SSNMR Spectroscopy of Methylammonium Tin Halides

^a Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2 ^b Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 1H9 *Email: vladimir.michaelis@ualberta.ca

Introduction:

- Solid-state nuclear magnetic resonance (SSNMR) spectroscopy uses the magnetic properties of nuclei to gain information on molecules.¹
- As the demand for energy increases around the globe, research focusing on sustainable energy sources, such as solar cell technologies, is key.
- Perovskites may be used to gather light as hole-transport materials in solar cells² and are beginning to emerge in solar cell technologies due to several qualities that allow them to achieve high power conversion efficiencies (PCEs).³
 - Small exciton binding energy
 Ambipolar charge mobility

- Strong light absorption
- In solar cells, methylammonium lead halide (MAPbX₃) perovskites have the highest PCEs¹ but as lead is harmful to the environment, alternate perovskites (such as methylammonium tin halides (MASnX₃)) are of interest.⁴
 - Atmospheric instability of tin reduces the lifespan of lead-free MASnX₃ cells significantly.²
- Perovskites are crystalline solids that are described by the formula ABX_{2}^{2}

Figure 1

The cubic crystal structure of $MASnX_3$ (X = CI, Br, I) as described by Roth et al. (1957).

- Methylammonium (MA)
- 🦲 = Tin (Sn)
- = lodine (I)
- = Chlorine (Cl)
- = Bromine (Br)

Rebecca Moore^a, Michelle Ha^a, Abdelrahman M. Askar^b, Karthik Shankar^b and Vladimir K. Michaelis^{*a}

• Tolerance to defects

Methods:

- Using a Bruker Avance 7.05 T spectrometer with resonance probe, we analysed the ¹¹⁹Sn NMR of a series of MASnX₃ perovskites.
- The reference sample for ¹¹⁹Sn NMR was tetracyclohexyltin (-97.35 ppm).
- Non-spinning and magic-angle spinning (MAS) experiments at 8, 10 and 12 kHz were acquired using a Hahn-echo pulse program.
- MASnCl₂ delay = 60 seconds
- MASnBr₃ delay = 45 seconds

Results:

Conclusions:

- MAS spectra.
- The MASnl₃ spectra will be completed in order to finish this experiment.
- Future work may consider the effect of different synthetic techniques used to create MASnl₃ samples on stability.
- The relation of the phases of the different samples may also be examined in relation to stability.

model compounds. Chemical Physics, 395, 75-81. doi:10.1016/j.chemphys.2011.08.020 **Acknowledgements:**

I would like to thank Dr. Vladimir Michaelis and his team, especially Ms. Michelle Ha, for allowing me this opportunity to participate in their lab this summer. I also wish to thank the Rotary Club of Edmonton Glenora and Canada Summer Jobs for sponsoring me and giving me the chance to participate in research. Thank you very much to the WISEST team for the work they did throughout the course of the program.

VKM acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program, the University of Alberta, the Canada Foundation for Innovation and the Province of Alberta for generously funding our research. MH was partially supported by the Gov. of Alberta Queen Elizabeth II Graduate Scholarship

INNOVATION.CA CANADA FOUNDATION FONDATION CANADIENNE FOR INNOVATION POUR L'INNOVATION

Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P., & Kanatzidis, M. G. (2014). Lead-free solid-state organic-inorganic halide perovskite solar cells.

Hsu, H., Ji, L., Du, M., Zhao, J., Yu, E. T., & Bard, A. J. (2016). Optimization of Lead-free Organic–inorganic Tin(II) Halide Perovskite Semiconductors

Roth, R. S. (1957). Classification of Perovskite and Other AB03-Type Compounds. Journal of Research of the National Bureau of Standards, 58(2),

Maldonado, A. F., Gimenez, C. A., & Aucar, G. A. (2012). NMR espectroscopic parameters of HX and Si(Sn)X4 (X=H, F, CI, Br and I) and SnBr4-nIn

