO TO 15
11 El=E2
E2=ERR
ALFA=ALFA+ALFA
DO 106 K=1,N
106 A(K)=A (K)+ALFA*P (K,J)
WRITE (6,800)ALFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT.E2) GO TO 11
E3=ERR
ALFA=ALFA/2,
DO 107 K=1,N
107 A(K)=A (K)-ALFA*P (K,J)
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT.E2) GO TO 12
E3=ERR
DO 707 K=1,N
707 A2(K)=A(K)-ALFA*P (K,J)
DFA=(ALFA/2.,)* (((=3.) *E1+(4.) *Ew=-E3) / (=E1+ (2. ) *E2-
E3))
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109

14
110

12

111

112

13
113

15
19

300

16
33
600
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ALFA=DFA-ALFA-ALFA
DO 108 K=1,N

A(K)=A (K) +ALFA*P (K, J)

CALL ERROR(N,A,VALUE,Y,DERY,AUX)

IF (ERR.LE.E2) GO TO 14

DO 109 K=1,N

A(K)=A2 (K)

ERR=E2

GO TO 15

DO 110 K=1,N

A2 (K)=A(K)

E2=ERR

GO TO 15

El=E2

E2=ERR

DFA= (ALFL,'2,)* (((-3.)*El+ (4.) *E2-E3) / (~E1+(2.) *E2~
E3))

ALFA=DFA-ALFA

DO 111 K=1,N

A2 (K)=A (K)+ALFA*P (K, J)

CALT. ERROR(N,A2,VALUE,Y,DERY,AUX)

IF (ERR.LT.E2) GO TO 13

DO 112 K=1,N

A2 (K)=A(K)

ERR=E2

GO TO 15

E2=ERR

DO 113 K=1,N

A(K)=A2 (K)

IF(J.EQ.N) GO TO 16

I=0

ALFA=SALF

WRITE(6,300)J,ERR, (A(IZAG),IZAG=1,N)
FORMAT('0','CONJ DIR,',I2,1X,'ISE',F12,7,1X,'A=",
(8F12.7))

GO TO 2

IF (I.EQ.0)GO TO 17

IF ( (ABS (OER-ERR)) .LE, (EXS)) GO TO 29
KO=KO0+1
WRITE(6,600)K0,ERR, (A (IZAG),IZAG=1,N)
FORMAT('0', 'ITERATION',I3,1X,'ISE',F12,7,1X, 'A="',
(8F12.7))

IF (KO.GT,KOUNT) GO TO 30

IC=IC+1l

ALFA=SALF

GO TO 18

C SEARCH ALONG N CONJUGATE DIRECTIONS ARE OVER.NEW CON
C JUGATE DIRECTIONS ARE CHOSEN,
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17 DO 114 D=1,N
DO 114 JJ=1,N2
JJT1=JJ+1 '

114 P(K,JJ)=P(K,JJ1)
PL=0,
DO 115 K=1,N
P (K,N)=A (K) ~A0 (K)

115 PL=PL+P (K,N) *P (K,N)
PL=SQRT (PL)
IF(PL,LE.1.E~6) GO TO 33
DO 116 K=1,N

116 P (K,N)=P(K,N)/PL
GO TO 19

C MINIMISATION ALONG THE CO-ORDINATE DIRECTIONS.

18 I=0
DO 117 K=1,N

117 A0(K)=A(K)

20 I=I+l
IF (IC.EQ.N1)IC=1
AIC=A(IC)

21 A(IC)=AIC+ALFA
WRITE (6,900) IC,ALFA

900 FORMAT('0',I5,2X,'ALFA=',F12.7)
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
E3=ERR
IF (ERR,LT.F2) GO TO 24
A(IC)=AIC-ALFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
E1=ERR
IF (ERR.LT.E2) GO TO 23
IF (ALFA.LE,TALF) GO TO 22
ALFA=ALFA/2,
GO TO 21

