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Abstract

Recent work has shown that by approximating the behaviour of a non-differentiable

black-box function using a neural network, the black-box can be integrated into a

differentiable training pipeline for end-to-end training. This methodology is termed

“differentiable bypass,” and a successful application of this method involves training

a document preprocessor to improve the performance of a black-box OCR engine.

However, a good approximation of an OCR engine requires querying it for all sam-

ples throughout the training process, which can be computationally and financially

expensive. Several zeroth-order optimization (ZO) algorithms have been proposed

in black-box attack literature to find adversarial examples for a black-box model by

computing its gradient in a query-efficient manner. However, the query complexity

and convergence rate of such algorithms makes them infeasible for our problem. In

this work, we propose two sample selection algorithms to train an OCR preprocessor

with less than 10% of the original system’s OCR engine queries, resulting in more

than 60% reduction of the total training time without significant loss of accuracy. We

also show an improvement of 4% in the word-level accuracy of a commercial OCR

engine with only 2.5% of the total queries and a 32x reduction in monetary cost.
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Moreover, we propose a simple ranking technique to prune 30% of the document

images from the training dataset without significantly affecting the system’s perfor-

mance. Finally, we demonstrate that the history of OCR engine predictions for each

sample throughout the training process further improves the system’s performance

in a low query setting.
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Chapter 1

Introduction

1.1 Problem Statement

Optical Character Recognition (OCR) is the process of extracting text in images
like scanned documents and point of sale (POS) receipt images. An OCR system
(also called an OCR engine) consists of two main components - a text detector to
obtain bounding boxes of text in the image and a text recognizer to recognize the
text in the bounding boxes. Recently, a number of text detection [2][3][4] and text
recognition [5][6][7] neural networks have been proposed in literature. Based on these
recent advances, several open-source and commercial OCR engines have been made
available. The commercial OCR engines can be accessed through cloud APIs since
they are provided as a SaaS (Software as a Service) product.

In some machine learning systems, a non-differentiable black-box function is ap-
proximated using a differentiable surrogate model to facilitate end-to-end training
using gradient-based methods [1][8][9][10]. The effectiveness of this “differentiable
bypass” approach can be particularly evidenced through the improvement in perfor-
mance achieved by training a preprocessor for a black-box Optical Character Recog-
nition (OCR) engine [1]. A neural network called the ”approximator” is trained to
approximate the behaviour of the black-box OCR engine. However, training a good
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black-box approximator requires several queries of the OCR engine, which can be
computationally expensive for open-source engines like Tesseract1 and EasyOCR2,
or incur a high financial cost for proprietary OCR APIs like the Google Cloud Vi-
sion API3. In this regard, our work focuses on reducing the number of queries of
an OCR engine when training a surrogate model for efficient training of the OCR
preprocessor.

For OCR, several commercial and open-source solutions have been made available.
Commercial OCR systems are usually trained on many different types of documents
since they are used for various client use cases, making them powerful OCR engines.
However, fine-tuning commercial OCR APIs is not straightforward, while fine-tuning
open-source OCR engines requires a good understanding of their re-training process,
which can be cumbersome. For instance, both Tesseract and EasyOCR have separate
instructions to retrain the OCR engine for a new dataset4 5. The differentiable bypass
[1] approach significantly improves the performance of OCR engines like Tesseract
and EasyOCR without fine-tuning the engine itself. While this approach boosts
OCR performance, there is an associated tradeoff regarding queries made to the
OCR engine, which can incur high financial/computational costs for training, espe-
cially when APIs like Google Vision API are used. The high costs associated with
training such a preprocessor underscore the need for improving the query efficiency
of the differentiable bypass system to achieve good text recognition performance at
a fraction of the system’s total OCR queries.

Zeroth-order optimization (ZO) techniques have been used to estimate the gradi-
ent of a function by querying it at different points without using the function’s first
order derivative [11][12] [13]. ZO methods have been particularly effective for query-
efficient black-box attacks [14][15][16]. However, such methods require at least two
evaluations of the function for each sample to estimate the gradient of the function.

1https://github.com/tesseract-ocr/tesseract
2https://github.com/JaidedAI/EasyOCR
3https://cloud.google.com/vision/docs/ocr
4https://tesseract-ocr.github.io/tessdoc/tess4/TrainingTesseract-4.00.html
5https://github.com/JaidedAI/EasyOCR/blob/master/custom model.md
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Figure 1.1: Test set performance of OCR engines on noisy and preprocessed images
for the POS dataset with 4% and 100% of the total OCR queries using UniformCER
selection. Even though the Google Vision API performs well for the noisy images,
our methodology further improves its performance in a cost-efficient manner. We do
not report results for Google Vision API with 100% budget since the monetary cost
of running that experiment is too high (Table 4.3).

The convergence rate of many such methods also becomes higher as the dimen-
sionality of the parameter space increases. Hence, ZO methods are not suitable for
approximating the OCR with fewer queries. The score function approximator ap-
proach (SFE) [1] trains the preprocessor for the OCR by computing the gradient of
the black-box OCR using the REINFORCE algorithm [17]. However, even with 10
queries of the OCR for each sample in every epoch, the system’s performance does
not match that of the differentiable bypass approach. Hence it is clear that the SFE
method would perform worse in a low-query regime.

Recently, data-efficient training of neural networks has become a key area of

3



research. While recent advances in deep learning have achieved state-of-the-art per-
formance in several domains, they have also led to huge computational costs, in-
creased carbon footprint, high financial costs, and increased training time [18] [19].
Training models with smaller subsets of data can yield faster training cycles and a
quicker turnaround time for hyperparameter tuning. Some recent scholarship has
focused on adaptive subset selection [20] to choose a smaller number of samples for
training neural networks without degrading performance. These methods include
core-set selection [21], gradient-based scoring [22], and loss-based prioritization [23].
Inspired by these methods, we propose two simple selection algorithms, UniformCER
and TopKCER, which select a small subset of samples in each training mini-batch
for querying the OCR engine and for subsequently updating the parameters of the
approximator. Both UniformCER and TopKCER select samples by utilizing the ap-
proximator’s Character Error Rate (CER), which is based on Levenshtein Distance
[24], to measure the hardness of each sample. Additionally, these selection algorithms
add no extra computational overhead to the system. As shown in Fig. 1.1, sample
selection using UniformCER with a very low query budget (4%) can improve the
text recognition performance for different OCR engines. We also propose a simple
technique to prune document images before training the system to further reduce
the OCR engine queries. Pruning is performed by ranking document images using
the OCR engine’s CER and removing a proportion of low-ranking images so that the
system can be trained with the pruned dataset without significantly changing the
text recognition performance.

Information accumulated over time has been used to improve sample efficiency of
algorithms in reinforcement learning [25] and continual learning [26]. Similarly, we
hypothesize that utilizing past OCR engine predictions can help improve the perfor-
mance of the system on low query budgets. In this regard, we propose an algorithm
called label tracking to track each sample’s past OCR engine queries and incorporate
them in a multi-objective loss function for training the approximator. The prepro-
cessor is updated in each epoch using differentiable bypass, which constantly changes
the input to the OCR engine. The variation in preprocessed images yields different
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OCR engine outputs at different stages of training for the same sample. Hence, la-
bel tracking allows the approximator to learn from previous predictions of the same
sample. Combined with UniformCER selection, label tracking improves the text
recognition performance of EasyOCR and Tesseract with minimal computational
overhead to the system.

