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ABSTRACT

The validity of the Glauber eikonal apjproximation has
been assesued for elastic scattering of nucleons using
opkical-potentials for lead, calcium and helium at various
energies from 100 MeV to 1 GeV.

Since the above nuclei.are eveﬂ-even, the possible
interactions aﬁe only central\énd spin-orbit, there fore an
optical potential in. the form of a complex central and
Eomplex spin—dfbit modified Gaussian was used, the parameters
of which were chosen so as to reproduce exberimental data as
»cloéely as possible. There are three possible observables
from such a system, and so three zre stﬁdied here -- cross-
sectian, polarisaticn and a polarisation transfer coefficient.

This is the first study of its kind *o consider all possible
independant observables, most others stopping short at just
considering the cross-section.

 An extra multiplidative factor has teen found for the

spin-flip amplitude whose presence i$ required formall,, btu-z
whose effect upon the approximation is not found to. be
significant.

The results are presented graphically since each

<

reader will have his (or her) own interpretation of when the

approximation "fails". An inter.stig trend which emerged

from the study is that at 0.5 GeV the approximation fairs
almost as well as at 1 GeV, and that the expected result of

decreasing angular range with increasing atomic weight. was

found to be less severe than expected.
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CHAPTER I
INTRODUC TION




‘ . , N
In 1958 R.J. Glauber gave a lecture on an eikonal

approximation fqr high energy collisions ut the theoretical
phyeics summer co ference ig Colorado (GL59). The approxima-
tion, 'now named after him, started to take shape a few years
before ; the earliest relevahf papers appe'~ing in 1947, one
by Moliére, (MO47), the other by Serber (SE47f. The papc: by
Molidre seems to he the first to clearly relate the elkonal
phase to the classical action integral of the particle's
trajectory, and the peper alBso gives a discussion of the re-
lated Born end W.K.B. approximations.

In 1954 J.B. Malenka (MA54) gave .the expression for
the amplitudes fop scattering by spin-4 particles, the non-
spin-flip amplitude agreeing with Moliére's result. ¢

Watson (WA53) pu% forward a multiple scatteping‘fofmal—
ism in 1953 in which scattering andlabsorption of particles
were treated using‘jhe one and two particle nuclear densities,
obtaining a formal solution for the scattering ampltiude. By
employing the 1mpulse approx1mat10n, a solution is found which
is of the form of a multlple scattering solution, and by con-
sidering only on-shell scattering for a large numberoi‘nugle—
ons, he relates the formalism to the optical model.

Glauber did a lot of work in the field dvring the 1950's
in partlcular showing (GL55) the addltlve prOperty of the ei-
konal pheses paving the way for the multiple scattering formal-
ism, and by the end of the decade brought all the separate re-
sults together to form what is now called "Glauber Theory:"

The term Glauber Theory in the literature has a double meaning,

the eikonal approximation or the multiple scattering theory, .

in this study the concern is with the former.

- o v
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The eilkonal approximation may be thought of as the
result obtained by converting the sum over phase-shifts into
an integral over an 1impact parameter, as shown by Razavy et
al (RA74), and is therefore sometimes referred to as an im-
pact parameter representation for the scatteriné amplitude.
Other equivalent ways éf obtaining the resu%? are linearising
the Hamiltonian, as is used in Chapter II of this thesis, or.
making the Schroedinger equation into a first order equation
by means of the approximations\ | |

{ .

~

&1 k a1 Kk d 0% &1

Ml

as is done by Glauber (GL59). In the above 6 1is the scat-
tering angle, V 1is the potential strength, E 1is the
”energy of the incident particle, k 1is the wavewector of
the incident particle, a 1is a length of order of the spatial
extent of the potential, d is the fypical minimum distance
over which the:potential varies significantly. To sat%sfy
these three inequalities, the'potential must be smooth in
'some sense. A clear exposition of the relationship bétween
the last two methods of deriyatioﬁ may be found in a paper
by Kamal (KA72). w -
The'lineariééleamiltopian approach is.dealt.with in
quite some deptH by_OSbérn (OS?O)y where offfshell effects
are studied systematically and\%ﬁé linearfsed'théory is shown’
to be exaétly unitanx(a consééuence of the hefmitian nature of
thé linearised Hamiltonian).ld3' |

Another way of iooking at the eikonal approximation



is to expand the exponential in the expression for the

scattering amplitude

£(e) = ikJ‘JO(qb)(l - XDy gy

o] .
to obtain a series-in powers of X, which corresponds term

for term with the Born Series. The first order terms in
each series turn out to be identical, and Byrun et al. (BX?})J
have investigated relationships between higher order tefmsfq
There are several other high energy approximatidns,'“f
- and it 1s interestiné to compare the accuracy of each to thatJ
of the Glauber eikonal approximation. .)
From the above it is apparent that the Glauber eikonal
approximation is more accurate than the Born approximation,
although Byron et al. (BY73) have pointed out that for a
linear combination of Yukawa poteﬁtials, the second Born
appéoximation is the most accurate at higher energies.!
R%zavy et al; (RA76) have looked at an alternative way
of linearising the Hamiltonian, obtaining an expréssipn'fdr
the amplitudes which, upoﬁ numerical testing, is more'accu—
rate thén Glauber's result, alfhough the expression is com-
plicated. \
Blankenbecler and Goldberger (BL61) have developed
an impact parameter approximation. The expression they have
bbtained for the amplitude, which agrees with the Glauber
eikonal amplitude to order y:z, is discussed and the formalism
extended to spin-%4 scattering by Kamal (KA72). |

T. Adachi et al. (AD65) havg developed an impact



" parameter formalism without approximation, but it yields
a rafher less mgnageable expression for the scattering
amplitu&é.

R." Sugar and R. Blankenbecler (SU69), Schiff (SC56),
and Saxon and-Schiff (SA57) have also developed eikonal for-
malisms,.although to date no one has found expressions for
the amplitudes of comparable simplicity to those of the -
Glauber eikonal, wiiich gives significanfly better results.

Y. Hahn (HA69)(HA70)(HA73) has carriéd out a su v®
‘of impact parameter fbrmalisms, and comes to the concluslon
- that all fail 5eyond a certain value of momentum transfgr.
The approximation of Schiff (SC56) turned out to be the most
accurate numerically, but the differences were slight and thex
survey was taken at only one energy and one geometry for the
potential.

- There have been séveral attempts in the past to give
corrections to the Glauber eikonal appfoximation, the most
systematic and.successful approach seems tg be thaf of Wal-
lace (WA70)(WA71), who writes the amplitude in an expansion
in ‘powers of the difference between the exact and eikonal
propagatdrs; thereby obtaining a series with the Glauber
eikoﬁal abproximation as ﬁhe first term, which converges
reasonably rapidly to the exact amplitude. Wallace pointé
out the canvergence of the se?ies is worse for a Gaussian
potential than fof a Woods-Saxon potential. Gilléspie et
al. (GI75) have since examined numerically the Wallace cor-

rections as applied to p - uHe scattering at 0.1 GelV,



0.5 GeV and 1.0 GeV using a central Gaussio: optical poten-
tial and find the cohvergence of the series to be excellent.

In this thesis the concern is not with the relative
merits of impactparameteribrmalisms,_but rather in estab-
lishing the accuracy of the Giauber eikonal approximapibn in
reproducing observables from scattering by a nuclear optical
potential. Several stud s in the past have tested the valid-
ity of the approximation as regards potential scattering, and
SO some justification is needed for this one. First some of
the prévious studies are reviewed here.

Y. Hahn (HA70) has done Glauber eikonal and exact cal-
Culayions on.a non-singular fukawa\potential. Hahn consider-
-ed only one ghergy ( 1 GeV) and concluded that the approxima-

tion is good for
0 <q < 3/kk

S5.J. Wallace (WA/0) whilst ﬁesting the now called JWallace
corrections" to the Glauber eikonalvapproximation, tested the
unmodified approximation oh Woods-Saxon, Gaussian andip-
kawa real central potentiais. '

F. W. Byron et al. (BY?3) have examined the.numerical
accuracy of thé Glauber eikonal approximation on potentials
which are arlinear.éombination of Yﬁkawa potentials, and on
a polarisation potenfial, and.find Glauber}s original cri-
teria of validity unnecessarily restrigtive.

| With the exception of Gillespie's, the aforementioned

studies have been performed on potentials whiéh havé not



resembled nuclear optical potentials in the property of
having abSorptive or polarising éffects. Gillespie's poten-
tial had an imaginary term, but ho spin-orbit term. A recent
study by Brissaud et al. (BR75) rectifies these defects, by
taking optical model parameters.directly and also including
the effects of the Coulomb interaction in the manner prescribed
by Glauber (GL70), Brissaudet al find the interesting result
‘thét the approximation yields better results for the cross;
section than for the polarisation. It will be séen‘later in
this study that if one computes a polarisgtion transfer coef-
ficient (P.T.C.) then this is reproduced iess accurately
still by the appréximation. The P.T.C. used in this study
is the first Wolfenstein parameter, commonly given the nota-
tion'Ki'.(Roéz). Brissaud et al. also find the general rule

of wvalididty

a® « k/R

holds qualitatively, buf is unnecessarily restrictive for
‘heavier nuclei. |

The main usage of Glauber theory is in the multiple
scattering formalism, which is a combination of eikonal
and phase additivity approximatiqns. The eikonal phase from
scattering off several,centres‘of forde turns out to‘bé\fhen_
sum of the single scattering phases from each centre, and so
one can describe scattering'frgm a nucleus using just the
parameters of the nucleon—nucléon amplitude and the nuclear

density. This is aesthetically pleasing since one can obtain



"macroscopic" results from microscopic lnput To understand
where the results from the multiple ;uattering are valid, it
1s necessary to understand the validity of the.impulse and
eikonal approximations. The latter, it is hoped, will be
clarified in this thesis. ” |

Tests have been performed in the past on the multiple
Scattering formallsnx forexample on p - 4He at various
energles Auger et al (AU76) find excellent agreemeht_with
‘the experimental data. .

Correctlons to the multiple scatterlng formalism have
been proposed and tested by Bleszynski et al. (BL76) who
flnd a good fit, made excellent by their modifications, to
the p - 8y scattering data at 1 Gev,

The optical model can be tieq in“nicely with Glsuber
thoery by means of 1nvers1on of the Bessel and Abel transforms

7

in the expression - ‘ .

' T . T 2 2 \
£(0) = ikj(l . e‘_l/h"__fv( bT+ 2") daz, J(2kb sin 6/2) b db

o - .
to obtain an expression for V(r) (no= unique) from the

observed scattering amplitude. Brissaud et al. (BR75)‘do a
calculation fori155 MeV p - 208Pb scattering where they use the
»multlple scattering formallsm to compute the eikonal phases,
and use these to obtaln as/optlcal potential. The potential
so'produced agrees well with the‘"best fit" Woods-Saxon

potential, eéspecially on the nuclear surface. A similar

o8 approach has been,taken by Dymarz et al. (DY?7), where multiple

scattering formalism has been used to produce proflle~



"functions for p - 4He. at 348 MeV, 650 MeV and 1050 MeV, and
then instead of evaluating observables directly in the Glauber
eikonal approximation, he evaluates an optical potential from
which a phase shift calculation is performed to obtain the
observables. The regulaf Glauber technique tends to préduce
rather sharp diffraction minima which are\suppressed by
Dymarz's methdd to give a better fit to the\data.

\

In this thesis we take an optical pd@ential of the
|

|
\
\\

for

. 2
V(r3:= (vo'+ iwo)(1,+ prg) e O
2

+ +iwg )1+ prt) o7 gy
Vs.o. Ws.o. prJ € oL - ,

The six free paraneters are varied as a function of energy to
mimic the propefties of tne nuclear optical potential; in
pérticular its strength, range and volume integral. This
potentiai has theﬁadvantage of giving an analytic form for
thé amplitudes, but has the disadvantage of being unable to
reproduce the scattering results from heavy nuclei; even for
helium a Gaussian potential is not as good as a Woods—Saxonq
potential as shown by Frosh et al. (FR67), but nevertheless
the results may be qualitatively fitted and so festing the
approximation on these pgtentialé is not entirely unrealistic.

The potential contains a spin-orbit part, which there-
fore comp?iﬁents the earlier studies w%ﬁh central potentials,
by haviné something to say about the spin—flip amplitude.

Most tests before{have been in the 1 GeV range, we

concern ourselves with the "intermediate energy"-range, from
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O.l‘GeV to 1.0 GeV in this study, and hope to shed some light
on the éuccessesymmifailures of the multiple scattering in
this energy region. |

Frop spin-3 on spin—zego scattering one has four
amplitudes. Accounting for an overall phase, one has three
linearly independent quantities, this study appears to be
the first to consider all three, taken here to be cross-section
polarisation and a polarisation transfer coefficient.

. The thesis startswith a recapitulation of the deriva-
tion of -the scattering émplifudes‘and observables in Chapter
- IT and a slightmodification is found for the séin—% spin-flip
amplitude. The modification does not always improve the
accuracy and does not have a large effect on the amplitudes,
formally, from\tse theory its presence is ;equired and there-
fore it is kept. In Chapter III the results for a modified
Gaussian potential are derived and also the associated Born
results. Chapter IV summarises the nUmerical results and
draws conclusions. Various reéults for cross—sections are

given in the appendices.



CHAPTER II
THE MATHEMATICAL BACKGROUND

T0 THE GLAUBER APPROXIMA TION

11



The Glauber approximation, like the W.K.B. approx-
imation, is based on employing ciassical ideas into a
quantum-mechanical framework. The Glauber approximation
usés the classical concept of an impact parameter. The der-
ivation of the approximation presented in this thesis unfor-
tunately seems to mask this formalism. The essential point
is that since we are using a semrclassical idea (i.e. we
do not take just one impact parémeter, we‘average over a

probability distribution of them), we expect the approximation’

PRt
5

to be best when used under circumstances akin to classical.
The "akin to classical" circumstances are that the
flux is not changed much by the presence of the scatterer
This means that the potentlal\must be weak in some sense,
in particular:
(a) The poténtial'strength is weak compared to the

incident energies.
- . . ‘\\
(b) The potential varies little over one incoming

particle wavelength.

