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Abstract 

Norepinephrine (NE) helps in the consolidation and retention of memories of 

emotionally charged events. However, the pathway from membrane receptors to 

nucleus in noradrenergic signaling in the brain is not completely understood. The 

cyclic AMP-PKA pathway is one of the most studied signaling pathways recruited 

by norepinephrine to induce and maintain LTP, a cellular correlate of long term 

memory. In the present study, I describe a novel signaling mechanism of NE-

mediated induction and expression of LTP when paired with a specific stimulus 

protocol, through cAMP receptors (Epac) instead of PKA. I demonstrate that this 

pathway involves transcriptional and epigenetic mechanisms other than local 

protein synthesis. Hence, this unique pathway may be recruited upon novel 

experience to form a stable memory. Considering that many memory-related 

cognitive impairments are due to altered pathophysiology of the noradrenergic 

system, these results both increase our understanding and move us closer to a 

possible solution for neurological diseases involving neuromodulators like NE. 

  



Highlights 

 Norepinephrine engages Epac to facilitate LTP 

 Translation and transcription are recruited by norepinephrine 

 Epigenetic mechanisms are recruited by noradrenergic stimulation 

 Epigenetic regulation by NE offers a novel mechanism for maintaining LTP 
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Chapter 1: Introduction 

1.1  Learning and memory: A historical perspective 

The human brain, over decades of evolution, acquires properties which make us 

respond in accordance to our environment. The brain has specialized structures 

and components within it to perform higher cognitive functions. Learning and 

memory is one such higher nervous function where we learn about specific tasks, 

places, faces, etc., and store this information within the memory storage system of 

brain for future use.    

 

Today's knowledge about synaptic plasticity and memory is rooted in 

psychological studies of the late 18th and 19th centuries. The German 

psychologist Hermann Ebbinghaus (1850-1909), performing many experiments 

on himself, such as memorizing lists of nonsense syllables and testing, revealed 

some of the basic properties of memory in terms of duration and influence of 

repetition on retention of that memory. Sergei Korsakoff  (1887) published a 

classic paper on alcoholism and established a memory disorder as a measure to 

study mnemonic processes. William James in 1890 wrote Principles of 

Psychology, which introduced the concept of short- (primary) and long- 

(secondary) term memory with their distinctive features. Edward Thorndike then 

in 1898 published his work using animals to study memory, and introduced the 

concept of operant conditioning. 
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The 19th century brought the idea of behavioural neuroscience to the study of 

learning and memory. In 1904, Ivan Pavlov worked on classical conditioning, 

where he demonstrated that a conditioned reflex (i.e., salivation) could be altered 

with learning. In the 1930s and '40s, behavioural psychologists such as John 

Watson, B.F. Skinner, and Clark Hull introduced different theories of learning to 

explain complex behaviour. Tolman (1948) published a paper on cognitive maps 

in rats and men and argued for the cognitive mechanisms in learning involving 

knowledge about the world. Before the origin of behavioral psychology to explain 

memory mechanism, the great neuroanatomist Ramon y Cajal (1890) suggested 

that structural changes of synapses in the brain might be responsible for the 

memory engram, and Charles Sherrington (1897) supported this by naming these 

synaptic changes as a mechanism of learning. Karl Lashley in the early 1920s 

performed experiments by removing a mass of cortical tissue and measuring its 

effect on maze learning. He concluded that different memories were diffusely 

distributed throughout the cortical region. In 1938 Wilder Penfield demonstrated 

that electrical stimulation of the brain could elicit memories, perceptions, and 

hallucinations including voices, images, and music. In 1949, the Canadian 

neuroscientist Donald Hebb published his book the Organization of Behavior in 

which he argued for a neural network system to be responsible for memory 

storage in the brain. In the 1960s and '70s Scoville and Milner conducted 

tremendous work on the patient H.M. Their publications described H.M.'s severe 

loss of memory without loss of intellectual or cognitive abilities that resulted from 

partial removal of bilateral medial temporal cortex. This suggested a clear 



  
 

3 
 

functional heterogeneity within the brain, in contrast to the earlier theory of 

Lashley. Brenda Milner (1968) again demonstrated that procedural memory in 

H.M. was unaffected, suggesting  different types of memory could be maintained 

by different brain regions. 

 

1.2 Theories of learning and memory  

1.2.1 Multiple memory systems 

The idea of memory not being a single faculty of mind appeared in the writing of 

famous psychologists and philosophers more than a century ago. The philosopher 

Maine de Biran (1804/1929) proposed three forms of memory: mechanical, 

sensitive, and representative, each of which has unique properties and 

mechanisms (Schacter and Tulving, 1994). Although the idea of distributed 

memory systems in the brain was promising at the beginning, those ideas were 

ignored until the 1960s and '70s, when combined evidence from cognitive 

neuropsychology, psychology, and neurobiology supported the view of multiple 

memory systems. The research was directed then toward the efforts to 

experimentally dissociate different memory systems. Work with experimental 

animals and amnesic patients then renamed these systems into procedural, 

declarative, and emotional memory, respectively (Scoville and Milner, 1957; 

Schacter, 1990; Squire, 1992). Declarative memory refers to the conscious 

recollection of facts and events that is impaired in amnesia and dependent on 

structures in the medial temporal lobe. On the other hand, procedural memory is 

learned by gradual acquisition of skills and expressed through performance or 
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motor functions. Emotional memories are modified by emotionally charged 

events (Fig. 1.1). 
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Fig. 1.1:  Various forms of long term memory  
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The evidence supporting the notion of multiple memory systems came from the  

various psychological experiments conducted on the amnesic patient H.M., who 

had a brain surgery in which a portion of medial temporal lobe (MTL) was 

removed to cure the epileptic attacks which made H.M.'s life unimaginable. 

Though the surgery was successful, H.M. developed a severe anterograde amnesia 

in which he was unable to form any new memories of people, places, facts and 

events, while maintaining a perfect intellectual capability (Corkin, 1984; Milner et 

al., 1968). However, H.M did retain specific types of memory (Corkin, 2002), 

although he performed poorly on tests designed to assess retention of information 

such as pictures, stories, etc. For example, H.M. could learn new sensory motor 

skills such as the task of mirror-drawing, and improve over trials despite an 

inability to remember the event of performing the task before. He did perform 

normally in other tests such as repetition priming, classical conditioning, and habit 

learning. In summary, H.M. had a specific deficit in declarative memory whereas 

his non-declarative memory was intact . H.M.'s study, along with studies from 

other amnesic patients, strongly supported the notion of different memory systems 

being localized at different part of the brain (Cohen and Squire, 1980; Squire and 

McKee, 1993; Tulving and Schacter, 1990; Warrington and Weiskrantz, 1968). 

With the advancement in pharmacological and surgical manipulations of the brain 

using different animal models, an in-depth knowledge of neural pathways 

responsible for memory can be assessed. To this end, several lines of amnesic 

animal models were developed and a rigorous study on rats and mice provided 

solid information about multiple memory systems in the brain and their 
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interactions. Based on several key observations from human studies and animal 

experiments regarding distinctive memory systems in the brain, Squire coined the  

term "medial temporal lobe system", which consists of the hippocampal 

formation, perirhinal cortex, and parahippocampal cortex, and suggested that it is 

responsible for encoding of declarative memories distinct from other types of 

memories. The striatum is responsible for habitual memory, neocortex for 

percepts and priming, amygdala for emotional memory, and cerebellum for motor 

learning or procedural memory (Squire and Zola-Morgan, 1988; Squire, 1992; 

Squire and Zola, 1997; Squire and Zola-Morgan, 1991). 

 

1.2.2 Memory phases and consolidation 

Though different classification systems exist to describe the phases of memory 

duration, for the purpose of simplicity it can be classified into three distinct 

phases: working memory, short-term memory (STM) and long-term memory 

(LTM). Working memory lasts for 10-30 seconds (Craik, 1979) and incorporates 

fragments of information  such as a visuospatial sketchpad to hold and manipulate 

visual images, a phonological loop to retain speech, a fraction of episodic 

information of an episodic event, and an attentional component from the central 

executive to hold the information during the learning period (Baddeley, 1996; 

Baddeley, 2003; Repovs and Baddeley, 2006; Pickering, 2001). The prefrontal 

cortex plays an important role in the regulation of  working memory (Fuster, 

1998). Though patients with selective damage of MTL demonstrate severe 

anterograde amnesia, they have perfect working memory (Squire and Zola, 1997). 
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This proves that working memory is separate from other types of memory. 

Another example of this separation is H.M.'s normal working memory (in terms 

of recognition and recall without any distraction) (Corkin, 2002). 

 

The STM can retain memory for longer than working memory but shorter than 

LTM (from minutes to hours). STM  and LTM operate in parallel fashion 

(Izquierdo and McGaugh, 2000) instead of a temporal progression of memory 

storage as previously thought (James, 1890). Injecting specific kinase inhibitors of 

STM into the  hippocampus inhibits STM without affecting LTM expression at 

later time points (Izquierdo et al., 1999). Therefore, STM and LTM may use 

separate mechanisms to progress from one phase to the other.  

 

The formation of  LTM requires a process called consolidation during which new 

or temporary memories are transferred from a labile to a more resilient form 

(Alvarez and Squire, 1994; McGaugh, 2000). Although the processing of 

information can exist in the hippocampus, the long term storage of this 

information is thought to be the neocortical region (Alvarez and Squire, 1994; 

Bontempi et al., 1999). Consolidation is a slow process during which cortical 

structures are reorganized and finally become independent of the memory 

processing systems. The slow process of consolidation can be understood from 

the studies of retrograde amnesia, in which patients experience an impairment of 

retention of more recent memories but old memories remain intact (Squire and 

Alvarez, 1995). For example, patient E.P. who had bilateral hippocampal damage 
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was able to recall the neighbourhood where he spent his childhood (Teng and 

Squire, 1999) and his performance was perfect in comparison to the aged-matched 

control who also grew up in the same place and later moved. However, E.P. had 

no memories of his current place, where he moved after he became amnesic (Teng 

and Squire, 1999). Therefore, the hippocampus as memory processing system 

reorganizes over time so that it is no longer needed for retention of memories.   

 

1.2.3 Hippocampal memory system   

The hippocampus receives neuronal projections from all different cortical areas to 

process specific information (Fig. 1.2) and act as a window through which the 

brain can see the outside world. In doing so, it acts as a gateway to associate 

information from different inputs over time to encode explicit memory (Mishkin 

et al., 1998). For example, cortical association areas from frontal, parietal and 

temporal lobes converge on the hippocampus through parahippocampal and 

entorhinal cortices (Suzuki and Amaral, 1994a; Suzuki and Amaral, 1994b) and 

information from the hippocampus also flows back to the same cortical 

association areas (Deacon et al., 1983; Van Hoesen et al., 1972; Amaral and 

Witter, 1989). 
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 Fig. 1.2: Brain regions and associated Memory systems (adapted and 

modified from Squire and Zola-Morgan, 1988).  
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Why does the hippocampus have those complicated innervations? Initially it was  

suggested that the hippocampus is involved in olfaction, sensation, perception and 

higher cognitive functions (reviewed in Anderson et al., 2007). However, after 

tremendous research on human case studies, the MTL theory was proposed by 

Larry Squire, where he suggested that the hippocampus, along with the 

parahippocampal and perirhinal cortices, plays a selective role in the formation of 

declarative memory (Cohen and Squire, 1980). Even before MTL theory, 

hippocampal single unit recording from awake rats suggested a cognitive map 

theory of hippocampal function (O'Keefe and Dostrovsky, 1971) in which an 

individual neuron has a spatial map of the environment and that information is 

coded by its firing patterns. Anatomical and behavioral studies across species 

indicate that the functional organization of the MTL system is similar (Squire, 

1992), and the requirement of hippocampus for memory formation is common 

among humans, non-human primates and rodents. 

 

In summary, the hippocampus covers a broad range of functions that include 

spatial, non-spatial, and contextual forms of learning and memory, which allow it 

to support the formation of relational representations of information in memory 

(Eichenbaum et al., 1992). 
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1.3 Hippocampal neuroanatomy and physiology 

1.3.1 Hippocampal tri-synaptic circuitry 

The mammalian hippocampus is a C-shaped structure in the temporal lobe 

extending from the caudoventral temporal lobe to the septal nuclei rostrodorsally 

(Amaral and Witter, 1989). Histologically, the  hippocampus is separated into 

distinct subregions thought to be responsible for information processing and 

memory formation. These subregions are termed Ammon's horn, the dentate gyrus 

and the subiculum.  Ammon's horn is further subdivided into four regions: cornu 

ammonis 1-4 (i.e., CA1-CA4). Several anatomical (Blackstad et al., 1970; Hjorth-

Simonsen, 1973; Hjorth-Simonsen and Jeune, 1972) and electrophysiological 

(Krnjevic and Ropert, 1982) studies on hippocampus have described it as a 

layered, organized structure which is amenable to cellular electrophysiology 

experimentation. A typical hippocampal slice, commonly used  for in vitro 

preparation, contains the tri-synaptic circuit consisting of the dentate gyrus, CA1 

and CA3 connected sequentially (Fig. 1.3). Though all subregions receive direct 

subcortical input, cortical output flows systematically through the hippocampal 

circuitry. The perforant pathway, originating from the entorhinal and perirhinal 

cortices, terminates in the molecular layer of the dentate gyrus. The granule cells 

of the dentate gyrus then send output through mossy fibres to the proximal 

dendrites of the CA3 pyramidal cells. The large collateral axons of CA3 cells then 

either terminate in CA1 region through the Schaffer collateral pathway or project 

to other CA3 cells within the same field. A connection from area CA1 to 

subiculum, and efferents from both areas back to the parahippocampal region  
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Fig. 1.3: Hippocampal circuitry and information flow 
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complete the circuit. The parahippocampal region can also project to the CA1 

region directly without following through long pathways. 

 

Evidence from neural network organization, lesion studies and computational 

modelling suggests a subregional specificity of function (Zola-Morgan et al., 

1986; Gold and Squire, 2005; Suthana et al., 2009; Kim and Frank, 2009; 

Kartsounis et al., 1995). Furthermore, with the advancement of science, studies 

using genetic approaches have shown that synaptic plasticity in the CA1 region is 

required for certain forms of memory (Tsien et al., 1996; Nakazawa et al., 2002). 

 

1.3.2 Neuronal communication and glutamatergic transmission in the 

hippocampal circuit 

Neurons communicate through a specialised structure called a synapse, termed by 

Sir Charles Scott Sherrington and colleagues. Synapses are junctions where 

presynaptic and post synaptic neurons communicate by chemical or electrical 

signals. In the brain, most neurons use chemical synaptic transmission to 

communicate and this underlies numerous cognitive processes. Though the final 

outcome of complex neuronal information processing is visible through a 

behavioral or cognitive phenomenon, individual neurons act as a unit for this 

purpose. Thus, an understanding of basic properties of individual neurons would 

be helpful to elucidate the cellular basis of behaviour (Kandel, 1976).  

 

Upon depolarisation of the presynaptic terminal by an invading action potential, 

the Ca
2+

  channels open up, causing fusion and release of neurotransmitter-

http://en.wikipedia.org/wiki/Charles_Scott_Sherrington
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containing vesicles from presynaptic terminals onto the synaptic cleft. The 

neurotransmitter then binds to its specific receptor on the post synaptic membrane 

close to the synaptic cleft. This binding of neurotransmitter leads to changes of 

the ion channels and of the membrane conductance, which leads to initiation of a 

graded membrane potential. This electrotonic membrane potential is known as an 

excitatory or inhibitory post synaptic potential (EPSP or IPSP, respectively). A 

special property of the synapse is its plastic nature, which means the strength of a 

synapse often can be enhanced or depressed depending upon the type of input it 

receives from other sources of influence. Such modifications of synaptic strength 

are key players in many important cognitive and behavioural phenomena such as 

sensory adaptation and alteration of receptive fields (O'Shea and Rowell, 1976) 

and habituation of escape responses to repeated stimuli (Auerbach and Bennett, 

1969; Zucker, 1972; Zilber-Gachelin and Chartier, 1973). The plasticity of 

synapses in learning and memory is further described in the next section. 

 

The majority of synapses in the hippocampal circuit are glutamatergic, which 

means these synapses release glutamate as a neurotransmitter at their nerve 

terminal. Most of the action of glutamate is upon the binding of two separate 

classes of glutamate receptors: the ionotropic receptors (or ligand-gated ion 

channels) and the metabotropic receptors (G-protein coupled receptors) (Fig. 1.4). 

This discussion will focus on ionotropic receptors as they have been shown to 

play an active role in synaptic plasticity. On the basis of reactivity to specific  
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Fig. 1.4: Three types of glutamate receptors. 
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agonists and antagonists, the ionotropic receptors were categorised into two 

distinct types of glutamate receptors (Watkins and Evans, 1981): N-methyl-D-

aspartate (NMDA) and non-NMDA types. The post synaptic potential/current 

(EPSP/EPSC) of CA1 pyramidal cells has been characterized by the 

electrophysiological whole-cell recording technique (Blanton et al., 1989). The 

excitatory synaptic responses of CA1 pyramidal cells have two kinetically distinct 

components: a fast, rapidly decaying non-NMDA mediated response, and a late, 

slow-rising NMDA-mediated response (Hablitz and Langmoen, 1982; Herron et 

al., 1985; Collingridge et al., 1988; Collingridge et al., 1992; Hestrin et al., 1990).  