1.2 Contributions

• In this work, we propose two selection methods, UniformCER and TopKCER,
to query the OCR engine for a smaller subset of samples without significantly
reducing OCR performance and with an overall query budget of less than 10%.
Training the system with less than 10% query budget leads to more than 60%
reduction in total training time. We also show that increasing the query bud-
get beyond 10% leads to a larger training time for the system and marginal
improvement in OCR performance.

• We demonstrate that UniformCER and TopKCER selection methods outper-
form random sampling for two low query budgets.

• We use a simple ranking technique to prune a subset of receipt images from the
training dataset without significant reduction in test accuracy for the trained
preprocessor. Pruning the dataset implicitly leads to fewer queries of the OCR
engine.

• We propose label tracking to utilize the history information of OCR engine pre-
dictions for each sample and improve the performance of UniformCER selection
in most settings.
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1.3 Thesis Outline

Chapter 2 discusses different techniques for integrating black-box functions into dif-
ferentiable training pipelines, specifically focusing on differentiable bypass and its
application in document clearning for black-box OCR engines. As part of Chapter 2,
we also discuss two sample selection algorithms for efficient training of Deep Neural
networks. Chapter 3 describes our proposed sample selection techniques for reducing
expensive OCR engine queries. Furthermore, the data pruning and label tracking
methodology is described in the second half of Chapter 3. Chapter 4 presents the
experiment setup, the text recognition performance corresponding to selection algo-
rithms at low query budgets, and additional experiments analyzing the impact of
different design choices in our setup. The last two sections of Chapter-4 provide
insights into the effect of data pruning and label tracking on the performance of the
system. Finally, Chapter 5 provides the conclusion for the thesis and also discusses
potential future work.
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Chapter 2

Background

2.1 Differentiable Bypass

2.1.1 Integrating Black-Box Functions in Training Pipelines

Machine learning systems can be constructed as a composition of different functions,
where each function can either be differentiable or non-differentiable. Let us consider
a system h composed of n sequentially arranged functions given by f1, f2, ..., fn−1, fn

(Fig. 2.1) where an input x is given to the first function f1, the output of fi−1 is
input to fi for i = 2, .., n − 1 and the output of fn is input to a loss function L.
In a supervised learning setting, L can be evaluated as L(h(x), y) for input x and
its corresponding ground-truth label y. Here, we assume that each function fi is
differentiable with respect to its parameters ϕi. If zi is the output of fi, then the
gradient of loss function L with respect to ϕn (parameters of the last function fn) is
given by

∂L

∂ϕn

= ∂L

∂zn

∂zn

∂ϕn

(2.1)

Using backpropagation, the error from the last function can be propagated to
earlier functions in the sequence using the chain rule.
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. . . .

Figure 2.1: Sequential arrangement of n differentiable functions. ϕi and zi are the
parameters and output of function fi, respectively.

∂L

∂zi

= ∂L

∂zi+1

∂zi+1

∂zi

(2.2)

Computing the gradient with respect to zi allows us to calculate gradient of L with
respect to ϕi.

∂L

∂ϕi

= ∂L

∂zi

∂zi

∂ϕi

(2.3)

Thus, if all components of the system are differentiable, then such a system can be
trained using the backpropagation algorithm, i.e., the parameters of individual com-
ponents can be updated using gradient descent. A typical gradient descent update
is as follows, where α is the learning rate

ϕt+1
i = ϕt

i − α
∂L

∂ϕt
i

(2.4)

However, if a function is non-differentiable, it is not possible to compute the
derivative of the function’s output with respect to its parameters since the parameters
of the function are unknown. The only option is to query the function at certain
input points to get the corresponding output. Thus, if a system with sequentially
arranged functions consists of non-differentiable functions, then it is not possible to
train all the differentiable components of the system in an end-to-end fashion using
backpropagation.

To alleviate this problem, we can attempt to approximate the gradient of the
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black-box function. The Straight Through Estimator (STE) [27] has been used to
estimate the gradient of threshold functions in neural networks. However, STE is not
useful for functions other than the threshold function. The Score Function Estimator
(SFE) [28] allows us to estimate the gradient of a function using the log-derivative
trick and the Monte-Carlo estimator. Using SFE, the gradient of function f can be
estimated as

∇θEx∼pθ(x)[f(x)] = Ex∼pθ(x)[f(x)∇θ log pθ(x)] (2.5)

The gradient can be computed using Monte-Carlo Estimation

Ex∼pθ(x)[f(x)∇θ log pθ(x)] ≈ 1
n

n∑︂
i=1

f(x(i)) log pθ(x(i)) (2.6)

The policy gradient algorithm REINFORCE [17] uses SFE to optimize the parame-
ters of a policy in a Reinforcement Learning (RL) setting. While SFE is an unbiased
estimator, it also exhibits high variance. Variance reduction techniques based on con-
trol variates have been used to lower the variance of SFE. Alternatively, Salimans
et.al. [29] use natural evolutionary strategies (NES) [30] to optimize the parameters
of a policy to maximize reward in RL. By employing a reparameterization trick, the
gradient of a black-box function can be estimated by

∇θEx∼pθ(x)[f(x)] = 1
σ
Eϵ∼N(0,I)[f(θ + σϵ)] (2.7)

Computing equation 2.7 with monte-carlo estimation yields a lower variance in com-
parison to SFE.

The differentiable bypass methodology approximates the gradient of a black-box
function using a proxy model to integrate it into differentiable training pipelines. Let
us assume that f is a non-differentiable black-box function and g is a differentiable
function with parameters θ that approximates f . For instance, if f takes an image
as input and outputs a class label, then g can be a Convolutional Neural Network
(CNN) that receives an image input and yields a classification score for different class
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. . . . . .

Approximation

Black-Box

Figure 2.2: Differentiable bypass for end-to-end training of system with sequentially
arranged functions containing non-differentiable functions like fi. g is a differentiable
proxy that approximates the functionality of fi. Dashed black lines indicate forward
pass and dashed green lines depict backward pass during training.

labels. The goal is to optimize θ such that g approximates f well for the given input,
i.e.,

g(x; θ) ≈ f(x) (2.8)

This can be achieved by optimizing θ with respect to a loss function L′ that measures
the fit between f and g. We can obtain optimal parameters θ∗ using

θ∗ = minθL
′(g(x; θ), f(x)) (2.9)

A suitable choice for g are artificial Neural Networks (NN) since they are universal
function approximators [31]. The universal function approximation theorem has also
been shown to hold for CNNs [32]. Further, Hornik et al. [33] show that neural
networks can also approximate the gradient of a function along with its output,
which indicates that if g is a NN and it approximates the output of f , then, for the
optimal parameters θ∗

∇xf ≈ ∇xgθ∗ (2.10)

Therefore, since ∇xf cannot be computed easily, its approximation ∇xgθ∗ is used to
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successfully perform backpropagation through f and update the parameters of differ-
entiable components. Figure 2.2 demonstrates the differentiable bypass methodology.

