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ABSTRACT
Improving feed efficiency has become a top priority beef cattle

production because of the rapidly increasing cdsteed provision. However,
because of the expense associated with colleatidigidual animal feed intake
data, only a relatively small number of animalsééeen tested, leading to low
accuracies of estimated breeding values (EBV). dlstadies were conducted to
demonstrate the usefulness of including DNA markfarmation in RFI genetic
evaluations. In the first study, the effect ofipdrof testing on RFI was assessed.
Beef cattle steers were tested for feed intakd) ditferent cohorts tested in the
fall-winter and winter-spring seasons. Seasonafewihces were detected
although these were confounded by differences m agd weight among the
seasons. Additionally, mean EBV accuracy obtained Ww, ranging between
0.47 and 0.51, implying that strategies to increageaccuracy are necessary. In
the 2" study, a suite of genetic markers predictive of, I and ADG were
pre-selected using single marker regression arsalgsd the top 100 SNPs
analyzed further in 5 replicates of the traininggd® provide prediction equations
for RFI, DMI and ADG. Cumulative marker phenotyp@MP) were used to
predict trait phenotypes and accuracy of predictianged between 0.007 and
0.414. Given that this prediction accuracy was lotan the polygenic EBV
accuracy, the CMP would need to be combined witly E& effective marker
assisted selection. In study 3, genomic select®8) (theory and methodology
were used to derive genomic breeding values (GEBWVRFI, DMI and ADG.

The accuracy of prediction obtained with GEBV waw,l ranging from 0.223 to



0.479 for marker panel with 200 SNPs, and 0.110.826 for a marker panel
with 37,959 SNPs, depending on the GS method uBee.results from these
studies demonstrate that the utility of genetic kaes for genomic prediction of
RFI in beef cattle may be possible, but will likddg more effective if a tool that

combines GEBYV with traditional BLUP EBYV is used &&lection.
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CHAPTER 1 : Literature review

1.1 INTRODUCTION

Profitability in any commercial system is dictatbgl the balance between
input and output streams of the system. In a batliecproduction system, profit
may be increased by minimizing the cost of inpusich is dominated mainly by
the cost of feed, whose provision constitutes ofethe highest inputs of
production (Herd et al., 2003). Given the rapidigreasing global demand for
grain for human consumption, animal feed and bgl-foroduction, and the
consequent increase in grain prices, the costedfifig animals will remain high
for the foreseeable future. This heightens the reedcrease the efficiency of
feed utilization even though this has been the extbpf research for many

decades.

Most measures of feed efficiency in young growingrals are a function of
live weight and growth rate, and are mostly exprdsas a ratio relative to feed
intake. These include partial efficiency of groW®#EG) and feed conversion ratio
(FCR). Residual Feed Intake (RFI), also known as Reed Efficiency (NFE;
Koch et al.,, 1963) has been proposed as a meaduefficiency that is
independent of mature animal size and productiome Trait is moderately
heritable and as such is a good candidate for gemeprovement. Further, the
lack of correlation with production traits ensurtbst selection for improved
efficiency does not alter these traits for cattieer selection, thereby maintaining

1



uniformity in terms of the physical attributes afimals, as this may be an

important factor for the producer(s) involved.

Incorporation of feed efficiency into breeding alijees would increase the
genetic potential for animals to have lower feethke while maintaining the
same production levels. It has been demonstratedntiore efficient cattle have
multiple benefits such as lower dry matter intdkes manure production as well
as lower emission of methane (Okine et al., 20GsaBab et al., 2001; Nkrumah
et al., 2005). However, the main barrier to adoptd selection strategies based
on RFI is the technical difficulty and expense \mated to obtain individual
animal feed intake. Because of this, various irtdicraits that could be used in
place of RFI have been sought, but so far reswte tbeen disappointing. The
prospect of using genetic markers that are pregiadi RFI offers an attractive
alternative to direct measurement of individualdféetake on large numbers of
animals. This would allow not only increased accyri the genetic evaluation
of RFI but also provide a means for effective maissisted selection (MAS) of
young animals before collection of their own phgpat information. Such a
scheme allows selection decision to be made earliga life of the animal, with
more resources directed towards maintaining theensdficient and therefore
more valuable animals. Consequently, young bully & sold off at a higher
premium because of their potential cumulative bénhefs sires of more efficient

cattle.



