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Abstract

This thesis combines linear and nonlinear techniques to analyze harmonics in a
three phase frame of reference in unbalanced power systems. The linear and nonlinear
portions of the circuit are separated by diakoptic methods at the busses connected to
nonlinear loads. The linear portions are solved by applying frequency domain techniques
and the nonlinear portions are solved by applying time domain techniques.

The linear portions are solved using linear algebraic hethods. A Y Bus loadflow
is used to solve for the fundamental current and voltage throughout the network and a Z
Bus matrix is used to solve for the harmonic currents and voltages. Sparsity techniques
are applied to speed the solution and Zollenkopf's bifactorization is utilized to create the
Z Bus matrix one column at a time. Mutual coupling is included in the models for key
system components such as transformers, motors, generators, and cables. The nonlinear
loads are modelled as current sources with current injected into the linear system at each
harmonic frequency. The voltage solutions at each harmoric frequency are superposea
to arrive at time domain voltage waveforms at the diakoptic busses. These are applied
to solve the nonlinear portions of the network

The nonlinear portions of the network consist primarily of solid state power
devices and the magnetizing reactance in transformers, motors, and generators. These are
solved in the time domain by the recu:‘_rsive solution of differential equations, and the
resulting current waveforms are converted to ths frequency domain by Fourier analysis.

The research has led to the extension of transformef and motor models, the
development of a frequency measurement technique, and the synthesis of a new computer

algorithm to solve harmonics in a multiphase uvnbalanced power system.
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Chapter 1
Introduction

1.1 Thesis Cbjectives And Goals

The primary goal of the work in this thesis is to provide a method for calculating
harmonics in an unbalanced multiphase power network. A new computer algorithm is
developed which solves for multiphase harmonics. This algorithm combines a three phasé
loadflow, the inversion of a three phase admittance matrix, sparsity techzigjues, and state
space methods. Multiphase analysis is used because the unbalanced current harmonics
flowing in equipment and systems can be determined. Of concern are the residual
harmonics' due to unbalance as these cause interference on communications ‘circuits.
Also of concern is the heating of the generator rotors due to both balanced and
unbalanced harmonic currents.

The method of diakoptics? [12] is used to tear the network into linear and
nonlinear portions, which then permits solving each portion with appropriate methods.
The diakoptic equations are modified and extended to describe the nonlinear portion of
the network in the time domain énd to describe the linear portion of the ietwork in the
frequency domain. Many power sySiem components can be practically treated as linear
impedances, thus the linear portion of the network is by far the largest portion. This
linear portion is solved by applying linear algebraic techniques in the frequency domain.

The Zollonkopf bifactorization method [11] is used to invert the nodal admittance matrix.

1 Residual harmonics are defined as those harmonics which can be measured by
placing a window style zero sequence current transformer around all three
phases of a feeder, or alternatively, as those harmonic which flow in system
neutrals. ’

2

"Diakoptics" from the Greek "dia" meaning "through" and "koptic" meaning "to
tear”, was the term invented by Gabriel Kron for his method {34] of
subdividing large networks. Harmonic terminology used in this thesis can be
found in the paper by Emanuel, Orr, and Cyganski [17].

1



This method is extended and modified to minimize the required computational effort.

The components of the .power system which are treated as nonlinear are few in
number and consist of small sub-systems in the network. These sub-systems are solved
by applying differential equation solution techniques in the time domain. Examples of
the nonlinear sub-systems are harmonic loads such as DC rectifiers, and nonlinear
impedances such as transformer magnetizing branches.

New work is done to create models in the three phase frame of reference for
power system components. Linear models are developed for transformers, cables,
induction motors and generators. These models are required in order to build the
admittance matrices needed to implement a three phase solution. Laboratory work to
validate the models for transformers and motors confirms that transformers and motors
can be treated as linear devices with small error. As the regulatory standards are only
concerned with the first 80 harmonics in a power system, the system models need to be
appropriate for frequencies in the 50 to 5000 Hertz range. This range permits the
application of the models to both North American and European power system studies.

Nonlinear models are developed for the transformer magnetizing branches and for
a DC six pulse converter. The six pulse converter is only one of several kinds of
nonlinear loads, but it provides a good example of how harmonics are created when
transformers are supplyirig nonlinear loads. Laboratory measurements confirm that the
magnetizing branches of transformers contribute harmonic currents, particularly when the
transformer loads draw a DC current component. A secondary objective of the thesis is
to determine generator rotor heating due to harmonic loads. A model is developed which
estimates the amount of harmonic current flowing in the amortisseur bars, and this current
is used to estimate rotor temperature rise. During model validation some sigrials are
measured asynchrmiously. When asynchronous sampling occurs, the period assumed by
the analyzer does not match the period of the measured signal. This "smears" the results
due to leakage between the spectral bins. A te‘rtiary objective is to establish an

interpolation method to recover correct harmonic data from smeared data.



An example of a power network is shown in Figure 1.1.1. - Harmonics are
produced by the nonlinear loads and absorbed by the generators. Harmonic currents flow

through transformers and cables, and if the system is i_mbalanced, residual harmonics flow

through the neutral wires. This thesis brings together a number of models and

mathematical methods to formulate solutions for such power systems.

Generators Nonlinear

Loads
Cables Transformers :

-V y \QQQ~ ‘
Vb WA b 199, — *
: W IE

[>i A

‘ Residual
¥ Harmonics

i

QEY

Figure 1.1.1 - An Example Of A Small Power Network



1.2 Overview Of The Algorithm Developed In This Thesis

As shown in figure 1.2.1, a power systern network can be torn into linear and
nonlinear portions connected together at specified busses, referred to hereafter as
"diakoptic" busses. The linear and nonlinear portions of the circuit are solved separately
and connected with diakoptic techniques. The linear part of the network is described b);
nodal equations in the frequency domain while the nonlinear part is described by mesh

differential equations in the time domain.

Linear Network Tear at
Diakeptic
Bus
N Nonlinear
Network
= )
| VFD
A

L™ ¢

Frequency Domain Analysis \ Time Domain
; ' Analysis

Figure 1.2.1 - Network Tom Into Linear and Nonlinear Portions



The flow chart in figure 1.2.2 gives the basic algorithm . In the linear portion
of the network, a fundamental frequency multiphase loadflow is used to establish initial
fundamental voltage and current conditions, then a multiphase nodal admittance (Y Bus)
matrix is reformulated for each harmonic order. The inverse of the nodal admittance
matrix (hereafter referred to as a Z Bus) is obtained for each harmonic order. The idea
is similar to that developed to invert a single phase network [58], but with important
conceptual differences. The Z Bus is formed one column at a time by Zollonkopf's

" bifactorization technique and only for those busses where harmonic current is injected by
nonlinear loads or magnetizing branches. In the linear network the nonsinusoidal loads
and nonlinear impedances are represented by harmonic current sources. The currenis arei
injected into the diakoptic busses for each harmonic to calculate the harmonic voltages.
These steps are referred to in the figure as the "Nodal Network Frequency Domain
Solution". |

After calculating all harmonic orders these voltages are stored and recombined to
establish the distorted time domain waveforms. This is the "Inverse Fourier Transform"
step in the figure. ;

In the nonlinear portion of the network, the solid-state devices and nonlinear
impedances are defined by differential equations. The linear network 1is represented by
distorted voltage waveforms and characteristic impedances connected to the diakoptic
busses. The distorted voltage waveform is applied to the nonlinear network differential

“equations to calculate the unbalanced current waveforms. Similarly‘ the DC load current
component and distorted voltage waveform is applied to the magnetizing branches of
converter transformers, utilizing an iterative solution of differential equations to solve for
the magnetizing current waveforms. This is referred to in the figure as the "Mesh
Network Time Domain Solution". |
| The current waveforms thus determihed are then subjected to Fourier analysis to
obtain the harmonic currents to be injected back into the linear portion of the network.
This allows the harmonics to be solved independently of one another. _

This new method was conceivéd by the author in his Ph. D. proposal and was

subsequently published in the IEEE Transactions on In'dustry‘ App’ﬁications [19].

5
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Figure 1.2.2 - Fiowchart For Harmonic Solution Algorithm



1.3 Background To Power System Harmonics

Harmonics sometimes create severe problems for an industrial plant's power
distribution system or the utility's power grid. Harmonics created by industrial
nonsinusoidal loads may be separated into two categories, balanced harmonics and
residual harmonics. Theb second category is due to unbalanced conditions in the power
network. Limits for residual harmonics are not defined in the IEEE Standard 519 "Guide
for Harmonic Control and Reactive Compensation of Static ‘Power Converters" [26],
which is the generally accepted standard in North America, but limits are defined in
Alberta utilities' harmonic regulations [2] [59] which are among the most stringent in the
world.

Problems arising from balanced harmonics are well documented by the Institute
of Electrical and Electronics Engineers (IEEE) Power System Harmonics Working Group,
[29] [30]. Two common results of system harmonics are the heating of rotors in motors
and generators, and the creation of resonance overvoltages [44]. The most common
industrial load which creates harmonics is the DC rectifier. Excellent case studies for
harmonics and associated pfoblems have been documented for these devices [49] [52]
[53] [55]. Lighting ballasts may generate excessive third harmonic currents [35] causing
neutral wiring to overheat, and harmonics created by the AC to DC converters in high
voltage DC transmission systems may cause system resonance problems [32].

Problems arising from residual harmonics usually involve noise on data and
communications circuits [57]. A common measure of such noise is the root sum square
of the products of harmonic current (I;,) and a telephone harmonic weighting factor (Ty,).

This is referred to in the standards as the "I*T Product", given by,

k=1

N
I*TzJE[Ih *Th]z (]ll)

The Alberta regulatory bodies have imposed more rigorous acceptance criteria on



unbalanced harmonics than they have on balanced harmonics because harmonics flowing
in the earth result in much greater noise being induced in communication circuits. They
require the residual I*T product to be less than 100 as opposed to the balanced I*T
product which is to be less than 1500 on systems with voltages smaller than 25 kV. The
utilities also require this level to be met with an assumed voltage unbalance equivalent
to a 2% negative sequence component. IEEE Standard 519 is silent upon the subject of
residual harmonic I*T limits, nor were limits considered for residuals by the working
committee [16] during the recent updating of the standard.

When a system is unbalanced, troublesome "triplen" harmonics (ie. harmonics with
orders that are odd integer multiples of three) and the unbalanced portions of other
harmonic orders invade the power system and travel in the neutral and earth paths in
addition to the power conducting paths.  As well, system voltage unbalance can affect
the firing angles in thyristor rectifiers. This may Cause the generation of D. C. bias
current which in turn cause displacement of the magnetizing flux of transformer cores
with attendant generation of even harmonics due to saturation occurring on half the
voltage cycle [69] [70]. These various problems, together with the stringent requirements
of the Alberta utilities have resulted in the need for analytical techniques which use a
three phase model that includes the earth and neutral conducting paths. As pointed out
by the author in a recent paper [14] harmonic problems are best solved at the design stage

of a project.



1.4 = Review Of Harmonic Solution Computer Algorithms

Harmonic analysis of power systems has been used for several years to design
harmonic filters and to pinpoint system problemis under balanced operating conditions,
A majority of the techniques in commercially available software utilize the balanced
system approach because of its simplicity, ease of implementation, and ability to solve
a considerable number of harmonic problems. While not an exhaustive list, the following
companies offer single phase harmonic analysis programs on a commercial basis:

a) Cooper Power Systems - "V Harm"

b) Fichtner - "DigSilent"

c) Micromatrix Research Ltd. - "SPS"

~d)  Operation Technology Inc. - "ETAP"
e) Power Technologies Inc. - "PSS/U"

AC/DC loadflow algorithms were developed by Hassan and Stanek [24] in 1981.
In 1982 Mahmoud and Shultz [36] formulated a single phase Z Bus at each harmonic
order anil solved for harmonic veltages by injecting known harmonic currents. That same
year, Xia and Heyvdt [62] [63] formulated a single phase Y Bus at each harmonic order
and solved for harmonic voltages using a Newton-Raphson loadilow and Jacobian. The
harmonic loads were calculated using the closed form solutions proposed by Yacamini
and de Oliveira [71] in 1980. Other single phase harmon:c loadflow algorithms have been
developed since by various authors [23]{48][64][65][73]. The Tarnby and John approach
[58] was to use a fundamental loadflow to establish initial conditions, then to reformulate
the Y Bus matrix for each harmonic order and create a Z Bus using Gauss ellmmatlon
methods. Their concept is adapted and extended to the three phase frame of reference in
this thesis.

In 1981 Piilegi, Chandra, and Emanuel [40] used symmetrical components to
formulate the sequence admittance matrix at each harmonic order, which they inverted and
injected with sequence currents to solve for unbalanced harmonic voltages. The converter

currents were calculated by a closed form method based on a quasi-square wave using the
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fundamental unbalanced voltages. This method accommodated voltage unbalance, but
only for networks wity balanced impedances on each phase. That same year Kitchin [33]
devised a state space methed to solve differential equationé describing the three phase
network. He tore the 1'retWork into linear and nonlinear systems, modelling the AC and
DC networks as linear systems and the converters as nonlinear systems. The converter
currents were used as state variables in the linear systems. A fundamental three phase
loadflow was used to establish initial conditions. Kitchin's concept of network tearing is
similar to the network tearing used in this thesis.

In 1983 Arrillaga, Bradley, Bodger and Amold [4] [5] [6] developed a method
which formulated an admittance matrix for each harmonic order, then reduced the network
to contain only the current injected busses. The voltages and currents were solved with
an iterative loadflow algorithm. The early program was not interactive with the converter,
but in 1989 Arrillaga and Callaghan [7] incorporated the converter. The same year Acha,
Arrillaga, Medina and Semlyn [1] developed a Y Bus "harmonic space" admittance matrix
which contained all harmonic orders and hence was very large. They modelled nonlinear
impedances, such as the magnetizing branches of rotating machines, as matrix linear off-
diagonal elements coupling the harmonic orders. The network is solved by a Newton
loadflow algorithm, but with the Jacobian only partially inverted. The solution is
initialized by a three phase flow. In 1991 Xu, Marti and Dommel [66] formulated a
multiphase admittance matrix for each harmonic order, and solved it using a Newton-
Raphson loadflow and Jacobian. They modelled the nonlinear loads as Norton equivalent
circuits and the motors and generators at harmonic frequencies as constant impedances,
hence the problem was linearized at the harmonic frequencies and a solution was obtained
with one iteration. They also presented a unique method of initializing the voltages to
maintain the stability of the Newton-Raphson methed. In 1994 Marinos, Periera and
Carneiro [37] used paralle]l processing to speed the harmonic loadflow solution of the

admittance matrix.
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1.5 Thesis Outline

Before a multiphase power network can be represented mathematically as an
admittance matrix, it is necessary to develop multiphase models for the more common
power system components. Linear three phase models are developed for cable, motors,
generators and transformers. Similarly, prior to establishing the differential equations
describing the nonlinear components of the network it is necessary to develop models for
them. Nonlinear models are developed for the transformer magnetizing branches and for
a six pulse converter. Refer to Chapter 2 which describes the modelling of power system
components in the three phase reference frame.

During rotor heating model validation, it is required to measure the voltage and
current harmonics of generators which are operating when not synchronized to the power
system. Due to the measurement techniques used some of the data is sampled
asynchronously. A method is developed in Chapter 3 for recovering accurate Fourier
coefficients from the measurement of a nonsinusoidal signal when the fundamental
frequency is not precisely known, and the sampling was performed asynchronously.

Various mathematical methods, which were combined to accomplish the harmonic
analysis of the system, are described in Chapter 4. Firstly, the rationale is presented for
using a three phase frame of reference as opposed to the symmetrical components
sequence frame of referencz. A rationale is also developed for using the Zollonkopf
bifactorization for the Gauss elimination technique. The method of creating Z Bus one
column at a time is developed. A technique whicﬁ ascertains the correct phase angle for
currents injected at the diakoptic busses is described. The three phase loadflow equations
are developed and demonstrated, and an example system is solved for 2% unbalanced
supply voltages. Finally, the diakoptic equations are developed and modified to solve the
nonlinear portions of the network in the time domain, and the linear portions of the

network in the frequency domain.

ot
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The various mathematical techniques are programmed as computer algorithms.
The matrix sparse storage scheme is integral to the bifactorization of the admittance
matrix. The factors are created in a semi-optimal order and recombined to create the
inverse of the admittance matrix one column at a time. The loadflow algorithm is
developed utilizing the sparse storage scheme, but with the admittance matrix modified
to omit the motors and generators. The six pulse converter is selected as a typical
nonlinear load, and is modelled from the differential equations describing the cperating
states of the semiconductors and the associated circuit impedances. The magnetizing
branches of transformers are modelied from the differsntial equations describing the flux
linkages in the core. For the flowcharts for these algorithms, refer to Chapter 5.
The conclusions and recommendations for fuarther research are presented in

Chapter 6.
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Chapter 2
Modelling Of Power System Components

2.0 Introduction To Chapter 2

When a power system with nonlinear loads operates under voltage unbalanced
conditions residual harmonics appear in the system neutrals. Utility regulations state that
the residual harmonics must be in compliance with the prescribed limits when the supply
voltage contains a 2% negative sequence unbalance. For an engineer to meet this
regulation requires the use of a design tool which can model all three phases and the
neutrals of power systems and their components. This chapter describes computer models
developed for the cables, motors, generators, transformers, and six pulse converters.
Models are presented which can be incorporated into a linear Y Bus matrix. A nonlinear
model is also developed for transformers supplying loads which draw a substantial direct

current component. The six pulse converter is described in the time domain with

differential equations.
21 Three Phase Transformer Linear Model Derivation

 The three phase transformer is well described by others [21] [22] [20] [6] [60] [69]
[70]. To establish a matrix topology which will correctly handle the frequency domain
phase shifts for a delta-wye transformer requires the development of a transformer model
which retains its winding terminals. It therefore requires four nodes for each
high voltage/low voltage winding pair associated with a particular core. The magﬁetizing
branches are separated from the linear admittance model and treated as injected harmonic
current sources. The harmonic currents are divided in half and injected equally into either
end of the leakage admittance branches [1]. This is better understood if the basic
transformer equations are developed in admittance "Pi" model form. figure 2.1.1 shows

a transformer ‘nodel with assumed directions of current, and defines the variables for the
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following derivation.
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Figure 2.1.1 - Transformer Nodal Impedance Model
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Assuming per unit (normalized) quantities, the circuit is described in matrix notation by:

=[z“ z”’] H (2.1.1)
[zm zﬁ Iz

Solving the determinant and inverting the impedance matrix places the equations in the

Vl
v,

form needed for the short circuit test on the transformer. This is given by,

Ill _1j®= TN @12)
Ll Al-=z, z;] |0
where A=2,2," zm2 (2.1.3)
"The short circuit admittance is defined as;
sc 2.14
Vl V2=0 zllz22-zm2 ( )
The leakage impedance is related to the branch impedances as follows:
¥4
2 =2 = _é’“'_f (2.1.5)
2, =2, 2, ' (2.1.6)



2p =2, + 2y, (2.1.7)

Substituting (2.1.6) and (2.1.7) into (2.1.4) results in an impedance definition for short

circuit admittance,

y. = im T2
* lez +zlzm "’ZQZ,,,

(2.1.8)

Neglecting the very small z;z, product and substituting for z,.,, yields;

r

l Zm_ ,_ Tteak ] (2.1.9)

ZpZpeak  2Zmleak

N

Yse

and finally the admittance,
yscz[_1_+_}__]={ylmk+%] (2.1.10)

can be expressed in the "Pi" format illustrated in figure 2.1.2.

Zleakage | Yleakage
Impedance "Pi” Model Admittance "Pi” Model

Figure 2.1.2 - Transformer 'Pi" Models For Impedance and Admittance

The pi admittance format is particularly suited to matrix nodal analysis, as it
permits the magnetizing branches to be associated with the busses on either side of the
transformer as opposed to an internal transformer connection as is the case for the

traditional "tee" model. Since the magnetizing branches are nonlinear, and linear
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algebraic matrix manipulations require the use of linear elements, the magnetizing
branches should be separated from the linear model during matrix operations. The
magnetizing branches are replaced by harmonic current sources which inject current into
the network at the points where the magnetizing branches are removed. This is a form
of diakoptic tearing of the network. The branch removal is shown in figure 2.1.3. The

leakage admittance, ¥, for brevity of notation will be referenced hereafter as y.