Differentiable bypass has been used in various applications to integrate a black-
box into a differentiable training pipeline. Nguyen and Ray [10] propose EDPCNN, a
CNN trained to perform left ventricle segmentation by approximating the behaviour
of a non-differentiable Dynamic Programming (DP) module using a neural network.
In EDPCNN, an MRI image is passed as input to a UNet model, which generates an
output segmentation map. The output map is warped using a star pattern, and a
DP module further processes the warped map to output the final segmentation map.
However, the DP module is non-differentiable due to the argmin function. Hence, to
facilitate end-to-end training of the system and update the parameters of the UNet,
the DP module is approximated using a Neural Network. The authors show that
EDPCNN can accurately perform left-ventricle segmentation with less labeled data
while training only a UNet for the task needs more labeled data. They also propose
the addition of random perturbations to the input so that the neural network fits
the DP module effectively. Equation 2.9 can be rewritten to include exploration in
the input space

θ∗ = minθL
′(g(x + ϵ; θ), f(x + ϵ)) (2.11)

EstiNet [8] is a general framework for training a differentiable estimator as a proxy
for a black-box function to facilitate the composition of different black-box functions
and trainable modules. Jacovi et al. [8] propose that EstiNet has two components -
the argument extractor, which is a differentiable module that constructs the input for
the black-box function, and the black-box estimator, which is a differentiable function
that approximates the output as well as the gradient of the black-box function. The
estimator is used during training to compute the gradient of the loss function with
respect to the argument extractor’s parameters. In contrast, the black-box function is
plugged into the system during inference. The authors demonstrate the effectiveness
of EstiNet on the Image Addition task, which involves finding the sum of a sequence
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of digit images from the MNIST dataset. Using a CNN as the argument extractor
and a combination of an LSTM network [34] and a NaLU [35] cell as a proxy for
the argmax and sum function, image addition is accurately performed on image
sequences of unknown length. The CNN also learned to classify the digit images
without any ground truth digit labels, which shows that end-to-end training using
differentiable bypass can potentially eliminate the need for procuring intermediate
labels for individual components in the system. Further, differentiable proxies have
been used to optimize the hyperparameters of black-box image signal processing
(ISPs) units and circumvent manual configuration when deploying imaging systems
for different applications [36].

2.1.2 Document Cleaning using Black-Box Approximation

Preprocessing images for OCR is essential to improve its text recognition perfor-
mance. Commonly used preprocessing methods involve image binarization [37][38][39],
independent component analysis [40], and deep learning-based super-resolution [41]
[42]. However, these methods do not preprocess the image for the specific OCR
engine being used. Tuning them to work well for different OCR engines is also cum-
bersome. To tackle this problem, Randika et al. [1] train a customized preprocessor
by approximating the gradient of a black-box OCR engine using a neural network,
which significantly improves OCR performance. The authors propose two techniques
to approximate the gradient of a black-box OCR engine - NN-based approximation
and SFE-based approximation. For receipt images, it is assumed that the ground
truth consists of bounding box coordinates and the text present in them.

An overview of the NN-based approach is illustrated in Fig. 2.3. The NN-based
approach consists of two components - the preprocessor g with parameters θ and the
black-box approximator f with parameters ϕ. g and f represent EstiNet’s argument
extractor and black-box estimator, respectively. g is trained to perform transforma-
tions on the input document image x. A UNet architecture [43] is considered for
the g, which is depicted in Figure 2.4. During training, each image is first passed

12



Preprocessor Approximator

Approximator

OCR

L2

L1
Ground Truth

Text

Split Document
Image

Figure 2.3: Training pipeline. An overview of the training pipeline [1]. The broken
green lines indicate backpropagation while the broken black lines depict only forward
propagation to illustrate the training of the preprocessor using differentiable bypass.
Receipt and document images are split into text strips after preprocessing.

through g to obtain a preprocessed image g(x), which has the same size as x. If the
document image has more than one word, the words are cropped from g(x) using
ground-truth text bounding boxes. The cropping is performed since f is represented
by the CRNN architecture [44], which can only perform text recognition on word
images. It cannot extract text bounding boxes from the input image. However, it
can approximate the text recognition functionality of an OCR engine. The CRNN
architecture is shown in Figure 2.5. Once the word images are obtained, Gaussian
noise ϵ is added to “jitter” them (2.11) before passing them through a black-box
OCR engine and its differentiable approximator f . The jitter prevents overfitting in
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Figure 2.4: UNet architecture used by Randika et al. [1] to clean document images.

the approximator by providing some exploration in the input space. Specific hyper-
parameters control the number of random perturbations and the parameters of the
Gaussian noise. The output from the OCR engine is used as labels to match the
output of f and update its parameters ϕ. Since the output of the OCR engine is a
string, the CTC loss function [45] is used to update ϕ.

Lapprox(x, yocr) = CTC(f(g(x) + ϵ), OCR(g(x) + ϵ)) (2.12)

Subsequently, the gradient descent update rule for ϕ with learning rate η is give by

ϕt+1 = ϕt − η∇ϕLapprox (2.13)

On the other hand, to train g, the ground truth labels are used, the parameters
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Figure 2.5: CRNN architecture used by Randika et al. [1] to approximate the gradient
of black-box OCR engines.

of f , i.e., ϕ, are frozen, and f is used as a differentiable proxy for the OCR engine.
Again, the CTC loss function is used to update g’s parameters θ. The mean squared
error (MSE) between the preprocessed image and a white image (image with all
ones) is used as a secondary loss function when updating g to ”whiten” the image
[1]. The parameter β controls the effect of the MSE loss on the total loss. Thus, the
loss function for g is given by

Lprep(x, ygt) = CTC(f(g(x), ygt) + β ∗ MSE(g(x), Jm×n) (2.14)

The gradient descent update rule for θ with learning rate α is given by

θt+1 = θt − α∇θLprep (2.15)

The computation of ∇θLprep is possible only because f acts as a differentiable
proxy for the black-box OCR engine to facilitate error backpropagation. Hence,
when ϕ is updated, θ is fixed, and vice versa. This alternating training scheme
was proposed as Hybrid Training to train Estinet. Initially, f is trained separately
with the output of the OCR engine to obtain good initial weights for the end-to-
end system, thereby avoiding the cold-start problem. Approximating the black-box
OCR engine using the differentiable approximator enables end-to-end training of the
system without requiring intermediate labels to train the preprocessor.
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2.2 Data Subset Selection for Efficient DNN
Training

While the differentiable bypass approach is useful for training a document prepro-
cessor to improve the performance of black-box OCR engines, it requires querying
the engine for all text strips in the dataset. Due to the large computational/financial
cost associated with querying commercial/open-source OCR engines, there is a need
to reduce the number of OCR engine queries without compromising text recogni-
tion performance. Here, we go through recent work on efficient training of neural
networks using data subset selection. The idea is to select a smaller subset of data
for training a neural network such that its overall performance is the same as with
the original system. We derive inspiration from these methods to select a subset of
samples for querying the OCR engine and perform efficient black-box approximation
to train the preprocessor. Several algorithms have been proposed to prioritize sam-
ples for accelerating the training of neural networks. Sample prioritization allows
the selection of a smaller subset of samples. The sample selection can be performed
in three different stages of training - mini-batch, epoch, and dataset.

