
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographicaliy in this copy. Higher quality 6” x 9" black and white

photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lberta

A na lysis a n d O p t im iz a t io n o f E x p l ic it l y P a r a ll e l P r o g r a m s

by

Diego Novillo

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of D octor o f Philosophy.

Department of Computing Science

Edmonton, Alberta
Spring 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services
395 Wellington Street
Ottawa ON K1A0N4
Canada

Biblioth&que nationals
du Canada

Acquisitions et
services bibliographiques
395, rue Wellington
Ottawa ON K1A0N4
Canada

Your Hi Von M inna

Ouril* N o n iM n m

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L’auteur conserve la propriete du
droit d’auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-60007-6

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity o f A lberta

L ibrary Release Form

N am e of A uthor: Diego Novillo

T itle of Thesis: Analysis and Optimization of Explicitly Parallel Programs

Degree: Doctor of Philosophy

Year th is Degree G ranted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither
the thesis nor any substantial portion thereof may be printed or otherwise
reproduced in any material form whatever without the author’s prior written
permission.

Diego Noyfflo /
Av. Coronel Diaz 2164, 5 B
Buenos Aires, 1425
Argentina

Date: MAR 3 Q ZQOO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lberta

Facility o f G raduate Studies and R esearch

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Analysis
and O ptim ization of Explicitly Parallel P rogram s submitted by Diego
Novillo in partial fulfillment of the requirements for the degree of D octor of
Philosophy.

Supervisor

Ron Unrau
Co-Supervisor

Mariusz KlobukowskjO

Duane Szafron

Laurie Hendren
External Examiner

D ate: MAR 2M , -O O P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Para Lily.

Convertiste mi Sueno en Realidad.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract
In this thesis we introduce the CSSAME form, a new analysis framework

for explicitly parallel programs that recognizes three fundamental elements

of a parallel program: (1) parallel structure, (2) memory semantics, and (3)

synchronization structure. By modeling these three elements in a single unified

framework, a compiler can better exploit optimization opportunities in parallel

programs.

We also develop a new synchronization analysis technique to detect mutual

exclusion synchronization patterns that cannot be analyzed with existing

techniques. We introduce the notion of multiple-entry/multiple-exit mutex

regions and provide methods for validating mutual exclusion synchronization

at compile-time. This analysis provides the basis for the elimination of

superfluous memory conflict edges in the program’s flowgraph, leading to a

simpler representation and allowing more optimization opportunities.

We integrate reaching definition analysis and dead-code elimination into

the CSSAME framework. Furthermore, we introduce new optimization

techniques to reduce mutual exclusion synchronization overhead: Lock

Picking, Lock Independent Code Motion and Mutex Body Localization. We

study the effects of these transformations in the context of SPLASH and Java

applications, prove their correctness, and provide algorithms that implement

them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

My first important discovery during this work was the realization that this is
not an individual achievement. Far from it. Over the years many people have
provided me with the necessary intellectual, spiritual and monetary support
needed to cross the finish line. First and foremost, I want to thank my family:
Lily, Nicky, Papd, Mama, Mo, Enri y Ernie. Sin ustedes esto no hubiera sido
posible. Gracias!

My long-time Mend and wonderful educator Carlos Neetzel planted the
first seeds of curiosity. Thank you Carlos for showing me what’s beneath the
covers.

My supervisors Dr Jonathan Schaeffer and Dr Ron Unrau provided superb
guidance and support (both monetary and intellectual). Three different points
of view are sometimes difficult to reconcile. But I soon learned the subtle art
of steering out of trouble by letting them argue among themselves. With
infinite patience they taught me the basics of research, compilers and parallel
computing. Their heroic efforts converted my often convoluted writing and
thought process into the organized document that you read today.

To my examining committee Dr Laurie Hendren, Dr Duane Szafron and
Dr Mariusz Klobukowski: I thank you for your time and dedication in reading
this document and providing valuable feedback. All the remaining errors
and omissions are exclusively my fault. I am particularly grateful for the
suggestions that Dr Hendren made to simplify the algorithms that analyze
irregular mutex bodies in the code.

Special thanks to Dr Duane Szafron who started being one of my
supervisors until I turned into the dark side of compilers, bits, bytes and
pointers. Your high-level views of parallel computing helped educate an
otherwise ignorant “metal-head” . Rest assured that not all your efforts have
gone to waste.

To my lab mates and Mends Wally Lysz, Ivan Ourdev, Roel van der Goot,
Steve MacDonald, Mark Brockington, Ian Parsons and David Woloschuk;
thank you for the stimulating environment you helped create. Steve: Has
anyone asked you what CSOC stands for? (E-mail stevemfics .ualberta.cafor
details).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I am also in debt with Ron Senda, my manager at the Research Support Group
for the University of Alberta. Thank you for allowing me the time and resources
to write and play with the compiler. I would also like to thank Jim Lemke, my
current manager at Cygnus Solutions, for making it possible to finish writing the
thesis during my initial time at Cygnus.

Finally, to my Mends: Gracias muchachos!

Edmonton, March 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 The Problem ... 2
1.2 Summary of Major C ontributions.. 4

1.2.1 Analysis Techniques ... 5
Static Single Assignment Form for Parallel Programs . 5
Mutual Exclusion Synchronization Detection............... 5

1.2.2 Optimizations... 6
Dead-Code Elimination.. 7
Lock P ic k in g ... 7
Lock-Independent Code Motion (L IC M)....................... 7
Mutex Body Localization (M B L).................................. 7

1.3 Thesis Organization ... 8
1.4 S u m m a ry .. 9

2 Background 10
2.1 Parallel Programming M ode ls .. 10

2.1.1 Language Model ... 11
2.1.2 Memory M o d e l.. 13
2.1.3 Synchronization M odel.. 14

2.2 Optimizing Compilers .. 16
2.2.1 Front-End... 17

Lexical Analysis.. 17
Syntax and Semantic Analysis.. 18
Intermediate Code Generation.. 18

2.2.2 B ack-E nd ... 19
Optimizing Transformations... 20
Code G eneration ... 21

2.3 Analysis and Optimization of Explicitly Parallel Programs . . 21
2.4 Control-Flow A naly sis .. 23

2.4.1 The Control-Flow G ra p h ... 23
Parallel Flow G r a p h ... 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Extended Flow G r a p h .. 25
Concurrent Control Flow G raph 26

2.4.2 Common Graph C oncep ts ... 26
2.5 Data-Flow Analysis .. 28

2.5.1 Common Data-Flow Problems 29
Reaching D efinitions... 29
Live Variables... 31
Available Expressions... 31

2.5.2 Iterative Data-Flow Analysis.. 32
Iterative Data-Flow Analysis for Explicitly Parallel

P ro g ram s.. 32
2.5.3 Static Single Assignment Form 33

Static Single Assignment for Explicitly Parallel Programs 34
2.5.4 Other Approaches to Optimizing Explicitly Parallel

P ro g ra m s.. 35
2.6 S u m m ary ... 36

3 Analyzing E xplicitly Parallel Programs 37
3.1 Concurrent Control Flow Graph .. 38

3.1.1 Graphical Representation of a C C F G 40
3.2 Building the C C F G .. 42
3.3 Synchronization Analysis .. 47

3.3.1 Mutex Synchronization ... 47
Motivation.. 48
Detecting Mutex S truc tu res ... 51

3.3.2 Validating Mutex Synchronization................................. 54
Lock TVipping... 54
Deadlock... 56
Other Locking Irregularities... 57

3.3.3 Event Synchronization... 59
3.3.4 Barrier Synchronization... 59

3.4 S u m m ary ... 64

4 The CSSAME Form 66
4.1 The CSSA Form ... 66

4.1.1 Computing the Sequential SSA F o rm 67
4.1.2 Placing it Functions.. 68
4.1.3 Time Complexity of the CSSA Algorithm 69

4.2 The CSSAME Form ... 70
4.2.1 Parallel Loops... 71
4.2.2 Consecutive K i l ls ... 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 Protected U s e s ... 74
4.2.4 Modifying rr Functions Inside Mutex B o d ie s 75
4.2.5 Modifying tt Functions Affected by B a r r ie rs 77
4.2.6 Computing the CSSAME F o rm 80
4.2.7 Time Complexity of the CSSAME Algorithm 81

4.3 S u m m a ry .. 81

5 O ptim izing explicitly parallel programs 83
5.1 Constant Propagation ... 83
5.2 Concurrent Dead Code E lim ination... 86
5.3 Lock Picking ... 88
5.4 Lock-Independent Code M o tio n .. 93

5.4.1 Moving Lock-Independent Statements 94
Moving Statements to Premutex N odes......................... 94
Moving Statements to Postmutex N o d e s 99
LICM for Statements (LICMS) 101

5.4.2 LICM for Control Structures 102
5.4.3 LICM for Expressions ... 105
5.4.4 Putting it All Together: Lock-Independent Code Motion

(LICM) .. 107
5.5 Mutex Body Localization... 107

5.5.1 Single Writer, Multiple Readers Lock P ic k in g 114
5.6 S u m m ary ... 114

6 R esults 117
6.1 Implementation.. 118
6.2 Experimental Results..... ... 119

6.2.1 SPLASH A pplications... 121
W a te r ... 121
O c e a n ... 125

6.2.2 Java Applications ... 130
Java Implementation... 130
C Implementation... 132
Sequential Java P ro g ra m s.. 133

6.2.3 Other Applications... 134
6.3 Conclusions.. 135

7 Conclusions and Future Work 138
7.1 Summary of Contributions.. 138

7.1.1 A nalysis.. 139
7.1.2 O ptim ization ... 140

Adapting Sequential Techniques..................................... 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Optimizing the Structure of a Parallel Program 140
7.2 Future W ork... 141

7.2.1 Parallelism... 141
7.2.2 Synchronization.. 143
7.2.3 Other Memory M odels... 143
7.2.4 Dependency Analysis.. 144
7.2.5 Other O ptim izations... 144

Partial Redundancy Elimination (PR E)......................... 144
Thread P ro p a g a tio n ... 145
Lock Partitioning .. 146

7.3 Conclusions... 146

Bibliography 147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

6.1 Speedups obtained by LICM on Water as a function of the number
of simulation time-steps.. 124

6.2 Effects of LICM on lock contention in Water................................... 125
6.3 Effects of MBL and LICM on Simple Ocean.................................... 127
6.4 Effects of LICM on the original Java implementation of the PSRS

sorting algorithm (8 processors)... 131
6.5 Effects of LICM on the Java implementation of matrix multiplication

(8 processors).. 131
6.6 Effects of LICM on the C implementation implementation of the

PSRS sorting algorithm (2 processors)... 132
6.7 Effects of LICM on the C implementation of matrix multiplication

(2 processors).. 132
6.8 Effect of Lock-Picking (LP) on sequential Java programs................ 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Syntax for specifying parallel activity in a program........................ 12
2.2 A distributed-memory system. Processors have their own memory. 13
2.3 A shared-memory system. Processors share the same address space. 13
2.4 A high-level view of the compilation process................................... 16
2.5 The front-end analyzes and prepares the program for optimization. 17
2.6 Parse tree for the statement foo = bar + 30.4 - foo.................. 18
2.7 Constant propagation problems in an explicitly parallel program. . 23
2.8 A sequential program and its control-flow graph............................ 24
2.9 An example flowgraph and its dominator tree................................ 28
2.10 Dominance sets and dominance frontiers for Figure 2.9.................. 29
2.11 Post-dominance sets for the flowgraph in Figure 2.9........................ 29
2.12 Example of the reaching definitions problem.................................... 30
2.13 Reaching definitions and reached uses sets for the program in Figure

2.12... 30
2.14 An example sequential program and its SSA form........................... 34

3.1 Mutual exclusion can reduce data dependencies across threads in a
parallel program... 38

3.2 Representation of parallel constructs and synchronization in a CCFG. 41
3.3 A task parallel program.. 43
3.4 Concurrent Control Flow Graph for the program in Figure 3.3. . . 44
3.5 Locking pattern in function PopWorkQ... 49
3.6 Partial SSA form for function PopWorkQ... 50
3.7 Detecting irregular mutex structures in a parallel program............. 52
3.8 Some lock tripping scenarios.. 56
3.9 Some deadlock scenarios... 57
3.10 Locking irregularities.. 60
3.11 An example of barrier synchronization... 62
3.12 Partition of process segments into phases for the program in Figure

3.11 64

4.1 ir functions inside a parallel loop.. 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Removing memory conflicts.. 73
4.3 Effects of barrier synchronization on it functions....................... 79

5.1 Constant propagation example (CSSA)...................................... 84
5.2 Constant propagation example (CSSAME)................................ 85
5.3 Concurrent Dead Code Elimination for program in Figure 5.2(b). . 88
5.4 Effects of lock picking on nested mutex bodies.......................... 90
5.5 Moving lock-independent statements. Moved statements are marked

with arrows (^) .. 95
5.6 Effects of lock-independent code motion (LICM)....................... 108
5.7 Applications of mutex body localization.................................... 110
5.8 Effects of MBL in the presence of single-writer, multiple-readers. . 115

6.1 Computation of inter-molecular interactions in Water............... 122
6.2 Effect of LICM on the first mutex body of Figure 6.1............... 124
6.3 Simplified version of function INTRAF in Water.......................... 126
6.4 Effects of MBL and LICM on the code in Figure 6.3...................... 126
6.5 Procedure slave in Simple Ocean... 128
6.6 Effects of MBL and LICM on the code in Figure 6.5...................... 129
6.7 Nested mutex bodies in function PopWorkQ... 136

7.1 Expressing parallel activity using fork.. 142
7.2 Mutual exclusion synchronization without locks........................ 144
7.3 Thread propagation optimization.. 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Definitions

2.1 Basic b lo c k ... 24
2.2 D om inance ... 26
2.3 Strict dom inance.. 26
2.4 Post-dominance... 26
2.5 Strict post-dom inance... 27
2.6 Dominance fron tier... 27
2.7 Immediate dominator.. 27
2.8 Dominator t r e e ... 27
2.9 Use-def chains.. 31
2.10 Reached-uses s e t .. 31
2.11 Reaching-defe.. 31
3.1 Variable references... 38
3.2 Shared variable reference conflicts... 38
3.3 Concurrent basic b lo ck ... 38
3.4 Conflicts between concurrent basic blocks 39
3.5 Concurrent Control Flow Graph (CCFG)....................................... 39
3.6 Entry and exit n o d es .. 40
3.7 Control path .. 40
3.8 Lock-protected nodes.. 51
3.9 Mutex b o d y .. 52
3.10 Mutex structure.. 53
4.1 Reachability.. 73
4.2 Upward exposure for mutex b o d ie s .. 74
5.1 Lock-independence... 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Algorithms

3.1 Build a Concurrent Control Flow Graph... 43
3.2 Concurrency relation... 45
3.3 Add conflict edges.. 46
3.4 Add synchronization edges.. 46
3.5 Identification of mutex structures.. 55
3.6 Guaranteed partial execution ordering.. 61
4.1 Build the CSSA form... 67
4.2 Place <(> functions. ... 68
4.3 Build FUD chains.. 69
4.4 Place n functions... 70
4.5 Rewrite 7r functions to account for mutual exclusion....................... 77
4.6 Rewrite 7r functions to account for barrier synchronization............. 80
4.7 Build the CSSAME form... 81
5.1 Concurrent reaching definitions... 89
5.2 Lock-picking... 92
5.3 Compute candidate premutex nodes (receivers).............................. 98
5.4 Compute candidate postmutex nodes (releasers)............................. 100
5.5 Lock-Independent Code Motion for Statements (LICMS)....................103
5.6 LICM for Control Structures (LICMT).. 104
5.7 Lock-Independent Code Motion for Expressions (LICME).................. 106
5.8 Lock-Independent Code Motion (LICM).. 109
5.9 Localization test (localizable)... 112
5.10 Mutex body localization... 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Theorems and Lemmas

4.1 Consecutive k i l l s .. 73
4.2 Protected uses.. 74
4.1 Correctness of the 7r rewriting a lg o rith m .. 76
4.3 Barrier protection.. 78
4.4 Correctness of the CSSAME algo rithm .. 80
5.1 Correctness of the CDCE algorithm .. 87
5.1 Nested mutex struc tu res.. 91
5.2 Non-conflicting mutex b o d ie s ... 92
5.2 Hoistable sta tem ents.. 98
5.3 Downward-movable statements .. 100
5.4 Target nodes for lock-independent expressions............................... 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Parallel computers have the potential to solve complex problems much faster
than conventional sequential computers. Unfortunately, the mere presence
of multiple processors does not automatically guarantee better performance.
Parallel programs must explicitly distribute the work among the available
processors and coordinate their activities. In turn, this division of labor
also affects the algorithm used to solve the problem. While some sequential
algorithms lend themselves to parallel implementations, others do not.

Sequential algorithms amenable to parallelization have been extensively
studied and existing tools can automatically turn some algorithms into
their parallel counterpart. This approach, known as implicit or automatic
parallelization works well on some application domains but it is not a universal
solution (Blume and Eigenmann 1992; Eigenmann and Blume 1991). In this
dissertation we are interested in algorithms that are parallel from the outset.
These algorithms express the solution to a problem in terms of sub-problems
to be solved concurrently. The necessary allocation of work to the different
processes, coordination and data sharing are explicitly stated in the algorithm.
Languages that support the implementation of explicitly parallel algorithms
are called explicitly parallel languages.

In an explicitly parallel language, the programmer has full control over the
parallelism in the program. This is an expressive model because it allows the
user to take full advantage of the system capabilities. However, performance
is still an issue; using an explicitly parallel language does not necessarily

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 The Problem 2

lead to optimum runtime performance. In addition to good algorithm design
and implementation, an essential key to obtaining good performance is the
compiler. The compiler is responsible for translating a program written
in a high-level language to an equivalent program in a low-level language
that the target architecture can understand. During this translation process
the compiler applies optimizing transformations to the code to improve its
performance. In general these transformations have an important property:
they preserve the semantics of the original program (i.e., the optimized
program behaves like the original one). In certain circumstances, however,
optimizing transformations can alter the semantics of the program. Typical
examples include transformations that trade-off floating point arithmetic
precision in favor of speed.

To successfully transform a program the compiler must gather information
about it. This process, known as program analysis, builds the necessary
data structures representing the flow of control and data in the original
program. This information is vital for the subsequent process of program
optimization that improves the original program. It should be noted that the
term optimization is really a misnomer. Optimizing transformations try to
improve the original code but they make no guarantees that the transformation
will actually be optimal. The transformations are intended to produce code
that is no worse than the original one.

This thesis introduces novel compiler analysis and transformation
techniques to optimize the performance of explicitly parallel programs. In
the following sections we describe the problem in detail (Section 1.1), present
our main contributions of this work (Section 1.2) and describe the organization
of this thesis (Section 1.3).

1.1 The Problem
Arguably, the easiest way to develop a parallel program is to write sequential
code and have the system automatically generate an equivalent parallel
program. This process, known as automatic or implicit parallelization, has
been the focus of intense research and development for over three decades.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 The Problem 3

Conceptually, this process works like any other optimizing transformation; the
parallelizer (often built into the compiler) looks for constructs in the original
program that can be executed concurrently without altering the original
semantics. By executing multiple instructions simultaneously, the execution
path of the program is shortened, thus reducing its runtime.

This approach to generating parallel code has been extremely successful in
certain application domains. Traditionally, programs performing matrix and
vector computations using regular loops are prime candidates for automatic
parallelization. Many scientific problems in physics, engineering and chemistry
fall into this category. Unfortunately, the state of the art in parallelizing
technology has not advanced much beyond this. Parallelizing compilers are
fundamentally limited by the need to preserve the original sequential semantics
of the program. The transformations must be such that the resulting parallel
program should produce exactly the same results as the sequential version.
For many application domains implicitly parallelizing a sequential algorithm
is seldom better than using an explicitly parallel algorithm from the outset.
For instance, the parallel version of the well-known quicksort algorithm, a
very good sequential algorithm, performs very poorly compared to PSRS, an
explicitly parallel sorting algorithm (Shi and Schaeffer 1992).

The recognition of these limitations has resulted in an increased demand
for explicitly parallel languages. An explicitly parallel language provides
language constructs or library functions that allow the programmer to
describe concurrent activity inside the program. This added flexibility is
a double-edged sword; programmers are free to specify parallel algorithms
any way they choose at the potential expense of increased programming
complexity. For some time now, researchers have developed new programming
models, programming environments and automatic validation techniques to
simplify the development of parallel programs. However, developing parallel
programs is complex in another dimension: performance. Most of the existing
work in the language area has addressed expressibility and flexibility issues.
Programming environments like Enterprise (Schaeffer et al. 1993) provide
an integral framework for developing parallel programs based on common
parallel constructs. Analysis tools exist to statically detect deadlock patterns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 .2 S u m m a ry o f Major Contributions 4

(Masticola and Ryder 1993) and shared memory conflicts (Emrath et al.
1992; Helmbold and McDowell 1994; Callahan et al. 1990). New languages
and programming models are being constantly introduced; each typically
well-suited to a few specific classes of problems. However, these developments
rarely address performance, which is, in our view, the main reason for using a
parallel computer in the first place.

Little research has been done on making compilers understand explicitly
parallel code for the purpose of optimization. Typically, existing systems
and tools rely on the programmer to develop efficient code. The system
understands explicitly parallel semantics only to the extent of mapping the
program to the target architecture. Little or no attempt is made to optimize
the code. In fact, current commercial compilers treat explicitly parallel
sections of the code as a “black box” and leave them untouched. There is
a good reason for this limitation: transformation techniques for optimizing
sequential programs cannot be directly applied to explicitly parallel code
because they may generate incorrect transformations (Midkiff and Padua
1990). The techniques developed in this thesis fill part of the void. We present
a unified framework for analyzing and optimizing explicitly parallel programs.
The optimizations described here fall into two classes: the adaptation of
sequential optimizations to a parallel environment; and the direct optimization
of the parallel and synchronization structure of the program.

1.2 Summary of Major Contributions
The techniques developed in this thesis can be organized into two categories:
analysis and transformation techniques. Analysis techniques allow the
compiler to reason about an explicitly parallel program. We prove correctness
properties about the analysis and provide algorithms that implement the
techniques. Transformation techniques use the information gathered by the
analysis and convert parts of the program into a more efficient but semantically
equivalent form. We prove correctness properties about the transformations
and provide algorithms that implement them. We have also implemented most
of these algorithms in the SUIF compiler infrastructure (Hall et al. 1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Summary of Major Contributions 5

We apply them to several explicitly parallel programs and show that these
optimizations can result in significant improvements in performance. The
following sections provide an overview of the specific contributions of this
work.

1.2.1 Analysis Techniques

Static Single Assignm ent Form for Parallel Program s

This thesis introduces the Concurrent Static Single Assignment form
with Mutual Exclusion (CSSAME). CSSAME1 is an intermediate program
representation based on the the well-known Static Single Assignment (SSA)
form (Cytron et al. 1991). The SSA form is based on the fundamental premise
that every memory variable in the intermediate program can only be assigned
once. If a program is transformed to comply with this condition we say that
the program is in SSA form.

An SSA form for parallel programs with interleaving memory semantics
must take into account that write and read operations to a given variable
can take place simultaneously from different processes. The CSSAME form
extends the single assignment concept to the parallel case. It is based on
the Concurrent Static Single Assignment (CSSA) form (Lee et al. 1997b).
CSSAME extends the CSSA form to support two important synchronization
mechanisms, namely mutual exclusion and barrier synchronization. Chapter
4 presents a formal description of the CSSAME framework.

M utual Exclusion Synchronization D etection

Mutual exclusion synchronization is used when a process needs to have
exclusive access to a shared resource. Exclusive access to a shared resource
prevents simultaneous modifications which might lead to an inconsistent state.
We will model mutual exclusion using lock and unlock operations. Exclusive
access to a shared resource is requested using a lock operation. Once the
requesting thread is done accessing the resource, it calls unlock to free the
resource and allow other threads to access it. All the instructions executed

1 Pronounced sesame.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 .2 S u m m a ry o f Major Contributions 6

between the lock and the corresponding unlock operation are said to be inside
a mutual exclusion section. Other names for mutual occlusion section include
mutex body and critical section. In the context of concurrent programs, mutual
exclusion is typically used to access shared variables that might be otherwise
modified by several concurrent threads.

Since synchronization operations can occur in arbitrary sections of the
code, the mutual exclusion sections defined by lock and unlock operations
can be difficult to discern. In this thesis we develop a new analysis technique
to detect mutual exclusion sections in the program. Although techniques exist
to detect mutual exclusion sections, they are limited in the types of locking
patterns that they can detect. We formulate a different algorithm for detecting
critical sections that can cope with irregular locking patterns in the code. This
analysis provides the foundation for all the transformations that optimize the
synchronization structure of the program, and can also be used to warn the
programmer about illegal locking patterns.

1.2.2 Optimizations

We apply the CSSAME analysis framework to perform two types of
optimizations: (1) the adaptation of known sequential transformations to the
parallel case and (2) the development of new transformations that target the
parallel and synchronization structure of the program directly.

Current research efforts in the field are geared towards the first type of
transformations (Knoop et al. 1996; Lee et al. 1998; Lee et al. 1999). In this
thesis we adapt a sequential dead-code elimination algorithm to the parallel
case.

Transforming the parallel and synchronization structure of explicitly
parallel code has received less attention (Krishnamurthy and Yelick
1996; Novillo et al. 1998). We contribute new algorithms to eliminate
synchronization overhead from explicitly parallel programs: lock picking,
lock-independent code motion and mutex body localization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 .2 S u m m a r y o f Major Contributions 7

Dead-Code E lim ination

When a statement computes a value that is not used anywhere else in the
program we say that that computation is dead. Dead code is usually removed
from the program because it serves no useful purpose. In this thesis we adapt a
sequential dead-code elimination algorithm (Cytron et al. 1991) to the parallel
case.

Lock Picking

Using lock information collected during the construction of the CSSAME form,
it is possible to detect lock and unlock operations that are not needed
in the program. As a simple case, consider a sequential program or a
sequential section of a parallel program. Since there is no parallel activity,
any synchronization operation in that section is not necessary and can be
removed. We call this transformation lock picking.

Lock-Independent Code M otion (LICM)

Mutual exclusion can become a performance bottleneck if used excessively
because it restricts parallel activity in the program. In general it is desirable
to reduce the size and number of mutual exclusion sections in the code.
Lock-Independent Code Motion (LICM) tries to reduce the size of mutual
exclusion sections by moving code outside mutual exclusion sections. This
technique scans all the mutual exclusion regions in the program looking for
interior code that does not need to be protected by the corresponding lock. The
algorithm can move expressions, statements and even whole control structures
out of critical sections.

M utex Body Localization (MBL)

Mutex Body Localization is a new transformation that converts references to
shared memory into references to local memory inside critical sections of the
code. This transformation can potentially create more lock-independent code
that can be later optimized by LICM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Thesis Organization 8

1.3 Thesis Organization
The rest of this thesis is organized as follows:

• Chapter 2 provides background information and related work about
parallel programming, synchronization models and optimizing compilers.
It also provides details about the necessity of adapting sequential
optimization techniques to work on explicitly parallel programs. The
specific language model that we assume in the rest of this thesis is
introduced: an explicitly parallel language with interleaving memory
semantics and three different synchronization mechanisms (mutual
exclusion, barriers and event variables).

• Chapters 3 and 4 describe the analysis framework that we use to reason
about parallel programs. We describe the Concurrent Control Flow
Graph (CCFG) that represents the control and synchronization structure
of parallel programs, the technique used to identify mutual exclusion
synchronization patterns and the CSSAME form.

• Chapter 5 builds on the CSSAME form to develop the following
optimizing transformations: concurrent dead-code elimination,
lock-independent code motion, mutex body localization, lock picking
and lock partitioning.

• Experimental results are presented in Chapter 6. We illustrate the
benefits of using the CSSAME framework and the effects of the different
transformations on selected parallel programs taken from SPLASH
(Singh et al. 1992) and TreadMarks (Keleher et al. 1994). We also
investigated the potential benefits of our optimizations on programs
written in Java. We found that the generic nature of Java’s thread-safe
libraries leads to correct but conservative implementations that are
often overly synchronized. When our optimizations are applied to
sample Java programs we observed up to a factor of 4 improvement
in runtime compared to the original parallel program. In fact, because
the same libraries are used for sequential programs, we were able to get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Summary 9

between 10% and 25% improvement in sequential programs when our
optimizations are applied.

• Conclusions and future work are the subject of Chapter 7.

1.4 Summary
With low-cost multiprocessor systems now being ubiquitous, the need for
tools to maximize parallel performance has never been greater. This thesis
represents a significant step forward in improving the capabilities of compilers
for parallel programs. In particular, we expect these techniques to have a
significant impact in high-level concurrent or thread-based languages. Of
particular importance in these environments is the ability of the compiler to
understand synchronization operations which can be a source of substantial
overhead in some applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

This chapter introduces the fundamental concepts used as the foundation for
the techniques developed in this thesis. The discussion starts with an overview
of the more popular parallel programming models, including the specification
of parallel activity, memory semantics and synchronization constructs (Section
2.1).

The discussion continues with a description of the structure and
responsibilities of a typical optimizing compiler. The emphasis is on the data
structures and program representations used in the optimization phase of the
compilation process (Section 2.2).

Finally, Sections 2.3,2.4 and 2.5 provide background information about the
field of analysis and optimization of explicitly parallel programs. Techniques
used in sequential compilers cannot be directly applied to parallel programs.
We will describe the reasons for this limitation and survey existing work in
the area. This discussion will motivate the new techniques developed in the
rest of this dissertation.

2.1 Parallel Programming Models
Several issues must be considered in a parallel programming environment:
specification of parallel activity (language model), data sharing semantics
(memory model) and synchronization operations to order the access to shared
resources (synchronization model).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Parallel Programming Models 11

Language m odel. The specification of parallel activity determines how the
different processes participate in a computation. There are two types of
parallelism: task and data. In a task-parallel program, different threads
execute different sections of the program on different data elements.
Conversely, in a data-parallel program, different threads execute the
same code on different data elements.

M em ory m odel. Unlike sequential programs, the different processes that
execute a parallel program do not necessarily have access to the same
memory address space. The memory can be shared among the processes,
or distributed. The choice of memory model will have a significant
impact on the implementation and even on the algorithms used.

Synchronization model. Synchronization is necessary to protect the
integrity of resources shared by several processes. It prevents a process
from computing with stale or incomplete data.

2.1.1 Language Model

For a long time, research in the field of parallel compilation has focused on the
automatic transformation of sequential programs into their parallel equivalent
(Gupta and Banerjee 1992; Wilson et al. 1994). The compiler analyzes the
program looking for sections of the code that can be executed in parallel
without affecting the original data dependencies in the program.

Parallelizing compilers are very useful for some application domains. They
typically excel in numeric and scientific applications involving computations on
regular data structures like matrices. Unfortunately, there are some important
problem domains that parallelizing compilers cannot handle efficiently (Blume
and Eigenmann 1992; Eigenmann and Blume 1991) (e.g., sorting, searching,
sparse matrix computations, etc). These shortcomings are not always due
to limitations in the parallelization techniques used. For some applications,
the best sequential algorithms contain data and control dependencies that
current automatic parallelization techniques cannot handle. To overcome these
limitations, parallelizing compilers provide a set of annotations and directives
so that the programmer can direct the actions of the parallelizes Even these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Parallel Programming Models 12

/ • Start N threads to execute different
• sections of code concurrently.
*/

cobegin
T t : begin

/* Start N threads to execute the same
• code concurrently. Each thread executes
• with a different value of i.
*/

parloop (i, 1, N) {
statements stmtt ;

end stmt3;

T2: begin
}

stmtM;
statements

end

Tjy: begin
statements

end
coend

(a) A task-parallel program. (b) A data-parallel program.