 

The NMDA receptors are composed of two subunits: NMDAR1 and NMDAR2, 

with NMDAR2s having four isoforms: NMDAR2A-D (Hollmann and 

Heinemann, 1994; Dingledine et al., 1999; Bochet and Rossier, 1993). The benefit 

of having different subunits is to alter receptor function according to subunit 

combination; NMDAR1 serves as a fundamental unit and NMDAR2 subunits as 

modulatory. The NMDARs in CA1 pyramidal cells are Ca
2+

-conducting 

glutamate receptor ion channels (MacDermott et al., 1986; Mayer and Westbrook, 

1987; Iino et al., 1990; Ogita et al., 1998) and act as coincidence detectors of 

simultaneous presynaptic firing with postsynaptic depolarization. This 

coincidence detection is needed to expel Mg
2+ 

 ions from the NMDAR channel 

pores and to conduct Ca
+2  

influx subsequently (Mayer et al., 1984; Nowak et al., 

1984; Kumamoto, 1996; Mayer and Westbrook, 1987). 
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Another type of fast excitatory glutamatergic synaptic transmission in 

hippocampal cells is mediated through a type of glutamate receptor activated by 

α-amino-3-hydroxy-5-methyl-4-isoxazol-proprionate (AMPA), known as AMPA 

receptors (AMPAR). The AMPARs are composed of four subunits, GluR1-4 or 

GluRA-D (Hollmann and Heinemann, 1994; Dingledine et al., 1999). The kinetics 

of AMPA receptors are dictated by the subunit composition, which can be 

expressed as either homomeric or heteromeric oligomers. For example, AMPARs 

containing GluR2 subunits are predominantly Ca
2+ -

impermeable and outward-

rectifying (Jonas et al., 1994; Liu and Cull-Candy, 2002; Tanaka et al., 2000). 

 

An additional, kainate-sensitive glutamate receptor subtype has been also 

identified (Castillo et al., 1997; Vignes and Collingridge, 1997; Frerking et al., 

1998), and these kainate receptors are encoded by the GluR5-7 and KA-1/2 family 

of genes with structural homology to AMPA receptors. The final class of 

glutamate receptors are G-protein coupled receptors, known as metabotropic 

glutamate receptors. Based on their homology, these receptors are divided in three 

broad categories: mGluR 1-3. Activation of mGluRs causes physiological 

functions such as inhibition of calcium and potassium channels (Anwyl, 1999).  

 

1.4 Synaptic plasticity  

Since the discovery of neurons as signal-conducting elements of the brain, it was 

postulated that they may also have the ability to store and retrieve information in 

terms of various electrochemical mechanisms. Ramon y Cajal (1893) suggested a 
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correlation between mental activity and synaptic strength. Interestingly, Donald 

Hebb (1949) in his landmark study postulated a theory of cellular memory 

formation where synaptic activity could generate long-lasting changes in 

excitability of the neurons and  these changes comprise a cellular memory. He 

wrote, "When an axon of cell A is near enough to excite cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased," (p.62). Since then, it was hypothesized that neurons retain previous 

information and mediate learning and memory. 

 

1.4.1 Synaptic plasticity: Study from Aplysia 

Although hypotheses regarding cellular mechanisms of memory formation existed 

in the 19th century, it was difficult to design and perform experimental 

investigation on the neuronal level considering the complex architecture of 

mammalian nervous system. To this end, in the 1970s Eric Kandel and groups 

used the marine invertebrate Aplysia californica, which has a relatively simple 

nervous system consisting of fewer and larger easily identifiable neurons, to 

address and investigate the cellular mechanisms of memory formation (Kandel et 

al., 1976). One of the observable and modifiable behavioural responses of Aplysia 

is the gill-withdrawal reflex, which allows it to protect its gill and siphon from an 

external noxious stimulus. In the laboratory, the strength of this behavioral 

response to a graded stimulus to the siphon is determined by its previous 

experience and considered indicative of learning (Pinsker et al., 1973). Generally, 
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a tactile stimulus activates siphon sensory neurons which eventually excite the 

motor neurons innervating the gill and initiate withdrawal of the gill from the 

stimulus environment. These gill-withdrawal responses are sensitized in such a 

way that a noxious stimulus at the tail induces a withdrawal response which is 

increased in both strength and duration upon subsequent stimulation with a neutral 

stimulus. Mechanistically, sensory input from the siphon skin modulates 

responses of excitatory and inhibitory interneurons to alter postsynaptic motor 

neuron responses. A tail shock activates excitatory serotonergic interneurons 

which release serotonin (5-HT) onto presynaptic sensory neuronal terminals 

originating from the siphon and generates a stronger postsynaptic response to the 

motor neuron and consequently a larger withdrawal response of gill (Mackey et 

al., 1989; Glanzman et al., 1989). The relative simplicity and accessibility of the 

nervous system in Aplysia has permitted an in-depth investigation of the neuronal 

mechanisms of short- and long-term sensitization in Aplysia (Byrne et al., 1974; 

Hawkins, 1981). In brief, transient local kinase activation and protein 

phosphorylation constitutes presynaptic facilitation in short-term sensitization 

(Castellucci et al., 1980; Klein and Kandel, 1980), whereas persistent protein 

kinase activation and macromolecular synthesis constitute long-lasting 

sensitization of the gill-withdrawal response (Sweatt and Kandel, 1989; Sossin et 

al., 1994; Castellucci et al., 1986) (Fig. 1.5). 
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Fig. 1.5: Gill withdrawal response in Aplysia (adapted and modified from 

Kandel et al., 2001) 

A: Aplysia Anatomy and experimental set up.  

B: Cell-signaling in short-term sensitization response 

C: Cellular-signaling in long-term sensitization response 
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Thus, studies on Aplysia demonstrate a direct link between the neuronal 

mechanism of action to the behavioral response and establish a framework for 

investigation of synaptic plasticity and learning and memory that is also observed 

in the more complex mammalian system.   

   

1.4.2 Synaptic plasticity in the mammalian brain: Long-term potentiation and 

long-term depression      

Though studies from the simple Aplysia model postulated that alterations of 

strength of synapses could mediate information storage in the mammalian brain, 

the experimental evidence of such phenomena was not available until the 1970s, 

when Bliss and Lømo conducted a series of experiments on rabbit hippocampus 

and discovered long-term potentiation (LTP) of synaptic strength in dentate gyrus, 

similar to the long-term sensitization of Aplysia (Bliss and Lomo, 1973; Bliss and 

Gardner-Medwin, 1973). In short, they observed a persistent enhancement of 

synaptic strength when a high frequency electrical stimulation was applied at 

synapses in the hippocampus of the rabbit, and thought it to be responsible for 

encoding of new information. Accumulating evidence supported the idea that LTP 

is responsible for memory formation and consolidation (Bliss and Collingridge, 

1993; Martin and Morris, 2002; Moser et al., 1998). Initial observations on the 

characteristics of LTP have made it a crucial candidate for the information storage 

system. Like long-term memory, the duration of LTP may persist from days up to 

a year (Bliss and Gardner-Medwin, 1973; Abraham et al., 2002; Staubli and 

Lynch, 1987).  
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There are several other properties of LTP which make it a unique candidate for 

memory formation and storage. Importantly, LTP is pathway-specific, which 

means only stimulated synapses are affected, not nearby inactive synapses 

(Andersen et al., 1977). The purpose of this pathway specificity is to process 

information precisely from individual synapses through a complex computational 

mechanism. LTP also shows the properties of cooperativity and associativity. 

Cooperativity means numerous presynaptic fibres should fire together to bring 

sufficient depolarization of the post-synaptic neuron to induce LTP (Bliss and 

Lomo, 1973; Bliss and Gardner-Medwin, 1973; Malenka, 1991; McNaughton et 

al., 1978). Associativity implies that LTP could be elicited if a weak stimulus at 

one input is paired temporally with a strong stimulus at an independent input 

(Gustafsson et al., 1987; Levy and Steward, 1979). Using these properties, 

neurons can perform information processing and generate LTP. 

 

Unlike long-term potentiation, synaptic strength can also be persistently 

weakened, termed long-term depression (LTD), which is thought to balance the 

enhancement of synaptic strength during LTP and prevent the saturation of 

synapses. A low frequency stimulation of presynaptic neurons or an inconsistent 

presynaptic firing  which eventually fails to activate postsynaptic cells would 

decrease the synaptic strength between these cells and cause LTD (Stent, 1973; 

Dudek and Bear, 1992; Heynen et al., 1996; Milner et al., 2004). Some forms of 
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LTD are thought to be necessary for information storage (Etkin et al., 2006; 

Manahan-Vaughan and Braunewell, 1999; Nakao et al., 2002). 

 

1.4.3 Hippocampal LTP phases and mechanisms 

Traditional teaching divides hippocampal LTP into three phases: immediate, early 

and late LTP. Immediate LTP is thought to be protein-kinase independent and 

lasts about 30 minutes. Early LTP lasts for 2-3 hours and is due to persistent 

activation of various protein kinases. The late phase of LTP lasts many hours to 

days, and is hypothesized to be due to translation and transcription mechanisms.  

  

LTP typically goes through three stages: induction, expression and maintenance. 

Commonly, a brief, 100Hz, high frequency stimulation (HFS) is used to elicit 

LTP. Several other protocols have also been employed to induce LTP, such as the 

application of electrical stimulation in the range of 3-12 Hz (also known as theta 

frequency) (Staubli and Lynch, 1987). This type of stimulation is believed to be 

more physiological as oscillations in this range are observed in the hippocampus 

and thought to be mediated by release of acetylcholine, GABA and glutamate 

from neurons of medial septum and entorhinal cortex (Alonso and Llinas, 1989). 

For example, short high-frequency bursts of stimulation with an interburst interval 

of 200 ms, which resemble and phase-lock with the complex spike activity of 

pyramidal neurons, facilitates the induction of LTP (Buzsaki, 1986; Otto et al., 

1991). Electrophysiological recordings of LTP make use of these stimulation 

protocols to induce LTP in hippocampal slices. Mechanistically, induction of LTP 

is due to increased intracellular calcium concentration through NMDA receptors 
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(Collingridge et al., 1983; Lynch et al., 1983; Malenka et al., 1988). In this 

respect, NMDA receptors play a crucial role as coincidence detectors to ensure 

that LTP is induced properly only when there is a simultaneous activation of pre- 

and post-synaptic neurons (to remove the magnesium blockade from NMDARs). 

For example, weak tetanic stimulation might not be able to depolarise the post-

synaptic neuron to reach the threshold for NMDAR activation, even though there 

is enough glutamate present at the synaptic cleft for AMPAR activation. 

However, a strong synchronous tetanic stimulation of presynaptic neurons (within 

a specific spatial and temporal window) activates immediate or nearby 

postsynaptic neurons to reach to their threshold depolarization for NMDAR 

activation and calcium influx, leading to LTP induction. 

 

LTP, after its induction through NMDAR activation, follows through the 

expression (E-LTP) and maintenance (L-LTP) phases. LTP expression is a 

consequence of the interaction of multiple intracellular signaling cascades (Sanes 

and Lichtman, 1999; Soderling and Derkach, 2000) leading to enhancement of 

synaptic transmission through increasing post-synaptic receptor conduction or 

insertion of extrasynaptic receptor subunits on post-synaptic sites. In this respect, 

signaling molecules such as CaMKII, PKA and PKC have been described to 

phosphorylate subunits of AMPA and NMDA receptors (Malenka and Bear, 

2004; Roche et al., 1996; Lee et al., 2000) to alter the kinetics of function (Benke 

et al., 1998; Derkach et al., 1999). Many studies have reported a deficiency in 

LTP expression using pharmacological blockers or genetic approaches to block 
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signaling molecules such as CAMKII or PKC, confirming the previous notion 

(Malinow et al., 1989; Hu et al., 1987; Silva et al., 1992). PKA, however, behaves 

in such a way that its inhibition does not disrupt E-LTP generation by 1x100Hz 

stimulation (Abel et al., 1997; Duffy and Nguyen, 2003; Huang and Kandel, 

1994). Further investigation revealed that PKA phosphorylates I-1, which 

suppresses the inhibitory effect of PP1 on synaptic potentiation (Blitzer et al., 

1998). In this way, PKA can gate LTP expression through phosphatase regulation 

(Blitzer et al., 1998; Woo et al., 2002). Insertion of extrasynaptic AMPARs to the 

"silent synapses" (synapses with no AMPARs)  or AMPAR trafficking due to 

enhanced CAMKII and PKA activity are proposed to be other candidate 

mechanisms of LTP expression (Kullmann, 2003; Poncer, 2003; Esteban et al., 

2003; Hayashi et al., 2000). Thus, both E-LTP (LTP expression) in hippocampus 

and short-term facilitation in Aplysia are decremental (lasting only hours) and rely 

on covalent modification of pre-existing proteins. The subsequent phase of LTP 

maintenance (L-LTP) requires additional synaptic modifications, such as 

macromolecular synthesis. 

 

L-LTP or LTP maintenance phase lasts for several hours and is generally initiated 

by applying multiple (>2) trains of HFS (Abraham et al., 2002). The multiple 

trains of HFS activate intracellular signaling that engages translation and 

transcriptional machinery to produce new mRNAs or proteins in support of 

structural and functional plasticity (Deadwyler et al., 1987; Nguyen et al., 1994; 

Stanton and Sarvey, 1984). In this context, it should be noted that studies using 
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inhibitors of translation and transcription mechanisms suggest a temporal window 

for these mechanisms to support LTP maintenance. Translation is required for 

persistence of LTP at the beginning but transcription is generally recruited at a 

later time point (Frey and Morris, 1997; Frey et al., 1996; Nguyen et al., 1994). 

The requirement of translation and transcription for LTP maintenance is a 

complex mechanism needing further clarification. 

 

The initial idea of a translational requirement for LTP was revealed by a series of 

studies showing the presence of polyribosomal complexes in dendrites (Steward 

and Schuman, 2001; Steward and Schuman, 2003). Meanwhile, several groups 

also showed the presence of translational factors in dendrites. These translational 

factors could be recruited at synaptic sites upon electrical stimulation (Kanhema 

et al., 2006; Tang and Schuman, 2002; Smart et al., 2003; Moon et al., 2009; 

Ostroff et al., 2002; Bourne et al., 2007; Mitsuyama et al., 2008). Electrical 

stimulation of neurons activates many intracellular signaling cascades, such as 

ERK and mTOR, to control protein synthesis (Banko et al., 2006; Kelleher, III et 

al., 2004; Tsokas et al., 2007; English and Sweatt, 1997; Wu et al., 1999). 

Interestingly, various neuromodulators can influence synaptic plasticity by 

upregulating the translational machinery and hence modulate some types of 

memory formation. Thus, local protein synthesis is connected to synaptic 

plasticity as well as memory through a yet-to-be clarified mechanism involving 

many intracellular signaling molecules.  
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Initial reports on transcriptional regulation of LTP maintenance appeared in 

studies in which cell bodies were cut from dendrites, resulting in decremental LTP 

(Frey et al., 1989). Furthermore, inhibitors of transcription have also been shown 

to block L-LTP maintenance (Frey et al., 1996; Nguyen et al., 1994) supporting 

the notion that transcription is required for maintenance of LTP. Phosphorylation 

of the transcription factor CREB by upstream kinases such as PKA, PKC and 

MAPK is crucial for transcriptional regulation (Impey et al., 1998; Impey et al., 

1996; Bito et al., 1996; Pokorska et al., 2003), and inhibiting CREB 

phosphorylation with PKA/MAPK blockers prevents L-LTP (Davis et al., 2000; 

Sweatt, 2004; Shaywitz and Greenberg, 1999; Johannessen and Moens, 2007). 

High, but not low, frequency stimulation phosphorylates CREB to bind with 

CREB binding proteins (CBP) of various immediate early genes to stimulate 

transcription (Lee and Masson, 1993; Tian et al., 1996). The possibility of cell-

wide distribution of translation products challenges the idea of input specificity in 

synaptic plasticity. However, recent theories suggest that these gene products are 

available to be captured only by previously activated (“tagged ") synapses (Sossin 

et al., 1994; Frey and Morris, 1997). A model for different phases of  LTP is 

shown in Fig. 1.6. 
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Fig. 1.6: Molecular mechanisms of phases of LTP (Adapted and modified 

from Kandel et al., 2001). 
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1.5   Signature of LTP/LTD in learning and memory 

The link between synaptic plasticity and memory was formalized by Morris and 

colleagues as the synaptic plasticity and memory (SPM) hypothesis: "Activity-

dependent synaptic plasticity is induced at appropriate synapses during memory 

formation, and is both necessary and sufficient for the information storage 

underlying the type of memory mediated by the brain area in which that plasticity 

is observed" (Martin et al., 2000). Decades of research have established a possible 

connection between synaptic plasticity, such as LTP or LTD, and memory 

formation; however, a direct link has been difficult to prove. Although we have 

many interesting studies in vitro establishing the electrophysiological and 

molecular events responsible for activity-dependent changes in synaptic strength 

(Bliss and Collingridge, 1993; Engert and Bonhoeffer, 1999; Malenka and Nicoll, 

1999; Lynch, 2004), the data demonstrating a role for synaptic plasticity during 

actual learning in vivo are sparse. However, several  landmark experiments 

(described below) have provided evidence for changes in synaptic strength which 

coincide with learning and memory processes. 

 

If LTP is a mechanism that supports the formation of a spatial cognitive map of 

the external world which can be later retrieved, then disruption of LTP should 

interfere with spatial memory formation. Experiments with two types of mutant 

mice provided  more direct evidence for a possible role of LTP in spatial memory 

formation. In the first type of mutant mouse, the NR1 subunit of NMDA receptors 

was knocked out in the CA1 region of hippocampus, which resulted in disruption 
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of LTP and simultaneous impairment of spatial memory formation in the Morris 

water maze (MWM) test (Tsien et al., 1996). In a second mutant, expression of a 

persistently active form of Ca
2+

/calmodulin-dependent protein kinase can be 

turned on and off at will. Activation of this transgene selectively impaired LTP in 

the frequency range of 1-10 Hz and caused instability of place fields. The mutant 

mice also performed poorly in spatial tasks. However,  LTP was restored and the 

animal’s capability to form spatial memory was re-established when the transgene 

was turned off (Mayford et al., 1996). These two sets of early genetic experiments 

on mutant mice established a foundation for LTP in the Schaffer collateral 

pathway as an important mechanism for spatial memory. 