1.1.1Measuring feed efficiency

It is apparent that a large portion (70-75%) of thetabolizable energy
(ME) of any ration is used for maintenance (Fermealli Jenkins, 1985). Given that
there is individual animal variation in maintenanoequirements, there is
considerable advantage in improving the efficierafy energy utilization in

livestock species.

Over the years, various measures of feed efficieihaye been used.
Traditionally, efficiency has been defined as #raf feed to gain or gain to feed
(Koch et al., 1963; Archer at al., 1999). Somehafse ratio traits, such as partial
efficiency of growth (PEG), feed conversion ratiBCR) and maintenance
efficiency have been characterized genetically ijarcet al., 1999). However,
despite widespread use, these measures are ubtkediecause they are often
correlated to growth (average daily gain, ADG) trep production traits such as
mature weight (Koots et al., 1994). Also, sinceest¥e pressure on the
components of a ratio trait is not predictable giteat more intensity is usually
placed on the component with higher variation (&tnd.984), unit improvement
in a ratio trait does not imply an improvement wexall efficiency, such that

responses are unpredictable (Crews, 2005).

Koch et al. (1963) suggested an alternative meabateavoids many of
the problems listed above, while taking advantagedividual animal variation
in maintenance requirements. Residual feed intBke¢) (was originally defined as

the difference obtained when an animal’s actual fatake is adjusted for growth

3



and maintenance requirements (Koch et al., 1968sdntly, RFI has become an
even more desirable measure for characterizing feffidiency because its

definition implicitly allows inclusion of more ‘emgy sinks’ besides growth and
maintenance, such that comparisons between aniceais be made across
different segments of production and different etagf development while at the
same time still describing individual animal digeces (Crews, 2006). This is
coupled with the fact that the measure is devoi@rof phenotypic correlations
with the measurable traits used to estimate it §Bds et al., 2003). However, it
has been shown that though RFI may be phenotypiocaltorrelated with ADG

and mid weight (MWT), genetically it is not (Kennedt al., 1993). To remove
such correlations, genetic RFI is often calculatednany studies utilizing RFI in

beef cattle, the correlation between genetic arehptypic RFI is generally very

high (Hoque et al., 2006; Nkrumah et al., 2007a).

Efficient animals consume less feed than expecssed on their growth
and maintenance requirements such that more effieieimals have a negative
RFI value while inefficient animals have a positR&l value. The mean of the
trait is null within the cohort it is estimated aadimals with such a value are

considered to be of average efficiency.

1.1.2Estimation of phenotypic (RFI) and genetic (RF§) residual feed
intake
In the preceding discussion and throughout thisishehe term “RFI”
refers to phenotypic RFI, unless otherwise stat@dnerally, RFI is a linear

4



function of feed intake, body weight and growtleras first suggested by Koch et
al. (1963). However, there is no universal math@ahktormula that is currently
in use, since various studies have included vdoeas of ‘energy sinks’ while
estimating RFI (eqg.1, 2 and 3 below). Accurate meaments of growth (ADG)
and maintenance requirements (estimated using #tebolic weight, MW",
which is initial weight plus half of gain on testye obtained from repeated
measurements of weights during a feeding trial. @s#mation of maintenance
requirements is thought to be best captured bygusietabolic mid weight, which
is a fractional power of shrunk body weight, adgdsto the three quarters power
(NRC, 1996). It has previously been shown that BWTs proportional to fasting
energy expenditure such that metabolic requiremsotde with body weight.
Optimal feeding durations for RFI characterizati@ve been estimated to range
between 63 — 84 days depending on number of daygebe weights (Archer et
al., 1997; Archer and Berg, 2000; Wang et al., 20B@peated measurement of
weight reduces measurement error when estimatimgagasuggested by Koch et

al. (1963).