This chapter starts off by deriving.briefly the Born
approximation results for the scattering amplltudes of spin r
%+ particles. The spin zero results are well krown (R067)

The reason for these Born calculations is that one may see in

action the correspondence between Glauber and Born approx-

> imations.

12
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Y

After these calculations the spin zero and spin %

wvlauber approximation expressions are derived, and a version
for the spianlip amplitude is obtained, which is slightly

different from that in the literature - - in particular (GL59).

Before performing any calculations, however, a recap-
itulation on scattering theory may be in order, especially
for spin % s¢attering which is rarely touched on in simple

terms in the standard quantum mechanics texts’

Consider a particle of mass m and spin % beirng scattered

from a potential of the form
V(r,o)

.where r 1s the position vector from the scattering centre to

the incident particle and o is the spin operator. The LT

essential problem is, of course, solving theJSchroedinger

equatlon

" 216 WL (VA (x) '

(V +k ) St = V( . . (1)
yolr) “lpzo)

The wavefunction for a spin 3 particle is represented by a o

2 x 1 matrix. = : , ‘ !

At large distapcgé the wavefunction looks like a linear \

superposition of the incident plane wave and an outgoing

spherical wave, . ;

ie e - Jikr
r al ik..r a
(yz(r))r——;oo (b e -1~ +  - M(b)

: \
v



Where M, a 2 x 2 matrix called the scattering operator, is )

a function of © and # and is an operator acting on spin.

a and b are two numbers satisfying a 2y b . 1 and describing

Ay

the spin state of the particle. gi is the wavevector of the
incident particle'and k = lgilsince we assume the scattering

is elastic.

The differential equation (1) is best solved by turning

it into an integral equation

§

(:3;2%8) = (%) eil_i.i-__’ jG(r r')V(r' 0’)(225? 9[1 . (3)

where G(g—g') is the free Green function which satisfies the
equation
2 .2 2m :
(V°+k")G(r-r') = = 8(r-r') . ' : (&)
B h ' ,
' 2 -
The solution to (4), which, when used i& (3) satisfies the

boundary condition (2) is given as
-m eik[r-T'|

G(;Lr') = 5 . : / | (5)
emh”  [r-r’) o /

Thus, using this our equation'(B) becomes

| | Ll |
S 1) N FET R 2 e () e (o
¥a(x k 2nt® | pr-r VZ‘r

Assymptotically we have the expansio ' A ' o

‘ /

r'.r
T rl 2T - * O(Il«) : (7)
\ |

Using this in (6) we have that at large distances from the

scattering centre,
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fug)==[gpss \
m e ){V( )\ 3 )
‘ -1 r ' r' '
. | - 2“-112 N \[e =f'=v(r',o l(i,))d r' ,

wherd&we“have introduced the vector

Comparing equations (2) and (8) one then obtains
M b - e e Iy(p g §§§ (9)
2nﬁ
This is an exact expression for the scattering operator

We see from it that in order to calculate the scatterlng
\

operator, we must know the wavefunction at all 901nts where

b3

the potential is non-zero

Since any single particle scattering may be-consid-

ered to take place 1n a plane, it is wor}h at this stage
adopting the conventlon to be used throughout the thesis, of

fixing the ,y-axis to be perpendicular to the scattering plane

X
: |
k,
/ > Z | % ‘jl -> “@
| ’ g;h : figure 1 )

Y

In this picture we have indicated, too, the choice of the
Later we shall choose

z-axis, thatwls to be parallel to k

it to be mldway between k and %

/



'THE. BORN APPROXIMATION

The Born approximation for the spin zero case 1is
well known and‘well documented (R067), therefore the derivation
is carried out here only for the spin 4 case. The spin zero
.result may be obtained by considering only the diagonal ele-
ments of the scattering operator to be the spin zero
scattering amplitude. ‘The actual wavefunction may, in theory,
be obtained by iterating equation (6) until it converges.

The Born‘apﬁroximation essentually uses just one iteration

of (6) starting from zero to get

(’V/ )):ei
Wo(r)

Using this in equation (9) we obtain

1 (
(

|"S|"$
oW

) L (10)

oy
'—l
R
—

M(g) . [ ‘lkf L y(r,g) e i L (;‘) dr . (11)
th
We now must specify something about the pofential. Let us

assuﬁe it to be -of the form

V(c,o) = V(r) + v, _ (r)o.L , ' “ (12)

which is used in optical model type calculations for nuclear
scattering, and therefore of interest. M(i) is’ then the sum

ox two terms

1, = j -iky Loy (r)-etE (%
2mh*

r ' (13)

16
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AN .
and ‘_ ‘,’
. . - |
m ., . s ! . . 'l
Jo"lﬁf'z V. o, (r)g.L e Ei#& (gjdjr

(13)

!
0 \
RS
v

I, = - ,
1 Znﬁz ‘
N :l )

The first term is the scattering amplitude in the

familiar spin’ zero Bgrn'approximation, It may be simplified

A

to give
. 2m a 23'
I, = _.EE (b) v (r)r qgﬁqr) dr
where hg = h(k; - Ef) = momentum transfer, and jo(z) is the
zeroth order spherical Bessel function (AB64) . . The second
term is evaluated as follows :
& = “ '
- m P o ik..r [a 3.
I, = - P oo fr= YS'O (r)e.r x pe =i (b d“r . (14)

m igar a 3

= -— |etd L VS o (r)gtgi Xr (b) d“r , (15)
21h :

i ,
= - —g.k. xV etd: Ly (r) a’r} |2 (16)
onh i q S.0
Now using
[t o J

. : 2 .. ;

J‘elg_.r v, o (r) &or = 4ﬂjgo(qr) v, (o)rfar (17)

4
we get
Lhrmi . > [a
I, =~ - ok ox ya jolar) VS.O.(r)r (b) dr {18)
2mh ,
5



o

2mi - 2 la
= - — 0.k, x g Q_J_Jo(qr) Vg.o.(T)T (b) dr (19)
1 t J
° |
which upon introdieing n =k, x k. and using q = 2k sin 0/2
/ A

2mi

-
= - —— k cos G/Zj'jl(qr) Vs o
ﬁ .O.
o

(r)r3 o.n (?}_d* | (20)

Collecting the terms we have the expression

al . 4m 2 . al
M(b)— - =5 VC(r) r Jo(qr) (b) dr

h .
‘ oo To(21)
2mi 3
- — k cos’G/ZJ—jl(qr) VS o (r)r” g.n (%) dr
A , .O. ‘
. .Y

0 here 1is the angle between gi and k It is customary to

|

X

write M in the following form:

R f(e) o 0 -ig(e) ,
M= f(6) + g.ng(e) = 0 £(0) + ig(9) o) . (22)

Sicce n is normal to the scattering plane, it is parallel to

the y-axis.

Equation (21) then tells us that
o0

\ 2m 2 :
(e, = - 2 Vo(r)r® j (qr) dr , ¢ : (23)

and

{

2mi € o ' . \
g(8) = - — k cos Q/ZJAjl(qr)“Vs o (r)r3 dr . (24)
h T ,
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THrt GLAUBER-EIKONAL APPROXIMATION

We study first the spin zero case, which is
equivalent to ignoring the effects of Spin. and then
generalise afterwards. This derivation of the approximation

follows that of namal (KA72). Starting from the Green func-

tion
m elklz_z" .
Glr,r') = - >
2mh” |r - rl
2m 1 elli'_-(_r_‘—_lf') djk' o
= lim  — (25)
€+0" 12 (2m? K2 - k02 4 e
~and writing
k' = k. + n ,
—_ =1 — [
we obtain
om 1 el - (z-r') Jin.(r-r') ;3.
G(r,r') = — 53 lim | — 5 : (26)
. | (2m)7 €0") k7 - (k; + n)° + ie
: in.(r-r') .3
B 2m 1 ' e - = = d”n
- 55— 1in, ik (r-r") . - . (27)
(27r) €30 -n~ - 2ki.g + ie

In the integfal if|n is large, then the exponential will
oscill~te and therefore the 1ntegrand will contribute signif-

icantly only for small |§1. S0 _neglecting the |g|2 term in

3

the denominator, we obtain.

‘ 2 1 . ' ==
Go 1 (r,r') = - lim e 1Ky - (r-r {[ : - .(28)
T (2n’)3 €07 i
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Subsequently the subscript G.L. is dropped from the Green

function. it is to be implicitly understood that the

limit as ot

1s to be taken wherever not explicitly stated.

G(r,r') = - — otk (r-rv) e T~ . (29) .

e (2m)7 o 2k..n - ie

At this stage it is worth a small digression to define

a sliehtly different Green function. We have

2m 1 ok’ (z-r') 3.,

,I") = =5 . (30)
= ne (2m)3 kf - k'C 4+ ie

Gz

Define two vectors

K= %(Ei T k'), n=k' -k ' (Bi)
Then k' =K+ in and k., =K - 3n . | (32)
Tﬁerefore N | kv ‘ /5 )

om 1 oi(B+2zn).(r-r') 43,.

G(E'_I_") = ;1? T2 . '(33)

Com 1 [efE(zert) ind(z-zv) g3,
G(zlz') = - —é 3
H% (2mm) -2K.n + ie
in.(xr-r') .3 -
S ¥ Y L0 I (35)
8% (2m)? -2K.n + ie '
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We néw make the approximation that K is independent

of n -- which is equivalent to neglecting the term in n?.
{

 Since functionally these two Green functions are the
same except for gie—aﬁ, we evaluate the integral for the first
and the second will follow in an identical manner. Choose

the nz—aﬁis parallel to k.. This incidentally fixes the

z and z' axes also parallel to gi. Then

J{[}”eini(z—z') einx(x—x') einy(y—y') dnxdnydnZ
' 2|k n_ - i€ :

ot —gp ~WO — ]! VA (36)

2m 1 -
_ ik. . (r-r') 2ME(x-x") 2n8(y-y')
f—l-z "'———( 2") 3 e 1 X-X y-y

00
1 elnz(z_Z ) an

- . (37)
2]5£-w n, - ie

Upon doing a contour integration we see that the last term
is |

¢

2mie(z-z') _ | (38)

where © is Heavysidds step function. OQur Green function

becomes

2 i . . .
2m (2_1}(_) 1k (Z2') ixixt) §(y-y') 6(2-2").(39)



With z and z' parallel to (Ei + gf) the other Green function
is similarly
2m i

G(r,r') = - — ) etk (Z-2') g (xox1) $(y-y') o(z-z")
: A< |2 (Kl , | (40)

We~note however that

-z R )

1 1
IR|l= — k2 + k.k' = — k J1 + 0052 0=k for sma}l Q. (41)
. \‘1 H

The main difference between the first and seconaicréen

functions is in thé way the z-axis 'is specified. - This will

have a bearing on the final result as we shall see later.

Using for now just the first Green function, we have

the integral equation,

Wr) = MoE - o (42)
mi ‘ |

kh

Define a function F&g) by

Y(r) = pr) et¥i L , | (43)

the equation for P(r) is

4 (L41s)
mi ‘ g 3

- —5| §(x-x') S(y-y') o(z-z") V(r') Plx') d’r'
kh ,

I

(/J(;:) - 1)

o
L]

or

——Jteigi'(}:_zl)é(x—x') Sly-y") 9‘(12_2.) V(I’)'V‘(E') d3rn_

22
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2
ml
1 - P(x,y,z) = —k—éJV(X,y,z') P(x,y,z') dz* (45)

To solve this integral equation, differentiate

mi .

- Qﬁ(x,y,z) =(——§ V(x,y.z) Plx,y,z) (46)

2z : kh ’
where B

1 I : |

%=— ' F(47)
kh hv
or,
'g_( p%vjVny wdz Phcyz» _ 0 . N (48)

g .

[

Equation (48) implies
. ‘ ‘
P(x’y,.z) - A(X,y) e—l/ﬁV_iV(x,y,z')dZ' . . . (L’,9)

A(x,y) is an arbitrary function of x and y.

Substituting this back into the integral equation

we obtain

Alx, y) e 1/ﬁvJ.V(x v,z ) dz' _
(50)

l""_'J Xyz)Axy) e—l/flVJV(xyz")dznndZ'

I

1 + e—l/ﬁVIV(vavZ ) dz' A(X,y) - A(X,y) . S (51)



which shows

Alx,y) = 1 ' (52)

) 1
plxayis) = e /v Vet ae )

Define the vector b in the x—y planc as follows

’”~
If the scattering takes place through smal a. ther
b does not éhange appreciably and may be 1nte. . ¢ as an

impact parameter. Thus, with

3
,y,(_I_‘_) = el'}'gl.z /J(E) = el.}_.(l'£ - i/’flV_‘,{V(x.y,.;')d;‘

24

(55
we have the scattering amplitude w(obtained by sub *tit.
into equation (9) )' .
| | : (56)
, m . - . ' . :
f(e) = - e L y(r) o'tk -‘1/ﬁvJ.V(p * ke ) Az’ 4,42
omn® - -~

. ,
m : : ' '
__felg-(lﬂ'_}giZ) V(btk.r) e-—l/ﬁV_IV(}_}f‘l{Z ) 42" 4,42

2ﬂh2
where g = X - kp . ' (58)
We have = zq.k, /= zk(1-cose) . The biggest contribution to

the z-part of the integral is seen to come when V(x,y,2)

is a maximum, which occuré if z=<d , the "distance over
which the poténtial varies significantl§“z-— usually the
SAme order of mégnitude as ifs.fange. We make the épproxima—

tion here of neglecting
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dke® |
dk(1 - cos@)m~ — 1 , | (59)
2

which gives
(60)

2
m 3 3 ] L}
Jelg'g V(btk,z) e‘l/ﬁ"_lV(yﬁiz ) 2t 324%

Znﬁz

(o) = -

The z-integral may now be done exactlv, yielding

o= ‘ (61)

hv . . "
Jaelg'p (e—l/hv:fv(p+§iz) dz _ 4} 4%p

m

2nh2

£(0) = -

oo

-1

Define the elkonal phase as

0o » T

1

X(b) = - ——jV(Jﬁﬁiz) dz . " ! (62)
nv

~00 ‘ \
To first ~order in the potential (i.e. if V is
approximately constant) this is seen to be pro ortional

to the classical action the particle encountérs on its

classical trajectory. TFrom equations (61) and (62)

£(e) = - iTﬁJein'Q (eiX(p) - 1) a% . (63)
: 2nh

This expression simplifies if we assume the potenfial has

axial symmetry about k., in which case j((p).= X(Db)

figure 2
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. = k2 , k.= k cos 07 + k sin 86X, b = b cos X+ D Sin ¢ 0
L] Z K¢ 2 X L X X
" (64)

Therefore g.b = (k; - kg).Db =\-5f.p = -kb sin € cos¢g (65)
anda ‘therefore . .