2.2.1 Mini-Batch Sample Selection

Samples are selected based on a probability value which is a function of the per-
sample loss. The authors show that Selective Backprop improves training time by a
factor of 3.5 compared to the standard Stochastic Gradient Descent approach. Simi-
larly, Xu et al. [46] propose UNcertainty-aware mIXup (UNIX) for computationally-
efficient Knowledge Distillation (KD) [47]. KD involves transferring the learning of
a heavier (larger) model to a lighter (smaller) model. First, for each training mini-
batch, UNIX performs a forward pass of the student network for the samples in the
mini-batch and orders them in descending order using model uncertainty measures
like entropy. Then, mixup data augmentation [48] is performed between the ordered
mini-batch and the shuffled mini-batch, where the degree of mixing is controlled by
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Figure 2.6: Sample Selection for accelerating neural network training.
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the rank of each sample in the ordered mini-batch. More uncertain samples un-
dergo less mixing, and vice-versa. Finally, a subset of samples is selected from the
mini-batch containing mixed images, and the teacher model is queried with this mini-
batch to perform KD. The authors show that UNIX reduces the computational cost
of training by 30% compared to traditional Knowledge Distillation without compro-
mising on image classification accuracy. To approximate black-box OCR engines in
a query-efficient manner, we opt for sample selection within each mini-batch, i.e.,
selecting text strips in each CRNN mini-batch and using the smaller image subset
to query the OCR engine and training the approximator.

2.2.2 Epoch Sample Selection

Sample selection at the epoch level involves selecting a subset of samples from the
training dataset at the beginning of each epoch, as depicted in Figure 2.6b. Subset-
selection methods based on Curriculum-learning [49] perform sample selection at
each epoch. Minimax curriculum learning [50] selects hard and diverse samples us-
ing submodular maximization, and the diversity of chosen subsets is adjusted based
on different stages of training. The hardness of a subset is measured using the sum
of per-sample losses, and the diversity of the subset is measured with a submodular
function based on image features [51]. DIHCL [52] is a curriculum learning method
that uses Dynamic Instance Hardness (DIH) to quantify each sample’s hardness dur-
ing the training process to reduce the training time of neural networks. They propose
to use the loss value, change in loss across consecutive epochs, and the number of
changes in the predicted class across training as three different metrics to compute
the DIH for each training sample. DIHCL selects a subset of hard samples in each
epoch for training. The subset size is reduced gradually throughout training to get
accurate estimates of the per-sample DIH in early epochs and subsequently allow
the network to focus on more difficult samples in the later epochs. Moreover, impor-
tance sampling techniques [53] [54] have been used to select important samples for
accelerating neural network training and reducing computational resource utilization.
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2.2.3 Dataset Sample Selection

Sample selection from the training dataset involves selecting a representative subset
of samples from the training set and using the chosen subset to train the full system
instead of the original dataset, as depicted in Figure 2.6c. A coreset is a subset of
the training data that can be used to train a model and achieve performance com-
parable to the model trained with the original data. The Coresets for Accelerating
Incremental Gradient descent (CRAIG) [55] algorithm selects a weighted subset of
training samples using submodular maximization of the facility location function [56]
to approximately estimate the full gradient of the original training set with respect to
a loss function. Selection-via-proxy [57] uses a low-capacity proxy model to perform
coreset selection from a given training dataset in a computationally efficient manner
for accelerating the training of a larger capacity model. The coreset selection can
be performed using forgetting events [58], max-entropy uncertainty sampling [59] or
greedy k-means [60] [61].

Active Learning. Beyond supervised learning, sample selection techniques are
used to prioritize unlabelled data for labeling in an active learning setting. Un-
certainty sampling techniques like Max Entropy and Least Confidence Sampling are
used to select the most uncertain samples for annotation [59]. Further, filtered active
submodular selection (FASS) [62] is a batch active learning algorithm that selects
diverse samples from the set of most uncertain samples for a given model.

2.3 Tracking Past Information

There are several domains where past information accumulated by the model has
been used to improve the model’s performance. Experience Replay [25] is a tech-
nique that enables training a reinforcement learning agent using previous experience
stored in memory, which allows the agent to learn with less real-world experience.
Experience Replay has also been used to tackle catastrophic forgetting in multi-task
reinforcement learning [26] and graph neural networks [63]. Moreover, using soft
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labels as history information to predict word-level sentiment has been shown to im-
prove the performance of target-level sentiment classification [64]. Based on these
methods, we utilize past predictions of the OCR engine to train the approximator
and improve the OCR engine’s text recognition performance in a low query setting.
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Chapter 3

Methods

3.1 Selecting Samples to Query OCR Engine

Querying the OCR engine for each text strip can be computationally expensive (for
open-source engines) or costs money (commercial software/APIs). In our setup,
the preprocessed word images are passed as a mini-batch B to f and the OCR
engine. The goal of subset selection is to choose a representative subset of size k

from each mini-batch such that k ≪ |B| and obtain the OCR labels for them to
train f . Querying the OCR engine for k samples instead of |B| leads to a significant
reduction in total OCR queries. Our approach for sample selection involves choosing
a representative subset [50][62] [65] based on a measurable property of each sample.
In this regard, we propose two techniques for selecting samples to obtain OCR labels
- UniformCER and TopKCER. Fig. 3.1 and Fig. 3.2 provide an overview of sample
selection.

3.1.1 UniformCER

Character Error Rate (CER) is a character-level metric used for evaluating OCR sys-
tems. We assume that CER, with respect to the ground truth label, quantifies the
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Figure 3.1: Sample selection for the VGG dataset using a selection algorithm after
images are passed through the preprocessor.

Algorithm 1 Efficient approximation of OCR engine for document image cleaning
using sample selection

Input: Xtrain, Ytrain, k, η1, η2, σ
for xbatch, ybatch ∈ {Xtrain, Ytrain} do

gbatch = preprocessor(xbatch)
subset = select(gbatch, k)
for x ∈ subset do

Sample ϵ ∼ N (0, σ)
L += CTC(f(x + ϵ), OCR(x + ϵ))

ϕ = ϕ − η1∇ϕL
θ = θ − η2∇θL(f(xbatch), ybatch)

hardness of each sample. The CER for a sample is calculated as shown in equation
3.1, where n is the number of characters in the ground truth word, s is the number
of substitutions, i is the number of insertions, and d is the number of deletions.

CER = (s + i + d)
n

(3.1)

As shown in Algorithm 1, the parameters of preprocessor g are updated by cal-
culating the loss function between f and the OCR for all samples in mini-batch B,
which enables the computation of CER value for each sample in B with respect to
the ground truth labels. These CER values are recorded in each training epoch. The
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Figure 3.2: Samples selection for the POS dataset using a selection algorithm after
dcoument images are passed through the preprocessor.

CERs stored in the previous epoch for each sample in B are used for sample selection
to query the OCR. We obtain the minimum and maximum CER value for each mini-
batch, denoted by cermin and cermax, respectively. Then, k values are sampled from
Uniform(cermin, cermax). Finally, we determine the sample whose CER is closest to
each of the k selected points. These k samples are passed through the OCR and
the CRNN to compute the CTC loss function and update the weights of the CRNN.
Algorithm 2 shows the mathematical details of UniformCER.
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Algorithm 2 UniformCER Selection Algorithm
Input: xbatch, cersbatch, k
cermax = max(cersbatch)
cermin = min(cersbatch)
c1, c2 ... ck ∼ U(cermin, cermax)
idx = {}
for ci ∈ c1, ...ck do

j = argmin
j /∈idx

(|ci − (xbatch)j|)

idx.insert(j)
subset = xbatch[idx]

3.1.2 TopKCER

Selective Backprop and Variance Reduction Importance Sampling (VR) [54] perform
loss-based sample prioritization to select a subset of samples for neural-network train-
ing acceleration. These techniques assume that samples with a higher loss are highly
informative. Since CER can also be treated as a measure of informativeness because
it measures the hardness of text strips, we can select samples with the highest CERs
computed during training of the system (as shown in 3.1.1) to query the OCR engine.