Figure 2.1: Syntax for specifying parallel activity in a program.

extensions are often not enough; often the best solution is to solve the problem
using a parallel algorithm from the outset (Shi and Schaeffer 1992). All the
techniques and algorithms developed in this thesis work on explicitly parallel
programs. Our goal is not to extract parallelism from a sequential program
but to analyze and optimize a program that is already parallel. This applies
to programs that are explicitly parallel from the outset and to the output of
an automatic parallelization tool.

We assume that explicitly parallel programs start as a single thread of
computation. New threads are logically created when execution reaches
a parallel section in the program. Although the creation, placement and
scheduling of threads is not significant for our research, the compiler must
be able to recognize parallel sections in the code. There are a variety
of mechanism s for expressing parallel activity. Some examples include
cobegin/coend constructs, fork statements and parallel loops.

We will represent task-parallel programs using cobegin/coend constructs
(Figure 2.1(a)) and data-parallel programs using parallel loops (Figure
2.1(b)). The program fragments in Figure 2.1 launch N threads that execute
independently and join with the invoking thread at the end of the parallel
section. The threads created by the cobegin/coend construct will execute
different code sections while the threads created by the parloop loop will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Parallel Programming Models 13

CPU CPU CPU CPU CPU

M M M M M

r Tta>T T l
NETWORK

Figure 2.2: A distributed-memory system. Processors have their own memory.

cache

CPU

cache

CPU

cache

CPU CPU
cache

cache

CPU

CPU
cache

Shared

Memory

Figure 2.3: A shared-memory system. Processors share the same address space.

execute the same piece of code. With these two constructs it is possible to
express both task-parallel and data-parallel algorithms.

2.1.2 Memory Model

Memory can be shared or distributed among the processors in the system.
On a distributed-memory system, each processor has its own local memory
which cannot be accessed by other processors in the system (Figure 2.2).
Interprocessor communication is based on message passing. Data is sent from
one processor to another via data communication primitives send and receive.

In contrast to the distributed approach, a shared-memory system provides
a single address space that can be accessed by all the processors in the
system (Figure 2.3). Traditionally, shared memory has been provided in
hardware with processors connected to a common memory pool through a
shared bus. These systems, known as Symmetric Multiprocessors (or SMPs),
suffer from scalability problems; beyond a certain number the performance of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Parallel Programming Models 14

SMP systems degrades greatly because of the increased traffic on the shared
memory bus.

To address the scalability problem, research has focused on providing
a shared memory image on top of physically distributed hardware. These
systems, known as Distributed Shared Memory (or DSM) or Non-Uniform
Memory Access systems (NUMA), mask the distributed nature of the memory
by providing an abstraction that transforms shared memory references into
messages between different memory modules.

A sometimes heated debate exists in the parallelism community about
the relative benefits of shared-memory versus distributed-memory systems.
Supporters of the shared memory model argue that its unified data
access notation makes for simpler and easier to maintain programs. Any
communication required to access the common memory is transparently
handled by the system. The current trend is for these two types of architectures
to merge into hybrid architectures with features from both types of systems.

While this is a convenient programming model, the overhead of repeated
shared-memory references can restrict the performance of the program
significantly. The focus of current research into shared-memory systems is in
minimizing communication due to shared-memory traffic. This has produced
compiler techniques, caching algorithms and latency-hiding techniques at the
hardware and operating system level. In this work we assume that threads run
in a shared address space with interleaving semantics (i.e., updates to shared
memory made by one thread are immediately visible to the other threads).
Programs share memory via shared variables.

2.1.3 Synchronization Model

The analysis techniques discussed in this document rely on the effects that
synchronization operations have on the flow of data in the parallel program.
The algorithms developed in this thesis support three standard synchronization
constructs, namely mutual exclusion, events and barriers:

• Mutual exclusion is used to serialize references to shared variables in
the program. We will assume that programmers use standard lock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Parallel Programming Models 15

and unlock instructions to serialize access to shared variables. Both
instructions operate on lock variables which can only be referenced in a
lock or unlock statement. Furthermore, we assume that lock(L) reads
and writes to the lock variable L and unlock(L) only writes to L.

lock(L) blocks the calling thread until it is granted exclusive access
to the lock variable L. If a thread tries to acquire a lock already
held by another thread tx, t% will block until ti releases the lock. If
multiple threads try to acquire the lock simultaneously, exactly one
is guaranteed to succeed. The other threads are forced to wait.

unlock (L) releases the lock on L and allows one of the threads waiting
on the lock to proceed.

• Event synchronization is supported using event variables. An event
variable is an integer with two possible values, posted and cleared. Three
operations apply to an event variable e:

se t(e) sets event variable e to posted.

w ait(e) if e is set to cleared, it blocks the calling thread until e is set
to posted.

c le a r (e) sets e to cleared.

Event synchronization is used as a signaling mechanism between threads.
By using events, the programmer can introduce a partial order in the
execution of concurrent threads. Assume that some computation B
in thread T2 can only execute after thread 7\ has produced another
computation A. This relation can be implemented by using an event
variable e that is s e t by 7\ immediately after computing A and waited
by T2 immediately prior to computing B. Our work does not address
event synchronization directly; all the support for event synchronization
is derived from the precedence algorithms in (Lee et al. 1997a).

• Barriers are used in algorithms that need to proceed in phases. A
b a rr ie r (b, N) instruction forces the calling thread to wait until If
threads have executed the statement b a rr ie r (b, N).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Optimizing Compilers 16

Input
Program

Front-End __ Intermediate ^ Back-End
(Analysis) Representation (Synthesis)

Object
Code

Figure 2.4: A high-level view of the compilation process.

2.2 Optimizing Compilers
A compiler analyzes an input program written in one language (source code)
and transforms it into a semantically equivalent program in another language
(object code). During translation an optimizing compiler applies certain
transformations to the input program to improve its efficiency. There are
two fundamental ways of measuring efficiency: performance and space. Most
optimizing transformations are meant to improve performance. In certain
situations, space considerations are more important (e.g., systems with limited
amounts of memory and/or registers).

We should point out that the transformations applied by an optimizing
compiler are generally not optimal; they merely attempt to improve certain
aspects of the program. Optimizing transformations try to be as aggressive
as possible without modifying the original semantics of the program. To
achieve this the optimization algorithms always err on the safe side; a
transformation will only be applied if it is valid for every possible execution of
the program. To summarize, an optimizing transformation must be aggressive
but conservatively correct.

This section starts with an overview of a typical compiler system.
Compilers have two major components: the front-end, which is responsible
for recognizing and validating the input program; and the back-end, which
translates the input program into the target language and applies optimizing
transformations to make the program more efficient (Figure 2.4). Special
attention is given to the back-end of the compiler; we will only briefly describe
the compiler front-end (an in-depth description of this topic can be found in
(Aho et al. 1986)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Optimizing Compilers 17

2.2.1 Front-End

Before the program can be optimized and translated into code for the target
machine, the compiler must understand its lexical and syntactic structure.
The front-end of the compiler converts the string of characters representing
the input program into data structures that convey all the information needed
by the back-end to transform the program and generate object code. The
recognition of the input program is done in three phases, namely lexical
analysis, syntax analysis and intermediate code generation (Figure 2.5).

Intermediate
Representation

Input
Program

Lexical
Analysis

Semantic
Analysis

Syntax
Analysis
(Parsing)

Intermediate
Code

Generation

Figure 2.5: The front-end analyzes and prepares the program for optimization.

Lexical Analysis

This phase reads the stream of characters that make up the input program and
groups them into tokens. Tokens are symbols with a predetermined meaning
in the grammar of the input language (i.e., the words of the language). This
tokenization process produces a more synthetic version of the input program
that simplifies the task of subsequent phases. For example, given the following
stream of characters representing an assignment statement

foo = bar + 30.4 - foo

a lexical analyzer might produce the following seven tokens

IDENT ASSIGN IDENT PLUS NUM MINUS IDENT

foo = bar + 30.4 - foo

Limited error checking is performed at this phase. Basically, the lexical
analyzer can only determine whether a string of characters is a valid token
of the input language. The hierarchical grouping of tokens into statements is
performed by the syntax analyzer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Optimizing Compilers 18

assignment

IDENT expression

£00 expression expression

IDENT expression expression

b a r NUM IDENT

30.4 £00

Figure 2.6: Parse tree for the statement foo = bar + 30.4 - foo.

Syntax and Sem antic Analysis

The syntax analyzer, also known as parser, uses the grammar rules of the input
language to group the tokens into statements. Statements are hierarchical
groupings often represented by parse trees. Information contained in parse
trees is used to validate the syntax of the input program and generate
intermediate code used for optimization and final object code generation.

Figure 2.6 shows the parse tree corresponding to the statement foo = bar
+ 30.4 - foo. Interior nodes of the tree correspond to grammar constructs
(e.g., statements, expressions, declarations, etc); leaves correspond to the
individual tokens recognized by the lexical analyzer.

Grammar rules are defined recursively in terms of statements, expressions,
procedures and control structures. Semantic analysis is also performed during
this phase. It mainly involves checking expressions to detect operations that
are not allowed by the typing rules of the language (e.g., multiplying a string
by a floating point number).

Interm ediate Code Generation

Once the program syntax has been verified, the compiler generates
intermediate code which is a more synthetic representation of the original
program. The intermediate representation used by the compiler often

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Optimizing Compilers 19

resembles assembly language for an abstract machine. By separating the
language (front-end) from the architecture (back-end), it is possible to re-use
the same optimization and code generation techniques for a variety of input
languages. Furthermore, the simpler form of this intermediate language
simplifies the task of optimizing and generating object code. Returning to
our running example, the expression foo = bar + 30.4 - foo is translated
to the following intermediate form in SUIF (Stanford University Intermediate
Form) (Hall et al. 1996):

1: ldc nd#4 = 3.04e+01 /* Load nd#4 with constant 30.4 */
2: add nd#3 = .b a r, nd#4 /* Add nd#3 = bar + nd#4 */
3: sub .foo = nd#3, .foo /* Subtract foo = nd#3 - foo */

In this code fragment, the symbols nd#i are temporary variables used
internally by the compiler and actual program variable names are preceded
by a All the analysis and transformation techniques performed by the
compiler are applied to this intermediate representation. The amount of
detail provided by the intermediate representation depends on the type of
optimization being performed. Optimizing compilers typically have more than
one intermediate representation, each suited for different transformations. For
example, high-level transformations like loop transformations are typically
performed by the front-end while low-level transformations like code scheduling
are typically done by the back-end (code scheduling reorders the generated
instructions to take advantage of the target processor).

2.2.2 Back-End

The compiler back-end is responsible for applying optimizing transformations
to the intermediate code and generating the object code that will execute
on the real machine. The front-end for compilers for both sequential and
parallel languages use sim ila r methodologies. The techniques for recognizing
and validating the input program are well-known and do not vary much when
moving from the sequential to the parallel case. However, fundamental changes
are necessary to the compiler's back-end when moving from the sequential to
the parallel case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Optimizing Compilers 20

There are also significant differences between compiler techniques for
explicitly parallel languages (like the ones developed in this thesis) and the
techniques used in parallelizing compilers. Parallelizing compilers analyze
sequential programs to generate parallel code with sequential semantics. On
the other hand, compilers for explicitly parallel languages analyze and optimize
programs that already have parallel semantics.

O ptim izing Transform ations

The compiler front-end acquires very little knowledge of what the program
actually does. Optimization is possible when the compiler understands the
flow of control in the program (control-flow analysis) and how the data is
transformed as the program executes (data-flow analysis). Both types of
analysis are discussed in Sections 2.4 and 2.5.

Analysis of the control and data-flow of the program allows the compiler to
improve the runtime performance of the code. Many different optimizations
are possible once the compiler understands the control and data-flow of the
program. The following are a few of the more popular optimization techniques
used in standard optimizing compilers:

A lgebraic sim plifications. Expressions are simplified using algebraic
properties of their operators and operands. For instance, i + 1 — i is
converted to 1. Other properties like associativity, commutativity and
distributivity are also used to simplify expressions.

C onstant folding. Expressions for which all operators are constant can be
evaluated at compile time and replaced with their value. For instance,
the expression a = 4 + 3 — 8 can be replaced with a = —1. This
optimization (usually performed by the front-end) yields best results
when combined with constant propagation (page 22).

R edundancy elim ination. There are several techniques that deal with the
elimination of redundant computations. Some of the more common ones
include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Analysis and Optimization of Explicitly Parallel Programs 21

Loop-invariant code motion. Computations inside loops that produce
the same result for every iteration are moved outside the loop.

Common sub-expression elimination. If an expression is computed more
than once on a specific execution path and its operands are never
modified, the repeated computations are replaced with the result
computed in the first one.

Partial redundancy elimination. A computation is partially redundant
if some execution path computes the expression more than once.
This optimization adds and removes computations from execution
paths to minimize the number of redundant computations in the
program. It encompasses the effects of loop-invariant code motion
and common sub-expression elimination.

R eg ister allocation. Registers are memory locations inside the processor
itself that are extremely fast and scarce. Register allocation tries to keep
memory traffic within the CPU registers as much as possible.

Code G eneration

Final target code consists of machine or assembly code for the target
architecture. Further optimizations are enabled during this translation.
Register allocation and code scheduling are typically applied during this phase.
Code scheduling refers to a family of instruction re-ordering techniques that
take advantage of specific features of the processor (e.g., pipelining, VLIW,
super-scalar features, etc).

2.3 Analysis and Optimization of Explicitly
Parallel Programs

In 1990 Midkiff and Padua published a study that showed how optimizing
transformations designed for sequential programs may fail when applied to
explicitly parallel code (Midkiff and Padua 1990). The core of the problem is
that techniques for sequential languages have no concept of concurrent activity,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Analysis and Optimization of Explicitly Parallel Programs 22

they assume a single thread of execution. Consequently, they cannot assert
whether it is safe to apply the transformations.

Current work-arounds to this problem involve disabling optimizations in
parallel sections of the program and/or restricting data sharing between
threads. Both are inappropriate because they are too restrictive. This means
that the compiler can only optimize the sequential parts of the program.
The compiler should “understand” parallel code and be able to make valid
optimizing transformations. A classic example of how sequential compilers
fail on explicitly parallel code is shown in Figure 2.7. The program shows two
threads sharing a common array. Thread To (the producer) creates new values
while thread T\ (the consumer) waits for To to generate all the values before
doing its work. The two threads are synchronized using a busy-wait loop on
variable done. When thread T0 finishes updating the array, it sets variable
done to 1 which terminates the v h ile loop in thread T\.

A common transformation used in optimizing compilers is called constant
propagation. Basically, a constant propagation algorithm replaces variables
by their values if they are known to be constant. Consider variable done;
since a sequential constant propagation analyzer does not know about the
parallel structure of the program, it will produce incorrect transformations.
If the compiler considers that To and Ti execute in sequence, it will conclude
that variable done is always 1 when control reaches the v h ile loop in T\.
Therefore, constant propagation will effectively remove the busy-wait loop
and the program will likely produce the wrong results at runtime.

This example illustrates the fundamental reason why we need compilers
to understand explicitly parallel code. Concurrent threads of activity on
shared data introduce data dependencies that a sequential compiler cannot
see because it assumes a single thread of execution.

There are other elements in a parallel program that a compiler must
understand, namely the synchronization and memory models. Different
synchronization schemes will impose different constraints on how data is
shared. As we will see in later sections this can create more opportunities
for the compiler to apply more aggressive optimizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Control-Flow Analysis 23

done = 0; done = 0;
cobegin cobegin

T0: begin T0: begin
for (i = 0; i < N; i++) for (i = 0; i < N; i++)

A[i] = produce(i); A[i] = produce(i);
done = 1; done = 1;

end end

T ,: begin T x: begin
while (done = = 0) while (X = 0) /* Always false! */

; / • busy-wait • / ; / • busy-wait never executed */
for (i = 0; i < N; i++) for (i = 0; i < N; i++)

print(A[i]); print(A[i]);
end end

coend coend

(a) Original program. (b) Constant propagation eliminates synchronization.

Figure 2.7: Constant propagation problems in an explicitly parallel program.

2.4 Control-Flow Analysis
The goal of control-flow analysis is to discover the control structure of the
program. This task might seem trivial when one examines the original source
code, but recall that the compiler does not deal with the original code.
Depending on the intermediate representation used, when the code is converted
to its intermediate form, all the high-level control constructs like loops and
conditionals are sometimes lost. Even if the control information was preserved,
programmers can still write obfiiscated code that hide the high-level control
structures of the program.

The control-flow of the program is often represented in a graphical form
called the control-flow graph. The nodes of the graph, called basic blocks,
represent a non-branching sequence of statements (i.e., execution starts with
the first instruction in the group and it only leaves the block after the last
instruction has been executed). The edges of the graph represent possible
execution paths in the flow of control (i.e., conditionals, loops, etc.).

2.4.1 The Control-Flow Graph

The control-flow graph (also known as the flowgraph) is a graphical
representation of the control structure of the program. Its nodes represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Control-FIow Analysis 24

computations and its edges represent the flow of control. The nodes of a
flowgraph are called basic blocks.
Definition 2.1 (Basic block) A basic block is a sequence of consecutive
statements in which flow of control enters at the beginning and leaves at the
end without any possibility of branching except at the end (Aho et al. 1986).

□

Formally, a control-flow graph is defined as a directed graph G =
{N, E, begin, end) such that N is the set of basic blocks (or nodes), E C N x N
is the set of control-flow edges, begin is the unique entry point to the graph and
end is the unique exit point from the graph. An edge between basic blocks n
and m is denoted n -» m. We say that node n is the immediate predecessor of
m and node m is the immediate successor of n. Similarly we define the sets of
Succ(n) and Pred{n) to be the sets of immediate successors and predecessors
of n respectively.

a = f();
b = g();
c = h();

if (a + b < c) {
d = c;

} else {
d = a + b;
c = a * b;

>

begin

then else

endif

end

d = a + b;
c = a * b;

a = fO
b = gO
c = hQ

Figure 2.8: A sequential program and its control-flow graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 ControI-FIow Analysis 25

Figure 2.8 shows a sample flowgraph for a sequential program. While there
is little variation in the conventions used to represent fiowgraphs for sequential
programs, there does not exist a unique notation to represent fiowgraphs
for parallel programs. The different representations share commonalities,
but some include extra edges to represent synchronization and have different
notions of basic blocks.

Parallel Flow Graph

Srinivasan and Grunwald introduce the Parallel Flow Graph (PFG) (Grunwald
and Srinivasan 1993). In their language model synchronization is specified
using Post and Wait statements and parallel sections in the code are specified
using cobegin/coend or paralle l_sections/end_para lle l_sections.

The nodes of a PFG represent extended basic blocks. An extended basic
block is a basic block with at most one Wait statement at the start of the block
and at most one Post statement at the end of the block. Statements demarking
parallel sections are denoted by cobegin and coend nodes in the graph. There
are three types of edges: a sequential control-flow edge represents sequential
flow of control within sequential parts of the program. A parallel control-flow
edge represents parallel control flow. It connects a cobegin node with its
immediate successors and a coend node with its immediate predecessors. A
synchronization edge is a directed edge between a node containing a Post
statement to a node containing the corresponding Wait statement.

Extended Flow Graph

Srinivasan, Hook and Wolfe introduce the Extended Flow Graph (EFG)
(Srinivasan et al. 1993). Parallel activity is specified using P a ra lle l
Sections. Each section within a P a ra lle l Sections construct has its own
identifying name. The only synchronization supported is the Wait (sec) clause
which can only be used at the beginning of a section. The Wait (sec) command
causes the invoking section to wait until section sec has finished.

The EFG is composed of two separate abstractions; the Parallel Control
Flow Graph (PCFG) which represents the sequential sections of the code
and the Parallel Precedence Graph which represents the parallel sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Control-Flow Analysis 26

The PCFG is a standard control-flow graph with one special node called
svpemode that represents an entire P a ra l le l Sections construct. Each
section within a P a ra lle l Sections is a node of a Parallel Precedence Graph.
Synchronization between parallel sections is represented with directed edges
between the corresponding nodes in the PPG. In turn, each node of the PPG
is expanded into a PCFG representing the code inside the section.

C oncurren t C ontrol Flow G raph

Lee, Midkiff and Padua introduce the Concurrent Control Flow Graph (CCFG)
(Lee et al. 1997b). It is similar to the Parallel Flow Graph but since
the memory model that they use allows concurrent modifications to shared
memory locations, the CCFG also contains conflict edges between basic blocks
that contain conflicting memory references (i.e., at least one of the basic blocks
is attempting to modify that location).

The nodes of a CCFG are called concurrent basic blocks and are exactly like
the extended basic blocks of a PFG. The flowgraph representation used in this
thesis is based on the CCFG. We will describe CCFGs in detail in Chapter 3.

2.4.2 Common Graph Concepts

In this section we define several relations between nodes in a control-flow graph
that are commonly used by the analysis algorithms. In what follows we assume
a control-flow graph G — (N , E, EntryG, Exita) and two nodes x, y € G.
D efinition 2.2 (Dominance) Node x dominates node y, denoted x DOM y,
if every control path from Entryc to y contains x. Node x is in the set
of dominators of y, denoted x € DOM{y). Node y is in the set of nodes
dominated by x, denoted y G DOM~l{x). Note that every node always
dominates itself. □

D efinition 2.3 (S tric t dom inance) Node x strictly dominates node y,
denoted x SDOM y, if x DOM y and x y. Node x is in the set of
strict dominators of y, denoted x G SDOM{y). Node y is in the set of nodes
strictly dominated by x, denoted y G SDOM~l (x). □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Control-Flow Analysis 27

D efinition 2.4 (Post-dom inance) Node y post-dominates node x, denoted
y PDOM x, if every control path from x to E xitc contains y. Node y is in the
set of post-dominators of x, denoted y 6 PDOM(x). Node a: is in the set of
nodes post-dominated by y, denoted x 6 PDOM~l (y). Note that every node
always post-dominates itself. a

D efinition 2.5 (S tric t post-dom inance) Node y strictly post-dominates
node x, denoted y SPDOM x, if y PDOM x and x ^ y. Node y is in the
set of strict post-dominators of x , denoted y 6 SPDOM (x). Node x is in the
set of nodes strictly post-dominated by y, denoted x 6 SPDOM~l (y). □

D efinition 2.6 (D om inance frontier) The dominance frontier for node x,
denoted DF(x) is the set of all nodes y in the flowgraph such that x dominates
an immediate predecessor of y but it does not dominate y. □

D efinition 2.7 (Im m ediate dom inator) If x DOM y, we say that node x
is the immediate dominator of node y, denoted x IDOM y, if x is the last
dominator of y on any path from the entry node to y. a

Definition 2.8 (D om inator tree) The dominator tree is defined recursively
using the dominance relation between the nodes in the graph. The root of the
dominator tree is the entry node to the graph. The children of a node n in the
dominator tree are the nodes immediately dominated by n in the flowgraph.

□

We illustrate these concepts using the flowgraph shown in Figure 2.9(a).
The entry node (node 0) dominates every node in the graph. Consequently its
dominance frontier is empty. Nodes 1,2,6 and 7 post-dominate node 0 because
every path 0 - ^ 7 must go through those nodes. The dominance frontier for
node 4 is node 6 because node 4 dominates an immediate predecessor of node
6 (i.e., node 5), but it does not dominate node 6 itself (i.e., there is a path
from 0 to 6 that does not include node 4). Using the dominance relation on
the nodes of the graph we obtain the dominance tree shown in Figure 2.9(b).
The tables in Figures 2.10 and 2.11 show the dominance and post-dominance
relations for the nodes in the example flowgraph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 28

(b) Dominator tree.(a) Flowgraph.

Figure 2.9: An example flowgraph and its dominator tree.

2.5 Data-Flow Analysis
A data-flow analyzer explores all the possible executions of the program to
determine how it transforms the data it manipulates. A fundamental property
of data-flow analysis is that it must guarantee that the information it gathers is
valid for every possible execution of the program. Otherwise, decisions based
on this analysis could yield erroneous results.

This section describes some of the more common data-flow analyses found
in optimizing compilers. Two popular data-flow analysis frameworks are
discussed: iterative data-flow analysis and the Static Single Assignment form.
We also survey proposed analysis techniques for explicitly parallel languages
based on these data-flow frameworks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 29

Node (n) DOM(n) DOM~L(n) DF(n)
0 {0} {0,1,2,3,4,5,6,7} 0
1 {0,1} {1,2,3,4,5,6,7} 0
2 {0,1,2} {2,3,4,5,6,7} 0
3 {0,1,2,3} {3} {6}
4 {0,1,2,4} {4,5} {6}
5 {0,1,2,4,5} {5} {6}
6 {0,1,2,6} {6} 0
7 {0,1,2,6,7} {7} 0

Figure 2.10: Dominance sets and dominance frontiers for Figure 2.9.

Node (n) PDOM(n) PDOM~L{n)
0 {0,1,2,6,7} {0}
1 {1,2,6,7} {0,1}
2 {2,6,7} {0,1,2}
3 {3,6,7} {3}
4 {4,5,6,7} {4}
5 {5,6,7} {4,5}
6 {6,7} {0,1,2,3,4,5,6}
7 {7} {0,1,2,3,4,5,6,7}

Figure 2.11: Post-dominance sets for the flowgraph in Figure 2.9.

2.5.1 Common Data-Flow Problems

Data-flow problems model properties about various program objects at specific
points in the program. The information gathered when solving a specific
problem is then used by the optimizer to make the actual transformations.

Reaching Definitions

A variable v is defined (denoted Dv) every time a new value is assigned to it.
We say that a definition Dv of v reaches a certain point p in the program if
there exists a path r between Dv and p such that r contains no definitions to v.
For example, the program in Figure 2.12 contains three definitions of variable
a, namely D \ at line 1, D \ at line 4 and D\ at line 7. Reaching definition
analysis on this program should determine that definition D \ reaches the use
of a at lines 2, 4 and 6 but it does not reach line 8 because of definition D\ at
line 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 30

1: a = 4;
2: b = a + 3;
3: If (b > 10) {
4: a = b * 2;
5:}
6: print a;
7: a = a + 10;
8: print a;

/* Dttl . /
b ual ./

/ • OS */

/• u s ./
b D*,u*./
/* us * /

Entry

if(b > 10)

endtf

Exit

pnntt;
n-a+10;

print n:

Figure 2.12: Example of the reaching definitions problem.

Def reached-uses

Dl
Dl m

Use reaching-defs

u i m

VI [D l D l)
VI { D l D i }

Vi
(a) Reached uses for each definition of a. , _ , r , f(b) Reaching definitions for each use of a.

Figure 2.13: Reaching definitions and reached uses sets for the program in Figure
2.12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 31

D efinition 2.9 (U se-def chains) Reaching definition information is usually
stored in use-def chains or ud-chains which are lists of definitions reaching a
particular use of a variable. a

Use-def chains for variable a are shown as dashed arrows in the control-flow
graph for the program (Figure 2.12). Other data structures of interest include
reached-uses and reaching-defs sets which are defined as follows:
D efinition 2.10 (Reached-uses set) Given a definition Dv for variable v,
the set reached-uses for Dv is the set of all uses of v that are reached by Dv. □

D efinition 2.11 (Reaching-defs) Given a use Uv of variable v, the set
reaching-defs for Uv is the set of all definitions for v that can reach Uv. □

Note that in collecting reaching definition information for this program we
have said that definition D\ reaches line 6. This might appear counter-intuitive
because there appears to be another definition in the path from line 1 to line
6, namely definition D\ at line 4. However, definition at line 4 is not always
executed therefore the conservatively correct decision is to assume that both
definitions, D \ and reach line 6. Reaching definitions and reached uses
sets for variable a are shown in Figure 2.13.

Live V ariables

A variable v is live at a certain point p in the program if the value of v at
p could be used along some path starting at p. Otherwise, we say that v is
dead at p. Going back to the example program in Figure 2.12, the value of b
computed at line 2 is live at line 3 but it becomes dead at line 5 because it is
not used anymore.

Available Expressions

An expression a + 6 is available at a point p in the program if all the paths
from the entry node to point p in the graph compute a 4- b. The notion
of availability is used in optimizations like redundancy elimination. If an
expression is repeatedly computed without its operands being modified, then
redundant computations can be removed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 32

2.5.2 Iterative Data-Flow Analysis

Iterative data-flow analysis is the traditional method for solving data-flow
problems. Datarflow information is collected in sets that represent the
information needed by each particular problem. Traditionally, optimizing
transformations are phrased in terms of datarflow problems. For instance, in
the case of constant propagation each element of the data-flow set corresponds
to a different variable in the program.

The analysis is performed by setting up and solving systems of equations,
known as data-flow equations, that describe the local effects that each basic
block has on the data-flow sets. The propagation of data-flow properties is
done locally to each basic block and the results are aggregated over all the
basic blocks to determine global properties of the program. Each data-flow
problem must define appropriate data-flow sets and equations needed to gather
the required information.

Data-flow information is typically stored in four main sets: in is the set
representing information entering the block, out is the information that exits
the block, kill is the information invalidated (or killed) by the block and gen
is the information generated locally by the block. In general, the equations
are set up so that they follow the natural flow of control of the program. In
other words, the set out is defined in terms of in, gen and kill These are
known as forward data-flow problems. But for some other problems, known
as backward data-flow problems, the data-flow equations and their associated
iterations proceed backwards.

Once set up, data-flow equations are solved iteratively from an initial set
of values. The most common implementation of iterative data-flow analyzers
uses bit-vectors to represent the sets in the data-flow equations. This is why
this is sometimes called bit-vector analysis. More information about these
techniques can be found in (Aho et al. 1986) and (Muchnick 1997).

Iterative D ata-Flow A nalysis for E xplicitly Parallel Programs

Grunwald and Srinivasan developed data-flow equations to compute reaching
definition information on explicitly parallel programs with cobegin/coend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 33

parallel sections (Grunwald and Srinivasan 1993). They assume a weak
memory consistency model in which parallel sections are required to be data
independent; memory updates are done at specific points in the program using
copy-in/copy-out semantics. They support event-based synchronization
synchronization using se t and wait operations.

Knoop, Steffen and Vollmer developed a bit-vector analysis framework for
parallel programs with interleaving memory semantics (Knoop et al. 1996).
They show how to adapt standard optimization algorithms to their framework.
However, they do not incorporate synchronization operations in their analysis.
They use this framework to adapt lazy code motion optimization which is a
redundancy elimination method.

2.5.3 Static Single Assignment Form

Static Single Assignment (SS A) is a relatively new intermediate representation
that is becoming increasingly popular because it leads to efficient algorithmic
implementations of datarflow analyzers and optimizing transformations
(Cytron et al. 1991). The SSA form is based on the premise that program
variables are only assigned once. Multiple assignments to the same variable
create new versions of the variable. In essence, the SSA form makes all the
use-def chains explicit in the program, because every use of a variable is reached
by exactly one definition.