- e (66)

. . 1 . . . . .
£(0) = - ik (erx(b) - 1) b db — \e—l(kb sin ©) cos¢ ¢
2m )
o . [-]
Define T'(b) = 1 - e X(P) . (67)
ar
1 . > . .
iXcos ©
and using — | e de = JO(X) N (68)
21 T -
o \‘.
we get o N
-0 . ' o \
(o) = ik JJo(kb sin ) T'(b) b db .. . (69)
o )

This is just the result derived by Glauber in 1959 |
(GL59). The accuracy is improved by using the second Greéh
fuhction, which is where the propagator is expanded about
the %(gi + gf) direction. The derivation of the scattering

amplitude is very much the same .as above and is outlined

here.
With Kk = %(gi + gf) equation (57) becomes
m . ~ - . -~ . . .
£(0) = - 2J\elg.(2+EZ) v(pRz) e~1/hYl'V(Q+§z ) dz' 4.,4%p
UL | (70)

Now using' g-K = 0 and performing the z—integral'we get

- ik . } ; -
£(9) = - i—.[elg'P (eX(2) _ 4y 4% . (71)
o _ .



\
‘\

Note that this step 1s exag¢t now, whereas before it was an

approximation.,
For X(b) = X{b), we may do the angular integratiom,
. ~ )
~since g.b = (k, - ko).b o, \\ . (72a)
k; = k cos@/2 Z - k sine/2 ;_?\ (72b)
kp = k cose/2z + k sin6/2X \Qnd (72¢)
: C A '
. \
b = b cosgg + b singy then - (724)
o \ ' ' :
q.b = -2kb sine/2 cosg and " §\ : (73)
o aw - N
o [ Y
£(0) = ik| (b) b db — | e i(2kb sin @/2)cosg ag . (74)
| 21 N

Using the integral representation .of Jor

oo

(o) = ikJJO(Zkb Qin 8/2)T" (b) b db . (75)

o
This form is in agreement with the Born approxima-

tion under eIX(b)——~a 1 + iX(b) , and generally gives

better agreement with the exact calculation. It is the form

most used and is a manifestly time-reversal invariant result,

since it treats gi and k. symetrically.

spin

We now go on to consider the case of particles with

L
2 .

oy~

27
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THE GLAUBER-EIKONAL APPROXIMATION

\

-FOR SPIN + PROJECTILES

The derivation preéented here is the one which fol-
lows from changing the axes in the manner that Glauber did

originally, i.e.

x bl
-~
|
% -
b .

figure 3

As in the spin 3 Born approximation we assume an inter-

action of the form

™,

Vir) = Vv (r) + vo(r) .1 o o (76)
Then ‘ o | ‘ .
V() _ ik, .r 2P o NN eS

with (see equation (39))

e @(i—)ei_i.<£_£.)g(x_x') S(y-y') (z-2t)  (78)
. i '
|

'\

Let us write



) S {3) . | | (79)

- \ |

(r) may be considered .in this case to operate on the spin

q

variables. The integral equation for f(r) is
| (80)
2m

__EJ‘djrv G(EvE') e—lElE V(}:"g) el'}_{lz" /)(_I:l) (%)

(Plx) - 1)(;‘) -

which upon substituting the approximated Green function

N

from equation (78), takes the form

(P(r) - 1)(%) = - — aorr e iy L §(b-b') 6(z-2')
v(r'.o) elk; L' p(r') (%)
We cannot commute the V(r',0) with el¥i I' gince V(r',d) )

contains a differential operator. We have

(82)
.o*)e—l—l {V(r)+V(r)0'r'x(1V)}
Now we assume the f(r) is a slowly varying function of r
compared to elgl = , thus -
Ve 1L p(r) ~ ik, ¥ T p(r) | (83)
/ |
Therefore ' ' A —

. : (84)
mi ' - »~ -~ ~ ' a
- —ZJ(Vd(E) + v.(r) g.r x kD) P(T) qz (b}

(P(r) - 1)(3)% —

where for convenience we have introduced the "vector"

-
o~

¥, where T = (x,y,z2') . S (85)
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As before in the spin zero case this integral equation may

e solved by differentiation and the boundary conditions decided
by substituting the solution back into the integral equation
yielding \

miC (86)
Plx,y,z) = exp( - ——§J—(Vc(x.y,z') + VS(x,y,z') o. (T x ki) dzj

kh™ /.
We now substitute this into the equation for the

scattering operator
(87)
m [ ' .
_ __ZJ; Xy () + v (r) gor x (-i¥)e i E p(r) (@) a’r

a
M =
(b 2h

~Again we assume LP(r) to be a slowly varying function of r

to get
(a m ~[ ig.r
M = - e~2'= (V (r) + V(r) g.r x k.)
b omn?Jd 0 © s o (88)
2 i
3 ' ' = ' a 3
e—l/‘hv;[VC(x‘,y.z ) + V. (x,y,2') o.F x k;) dz {b) d-r
. - w . .%
We now make an approximation that
ig.r = i(k, - ke).(2+ k2" =~ i(k, - k)b (89)

This is tantamount to saying fhat, since the integral has
its maximum value within =z = 4 , dk(1 - cos @) is small;
and is of course the same approximation made  in the

corresponding spin zefo case.

-



m
a

{eig-}} (VC(E) + VS(_I_‘) og.r x k.) o

M - i

b 2nh” 1 (90)

. .
e-l/hvj‘(vc(x,y,z') + VS(x.y,z') ‘qv.z X gi) dz (% d3r
l ’

The z-integral may now be done exactly, to get

a m hv :
Miv] = - 2 .. ; |

2wh”™ (-1)~ . (91)

b =

J.éig'p [e—i/ﬁv_i -(Vc(x.y,_z')+ﬂvs(x,y.z')9_'.f X.}_{i)dz' _ 1}dxdy (g)

In the coqrdinates chosen we have:

(T x k) = (b+ 2k;) xky =bxky . (9\2)
Define our eikonal phases as | \ :
17 . ‘
X (b) = - — |V (x,y,2") dz’ (93a)
Tlv_i
1 T
X (b) = - — | V(x,y,2") dz' , getting (93b)
hv ) .
A (9k)
m v [ . .
M(abl - 5 elg'h[elxc(h) i XS(P) g.b x kK _ J.J ‘g 4%y
2mh” -1 “

"We\‘\ now expand the exponential in ¢,

(X (p))™Me-b x k;)" |
n! (95)

AX ()b x Ky o



5 =i + i S =i
5o (2n)! W55 (2n+1)!1
(96)
(g.é)z COA% impt (Q,A_)Zm-l _ gé(A)Zn nd
(g’.z’i)2n =(a " g this, we get
e .
1 2n
iX (b) o.b x k;, _ o (-1 ] x k|l W (b))
- (2n)!
=0
" | . (97)
ig.bx ki o (-1)(|b x k.| X (b))en+?
N = =i - =i s'— .
b x ki 55 (2n\+1)!
Since b is perpendicular to }_(i in this coordinate systém,
lb x k;| = bk, giving (98)
(99)

Il

e 1% (D) O-b x K o oe (bkX (D)) + (ig-_b"x k;)sin (bkX (b))

and therefore

!

d2b

. o J
(cos (kaS(Q)) + io.b x k, sin (kas(p_)) - 1} (E

al _ k- ié_.b N .o a 2
e R XS IEREN Mo} (2] o% . (101)
“where [T(b) = 1 - e"%lR) cos (1 (b)) ' (102)
and [(0) = - e™%ll) g5 (kbX (D)) . s (103)

We may go one step further if the potentials possess

cylindrical symmetry, in which case X|b) = X(b). Using this

32



and b.g = -kb sin @ cos¢

s 2T

M\:

il

ami J |
> % | T (104)
ar ' .

or ‘ | _
1 o ]

. 2n (105)

o 1 3 . . ' | - ‘
-k r (b)  db —| o.b x k. e-l(kbsn) Q)cosg d# a
S o © = 7 71 b

° 0

In our coordinate system we have

A A A :
b x k: = xsing - ycosg . , ' (106)
Using the three integrals

an

1 . ,

——J’el“os" ag = J_(A) : (107a)
2my |
;L}”eikqos# ccgﬂ ¢ = Jl(A) , ' _ (107b)
21 ‘

Jeikcosﬁ sinfﬁ ag = 0 , (107c)

o

We see that only the y term contributes to the second

integral (a consequence of conservation of parity) yielding

M(iL !ikJJo(kbsin 6) ,(b) b db (g) A (108)

3 :
- _;le(gbsin e) [((p) b dboy, {?) .

I

iijo(kbs,i}x 0) [".(b) b ab (%)

(=]

k : . A
i) . ____J [e—1(kbs1n G)COS?{lﬁc(b)+ig.g X Eirs(bi}‘%) b

33



+ kao(kbsin 0) [4(b) b db (_ab) (109)

(o]

Now, using the relation between the scattering operator M

and the scattering amplitudes, we obtain

o0

f(e) = ikJJo(kbsin 6) ['.(b) b db (110)
o q
g(e) = —ikJJl(kbsin ) [4(b) b db- . (111)

As Glauber points out in his 1959flectures, the
system of éies used earlier (Ei parallel to z) is not the
bésfi since 1t

(i) treats k; and k. differently, therefore making
the result not manifestly time reversable from the outset,

(11) does not reduce to the Born  approximation

X

in the limit e — 1 + iX and

(iii) does.not lead to such a good approximation."

In his article Glauber considers these points with
the following prescription.
Approximztion (89) »econes exactoip'Our 2z parallel to

(k; + kg) system
g:r =g.b+g.2=g.b . (112)

Equation (92) is unfortunately no longer exact, but reference

to (91) shows the difference is of order

o

-

JVS(x,y,z') z' dz' , which may be. neglected either

ey

o

(i) since this ratio to the other term is k<t92 K1,

34



or (ii) since, if we assume 2n even parity pbféhtial along
the z-axis, fhe integral vanishés.

Equation (98) is also no k?qger exact, but the correc-
tion term ernicountered by not maging the approximation is of
order z d 92 relative to the remaining term, so we may heglect
1t to a good approximation.

Each coordinate system has ifs limitations. In the first
we have to make the approximatién qg.r =.gt§ which requires

kd e“ «1 . In the second we have to make - b X ki = bk

- which requires k d 92«{16:-and rxk =Dbx gi requiring

_{ —

k- d Qz«l_only for even parity potentials. Since most potentials

encountered are of even parity, then the second coordinate
system appears to have the least restrictive approximations.
(Both of course have the linearised Green function.)

Glauber points out the first improvement, which is that
for equation (89) g.r = g.b exactly in this coordinate

system, and then appears to say, since

= X cos¢ Ty sin¢- , | B | (113a)

b

k., = z cos 6/2 - x sin 6/2 , ’ (113b)
ke = 2 cos 8/2 + x sin 9/2 . (113c¢)
g.b = -2kb sin 6/2. cosg . ‘ o ‘ (114)

This will make a difference only of replacing sin @ by

2 sin /2 in the 'arguments of the Bessel functions, yielding

f£(e) = ikJJo(kt> sir. 0/2) [,(b) b db | (115)

35



o

o (0) = —ikjLTl(Zkbsin /2) [(b) b db . (116)

This is adequatle and it is true that the approximation so
obtained 1is a better one than before, but inherent in
the prescription is a small flaw. ‘;

If one were to start out in the 'z parallel to (k; + 5;)
system, then one should stay in it throughout the calculation.
After modifying equations (104) and (105) with the prescription,
4Glauber seems to quietly slip back to the 0ld coordinate
system to obtain (115) and (116). It seems that to just
change coordinate systems at any stage one mereiy makes the
approximation k d 92<K 1, which is satisfactory within the
formalism, but in the above case there is no ﬁeed for it.

If one sticks rigorously to the second coofdinate syéfem,

then (104) gives (115) in a straightforward manner, however

the expression for g(6) is modified. Consider the second -
term in (105)
_kJTr (b) b db __1[(0 3 <k ) e—i(2kbsin 6/2)cos @ ag a)
s == =i , : b
2T
0 ) (117)

Equations (113) and (114) yield

b x ‘g’?i = sing cos 6/2 X - cosg cos 6/2 § + sing $in 6/2 3
: (118)

Equation (107c) shows-the-g and z terms do not contribute

(corservation of parity) and we obtain from the y term
- . (119)

. [ 4
1 : : :
| _ )
+ k| [5(b) b db — | cos 6/2 cosg e 1(2Kbsin 6/2)cosp 4y, fa)

S emde ' y|b :

9, o



which is as befdre, except for the presence of the extra

factor cos 6/2. The scattering amplitudes resulting are
f(e) = ikJNJO(Zkbsin-G/Z)[ﬁC(b) b db and . (120)
3 .
< . .
g(0) = -ikcos O/ZJJl(Zktsin 0/2) PS(.b) b db . (121)

o :
One may argue that the presence of the cos 0/2 is splitting
hairs, since’we have already assumed small angle scattering
énd this may be true. Nevertheless there are reasons for
keeping 1it, nanely

.(i) it follows from the mathematics by starting with
the secord Green fuﬁction and sticking to one coordihate
system,l
| (ii1) it is a simple modification which does;mﬂ:léad
to any furtherAdifficulty in the calculations,

(iii) it is necessary to make the spin—flip amplitude

‘reduce to that of the Porrn approximation as elxxb)———al -~ iX(Db)

‘exactly. Without the additional factor this'is‘true only
for small arigles. i

| (iv) it ensures thaf the pclarisation vanishes at 1800,
even though one does not intend to p;ess the validity of the

approximation that far.

ﬁ!B?