The mathematical formulae that have been used timas RFI are
represented below as equations eq. 1 (Koch etl@63), eq. 2 (Archer et al.,

1997) and eg. 3 (Basarab et al., 2003).
RFI = DMI — (3o +B1ADG + B,MWT) eq. 1l

RFI = DMI — (B +B:ADG + B,MMWT) eq. 2



RFI = DMI — (o +B1ADG + B.MMWT + B3BF) eq. 3

wherep, B2, B3 are partial regression coefficients ghdhe intercept; ADG is
the average daily gain, BF is the end of test sittuad back fat thickness, MWT
the mid weight and MMWT is the metabolic mid weiglieed intake is

represented as daily dry matter intake (DMI) stadidad to 10MJ of ME/kg DM.

Phenotypic RFI is expected to be uncorrelated thightraits used to calculate
it. However, despite the lack of phenotypic cotietess, RFI may still be
genetically correlated with its component trait© @void such correlations,
genetic RFI (RR)) is often used. Genetic RFI can be calculatedguairgenetic

regression as
RFlg = u - u* = u - UGk,

where u* is a vector containing EBV for expecteddantake from genetic
regression, with dimension equal to number of atimaith u being the feed
intake EBV from mixed model equations. The matritksG andk are a n x t
matrix of MMWT and ADG EBV, a t x t matrix of genet(co)variances for
MMWT and ADG, and a t x 1 matrix of genetic co-@ates of feed intake with
MMWT and ADG, respectively. This may be extendedintolude any other

production traits.

Typically, through multiple regression approachA®G and MMWT
explain over 60% of the total phenotypic variatiorfeed intake (Basarab et al.,

2003; Carstens and Tedeschi, 2006). However, dibdy composition traits,
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such as ultrasound back fat have been incorporatée calculation of RFI to
account for the energy channeled towards fat déponsand muscle production
(Basarab et al., 2003; Crews, 2006). In sheepasdtind muscle depth has also
been included as an extra trait (Francois et @022 However, it is presently
unclear whether incorporation of body compositicait$ in the models for RFI
estimation should be a routine measure or be datard It is generally agreed
that ADG and MWT must be included in the estimat@mnRFI for growing
animals. However, because of the low correlatioeswben RFI and body
composition traits, many studies have not incluttexbe traits in RFI estimation
models. The disparity between data sets in the @¢fizbe correlations between
body composition traits and RFI (most of the estemaof genetic correlations
between back fat thickness and RFI have been shealf allowed the discordant
development of the ‘extended’ RFI estimation mod€leere is increasing support
in North America for the inclusion of back fat tkimess in equations used to
estimate RFI. However, the validity of such an els&r where no ‘significant’
correlation exists is in question. It remains tode¢ermined what magnitude of a
correlation is large enough to warrant inclusiorfathess traits in RFI estimation

equations as a routine exercise.

1.1.3Economic implications of residual feed intake (RFIestimation

For accurate estimation of RFI, individual anime¢d intake data has to
be obtained, and this is only possible through obkeexpensive equipment.

Estimation of pen efficiencies for group-fed animélas been attempted, and



several schemes of estimating individual animactiefficy from such intakes have
been reported (Guiroy et al., 2001; Williams et 2006, Tedeschi et al., 2006).
These systems use mathematical models to predienemal’s feed efficiency
from the dry matter required based on the animagght and gain as well as the
feed composition. However, it is only by recordindividual animal feed intake
that accurate estimation of RFI can be achievetiowit losing information on

inherent differences between individuals.