 

More recently, Whitlock et al. (2006) have shown that animals (rats) that have 

undergone inhibitory avoidance (IA) training (a test of memory trace formation) 

displayed an immediate NMDA receptor-dependent enhancement of 

phosphorylation  at Ser 831 (but not Ser 845) of the GluR1 AMPAR subunits. IA 

training causes trafficking of GluR1/2 subunit of AMPA receptor in the 

hippocampus of trained animals compared to naive or control. Moreover, using 

multielectrode recordings, it has been shown that IA training induces fEPSP 

enhancements which occlude subsequent LTP induction in vivo in CA1. These 

data support the hypothesis that learning actually does induce LTP, a necessary 

corollary to the notion that LTP underlies learning. 
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Activity-dependent synaptic plasticity, such as LTP and LTD at glutamatergic 

synapses in hippocampal neurons, is considered a cellular mechanism for 

information encoding and consolidation of memory. LTP and LTD mechanisms 

are NMDA receptor subunit-specific, and pharmacological or genetic disruption 

of different subunits leads to changes in LTP or LTD. Blocking NMDA receptors 

pharmacologically prevents formation of the associative memories required for 

performing the MWM test (Morris et al., 1986). However the exact role of LTP 

and or LTD in MWM performance remained poorly understood and required 

additional experimental approaches that could selectively inhibit either LTP or 

LTD in freely moving rats. To this end, Ge et al. (2010) found  that  in freely 

moving rats, blocking  LTP with the NR2A subunit-specific antagonist NVP-

AAM077 leaves spatial memory intact, whereas preventing LTD with the NR2B- 

specific antagonist Ro25-6981 impaired performance. For further confirmation,  

they performed bilateral intrahippocampal injections of a membrane-permeable 

peptide, Tat-GluA23Y, which prevents LTD expression by inhibition of AMPA 

receptor endocytosis. Similar to the effects of Ro25-6981, injection of the Tat-

GluA23Y peptide prevented spatial memory consolidation.  Hence, this study 

supports the importance of LTD in CA1 in the consolidation of long-term spatial 

memories in the intact animal. 

 

The hippocampus is involved in a variety of learning paradigms, including 

classical conditioning of eye blink responses (Berger et al., 1983; Sanchez-Andres 

and Alkon, 1991; McEchron et al., 2003; Munera et al., 2001). Bilateral 
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hippocampal lesions lead to impairment of the acquisition of trace eye blink 

conditioning, leaving delay conditioning unaltered (Thompson, 1988; Moyer, Jr. 

et al., 1990). Based on this, Gruart et al. (2006) set out to test the hypothesis that 

the strength of the hippocampal CA3–CA1 synapse can be modified by 

acquisition of associative learning. Using classical conditioning of eye blink 

responses, they have shown that the hippocampal CA3-CA1 synapse is involved 

in the acquisition, extinction, recall, and reconditioning of conditioned responses 

(CRs). CA3-CA1 synaptic strength can be enhanced or decreased in parallel with 

the acquisition or extinction of eye blink conditioning. They have also shown that 

LTP, evoked by HFS of the Schaffer collaterals, interferes with both the 

acquisition of CRs and the linear relationships between learning scores and fEPSP 

slopes. Saturating CA3-CA1 synapses with LTP-inducing stimulation prevented 

additional synaptic changes in plasticity (Barnes et al., 1994; Otnaess et al., 1999), 

leading to both anterograde and retrograde amnesia. Finally, Gruart et al. showed 

that an NMDA-receptor antagonist is not only able to prevent LTP induction in 

vivo, but also interferes with both the formation of eye blink CRs and functional 

changes in strength at the CA3–CA1 synapse. Thus, they concluded  that 

functional transformations of CA1 pyramidal cells are necessary for the proper 

acquisition, extinction, recall and reconditioning of eyelid CRs. 

 

While it was quite difficult to delineate a causal link between hippocampal 

LTP/LTD and memory formation, two groups came up with evidence by directly 

demonstrating the occurrence of LTP in association with behavioural training in 
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animals (McEchron et al., 2003; Rogan et al., 1997). Both of these groups directly 

measured LTP, either through ex vivo or in vivo recording techniques, 

respectively, in the amygdala in response to behavioural training (fear 

conditioning training). Both groups eventually arrived at the same conclusion: 

fear conditioning induces synaptic potentiation of CS inputs into the amygdala. 

Further research indicated that this type of LTP is similar to hippocampal synaptic 

plasticity. These papers were the first to demonstrate that LTP could be triggered 

by endogenously occurring, natural patterns of neuronal firing, initiated by 

environmental signals. 

 

While it has been difficult to directly demonstrate LTP physiologically in 

association with spatial learning, biochemical markers for LTP induction such as 

ERK, CaMKII and PKA/PKC activation, and altered gene expression, have been 

demonstrated to occur with spatial learning. Such a broad spectrum of molecular 

changes occurring with both LTP in vitro and spatial learning in vivo strongly 

suggest a co-occurrence of  LTP with hippocampus-dependent memory 

formation. In conclusion, we can say that although there is a need for extensive 

study to pinpoint the exact mechanism correlating LTP or LTD to memory, our 

current understanding from the previous studies strongly suggests a causal link 

between LTP or LTD and memory formation. 
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1.6 Epigenetics in synaptic plasticity and learning and memory 

1.6.1 Defining epigenetic mechanisms 

Waddington coined the term epigenetics to explain some concepts in 

developmental biology (Waddington, 1957). Somatic cells of multi-cellular 

organisms have identical genomes, but cells of different systems differ from each 

other in cellular structure and function, which is due to use of different genes: that 

is epigenetics. For example, a liver cell differs from a neuron in structure and 

function although they have the same DNA. To explain the central dogma of 

variation of functions in different cells having the same DNA, Waddington 

suggested that some mechanisms above the level of genes encoded by DNA exist 

that controlled DNA readout to produce different gene products for different cells 

even though all cells carry the same DNA. This is what we now refer to as 

epigenetics. During the cell fate determination of the cell cycle, these epigenetic 

marks are tagged on the DNA to serve as a cellular phenotype over the cell's 

lifespan. Wolffe later coined the term epigenetics to describe “heritable changes in 

gene expression that occur without a change in DNA sequence” (Wolffe and 

Matzke, 1999). However, evidence from recent studies on the nervous system 

(containing terminally-differentiated, non-dividing cells) is accumulating to prove 

that epigenetic mechanisms are not only responsible for phenotypic determination 

of cells, but also play a role in gene expression in response to memory-inducing 

events.  
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1.6.2 Epigenetic marks and tags: A brief molecular mechanism 

Epigenetic mechanisms are the key regulators of transcription. A nucleosome, 

consisting of a long stretch of DNA along with histone proteins such as H2A-H2B 

dimers or H3-H4 tetramers, exists as a highly compressed structure in the nucleus 

(Quina et al., 2006) and connects to the next nucleosome through linker histone 

H1 to form what is known as chromatin (Happel and Doenecke, 2009). The 

chromatin can exist in an active or inactive state. In its inactive state, known as 

heterochromatin, characterized by a closed, highly compacted structure, it is 

restrictive to transcription, whereas active euchromatin, characterised by an open 

state, is amenable to transcription (Arney and Fisher, 2004). The switching 

between these two states and the beginning of transcription is mediated through 

changes in DNA or post-translational modification of histone proteins, 

collectively known as epigenetic modification (Fig. 1.7).  

 

The changes in DNA occur through the enzyme DNA methyltransferase (DNMT) 

by the addition of a methyl group from S-adenosyl-methionine (SAM) onto 5'-

cytosine positioned adjacent to guanine nucleobases (CpG) (Chiang et al., 1996; 

Turker, 1999; Bird, 2002; Price et al., 2010). There are different subgroups of 

DNMTs to carry out different functions. The de novo DNMTs (3a and 3b) create 

new methylation marks when the cell fate is determined, and the maintenance 

DNMTs (DNMT1) maintain previously marked methylation on DNA (Nakao, 

2001) by propagating epigenetic marks in dividing cells. It was initially shown  
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Fig. 1.7: Epigenetic marks and tags (adapted and modified from Jiang et al., 

2008; Levenson et al., 2005) 
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that DNA methylation represses transcription by blocking transcription factors to 

bind to regulatory sites on DNA (Iguchi-Ariga and Schaffner, 1989) and by 

promoting closed chromatin structures through recruitment of transcriptional 

repressors (Karymov et al., 2001; Fuks et al., 2003; Drewell et al., 2002). 

Sometimes, extensive methylation can completely silence a gene. The methylation 

of cytosine residues of DNA recruits DNA binding proteins that have a methyl-

DNA binding domain (MBD) and transcription regulatory domain (TRD). The 

TRD also recruits histone deacetylases (HDAC) to the site through 

adapter/scaffolding proteins. HDACs alter chromatin (DNA/protein complex) 

structure by removing an acetyl group from the core histone protein which leads 

to compacting of DNA and suppression of transcription. However, current studies 

suggest that methyl-CpG-binding protein 2 (MeCP2) can also activate 

transcription by interacting with CREB (Chahrour et al., 2008; Cohen et al., 

2008). Recent studies also report a duality of function for de novo DNMTs (3a 

and 3b), whereby they are associated with heterochromatin and euchromatin 

(Chen et al., 2002; Kotini et al., 2011). Growing evidence indicates that DNA 

methylation is a dynamic and bidirectional mechanism in response to several 

experience-dependent events, such as neural activity, estrogen's effect on human 

cells, and exercise in muscle (Kangaspeska et al., 2008; Metivier et al., 2008; Guo 

et al., 2011a; Guo et al., 2011b; Barres et al., 2012). 

 

A second major category of epigenetic markers is post-translational modification 

of histone proteins. Modification of histone proteins is a mechanism of epigenetic 
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tagging and can be mediated independent of DNA methylation. Histones are 

highly basic proteins with two distinctive portions. The interaction between 

histone proteins and the DNA molecule of chromatin is mediated through a long 

stretch of the N-terminal tail of histone proteins. Structural studies have found that 

the N-terminal tail of histone proteins protrudes from the chromatin core and is 

the site of post-translational modifications (PTMs) of histone proteins (Luger et 

al., 1997). The PTMs of histones are the critical regulators of DNA compaction 

and gene expression. The unmodified, positively charged histone proteins 

facilitate interaction with negatively charged DNA and inhibit gene expression by 

promoting the closed chromatin state (Muhlbacher et al., 2006). The N-terminal 

tail of histone proteins can undergo several covalent modifications, namely 

acetylation, phosphorylation, methylation, ubiquitination and sumoylation which 

alter the overall chromatin structure and binding properties of histone proteins 

(Strahl and Allis, 2000; Muhlbacher et al., 2006; Sanchez and Gutierrez, 2009). 

These combined PTMs of histone proteins serve as a "histone code" which directs 

gene expression by engaging transcriptional machinery (Strahl and Allis, 2000). 

Acetylation is the best and most widely studied PTM of histones and is 

characterized by the neutralization of the positive charges of amino groups of 

lysine residues by a group of enzymes known as histone acetyl transferases 

(HATs), which transfer an acetyl group from acetyl coenzyme A to the lysine 

residues of the histone tail (Tanner et al., 1999; Tanner et al., 2000b; Tanner et al., 

2000a; Lau et al., 2000; Hebbes et al., 1988). The acetylation of histones is a 

reversible process, and the enzymes that mediate the reversal process are known 
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as histone deacetylases (HDACs). Histone acetylation is generally associated with 

the activation of transcription by recruiting transcription factors and RNA 

polymerase II and is considered a mark of the active state of chromatin or 

euchromatin (Mujtaba et al., 2007). CREB binding protein (CBP) is one of the 

best examples of HAT activity in regulation of transcription in learning and 

memory (Oliveira et al., 2007; Alarcon et al., 2004; Korzus et al., 2004; Martin 

and Sun, 2004; Vecsey et al., 2007).  

 

Like acetylation, histone methylation is another epigenetic tag, catalyzed by 

histone methyl transferases (HMTs) which transfer up to three methyl groups 

from S-adenosine methionine to the lysine residue of the histone tail (Murray, 

1964). However, in contrast to acetylation, a seemingly reversible process, 

methylation is a stable process and involved in long-term maintenance of genes 

(Cheung and Lau, 2005; Peters and Schubeler, 2005). Another important feature 

of histone methylation is its dual functional nature in transcription activation or 

repression depending upon methylation pattern. For example, H3-lys 4 

methylation causes transcriptional activation, whereas H3-lys 9 methylation is 

associated with suppression of transcription (Binda et al., 2010). 

 

Histone phosphorylation, specifically H3,  has gained more attention since it is 

associated with condensation of chromosomes during mitosis (Bradbury et al., 

1973; Gurley et al., 1974; Gurley et al., 1978). H3 phosphorylation was first 

reported in response to the activation of mitogenic signaling pathways 
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(Mahadevan et al., 1991). Phosphorylation of H3 on Ser 10 residue is mediated by 

ribosomal protein S6 kinase 2 (RSK2), which is downstream of several other 

kinases, including extracellular signal-regulated kinase (ERK), mitogen- and 

stress-activated protein kinase 1 (MSK1), and the aurora kinase family member 

increase in ploidy 1 (IPL1) (Sassone-Corsi et al., 1999; Thomson et al., 1999; Hsu 

et al., 2000). Recent studies also indicate aurora kinases in H3 Serine 28 

phosphorylation (Goto et al., 2002). Histone phosphorylation is a reversible 

process in which phosphatases remove phosphate groups from histones (Ajiro et 

al., 1996; Mahadevan et al., 1991). Protein phosphatases 1 (PP1) and 2A (PP2A) 

have been indicated to regulate H3 phosphorylation (Hsu et al., 2000; Nowak et 

al., 2003). Taken together, H3 phosphorylation works in concert with other 

histone modifications to modulate essential cellular functions by regulating 

transcriptional machinery to bind with the chromatin molecule. 

 

Histone protein 2A (H2A) is the first of its kind identified to be ubiquitylated in 

the cell (Goldknopf et al., 1975). Like other proteins, histone proteins such as H1, 

H2A, H2B and H3 are ubiquitylated through the addition of an ubiquitine on the 

amino terminal of the lysine residue (Goldknopf et al., 1975; West and Bonner, 

1980; Chen et al., 1998a; Pham and Sauer, 2000). Ubiquitylated histones take part 

in transcription regulation  (Ogawa et al., 2002; Gearhart et al., 2006) and many 

other cellular processes. 
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1.6.3 Epigenetics in the nervous system 

Neurons are structurally and functionally different than other cells of the body 

because of the presence of a neuron-restrictive silencer element (NRSE) portion at 

their promoter region which can completely silence a gene in non-neuronal cells 

(Maue et al., 1990; Li et al., 1993; Mori et al., 1992). The repression of neuron-

specific gene expression in non-neuronal cells is achieved through interplay of a 

transcription factor known as RE1-silencing transcription factor (REST), which 

presents ubiquitously in non-neuronal cells (Chong et al., 1995) and NRSE. 

Experimentally, deleting REST in non-neuronal tissue causes lethal expression of 

neuron-specific genes whereas ectopic expression of REST in the nervous system 

leads to silencing of neuron-specific genes and developmental disorders (Chong et 

al., 1995; Chen et al., 1998b; Paquette et al., 2000). Another important feature of 

neuronal phenotype determination is the requirement for two other identical 

expressed transcription co-repressors such as REST binding protein SIN3A and 

REST co-repressor (Co-REST) (Andres et al., 1999; Abrajano et al., 2009; 

Lakowski et al., 2006; Battaglioli et al., 2002; Huang et al., 1999; Naruse et al., 

1999). Interestingly, chromatin modification through epigenetic mechanisms such 

as histone acetylation/deacetylation and DNA methylation is required for REST-

dependent gene silencing in such a way that REST/SIN3A repressor complexes 

are associated with HDAC1 whereas REST/Co-REST complexes are associated 

with HDAC2 (Naruse et al., 1999; Huang et al., 1999; Grimes et al., 2000; Roopra 

et al., 2000; Qureshi et al., 2010). This complicated action of REST causes either 
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a decrease in histone acetylation or an increase in DNA methylation to 

epigenetically mark the neuronal gene.  

 

1.6.4 Inhibitors of epigenetic modifications   

With recent advancements in pharmacology, it is now possible to design and 

screen multiple small molecules which target specific kinases of epigenetic 

mechanisms such as DNA methylation and histone modification (acetylation, 

deacetylation, methylation, and phosphorylation). Currently available DNMT 

inhibitors (5-AZA and zebularine) are cytosine analogues with similar modes of 

action (Christman, 2002; Stresemann et al., 2006; Stresemann and Lyko, 2008). 

These compounds are rapidly incorporated into DNA during replication and 

interfere with covalent binding of DNMTs with DNA which leads to 

demethylation and gene reactivation (Christman, 2002; Liu et al., 2003; 

Momparler, 2005; Zhou et al., 2002; Cheng et al., 2004; Weisenberger et al., 

2004). With FDA approval (Issa, 2005), ongoing clinical trials have shown 

promising results in treatment of diseases including myelodysplastic syndrome 

(MDS) and other leukemias (Gore et al., 2006; Tsujioka et al., 2013; Ghoshal and 

Bai, 2007) using these drugs. 