THE EXACT CALCULATION

This is essentially;aphaseshifﬁ calculation. The
wavefuriction is expanded in partial waves and the contributions
from each paftial wave toeach scattering amplitude are summed.
This method of obtaining the scattering amplitudes is
described rather well in (ROG7), a summary of which is given
here. The exact results for the observables are required,
of’course, to test the approximation.

We have to,’solve the Schroedinger equation

(pz/zm * V. (r) + Vg o (r) L.8)Y = EVY , (122)
where _ Y?(E) o
| V= {yé(z)) | | (123)

The eigenfunctions will be in the "J" representation since
the Hamiltonian contains a term coupling space and spin
cocrdinates. The angular and spin parts- - of the eigenfunctions

are the generalised spherical harmonics, defined as

m _ . :

;sj(9’¢) —zz-(tmlsmslgm) Ylm (Q,¢)7(%ms , (124)
’ mlms : . ' . : s

where X iy = (é) and X ; = (?) . ) ~ (125)

The boﬁndary conditions require the wavefunction to te

assymptotically a lineér.superpositioﬁ of a plane wavé and an

ogtgoing;spherical wave.
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Using the plane wave expansion

SAE-E :zi i (amate)? 5, (60) v, 40.8) (126)
~d=0 ‘

.

and Clebsch-Gordan coupling coefficient obtained from (DE74)

we may write
(127)
ik.rf1]_ = .2 L, iy 1nd
e’ = —13(0): zo 17 (4m)F j, (kr) { (r1)2Y51 i1y (0.8) + ¢ 3t%(¢_%)(e,¢>}
1= . T N

which helps in the description of the boundary conditions later.

Going back to equation (122) and writing

1 \
By _ m - . .
E;Qjm(;) = ; ch(r)tf{%j(9,¢) , we obttain (128)
2
p R, .(r)
e | C N —_
;; + Vé(r) + VS.O.(r)-;’é - ’52%j(9»¢) =
_ (129)
R,.{r)
L1 "ym
, : L2 . ,
writing p2 = pi + — and : (132)

v
‘ b
noting that the generalised sprerical ‘harmoriics are eigenfunc-

2

tions of L2, ST and Jz. we obtain

2
P, h2(£(6+1)) v (r)
— Vc(r) LA S —§494—**(j(j+1) - {(e+1) - 3/4) -
om -~ 2mr .. 2 . )
E E‘jffzw =0
r



which we carn write as

n® ar, (1) neg(e+1)
- — " V (r) + 5 +
2m dr 2mr - (132)
Y (r)

200 (3(5+1) - €(4+1) - 3/4) - E| Ryi(x) = 0
2

We consider the two cases of j = £ + 4.

h2 d2 - -
T TE Repeeny(n) A
2m dar (£+s ) | ( . (133)
nle(e+1) 1 :
VC(I‘) + TmrT_—_’+ '5 VS.O.(r) - E Rc(e+%)(r) = 0
ﬁz d2 ()
- — ——= R 1 +
om dr? e(e-3)""
| (134)
nee(£r1)  (4+1) :
Vc(r) + - - 5 VS.O.(r) - E RL(&—%) (r) =0

¢

Clearly demorstrated heré is the difference to potential made-

ty thé‘spin—orbit potential for aligned and unaligned spins.
These two equatiors may be integrated using the

Numerov (SH68) method ard we may write

- Z-i‘(um% fegens )——“Jll(” £1(0,9) (z+1)%+
< ‘ kr
¢=0 | (135)

LL_Jdif; m ¢ ¥

kr 62(6 l)

The assymptotic solutions of the radial equation where the

4.0



potentials have vanished are thefSolutions of

TSR AL AE

R,. = 0 i (136)
2 r2 : ) %

dr

\

which are the.spherical Bessel and Neumann functions

krji(kr), ard krng(kr) . (137)

These functiors have  sinusoidal assympJ;tic forms.

Taking the general solutions to be linear combinations, we

|

get ' ' ‘ ‘ |
-+
o 1 +
et?¢ sin (kr - — + 52) T refers to j = ¢ B i (138)
2
+

5é are called the phase-shifts.

The above expression is the same as for the incident plane

wave expression, but for the presence of the phase—shifts
+ 5

b, |
‘ .

Using these solu*icns as the assymptotic solution to

the Schroedinger equation we get .

‘ {n _
o o sin (kr - 7?)
qYCF)E;:;;;?JEF 25:1 _ .
: 250 kr
{(M)EW%(H%)(@'?‘) ’ ‘f“dénéw-%)‘@’w} B
kT L g ‘ . A (139)
o0 = 1 . m
S . EZ {(6+1) e 4 81?56215%(e+%)(0,¢) +

=0

¢t ety sin 80 sy 0t) ]

w
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—

Compare equation (128)

rl

0o i&'sin (kr\- %;)

o®
l

"5
{=0

O) I'— o0

kr (140)

8

{““)Eyi%(h—%)(@"‘) * ‘ng%(t—%ﬂ@"“)}

S

with the first term in (139). We have therefore

r

{\/—T}Z (t+1)% i t 81n<g ’3 (e+1 )(695

(141)

We may identify the scattering operator in here. Converting

to the €-s Ttasis, we have

B3

EZ; ((e+1)
J"le |

LT e

+

21}{‘ 0

.+ . -
elgt sin.éj + 9156 Sin-éi)_Yto(e'¢)

(142)

t(e+1)) 2 2: 87 2 &7 0
¢ - e° LY, (0,9
Z 20+1 } © € jl L1 ¢J.{l

We may derive a similar expression for the spinnor M(?} in

exactly the same way. Let

x - 2 plane (¢ = 0). We

M= f(e) + g.ng(e) =
‘ ig(e)

Obtaining finally

£(e)

the scattering take place in the
may now write
—ig(G))

\ (143)
f(e) :



L3

|

1 oo . (+ o C-
£(e) = — E:( (4+1) elsl sinfgz + {elgt sin 5; Pt(cos 6)

Ky=o (184)
1 e CF . C- '
g(8) = — (62188 - 82153 Pi(cos e) . - (145)

The phase shifts may be found by matching the logarithmic
derivatives of the numerically integrated radial wavefunc-
tions tu the logarithmic derivatives of the free particle

| .
waveTunctions at a sufficient distance frigifke scattering

centre that the potentials have effectively ;EﬁTshe§L
| , ;



CHAPTER III
ELASTIC SCATTERING FROM
A GAUSSIAN POTENTIAL

Ll



In this chapter the expreusions for the scattering
amplitudes derived in Chapter II are evaluated for a
Gaussian potential of the form

, 2 2.
Vir) = (v + iw Je (v, o+ iw )e ™ oL . (146)

This form of the potential is used since it leads to a con-
venient expressiéﬁ%for numerical caluculation of scattering
'amplitudes, a ser;gs in fact which convergesireasonably
quickly. .

_The spin-orbit pétential is chosen so as to have the
same decay constant*as the central potential. This is re-
strictive when it comes to fitting expérimental data, but
"it used since it is in llne w1th‘UKsphllosophy of the analytic
form of the spin-orbit pctential being 1/r d/dr of the central
potential -- it also makes the calculations much easier!

The spin-orbit potential has also been taken as complex
since the optical model analyses have shown that this is the
case for energies higher than 100 Mev. ‘

Th:s ‘potential in the Glauber approx1matlon has been
 studied by Wallace (WA70), and his results have been reproduced.
Wallace, however, considered neither the spin—orbit‘term nor
complex poteniggls

Also ihcluded'in this chapter is the result for a

modified Gaussian potential



L6

2 o
Vir) = (v + iw ) (1 + pre)e .
(147)

2

' R 2y - &r
vy o iwg o) (1 + pr9)e o.L

o

The validity of the Glauber:approximation as applied to just
the central part of this potential has béen reproduced nuﬁer—
ically for the G;auber calculati&ﬁs. Included also in this
chapter are the corresponding results for the scéttering
amplitudes evaluated in tﬁe Born approximation. The

ix

correspondence Glauber —3 Born as e —> 1 + iX 1is
)

nofed.

GLAUBER AMPLITUDE FOR A GAUSSIAN POTENTIAL

We must first obtain expressions for the eikonal

phases. The equations (93a) and (93b) give

1 . :
;(C(b) = - Fvlfvc(p + 2z) dz (148)
hv i
17 2,2
. _.J(VO £ iw )em M) o (149)
v "
(v + iw ) 2 K .
= - 0 jﬁje xD ) (150)
hv o
Similarly
10 : ‘
'X%(b) = _ v+ 2z)dz g ! ; (151)
hv :
(v + iw / 2 :
- e T Moo L s

|
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Equations (102)rand (103) now read

—«bz

T 1 .
_ I B rolleed A3 )
F'C(b) = 1 --e 1j; hv Vo'W, € (153)

| kb 2
i 3 ~&b
cos (hvﬁ; QVS_O,+lws.o.)e )

—1}6 ' +iw )e_(xbz
r;(b) = —e x hivt 's.0 S.0 (154)
kb z
sin|- ——/g (v o Fiwg ye %P .
hv -
Introduce two constants
(v + 1w.) ‘ ‘ |
A = -1 m_o___°o ‘ ' (155a)
o hv ) : :
gy ) | (155b)
A s - — v _. + 1w 155b
s S.0. £.C.
hvix Co .
) 2
-b 2
(b)) =1 - ePe®  cos (ba e ™) (156a)
2
-ub 2
r;(b) = —eAce sin (bASe_(’(b ) ~ (156p)

) For the non-spin-flip part of the scattering opefator
| ‘

equation (120) gives

o0

£(e) (157)

I
'—l
-
—
o
’O
o)
o
51
o
U‘.
N OJ‘

Q

2
)| b db

(158)

o0

iktho(qb) (1 - %eAcg




i

S r(e,A ) + f(e,-A ) \ (159)
where T oe p o ’
: ik . v _-ab
£le,a,) - —JJO(qb) 1 - e(AtibA )e b db’ . (160)
2

o

The integral involved cannot be evaluated analytically, we

therefore expand the exponential

ik [ oo (A +iba )T 2 .
£(6,A.) = - — [ J _(gqb) ( —C 8T 7Dy gy (161)
S 2 (o} r!

r=1
(o]

ﬁ

Using uniform convergence we may integrate term by term to

obtain
o0

ik

f(G,AS) = -

gl

2 r!

—_

I“:
. o
Qo
This integral has no simple analytic expression, and so we

must expand further, using the binomial theorem:

ik

| f(@,AS) = Si

r=1 g T t=0

t

!

I (ab) & 2
(r) AT HibA )T ey ab (163)
(o] ! -

where the symbol (i) is the binomialrcoeiiicient‘

//'/
| -
! |
T (164)
t(r-t)!
i .k 1 oo 2
2(0.y) = - = i (§J~ AT M (i )tJJ (q0)p™ e gy
‘ 2 L r!
e : (165)

(A +iba )T 2 -
jJO(qb) — & 8L oAby 4y (162)

48
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)
‘ /
We may write
(166)
' ik oo r (A)TF > ( 2
o) = - — 5 Y S ()1 (-1 ) [T (qo)p e
2 57 ¢=p tH(r-t)! ‘ ° |
T~

Since or.ly even values of t contribute to the sum, we‘\\\\\\\\\

may define a new variable

which runs from zero to [r/2]
Therefore

(168)

, 2
J&O(qb) p2 T lg-ardT 4y |

Q0

[}/d(AC)r_Zt'(iAS)Zt

£(0) = -ik

r=1 t'=r(2t')!(r72t')!

This integral may be evaluated analytically (WH68),

th> general expression is .

(169)

o0

: v [utv —q2/4a2
u-1 —a272 ar 2 )¢ v-u 2, 2y«
Jv(qx)x e Cdx = F + 1; wi1; g /%a )
L]

(=8
2u+1au+vr(v+l) 171 2
where 1F1 is the confluent hypergeometric function.

ik oo [r 2](Ac)r_2t(iAS)2+’ n

£(0) = - — : \ \
2 & t,zo(zt)zcr-zt)z(ur)t+1_ ] \
(170) \
2 [n]
202 mat/bar g (g . SYE 15 o¥fuwr) . _\\



\

The confluent hyperge%metric function may be expressed as

(AB6L4)

Fo(-t; 1i q°/bur) = L(q°/tur) (171)

where Ln(x)'is the n'th Laguerre polynomial.

We arrive then at the result
| (172)

2
T2t(3n )201e /M g (2 har)

1kw[2(A)
f(e) = - —

2 5 55 (2T)r(r-2t)! (ar)

t+1

The corvergence of this series is best seen by taking'the

absolute convergence. The magnitude of the r'th term is

L4

bounded above by

' k(Vs.o. +in 0.) r
'Al (1+fﬂv-ﬂm4T )

(173)
. ‘!
which means the series is convergent providing « or
vo+iwo do not vanish, and we must have the inequality
_’()’<k N k(vg g ¥iw, ) (178)
f(e) & — expi{|A 1+ = ——) 17
) C j&'( Vo.+ lwo) .
The same procedure may be followed for the spin-flip
part of the scattering operator. Equation (121) gives
e(0) = -i_kalmb)rs(b) bab . C(195)

[}

using (156)

50
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oo : b2 2 ‘
-
e(0) = ik JJl(qb) efc® sin (bASe""b )<b db (176)
= g(G,AS) - g(gv—AS) (177)
, k . -&b© . ~ b |
g(0,4_) = —-JJi(qb)eAce elPAs® Ty b (178)
P 2
k . ~ o
) _fJi(qb) e(ActiPA)e ™0 1 4y | (179)
2
Keo 17 Y
= =% —|J;(qp) (A riba )T e™™FP g agp (180)
2, %5 rt ¢ S
I‘:
K o0 1 f r e , >
- ;’}Z ;? E;I{t) (Ac)r*t(ibAS)tJl(qb) e %Py gy
r=0 7" J =0 (181)
Therefore
bk 1 r (182)2
-9 r _ ' ' -
gle) = =3 (1;) — (807 %A ) Bt - (—1)t>JJ1(qb>e TPt lgy
255 +=¢ r! .

o

Only odd values of t now ¢ontribute to the sum so we define
a new variable t' =2t + 1 ) ‘ (183)

 which runs from zero to -[(r—-1)~/2]‘
| o

~ ]
!