Yleakage Yleakage
Magnetizing Branches Shown Magnetizing Branches Removed

Figure 2.1,’3 - Magnetizing Branches Removed From Transformer Linear Model

The leakage admittance is readily obtained from equipment ratings by taking the
inverse of the transformer nameplate impedance. The nomenclature is illustrated in figure
2.1.4. The driving-point admittance on a matrix diagonal is the sum of all branch
admittances attached to a node, and the transfer admittances on the off diagonals are the

negative of the branch admittances connecting the node to another node [51].
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Figure 2.1.4 - One Coare of 153 Fﬁﬁase. Fransformer Showing Nede And Branch
Voltages

From this definition the primitive admittance is defined in terms of the leakage

admittances as ,

LY
Y prnt =[_y y] (2.1.11)

It is necessary to modify this primitive matrix to accommodate the fact that the
primary per unit voltage ¢ and the secondary per unit voltage § may differ from line

to neutral voltage. Incorporating the per unit voltages, the primitive admittance

becomes,

1 ) 1o _y; —-;16 .
Yprn =| [y y] * I (2.1.12)
o Ll Yllo by ¥
5] 8l | ap B

This primitive matrix may be thought of as representing the two terminals of a single
phase transformer, one on the primary and one on the secondary, with the voitages being
between the terminals and reference. These voltages are similar zo the branch voltages
across the primary and secondary windings of a two winding trans'f'ormer.“ To develop a
conhection matrix showing the relationship between the branch and nodal voltages,

consider the voltages shown in figure 2.1.4. By inspection, the voltage across the branch
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is related to the {/oltage at a node by

or in matrix form,

thus creating the connection matrix;

C=

By applying topological considerations [54], the nodal admittance,

.2“ RO

-1 0 ¢
-1

Yvope=C T Yorme ©

is formulated and expanded to,

Y, NOD.

|'~< R« & |

[« 2
™

- 2
aB af

Yy Y

o P B

AR

p? p?

S A

«p B

L)

R

-

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)



By recalling that the off-diagonal eiements of an admittance matrix are the

negative values of the branch admittances of a circuit, a network model for one core of

a transformer, shown in figure 2.1.5, is "reverse engineered" by inspection of the above

matrix.
5
af
A A ¥ X
A -y
| 3 e
pL LR Sl
[
Sliey =
a
C JvAvA N
5
aff

Figure 2.1.5 - Admittance Model of One Core of a 3 Phase Transformer

This model contains negative circuit elements with no physical parallel, but it has
the virtue that it can be connected in the same manner as any pair of physical transformer
windings to obtain wye-wye, delta-wye or delta-delta configurations. As an example,
figure 2.1.6 shows the delta-wye connection where the delta side voltage leads the wye
side veltage under balanced conditions. The model also permits the inclusion of single
phase transformers or open delta transformers, since the data is entered on a core by core
basis.

The advantages of the model are that the four terminals of the windings are
preserved, which allows the delta windings to be correctly represented, and that the phase
shift in voltage and current across a delta-wye transformer is correct. The limitatidn when
using the model is that both sides of transformer must be connected with a ‘shunt
admittance to reference to solve a network as the model matrix is otherwise singular (or
alternatively at least one nodal voltage on each side of the model must known). Despite
this limitation the model is useful for depicting three phase networks because it contains

no mutually coupled admittances. The equivalence to mutual coupling has been handled

by the interconnection of linear elements.
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Figure 2.1.6 - Linear Model of Delta-Wye 3 Phase Transformer
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2.2 Transformer Magnetizing Branch Nonlinear Model Derivation

Hysteresis Curve

AN AN

voltage // flux \\J/ ’///

magnetizing
current

q

Figure 2.2.1 - Transformer Flux Offset Due To DC Load Current

The linear element approach described in the previous section includes inter-phase
coupling in the transformer model and is sufficient for units supplying loads which are
free of harmonics; however, it neglects the magnetization branches which are nonlinear.
As shown later in this chapter these branches contribute harmonics when transformers are
connected to rectifiers. Two factors are of concern. The first is the significance of the
nonlinearity - that is, can it be ignored? If not, then the second factor is that of
modelling. Considering this second factor, a distinction has to be made between those
portions of the circuit which can be considered to behave linearly and those portions of
the circuit which need to account for second order saturation effects. The method of
diakoptics [12] [34] is used to tear the network into linear and nonlinear portions, with
the current and voltage interactions between the two portions represented by voltage
sources and current sources. In this thesis the networks are torn into linear and nonlinear
parts at the secondaries of those transformers connected directly to harmonic producing
loads. The magnetizing currents and the load currents are represehted in the linear portion

of the network by means of current sources. The current sources are developed from a
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Fourier transform of the time domain analysis of the nonlinear portions of the torn
network, with the intention that each harmonic frequency of interest is injected into the
linearly modeled network.

A nonlinear model may be needed for the magnetic branches of those transformers
supplying loads with a DC component as they may contribute significant harmonics under
certain conditions of circuit overvoltage. For other transformers the harmonic currents
contribuied by the magnetizing branches can be neglected. The reason for this is that the
magnetizing current for transformers supplying linear loads is usually less than 1% of the
transformer's rated load current. When a load has a DC component the direct current
creates an offset in the flux pattern which tends to drive the transformer into saturation
‘on one half of the cycle while allowing it to be non-saturated on the cther half of the
cycle. Under these conditions the harmonics produced by the magnetizing branches may
become significant. In addition, the DC component of flux created in one core divides
and links the other cores of a three phase transformer, thus a DC load on only one phase
of a three phase transformer will cause the other cores to also saturate. As a result, the
mutual coupling between phases, which could be neglected in the linear model, cannot
be ignored in the case for the transformer supplying loads with a DC current
component.

The magnetizing branch of the transformer is nonlinear and can be modelled by
injected current harmonics. Some authors use a polynomial curve fitting method to
predict the saturation curve from RMS measurements [20] [41]. Other authors describe
a curve modelling technique based on the open circuit test of a transformer [38]. The
magnetizing branch may aiso be described by a harmonic Norton equivalent [1] [46],
which presents an accurate moslel of the magnetization curve, provided that it includes
the core saturation effects due to the DC component of load eurrent. The behaviour when
the core is saturated due to a DC component in the !uzd current is to create even
harmonic magnetizing currents [69] [70]. A small DC offset in flux lihkage results in a
large increase in the peak of the magnetizing current. - An estimate can be made of the
DC component of flux linkage by examining the slepe of the saturation curve ’in the

vicinity of the peak current.
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To calculate the harmonics iri the magnetizing current requires a Fourier analysis

of the magnetizing current predicted by a model devetopad as follows: Firstly, the
saturation curve is obtained from the transformer open ¢irguit test by recording the
instantaneous magnetizing current and excitatior: voltage across one cycle. Secondly, the
AC voltage is integrated to obtain AC excitation flux linkage. Thirdly, this flux linkage
is plotted against the current to obtain the transformer magnetization curve. Next the DC
current component is reflected against the saturation curve at the peak value of
magnetizing current to obtain the DC flux linkage. To calculate the magnetizing current
curve resulting from a given DC load component, the AC and DC fluxes are added at
each instant in time and reflected against the saturation curve. This is shown in figure
2.2.1. In other words, the magnetization curve is given a DC bias based upon the DC
load current, the transformer turns ratio, and the slope of the magnetization curve where
the magnetizing current is at peak value. Subsequent projection of the integrated AC
voltage against the biased curve estimates a plot of the magnetization current present
when a transformer feeds a DC load. This work is simplified if one uses a digital
oscilloscope which has the capability to download real time data to a computer.

Two forcing functions, the AC voltage, v, and the DC flux, Ay (. created by the

DC load current define the magnetizing flux,

A=[vde+ap 2:2.1)

The saturation curve can be modeled as a hyperbolic curve based on Froelich's
equation, given by,
Ky by

= 222
k, +iy ( )

which uses magnetizing current j = to define flux linkage, where k;, k., are derived
g g Iy ; 1 2

constants. Equation (2.2.2) only defines the curve in the upper right-hand quadrant for
positive A and positive iy For negative A and iy, the curve must be transposed to the
lower left quadrant by using the negative of k; and k;. The hyperbolic approximation is

created by selecting two points from the measured data from the open circuit test, one
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near the knee and one where the flux linkage peaks. Differentiating,

da ki k,

— = (2.2.3)
dlM (k2 + iM)2
and recalling that across a coil the voltage,
d
pyGh_dr Tu (2.2.4)
dt di,, dt

we rearrange equation (2.2.4) and substitute (2.2.3) to obtain an expression for

differentiating current,

diy, v v(k, + iu)z

dt (_d_)_\_) k,k, (2.2.5)

di,,

For small time increments the step change in current is,

di
Ai., = —M.AL (2.2.6)
Mo dr
and the step change in flux linkage is,
Ax =% Ar-v-ar 2.2.7)
dt
The magnetizing current at any step k+1
IMke1) = Iy ¥ Aiy iy (2.2.8)
and the flux linkage at any step k+1
Agery = Ay + Al (2.2.9)

are solved recursively from the values obtained by the preceding step k.

The resulting curves are in the time domain and must be converted to the
frequency domain by a Fourief method to obtain the current harmonics which are used
to model the magnetizing branches of the trénsformer.

When considering the DC component of the load it is necessary to consider the
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inter-core DC coupling. Whereas the AC inter-core coupling is considered negligible the
DC inter-core coupling is quite strong. This is because DC flux in one core will complete
a magnetic loop in the iron core of the transtormer. Should a DC load be connected
between any two secondary lines, the DC flux will circulate in the two affected cores,
being positive in sign in one core and negative in sign in the other core. However, should
the DC load be connected between one line and neutral, the DC flux created in that core
will divide approximately equally between the other two cores. Thus a singie phase DC

load creates harmonics in the primary currents of all three phases of a three phase

transformer.

; : : """" ERREEE V = 277 volts rms In
S SR e o i : = .765 amps peak-peak
: : : I

X : ! : 3 : : : :
Vpo-pCl1d=1 .552 ' Vp--p(2)=40.00 V Period(2>=16.71ms
Figure 2.2.2 - Primary Sinusoidal Voltage & Normmal Excitation Curvent

Measurements taken on a three phase core type transformer give the waveform in

figure 2.2.2 for a three phase transformer with the secondary open circuited. With no
“load the excitation current is approximately symmetrical in its positive and negative lobes.
However, when a half-wave rectifier is supplied, as shown in figure 2.2.3, the DC flux
drives the transformer into saturation during one half of the cycle, while tending to let it

operate in a more linear region during the opposite half cycle.
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This behaviour is incaorporated into the model by reflecting the DC current through
the magnetization curve to obtain DC flux. It is, however, important to reflect it through
the slope that exists where the AC excitation cuirent would have peaked had no DC been
present. It was found by experimentation that the more the AC voltage drives the peak
of the excitation flux linkage into saturation, the less is the offset produced by the DC
flux component. It was also found that the DC offset calculated in this fashion applies

when operating in a more linear portion of the hysteresis curve.

[l .OV 10.0v 3 I¥v 4 1V —0.00S 5.00%/ 2 RUN
. . . . 4 N i . .

Vac = 277 volts rms
----- Vdc = 173 volts peak-gnd
: i Tac = 0.934 amps p-p
Vp-p C2)—39 38 \'4 _ Vp—p( 12=173.4 ¥V Vp-p(33=1.206 V.
Figure 2.2.3 - Primary Voltage and Current And Secondary Diode Voltage With Half
Wave Rectifier Load on Secondary

Since the DC load cannot be "transforzmed" its net effect is to appear as even
harmonics in the transformer primary excitation curfent. This will show up for single
phase loads sucli as the switch-mode power supplies-on computers, printers, photocopiers,
televisions, and fax machines, and it will als® appear on controlled rectifiers where the
_ﬁring‘angle controller permits the positive lobe duration of current to be of a different
duration than the negative lobe duration. This latter phenomenon will usually affect two
input line currents to the rectifier which creates a positive DC current component in one

line current and a negative DC component in the other. These DC components create DC
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flux in the rectifier transformers' secondaries which creates even harmonics on the primary
side. In figure 2.2.3, the load current is purposeiy made small to permit measurement of
the magnetizing current in the negative half cycle where the load current normally is
dominant. It is seen that very little distortion is present in the negative half cycle.

Figures 2.2.4 and 2.2.5 compare the excitation in a transformer with an open
circuited secondary and a transformer supplying a single phase load with a large DC
component in the load current. As can be seen in the figures, the excitation current
under open circuit conditions is small. This excitation current is typical for balanced
loads containing no DC component. It may be neglected for power system analysis.. The
excitétion current is somewhat larger when a DC component is present in the load. While
excitgtion current may usually be neglected, there are certain conditions where it may be
a significant factor. One of these is when the system is subjected to overvoltages, driving
the transformers into saturation.

To reduce the amount of computational effort, only transformers supplying loads
with a DC component should have the magnetizing branches modeled as harmonic current

sources. For other transformers the magnetizing branches may be neglected.
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Figure 2.2.5 - Single Phase Half Wave Rectifier on Phase A Causes Distorticn In
Primary Current of All Phases

The médel for the magnetizing current is shown in figure 2.2.6. The harmonic
branches are modelled by current sources which are derived from the spectrum analysis
of the magnetizing current waveform resulting from reflecting the AC flux linkage, offset
by a DC component, against the saturation curve. These injected currents are readily
incorporated into the nodal admittance network model. As is shown in the next section,

the magnitudes of these harmonics are small and may usually be neglected.

90099 ¢

Figure 2.2.6 - Transformer Magnetizing Branch Model
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2.3  Three Phase Transformer Model Verification

To validate the theoretical models, tests are performed on laboratory scale three
phase core-type transformers. The core consists of laminated iron plates with a primary
and a secondary winding on each of three limbs. The tests are performed cn Delta-Delta,
Delta-Wye, and Wye-Wye transformers. The tests consist of the following measurements:
a) Mutual admitiance between windings |

b) Core saturation with a load having a large DC component

2.3.1 Mutual Admitiance Measurements

b’ 1c’ > Primary
: v ] ]

Ia” L_ ib” Ie” Secondary

Figure 2.3.1 Three Phase Transformer Short Circuit Test

The theoretical models assume the mutual admittances between windings wound
on different cores can be neglected. To verify the error limits associated with this
assumption, a low voltage is applied to the primary winding of ore core with all other

windings short circuited, as depicted in figure 2.3.1. The short circuit admittance is

I,

v

Ysc =

. I_V_ (2.3.1)
N

where -I—V—- is the transformer secondary to primary turns ratio.
N
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The mutual admittances are:

’

. I
yab=_97
Vs
o Iy N°
Yoo = — " ——
* vy, N
Il
Yor = —5
Vy
” I’ N°”
yac=_£—.'—_.
'y N

Measurements are taken with readings in RMS volts and amps.

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

Table 2.3.1 - Wye-Wye 480/208 Volt 3 kVA Transformer Short Circuit Measurement

fN"/ N Va

Ia

Ib Ic

Ia

"

Ib

"

Ic

120/277 8.93

3.75

120 | .122

.281

.263

Table 2.3.2 - Delta-Delta 480/208 Volt 3 kVA Transformer Short Circuit Measurement

FJ"/ N Va

Ia

Ib Ic

Ia

Ib

i’ J

208/480 14.94

2.16

.050 .052

4.86

154

.144
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Table 2.3.3 - Delta-Wye 480/208 Volt 3 kVA Transformer Short Circuit Measurement

H’ 4 Al Al L " "

LI:I"/ N va |Ia Ib Ic Ia Ib e |

120/480 16.2 2.21 .043 .040 8.40 .188 169

The resulting admittances are shown in table 2.3.4. The mutual admittance ranges
between 2% and 4% of the short circuit admittance, justifying the decision to neglect

mutual admittances in the linear model of the transformer.

Table 2.3.4 - Transformer Short Circuit and Mutual Admittances (units in Siemens)

FI‘ranstmier Winding Ysc yab' yab" yac' yac" “
Wye-Wye 408 .013 .014 .014 1013 F
Delta-Delta | ;141 .0033 .0045 .0035 .0042
Delta-Wye .130 .0027 .0029 .0025 0026

2.3.2 Core Saturation With A Lpad Having A DC Compenent

To verify this model requires the following steps:

1) Determine a magnetization curve model from the open circuit data,
incorporating a resistor to model hysteresis in the curve;

2) Analyze the load current for its DC component and reflect it against the
magnetization curve in the vicinity of the peak current to obtain the DC
flux linkage; '

3) Integrate the AC voltage to obtain the AC component of flux linkage;

4) Offset the AC flux linkage by the DC flux linkages and reflect it against

the magnetization curve to obtain a corrected magnetization current;
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5) Add the load current reflected to the primary to the magnetization current

to derive the primary current.

6) Compare the derived primary current to the measured primary current.

The voltage in figure 2.2.2 of the previous section is integrated and plotted against
the current in the same figure to develop the saturation curve of figure 2.3.2. An

hyperbola is fitted to the mean of the hysteresis waveform to model the saturation curve.

fiux linkages
(weber turns)

Figure 2.3.2 - Froelich Hyperbola Fitted To Transformer Magnetizing Curve

This portion of the model construction requires a measurement of the transformer primary
current with the secondary open circuited. The load current is both calculated from the
circuit parameters and measured on the secondary side of the transformer. Both methods
result in a half-wave DC current with a peak value of 0.86 amps. A load of 200 Ohms
is chosen to obtain a small load current so it doesn't obscure the magnetizing current
results. . The test circuit is shown in ﬁgure 2.3.3.

The modelled magnetizing current when a DC load is pr‘esent is shown in figure
2.3.4. The measured magnetizing current is overlaid onto the modelled current in figure

2.3.5. By inspection the two waveforms are similar in magnitude and shape, however a
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Fourier analysis of both the measured and the modelled waveform indicates the model

overestimates harmonics below the fifth and underestimates the higher harmonics.

Secondary of 480/208 V Wye Wye
120 V

7|
-+
200 Ohm
Va

Figure 2.3.3 - Test Circuit For Validating Transformer Nonlinear Model

Table 2.3.5 indicates that the magnitudes of the magnetizing harmonics are small.
The fundamental is only 0.2 amps and the other harmonics are smaller. When compared
to the rated load current of 3.6 amps, this is only 5%. This percentage would be even
lower for larger power transformers, which draw a magnetizing current which is relatively
smaller as a percentage of full load. The magnetizing harmonic currents are negligible

in their overall effect. In fact the nonlinearity of the magnetizing branch can be ignored

for most system studies.
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Table 2.3.5 - Comparison of Modelled te Measured Harmonic Current

Harmonic - Measured T Modelied
Order Harmonic Current J Harmonic Curnrent

1 019791 0.22643

2 0.05924 0.07550

IL ' 3 0.06690 0.08019
4 0.02793 0.03098

5 0.03745 0.02405

6 0.01546 0.01355

7 0.01460 0.00934

8 0.00831 : 0.00432

. BB

9 0.00565 0.00292

ﬁ, 10 0.00487 0.00200
lL 11 0.00439 0.00099
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Modelled &-»._,,_.,.

Magnetizing
Cwrent With
DC Load

/.'.IZ T

Figure 2.3.4 - Modelled Magnetizing Current With DC Load

7 N\

N

Figure 2.3.5 - Modelled and Measured Magnetizing Current
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24 Power Transformer Frequency Response

It is of interest to determine how well harmonics generated by nonsinusoidal loads
flow through transformers and into the power system. The transformer model developed
in Section 2.1 is based solely on ieakage reactance and passes harmonics without
attenuation. To determine if this is a sufficiently accurate model it is necessary to
examine a more detailed model and to measure the frequency response of a power
transformer and then analyze the results. The flux leakage model has a unity current gain
(the ratio of primary per unit current to secondary per unit current). Should the more
detailed model and the measurements show a similar gain, then the use of the flux
leakage model is justified. The range from 50 to 5000 Hz is specified in the IEEE
standards [25] [26] [27] [28], and in the regulations invoked by power utilities [2] [59].