 

A number of HAT family members, such as the p300/CBP family and PCAF 

family (Bannister and Kouzarides, 1996; Ogryzko et al., 1996; Yang et al., 1996) 

have been identified to regulate gene expression (Mizzen and Allis, 1998; Struhl, 

1998) through acetylation of histones (Bannister and Kouzarides, 1996; Ogryzko 

et al., 1996; Yang et al., 1996) or other substrates (Imhof et al., 1997; Gu and 
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Roeder, 1997). Several cell permeable, small molecule modulators with minor 

homology in sequence and structures have been designed to specifically inhibit 

HATs (Vetting et al., 2005). Prior to the specific HAT inhibitors, several cell-

impermeable non-specific HAT inhibitors, such as polyamine CoA conjugates 

(Cullis et al., 1982; Erwin et al., 1984) and natural plant derivatives 

(Balasubramanyam et al., 2003; Balasubramanyam et al., 2004a; 

Balasubramanyam et al., 2004b) were found to block HAT activities. Despite 

their application in past studies, many challenges still exist in terms of the 

potency, bio-availability and cell permeability of these drugs until recently. I used 

a more selective p300/CBP HAT inhibitor known as C646 to probe the role of 

histone acetylation. C646 is a reversible, cell-permeable p300/CBP HAT inhibitor 

(Ki = 400 nM), which competes with acetyl-CoA for the p300 Lys-CoA binding 

pocket (Bowers et al., 2010). The steady state level of histone acetylation depends 

on the balance between the activity of HATs that add acetyl groups and HDACs 

that remove acetyl groups from histone proteins. The HDACs are broadly divided 

into two classes of isoforms. The class I isoform includes HDACs 1, 2, 3, and 8, 

while class II are HDAC isoforms 4, 6, 9, 10 and 11. There are several commonly 

used HDAC inhibitors (HDI):  trichostatin A (TSA) inhibits both class I and class 

II; sodium butyrate (NAB) and suberoylanilide hydroxamic acid (SAHA) are 

specific for class I. HDI blocks the reversible removal of acetyl groups from the 

lysine residue of the histone tail resulting in hyperacetylation of histones and 

altered gene expression (Thiagalingam et al., 2003; Dokmanovic et al., 2007; 

Martinez-Iglesias et al., 2008; Marks et al., 2000; Xu et al., 2007). 
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Phosphorylation at Ser 10, Ser 28, and at Ser 11 position of the histone (H3) is 

associated with condensation of chromosomes in mammalian cells (Gurley et al., 

1978; Goto et al., 2002; Goto et al., 1999; Preuss et al., 2003). The Aurora kinase 

family of enzymes has been found to be involved in H3 phosphorylation at Ser 10 

(de la Barre et al., 2000; De Souza et al., 2000; Giet and Glover, 2001). 

Phosphorylation at Ser 10 then recruits HATs and HMTs to activate transcription. 

I used the recently developed, specific Aurora kinase B inhibitor AZD1152 (Mori 

et al., 2011) to probe its role in histone phosphorylation. 

 

1.6.5 Influence of upstream signaling in epigenetic regulation 

The influence of upstream signaling on gene expression and cellular 

differentiation has been shown in both non-neuronal and neuronal tissue. 

Signaling through the MAPK pathway (Bading and Greenberg, 1991; English and 

Sweatt, 1996; Fiore et al., 1993) is one such influence. The MAPK pathway is 

critical for learning and memory (Atkins et al., 1998; Schafe et al., 2000; Sweatt, 

2001). The ERK/MAPK pathway is the central integrating mechanism of many 

posttranslational modification of histones (Brami-Cherrier et al., 2009; Borrelli et 

al., 2008; Reul et al., 2009; Swank and Sweatt, 2001). One of the mechanisms of 

ERK  is phosphorylation of the transcription factor CREB (Eckel-Mahan et al., 

2008; Impey et al., 1998; Roberson et al., 1999) and subsequent recruitment of 

transcription co-activator CBP (Vecsey et al., 2007), which has intrinsic HAT 

activity. It has been shown that this ERK/MAPK pathway is also involved in 

histone (H3) acetylation and phosphorylation through mitogen- and stress-
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activated protein kinase 1 (MSK1) (Levenson et al., 2004a; Chwang et al., 2006a; 

Chwang et al., 2007; Davie, 2003). More recently, the enhancing effect of  HDAC 

inhibitors on object recognition memory was prevented by PKA inhibitors 

(Roozendaal et al., 2010) which again implies that specific signaling is required to 

alter chromatin structure and to enhance memory. Likewise, DNA methylation 

also appears to be dependent on the ERK/MAPK pathway, as evident by impaired 

DNA methylation with an intrahippocampal injection of a NMDA receptor 

antagonist (Lubin et al., 2008; Miller et al., 2008) and decreased DNMT3 

expression with ERK/MAPK inhibition in amygdala (Monsey et al., 2011). 

Overall, these findings indicate a regulated mechanism in which upstream 

extracellular or environmental influences can be read out through a specific 

signaling cascade (ERK/MAPK) to induce transcription and epigenetic 

modification of chromatin for the purpose of memory formation.  

 

1.6.6 Epigenetic code in synaptic plasticity and learning and memory   

As previously discussed, the epigenetic code consists of two important 

modification of chromatin structure: DNA methylation and post translational 

modification (i.e., acetylation, deacetylation, phosphorylation, methylation) of 

histone proteins. I will discuss how these mechanisms play a role in synaptic 

plasticity and learning and memory. For the purpose of simplicity, my discussion 

will be limited to only those epigenetic mechanisms whose role in NE-mediated 

synaptic plasticity I probed. Griffith and Mahler (1969) first proposed the role of 

DNA modification in memory storage. The principle behind this postulation was 



  
 

47 
 

that DNA acts as an information storage unit upon continuous molecular turnover. 

Supporting this view, Crick (1984) postulated a mechanistic theory of 

preservation of information in DNA through a maintenance molecule (matching 

the function of DNMT1) against constant dissipation of acquired changes by 

molecular turnover. Holliday (1999) supported and extended  this theory by 

suggesting that modification of the cytosine residues of DNA provides stability 

for long term memory storage. Later on, several studies showed an active DNA 

methylation in several brain regions (Feng et al., 2005; Feng and Fan, 2009; Feng 

et al., 2010; Hutnick et al., 2009; Veldic et al., 2005) in a time-dependent way. 

Recent studies also indicate a cortical layer specific distribution of DNMTs in the 

adult human brain (Veldic et al., 2005; Veldic et al., 2004). The presence of 

DNMTs in post-mitotic neurons raises the question of their role in the adult brain. 

To this end several neuroscientists have begun to address this question by 

investigating the role of DNMTs in learning and memory. Early studies found a 

change in DNA methylation of genes in the hippocampus upon learning (Miller 

and Sweatt, 2007; Lubin et al., 2008). Specifically, the upregulation of DNMT 

gene expression in the hippocampus has been found in the contextual fear 

conditioning test and inhibiting DNMT expression interfered with contextual fear 

memory formation (Lubin et al., 2008; Feng et al., 2010; Miller and Sweatt, 

2007). Furthermore, a global inhibition of DNA methylation by DNMT inhibitors 

modifies methylation of specific memory-related genes including reelin, bdnf and 

protein phosphatase 1 (PP1) and hence alters synaptic plasticity and learning and 

memory (Levenson et al., 2006a; Lubin et al., 2008; Miller and Sweatt, 2007). 
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Since LTP is thought to be a cellular signature of memory formation, it was 

expected that epigenetic modifications such as DNA methylation should alter, or 

be altered by, stimuli inducing plasticity. Indeed, the DNA methylation of 

memory enhancing gene bdnf  has been found to be altered by synaptic 

depolarization (Chen et al., 2003; Martinowich et al., 2003). Since maintenance of 

remote memory requires separate structures such as the anterior cingulate cortex 

(Frankland et al., 2004), a recent study investigated the role of DNA methylation 

in the maintenance of remote memory (Miller et al., 2010). In this study, 

intracortical infusion of  DNMT antagonists 29 days after training blocked 

memory retention. Observations from the above study indicated that altered DNA 

methylation of memory-inducing (reelin and bdnf) and memory-repressing (PP1) 

gene promoters in the CNS occurs in memory formation and retention. 

Furthermore, several novel studies also indicated DNMT3A and DNMT3B as 

demethylating enzymes (Kangaspeska et al., 2008; Metivier et al., 2008) and 

hence complicated our understanding of DNA methylation in learning and 

memory. In addition, other researchers reported the Gadd45 family as a key 

regulator of DNA demethylation in the CNS (Barreto et al., 2007; Ma et al., 

2009a).   

 

In biological systems, it is difficult to establish the incidence of one event 

independent of others. Likewise, it has been shown that DNA methylation and 

histone modification work in parallel to regulate transcription in the formation and 

storage of memory in the rat hippocampus (Barrett and Wood, 2008; Graff and 
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Mansuy, 2008; Lubin and Sweatt, 2007; Wood et al., 2006b). The cross talk 

between DNA methylation and histone modification has been nicely demonstrated 

in a recent study in which hypermethylation of the Zif268 gene promoter is 

correlated with an increase in H3-methylation upon contextual fear conditioning 

(Gupta et al., 2010a). Taken together, the balance between methylation and 

demethylation of DNA and the coordinated  action of DNA methylation and 

histone modifications may engage several transcription molecules not understood 

properly, to form and maintain memory.  

 

Recently, several studies have indicated a role for post translational modification 

(PTM) of histone proteins in synaptic plasticity and learning and memory 

(Levenson and Sweatt, 2005; Reul and Chandramohan, 2007; Levenson et al., 

2004a; Barrett and Wood, 2008; Graff and Mansuy, 2008; Roth and Sweatt, 

2009). Prior to mammalian studies, several groups used Aplysia and crab models 

to elucidate the role of histone acetylation in memory formation. The Aplysia 

model has been used to demonstrate a role of 5-HT in memory formation by 

facilitating  synaptic responses (Kandel, 2001). It was later shown that 5-HT also 

induces acetylation of H3 and H4 proteins at the C/EBP promoter region (Guan et 

al., 2002). Inhibition of HDACs by TSA causes long-term facilitation (LTF) with 

just 1 pulse of 5-HT, which proves that 5-HT induces LTF by regulating histone 

acetylation or deacetylation activity. In another study using the crab model, 

Federman et al. (2009) demonstrated that strong training in the context-signal 

memory paradigm enhances LTM formation by inducing H3 acetylation. 
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Interestingly, inhibition of HDACs by TSA also causes formation of  LTM of a 

weak training protocol. Taken together, these studies suggest a role for histone 

acetylation and deacetylation in memory formation in invertebrates. 

 

Using other experimental paradigms, studies have focused on histone acetylation 

and deacetylation in LTP modulation in the mammalian hippocampus to study 

memory formation. Investigating the role of HDAC inhibition on LTP 

modulation, Levenson et. al. in 2004 found that induction and maintenance of L-

LTP by HDAC inhibition is transcription dependent. In another study, Vecsey et. 

al (2007) found that pairing a sub-threshold stimulus with HDAC inhibitor 

induces a PKA/CREB transcription-dependent L-LTP in hippocampal CA1 

region. The CREB-binding protein (CBP) has intrinsic HAT activity and it has 

been found that CBP +/- mice are L-LTP deficient with normal E-LTP (Alarcon et 

al., 2004). Interestingly, HDAC inhibition was able to restore L-LTP, which 

indicates that the reduced L-LTP in those mice is due to a deficiency of HAT 

activity. In addition, it is also reported that application of TSA enhanced 

forskolin-induced LTP in amygdalar slices. Since LTP is thought to be a cellular 

mechanism of memory formation, these studies show that acetylation and 

deacetylation of histones play a major role in hippocampal and amygdalar 

synaptic plasticity, as well as memory formation. 

 

Behaviourally, the contextual fear conditioning test in rodents has served as a 

model to study formation of LTM in mammals. It has been found that contextual 
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fear conditioning in rodents is associated with transient increase of H3 acetylation 

while H4 acetylation remains unchanged, and the LTM formation in this 

contextual test is NMDA and ERK2 dependent (Levenson et al., 2004). In 

addition, injection of HDAC inhibitor 1 hour before contextual fear conditioning 

caused increased freezing behavior when assessed 24 hrs after the test, suggesting 

long-term fear-enhanced memory formation.  

 

CBP, with its intrinsic HAT activity, recruits many other transcriptional co-

activators to induce gene transcription. Heterozygous mutation of CBP causes 

cognitive disorders including Rubinstein-Taybi syndrome, characterized by severe 

mental retardation (Petrij et al., 1995). Considerable advances in genetic 

engineering allow us to alter specific genes of interest. Using this, Korzus et al. 

(2004) have generated  transgenic mice carrying a dominant-negative CBP 

transgene which specifically blocks HAT activity with an inducible tet system. 

These mice were deficient in declarative and spatial memory formation, while 

their contextual fear memory formation was intact. The behavioral phenotype was 

reversible upon turning off the transgene. Similarly, Alarcon et al. (2004) used 

CBP 
+/-

  heterozygous mice to assess the role of CBP HAT activity in memory 

formation. They have found that CBP 
+/-

  heterozygous mice froze less than 

control animals in the contextual fear conditioning test, but showed no difference 

in latency and path length in MWM spatial memory test. Administration of the 

HDAC inhibitor restored the deficit in LTM formation in both transgenic and 

mutant mice. Beside CBP, two other transcriptional co-activators, p300 and 
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p300/CBP associated factor (PCAF), also have acetyltransferase activity and play 

roles in LTM formation (Maurice et al., 2008; Olivera et al., 2007). These studies 

underpin the importance of CBP and other transcription co-activators with HAT 

activity in gene transcription in memory formation.  

 

Many other studies also examine the role of histone acetylation in memory 

formation. Training for eye-blink conditioning and object recognition memory 

induces H3 acetylation, and inhibition of HDAC causes enhanced memory 

formation with this training (Fontan-Lozano et al., 2008). Several studies have 

found an increase in histone acetylation in the BDNF promoter region in the 

hippocampus and the prefrontal cortex upon a fear conditioning test (Lubin et al., 

2008; Bredy et al., 2007). More recently, it was shown that a weak training 

stimulus which is unable to form LTM, when paired with HDAC inhibitor, 

induces LTM formation (Stefanko et al., 2009). This is in line with the 

observation of Vecsey et al. (2007) who reported that a single train of high 

frequency stimuli which normally generates E-LTP, can induce transcription-

dependent L-LTP when paired with HDAC inhibitors. Protein phosphatase 1 

(PP1) acts as a memory suppressor gene and inhibition of PP1 has been shown to 

induce acetylation of H2B, H3 and H4 to promote LTM formation in the MWM 

task and object recognition test (Koshibu et al., 2009). Thus, this study underlines 

a mechanistic way in which histone acetylation by PP1 could support LTM 

formation. Considering the cross talk between DNA methylation and histone 

acetylation, it has been found that inhibition of DNMTs blocks training induced 
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H3 acetylation which could be rescued with HDAC inhibition (Miller et al., 

2008), which points to a complex interaction between these two mechanisms in 

memory formation. These studies also suggest that HDAC might act as a negative 

constraint on memory formation (Abel et al., 1998). Indeed, accumulating 

evidence support this by showing that overexpression of the HDAC2 gene 

impaired, but deficiency of HDAC2 enhanced LTP as well as memory formation 

(Guan et al., 2009). 

 

Histone phosphorylation is another PTM which provides a unique epigenetic 

mark to regulate chromatin dynamics (Graff and Mansuy, 2008). In this regard, 

the mitogen-and stress-activated protein kinase 1 (MSK1) plays a major role in 

bringing on the function of histone phosphorylation. Consistent with this, 

germline knockout of MSK1 impairs long-term spatial and contextual fear 

memory formation, leaving cued fear memory intact (Chwang et al., 2007). In 

contrast to the previous findings, HDAC inhibitors failed to rescue the memory 

deficit in MSK1 knockout mice, suggesting a critical interrelation between histone 

acetylation and phosphorylation through a common upstream regulator of both. In 

addition to MSK, another kinase complex known as the IκB kinase (IKK) 

complex also regulates histone phosphorylation in the hippocampus (Lubin and 

Sweatt, 2007). Taken together, these studies indicate  a critical role of histone 

kinases in memory formation. 
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1.6.7 Epigenetics and neurodegenerative diseases       

There is considerable evidence to indicate the role of epigenetic mechanisms in 

human cognition and behaviour. Rubinstein-Taybi syndrome (RTS) is an 

inherited autosomal-dominant disorder resulting from the mutation of 

transcription co-activators CBP HAT (Petrij et al., 1995; Blough et al., 2000). 

Several studies on animals indicate that CBP deficiency is a crucial factor in 

deficiency of memory formation in those animals and hence imply a molecular 

basis for RTS in humans (Korzus et al., 2004; Alarcon et al., 2004; Oike et al., 

1999; Bourtchouladze et al., 2003). Rett syndrome (RT) is another inherited X-

linked disease due to mutation of MECP2 (Ellaway and Christodoulou, 2001; 

Sirianni et al., 1998; Amir et al., 1999; Chen et al., 2001). Overexpression of 

MECP2 in animals causes an enhancement of hippocampal LTP as well as LTM 

formation (Collins et al., 2004). Fragile X syndrome is the most common form of 

inherited mental retardation, due to an abnormal sequence in the FMR1 and 

FMR2 genes (Turner et al., 1996; Ashley et al., 1993). The abnormal expansion of 

the CGG or CCG trinucleotide in Fragile X syndrome results in increased DNA 

methylation and histone acetylation that eventually leads to transcriptional 

silencing of FMR genes (Gecz et al., 1996; Gu et al., 1996). Alzheimer's disease 

(AD) is the most common form of dementia due to an increase in accumulation of 

soluble β-amyloid peptide in the brain (Kuo et al., 1996). Some of the pathology 

of AD is due to dysregulation of histone acetylation (Sastre et al., 2001; Kimberly 

et al., 2001; Cao and Sudhof, 2001; von Rotz et al., 2004). Finally, schizophrenia 

is a serious cognitive disorder, leaving individuals almost incapable of 
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maintaining social life and performing daily cognitive activity. Extensive research 

has indicated that deficiency of memory promoting genes such as reelin, is the 

causative factor  in schizophrenia (Costa et al., 2002). The promoter region of 

reelin contains several sites of DNA methylation, and inhibitors of HDACs and 

DNMTs increase reelin expression, supporting the notion that different epigenetic 

mechanisms regulate reelin expression (Chen et al., 2002). These findings 

indicate that alterations in epigenetic marks of the genome can cause severe 

abnormality in gene expression, which eventually leads to cognitive impairment. 