22 A(IC)=AIC
WRITE (6,400) IC,E2, (A(IZAG),IZAG=1,N)
IF(I.EQ.N) GO TO 31
IC=IC+1
ALFA=SALF
GO TO 20

23 ALFA=~ALFA

24 E1=E2
E2=ERR
ALFA=ALFA+ALFA
A(IC)=A(IC)+ALFA
WRITE (6,800) ALFA

800 FORMAT ('Q','ALFA=',F12.7)
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT.E2) GO TO 24
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E3=ERR
ALFA=ALFA/2.
A(IC)=A(IC)=ALFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT.E2) GO TO 26
E3=ERR
DFA= (ALFA/2.)* (((-3) *E1+(4.) *E2-E3) / (~E1+ (2. ) *E2-E3))
AIC=A(IC)
A(IC)=A(IC)-ALFA-ALFA+DFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT,E2) GO TO 25
A(IC)=AIC-ALFA
ERR=E2
GO TO 28
25 E2=ERR
GO TO 28
26 E1=E2
E2=ERR
DFA=(ALFA/2.)*(((-3.)*El+(4.)*E2=E3)/(-El+(2.)*E2-E3))
. AIC=A(IC)
A(IC)=A(IC)-ALFA+DFA
CALL ERROR(N,A,VALUE,Y,DERY,AUX)
IF (ERR.LT.E2) GO TO 27
A(IC)=AIC
ERR=E2
GO TO 28
27 E2=ERR
28 ALFA=SALF
OER=ERR
A2 (IC)=A(IC)
WRITE (6,400) IC,ERR, (A(IZAG),IZAG=1,N)
400 FORMAT('0','COOR DIR',I2,1X,'ISE',F12.7,1X, 'A=',
(8F12.7))
GO TO 1
C FUNCTION CHANGE IS LESS THAN EXS,ITERATION IS TERMINATED.
29 WRITE(6,118)EXS
118 FORMAT('0','ERROR CHANGE IS LESS THAN',F12.7)
E=ERR
RETURN
30 WRITE (6,119)
119 FORMAT ('0','KOUNT IS EXCEEDED')
E=ERR
RETURN
C A MINIMUM IS OBTAINED.
31 WRITE(6,120)
120 FORMAT('0','CONVERGENCE IS OBTAINED')
E=E2
RETURN
END
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SUBROUTINE SERIES(N,A,B,TL,F,X,NT)
THIS SUBROUTINE COMPUTES THE COEFFICIENTS OF THE
SERIES EXPANSION OF THE INVERSE OF A RATIONAL LAPLACE
TRANSFORM
N-DEGREE OF DENOMINATOR
A-VECTOR OF DIMENSION N,THIS CONTAINS THE DENOMINATOR
COEFFICIENTS OF LAPLACE TRANSFORM.A(1)-COEFFICIENT OF
S**(N-1) ETC.
B-COEFFICIENT VECTOR OF NUMERATOR,SIMILAR TO A,
F-A VECTOR TO STORE THE COEFFICIENTS OF SERIES EXPAN
SION.AN ARBITRARY DIMENSION OF F(300) IS USED.TL~-
MAXIMUM VALUE OF TIME AT WHICH INVERSE IS REQUIRED.

- NT-NUMBER OF TERMS OF SERIES EXPANSION

~J O

DIMENSION A(10),B(10),X(10),F(300)
DOUBLE PRECISION A,B,F,X,FACT,SUM,TL
IF(TL.LE.1,D0)TL=1,D0
FACT=TL

NN=N-1

NNN=N-2

DO 1 I=1,NNN
X(I)=0.DO

X (NN) =TL
X(N)==A (1) *TL
F(1)=B(l)

DO 6 I=2,300

SUM=0. DO

DO 2 J=1,N

JI=N-J+1
SUM=SUM+X (J) *B (JJ)

F (I)=SUM
IF((I.GT.N).AND, (DABS(F(I)).LE.1,D-16))GO TO 7
FACT=TL/I

DO 3 J=1,N

X (J)=X (J) *FACT
SUM=0, DO

DO 4 J=1,N

JJ=N-J+1
SUM=SUM-A (JJ) *X (J)

DO 5 J=1,NN

JJ=J+1

X(J)=X(JJ)

X (N)=SuM

CONTINUE

NT=I

RETURN

END
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FUNCTION VAL (NT,F,TL,T)
C THIS FUNCTION COMPUTES THE INVERSE OF A LAPLACE TRANS
C FORM USING THE OUTPUT VALUES OF SUBROUTINE SERIES.
DIMENSION F(300)
DOUBLE PRECISION F,VAL,X,T,TL
IF (TL.LE.1.DO)TL=1,D0
X=T/TL
VAL=F (NT)
NTT=NT=-1
DO 1 I=1,NTT
J=NTT-1+1
VAL=VAL*X+F (J)
1  CONTINUE
RETURN
END
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COMPUTATION OF THE NRS AND DRS OF THE ORTHONORMAL
FUNCTIONS FROM THE POLE VALUES,N IS SYSTEM ORDER, IR-
NO.OF REAL POLES.VECTOR R HAS THE POLE VALUES,MAGNI
TUDE OF THE REAL POLES FIRST,FOLLOWED BY COMPLEX POLES,
MAGNITUDE OF REAL PART FIRST, FOLLOWED BY THAT OF THE
IMAGINARY PART
COEFFICIENTS OF NR AND DR OF THE FUNCTIONS ARE PRINTED
IN ORDER FROM LARGEST TO SMALLEST POWER.ON RETURN R
VECTOR HAS VALUES AS FOLLOWS:MAGNITUDE OF REAL POLES
FIRST FOLLOWED BY P1,Ql1,P2,Q2 ETC.
PMPY IS THE SUBROUTINE FOR POLYNOMIAL OPERATIONS GIVEN
IN SSPLIB OF IBM.