Even though estimation of RFI is most often doneyaung growing
cattle, the correlation between RFI in growing lea#ind in mature cows is high
(Archer et al., 2002). This is important becausdaig5% of total feed costs are
associated with the maintenance of the breeding loend. None the less, most
research on RFI has been focused on young grovaggssor bulls. One reason
for this may be because it is typically easier éfirce maintenance requirements
of bulls and steers as a function of body weiglnery that the maintenance
requirements of cows are dependent on their cupesition in the reproductive
cycle. Also, since most cows are mostly fed foragsed diets, it would be more
complicated to facilitate large-scale measurementfooage intake. Further,
current selection strategies are geared towardeowig efficiencies of breeding
sires given that a very high proportion of the denenprovement of the cattle
herd is obtained when sires pass on their charstitsrto their offspring. This is
because sires are mated to large numbers of datharansubject to very high
selection pressure, such that only the best siresretained in the breeding

population. Only a small proportion of cows areletilat each round of selection,
8



such that sire selection often drives trait improeat. Also, since a cow can only
produce one calf per season, and a bull can patignhave tens of offspring
every season, a breeding bull contributes a Idthéogenetic makeup of the herd
than a cow, despite passing only half his genet&eup to every calf. However,
given that cows stay longer in a herd, an optire@cion strategy would be one
that ensures that replacement heifers are potintalighter of efficient bulls,

with the desired performance in terms of feed edficy.

The total savings from increasing animal efficierman be considerable
especially for replacement heifers which stay lonigethe herd. Selection for
higher feed efficiency could potentially result @ reduction of 9-10% in
maintenance costs for the cow herd, a 10-12% remtuit feed intake, reduction
in methane emissions by 25-30% and manure produdtio 15-20% without
affecting average daily gain or mature cow sizesg@@ab et al., 2002). The

economic benefits of selecting for improved effig are thus sizeable.

1.1.4Genetic evaluation of residual feed intake (RFI)

The genetic evaluation of RFI has resulted inneses of genetic
parameters and variance components comparableoge thf more regularly
measured traits such as growth traits. EstimateRFdfheritability have varied
considerably from 0.16 (Herd and Bishop, 2000).&8QCrews et al., 2003) and
considerable variation has been reported withirugsoof cattle tested for RFI
(Herd and Bishop, 2000; Basarab et al., 2003). Tdnge range of heritability

estimates for RFI reflects the inadequacy of cliaresing genetic parameters for
9



a relatively new trait such as RFIl. Given that oalyew animals (beef cattle)
worldwide have been tested for individual feed kietasample sizes used to
estimate these parameters have been invariablyl smalpared to other more
regularly measured traits. It is to be expected #sasample sizes increase, the
heritability will converge to a more narrow rangevalues. However, from these
estimates, it is apparent that polygenic selectian lead to significant gain in
efficiency as demonstrated by divergent selectitmiss in Australian cattle
(Richardson et al., 1998; Arthur et al., 2001c)e3é studies reported that from 5
years (2 generations) of divergent selection in umgattle, more efficient

animals (low RFI) consumed 1.2kg DM less than ioefht animals (high RFI).

One of the reasons why RFI is deemed a more apatepmeasure of
efficiency is its lack of correlation with growtlate, maturity patterns, and body
weight. This lack of correlation implies that seien for RFI will result in
minimal correlated response in other traits ofriegé This is important because if
such correlated traits are not included in the ctele index used for RFI
improvement, the projected targets for these f{rass enumerated in their

selection objectives may not be achieved.

Significant correlations between RFI and FCR, DMt dat depth have
been described (Arthur et al., 2001b; Basarab.e2@D3; Robinson and Oddy,
2004; Nkrumah et al., 2007b). Other studies hadecated associations between
RFI with carcass leanness, with more efficient aténmhaving leaner carcasses

(Herd and Bishop, 2000). The suggested incorparatfdack fat thickness in the
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estimation of RFI is informed by such correlatioaad would enable obtaining
RFI measurements that are net of any differencesbady composition.
Richardson et al. (2001) describe gains in efficjeafter one generation of
divergent selection, which were above and beyonflerdnces in body
composition, suggesting that the bulk of differende efficiency are due to
differences in maintenance requirements, probaldyaaresult of inherent

differences in the metabolic processes that urelefficiency (Korver, 1988).