 

1.7 Noradrenergic neuromodulation in synaptic plasticity and learning and 

memory 

Communication between neurons is achieved by synaptic transmission in which 

neuroactive chemicals, upon binding to their receptors, generate a brief and 

temporally-restricted post-synaptic potential. Neuromodulators, in contrast, are a 

class of neuroactive agents that act upon either pre-or post-synaptic sites without 

generating synaptic potentials. These neuromodulators act through second 

messenger systems, instead of binding to a ligand-gated ion channel as in case of 

neurotransmitters, to bring widespread and long-lasting cellular effects 

(Hasselmo, 1995). Recently, it has been reported that neuromodulators too can 

generate synaptic potentials like neurotransmitters, which opens up a new avenue 

for further research on neurophysiology. Irrespective of their mode of action, 

these modulators are important candidates for normal and pathological brain 

function. 
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1.7.1 Noradrenergic system in the mammalian brain 

The central noradrenergic neurons originate primarily from the locus coeruleus 

(LC) and lateral tegmental regions (Cooper et al., 2003), and project diffusely to 

the cerebral cortex, midbrain, thalamus, cerebellum, amygdala, hippocampus 

(Moore and Bloom, 1979; Morrison and Foote, 1986; Barone et al., 1981) and 

many subcortical structures. This wide noradrenergic projection supports the idea 

of its role in information procession mediated through activity of different brain 

regions (Berridge and Waterhouse, 2003). 

 

1.7.2 Noradrenaline biosynthesis  

Noradrenaline, also called norepinephrine (NE), is a catecholamine which has 

multiple roles in the body as a hormone or neurotransmitter in the central nervous 

system (Vogt, 1954). NE is released from the sympathetic nervous system as a 

neurotransmitter and increases heart rate and force of contraction. The hormonal 

effects of NE consist of the fight or flight response upon its release from the 

adrenal medulla. 

 

NE is synthesized from dopamine through the enzymatic action of dopamine β-

hydroxylase in the chromaffin cells of the adrenal medulla. The rate-limiting step 

in the biosynthesis of NE is tyrosine hydroxylase, which is again regulated by 

PKC, PKA and CAMKII. This allows a short term alteration of  NE synthesis. 

The stepwise biosynthesis of NE is shown in the next figure (Fig. 1.8).  
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Fig. 1.8: Biosynthesis of norepinephrine 

 

  



  
 

58 
 

NE is rapidly degraded once it is released presynaptically by calcium-dependent 

exocytosis. The release of NE is regulated by presynaptic autoreceptors which can  

monitor the concentration of NE at the synaptic cleft (Langer, 1976; Dixon et al., 

1979).  

  

1.7.3 Noradrenergic receptor subtypes 

 NE receptors are a large family of G-protein coupled receptors which initiate 

diverse physiological actions depending upon the type of subunit attached to it 

(Fig. 1.9). Based on the diverse actions of NE, the receptors are classified as α1-, 

α2- and β-adrenergic receptors.  

 

α1-adrenergic receptors are diffusely distributed in the CNS neuron (Domyancic 

and Morilak, 1997), glia (Lerea and McCarthy, 1989), interneurons and 

subclassified again into α1A, α1B, and α1D  subtypes based upon their affinity to 

various pharmacological agents and their physiological actions upon activation 

(Harrison et al., 1991; Mizobe, 1997). Interestingly, these receptors are present in 

pyramidal and granular cells of various  hippocampal regions (Jones et al., 1985; 

Day et al., 1997; Pieribone et al., 1994; Nicholas et al., 1993). These receptors are 

present in the human brain at CA3 and the dentate gyrus region (Zilles et al., 

1991). Generally, α1-adrenergic receptors are coupled to the Gq/11 protein, which, 

upon activation, cleaves the membrane protein phospholipase C into the second 

messengers inositol triphosphate (IP3) and diacylglycerol (DAG). These second 

messengers then mediate diverse physiological actions by elevating the  
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Fig. 1.9: Noradrenergic regulation of memory (adapted and modified from 

McGaugh, 2000) 

 

  



  
 

60 
 

intracellular calcium concentration from the cellular calcium store (Cotecchia et 

al., 1990; Sirvio and MacDonald, 1999). The α2 receptors can be further divided 

into α2A, α2B, and α2C subtypes depending upon sensitivity to pharmacological 

activation and tissue-specific distribution (Harrison et al., 1991). In hippocampus, 

these receptors are mainly located at presynaptic sites to regulate release of NE 

(Dismukes et al., 1977), though their presence in the dendritic spines of 

hippocampal neurons and glial cells have also been observed (Milner et al., 1998). 

These receptors are coupled to the inhibitory G-protein Gi and thus reduce the 

activity of adenylyl cyclase, which leads to a decrease in intracellular cAMP 

concentration (Dismukes and Mulder, 1976).  

 

β-adrenergic receptors are coupled to the Gs stimulatory protein to induce 

intracellular signaling, and are broadly classified into β1-, β2-, and β3-subtypes 

depending upon reactivity with specific agonists. For example, β1 and β2 ARs are 

more reactive to the agonist isoproterenol than the endogenous agonists NA or 

adrenaline, while β3 responds more potently to NA. These receptors are present in 

various regions of the CNS, including the cortex, hippocampus, amygdala, 

thalamus, and cerebellum (Nicholas et al., 1993; Wanaka et al., 1989). The human 

brain has a subregional specificity of β-AR expression (Reznikoff et al., 1986). 

For example, pyramidal cells and dentate granular cells contain mainly β1- and 

β2-ARs, whereas glial cells in the CA1 region contain only β2-ARs. Additionally, 

interneurons do not have β-ARs. These receptors have a common second 

messenger, cAMP, which is enhanced upon activation of β-ARs and causes 
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physiological actions (Raymond, 1995; Morris and Malbon, 1999). These 

different adrenergic receptors have physiological functions in different 

hippocampal regions, which is discussed next.      

 

1.7.4 Functional aspects of adrenergic receptors in hippocampal neurons 

1.7.4.1 α-adrenergic receptors and hippocampal neuronal excitability 

The α1-adrenergic receptors mediate cell-specific functions in the hippocampus. 

Activation of these receptors generally decreases the excitability (Harley, 1991; 

Pang and Rose, 1987; Mynlieff and Dunwiddie, 1988) of principal neurons in the 

hippocampal regions of dentate gyrus, CA3 and CA1 as evidenced by lowered 

population spike amplitude. The possible mechanism for this phenomenon is 

activation of inhibitory interneurons in the hippocampus which in turn 

hyperpolarize the principal neurons. When released from the LC, noradrenaline 

causes a biphasic response in pyramidal neurons: an initial suppression, which is 

thought to be due to α1-AR activation, followed by activation of pyramidal 

neurons, which is β-AR-mediated (Curet and de, 1988). In line with this, this 

biphasic action of NA has also been observed in in vitro studies. The specific 

action of ARs is concentration-dependent; high concentrations of NA activate α1, 

and lower concentrations activate the β-AR (Rutecki, 1995; Mueller et al., 1981; 

Mueller et al., 1982). The α1-ARs have a minor role in synaptic plasticity in the 

dentate gyrus as they do not cause changes in field potential recordings (Chaulk 

and Harley, 1998). In the CA3 region, it causes presynaptic inhibition and thus 

affects LTP induction at mossy fibre synapses as LTP is presynaptic in this region 
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(Zalutsky and Nicoll, 1990). Activation of α1-ARs, however, has a different 

action in the CA1 region of hippocampus. When paired with weak electrical 

stimuli, α1-AR agonists facilitate LTP induction as well as maintenance (Izumi 

and Zorumski, 1999; Pussinen and Sirvio, 1998). Together with β-ARs, α1-ARs 

confer the immunity to depotentiation of LTP when induced by low-frequency 

stimulation (Katsuki et al., 1997). These receptors are also involved in LTD in the 

CA1 region when a high concentration of NA or α1-agonists is applied 

(Scheiderer et al., 2004). Many interneurons also express α1-ARs, and activation 

of these receptors by NA or α1-agonists causes depolarization of these cells, 

which eventually influence the firing properties of pyramidal neurons in the CA1 

region (Bergles et al., 1996). The α2-ARs of CA3 and CA1 regions suppress the 

firing properties of pyramidal neurons; studies suggest that this post-synaptic 

effect of α2-ARs is extrasynaptic (Curet and de, 1988). In the hippocampus, α2-

ARs mediating synaptic plasticity are mainly presynaptic, as these receptors act as 

auto receptors at the presynaptic terminal to regulate NA release.  

 

 1.7.4.2 β-adrenergic receptors and hippocampal neuronal excitability 

Stimulation of β-adrenergic receptors modulates many cellular functions in 

synaptic plasticity, and is one of the primary mechanisms through which the brain 

noradrenergic system consolidates new information. The rise of the intracellular 

calcium concentration through calcium channels is critical for cell signaling 

pathways including PKC and CAMKII (Malenka and Bear, 2004).  β-adrenergic 

receptors can enhance calcium influx through NMDA receptors during excitatory 
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synaptic transmission (Raman et al., 1996; Vanhoose and Winder, 2003). β-

adrenergic receptors also modulate the properties of VDCCs and hence cellular 

calcium dynamics (Fisher and Johnston, 1990; Hoogland and Saggau, 2004). 

Therefore, β-adrenergic receptors are an important component in the regulation of 

calcium dynamics in the dendrites of hippocampal neurons. Besides its role in 

calcium dynamics, many researchers also indicate a role of β-adrenergic receptors 

in the phosphorylation of the GluR1 subunit of AMPA receptors (Vanhoose and 

Winder, 2003; Vanhoose et al., 2006), which has a major role in LTP and its β-

adrenergic  modulation (Shi et al., 2001). 

 

Stimulation of β-ARs generally increases the excitability of hippocampal principle 

neurons. This increased excitability can be seen as an enhancement of fEPSP 

population spikes, as in the case of application of NE in the dentate gyrus region 

(Stanton and Sarvey, 1987), and also in the areas of CA3 and CA1 (Dunwiddie et 

al., 1992). The effect of β-AR stimulation is pathway-specific in the hippocampal 

region, suggesting a distinct role in information processing in various 

hippocampal subregions (Dahl and Sarvey, 1989). 

 

Electrical stimulation of the medial and lateral perforant pathway requires β-AR 

activation to generate LTP in the dentate gyrus region (Munro et al., 2001). 

However, the population spike is unaffected while β-AR antagonists inhibit HFS 

induced EPSPs in that region, suggesting a distinct mechanism of action for 

modulating plasticity in the dentate gyrus region. LTP in the CA3 region is β-AR 
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dependent as blockade of these receptors prevents L-LTP expression and 

maintenance by multiple trains of HFS (Huang and Kandel, 1996). 

Correspondingly, β-AR stimulation causes a frequency-dependent increase in the 

magnitude, duration and probability of LTP induction (Hopkins and Johnston, 

1988; Hopkins and Johnston, 1984). Conversely, in area CA1, the induction of 

LTP by HFS does not require β-AR activation (Dunwiddie et al., 1982; 

Murchison et al., 2004; Swanson-Park et al., 1999; Sarvey et al., 1989). In 

addition, β-AR agonists do not alter baseline synaptic activity persistently 

(Thomas et al., 1996). In the CA1 area, β-AR stimulation modulates the effects of 

LFS on synaptic strength. Pairing LFS with β-AR activation overcomes the 

inhibitory effects of protein phosphatases to induce LTP (Thomas et al., 1996; 

Winder et al., 1999). The CA1 pyramidal cells fire bursts of action potentials 

known as "complex spikes", which could also enhance LTP during β-AR 

stimulation in a PKA-dependent manner (Hoffman and Johnston, 1999). 

Furthermore, β-AR-mediated LTP enhancement is observed during theta-burst 

stimulation, an in vivo firing pattern in the  pyramidal cells of rodents during 

spatial navigation (Otto et al., 1991; Swanson-Park et al., 1999). Norepinephrine 

can alter synaptic responses by influencing the state of the synapse in a process 

known as metaplasticity (Abraham, 1999). In this process, β-ARs inhibit the 

metaplastic mechanisms, and permit subsequent LTP induction at previously 

activated synapses (Moody et al., 1999). Taken together, these studies suggest that 

β-ARs recruit various distinct mechanisms such as channel modification, neuronal 
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excitation and metaplastic processes in hippocampal subregions to induce and 

express LTP. 

 

Consistent with its role in LTM formation, β-AR antagonists impair the formation 

of both spatial and contextual fear memory (Sara, 2009; Ji et al., 2003; Cahill et 

al., 2000). Conversely, β-AR activation facilitates the hippocampal long-term 

potentiation necessary for memory formation (Kemp and Manahan-Vaughan, 

2008). It has been implicated that β-ARs play a crucial role in memory retrieval 

(Cahill et al., 1994; Barros et al., 2001; Murchison et al., 2004). A recent study 

found that restoring NE levels in genetically mutant mice lacking NE improved 

memory retrieval through a β-AR mechanism (Murchison et al., 2011). Direct 

injection of NE into the hippocampus preferentially facilitates LTM consolidation 

(Izquierdo et al., 1998). Additionally, β-ARs also have a role in extinction, a 

mechanism of formation of new associations to an altered stimulus pattern 

(Ouyang and Thomas, 2005). Thus, β-ARs engage various physiological 

mechanisms to encode and store new information. 
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1.8 Objectives of the current study 

Neuromodulatory influences are diffuse in the mammalian brain and strongly 

influence the cellular and molecular mechanisms of brain functions. Many 

behavioural or cognitive outcomes of the nervous system are thought to be due to 

the influences of various neuromodulators on the dynamics of ion channels, the 

biophysical properties of neurons as a unit, or alteration of function of the neural 

network as a whole. Learning and memory is a higher cognitive function of the 

brain which is impaired in many conditions. Norepinephrine, a neuromodulator, is 

involved in the consolidation and retrieval of memory in humans and other 

animals. In many neurodegenerative disorders, the level of neuromodulators like 

NE is altered and causes memory-related cognitive impairment. In addition, 

emerging studies suggest a role for epigenetic mechanisms in cognitive disorders 

related to memory impairment. Thus, the present study would be able to narrow 

down a unique noradrenergic signaling cascade and epigenetic regulation of genes 

which could be recruited upon a novel experience and facilitate memory 

encoding. The current study will facilitate the understanding of the different 

cellular and genetic mechanisms responsible for NE-related cognitive disorders 

associated with learning and memory deficits, and could have important 

therapeutic implications. 

 

To this end, my first objective was to characterize the role of NE in long-term 

synaptic potentiation in area CA1 of mice hippocampal slices. I looked for 

requirements of macromolecular synthesis, such as translation and transcription, 
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in NE-induced synaptic plasticity. The second objective was to determine the 

engagement of epigenetic mechanisms, with the primary focus on histone 

acetylation in NE-induced LTP. Specifically, I attempted to address the following 

questions for my thesis: 

1. Does NE facilitate the induction and maintenance of LTP in the CA1 area? 

2. Which receptor subtype(s) are involved in NE-LTP? 

3. Is there any specific intracellular signaling molecule(s) that is recruited upon 

NE-LTP? 

4. Does activation of beta-adrenergic receptors by NE engage translation and 

transcription mechanisms to stabilize LTP? 

5. Are epigenetic mechanisms involved in NE-LTP? If so, then what role do they 

play? 
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Chapter 2: Materials and methods 

2.1  Animals 

Male C57BL/6 mice (7-12 weeks) were used for all experiments described in this 

thesis  for their robustness in hippocampal synaptic plasticity and other behavioral 

learning and memory tests (Schimanski et al., 2002). Animals were housed in the  

University of Alberta's animal facility center under the guidelines of the Canadian 

Council on Animal Care (CCAC). Animals were kept on a 12-hr light/dark cycle, 

with all experiments conducted during the light portion of the cycle. Animals 

received no environmental enrichment in cages. 

 

2.2 Hippocampal slice preparation and two pathway extracellular field 

potential recording 

Following cervical dislocation and decapitation, the intact brain was removed 

quickly and placed in a beaker of ice-cold artificial cerebrospinal fluid (ACSF)  

composed of (in mM) 124 NaCl, 4.4 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 26.2 

NaHCO3, 2.5 CaCl2, and 10 glucose, aerated with 95% O2 and 5% CO2. After an 

initial few minutes of cooling, the brain was hemisected into two lobes containing 

two hippocampi and one hippocampus was removed from its surrounding tissue 

and placed on a manual tissue chopper (Stoelting, Wood Dale, IL, USA). 

Transverse hippocampal slices (400 μM) were collected and transferred to an 

interface recording chamber (for details of method, please refer to Nguyen and 

Kandel, 1997) and maintained at 30°C with the help of a heating coil within the 

recording chamber. The slices were under continuous perfusion (1-2 mL/min) of 
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ACSF. Electrophysiological recording of extracellular field potentials (fEPSPs) 

from slices began after an initial 90 min recovery period. A glass microelectrode 

(pulled by a borosilicate electrode puller, resistances of 2–3 MΩ) filled with aCSF 

was positioned in the stratum radiatum of area CA1 and fEPSPs were recorded. 