3.2 Pruning Document Images

In section 3.1, we discussed techniques to select images from the training dataset to
construct a coreset. Similarly, we propose a simple technique to prune the document
image dataset and train the preprocessor using a smaller subset of documents. In
our document cleaning setup, the approximator is pre-trained with the output of the
OCR engine to avoid the cold start problem. The OCR engine is queried once for all
text strips/word images in the dataset to obtain labels for pre-training. We use these
OCR string labels to compute the CER of each text strip with respect to the Ground
Truth labels. This CER quantifies the OCR engine’s capability to predict the correct
characters in each text strip. A text strip with a high CER can be considered a hard
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sample for the OCR engine, while a text strip with a low CER can be considered an
easy sample. Then, we compute the mean CER for each document image using the
CER of the text strips present in the image. The mean CER gives us a ranking of the
images based on the OCR engine’s CER. Images are selected by choosing the top-k
samples based on mean CER. Performing sample selection from the dataset enables
us to remove document images before training the system. The techniques proposed
in section 3.1 can be combined with our pruning algorithm to reduce queries to the
OCR engine further. Figure 3.3 provides an overview of the data pruning setup.

Selection
Algorithm

Training Dataset Smaller Subset

Training the
System

CER
InformationOCR

Figure 3.3: Samples selection for the POS dataset using a selection algorithm before
training the preprocessor using differentiable bypass.

3.3 Label Tracking for Utilizing History Informa-
tion

Label tracking aims to leverage the history of the OCR engine’s predictions for
individual samples during training. Figure 3.4 shows an overview of label tracking.
In Algorithm 1, we show that a subset of preprocessed text strips is selected to query
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the OCR engine and subsequently update the approximator’s parameters. Due to
low query budgets, the size of the chosen subset is very small. Hence, we would like
to utilize the predictions of all samples throughout training. For each sample x in the
subset (in our setup, x is a text strip), the output from the OCR engine is appended
to its list of predictions, denoted by H(x). Here is an example of the history of OCR
predictions for a given sample -

H(x) = [ stok, stokee, Stroke, stroke ] (3.2)

The i’th label from the back of the list H(x) can be indexed as H(x)i. For instance,
H(x)1 represents the most recent prediction obtained by querying the OCR engine
for sample x. In our example, H(x)1 is ”stroke”, H(x)2 is ”Stroke” and so on.

Algorithm 3 Efficient OCR approximation for document image cleaning using sam-
ple selection with and w/o label tracking

Input: Xtrain, Ytrain, w, history (or H), k, m, η1, η2, doTracking, σ
for xbatch, ybatch ∈ {Xtrain, Ytrain} do

gbatch = preprocessor(xbatch)
subset = select(gbatch, k)
if doTracking then

L′ = 0
for x ∈ subset do

Add OCR(x) to H(x)
for i in 1..m do

Li(x) = CTC(f(x), H(x)i)
L′ += wi ∗ Li(x)

else
Sample ϵ ∼ N (0, σ)
L′ = CTC(f(subset + ϵ), OCR(subset + ϵ))

ϕ = ϕ − η1∇ϕL′

θ = θ − η2∇θL(f(xbatch), ybatch)

In the first epoch, the list of past predictions is empty for all samples. More
history information is added as the training progresses. As shown in the previous
example, the output of the OCR engine can change for a sample throughout training
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Figure 3.4: Accumulating history information for training samples and utilizing the
past predictions to compute the loss function for updating the approximator using
label tracking.

since the preprocessor’s parameters are being updated using differentiable bypass.
After a few epochs of training, the history of OCR predictions can look like this for
3 samples -

H(x1) = [ abc, ab ]
H(x2) = [ stok, stokee, Stroke, stroke ]
H(x3) = [ ]

Each sample’s prediction history can be used to train the approximator, as described
in algorithm 3. When the OCR engine is queried for a sample x, we check if H(x)
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is non-empty. If it is, we pick the m most recent predicted labels for that sample,
where m is the window size. For each of these labels, we assign corresponding weights
w1, ..., wm and these weights are set to be decaying from most recent to least recent
so that older labels have smaller weights associated with them. A general form for
the weights is given by,

wi+1 = λwi, s.t. λ ∈ (0, 1]

We use the CTC loss function to compute the loss between the approximator f

and the i’th most recent OCR prediction H(x)i,

Li(x) = CTC(f(x), H(x)i) (3.3)

To calculate the loss using all labels in history within window size m, we modify our
loss function to be a multi-loss objective and use w1, .., wm to control the impact of
each label on the total loss. Hence, the new loss function L′ is

L′ =
m∑︂

i=1
wi ∗ Li (3.4)

As an example, we consider m = 3 and the label history in example 3.2 to enumerate
the individual components of the summation term in equation 3.4

L′(x) = w1 ∗ CTC(f(x), ”stroke”) + w2 ∗ CTC(f(x), ”Stroke”)
+ w3 ∗ CTC(f(x), ”stokee”)

Contrary to Algorithm 1, we do not add noise to the sample before querying the
OCR engine in label tracking. We refrain from adding noise since the OCR engine
labels obtained for noisy samples can be an unreliable source of information for label
tracking. We want to track reliable labels associated with a sample so that changes
in the OCR engine’s predictions for a sample are caused only by the training of the
preprocessor.
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Chapter 4

Experiments and Results

4.1 Experiment Setup

4.1.1 Datasets

All experiments are performed on the “POS dataset” and the VGG dataset, curated
as shown in [1], with Tesseract and EasyOCR as the black-box OCR engines. The
POS dataset is a combination of three POS (Point-of-Sale receipt) datasets - Findit
fraud detection dataset [66], ICDAR SROIE competition dataset [67] and CORD
dataset [68]. Image patches are extracted from the receipt images and then resized
such that the images in the dataset have a maximum height of 400 pixels and a width
of 500 pixels. With roughly 90k word patches, the POS dataset has 3676 training
images, 424 validation images, and 417 test images. The VGG dataset consists of
60k word images randomly sampled from the VGG synthetic word dataset [69]. The
dataset is split into 50k training images, 5k validation images, and 5k test images.
A few sample images from both datasets are shown in Figures 4.1 and 4.2.
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CORD FINDIT RRC

Figure 4.1: Sample Images from the POS Dataset.

4.1.2 Training Details

Similar to [1], a UNet architecture is considered for the preprocessor, while a CRNN
architecture is used for the approximator. The system is trained using the Adam
optimizer [70] for 50 epochs, with the learning rates for the preprocessor and approx-
imator being 5 × 10−5 and 10−4 respectively. A weight decay of 5 × 10−4 is used for
both the approximator and preprocessor when the POS dataset is used for training.
The CRNN model is pre-trained with the OCR for 50 epochs to avoid the cold start
problem [1]. For noise jitter, σ is randomly sampled from 0, 0.01, 0.02, 0.03, 0.04, and
0.05. Most of these hyperparameter values are picked up from the best values used
to train the original system [1]. The full receipt images are first passed through the
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Figure 4.2: Sample Images from the VGG Dataset.

preprocessor when training the system with the POS dataset. Then, each prepro-
cessed image is split into word images to pass them through the approximator and
to query the OCR engine since our CRNN model can only work with word images
as inputs. Hence, for receipt images, the batch size for the preprocessor is 1, and
the batch size for the approximator is the number of text strips in the preprocessed
document image. For the VGG dataset, a batch size of 64 is used for the UNet and
the CRNN. For the MSE loss, We use β = 1 for our experiments [1].