Figure 2.4.1 shows a more getailed single phase transformer model supplying a
resistive load. The frequency Vresporise of such a model can be defined by the ratio of

" load current divided by primary current.

sL ’ No sLo

prim
V ol 1
g“nw =& Mg B g R

Figure 2.4.1 - Transformer Frequency Respoxnse Model
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Defining the parallel combination of L, and C as the magnetizing branch impedance .
results in,

L
shlise
z = SCI. - 1 (2.4.1)
sta*5¢ “tn*5e

Defining the series combination of L, and R reflected to the primary side by the turns
ratio a as the load impedance results in,

Z,=a*sL, +a*R . (242)

(where s is the Laplace operator). Reflecting the secondary current to the primary side
defines a gain ratio,

I ' zZ
see m (2.4.3)
Lvim  Zm*Z;
where I, ' is the secondary current reflected to the primary side.
Substituting and simplifying results in equation (2.4.4):
I/ sL
= = 5 ) = > 5 (2.4.4)
Lim s°a’L,L,C+s*a®*RL,C +s[a L2+Lm] +a“R
The frequency response is,
B _ : Jo L, - ™ (2.4.5)
Lun (o)a®L,L,C+(wla’RL,C *cho[azL2 + Lm] +a’R
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The transformer parameters shown in Table 2.4.1 were obtained from laboratory

measurements on a Wye-Wye transformer with a 277/120 turns ratio.

Table 2.4.1 - Measured Parameters For 3 kVA Wye-Wye Transformer

R (load) L C

m prim-gnd ‘ LZ

-

79.34 Ohm 3.4 Henry 2 x 10" Farads i 0.00169 Henry

The frequency response model was validated in the laboratory by supp7ing one
leg of a 3 kVA transformer with varying frequency voltage from a Radio Trequency
Laboratory Model 250 RC Oscillator. A load of 79.34 Ohms was placed on the
secondary = This simulated the lightly loaded condition, which exaggerated the effect of
magnetizing current on the current gain. Measurements were taken as the frequency was
varied from 60 Hz to 3000‘ Hz (the range of the Model 250 RC Oscillator) and
documented in Table 2.4.2. The primary voltage was maintained at 100 Volts.

The modelled and measured frequency responses are shown in figure 2.4.2. The
Model shows near unity gain (0 dB) is not achieved until the frequency reaches
approximately 300 rad/sec (48 Hz). Unity gain is, of course, never reached due to the
current drawn by the magnetizing branch. The measured gaiﬁ approaches unity (0 dB)
and the gain curve lies within 0.5 dB of the modelled results once the frequency exceeds
1000 Hz. The modeled gain is flat up to 100,000 rad/sec (16,000 Hz).

The conclusion from this is that a power transformer passes current harmonics
with negligible attenuation. It is therefore reasonable to neglect winding capacitance and
the magnetizing branch admittance when developing the linear transformer model

provided the frequency is restricted to a range of 50 to 5000 Hz.
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Table 2.4.2 - Frequency Respense Data Obtained From Experimental Measurement of a

3 kVA Transformer (a = 480 / 208 )

)
=)
ot
o=
m Ual O v ol < o (]
o | O ot o o~ v < <
S J . :
|5 |+ |7 (S|S|F]|°
(=]
(o]
m o~ — [xa O [0} (o) o0}
4 {n | o <+ | | & a | s
1l (28] o~ ) o~ o o o
ol e oo e e )a
b . .
[+2] [-2] [e)} < Al \O
w (> ] o (@)} on [ s}
] < ~ <t o ) on o
vl e v fn fn |0
o 70} <t o O -
o M < <r o n < o
-t 00 ~ 0 < ) A ™
N la [ Q|8 o e a
o o
o o (o] o
m S la |3 |e |2 |& 8
— N < (o} — prd
rlrlrlrlllrI[[“LL

39



25 Three Phase Vlnduction Motor Model Dernivation

The three phase admittance model for an induction motor developed in this section
is based upon a symmetrical components approach as historically the sequence parameters

are readily available for induction motors. The following assumptions are made:

a) The stator is a delta or an ungrounded wye configuration
b) Each phase has a symmetrical construction with Z,= Z,= Z,
c) The air gap in the magnetizing path permits the nonlinear effects to be

considered negligible [9].

With these assumptions, symmetrical components can be applied to develop a
coupled three phase admittance matrix of the motor. This approach is used as the
sequence components are orthogonal and lead tc a diagonal matrix which is easy to
invert. Once the sequence admittance matrix is obtained, the phase admittance matrix can
be realized by means of the transformation matrices which relate the phase and sequence
quantities. |

The phase 10 sequence transformation is given by,

1 1 1
A-la? a1 @2.5.1)
a a* 1
.27
_,'3
where a=¢e (2.5.2)

The sequence to phase transformation is given by
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i
1 a% a (2.5.3)
1

In the phase frame of reference the expression for voltage is given by,

inhl = lzphl lehI

(2.5.4)
and the inverse of phase impedance is phase admittance,
1oul = 12,41 (2.5.5)
In the sequence frame of reference the expression for voltage is given by,
Viegl = 12 1L 2:5.6)
and the inverse of sequence impedance is sequence admittance,
¥l = 12,1 @s7)

The positive, negative and zero sequence networks are uncoupled if the impedance

network elements are balanced hence the sequence impedance,

z, 0 0
z1=|0 Z, © 2.5.8)
0 0 z



is readily inverted by taking the inverse of each diagonal element, yielding,

— 0 0
7 Y, G 0
1
1z, 17" =10 Z Of=lo Y, 0 (2.5.9)
1 0 0O
0 0 —
Z,|

1 . .
(Note that VA = 0 in an ungrounded machine)
(1

where Zp, Z,., and Z, are the positive, negative, and zero sequence impedances

respectively as described by Wagner and Evans in [61].
The following equations develop the transformation relationship between phase

admittance and sequence admittance. Rearranging equation (2.5.6) obtains the sequence

current,
- -1
el = 120007 | |V (2.5.10)
The sequence and phase voltages are related by equation (2.5.11)

[Viegl =A 7V (2.5.11)

and the sequence and phase currents are related by equation (2.5.12)
L. | =A L, (2.5.12)
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Substituting equation (2.5.11) and equation (2.5.12) ato equation (2.5.10) yields,

A - lehl = lzseql-l A _llllphl

Pre-multiplying both sides by A obtains phase current,
I'Iphl =A ‘Zseql-l A - | Vphl
and rearranging equation (2.5.4) yields equation (2.5.15),

IIphl = I‘th-ll |Vphl

Substituting equation (2.5. 5) admittance into equation (2.5.15 ) vyields,
lehI = lth| |Vph‘|
Comparing equation (2.5.14) with equation (2.5.16) gives equation (2.5.17)
[Vl =4 |2, |7 4™

and substituting equation (2.5.7) into (2.5.17) results in phase admittance,

1th| =A |Ys¢q| A—l

(2.5.13)

(2.5.14)

(2.5.15)

(2.5.16)

(2.5.17)

(2.5.18)

expressed in terms of sequence admittance. This important result is used to build a phase

quantity admittance matrix from a sequence quantity admittance matrix. Expanding the

phase admittance,
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1 1 1 Yp 30 1 a2
|¥,,l=|a> a 1| |0 Y, 0 % 1 2 a (2.5.19)

a a1} |0 00 11 1

and collecting the products results in equation (2.5.20)
YP+Y’l aYp+a2yn asz+aYn
- Llazy 2 2.5.20
lthl__s'a Yp+aYn YP+Y" aYP+a Yn ( )
aY +a2Y" asz+aY,, yp.,,yn

This formulation of the matrix permits a raotor admittance matrix to be constructed from
its sequence component impedances. These are readily available from manufacturers for
larger machines and can be estimated for smaller machines using the following method.

The positive sequence impedance,

v
z,= rzed £ cos™ (Bfy) (2.5.21)
I

is obtained from the motor full load current, I ,and power factor, pfy .at rated voltage,

V_aeq » and the negative sequence impedance,

| _
Z, = ;‘"‘ Lcos™ (pf;,) (2.5.22)
ir
is approximately obtained from the motor locked rotor current, I;, and the locked rotor
power factor, pfy. , at rated voltage. This is due to the similarity between the motor
starting equivalent circuit and the negative sequence equivalent circuit [10]. In the

abserice of manufacturer's data the starting power factors can be estimated from Table
251,
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Table 2.5.1 Typical Locked Rotor Power Factors

L Motor LV Induction MYV Induction MYV Synchronous

l PF .25 2 .15

In order to determine if the magnetizing current of an induction motor contains
significant harmonic content, measurements were taken on a no load test of a 50 HP 460
volt 6 pole NEMA design B induction motor. The no load test was selected as under
this operating condition almost all of the current drawn by the motor is magnetizing
current. The voltage (trace 1) and no load current (trace 2) in figure 2.5.1 were subjected
to a Fourier analysis and the results are tabulated in table 2.5.2. Note the voltage probe
was set for a 600 volt system and this has been corrected for 480 volts. As shown in
Table 2.5.2 the higher order harmonics are negligible (less than 4%). This analysis
indicates that the motor magnetizing branch is reasonably linear and can bev approximated
by representing it with an inductance and a resistance.

For the first fifty harmonic orders, a reasonable harmonic model for the motor is
arrived at by multiplying the inductive reactive components of equation (2.5.8) by the
harmonic order, and by dividing the rotor equivalent resistance by harmonic slip. As is
shown in Section 2.7 the harmonic slip on the rotor of a rotating machine is near unity
and this makes the reflected rotor resistance small. As a result the harmonic current flow

into a motor is governed by the leakage inductance.
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Vi=he p(2)—8? 50 v Vr‘ms(Z)—3l 61 Vv vrms(1)=337.2 V
Figure 2.5.1 - 50 HP Motor B Phase Voltage (1) and No Load Current (2)

Table 2.5.2 - 50 HP Motor Voitage and No Load Current Harmonics

Harmonic Harmonic T Harmonic
Onrder Voltage Cunrent
1 272.4 Volts 31.5 Amps
at 0 degrees at -86.2 degrees
3 ‘ 3.? 0.2 |
5 JL 2.6 1.0
7 14 0.5
9 0.4 0.1
11 0.7 0.0
13 0.2 0.1




2.6 Cable Model Derivation

Figure 2.6.1 - Flux Field Surmounding a Conductor Canying Curmnrent

The inductance in a cable is related to its physical geometry and the skin effect
at higher frequencies. Stranded and solid conductors behave in a similar fashion [53].
Figure 2.6.1 shows the geometry of a single cylindrical conductor.

The starting point to obtain a nodal admittance model is to review the basic
conductor equations. If current I flows through a conductor of radius a and length 1, the
number of turns, N, (N=1 in figure 2.6.1) and the magnetic field intensity, H, is related

to the current, I by the magnetomotive force,
F = fHds =Nl =2=nrH (2.6.1)

Therefore the magnetic field intensity,

NI
2nr

H =

(2.6.2)
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and flux density, B is;

L]

B:pH: I"'N

2.6.3
2nr ( )

where  is the magnetic permeability. To obtain the flux linkage we integrate the area

through which the flux density applies to obtain flux, ¢, and multiply by N to obtain flux
linkages, A, yielding equation (2.6.4)

A=No=N[Bl:- - BH[N 4 (2.6.4)
0 0

In free space the inductance due to flux , L, is linear, and is expressed by,

A 23r N2 |
L= —I' =Lintemal+Lwernal = f( ) _dr * f—;- ! (2'6.5)
a
For inductance due to flux linkage internal to the conductor the current density is assumed

to be uniform, N=1 for a single conductor and the current is assumed to be partially

linked by the ratio of conductor cross-sectional areas yielding,
l
L, = B (2.6.6)
inernal 3 ¢ [4] ‘

This internal flux linkage and inductance decreases as frequency increases due to skin
. effect. This decrease is noticeable in cables as the conductors are close together making
the internal inductance a significant fraction of the total. Equation (2.6.6) is therefore

modified to account for frequency effects as follows:

- pli1
Lierna = P [z] [Kstin effect) (2.6.7)
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The skin effect factor is calculated by the use of Bessel functions. A frequency

dependent factor, m is defined by equation (2.6.8) as,

m = |2nfp (2.6.8)

where g is the conductivity in Ohm-metres of the conductor.

With reference to figure 2.6.1, the conductor radius, a, is used to define the skin effect
factor,

Kopin e = [ 4 ] {ber(m a) ber/(m a) + bei(m a) bei(m a) (2.6.9)

ma [berima)}? + [ber/ma)]?

where the real (ber) and imaginary (bei) components of the Bessel function and their first

derivatives are defined by equations (2.6.10) through (2.6.13)

4 8

ber(ma) = 1 - mal” [m a] - ... (2.6.10)
QF @Y 2P W26 B
3 7

ber’ -_4 - - ima” | [m a] - .. (2611
erina) = Fma " @  earere
bei - mal® _ [mal® [m a]® - ... (2612
HmD = S T P @r©er | @FGR6F Gr30F (2612
bei/(ma) =ma _ [ma)® + [m a]® (2.6.13)

2 @F@r6 @F@PERERa0)

The flux linkage between two points "a" and "D" external to an isolated conductor is used

to redefine the external inductance for a two conductor line with spacing "D" between the
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conductors. This development is given in [53]. The result is

L, rna = -E'—l[ ]n(g)] (per conductor) (2.6.14)

Combining equations (2.6.7) for internal inductance and equation (2.6.14) for external
inductance for a single phase, two conductor cable, with spacing D between conductors

yields the iotal inductance,

L = pl — effect | 1n D (per conductor) (2.6.15)
! 4 a

For a three phase, three wire cable the flux linkage equations can be written to include

mutual effects. Assuming the sum of the currents in the three phases is zero, the "D"

terms cancel and the "a" phase flux linkage is given by,

K.
A, = pl L skin effect ln—l— +1, ]_n_}_ I ]_n_l_ (2.6.16)
2x 4 Daa Dab Dac

where,
D, = radius of conductor a
D, DDy = distance between the conductors

Ignoring resistance for the moment, the voltage drop across conductor "a" is determined

by the frequency ® as follows:

AV, =jod, =jo Ll I +joL,I +jwL, I (2.6.17)

where L, L, and L, are self and mutual inductances as defined by the constant

coefficients of equation (2.6.16).
Skin effect also increases conductor resistance as frequency increases. The ratio

of effective A.C. resistance to D.C. resistance as a function of ma is given by,

50



4C _ ["' “] {be'(m a) bei/(m a) - bei(ma) ber(m a) (2.6.18)

Ry 2 [ber(ma)]? + [ ber/(ma)}?

Combining resistance with reactance to form impedance obtains the primitive impedance,

Zaa Zab Zac
Zoens = Zoa Zop Zy (2.6.19)
an Zcb ch

Inverting the primitive impedarn.ce matrix forms the primitive admittance matrix resulting

in,

Yaa ab Yac
Yorm = me-l =Y Yoo Yi (2.6.20)
ca ch ch

val —00—wWA——— Va2

~— AVa A .
Vbl — i —wWA——— Vb2
.
“— AVb A

vel —~—wWA——— Vc2
\ .
— AVc —/
Figure 2.6.2 - Branch and Nodal Cable Voltages
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With reference to figure 2.6.2 the primitive admittance can be converted to a nodal
admittance for inclusion in the Ygg admittance matrix. The branch and nodal voltages

are related by a connection matrix, shown in equation (2.6.21),

-
Vaz
AV, 1 -10 0 0 0 "
AV,l=10 0 1 -1 0 0 V”’ (2.6.21)
av,] [0 0 0 0 1 -1f| ¥
ch
Ve,

and this connection matrix is used to relate the primitive admittances to the nodal

admittances,
T
Yyopar =C " Yppy € (2.6.22)

Expanding equation (2.6.22) yields the nodal admittance matrix,

-

(Yoo Vas Yoo Vb Yoo Ve
Yoa Yaa VYab Yab Vac Yac
Yo = Yoa Yoa Yoo Yeb Yo Vi (2.6.23)
Yoa Yea Y Yoo Yoo Vi
Yo Vo Vb VYoo Yoo Ve

| Yea Yea Yeb Yeb Vec Yoo
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By inspection of the nodal admittance matrix in equation (2.6.23) and recalling that the
off-diagonal elements of an admittance matrix are the negative values of the branch
admittances of a circuit, one can create a model to assist in the implementation of a
computer program. In essence, the mutually coupled elements are reduced to a grouping
of linear elements with no mutual coupling as depicted in figure 2.6.3. The method uses

a three conductor example, but it applies equally well to cables with any number of
conductors.

tVaa

al cl
Figure 2.6.3 - Admittance Model For Branches Connected To Node al

The computer algorithm requires cable geometry data to construct the model. Steel
armoured designs would require some modification to the above equations, and are not
included in this model. Cable capacitance is modeled by adding capacitors to the cables
at the nodes. Should cables exceed 4 kilometres in length this model becomes inaccurate
and the cable has to be broken into segments. The hyperbolic long line equétions would
be required for very long power cables but have not been incorporated as the "modal

analysis" technique for doing so is well documented [5].
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2.7 Synchronous Generator Model Derivation

The study of generators in unbalanced power systems requires two models. A
phase coupled model is required for system analysis, and a rotor heating model is
required to assess generator derating. A simplified three phase generator model is
developed later in this section. This model is based on previous work [37] and is
sufficient for the purpose of analyzing a power network. It can incorporate second order
effects of the nonlinear magnetizing reactance which are well described by others {47}
[68]. These second order effects are less than 3%. To analyze rotor heating requires a

separate detailed model of the rotor circuit and analysis of its empirical thermal behaviour.
2.7.1 Rotor Heating Model

In industrial power systems, and particularly in those which are isolated from a
major utility, the generation is provided by small local units. An example of this situation
occurs in off shore oil production platforms, where the generator sizes range from
500 kVA to 4 MVA. Modem oil production is achieved by down-hole motors driven by
variable frequency drives. The harmonic loading on these generators is much more severe
than has been historically experienced vby large utility generators. There have been
instances® where the generators have burned out from harmonic heating in situations
where the total kVA loading is only 75% of the generator rating.

The synchronous generator neutral connection is sometimes connected to a neutral
resistor or to a neutral inductor. The model of the generator under balanced and
unbalanced fundamental frequency conditions has been described by utilizing Park's
transformation to derive what has come to be known as the "d-q" model [3]. When the

generator is subjected to frequencies which are integer multiples of the fundamental, the

LS

Pemex Oil in their oil field in the Bay of Campeche 200 kilometres east of
Ciudad del Carmen, Mexico lost two generators in 1993, both supplying
VFDs.
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"d-q" model (which is based on a rotor frame of reference) can be replaced by a much
simpler model based on the stator frame of reference and which is an adaptation of the
induction motor model. To describe a behaviour for the generator when it is subjected
to harmonics, the braking behaviour of the amortisseur bars to negative sequence current
provides an appropriate starting point. ,

The negative sequence component associated with unbalanced conditions induces
a current of twice rated frequency in the rotor circuits. This keeps the flux linkages of
the rotor near zero, and as a result of this the flux of the armature current is forced into
paths of low permeance in the tips of the rotor poles; hence, this fiux linksv the
amortisseur bars and little else [31]. Since the negative sequence magnetomotive force
(mmf) wave moves at twice the rotor speed it alternately sees two otor permeahce&
corresponding to the subtransient direct and quadrature reactances rr:dw and xq". The

negative sequence reactance, X,, is therefore approximately equal to the average of the
two, as shown by,

n + /4
o T *q (2.7.1)

Xy = 5

Equation (2.7.1) defines the fundamental frequency harmonic reactance of the
generator. It can be used for other harmonic orders by multiplying the reactances by the

harmonic order. Converting the negative sequence reactance to inductance by dividing

by fundamenial frequency, @, yields,

"o, "
X4 xq

L= (2.7.2)

2 w,
which can be determined from standard machine parameters. By similar reasoning , the
mmf associated with higher frequencies will also see the average of the two rotor

permeances corresponding to the subtransient direct and quadrature reactances x4 and xq",

hence the harmonic impedance is given by,
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i + /i
Y, =@ l, = h[————xd al /] (2.7.3)

Thus the negative sequence inductance provides a reasonable model for the
generator for harmonics higher than the fundamental. This method is used in IEEE Std.
519 and is verified by field measurement of a 266 kW generator with 2 150 kW VFD six
pulse load, as recorded in Table 2.7.1. The observed values for the 5th, 7th, 11th, and
13th harmonics agree with the machine parameters and equation (2.7.3). The machine
pafameters were xg'"'= 0.092 per unit and x4"=0.10 per unit. The 5th, 7th, 11th, and 13th
harmonics validate the approximation as shown by the impedances in the final column of
the table. The values for the 3rd and 9th zero sequence harmonics are much larger than
the harmonic order multiplied by the negative sequence impedance. This is an indication
that the generator ground connection circuit may have contained some impedance. The

measured results for the triplens are not otherwise explainable.