REAL R(lO),XD(lO),XN(lO),Y(B),B(lO),BB(lO),Z(lO)

REAL A(10)

READ(5,1)N

FORMAT (I2)

READ(5,1)IR

READ(5,2) (R(I),I=1,N)

FORMAT (10F20,7)

WRITE (6,100) (R(I),I=1,N)
0 FORMAT('0', 'POLE VALUES',10F12.7)

XD(1)=1.

XN(l)=1.

IXD=1

IXN=1

Y(1)=1,

Iy=1

IF(IR.EQ.0)GO TO 11

Y(2)=1.

I¥=2

DO 7 I=1,IR

¥Y(1)=R(I)

CALL PMPY(Z,1%,XD,IXD,Y,IY)

DO 3 K=1,1z2

XD (K)=2% (K)

IXD=17

IF(I.EQ.1) GO TO 5

II=I-1

Y (1)=-R(II)

CALL PMPY(Z,IZ,XN,IXN,Y,IY)

IXN=IZ

DO 4 K=1,12

XN (K)=2 (K)

DO 6 K=1,IXN

B(K)=SQRT (R(I)+R(I))*XN (K)

DO 21 KJI=1,IXN

KIII=IXN-KJI+1

A(KJI)=XD(KJI ")

WRITE(6,101)I, (B(K),K=1,IXN)
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FORMAT ('0', 'NR OF',I2,1X,10F12.7)
WRITE (6,102) I, (A(K) ,K=1,IXN)
FORMAT('0','DR OF',I2,1X,10F12.7)
CONTINUE

Y (1)=-R(IR)

Y(2)=1,

Iy=2

IC=N-IR

IC=IC/2

DO 10 I=1,IC

IN=IR+2*I-1

INN=IN+1

R (INN)=R (INN) *R (INN) +R (IN) *R (IN)
R(IN)=R(IN)+R(IN)

CALL PMPY(Z,IZ,XN,IXN,Y,IY)
IXN=IZ

SQRIN=SQRT (2. * (R (IN)))
SQRINN=SQRT (R (INN))

DO 8 J=1,I%

XN (J)=2 (J)

K=IZ-J+1

JI=J+1

B(J)=SQRIN*2Z (K)

BB (JJ)=SQRINN*B (J)

WRITE (6,203) (XN (KK) ,KK=1, IXN)
FORMAT ('0','XN',10F12.7)

I%=I2%+1

B(IZ)=0,

BB (1)=0.
WRITE(6,103)IN, (B(K) ,K=1,IZ)
FORMAT ('0','B OF',I2,1X,10F12.7)
WRITE (6,104) INN, (BB (K),K=1,13)
FORMAT ('0', 'BB OF',I2,1X,10F12.7)
IY=3

Y (1) =R (INN)

Y (2)=R(IN)

Y(3)=1,

CALL PMPY(Z,1Z,XD,IXD,Y,IY)
IXD=12

DO 9 K=1,1Z

XD (K) =2 (K)

WRITE (6,105) IN, (XD (K) ,K=1,IXD)
FORMAT ('0','XD OF',I2,10F12.7)
Y(2)=-Y(2)

CONTINUE

WRITE (6,100) (R (K) ,K=1,N)