Actual programs are seldom in SSA form initially because variables tend to
be assigned multiple times; not just once. An SSA-based compiler modifies the
program representation so that every time a variable is assigned in the code, a
new version of the variable is created. Different versions of the same variable
are distinguished by subscripting the variable name with its version number.
Variables used in the right-hand side of expressions are renamed so that their
version number matches that of the most recent assignment. Notice that it is
not always possible to statically determine what is the most recent assignment
for a given use. These ambiguities are the result of branches and loops in the
program flow of control. To solve this ambiguity, the SSA form introduces
the so-called (f> functions. <j> functions merge multiple incoming assignments to
generate a new definition; they are placed at points in the program where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 34

1: a = 4 1: aj = 4
2: b = a + 3 2 :b l = a1 + 3
3: If (a > 3) { 3: If (aI > 3) {
4: print a 4: print a1
5: a = a + 3 5 : a a = a1 +
6: } 6: }
7: 7: aj = # a*, a j
8: b = 5 8: b2 = 5
9: print a + b 9: print ag + b2

(a) Original program. (b) Program in SSA form.

Figure 2.14: An example sequential program and its SSA form.

flow of control causes more than one assignment to be available (essentially, a
<p functions are needed at dominance frontier nodes).

Figure 2.14 shows a sequential program and its corresponding SSA form
(Figures 2.14(a) and 2.14(b) respectively). Notice that every assignment
in the program introduces a new version number for the corresponding
variable. Every time a variable is used, its name is replaced with the version
corresponding to the most recent assignment for the variable. Now consider
the use of variable a in line 9. There are two assignments to a that could reach
line 9; the assignment at line 1 and the assignment inside the i f statement
at line 5. To solve this ambiguity, SSA introduces a <p function for a which
merges both assignments to create a new version of a (a3). The semantics of
the <p function dictate that a3 will take the value from one of the function’s
arguments. The specific argument returned by the <p function is not known
until runtime.

Static Single Assignm ent for E xplicitly Parallel Program s

Srinivasan, Hook and Wolfe developed a Static Single Assignment (SSA)
framework for explicitly parallel programs (Srinivasan et al. 1993). Their
analysis framework works on the P a ra l le l Sections model (page 25). Two
different merge operators are used; <p and ip functions. A <p function serves the
same purpose as in sequential programs, it is placed at nodes that represent
merge points in the program, tp functions model multiple parallel updates;
they are placed at synchronization points in the program if two or more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Data-Flow Analysis 35

concurrent sections modify the same variable.
Lee, Midkiff and Padua propose a Concurrent SSA framework (CSSA) for

explicitly parallel programs and interleaving memory semantics (Lee et al.
1997b). Our work builds on the CSSA form; a more detailed description can
be found in Chapter 4. Lee et al. also adapt some sequential optimizing
transformations to the parallel case using CSSA (Lee et al. 1998; Lee et al.
1999).

2.5.4 Other Approaches to Optimizing Explicitly
Parallel Programs

Shasha and Snir proposed an analysis technique called cycle detection that
allows re-ordering of memory references in a program to increase concurrency
while maintaining the sequential consistency dictated by the code (Shasha and
Snir 1988).

Krishnamurthy and Yelick extended cycle detection analysis to incorporate
additional information from synchronization in the program (Krishnamurthy
and Yelick 1996). Although their work supports post/w ait, b a r r ie r and
mutual exclusion synchronization, they only focus on optimizing remote
memory references on a specific class of explicitly parallel programs.

Recent research efforts in the area have focused on the Java language. Since
Java is a multi-threaded language, its class libraries must support concurrent
accesses by multiple threads of execution. This is supported at the language
level using synchronized methods, also known as monitors, which are a variation
of the traditional mutual exclusion section. An important aspect of optimizing
Java programs is reducing the overhead imposed by the thread-safe nature of
Java’s libraries. Diniz, Rinard and Whaley have developed several techniques
to reduce the impact of synchronization in Java programs (Whaley and Rinard
1999; Diniz and Rinard 1998).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Summary 36

2.6 Summary
Modem compilers are organized around two major phases: analysis and
synthesis. During analysis, the compiler extracts detailed information about
the program. In particular the analysis phase discovers how the program is
structured and how it manipulates its data. The optimization phase uses
this information to transform the original program into an equivalent but
more efficient version. In this context, efficiency is usually associated with
performance; we want to produce code that executes as fast as possible on the
target architecture. Finally, the synthesis phase generates object code that
can be executed on the target machine.

While analysis and optimization techniques for sequential languages are
well-known, these techniques cannot be used in explicitly parallel programs
that share memory. Concurrent execution, data sharing and synchronization
operations affect the control and data flow of the program in ways that
the sequential techniques are unable to handle. There have been recent
advances in developing analysis frameworks for explicitly parallel programs
and adapting traditional optimization techniques such as constant propagation
and dead-code elimination to the parallel case. However, there has been
less emphasis on optimizing the parallel and synchronization structure of the
program itself.

In the following chapters we introduce novel analysis techniques that
incorporate both the parallel and synchronization structure of the program into
a unified framework for analyzing and optimizing explicitly parallel programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Analyzing Explicitly Parallel
Programs

In an explicitly parallel program with shared memory semantics, the use
of a shared variable v can be reached by any definition of v in another
concurrent thread. However, synchronization constructs may prevent some
variable definitions from being visible to other threads. For example, consider
the program in Figure 3.1. If the compiler ignores the mutual exclusion
regions created by the lock operations, it will conclude that the definition
for variable a in thread T0 can reach both uses of a in thread 7\. However,
the synchronization used in the program serializes the references to a so that
the assignment to a in To cannot reach the second use of a in T\. Therefore,
the call to function g() in T\ will always be executed with a = 3.

This chapter introduces the foundations for the analysis framework
developed in Chapter 4. We start with a description of the Concurrent Control
Flow Graph (CCFG) (Section 3.1). Section 3.2 describes the process used to
build the CCFG for a given program. We then use the CCFG to analyze
the synchronization patterns in the program to gather non-concurrency
information. As observed in Figure 3.1, synchronization can reduce data
dependencies across concurrent threads in the program. This reduction of
data dependencies may allow more aggressive optimization in subsequent
transformation passes. In this work we support three types of synchronization
operations: events, mutual exclusion and barriers (Section 3.3).

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Concurrent Control Flow Graph 38

cobegin /* Begin concurrent execution */
T0: begin /* Launch thread T0 */

if (b > 0) {
b = 3 / a;

}
lock(L);
a = a + b;
unlock(L);

end

T t : begin /* Launch thread T , */
f(a):
lock(L);
a = 3; /* This kills the assignment to a in T„ «/
b = b + g(a); / • Variable a is always 3 */
unlock(L);

end
coend

Figure 3.1: Mutual exclusion can reduce data dependencies across threads in a
parallel program.

3.1 Concurrent Control Flow Graph
A Concurrent Control Flow Graph (CCFG) (Lee et al. 1997b) is similar to its
sequential counterpart, the Control Flow Graph (Aho et al. 1986). It represents
the control structure of a parallel program including the parallel constructs
cobegin/coend and parloop. In addition, a CCFG contains edges to represent
memory conflicts across concurrent threads and event synchronization. We
extend the CCFG so that each lock, unlock and b a r r ie r operation is
represented by a separate node.
D efinition 3.1 (Variable references) Variables are referenced every time
their values are read or modified by the program. Read references are also
known as uses, while write references are also known as definitions. a

D efinition 3.2 (Shared variable reference conflicts) Two variable
references in different threads conflict if (a) both reference the same variable,
(b) one of them is a write reference, and, (c) the threads can execute
concurrently. a

D efinition 3.3 (C oncurrent basic block) A concurrent basic block is a
basic block (Aho et al. 1986) with the following additional properties:

1. Only the first statement of the block can be a w ait statement or contain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Concurrent Control Flow Graph 39

a use of a conflicting variable.

2. Only the last statement of the block can be a s e t statement or contain
a definition of a conflicting variable.

3. Synchronization operations lock, unlock and b a r r ie r are placed in
their own block.

4. Parallel control instructions cobegin, coend and parloop are placed in
their own block. a

D efinition 3.4 (Conflicts between concurrent basic blocks) Two
concurrent basic blocks a and b in different threads conflict if they can
execute concurrently and contain conflicting variable references. □
Definition 3.5 (Concurrent Control Flow Graph (CCFG))
A Concurrent Control Flow Graph (CCFG) is a directed graph
G = (N, E, Entry G, Exita) such that:

1. N is the set of nodes in the graph. Each node in N corresponds to a
concurrent basic block.

2 . E ntryc and E xita are the unique entry and exit points of the program.

3. E = E f U Es U Ec is the set of edges in the graph such that:

(a) E f is the set of control flow edges. These edges have the same
meaning as in a sequential Control Flow Graph.

(b) Es is the set of edges representing event synchronization. These are
directed edges that join related se t and wait nodes in concurrent
threads.

(c) Ec is the set of conflict edges. Conflict edges are bi-directional edges
that join any two concurrent basic blocks that conflict. There is a
label on a conflict edge that represents the memory operations done
at each end of the edge. There are two kinds of conflicts:

i. def-use: one of the nodes writes to the shared variable and
the other one reads from it. These conflicts are labeled DU(v),
where v is the name of the variable being accessed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Concurrent Control Flow Graph 40

ii. def-def: both nodes write to the shared variable. These
conflicts are labeled DD(v), where v is the name of the variable
being modified. a

Definition 3.6 (E n try and ex it nodes) Given a thread T, beginx is the
entry node for T, endr is the exit node for T, cobeginT is the cobegin node
for the innermost cobegin/coend structure containing T, and coend? is the
corresponding coend node for cobeginT. □

Definition 3.7 (C ontrol pa th) Given two nodes x and y in a CCFG G, a
path from x to y is a control path if it only contains edges in Ef. □

3.1.1 Graphical Representation of a CCFG

This section describes the graphical notation we use to represent CCFGs.
Figures 3.2(a) and 3.2(b) show the representation for cobegin/coend and
parloop constructs respectively. Figure 3.2(c) illustrate the representation of
event synchronization edges.

Graph nodes are represented using three different shapes. Ellipses represent
entry and exit nodes for the graph, loops, parallel structures (cobegin/coend
and parloop) and nested scopes in the source program. Header nodes for
conditional statements are represented using diamonds. Finally, rectangles
represent concurrent basic blocks. Control flow edges are represented using
solid lines. Conflict edges are represented with dotted lines. Dashed lines
represent event synchronization edges.

Each cobegin node has one outgoing control edge for each child thread it
launches. Graphically, each thread is represented as a sub-graph rooted at the
cobegin node (Figure 3.2(a)). All the children threads join at the coend node.
Conflict edges always join nodes in threads that share at least one common
cobegin node.

We experimented with two different ways of representing parallel loops.
Since a parallel loop is not really an iterative control structure, we initially
represented parallel loops as a cobegin/coend with one thread. Each node
inside the parloop structure had the property of being concurrent with itself.
Therefore, the algorithms and data structures have to support self-referencing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Concurrent Control Flow Graph 41

begin

parloop (i, 1, N)

ilicaOrigii

• stmts'; 1

- - i - 1

' - L -. stmts’; 1

stmts;

parend

end

(b) parloop construct.

begin

cobegin

beginbeginbegin

stmts;stmts;

endend end

V ^)

(a) cobegin/coend construct.

begin

cobegin

coend

end

stmts

wside)

stmts

(c) Event synchronization edges.

Figure 3.2: Representation of parallel constructs and synchronization in a CCFG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Building the CCFG 42

conflict edges. This is particularly important in building the CSSAME form
for the program (Chapter 4).

Although this representation was enough for our purposes, it can be
confusing to visualize and it does not permit certain analyses used in the
literature (like cycle detection (Shasha and Snir 1988)). The other method
to represent parallel loops is to replicate the body of the loop and consider
it like a cobegin/coend structure with two threads: the original and the
rep lica (Figure 3.2(b)). This representation is identical to the cobegin/coend
representation, conflict edges join distinct nodes (there are no self-referencing
conflicts) and it facilitates the design of some of the analysis algorithms
proposed in the literature (Krishnamurthy and Yelick 1996; Lee et al. 1999).
From an implementation point of view, this representation has the drawback of
potentially doubling the memory requirements. In subsequent sections we use
this representation to simplify the explanation of some algorithms. However,
in our current implementation we do not create replicas of parallel loop bodies.

Event synchronization operations (se t and wait) are represented in the
flowgraph using directed edges from se t nodes to the corresponding wait node.
Notice that se t and wait are the only synchronization operations that create
additional edges in the CCFG. This is used during synchronization analysis
to compute guaranteed precedence ordering (Section 3.3.3). Mutual exclusion
and barrier synchronization are supported but no additional edges are required
by the synchronization analysis phase. An example of an explicitly parallel
program and its CCFG are illustrated in Figures 3.3 and 3.4.

3.2 Building the CCFG
Algorithm 3.1 builds the concurrent control flow graph for an explicitly parallel
program P. It consists of three phases: (a) placement of nodes and control
edges, (b) placement of conflict edges and (c) placement of synchronization
edges.

Graph nodes and control edges are created using a slightly modified version
of a standard algorithm to build control flow graphs (Aho et al. 1986). The
modification allows the original algorithm to recognize the cobegin/coend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Building the CCFG 43

a = 0;
b = 0;
cobegin

T0: begin
lock(L);
a = 5;
b = a + 3;
if (b > 4) {

a = a + b;
}
x = a;
unlocic(L);

end

T t: begin
lock(L);
a = b + 6;
y = a;
unlock(L);

end
coend
print(x, y);

Figure 3.3: A task parallel program.

and parloop constructs. Basic blocks are built using a linear scan of all the
statements in the program. This step builds basic blocks, not concurrent basic
blocks. Subsequent phases of the algorithm will split the basic blocks to create
concurrent basic blocks, and incorporate conflict and synchronization edges to
the base graph.

A lgorithm 3.1 Build a Concurrent Control Flow Graph.
input: An explicitly parallel program P
output: The concurrent control flow graph G = (N, E, Entry a , Exita) for P

1: Build maximal basic blocks and control edges (Aho et al. 1986).
2: Add conflict edges (Algorithm 3.3).
3: Add synchronization edges (Algorithm 3.4).

Once the basic structure of the flowgraph has been built, conflict and
synchronization edges are added to the graph. To add conflict edges, the
graph is traversed looking for nodes that can execute concurrently and access
the same memory location in a conflicting manner. Algorithm 3.2 is used to
determine whether two arbitrary nodes in the graph can execute concurrently.
The algorithm assumes the existence of two data structures:

Tkread{n) is the thread that contains node n. Threads are assumed to have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Building the CCFG 44

hcVLk

DCX»>

DU(a) ■ DU(b) DU(a)if(b>4){

DU(»)

DU(a)cntfif

end cod ► Control flow edge

Conflict edge

Figure 3.4: Concurrent Control Flow Graph for the program in Figure 3.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Building the CCFG 45

a unique id computed automatically by the compiler. The sequential
parts of the program are always executed by thread Tltq.

Par Ancestor s(n) is the set of cobegin and parloop nodes that can be
reached in a backwards traversal of the dominator tree from node n
to the entry node of the CCFG.

A lgorithm 3.2 Concurrency relation.
input: Two concurrent basic blocks a, 6 € G = {N, E, Entry a , Exit a)-
output: tru e if a and 6 can execute concurrently, fa lse otherwise.

1: function conc(a,6)
2: /* If a or 6 are in a sequential region, they cannot be concurrent. */
3: if Thread{a) = T , V Thnad{b) = Tttq then
4: return false
5: end if
6:
7: /* If a and 6 have a common parloop node in their ParAncestors set, they are concurrent. */
8: if 3n 6 ParAncestors(a) s.t. n = parloop A n € ParAncestors(b) then
9: return true
10: end if
11:
12: /* If a and 6 have a common cobegin node in their */
13: /* ParAncestors set and they are on different threads */
14: /* and they are not the same node, then they are concurrent. */
15: if 3n 6 ParAncestors(a) s.t. n = cobegin AThread[a) ^ Thrcad(b) A a j ib then
16: re tu rn tr u e
17: end if
18:
19: /* None of the previous tests succeeded. The nodes are not concurrent. */
20: return palsb

Concurrent nodes with memory conflicts are marked as conflicting and split
up to create concurrent basic blocks according to the rules given in Definition
3.3. Conflict edges are created to join the conflicting nodes (Algorithm 3.3).
Notice that at this stage we do not use the non-concurrency information that
can be gathered from the synchronization structures of the program. As we
will discuss in Section 3.3, it is generally more convenient for synchronization
analysis to have the basic CCFG already built. In practice, however, this
analysis could be performed in conjunction with synchronization analysis.

When implementing the compiler, we discovered that it is easier to build
concurrent basic blocks from the outset than it is to build maximal basic blocks
and then split them up. The main reason is that when splitting basic blocks
one must take care of boundary conditions so that no empty basic blocks are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Building the CCFG 46

created. What we implemented is a two pass algorithm that will first scan
the program and determ ine conflict lists at the level of instructions. During
the concurrent basic block building pass, the conflict list in each instruction
is checked to see if the instruction should be added to the current block or a
new block be created. This is more memory intensive, but it simplified our
implementation. For clarity of presentation we have decided to describe them
as two separate phases.

Algorithm 3.3 Add conflict edges._________________________________
INPUT: An incomplete concurrent control flow graph G = (IV, E, Entrya , Exita) with no conflict

edges.
output: The CCFG G given as input with conflict edges Ee added.

X: Ec 0
2: foreach a € N do
3: foreach 6 6 N do
4: /* Call Algorithm 3.2 (cone) to determine whether a and 6 are concurrent */
5: if (concha, b) = true) a (a conflicts with b) then
6 : £c<-Ecll{(M)}
7: end if
8: end for
9: end for
10: foreach (a, b) € Ec do
11: Split blocks a and 6 to comply with definition 3.3.
12: end for

The last step in the construction of the CCFG is to add directed
synchronization edges for related se t and v a it operations in the program
(Algorithm 3.4). For every pair of nodes se t and v a it the algorithm checks
if they can execute concurrently and operate on the same synchronization
variable. If so, a directed edge from the se t node to the v a it node is added.

A lgorithm 3.4 Add synchronization edges.___________________________
in pu t : An incomplete concurrent control flow graph G = (N, E, EntryG, Exita) with no

synchronisation edges.
o u t pu t : The graph G with synchronisation edges E, added.

1: Ec 0
2: /* For every event variable v add an edge from each set(v) to every vait(v). */
3: foreach a € AT do
4 : foreach b 6 N do
5: if conc(a,b) = t r u e then
6: if (a = jet(o)) A (6 = toait(v)) then
7: E . < - £ ,U « M) }
8: end if
9: end if
10: end for
11: end for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 47

3.3 Synchronization Analysis
Parallel programs use synchronization to order the access to shared data
by the different threads in the program. Typically, synchronization
operations introduce non-concurrency among otherwise concurrent regions of
the program. The goal of synchronization analysis is to determine which nodes
in concurrent sections of the program will not execute concurrently. This
information is used to disregard memory conflicts from the CCFG that cannot
occur at runtime due to synchronization restrictions. Reducing the number of
memory conflicts gives more freedom to the compiler when applying optimizing
transformations. Furthermore, information about synchronization semantics
allows the development of techniques to validate the synchronization structure
of the program.

In this work we support three types of synchronization: mutual exclusion,
events and barriers. Section 3.3.1 develops new techniques to analyze mutual
exclusion synchronization patterns in parallel programs. Techniques for
statically validating mutual exclusion are discussed in Section 3.3.2. We
use existing synchronization analysis techniques to gather non-concurrency
information for se t/w a it and b a r r ie r operations (Jeremiassen and Eggers
1994; Lee et al. 1997b) (Sections 3.3.3 and 3.3.4).

3.3.1 M utex Synchronization

Given an arbitrary statement s in a program and a lock variable L, a mutex
structure analyzer should be able to answer the question “does s execute under
the protection of lock L?”. The answer to that question should be one of
always, never or sometimes.

In the context of this work, the answers never and sometimes are
equivalent. If the compiler cannot assert that statement s will always be
protected by L at runtime then the conservatively correct decision is to assume
that s is never protected by L. Furthermore, if the analysis determines that s
is sometimes protected and sometimes not, this information could be used to
warn the user about an anomalous locking pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 48

M otivation

Existing work on mutual exclusion synchronization is based on a structural
definition of mutex bodies (Krishnamurthy and Yelick 1996; Masticola and
Ryder 1993; Novillo et al. 1998). A mutex body is indicated by a pair of lock
and unlock nodes. All the graph nodes dominated by the lock node and
post-dominated by the unlock node are part of the mutex body. Although
correct, this notion of mutex body fails to identify some valid locking patterns
present in some programs (i.e., the mutex body recognizer responds never too
often).

Initially, we had only considered traditional single-entry, single-exit mutex
bodies (Novillo et al. 1998) but we soon discovered that some programs contain
mutex bodies that do not fit that structure. For instance, consider the code
fragment in Figure 3.5. This routine is part of a quicksort algorithm taken from
the sample application programs bundled with the TreadMarks DSM system
(Keleher et al. 1994). This routine grabs a piece of work to be done from a
shared stack. We are interested in the mutual exclusion sections created by
the lock variable TSL.

Notice that a structural definition of mutex bodies will identify no mutex
bodies in this function. The only lock/unlock pair that might qualify as
a mutex body are the statements L\ and U$ (lines 6 and 48 respectively).
However, the presence of other lock and unlock operations in between these
statements forces the compiler to disregard this pair as a valid mutex body.

Despite the irregular locking pattern present in this code fragment, it is
possible to identify sections that will always execute under the protection of the
TSL variable. A closer inspection of the code reveals that the only statement
that executes without lock protection is the busy wait statement Si (line 31).

Informally, we modify every lock or unlock node for lock variable L so
that they contain a definition and a use for L. All the other nodes in the graph
are modified to contain a use for lock variable L. To determine whether or
not a flow graph node n is protected by lock L we compute reaching definition
information for the use of L a t n . If at least one of the reaching definitions
comes from an unlock node or if there are no reaching definitions, then node
n is not protected by lock L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 49

1 (define NPROCS S
2 (define DONE —1
3
4 in t PopWork(ThskElement *task)
5 {
6 Lt =>■ lock (TSL);
7
8 w hile (ThskStackTbp = 0) {
9 if (++NumWaiting = = NPROCS) {

10 / • All the threads are waiting for work.
11 • We are done.
12 • /
13 lock(pause-lock);
14 pause-fiag = 1;
15 unlock(pause-lock);
16
17 Ut => uniock(TSL);
18 re tu rn DONE;
19 } else {
20 if (NumWaiting = = 1) {
21 lock(pause-lock);
22 pauselflag = 0;
23 unlock(pause-lock);
24 }
25
26 U2 => unlock(TSL);
27
28 / • Wait for work. This is the only
29 • statement n o t p ro tec ted by TSL.
30 • /
31 St => w hile (!pause_flag) ; /* busy-wait • /
32
33 L2 => lock (TSL);
34
35 i f (NumWaiting = NPROCS) {
36 U3 => unlock (TSL);
37 re tu rn DONE;
38 }
39 — NumWaiting;
40 }
41 } / • while task-stack empty */
42
43 /* Pop a piece of work from the stack «/
44 IhskStacklbp ;
45 task—>Ieft = 'IhskStackflhskStackTopJJeft;
46 task—>right = ThskStackflhskStack'IbpJ.right;
47
48 U3 => unlock (TSL);
49
50 re tu rn 0;
51 }

Figure 3.5: Locking pattern in function PopWorkQ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 50

0: Entry

2: while U)
!Lj = * (T S L !. TSL«)

S: uolockCTSLg); 8: unlock(TSLg);

6: return DONE;

12: uniock(TSLr);

13: return DONE;

16: endwhile
ILg = * (T S L ! , TSL*)

17: _

18: unlock(TSLg);

TSL* = ^(TSLg, TSLg, TSLr. TSL*)
Exit ^

Figure 3.6: Partial SSA form for function PopWorkQ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 51

The process is illustrated in Figure 3.6. For simplicity, the graph only
shows the SSA information related to the lock variable TSL. Consider, for
instance, node 7. A use of TSL in that node can be reached by definitions TSLi
and TSI/6 - Since both definitions come from a lock operation, we conclude
that node 7 is protected by the lock TSL. Similarly, if we compute reaching
definition information for node 9, we conclude that the only definition for TSL
that can reach it is TSLs. Since TSLs comes from an unlock operation, node
9 is not protected by the lock.

D etecting M utex S tructures

The detection of mutex structures is reduced to the problem of computing
reaching definitions for the lock variables in the program. The Concurrent
Control Flow Graph (CCFG) for the program is modified so that:

1 . every graph node contains a use for each lock variable in the program,

2. every lock and unlock node for lock variable L contains a definition for
L, and

3. for each lock variable L the entry node of the graph is assumed to contain
an unlock (L) operation (this assumption can be overridden using call
graph information).

D efinition 3.8 (Lock-protected nodes) We say that a flowgraph node b
is lock-protected by lock L if, and only if, the use of L at 6 is only reached by
definitions of L in lock(L) nodes. Therefore, if at least one of those sequential
reaching definitions comes from an unlock CL) node, then b is not protected
by L. □

Mutex bodies are defined in terms of lock-protected nodes. For instance,
in Figure 3.7(a), the call to o() at line 4 is protected by lock L because it is
only reached by the lock operation at line 1 and the lock operation at line 7.
In general, a mutex body is a multiple-entry, multiple-exit region of the graph
that encompasses all the flowgraph nodes that are reached by a common set
of lock nodes. In contrast, previous work (Krishnamurthy and Yelick 1996;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 52

1 lock(L); 1 Iock(L,);
w hile (expr) {2 w hile (expr) { 2

3 3 Lg = Lj);
a();4 a(): 4

5 unlock(L); 5 unlock(L3);
6 b(); 6 b();
7 Iock(L); 7 Iock(Lj);
8 c(): 8 c();
9 } 9 }

10 10 bg — Lj);
11 unlock(L); 11 unlock(L4);

(a) Original program. a() and c() are (b) SSA form for the program. 6() is not
protected by L. 6() is not. protected because it is reached by an

unlock operation.

Figure 3.7: Detecting irregular mutex structures in a parallel program.

Masticola and Ryder 1993) has treated mutex bodies as single-entry, single-exit
regions.
Definition 3.9 (M utex body) Given a lock variable L and a set of lock(L)
nodes N = (n i, n^ , . . . , rir} known as the lock nodes, a mutex body B i(N) =
{b\, 62, . . . , bs} is a set of nodes such that:

1. Every node in {61, 62, • • • , 6*} is reached by at least one node n,- € N .

2. There exists at least one node bi € B^(N) that is reached by all the
nodes in N.

3. For every node n, 6 N , there exists at least one node = unlock(L)
such that Xi is reached by n*. All the unlock(L) nodes are known as the
unlock nodes of the mutex body.

4. No node n* 6 B l (N) can be a lock(L) node. a

The first two conditions establish that the nodes in a mutex body must
be related in two ways. First, all the nodes in the body must be reached
by a common set of lock(L) nodes. Second, all the lock nodes must reach
at least one common node in the mutex body. Without this restriction, the
analysis would consider two disjoint sets of nodes to be the same mutex body.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 53

This clearly makes no sense because they have nothing in common. The third
condition defines the exit points of a mutex body. There must be a “way out”
of the mutex body from every entry point.

Finally, the fourth condition explicitly excludes lock nodes from the mutex
body. This is an important distinction because of the serialization semantics
imposed by lock operations. A fundamental property of mutex bodies is
that given two nodes a and b in two different mutex bodies for the same lock
variable, a and b cannot execute concurrently. If the lock nodes were considered
part of the mutex body, the compiler would think that two concurrent threads
can never execute different lock(L) nodes at the same time. This is incorrect
and therefore not allowed.

Subsequent to this work, Hendren (Hendren 2000) proposed an alternative
definition of mutex bodies. For every lock(L) node n, all the nodes reachable
from n are marked in one color. For every unlock(L) node x, all the nodes
reachable from x are marked in another color. The mutex body is the set
of nodes that are marked in both colors. This is a much simpler alternative
that should lead to more efficient implementations of mutex synchronization
analysis.
D efinition 3.10 (M utex s tru c tu re) A mutex structure Ml for lock
variable L is the set of all the mutex bodies B l (N) in the program. □

Mutex structures are detected using sequential reaching definition
information for each lock variable L. Nodes that are only reached by definitions
of L coming from lock(L) nodes are protected by L. Nodes that can be
reached by at least one unlock(L) node are not protected by L. Using this
information Algorithm 3.5 builds an initial set of mutex for each individual
lock(L) node in the graph. It then refines this initial set by merging mutex
bodies with common nodes (see Algorithm 3.5).

We illustrate the process using the SSA form for the sample program in
Figure 3.7(b). For simplicity, assume that each line of the program corresponds
to a node in the program’s flowgraph. The mutex structure for lock L initially
contains one mutex body for each lock(L) node. In this case there are two
mutex bodies for L: B t({l}) and B l ({ 7}). Node 1 defines L\ while node 7
defines L$ (Figure 3.7(b)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 54

Using reached-uses information for definitions L\ and L% we determine
which nodes are reached by each lock operation. Consider for instance the
node holding the call to a() (node 4). The use of L at node 4 can be reached
by definitions L\ and L3. Since both definitions come from lock(L) nodes,
node 4 is added to both mutex bodies for L. Now consider the call to 6 () at
node 6 . The use of L at this node can be reached by definition L? which is
an unlock (L) node. Therefore, node 6 is not protected and it is not added to
any mutex body.

Proceeding in this fashion for all the nodes in the reached-uses set for L,
Algorithm 3.5 produces two mutex bodies for L (underlined node numbers
represent unlock nodes in the mutex body): £l({1}) = {2,3,4,5,9,10,11}
and B l {{7 » = (8,9,10,11,2,3,4,5}.

Notice that these two mutex bodies have several nodes in common.
Therefore, it is possible to merge them into one mutex body. The resulting
mutex structure for L for the program in Figure 3.7(a) contains only one mutex
body: ^ ({ 1 ,7 }) = {2,3,4,5,8,9,10,11}.

3.3.2 Validating M utex Synchronization

The framework described in the previous section can be used as a validation
tool in a compiler. Using this analysis, a compiler can detect irregularities
like lock tripping, deadlock patterns, incomplete mutex bodies, dangling lock
and unlock operations and partially protected code (i.e., code that may not
always execute under the protection of a lock).

In this section we describe several different illegal locking patterns that
can be incorporated into the compiler as compile-time warnings. We say that
a lock(L) node n reaches another node m if and only if the set of reaching
definitions for the use of L at m includes the definition in node n.