Table 2.7.1- Hammonic Impedance of 266 kW Generator 4

r h L v, I, Z, Z,/h
I Eer _
3 J .0320 .0160 - 2.00 ‘ 667 )

5 1450 2720 533 107

7 0624 0992 630 090

9 0180 .0040 4.50 .500

11 0722 0730 989 090

13 0598 0460 1.30 100

4 The data was made available by Mr. M. Sieberg, Principal Electrical Engineer,

Kato Engineering Division of Reliance Electric, Mankato, Minnesota.
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Harmonic current is induced into the amortisseur bars of the generator roto:.
These bars slip with respect to the harmonic current in the stator. Ignoring the even

harmonics, the following considerations must be allowed for the odd harmonics:

Firstly all "triplen" harmonics behave similarly to zero sequence current. They
create flux on each phase of the stator which is stationary in space, hence induce into the
rotor a frequency which is the same as the stator harmonic frequency. These "triplens”
see an inductance equivalent to the zero sequence of the generator which is usually less
than the subtransient inductance. In addition, if there ‘is any impedance, Z,, in the neutral
connection three times the value of this impedance must be included in the model.

Applying Park's transformation to stator harmonic phase current yields the stater
current d-q-0 components. While an AC current at the fundamental frequency on the
stator implies a DC current in the rotor, this is not true for harmonic currents. Harmonic

currents on the stator create harmonic currents on the rotor. These rotor currents are

functions of the stator d-q-0 currents [3], hence harmonics appearing in the stator direct

axis currents will be present in the rotor currents.  The d-q-0 stator currents for zero

sequence stator harmonics are given by,

cos(wt) cos(wt—%’t—) cos(wt-%)
I, ) 4 I -sin(h wt)
1= % sin(wr) sin(wz-5) sin(we-=5)| |I-sin(swr) (2.7.4)
I, 1 i 1 1 -sin(h wr)
2 V2 vz
Solving equation (2.7.4) yields,
1, 4]
Iq = ﬁ - F 0 (275)
sin(h - wt)|
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which indicates the rotor currents are unaffected by the zero sequence component of the
stator phase currents since I is zero.

Secondly, all odd harmonic pairs which lie on either side of integer multiples of
the sixth harmonic create stator flux fields which rotate at multiples of six times the rotor
speed, as shown in Table 2.7.1. For example consider the 5th and 7th harmonics. The
5th stator harmonic opposes the direction of the rotor, hence the rotor rotational speed
must be added to the 5th harmonic's rotational speed. The result is that the rotor
harmonic is 5 + 1 = 6 for the 5th stator harmonic. The 7th stator harmonic rotates in the
same direction as the rotor, hence the rotor harmonic is the difference between them, or
7 -1 6. Thus the 5Sth and 7th stator harmonics both appear to the rotor as‘ a 6th
harmonic. While the 5th harmonic creates a negative torque and the 7th harmonic
creates a poéitive torque, these and higher order torque effects can be neglected since they
are small and tend to cancel one another in terms of net steady state generator torque.

The frequency conversion is demonstrated for positive sequence stator current by,

[ ]
cos{wt) cos(wt—gai) OOS(Wt—:%ﬂ-) [ I-sin(hwi)
1,
. 27
I|- % sin(wr) sin(wt—%—‘) sin(wz—is’i) 1-sin(hwe-=7) 2.7.6)
L 1 1 1 1-sin(hwe + 335)
Simplifying equation (2.7.6) gives the form,
1 cos (wt) cos (h *wt) + sin(wt) sin(h - wt)
I|= \P -I|sin(wt) cos (k - wt) - cos(wt) sin(k - wt) (27.7)
I, o
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Using the trigonomeiric identities,

~sin(a -b) =sin(b) cos(a) - sin(a) cos(b) 2.78)
cos(a -b) =cos(a) cos(b) +sin(b) sin(a) ’

equation (2.7.7) yields d-q-0 stator current,

1, cos([h 1] -wt)
1, =J—%-I ~sin({h - 1] -wr) - @79
I, 0

The 1; component of (2.7.9) demonstrates that the rotor current frequency is one harmonic
order less than the stator phase current when the stator phase current is positive sequence.

Similarly the d-g-0 stator currents for negative sequence stator harmonics are given

-cOS(wt) cos{wti-z—%t-) cos{wt-%ﬂ [ I -sin(Awt) ]

I
d . 2%
I|-= % sin (wt) sin(wt—%f—) sin(wt—4—3n-) I-sin(h wt+==) (2.7.10)
L 1 1 1 1-sin(we -2
V2 V2 V2 ‘ '
Simplifying equation (2.7.10) gives the form,
Ly —  lcos(we)sin(h -wt) +sin(wt) cos(h -wr)
I = %’f{sm(m)sin(h -wt) - cos(wr) cos (h - wr) (2.7.11)
I, ~ 0

59



Rearranging the trigonometric identities of equation (2.7.8) gives,

sin(a +b) =sin(a) cos(b) +sin(b) cos(a)

N - ‘(2;&712)
cos(a +b) =cos(a) cos(b) - sin(b)sin(a)
which when substituted into equation (2.7.11) yields stator d-q-0 current,
1, sin([h + 1] -wt)
Iq =J_§.I —-cos([h + 1] -wt) (2.7.13)
I, 0

The 1; component of (2.7.13) demonstrates that the rotor current frequency is one
harmonic order greater than the stator phase current when the stator phase current is
negative sequence. The simplified consequence of these equations is that the rotor
heating is a function of the odd zero sequence harmonics (3,9,15, etc.) as well as odd
harmonic pairs lying on either side of the converter pulse number (5&7, 11&13, 17&19,
etc.). Non-characteristic even harmonics are usually neglected due to them being small
in magnitude, but if they are present they may be handled in the same way.

A simple generator model which includes the amortisseur bars can be constructed
from R,, the stator resistance, Ry , the rotor resistance reflected to the stator, L., the
magnetizing inductance, s, the rotor slip as shown in Table 2.7.2, and the negative
sequence inductance, L,, to arrive at the circuit in figure 2.7.1. The model is only useful
for balanced harmonics and it suppresses triplen harmonic current in the rotor branch. If
the harmenics were unbalanced the d-g-0 current expressions would be more complex,

and unbalanced triplen harmonics in the stator would give rise to harmonic currents in the

rotor.
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Figure 2.7.1 - Generator Rotor Harmonic Model
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Table 2.7.2 - Generator Rotor Harmonics And Slip

Stator Harmeonic Rotor Harmonic Rotor Slip
3 3 0
5,7 6 1.20, .857
9 | 9 0
11,13 12 | 1.09, .923
15 15 0
17,19 18 1.06, .947 r
21 21 0
23,25 24 1.04, .960
etc. etc etc.

When power generators are applied to an industrial power system which has a high
percentage of solid state switched loads such as diode rectifiers or SCR converters, the

rotors of the generators are subjected to harmonic heating. The harmonics created by a

61



diode rectifier or SCR converter are shown in Table 2.7.3 The characteristic harmonics

are shown in bold type. In 12 pulse and 24 pulse systems the harmonic cancellation is

not perfect, hence some of the six pulse harmonics exist. The characteristic harmonics

exist as pairs (one positive and one negative) on either side of the pulse number.

For 6 pulse

For 12 pulse

For 24 pulse

Table 2.7.3 -

charmacteristic h= 6 k+ 1
charactenristic h= 12 k% 1
characteristic h=24 k% 1 k=1,2,3,...etc.

Harmonics From Rectifiers And Converters

6 Pulse 12 Pulse 24 Pulse
h Typical Mag h Typical Mag h Typical Mag

1 100% 1 160% 1 160%

5 30% 5 3.0% 5 3%
7 14.3% 7 1.4% 7 1.4%
i1 9.1% 11 9.1% 11 0.9%

| 13 7.7% 13 71.7% 13 0.7%
II 17 5.9% 17 0.5% 17 0.5%
19 5.2% 19 0.5% 19 0.5%

23 4.3% 23 4.3% 23 4%
25 4.0% 25 4.0% 25 4%

29 3.4% 29 0.3% 29 0.3%

31 3.2% 31 0.3% 31 0.3%

35 2.8% 35 2.8% 35 0.3%
37 z:)% 37 2% 37 0.3%
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5 Skin Effect on Generator Rotor Bars
fby increasing diameter)

4 374

Resistance 518
Ratio 3

(Rdc=1) ~— R
2 38
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1 Harmonic Order 49

Figure 2.7.2 - Skin Effect on The Resistance of Generator Amortisseur Bars

Other harmonic orders may be generated by these loads under voltage unbalanced
conditions, but provided the voltage unbalance is less than 2%, these other harmonics
(often referred to as "non-characteristic") will be less than 0.2% of the fundamental
magnitude and may be neglected when calculating generator rotor heating. The
magnitudes shown are for waveforms supplying variable frequency Pulse Width
Modulated (PWM) type drives which have large capacitors connected across the DC rails.
Manufacturers' designs may vary from these magnitudes, but the table can be used for a
"first approximation" calculation of the anticipated heating effects on a generator rotor.

Since each pair of harmonics above and below the integer multiples of 6 appear
on the rotor at different frequencies, the rotor resistance must be adjusted for skin effect.
Generators are commonly constructed with solid round copper damping bars built in the
form of a "squirrel cage" or amortisseur winding. Bessel functions of the first kind, zero
order were solved to obtain the resistance of the bars, as shown in figure 2.7.2. The
heating in the rotor is then calculated from the heating due to each harmonic pair, given

by,
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Q = Rgy L5 + L, T + Ry L1 + 137 - . (2.7.14)

This can be converted to an equivalent per unit negative sequence current from the

expression,
R Ratio io
— [+ L L PR A L
;- R Ratio,,,, ‘ R Ratio,,, . 2715
RRatio,,;, >  RRatio,,,
where,
R
R Ratio, = 7{’-’ (2.7.16)
1

and the harmonic current components in equation (2.7.15) are similarly expressed in per
unit. |

The reason for this latter equivalent is that most industrial generators are designed
to withstand 10% negative sequence heating. It is possible for a generator manufacturer
to increase this 10% limit by using a thicker than standard copper cage bar connector and
larger diameter bars to form a low resistance squirrel cage, and by derating the generator
by about 5%. With these modifications, a machine that can withstand up to 17%
negative sequence heating, or its harmonic equivalent can bte manufactured. In the 4
MVA to 10 MVA size range this has a cost impact of 3% to 5%.>

In certain cylindrical rotor designs, the generator has no amortisseur winding and

the harmonic current will be primarily carried in the stainless steel slot wedges. In these

Cost and derating figures made available by Mr. T. Hammer, Chief Electrical
Engineer, Ideal Generator Company.
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déwsgns the skin effect determines penetration into the wedge and the usual assumption

is that the depth of penetration varies inversely as the square root of frequency [44]. For

these machines equation (2.7.15) changes to,

‘ 6 ‘ 12
I"‘S‘Q"f" - \} _fifa [15 +17]2 + ’EOI[IU +113]2 e 2.7.17)

where f is the fundamental frequency.

Each term may be multiplied by a correction factor to convert from maximum
rotor surface loss intensity to average surface loss. These factors are in the range of 0.4
to 0.5. For a conservative calculation equation (2.7.17) assumes them tc be 1.0. The
foregoing equations permit a designer to calculate the effect of harmonic loading on a
generator. The equivalent percentage negative sequence current resuiting from the
characteristic harmonic currents in Table 2.7.3 are calculated in Table 2.7.4 for different
diameters of round copper amortisseur bars, assuming the bars are carrying the same
current density (Amps per square metre). in practice, generators designed to supply.

harmonic producing loads are equipped with larger bars to reduce the current density and

lower the heating effect of the harmonics on the rotor.

Table 2.7.4 - Equivalent Negative Sequence Current For Characteristic Harmonics in
Table 2.7.3

[ Diameter 3/16 1/4 3/8 1/2 5/8 3/4
(inches)
6 Pulse 50% 51% 54% 58% 63% 58%
12 Pulse 20% 21% 23% 26% 28% 31%
24 Pulse 6% 9% 1% 12% 13% 14%
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Figure 2.7.3 - Rotor Temperature Risc Duc To Negative Sequence Current

The negative sequence rotor temperasure rises of several generators with copper
amortisseur cages utilizing round copper bars with fixed field excitation are shown in
figure 2.7.3. The negative sequence current is in per cent of the full load rated current
of the generator. The measurement on each generator is made by placing a single phase
load on the generator, with the phases of the stator winding connected in series, to create
an unbalanced stator current A heat run is made and the rotor temperature is measured
by stopping the machine once temperatures have stabilized and immediately taking
resistance measurements of the rotor windings.

The harmonic currents and the associated percentage temperature rise is available
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for a 150 kW six pulse variable frequency drive load applied to a 200 kW generator 6,
Applying equation (2.7.14) to this data, the equivalent heating negative sequence current
for the drive is piotted as a single point in figure 2.7.3. This point lies on the equivalent
negative sequence curve, giving promising indication that the method may be valid.
Validation would require more measurements with VED loads be taken and compared to
the negative sequence heating curve. The calculation clearly shows thai the harmonic
equivalent negative sequence current is well above the typival generator standard of a
10% allowance for negative sequence current. Particularly in islanded power systems

where a large percentage of the load consists of converters, the generator manufacturer

should be apprised of the harmonic loadings so he can include adequate design
modifications in the machine's rotor.

2.7.2 Three Phase Generator Linear Model

The linear model of the generator is developed in a manner similar to the model
for the induction motor. The approach is to develop 2 model which uses sequence
components to couple the three phases [37], but which otherwise assumes linear behaviour

in the generator. The three phase synchronous generator mgdel is based upon the
following assumptions:

a) The stator is a grounded wye configuration
b) Each phase has a symmetrical construction with Z,= Z= 2,
c) The magnetizing impedance can be modelled in a manner similar to that

used for the transformer magnetizing branch.

The symmetrical components sequence impedance matrix is formulated and inverted to

form the sequence admittance matrix. This is given by,

(82

The data was made available by Mr. M. Sieberg, Principal Electrical Engineer,
Kato Engineering Division of Reliance Electric, Mankato, Minnesota.
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-Zl— 0 o
4 Y, 0 0
1
-1 0 —_— 0 = (2‘7'17)
|Zseq| Z, 0 Y O
1 0 0 ¥,
g 0 —
:‘0_
and then transformed back to a phase frame of reference by,
Va0 =4 Y, |47 (2.7.18)
Expanding the phase admittance gives,
1 1 1Y, 0 O i a a?
¥,,| =|a®> a 1| |0 ¥, Q _;. i 22 a (2.7.19)
a a> 1] |0 0 Y, 11 1
and collecting the products results in the form,
2 2
Y,+Y, +Y, aY,+a"Y, +¥, a“Y,+va¥ +7¥,
Y1 =% a*Y,+aY, +V, Y, +Y,+Y, aY,+a’yY, +¥, (2.7.20)
ay,+a’Y, +¥, a’Y, -a¥ +¥, Y,+Y, +¥,

Neglecting the generator resistance the sequence impedance at each harmonic frequency

is given by equations (2.7.21) and (2.7.22) as follows:
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Z,-z,=jw,L, (2.7.21)
Z, =3R;+jw,L, (2.7.22)

Generators of the 1 to 10 MVA range also do not supply perfectly sinusoidal
voltage. The no load voltage waveform can be obtained from the generator manufacturer
in the form of line to line harmonic voltages, and these can be converted to Norton
equivalent current sources on the generator bus, which are added in parallel to the
magnetizing branch as shown in figure 2.7.4. While this permits the generator to be
accurately modelled, it is worth noting that the flow of current through the magnetizing
branch for frequencies higher than the fundamental is small and can be neglected. The
harmonic slip makes the reflected rotor resistance small and it can likewise be neglected.
The net result is that only the negative sequence inductance need be included in the

model. This simplified approach is adequate for most system studies.

éLmag CE <§>
Io I

Figure 2.7.4 - Generator Harmonic Meodel

To conclude, for the first fifty harmonic orders, the generator can be modeled with
a sequence component method similar to that used for the induction motor. The harmonic
impedance can be approximated by using the negative sequence inductance at the
appropriate frequency. If it is desired, second order effects can be included by modelling
the magnetizing branch as a Norton equivalent current source at each harmenic of interest.

The rotor resistance is small compared to the inductance seen by the harmonic, hence can
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be neglected when formulating the admittance matrix for network harmonic solutions.
When examining the harmonic heating effects on the rotor; however, the rotor resistance
is of paramount importance and the rotor amortisseur skin effect needs to be included in

the rotor resistance model.
2.8 Six Pulse Converter Meodel Derivation

A typical industrial nonsinusoidal load is the six pulse converter. Converters use
either silicon controlled rectifiers (SCR) or diodes as rectifying devices. The balanced
behaviour of the three phase bridge as been described in closed form analysis by several
authors [18] [62] [63] [64] [65] [71] [72] [45]. These analyses use approximations of the
waveforms and do not consider unbalance in the three phases. One unbalanced three
phase model uses transfer functions rather than differential equations and ignores the
effect of source impedance on overlap [42] [43]. The time domain model developed in
this thesis extends previous work [8] [13] to permit an analysis of the circuit under

unbalanced conditions, with a constant scheduled DC load.

La Ra 215 zls EL Idé
Ld
i
N e

¥ 3

Figure 2.8.1 - Three Phase Coriverter Bridge

The power output of the d.c. bridge is constant for any given speed and load
condition of the motor it supplies. To model this condition, the voltage "E" is adjusted

until the product of DC current and voltage, E*I; matches the scheduled DC power P,
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With reference to figure 2.8.1 the six pulse converter consists of six thyristors or diodes
which are connected to a three phase A.C. supply and which feed a D.C. bus. The
devices are fired in sequence in such a way as to apply the maximum AC line to line
voltage to the DC load. Under balanced conditions this results in each AC phase
supplying current for one-third of each electrical fundamental frequency cycle. At the
smoment that any device fires the current must divert from the device on the same DC rail
through which it is flowing to the most recently fired device. These devices are said to
commutate during the time taken for the current to divert from one to the other. Due to
circuit inductance this cannct occur instantaneously; consequently, there is an overlap
period during which curreht is flowing through three devices. Once the current reaches
zero In one of the commutated devices, it flows through two devices. In the case of
thyristors the initial flow of current can be delayed by the firing circuitry. This delay is
measured by the firing angle, alpha. The purpose of delaying the firing is usually to

control the voltage of the DC rails in the bridge.