STOP

END
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THIS PROGRAMME COMPUTES THE ORTHONORMAL COEFFICIENTS
AT MINIMUM ISE
INTEGRATION IS DONE BY USING THE SUBROUTINE DQG32 OF
SSPLIB.
FCTX IS A FUNCTION SUBPROGRAMME GIVING THE FUNCTION TO
BE INTEGRATED
THIS PROGRAMME WRITES OUT THE ORTHONORMAL COEFFICIENTS
IN ORDER.
TL~DURATION OF FUNCTION,.THIS SHOULD BE SPECIFIED
COMMON STATEMENT SHOULD BE USED WITH FUNCTION FCTX
INPUT DATA IS AS FOLLOWS - :
N-ORDER OF ORTHONORMAL FUNCTION
A-DR OF ORTHONORMAIL FUNCTION,A(l) IS THE COEFFICIENT
OF S** (N-1)
B-NR COEFFICIENTS SIMILAR TO A
ORTHONORMAL FUNCTIONS ARE ARRANGED FROM SMALLEST TO
LARGEST.
LAST CARD IS BLANK,THIS TERMINATES THE PROGRAMME,
DIMENSION F(300),X(10),A(10),B(10)
DOUBLE PRECISION PI,XL,XU,FCTX,Y,V,T7,F,TL,X,A,B
COMMON F,TL,NT
EXTERNAL FCTX
PI=3,1415927D0
T=PI/2.DO
TL=4,DO*PI
NL=TL/T
NI=0
SUM=0.DO
READ(5,1)N
IF(N.EQ.0) GO TO 7
NL=TL/T+.5
READ(5,2) (A(I),I=1,N)
READ(5,2) (B(I) ,I=1,N)
FORMAT (I2)
FORMAT (10F20.7)
WRITE(6,3) (A(I),I=1,N)
FORMAT('0','A="',10F12.7)
WRITE (6,4) (B(I),I=1,N)
FORMAT ('0','B="',10F12.7)
CALL SERIES(N,A,B,TL,F,X,NT)
XU=0.DO0
Vv=0.DO
DO 5 K=1,NL
XL=XU
XU=XU+T
CALL DQG32 (XL,XU,FCTX,Y)
V=V+Y
NI=NI+1l
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WRITE (6,101)NI,V

FORMAT ('0','C',I1,'=',F25.16)
GO TO 6

STOP

END

FUNCTION FCTX (X)

DOUBLE PRECISION FCTX,X,PI,F,TL,VAL,FFX
DIMENSION F(300)

COMMON F,TL,NT

PI=3,1415927D0

TD=2,DO*PI

FCTX=VAL (NT,F, TL,X) *FFX (X, TD, TL)

RETURN

END

SUBROUTINE MDQG (N,KOUNT,C,EA,GRAD,M)

175.

THIS SUBROUTINE COMPUTES THE AVERAGE ERROR AND GRADIENTS
N-ORDER OF SYSTEM,KOUNT-THE ITERATION # TO BE USED BY
DEMFP.C- COEFFICIENTS OF ORTHONORMAL FUNCTIONS,A N

VECTOR, EA-AVERAGE ERROR,GRAD-GRADIENTS OF EA WITH

RESPECT TO THE COEFFICIENTS.M-AN INTEGER,M=0 IF CON
STRAINT ON ISE IS SATISFIED.M=1 IF THIS IS NOT TRUE.

THIS SUBROUTINE WRITES M,KOUNT,WU,C,EA AND GRAD.

> W

DOUBLE PRECISION CX(3),XZ(3),FD(10),GRAD(10),C(10),
*CH(10) ,E,EK,XU,T,XX,XL,XA,XB,XT,X,R,FFCT, S, EA, SGN,

*WU ,WT,RSQ

DIMENSION PHI (10,910)
COMMON WU,WT,RSQ,CH,FD,E EK,XU,T,PHI
CALL GOC (NG,CS.X2)
NLT= (XU/T) +, 5D0
NLT=NLT*NG*2

XX=0,DO

EA=0.DO

IPF=0

DO 3 K=1,N

GRAD (K)=0.D0

XL=XX

XX=T+XX

XA=, 5DO* (XX+XL)

XB=, 5DO*T

DO 7 K=1,NG
XT=XZ (K) *XB

DO 6 KI=1,2

IPF=IPF+1

XT=-XT

X=XA+XT

R=FFCT (N,C, X, IPF)
£=SGN (R)

DO 5 KJ=1,N

GRAD (KJ) =GRAD (KJ) +CX (K) *FD (KJ) *S
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CONTINUE
EA=EA+CX (K) *DAES (E)

CONTINUE

CONTINUE

IF (IPF,GE.NLT) GO TO 8

GO TO 4

EA=XB*EA

DO 9 K=1,N

GRAD (K) =XB*GRAD (K)

CONTINUE

XX=0.DO

DO 12 I=1,N

XX=XX+ (C(I)~CH(I))*(C(I)-CH(I))
CONTINUE

XX=XX-RSQ

IF (XX.LE.0.DO) GO TO 13

M=1

IF (KOUNT.EQ.0) GO TO 14
EA=EA+WU*XX*XX

XL=4, DO*WU*XX

DO 15 I=1,N

GRAD (I)=GRAD (I)+XL* (C(I)=CH(I))
CONTINUE

GO TO 18

XT=0,DO

XL=0,D0

XA=16 , DO*XX*XX

DO 16 I=1,N

XT=XT+GRAD (I) *GRAD (I)

XL=XL+XA* (C(I)-CH(I))* (C(I)-CH(I))
CONTINUE

WU=DSQRT (XT/XL)