The preprocessor’s weights are updated by calculating the loss with respect to
the ground truth labels for all samples in a mini-batch (Fig. 2.3). To train the
approximator, a small subset of samples is selected from the preprocessed images (or
the text strips extracted from a preprocessed image). Sample selection is performed
before querying the OCR engine such that the number of queries in each epoch is
n% of the queries in the original system per epoch. In the original setup, Gaussian
noise is added twice for each sample, resulting in two queries per sample in each
epoch. Hence, if n = 10, we select 20% of the total text strips in each minibatch
to query the OCR and update CRNN’s weights (10% of (2 |text strips|) = 20% of
|text strips|). In our work, we consider n ∈ {4, 8} to demonstrate the efficacy of our
approach on low query budgets. There are no additional hyperparameters associated
with the proposed selection methods. We consider random sampling as a baseline
method for our experiments. For UniformCER and TopKCER, we compute the CER
of Tesseract for all text strips before training the system and use it for performing
selection in the first epoch.

Query Budgets and Preprocessor Evaluation. We refer to the results pre-
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Figure 4.3: Test set word-level accuracy (%) of OCR engine with noise added once
(50% budget) and twice (100% budget) for POS and VGG datasets.

sented in [1] for 100% budget, while the results for 50% budget are obtained by
adding Gaussian noise to the samples only once. In this work, we jitter the samples
only once since it allows us to reduce the number of queries by 50% with a mini-
mal drop in accuracy (Fig. 4.3). The OCR is not queried for experiments with a
0% budget, and the weights of the pre-trained CRNN model are frozen throughout
training. Our system’s evaluation metric is the OCR engine’s word-level accuracy
with the pre-processed images. It calculates the proportion of recognized words that
correctly match the ground truth text. The word accuracy is reported using the pre-
processor checkpoint with the highest validation accuracy. All models were trained
on an NVIDIA V100 GPU.

Hyperparameter Tuning. Since our aim is to reduce the number of queries to
the OCR engine, we do not perform extensive hyperparameter sweeps for all settings.
In most cases, the hyperparameters from [1] were sufficient for the system to achieve
good performance. However, for EasyOCR and POS dataset, we obtained sub-par
performance with the default hyperparameters. Hence, we tuned the learning rate
of UNet and CRNN for 4% query budget and TopKCER selection. Using the best-
performing hyperparameters (learning rate of UNet and CRNN are 5 × 10−4 and
1.5 × 10−5 respectively), we performed the rest of the experiments. The results for
EasyOCR on VGG dataset are reported with these hyperparameters. More details
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regarding hyperparameter tuning can be found in the appendix (A.3).

Google Vision API. Since it costs money to query the Google Vision API1, we
only perform experiments with the POS dataset, UniformCER selection, and 2.5%
budget. 2.5% is the minimum budget possible in this setup since we observed that
the OCR needs to be queried for at least one sample in each minibatch to achieve
good performance on low query budgets. Further, querying the OCR for all samples
in the validation set in each epoch incurs a high cost, so we randomly sample 50
images (∼800 text strips) from the validation set and use the word-level accuracy on
this image subset to choose the best model checkpoint. Finally, we train this system
for 41 epochs.

Dataset Budget
Selection Method

Random UniformCER TopKCER

POS

4% 78.36 80.73 81.60

8% 79.20 81.34 81.44

0% —————— 75.23 ——————

100% —————— 83.36 ——————

VGG

4% 62.04 62.86 63.50

8% 62.16 63.86 63.56

0% —————— 45.60 ——————

100% —————— 64.94 ——————

Table 4.1: Word-level accuracy (%) with Tesseract for different selection methods.
No selection methods were used for 0% and 100% budgets. The OCR engine is never
queried for 0% budget.

1https://cloud.google.com/vision/pricing
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4.2 Results

Tables 4.1 and 4.2 depict the word-level accuracy of different selection algorithms on
Tesseract and EasyOCR, respectively, across two query budgets for both datasets.
Figures 4.4 and 4.5 show the preprocessed images obtained after training the pre-
processor with different query budgets.

Selection Method
Dataset Budget

Random UniformCER TopKCER

4% 62.24 65.56 64.22

8% 65.27 65.02 65.86

0% —————— 59.10 ——————POS

100% —————— 67.97 ——————

4% 56.00 56.12 56.84
VGG 8% 56.62 57.80 57.82

0% —————— 49.00 ——————

100% —————— 57.48 ——————

Table 4.2: Word-level accuracy (%) with EasyOCR for different selection methods.
No selection methods were used for 0% and 100% budgets. The OCR engine is never
queried for 0% budget.

Importance of querying the OCR. For most settings, it is evident that with
a budget of only 4%, the performance of all selection algorithms is better than the
performance of the system with no OCR engine queries (0% query budget). Further,
selection using random sampling alone leads to improvement in OCR performance
with less than 10% of the query budget, which shows that random sampling is a strong
baseline. These results also indicate that updating the approximator with at least
a few queries to the OCR engine is essential to train a better preprocessor. Figure
A.1 in the Appendix shows the visual difference in preprocessed images between 0%
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Original 100% 4%

Figure 4.4: Preprocessor output for different test samples in the POS dataset. The
preprocessors were trained with Tesseract OCR engine and UniformCER selection
was used for 4% % budget. Column 1: Original Images. Column 2: Original
system - 100% query budget. Column 3: 4% query budget.
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Dataset Without
Preprocessing

With
Preprocessing
Budget=2.5%

Projected
Expense

Budget=100%

Actual
Expense

Budget=2.5%

POS 82.57% 86.69% 9030 USD 280 USD

Table 4.3: Test set word-level accuracy (%) of preprocessor trained with Google
Vision API along with expected and actual cost of training the system.

budget and 2.5% to illustrate the improvement in preprocessing with minimal OCR
engine queries.

Performance of selection algorithms. Across the board, both UniformCER
and TopKCER perform better than random sampling. This is particularly evident
for the 8% budget setting with the POS dataset for both Tesseract and EasyOCR.
Compared to the original system with 100% query budget, UniformCER and Top-
KCER with 8% query budget results in a 3% or lower drop in accuracy for both
OCR engines. For the VGG dataset, all selection algorithms display a minimum
improvement of 7% when compared to the performance at 0% budget. For this
dataset, all selection algorithms have 2% or lower drop in accuracy for both 4% and
8% budgets, with both CER-based algorithms performing better than random sam-
pling. From these results, we can conclude that for lower budgets, selection using
a sample measure like CER is necessary to achieve 1-2% improvement over random
sampling. Fig. 4.4 and Fig. 4.5 show that the preprocessed images using 100% and
4% query look very similar for both POS and VGG datasets. This indicates that
the transformations learnt by the UNet are similar across these budgets and we can
perform document cleaning for a black-box OCR engine with very low number of
queries to it.