The pyramidal cell layer of CA1 acts as a visual guide for electrode replacement 

during experimental set up (Fig. 2.1). The hippocampal Schaffer collateral 

commissural fibers were stimulated at two separate sets of inputs (S1 & S2) 

converging onto the same postsynaptic population of neurons using two bipolar 

nickel-chromium electrodes (diameter 130 µm; AM Systems, Carlsborg, WA, 

USA). fEPSPs of 40% of maximal amplitude (Gelinas and Nguyen, 2007; Woo 

and Nguyen, 2003) were evoked by adjusting the stimulus intensity (0.08 ms 

pulse duration) and constituted our baseline responses. Subsequent fEPSPs were 

obtained at the rate of once per minute at this test stimulation intensity, with S2 

stimulation following S1 stimulation by 200 ms. To confirm independence of 

pathways, interpathway paired-pulse facilitation elicited by successive stimulation 

through the two electrodes (S1 & S2) at 50, 100, 150 and 200 ms intervals was 

used and the absence of paired-pulse facilitation was used as the criterion to 

determine stimulation of independent pathways.  

 

After establishing a 20 min baseline recording, NE-LTP was induced on S1 alone 

through application of one train of high-frequency stimulation
 
(HFS; 100 Hz, 1 s 

duration at test strength) following a 10 min application of  NE (10 µM). fEPSPs  

were measured as percentage of baseline, and these measurements were used as  
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Fig. 2.1: Field EPSP and LTP recording model 
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an indicator of  LTP in response to 1 x 100 Hz stimulation as this procedure 

induces early LTP (E-LTP) in mouse hippocampal slices (Duffy et al., 2001). NE 

was applied for an additional 5 mins following HFS.  

 

All fEPSPs were measured by an amplifier and low pass filtered at 2 kHz. 

Responses were then digitized at a rate of 20 kHz by a Digidata 1200 system and 

recordings were analyzed offline with pClamp 10 software (Axon Instrument Inc., 

Union City, CA, USA). 

 

2.3 Tissue collection and quantitative Western blot 

Hippocampal slices were prepared and placed on the recording chamber as 

previously described. Following drug application or electrical stimulation, slices 

were harvested from the recording chamber. Area CA1 of the slices was dissected 

by a razor blade under an upright dissecting microscope (Fig. 2.2). CA1 

subregions were then flash-frozen in liquid nitrogen and stored at -80°C until 

assayed as described in Gelinas and Nguyen, 2007. 

 

2.4 Data analysis 

Axon Clampex (10.2, Molecular Devices) was used for fEPSP analysis. The 

initial slope of the fEPSP was measured as an index of synaptic strength (Johnston 

and Wu, 1995). fEPSP slopes were averaged from 20 min of stable baseline 

recording to obtain a baseline mean value for each experiment. All subsequent 

slopes were expressed  as percentages of these baseline slopes. To compare LTP 

levels between two groups, I used data points at 120 or 180 min after LTP 
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Fig. 2.2: Tissue collection and quantitative Western Blot 
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induction. Student’s t test was used for statistical comparison of mean fEPSP 

slopes between two groups, with a Welch correction if standard deviations were 

significantly different between groups. p < 0.05 was set as criteria of significance 

in all experiments. One-way ANOVAs (Graphpad Instat Software, San Diego, 

CA, USA) were conducted to determine significant difference between more than 

two groups. Subsequent Tukey-Kramer post-hoc tests were performed to 

determine which groups were significantly different from others. Data are 

reported as means ±  SE, with n = number of slices. 

 

2.5      Drugs and protocol  

The drugs and their concentrations used in my experiments are shown in table 1. 

Drugs were dissolved in appropriate solutions according to MSDS and literature. 

Stock solutions of drugs were stored at -20°C. Aliquots of stock solution were 

thawed, mixed properly, and diluted in ACSF to the final working concentration 

immediately before experimentation. Fresh stock solutions of NE were made daily 

to avoid oxidization by oxidizing agents. NE was applied for a total duration of 15 

min, starting 10 min before 100Hz stimulation protocol. Drugs such as antagonists 

and inhibitors were applied 20 min before NE application and were present during 

NE application and 10 min after NE application. Due to light sensitivity of the 

drugs, experiments were done under dimmed light conditions. 
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Name known for  abbreviat

ion 

company stock 

concentr

ation  

working 

concentrat

ion 

L-(-)-

norepinephrine 

bitartrate salt 

monohydrate 

adrenergic 

receptor 

agonist 

NE Sigma 1mM in 

aCSF 

10 µM 

ICI 118,551 

hydrochloride 

β2 

antagonist 

ICI Sigma 1mM in 

aCSF 

1 µM 

Betaxolol 

hydrochloride 

β1 

antagonist 

Betax Sigma 1mM in 

aCSF 

1 µM 

Prazosine 

hydrochloride 

α1 

antagonist 

Prazo Sigma 150 µM 

in dH2O 

10 µM 

Yohimbine 

hydrochloride 

α2 

antagonist 

Yohim Sigma 1mM 3 µM 

DL-2-amino-5-

phosphonopenta

noic acid 

NMDA 

receptor 

antagonist 

APV Sigma 50 mM in 

aCSF 

50 µM 

PKI 14-22 

Amide 

Cell 

permeable 

PKA 

antagonist 

PKI Calbioche

m 

1 mM in 

distilled 

water 

20 µM 

Brefeldin A Epac BFA Sigma 50 mM in 50 µM 
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 inhibitor DMSO 

ESI09 Epac 

inhibitor 

ESI Biolog 

Life 

Sciences 

50 mM in 

DMSO 

10 µM 

Anisomycin 

 

protein 

synthesis 

inhibitor 

Aniso Sigma 50 mM in 

DMSO 

25 µM 

Cycloheximide protein 

synthesis 

inhibitor 

CHX Sigma 25 mM in 

DMSO 

80 µM 

Actinomycin D 

 

transcriptio

n blocker 

Act-D Sigma 25 mM in 

DMSO 

25 µM 

5,6-

Dichlorobenzim

idazole  

1-β-D-

ribofuranoside 

transcriptio

n blocker 

DRB Sigma 50 mM in 

DMSO 

50 µM 

5-Aza-2′ 

deoxycytidine 

 

DNA 

methylatio

n blocker 

Aza Sigma 100 mM 

in DMSO 

30 µM 

Zebularine 

 

DNA 

methylatio

n blocker 

Zeb Sigma 65 mM in 

DMSO 

25 µM 
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Table 1: Drugs and concentrations used   

  

C646  

 

p300/CBP 

(HAT) 

inhibitor 

C646  

 

Sigma 10 mM in 

DMSO 

5 µM 

AZD1152-

HQPA 

 

Aurora 

kinase B 

inhibitor 

AZD1152 Sigma 5 mM in 

DMSO 

1 µM 

PD 98,059 MAPK 

inhibitor 

PD98 Sigma 10 mM in 

DMSO 

50 µM 

Trichostatin A HDAC 

inhibitor 

TSA Sigma 16.5  mM 

in DMSO 

1.65 µM 

Rapamycin mTOR 

inhibitor 

Rap Sigma 1  mM in 

DMSO 

1 µM 
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Chapter 3: Results 

3.1 Norepinephrine facilitates the induction of LTP through mechanisms 

requiring both β-adrenergic and NMDA receptors 

NE has been shown to induce LTP while paired with specific stimulation 

protocols (Katsuki et al., 1997). Application of HFS alone generates LTP in the 

CA1 region which returns to pre-stimulation levels within 120 min (Fig. 3.1A: 

fEPSP slopes were 108 ± 2%); all following statistics are also taken at 120 min 

post-HFS. To examine the effect of NE (10 µM) on LTP generation, I paired HFS 

with NE application, which induced LTP that persists for several hours (>3 hr, 

Fig. 3.1B: fEPSP slopes were 150 ± 11%). To determine if NMDA receptors are 

required for NE-mediated LTP (NE-LTP), I applied the general NMDA receptor 

antagonist APV (50 µM) overlapping with NE + HFS. Application of APV 

inhibited the induction and expression of NE-LTP (Fig. 3.1C: fEPSP slopes were 

104 ± 5%). An ANOVA comparing fEPSPs of the three groups (HFS alone, NE + 

HFS and NE + APV + HFS) revealed a significant difference between groups 

(F(2,16) = 6.48; p < 0.01) (fig. 3.1D). Subsequently, a Tukey-Kramer post hoc 

test revealed that persistent LTP was only observed when HFS was paired with 

NE application, and this LTP was blocked by APV (p < 0.05; Fig. 3.1D).  
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Figure 3.1: Norepinephrine-induced LTP is maintained for several hours and 

mediated through NMDA receptors.  

 

A: 100 Hz stimulation alone (open circles) induces transient (< 2 hr) LTP.  

B: Pairing 1 x 100 Hz stimulation with NE application induces L-LTP (S1, open 

diamonds) which lasts for several hours (>3) after stimulation.  

C: Application of the NMDA receptor antagonist APV inhibits LTP generated by 

pairing 100 Hz stimulation with NE application (S1, open squares).  

D: Summary histogram of fEPSP slopes obtained 120 min after 1 x 100 Hz 

stimulation at S1. Sample traces were taken 10 min after commencement of 

baseline recordings and 120 min after stimulation at S1. The addition of drugs did 

not alter basal synaptic transmission in a second independent pathway (S2) that 

did not receive 100 Hz stimulation. Results in D represent means ± SEM, p < 

0.05. Calibration: 2 mV, 2 ms. 
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3.2 Adrenergic receptor subtypes in NE-LTP 

To determine which adrenergic receptors (ARs) are required for NE-induced LTP, 

I used different NE receptor subtype specific antagonists, overlapping with NE + 

HFS. NE, when paired with HFS, induced long-lasting LTP (Fig. 3.2A: mean 

fEPSPs were 154.6 ± 10.8% of baseline; all following statistics given for 120 min 

post-HFS). Application of the β1-specific antagonist betaxolol (Betax: 1 µM, Fig 

3.2B: mean fEPSPs were 101.7 ± 8% of baseline recording) and the β2-specific 

antagonist ICI 118,551 (ICI: 1 µM, Fig. 3.2C: mean fEPSPs were 106.3 ± 8% of 

baseline recording) blocked the expression of NE-LTP. In contrast, inhibition of 

α1-ARs with prazosin (Praz: 10 µM, Fig. 3.2C: mean fEPSPs were 143.7 ± 10% 

of baseline recording) or α2-ARs with yohimbine (Yohim: 3 µM, Fig. 3.2D: mean 

fEPSPs were 137 ± 5% of baseline recording), failed to inhibit expression of LTP. 

An ANOVA comparing fEPSPs of different antagonist-treated groups  revealed a 

significant difference between groups (F(4,29) = 7.8; p < 0.001) (Fig. 3.2E). 

Subsequently, a Tukey-Kramer post hoc test revealed that persistent LTP was 

prevented significantly only by overlapping co-application of betaxolol and ICI (p 

< 0.01) but not by prazosin and yohimbine (p > 0.05). Thus, NE induces LTP by 

engaging β- but not α-ARs in mouse hippocampal slices. 
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Figure 3.2: LTP elicited by NE application during 100 Hz stimulation 

requires β-adrenergic receptors but not α.  
 

A: Application of 1 x 100 Hz stimulation paired with NE (open diamonds) elicits 

long-lasting LTP. β1 adrenergic receptor antagonist betaxolol (B, open triangles) 

and β2 adrenergic receptor antagonist ICI 118551 (C, filled diamonds) inhibit 

maintenance of LTP generated by 1 x 100 Hz stimulation with NE application. α1 

receptor antagonist prazosin (D, open squares) and α2 receptor antagonist 

yohimbine (E, open circles) do not inhibit LTP induced by NE + 1 x 100 Hz 

paired protocol. 

F: Summary histogram of fEPSP slopes obtained 120 minutes after 1 x 100 Hz 

stimulation at S1. All sample traces were taken 10 min after commencement of 

baseline recording and 120 min after 1 x 100 Hz stimulation. The addition of 

drugs did not alter basal synaptic transmission in a second independent pathway 

(S2) that did not receive 1 x 100 Hz stimulation. Results in F represent means ± 

SEM, p <  0.05. Calibration: 2 mV, 2 ms. 
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3.3 Intracellular signaling pathway for NE- LTP 

Previous studies have implicated a role of cAMP dependent protein kinase A 

(PKA) in β-AR mediated LTP (Thomas et al., 1996) and long-term memory 

formation (Nayak et al., 1998). To determine if PKA is required for NE induced 

L-LTP, I co-applied a cell permeable cAMP-dependent protein kinase A (PKA) 

inhibitor, PKI 14-22 Amide (PKI, 1 µM), with NE + HFS. PKA activation was 

not necessary for NE-induced synaptic enhancement, as treatment with PKI did 

not alter the maintenance of NE-LTP (Fig. 3.3B: mean fEPSPs were 148 ± 11% 

of baseline; all following statistics reported for 120 min post-HFS) compared to 

PKI free control (Fig. 3.3A: mean fEPSPs were 146 ± 7% of baseline). An 

alternative route through which cAMP couples to downstream effectors through 

Epac has been implicated in β-AR-induced LTP (Gelinas et al., 2008) and long-

term memory (Ma et al., 2009b). The bath application of the Epac signaling 

inhibitor brefeldin-A (BFA: 50 µM), returned NE-LTP to baseline levels (Fig. 

3.3C: mean fEPSPs were 98.4 ± 4% of baseline recording). I confirmed these 

results using a membrane permeant, highly specific inhibitor of Epac, ESI-09 

(Almahariq et al., 2013) (Fig. 3.3D: mean fEPSPs were  reduced to 102 ± 7% of 

baseline). As a preliminary step toward characterizing the downstream signaling 

of the cAMP-Epac pathway, I examined the role of MAPK by using PD 98059, a 

selective inhibitor of MAPK.  Pairing HFS with overlapping PD 98059 

application inhibited NE-LTP (Fig. 3.3E: mean fEPSPs were  reduced to 101.28 ± 

5.12% of baseline). An ANOVA comparing fEPSPs of the Epac inhibitor-treated 

slices with inhibitor-free controls revealed a significant difference between groups 
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(F(4,31) = 7.84 ; p < 0.01) (Fig. 3.3F). Subsequent Tukey-Kramer post hoc tests 

revealed that maintenance of NE-LTP was prevented by application of BFA, ESI-

09 and PD 98059 (p < 0.05) but not by PKI (p > 0.05). Thus, these data indicate 

that NE-mediated synaptic potentiation is dependent upon the Epac intracellular 

signaling pathway. 
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Figure 3.3: L-LTP induced by NE paired with 1 x 100 Hz stimulation 

requires Epac enzyme activity but not PKA.  
 

A: L- LTP induced by NE paired with 100 Hz stimulation (open diamonds). B: 

Application of PKI did not cause NE-induced L-LTP to decay (filled diamonds). 

C: brefeldin A (BFA) inhibits persistence of NE-generated L-LTP maintenance 

(open circles). D: ESI-09 (ESI) prevented the expression of NE-induced L-LTP 

(open squares). E: PD98 blocked NE-LTP (open triangles). F: Summary 

histogram of fEPSP slopes obtained 120 min after 1 x 100 Hz stimulation 

comparing effects of PKI, BFA, ESI and RAP on 100 Hz stimulation at S1 paired 

with NE application. All sample traces were taken 10 min after commencement of 

baseline recording and 120 min after 100 Hz stimulation. The addition of drugs 

did not alter basal synaptic transmission in a second independent pathway (S2) 
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that did not receive 100 Hz stimulation. Results in E represent means ± SEM, p < 

0.05. Calibration: 2 mV, 2 ms. 
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3.4 mTOR-dependent protein synthesis is upregulated by NE 

The mechanisms underlying the persistence of memory and LTP share a 

requirement for translation regulation (Stanton and Sarvey, 1984; Frey et al., 

1988; Nguyen and Kandel, 1996). Furthermore, upregulation of protein synthesis 

following neuromodulatory receptor activation has been demonstrated 

(Navakkode et al., 2007; Raymond et al., 2000; Huber et al., 2000). Mammalian 

target of rapamycin (mTOR) activation is increased by β-AR stimulation during 

translation-dependent LTP (Gelinas et al., 2007). I sought to determine if NE 

similarly upregulates mTOR to bolster LTP. Application of the mTOR inhibitor 

rapamycin (RAP, 1 µM) decreased the maintenance of  NE-dependent LTP (Fig. 

3.4B: mean fEPSPs were 114 ± 6% of baseline; all the following statistics are 

reported for 120 min post-HFS). NE-LTP also decayed (Fig. 3.4D: mean fEPSPs 

were 120 ± 6% of baseline) compared to drug-free control (Fig. 3.4A: mean 

fEPSPs were 155 ± 10% of baseline) when the translation repressor anisomycin 

(Aniso: 25 µM) was bath applied with NE + 100 Hz stimulation. The validity of 

various translation inhibitors has recently been called into question due to off-

target effects (Routtenberg and Rekart, 2005; Alberini, 2008). To address this 

issue, I conducted a second series of experiments with cycloheximide (CHX: 80 

µM), another protein synthesis inhibitor which arrests translation through 

alternative mechanisms. Consistent with anisomycin, CHX treatment resulted in 

decaying LTP (Fig. 3.4C: mean fEPSPs were 100 ± 3% of baseline). An ANOVA 

comparing fEPSPs of treatments revealed a significant difference between groups 

(F(3,23) = 10.43; p < 0.001) (Fig. 3.4E). Tukey-Kramer post hoc test revealed that 
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inhibiting translation with either anisomycin or CHX reduced the duration of NE-

LTP (p < 0.05). No significant differences were found between anisomycin and 

CHX treated groups (p > 0.05). 
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Figure 3.4: Protein synthesis through mTOR is required for NE-induced L-

LTP.  