XL=4 . DO*WU*XX

EA=EA+WU*XX *XX

DO 17 I=1,N

GRAD (I)=GRAD (I)+XL*(C(I)-CH(I))
CONTINUE

WU=WU/WT

TO TO 18

M=0

WRITE (6,10)M,KOUNT,WU, (C(I),I=1,N)
FORMAT ('0','M=',Il,1X, 'KOUNT',I4,1X, 'WU',F12.4,1X,
'C=", (8F12,7))

WRITE (6,11)EA, (GRAD(I),I=1,N)
FORMAT('0','EA=',F12,7,3X%, 'GRAD=", (8F12.7))
RETURN

END



177,

SUBROUTINE GQC(NG,CX,X7)
C THIS SUBROUTINE GIVES THE CONSTANTS OF 6 POINT GUASS
C QUADRATURE FORMULA,
DOUBLE PRECISION CX(3),Xz(3)
NG=3
XZ(l)=0.93246951420315203DO
CX(l)=0.17132449237917034DO
XZ(2)=0.66120938646626451p0
CX(2)=0.36076157304813861D0
XZ(3)=0,23861918608319691p0
CX(3)=0.46791393457269105D0
RETURN
END

FUNCTION FFCT(N,C,X,IDF)
DOUBLE PRECISION C(10),FD(10),CH(10),X,E,EK,XU,T,
*FFCT, FX, WU, WT , RSQ
DIMENSION PHI (10,910)
COMMON WU,WT,RSQ,CH, FD,E,EK, XU, T, PHI
FFCT=0,DO
DO 1 R=1,N
FD(K)=PHI (K, IPF)
FFCT=FFCT+C (K) *FD (K)
1  CONTINUE
FFCT=FFCT-FX (X)
RETURN
END

FUNCTION SGN (X)
DOUBLE PRECISION X,SGN
IF (X.LT.0.D0) GO TO 1
IF(X,GT.0.D0) GO TO 2
SGN=0,D0
RETURN

1 SGN=~1,D0
RETURN

2 SGN=1.D0
RETURN
END

FUNCTION FX (X)
C THIS FUNCTION GIVES THE VALUE OF DELAVED SIN(X) /X FUNC
C  TION,DELAY=(2*PI), .
C DURATION (4PI)

DOUBLE PRECISION FX,FFX,PI,X,TD,TL

PI=3,1415927D0

TD=2, DO*PI

TL=4, DO*PT
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FX=FFX (X,TD,TL)
RETURN -
END