Typical circuit topologies are shown in figures 2.8.2 thrcugh 2.8.4. The equations
describing these circuit topologies are classified as follows:
a) Off state.
b) One device firing onto each DC rail (Non overlap state). See figure 2.8.2.
c) One device firing onto the negative rail while two devices commutate on the
positive rail {Positive rail overlap state). See figure 2.8.3.
d) One device firing onto the positive rail while two devices commutate on the

negative rail {Negative Rail overlap state). See figure 2.8.4.
It can be observed that there are three inductances in series in the non-overlap

state circuit topology, requiring one state variable, and there are three parallel inductive

branches in the overlap state circuit tcpology, fequiring three state variables.
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Figure 2.8.2 - Non-Dverlap State

The differential equations for the non-overlap state shown in figure 2.8.2 are given by
equations (2.8.1), (2.8.2) and (2.8.3) as follows,

di v —vb—E-ia(Ra+Rb+Rd)

£ =2 (2.8.1)
dt L, +L,+L,
4, __d, 2.82)
dt dt
di
—€ = (2.8.3)
dt
Le Rc

Ve

— Ic

Ra Ld Rd

La
—JUU\—M—
— [
~ Lb RbD
—e |b

Figure % = .; - Overlap State On The Positive Rail
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The differential equations for the overlap state on the positive rail shown in figure 2.8.3

are given by equations (2.8.4), (2.8.5) and (2.8.6) as follows,

L
V-V, +E-i, (R, + R} +i R, *[f]["b -V, +E-i,(R,+R;) +i,R,]

L,+L, *{f][l'a +L, + L]
a
. R dib
di, V, -~V +E-i (R, + Ry} + laRc-E'[La + Ly + L] (2.5.5)
dt L,
di, _di, di (2.8.6)
dt da dt
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Figure 2.8.4 - Overlap State On The Negative Rail
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The differential equations for the overlap state on the negative rail shown in figure 2.8.4

are given by equations (2.8.7), (2.8.8) and (2.8.9) as follows,

- - K 7 7
Vo Ve~ = la(Ra+Rd)+lcRc+

L . .
f]["a -vy—E -i,(R, +R;) +iyR,]

—a - b (2.8.7)
dt L,
L,+L;+ Z; [L,+ Ly +Ly]
- - dia
di, Va—vb_E._la(Ra+Rd)+leb-—E[L“+Lb+Ld] (2.8.8)
dr L,
dy A, (2.8.9)
dt dt dt

These equations are solved with a Runge-Kutta fourth order method and a time
step equivalent to one-half of an electrical de-gree.‘ It is observed that as voitage on all
phases is lowered, the current increases approximately in inverse proportion. It is also
observed that as the voltage is unbalanced, the fundamental loading of each phase varies,
but not in proportion to the voltage. These two observations lead to two conclusions.
The first conclusion is that the fundamental load on any phase can be modeled as constant
kVA during any particular iteration, providing the voltage variation is restrained to a
range of approximately 10% of nbminai voltage. The second conclusion is that the per
phase loads have to be recalculated between voltage iterations to achieve the correct load
aﬁd current injection for a particular DC loaded bridge. Table 2.8.1 shows the -
fuﬁdarﬁental kV A per phase for a 600 Volt diode bridge supplying a 200 kVA DC load

when a sinusoidal, unbalanced voltage is applied. "A" phase is at rated voltage (347 V),
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"B" phase is approximately 5% low (330 V), and "C" phase is approximately 10% low

(312 V). All values are given in RMS.

Table 2.8.1 AC Loads on Unbalanced DC Diode Bridge Supplying VFD

Phase AC Voltage AC Current kVAa ]
(Sinusoidal) (Fundamental) {Fundamental) ’
A 347.£0° 246.3£-10.9° 85.47 T
B 330424_o° 199.1.£221.9° 65.70
lL C 1312£120° 202.6£117.6° 63.21

Table 2.8.2 demonstrates that kVA remains approximately constant for the same

percentage increase in voltage on all three phases. Both tables indicate that the phase

current is not proportional to phase voltage. As the fundamental kVA load on each phase

remains approximately constant when voltage is varied these tables validate the constant

kVA load model used for the three phase loadflow calculations.

Table 2.8.2 AC Voltage In Table 2.8.1 Increased 10% On Each Phase

Phase AC Voltage AC Current kVA
(Sinusoidal) (Fundamental) (Fundamental)

A 381.7£0° 226.9£-10.9° 86.61

B 363.£240° 175.1£221.0° 63.56

C 343.2£120° 181.9£119.9° 62.42
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29 Conclusion Te Chapter 2

Chapter 2 describes the linear modelling of the following power system
components:

a) Power Transformer

b) Three Phase Induction Motor

c) Power Cable

d) Three Phase Synchronous Generator.

Nonlinear models are developed for the following:

a) Transformer magnetizing branch
b) Synchronous generator magnetizing branch
c) Six Pulse Converter.

The nonlinear models are based upon the solution of differential equations to obtain time
domain waveforms, then utilize Fourier techniques to calculate the harmonic currents in
the frequency domain.

Skin effect increase in resistance is examined for power cable, and a separate
model is developed to analyze its effect on the amortisseur bars in a generator. Skin
effect decrease in flux linkages is incorporated into the cable model.

Chapter 2 provides sufficient detail to permit a functional harmonic solution
program, which is described later, to be implemented. To validate the rotor heating
models of Chapter 2 requires measuring nonlinear loads supplied from generators which
are not synchronized to the power system. Data from the generator measurements may
be obtained by asynchronously sampling with an oscilloscope. The harmonic spectra
obtained by such measurements are smeared and the true underlying signal harmonics are

extracted utilizing the method developed in Chapter 3.
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Chapter 3

Measurement Of Nonlinear Loads

30 Introduction To Chapter 3

The work in this chapter is in response to difficulties encountered during
laboratory measurement of VFD harmonics. Certain equipment, for example stand-alone
generators, and the motors supplied from the variable frequency drives, operates at
frequencies other than the power system frequency of 60 Hertz. During validati’on
measurements of the load harmonics associated with these devices the measurement
technique may lead to certain analysis errors. In this case the technique is to take
measurements with an oscilloscope which is set to obtain 4600 samples over 0.5 seconds.
The period of the signal is estimated from the zero crossings observed on the oscilloscope.
With this technique the sampling period may not be an integer multiple of the
fundamental frequency of the underlying signal. When the data is subjected to a Fourier
analysis based upon the crude assessment of the fundamental period of the signal Fourier
coefficients may arise for frequencies which are not’ integer multiples of the assumed
fundamental frequency. This is an indication that there is spectral leakége between
adjacent harmonic "bins".

Correct measurement of the harmonics generated by nonlinear loads is important
for model validation. Taking too few data points can lead to aliasing which may exclude
higher frequencies from the measured results. Measuring a sample of data with a window
duration which is not an integer multiple of the-period of one fundamental cycle leads to
leakage and the generation of harmonics in the measurement analysis which are not
present in the original power signal [39]. These types of errors are commonly referred
to as "instrument artifacts". The interpolation technique described hereafter is used to
recover the frequencies and magnitudes of the Fourier coefficients of the original signal

from the Fourier coefficients of the sampled data.
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3.1 The Relationship Between The Observed Spectrum And The Continuous Spectrum

Current and voltage are the usual signals measured in a power system. These
may be practically considered as periodic and continuous in time and are given the

" "

general symbol x (t) where the subscript "¢" indicates "continuous". When measuring a
signal, a window of a finite length, T, is used to observe only a portion of the signal. The
observed portion is given the symbol x (t) where the subsc¢ript "o" indicates "observed".
The window is given the symbol w(t) where the subscript "r' refers to the rectangular
nature of the window used in this method. Figure 3.1.1 illustrates the assignmen? of
variables. The continuous signal is multiplied by the window in the time domain, and the
Fourier transform of the continuous signal and the Fourier transform of the window are

convolved in the frequency domain.

— T e

finite duration window
Wy (t)
i AW

observed portion
xq(t)

Figure 3.1.1 - Windowed Signal

xc(t)

The product expression is given by,

X, (0 = x,8 - w() (3.1.1)

The Fourier transform of the rectangular window of unity magnitude and duration, T, is

) |
(D eve'dt = =1 Sa( [(o]) (3.1.2)

W (w) = F wid)} = t
—[w])

I\J

pola = Dl=



The Fourier transform of a periodic signal is an impulse sequence with impulses located
at harmonic order intervals and magnitudes equal to the Fourier coefficients, C(h), for

each harmonic order, h. The continuous periodic signal is represented as a Fourier series

given by,

x® = Y Ch)elt (3.1.3)

’l‘_-“""‘

where @, is the fundamental frequency of the continuous signal and h, is the harmonic
order of a particular term in the series for the continuous signal. It is necessary to
distinguish between harmonics of the continuous signal, h., and the harmonics of the

observed signal, k_, in the following derivation. The Fourier coefficients are defined as,

25
{")C

w ik 3.14

Cthy = == [ x@ye 7 ar (3.1-4)
2w o

The Fourier transform of the continuous signal is,

X (@) =F @0} = i C(h) Flet} = i‘ 27 C(h,)6(w -h w,) (3.1.5

hc=—ao hc= -0

Convolving the transforms in the frequency domain yields,
X () = X (0) @ W () (3.1.6)

Applying the modulation property with the temporary variable, &, to change the
convelving operation to the integral of a product results in,

+o2

X,@) = [ X(0-0) - W(aydo 6L

J= -

and substituting the expanded eguations (3.1.2) and (3.1.5) for the Fourier transforms gives,
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X(w) = f § 27 C(h)8(w -0 -h, mc)rSa(g-[o]) do (3.1.8)

g =~ hc=—m

Interchanging the integral and summation and applying the sifting property at

6= o- ho, resultsin
+00 T
X(0) = hZ 2nC(hc)1:Sa(—2+[w —hcmc]) (3.1.9)
Thus the spectrum of the observed portion of the signal is continuous and is described by
a train of Sa functions centred on each harmonic frequency with amplitudes given by the

weighting of the Fourier coefficients. Samples from X (@) can be obtained using the

Discrete Fourier Transform (DFT) which 1s given by

N-1 —j2nTan, N-1 -
X (o)=Y xmTye = =3 x,nT)e "™ (3.1.10)
n=0 n=0
W, = =L (3.1.11)
T
£ =NT (3.1.12)

Where 7 is the length of the observed signal, N is the number of samples, T is the
sampling interval and x,(nT) are samples of x (t). The sampling frequency ( 1 /T ) must
be at least twice the higheét significant harmonic to be within the Nyquist limit.

If equation (3.1.9) is evaluated at @ = h(;mo then

XHh,w,) = » 2nC(h)cS %[hocoo—hcwc]) (3.1.13)

hc=—m
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Figure 3.1.2 - Spectium Leakage With 0.1 Second Window

Equation (3.1.13) indicates that any particular harmonic order in the observed signal is
affected by all the harmonic orders in thc continuous signal, subject to a weighting
function which depends on the difference between the frequency of the observed harmonic
and the frequency of the harmonic in the continuous signal. In other words, leakage from
all h; harmonics will affect a particular b, harmonic. An.examination oi the nature of the
contribution from each term in equation (3.1.13} shows that the harmonic h, which is
closest to a particular h of interest has a much stronger effect on h, than other harmonics
located further away. Figure 3.1.2 shows the ripple effects emanating from a fundamental
and a fifth harmonic in a system where the window is 0.1 second duration and the
fundamental fréquency of the continuous signal is 61 Hz. Figure 3.1.3 shows the
compression in the bin widths which occurs when the sampling window duration is
increased to 0.33 seconds. The ripple from the‘harmonics in the continucus signai is
reduced to a low value when it reaches its neighbouring harmonic region. The greatest

magnitudes for interaction occur between the positive and negative fundamental
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harmonics, or if it is present, between the DC component and the fundamental.

§ !

Fundanantal and; Fifth
Spectrun Leakage
Sanple Length = 28,68 second

Ed

I

Figure 3.1.3 - Spectrum Leakage With 0.33 Second Window

Figure 3.1.4 shows that for a window of 1.0 second, the ripple may be neglected.
For a one second window the fundamental positive and negative harmonic spectra are 120
bin widths apart, giving them adequate spacing for the ripple to be reduced to a negligible
value (less tis#: 1%). The spectrum bin widths are not distinguishable in the figure and
appear as a black band across the bottom. This behaviour suggests that a reasonable’
approximation can be made to equation (3.1.13) to calculate the Fourier coefficients of

those spectra in the observed signal which are in near proximity to the spectra of the

coniinuous signal.
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Figure 3.1.4 - Spectrum Leakage With 1.0 Second Window

To rephrase, if certain strictures are applied, that is, that the fundamental
frequency of the observed signal is much smaller than the frequency of the continuous
signal (ie the window has a long duration), and provided that the observed harmonic
frequency of interest lies within a region, r, which is close to a harmonic frequency of the

continuous signal, then the following approximation can be applied,

X, (h,»,) = C(h,)S —;-[howo -h.o, ) (3.1.14)

W, < W,

how.-Nzsho, stho +r)
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3.2 Ixterpoiation Method Te Recover The Original Signal Spectrum

Eguation 3.1.12 can be expressed in terms of absolute magnitudes (with the

strictures dropped for clarity). The result is,

| & G} = |€ (A lSa(-;— [h o, —hccoc])' 3.2.1)

60.3 H=

_ — 100%
Sin[T{ w-hw]]
2

T( w-hgwg
2

56 57 58 53 68 61 62 63 64
Sampled Signal Harmonic Spectrum

Figure 3.2.1 - Spectrum ELeakage In The Vicinity Of The Fundamental

When the Sa curve of equation 3.2.1 is fitted to the measured spectrum of the observed
signal in the vicinity of the fundamental the result is similar to that shown in figure 3.2.1.
Once the Sa curve is fitted to the smeared spectra of the sampled signal, the harmonic
magnitude and frequency of the continuous signal are established by the peak of the Sa
curve. The frequency of the continuous harmonic lies between the two largest spectra

measured for a given harmonic order and this shows up as leakase in the adjacent spectra

of the sampled signal.
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For the example in figure 3.2.1 it is estimated from the zero crossing at the time
of measurement that the signal's fundamenia! frequency is approximaicly 60 Hz. with a
probabie variation not exceeding +/- 1 Hz. The sample period is seiectedd at one second
duration to obtain sample spectra bin widths of 1 Hz, hence only the harmonic
magnitudes of the sampled spectra from 56 to 64 Hz. need to be considered to obtain a
useful range of values in the vicinity of the fundamental frequency of the ¢ontinuous
signal. |

Initially the Sa curve was fitted using a method of least squares using several
points on either side of the harmonic order of intzrest, but it was subsequently found
when validating the method that sufficient accuracy can be obtained by fitting the Sa
curve to the two largest sampling spectra. This allows a saving of computational effort.
The computer algorithm initially locates and calculates the vatio of the magnitudes of the
two largest sampled spectra in the vicinity of a harmonic order of interest. It then slides
a unity magnitud¢ Sa curve horizontally until the two largest sample spectra frequencies
intersect the Sa curve with the same ratio. The Sa curve is then scaled vertically until it
intersects the magnitudes of the two largest spectra. The peak of the located and scaled

Sa curve ther -determines the magnitude and frequency of the continuous signal's
harmonic.

3.3  Error Of The Literpolation Method

The error, €, in any particular harmonic term, h,, of the observed signal lying

in close proximify to a term, h;, of the continuous signal is calculated from,

% hc = -0

€h,, = E C(hc)Sa(:;-[hobmo~h¢<oc]) —C(hck)S ‘;'[ho,“’o‘hc,,"’c]) (3.3.1)

For the example shéwn in Table 3.3.1 the infinite series error summation is
restricted to the first 60 harmonics of the continuous signal. The continuous signal is a

quasi-square wave (ie. a square wave with 120 degree lobes - see figure 4.4.2 in the next
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chapter) with a fundamental frequency of 60.3 Hz. The observed signal is taken with a
one second window. The error terms associated with the first few harmonics of the
observed signal are shown in the final column of the table. Each error term is associated
with that harmonic of the observed signal which is on either side of énd lying cldsest

to a particular harmonic of the continuous signal.

Table 3.3.1 - Leakage Hammonics And Associated Ervor Terms

h, £, h, L Clh)l €10
(actual) (f.+/f.-) (measured) (per unit)

1 60.3 60 86.0841 0.00285
61 36.5452 0.00660
5 301.5 301 12.68»54 0.00372
302 12.7793 0.00371
7 4221 422 14.1273 0.00536
423 1.4862 0.04794
11 663.3 663 7.8219 0.00232
664 3.3259 0.00542

The table describes the error in the method for the fundamental and the 5th, 7th,
and 11th harmonics of the continuous signal. The actual fundamertal frequency of the
continuous signal is 60.3 Hz, hence the frequencies tabulated in the second column are
harmonic mulitiples of 60.3. A window of one second duration is used to observe the
éignal, hence the fundamental of the observed signal is 1/(one second) or 1 Hz. The

frequencies lying on either side of the continuous harmonics are tabulated in the third
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column. For example, at the 5th harmonic of the continuous signal the actual frequency
’is 301.5 Hz. The observed harmonics on either side of this frequency ar¢ h,= 301 and
h,=302. The magnitudes of these spectral pairs are tabuiated in the fourth column.
Finally, equation 3.3.1 is uséd, with the harmonic orders from - 60 to + 60 replacing the

infinite limits in the first summation, to calculate the error.

 Table 3.3.2 - Comparison Between Actual And Interpolated Signal Harmenics

he f, I C(h ) f, I C(h
(actual) (actual) ; (interpolated) | (interpolated)
v 1 60.300 100.000 60.299 100.003
5 301.500 2¢.000 301.488 20.001
7 422.100 14.285 422.088 14.338
l— 11 663.300 9.091 663.282 9.125
L ,

Table 3.3.2 indicates the interpolation technique is accurate to within two one hundredths

of a Hz, with a magnitude error of less than 0.4% for the least accurate harmonic.
34 ‘Cenclusion To Chapter 3

In conclusion a practical method is demonstratzd to recover the Fourier
coefficients of a continuous signal from the sampled data of power system current and
voltage. It is developed in response to a need to measure accurately the harmonics of
loads opefating at variable frequencies. The technique is used to validate ceziain models.
The method is a new contribution, and is derived as.a variation on a well-known

behaviour of digital signal processing.
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Chapter 4 |
Mathematical Methods For Harmonic Analysis of Power Systems

4.0 Introduction To Chapter 4

This chapter introduces a variety of mathematical methods which when applied to
computer modelling assisf in the solution of harmonics. When a power system with
nonlinear loads operates with voltage unbalanced conditions, unbalanced harmonics
propagate throughout the system and appear as residual harmonics in the system neutrals.
These residual harmonics behave similarly to zero sequence currents and voltzges in that
they cause noise which can strongly affect communications and control circuits. They
also penetrate computerized control equipment through common mode noise mechanisms
appearing on the ground planes. To analyze unbalanced harmonics requires solving the
network on a multiphase basis.

Multiphase analysis of harmonics requires combining linear and nonlinear analysis
methods into a computer algorithm. The power system is separated into linear and
nonlinear portions and the two portions are analyzed with different methods. In the linear
network the harmonic producing loads are replaced with frequency-domain harmonic
current sources and in the nonlinear network the boundary with the linear network is
modeled by time-domain voltage sources. An interactive algorithm is applied to provide
an iterative solution to the voltage ahd current at the boundary points between the linear
and nonlinear portions of the circuit [33]. As this method requires a tremendous amount
of computer work, the solution method selected must be fast and efficient. The'apprcach

is to apply sparsity directed programming to the Zollenkopf bifactorization method of

inverting a matrix {11].
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4.1 Symmetrical Components Sequence Frame of Reference

Prior to discussing these various methods it is worth reviewing the method known
as "Symmetrical Components". To increase the generality of solution it is desirable that
the proposed method be able to handle systems with non-symmetrical impedances, that
is, systems where the phase impedances for particular devices are not the same in each
phase. Authors have shown that in such systems the sequence voltages depend upon the
currents in the positive, negative, and zero symmetrical component reference frame [61]. |
To illustrate this concept, consider the following equations where the subscripts a, b, and
¢ refer to phase quantities, and the subscripts 1, 2, and 0 refer to the positive, negative,
and zero sequence symmetrical components. The a operator is défined asa 120 degree

phase shifter. This is defined as,
j—s- (4.1.1)

The phase impedances and sequence currents are formulated to define phase voliage in

equation (4.1.2) given by,

a a2
E,=Z,1,+a*Z,1,+aZ,1, (4.1.2)
Ec =ZcIaO +aZcIaI + qucIaz

E =Z1,+Z.1,+Z,1

and the sequence voltages are given by,

EaO='§(Ea +Eb+Ec)
E, =+ (E,+aE,+6°E,) (4.13)
‘Ea2 =%(Ea +a’E,+aE,)
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Substituting (4.1.2) into (4.1.3) yields,

By~ 3 (242, +Z) g+ 3 (2, +6* 2, vaZ )L, + 3 (Z, 4 aZ, + a*Z)
1 1 1
E, =§(z trazZ,+a*Z,) 1, 3(z +Z,+Z,)1, -3-(2 +ra*Z,+az)l,, (414
Eaz=%(za+a22b+“zc)1 %(Z +aZ, +aZZ)Ia1+%(Za+Zb+Zc)Iaz
Since,

1+a+a?=0, (4.1.5)

it can be seen that for balanced phase impedances, most of the terms in equation (4.1.4)
drop out, leaving the sequence voltages dependent upon only current of the same
sequence. The sequence voltages for unbalanced impedances must be computed by
considering the currents in all three (zero, positive, and negative) sequences. While this
is a feasible computation, it would not save any computer work as compared to retaining

a phase frame of reference. From this reasoning it was elected to develop a method

which retained the phase frame of reference.
4.2 Applying Zollenkopf's Bifactorizatéion Method

When a power system has its components interconnected, the busses are directly
joined together by relatively few branches. This results in a matrix of the admittances
containing a large number of zeros. Computer programmers have utilized this fact for
decades to reduce the storage requirements for data. Mathematicians liké Zollenkopf
have devised sparsity directed methods of Gauss elimination for solving matrices which
avoid generation and storage of matrices containing a large number of elements. Thus
the zero elements (which essentially contain no data but are of topological interest) have

incurred a fair amount of thought and interest as to how to best use them. To solve
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power problems it is useful to invert admittance matrices to obtain impedance matrices.