N = T TN I - Zilf:)
gle) = xSy s 5 4qv)e P22 gy
o r=0 t':o (Zt'+1)!(r’2t'f1)!
) - J
Using (166) and.the result (AB64) ) /['
_ o %
1,2 : v )
L:(a°/hur) |
1Fe(-ts 25 qz/%cr) =t ° 7 - /(/_185) |

(t+1)
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(where Lrll(x) is an associated Laguerre polynomial) we obttain

r- 2
[5"4 (Ac)r_Zt'l(iAs)2t+1t!e'q /o Lt(q®/4er)

t+2
)

ke oo
o

r=1 t=

g(e) =

(2t+1)! (r-2t-1)! (ar (186)'

|

GLAUBER ANPLITUDES FOR A MODIFIE%’GAUSSIAN POTENTIAL

O

If instead of a Faussian potential a modified

Gaussian potential had bteen used,
(187)

‘ 2
- ')(1 + /OrZ)e—“r

V(r) = (vO + iwo)e

2 2 : :
(1 + %) + (Vs.o. + iwg o

the calculation would have proceeded in a similar manner to
- “ .
arrive at the results

| A 2T
r s 2
ik Sﬁ E% (Ac)r( A , e~q MHar

f(e) = - — .
2 & S5 (2t)1(r-2t) (ar) Y
’ (188)
r r! ATTS PS5 (trg)! LKHS)(qZ/L#ur)
Jhiar S'!(I‘—s)!(ur)s_ ! *
where A= Rad + 1
20 .
: a2t ‘
[_I_‘_:_l] . flA _ 2/4 o
o) kq oo [ Z1(a ) A t! e”d /KT
g(e) = —
® . Z < ‘ t+2 : : * |
r=1 t=0 (2t+1)1(r-2t-1)! () (189)

r (s+t)! Li§+t)(q2/4«r),(P/X)s

S5 st(r-s)t(xr)®(t)t

rl)\?



If we let ,p— 0 , only thf s=0 term contributes

sa 12t i (190)
I‘ .
o) ik oo {E] (Ac)r(EQﬁ e " /Hur Lt(q2/4“r)
£(0)5=g - —
A 212;~t20 (2t)! (r-2t) ! (ar) 1
) ia 12t+1 ,
r-1f. z
kg eo [5_4 (Ac)r‘Tg% 6 o8 /T (2 )
D(Q)—p-—)O’ ': (2 )' 2 1 t+2
iy t+1) ! (r-2t-1)! (xr) (191)

which are just the results obtained previously.
If we use the Born approximation to calculate the
scattering amplitudes for a modified Gaussian potential, we

obtain the results

. 2
m(v_+ iw_ ) 2 q
fa(6) = - - [L 74 M [y 2 3 - — (192)
2uef < 2% 200
im K2sin 6(v roiw. ) 2 2
_ \ 3 S.0. s.o.” [w -q°/bxr P
~éB(Q)”' 5 5 — e 1+ —15 -
Lot™H & 20 2%
) (193)
, ' | .
If we take just the r=1 terms in (188) and (189) we get
(using the definitions of VAC and Aq).
m( vt i‘wo) = 2/Lm P q2 .
£(8) -y = - > , - o4 1+ —(3 - — (194)
N 2uh -« 20 20K o
/’._
' - _ (195) .
zu? 72 oy 20 20

which agree with the Born results, except for a factor of



cos 6/2 missing from the 'g(0)' term of equation (196).
The argument for the'presence of the cos 9/2 factor

multiplying the g(6) term gains weight here since then thé

first term in the Born series is reproduced exactly.
Corsidering the unmodified Gaussian potential, the

(
Born results are

_ m(v_ 1t iw ) / :
fp(0) = o o jm o-q2/ (196)
2uch o
. imk“sin o(v._ + iw_ ). n?
e(0) = - —p—r——8:0: = “Mei0. O[T -q"/kx (197)
bo™ 1 o

(as in (192) and (193) with 2 = 0). )
Equations (172) and (186) with just the r=1 term

yield as expected the expressions for the left hand side

m(v_ + iw_) 2, ‘ | '
2% ol [ -q"/h4x and (198)
Zoc‘hz o :
. 2. -
imk“sin 6/2 2
iy [T -q" /b -
- ZN?»ﬁz (Vs.o. i l‘Vs.o.)[, x € ’ ~ (199)

Whic% again agree with the Born approximation except for{the

cos ©/2 factor in the 'g(@)' term.

OBSERVAPIES .

Whereas from our calculations we obtain amplitudes f and

g, experimentally we cannot measure these. Instead, using an:

initially unpolariséd beam, -all that we .can measure from a

onY .

Sh



single scattering experiment is the -differential cross-
section. With an initially,polarised beam we may determine
. the polarisation from a single scattering experiment and
the polarisation transfer coefficients may be determined
from a double scattering experiment.

If the Clauber approximation were to have the effect
of alterlng the amplitudes by an overall phase factor,'then

the observables would not be affected. We therefore study the

observables To determlne the region of validity of the approxff

imation.

Differential Cross-Section

This is defined as the number of particles scattered

The wavefunction describing the system for large r

is

e |
N M(a) : (200)

The flux vector is given by
h
4= VY ~( W’W , (201)
2] :
) ' \\
which, upon keeping terms of order l/rz, dlscardlng non-

‘radlal‘?lux and using the Riemann- -Lebesgue lemma

lim fe%kr eI an=o | (202)

- T~y

af
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gives
Rl . -

i= ——-[Kl + (a,b)M+M [% 'Ifg] (203)
m r

The first term corresponds to the number of incident particles
per unit area, the second to the number of scattered particles

per unit solid angle.

Thus, by defini- =, the differential cross-section

is given by

do _ t..]a
an (a,b)M M\U

= o) 2 + |e(e)]? . (204)

This can be seen to bte the "normalisation" for the scattering

operator M in that
|£(6)| 2 + le(e)|? = % tr (m'm) . | (205)

Polarisation

The polarisation of a beam of particles is defined as

the expectation value of the spin operator divided by the

3

amplitude of the spin (% in our case). Therefore

I3

oy ©(206)

-r
_ tr (MoM . o
= %r §M#M5 _ (267).

We have from the above

tr (MtM) = 2( |£(0)] 2 + le(e)]?) . o (208)

P = 2(S)

From the form of M we can see that it can be written as

M= £(0) I, + &(0)0; | (209)

where 12 is the unit 2 x 2 matrix and o& is é Pauli

- ~WIRE WO
s R SEREAN
21 &

matrix. Treating each component separatei&
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tr (M oM) = tr [£(0) + gex(0)] g, [r(e) + gele)]  (210)
:u[%pmn2+uwmaMQ~iymmwmé—Bwuzﬁymn

= 0 since all the Pauli matrices are traceless.

Similarly tr (MYg M) = O  (212)
and
| + _ 2 2
tr(Mto M) = tr‘o&lf(@)l + t(0)g(O)I,+ g*(0)1(0)T,+ o, [g(0)) J
(213)
= 4 Re( Je(e)) . (214)
S50 collecting terms we have
2 Re(f*(0)g(0)) ~
P =(g)= (215)

l£(e)] © + la(e)] @

A

Y 1is a unit vector in the y-direction, which is normal to.

the scattering plane.

Polarisation Transfer Coefficient

.

The polarisation transfer coefficients (P.T.C.'s)
give a measure of how the polarisation st;te of thé incident
beam contributes to the,p6larisation_state of‘the outgoing
beém. |
The underlying formalism of P.T.C.'s is described in (OH??)
and (R069). We will consider only the-Kii coefficient, :
éommonly calied the first Wolfenstein parameter. The’
expression for this observable isg
tr(Mo Mo, )

= . : ¢ (216)
tr(mmT)

KX
X

The primed system is related to the=unprimed system by rota-

-
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o

tion of ©, the scattering angle, about the y = y' axis.

There fore

*
x' = xcos 6 - zsin 6 . . (217a)
y'o=y . _ | (217Db)
z' = zcos © + xsin 6 . | (217¢c).
Therefqre |
cq;, =q;cos 6 —d;sin é , ) I (21@)

where the U§T~ refers to that component of the particle-

<

spin after scattering and o} refers to the component be-

fore scattering.

We have

tr(m®) = 201£(0) 2 + Je(o) 2) o (219)
and’

tr(quMfak,) = tr(MoiM+(akcos 6 - o%sin 0)) | _ (220)

" tr((£(6) +0,2(0)) 0, (£%(0) +0,e%(0)) gycos @)
- tr((f(e) + a&g(@)))O%(f*(G) + o&g*(G))G;sinIG (221)

L= 2(1£(0)] 2 - g(@)]Z)cos o

= (222)
- 2i(f(e)e*(e) - f*(@‘g(@))sin )
Now we may write
1(£(0)e*(0) -.8(0)1%(8)) = 2 Im(£*(9)a(e) (223)
SO0 we have ) ’ ‘ ‘ A _ (224)

tr(Mo%M é;,) = 2co0S O(Ii\e)lz lg(e)lz) -4 Im(f*(0)g(0)sin ©

and ©

o



l£(e)] 2 - |e(e)]? 2 Tm(T*(0)g(0))sin 6
: 5 - =1 - — x— (225)
I£(e)| < + le(o)] [t(e)f < + le(e)| =

1]
KX = cos ©
X
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This chapter is méinly concerned with a ccmparison
of the results obtained using the eikonal approximation with
those obtained ~from an exact calculation. As mentioned
in Chapter I, the energy régien\abeﬁe 1 GeV has, for central
potentials, been studied exhaustively, therefore this study
is limited to the energy range from 0.1 eV to 1.0 GeV.
This so called fintermediate energy" range 1is witnessing a
‘. eat deal of ectivity these days, and often the Glauber_ -

multiple scattering theory ig use¢ .o describe the collisions.

We choose here to %fej . lastic scattering of a
neutral particle from a compi.  coral et .~ ‘n-orbit mod-
ified Gaussian potential. Instead of p ki v oitrary par-

ameters fer the study, paramefers'are 1osen o -eproduce és'
closely ae possible the scattering of protons by actual
nuclei, and then the charges are set to zero to simulate
neutron-nucleus scatteriné..‘ The nuclei chosen in this study
are helium, calcium and 1eedkwrepresentihg light,.medium and

!

heavy nuclei’ respectively.

Choice of the potential parameters

The potential parameters are chosen by taklng the
parame ters obtained from matching a modified Gau831an potential
to the "best fit" Woods-Saxon potential using the formulae of
Appendix B, then using these as a starting point of a search
for a potential to reproduce as closely as possible the elastlc
scatfering data taken ffom'the references in Table I. The

resulting parametefs are shown in Table II. .

- - [ s



TABIE 1

The sources used for the experimental

lastic scattering data

proton-nucleus e

Py

Target Energy(MeV) Observable Reference

helium 100 cross-section G070

5840 polarisation G068

580 cﬁoss—section BO72

1050 cross-section AL75

calcium 155 cross-section WI68

155 polarisation WI68

1044 cross-section AL76

lead 155 cross-section WI68

' 155 polarisation WI68

cross-section ~BE73

1044
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0.
TABLE II

The parameters used in the optical potential

The potential used is

. 2 2
o o 2. - -
V(r,o) = (voflwo)(1+pr Je XF +(vs.o‘+iws.0.)(1*pr2)e xr oL

Nucleus and A4 W v Ve o oL Y2

) (o) (o] S.0. S.0.
Enerey (MeV) yevy  (mev) (MeV)  (MeV) (tm 2) (fm 2)
Helium :
100 - : 10.0 35.0 15.0 5.0, 1.00 2.0
380 1.0 80.0 10.0 0.0 1.01 1.34
580 ' -23.0 115.0 8.0 L.o 1.01 1.34
1000 -51.4 122.5 12.5 -24.5 1.01° 1.34
Calcium ‘
| 155 ’ 9.0 14.0 1.1 -0.05 0.1 0.1
500 -18.0 go.o 1.3 -0.25 0.1 0.1
1044 -35.0 0.0 1.5 -0.4 0.1 0.1
Lead ' ‘
155 _ 7 19,0 18.0 1.0 -0.2 0.0644" 0.207
500 ‘ -0.0 60.0 0.5 -0.15 0.0644 0.207 ‘
1044 -7.0  120.0 0.1 -0.1 0.0644 0,207 |
(1.0) (-0.5) :



b

Fits were made for all the potentials used except
for helium at 380 MeV, calcium and lead at 500 MeV, The
varameters for these potentf&ls were qbtained by considera-
tions of the behavior of the:opticél model parameters as
a function of energy, and interpolating between the regions
where experimental data had been fitted. Five fits are
shown here (figs (4-7))-

.
f

. As expected from geometrlc con51deratlons, the flts
worsen as the rangesoi‘the potentials increase, but in all
cases the essential features of the curves, in particular
the first diffraction minimum, are reproduced. Fits obtained
with a more conventlonal Woods-Saxon potentlal would be more
accurate (OE76) but wouldylead to rather complicated expres-
sions for the scattering amplitudes, and so for the sake of
simplicity are not used here. : ” | .
Generally the geometry of the potenfialeas kept fixed
for each nucleus, the exception being heliuym at 100 MeV where
an increased range was required to repfoduce the scattering
data well. At 1044 Me} the lead potential obtained by
minimising the chi-squared between theory and experiment gave
a spin-orbit strength which was rather too low to produce a
realistic polarisation or P.T.C., the strength of the spin-

orbit 1nteract10n was therefore 1ncreased sllghtly to the

values shown in parentheses in Table II.

Comparison of Glauber and exact calculations.

. For spin-# on spin-zero scattering one has two

complex amplitudes which, considering an overall phase factor,'



give rise to the three independent quantities. We therefore
have to consider three observables in order to fully describe
the system. We choose here the differential cross~section

g% » the polarisation P , and the first Wolfenstein parameter

Ky (2X).

The three observables are calculated here for three
different nuclei at various energles from 0.1 GeV t0 1.0 GeV,
and the graphs obtained giving eéxact and eikonal curves for
them as a function of either the centre of mass scatterirg
angle or the momentum transfer.