Lock T ripping

We say that a lock has been tripped over if the same thread tries to acquire it
more than once without releasing it first. This is important to detect because
in some systems lock tripping can cause the program to deadlock.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 55

A lgorithm 3.5 Identification of mutex structures.______________________
INPUT: A CCFG G = (IV, B, EntryG, BxitG) in CSSA form, a set L = {£ 1 , £.j,. . . , Lm } containing

all the lock variables used in the program
output: A set of mutex structures M = {Mi, Ufa. • • •. Mm} where Mi is the set of mutex bodies for

lock variable Li.
Compute sequential reaching definitions for G.
/* Find candidate mutex bodies and mutex structures. */
foreach lock variable Li do

Mi 4“ 0
foreach flowgraph node n such that n = lock(£>{) do

create mutex body B t(({n}) = 0 and add it to M{
en d for

end for
/* Determine nodes protected by each lock. In this phase mutex bodies are single-node sets. */
foreach mutex structure Mi do

foreach mutex body B t{ ({n}) € Mi do
i 4- definition of Li in n
if no node in SeqReachedUset(d) is an unlock(Li) node th e n

disregard Bt i ({n})
else

foreach use u € SeqReachedUses(d) do
node 4- node(u)
protected«— true
foreach definition d € SeqReachingDefs(u) do

i f node(d) is unlock (Li) th e n
protected 4— palsb

end if
end for
if protected th e n

add node to mutex body B tt.({n})
end if

en d for
en d if

en d for
en d for
/* Merge mutex bodies that have common nodes. Lock nodes can now have more than one node. */
foreach mutex structure Mi do

foreach mutex body e Mi do
foreach mutex body (Afr) 6 Mi do

i f B£4(ATi)nB£.(iVi) # 0 th e n
BLt (ATi U Ba) B£((AT,) U B \ . (Afa)
remove B£4(Wi) and B£. (Afj) from Mi

en d if
en d for

end for
end for
re tu rn {M i, M *,. . . , Mm}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 56

If (expr) {
lock(L1);

lock(Lj);

If (expr) {
} else { unlockfL,);

}
L3 — (̂Lp Lj);
Iock(L4);

Iock(Lj);
}
l*s — 0(Lp Lj);
lock(L4);

unlock(L);

(a) Lock L will be tripped at
runtime.

(b) Lock L may be tripped at
runtime.

Figure 3.8: Some lock tripping scenarios.

Let L be a lock variable and n be a lock(L) node. Recall that n contains
both a definition and a use for L. Suppose that n is reached by other lock(L)
nodes (Figure 3.8)1. If all the definitions come from other lock(L) nodes
(Figure 3.8(a)), the program is guaranteed to trip over lock L at runtime. If
only some definitions come from other lock(L) nodes, the program may or
may not trip over lock L (Figure 3.8(b)). Depending on the runtime semantics
of lock tripping, a compiler may warn the user about the potential problem.

Deadlock

Let L and M be two different lock variables such that in thread T\ there is a
lock(L) node that reaches a lock(M) node. In another thread T2 a lock(M)
node reaches a lock(L) node. If both 7\ and T2 can execute concurrently,
then the program may deadlock at runtime.

Two different deadlock scenarios are illustrated in Figure 3.9. Both
programs launch two threads that satisfy the deadlock requirement described
previously. The program in Figure 3.9(a) may or may not deadlock because
the mutex body for M in Ti is not always executed. However, the program
in Figure 3.9(b) is likely to deadlock because both threads will execute the

1The subscripts in the figure refer to SSA numbering. They do not represent different
variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 57

mutex bodies for L and M for every execution of the program.
Notice that even if these conditions hold, the program may or may

not deadlock at runtime. Other conditions like the scheduling of threads
or additional synchronization might prevent deadlock situations. A
comprehensive deadlock analysis is beyond the scope of our research. Masticola
developed techniques that deal specifically with static deadlock detection
(Masticola and Ryder 1993).

co begin
T t : beg in

iodc(L);

if (expr) {
lock(M);

}
unlock(M);

unlock(L);
end

T2: begin

Iock(M);

iocic(L);

un lock (L);

end
coend

onlock(M);

cobegin
T 1: begin

lock(L);

Iock(M);

unlock(M);

unlock(L);
end

T 2: begin

lock(M);

lock(L);

unlock(L);

end
coend

uniock(M);

Figure 3.9: Some deadlock scenarios.

O ther Locking Irregu larities

Incom plete m utex bodies. Let Bi{n) be a partially built mutex body for
L such that no node in B i(n) is an unlock(L) node. At runtime, if lock
L is acquired at n, it will not be released. In the presence of incomplete
mutex bodies, the compiler may still choose to regard incomplete mutex
bodies as complete when optimizing. Nodes that belong to incomplete

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

3.3 Synchronization Analysis 58

mutex bodies are still protected by the lock. Optimizations that target
mutual exclusion synchronization might be applied provided that they
do not require the existence of mat nodes in the mutex body.

D angling nnloclc operations. Let x be an unlock node for L such that
the set of reaching definitions for L at x does not include a lock CL)
node. This indicates that the calling thread is releasing a lock that
it has not acquired. Although releasing an unheld lock might not have
consequences at runtime, it indicates a problem with the synchronization
structure of the program.

P a rtia lly p ro tec ted nodes. Let 6 be a flowgraph node and L be a lock
variable. The framework for building mutex structures guarantees that
the set of reaching definitions RD for the use of L at 6 is not empty.

If all the definitions in RD come from unlock (L) nodes, then b is never
protected. Conversely, if all the definitions in RD come from lock(L)
nodes, node b is always protected. However, if some definitions in RD
come from a mix of lock(L) and unlock(L) nodes, then b is only
partially protected because it will only be protected on certain executions
of the program.

A mutex body with partially protected nodes is said to be an impure
mutex body. A mutex structure containing impure mutex bodies is
also considered an impure mutex structure and may indicate a possible
synchronization problem in the input program.

U npro tec ted shared variable references. Using concurrent
reaching-definition information (Algorithm 5.1) it is possible to
determine whether all the reaching definitions for a given shared
variable use come from mutex bodies in the same mutex structure.

For instance, in the code fragment in Figure 3.10(d) variable a is read
and modified by the three threads in the program. Threads T\ and Ti
protect the access to a using lock L. However, thread To does not. Using
the concurrent reaching-definition algorithm developed in Section 5.2 the
compiler can determine that at least one of the reaching definitions for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 59

a in thread To comes from within a mutex body. Since the reference to
a made by To is not protected and the other concurrent references are,
then the compiler can issue a message warning the programmer about
the mismatch.

The code fragments shown in Figure 3.10 illustrate each of the locking
irregularities previously described.

3.3.3 Event Synchronization

Event synchronization imposes execution precedence between related se t and
wait nodes. Precedence between s e t and wait nodes will also establish
precedence for other nodes in the program. Intuitively, nodes preceding the
se t node will execute before nodes after the wait node.

The method developed by Lee et al. (Lee et al. 1997b) provides a
conservative approximate solution to the problem of finding the guaranteed
ordering between nodes in the CCFG. In general this problem has been shown
to be co-NP hard (Netzer and Miller 1990). For reference, we include their
algorithm as Algorithm 3.6.

For each node n in the CCFG of the program, Algorithm 3.6 computes
prec(n), the set of nodes guaranteed to execute before n. Notice that this
particular algorithm has some limitations on the types of programs that it can
analyze (Lee et al. 1997b):

1 . The body of a sequential loop may not contain the cobegin/coend
construct.

2. Parallel loops may not contain se t/w a it constructs.

3.3.4 Barrier Synchronization

Similar to event-based synchronization, barriers impose ordering constraints
in a parallel program. To gather non-concurrency information from barrier
synchronization in the program we use the analysis developed by Jeremiassen
and Eggers (Jeremiassen and Eggers 1994). This analysis was developed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 60

cobegin
T 0: b eg in

lock(Lx);

/* These statements are
* protected by L but the lock
* is never released. */

end

T x: . . .
coend

(a) Incomplete mutex bodies.

cobegin
T0: beg in

i f (expr) {
Iock(L1);

}
/* These statements may or
• may not be protected
* depending on ’expr*
*/

if (expr) {
unlock (L2);

}
en d

T x: . . .
coend

cobegin
T0: beg in

/ • There is no corresponding
• lock(L) operation.
*/unlock^);

en d

T t : . . .
coend

(b) Dangling unlock operations.

a = 0;
cobegin

T 0: beg in
/ • These references to a
* are not protected by lock L
•/

a = a + 5;
en d

T t: begin
lock(L);
a = b + 3;
unlock(L);

en d

T s: begin
Iock(L);
print(a);
unlock(L);

en d
coend

(c) Partially protected nodes (impure (d) Unprotected shared variable
mutex bodies). references.

Figure 3.10: Locking irregularities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 61

A lgorithm 3.6 Guaranteed partial execution ordering.__________
INPUT: A Parallel Flow Graph G = (AT, B, Entry a , E s Uq)
o u t pu t : prec(n) for each node n 6 N

1: /* Fold loop bodies into a representative node. */
2: /* Loop{n) is & function that returns the set of nodes in a loop whose header is n. */
3: Build a sub-graph of G such that:

N' *- N — { r » : m , n e W A n 6 £oop(m) Am is a loop header Am yS r»}
B' «— (E j UE ,) — { (m ,n): m ,n 6 f f A (m f? N ' V n 0 IV')}

4: (breach n 6 N ' do
5: prec(n)«- 9
6: end for
7: Initialize work queue Q with the immediate successors of Bntrya
8: while Q # 0 do
9: Remove some node n Gram Q
10: precoM «- pree(n)
11: if n is eoend then
12: prec/(n) «- U(m,n)€s«. Prec(m) u {«}
13: else
14: prec/(n) <- n (m.»)eBc« Prec(m) u (n>
15: end if
16: prec, <- prec(m) U {n}
17: prec(n) <— prec/(n) U prec,(n)
18: if preCau / prec(n) then
19: Put immediate control Sow and synchronization successors of n in Q
20: end if
21: end while
22: foreach n € iV — N ' do
23: /* header(n) is a (unction that returns the header node */
24: /* of the outermost loop enclosing n */
25: prec(n) *- prec(header(n))
26: end for

for explicitly parallel programs that conform to the SPMD (Single-Program
Multiple-Data) model which is compatible to the parloop model used in this
thesis. In their analysis barriers are assumed to be global: when a thread
reaches a barrier it must wait until oil the other threads in the program cross
the same barrier.

The barrier analysis algorithm divides the program into a set of
non-concurrent phases. This information is used later on to disregard memory
conflicts between nodes in different phases. In what follows we have adapted
some of the notation developed in (Jeremiassen and Eggers 1994) to use
flowgraph nodes instead of statements.

We denote barrier nodes B (i,x), where i is a unique integer identifying
the barrier call site and x is the name of the barrier variable being crossed
(Figure 3.11, adapted from Jeremiassen’s paper (Jeremiassen and Eggers

with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 62

cobegin {
T0: begin /* Workers */

parloop (i, 0, N - 1) {
while (Iconverged) {

barrier(a, N);
partA();

barrier(b, N);
partBQ;

barrier(c, N);
>

}
end

T t: begin / • Master */
while (converged = 0) {

produceA();
barrier(a, N);

produceBQ;
barrier(b, N);

}
end

converged = has_converged();
barrier(c, N);

while <_>while U) ' while (_>

M l.a) I produceAO;

peitAO; '

Bab) >Bah)

hee_comc>fodO;

BU.C)
•SynchVetS
SynchVerl •
SynchVv2»
SynchVaelw
SynchVii4>
SynehVccSw
SyndcVarf*

I •SyadiVar3
I SynchVirt • 1
. SynehVvft* I SynchVar3B i
I SynchVirU
I SynchVnSw 1

Figure 3.11: An example of barrier synchronization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Synchronization Analysis 63

1994)). Barrier nodes define process segments. A process segment is the set
of all the flowgraph nodes along barrier free control paths between one barrier
node B (i,x) and another barrier node B (jt y). Process segments are denoted
using the barrier call sites at either end of the segment: (£,-, Bj). There is an
implicit barrier at the start of the program denoted S.

A phase of the program is the set of process segments that may execute
concurrently between two global barriers. The goal of the barrier analysis
algorithm is to divide the flowgraph into a set of process segments and partition
these segments into a set of phases. Nodes in segments from two different
phases cannot execute concurrently.

There are two stages to the algorithm. The first stage divides the program
into sets of process segments by computing which other barriers can be reached
from each barrier. This is similar to the problem of matching lock and unlock
operations described in Section 3.3.1 but they use a different approach. For
each barrier node B(n, x) in the CCFG a variable SynchVarn is created. Then,
each barrier node £ (n , x) is modified so that right after the barrier call the
node contains a use of variable SynchVarn followed by a definition of all the
variables SynchVar^

The next step is to determine which of the Synch Var{ variables are live
at the end of each barrier node. If variable SynchVaTj is live at barrier node
B (i,x) (i.e., its value is going to be used again along some program path
starting at that node), then we create the process segment (£,-, Bj).

We illustrate this process using the program in Figure 3.11. Consider the
barrier node B(3,c). We modify the node so that it contains a use of variable
SynchVar3 followed by definitions of six other SynchVar variables used for this
program. Variable SynchVarx is live at node £(3 ,c) because its value is used
again at node £(1, a). Therefore, (£ 3, £ x) is a process segment of the program.
Proceeding in this fashion we obtain the complete set of process segments for
the program: (£,£1), (£ ,£ 4), (Bi,B2), (B2,B 3), (B3,Bi), (£4, £5), (£5,-Be)
and (£6,£ 4).

The second stage of the algorithm partitions the process segments into
non-concurrent phases using a work queue approach. The initial set of phases
is created by assuming that all the process segments that start at the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Summary 64

Initial state Iteration 1 Iteration 2 Final state

Phase 1 {(S,Bi),(S,B4)} ((S ,B i),(S ,B 4)} {(S,Bi),(S ,B 4)} {(S,B1),(S ,B 4)}
Phase 2 {(Bi.Ba)} {(Bi,B2),(B4 ,B5)} {(Bi,B2),(B4 ,B 5)} {(Bl ,B 2),(B 4 >B5)}
Phase 3 {(B2 ,B 3)> {(B2 ,B S)} {(B2 ,B 3),(B 5 ,Be)> {(B2 ,B 3),(B 5 ,Bs)}
Phase 4 {(B3 ,B x)} {(B3 ,B i)} {(B3 iBi)} {(B3 ,B t),(B 8 lB4)}
Phase 5 {(B4 , B3)}
Phase 6 {(Bs.Be)} {(B5 ,Bs)>
Phase 7 {(B8 .B 4)} {(B«,B4)} {(%,S«)}

Figure 3.12: Partition of process segments into phases for the program in Figure
3.11.

barrier call site and end at barrier nodes that cross the same variable can
execute concurrently. The initial set of phases is refined in an iterative process
by merging phases that can execute concurrently. Each phase Pi is examined so
that for each pair of process segments (B (j,x) ,B (k ,y)) and (B(r, z),B (s,y))
in Pi it creates a new phase with all the phases that start with B (k,y) or
B(s, y) in any of their process segments and whose process segments end in
the same barrier node. Figure 3.12 illustrates this iterative process applied to
the example program in Figure 3.11.

The algorithm stops when the work queue is empty (i.e., no more phases
can be merged into a new one). The output of the algorithm is a set of
non-concurrent phases P\, Pz, . . . Pm. Each phase P* contains a set of process
segments which, in turn, delimit sets of CCFG nodes. The data-flow analysis
techniques developed in Chapter 4 will use this information to determine
whether two arbitrary CCFG nodes can execute concurrently. If nodes a and b
belong to process segments from two different phases then they cannot execute
concurrently.

3.4 Summary
The Concurrent Control Flow Graph (CCFG) is the basic data structure
used to analyze and optimize an explicitly parallel program. It describes the
control structure of the program as well as memory conflicts and event-based
synchronization. We then use the CCFG to gather non-concurrency
information. First, the parallel structure of the CCFG determines an initial
set of graph nodes that may execute concurrently (Algorithm 3.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Summary 65

The initial set of concurrent flowgraph nodes is then refined by analyzing
the synchronization structure of the program (Section 3.3). We have developed
a new technique to analyze non-concurrency for mutex synchronization that
can handle locking patterns not supported by existing techniques. This
is a significant improvement that allows the analysis of more complex
mutual exclusion synchronization patterns in explicitly parallel programs.
We also adapt existing techniques that analyze s e t /v a i t and b a rr ie r
synchronization.

Non-concurrency techniques are important in the context of an optimizing
compiler for explicitly parallel programs. Since the problem of analyzing
non-concurrency is orthogonal to the datarflow framework, as new techniques
are discovered they can be readily incorporated into the compiler with little
or no modifications to the overlying data-flow framework. In the next chapter
we develop an SSA-based data-flow framework that uses the synchronization
analyses developed in this chapter to determine whether some memory conflicts
can be disregarded because of synchronization constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The CSSAME Form

This chapter describes the CSSAME form, a datarflow framework for analyzing
explicitly parallel programs. The CSSAME form builds on and extends the
CSSA form (Lee et al. 1997b) which is described in Section 4.1. Section
4.2 introduces the extensions necessary to build the CSSAME form. The
extensions allow the framework to handle parallel loops1, mutual exclusion
and barrier synchronization in explicitly parallel programs.

Algorithms and time complexity analyses are included in the discussion.
We point out that algorithmic design decisions have been made to favor
clarity of presentation, they should not be an indication of how an actual
implementation should be organized. In particular, an implementation might
decide to perform all the ir rewriting actions of Sections 4.2.4 and 4.2.5 prior
to the placement of conflict edges to simplify the task of placing tt functions
in the first place.

4.1 The CSSA Form
A program in SSA form has the property that each use of a variable is
reached by exactly one definition. When the flow of control causes more
than one definition to reach a particular use, a <t> function is introduced
to resolve the ambiguity. The (j> function merges all the incoming reaching

1In recent work, Lee et al. have independently incorporated parallel loops into their
framework (Lee et al. 1999).

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 The CSSA Form 67

definitions to create a new definition for the variable (Cytron et al. 1991).
In a parallel program, the single assignment property is disrupted by the
presence of concurrent definitions to the variable because definitions made in
concurrent threads may be observed at the thread reading the shared variable.
The CSSA framework solves this ambiguity with t functions. A tc function
merges the definitions coming from the current thread via control paths and
other concurrent threads via conflict edges.

This section describes the algorithms needed to build the CSSA form as
described in (Lee et al. 1997b). Algorithm 4.1 computes the CSSA form of a
program. The algorithms to place 0 functions and build factored use-def chains
compute the sequential SSA form (Wolfe 1996). Note that all the algorithms
in this section are unmodified versions of the original references. They are
only included to facilitate an implementation of the CSSAME framework and
simplify the discussion of the complexity analysis of the CSSAME algorithm.

A lgorithm 4.1 Build the CSSA form.__________________________________
input: An explicitly parallel program P and its CCFG
output: The program P in CSSA form

1: Find guaranteed execution ordering using Algorithm 3.6.
2: Build sequential SSA form using Algorithms 4.2 and 4.3.
3: Place ir functions using Algorithm 4.4.

4.1.1 Computing the Sequential SSA Form

The CSSA algorithm calls for the computation of the sequential SSA form for
the program. We compute the sequential SSA form using factored use-def
chains (Wolfe 1996). Algorithm 4.2 adds functions to the graph and
Algorithm 4.3 builds the use-def chains that link every variable use to its
unique control reaching definition. These algorithms assume the existence of
the following data structures:

ckild[n) is the set of dominator children for node n.

succ(n) is the set of immediate successors of node n.

whichPred(n -> m) is an index telling which immediate predecessor of m
corresponds to the control edge from n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 The CSSA Form 68

DF(n) is the dominance frontier for node n& G .

D(v) is the set of nodes in G that contain a definition for variable v.

Symbols is the set of variables used in the program.

Algorithm 4.2 Place <f> functions.___________
i n p u t : A Parallel Flow Graph G = (JV, B, Entrya , Bxita)
o u t p u t : Graph G with 0 functions added at join nodes

1: (breach n 6 IV do
2: inWork(n) *- X
3: added(n) «— X
4: end for
5: w orkList<— 0
6: foreach v 6 Symbols do
7: (breach n € D(v) do
8: workList «- workList U {n}
9: inWork(n) *- v
10: end tor
11: while workList ̂ 0 do
12: Remove some node n from workList
13: foreach to 6 DF{n) do
14: if odded(w) ^ v th en
15: Add <t> function for v at to
16: addsd{w) 4— v
17: if inWork{w) # v then
18: workList t— workList U {to}
19: inWork(w) = t>
20: end if
21: end It
22: end for
23: end while
24: end for

4.1.2 Placing 7r Functions

The final phase of the CSSA algorithm traverses the graph placing 7r functions
at every node that contains one or more conflicting variable uses. Algorithm
4.4 adds the required ir functions to the graph. The basic principle is
straightforward, if a shared variable is used in a node and there exist concurrent
definitions for that variable, a ir function is needed in the node where the
variable is read.

Recall from section 3.1 that nodes with conflicting use references for
variable v have one DU(v) conflict edge for each definition of v in concurrent
threads. Furthermore, there will be a definition of v coming from the incoming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 The CSSA Form 69

Algorithm 4.3 Build FUD chains.________________________
in p o t : A Parallel Flow Graph G — (AT, E, Entry a , Bxita) with d functions added
o u t p u t : The graph with factored use-def chains

1: (breach v £ Symbols do
2: currDef(v) 4— X
3: end for
4: call search(Entryo)

5: procedure searches)
6: (breach variable use or def or function r € x do
7: m 4— variable referenced at r
8: if r is a use then
9: chainfr) «— currDeffm)
10: else if r is a def or a ^ function th en
11: saveChainfr) +- currDeffm)
12: currdef(m) *— r
13: end if
14: end for
15: foreach y £ rucc(x) do
16: j whichPredfx y)
17: foreach <t> function r in y do
18: m 4- variable referenced at r
19: — chain(r)[j] f - currDef(m)
20: end for
21: end for
22: foreach y £ chiid(x) do
23: call search(y)
24: end for
25: foreach variable use or def or function r £ x in reverse order do
26: m variable referenced at r
27: if r is a def or a d function then
28: currDef(m) 4- saveChatn(r)
29: end if
30: end for

control edge. Therefore, Each ir function has n + 1 arguments; the unique
incoming control flow edge and the n incoming conflict edges. As we will
discuss later in this document, some of these arguments to a ir function may
be proven redundant because of synchronization operations in the program.

4.1.3 Time Complexity of the CSSA Algorithm

The computation of the CSSA form is done in three phases. The first phase
computes guaranteed partial execution ordering for all the nodes in the graph
(Algorithm 3.6). In the worst case, every node will have to be compared to
every other node in the graph. Hence, computing partial orderings can be
done in 0(|iV |2).

The second phase computes the sequential SSA form for the program

with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 70

A lgorithm 4.4 Place w functions.________________________
i n p u t : A Parallel Flaw Graph G = (AT, E, Entry q , Exitc) with FUD chains
o u t p u t : The graph G with it functions added

1: foreach 6 € AT do
2: foreach DU conflict edge e = (a, 6) do
3: v <— variable defined in a
4: i f 6 does not have a it function for v then
5: Insert a new ir function for o in b
6: u*~ conflicting use of v in b
7: ir (u)[0l <— chain(u)
8: end if
9: if n £ precis) then
10: d *- conflicting def of v in s
11: append d to ir(v)
12: end if
13: end for
14: end for

(Algorithms 4.2 and 4.3). This phase computes the SSA form in 0 (r3) time,
where r is the maximum of the number of nodes (\N\), number of control
edges {\Ef\), number of assignments and number of variable references in the
program (Brandis and Moessenboeck 1994; Cytron et al. 1991). Note that it
is possible to place <(> function using the linear time algorithms in (Johnson
et al. 1994) and (Sreedhar and Gao 1995). We use the algorithms from (Wolfe
1996) solely because they are easier to implement.

The third phase of the computation of the CSSA form places t functions
at the concurrent join nodes of the graph (Lee et al. 1997b). By exam ining

the 7r placing algorithm (Algorithm 4.4) we conclude that this phase can be
computed in 0(|iV |2) time.

In conclusion, the CSSA form can be computed in 0(|JV|2) time when using
the linear time algorithms for placing <f> functions. If the traditional <(> placing
algorithms are used, then the CSSA form can be computed in 0 (r3) time.

4.2 The CSSAME Form
Mutual exclusion analysis identifies memory interleavings that are not possible
at runtime due to the synchronization structure of the program. This analysis
allows the compiler to reduce the number of incoming conflict edges to nodes in
the CCFG that use shared variables. This section describes our refinements to
the CSSA framework (Lee et al. 1997b). We call this new form CSSAME

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 71

(Concurrent SSA with Mutual Exclusion synchronization). While CSSA
only recognizes se t /w ait synchronization, CSSAME extends it to include
lock/unlock synchronization. Note that although we include lock variables
in our analysis, for clarity of presentation we will not use SSA numbering
for lock variables in the example programs. Since lock operations typically
read and write to the lock variable and unlock operations only write to it, an
implementation should create ir functions for every lock node in the graph.

The key observation that gives rise to the CSSAME form is that ir functions
inside mutual exclusion sections might have one or more arguments for memory
interleavings that cannot occur at runtime. We have developed two sufficient
conditions, called consecutive kills and protected uses, for the removal of
arguments from ir functions inside mutex bodies (Sections 4.2.2 and 4.2.3).
This analysis is important because it allows the removal of redundant conflict
edges which in turn allows the optimizer to safely apply more aggressive
transformations and generate faster code. Both removal conditions can be
implemented as predicates called by the compiler when analyzing mutex
bodies.

4.2.1 Parallel Loops

Parallel loops are treated similarly to cobegin/coend structures. The
loop body is replicated to allow the parallel loop to be considered like a
cobegin/coend structure with two identical bodies. This is enough for the
purposes of this analysis because we are only interested in determining whether
there is a memory referencing conflict or not. It is not necessary to determine
how many threads participate in the conflict. Knowing that there is at
least two threads in conflict is enough.2 A similar approach is taken in
(Krishnamurthy and Yelick 1996) and (Lee et al. 1999). The process of adding
ir functions does not need to be modified to handle parallel loops because every
node in the loop body is concurrent with its replica and with every other node
inside the parallel loop.

All the transformations to ir functions due to synchronization are performed
2This of course may have to be revised if other analyses need more specific information

about the conflict.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 72

parioop (i, X, N) {
a = ...;
. . . = a + 4;

}

begin

parioop (i, 1, N)

Original Replica

Ol = . . .

parend

end

Figure 4.1: ir functions inside a parallel loop.

on the original loop body. For instance, consider the code fragment in Figure
4.1. The conflict analysis algorithm has determined that there is a conflict
between the node that defines a and the node that uses a to compute a +
4 . Notice that the ir function generated for the second node contains the
arguments ai and a\. The first ai is the definition inherited via the control
path. The second a\ is the definition coming from the loop body’s replica.
This replica represents one of the N concurrent threads executing the body of
the parallel loop.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 73

cobegin
T0: begin

Iock(L);
a i = • • •

cobegin
T0: begin

lock(L);

T,: begin
lock(L);

unlock(L);
end

/ • Definition protects further */
/* uses of a in this mutex body. */
* 3 = * (* 1 1 *3); ^ * 3 = *(*1)1

unlock^L);
end

/ • Definition a1 cannot »/
/* reach this use. • /
* 3 = *(*01 *!> * i)l ^ *3 = »(ao, * j)i

unlock !̂.);

Tp begin
lock(L);

unlock(L);

coend
end end

coend

(a) Consecutive kills. (b) Protected uses.

Figure 4.2: Removing memory conflicts.

4.2.2 Consecutive Kills

If a variable is defined more than once inside a mutex body b, the only
definitions that can be observed by other mutex bodies (in the same mutex
structure) are those that reach the exit node of b. This is because all the mutex
bodies in the same mutex structure are serialized and execute atomically. This
situation is illustrated in Figure 4.2(a) where definition in thread To is
overridden by definition 0 2 in the same thread. Therefore, the read reference
a3 in thread Ti can only be reached by definition 0 2 .
Definition 4.1 (Reachability) Given a CCFG G, a definition Dv for a
variable v reaches node n £ G if there is a control path from the node
containing Dv to n such that there is no other definition of v along that path
(Aho et al. 1986). □

Theorem 4.1 (Consecutive kills) Let Ml be a mutex structure for lock
variable L. Let D f be a definition for a shared variable a inside a mutex body
B l{N) 6 M l . If D f does not reach any exit node x £ B l(N) then D f can
be removed from all the 7r functions in any other mutex body B'L(N') £ M l
that have D f as an argument. □

P r o o f Let U * be a use of a in B'L{N'). Let d be the node containing D f .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 74

Let u be the node containing . Since d and u are inside mutex bodies in the
same mutex structure they cannot execute concurrently. Therefore, for every
execution of the program that includes both mutex bodies there can only be
two possible partial orderings between them:

1 . Bl (N) executes to completion before B'L(N'). Even though node
d executes before node u, the definition D f cannot reach U f
because it is always killed by some other definition before it
reaches one of the exit nodes of B l {N).

2. B'l (N') executes to completion before B^(N). Node u executes
before node d, therefore D f cannot reach Uj*.

Since it is impossible for the definition D f to reach the use U%' then
the argument representing D f for the 7r function in U f is not necessary.
Therefore, it can be safely removed and the DU (a) conflict edge between d and
u can be eliminated from the CCFG. ■

4.2.3 Protected Uses

The second conflict removal opportunity is for uses that cannot be affected
by definitions in other mutex bodies because they are protected by a local
definition. Suppose that a conflicting variable a is used inside a mutex body
B but its control reaching definition is inside B (Figure 4.2(b)). Since a is
defined inside the mutex body, definitions made in other mutex bodies are
killed by the internal definition of a.
D efinition 4.2 (U pw ard exposure for m utex bodies) Given a mutex
body B, a use U f in B for a variable v is upward-exposed (Aho et al. 1986)
from B if Uy may use a definition outside of B. a

T heorem 4.2 (P ro tec ted uses) Let ML be a mutex structure for lock
variable L. Let be a conflicting use for a shared variable a inside a
mutex body B l(N) € Ml. If is not upward-exposed from B i(N) then
the arguments for the ir function for a coming from any other mutex body
B'l (N') e M l can be removed. a

P r o o f Let D f be a definition for variable a in mutex body B fL(Nr). Let d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 75

be the node in B'L(N') that contains the definition Let u be the node
in mutex body B l (N) that contains the use U%. Since d and u are inside
mutex bodies in the same mutex structure they cannot execute concurrently.
Therefore, for every execution of the program that includes both mutex bodies
there can only be two possible partial orderings between them:

1. Bl {N) executes to completion before B'L{N'). This means that
node u executes before node d, therefore D f cannot reach .

2. B'l (N') executes before B i{N). Since U f is not upward-exposed
from B l(N), any definitions of a made before B i(N) starts
executing are guaranteed to be killed by some other definition
inside B l(N). Therefore, D f cannot reach Z7®.

Since the definition Df* cannot reach the use then the argument
representing D f for the ir function in C/® is not necessary. Therefore, it
can be safely removed and the DUCa) conflict edge between d and u can be
eliminated from the CCFG. ■

4.2.4 Modifying tc Functions Inside M utex Bodies

Using the properties of consecutive kills and protected uses inside mutex
bodies, we now examine every mutex body of the program trying to remove
arguments from each of its ir functions. Algorithm 4.5 traverses all the mutex
bodies in the graph looking for ir functions to rewrite. There are three main
steps to the algorithm:

1. Lines 1-6 traverse all the mutex bodies in the program. For each mutex
body b, it invokes the analysis routine in lines 7-27.

2. Lines 9-20 analyze all the ir functions inside a mutex body b. For each
ir function, each of its arguments d is analyzed for compliance with
Theorems 4.1 and 4.2.

Checking for protected uses is a simple matter of checking whether the
control reaching definition for the ir function is reached by at least one
lock node in N . This information has already been computed by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 76

mutex structure detection algorithm (Section 3.3.1). Therefore, it can
be accessed in essentially constant time.