The inverse of the bus admittance matrix is given by,

21 %12

21 L

Za1 Zn2

zln

Z2n

. zllll

4.2.1)

A number of ways are available to achieve this inversion, several of them being

based on Gauss elimination.

there is little difference in computational

A comparison of three methods in Table 4.2.1 indicates

effort between Triangularization and

Bifactorization to invert a matrix. However, when the Bifactorization method is modified

to improve the order of factorization and to invert Z Bus one column at a time, the

number of operations and storage requirements decrease significantly as shown in Table

4272,

Table 4.2.1 - Comparison Among Gauss Elimination Metheds (n Bus Network)

METHOD CPERATIONS STORAGE
Pivotal Gauss Elimination ~ n3 =~ n2
LDH Triangularization n3 =~ n2
| "3
Zollenkopf's Bifactorization n3 =~ p2
T3
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Table 4.2.2 - Operations and Storage Requirements For The Modified Bifactorization

“ METHOD OPERATIONS STORAGE
Modified Bifactorization 3 ﬁi Il_hzﬁi n . = nn,
applied to sparse harmonic -3 n 3 *h

load busses (n, )

Modified Bifactorization 2 n, = nn,

applied to sparse harmonic
loads and taking advantage

of improved ordering

One notable difference between the methods is that combining the triangularization
factors forms the original Yg;q whereas combining the bifactorization factors forms the
inverse. Advantage is taken of the Zollenkopf method to reduce the work required to
solve a network which contains only a few harmonic load busses. A modified
bifactorization method has been developed by the author [19] which permits formulation
of the ZBUS one column at a time, thus avoiding much of the work required for a full
matrix inversion and the storage of a full Zg;g. Advantage is taken of the order in
which the factorization matrices are created to store results for only those busses
supplying nonlinear loads. In a typical power system this achieves a considerable saving
in computational effort. }

Showing the factorization steps by means of superscripts, the Zollenkopf method
uses the fact that any niatrix can be reduced one row and one column at a time by

factoring out row and column factorization matrices. This is given by,
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1 0) p(l) _ y(
C()YBUS()R )=yW

CAY,, M R® = y® 422)

-1) RO -y
™y, O R® = Yo

At step n (corresponding to the number of columns in the matrix) we obtain the unity
matrix, given by, .

Y™ =y (4.2.3)
where, -

YW=, c® .y RD L RW L RM =y (4.2.4)

Pre-multiplying by the inverses of the column factors, then post-multiplying by the

column factors in reverse order gives,

Ygus RV ..R® R® ¢ c®, . cV=y (4.2.5)
Pre-multiplying both sides by YBUS-I yields the inverse matrix,

Rf” .R® R® c® _  c® ., D = vgu4! (4.2.6)

where the factorization matrices for step "k" are given by,

1 Cix T 1 ]
1 Cix 1
ciE |t R o I e b (4.2.7)
R o Ry - Ry, 1 .. Rgy
1 1
Cux - 1 1
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The column factor elements are given by,

- K-1
Y.m[ ]

CJK[K] D et vo—————
K-1
Yxx[ 1

The row factor elements for a symmetrical matrix are,

Re M = C; M » K#J , Regg=1

and the reduced matrix elements are given by,

Y K-11 y IK-1]
= K-1 1K KJ
Y”[KJ = Y”[ | -

K-1
YKK[ ]

(4.2.8)

(4.2.9)

(4.2.10)

Zollenkopf's method stops at this point and yields a fast method of computing the

inverse, but requires storing a very large Zgg matrix. In the next section a Z Bus

algorithm is developed which permits formulation of the Z Bus one column at a time.

The Z Bus is a key element in the development of the proposed method. The linear

portion of the system is modelled by an admittance network at all harmonic orders greater

than the fundamental. In addition all active loads are replaced either by passive circuit

elements or by injected current sources. This permits the direct solution of the network

voltages without having to resort to iterative loadflow solutions. The motivating factors

for using Z Bus are:

a) It can be obtained directly from the Y Bus admittance matrix.

b) It is directly suited for solution when the nonlinear portions of the network

are modelled as injected current sources.

c) With sparsity directed programming and the application of an advanced

Gauss elimination technique, it is fast.
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4.3 Modified Bifastorization Algorithm

An examination if an industrial power system will often reveal that there are very
few busses supplying harmonic loads hence there are few points at which harmonic
current is injected into the system. One bus is the connection to the utility. Other poinis
are the large rectifier loads and variable frequency drives. To assist the reader, the
modified bifactorization algorithm is described using an example power system with only
four busses where harmonic currents are injected. These busses are the incoming bus (1)
and three other busses (L), (J), and (K) supplying harmonic loads. For this example we
need concern ourselves with finding only four columns of the Zg;;g matrix, namely
column 1, column L, column J, and column K, and further require only the injected
harmonic currents I, I; , I, and I¢ to solve all the bus voltages.

Zgys is found one column at a time by multiplying the factors of the inverse in
equation 4.2.7 times the appropriate column of the unity matrix U. For example the kb

column of Z Bus is given by,

_07
Zg]
. 0
Zee| =RO..R®_ROCO_c®_ cO|1 (43.1)
0
-ZNKI
0.

where the factors are multiplied by the kth column of the unity matrix.
In implementing the above, a dynamic ordering technique is employed in which
at each step of factorization the reduced matrix is searched for the unfactorized column

containing the fewest elements, and this column is then factorized next. This method
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keeps the reduced matrix sparse. Modifying this procedure to factorize the harmonic lged
busses last eliminates all the column factors in equation (4.3.1) except those for the
harmonic busses. In the example only coluran factors for the harmonic load busses 1, J,
K, & L need be considered, provided these busses are factorized as steps N-3, N-2, N-1,
and N. This is made possible because multiplying a column factorization matrix of the
"J* column by the "K" column of U results in the "K" column of U. The row factors
have a different topology and all of them must be intiuded. Placing the harmonic load

bus factors last modifies equation (4.3.1) to give,

o
le.‘
: 0]
Zeg| = RO.. RB_ R C® cW-1) cN-2) cN-3 |4 (43.2)
0
LZNK
0]

To solve the particular example, the Zpg;q columns created in (4.3.2) for the four busses

1, J, K, and L, are injected with current, as shown by,

i Vl ] -Zl 1 ] .ZEJ.1 -ZIK1 -lej

V,| 1Z, Z,, Zx Z,
SRR IR R /A R Yl I Y (4.3.3)

Vil 2w Zys, 1Znk Zn

Since this process has to be repeated for each harmonic of interest, preserving '

sparsity is important. The first 80 harmonics must be solved to comply with the utility
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regulations and this requires storing the contents of eighty voltage vectors.

4.4 Establishing The Relative Angle For a Harmonic At a Particular Bus

It is necessary to establish the phase angle of the fundamental cdrrent at a bus to
provide the reference phase angles at that bus for the injected cﬁrrent harmonics. In the
frequency domain the angle of a harmonic component depends upon two variables. The
first is the relative phase angle of its fundamental with respect to some arbitrary system
reference and the second is its own angular displacement at the harmonic frequency. A
phasor method suitable for balanced systems [15] is extended in this chapter to multiphase
unbalanced systems. In this section a method is developed to provide correct phase
shifting for harmonic currents injected at harmonic load busses. |

To develop this concept consider a time domain real valued signal comprising

harmonic components based upon a standard Fourier summation. This is given by,

fO=Cu+Y [ahcos(Zh;t ) +bhsin( 2”;’ )] | (4.4.1)
where,

T
C, - -,} [Fcryar (4.4.2)
0

T )
a,,=%ff(t)cos(2hut )dt
0

T (4.4.3)
T
bh:é{f(t)sm(”;t)dt (4.4.4)
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The same harmonic series expressed in terms of the magnitude and phase angle for a real

valued signal is developed by other authors [50] as,

fBO=Cu+¥ Cpoosjk(wt)+d,]  (@4s)
h=1

where,

C4. = magnitude of the direct current component
C,= J ah?- + th = peak magnitude of the harmonic term,

h = harmonic order,

W, = -2—;- = fundamental frequency, and
¢, = harmonic phase shift, tan~! —Q
a

As current flows through a network it is phase shifted by various mechanisms, a
typical one being the vector addition of winding currents in the lines supplying the delta
windings of the delta-wye transformers. This phase shift can be expressed as a time shift

ty. which when substituted into equation (4.4.5) becomes,

f(t't0)=Cdc+E C_hcos[h((_olt—(,)lto)q-wh] (4.4.6)
h=1

where it is understood that W, is the characteristic angle associated with harmoni.c h for
a particular shape of waveform required by a specific load, when t; equals zero. The
fundamental phase shift is measured in this thesis relative to the A phase voltage at the
swing bus. A load bus has a voltage angle & with respect to the swing bus voltage and

its current injected into a bus is related to the bus voltage by the angle @ This is given

by,
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Wty =5+ (4.4.7)

For thyristor loads this latter angle depends upon the firing angle o and the overlap angle

p, which can be approximated by the relationship,

f=c+L 4.4.8)
L ( )

The relationship between the injected angle ¢,, the characteristic harmonic angle ¥, , the

fundamental current power factor angle 8,, and the fundamental bus voltage angle 5,,

is shown in equation (4.4.9),
¢, =¥, -h(5,+6;) (4.4.9)

The reason for casting the equations into this form is to permit an analysis of the
network to be performed for each harmonic of interest, and then to recombine the signals
at each bus of interest. To recombine the harmonics properly necessitates incorporating
the phase shift of the fundamental into the calculation of the phase angle of each
harmonic.

It is necessary to run a three phase loadflow at the fundamental frequency to
establish the fundamental phase shift of voltage and current on each bus. Linear loads
may be modeled in the traditional fashion of specifying the waﬁs and vars at each bus.
The nonsinusoidal loads have to be subjected to a preliminary Fourier analysis to estimate
the current and voltage at the fundamental frequency and from this the resulting watts and
vars at the fundamental frequency are estimated. Losses can be neglected for
nonsinusoidal loads to obtain a starting value for the study. The characteristic harmonic
magnitudes and angles must also be established for the load waveforms.

Having thus established the relative argles of current and voltage at each bus,
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subsequent harmonic calculations may proceed. To develop this concept, consider a
system in which it is desired to find the relative phase angle of a harmonic on the primary
and secondary of a particular phase of a three phase delta-wye transformer. It is known
that under balanced conditions the fundamental will shift 30 degrees across the machine.
Under unbalanced conditions the phase shift will differ on each phase and will be a

function of the addition of the winding current vectors at each vertex of the delta.

x BUS 4

>l ]

b

BUS 2 BUS 3

Figure 4.4.1 - Example Network To Demonstrate Shifted Harmonic Angles

With reference to Figure 4.4.1, assume that a balanced condition loadflow has
established the Table 4.4.1 voltages and currents at the A phase buses. The SCR loads
have equal magnitudes, firing angles, and overlap angles such that their current lags their

voltage by 25 degrees.
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Table 4.4.1

Fundamental Phase A Cunrent & Voltage (Balanced Conditions)

Bus 1 Bus 2 Bus 3 Bus 4
I> V 1 angle 0 -10 -10 -40
“ I 1 angle -35 -35 -35 -65

To determine the characteristic harmonic and magnitudes of the load current, a Fourier
analysis is made of the load current with assumed zero phase shift. In this example the
load waveforms were assumed to be quasi-square waves (square waves with 120 degree
lobes) as shown in Figure 4.4.2 and of equal magnitude for each SCR load. Taking
fundamental phase shifts into account, the harmonic angles can be established for the

harmonic currents injected by each SCR. The first few harmonic orders are tabulated in

Table 4.4.2.

Table 4.4.2

Fourier Aralysis of Load Current (No Phase Shift)

=

Harmenic Order

Relative Magnitude

Characteristic Angle Y

1

100% 0 degrees
N 5 20.0% 180 degrees
7 14.3% 0 degrees
11 9.1% 180 degrees
13 7.7% 0 degrees
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| 2%

L\m,._ SCR 1

LOAD BUS ,
pt-—————— 2 T ————-ﬁ

t, =20

Figure 4.4.2 - Example Quasi-Square Wave Loads - W, Established When t, = 0

Table 4.4.3 compares the phase angles of current injected by the converters. The
harmonic currents injected at Bus 4 are phase shifted by the Delta Wye transformer. The
1st, 7th, and 13th are positive sequence hence undergo a shift of +30 degrees, while the
5't'h, and 11th are negative sequence hence undergo a shift of -30 degreeé. The h‘armonicv
currents injected at Bus 3 undergo no phase shift when passing through the Wye Wye

transformer. Table 4.4.4 compares the inverter currents after they have been shifted by

the transformers.

Table 4.4.3 - Harmonic Angles of Cunrents Injected by SCR 1 and SCR 2

Harmonic Order Bus 3 ¢y, Bus 4 ¢,
1 | -35 | -65
5 +5 -] 45
7 +115 -95
11 - +155 +185
13 -95 -125

102



Table 4.4.4 - Hamnonic Angles of Currents at Transformer Primaries

Harmonic Order Wye Wye Primary &, Delta Wye Primary ¢
1 | -35 -35 |
5 +5 -175
7 +115 -65
11 | +155 +155
13 -95 -95

Note that the transformer primary Sth and 7th harmonic currents are 180 degrees out of
phase and will cancel one another at Bus 2. The 11th and 13th transformer current
harmonics are in phase and will be additive at Bus 2. This behaviour gives rise to the
use of 30 degree phase shifting transformers to provide 6 pulse harmonic cancellation.
It is only successful if the two 6 pulse group loads are equivalent in magnitude and if

they have similar firing angles.
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4.5 Three Phase Loadflow

The standard loadflow equations need to be extended to formulate solutions for
A, B, and C phases as well as the neutral buses. In a three phase loadflow there are four
bus types of primary interest referred to as:
"Load Busses" power and vars held constant, and
"Generator Busses" power and voltage magnitude held constant,
provided the generator is operatiﬁg within a certain
+/- var range,
"Swing Busses" voltage and angle held constant,
"Neutral Busses" | voltage dependent upon the voltages of electrically
attached busses.
Utilizing a Gauss-Siedel formulation of the nodal admittance equations one can

define the key parameters at each of the bus types as follows:

Load B _ 1 (Px% _ 5 4.5.1
oad Busses Vg = v - IR M7 J=K 4.5.1)
N
Generator Busses Qy = —Imaginary[(Ym Vg + E ) g V_,] VK'] J=K (452)
J=1
N
Swing Busses P,-jQ, = Y.V, |V, J=K (4.5.3)
k ~J &k PR AC M
1 N
Neutral Busses Ve = — ( - Z Y, VJ] J=K (4.5.4)
' YKK J=1

Note that the neutral bus is a special case of a load bus with no current injected.
It is formulaied to avoid dividing by the bus voltage which in most systems will be zero

~or a small value close to zero. The equations are established on a per phase basis, hence
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all voltages are expressed as line to neutral, all complex power is expressed as watts and
vars per phase, and current is per phase.

The following worked example assumes the supply voltage in the system depicted
in Figure 4.4.1 to be unbalanced 600 V with phase "A" and "C" at nominal (347 V line
to neutral) and phase "C" 2% low (340 V), but with their phasors 120 degrees apart, and
also assumes the following system characteristics:

Source impedance z=j 0.1, y = - j 10 per unit on 750 kVA base

Transformers z=j 0.05,y =-j 20 per unit, 1 to 1 voltage ratio, 750
kVA each

SCR 1 600 kVA load, apparent power factor 0.8 (160 -+ j 120 per
phase)

SCR 2 450 kVA load, apparent power factor 0.7 (105 +j 107 per
phase)

With this information we are able to construct the Y Bus admittance matrix which
describes the system. This matrix is assembled from the sub matrixes describing major
components. The SCR transformers are of particular interest as they contain ungrounded
neutrals. In formulating a solution each transformer matrix may therefore be constructed
in accordance with the method in Chapter 2 to either retain or eliminate the neutral
busses. Removal of the neutral by matrix reduction is shown on the following pages.
The Delta-Wye transformer shown in figure 4.5.1 is expressed as an admittance

matrix described by equation (4.5.5).
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Figure 4.5.1 - Transformer Core Matrices Connected in Delta Ungrounded Wye
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The admittance matrix for the delta-ungrounded wye transformer in figure 4.5.1 is given
by,

2a 2b 2c 4a 4b 4c 4n

2 Yy Y Yy X .
3 3 3 ,'/3' ﬁ
Sy 2y 0y Yy Y
3 3 3 ‘/3 ﬁ
Sy Yy 2y oy -y
3 3 3
Ypy = y V3 V3 (4.5.5)
Yy
- == y -y
V3 V3
- X y -y
V3 V3 )
Yy Yy
- - - y -y
V3 V3
: . -y -y -y 3y

By partitioning the matrix and reducing to eliminate the neutral bus this becomes,

2a 2b 2c 4a 4b 4c
2y ¥y ¥y X X 1
3 3 3 /3 V3
_y 2y Yy >
3 3 3 /3 3
2y LY 2y 20 [Yops Yor
Ypy = 3 3 3 V3 V3l = Ym'zz YD ¢ (4.5.6)
DY42 DY44
-y Y 2 > _X
V3 3 33 3
LY oy Yy 2
/3 3 3 3 3
A -y Ly Y 2%y
| V3 v3i 3 3 3

Pumd
(o]
3
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Figure 4.5.2 - Transformer Core Matrices Connected In Ungrounded Wye - Wye
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The ungrounded wye-wye transformer shown in figure 4.5.2 is described by an
admittance matrix given by,

2¢ 2b 2¢ 2n 3a 3b 3c 3n

'y - - -y -y - -y ]
-y - -y -y -y
- -y -y - -y ¥ ;
Yw=|-y -y -y 3y ¥y ¥y »y -3y (4.3.7)

-y - - ¥ ¥ -y

-y -y -y -y

- -y ¥y - y -y
'y ¥y y -3y -y -y -y 3y

By partitioning the matrix and reducing to ¢lsminate the neutral busses this becomes,

2a 2b 2¢ 3¢ 3b 3c
(2y _y _y _2y ¥y 3]
3 3 3 3 3 3
2y 2y oy ¥y 2y oy
3 3 3 3 3 3
2 2 Yo, Y-
Y = n-Z‘ —-Z _y_ l _y. —._.y. = yyz2 yrzs (45.8)
Yy 3 3 3 3 3 3 Y Y
vrz Lyrss
_2y 0y oy 2y _y .Y
3 3 3 3 3 3
Yy _2y Sy 2y
3 3_ 3 3 3 3
y ¥y _2 _y _¥ 2%
| 3 3 3 3. 3 3

The assumption that in this example the source impedance has no mutual coupling from
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The assumption that in this example the source impedance has no mutual coupling from

phase to phase results in

la 10 1c 2a 2b 2c

y » » — y - -
y _ I A _ \Ysu Yszz]  (45.9)
SOURCE ~ . . . . - - R
Y Y Yoor Y5

The source admittance matrix and the transformer admittance matrices can be added
together to form the system admittance matrix. Note that the column and row positions

of the sub-matrices require adjusting 0 conform to the bus topology of the system. The

result is,

Yo ) P )
v - Yoo (Ys22 * Yyzo + Yoreo) Yywes Yypos - (4.5.10)
BUS . Y. Y
YY. YY33
i - YDY42 ) YDY“.
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Substituting the numerical values for the example results in,

la 16 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c

(10 - - -10 . .