Google Vision API Results. Table 4.3 shows the result for training a prepro-
cessor with the Google Vision API for the POS dataset. We observe that there is
4% increase in the word-level accuracy with just 2.5% query budget. The increase in
accuracy with a low budget shows that the performance of Google Vision API can

36



Original 100% 4%

Figure 4.5: Preprocessor output for different test samples in the VGG dataset. The
preprocessors were trained with Tesseract OCR engine and UniformCER selection
was used for 4% % budget. Column 1: Original Images. Column 2: Original
system - 100% query budget. Column 3: 4% query budget.

be improved by training a preprocessor using differentiable bypass. We also observe
that training the preprocessor using the original system would require 32x more
cost than training it with 2.5% budget, which is a significant reduction in cost.

4.3 Additional Experiments

4.3.1 Training and Testing on Different OCR Engines

Table 4.4 shows the results for training and testing the preprocessor on different
OCR engines. The results for 100% budget have been inferred from a similar experi-
ment conducted by [1]. We observe that in most cases, the difference in performance
between 4% and 100% query budget is less than 6% across all OCR combinations.
These results demonstrate that a preprocessor trained with a low query budget per-
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Dataset
OCR used

for training

OCR used

for testing

Test Accuracy

(4% Budget)

Test Accuracy

(100% Budget)

POS Tesseract EasyOCR 39.06 40.44
VGG Tesseract EasyOCR 43.08 47.14
POS EasyOCR Tesseract 63.92 60.94
VGG EasyOCR Tesseract 43.86 21.64
POS Google Vision Tesseract 66.45 -
POS Google Vision EasyOCR 33.04 -
POS Tesseract Google Vision - 88.23*

Table 4.4: Word-level accuracy (%) for OCR trained and tested on different engines
using best-performing preprocessors from Tables 4.1,4.2 and 4.3. *The preprocessor
was trained with 50% query budget.

forms similarly to the original system when tested on different OCR engines. More-
over, the last row shows that a preprocessor trained with Tesseract using a 50%
budget and evaluated on Google Vision API results in an accuracy improvement of
6%. Furthermore, it is important to note that the huge increase in performance (by
20%) observed in the fourth row of the table results from pre-training the CRNN
with Tesseract instead of easyOCR for 4% query budget on the VGG dataset. We
observed that this change improves the performance of EasyOCR on a low query
budget while also improving the performance on Tesseract for the VGG dataset.

4.3.2 Performance across Different Query Budgets

Fig. 4.6a depicts the performance of UniformCER with Tesseract across different
query budgets on the POS dataset. We observe a clear jump in accuracy for both
datasets when moving from 0% to 2.5% budget. However, the increase in accuracy
plateaus as the budget increases beyond 4%, indicating the diminishing return of
higher query budgets on preprocessor performance.
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Figure 4.6: (a) Test set performance, (b) CRNN accuracy with OCR predictions
as Ground Truth and (c) system training time, with UniformCER selection and
Tesseract across different query budgets.

With the same experiment setup, we also aim to quantify the approximation
strength of CRNN with respect to the OCR engine. We determine the approximation
strength by computing the accuracy of CRNN on the validation set with respect to
the OCR predictions. Fig. 4.6b shows the CRNN-Tesseract accuracy across different
query budgets. We observe that the trend is similar to that of Fig. 4.6a, which shows
that the CRNN’s approximation strength (with respect to Tesseract and the Patch
dataset) improves with a low query budget like 2.5%, which could potentially explain
the increase in performance from 0-2.5% in Fig. 4.6a.
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Fig. 4.6c shows the training time and accuracy of the system across different
budgets for the POS dataset. We notice that the training time increases significantly
with increase in query budget. However, these higher budgets do not lead to a
significant improvement in OCR performance, indicating that we can improve the
OCR performance by querying the OCR with a very low query budget.

(a) POS, β = 0 (b) POS, β = 1

(c) VGG, β = 0 (d) VGG, β = 1

Figure 4.7: Effect of MSE loss coefficient β on preprocessor trained with UniformCER
selection, Tesseract and 8% budget.

4.3.3 Effect of MSE Loss

In this section, we study the effect of the MSE loss coefficient β when the system
is trained with a low query budget. We perform experiments on both datasets with
UniformCER selection, Tesseract OCR, and 8% query budget. We vary β from 0
to 1 with increments of 0.2. For the POS dataset, we noticed that the performance
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does not vary significantly across different values of β. However, visual inspection
of the preprocessed images produced by β = 0 (Fig. 4.7a) and β = 1 (Fig. 4.7b)
indicates that they yield significantly different images. If the full POS receipt images
are passed as input through an OCR engine (instead of text strips), the noise around
the text in different parts of Fig. 4.7a can lead to incorrect text recognition output.
Such noise is absent in Fig. 4.7b due to the MSE loss, making it amenable for
preprocessed images to be passed through an OCR engine. A similar phenomenon
is also observed for the VGG dataset, but the word-level accuracy at β = 0 setting
is 2% lower than the word-level accuracy at β = 1.

4.3.4 Pruning Receipt Images

We perform the data pruning experiments on the POS dataset with the Tesseract
OCR engine. n% of the receipt images in the POS train set are pruned, where n ∈
{10, 20, 30, 40, 50}. The pruned dataset is used to train the system with single jitter,
and the results are shown in Figure 4.8. We can observe that the text recognition
performance of Tesseract is on-par with the full dataset for 10%, 20%, and 30% of
data pruning. Further, pruning 30% of the training dataset yields a 12.5% reduction
in OCR engine queries without any decrease in word-level accuracy. There is an
implicit reduction in the number of queries since pruning document images also
removes text strips that are never used to query the OCR engine. However, pruning
more than 30% of receipt images leads to a significant drop in test accuracy. Figure
4.9 shows a few sample images from the pruned set. These images have less noise,
less textual content, and legible fonts. Hence, Tesseract can accurately recognize the
text in them without any preprocessing.

We use the subset of data obtained by pruning 30% of the images to train the pre-
processor and reduce the number of OCR engine queries using UniformCER selection.
We choose 2.5%, 4%, 8%, 16%, and 32% as the query budgets. It is important to note
that performing query-efficient black-box approximation with a pruned dataset leads
to a further reduction in OCR engine queries. For example, the 4% query budget
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Figure 4.8: Test Accuracy and Tesseract queries (%) across different data pruning
rates. The numbers in blue indicate query % using single jitter with respect to the
original system.

Figure 4.9: Samples with 0 mean CER that were pruned since they rank lowest with
respect to Tesseract’s CER.
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Figure 4.10: Performance of system with original and pruned POS dataset using
UniformCER sample selection for reducing queries to Tesseract.

results in 2.8% of the total queries when the pruned dataset (30% pruning) is used for
training. Figure 4.10 depicts the results for different query budgets with and without
data pruning. We can observe that the two curves are close, and the relationship
between the curves changes for different (%) query ranges. For instance, between
20% and 40% query budgets, the preprocessor trained with the pruned dataset per-
forms better than the original dataset. Further, the system’s performance with the
pruned dataset at a very low query budget is better than that of the original dataset
(first point in both curves). However, the pruned dataset performs slightly worse
than the original dataset between 3% and 20% query budgets. This inconsistency
in the results indicates that the receipt images can be selected with a better crite-
rion so that the total OCR queries can be reduced by combining dataset pruning
and query-efficient black-box approximation without compromising text recognition
performance.
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Selection Method

Tesseract EasyOCR
Dataset Budget Mode

Random UniformCER Random UniformCER

Noise 78.36 80.73 62.24 61.204% Tracking 78.77 81.12 63.57 62.20

Noise 79.20 81.34 65.27 65.02POS
8% Tracking 80.77 82.35 61.90 65.59

Noise 62.04 62.86 56.00 56.124% Tracking 57.70 64.62 48.20 57.10

Noise 62.16 63.86 56.62 57.80VGG
8% Tracking 60.60 64.10 55.47 58.03

Table 4.5: Comparison of test accuracy (%) between noise addition and label track-
ing.