Checking for consecutive kills can be done in 0 (| con/de/s|2) time, where
the value \confdefs\ represents the number of conflicting definitions made
in the program. To check if a definition d reaches the exit node of a mutex
body we traverse the post-dominator tree for d looking for a definition
that post-dominates d and is post-dominated by some exit node (i.e., we
check whether there is another definition d’ on every path from d to an
exit node that kills d).

3. Lines 21-25 remove any tt functions with no arguments for conflicting
references.

Examining the nesting structure of the 7r rewriting algorithm we conclude
that the total time complexity of the algorithm is 0 (m x m6 x mbsz x |7r| x
| con/de/s |2), were m is the number of lock variables in the program, mb is the
total number of mutex bodies in the program, mbsz is the maximum number
of nodes that a mutex body can contain, |7r| is the number of n functions
in the program and \confdefs\ is the number of conflicting definitions in the
program. A worst case scenario with a conflicting definition in every node and
a conflicting use in every node will yield a time complexity of 0 (|iV |3).

Lem m a 4.1 (C orrectness o f th e tt rew riting algorithm) The only
arguments from ir functions removed by Algorithm 4.5 represent memory
interleavings that cannot occur at runtime. a

P r o o f The algorithm only examines ir functions inside mutex bodies. For
each tt function found it checks all the arguments that come from other mutex
bodies in the same mutex structure. These are the only potential candidates
for removal because they represent memory references protected by the same
lock (line 15).

If d complies with one of the two sufficient conditions given by Theorems
4.1 and 4.2 then it may be safely removed because the definition represented
by d cannot reach that particular use.

Finally, if after this analysis is done a ir function p contains exactly one
argument, it must be the argument for the incoming control edge to the node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

4.2 The CSSAME Form 77

because this is the only argument that is never removed by Algorithm 4.5.
Hence, this 7r function p can be removed from the graph. Before removing p,
the algorithm updates the use-def pointer of the use affected by p (chain(u))
so that it points to p’s control reaching definition (line 23). ■

Algorithm 4.5 Rewrite % functions to account for mutual exclusion.__________
INPUT: A CCFG G = (AT, B, Entrya , Exita) in CSSA form
o u tp u t: The graph G in CSSAME form

1: /* Traverse all the mutex bodies in the graph looking for x functions to rewrite. */
2: foreach lock variable Li do
3: foreach mutex body 6 € MutezStruct(Li) do
4: caU nwritc(b)
5: end for
6: end for

7: /* Examine all the x functions in 6. */
8: procedure rewrite(b)
9: foreach node n 6 6 do
10: foreach x function p € n do
11: « is the variable referenced by p
12: /* If an argument of the x function p complies with Theorems 4.1 o r 4.2, * /
13: /* then we may safely remove the argument Gram p function. */
14: foreach argument d of p coming horn a conflict edge do
15: if d comes from another mutex body V € MutexStmct(b) then
16: if (the use of v is not upward-exposed from 6) or (d does not reach any exit node of V) then
17: remove d from p
18: end if
19: end if
20: end for
21: /* If p is left with only one argument, remove p. */
22: if p has only one argument then
23: cAatn(u) «- first argument of p
24: remove p from n
25: end if
26: end for
27: end for

4.2.5 Modifying ir Functions Affected by Barriers

Barrier synchronization offer another source of non-concurrency information in
parallel programs. Using the barrier analysis algorithm described in Section
3.3.4 it is possible to remove 7r-fimction arguments for some conflict edges
that cross phase boundaries. Since nodes in different phases of the program
are guaranteed to execute in sequence, some of the conflicts that might exist
between these nodes can be eliminated.

Barrier synchronization is “weaker” than mutex synchronization in the
sense that it does not serialize the execution of threads. The ordering created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

4.2 The CSSAME Form 78

by barriers create phases in the execution of the program. Within a phase,
threads execute concurrently. Consider for instance the parallel loop in Figure
4.3. If we disregard the presence of the barrier, then both definitions ai and
02 can reach the use of a (0 3) at line 10. However, the presence of the barrier
at line 5 guarantees that definition <zi will be killed by all the threads before
crossing the barrier. Therefore, ax cannot reach the use of a at line 10. The
same cannot be said about definition 0 2 . Although all threads join at the
barrier, we cannot statically determine which thread will be the last to reach
the barrier. This means that there are two definitions for variable a that
could reach 0 3 : the control reaching definition (i.e., 0 2 , the sequential reaching
definition) and the definition made by the last thread to join the barrier (a^).
In general, in the presence of barriers the only arguments that can be removed
from a 7T function are those that represent definitions from a different phase
and do not reach the 7r function via control edges.
T heorem 4.3 (B arrier p ro tec tion) Let Uv be a conflicting use for shared
variable v. Let Dv be a definition for v such that Dv reaches Uv via a conflict
edge and Dv does not sequentially reach Uv. If Dv and Uv are in different
phases due to barrier synchronization, then Dv can be removed from the ir
function associated with Uv. □

P r o o f Since Dv reaches via a conflict edge, there is a ir function associated
with Uv that has Dv as one of its arguments. If Dv and Uv are on different
phases as determined by barrier synchronization analysis (Section 3.3.4), then
they cannot execute concurrently. Furthermore, since Dv does not reach Uv
via control edges, it means that there exists at least one other definition for v
that kills Dv. Since Dv cannot reach Uv via control edges nor conflict edges,
it is safe to remove it from the ir function associated with Uv. ■

Algorithm 4.6 rewrites ir functions to account for barrier synchronization.
It assumes that program phases have already been computed (Section 3.3.4).
The algorithm traverses all the ir functions in the program. For every argument
di of a ir function p it checks which node contains dj. If the node of d, is inside
a different phase than the node holding p and di does not sequentially reach
the use associated with p, then dj can be removed from the argument list.

Figure 4.3 shows a program fragment with its CSSAME form partially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 79

1 parioop (i, 1, N) {
2 al = ^ + 5;
3
4 a , = a, + c.;
5 barrier(B, N);
6
7 /* Argument a1’ can be safely
8 removed from this *■ function. • /
9 * j = t j ’)i

10 b j = j j + 3;
11 }

Figure 4.3: Effects of barrier synchronization on ir functions.

built. The assignm ent to b in line 10 makes a conflicting use of variable a.
Hence the n function at line 9 contains only two arguments and both come from
the same definition (ai is both the control-reaching and the conflict-reaching
definition). The computation of phases for this program will result in two
phases, one containing lines 1 — 4 and the other one containing lines 6 — 10.
Therefore, definitions a.\ and 02 will be in one phase and use 03 will be in
another one. Since definition at is killed by 02 and it is in a different phase
than the use 0 3 , we can remove the second argument of the x function at line
9 because at cannot reach this use.

Notice that unlike mutex synchronization, this pruning process will never
lead to the elimination of tt functions. The reason is that inside a parallel loop
tt functions have two arguments coming from the same definition, namely the
control reaching definition. The control reaching definition appears twice in
the x argument list because it reaches the use via control and conflict edges.
The argument coming via control edges cannot be eliminated because it is
not affected by synchronization and the argument coming via a conflict edge
cannot be elim inated because it is not possible to determine which thread
was the last one to make that definition. It might be possible to eliminate
a x function if one could prove that both arguments are always the same
value using techniques like value numbering, copy propagation or constant
propagation. We have not considered these extensions in this document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 The CSSAME Form 80

A lg o r i th m 4 .6 Rewrite ir functions to account for barrier synchronization.
input: A Parallel Flow Graph G = (IV, E, Entry G, Exit a) in CSSA form
output: The graph G in CSSA form with ir functions modified to account for barrier

synchronization

1: /* This algorithm assumes that phases due to barrier */
2: /* synchronization have already been computed (Section 3.3.4). */
3: compute sequential reaching definitions (SeqReachingDefs)
4: foreach 7T-function p do
5: u «- use reference associated with p
6: foreach parallel argument d of p do
7: if node(p) and node(tf) are in different phases and d & SeqReachingDefs(u) then
8: remove d from p
9: end if

10: end for
11: end for

4.2.6 Computing the CSSAME Form

Algorithm 4.7 transforms an explicitly parallel program P to its CSSAME
form. The algorithm is a direct extension of the CSSA algorithm (Lee et al.
1997b). Steps 2 and 4 incorporate the modifications needed to handle mutual
exclusion synchronization.

The algorithm starts by building the concurrent control flow graph for
P using the algorithms described in Section 3.2. Once the CCFG has been
built, the algorithm creates the mutex structures for the mutual exclusion
synchronization used in the program. The next step builds the CSSA form
using the algorithms described in Section 4.1. Once the CSSA form has been
computed, ir functions are modified to account for any mutex and/or barrier
synchronization in the program. Notice that it might be possible to compute
the CSSAME form directly, without computing the CSSA form first. We
decided to use this approach because the analysis needed to remove superfluous
synchronization edges is simpler if CSSA is computed first.
Theorem 4.4 (C orrectness of th e CSSAM E algorithm) A program in
CSSAME form is also in CSSA form and retains the single assignment
property: every use is reached by exactly one definition. a

P r o o f The CSSAME form is a direct extension of the CSSA form. The
computation of the CSSA form is done using existing algorithms known to
be correct (Lee et al. 1997a; Wolfe 1996). Lemma 4.1 proves that the only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Summary 81

A lgorithm 4.7 Build the CSSAME form._____
in p u t : An explicitly parallel program P
o u t p u t : The program P in CSSAME form

1: Build the CCFG G for P using Algorithm 3.1.
2: Identify mutex structures using Algorithm 3.5.
3: Compute the CSSA form for the graph using Algorithm 4.1.
4: Rewrite ir functions using Algorithm 4.5.
5: Rewrite ir functions using Algorithm 4.6.

transformation done to the underlying CSSA form does not alter the single
assignment property. Therefore, a program in CSSAME form is also in CSSA
form and retains the single assignment property. ■

4.2.7 Time Complexity of the CSSAME Algorithm

Computing the CSSAME form does not increase the complexity of the CSSA
algorithm significantly. The two major modifications to the original algorithm
are steps 2 (computation of mutex structures) and 4 (rewriting of 7r functions).
As discussed in Chapter 3, the identification of mutex structures can be done
in 0(\E /\) time. The CSSA form is computed in 0 (r3) time, where r is
the maximum of the number of nodes (|iVj), number of control edges (|E /|),
number of assignments and number of variable references in the program
(Section 4.1.3). Finally, rewriting ir functions can be done in 0(|iV |3) time.
Therefore, the CSSAME algorithm has a worst time complexity of 0(|iV |3) .

4.3 Summary
In this chapter we have developed a new data-flow framework for explicitly
parallel programs: the CSSAME form. It supports both task and data parallel
programs that share memory and synchronize using three types of mechanisms:
mutual exclusion, barriers and events.

The CSSAME form represents a significant step towards an integrated
analysis framework that can be adapted to support various types of parallel
constructs, memory semantics and synchronization constructs. For instance,
to add a new type of synchronization mechanism, we only need to gather
non-concurrency information due to synchronization and modify the ir

permission of the copyright owner. Further reproduction prohibited without permission

4.3 Summary 82

functions appropriately. Different memory semantics can be supported in
a sim ilar fashion. Memory conflicts across concurrent threads need only
be added if the memory semantics of the target architecture allow such
interleaving. For instance, in a release-consistent memory (Keleher et al. 1994)
memory conflicts need only be added at synchronization points in the program.

In the following chapter we use the CSSAME framework to optimize
parallel programs. We will consider two types of optimization, the adaptation
of sequential techniques to the parallel case and the direct optimization of
the synchronization structure of a parallel program. Emphasis will be on the
optimization of mutual exclusion patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Optimizing explicitly parallel
programs

Using the CSSAME form, new optimization opportunities are now possible.
This section describes six optimization techniques. The first two are
adaptations of well-known sequential optimizations: constant propagation
(Section 5.1) and dead code elimination (Section 5.2). The other four are
new optimizations specifically designed for explicitly parallel programs: lock
picking (Section 5.3), lock-independent code motion (Section 5.4), mutex
body localization (Section 5.5) and single-writer multiple-readers code motion
(Section 5.5.1). All the mutual exclusion transformations in this chapter
assume that the program contains well-formed mutex structures.

5.1 Constant Propagation
Lee et al. (Lee et al. 1997b) adapted the sequential Sparse Conditional
Constant propagation (SCC) algorithm (Wegman and Zadeck 1991) to work
with explicitly parallel programs; Concurrent Sparse Conditional Constant
propagation (CSCC). We will use the program in Figure 5.1(a) to show how
our extensions to the original CSSA framework can be used to improve the
constant propagation algorithm when mutual exclusion is taken into account.
Figure 5.1(b) is the original CSSA form without mutual exclusion extensions.
Figure 5.2(a) shows the CSSAME form built using the algorithms in Section

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Constant Propagation 84

4.2. Notice that the CSSAME form has fewer ir functions than the CSSA
form.

a = 0;
b = 0;
cobegin

T0: begin
lock(L);
a = 5;
b = a + 3;
if (b > 4) {

a = a + b;
}
x = a;
unlock(L);

end

T ,: beg in
lock(L);
a = b + 6;
y = a;
unlock(L);

end
coend
print(x, y);

(a) Original program.

cobegin
T0: beg in

lock(L);
— 5;

H = *(*a»
b j = + 3;
i f (b2 > 4) {

a4 = w(a,, a,);
as = + ba;

»r = “s):
*8 = 48)'
xi = h ;
unlock(L);

end

T t : begin
iock(L);
b j = ’f(b1, bj);
a# = b . + 6;

= 4j» 4*)*
Yi = »#;
unlock(L);

end
coend
10 = ^ (7> *#)>
print(x1(y t);

(b) CSSA form.

F igure 5.1: Constant propagation example (CSSA).

We now apply the CSCC algorithm to both the original CSSA form and the
new CSSAME form. Notice that since CSSA does not recognize the mutual
exclusion semantics of the program, the constant propagation algorithm cannot
propagate any constants. On the other hand, translating the program to
CSSAME allows the compiler to remove all the ir functions for variable a in
thread To- The key factor that allows the compiler to do this optimization is
the assignm ent to variable a in thread To immediately after the lock operation.
Since all the statements in thread To execute indivisibly, uses of variable a after
the first assignm ent cannot possibly be affected by definitions of a made by
thread T\. This allows the compiler to propagate constants inside thread T0 as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Constant Propagation 85

if it were a sequential program. Figure 5.2(b) shows the results of applying the
CSCC algorithm using CSSAME. Notice that we also include the results of the
constant folding and unreachable code elimination. Both passes are possible
using information gathered by the constant propagation algorithm (Wegman
and Zadeck 1991). Since we have not modified the CSCC algorithm, the
optimizations performed are still correct as proved in (Lee et al. 1997b).

Further optimizations can still be done in this example program. The
redundant assignments in Figure 5.2(b) are the result of applying the
concurrent constant propagation on the program in Figure 5.2(a). These
redundant assignm ents can be removed using the concurrent dead-code
elim ination algorithm developed in Section 5.2.

= 0;
bt = 0;
cobegin

T0: beg in
lock(L);
a , = 5;
ba = + 3;
if (ba > 4) {

* 3 ~ ^2 *

* 4 = <K*2> *3);
*i = a«;
unlock(L);

en d

T t : b eg in
lock(L);
b j = "-(bp ba);
a j = b3 + 6;
*i =
unlock(L);

end
coend
a® = 0(a4, a j;
print(x1, y ,);

aj = 0;
b, = 0;
cobegin

T0: beg in
Iock(L);
*3 = 5;
ba = 8;
a , = 13;
a4 = 13;
xt = 13;
uniock(L);

end

T t : beg in
lock(L);
b j = » (b j, ba);
a® = b3 + 6;

= a,;
unlock(L);

end
coenda® = ̂Ca4, aj);
print(x,, y ty,

(b) Constant propagation using CSSAME.

F igure 5.2: Constant propagation example (CSSAME).

(a) CSSAME form for program
in Figure 5.1(a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Concurrent Dead Code Elimination 86

5.2 Concurrent Dead Code Elimination
Dead code refers to program statements that have no effect on the program
output (Cytron et al. 1991). Although it is not common for the programmer to
introduce dead code intentionally, dead code may be generated by optimizing
transformations (Aho et al. 1986). We introduce the Concurrent Dead Code
Elim ination algorithm (CDCE), an extension of the dead code elimination
algorithm proposed by Cytron et al. (Cytron et al. 1991) to work on explicitly
parallel programs. The algorithm starts by marking as dead all the statements
of the program except those that are assumed to affect the program output
such as I/O statements or assignments to variables outside the current scope.
This initial set of live statements is used to seed the work list maintained by
the algorithm. The list is updated with every new statement that is marked
live. When the list empties, all the statements still marked dead are removed
from the program. A statement will be marked live if it satisfies one of the
following conditions (Cytron et al. 1991):

1 . The statement is assumed to affect the program output. Examples
include I/O statements, calls to procedures that may have side effects,
etc.

2. The statement contains a definition that reaches a use in a statement
already marked as live.

3. The statement is a conditional branch and there is a live statement that
is control dependent on this conditional branch.

The CDCE algorithm is the same algorithm developed by Cytron et al.
(Cytron et al. 1991) with the following modifications:

• Condition 2 of Cytron et a/.’s algorithm calls for the computation of
reaching definition information for each live statement of the program.
The rationale is that if statement s is live then any other statement
that makes definitions with reached uses in s must also be marked live.
We incorporate reaching definition and reached uses information in our
CSSAME framework. We have adapted the corresponding sequential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.2 Concurrent Dead Code Elimination 87

algorithms (Wolfe 1996) by incorporating additional tests for ir functions
when traversing the SSA use-def chains. Concurrent reaching definition
information is computed by Algorithm 5.1.

• A cobegin statement will be marked live if there is at least one statement
in two or more of its threads marked live. If the transformation leaves
only one thread with live statements, the cobegin/coend construct will
be replaced by the sequential code corresponding to the live thread.
Serializing this live thread will cause all the synchronization operations
in the thread to become dead. Hence, they can be safely removed.

These modifications to the sequential DCE algorithm are necessary to
account for the concurrent activity in the program. Since reaching definition
and reached uses information will be computed using both ir and <t> functions,
a live use u in one thread will keep concurrent definitions that reach u
alive. Furthermore, the reduction of dependencies made possible by CSSAME
directly benefits the elimination of dead code in the program. Most notably,
the detection of consecutive kills inside a mutex body (Theorem 4.1) will help
the detection of dead code inside mutex bodies.

To show the effects of CDCE, consider the program in Figure 5.1(a) after
constant propagation has been performed (Figure 5.2(b)). As can be seen in
the example program, all the assignments to variable a in To are dead because
they do not affect the output of the program (i.e., they do not reach any other
use of a in the program). On the other hand, the assignment to 6 in To cannot
be considered dead because it is used by T\. Note that a sequential dead
code elim ination algorithm would have erroneously marked the assignment to
b dead because it lacks the appropriate reaching definition information. Figure
5.3 shows the result of a dead code pass on the code in Figure 5.2(b).
Theorem 5.1 (C orrectness o f th e CD CE algorithm) The concurrent
dead code elimination algorithm is correct. It only removes code that has no
effect on program output. □

P r o o f We will show that the CDCE algorithm does not mark dead
statements that are really live. Since the sequential version is known to
be conservative, we only need to consider the two modifications we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Lock Picking 88

bt = 0;
cobegin

T 0: begin
Iock(L);
b , = 8;

= 13;
unloclc(L);

end

T ,: beg in
lock(L);
ba = *0>i» bj);
a4 = b , + 6;
Xi = a4i
unlock(L);

end
coend
print(xl , y t);

Figure 5.3: Concurrent Dead Code Blimination for program in Figure 5.2(b).

introduced.
Let Dv be a definition of variable v in thread To- Let Uv be a use of

v in thread 7\. Assume that there is a conflict edge between the node
containing Dv and the node holding Uv (i.e., the threads are concurrent
and no synchronization prevents both memory operations from executing
concurrently). Since the reaching definition information includes definitions
reaching through conflict edges, if the statement holding Uv is marked live
then the statement that contains Dv will also be marked live. The second
condition is guaranteed by simply considering cobegin/coend structures as
conditional branches. ■

5.3 Lock Picking
Sometimes it is possible to remove synchronization operations from a
program without affecting its semantics. For example, mutual exclusion
synchronization is unnecessary in a sequential program and can be safely
removed. In this section we describe lock picking, a transformation that finds
and removes superfluous lock and unlock operations. We say that a mutex
body can be lock-picked if its lock and unlock nodes can be removed. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Lock Picking 89

A lgorithm 5.1 Concurrent reaching definitions._______________________
INPUT: A CCFG G in CSSAME form
OUTPUT: The set of reaching definitions for each variable used in the program and the set of reached

uses for each variable defined in the program

/* marked(d) is used to mark visited definitions */
I* vsesfd) is the set of uses reached b y d * /
(breach variable definition d in the program do

marked (d) 4 - X
uses(d) <— 0

end for
(breach variable use u in the program do

defefu) 4 - 0
call followChain(chain(u), u)

end fo r

/* Recursively follow use-def chains set up by the CSSAME algorithm */
p ro ced u re foHowChain(d, u)
if marked (d) = u th e n

r e tu rn
en d if
marked(<t) 4 - tt
/* If the reference d is a definition, add it to the set of */
/* reaching definitions for u , and add u to the set of reached uses of d */
i f d is a definition for tt th e n

Add d to defs{tt)
Add u to tisei(d)

end if
/* If the reference d is a ^ or a t function, follow the arguments */
if (d is a 0 function) o r (d is a ir function) th e n

(b reach function argument j do
call followChain(j, u)

en d for
en d if

important property of lock picking is that it does not need to examine the
mutex bodies of the program. Only the lock and unlock nodes are analyzed.

Lock picking uses reaching definition information for all the lock variables
to determine whether a mutex body can be lock-picked or not. The algorithm
for recognizing mutex bodies developed in Section 3.3.1 modifies the fiowgraph
so that every lock CL) node contains one definition of variable L and a use for
each lock variable used in the program (including L). As such, the CSSAME
form will initially place a 7r function for all the uses of lock variables at
each mutex body’s lock node. However, if the program contains additional
synchronization, it is possible that some of these ir functions will be removed
by the CSSAME ir pruning phase. Furthermore, in the case of sequential
sections of the program, ir functions will not be placed at all.

The lock picking algorithm (Algorithm 5.2) examines the lock nodes for
every mutex body in the program. The decision to lock-pick a mutex body

with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Lock Picking ______________ 90

d o u b le Sum = 0;
pa rlo o p (p. 0, N) {

fo r (i = 0; i < M; i+ +) {
Ss = ir(S0, Sj, Sj);
R j = x(Ro. Rp R?)*
lock(Rj);
fo r (j = 0; j < M; j+ +) {

sum_reductiou(A[i][j]);
}
unlock(Rj);

}
}
sum_reduction(double x)
{

S4 — *(Sj, Sj, S j)

R< = »(Ro> R p Rj)
lock(Sj);
Sum = Sum + x;
unlock(S2);

}

(a) Originai CSSAME form.

double Sum = 0;
parloop (p, 0, N) {

fo r (i = 0; i < M; i+ +) {
S j — *■(S 0 , S j , S j)

Rj = *(Ro> Ri> R j)
lock(Rj);
for (j = 0; j < M; j+ +) {

S 4 = » (S 0 , S j , S j)
lock(Sj);
Sum = Sum + A[i][fl;
unlock(Sj);

}
unlock(Rj);

}

}

(b) CSSAME form after miming and k
pruning.

double Sum = 0;
parloop (p, 0, N) {

fo r (i = 0; i < M; i+ +) {
R j = *(Ro» R p R j)
lock(Rj);
for (j = 0; j < M; j+ +) {

Sum = Sum + A[i][j];
}
unlock(Rj);

>
}

(c) After lock picking.

Figure 5.4: Effects of lock picking on nested mutex bodies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Lock Picking 91

is based on the absence of ir functions for one or more lock variables at each
mutex body lock node. Recall that the absence of % functions for lock variables
at lock nodes means that there are no concurrent threads trying to acquire that
lock. This m ight make the lock operation unnecessary. These conditions are
typically discovered using whole program analysis. For example, consider the
program in Figure 5.4(a). The inner loop calls the function surrureduction to
update a global reduction variable. Since surrureduction is a generic reduction
function, it locks the variable before doing the reduction. However, as a result
of inlining, reduction lock 5 is no longer necessary because the reduction is
always protected by lock R (Figure 5.4(b)). When function surrureduction is
inlined, the use of lock R at the lock node of the mutex body for S becomes a
protected use and its ir function can be removed (Novillo et al. 1998) (Figure
5.4(b)).
Lem m a 5.1 (N ested m utex stru c tu res) Let L = (Li, L?,. . . , Lm} be the
set of lock variables used in the program. Let be the mutex structure
for lock variable Lj. If all the lock nodes in every mutex body of M ^ are
lock-protected by the same lock variable L,, then the lock and unlock nodes
for mutex bodies in are unnecessary and can be removed. In this case,
we say that mutex structure is nested inside mutex structure □

P r o o f Since all the lock nodes in all the mutex bodies in are
lock-protected by the same lock variable L„ all the lock operations on Lj
are serialized by lock Li. Therefore, they are unnecessary because they are
always guaranteed to succeed. Consequently, all the lock and unlock nodes for
Lj can be safely removed. ■

The second opportunity to lock-pick mutex bodies is when a particular
mutex body cannot execute concurrently with any other mutex body of its
same mutex structure. If this happens, we say that the mutex body is
non-conflicting. Typically, a mutex body will be non-conflicting when it
appears in sequential sections of a parallel program or if the program itself
is sequential. Non-conflicting mutex bodies can also be discovered if all the
mutex bodies in the same mutex structure are totally ordered by some other
synchronization mechanism (e.g., se t/w a it, b a rr ie rs , coend nodes). All the
sequential programs described in Section 6.2 had their locks picked because

with permission of the copyright owner. Further reproduction prohibited without permission

5.3 Lock Picking 92

A lgorithm 5.2 Lock-picking.

i n p o t : A CCFG in CSSAME form
o u t p u t : The graph with unnecessary lock and unlock operations removed

re p e a t
/* First phase. Find nested mutex bodies. * /
foreach lock variable Li do

(breach mutex body £&< (N) 6 Afi, do
foreach lock variable L j do

nested <— t r u e
(breach node n 6 N do

i f n contains a x function for Lj th e n
netted «- f a l s e

end if
en d for
i f nested th e n

Protectors(N) *- Lj
end if

en d for
end for
if f)jv Pnteetors(N) ;£ 0 th e n

remove all lock and unlock nodes for mutex bodies in JVTl{
update CSSAME information for Li

end if
end for
/* Second phase. Find non-conflicting mutex bodies. */
foreach lock variable Lj do

foreach mutex body 6 Af&{ do
hasConflicts «- f a l s e
foreach node n g N d o

if n contains a x function for Li th e n
hasConflicts «— t r u e

end if
end for
if n o t hasConflicts th e n

remove all lock and unlock nodes for B&{ (n)
update CSSAME information for Li

end if
en d for

end for
u n til no more changes have been made

they had no conflicts.
Lem m a 5.2 (Non-conflicting m utex bodies) Let be the mutex
structure for lock variable L. Let B l(N) be a mutex body in M^. If no lock
node n € iV contains a 7r function for L then the lock and unlock operations
for mutex body B ^ N) are unnecessary and can be removed. □

PROOF If no lock node n 6 N contains a ir function for L then no definition
for L comes from other concurrent threads. Since lock variables are defined
at lock(L) nodes, this means that no other lock(L) node can execute
concurrently with the lock nodes of B l (N). Therefore, the mutex body B l (N)

with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 93

is not necessary because all its lock nodes are guaranteed to acquire L every
time it executes. ■

The conditions for lock picking given by these two lemmas have subtle
differences that are worth noting. The conditions for Lemma 5.2 are only
required to be met by a single mutex body. In contrast, Lemma 5.1 needs
to check all the mutex bodies in the same mutex structure. It is not enough
for one mutex body to be nested inside another. The whole mutex structure
must be nested inside the same lock. Otherwise, the transformation cannot
be done.

5.4 Lock-Independent Code Motion
Because of the sequential semantics imposed by mutual synchronization
operations, it is desirable to minimize the time spent inside mutex bodies
in the program. To achieve this goal we can optimize the code inside mutex
bodies as much as possible. Alternatively, we can minimize the amount of
code executed inside a mutex body by moving code that does not need to be
locked outside the mutex body.

Lock-Independent Code Motion (LICM) is a code motion technique that
attempts to minim ize the amount of code executed inside a mutex body. This
optimization differs from lock picking in that it does not target the lock
operations directly. Rather, it analyzes the mutex body itself to find code that
can be moved outside. If a t the end of the transformation a mutex body only
contains unlock nodes, then the lock and unlock instructions are removed.
D efinition 5.1 (Lock-independence) An expression E inside a mutex
body B i is lock-independent with respect to L if moving E outside B i does
not change the meaning of the program. Similarly, a statement (or group of
statements) S is lock independent with respect to L if all the expressions and
definitions in S are lock-independent. A flowgraph node n is lock independent
if all its statements are lock-independent. □

Lock-independent code is moved to special nodes called premutex and
postmutex nodes. For every mutex body B i(N) there is a premutex node,
denoted premutex(rii), for each lock node n* € IV. Premutex nodes are created

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 94

as immediate dominators of each lock node n*. Similarly, there is a postmutex
node, denoted postmutex(xi) for every unlock node x,. Postmutex nodes are
created as immediate post-dominators of each exit node x,-.

The concept of lock-independence is similar to the concept of loop-invariant
code for standard loop optimization techniques (Aho et al. 1986). However,
the conditions that make code to be lock-independent are different from those
that make it loop invariant. Lock-independent code computes the same
result whether it is inside a mutex body or not. For instance, a statement
that references variables private to the thread will compute the same value
whether it is executed inside a mutex body or not. This is also true if the
statement references variables not modified by any other concurrent thread in
the program.

5.4.1 Moving Lock-Independent Statements

Lock-independence is a necessary condition for moving a statement outside
the mutex body, but it is not sufficient. The sufficient condition is that after
the motion, the statement should preserve all its original control and data
dependencies. For instance, if the statement is inside a loop it cannot be
moved out unless it is also loop invariant. This section develops an algorithm to
detect and move lock-independent statements outside mutex bodies. Sections
5.4.2 extends this to control structures and 5.4.3 deals with lock-independent
expressions.