- 10 - - -10 - . .
10 -10 - -
-10 - . 10 _40 _40 _40 20 20 _20 20 .
3 3 3 3 3 V3 V3

~10 _40 110 _40 20 _40 20 _2 20

3 3 3 3 3 3 3 3

. _y0 -40 _40 110 20 20 _40 20 _20

3 3 3 3 3 3 /3 /3

s 40 20 20 4 20 20 . . . @.5.11)

- 3 3 3 3 3 3

20 _40 20 _20 40 _20 ]
3 3 3 3 3 3
20 20 _40 _20 _20 40
3 3 3 3 3 3

20 . 20 . 40 20 _20

) 3 3 3 3

. 20 _20 . -0 40 _20

3 3 3 3 3

20 _20 | . . _20 _20 40

3 3 3 3 3

Using a computer to solve the loadflow to a voltage mismatch of iess than 108 per unit
results in the voltages and currents shown in Tables 4.5.2 and 4.5.3 for the example
system. The bus identification cross references are tabulated in Table 4.5.1. As the
secondary nodal voltages of the transformer are otherwise indeterminate, it was elected
to set the secondary neutral of the delta-wye transformer to zero voltage and to let the
secondary voltage of the wye-wye neutral match the primary neutral voltage.

To conclude, the three phase loadflow is used to establish the magnitude and phase
angle of the fundamental component of the load currents at the load busses. Reference

voltages must be set for floating neutrals.
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Table 4.5.1 - Bus Cross Reference Identification For Example

Bus Matrix Node Nunivers
1a, 1b, 1c 1,2,3
2a, 2b, 2¢ 4,5,6
3a, 3b, 30 7,8,9
4a, 4b, 4c _ 10, 11, 12
2n (Wye Wye Primary Neutral) i3
3n (Wye Wye Secondary Neutral}) 14
4n (Delta Wye Secondary Neutral) 15 J

Table 4.5.2 - Fundamental Load Curmrents For Loads In Example System

Node Load Cumrent Load Angle
(Amps) (Degrees Relative To Bus
1 Voltage)
7 676.17 313.76
8 694.82 193.36
9 676.17 73.76
10 504.69 275.93
11 510.74 155.35
12 1 512.20 56.18
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Tabie 4.5£.3 - Fundamental Voltages For Example System

» V (per unit) I Angle (Degrees)

1.0000 0.00
0.9800 240.00
1.0000 120.00
0.8813 353.07
0.8593 232.80
0.8813 113.07
0.8523 350.63
0.8295 230.23
0.8523 110.63
0.8560 321.47
0.8458 200.89
0.8434 81.72
0.007457 63.35
0.007860 64.77 “
15 0 0 “
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4.6 Applying Diakoptic Methods

From a computational perspective using time domain state space methods is slower
than using frequency domain matrix inversion techniques to solve linear networks of
comparable size. On the other hand, certain nonlinear elements and loads whigh are
intractable o fre.quefnby domain techniques can be solved by time domain niethods. Itis
advantageous fo divide thée network into linear and nonlinear portions so that each portion
may be solved By the inost applicable method. This division may be accomplished by
tearing the network at the busses supplying nonlinear loads. Diakoptic equations may be
applied to either mesh or nodal methods of analysis for linear networks [12]. By making
certain approximations and solving with an iterative calculation the method is extended
in this section to accommodate nonlinear portions of the network.

Figure 4.6.1 illustrates an example network which has been torn into two portions,
one portion which is amenable to solution by nodal analysis and the other portion which

is amenable to mesh analysis. The mesh portion will replace its connections to the

origina network with hypothetical voltage sources, €; and the nodal portion will replace
its connections to the original network with hypothetical current sources, i"a. The nodal

portion of the network may also contain known current sources, I, and known voltage
sources E, ; and the mesh portion of the network may also contain known current
sources, Iﬂ and known voltage sources, Eﬂ. " The problem is to evaluate all branch
currents iB in the mesh portion and all nodal voltages v in the nodal portion. In this
development lowercase variables are used for the unknown voltages and currents and
uppercase variables are used for the known voltages and currents. The subscript o0 will
refer to the nodal network variables and the subscript B to the mesh network variables.

Single subscripts designate vectors and double cubscripts -designate matrices.

114



Q00 ~

=] -

-
c

a) Original Network

e

i
—
oy

(4] 900 [c] == c 000 {e]

lC. ’
+

: g (&) S

oo ——Yd) =— 1]
g

Iy Tld

b) Nodal Network ¢) Mesh Network
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The first step is to define the hypothetical current and voltage in terms of the

unknown loop currents and node voltages. The loop currents are given by,

)
]

-

L 2 (4.6.1)
b=t
and the nodal voltages are given by,
é.=v. -V, (4.6.2)
This is expressed in matrix form by using connection matrices, defined as,
i, =Copip (4.6.3)
5 - T
&, = -CcT., v, (4.6.4)

where the subscripts denote "nodal" and "mesh" connections rather than rows and

columns, hence,

Cpa = Cap (4.6.5)
For the mesh network,
Zypig =Ep + € (4.6.6)
And for the nodal network,
Y, v, =1 +i, (4.6.7)

Substituting for &; in (4.6.6) and {a in (4.6.7) yields,
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Y, . v.=1,* CaB iﬂ

< _ _ T
Zypig=Eg ~Clg v,

(4.6.8)

(4.6.9)

Placing these in compound matrix form results in the fundamental equations of diakoptics:

Y

ac

T
C e

I

Eg

g|[vel

c

‘DJ

-C
Zpp
Premultiplying equation (4.6.8) by the inverse of admittance yields,

Ve = Yoo (1, + Copip)
Substituting for v in equation (4.6.9) results in,

T - . T S

a « g

Let,

5 Ty -l
Zyy=Z4,+Cy, Y, C

« 1)

Then iB can be expressed completely in terms of known quantities.

. 5 lp o Ty -1

Substituting (4.6.14) into (4.6.11) solves the unknown nodal voltages.

(4.6.10)

(4.6.11)

(4.6.12)

(4.6.13)

(4.6.14)

The above described procedure works for linear networks. In this thesis the mesh
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portion of the torn network is known to be nonlinear. As a result any expression which
attempts to formulate or invert an impedance matrix for the mesh network must contain
linearized values for the branch impedances. The direct solution of the diakoptic
equations using linearized values will not give correct results. However, if equation

(4.6.6) is extended to include differential equations in the time domain it becomes,

| di
; Bl= 3 4.6.15

where LBB is nonlinear for the magnetizing branches, varying as a function of flux

linkages as described in Chapter 2. By recasting the equation as,

di 1
Bl- : 5 -

to solve for the time differential of current, and by taking small time steps, the recursive
relationship,

k+1) _ : (B diﬂ(k) (4.6.17)
lg" =gt i At e

solves for the unknown currents.

If equation (4.6.7) is extended to include harmonic currents in the frequency domain, it

becomes the summation,

N N N -
Y Yoay Vet = 2o Lay * 22 ey (4.6.18)
h=1 h=1 h=1

which can be reformulated as
N

N .
,; Vagm = E [(Yaa(h)"l) (Ia(h) + {a(h))] ‘ (4_6'19)

to solve for the unknown voltage.

It then is possible to obtain a solution using iterative methods. The nodal matrix can be
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solved directly with a Z bus Gauss elimination method provided the {a values are held

constant during any one iteration, and a method is implemented to update them between
iterations. The method devised was to solve the differential equations of the mesh
network in the time domain and to calculate the injected currents by a Fourier analysis

of the resulting current waveform. These currents were injected into the nodal network

to solve the nodal voltages. The voltage source €, is expressed in the time domain after

all harmonics in the nodal network have been solved for a particular iteration. These
voltage values are then used to obtain an updated solution of the mesh network. In this
fashion the iterative solution proceeds until convergence to the desired accuracy is

obtained.
4.7 Conclusion To Chapter 4

In summary, several mathematical methods are developed, then synthesized to
obtain a harmonic solution algorithm. The symmetrical components frame of reference
does not have any computational advantage over the phase frame of reference for solving
large unbalanced networks, although it is used in chapter 2 for the derivation of models
for rotating machines which have balanced impedance. Zollenkopf's bifactorization
method is adopted for Gauss elimination and is modified to permit solving Z Bus one
column at a time with a preferred order of factorization which reduces computational
effort. A three phase Gauss-Siedel loadflow algorithm is implemented to permit the
solution of the correct phase angles for voltage and current at the fundamental frequency.
This is combined with the shifting theorem utilized in digital signal procéssing to obtain
the correct phase angle of injected harmonic load currents into the nodal admittance
matrix for each harmonic order. Finally, the dirkoptic equations for linear networks are
developed and extended to an iterative method for solving networks containing nonlinear

components.
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Chapter 5

Synthesis of a Harmonic Selution Algorithm

5.0 Introduction To Chapter S

The problem of calculating power system harmonics cannot be solved without the
speed and accuracy of the computer. The importance of implementing mathematical and
numerical methods as computer programming code cannot be overstated. No results will
be obtained without this crucial step. A description of the computer program and relevant
details of the algorithms are included here to provide a picture of the solution technique.
The models described in the preceding chapters have been incorporated into program
subroutines, which have been combined to solve the harmonic voltages and currents in
the unbalanced, three phase network.

To achieve computational speed and reduce storage, a sparsity directed
programming technique is used. The sparse storage scheme and the method of adding
elements to it is described in the next section. The Zollenkopf bifactorization is
implemented with a semi-optimal ordering scheme to minimize the number of new
elements created during matrix reduction. The search strategy used during the reduction
step of the matrix factorization is also described.

The three phase load flow subroutine and the nodal network solution require two
distinct Y Bus formulations. The Y Bus for the load flow excludes the impedance of the
motors and generators as these devices are modelled by injected current in the form of
scheduled complex power. The load flow also requires reformulating the Y Bus in the
solution of the neutral bus voltages. In formulating the nodal network harmonic Y Bus,
the matrix is singular unless at least one bus on each side of a transformer is connected
to the reference bus. The problem does not occur if motors, generators, or shunt
admittances are present, or the neutrals of the transformers are earthed. The problem
arises in the case of a harmonic producing load supplied from an ungrounded isolating

transformer where the load is modeled solely by injected currents. One possible solution
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is to model the load with a Norton equivalent circuit which places a shunt reactance
across the injection current source. This approach has been described for a static var
compensator [67] and for the magnetizing branch of an isolating transformer supplying

a six pulse bridge [40].

Mesh Network v(t) Inverse
Time Domain Solution Fourier Transform
. [ 1
i(t)l
I(h) Fourier
Transform
P, Q & No

Three Phase Flow
Solve Fundamental
Voltages & Currents

Converged?

V1, 11
4

Nodai Network -
Frequency Domain Solution V(h)

Figure 5.0.1 - Flow Chart For Harmonic Solution Algorithm

Figure 5.0.1 shows the interaction between the three phase loadflow and the
solutions of the nonlinear mesh and linear nodal networks. The process begins with an
initial three phase load flow which is used to establish the angles of the injected
fundamental current at each bus. The mesh network is solved to determine i(t) the current
waveforms in the time domain.. These are converted to the harmonic frequency domain
currents by Fourier analysis. The fundamental power, P, and reactive power, Q; are also

calculated for the six pulse converter loads. . A three phase loadflow is calculated to
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establish the fundamental voltage, V(1), and its angle, 8, relative to the A phase swing
bus, and the fundamental current, I(1), and its power factor angle, 0, at each bus relative
to the voltage at each bus. The harmonic currents, I(h), are then injected into the nodal
network to calculated the harmonic voltages, V(h). The harmonic voltages are combined
-with an inverse Fourier transformation to establish the time domain voltage waveform,
v(t), which is used in the solution of the mesh network differential equations. The
iterative process is stopped when convergence is obtained.

A balanced test case is run to validate the program and the results are compared

to results from the Micromatrix Research "Software for Power Systems" (SPS) program.

541 Matrix Sparsity Storage Scheme

The linked list storage scheme is similar to that described by Brameller, Allan,
& Haman [11]. The nodal network and three phase loadflow admittance matrices contain
diagonal elements and off-diagonal elements. The diagonal is full but the off-diagonal
positions contain many zero elements in a typical power system. Computational storage
can be decreased and computational speed can be increased if a typical matrix is stored

in a series of linked lists. Such a matrix is given by,

(5.1.1)

Ydp Yt
Yt Ydp

where the subscript "dp" refers to the "driving point" diagonal elements and the subscript
"t" refers to the "transfer" off-diagonal elements, The admittance, Y is stored as
conductance, G and susceptance, B. The diagonal elements of Y Bus are associated with
a counter "NUM" which tracks the number of off-diagonal elements associated with a
particular column, and with a pointer "ICOL" which directs the program flow to the
location in the off-diagonal storage scheme where the first off-diagonal element associated

with a particular column is stored. If there are no off-diagonal elements, "ICOL" is set

to zero to act as a flag.



The diagonal lists,

]

[de

i e

are stored as vector arrays, and have a dimension equal to the number of busses plus one.
In the diagonal element storage scheme the array subscript refers to the particular column
hence no column index is required.

The off-diagonal elements are associated with a matrix position index, "IROW"
which tracks the row position, and a pointer "NXT" which directs the program flow to
the location in the off-diagona! storage scheme where the next off-diagonal element
associated with a particular column is stored. If there is no other element, the "NXT"

pointer is set to zero to act as a flag. The off-diagonal lists,

A =

are stored as vector arrays, and have a dimension which is dynamic and limited only by
the storage capacity of the computer or the ability of the software to allocate storage. In
the off-diagonal lists, the subscripts of the "GT", "BT", "IROW" & "NXT" arrays are the
same for any particular element stored, {tence the subscripts act as links between the lists.

A program flow pointer "L" is wsed to tell the program where the next available
storage space is located. As each matrix ¢lement is calculated, it is either placed in the
"driving point" lists (if on a diagamal) or is placed in "transfer” lists (if it is an off
diagonal of the matrix) and L is incremgnted accordingly. Once all elements of a column
have been stored, the NXT value of the final element is set arbitrarily to zero to serve as
a flag to alert the program that it has come to the end of a particular column. Figure

5.1.1 illustrates some of the pointers and links utilized in the sparse storage scheme.
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Gdp(1) icol(1) Gt{1) irow(l1) nxt(1)
® . [ ] * L ]
° . < e . .
pointer
° . = L . ° .
Gdp(k) | — | icol(k) } — ° . . .
link hink link
® = I L ® = L [ = L °
® © —l— Gt(L) — {jrow(L) | —® | nxt(L) | —
[ g o ® L J L d
G N Y icol(N
dp(N) icol(N) * link * link ¢
® = R ® = R .
-~ GUR) ——® | irow(R)] — = | nxt(R)
®
[ ] L 3 [ ]
o Y .L . ™y -L & Y A4
pointer = R

Figure 5.1.1 - Typical Pointers and Links In Sparse Storage Lists

The elements for column k are stored as follows: The driving point conductance
is stored in location Gdp{k) which is linked to ICOL(k) by the array subscripts. The
contents of ICOL(k) = L, which points to the location of the first transfer conductance
stored in Gt(L). This array is linked to IROW(L), whose contents indicate the row of the
original matrix associated with the transfer conductance. The contents of NXT(L) = R,
which points to the location of the next transfer conductance element stored in Gt(R).
The susceptance values are stored in the Bdp array linked to Gdp, and in the Bt array
linked to Gt.

The "Add" subroutine described in figure 5.1.2 illustrates the bookkeeping
associated with the HYBus subroutine. There are three cases for adding an element. The
first case occurs if the element is to be added to the matrix diagonal admittance. The
second case is if the element is to be added to an existing element on the matrix off-
diagonal. The third case is if the element is a new off-diagonal matrix element. The first
two cases are straightforward as the storage lists and pointers do not change in length or

position. The third case requires the lists' pointers and counters to be updated.
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\. Call Subroutine

Gdp(col)=Gdp(col)+G
Bdp(col)=Bdp(col)+B

/ (G,B,row,col)

| token:——icol(col)
1=1 Retum>
- 1
- .. Then Gt(token)=Gt(token)-G
M irow(token)=row ™! Bt(token)=Bi(token)-B
Elsey %
‘ Update pointers
All list If icol(col)=0 then
searched Yes icol(col)=L
J = num(col)? else
' nxt(prev)=L
end if
. . : irow(token)=row
prejv—i:-olken nxt(token)=0
- )= D+1
token=nxt(token) é num(co )—r;um(co )
Be:ore data is overwritten, ' token=L
move L to next free location If nxt(token)=0 then
but if free location is at end L=1+1
of list then increment L nxt(L)=0
else
L=nxt(token)
end if

Figure 5.1.2 - Flow Chart For The Add Algorithm In The HYBus Subroutine
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5.2 Bifactorization With Semi-optimal Ordering

Semi-optimal ordering is defined as a process in which, at each step of
factorization, the busses are searched to find the bus with the fewest number of transfer
admittances connected to it. This tends to minimize the number of elements contained
in the resulting row and column factors. This method is adopted in the "Order" and
"Factor" subroutines, and gives good results for the radial topology power systems
investigated. A description of the ordering algorithm is shown in figure 5.2.1. The order
of factorization is stored in ORD to permit a subsequent algorithm to extract the column
and row factors in the correct sequence. As each column is factored a flag is set so the
column will be skipped during subsequent factorization searches.

In bifactorization, a reduced matrix is formed from the old matrix as the factors

are calculated. Each new element in the reduced matrix,

Yb’
Yinew = Yijon * Y, Y. (5.2.1)
Kk

is changed from its old value only if the remaining terms in the formula are non-zero.
In the matrix, the diagonal (or pivot) term Y, always exists and is non-zero due to the
way the matrix was formed from the Y Bus matrix. This algorithm therefore first
identifies the "k"th column as the one to be factored. It identifies Y, from Gdp(k) and

Bdp(k) in the storage scheme and calculates the column factor diagonal element,

(5.2.2)

The row factor elements, Rkj, are then calculated by searching all other columns ,
skipping any column already factored, to search for elements ij in ROW "k". If an ij
is found, the row factor element,

R, = -YyCy (5.2.3)
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Initialize all elements of
FLAG and ORD to zero
NN=1

¥

— C=]
e NN=NN+1 Lo MIN=N+1
e =C+1
[ |
/ Has column already
been factored
Yes T~ FLAGO)=1?
2
No
< NUM(C) <MIN ? >—
YesI
MIN=NUM(C)
=C
% ]
Have all columns
been checked
No C=N?
Yesl
ORD(NN)=K, FLAG(K)=1
Call Reduce Subroutine
Call Factor Subroutine
Have all columns
been factored
No =N ?

Figure 5.2.1 - Flow Chart Fer Order Algorithm
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is stored temporarily in scratchpad COLUMN "N+1". This avoids over-writing data in
the storage scheme which will be required for various remaining calculations. Element
ij is then deleted from COLUMN "j" and column "k" is scanned for the off-diagonal

elements, Y;;, .

Figure 5.2.2 forms the basis for the search logic of the algorithm. As each Y, is

found, its ROW location is recorded as "i". Next column "j" is scanned to see if it

contains an element Y;; in row "i". This scan must include the diagonal as well as the
off-diagonal elements in column "j" due to the relationship of Y;; to Y, and ij, namely

that the "i" in Y;; and the "j" in Y; determine the address of Y;;.

Col i Col k
Row i Yij ——-— Yik o °
R
Row k Ykj ——-— Ykk ° .
e ° ° ° .
° . e ° e

Figute 5.2.2 - Bifactorization Search Scheme For The Factor Subroutine

This process is continued until a2 new Y;; in column "j" has been calculated which
corresponds to every Y;;, in column "k". The algorithm then continues its search of

columns looking for the next ij in row "k" and the process of calculating the \(ij terms

is repeated. ‘The column factor elements,

Cp=-Y,Cu (5.2.4)

are computed and at the same time the associated Y;, terms are deleted from column "k".
The row factor elements, Rkj, are then transferred from temporary storage in the
temporary column N+1 to permanent storage in column "k", and the N+1 column is
emptied, ready for the next factorization. A new column is then selected for factorization

and so on, until all columns have been factored. Once all the row factor elements, Rkj,
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have been calculated and all the elements, Yij: of the matrix have been reduced, the
real and imaginary parts are stored in the Gyp and By, linked lists, and the real and
imaginary parts of the Ry; row factor elements are stored in the G, and B, linked lists.
The original harmonic Y Bus matrix elements are overwritten to save storage space. The

ij elements are the transpose of the Ry elements and need not be stored.