What exacfly constitutes a failure of the approx-
imation is a subjective matter. One may be trying to repro-
duce experimental data as in the multiple scatfering use, in
which case if the dlfferences between exact and eikonal cal-
“culations are smaller than the error bars then one may say the
approximation is valid. One may be wishing for a 5%, 10%,

.20% or "general features"‘reproduction; and so one should

not conclude with a table of angles, energies and ranges
showing decisively where one can and cannot use the approxima-
tion. - |

Despite the peESimistic attitude projected by the
previous paragraph, a cursary glance at the curves will reveal
that there is often a point where the approx1matlon fails
drastlcally (for example 80° for helium at 380 MeV (fig 8)).

. One may therefore draw the following conclusions for the

various nuclei.
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fig 4

The fit to the expefimental P - 4He elastic scat-
tering cross-section data at 580 MeV and the fit to the
experimental polarisation taken from 540 MeV,  both eval-

uated at 580 MeV.
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fig 5
The fit to the experimental p - Y%Ca elastic

scattering cross-section at 1044 MeV.
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The fi_t” to. ‘the ,experlmental p -
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fig 7

The.fit to the experimental p - 2O8Pb elastic

scattering cross-section data at 1044 MeV.
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Helium

The cross-sections are reprodliced rathep well. At
1050 MeV (fig 9) the appfoximation reproduces the first two
minima, beélnnlng to go astray at the third (see lnsert) At
580 MeV the’approx1mat10n may be saild to fail at the first
mimimum. recovering to fail drastically at 64° . Fof the lower
energies of‘loo MeV and 380 MeV the approximation does w 11

up to 8O on the cross- sectlon The polarisation and P.T.C.

fall“gt or before the first mlnlmumAfor all energles however.

-

Calcium ' . ‘fi“ﬁh

| " The cross—secmion cqnsieﬁentﬁy fails jqﬁf Eefore the
second minimum regardless of energy. The polarisetionffails
badly at the first dip at 150 MeV, ‘the P.T.C. £aillfe at the
top of the first rlse, coffesponding to the same value of

' momentum transfer. For the other two energies the first dip
1n the polarlsatlon 1sJobta1ned but the reproduction of the
P.T.C. is not appreciably 1mproved B
Lead
| Since experiments perfermed,on lead, particUlarly

at hlgh energles are constrained to the foreward angles, 1t

is of interest to note thaf in.the case. df*l GeV, the repll—‘
catlon,of the cross-section covers the entire angular range
,demanded.ef'if. ‘The approximation does rather well at 500 MeV,

v

the polarisation and P.T.C. being reproduced significantly

better, than at 1 GeV.



K

As mentioned previously, to conclude with a table oﬂé&;
angles, energies and ranges showing absolutely where oné caﬁ‘g'
use the approximation would be overambitious. ‘However, if one
decides upon a criterion of failure and then donstructs a
table, one may,expound upon the relative performance of
the approximation as regards these variables and hence no
apologies need be offered for the presence of Table III from
which one may draw the following general conclusions.

With increase of energy, the angular range goes -down,
but the momentum transfer incréases. Since the momentum-trans-

fer is physicglly more meaningful-than the scattering{angle,

~.the approximation may be sald to be better at hightr energies.

For iighter nuclel the angular range is<greatef than
for the other two,. however the difference between the angular

ranges of lead and cdlcium is not large.

The cross-section is found to be reproduced to a
greater angle “than the polarisation. The reproductions of

polarisation and P.T.C. are roughly the same, the P.T.C. being

TR

slightly worse. ! \
Brissaud's (BR75) finding that the formula q2<K k/R
is unneceésarily pestrictivepfor heavierknuclei is confirmed:

. A . ,,1 .
lead fairs hardly worse than calcium. It is found here that

the formula is also rather too#festrictive:for very light

nuclei -- i.e. helium.

o+
e T

Whilst increasing the energy from 500 MeV to 1044 MeV

i



]

TABIE IIT
The angles of failure of the approximation . .-
Nucleus Cross-section Polarisation P.T.C,
‘e -1 -1 -1
Epzrgy Gc.m. q fm Qc.m. q‘fm Gc.m. q fm
(MeV) : ‘
Helium .
100 80 2.3 50 1.5 40 1.2
380 80 4,5 L2 2.5 41 2.5
580 36 2.7 35 2.7 33 2.5,
1050 . 80 7.8 4o 4.2 L2 4.3 -
Calcium
155 -+ 32 1.5 17 0.8 20 0.
500 20 1.9 17 .6 12 1.1
1044 12 1.7 10 1.5 . 8 1.2
Lead
155 30 1.4 10 0.5 8 0.4
500 28 2.6 12~ 1 23 2.2

losk 20 3.0 10 . 1.5 11 1.8
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fig 8
The differential cross-section for helium at 100
MeV and at 380 MeV, calculated exactly and in the eikonai
apppagimﬁtion, The solid line is the exact calculation,

bl )

the dashed line is the eikonal approximation.
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[

fig 9 .
The differentiai crossésection fof helium at 580 /’%T//////
MeV and at 1050 MeV, calculated.exactly and in the ei-
konal approximation. Therolid lihe is the exact cal-
culation, %he_dashed;line is the eikonal approxima-
tioq. |

D
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_ fig 10 |
The polarisation. for helium at iOC MeV and 380
MeV, calculated exaétly and in the eikonal‘approx— ‘
imation. The solid line is the exact'calculation,m

the- dashed i1ine is the eikonal épproximation. The

\\

graphs are pldfteq\as functions of momentum trans-

fer.
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fig 11
_The polarisation for helium at 580 MeV and 1050

MeV, calculated exactly and in the eikoral approxima-
tion._ The solid line is the exact calculation, the

dashed line is the eikonal approximation. The graphs

“

are plotted as functions of momentum transfer.
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Tig 12

The P.T.C. for helium at 100 MeV and 380°MeV,
calculated exactly and in the eikonal approximation.
The solid line is the exact calculation, the dashed -

line is the eikonal- approximation. The”graphé*are

plotted as functions of momentum transfer.
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‘fig 13
The P.T.Qﬁ'for helium-at 580 MeV and 1Q5O MeV,
calculated exactly and in the eikonal approximation.
‘The solid line is the exact calculation, the dashed.
line is the.eikonal.approximation. The graphs are

plotted as furctions of momentum transfer.
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thes accuracy does not vary significa?le; in several cases

‘a greater mdmentum traﬁsfer is reproduced at 500 MeV than a%
194H.Mev (see fof exampie,figs 17, 18, 22, 23). This may be
due to the factu that the potentials used try to mimic realistic
optical potentials in which the real central potenti~l chahges
sign comewhere below-500vM€V, alSO'ﬂm?reactibn cross-section
is smaller a. 500 MeV, £iving smaller imagihary potentiais at

the ilower energy. - .

The épparent early failure for helium at 580 MeV (fig
9) oCcurslat thé fi?st diffraction minimum, however the ap-
proximationjjsaWry for only a few degrees énd then recovers,
fd%ling again at aiﬁigher angle. At 380 MeV, where the
vpotentials. especially the real central, are smalier, the
first minimum is reproduced . more accurately (fig 8) and so
the variance between exact and eikonal curves is not consid

ered (by the author) a failure.
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fig 14
The differential cross;section fbr calciuﬁ‘at
155 MeV, calculated gxactly and in the eikonal approx- .
imation. The solidq

ine is the exact calculation, the

dashed line is the eikcnaljappro§imat;pn.
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fig 15
The differential cross-section'for:calcium at
500 Mev, calculated exactly and in the eikonal
approximation; The . solid line is the exacf calculation

. the dushed line is the eikonal approximation.
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fig 16
The differential cross~-section for célcium at
1044 Mev, calculated exactly and.in the eikonal approx-
imation. The solid line is the exagt calculaEion,‘tﬁe

dashed line is the eikonal approximation.
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fig 17

The polarisation for calcuim at 155 Mev, 500 Mev
and 1044 Mev, calculated exactly and in the eikonal
approximation. The solid line is the exact calcuiation,
the dashed line is the eikonal approximation. The

graphs are plotted as a function of momentum transfer.
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fig 18 .
The P.T.Q. for calcium at 155 Mev, 500 Mev and
1044 Mev calculated exaétly and in the.eikonal'approx—
imation. The solid line is the exact calculatien, the
dashed line is the eikonal'approximation. The graphs

‘are plotted as a function of momentum transfer.
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fig 19
The differential cross- sectlon for lead at 155
Mev, calculated exactly and in the eikonal approx1mat10n

The so0lid Xine is the exact calculatlon, the dashed Tine

is the elkonal approximation.
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fig 20 ‘
The differentiél cross-section for lead at
500 Mev, calculatéd exactly and in the' eikonal approx-
imation. The solid line is the exact calculation, the

dashed line is the eikonal approximation.
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fig 21
The differential cross-section for lead at 1044
Mev, calculated exactly and in the eikonal approxima- . .

tion. The solid line is the exact calculation, the

dashed line is the eikonal approximation.
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fig 22
The polarisatior for lead at 155 Mev, 500 Mev and
1044;Mev, calculated exactly and in the eikonal approx-
" imdtion. Thesolid line is the exact calculation, the
dashed line is the‘eikqnal approximation. The graphs

are plotted as a{function of momentum transfer.



107

500 MeV

—
o
e
(o]
L]
e
[\
i

1

|

I

t

{

]

l

!

I




108



fig 23

The P.T.C. for leaq at 155 Mev, 500 Mev and 1044
Mev, calculated exactly and in the eikonal approximgtion.
The solid line is the exact calculation, the dashed line
is the elikoral approximation. The graphs are plétfed

as a function of momentum transfer. , -
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Comment on the amplitudes

It is observed (see figs 24 - 27) ‘that in the

n

) »

%eplication of an amplitude by the Gladber eikonal approxima-
gﬁon, the relative error is usuaily greatér for the smaller
of the real énd imaginary parts. This may be explained in
terms of the Born-series ~niilogy; 1if the actual error in each
term is about the same, then the relative error in the result
will of course be larger if the series converges, through |
cancellations, to a relati?ely small value. |

The effect of the greater relative error in the small
part of the amplitdde explains why the cross-section is repro-

duced more accurately™than the polarisation or the P.T.C,,

which are sensitive to the individual phase of each amplitude.

The effect of the cos /2 factor

The effect of this factor is éeen to be quite small.
In the example given (fig 29) the factor is seen to improve
the reproduction of the polarisation, but worsen the reproduc-
~tion of the P.T.C. In other cases tested a similar sort of
"random" ameiioration/deteriorgtiontm~s observed, making it

difficult to say anything about a practical reason for retain-

ing or discarding the factor.
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Table IV - *
The exact and. eikonal non-spin-flip amplitudes
tabulated for helium at 100 Mev as.a function of both
centre of mass scattering angle and momenkum,transfér.

The units are fm. : 7.&555



taken from helium at 100 Me#

TABIE OF EXACT AND EIKONAL

'NON-SPIN-FLIP AMPLITUDES

(The exponents of the numbers are shown in parentheses.) |

Re(T)

*

0 Re(f) Im(T) Im(T)

c. fm_l exact Glauber exact . Glauber
0 0.00  8.070(-2) 1.243(=1)  1.946(0) 1.813(0)
5 0.15 7.916(-2)  1.226(-1) 1.925(0) 1.795(0)
10 0.31 7.470(-2)  1.175(-1)  1.862(0) 1.741(0)
15 0.46  6.797(-2)  1.094(-1)  1.762(0) 1.665(0)
20 0.61 5.966(-2) 9.900(-2) 1.629(0) 1.541(0)
25 0.77 5.079(-2)  8.694(-2)  1.471(9)  1.406(0)
30 0.92  k.238(-2)  7.406(-2) 1.297(0) 1.255(0) |
35 1.06 3.535(-2)  6.112(-2)  1.113(0) .1.096(0)
Lo 1.21 3.045(-2)  4.883(-2) 9.290(-1) 9.347(-1)
45 1.35 2.813(-2)  3.773(-2)  7.508(-1) 7.771(-1)
. 50 1.50 2.854(-2) 2.820(-2) 5.847(-1) 6.295(-1)
55 1.63 © 3.155(-2)  2.046(-2)  4.348(-1) 4.935(-1)
60 1.77 3.675(-2) 1.455(-2) 3.040(-1) 3.723(-1)
65 1.90  k.351(-2)  1.039(-2) 1.937(-1) 2.670(-1)
70 2.03 5.113(-2)  7.415(-3)  1.040(-1) 1.779(-1)

.75 2.15.  5.883(-2) 6.463(-3) 3.392(-2) 1.044(-1)
80 2.28  6.591(-2)  6.180(-3) -1.821(-2) h.537(-2)
85  2.39  7.174(-2)  6.648(-3) -5.463(-2) ~6.796(-4)
90 2.50 . 7.586(-2)  7.615(-3) -7.785(-2) -3.548(-2)
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Table V
;v__T,he exact and eikénal spin-flip amplitudes
tabulated for he_lium at 100 Mev~~as a function of both
centre of mass scattering angle and momentum transfer./

The units are fm.



TABIE OF EXACT AND EIKONAL

SPIN-FLIP AMPLITUDES

taken from helium at 100 Mev

(The exponents of the numbers are shown in

“Re(g)

parentheses).

142(-3) - -3.548(-2)

v

. Re(g) Im(g) Im(g)
fm-l exact Glauber exact Glauber
0 0.0 0.0 0.0 0.0 0.0
5 0.15  -7.714(-2) -5.091(-2) 1.241(-1) 1.183(-1)
10 0.31 | -1.498(-1) -9.884(-2) 2.400(-1) 2.290(-1)
15 0.46  -2.138(-1) -1.411(-1) 3.405(-1) 3.255(-1)
20 0.61 -2.660(-1) -1.756(-1) 4.199(-1) 4.025(-1)
25 0.77  =3.039(-1) -2.010(-1) 4.745(-1) L.566(-1)
30 0.92 -3.265(-1) -2.165(-1) 5.031(-1) 4.864(-1)
35 1.06  -3.338(-1) -2.223(-1) 5.067(-1) 4.928(-1)
Lo 1.21 -3.270(-1) -2.194(-1) 4.880(-1) b:782(-1)
ks 1.35 -3.078(-1)  -2,091(-1) b.513(-1) 4.463(-1)
50 1.50 -2.789(-1) -1.930(-1) 4.016(-1) h.o17(-1)
55 1.63  -2.431(-1)  -1.730(-1) 3.441(-1) 3.488(-1)
60 1.77  -2.032(-1) -1.507(-1) 2.836(-1) 2.922(-1)
65 1.90  -1.618(-1) -1.277(-1) 2.28k(-1) 2.356(-1)
70 2.03  -1.212(-1) -1.053(-1) 1.696(-1) 1.821(-1)
75 2.15  -8.335(-2) -8.433(-2) 1.215(-1) 1.336(-1)
" 80 2.28  -h.9h9(-2) -61553(-2) 8.130(-2) 9.166(-2)
85  2.39  -2.052(-2) -4.921(-2) 4.937(-2) 5.668(-2)
90 2.50 3 2.540(-2) 2

.862(~-2)
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Table VI
The exact and eikonal non-spin-flip amplitudes
tabulated for calcium at 500 Mev as a functioﬁ of both
centre of mass scattering angle and momentum transfer.