M oving S ta tem ents to P rem u tex Nodes

Given a lock-independent statement s inside a mutex body B l (N), LICM will
attempt to move s to premutex or postmutex nodes for B l (N). This section
describes the conditions required when attempting to move s to premutex
nodes for B i(N). The selection of lock nodes to receive statement s in their
premutex node is done satisfying the following conditions:

P ro tec tion . Candidate lock nodes are initially selected among
all the lock nodes in N that reach the node containing s
(denoted node(s)). For instance, consider the program in Figure

permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 95

1 A = 0; 1 A = 0:
2 cobegin 2 cobegin
3 T0: begin 3 T„: begin
4 x = 1; 4 x = 1;
5 y = 0; 5 y = 0;
6 done = 0; 6 done = 0;
7 lock(L); 7 Iock(L);
8 w hile (Idone) { 8 w hile (Idone) {
9 y = y + 3; 9 A = A + x;

10 A = A + x; 10 unlock(L);
11 unlock(L); 11 x = x + 1;
12 x = x + 1; 12 if (x > 0) {
13 if (x > 0) { 13 => y = y + 3;
14 lock(L); 14 => done = 1;
15 done = 1; 15 lock(L);
16

•<1XIIX 16 x = x — A;
17 } else { 17 } {
18 lock(L); 18 => y = y + 3;
19 A = A * x; 19 lock(L);
20 x = x + 5; 20 A = A * x;
21 } 21 x = x + 5;
22 y = y - 2; 22 }
23 } 23 y = y - 2;
24 if (A < x) { 24 }
25 A = A + x; 25 if (A < x) {

26 unlock(L); 26 A = A + x;
27 x - = 3; 27 unlock(L);
28 > (28 x - = 3;
29 A = A — x; 29 > eUe {
30 unlock(L); 30 A = A - x;
31 } 31 unlock(L);
32 print(A, x, y); 32 }
33 end 33 print(A, x, y);
34 34 end
35 T ,: begin 35
36 lock(L); 36 T t : begin
37 A + = f(); 37 lock(L);
38 unlock(L); 38 A + = f();
39 end 39 unlock(L);
40 coend 40 end

41 coend

(a) Original program. (b) After LICMS.

Figure 5.5: Moving lock-independent statements. Moved statements are marked
with arrows (=►).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 96

5.5(a). Thread To contains one mutex body B l ({7,14,18}) =
{8,9,10,11,15,16,19,20,21,22,23,24,25,28,29}1. Statement A = A+x
at line 10 is reached by the lock nodes at lines 7, 14 and 18. However,
statement x — x + 5 at line 20 is only reached by the lock node at line
18. This condition provides an initial set of candidate lock nodes called
protectors(s).

Reachability. Since s is reached by all the nodes in protectors (s), there
is a control path between each lock node in protectors(s) and node(s).
Therefore, when statement s is removed from its original location, the
statement must be replaced on every path from each lock node to
norfe(s). This implies that s may need to be replicated to more than
one premutex node.

To determine which lock nodes could receive a copy of s we perform
reachability analysis among the lock nodes reaching s (protectors (s)).
This analysis computes a partition of protectors(s), called receivers(s),
that contains all the lock nodes that may receive a copy of statement
s. The selection of receiver nodes is done so that (a) there exists a path
between s and every lock node in protectors(s), and (b) instances of
s occur only once along any of these paths (i.e., s is not unnecessarily
replicated).

Besides having multiple premutex nodes that could receive s, a mutex
body could have multiple combinations of receiver nodes for s. For
instance, in the program fragment of Figure 5.5(a), lock-independent
statement s : y = y 4- 3 at line 9 is reached by lock nodes 7,
14 and 18. For the purpose of this discussion we disregard other
considerations that might prevent moving s outside the mutex body
(e.g., data dependencies). Notice that moving s to all three premutex
nodes is not a valid option because this creates duplicate instances of s
on a single control path. There are two sets of receiver nodes for s in
this program, namely {7} and (14,18}. Further analysis will determine
which of these receiver sets is the better choice.

1For simplicity we are assuming that each line corresponds to a node in the CCFG.

permission of the copyright owner. Further reproduction prohibited without permission

5.4 Lock-Independent Code Motion 97

Algorithm 5.3 computes all the different sets of lock nodes that
may receive a lock-independent statement s in their premutex nodes.
Basically, the algorithm computes reachability sets among the nodes
in protectors (s). The set protectors(s) is partitioned into k partitions

. Pfc. Nodes in each partition Pj cannot reach each other but put
together they reach or are reached by every other node in protectors (s).
These partitions are the sets of lock nodes that can receive a copy of s
in their premutex nodes.

D a ta D ependencies. When moving a statement s to one of the receiver
sets for s , the motion must not alter the original data dependencies for
the statement and other statements in the program. If Pj is the selected
receiver set for s, two restrictions must be observed:

1. No variable defined by s may be used or defined along any path
from node(s) to every node in Pj.

2. No variable used by s may be defined along any path from node(s)
to every node in Pj.

These two restrictions are used to prune the set of receiver nodes
computed in Algorithm 5.3. Notice that since the program is in CSSAME
form, <f> functions are also considered definitions and uses for a variable.

In the example program of Figure 5.5(a) the receiver node for statement
x = x + 5 at line 20 is node 18, which cannot receive it because x is used
at line 19. Statement y = y + 3 has two sets of receiver nodes: {7} and
(14,18}. Node 7 cannot be used because of the <f> function for y at the
head of the while loop. However, both nodes 14 and 18 could receive a
copy of the statement.

When more than one statement is moved to the same premutex node, the
original data dependencies among the statements in the same premutex
node must also be preserved. This is accomplished by maintaining the
original control precedence when moving statements into the premutex
node.

permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 98

A lgorithm 5.3 Compute candidate premutex nodes (receivers).
input: A mutex body B l(N) and a lock-independent statement *.
o utput: A list of receiver seta. Each receiver set Pi contains the lock nodes whose premutex nodes

may receive s.
1: protectors(s) <— set of lock nodes that reach s.
2: Q *- protectors(s)
3: k f - 1
4: while Q # 0 do
5: «- first node in Q
6: P{k) «- {n,}
7: remove n* Grom Q /* Add to P(k) all the nodes that are not connected with */
8: foreach node n3- 6 0 and Q # 0 do
9: if (there is no path m - t n j) and (there is no path n3 - » rij) then
10: P(k) «— P(fc) UOty }
11: remove n3 from Q
12: end if
13: end for
14: k *- k +1
15: end while
16: re tu rn receivers <— P(1), P(2),. . . , P(k — 1)

T heorem 5.2 (H oistable sta tem ents) Let s be a lock-independent
statement s inside a mutex body B l(N). Let protectors(s) be a set of lock
nodes in N such that:

1. Vn» € protectors (s) : node reaches node(s),

2 . there exist k partitions P : Pi,P2, . . . ,P k {k > 1) of the set
protectors(s) computed as per Algorithm 5.3, and

3. there exists a partition Pj € P for which (a) no variable defined
by s is defined nor used in any path between node(s) and nodes in
Pj, and (b) no variable used by s is defined in any path between
node{s) and nodes in Pj.

If these conditions hold for at least one partition Pj then it is possible to
move s to the premutex nodes for the lock nodes in Pj. o

Proof Since node(s) is reached by every node tii 6 protectors (s), there exists
a path between n* and node(s). Let Pj be a set of nodes that complies with the
three conditions in the theorem. The nodes in Pj have the following properties:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.4 Lock-Independent Code Motion 99

1. Vrij, I** € Pj such that ti* ^ njt, there is no control path between
rij and njfc. This is immediate from the way the algorithm selects
the nodes (lines 9-10 of Algorithm 5.3).

2 . Vn» € protectors(s) : if n» £ then 3n* € Pj such that there
is a path between rii and n*. Suppose that there is a node n* 6

protectors(s) that cannot be reached by any node in Pj then the
algorithm would have placed rii in Pj, which is a contradiction.

The previous two conditions guarantee that if s is removed from node(s)
and replicated to every node in Pj then one and only one instance of s will
still be available on paths leading to or from nodes in protectors(s). Finally,
let Da be the set of variables defined in s. Since no path between node(s) and
the nodes in Pj defines or uses a variable in Da, moving s will not alter data
dependencies for s. Similarly, let Ua be the set of variables used in s. Since no
path between node(s) and rii defines defines variables in Ua, it is safe to move
s. m

M oving S ta tem ents to Postm utex Nodes

The LICM transformation may also move statements to postmutex nodes of
a mutex body B i(N). The analysis for postmutex nodes is similar to the
previous case. The conditions are essentially the reverse of the conditions
required for premutex nodes.

P ro tection . Unlock node x, must be reached by the same lock nodes that
reach statement s. This guarantees that there exists a control path
between node(s) to x,. This condition provides an initial set of unlock
nodes to consider as candidates. In the example program in Figure
5.5(a), the statement y = y + 3 at line 9 is reached by lock nodes 7,14
and 18 which also reach unlock nodes 11, 26 and 30.

Reachability. Algorithm 5.4 computes all the different sets of unlock nodes
that may receive a lock-independent statement s in their postmutex
nodes. The algorithm performs the same reachability analysis done
by Algorithm 5.3. The set releosers(s) contains all the unlock nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 100

reached by the same lock nodes that reach s. The set releasers (s) is
partitioned into k partitions Xi, X2 , .. .X*. Nodes in each partition X j
cannot reach each other but put together they reach or are reached by
every other node in releasers(s). These partitions are the sets of unlock
nodes that can receive a copy of s in their postmutex nodes.

D a ta dependencies. The same requirements needed for premutex nodes
are necessary for postmutex nodes. If any variable defined by s is defined
or used in any path from s to a node in releasers (s) then s may not be
moved. Similarly, if any variable used by s is defined in any path from s
to a node in releasers(s) then s may not be moved.

Algorithm 5.4 Compute candidate postmutex nodes (releasers).
in p u t: A mutex body B l (N) and a lock-independent statement s.
o u t pu t : A list of releaser sets. Bach releaser set X> contains the unlock nodes whose postmutex

nodes may receive s.

1: protectors(s) 4- set of lock nodes that reach j .

2: Q <— {xt € such that Xj is reached by a node in protectors (a)}
3: *< -1
4: while Q ?£0 do
5: Xj j— first node in Q
6: X(k) j - {*<}
7: remove Xj from Q /* Add to X(k) all the nodes that are not connected with Xj */
8: foreach node Xj € Q and Q 56 0 do
9: if (there is no path x< -* x}) and (there is no path x,- -> x,) then
10: * (*) < - X(fc)U{*i>
11: remove Xj from Q
12: end if
13: end for
14: fcj-Jfc+l
15: end while
16: re tu rn releasers *— X (l),X (2),. . . ,X{k — 1)

T heorem 5.3 (Downward-movable sta tem en ts) Let s be a
lock-independent statement s inside a mutex body B l (N). Let releasers(s)
be a set of unlock nodes in B i such that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.4 Lock-Independent Code Motion 101

1 . Vari 6 rdeasers(s): node Xi is reached by a node in protectors(s),

2. there exist k subsets X : X \,X 2 , .. .,X k (k > 1) of the set
releasers(s) computed as per Algorithm 5.4, and

3. there exists a partition X j € X for which (a) no variable defined
by s is defined nor used in any path between node(s) and nodes in
X j, and (b) no variable used by s is defined in any path between
node(s) and nodes in X j.

If these conditions hold for at least one partition X j then it is possible to
move s to the postmutex nodes for the unlock nodes in X j. □
P roof Similar to the proof for Theorem 5.2. ■

LICM for Statem ents (LICMS)

Theorems 5.2 and 5.3 are used as the basis for the algorithm to move
statements outside mutex bodies (Algorithm 5.5). Notice that even though we
refer to hoistable statements for statements that can be moved to a premutex
node, the movement is not necessarily made against the flow of control. The
name was chosen because that is what happens in the most general case.
Similarly, downward-movable statements may be moved up.

The LICMS algorithm scans all the mutex bodies in the program looking
for lock-independent statements to move outside the mutex body. Bach
lock-independent statement s is checked against the conditions described
previously. Lines 8 — 15 in Algorithm 5.5 determine the sets of premutex
receivers for s. The initial set of candidates computed by Algorithm 5.3 checks
every lock node in a mutex body against each other looking for paths between
them. If mb is the number of mutex bodies in the program, this can be
accomplished in 0(m b2) time. To check data dependencies each statement
has to be compared with all the statements in paths to each premutex node
(lines 9 — 15). Given that there may be up to mb premutex nodes, data
dependencies can be checked in 0(mb x |S|2), where S is the set of statements
in the program. This yields a total time complexity for lines 8 — 15 of
0(m b2+mb x |S |2). Similarly, lines 16—24 compute sets of postmutex receivers
in time 0(m b2 + mb x |S |2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 102

Notice that it might be possible that a statement can be moved to both
the premutex and the postmutex nodes. In that case a cost model should
determine which node is more convenient. We will base our cost model on the
effects of lock contention. Suppose that there is high contention on a particular
lock. All the statements moved to premutex nodes will not be affected by
it because they execute before acquisition of the lock. However, statements
moved to the postmutex node will be delayed if there is contention because
they execute after the lock has been released. Therefore, when a statement
can be moved to both the premutex and postmutex nodes, the premutex node
is selected.

When more than one set of premutex or postmutex nodes can receive a
statement s a cost model should be use to select the more profitable target.
Although not addressed in this document, cost models may include simple
factors like checking that statements are not moved into loops or even delaying
all the hoisting decisions until the algorithm has finished analyzing all the
statements in a single mutex body.

Finally, if the mutex body is empty at the end of the transformation, the
lock and unlock nodes are removed (lines 36—39). The total time complexity
for the LICMS algorithm is then 0 (m x m b x (mb2+mb x |S |2)). In general, we
expect the cost to be dominated by |S| because m (number of lock variables)
and mb (number of mutex bodies in the program) will be relatively small
compared to |5 |. The effects of LICMS on the program in Figure 5.5(a) are
shown in Figure 5.5(b). Notice that the statement y = y +3 at line 9 in Figure
5.5(a) as been replicated into lines 13 and 18 in the transformed program
of Figure 5.5(b). It is necessary to replicate the statement, otherwise the
transformed program will not compute the same value of y than the original
one.

5.4.2 LICM for Control Structures

The basic mechanism for moving statements outside mutex bodies can be used
to move lock-independent control structures. Control structures are handled
by checking and aggregating all the nodes contained in the structure into a
single super-node and treating it like a single statement. After this process,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 103

A lgorithm 5.5 Lock-Independent Code Motion for Statements (LICMS).
input: A CCFG G ~ (N, B, Entrya , Exita) in CSSAME form with pre and postmutex nodes

inserted in every mutex body
OUTPUT: The program with lock-independent statements moved to the corresponding premutex and

postmutex nodes

1: (breach lock variable Li do
2: foreach mutex body B t , (N) 6 MntexStruct(Li) do
3: rii *- node(Li)
4: foreach lock-independent statement s reached by nj do
5: D, «— variables defined fay $
6: U, *- variables used by s
7: /* Determine which premutex nodes can receive s. *f
8: P «— receivers of s at premutex nodes (Algorithm 5.3)
9: foreach f t e P d o
10: foreach node n 6 Pj do
11: if (any path between n and node(s) defines or uses a variable in

o r (any path between n and node(s) defines a variable in U,) then
D.)

12 remove Pi from P
13 end if
14 end for
15 end for
16 /* Determine which postmutex nodes can receive s. */
17 X <— receivers of s at postmutex nodes (Algorithm 5.4)
18 foreach Xi 6 X do
19 foreach node x € Xi do
20 if (any path between x and node(s) defines or uses a variable in

o r (any path between x and node(s) defines a variable in U,) then
o .)

21 remove X i from X
22 end if
23 end for
24 end for
25 /* Sets P and X contain sets of premutex and postmutex nodes that can receive s. */
26 if P # l th en
27 select one Pj € P (cost model or random)
28 remove s from its original location
29 replicate s to each node n € Pj
30 else if X 9 then
31 select one X i 6 X (cost model or random)
32 remove s from its original location
33 replicate s to each node x £ X ,
34 end if
35 end for

36 /* Remove the mutex body if it is empty. */
37 if BLi(A T)=0thea
38 remove all the lock and unlock nodes of Br.fff)
39 end if
40 end for
41 end for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 104

Algorithm 5.5 can be used to hoist the structures outside mutex bodies.
Algorithm 5.6 looks for control structures that only contain

lock-independent statements. Control structures are identified using
standard interval analysis techniques (Aho et al. 1986). Basically, control
structures form a single-entry, single-exit region of the graph. An entry node
dominates all the nodes in the control structure. An exit node post-dominates
all the nodes in the control structure.

Once identified, sub-graphs inside a mutex body are scanned to determ ine

if all their interior statements are lock-independent. If so, the variables defined
and used by each statement are aggregated into the sets Dh and Uh for each
sub-graph (lines 9 — 22 in Algorithm 5.6). After all the sub-graphs in every
mutex body of the program have been identified, Algorithm 5.5 is used to hoist
them out of mutex bodies. The identification of lock-independent sub-graphs
can be done in 0 (m x m b x |S|) time. Where m is the number of lock variables
used in the program, mb the number of mutex bodies and S is the set of
statements in the program.

A lgorithm 5.6 LICM for Control Structures (LICMT).
INPUT: A CCFG G — (f f , B, Entry a , Bxito) in CSSAME form
o u t pu t : The graph with lock independent control structures moved to the corresponding premutex

and poatmutex nodes

1
2
3
4
5
6
7
8
9:
10
11
12
13
14
15
16
17
18
19
20
21
22

build sub-graphs for all control structures in the program
foreach lock variable £, do

foreach mutex body B t^ N) 6 MutexStruct(Li) do
/* Build sub-graphs for all the control structures in the mutex body. */
/* Find lock-independent sub-graphs. */
foreach subgraph H inside £&< (IV) do

D h +-8
U h + -*
foreach statement s in B do

if s is not lock-independent th en
mark H as lock-dependent (i.e., it cannot be moved)
continue with next sub-graph

else
/* Add defines and uses made by s to the sub-graph. */
Dh *- Dh U d•
U r * - U h U U ,

end if
end for
mark H as lock-independent

end for
end for

end for
23: hoist lock-independent sub-graphs using Algorithm 5.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code Motion 105

5.4.3 LICM for Expressions

If hoisting statements or control structures outside mutex bodies is not
possible, it may still be possible to consider moving lock-independent
sub-expressions outside mutex bodies. This strategy is similar to moving
statements (Algorithm 5.5) with the following differences:

1. Sub-expressions do not define variables. They only read variables or
program constants.

2. If a sub-expression is moved from its original location, the computation
performed by the expression must be stored in a temporary variable
created by the compiler. The original expression is then replaced by
the temporary variable. This is the same substitution performed by
common sub-expression and partial redundancy elimination algorithms
(Aho et al. 1986; Chow et al. 1997).

3. Contrary to the case with statements and control structures, expressions
can only be moved against the flow of control. The reason is that the
value computed by the expression needs to be available at the statement
containing the original expression.

Algorithm 5.7 finds and removes lock-independent expressions from mutex
bodies in the program. The process of gathering candidate expressions is
similar to that of SSAPRE, an SSA based partial redundancy elimination
algorithm (Chow et al. 1997). Mutex bodies are scanned for lock-independent
first-order expressions, which are expressions that contain only one operator.
Higher order expressions are handled by successive iterations of the algorithm.

Once lock-independent expressions are identified, the algorithm looks for
suitable premutex or postmutex nodes to receive each expression. We observe
that since expressions can only be hoisted up in the graph, it is not necessary
to consider postmutex nodes when moving lock-independent expressions.
T heorem 5.4 (T arget nodes for lock-independent expressions) Let e
be a lock-independent expression inside mutex body B l (N). If e can be hoisted
to a postmutex node of B l(N) there exists a premutex node of B l(N) that
can also receive e. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Lock-Independent Code M otion 106

A lgorithm 5.7 Lock-Independent Code Motion for Expressions (UCME).

input: A CCFG in CSSAME form
output: The graph with lock-independent expressions moved to the corresponding premutex nodes

1: repeat
2: foreach lock variable Li do
3 : (breach mutex body B l{ (N) € M it do
4 : B * - B IJ set of lock-independent expressions in B [N) .
5: if E ?£ 0 th en
6: foreach expression Bj £ E do
7: P « - premutex receivers for Bj (Algorithm 5.3)
8: candidates * - 0
9: foreach 6 P do
10: if Vn 6 P i: (n DOM node(Ej)) o r (node(Bj) PDOM n) then
11: candidates «— Pi
12: stop looking for candidates
13: end If
14: end for
15: if candidates ^ 0 then
16: insert the statement tj = E j in all the premutex nodes for lock nodes in candidates
17: end If
18: end for
19: end if
20: end for
21: end for
22: /* Replace hoisted expressions inside each mutex body. */
23: foreach lock variable Li do
24 : foreach mutex body B ^ N) € do
25: replace hoisted expressions in B i((AT) with their corresponding temporaries
26: end for
27: end for
28: un til no more changes have been made

P r o o f Let a; be an unlock node in B l(N) such that postmutex{x) can receive
e. Since e can only be moved against the flow of control, there exists a control
path from x to node(e). Furthermore, since e is inside the mutex body, node(e)
must be reached by some lock node n 6 N such that every path from x to
node(e) goes through n. Therefore, if e can be placed in postmvtex(x) it can
also be moved to premutex (n). ■

We use the previous result to reduce the number of candidate nodes to be
considered when moving lock-independent expressions. Only lock nodes are
considered by the algorithm. Furthermore, the candidate lock must dominate
or be post-dominated by the node holding the expression (lines 7 — 13 in
Algorithm 5.7).

The acceptable receiver sets are stored in the set candidates. Using a
similar reasoning to Theorem 5.4 it can be shown that in this case, the
algorithm for computing receiver premutex nodes (Algorithm 5.3) will find

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.5 Mutex Body Localization 107

none or exactly one set of lock nodes that can receive the expression in their
premutex nodes.

Figure 5.6 shows an example program before and after running the LICM
algorithm. When LICM is applied to the program in Figure 5.6(a), the first
phase of the algorithm moves the statement at line 9 and the assignment j — 0
to the premutex node. The statement at line 13 is sunk to the postmutex
node resulting in the equivalent program in Figure 5.6(b). There is still some
lock-independent code in the mutex body, namely the expressions j < M at
line 1 1 , the statement j+ + at line 11 and the expression y\j]+sqrt(a)*sqrt(b)
at line 12. The only hoistable expression is sqrt(a) * sqrt(b) because it is the
only expression with all its reaching definitions outside the mutex body. Note
that a loop-invariance transformation would have detected this expression and
hoisted it out of the loop. LICM goes a step further and hoists the expression
outside the mutex body.

5.4.4 Putting it All Together: Lock-Independent Code
M otion (LICM)

The individual algorithms discussed in previous sections can be combined into
a single LICM algorithm (Algorithm 5.8). There are four main phases to
the algorithm. The first phase looks for mutex bodies that have nothing but
lock-independent nodes. These are the simplest cases. If all the nodes in
a mutex body are lock-independent, then the lock operations at the lock
nodes and the unlock operations in the body can be removed. The next
three phases move interior lock-independent statements, control structures and
expressions outside the mutex bodies in the program (Algorithms 5.5, 5.6 and
5.7). We show the effect of the LICM transformation in several explicitly
parallel programs in Chapter 6 .

5.5 M utex Body Localization
In this section we discuss a transformation technique that may enhance the
opportunities for further optimization of the program. Consider a mutex body

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Mutex Body Localization 108

1 doub le X[]; / • shared • /
2
3 p arlo o p (i. 0, N) {
4 doub le a, b; /* local • /
5 doub le y[]; /* local • /
6
7
8 lock(L);
9 b = a * sin(a);

10 fo r (j = 0; j < M; j+ +) {
11 X[jJ = yp] + sqrt(a) * sqrt(b);
12 }
13 a = yp];
14 imlock(L);
15
16 }

(a) Program before LICM.

1 double X[]; /* shared */ 1 double X]]; /* shared */
2 2
3 p arlo o p (i, 0, N) { 3 parloop (i, 0, N) {
4 double a, b; /* local • / 4 double a, b; /* local • /
5 double y[]; /* local */ 5 double y[]; / • local */
6 6
7 7 . . .
8 b = a • sin(a); 8 b = a * sin(a);
9 j = 0 ; 9 j = 0 ;

10 lock(L); 10 = sqrt(a) * sqrt(b);
11 fo r (; j < M; j+ +) { 11 lock(L);
12 Xp] = yp] + sqrt(a) * sqrt(b); 12 fo r (; j < M; j-H-) {
13 } 13 Xpj = yp] + t t ;
14 unlock(L); 14 }
15 a = yp]; 15 unlock(L);
16 16 a = yp];
17 17 . . .

18 }

(b) After LICM on statements. (c) After LICM on expressions.

Figure 5.6: Effects of lock-independent code motion (LICM).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Mutex Body Localization 109

Algorithm. 5.8 Lock-Independent Code Motion (LICM).

in pu t : A CCFG in CSSAME form
o u t pu t : The graph with lock-independent expressions moved to the corresponding premutex nodes

/* First phase. Try to remove lock and unlock nodes for mutex bodies with nothing but LI nodes. * /
fo reach lock variable do

foreach mutex body Bl ({N) do
if all the nodes a € 0 £ { (AT) are lock independent th e n

remove all lock and unlock nodes for B i i (N)
en d If

en d for
en d for
/* Second phase. Move whole control structures out. */
perform LICM on structures (Algorithm 5.6)
/* Third phase. Move individual statements out. */
perform LICM on statements (Algorithm 5.5)
/* Fourth phase. Tty to move expressions. * /
perform LICM on expressions (Algorithm 5.7)

B i that modifies a shared variable V (Figure 5.7(a)). With the exception of
the definition reaching the unlock node of B^, all the modifications done to V
inside the mutex body can only be observed by the thread.

Given these conditions, it is possible to create a local copy of V and replace
all the references to V inside the mutex body to references to the local copy
(Figure 5.7(b)). We call this transformation mutex body localization (MBL).
It is the dual technique to LICM. While LICM looks for lock-independent
code, MBL creates lock-independent code by modifying the left-hand side of
statements. The basic transformation is straightforward:

1 . At the start of the mutex body a local copy of the shared variable
is created if there is at least one use for the variable with reaching
definitions outside the mutex body.

2. At the mutex body exits, the shared copy is updated from the local copy
of the variable if at least one internal definition of the variable reaches
that particular unlock node.

3. All the interior references to the shared variable are modified so that
they reference the local copy.

Notice that this transformation is legal provided that the affected references
are always made inside mutex bodies. Otherwise, the transformation might
prevent memory interleavings that were allowed in the original program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

5.5 Mutex Body Localization 110

double V = 0;
parloop (i, 0, N) {

doub le x, y[];
in t i;

lock(L);
i = 0 ;
w hile (V < = x) {

V = V + yp-H-J;
>
unlock(L);

(a) A mutex body before localization.

double V = 0;
parloop (i, 0, N) {

double x, y[], p.V;
in t i;

lock(L);
P-V = V;
i = 0;
while (p .V < = x) {

P-V = p.V + y[i++];
>
V = p_V;
unlock(L);

(b) After localization.

doub le V = 0;
parloop (i, 0, N) {

doub le x, y[], p.V;
in t i;

lock(L);
P -V = 0;
i = 0;
w hile (p-V < = x) {

p-V = p_V + yp++];
}
V = V + P-V;
unlock(L);

}

doub le V = 0;
parloop (i, 0, N) {

doub le x, y[], p_V;
in t i;

P-V = 0;
i = 0;
w hile (p-V < = x) {

P_V = p_V + y(i++J;
}
lock(L);
V = V + p-V;
unlock(L);

(c) After reduction recognition. (d) After LICM.

Figure 5.7: Applications of mutex body localization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Mutex Body Localization 111

Algorithm 5.10 makes local copies of a variable a inside a mutex body
B l{N) if the variable can be localized. To determine whether the variable a
can be localized it calls Algorithm 5.9 (a subroutine of Algorithm 5.10) which
returns t r u e if a can be localized inside mutex body B i{N). The localization
algorithm relies on two data structures that can be built during the 7r rewriting
phase of the CSSAME algorithm (Algorithm 4.5):

exposedUses{N) is the set of upward-exposed uses from the mutex body
B i(N). This set is associated with the entry nodes in N .

reachingDefs(X) is the set of definitions that can reach the exit nodes X of
B l (N).

Algorithm 5.10 starts by checking whether the variable can be localized
(lines 1 — 4). It then checks where the local copies are needed. If there are
upward-exposed uses of a, a copy is needed at the start of the mutex body
(lines 5 -1 6) . If there are definitions of a reaching an exit node, the shared
copy of a must be updated before exiting the mutex body (lines 17 — 29). The
final phase of the algorithm updates the interior references to a to be references
to p.jO (lines 30 — 34). After this phase, the CSSAME form for the program
has been altered and it should be updated. The simplest way to do this is to
run the CSSAME algorithm again (Algorithm 4.7). However, this might be
expensive if the localization process is repeated many times.

An alternate solution is to incrementally update the CSSAME form after
the variable has been localized. The following are some guidelines that should
be considered when performing an incremental update of the CSSAME form:

1. If the local copy is created at the start of the mutex body, the statement
pjx = a contains a use of a. This use of a will have the same control
reaching definition that the upward-exposed uses of a have. Notice
that all the upward-exposed uses of a have the same control reaching
definition.

Since this statement has a conflicting use of a, it requires a x function.
The argument list to this x function is the union of all the arguments
to all the 7r functions for a inside the mutex body. Notice that the x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Mutex Body Localization 112

functions for a should be for upward-exposed uses of a. This is because
the program is in CSSAME form and all conflicting references to a
are made inside mutex bodies of the same mutex structure (i.e., a is
localizable).

2. All the 7r functions for a inside the mutex body must disappear because
all the interior references to a are replaced by references to p_o.

3. All the interior <t> functions for a must be converted into <f> functions for
p_a.

4. If the shared copy is updated at the end of the mutex body, the statement
a = pjo. contains a use of p_a whose control reaching definition should
be the definition of p_o reaching the exit node x.

Algorithm 5.9 Localization test (localizable).
i n p u t : A variable a and mutex body Bl{N)
o u t p u t : t r u b i f a c a n b e localized in B l(S) , f a l s e o th e rw ise

1: Ml *- mutex structure containing Bl (N)
2: /* Check every conflicting reference r to a in the program. All the conflicting */
3: /* references to a must occur inside mutex bodies of M l, otherwise a is not localizable. */
4: foreach conflicting reference r € Ae/s(a) do
5: /* If we cannot find r in any of the mutex bodies of M l, then a is not localizable. */
6 : protected «— p a l s b
7: foreach mutex body B,L(N ') € Ml do
8: if node(r) is reached by some lock node in N' then
9: protected«— t r u b
10: end if
11: end for
12: if no t protected then
13: r e t u r n p a l s b
14: end if
15: end for
16: /* All the references to a are protected. Therefore, a is localizable. */
17: r e t u r n t r u e

The MBL transformation by itself does not necessarily improve the
performance of a program but it opens up new optimization opportunities.
The main effect of localization is that it might create more lock-independent
code. For instance, if a thread contains read-only references to a variable V,
localizing V will make those reads into lock-independent operations which in
turn might make the whole statement lock-independent. Consider the sample
program in Figure 5.7(a). After localization (Figure 5.7(b)), most statements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Mutex Body Localization 113

A lgorithm 5.10 Mutex body localization.___________________________
i n p u t : (1) An explicitly parallel program P in CSSAME form, (2) A variable a to be localized, (3)

A mutex body Bl (N)
o u t p u t : Bl (N) with variable a localized

1: /* Check if a can be localized (Algorithm 5.9) * /
2: if not tocaiizable(a, B l (N)) then
3: re tu rn
4: end if
5: /* Check for upward-exposed uses of a. Since the program is in CSSAME form, */
6: /* upward-exposed uses have already been computed (Algorithm 4.5). If there are */
7: /* upward-exposed uses of a then we need to make a local copy of a at the start of B i(N). */
8 : needEntryCopy <— p a ls b
9: foreach use u € expoeedUses(N) do
10: if u is a use of a then
11: needEntryCopy «— t r u e
12: end U
13: end for
14: if needEntry Copy then
15: insert the statement pja = a at the start of the mutex body
16: end if
17: /* Check if any definition of a reaches the exit nodes of B^{N). */
18: /* Since the program is in CSSAME form, the definitions that readi the exit nodes X */
19: /* have already been computed (Algorithm 4.5). If a definition */
20: /* of a reaches r , we need to make a copy of a before leaving the mutex body. */
21: needBxitCopy«— p a ls b
22: foreach definition d € rtachingDefs(X) do
23: if d is a definition of a th en
24: needBxitCopy «— t r u b
25: end if
26: end for
27: if needBxitCopy then
28: insert the statement a = pja. at the exit nodes of the mutex body
29: end if
30: /* Update references to a inside the mutex body to reference */
31: /* the local version pa instead of the shared version a. */
32: foreach reference to a inside Bl (N) do
33: replace a with p~a
34: end for
35: update CSSAME information for all references to pj i inside Bt(N)

inside the mutex body for L are lock-independent. However, none can be
moved outside because of the read and write operations to the shared variable
V at the fringes of the mutex body. If the compiler incorporates a reduction
recognition pass, it is possible to do the reduction locally and only update V
at the end (Figure 5.7(c)). Now all the lock-independent code in the mutex
body can be moved to the premutex node resulting in the equivalent program in
Figure 5.7(d). As we will discuss in Chapter 6 this is a common transformation
performed manually by programmers. Using these techniques, it is possible to
make this transformation automatically in the compiler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Summary 114

5.5.1 Single Writer, M ultiple Readers Lock Picking

Suppose that a parallel program exhibits an access pattern to a shared variable
V such that

1. V is read and written by exactly one thread Tw and it is read-only in
all of the threads concurrent with Tw (i.e. there is a single writer and
multiple readers for V),

2. all the references to V are atomic with respect to the operation being
performed (i.e., V is not an aggregate data type that may require
multiple memory operations to update or retrieve),

3. within the concurrent threads (i.e., the writer Tw and all the readers),
variable V is only accessed inside critical sections of the code, and

4. the underlying memory model is strongly consistent.