53 Inverting The Matrix One Column At A Time

A review of the pertinent equations provides a starting point for describing the

Inyert subroutine. It is desired to solve the voltage in the equation,
YV=1 (5.3.1)
by premultiplying by the inverse of Y to obtain the form,
v=Yu (5.3.2)
This is directly calculated by substituting the row and column factors which results in,

v=fRD  R® RO ™, . c®. . V1 (5.3.3)

where the numbers in brackets refer tc the order of factorization. One column of the

inverted matrix,

o
[Z1x]
Zee| = RO R® _RMC® CH-D CW-2 cW-31 (5.3.4)
0
Zng
0,
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Set up Vector B as the
Call Invert(Z) Zth ;90111.1:11:11 olg tlr:‘e Unity matrix
to find Column S -0 RS -
Z of Invert Y Bre(1)=0, Bim(I)=0
Next 1
Bre(Z2)=1,1=1
I=]+1
Reconstruct the column factors — ?
fiom the order of ORD by using ‘ l;(ﬂ?__%g(ll(i)
IROW as the row address 0 1=1
and k as the column address

M=M+1

N06

Cik=Yt(token) ?
B(IROW(ioken))=
B(IROW(token))+B(k)*Cik
token=NXT(token)

Ckk=Ydp(k)
B&)=B(k)*Ckk

Figure 8.3.1 - Flow Chart -Invert Subroutine - 2) Reconstructing the Column Factors
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I=1+1

Reconstruct the row factors from J=N-I+1 1
the reverse order of ORD by using k=ORD(J)
IROW as the column address token=icol(k)
and k as the row address M=1

Yes

M=M+1

NOF

Rkj=Yt(token)
B(K)=B(K) +B(IROW(token))*Rkj
token=NXT (token)

The B vector now contains the
elements of column Z of
the inverted Y Bus matrix

Figure 5.3.2 - Flow Chart -Invert Subroutine - b) Reconstructing the Row Factors
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is all that is required to find the component of voltage,

-01
VI(K)-] H
Vz(x) 0
: | = RO_R® RWMpo®) oW-1) cN-2) cN-3)|q]. I (5.3.5)
0
L.VN(K).
0]

at each bus contributed by the current at one particular bus. This is implemented in the
flow chart for the Invert algorithm in figure 5.3.1. First the subroutine sets up a column
of the unity matrix in the b vector, then it reconstructs the column factors from the order
of ORD by treating IROW as the row address and k as the column address. The b vector
accumulates the sum of the Cik*b products and the sum of the Ckk*b products. The flow
chart continues in figure 5.3.2 where the subroutine reconstructs the row factors from the
reverse order of ORD by treating IROW as the column address and k as the row address.
Only off-diagonal elements exist in row factors hence the b vector accumulates the sum

of Rkj*b products. When the subroutine finishes the b vector contains the elements of

column z of the inverted Y Bus matrix.
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54 Three Phase Loadflow Subroutine

The flow chart for the three phase loadflow subroutine is shown in figure 5.4.1.
The routine accepts data from two sources, the data file which contains the linear
elements and fundamental power for the motors and generators, and an input from the
mesh network solution which provides the fundamental power of the converter loads. The
Y Bus is assembled for the fundamental frequency. It contains the neutral busses, but
does not contain shunt branches for the motor loads and genefator supplies. The
magnetizing branches of motors, generators and transformers are included as linear
elements to model their contribution to the fundamental frequency Y Bus. The loadflow
is calculated using a straight forward Gauss Siedel method. This method is well
documented elsewhere and, except for the neutral bus voltages, will not be discussed here.
The purpose of running ithe loadflow is to provide the correct angular relationships, 9,
for fundamental voltage with reference to the A phase swing bus, and the power factor
angle, 0, for fundamental current with respect to the phase voltage at each bus, together
with the magnitudes of fundamental current and voltage. The neutral bus voltage is

formulated with a summation term given by,

1
Ve = — | -
< 7|

£

Y, VJ] J+K (54.1)

This is incorporated into the "Neutral" algorithm as shown in figure 5.4.2.
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Subroutine Getdata
Read Data Files
* sys, *.bus, *.gen, *.har
* lin, *.mot, *.shu, *.tfm

4

L/—\

Subroutine Power
Assemble Fundamental
Load & Generator Power
&
Convert To Per Unit

Fundamental
p.q data from
Mesh Network

Analysis

y

Subroutine Ybus
Assemble Load Flow
Y Bus

!

Subroutine Add
Store Y Bus elements
in sparse linked list

Subroutine Flow
Solve Fundamental
Voltages & Currents

With Load Flow

Subroutine Volt
Calculate P, Q Busses

l

Subroutine Neutral
Calculate neutral busses

Fundamental
v,9,1,0
To Nodal Network
Analysis

Subroutine Vars
Calculate P, V Busses

!

Subroutine Adjust
Adjusts generator
Voltage

Figure 5.4.1 - Flow Chart For Three Phase Loadfiow Algorithm




Call Neutral(k)
shared V, Ydp,Yt

#& token=ICOL(k)

I=1+1
. 2 )
n=IROW(token)

¢

Bt(token) > 0
AND
bustype(n) <> 4
?

token=NXT (token)
| [}

I = NUM{K)?

< Return |~ V&) =-1/Ydpk) *Z YknVn

Figure 5.4.2 - Flow Chart For Neutral Bus Loadfiow Algorithm

The "Neutral" algorithm accesses the most recently calculated bus voltages and the
network admittances from the storage lists, and is passed the variable "k" which identifies
the neutral bus number. It accumulates the sum of the product of the off-diagonal
transfer admittances and their associated bus voltages, and divides by the negative of the

driving point admittance to obtain the neutral bus "k" voltage.
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With reference to figure 4.5.1 in chapter 4 it is seen that the neutral bus in a delta-
wye transformer is connected to each primary and secondary phase by the model.‘ The
delta winding connections may be excluded from the summation term in equation (5.4.1)
because they add to zero. This is shown by the first six terms of the summation given
by,

V,=— |V, L -V, L+, Ly, Ly, Lsv, L +(v,+V, +Vpy
Y (A\/§ A‘/—3- B\/3 Bﬁ C‘/g Cﬁ X Y Z

(5.4.2)

For the wye-wye transformer model shown in figure 4.5.2 in chapter 4, equation

(5.4.1) can be solved using the model connections for the primary neutral "n" of the

transformer to yield,

Vn = ‘—Yl— [(VN'Vx)y + (VN_Vy)y + (VN_Vz)y + (VA + VB + Vc)y] (5'4'3) |
nn ’ h

where "N" is the neutral of the secondary winding and "X", "Y", and "Z" are the
secondary winding terminals. The first three terms of the summation in equation (5.4.3)
describe the currents in the branches of the secondary wye winding and these must always
add to zero for an unconnected neutral. This justifies omitting these terms when
calculating the primary neutral bus voltage of a transformer with an unconnected
secondary neutral in situations where it is desired to retain the secondary neutral terminal

in the model. By making these simplifications, the speed and numerical stability of the
algorithm is enhanced.
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5.5 Nesh Network Subroutines

There are two subroutines used to solve the differential equations in the mesh

network. The first is the six pulse converter algorithm shown in figure 5.5.1.

Subroutine Getdata Subroutine Crossing
Read Data Files Determine which solid
Converter Parameters | ’ state devices are
Harmonic Voltage Data conducting
l Subroutine Diffegn
| | Subroutine RungeKutta Selecte Correct
Network Topology

No

One cycle

_ pdate E
< E=Pdc/Idc :

Complete?

Subroutine Power
Calculate Average
DC Power

alculated Power "\
Matches Scheduled
Power ? ;

No

Call Fourier
Calculate Harmonic
Currents

Figure 5.5.1 - Flow Chart For Six Pulse Converter Algorithm
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Care must be taken when establishing the parameters for the differential equations

to avoid "divide by zero" errors in tlie program run time module. The derivative of
current,

S di
ar, Vo~Ve E-L(R+Ry) + IRy -—2[ L, + L+ L]

| (5.5.1)
dt L,

on the negative rail overlap condition illustrates this point. The denominator of the
equation is the AC inductance Ly, which must have a non-zero value if the equation is
not to "blow up”. When formulating the nonlinear mesh network, some AC inductance
must be included to obtain satisfactorv results. The question arises as to what shoul! he
used for this inductance. If AC line reactors are present on the converter their inductance
is the best choice. If there is a long cable run supplying the converter, its inductance may
be a satisfactory choice, but if the cable inductance is small then the numerical accuracy
of the procedure will be inherently poor. If there are no line reactors and the cable
reactance is small the inductance must be chosen arbitrarily. The difficulty with this is
that the mesh voltage must be established at the diakoptic bus between the nodal network

and the mesh network. A method is devised which corrects the transformer secondary
voltage,

Vi = Vacoty * Lsecth) Fieatagetny (5.5.2)

to permit an approximation of tearing the mesh network at the transformer primary while
tearing the nodal network at the transformer secondary.

The second subroutine for solving the mesh network is that shown in figure 5.5.2
for magnetizing branches. The input data is used to construct an hyperbolic model of the
magnetization curve neglecting hysteresis. The AC voltage is integrated to calculate the
AC flux linkages and added to the DC flux linkage, and at each step of integration the

magnetizing current is calculated. One complete fundamental cycle of voltage has to be
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integrated to determine the magnetizing current waveform.

Subroutine Getdata
Read Data Files
Open Circuit Test Data
Load DC Component

—

Subroutine Magcurve
Create Froelich Curve

!

Subroutine Fluxlinkage L. -
Integrate voltage and Update Magnetization Current

floct against curve t ] and Flux Linkages
retiect against ¢ 0 at each integration step
create Imag waveform

'

Subroutine Fourier
Solve Fundamental
and Harmonic Currents

Figure 5.5.2 - Flow Chart of Transformer Magnetizing Branch Algorithm

5.6 Nodal Network Subroutine

The nodal network subroutine is shown in figure 5.6.1. It combines several
routines described earlier in this chapter, namely "Hybus", "Order", "Factor", and "Invert".
The "Hybus" subroutine assembles the nodal admittance matrix for a particular harmonic.
It is then factored, inveited, and injected with harmonic currents at a particular harmonic
frequency to calculate the harmonic components of voltage at that frequency. The voltage
components are stored and recombined by an inverse Fourier analysis to formulate the
time domain waveforms at the diakoptic busses. It is designed to be interactive with the

mesh network routines to converge on a solution of voltage at the diakoptic busses.
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Subroutine Hybus Subroutine Getdata
Assemble harmonic g~ h=] p=i— Read Data Files

Y Bus u—\
v

Subroutine Order ‘ - Subroutine Place
Bi-factorize Y Bus with | js——o Place new elgments

a semi-optimal order

Subroutine Del

e
l Delete elements
| x
Subroutine Add | j#——> Subroutine Hybus
Subroutine Place Subroutine Factor
- Bi-factorize Y Bus
Subroutine Del with order from Order

ﬁ

Subroutine Invert
Create Z Bus
Inject Current
Calculate Vh

Harmonic Currents
from Mesh Network { F——
Nonlinear Loads

Calculate v(t) with Al harmonics

Inverse Fourier and

f’
Output to Mesh Network solved ?

No

Figure 5.6.1 - Flow Chart of Nodal Network Harmonic Solution Algorithm
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5.7 Program Validation

Y
2
‘ f

va IL‘ 00— % 25 @ o0 | s 2:
BUS 1 BUS 4 | SCR 1 @v b L\9g0~— SCR 1
BUS 2 ‘
BUS 3 T g
00 - { * | BUS 1 099 *
- 3

/l\ )\ SCR 2 oga— SCR 2

[ -2 Y

? ot

BUS 2 BUS 3
Figure 5.7.1a - 'SPS" 1 Line Diagram Figure 5.7.1b - "Solver" 3 Line Diagram

To validate the program, a balanced 4 bus network, shown in figure 5.7.1a, is
prepared for "SPS", and a 12 bus network, shown in figure 5.7.1b, is prepared for the
"SOLVER" program developed in this thesis. The "SPS" program is commercially
available software which takes a single phase (as opposed to a three phase) approach to
formulating netweirks but which includes the phase shifts which occur on delta-wye
transformers for balanced loads and network elements. The network solutions are
compared in Table 5.7.1. For this balanced case the "SPS" and "SOLVER" harmonic
voltages agree to within 6 parts in 100,000 (O.C06 %). From these results it is concluded
that the harmonic solution algorithm synthesized in this thesis is successful.

Table 5.7.2 shows the results when the same network is subjected to a 2% voltage
unbalance on "B" phase, and this is combined with load unbalance and firing angle
unbalance. The combined unbalanced conditions increase the magnitudes of the fifth and
seventh harmonic voltages, and reduce the magnitudes of the eleventh and thirteenth
harmonic voltages. Because the SPS software cannot solve an unbalanced system no

comparison with it was made for the unbalanced case.
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Table 5.7.1 - Comparison of Harmonic Voltages For The Balanced Case

Bus SPS- %V

(by harmonic order)

SOLVER - %V

(by harmonic order)

1 5,7 11,13 1 5,7 ll,lv3
1 100.000 0 28.623 100.000 0 - 28.651
2 86.797 0 47.706 86.798 0 47.510
3 | 83.847 4771 52.476 83.852 4.775 52.526
4 83.847 4.771 52.476 83.852 4.775 52.526

5.8 Conclusion To Chapter S

In chapter 5 the various harmonic solution methods are implemented as computef

algorithms which form the constituent parts of the harmonic solution program

The matrix elements' sparse storage lists are described. It is shown how these lists
are used in the bifactorization algorithm and the three phase loadflow algorithm. The
mesh and nodal solution program flow charts are described and the interactions between
the varioué raodules are identified in terms of the diakoptic equations.
program is successfully validated for a balanced test network. A calculation for the
example network with multiple unbalanced conditions shows such unbalanced conditions

can have a major impact on harmonic magnitudes. Development of the multiphase

The resulting

harmonic analysis software achieves the specific purpose of the research project.
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Table 5.7.2 - Harmonic Voltages For The Unbalanced Case

1st S5th Tth 11th 13th

Mag | Ang || Mag | Ang || Mag | Ang }| Mag | Ang Mag | Ang

% deg. Y% deg. % deg. % deg. % deg.
' L e
100.0 174 “ 17.5 139 |} 154 166
98.0 48 “ 19.2 ] 255 163 46
100.0 294 || 18.3 20 §§ 16.1 288
88.1 174 }| 29.1 139 25.7 166
85.9 49 || 32.0 255 | 272 46
88.1 294 || 30.6 20 || 268 | 288
85.2 166 || 33.1 143 || 2924 172
82.9 40 || 36.1 260 i 31.1 52 "
85.2 285 |y 345 24 || 306 | 294
85.6 154“ 32.0 165 || 285 130
846 | 201 “ 15.4 303 || 21.5 30 f 323 280 || 279 10
843 82 “ 15.0 63 19.7 272 || 34.6 44 || 28.9| 251 “
i\ 5
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Chapter 6

Summary And Recommendations For Furthér Research

6.1 Recommendatons For Further Research

Studies of the transformer have shown that further research into modelling the
magnetizing branch is advisable. While the behaviour under sinusoidal load current
conditions is well known there is evidence that minor hysteresis loops may be a
significant factor when the energizing voltage is distorted. If this is the case, the open
circuit test data based on sinusoidal voltage may not be extendable to the harmonic
model. - One possibility is to develop an open circuit test where the voltage is distorted
by the equivalent of a nearby six pulse converter load to see if this creates second order
effects of significant magnitude.

Harmonic models for earth return circuits need to be developed. The soils models
used in power system substation ground grid step and touch voltage calculations provide .
an entry point. Validation of these models by field measurement requires an instrument
capable of injecting large harmonic current into the ground grid. One avenue for research
is the development of such an instrument.

It was noted when investigating the generator failures that there was
evidence one machine may have failed due to insulation breakdown as opposed to
overheating. Research is needed to determine if low voltage windings (480 V) which are
random wound and coated with contaminants (salt spray and oil) are subject to partial
discharge failures when supplying SCR front end drives. These drives create relatively

high dV/dt due to line-to-line voltage notching when the thyristors commutate.
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6.2 Summary

The main objective of this research project is to develop a three phase harmonic
solution algorithm to solve unbalanced systems. Several key models are developed, the
underlying mathematical procedures are extended and written into software algorithms,
and the goal is achieved. '

The Zollenkopf bifactorization method is extended to efficiently invert a matrix
one column at a time. This perm#ts a minimum expenditure of computational effort
when injecting harmonic currents to solve harmonic voltages. The importance of
resolving a power system into linear and nonlineat portions is demonstrated and the
diakoptic equations are extended to permit treatment of the nonlinear portion as mesh
network differential equations and the linear portion as a sup‘erposed series of harmonic
nodal networks. By using such a division methods pertinent to each network solution can
be employed. The nodal network is solved in the frequency domain by inverting Y Bus
to obtain Z Bus, and the mesh network is solved in the time domain by solving
differential equations. The time domain current solution from the mesh network is
converted to harmonic current by a Fourier transformation and the harmonic voltage
solution from the nodal network is converted to a time domain waveform by an inverse
Fourier transform. The currents and voltages at the diakoptic bus boundaries between the
noda! and mesh networks are solved by iteratively using the harmonic currents from the
mesh solution as input to the nodal network and the voltage waveforms from the nodal
solution as input to the mesh network.

7 A number of models of power system components are developed in Chapter 2.
The underlying requirements for the models used in the nodal network is firstly that they
correctly implement mutual coupling between phases, and secondly that they are linear
to within reasonable engineering approximation. This research prcject is concerned with
the frequency range of interest for power systém harmonic analysis as defined in the IEEE
519 standard, namely 50 to 5000 Hertz. The transformer is a key component; hence, it
is modeliled in detail and its behaviour is verified by laboratory measurements to validate

the use of simplifying assumptions.
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Transformers which supply converters are often Subjected to loadi.ng conditions
in which there is a significant DC component in the load current. As a consequénce,
harmonic currents are created by the magnetizing branch. This is modelled and the model
is checked by laboratory measurements. The results are promising, but the accuracy of -

the model is on the order of +/- 25%. This is an area which needs further refinement.

Heating effects on a generator rotor when the machine is supplying non-sinusoidal
loads may damége the machine. A model is developed to permit analysis of the harmonic
currents induced into the rotor by synthesizing known methods. The model includes skin

- effect and thus accommodates variations in the diameter of the amortisseur bars. More
VFD load measurements are required to validate this model. "

A technique is developed in Chapter 3 to interpolate the underlying operating
frequency of measured waveforms from the measured spectra when the sampling is
performed asynchronously. ,

Chapters 4 and 5 describe the synthesis of several methods and models into a
network harmonic analysis program which permits the soluticn of harmonics in a three
phase frame of reference, including neutral busses, for unbalanced loads, unbalanced
sources, and unbalanced network components. The program is validated by comparing
a balanced multiphase network, using the program, with a balanced single phase network,
using a commercially available program, SPS. The results compare to wifhin a 0.006 %
tolerance. An unbalanced case is also calculated to show that combined unbalance
conditions in the network can have a major effect on system harmonics. |

One important result of this research project is that it provides powef system
designers with a computer program capable of harmonic analysis within the multiphasé
frame of reference. - This allows them to verify that their designs meet the utility
standards. Of equal importance it allows designers to investigate the effect of unbalanced
supply voltage on various phase-shifting harmonic cancellation schemes. Many of these
designs depend on balanced voltage and balanced loading conditions to obtain good

results and do not provide the desired results when systems are unbalanced.
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The contribution of the research presented in this thesis is summarized as follows:

1

3

£

The Zollenkopf bifactorization method is extended to invert one bus at a
time and the order of factorization is modified to factor harmonic load
busses last which minimizes the required computational effort.

The diakoptic equations are modified to describe the mesh portion of the
network in the time domain and to describe the nodal portion of the
network in the frequency domain aliowing the linear and nonlinear portions
of the network each to be solved by well-suited methods. |

A model is synthesized which predicts generator rotor heating due to
harmonic loads when using different diameters of amortisseur bars.

A technique is developed to accurately interpolate the frequency of
measured repetitive waveforms from asynchronously sampled data.

A computer program is created which calculates harmonic voltages and

currents in an unbalanced multiphase power system.
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