 

A: L-LTP elicited by pairing 1x100 Hz stimulation with NE (open diamonds). B: 

rapamycin (RAP) caused decaying LTP when applied with NE + 1 x 100 Hz 

stimulation (open triangles). C: CHX (open squares) and Aniso (D, open circles)) 

inhibited the maintenance of L-LTP generated by NE paired with 1 x 100 Hz 

stimulation. E: Summary histogram of fEPSP slopes obtained 120 min after 1 x 

100 Hz stimulation comparing effects of RAP, Aniso and CHX on 100 Hz 

stimulation paired with NE application at S1. All sample traces were taken 10 min 

after commencement of baseline recording and 120 min after 100 Hz stimulation. 

The addition of drugs did not alter basal synaptic transmission in a second 

independent pathway (S2) that did not receive 100 Hz stimulation. Results in E 

represent means ± SEM, p < 0.05. Calibration: 2 mV, 2 ms. 
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3.5 Nuclear signaling: 

Transcription and NE-LTP 

Neuronal stimulation associated with enduring forms of memory and synaptic 

plasticity results in modified gene expression (Sossin, 1996; Abraham et al., 1993; 

Nguyen et al., 1994; Frey et al., 1996; Sossin, 1996). To determine if NE 

stimulation recruits transcriptional components of L-LTP, I applied two different 

inhibitors of transcription: actinomycin D (Act-D: 25 µM) and 5,6-

Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB: 50 µM). Bath application of 

Act-D (Fig. 3.5B: mean fEPSPs were 106 ± 7% of baseline; all statistics given for 

180 min post-HFS) or DRB (Fig. 3.5C: means fEPSPs were 118 ± 6% of 

baseline) repressed NE-LTP relative to inhibitor-free controls (Fig. 3.5A: means 

fEPSPs were 189 ± 16% of baseline). An ANOVA comparing fEPSPs of Act-D & 

DRB treated slices revealed a significant difference between groups (F(2,14) = 

20; p < 0.001) (Fig. 3.5D). Tukey-Kramer post hoc tests revealed that both Act-D 

and DRB prevented NE-LTP indicative of a transcription-dependent component 

(p < 0.05). No significant difference was observed between Act-D and DRB 

treated groups (p > 0.05). 
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Figure 3.5: L-LTP induced by NE paired with 1 x 100 Hz stimulation is 

transcription dependent.  

 

A: Pairing
 
1 x 100 Hz electrical stimulation with NE application elicited L-LTP 

lasting several (>3) hours (open diamonds). Application of Act-D (B, open 

triangles) and DRB (C, open circles) prevented the L-LTP maintenance  initiated 

by NE paired with 1 x 100 Hz electrical stimulation. D: Summary histogram of 

fEPSP slopes obtained 120 min after 1 x 100 Hz stimulation comparing effects of 

Act-D and DRB  on 100 Hz stimulation paired with NE application at S1. All 

sample traces were taken 10 min after commencement of baseline recording and 

180 min after 100 Hz stimulation. The addition of drugs did not alter basal 

synaptic transmission in a second independent pathway (S2) that did not receive 

100 Hz stimulation. Results in D represent means ± SEM, p < 0.05. Calibration: 2 

mV, 2 ms. 
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3.6 Epigenetic modification in NE- LTP 

Accumulating evidence suggests that epigenetic mechanisms are engaged during 

synaptic plasticity and learning and memory (Levenson et al., 2004b; Chwang et 

al., 2006b; Levenson et al., 2006b; Gupta et al., 2010b; Kramer et al., 2011; 

Monsey et al., 2011; Biergans et al., 2012). Recent evidence in non-neuronal 

tissue has indicated a putative interaction between noradrenergic receptor 

stimulation and epigenetic regulation (Ha et al., 2010; Haworth et al., 2012; Li et 

al., 2012; Chang et al., 2013). To probe a role for regulation of the epigenome in 

NE-mediated synaptic plasticity, I investigated several prominent epigenetic 

modifications including DNA methylation, histone acetylation and histone 

phosphorylation in response to NE + HFS. 

 

DNA methylation in NE-LTP 

To determine whether DNA methylation was recruited in NE-mediated synaptic 

plasticity, I used two specific inhibitors of DNA (cytosine-5) methyltransferases 

(DNMT): 5-Aza-2′ deoxycytidine (AZA: 30µM) and zebularine (ZEB: 25µM). 

Treatment of slices with AZA resulted in decremental LTP when co-applied with 

NE + HFS (Fig. 3.6B: mean fEPSPs were 104 ± 5% of baseline; all statistics 

given for 120 min post-HFS) compared to AZA-free control (Fig. 3.6A: mean 

fEPSPs were 141 ± 3% of baseline). Slices exposed to ZEB similarly blocked 

LTP expression (Fig. 3.6C: mean fEPSPs were 113 ± 6% of baseline). An 

ANOVA comparing fEPSPs of AZA and ZEB treated slices revealed a significant 

difference between groups (F(2,19) = 17;  p <  0.001) (Fig. 3.6D). Post hoc tests 
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revealed that both AZA and ZEB significantly reduced the enhancement of L-LTP 

by NE (p < 0.05). AZA and ZEB treated groups did not significantly differ (p > 

0.05). 
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Figure 3.6: L-LTP induced by NE pairing with 1 x 100 Hz stimulation 

requires DNA methylation.  
 

A: L-LTP elicited by pairing 1 x 100 Hz stimulation with NE (open diamonds). 

DNA  methylation inhibitors AZA (B, open circles)) and ZEB (C, open squares) 

blocked NE-induced potentiation. D: Summary histogram of fEPSP slopes 

obtained 120 min after 1 x 100 Hz stimulation comparing effects of AZA and 

ZEB on 100 Hz stimulation paired with NE application at S1. All sample traces 

were taken 10 min after commencement of baseline recording and 120 min after 

100 Hz stimulation. The addition of drugs did not alter basal synaptic 

transmission in a second independent pathway (S2) that did not receive 100 Hz 

stimulation. Results in D represent means ± SEM, p < 0.05. Calibration: 2 mV, 2 

ms. 
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3.7 Acetylation of histones is required for NE-LTP  

Recent data suggest intrinsic histone acetyl transferase (HAT) activity of CBP and 

its homolog (p300) boosts synaptic plasticity and long-term memory formation 

(Wood et al., 2005; Alarcon et al., 2004; Korzus et al., 2004; Wood et al., 2006a; 

Oliveira et al., 2007; Oliveira et al., 2011). In the present study, I investigated 

whether acetylation of histone protein is required for maintenance of LTP induced 

by NE, using a potent and specific CBP/p300 inhibitor, C646 (Bowers et al., 

2010). Pairing C646 (5 µM) application with NE + HFS reduced the magnitude of 

NE-LTP (Fig. 3.7B: mean fEPSPs were 104 ± 5% of baseline; all statistics given 

for 120 min post-HFS) compared to control slices (Fig. 3.7A: mean fEPSPs were 

145 ± 12% of baseline). Shifting C646 application 5 min after NE+HFS had no 

effect on LTP induced by NE (Fig. 3.7C: mean fEPSPs were 132 ± 4% of 

baseline). My western blot results complement my electrophysiological data  by 

showing that acetylation of histone (H3) at Lys-14 is enhanced upon NE+HFS 

compared to control (Fig. 3.7E). An ANOVA was conducted to compare fEPSPs 

of slices treated with C646, either paired with or shifted relative to NE 

application. A significant effect of treatment was observed (F(2,19) = 8; p < 0.01) 

(Fig. 3.7D). Post hoc analysis revealed only a significant decrease (p < 0.05) in 

NE-LTP when C646 application was paired with NE but not when shifted to  after 

NE application (p < 0.05). My result indicates that a transient activation of 

CBP/300 HAT enzymatic activity is sufficient for the induction of L-LTP by NE 

+ HFS. 
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E. 
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Figure 3.7: Histone acetylation and its time restricted role in NE-LTP. 

 

A: NE-induced L-LTP  maintenance (open diamonds). B: Histone acetyl 

transferase (HAT) inhibitor C646 prevents L-LTP when co-applied with  NE and 

1 x 100 Hz stimulation (open circles). C: Shifting C646 application did not block 

L-LTP induced by NE paired with 1 x 100 Hz stimulation (open suqares). D: 

Summary histogram of fEPSP slopes obtained 120 min after 1 x 100 Hz 

stimulation comparing effects of C646 during and after NE+100 Hz stimulation at 

S1. E: NE paired with 100 Hz increases H3 acetylation at lys-14 of polypeptide 

chain. All sample traces were taken 10 min after commencement of baseline 

recording and 120 min after 100 Hz stimulation. The addition of drugs did not 

alter basal synaptic transmission in a second independent pathway (S2) that did 

not receive 100 Hz stimulation. Results in D represent means ± SEM, p < 0.05. 

Calibration: 2 mV, 2 ms. 
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3.8 Inhibiting HDAC does not cause any further enhancement of  NE-LTP  

Previous research has shown that inhibition of HDACs by TSA causes a 

stabilization of E-LTP of hippocampal slices induced by  HFS which is dependent 

on transcription. In fact, consolidation of contextual fear memory is also increased 

by enhancing acetylation of histones while TSA is injected intrahippocampally 

(Vecsey et al., 2007). Since I have shown that NE-LTP also recruits transcription 

mechanisms, I wondered if another signaling cascade could be recruited upon 

adrenergic receptor activation by NE. I used occlusion of NE-LTP by TSA. 

 

The stabilization of NE-LTP (Fig. 3.8A: mean fEPSPs were 130.5 ± 3.6% of 

baseline; all statistics given for 120 min post-HFS) was not altered compared to 

either TSA alone (Fig. 3.8B: mean fEPSPs were 132.1 ± 4.1% of baseline) or 

when TSA was paired with NE application (Fig. 3.8C: mean fEPSPs were 135.1 ± 

6.7% of baseline). A one-way ANOVA revealed no significant difference 

between groups (Fig. 3.8D: F(2,16) = 0.26; p > 0.05). This occlusion experiment 

further strengthens the notion that NE-LTP recruits the same signaling pathway as 

histone acetylation, since the HDAC inhibitor TSA did not enhance NE-LTP any 

further. 
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Figure 3.8: Occlusion of NE-LTP with HDAC inhibitor TSA.  

 

The maintenance of NE-LTP (A, open diamonds) was not different from either 

TSA alone (B, open circles) or TSA paired with NE + 100 Hz (C, open squares). 

D: Summary histogram of fEPSP slopes obtained 120 min after 1 x 100 Hz 

stimulation comparing effects of NE alone, TSA alone, and TSA + NE at S1. All 

sample traces were taken 10 min after commencement of baseline recording and 

120 min after 100 Hz stimulation. The addition of drugs did not alter basal 

synaptic transmission in a second independent pathway (S2) that did not receive 

100 Hz stimulation. Results in D represent means ± SEM, p > 0.05. Calibration: 2 

mV, 2 ms. 
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3.9 Norepinephrine triggers histone phosphorylation through Aurora kinase 

To further probe what epigenetic mechanisms are recruited by NE, I assayed 

histone phosphorylation through a previously identified histone phosphorylation 

substrate, Aurora kinase. Importantly, Aurora kinase drives transcription of genes 

associated with synaptic modifications subserving memory genesis through 

phosphorylation of histones (Wei et al., 1999; Carmena and Earnshaw, 2003). The 

recent introduction of a novel, highly specific Aurora kinase B inhibitor 

AZD1152 (AZD) (Mori et al., 2011) allowed me to more directly determine the 

importance of Aurora kinase B relative to other isoforms of Aurora kinase (which 

include the Aurora A and C isoforms). Application of AZD (1 µM) overlapping 

with NE + HFS prevented the maintenance of NE-LTP (Fig. 3.9B:  mean fEPSPs 

were 121.5±5% of baseline; all statistics given for 120 min post-HFS) compared 

to AZD-free controls (Fig. 3.9A: mean fEPSPs were 155.5 ± 8% of baseline). 

Student's T-test revealed a significant difference between groups (Fig. 3.9C: p < 

0.01), suggesting that histone phosphorylation by Aurora kinase B is required for 

NE-induced synaptic plasticity. 
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Figure 3.9: Histone phosphorylation is required for NE-induced L-LTP.  

 

A: Pairing 1 x 100 Hz stimulation with NE application causes LTP to maintain for 

hours (open diamonds). B: Inhibition of histone phosphorylation by AZD1152 

(AZD) prevents the maintenance of  LTP initiated by NE paired with 1 x 100 Hz 

stimulation (open circles). C: Summary histogram of fEPSP slopes obtained 120 

min after 1 x 100 Hz stimulation comparing effect of AZD on 100 Hz stimulation 

paired with NE application at S1. All sample traces were taken 10 min after 

commencement of baseline recording and 120 min after 100 Hz stimulation. The 

addition of drugs did not alter basal synaptic transmission in a second independent 

pathway (S2) that did not receive 100 Hz stimulation. Results in C represent 

means ± SEM, p < 0.05. Calibration: 4 mV, 4 ms. 
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Chapter 4: Discussion 

4.1 Noradrenergic modulation of cognitive function 

The LC noradrenergic system projects extensively to many other cortical and 

subcortical structures of the brain. Importantly, it is a part of the brainstem 

reticular activating system, which controls the sleep-wake cycle and vigilance 

state of individuals (Roussel et al., 1967; Aston-Jones and Bloom, 1981; Aston-

Jones et al., 1991). In fact, inhibition of adrenergic receptors causes a deficit in 

attention and arousal responses (Stone and Quartermain, 1999). The extensive 

innervation of the forebrain by the LC noradrenergic system has been implicated 

in many cognitive functions including attention, sensory information processing, 

anxiety responses, reorganization of neuronal networks, memory formation and 

memory retrieval (Berridge and Waterhouse, 2003; Bouret and Sara, 2005). 

Interestingly, an early theory by Amaral et al. (1977) described the noradrenergic 

system as the "cognitive arm" of the central nervous system. Korsakoff's 

syndrome, characterized by memory impairment, was the first pathophysiological 

study to link LC-noradrenergic function with cognitive ability (Mair and 

McEntee, 1983). Careful observation of Korsakoff’s patients found a significant 

decrease in 3-methoxy-4-hydroxyphenylglycol (MHPG), the major metabolite of 

noradrenaline. The model of Korsakoff's syndrome has given rise to the 

hypothesis of noradrenergic function in mnemonic processing. Subsequently, 

several studies indicated a central noradrenergic role in memory processing 

(Brown and Silva, 2004; McGaugh, 2002; Harley, 2004). 
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4.1.1 Noradrenergic modulation of declarative memory: A role in consolidation 

and retrieval  

Kety (1972) initially proposed a role for noradrenaline in transmission of "novel 

or significant stimuli" for learning. Later, pharmacological studies indicated that 

the noradrenergic system in the brain influences the consolidation of memory 

events (for review, see McGaugh and Roozendaal, 2009). Interestingly, 

consolidation of memory has been found to be β-AR dependent. For example, 

intracerebal injection of a β-AR antagonist 2 hr after learning impaired memory in 

rats when tested 48 hr later. However, there was no effect on memory when the 

rats were injected immediately after the learning session. This proves that a β-AR-

dependent critical time period is required for consolidation of memories (Sara et 

al., 1999; Tronel et al., 2004). Additionally, the LC-noradrenergic neurons in the 

rat brain have been shown to fire during slow wave sleep after a period of learning 

(Eschenko and Sara, 2008). This study strengthens the notion of noradrenergic 

influence in memory consolidation.  

 

Noradrenaline is also involved in the retrieval of contextual and spatial memories. 

Increasing noradrenaline release either by pharmacological or electrical activation 

of LC enhances retrieval of memory in rats (Sara and Devauges, 1989; Sara and 

Devauges, 1988). This enhancement of memory retrieval is β-AR dependent 

(Devauges and Sara, 1991). In line with the evidence that the noradrenergic 

system plays a crucial role in memory retrieval, Murchison et al. (2004), by using 

the dbh
-/-  

mouse model, found that β-AR signaling is necessary for retrieval of 
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contextual information. In brief, mice lacking genes for dopamine β-hydroxylase, 

an enzyme of the noradrenaline biosynthesis pathway, showed a deficit in 

retention of contextual memory 48 hours after a training session. Interestingly, 

these mice were able to learn the task perfectly. The deficit in memory retention 

was restored by injection of a noradrenaline precursor between the training and 

test sessions. Additionally, injection of propranolol, a β-AR antagonist, before the 

training or test session impaired the retention of memory after 24 hr of training 

but not after 1 hr or 1 week. This further proves the selective role of the 

noradrenergic system in retrieval of recent but not remote memories. 

 

4.1.2  Noradrenergic influence in emotional memory 

 Adrenergic and noradrenergic hormones have been implicated in the storage of 

emotionally charged events in animals as well as humans (Gold et al., 1977; 

Chamberlain et al., 2006). Initial studies found that blocking biosynthesis of 

noradrenaline in mice results in impairment of retention of aversive memories 

(Fernandez-Tome et al., 1979; Rainbow et al., 1976; Randt et al., 1971). 

Meanwhile, Gallagher et al. (1977) reported the same results with an intra-

amygdaloid injection of propranolol. Additionally, they also observed that the 

impairment of memory was reversed upon noradrenaline administration. This 

suggests that β-ARs are involved in emotional memory retention, which was later 

supported by Ellis et al. (1983) and Liang et al. (1986). 

 



  
 

103 
 

Subsequently, literature provides evidence of an interaction between the LC-

amygdaloid system as well as modulation of emotional memory (Cahill and 

McGaugh, 1996). Studying healthy human volunteers, Cahill et al. (1994) 

investigated the effects of propranolol on formation of memories related to either 

an emotionally charged event or a neutral event. They reported that propranolol 

selectively impaired the emotional memory but not the neutral one. This further 

confirms the associativity of β-AR activation with emotional memory formation. 