THIS PROGRAMME MINIMISES THE AVERAGE ERROR WITH CON
STRAINTS ON ISE,THE PENALTY FUNCTION APPROACH IS USED
TO SATISFY THE CONSTRAINTS.WU IS A WEIGHT FACTOR WHICH
IS INCREASED BY A FACTOR WT AT THE END OF EACH ITERA
TION OF DFMFP,IF CONSTRAINT IS NOT SATISFIED.
E-LEAST ISE AS OBTAINED BY MINIMISATION OF ISE,EK-
ALLOWABLE ISE FOR MINIMISING THE AVERAGE ERROR.CH-
COEFFICIENTS OF ORTHONORMAL FUNCTIONS AT LEAST ISE.
XU-UPPER LIMIT OF INTEGRATION,T-INTERVAL OF INTEGRA
TION,PHI AN ARRAY OF (10,910) TO STORE VALUES OF ORTHO
NORMAL FUNCTIONS AT VALUES OF TIME AS REQUIRED BY THE
GUASS QUADRATURE FORMULA,C-A VECTOR OF DIMENSION N GIV
ING THE INITIAL VALUES OF COEFFICIENTS FOR MINIMISATION
OF AVERAGE ERROR.
THE COMMON STATEMENT IS USED WITH,SUBROUTINES MDQG,FFCT
AND DFMFP,
DFMFP IS THE FLETCHER-POWELL MINIMISATION GIVEN IN SSP
LIB OF IBM,
A VARIABLE EGS IS ADDED TO THE ARGUMENT LIST OF DFMFP.
THE MINIMISATION IS TERMINATED WHEN THE SUM OF THE
MAGNITUDES OF GRADIENTS IS LESS THAN EGS.
THE STATEMENT IF ((M.EQ.1).AND. (KOUNT/N*N.EQ,KOUNT))WU=
WU*WT IS ADDED AT THE BEGINNING OF THE ITERATION OF
DFMFP
THIS PROGRAMME SHOULD GIVE THE VALUES OF WT,E,EK,XU,T
AND INITIAL WU
THIS PROGRAMME IS SET TO WORK FOR N=T,DELAY=2PI AND
DURATION=4PI
INPUT DATA
N-ORDER OF ORTHONORMAL FUNCTION
A-DENOMINATOR COEFFICIENTS OF ORTHONORMAL FUNC
TION.A(1) IS THE COEFFICIENT OF S**(N-1)
B-NUMERATOR COEFFICIENTS OF THE ORTHONORMAL FUNC
TIONS.B(1) IS THE COEFFICIENT OF Sk* (N-1)
THE FUNCTIONS ARE ARRANGED FROM THE SMALLEST TO LARGEST
BLANK CARD
N-ORDER OF APPROXIMATING FILTER.
CH-ORTHONORMAL COEFFICIENTS AT MINIMUM ISE
C-INITIAL VALUES OF THE COEFFICIENTS
DOUBLE PRECISION CX(3),X%(3),FD(10),GRAD(10),C(10),
*H(60),G(10),A(10),B(10),F(300),XD(10),TL,XV,R,BN, XV,
*T, XX, XL,XA,XB,XT,V, VAL, XU, WU, WT,RSQ, CH (10) ,PI
DIMENSION PHI (10,910)
COMMON WU,WT,RSQ,CH,FD,E,EK,XU,T,PHI
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TL=XU
PI=3,1415927D0
EXTERNAL MDQG
T=,2D0
XU=30,D0
TL=XU
CALL GQC (NG, CX,X%)
NLT= (XU/T) +. 5D0
NLT=NLT*NG*2
IPHI=0
READ (5,1) N
1  FORMAT (I2)
IF (N.EQ.0)GO TO 9
IPHI=IPHI+1
READ(5,2) (A(I),
READ (5,2) (B(I),
2 FORMAT(10F20.7)
IPF=0
WRITE (6,202) (B(I),I=1,N)
202 FORMAT('0','B=',10F12.7)
WRITE (6,201) (A(I),I=1,N)
201 FORMAT('0','A=',10F12.7)
CALL SERIES(N,A,B,TL,F,XD,NT)
XX=0.DO |
5  XL=XX
XX=XL+T
XA=, 5DO* (XX+XL)
XB=, 5DO*T
DO 7 K=1,NG
XT=XZ (K) *XB
DO 6 KI=1,2
XT=-XT
XV=XA+XT
IPF=IPF+1
PHI (IPHI, IPF)=VAL (NT,F,TL,XV)
CONT INUE
7  CONTINUE
IF (IPF.GE.NLT) GO TO 4
GO TO 5
9  READ(5,1)N
READ(5,2) (CH(I),I=1,N)
READ (5,2) (C(I),I=1,N)
WT=4,D0
WU=1,DO
E=,7431E-3
EK=,035

-3

=l'
=1

’

N)
I=1,N

N
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EST=0, 3
EPS=1,E-4
LIMIT=100
EGS=,001
RSQ=EK~E
CALL DEMFP (MDQG,N,C,V,G,EST,EPS,EGS,LIMIT, IER, H)
WRITE(6,101) (C(I),I=1,N)
101 FORMAT('0','C=',(8F12,7))
WRITE (6,102)IER,V,G
102 FORMAT('0','IER',I2,1X,'EA',F12,7,1X, 'GRAD', (8F12.7))
STOP
END
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THIS PROGRAMME COMPUTES THE NUMERATOR COEFFICIENTS OF
THE APPRCXIMATION
VECTOR C-COEFFICIENTS OF EXPANSION OF FUNCTIONS 1,2,ETC.
VECTOR R-MAGNITUDE OF REAL POLES FOLLOWED BY P1,Q1,P2,
Q2 ETC.
INPUTS X AND % ARE THE NR.,COEFFICIENTS OF THE RESPEC
TIVE FUNCTIONS ORDERED FROM SMALLEST TO LARGEST POWER.
IN DATA NRS ARE READ FROM LARGEST TO SMALLEST FUNCTION
RESPY.
INPUT DATA IS ARRANGED AS FOLLOWS.
N-ORDER OF APPROXIMATION
IR-NUMBER OF REAL POLES
C VECTOR AT WHICH NRS OF APPROXIMATION IS DESIRED.
R VECTOR.MAGNITUDE OF REAL POLES FIRST FOLLOWED BY PIl,
Q1,P2,Q2 ETC. |
IX~ORDER OF ORTHONORMAL FUNCTION
X VECTOR-NRS OF ORTHONORMAL FUNCTION IX ORDERED FROM
SMALLEST TO LARGEST POWER.
7 VECTOR-NRS OF ORTHONORMAL FUNCTION (IX-1) ORDERED FROM
SMALLEST TO LARGEST POWER., THE ORTHONORMAL FUNCTIONS
ARE READ FROM LARGEST TO SMALLEST RESPY.
SUBROUTINES PMPY AND PADD ARE FROM SSPUB FOR POLYNOMIAL
OPERATIONS.
THE NUMERATOR COEFFICIENTS ARE PRINTED OUT,B(1l) COEF
FICIENT OF S** (N-1) ETC.
DIMENSION C(10),R(10),X(10),Y(10),%(10),2%(10)
READ (5,1)N
READ(5,1) IR
1 FORMAT (I2)
READ (5,2) (C(I),I=1,N)
READ (5,2) (R(I),I=1,N)
2 FORMAT(10F20.7)
WRITE (6,103) (C(I),I=1,N)
103 FORMAT('0','C=',610F12.7)
WRITE (6,104) (R(I),I=1,N)
104 FORMAT('0','R=',10F12.7)
Y(1)=1.
Iy=1
2% (1)=0,
12%=1
NX=N-IR
NX=NX/2
DO 7 K=1,NX
IC=N-2*K+2
ICC=IC-1
READ (5,1) IX
READ (5,2) (X(I),
READ (5,2) (z (I)