The units are fm. ' L
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|
TABIE OF EXACT AND ETKONAL

NON-SPIN-FLIP AMPLI TUDES

taken from calcium at 500 Mev

( The exponents of the numbers are shown in barentheses.)

0 q Re(f) Re(f) Im(f) Im(f)
c.m. fm_l exact Glauber ‘ exact Glauber
0 0.00 -1.290(-1) -1.310(1) 3.976(1)  L.101(1)
5 0.46  -5.328(0) -5.158(0) 1.992(1)  1.990(1)
10 0.93 8.063(-1) 6.557(-1) -1.856(-2) -7.133(-2)
15 1.39 -1.377(-2) -3.363(-2) =7.210(-1) -7.785,-1)
20 1.85 -8.837(-2) -9.011(-2) - H.587(-2) 1.107(-1)
25 2.30 -8.697(-3)  1.794(-2) 15.670(-2)  2.514(-2)
30 2.75 7 1.816(-2)  3.546(-3) /e2.620(-2) -9.922(-3)
35 3.20 -B.638(-3) -1.506(-3'" 1.273(-2) -7.809(-4)
o) 3.6k . 5.626(-3) -1.029(-4) <1.061(-2) 5.642(-4)
L5 .07 -4.805(-3) 9.660(-5)  8.871(-3) 7.646(-6)
50 k.50 4.099(-3) L4.172(-6) 7.609(-3) 3.170(-5)

"
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‘Table VII
The exact and eikonal spin-flip amplitudes
tabulated for calcium at 500 Mev as a function of both

centre of mass scattering angle and momentum transfer.

The units ar= fm.



TABIE OF EXACT AND ETKONAL

SPIN-FLIP AMPLITUDES

taken from calcium at 500 Mev

118

(The exponents of the numbers are shown in parentheses.)

c. q Re(g) Re(g) Im(g) Im(g)
exact Glauber exact Glauber

0 0.00 Y 0.0 0.0 0.0 . 0.0

5. 0.46 L.,o27(0) b.344(0) 9.174(0) 9.447(0)
10 0.93 1.548(0) . 1.465(0) 5.035(0)  4.231(0)
15 1.39 -9.575(-2) -1.673(-1) -8.724(-1) -8.230(-1)
20 1.85  -9.667(-2) -6.769(-2)  1.054(-1) 1.259(-1)
25 2.30 1.057(-2)  1.759(-2)  5.161(-2) 3.231(-2)
. 30 2.75 5.186(-3)  3.301(-3) -2.220(-2) -9.826(-3) .
35 3.20 1.608(-3) -1.411(-3) 1.263(-2) -5.785(-4) -
4o 3.64 -2.284(-3) -1.175(-4) -1.117(-2) 5.621(-4)
ks L.o7 1.335(-3)  8.691(-5) 8.890(-3) 4.L44L(-6)
50 b.so . -7.672(-4) 2.871(-6) -6.337(-3) —2.872(-5)
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fig 28
! The polarisation and P.T.C. curves calculated
éxactly and in the eikonal apprbximation. shoﬂing the
effect of the cos 0/2 factor. The calculations are

made for helium at 580 Mev. -

(=]
)
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CHAPTER V

CONCLUSION
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The Glaubef eilkonal approximation has béek studied at
intermediate energies ji.e. (0.1 Gev to 1.0 Gev). " The study
has been undertakenlusing a mecdif'ied Gaussian potential
rather than the more conventional Wdods—Saxon potential. The
former is chcsen feor its simplicityi

P ) .
Most earlier analyses were done using only central

-
-

real potentials. In this study we use a mcre realistic

complex potential with the added important feature of includf

ing the reather inevitable spin-orbit interactiorn. This
enables us to ctudy the Yeheviour of spin Geielitol. . obser-
‘ | :

o . - - ' . N
vables such as polarisation and polarisation transfer

coefficients. From the results of the study we may tentativ-

¢
v

ely draw some conclusions.

It seems that the perfoymance of thé approximation
does nct significantly improve as one increases the energy
from the 500 Mev range to the 1000 Mev range. The optical
potentials used in this study miﬁic realistic optical poten-
tials in being weaker at the lower energy,; this may explain
the low energy success.

Generally one finds that the'approximatioh fails at
a ’smallez' momentum transfer ip the 100 Mev region than for’
the.higher energy regions studied.

-~

On average the polarisation and pclarisation transfer

coefficient reproduction were much the same, the approxima-

tion tending to break down at momentum transfer very roughly

around 60% of that at which ‘the reproduction of the cross-



123

section fails, but this varies’considerably from case %o
case.

It bears repeating at this point that what constitutes
a failing of the approximation is a subjective matter.
Nevertheless; a table where the significant deviations set in
is given 'rn Chapter IV (table III). From the table *he
follcwing trends emerge It is seen that for a specific
nucleus, increasing the energy tends “to decrease the . angular
range of ‘the approximation, but increasesthe amount of
momentur transfer reproduced. The lowe =, points of failure
'found in thie study are at 10 and C.5 fm—1 fer the centre .
of mass scattering angle and momentum transfez respectlvely

An extra factor was found multipiying the gpin-flip
amplitude, which was not present in previous worke. Formelly
the presence of this factor (cos 6/2) is desirable since 1=
leads to the expected reduction from Glauber o Born
approximations in the 1limit of very weak potential strengths
and avanishingpolarisation at 180 . The effect of the
factor on the accuracy of the approximation was found to be
small, it's presence neither consistently worsenlng nor
improving the approximation.

For scattering off helium‘the results of (DY?77) that
the eikonal approximation oroduces diffraction minima which
“are too deep are reproduced Tneir stud& also uses the |
profile functions from the multlple scattering to obtain an

optical potential on which an exact calculatlon gives a good

fit to the data. This indicates that the simple eikonal

-



approximation is not doing too well in the intermediate
energy region for helium. However as shown in (GI7?4), the
eikonai approximation does well in this region with the
Wallacé corrections.

For calcium this study has shown one may trust the
eikonal appfoximation only as far as the first minimgm if
oné considers polarisation, but the crdss—section alone is
generally reproduced up to the second minimum.

For lead the approximation seems to be doing
surprisingly well; reproducing four minima of cross-section,
polarisation and polarisation transfer coefficient fail eérly
for the lower energy but are reproduced well for 'the higher
energies - - spectacularly so at 500 Mev. |

Thus we may conclude that the Glauber eikonal approx-
imation must be used w;th caution at,intermediate energies,
especially where the observable in question fluctuates rapidly
since the approximation has difficulty in reproducing minima.

' Whe'ther one should use the simple eikonal approxima-
tion or use corrections to it for a certain case is an open
Question. The accuracy in the case of helium is significant—
ly‘improved by the Wallace correcfions or by means of an
intermediate thical potential, however much simplicitly is
iosf; and so the final'decision mﬁst be made by jhe réquire—

ments of accuracy imposed'upon ghe approximation.
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AB6L
AD65
AL76
Asfé
AU76

BA73
BE73
BL61

‘BL76

BO72

BR75
BY73
DE 74

DY77
FR67
GI75

GL55
GL59

+
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AFFENDIX A

Total Crocs Sections

| In this arpendix are calculated th total cross
section, the scattering cross sect.on and the reaction
cross section. The physical interpretation of these quart’ ties
is well kﬁown and is expounded upon in great length in ;lmost
-any book on gquantu:n theory -- for example (R067).

A brief summor: of the quantitiesris given. A‘particle
1s said tc have been scattered during a process, if its state
after the process is different from that before the process.
Here the worg\state refers to both the internal state of the
parficle and also the momentum state of the centre of mass of
the particle. 'A particle is said to have been elasitically
.scattered if it has beeh scattered and its energy‘is the same
in the final state as in the initial state.

- The total cross section is defined as the ratio of the
number of particles scattered per target particle to the
‘number of incident particles perunit area. It is denoted By T

The elastic scattering cross séction is defined as the
number of particles elastically scattered rer target particle
to the ﬁumber of incident particlesiper unit area. It is
denoted by Osc - ‘ (

The reaction cross section is defined as the ratio of
the number of particles scattered, by processes other than

elastic scattering, per nucleus, to the number of incident

particles per unit area. It is denoted by Uh
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The above definitions imply the following rélationship
o =0+ (226)

The total cross section gives a measure of the number
of particles deflected from their foreward motion and is
therefore related to the foreward scattering amplitude. The

relationship i the Optical Theorem (R067).

S o4 Im
O’T = ———(tr M) C(227)
k(2s+1) :

where k 1is the wavevector of the particle and s 1is the
spin of the particle. -,
L4
O& = — Im f(0) . : (228)
k « ¢
The scatterihg cross section is obtained by summing
the probability of scattering into a certain angle over all
angles.
‘The probability density of elastic scattering at
angle 6 from spin state/& to spin state v is given by

(W

|Mﬂ,(e)]2. ’ il o '(229)

Thus to get the total probability of elastic scattering} we
must average over the initial states and sum over the final
states.
' o AT .
05 = 35 Z”l (0] 2 O (230)
| H=1 =1
. 00
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Ogp = {lf(@)lz + [ig(g)lz + liig(e)lz [£(6) I_}dfl (231)
O5c = [(1(@)]% + |a(0)]?) an | (232)

where dN is sin 6 de d¢ ?‘

.9

0, 1s most ea51ly calculated by subtractlng the above ex-

R
pression for oéc " from 0&

u
Q

°The exact calculation of cross sections .

We obtain the total cross section from unitarity.

Specifically using the Optical The orem

op = T tm £(o) | o ~ (233)
on our amplitudes | _— !
: (234) ’
, o0 . (F
f(e) = % E:{(l+1)e161 sin 3; + l51 sin &7 ‘}Pl(cos(b)
150 :
g(0) = é% E; { 215 - 235—:}P (cos 0) \ (é35)
1=0 .
which gives o . .
' ,‘ o  (236)

k]

b 22 15 T ié7
= —§ 2: m{'(l+1)e " sin Si ~+ 1 e”1 'sin é }
1= O ’
It must be remembered that in optical model analysea
a complex potential is employed, which glves'rise to "phase
shifts which in turn will be complex.

-

To obtain the scattering cross-section we use equa-

2
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tion (232). Splitting this into two parts and using the

expression for f(6) and g(e), we get

$ I ‘
Osc = f’fl - (237
+ - :
= 2 {(l*rl)el(S sinSI + 1 elél sinéi }
k -
1=0. l'“O
. (+ o
{(l'+1)elél' + 1° elcl“: sin i, ) : (238)
20 o o ,
jj-P;(cos O)Pl,(cos 6) sin © de ag
‘ ”4"511' -
The integral gives A Therefore
’ . (+ . 8- 2
¥ _are i1+ 151 si + 1 et ind>
A §z  ’( e SlHSI e” 1 s1n5l l (239)
K150 - | |
21+1 '
g _ 2 K ' . ’ ) .
o5 - |el an | . N (240)
o0 0o + L C- . (¥4 L (¥
_ E: 5; ( 215 _ 62151,/ (6-2;51, _ e—2151, }
(Zk) 150 19=¢"
1=0 1'=0
7 (241)
[[Pi(cos 0) Pi,(cos 8) sin 6 de dg¢ .
. . oo : |
The integral gives MW;é%%%léil, .  Therefore
g _ m & 1(1+1) 2i8 2id: . .
USC = kZZ’—z(le‘)',? 1 -. € 1 , : (242)
1=0 " e _
Now we use_thé identity1
2187 2187 a8 a0 is- -
e 1 - e 1 = 21{e 1 sinél' - e 1  sin 1 -} (243)

and obtain
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_ f g _ hw & 1 -
°c T %c T 9% Tz ) I 1 (244)
150 o " ~
(4 .5._
where’?(.l = |(l+1)e151 sinéI + 1 et sinéi |2
o . (25)
+ 1(1+1)e'?1 sindT - 1 sind: |2
1 1 ;
The expression for Xi may be simplified, getting
e = : 8T 2 6T L - 2
Osc = ;ﬁ E: {(l+1) | e ,l 31n51 [. + llé 1 s1n3l | ].
1=0 | . (246)
The Glauber Approximation J
3 i‘q\
The scattering cross-section 1
We evaluate the expression
. 2 2
J( [£(e) [ + le(e)] ) an A | (247)
. in the eikonal approximation. ’
e al , Evaluating the expression
v 'ﬂ Lo Ty -
e . ,
©oof= flf(e)fz dq = ff(e)‘f*(e) an (248)
“and using the expression | B | .
y _ ik [ ig.Db 2 ‘,
£(0) = Efe 42N (0) a% (240
we get
, o (250)
T o [l 25 0182 mopy 025 12X [a-10-D" ey <2 s
o = [l 3£ @ o[- £ o792 pr () o

s / . ' .
i;§[7- Tl(b)PZ(D')fdzb\dzb'[./'e%g-(9‘94) dﬂf}' (251)

Spheve
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The term in the brackets may be evaluated using an approxima-
tion. The integration is of course carried out over the angle
- made by the final wave-vector, which means gi is effectively

a constant for this integratioﬁ. The brackets become

iy (200 ook (220 g | | (252)

Figure 30

We are integrating over Inggsbhére“”S‘vaf present, but for
small angle scattering integration over § is approximately
the same as integration over the plane P. Since in the
eikonal approximatioh we alwayg assumé small angles, then we

may make the replacement, obtaining, for the bracketed term;
| .