Inspired by studies of noradrenergic influence on emotional memory, several 

groups have investigated and reported that propranolol applied at encoding or 

retrieval impaired recall for emotional events in humans (For reviews see van 

Stegeren, 2008; Chamberlain et al., 2006). 

 

4.2  Novel signaling in noradrenaline-induced long term potentiation 

Considering the importance of the noradrenergic system in learning and memory 

across species, I sought to characterize the signaling mechanisms that are 

involved in NE-induced synaptic plasticity in the mouse. My results indicate a 

novel signaling mechanism in which NE, upon binding to β-ARs, engages the 

Epac signaling pathway to recruit translation, transcription and epigenetic 

mechanisms for endurance of NE-induced synaptic plasticity (Fig.4.1). 
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Fig. 4.1: Schematic representation of signaling mechanisms in NE-LTP 

 

  

? 
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4.2.1 Adrenergic receptor  specificity and the role of NMDARs in NE-induced 

plasticity   

Accumulating evidence indicate that adrenergic receptors play a crucial role in 

transmission of cell surface signals to the intracellular molecules to induce 

synaptic plasticity (Izumi et al., 1992; Puumala et al., 1998; Pussinen and Sirvio, 

1998; Izumi and Zorumski, 1999; Ferry et al., 1999; Doze et al., 2011; Gazarini et 

al., 2013). The  

enhancement of NE-induced synaptic plasticity and consolidation or retention of 

emotionally charged events has mostly been attributed to the activation of β-ARs 

(Cahill et al., 1994; Gelinas et al., 2005; Sara et al., 1999; Przybyslawski et al., 

1999; McGaugh and Roozendaal, 2002). However, several studies also showed 

interesting results on the selectivity of adrenergic receptors for NE-induced 

plasticity and learning and memory. For example, Puumala et al. (1998) reported 

that stimulation of α1-ARs facilitates formation of new memories in rats. This is 

in line with studies by Sternberg et al. (1985) and Sternberg et al. (1986); both 

studies have shown a receptor specificity (α1-ARs) in NE-induced memory 

enhancements. More recently, Doze et al. (2011) observed that long term α1-AR 

activation causes enhancement of synaptic plasticity and improvement in spatial 

cognitive tasks. These interesting discrepencies encouraged me to find the 

adrenergic receptor specificity in NE-induced synaptic plasticity using my 

stimulus protocol. 
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I observed that NE-LTP is long-lasting (>3 hr minimum). The NE-LTP was 

significantly reduced in the presence of betaxolol (β1 antagonist) and ICI (β2 

antagonist) but was unaltered in the presence of prazosin (α1 antagonist) and 

yohimbine (α2 antagonist). This showed that NE-LTP is dependent on β- (both β1 

& β2) but not α-ARs. These discrepancies with previously published data on rats 

could be due to species variance, the stimulation protocol used to induce LTP, or 

the recording period after LTP induction. For example, I used a cut-off time of 2 

or 3 hr as an indicator of LTP maintenance and HFS (1 x 100 Hz) to induce LTP, 

which is in contrast with a total 60 min recording period and θ-burst stimulation 

used by previous studies as a method of LTP induction. Together, my results 

suggest a unique signaling pathway of synaptic plasticity through β-ARs. 

 

β-ARs in the CA1 region of hippocampus are located in such a strategic position 

on the cell membrane surface that upon activation, they can serve as a triggering 

event for  multimodal cellular effects including activation of other cell surface 

molecules, such as PSD-95 and NMDA receptors (Hu et al., 2000). It has been 

shown that LTP induction requires activation of NMDA receptors (Collingridge et 

al., 1983; Morris et al., 1990). Additionally, the strength of excitatory synapses 

can be potentiated upon a specific pattern of stimulation through the coupling of 

cell-surface receptors such as β-ARs to NMDARs (Moody et al., 2011). In my 

study, the enhancement of synaptic strength by NE application seems to be an 

NMDA receptor-dependent event, as application of APV (NMDAR antagonist) 

blocked the induction of LTP, demonstrating its requirement in LTP. One of the 
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mechanisms of β-AR mediated synaptic plasticity is the phosphorylation and 

incorporation of AMPA receptors from extra-synaptic to synaptic sites (Tenorio et 

al., 2010), mediated through a transient period of NMDA receptor activation, 

known as metaplasticity (Abraham, 2008; Abraham and Bear, 1996). My results 

suggest that further investigation of the interaction between β-ARs and NMDARs 

should yield a mechanistic explanation of NE-induced synaptic plasticity as well 

as learning and memory.   

 

4.2.2 Epac-dependent protein synthesis 

β-ARs are the transmembrane receptors, coupled to Gs-proteins, which upon 

activation, stimulate adenylyl cyclase to increase levels of the intracellular second 

messenger cAMP (Maguire et al., 1977; Minocherhomjee and Roufogalis, 1982). 

The role of cAMP in synaptic plasticity, learning and memory was reported in 

early studies by many groups (Libet et al., 1975; Brunelli et al., 1976). Using 

advanced genetic engineering and pharmacological techniques, it has been 

established that cAMP is an important molecule in the formation of memories 

(Randt et al., 1982; Bernabeu et al., 1997; Byers et al., 1981).  

 

Considerable evidence has indicated that PKA, the best characterized downstream 

target of β-AR stimulation or cAMP signaling, is a major signaling molecule for 

synaptic plasticity and memory formation (Abel et al., 1997; Duffy et al., 2001; 

Woo et al., 2003; Abel and Nguyen, 2008). However, not much is known about 

Epac, the second target of cAMP signaling, in synaptic plasticity and memory 
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formation. Ouyang et al. (2008) found that beside PKA, Epac was recruited for 

retrieval of memories. Studies have also indicated an important role for Epac in 

bidirectional synaptic plasticity as well as learning and memory (Gelinas et al., 

2008; Ma et al., 2009; Ostroveanu et al., 2010). I am the first to show that an NE-

mediated increase synaptic response is PKA-independent but Epac-dependent, as 

blocking Epac activity pharmacologically, either with BFA or the more specific 

Epac inhibitor (ESI), disrupted NE-LTP. Hence, β-ARs stabilize NE-LTP through 

the Epac signaling pathway.  

The long-term enhancement of synaptic strength as well as the formation of 

memory requires synthesis of new proteins (Costa-Mattioli et al., 2009; Klann et 

al., 2004; Richter and Sonenberg, 2005). Additionally, activation of β-ARs can 

induce translation dependent long-lasting enhancement of synaptic strength 

through the mTOR signaling pathways (Gelinas et al., 2007; Gelinas and Nguyen, 

2005; Tang et al., 2002). Here I found that inhibition of mTOR signaling (by 

rapamycin) and of translation (by anisomycin or CHX) results in blocking of NE-

LTP. My results also reveal that NE activates ERK to stabilize LTP, as inhibition 

of ERK (by PD 98,059) prevents NE-LTP. ERK is an important intracellular 

molecule which has been implicated in translational control of synaptic plasticity 

and memory (Sweatt et al., 2004; Thomas and Huganir, 2004; Banko et al., 2004). 

Further studies will be necessary to find a causal link between ERK-mTOR 

signaling  and translation in synaptic plasticity. My results indicate a novel β-AR 

mediated signaling which activates Epac to recruit ERK- and mTOR-dependent 

translation for the persistence of  NE-LTP. The involvement of Epac in NE-LTP 
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has physiological and clinical relevance. Many neurodegenerative diseases are 

characterized by altered levels of Epac expression (McPhee et al., 2005; Maillet et 

al., 2003). My results establish a foundation where Epac may be a crucial 

molecule for long-lasting enhancement of synaptic plasticity. 

 

4.2.3 Transcription and epigenetic mechanisms in NE-induced synaptic 

plasticity 

Hippocampal synapses are capable of maintaining long-lasting potentiation due to 

the presence of polyribosomes and protein synthetic machineries in the dendritic 

shafts as well as spines (Steward, 1997; Steward and Schuman, 2001; Eberwine et 

al., 2001; Huang and Kandel, 2005). However, gene expression at the 

transcriptional level has also been implicated in long term synaptic plasticity and 

memory formation (Sossin, 1996; Nguyen et al., 1994). My data suggest that a 

somatic or transcriptional component is included in NE-LTP as inhibition of 

transcription (by Act-D or DRB) decreased the magnitude and duration of NE-

LTP. My results extend previous work by showing that different signaling (i.e., 

Epac) may recruit transcription in addition to local translation to form a stable 

memory trace. To this end, my results shed light on communication between the 

synapse and nucleus upon cell membrane receptor (i.e., β-AR) activation as such 

that the two separate pathways (a proximal, synapse-based translation and a distal, 

soma-based transcription) can operate simultaneously to generate plasticity 

proteins or mRNAs for the endurance of synaptic strength. Further research will 

be necessary to define which specific genes are transcribed in NE-LTP. 
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The requirement of somatic transcription suggests that NE may interact with 

epigenetic mechanisms to boost LTP. The epigenetic mechanisms and NE-

mediated transcription share the signaling pathway upon cell membrane receptor 

activation. For example, CBP has intrinsic HAT activity and inhibition of HDAC 

increases the expression of CRE reporter genes by cAMP (McManus and 

Hendzel, 2001; Fass et al., 2003). Thus, epigenetic modification (i.e., histone 

acetylation) could significantly alter NE-cAMP mediated transcription in synaptic 

plasticity. NE-induced epigenetic modification is reported in non-neuronal tissues 

(Ho et al., 2007; Price et al., 2009). However, few studies characterized the 

influence of neuromodulators on epigenetic mechanisms in hippocampal synaptic 

plasticity (Crosio et al., 2003). With recent advancements in the understanding of 

epigenetic mechanisms in synaptic plasticity and learning and memory (for 

review, see Roth et al., 2010), I explored this new avenue of NE-mediated 

epigenetic mechanisms in hippocampal synaptic plasticity. Many extracellular 

signaling paths integrate at the nuclear level by phosphorylating CREB and hence 

play an essential role in hippocampal plasticity and the memorial process in a 

broad spectrum of species (Frank and Greenberg, 1994; Yin et al., 1994; Lonze 

and Ginty, 2002). Phosphorylated CREB then recruits CBP/P300 (with HAT 

activity) for transcription of genes. In contrast to histone acetylation, DNA 

methylation works in a different way to alter transcription of genes. Generally, 

methylation of genes by DNMTs represses transcription and increases synaptic 

plasticity, learning and memory. On the other hand, acetylation of genes by CBP-

HATs enhances transcription by removing transcriptional repressors and thus 
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enhances synaptic plasticity and memory (Nelson and Monteggia, 2011). These 

observations suggest that separate sets of genes are responsive to DNA 

methylation and acetylation. 

 

My results reveal a unique mechanism by which NE can alter nucleosome 

structure by methylation of DNA and initiation of post-translational modifications 

(i.e., acetylation and phosphorylation) of core histone proteins. I found 

significantly reduced NE-LTP in the presence of inhibitors of DNA methylation 

(AZA and ZEB). This led me to hypothesize that NE activates DNMTs to 

methylate memory suppressor genes to transcriptionally silence them. The 

presence of AZA or ZAB blocks this effect of NE and transcriptionally activates 

the genes. Since I predicted that these genes are memory suppressor genes, 

transcription of  these genes decreases synaptic strength and memory. Further 

studies will be needed to characterize the genes and to determine the expression 

pattern of DNMTs in response to NE+HFS.  These data also suggest that 

neuromodulators such as NE can alter synaptic strength through two temporally 

congruous but mechanistically different mechanisms: one by upregulation of local 

protein synthesis at the synaptic site, and the other by modulation of mRNA 

through epigenetic mechanisms such as DNA methylation, histone acetylation and 

phosphorylation. My results have shown that blockade of HDAC activity by TSA 

did not enhance NE-LTP. This further strengthens the notion that NE engages 

histone acetylation for endurance of NE-LTP. I also found that shifting CBP/P300 

HAT inhibitor (C646) application to shortly after NE+HFS did not block NE-
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LTP. This indicates that modification of the histone protein is temporally 

restricted, which is in line with evidence that transient histone acetylation is 

recruited upon consolidation of fear memories (Federman et al., 2009). Here, I 

have provided an initial characterization of a novel β-AR mediated epigenetic 

response which bolsters LTP in hippocampal slices. My results identified DNA 

methylation, histone acetylation and histone phosphorylation as epigenetic 

regulators triggered when NE is paired with HFS. Though I used HFS to induce 

LTP, my results may provide a cellular mechanism in memory consolidation 

during different brain activities. Memory enhancer or repressor genes (i.e., bdnf 

and pp1, respectively) are modified by epigenetic mechanisms in memory 

formation (Bredy et al., 2007; Martinowitch et al., 2003). Thus, it is of great 

interest to discover which genes are transcribed through epigenetic mechanisms in 

NE-LTP. A model is shown to describe the suggested mode of epigenetic 

modification in NE-LTP (fig. 4.2).  
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Fig. 4.2:  Suggested model of epigenetic modification in NE-LTP  
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4.2.4 Therapeutic implication of noradrenaline signaling mechanisms 

Synaptic plasticity is impaired in many neurodegenerative diseases which lead to 

cognitive dysfunction. Cell membrane receptors can initiate epigenetic 

modifications through intracellular signaling (i.e., ERK) to potentiate synaptic 

responses as well as to maintain proper cognitive abilities (Day and Sweatt, 

2011). NE, a vital neurotransmitter, influences brain functions including attention, 

network reorganization, learning and memory. At the cellular level, NE acts on β-

ARs to modulate synaptic plasticity as well as cognitive functions. My research 

aimed to determine how β-ARs engage translation and epigenetic mechanisms to  

modulate synaptic plasticity. To this end, my results will shed light on a new 

avenue of neuroscience by exploring the role of NE in epigenetic regulation of 

cognitive abilities. Altered noradrenergic neurotransmission has been implicated 

in many cognitive disorders as well as neurodegenerative diseases such as 

Alzheimer's disease, PTSD, ADHD, and depression (Berridge and Waterhouse, 

2003). For example, NE concentration in the CSF is significantly higher than 

normal in PTSD patients (Geracioti, Jr. et al., 2001), and the β-AR blocker 

propranolol is used to reduce the probability of developing PTSD (Henry et al., 

2007). Furthermore, the age-related dysfunction of the central noradrenergic 

function is implicated in memory loss (Leslie et al., 1985). On a different note, 

NE also acts as a neuroprotective agent by inducing neurogenesis (Jhaveri et al., 

2010) and by modulating inflammatory gene expression  in the brain (Feinstein et 

al., 2002). 
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A growing number of studies has revealed that epigenetic mechanisms are 

disrupted in memory-related cognitive impairments (Kosik et al., 2012; Day and 

Sweatt, 2012; Zovkic and Sweatt, 2013). Recent advancements in epigenetic 

research have made tremendous progress to the level that HDAC inhibitors are 

being used in clinical trials. The current century is the era, full of hopes and 

promises in both technologies and medical research. Developments in 

neuroscience have grown far beyond our modest expectations of the past. Modern 

psychopharmacology encompasses the knowledge of neuroscience, 

pharmacology, psychology and eventually, culminating into rational drug design. 

Besides other mainstream drugs, now we have access to drugs which are meant 

for enhancing cognitive function. 

Overall, with previous data linking β-AR stimulation to translational upregulation, 

my results expand the knowledge of the noradrenergic signaling cascade and also 

identify key epigenetic modulators, such as CBP, that could be therapeutic targets 

in the treatment of neurological disorders related to memory dysfunctions. 
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4.3 Future directions 

My results have opened up exploration of the role of epigenetic mechanisms 

(specifically, acetylation of histones by CBP) in NE-LTP. As histone acetylation 

and CREB-CBP activation are downstream to the ERK signaling pathway, which 

is also activated upon β-AR activation, CBP might then be an important target 

molecule in NE-LTP. The coupling of NE-LTP to epigenetic regulation of gene 

expression can be understood properly using both pharmacological and genetic 

approaches. 

 

Currently, I am collaborating with Dr. Nahum Sonenberg from McGill University 

to characterize the acetylation pattern of H3-Lys-14 in response to different 

pharmacological treatments targeting signaling molecules in NE-LTP. For 

example, I have demonstrated that NE, preferentially through β-ARs, engages 

CBP histone acetylation and DNA methylation to stabilize LTP. Thus, treatment 

with propranolol or C646 should reduce the proportion of acetylated histones 

(H3). Considering the complicated nature of interactions between epigenetic 

modifications, a pharmacological intervention would not be enough to rule out a 

specific epigenetic modification such as histone acetylation in NE-LTP. Thus, a 

genetic approach where CBP-HAT activity is selectively disrupted should be used 

to determine if CBP-HAT is a critical component of NE-LTP. 

 

To this end, CBPδ1 transgenic mice would be helpful to start NE-LTP 

experiments. These mice express a transgene for CBP lacking the HAT domain 
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and do not possess any developmental disorder (Wood et al., 2005). These 

features make it a unique model to test NE-LTP. My preliminary 

electrophysiology data in wild type mice indicate that CBP/P300-HAT activity is 

required for NE-LTP, which is again confirmed by my Western blot result that 

NE+HFS significantly enhances the proportion of acetylated histone compared to 

control. Thus, the study of NE-LTP in CBPδ1 mice would shed light on the 

requirement of CBP-HAT activity. The relative contribution of P300-HAT 

activity should also be considered if we find no significant difference in NE-LTP. 

For example, the fEPSPs might be the same in wild type and CBPδ1 mice after 2 

hr of NE+HFS, which would indicate the masking effect of CBP-HAT by other 

HATs in NE-LTP. P300-HAT is another homologue of CBP-HAT, and P300δ1 or 

P300 conditional knockout mice (Olivera et al., 2007) have similar phenotypic 

characteristics to CBPδ1. Thus, we also need to compare NE-LTP in those mice. 

These experiments will identify specific signaling molecules as epigenetic 

regulators of NE-LTP. 
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