’
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DO 3 I=1,IX
X(I)=C(IC)*X(I)+C(ICC)*2Z(I)
CALL PMPY(2,I%,X,IX,Y,IY)
DO 4 I=1,12

X(1)=2 (1)

IX=12

CALL PADD(Z,IZ,X,IX,ZZ,IZ2)
DO 5 I=1,IZ

22(I)=2Z (1)

122=17

- X(1)=R(IC)

X(2)=R(ICC)

X(3)=1.

IX=3

CALL PMPY(Z,I%,X,IX,Y,IY)
DO 6 I=1,I%

Y(I)=2(I)

IY=1%

CONTINUE

IF (IR.EQ.0) GO TO 13

DO 11 K=1,IR

IC=IR-K+1

READ(5,1) IX

READ (5,2) (X(I),I=1,IX)

DO 8 I=1,IX
X(I)=C(IC)*X(I)

CALL PMPY(Z,I%,X,IX,Y,IY)
DO 9 I=1,I3

X(I)=2(I)

IX=12

CALL PADD(Z,I%,X,IX,%%,I122)
DO 10 I=1,IZ

2% (I)=2Z (I)

127=12

IF (IC.EQ.1)GO TO 13

IX=2

X(1)=R(IC)

X(2)=1,

CALL PMPY(Z,IZ,X,IX,Y,IY)
DO 11 I=1,IZ

Y (I)=2Z (I)

IY=12

CONTINUE

DO -14 I=1,I2%

IK=12Z-I+1

X(I)=2% (IK)

WRITE (6,102) (X(I),I=1,12%)
FORMAT('0', 'B=',10F12,7)
STOP

END
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SUBROUTINE FRES(N,A,B,X,DB,PHASE)
THIS SUBROUTINE COMPUTES THE MAGNITUDE IN DB AND PHASE
IN RADIANS OF A RATIONAL APPROXIMATION.N-ORDER OF THE
FILTER.A-COEFFICIENTS OF THE DR.
A(l) IS THE COEFFICIENT OF THE TERM S** (N-1).B-NR COEF
FICIENTS SIMILAR TO A.
X-INPUT FREQUENCY IN RADIANS,DB-MAGNITUDE IN DECIBELS.’
PHASE-ANGLE IN RADIANS

DIMENSION A(10),B(10)

DOUBLE PRECISION X,Y,%,XX,YY,ZZ,A,B,DB,PHASE

XX=X

YY=0,

22=0,

¥=B (N)

Z=A (N)

DO 7 K=1,N

IF (K/2*2,.EQ.K)GO TO 6

IF (K.EQ.N)GO TO 10

KK=N-K

YY=YY+B (KK) *XX

22=22+A (KK) *XX

XX=XX*X

GO TO 7

KK=N-K

XX=-XX

IF(K.EQ.N)GO TO 10

Y=Y+B (KK) *XX

Z=7+A (KK) *XX

XX=XX*X

CONTINUE

IF(N/2*2,EQ.N)GO TO 8

22=22+XX

GO TO 9

Z=Z2+XX

PHASE=DATAN? (YY,Y)

PHASE=PHASE~DATAN2 (2% ,%)

IF (PHASE,GT.0,DO) PHASE=PHASE-2,D0*3,1415927D0

Y=Y*Y+YY*YY

2=2*Z+52%27

DB=DSQRT (Y/7)

DB=20,DO*DLOG10 (DB)

RETURN

END
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APPENDIX II

LAPLACE TRANSFORMS OF ORTHONORMAL FUNCTIONS

1) £(t) = = 5%%12;%T1l , te[ 0, 31]