R e , (253)

(The volume element in the plane is dzkf, on the sphere it

is |k |%aney S
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We can simplify to obtain

2
(2m? S(b-b') = X (b-b'). (254)

" D TE

Supstituting this back into (251) gives
£ 12 .2 | |
o' = ﬁrc(p)l d“b . | (255)
Evaluating the expression

2 " J
o® = f|g<e>| an . | (256)

using the expression for g
g(e) = - %—Jelﬁ‘vl’- sing () ap, . (257)

w

which comes from equation (111), we get

) o8 =f (— -é}-%_jeigx'p r‘s(_t_>) sin . dzb}

| sphera : t (258)
(- E‘%Ie’ig-h' M(p') sin 7 dzb') a0,

, ‘ (259)

= -fn—z—ﬁ's(p) [*(b') sing sin g* a%b dzb-{fei,g'(p'y) an}

sphece

Now, using the same approximation as before for the

térm in the brackets, we get

2

08 = [ [y(®) Pa(2r) sing sing ' b @%by S(p-2)  (260)

o8 =‘J l[‘,.‘s(b)lz sin’d a%b . e



|
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The opticai theor« 128) gives

o, = Fkﬂ Im[gﬁ f 19'32 [7,(p) dzbj ‘ . (262)
. |

o =J[2Re Pc(p).]d b . (263)

Adding (255) and (261) we obtain

f(ll'c‘,(lz)lz'+ | M) |? sin®f ) a%b . (264)

The reaction cross-section is obtained by subtracting equa-

tion‘(264) from (263) to obtain

i

O [ (2Re [3(B) - lP(p),z - |r(_b)|2 sin®g ) d%b (265)

b *(b) - () *(b) - (p)| 2 a%b
j( 2() + [A(2) - TL(RIME(D) - | (2)]? sing ) )

=“1_ |1 - T |2 - [y(2)] 2 sin?g ) dzbl. (267)

Equations (263), (264), and (265) give the eikonal results
for cross—éections. They may each be evaluated in a similar
‘manner, and so only the result for c% is obtained here.

The other two results are quoted.

Reaction Cross-Section

Making the assumption of azimuthal symme try for the
potential in equation (267), and using equations (102) and ;

(103), we obtain

7w oo

o =~[J\ - | ei% (b)cos (kbX (b)|2
:  (268)
e %o ®sin (xox_(b)] ? sin ¢}b wa |
= ZTTI {1 - eixé(b)COS (kbxs(b))lz (269) |

- eixb(bz sin (kbx.s(b)[2 }b db .
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Now, using equations (155a) and (155b) this becomes

b

o 2 2 '
- oD -«b 2 2
Oh = 2nJ{1 - eAce ,'eAze ﬂcos (1).Ase_°‘b )|
&} . (270)
. ps !
—ubz 2 '
+ % |sin (bA_e” -f)IJ)b db
© 2 2
: -ab™ -ob : 2 2
= ZWJ\b db(l - et eAze {cos (bASe"“b )Jcos (bAée_ab )
° (271)
2 2
S+ %sin (bASe"a(b )sin (bA*ée_c(b % )
2 2
-ob _—ab
o (A +A%)e {cos (b(A_+A%)e )
R ﬁ[b db{ 2 e*”c ¢ s s (272)

—“bz 1 : —ﬂbz 1 / —(sz
+ cos (b(AS—Ag)e ) +icos (b(ASng)e. ) - 3cos (b(AS+A§)e

Introduce

O = Op(A ) + o (-A).

\273)
' T | [(A +A*)+ib(A A; )] -
Gh(AS) = %‘[b db(z - %e c fe/Th ghgH € '
B A 2 (274)
1 LB A+ ib(AsraL)] e -ob
_ f = Y s . 4T -urb?

_=T1lb av Z(—Eg—![(Acmc)nb(As-A )1 %e

0 r=1 ’ (275)

. 2
1 : . -arb
T [(AgrAX)+ib(A +ax)] Te ™0 )

Since the integral couldn't have been done analytically, we
>, | “ S
had to expand. The series is uniformly convergent for all

0 ¢ bgoo, thus we may interchange sum and integral to obtain.
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an expression which still defies analytic integration, how-
ever upon further expansion the integral's' may be performed

to obtain the expression for OR*

(276)
o0 [5] .(Ac+Ag)r"23(-1)Ss:

Ok = ‘EZ

r=1 s=0

oy ,
(25)!(r-2s)z(o(r)s+1{3(As’A§). S+ (ArA%) ,S}_

The total and scattering cross-sections may be evaluated in

a similar manner to obtain the results

r
o 2 (-1) %k
o, =1 _ {(A #a% )T 2K axy2k
sSC EI; k; (2k)!(r—2k)!(qr)k+1 c ‘¢ , s s
| (27
4+3(AS—A§)2k) _ A8Re[(AC)r—2kASZ}7}
and
oo 5 (-1 Re[_(Ac)r"?kAszk]“ | | -
O‘T = —2Tr X k+1 .,, . ; (278)
(2k)!(r-2k)! (ar) T

- r=1 k=0
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APPENDIX B

' Matching Woods-Saxon Pofentials to Gaussian Potentials

We attempt here to gi&e a prescrlptlon whereby, given
a WOods Saxon potential, we match 1t with a Gaussian potential
so that 1t will have similar scatterlng propertles

There are several physical characterlstlcs that one

. may w1sh to equate. They are

(i) the volume integral,

"+ (ii) the r.m.s. radius,

(iii) the potential gradiants at the nuclear surface
(iv) the depth,
(v) the strength at thé nuclear surface.

The analytic forms of the potentials matched are:

2 2 : )
. - 2 . - 3
(vo+ iw )e™ " (1 + pre) + (Vg o, T 1wy o )e™¥ (1 + prf) oL
and - o ; : ' :
: i
(v, + iw_) - 1
0 o) : 1d :
: + (v + iw )5 o= : _.L
4 + ¢T-R/2 's.o. §.0.°r dr ., t-R/a ~'=

Often only expressions for £ =0 will be given;however,'all

\

formulae that are used in this study are given.

(i) . The Volume Integral

il

WObdsfsaxon

[ 3, . bw a3 = ()T -rR/a
JWS.—J 1+er_R7§,_‘dr— 3V {R(R +n ) - ba Z—(—%—e }

=1 T
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Gaussian

‘ \ 2
_ -xr~ 3 _ bnv [
JG‘JVG dr“‘ﬁ«—j%

Woods-Saxon Spin-0rbit

- 14/ 1 3y - | . -R/ay
Tsws = va.o. r dr{m)d r _bﬂrvs.o.(R+ a In(1+ ))

Gaussian Spin-0rbit

5
_ 1 4, -~«r®, 3
. Isg = f"s.o‘ T HE(e )d r= —Lmvs.o.fg_

Modified Gaussian

2
JM} = fv (1 + /Jrz) e ¥F =~ 4wy F (2« +, 3/:;)

Modified Woods-Saxon

2 oQ —rR/a
- |y (1 + pro) 3 _ bnv 2 2 3 (- )
Jvws ~f d’r —3- [ R(R TnTa”) - 6a E ]

1+ er—Rf

r=1 r—
[ r
+ Hnpv R(3RY + 1On2a2R2 + 7n4a ) - 360a5 Z (=) e TR/a
15 1 5
r=

(ii) The R.M.S. Radius

Woods-Saxon - ‘
<r2>2 = 1 by [R(jR + 101r2a‘2R2 + 71r a ) - 360a5 i LL —rR/a]

15 o
| =1
Gaussian
< rz) 2 ‘1 brv —3—-

8x?

o



Modified Gaussian

3 _ _z_ji -1
¢ L (2« + 5p) J
r% v 1663 Ju T 2P g

(iii) Potential Gradiants at the Nuclear Surface

Woods-Saxon

a v
dr 1+ er-R7a

v
RTY

r=R -

Modified Woods-Saxon

: 2
d (1 + W - o1
d_r‘v er-ﬁﬁ;)! = g (PRika - R) -1)

1+ r=R

Gaussian

2
v e ¥T )

Modified Gaussian

2 *
= ~2v e"“R R(« + p (xR - 1))

r=R

2
d—dl; v (1 + prd) e‘“r,

{iv) and (v) The Depths and Strengths at Nuclear Surfaces
These are found by evaluating the potential function

at r=0 and r =.R ‘Fespectively.

General

' It was found during the study that matching potentlals
- was satlsfactary for llght nuclei. * The crlterla for a Woods—
Saxon potentlal to be well matched by a (modified) Gaussian
is that R/a ,should be small.fnThe critical value of this

parame ter is ‘around 6 above which the match is unsatisfac- -
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tory, For example, consider the best matches obtained for

helium (R/a = 3.6) and lead (R/a = 12):
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fig 29 °
The sucesses ~d failufes}of matching short and
long rangé’Woods—Saxon potentials by a modified,Gausgian‘

J : ) a
vpotential. The solid and dashed lines are the modified

Gausgian and Woodstaxon potentials respectively.
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apprnDIE ¢

Three separate [checks were performed, each to calcdiate

The

Three separate Born approx1matlons were performed, and

the. results compared to the first term (r = 1) in the series

for 1,q;f » 3, &y, and g2 Prov1d1ng one keeps the

/

cos 9/2 <factor in the g terms, then it was found that the

r = 1 term was 1dentlcal to the f1rst term in the-Born series.

In h1s the51s (WA?O) Wallice gives the- express1on for

J

the scatterlng amp 1tude from a potentlal of the form



e

R
R
R A T

e Ly

2
v e YT
0

" This expression is -.pr-duced by;

fl CAf o owo, v , W Y
fo! s.0. S.0.
’,‘fZ.lfzwo' Vs.o.’ Ws. 0. P O

fj ii‘p—#O

From each of the three separate calculatlons
three computer programs were constructed and tests were
performed upom the numerlcal results obtalned from them.

& e P

l“,h' Unier theﬁreduct%oﬁﬁfdescrlbed in the prev1ouq

sectlon of th1s appéndrx, the programs produced

e

1dentlcal results

\

For each of thé‘programs the flrst (and simplecst)

term ‘was evaluated ThlS number tall;ed exactly with

dthe results obtalned from a hand calculation using the,_x‘

w;r .
flrst Born approx1mat10n The calculatlon was repeated

for angles from 0 to 180  in steps of 5° and the tally

between resulmswasstlll found to be exact

For the flrst prograiwﬂ e third ahd fifth terms

.werg evaluated by and these, too, tallled with those

B

obtalned from the program
If one chooses to match a Gaussian potentlal by.

a WOods Saxon potentlal thls may be -done very closely

(as opposed to the other way round!) and upon us1ng the

“sectlon of the first program to compute exact scatterlng

amplltudes, then the amplltudes,were found to be;close.

C
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It was found that in the high energy limit, and
for small angles, that the Born ‘and eikonal results were

/ : .
close, as they should be. . ' \

Wallade's (WA72) results of comparison of exact and

| v .
elkonal calculations appear to be reproduced, although

I
Wallace only/gives a graph, there is no visible deviation
/. Co. . .

/
between the 'two sets of results.

/ AR N

Y. Héhn in a series of three papers (HA69) (HA?O)
(HA?j} has Fone fairly extenS1ve tests of* the eikonal ;
approximation, and has numerical results tadglated for the

scatgg ing amplitude obtaired from a pdtential of . the. form

2
Vce""r (1 + prz).

His- elkonal approxlmatlon reqplts arearepxoduced by

plogramc (ii) and (111) his exact calculatiéns are almost

w

.{. —

"reproduced, the small dlfferenCe between exact calculéfioﬁs,

belng thought to stem from a small error in h1s calculation,

p0531ble (but not checked) taking too few phase“shlfts

*4'-' :

So far the tests have always been on the n%pgsplanllp

‘seatterlng amply%ude No:references found seem to give numer—"-
_ical reswl%s for th%?spln fllp amplltudes, exceth(ER75)

'whlch uses a. WOods Saxon potentlal

’ oA , '
\ :ﬁe dlccuss ne 3 test performed to check the spin-
. ‘ ] _
2 "
: flipwamplltude. 1 . L e
; ‘ ./ CosEE
o : / o %
‘f‘\-.\”n' »' ! . o ;
s . !
S . o 5
£ . Y .- 0
-~
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Relation between the two scattering amplitudes

For a sphericai§¥ symmetric potential
e

£(0) = ik |y (qb)(l - ellvgt v )'A'(b)cos (ko(vrin ) A(0)) b ad

‘g%%

ik | J
.
0

g(e) (qb)ei(vc+iwc)j\‘b)sin (kb(vs+iws)j\(b) b db

1

A(b) is the eikonal phase function, defined by

2
" A(b) = —#;Ee’“b

We require'here of course, that the functional form of the
central spin-orbit potentials be the same, in fact they must

be linear multiples of ore another.

?-g = - ik 34 BI,(qb)(1 - e(Vetivg )A(_b)cos (kb(v +iw_A(b)) b ab
P of) i_2 ) sin /2 2 5 i(v +iw ) A (D)
STIC(TQ)— -2ik jsé—‘—z—)- b Jl(qb)(_-ﬁljl‘(b)e c c | |

v

cos (Kb(v_riw ) A(b)) b ab

;—kz cos Q/z J;(qb)J\(b) ei(vcjiwc)Jl(b).'
cos (kb(voriw ) A (b)) b2 db

- A

28 1k2fJ1(qb)A(b)el(v Fiw, ) A cos (k‘%'(vs+inwsl)/\<b)) % ab

i

.o-' s L
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9v,20 v 20

Tﬁerefore

2 2 L |
o) 5 = -1 g fgg = 1 cog 0/2 E%LQI = cos 6/2 &%Lﬁl
avca Ye ‘ IVsg oW

Note that if one has used the definition of the g(©) with
the cos @/2 factor, these formulae would take a more natural,

simpler form 3

il

2°£(6) _ _; 2°r  _ . 2g(e) _ 2a(e)
oV oW, ’
S g

This is yet another argument (albeit weak) for the presence
of the cos 6/2 Pactor.

These rela .ons were tested riumerically and found to
hold.” This is comforting, but shows only that g(e) is being
calculated correctly withir. an édditive function of all the

variables except Vg and wS! ,
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