Under these circumstances it is possible to localize the references to V in
Tw so that atomicity can be maintained without requiring locks. For example,
consider the program in Figure 5.8(a). Thread To computes a value for V,
checks a bound and updates V if necessary (assume that global variables X
and Y have no conflicts). Both threads Tx and T2 read V but never modify
it. The synchronization on V is necessary to prevent threads Tx and T<i from
reading intermediate values of V while To computes. Suppose that we localize
variable V inside To to obtain the equivalent program in 5.8(b). Since X
and Y contain no conflicts and the references to V have been localized, all
the statements inside the mutex body are now lock-independent and can be
moved out to obtain the program in Figure 5.8(c). Finally, since thread To
writes to V only once, the locks are not really necessary and can be removed
to obtain the equivalent program in in Figure 5.8(d).

5.6 Summary
In this chapter we used the CSSAME framework to develop two types of
optimizing transformations: the adaptation of sequential techniques to work on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Summary 115

x = ...
Y = . . .
co begin

T 0: begin

lock(L);
a = 0;
w hile (a < = X) {

a = a + Y;
}
unlock(L);

end

T j: beg in
Iock(L);
. . . = a;
unlock(L);

en d

T 2: beg in
Iock(L);
. . . = a;
unlock(L);

end
coend

(a) Original program.

X = . . .
Y = . . .
cobegin

T0: begin

p-a = 0:
w hile (p-a < = X) {

p_a = p_a + Y;
}
lock(L);
a = p-a;
unlock(L);

end

T t : begin
lock(L);
.». — ft!
unlock(L);

en d

T 2: begin
lock(L);

unlock(L);
end

coend

(c) Alter LICM.

Figure 5.8: Effects of MBL in the

x = ...
Y = . . .
cobegin

T„: begin

Iock(L);
p -a = 0;
w hile (p-a < = X) {

p -a = p_a + Y;
}
a = p-a;
unlock(L);

end

T t ; begin
lock(L);

unlock(L);
end

T2: begin
Iocfc(L);
. . . = a;
unlock(L);

end
coend

(b) After localization.

x = ...
Y = . . .
cobegin

T0: begin

p-a = 0;
w hile (p .a < = X) {

p -a = p .a + Y;
}
a = p-a;

end

T t : begin

. . . = a;

end

T 2: begin

. . . = a;

end
coend

(d) After relaxing lock independence,

ce of single-writer, multiple-readers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Summary 116

explicitly parallel programs and the direct optimization of the synchronization
structure of a parallel program. To our knowledge the techniques presented in
this chapter are the first to address the problem of optimizing mutual exclusion
structures in an explicitly parallel program.

These transformations will benefit explicitly parallel programs that use
mutex synchronization frequently. In particular, programs that make use
of thread-safe libraries (e.g., multi-threaded Java applications) may contain
superfluous mutex synchronization that slow down the program unnecessarily.
In this context we observed that these techniques can have a significant
impact on performance. Even sequential programs can benefit from these
transformations. In the following chapter we study the effectiveness of these
techniques in several C and Java applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Results

The techniques developed in this thesis are the first step towards a general
optimizing compiler for explicitly parallel programs. We have implemented
many of the analysis and optimization algorithms presented in this thesis into
a compiler for the C language. All the example program fragments described
in previous chapters have been analyzed and optimized by our compiler. We
have also been able to perform experiments to demonstrate the potential for
some of these techniques in complete programs.

We studied two main types of applications: those in which the user has
little control over synchronization structures in the program and those in which
the user has complete control over all the synchronization used in the program.

Applications in the first group are developed in languages that expose
most of the synchronization and parallelism details. We have selected some
applications from the SPLASH suite of shared-memory parallel programs
(Singh et al. 1992) and applications bundled with the TreadMarks DSM system
(Keleher et al. 1994). These applications represent code developed by expert
programmers who are very conscious about the performance implications
of synchronization operations. The synchronization structures found in
these applications have been optimized manually by the programmer. As
a consequence we did not expect to find many opportunities for optimization
in the context of the techniques developed in this thesis. However, we did find
that some of the manual modifications made by the programmer could have
been performed automatically using our techniques.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Implementation 118

The second group consists of applications typically developed in
programming environments that produce generic skeleton code and systems
that provide thread-safe libraries. Consider a high-level programming language
like Java. Due to the thread-safe characteristics of the Java libraries,
application programs may spend up to half their execution time performing
unnecessary synchronization (Bacon et al. 1998). The key reason for this
overhead is that the libraries are generic and are not specific to an individual
application’s context. Hence, they have to be conservative in the assumptions
they make. Therefore, when considered within the context of an actual
program it might turn out that most of the synchronization operations are
not necessary. Techniques like the lock-picking strategies or lock-independent
code motion benefit these applications. Similar benefits are obtained in
parallel programs generated via high-level programming environments. These
tools must generate conservatively correct code, and are typically based on
code skeletons that, because of their generality, must contain over-constrained
synchronization. Similar to the previous case, machine generated code must
be overly conservative for generality and safety.

6.1 Implementation
Many of the algorithms discussed in previous sections have been implemented1

in a prototype compiler for the C language using the SUIF compiler system
(Hall et al. 1996). To avoid modifying SUIF’s front-end we added support for
cobegin/coend and parloop parallel structures via language macros. These
macros re-define control structures of the C language so that the compiler
can recognize them at the intermediate language level. The cobegin/coend
structure is represented by a sw itch statement. A specially named index
variable helps the compiler distinguish a regular switch statement from a
cobegin. Each different case section will be executed by a different thread
at runtime. Our system leverages on the SUIF runtime system to execute
the parallel program. SUIF’s runtime system is designed to run SPMD style
programs. Our compiler annotates cobegin statements to be executed in

1A preliminary version is available at h t t p : //www. cs .o a lb erta . ca/~ jonathan/CSSAME/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 119

parallel and modifies the index variable to be the thread id. Parallel loops are
recognized using a similar technique. A parloop is a fo r loop with a specially
named index variable. Since SUIF directly supports parloop style parallelism
all the compiler has to do is mark selected fo r loops as parallel loops.

Once the program has been parsed by the SUIF front-end, the compiler
creates the corresponding CCFG and its CSSAME form. We do not transform
the input program into SSA form. Instead we use factored use-def chains
(Wolfe 1996) in the flowgraph and display the source code annotated with
the appropriate 7r and <(> functions (variables are not renamed but referenced
using line number information in the corresponding ir or (f> functions). The
CCFG implementation is an extension of the sequential Control Flow Graph
library provided by Machine SUIF (Holloway and Young 1997). The CCFG
can be displayed using a variety of graph visualization systems. The flow
graphs in this thesis were generated by the compiler and laid out using
the Graph Viz system (North and Koutsofios 1994). The CSSAME form
for the program can also be displayed as an option. Finally, the mutual
exclusion validation techniques discussed in Section 3.3.2 are implemented as
compile-time warnings to the user.

A basic form of inter-procedural analysis (IPA) information is gathered
by the current implementation. At each procedure call, shared variables
referenced and mutex bodies defined by the called procedure are propagated
to the call site. This allows the conflict and synchronization analyzer to
treat function calls almost as if they were inlined code. Finally, we have
implemented partial support for reductions based on the SUIF reduction
recognizer. Currently, the compiler is limited to reductions inside fo r loops.

6.2 Experimental Results
Synchronization overhead is sometimes caused by an expensive implementation
of lock and unlock operations. To address this problem, several techniques
have been proposed to implement more efficient locking primitives (Bacon et al.
1998; Mellor-Crummey and Scott 1991; Unrau et al. 1994). The techniques
for eliminating superfluous synchronization operations developed in this thesis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 120

can complement the benefits of using an efficient locking mechanism.
There is another source of overhead that even the most efficient

implementation cannot alleviate: contention. Lock contention occurs when
the demand for a particular lock variable is so high that threads spend a
significant amount of time waiting for other threads to release the lock. In the
following sections we demonstrate the effects of the techniques developed in
this thesis on several programs. Section 6.2.1 describes two applications from
the SPLASH suite. Section 6.2.2 studies some parallel and sequential Java
programs.

Note that at the time of this writing, the compiler is not yet ready to tackle
all the programs described in this section. In the current implementation,
alias analysis is limited to simple pointer aliasing: the compiler only detects
aliases for pointers that explicitly take the address of a shared variable. The
compiler also lacks array analysis; it treats arrays as atomic memory references.
The Omega library (Pugh and Wonnacott 1992) could be used to perform
array section analysis. Alternatively, the array SSA form proposed by Collard
(Collard 1999) could be used. This work is beyond the scope of the thesis.

Because of these limitations we simplified the input program for some of
these applications to help the current implementation analyze and optimize the
code. The modifications included replacing the original thread creation code
with parallel loops and/or cobegin/coend structures, inlining some functions
to circumvent limitations during synchronization analysis and substituting
arrays of locks by single scalar lock variables. Once the compiler analyzed
and optimized the simplified version, we made the same modifications to the
original programs. This process was applied to the applications in Sections
Sections 6.2.1 and 6.2.3.

The framework developed in this thesis cannot be directly applied to
Java because Java has a different high-level model for concurrency and
synchronization. However, we believe that it is possible to adapt the techniques
developed in this document to fit the Java model. As a preliminary feasibility
study, we manually applied the transformation algorithms to a set of Java
applications. The results of our experimentation are described in Section
6 .2 .2 where we describe the results and the potential performance benefits

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 121

of adapting our transformations to Java.

6.2.1 SPLASH Applications

SPLASH (Stanford Parallel Applications for Shared-Memory) (Singh et al.
1992; Woo et al. 1995) is a benchmark suite for shared memory architectures
designed as a case study to evaluate different issues in shared memory
architectures. In the following sections we discuss our optimization techniques
in the context of two SPLASH applications: Water and Ocean.

Some of the mutual exclusion synchronization structures used in these
applications were manually optimized by the original developers. We will
show that using the techniques described in this thesis, it would have been
possible to obtain sim ila r performance benefits without the added complexity
of manually modifying the code.

W ater

The Water application simulates forces and potentials in a system of liquid
water molecules. The simulation is done over a specified number of time-steps
until the system reaches equilibrium. Mutual exclusion synchronization is used
when computing inter-molecular interactions and for keeping a global sum that
is computed every time-step.

The computation of inter-molecular interactions is synchronized using
one lock per molecule. The code fragment in Figure 6.1 shows the
mutex bodies in the procedure UPDATE-FQRCES. Each mutex body updates
a shared three-dimensional array. The right hand side of each expression
is lock-independent. After the LICM transformation, the mutex bodies in
this procedure are converted to their equivalent versions shown in Figure 6.2
(for space reasons we only include the first mutex body, the modifications
to the second mutex body are identical). The transformation hoisted the
right-hand side of every assignment statement to the temporary variables
t i , t 2, ...£ 9 . Furthermore, the address computation needed to perform the
array references are also lock-independent. Therefore, the compiler was able
to move the assignments to variables suifJm p19, suif-tmp2i, ■ - • suif-tm p^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results

UPDATE_FORCES(DEST. mol, comp, XL, YL. ZL, FF)
/* from the computed distances etc., compute the

intermolecular forces and update the force (or
acceleration) locations * /

doub le XL[], YL[], ZL[], FF[];
{

doub le GUg[3], G japl, G„[3], T T J3], TT(3l, TTj[3];
double GG[15][3];

/* compute local arrays Gu o , G23, G45, TT lt TT , TT2 and GG • /

/* lock locationa for the molecule to be updated • /
lock(MolLock[mol % MAXMOLLOCKS]);
VAR[mol].F[DEST]p(DIR][0] + =

G.jgpCDIR] + GG[lljpCDIR] +GG[12]pCDIR]+Cl*GJ3pCDIR];
VAR[molj.F[DEST]pCDIR][HJ + =

GG[6]pCDIR]+GG[7]pCDIR]+GG[13]pCDIR)+TTpCDIR]+GG[4][XDIR];
VAR[mol].F[DEST]pCDIR][HJ + =

GG(8J[XDIRI+GG[9IpCDIRJ+GG[MlpCDmi+TTpCDIRl+GG[5][XDrRl;
VAR[mol].F[DEST][YDIR][0] + =

GU0[YDIR]+GG[Xl]tYDIR]+GG[12l[YDni]+Cl.G MrvrDIR];
VAR(mol).F(DEST]fYDIR]pJ + =

GG[6][YDIR]+GG(7][YDIR]+GG[13][YDIR]+TT[YDIR]+GG[4][YDrR];
VAR(mol].FpEST][YDIR][HJ + =

GG[8][YDIR]+GG[9][YDIR]+GG[14][YDIR]+TT[YDIR]+GG[5][YDIR];
VAR[mol] J [DEST] [ZDIR] [O] + =

GU0[ZDXR]+GG[11][ZDIR]+GG(12][ZDIR]+C1*G13[ZDIR);
VAR[mol].FpEST][ZDIR][HJ + =

GG[6][ZDIR +GG[7][ZDIR]+GG[13][ZDIR]+TT[ZDIR]+GG[4][ZDIR];
VAR[mol] .F [DEST] [ZDIR] [H J + =

GG[8][ZDIR +GG[9][ZDIR]+GG[14][ZDIR]+TT[ZDIR]+GG[5][ZDIR];
unlock(MoILock[mol % MAXMOLLOCKS]);

lock(MolLock[comp % MAXMOLLOCKS]);
VAR[comp].F[DEST]pCDIR [O] + =

- G U0pCDIR]-GG[13]
VAR(comp].F[DEST][XDIR

-GG[6]pCDK]-GG[8
VAR[comp].F[DEST]pCDIR

-GG[7]pCDIR]-GG[9
VAR[comp].F[DEST][YDIR [O] + =

[XDIR]—GG[14]pCDIR]-C1*G45pCDIR];
P J +=
pCDIR]—GGfUjpCDIR]—TTjpCDIR]—GG[2]pCDIR];
P J+ =
[XDIR]—GG[12]pCDIR]—TTjpCDIR]—GG[3][XDIR];

- G U0[YDIR]-GGp3
VAR(comp]JpECT][YDIR

-GG[6][YDIR]-GG[8
VAR[comp].F[DEST][YDIR

-GG[7][YDIR]-GG[9

[YDIR]—GG[14][YDIR]—Cj*G<#[YDIR];
P J +=
[YDIR]-GG[n][YDIR]—TTj[YDIR]—GG[2][YDIR];
P J +=
[YDIR]—GG[12][YDIR]—TTj[YDIR]—GG[3][YDIR];

VAR[comp]JpEST][ZDIR][0] + =
-G 110[zblR]—GG[I3][ZDIR]—GG(14][ZDIR]-C1*GA8[ZDIR];

VAR[comp].F[DEST][ZDIR][Hj + =
—GG[6][ZDIR]—GG[8][ZDIR]—GG[11][ZDIR]—TTj[ZDIR]—GG[2][ZDIR];

VAR[compj.F[DEST][ZDIR][HJ + =
-GGt7][ZDIR]-GG[9][ZDIR]-GG[12][ZDIR]-TTj[ZDIR]-GG[3][ZDIR];

unlock(MolLock[comp % MAXMOLLOCKS]);
} /* end of subroutine UPDATE-FORCES • /

Figure 6.1: Computation of inter-molecular interactions in Water.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 123

outside the mutex body. The resulting mutex body contains the minimal
set of computations needed to maintain the semantics of the original code in
Figure 6.1.

In a more recent version of the SPLASH suite, the Water application has
been modified so that the code that computes inter-molecular interactions
does not need this synchronization anymore (Woo et al. 1995). Therefore,
when applied to the new version, the LICM optimization has no effect. The
effect of reducing the size of mutual exclusion sections is only measurable if
there exists a high lock overhead in the original program. In the case of Water,
mutual exclusion sections are very small (the sections in Figure 6.1 are the two
biggest ones) and total synchronization overhead can be reduced by solving
larger problems (Singh et al. 1992).

To study the effects of LICM in Water, we performed experiments that
affected the total number of molecules (N), the number of molecule locks
(ML), and, the number of simulation time-steps (TS). Experiments were
performed on an SGI PowerChallenge with 8 processors and 384Mb of memory.
The implementation uses SGI native threads (sproc) and hardware locks
(ulock). All the experiments were executed on 8 processors with no other
system activity.

The first experiment studies the performance effects of LICM as a function
of synchronization overhead. As the number of time-steps increases, so does
synchronization overhead. Table 6.1 shows the speedups obtained as a function
of the number of time-steps and number of molecules simulated. Notice how
the speedups obtained by LICM are lower when a larger number of molecules
are simulated. This is caused by the larger computation to synchronization
ratio in the larger problem. Also, by restricting the number of molecule
locks available we are increasing lock contention. Naturally, as the number
of available locks increases, the effects of LICM are diminished.

Since molecule locks are accessed more as the number of time-steps
increases, the contention on these locks also increases. To measure lock
contention we used the hardware timers provided by the system to measure
the average delay of acquiring a lock. We then computed the average delay
over the 10 molecule locks. This is shown in Table 6.2. This table shows how

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 124

UPDATE_FORCES(DEST. mol, comp, XL, YL, ZL. FF)
doub le XL[], YL[], ZL[J, FF[];

{

GG[8][0]
= GnpM + GG[H][1

t5 = GG[6][1] + GGf7][l
[1] + c.

= GG[8][1] + GG[9][1
tT = Gn p [2] + GG[11][2]
t , = GG[6][2] + GG[7][2
t9 = GG[8][2] + GG[9][2
suif-tmpl9 = 4tVAR[mol
suif-tmp31 = &VAR[mol
suif-tm p^ = 4tVAR[moll.. t .
suif-tmpgg = AVARfmol .F[7
sulf-tmp,7 = &VAR[mol 0,71
suif-tmpjg = &VAR[mol
suif_tmp31 = &VAR[moI
suif-tm pjj = itVARimolj.ii,,
suif-tm pjj = 4tVAR[moI].F[7

lock(MolLock[moI % 216]);
«8uif.tmplg = •suif-tmp19 + t t
«8ui£.tmp21 = *suif_tmp21 + t2

= *suif.tmpj3 + t3
«suif_tmpJ5 = «auif_tmpJ5 + t ,
•suiL tm pjr = *suif_tmp27 + ts
*suif_tmpw = *suif.tmp29 + ts
»suif-tmp31 = «8uif_tmp31 + t7
*suif-tmp33 = *suif_tmp33 + t8
•suif-tm pjj = •suif-tmp3S + t9
unlock(MolLock[mol % 216]);

[1] + TT[1] + GG[4][1];
[1] + TT[1] + GG[5][1];
[2] + Cj . GJ3[2];
[2] + TT[2] + GG[4][2];
[2] + TT[2] + GG[5][2];

}
/ • Second mutex body removed for space considerations. • /

Figure 6.2: Effect of LICM on the first mutex body of Figure 6.1.

64 molecules (10 molecule locks) 216 molecui es (10 molecule locks)
Time Unopt Opt Relative Unopt Opt Relative
steps time (secs) time (secs) Speedup time (secs) time (secs) Speedup

70 157 144 1.09 1527 1463 1.04
80 183 171 1.07 1772 1763 1 .00

100 235 219 1.07 2344 2285 1.02

120 296 269 1.10 2827 2809 1 .00

Table 6.1: Speedups obtained by LICM on Water as a function of the number of
simulation time-steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 125

64 molecules 216 molecules

Time
steps

Unoptimized
avg delay

(/isecs)

Optimized
avg delay

(fisecs)
Ratio

Unoptimized
avg delay

{fi secs)

Optimized
avg delay

(fisecs)
Ratio

70 699 72 9.71 561 68 8.25
80 712 73 9.75 575 72 7.99
100 718 71 10.11 557 70 7.96
120 729 85 8.58 564 62 9.10

Table 6.2: Effects of LICM on lock contention in Water.

average lock contention on the molecule locks increases as a function of the
number of simulation time-steps. Notice that although LICM reduces lock
contention significantly, its impact on the runtime of the program may not be
too noticeable if the ratio of computation to synchronization is high enough.
Again notice how lock contention decreases with the larger problem size. This
explains the diminished effects of LICM on large problems.

This implementation of Water contains another optimization that has been
applied manually by the programmer: the simulation computes global sums
that are first computed locally and then propagated to the global counter. To
test the effects of MBL and LICM, we simplified these routines to perform
all the computations on the shared variables directly. The intent of this
experiment is to show that it is possible to automate common optimization
patterns that experienced programmers implement manually.

Figure 6.3 shows a fragment of a routine that computes a reduction on
the global variable VIR. After recognizing the reduction, the compiler applied
MBL and LICM to obtain the equivalent and more efficient code in Figure 6.4.2

This is virtually the same code included in the original Water application.

Ocean

Ocean studies eddy and boundary currents in large-scale ocean movements.
Mutual exclusion is used to update global sums and to access a global
convergence flag used in the iterative solver. The update of global sums is
done with the same strategy used in Water. A local sum is computed and

2We needed to annotate references to array VAR as non-conflicting to circumvent
limitations in the compiler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 126

ENTRAF()
{

/* calculate summation of the product of the displacement and computed
force for every molecule, direction, and atom */

lock(gl—>IntrafVirLock)

for (mol = StartM olprodDJ; mol < StartMol[ProcID+l]; mol++)
for (dir = XDIR; dir < = ZDIR; d ir++)

fo r (atom = 0; atom < NATOM; atom-H-)
VIR + = VAR(mol].F[DISP][dir][atom] * VAR[mol].F[FORCES][dir][atom];

unlock(gl->IntrafVirLocfc)
} /* end of subroutine INTRAF */

Figure 6.3: Simplified version of function INTRAF in Water.

in t r a f o

{

-local.VIR s 0.0;
for (mol = StartMolfProcID]; mol < StartMol[PTOcID+l]; mol-H-)

fo r (dir = 0; dir < = 2; d ir++)
for (atom = 0; atom < 3; atom ++)

Jocal.V IR = JocaLV IR + VAR(mol].F(01(dirJ[atom] • VAR[mol]J(7][dirJ[atom];

Iock(gl—>IntrafVirLock)
VIR = VIR + JocaLVIR;
unlock(gl->IntrafVirLock)

}

Figure 6.4: Effects of MBL and LICM on the code in Figure 6.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 127

Ocean
size

Unoptimized
time (sec)

Optimized
time (sec)

Relative
Speedup

6 6 x 6 6 2 1 19 1 .1 1

130 x 130 69 56 1.23
258 x 258 258 198 1.30
514 x 514 865 787 1 .1 0

Table 6.3: Effects of MBL and LICM on Simple Ocean.

aggregated to the global sum.
To study the effect of MBL and LICM on this application, we re-wrote

some routines in Ocean to use the simpler method of updating global sums.
We named this new version Simple Ocean. The intention is to demonstrate
how some of the optimizations that are traditionally performed manually by
the programmer can be automated using the techniques developed in this
thesis. Table 6.3 shows the performance improvements obtained by applying
MBL and LICM to Simple Ocean. The program was executed on 8 processors
with four different ocean sizes and a time-step of 180 seconds.

Procedure slave in Figure 6.5 contains a mutex body that updates a global
sum (variable p sib i). This version is different from the original in that the
reduction is computed directly on the shared variable p sib i. After reduction
recognition and the application of MBL and LICM to the code in Figure 6.5,
the compiler generated the equivalent and more efficient version of Figure
6 .6 . The resulting code is the same code for procedure slave included in
the original Ocean application, but in this case the compiler performed the
optimization, not the programmer.

The performance improvements obtained on Simple Ocean are the same
improvements obtained by the manual optimizations done in the original
program. The important point of this experiment is to show that using
the techniques developed in this thesis it is possible to automatically
optimize inefficient (but simple) synchronization patterns. We do not expect
experienced programmers to write such inefficient synchronization, but this
kind of code could be found in programs written by a less experienced
programmer or generated from generic code templates in a programming
environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 128

void
slave ()
{

/* update the shared variable peibi by summing all the psibis
of the individual processes into it. This is a simpler but
more inefficient version of the original Ocean application. * /

lock (peibilock);

if (prodd = MASTER) {
psibi = psibi + 0.25 * (wrkt—>psib[0][0]);

>
i f (prodd = xprocs - 1) {

psibi = psibi + 0.25 * (wrkl ->pdb[0][jm — 1]);
}
i f (prodd = nprocs - xprocs) {

psibi = psibi + 0.25 * (wrk1->psib[im - 1][0]);
}
if (prodd = nprocs - 1) {

peibi = psibi + 0.25 * (wrk1—>psib(im — l][jm — 1]);
}
i f (firstrow = 1) {

fo r (j = firstcoi; j < = lastcol; j+ +) {
peibi = peibi + 0.5 • wrk1->peib[0]Q];

}
}
if ((firstrow + numrows) = im - 1) {

fo r (j = firstcoi; j < = lastcol; j+ +) {
peibi = peibi + 0.5 * wrkt—>psib[im — l]p];

}
}
if (firstcoi = = 1) {

fo r 0 — firstrow; j < = lastrow; j+ +) {
peibi = peibi + 0.5 * wrkt —>psib[j][0];

>
}
i f ((firstcoi +■ numcols) = jm - 1) {

fo r (j = firstrow; j < = lastrow; j+ +) {
peibi = peibi + 0.5 * wrkt —>pefi>p]Qm — 1);

}
}
fo r (iindex = firstcoi; iindex < = lastcol; iindex++) {

for (i = firstrow; i < = lastrow; i+ +) {
peibi = peibi + wrk t - > psib[i][iindex];

}
}
unlock (>peibilock);

Figure 6.5: Procedure slave in Simple Ocean.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 129

void
slave ()
{

Jocal.psibi = 0.0;

if (prodd = MASTER) {
JocaLpdbi = JocaLpdbi + 0.25 * (wrkl—>psib[0][0]);

}
i f (prodd = xprocs — X) {

JocaLpdbi = JocaLpdbi + 0.25 * (wrkt ->pdb[0j[jni — 1]};
}
i f (prodd = nprocs — xprocs) {

JocaLpdbi = JocaLpdbi + 0.25 * (wrkl—>psib[im — 1][0]);
}
if (prodd = = nprocs — I) {

JocaLpdbi = JocaLpdbi + 0.25 * (wrkl ->pdb[im — l][jm — 1]);
}
if (firstrow = 1) {

for (j = firstcoi; j < = lastcol; j+ +) {
JocaLpdbi = JocaLpdbi + 0.5 * wrkt—>pdb[0][j];

}
}
i f ((firstrow + numrows) = = im — 1) {

for (j = firstcoi; j < = lastcol; j+ +) {
JocaLpdbi = JocaLpdbi + 0.5 * wrkj—>psib(im — 1][}];

}
}
i f (firstcoi = 1) {

for (j = firstrow; j < = lastrow; j+ +) {
JocaLpdbi = JocaLpdbi + 0.5 • wrkt ->pdb[j][0];

}
}
i f ((firstcoi + numcols) = = jm — X) {

for (j = firstrow; j < = lastrow; j+ +) {
JocaLpdbi = JocaLpdbi + 0.5 • wrkt —>pdb(j]pm — 1];

}
}
for (iindex = firstcoi; iindex < = lastcol; iindex++) {

for (i = firstrow; i < = lastrow; i+ +) {
JocaLpdbi = JocaLpdbi + wrkt ->pdb(i](iindex];

}}
lock (pdbilock);
pdbi = psibi + JocaLpdbi;
unlock (pdbilock);

Figure 6 .6 : Effects of MBL and LICM on the code in Figure 6.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 130

6.2.2 Java Applications

We selected programs originally written in Java because we anticipated
optimization opportunities due to the thread-safe nature of its libraries.
Although the concurrency and synchronization model used in Java are different
from the assumptions made in this thesis, we think that it might be possible
to apply these ideas to the Java environment. We study the potential benefits
of LICM and Lock Picking in the context of concurrent and sequential Java
programs. To illustrate the effects of LICM we show two parallel applications:
parallel sorting and parallel matrix multiply.

PSR S (P arallel Sorting by R egular Sampling) is an explicitly parallel
sorting algorithm (Shi and Schaeffer 1992) that samples the data
to generate pivot elements that evenly distribute data among the
processors. Each process uses a sequential sort algorithm to sort its
own partition. The resulting data is then merged to obtain the final
sorted list. The original Java program was implemented using the
JGL (Java Generic Library) class library which provides a sequential
quicksort algorithm and classes for creating abstract arrays. Since JGL
is a thread-safe library, many of its classes and methods are synchronized.
In this particular application, some of the synchronization is unnecessary.
When a process is sorting, it never reads or writes outside its designated
partition. Therefore, references to the shared array are lock independent
and can be hoisted using LICM.

M atrix m ultip ly (MM): input matrix A is blocked into non-overlapping
sections which are assigned to a different process. Each process writes
to a different cell of the result matrix C and makes read-only references
to the input matrices A and B. No synchronization is required in this
algorithm but the class libraries make use of synchronized methods to
read and write to the different arrays.

Java Im plem entation

We performed two sets of experiments with these applications. First, we
modified the Java implementation of these algorithms to emulate the effect of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 131

List size
Unoptimized

time
(secs)

Optimized
time
(secs)

Relative
Speedup

50,000 13 11 1.18
1 0 0 ,0 0 0 24 13 1.85
500,000 123 51 2.41
750,000 187 75 2.50

1 ,0 0 0 ,0 0 0 276 113 2.44
1,250,000 336 141 2.38

Table 6.4: Effects of LICM on the original Java implementation of the PSRS sorting
algorithm (8 processors).