4.3.5 Label Tracking Experiments

For the label tracking experiments, window size m = 5 is used and the weights
w1, .., w5 are assigned as (1, 0.7, 0.4, 0.2, 0.1) respectively. We use UniformCER as
the sample selection algorithm with 4% and 8% query budgets. The results for both
POS and VGG datasets with Tesseract and EasyOCR are shown in Table 4.5. For
many settings, tracking leads to performance that is on par or better than noise-based
approximation, demonstrating that the history of OCR engine queries for selected
samples can compensate for querying the OCR engine with noisy samples. More-
over, tracking improves the OCR performance when the preprocessor is trained with
UniformCER selection on both datasets. However, tracking leads to a reduction in
text recognition accuracy for random sampling in most cases. These results indicate
that label tracking can be helpful in training the system with low query budgets and
UniformCER selection.
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Chapter 5

Conclusion and Future Work

In this paper, we propose a sample selection scheme that drastically reduces the
number of queries to an OCR engine for efficiently training an OCR preprocessor
using differentiable bypass. We demonstrate that using the selection algorithms with
very low query budgets can significantly boost the text recognition performance for
both open-source and commercial OCR engines. Specifically, the text recognition
performance of Google Vision API on receipt images improved by 4.5% with only
2.5% queries of the API. The huge reduction in the number of API queries also
resulted in 32x less monetary cost when compared to the original system. For open-
source OCR engines like Tesseract and EasyOCR, training the preprocessor with 8%
query budget resulted in text recognition performance that was only 2% lower than
the original system. Training the system with 8% query budget also decreases the
training time by 60%. Furthermore, increasing the query budget beyond 8% leads
to significantly larger training time with a small improvement in OCR performance.
Moreover, pruning the training dataset of document images can further reduce the
OCR engine queries when combined with sample selection techniques like Uniform-
CER. Finally, we can utilize the past predictions of the OCR engine to improve the
performance of OCR engine when UniformCER selection is used for training the
document preprocessor.
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In the original system, the OCR engine is queried many times for the POS dataset
because both the OCR engine and the CRNN model are passed text strips as input.
Text strips are used since CRNN can only process word images. Hence, another way
to make the training query efficient is to query the OCR engine with full document
images instead of text strips. Modern OCR engines can predict text bounding boxes
and the text in them for a given document image. Hence, the predicted bounding
boxes from a powerful OCR engine can be used to crop the document image into text
strips for the CRNN model. Since the number of text strips in the training dataset
is much larger than the number of document images, querying the OCR engine only
for document images can reduce the total number of queries significantly.

As part of document pruning, we selected a smaller subset of the training set
and trained the system with the subset. The results show that pruning 30% of
images using the average CER of text strips in each image does not affect the final
performance of the preprocessor. However, when training the system with the pruned
dataset and UniformCER selection with low query budgets, we noticed inconsistent
results. Hence, other data pruning techniques can be explored to remove document
images from the training set. Further, images can be selected in each epoch instead
of training the system with the pruned dataset, as discussed in section 2.2.2 (epoch
sample selection).

Label tracking requires assigning values for label weights and window size. In our
setup, manually tuning the weights can be time-consuming and cumbersome. Hence,
the label-tracking algorithm can be improved by dynamically generating the weights
during training. The effect of different window sizes on the OCR performance can
also be analyzed. Further, a deeper investigation of the relationship between label
tracking and the selection algorithm can be conducted to understand the improve-
ment in performance for UniformCER selection and the decline in performance for
random sampling.
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Appendix A

Additional Results and
Hyperparameter Tuning

Thus section discusses performance metrics apart from word-level accuracy, hyper-
parameter tuning details and visual analysis showing significance of a small number
of OCR queries.

A.1 Character Error Rate (CER) of OCR Engine

Table A.1 shows the average Character Error Rate (CER) (Equation 3.1) for Tesser-
act and EasyOCR with UniformCER and TopKCER selection across different query
budgets. It was used by [1] as an evaluation metric, apart from word-level accuracy.
The observations from this table align with the conclusions drawn from Tables 4.1
and 4.2. Specifically, the CER of OCR engines with random selection is always higher
than the CER-based selection techniques. Further, the CER for both UniformCER
and TopKCER with 8% query budget is only 1% lower than the CER of the original
system.
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A.2 Comparison of 0% and 2.5% Query Budget

Figure A.1 depicts the transformations performed by preprocessors trained with 0%
and 2.5% query budget on the POS dataset using UniformCER selection and Tesser-
act OCR engine. We can clearly observe that making no queries to the OCR engine
results in degradation of the document images, hindering the engine’s text recogni-
tion performance. However, with only 2.5% queries, there is a notable difference in
the quality of preprocessed images. The text is darker and sharper, and background
noise is removed more effectively. The improvement in the quality of preprocessed
images with a minimal number of OCR engine queries underscores the necessity to
query the OCR engine, and also illustrates that a few queries are sufficient to train
a good document preprocessor.

A.3 Hyperparameter Tuning for CRNN and UNet

We use the Optuna [71] open-source library for the hyperparameter tuning exper-
iments mentioned in section 4.1.2. The learning rates of UNet (α) and CRNN (η)
were tuned and the validation accuracy was used to select the best values. The
search space for both hyperparameters is as follows: α ∈ (0.00001, 0.0005) and
η ∈ (0.00001, 0.001). The hyperparameter tuning was performed with 100 trials.
The TPE (Tree-structured Parzen Estimator) algorithm [72] was used for hyper-
parameter optimization. The tuning was only performed for EasyOCR with POS
dataset and 4% query budget using TopKCER selection.
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Dataset Budget Selection Method

Random UniformCER TopKCER

POS

4% 9.6 9.0 7.9

8% 10.1 9.2 9.7

0% —————— 11.6 ——————
100% —————— 8.7 ——————

VGG

4% 15.6 15.3 15.1

8% 15.5 14 15.1

0% —————— 25.5 ——————
100% —————— 14.7 ——————

(a) Tesseract

Dataset Budget Selection Method

Random UniformCER TopKCER

POS

4% 19.0 17.4 18.0

8% 17.9 17.5 17.2

0% —————— 21.5 ——————
100% —————— 16.5 ——————

VGG

4% 18.1 17.8 17.5

8% 17.6 17.3 17.7

0% —————— 23.5 ——————
100% —————— 17.2 ——————

(b) EasyOCR

Table A.1: Average Character Error Rate (CER) of OCR Engine (×100) for different
selection methods across POS and VGG datasets. No selection methods were used
for 0% and 100% budgets. Lower CER indicates better text recognition performance.
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Original Image 0% 2.5%

Figure A.1: Preprocessor output for few randomly selected images in the POS
dataset. The preprocessors were trained with Tesseract OCR engine and Uniform-
CER selection was used for 2.5 % budget. Column 1: Original Images. Column
2: 0% query budget. Column 3: 2.5% query budget.
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