N =35
2,(s) = 1.25759/(s + 0.79076)
. (s) = 2 3 2
2 s) = (1.256928“ - 0.99392s)/(s” + 1.58068s
+ 1.2027s + 0.45711)
8,(s) = (0.95564s - 0.75568) /(s> + 1.58068s>
+ 1.2027s + 0.45711)
2,(s) = (0.96581s% - 1.52665s3 + 1.16159s% - 0.44148s)
/(s> + 2.04708s% + 3.3656253 + 3.27161s2
+ 1.92787s + 0.6517)
3 () = (1.15328° - 1.82285s% + 1.38696s - 0.52714)

3 2

/(s> + 2.04708s% + 3.365628 + 3.27161s

+ 1,92787s + 0.6517)

¢l(s) = 0,13665/(s + 0,00934)



9, (s)

¢3(S)

2,(s)

¢5(S)

QG(S)

¢7(S)

185,

(2.05356s - 0.01917)/(52 + 2.11789s + 0.01969)

(1.21684s> - 2,577138% + 0,02396s)/(s? +

3 2

2.85824s” + 2.92808s“ + 2,85343s + 0.02639)

2

(1.40881s“ - 2,9837s + 0.02774)/(s? + 2.8582483

2

+ 2.92808s% + 2,85343s + 0.02639)

5 4 3 2

(0.89578s™ - 2,56035s° + 2,6229s° - 2.55604s

+ 0.023645)/(56 + 3.2594585 + 6.9298984

3 2

+ 12,18866s” + 9,53106s° + 8,15732s + 0.07534)

(1.51359s% - 4,326283 + 4.431952 - 4.31892s

+0.03994) /(s® + 3.2594555 + 6.9208954

3 2

+ 12,18866s” + 9,53106s° + 8,15732s + 0.07534)

7 6 5 4

(1.37417s" - 4.47905s

3

+ 9.52287s” - 16.74933s

+ 13.09733s
7

- 11.20957s® + 0.103545) /(s

+ 4.20363s + 10.54344s% + 20.4789455

4

+ 24,75407s* + 23.68999s3 + 128863552

+ 4,44377s + 0.04039)

= (1.00609s° - 3,279318% + 6.972115% - 12.2629153

2 - 8.20701s + 0.0758)/(s® + 4.20363s

6

+ 9.5891s
+ 10.54344s° + 20,47894s° + 24.75407s%

+ 23.68999s° + 12.8863582 + 4,44377s + 0.04039)
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2) £(t) =3 SRE2 oo, 4n

0.92839/(s + 0,43095)

2 0.47325s)/(s3 + 1.03391s2

(1.09815s
+ 0.63181s + 0.1603)

(0.66974s - 0,28863)/(s> + 1.03391s
+ 0.63181s + 0.1603)

4 2

- 0.94065s3 + 0.57482s
4 3

(0.9098s
5

- 0.14584s)/

2

(s” + 1.44778s + 1.99896s™ + 1,39288s

+ 0.65976s + 0.15056)

3 2

(0.88173s™ ~ 0,91163s

4

+ 0.5571ls - 0.14134)/

3 2

(55 + 1.44778s" + 1,99896s” + 1.39288s

+ 0.65976s + 0,15056)

1.03028s/ (s + 0.53074s + 0.09566)

0.31865/(s% + 0.53074s + 0.09566)

3 2

(1.04367s3 - 0.55392s + 0.09983s) /(s*

3

+ 1.07537s” + 0.82017s2 + 0.28321s + 0.04165)
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2

(0.68871s% - 0.36553s + 0.06588)/(s?

+ 1.07537s3 + 0.82017s2 + 0.28321s + 0.04165)

9, (s)

5 4 3 2

- 0,24214s
4

(0.85498s~ - 0,91942s" + 0.70123s

¢ (s)

+ 0.03561s)/(s® + 1.44087s° + 2.25332s

3 2

+ 1.70148s° + 0.99823s% + 0.30979s + 0.04332)

4 3 2

- 0.93768s" + 0.715158” - 0,24695s

4

¢6(s) (0.87196s

+ 0,03632)/(s® + 1.44087s° + 2.25322s
+ 1.70148s° + 0.99823s2 + 0.30979s + 0.04332)
7 3,35565s% + 5.24779s° - 3.96265%

2

(2.32891s

Q7(S)

3

+ 2.32479s% - 0.72148s% + 0.1009s)/(s®

+ 4.15279s’ + 16.39557s° + 22.5592s°

3 4 11.10009s% + 3.28816s + 0.44341)

+ 28.67467s"

+ 20.43117s

6 5 4

- 10.73531s + 16.78857s 3

(7.4506s - 12,67705s

¢b(5)
' 7

+ 7.4374s® - 2.30815s + 0.3228)/(s® + 4.15279s

+ 16.39557s% + 22.55925° + 28.67467s?

3 2

+ 20,43117s” + 11.10009s” + 3.28816s + 0.44341)