Matrix size
Unoptimized

time
(secs)

Optimized
time
(secs)

Relative
Speedup

64x64 4 4 1 .0 0

128x128 9 8 1.13
256x 256 33 17 1.94
512x512 172 1 0 0 1.72

1024x1024 1484 810 1.83

Table 6.5: Effects of LICM on the Java implementation of matrix multiplication (8
processors).

Lock-Independent Code Motion. Essentially we transformed two synchronized
methods into regular methods. In the case of PSRS, this is the a t method
in the JGL Object Array class. In the case of matrix multiply, this is the
intA t method in the JGL IntArray class. Both methods are automatically
synchronized by the library but in these applications, such synchronization is
unnecessary because the different threads never make conflicting references
to common array locations. Tables 6.4 and 6.5 show the performance
improvements obtained by applying LICM to the PSRS and matrix multiply
applications respectively. The programs were executed on a dedicated
8 -processor SGI PowerChallenge.

Notice that this seemingly simple transformation has a noticeable impact
on performance. On average, the optimized version of PSRS performs twice
as fast as the unoptimized version. This is a strong indication of the potential
that these types of techniques have on high-level languages like Java. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 132

List size
Unoptimized

time
(secs)

Optimized
time
(secs)

Relative
Speedup

50,000 197 67 2.94
1 0 0 ,0 0 0 27 10 2.70
500,000 170 62 2.74
750,000 299 76 3.93

1 ,0 0 0 ,0 0 0 407 160 2.54
1,250,000 618 359 1.72

Table 6 .6 : Effects of LICM on the C implementation implementation of the PSRS
sorting algorithm (2 processors).

Matrix size
Unoptimized

time
(secs)

Optimized
time
(secs)

Relative
Speedup

64x64 2 1 2 .0 0

128x128 12 5 2.40
256x256 82 2 2 3.73
512x512 638 163 3.91

1024x1024 5077 1276 3.98

Table 6.7: Effects of LICM on the C implementation of matrix multiplication (2
processors).

obtained similar improvement factors in matrix multiply. For small matrices,
both versions performed roughly the same but as the size of the matrices grows,
the effects of LICM tend to be more significant.

C Im plem entation

In the second experiment we converted the Java programs into C using the
Toba translator (Proebsting et al. 1998). Since the compiler cannot handle the
code generated by Toba automatically, we manually applied the optimizations
to the generated C programs.

These experiments were executed on a different machine because the Toba
runtime libraries did not work on the PowerChallenge. We used a dedicated
two-processor SGI Octane for the C implementation of PSRS and matrix
multiply. Tables 6 .6 and 6.7 show the results obtained for PSRS and matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Results 133

multiply respectively.3

Although the execution environment for both experiments is different,
we observed an interesting fact. The performance improvements obtained
in the C version of these programs are better than those obtained in their
Java counterparts. In the case of matrix multiply, these improvements are
significantly better. Using the SpeedShop profiling tool available on SGI
machines we determined that in some cases the unoptimized programs spent
up to 30% of their time trying to enter the monitor protecting the synchronized
methods. In these experiments we only used two threads to execute the
application and the profiling tool did not report any other thread activity.
There are two explanations for this excessive synchronization overhead: (a)
the implementation of locks in Toba is inferior to that of Java, or, (b) the
individual threads in the C version are so much faster than the Java version
that once they leave the critical section they quickly try to acquire the lock
again.

The profiling logs show that the function acting as the entry point to
the monitor spends roughly 70% of its time spinning on the lock variable
that implements the monitor. We conclude that the excessive synchronization
overhead of the C version is mostly due to lock contention. However, as the
results in the next section show, the lock implementation is also important as
it may also affect the performance of sequential programs.

Sequential Java Program s

In this section we show how our transformation techniques might benefit
sequential programs. Since the CSSAME form for a sequential program has no
7r functions, the Lock-Picking transformation can easily traverse all the mutex
bodies in the program removing the synchronization operations. To illustrate
the potential benefits of this optimization we used a set of benchmark programs
that exercise different components of the JGL abstract class library. There are
three programs:

(1) Array exercises common operations on abstract arrays: get, put,
3We also ran the Java version on the SGI Octane. The speedup ratios were the same as

those shown in Tables 6.4 and 6.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Experimental Resiilts 134

Benchmark
Unoptimized

time
(secs)

Optimized
time
(secs)

Relative
Speedup

Array (1,000) 23 2 0 1.15
Array (10,000) 547 534 1 .0 2

Map (3,000) 32 30 1.07
Map (30,000) 273 227 1 .2 0

Sort (3,000) 32 30 1.07
Sort (30,000) 407 327 1.24

Table 6 .8 : Effect of Lock-Picking (LP) on sequential Java programs.

iterate, clear and remove.
(2) Map exercises common operations on hash tables: add, find, remove

and clear.
(3) Sort compares the sorting algorithm provided by JGL against a

hand-coded quicksort algorithm.
Table 6 .8 shows the improvements obtained by applying lock-picking to

these programs. We executed both the Java and C versions of these programs;
in both cases the results were similar. In general, we obtained performance
improvements between 1 0% and 2 0 % when lock-picking was applied.

The performance gains obtained by removing the unnecessary locks are
directly related to this particular implementation of mutual exclusion. Since
these are sequential programs, all the synchronization overhead is caused by
the actual call to lock and unlock. There is no lock contention. An alternative
to removing the locks would have been to use a more efficient mutual exclusion
synchronization implementation (Bacon et al. 1998). We are convinced that
a combination of compiler optimizations and efficient lock implementations is
the best approach in these cases.

6.2.3 Other Applications

We also studied two applications included in the TreadMarks DSM system
(Keleher et al. 1994), namely the Traveling Salesman Problem (TSP) and
a parallel quicksort implementation (QS). Lock contention is not a problem
in these two implementations. The LICM transformation made some minor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Conclusions 135

modifications to the mutex structures in these programs that did not affect
the runtime performance of either program. However, the analysis techniques
helped us locate data races and locking irregularities.

This TSP implementation takes advantage of the weak memory semantics
in TreadMarks. Since updates to shared variables are only visible at
synchronization points, TSP makes unprotected references to shared variables
without causing data races. However, with the strong memory semantics used
in our model it was necessary to privatize some global variables to avoid data
races in the program. While none of the synchronization transformations
found opportunities for optimization, the analysis of mutex sections detected
an irregularity in the original program: one of the procedures was tripping
over a lock, (i.e., the same lock was being acquired more than once). The
compiler also found several data races triggered by conflicting data references
outside mutex bodies.

The quicksort implementation used another implementation “trick” to
force propagating the update to a flag variable shared between the worker
threads. The code fragment in Figure 6.7 shows how this is implemented.
Note that this is the same code from Figure 3.5. We have reproduced it
here for easier reference. To propagate an update of the shared variable
pause-f lag in TreadMarks, it is necessary to use lock and unlock operations
to force a consistency operation in the DSM system. However, using the
stronger memory semantics assumed in our model the compiler determined
that since the mutex body for lock variable pause_lock was always nested
inside a mutex body for lock variable TSL, it could be eliminated. Therefore,
the lock operations at lines 13,15, 21 and 23 were all removed by the compiler.

6.3 Conclusions
The programs described in this chapter represent two different types of
explicitly parallel programs which we call high-level and low-level parallelism.
The first group (low-level parallelism) are programs developed in environments
where the user has complete control over the parallel and synchronization
structure of the program. Typically, these programs have been manually

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Conclusions 136

1 S d e f in e NPROCS 5
2 S d e f in e DONE —1
3
4 in t PopWork(ThskElement .task)
5 {
6 lock(TSL);
7
8 w hile (TaskS tackTop = 0) {
9 if (++NumWaiting = NPROCS) {

10 / • All the threads are waiting for work.
11 * We are done.
12 * /
13 loclc(pause-lock);
14 pause, flag = 1;
15 unlock(pause-lock);
16
17 unlock(TSL);
18 re tu rn DONE;
19 } else {
20 if (NumWaiting = 1) {
21 lock(pause.lock);
22 pauselflag = 0;
23 unlock(pause-lock);
24 }
25
26 unlock(TSL)
27
28 /* Wait for work. This is the only
29 • statement no t p ro tec ted by TSL.
30 */
31 w hile (ipauseJlag) ; /* busy-wait */
32
33 lock(TSL);
34
35 if (NumWaiting = = NPROCS) {
36 unlock(TSL);
37 re tu rn DONE;
38 }
39 — NumWaiting;
40 }
41 } /* while task-stack empty • /
42
43 /* Pop a piece of work horn the stack • /
44 TbskStackTbp ;
45 task->left = TbskStackfIbskStacklbp].left;
46 task—>right = ThskStack[ThskStacklbp].right;
47
48 unlock(TSL);
49
50 re tu rn 0;
51 }

Figure 6.7: Nested mutex bodies in function PopWorkQ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Conclusions 137

optimized by experienced programmers who make an effort to minimize mutual
exclusion sections as much as possible.

The second group (high-level parallelism) includes systems that offer
thread-safe libraries and programs developed in programming environments
that generate generic code templates on behalf of the user. These
applications can contain conservative mutual exclusion structures that may
hurt performance unnecessarily.

We have shown that the techniques developed in this thesis can have
a significant impact on the performance of high-level parallel applications.
Furthermore, we have also shown that performance gains can be obtained
in low-level parallel programs. We have demonstrated that it is possible to
automate some of the manual transformations that programmers routinely
make to minimize mutual exclusion sections.

We consider these techniques a first step to fully exploiting the optimization
possibilities in explicitly parallel programs. Currently, our technology allows
the compiler to perform some of the same optimizations that an experienced
programmer can do manually. In the future we expect this situation to
be reversed: compilers for parallel programs will make more and better
transformations that cannot be easily duplicated by programmers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions
Explicitly parallel programs for shared memory architectures offer new
challenges to an optimizing compiler; multiple threads of activity in a parallel
program can alter data and control dependencies in ways that existing compiler
technology cannot detect. The new analysis and optimization techniques
developed in this thesis represent a significant step towards improving the
capabilities of compilers for explicitly parallel programs. We expect these
techniques to be particularly useful in the context of high-level concurrent or
thread-based languages. Of particular importance in these environments is the
ability of the compiler to understand synchronization operations which can be
a source of substantial overhead in some applications.

Although compilers for parallel computing have been the focus of
intense research and development, most efforts have been concentrated on
the automatic transformation of sequential programs into their parallel
counterpart. Parallelizing and vectorizing compilers take a sequential program
and turn it into their equivalent parallel version. The topic of analyzing
explicitly parallel code for the purpose of optimization has received scant
attention. The CSSAME framework proposed in this thesis provides the
necessary tools for a compiler to reason about and optimize an explicitly
parallel program containing synchronization.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Summary of Contributions 139

7.1.1 Analysis

The CSSAME form provides a comprehensive data-flow framework for
analyzing explicitly parallel programs. Inter-process interactions via data
sharing and synchronization constructs are taken into consideration. In this
thesis we have shown how to build the fundamental data structures and we
have used them to find basic information like reaching definitions, reached
uses and mutual exclusion synchronization patterns. We have also shown how
existing synchronization analyses can be incorporated into the base framework
to augment the non-concurrency information needed to disregard shared
memory interactions that are made impossible by synchronization restrictions.

The memory semantics considered by this work represent the most general
scenario from the point of view of an optimizing compiler, since every update to
a shared memory variable is immediately visible to other threads, the compiler
can make no assumptions about the value of the variable at any point in the
program.

Weaker memory models allow shared memory updates to be propagated
at later time. This is typically used in Distributed Shared Memory systems to
optimize traffic through the memory interconnect. Shared memory is updated
after certain events like synchronization points or via specific memory barrier
instructions inserted in the program. Incorporating these semantics into the
CSSAME construction algorithm may lead to fewer n functions which in turn
will allow more aggressive transformations.

Synchronization is an important component of every parallel program. An
optimizing compiler must be aware of synchronization constructs in a parallel
program for two fundamental reasons:

1. V alidation. We have shown how the compiler can warn the user
about illegal or inconsistent synchronization patterns when using mutual
exclusion. This can be augmented with other existing synchronization
analysis methods that can detect deadlocks and race conditions in a
program. Although it has been shown that some of these methods are
exponentially expensive, simplified versions can still be used to provide
compile-time warnings to the user.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Summary of Contributions 140

2 . O ptim ization. Synchronization can provide several optimization
opportunities. The main effect of synchronization is the elim ination

of some shared memory interactions that may be preventing a
transformation. It is also possible to detect overly restrictive
synchronization patterns like nested mutex structures that can be
eliminated (Section 5.3).

7.1.2 Optimization

We have shown how the CSSAME form is unique in allowing new
optimization opportunities by taking advantage of the semantics imposed
by synchronization. Two types of optimization are possible: the adaptation
of existing sequential techniques and the direct optimization of parallel and
synchronization structures in the program.

A dapting Sequential Techniques

The reduction of memory conflicts across threads can improve the effectiveness
of adapted scalar optimization strategies like constant propagation. We have
adapted a sequential dead-code elimination algorithm. In general, the process
of adapting an existing sequential technique is mainly an implementation issue,
especially if the technique is SSA based.

The concurrent version needs to consider 7r functions in addition to (f>
functions. Also, cost models might need to be altered. For instance, in common
sub-expression elimination, if a subexpression is common across several threads
it might be cheaper to make each thread compute the expression instead of
pushing it up into a sequential section of the program.

O ptim izing th e S tru c tu re o f a P aralle l P rog ram

In this thesis we have introduced three new optimization techniques that are
specifically targeted at explicitly parallel programs: lock picking examines
and removes unnecessary lock and unlock operations, lock-independent code
motion moves code that does not need to be locked outside critical sections
and mutex body localization converts shared memory references into local

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work 141

memory references. Although we do not expect experienced programmers
to write overly restrictive synchronization patterns, high-level systems like
Java make use of generic thread-safe libraries that must make conservative
assumptions about the application’s context. Therefore, when considered
within the context of a particular program it might turn out that many
synchronization operations are not necessary. We have shown how techniques
like lock picking and lock independent code motion benefit these applications.

We consider these techniques a significant step towards facilitating the
adoption of high-level systems with language-supported parallelism and
synchronization. These systems typically provide powerful abstractions that
make parallel programming easier, but those same abstractions often hinder
performance. Experienced programmers recognize these limitations and
manually circumvent them by removing abstraction layers to speed-up their
code. This defeats the purpose of having the high-level abstractions and it is
something that should be addressed by the compiler, not the user.

7.2 Future Work
Our long-term goal is to achieve the same level of sophistication in
compilers for explicitly parallel languages as that of current compiler
technology for sequential languages. The development of a complete
compilation/performance tuning system for explicitly parallel programs is
a massive multi-year project. In this thesis we have presented the base
framework for such a project. The following sections discuss future work
directions and our vision for what an optimizing compiler for parallel languages
should provide.

7.2.1 Parallelism

There are many ways of specifying parallel activity in a program. The
primitives used in this work, cobegin/coend and parloop, were selected
because of their conceptual simplicity and expressive power. They can be
used to describe a wide variety of task and data parallel programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work 142

mainQ
{

/* Call function f() to execute
concurrently with the main
thread.

*/
fork(f);

do-work();

/ • Wait for child thread. */
wait();

}
f()
{

do_work();
}

Figure 7.1: Expressing parallel activity using fork.

Other m echanisms can be incorporated into the framework. For instance,
many platforms provide a fo rk system call that takes a function name as its
argument. When invoked, fo rk launches a new thread to execute the given
function in parallel. The calling thread continues to execute concurrently with
the newly launched thread (Figure 7.1).

The important information to be gathered is the concurrency relation given
by Algorithm 3.2. Given two flowgraph nodes a and 6, the concurrency analysis
determines whether a and b may execute concurrently. This accuracy of the
concurrency information is subject to the assumptions made by the analysis
method, but it must be conservatively correct. When it is not clear whether
two nodes may execute concurrently or not, the analysis must assume that
they will.

In some cases, gathering this information may be a simple task. For
instance, in a high-level programming environment like Enterprise (Schaeffer
et al. 1993), all the concurrency information is contained in an external graph
representation of the program modules which can be readily used by the
compiler. In other cases, this might be more difficult. In the case of the
example program in Figure 7.1 the analysis should traverse the flow graph for
each function marking for each statement which other statements can execute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work 143

concurrently. Initial support for the pthreads library (Lewis and Berg 1998)
has been implemented in our compiler.

7.2.2 Synchronization

Synchronization analysis is a fundamental component of every optimizing
compiler for explicitly parallel languages. Information gathered from the
synchronization patterns in the program can be used to warn the user about
potential problems and to make optimization decisions.

It is important to observe that some synchronization mechanisms offer
little non-concurrency information to a static analyzer. Consider for instance
counting semaphores (Tanenbaum 1992). Counting semaphores are used to
allow a limited number of threads to have concurrent access to the same
resource pool. These semantics do not facilitate the elimination of % functions
as is the case with lock, b a r r ie r and se t/w a it constructs. However, if
the compiler can determine that a particular counting semaphore is always
initialized to 1 then it can be treated like a mutual exclusion operation.

Synchronization can also be achieved without using special constructs. A
typical example is given in Figure 7.2. Thread Ti will not start executing
until thread To sets variable busy to 0. Although detecting this pattern
might be more involved than recognizing synchronization primitives, it still
could be incorporated and its effects would be the same as any other mutual
exclusion construct. Both calls to function compute () in this example will be
non-concurrent.

7.2.3 Other Memory Models

Different memory models have an impact on the placement of tt functions
because they allow different memory interleavings than the semantics
considered in this thesis. Earlier SSA frameworks for explicitly parallel
programs were based on copy-in/copy-out semantics, a weaker form
of consistency that guarantees updates at certain synchronization points
(Srinivasan et al. 1993).

We plan to adapt the CSSAME infrastructure to different memory models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work 144

main()
{

busy = 1;
cobegin {

T0: begin
compute();
busy = 0;

end

T t : begin
/* busy-wait until T0 has computed */
w hile (busy = 1)

; /* busy wait */

compute();
end

}
}

Figure 7.2: Mutual exclusion synchronization without locks.

Currently we are investigating release-consistent models (Keleher et al. 1994).
In a release-consistent memory, updates to shared variables are only visible at
synchronization points. This may lead to the elimination of more n functions
which in turn allow more aggressive optimizations.

7.2.4 Dependency Analysis

Results obtained in vectorizing and parallelizing compilers are also important
in a compiler for explicitly parallel programs. In particular, the dependency
analysis techniques developed for vectorizing and parallelizing compilers are
an invaluable tool to fine-tune information about shared array references.
Recent work proposes adapting a sequential array SSA form to the parallel
case (Collard 1999).

7.2.5 Other Optimizations

Partial Redundancy Elim ination (PRE)

Chow et al. developed an SSA-based partial redundancy elimination
algorithm for sequential programs called SSAPRE (Chow et al. 1997).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work 145

a = 5
b = 4
c = 2

cobegin

cobegin
T 0: begin

t = a * b;
end

T„: begin
a = 5;
b = 4;
t = a * b;

end

T t : begin
v = c / 3;

T t : begin
c = 2;
v = c / 3;

end
coend
print(t, v);

end
coend

(a) Before thread propagation. (b) After thread propagation.

Figure 7.3: Thread propagation optimization.

The transformation builds SSA information for selected sub-expressions.
Expressions are assigned to hypothetical temporaries and the SSA information
is built on those temporaries. Whenever one of the operands of the expression
is modified, the associated temporary is also considered modified. Adapting
SSAPRE to the parallel case involves building CSSAME information for the
temporaries and treating them like any other variable in the program.

Thread Propagation

Thread Propagation is a code motion strategy designed to increase the
granularity of individual threads and avoid the sequential processing overhead
for threads that do not use computations made in sequential portions of the
code. We will use a simple example to illustrate the idea. Consider the
program in Figure 7.3(a). The first three lines of the program compute new
values for variables a, b and c. Thread To uses variables a and b and thread T\
only uses c. Figure 7.3(b) shows the results of applying the thread propagation
optimization to the program on the left. Since thread T\ does not use variables
a or b, both assignments in the sequential section of the program can be
moved inside T0 so that T\ does not have to pay the sequential overhead for
computations that it will not use. The same reasoning is applied to thread To
when moving the assignment of variable c to the body of thread Ti.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 Conclusions 146

Lock Partitioning

Lock partitioning examines all the mutex bodies in a single mutex structure to
determine whether they access the same set of variables. Consider a program
that uses a single lock L to serialize the access to variables a, b, x and y.
Assume that only one mutex body references x and y while the other mutex
bodies in the program reference a and b. We can safely replace L with two
locks, one for the mutex body referencing x and y and another one for the
mutex bodies referencing a and 6 .

The key idea is that if the mutex bodies are accessing different sets of
variables, then protecting all the references with a single lock is not necessary
and restricts concurrency in the program. Lock partitioning should determine
how many disjoint sets of variables are referenced by the different mutex bodies
and replace the original lock with one lock for each set of variables.

7.3 Conclusions
An optimizing compiler for explicitly parallel languages must be able
to handle different types of parallelism, synchronization constructs, and
shared memory semantics. For instance, the compiler should recognize
different synchronization constructs and adjust the data-flow representation
appropriately. In this thesis we developed an SSA-based framework for
analyzing these three elements. Regardless of the chosen analysis framework,
it is important that it incorporates these three elements. Otherwise, decisions
based on this analysis might yield erroneous transformations.

Optimizing transformations can be categorized as either adaptations of
traditional sequential optimizations from or techniques that target one of
the three elements mentioned above: parallelism, synchronization and shared
memory semantics. In this thesis we have concentrated on the optimization
of mutual exclusion synchronization. Using the prototype compiler that we
are building, we will continue to investigate new analysis and optimization
techniques for explicitly parallel programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

Aho, A. V., R. Sethi, and J. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Second. Reading, MA: Reading, Mass.:
Addison-Wesley.

Bacon, D., R. Konuru, C. Murthy, and M. Serrano. 1998, June. “Thin
Locks: Featherweight Synchronization for Java.” ACM SIGPLAN
'98 Conference on Programming Language Design and Implementation.
Montreal, Canada, 258-268.

Blume, W. and R. Eigenmann. 1992. “Performance Analysis of Parallelizing
Compilers on the Perfect Benchmarks Programs.” IEEE Transactions on
Parallel and Distributed Systems 3 (6): 643-656 (November).

Brandis, M. M. and H. Moessenboeck. 1994. “Single-Pass Generation of Static
Single-Assignment Form for Structured Languages.” ACM Transactions
on Programming Languages and Systems 16 (6): 1684-1698 (November).

Callahan, D., K. Kennedy, and J. Subhlok. 1990, March. “Analysis of Event
Synchronization in a Parallel Programming Tool.” Proceedings of the
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. Seattle, WA, 21-30.

Chow, F., S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. 1997. “A
New Algorithm for Partial Redundancy Elimination based on SSA Form.”
ACM SIGPLAN ’97 Conference on Programming Language Design and
Implementation. Las Vegas.

Collard, J.F. 1999, September. “Array SSA for Explicitly Parallel Programs.”
Proceedings of Euro-Par ’99.

Cytron, R., J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. 1991.
“Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph.” ACM Transactions on Programming Languages and
Systems 13 (4): 451-490 (October).

Diniz, P. and M. Rinard. 1998. “Lock Coarsening: Eliminating Lock
Overhead in Automatically Parallelized Object-based Programs.” Journal
of Parallel and Distributed Computing 49 (2): 218-244 (March).

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 148

F.igenmann, R. and W. Blume. 1991, August. “An Effectiveness Study of
Parallelizing Compiler Techniques.” 1991 International Conference on
Parallel Processing. St. Charles, IL.

Emrath, P. A., S. Ghosh, and D. A. Padua. 1992. “Detecting Nondeterminacy
in Parallel Programs.” IEEE Software 9 (1): 69-77 (January).

Grunwald, D. and H. Srinivasan. 1993. “Data flow equations for explicitly
parallel programs.” ACM SIGPLAN Notices 28 (7): 159-168 (July).

Gupta, M. and P. Banerjee. 1992. “Demonstration of Automatic Data
Partitioning Techniques for Parallelizing Compilers on Multicomputers.”
IEEE Transactions on Parallel and Distributed Systems 3 (2): 179-193
(March).

Hall, M., J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and
M. Lam. 1996. “Maximizing Multiprocessor Performance with the SUIF
Compiler.” IEEE Computer 29 (12): 84-89 (December).

Helmbold, D. P. and C. E. McDowell. 1994, September. “A taxonomy of race
detection algorithms.” Technical Report UCSC-CRL-94-35, University of
California, Santa Cruz.

Hendren, L. 2000, February. “Personal communication.”
Holloway, G. and C. Young. 1997, August. “The Flow Analysis

and Transformation Libraries of Machine SUIF.” Proc.
2nd SUIF Compiler Workshop. Stanford University. URL:
http://www.eecs.harvard.edu/hube.

Jeremiassen, T. and S. Eggers. 1994, August. “Static Analysis of
Barrier Synchronization in Explicitly Parallel Systems.” Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT). Montreal, Canada.

Johnson, R., D. Pearson, and K. Pingali. 1994, June. “The Program Structure
Tree: Computing Control Regions in Linear Time.” ACM SIGPLAN
’94 Conference on Programming Language Design and Implementation.
Orlando, Florida, 171-185.

Keleher, P., A. Cox, S. Dwarkadas, and W. Zwaenepoel. 1994, January.
“TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems.” Proceedings of the 1994 Winter USENIX
Conference.

Knoop, J., B. Steffen, and J. Vollmer. 1996. “Parallelism for Free:
Efficient and Optimal Bitvector Analyses for Parallel Programs.” ACM
Transactions on Programming Languages and Systems 18 (3): 268-299
(May).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.harvard.edu/hube

Bibliography 149

Krishnamurthy, A. and K. Yelick. 1996. “Analyses and Optimizations for
Shared Address Space Programs.” Journal of Parallel and Distributed
Computing 38:130-144.

Lee, J., S. Midkiff, and D. A. Padua. 1997a, July. “Concurrent
Static Single Assignment Form and Concurrent Sparse Conditional
Constant Propagation for Explicitly Parallel Programs.” Technical Report
TR#1525, CSRD, University of Illinois at Urbana-Champaign.

 . 1997b, August. “Concurrent Static Single Assignment Form and
Constant Propagation for Explicitly Parallel Programs.” Proceedings of
the Tenth Workshop on Languages and Compilers for Parallel Computing.

 . 1998. “A Constant Propagation Algorithm for Explicitly Parallel
Programs.” International Journal of Parallel Programming 26 (5):
563-589.

Lee, J., D. A. Padua, and S. Midkiff. 1999, May. “Basic Compiler Algorithms
for Parallel Programs.” Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. Atlanta,
GA.

Lewis, Bil and Daniel J. Berg. 1998. Multithreaded programming with
pthreads. 2550 Garcia Avenue, Mountain View, CA 94043, USA: Sun
Microsystems.

Masticola, S. and B. Ryder. 1993, May. “Non-concurrency Analysis.”
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. San Diego, CA, 129-138.

Mellor-Crummey, J. M. and M. L. Scott. 1991. “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors.” ACM Transactions
on Computer Systems 9 (1): 21-65 (February). Earlier version published
as TR 342, URCSD, April 1990, and COMP TR90-114, Center for
Research on Parallel Computation, Rice UNTV, May 1990.

Midkiff, S. P. and D. A. Padua. 1990, August. “Issues in the Optimization of
Parallel Programs.” 1990 International Conference on Parallel Processing,
Volume II. St. Charles, 111., 105-113.

Muchnick, S. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers.

Netzer, R. H. B and B. P. Miller. 1990, August. “On the complexity of
event ordering for shared memory parallel program executions.” 1990
International Conference on Parallel Processing, Volume II Software.
93-104.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 150

North, S. C. and E. Koutsofios. 1994, May. “Application of Graph
Visualization.” Proceedings of Graphics Interface ’94. Canadian
Information Processing Society Banff, Alberta, Canada, 235-245. URL:
http://www.research.att.com/~north/graphviz/.

Novillo, D., R. Unrau, and J. Schaeffer. 1998, August. “Concurrent SSA Form
in the Presence of Mutual Exclusion.” 1998 International Conference on
Parallel Processing. Minneapolis, Minnesota, 356-364.

Proebsting, T. A., G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,
and S. A. Watterson. 1998. “Toba: Java For Applications
— A Way Ahead of Time (WAT) Compiler.” Technical Report,
Department of Computing Science, The University of Arizona. URL:
http://www.cs.arizona.edu/sumatra/toba/.

Pugh, W. and D. Wonnacott. 1992, June. “Eliminating False Data
Dependences using the Omega Test.” Proceedings of the SIGPLAN ’92
Conference on Programming Language Design and Implementation. San
Francisco, CA. URL: http://www.cs.umd.edu/projects/omega/.

Schaeffer, J., D. Szafron, G. Lobe, and I. Parsons. 1993. “The Enterprise
Model for Developing Distributed Applications.” IEEE Parallel and
Distributed Technology 1 (3): 85-96.

Shasha, D. and M. Snir. 1988. “Efficient and Correct Execution of Parallel
Programs that Share Memory.” ACM Transactions on Programming
Languages and Systems 10 (2): 282-312 (April).

Shi, H. and J. Schaeffer. 1992. “Parallel Sorting by Regular Sampling.”
Journal of Parallel and Distributed Computing 14 (4): 361-372.

Singh, J., W. Weber, and A. Gupta. 1992. “SPLASH: Stanford Parallel
Applications for Shared-Memory.” Computer Architecture News 20 (1):
5-44 (March).

Sreedhar, V. C. and G. R. Gao. 1995, January. “A Linear Time Algorithm
for Placing 0-nodes.” 22nd Annual ACM Symposium on Principles of
Programming Languages. New York, NY, USA: ACM Press, 62-73.

Srinivasan, H., J. Hook, and M. Wolfe. 1993, January. “Static Single
Assignment for Explicitly Parallel Programs.” 20th Annual ACM
Symposium on Principles of Programming Languages. Charleston, S.C.,
16-28.

Tanenbaum, A. S. 1992. Modem Operating Systems. Englewood Cliffs, NJ
07632: Prentice Hall.

Unrau, R., O. Krieger, B. Gamsa, and M. Stumm. 1994. “Experiences
with Locking in a NUMA Multiprocessor Operating System Kernel.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.research.att.com/~north/graphviz/
http://www.cs.arizona.edu/sumatra/toba/
http://www.cs.umd.edu/projects/omega/

Bibliography 151

Proceedings for the 1st USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’94)- 139-152.

Wegman, M. and K. Zadeck. 1991. “Constant Propagation with Conditional
Branches.” ACM Transactions on Programming Languages and Systems
13 (2): 181-210 (April).

Whaley, J. and M. Rinard. 1999, November. “Compositional Pointer and
Escape Analysis for Java Programs.” Proceedings of the 14th Annual
ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications.

Wilson, R. et al. 1994. “SUIF: An Infrastructure for Research on Parallelizing
and Optimizing Compilers.” ACM SIGPLAN Notices 29 (12): 31-37
(December).

Wolfe, M. J. 1996. High Performance Compilers for Parallel Computing.
Redwood City, CA: Reading, Mass.: Addison-Wesley.

Woo, S. C., M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
1995, June. “The SPLASH-2 Programs: Characterization and
Methodological Considerations.” 22nd International Symposium on
Computer Architecture. 24-36.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