Breeding values (EBV) for RFI have not routinelyebecalculated because
there have been only a small number of industrgnals tested for individual feed
intake. Because of the lower density of phenotygaita available, EBV for RFI
will typically have low accuracies and several t&gees may be needed to
increase the accuracy before adoption of RFI EB\s&ection purposes. So far,
a viable indicator trait that may be used for genewaluation of RFI in a
multivariate framework has been elusive. Multivegiaanalyses have been
successfully utilized for genetic evaluation of dhdo measure traits such are
reproductive traits (fertility and calving ease)asoto increase the accuracy of the
EBV obtained. Such a framework for RFI would requan easily measured trait

with medium to high heritability and an equally higorrelation with RFI.

The development of IGF-I as a possible indicatait for RFI has yielded
inconsistent results and may need more researcivev, due to the rapid
advancement of DNA marker technology after the napgand more recently

the sequencing) of the bovine genome it is enviddbat various DNA based
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tools that rely on genetic polymorphisms associatgd RFI may be developed
to aid in obtaining accurate estimates of genetarittby way of molecular
breeding values (MBV). Alternatively, these may umed to augment available
phenotypic records in a marker assisted genetituatian process that yields

marker-assisted breeding values (MEBYV).

However, it has been variously estimated that as$tl@,000 records are
required for accurate estimation of marker assiki®d (Meuwissen et al., 2001,
De Roos et al, 2007; Hayes et al., 2009). Thisregton has been done in relation
to genomic selection in dairy cattle, where tydicdlalf-sib families are rather
large and the ‘phenotypes’ used are sire proofsigif heritability and accuracy.
In the beef cattle scenario, because of the relgtismall half-sib families, and
little or no progeny testing schemes, many moremx may be required before

accurate estimates of MEBV are obtained.

1.1.5Prospects for genetic selection of residual feedtake (RFI)

Residual feed intake (RFI) is moderately herita®ehur et al., 2001b)
with heritability ranging from 0.16 to 0.58 (HerddaBishop, 2000; Crews et al.,
2003). Considerable genetic variation has been dstraied within populations
and across different breeds of cattle tested for Rferd and Bishop, 2000;
Archer and Berg, 2000; Basarab et al., 2003). @ibimonstrates that selection for
RFI is possible and benefits of reduced feed intede be passed on between
generations. However, single trait selection forl,REcomponent trait whose
underlying economic trait is feed intake is gergrabt recommended. This has

12



led to an increased need to define genetic colwektbetween RFI and other
economic traits. Arthur et al. (2001b) reportedsty genetic correlations between
RFI, feed conversion ratio (FCR) and feed intakel a weak correlation of RFI
with subcutaneous fat (Table 1.1). Other studiese leso associated lower RFI
with a leaner carcass (Schenkel et al., 2004; Rhsar al., 2003). Given these
correlations and because there is no associatiwreba RFI and growth, it would
appear that variation in RFI is a reflection of vbetn-animal differences in
biological systems related to efficient feed u#tipn that are still largely

unknown (Crews, 2006).

Richardson et al. (1998) and Arthur et al. (200dlajnonstrated that
selection for RFI was effective and the benefitsngbroved feed efficiency can
be achieved in a beef operation. Due to the minooekelations between RFI and
body composition traits, multi-trait selection chea undertaken without risk of
unfavorable correlated response. Such a selediiategy would be important to
ensure that appropriate economic weights are placethe several component
traits in the breeding objective thereby maximizthg benefits obtainable from
selecting for increased feed efficiency. Crewsle2906) developed a multi-trait
economic index that incorporates bull average da#yn, RFI and yearling
weight. In a bid to relate biological efficiency fisedlot profitability, Carsten and
Tedeschi (2006) used this index to rank market gmggof bulls tested for RFI
and observed that index values ranged between @A20. In their study, they
observed +17% and -9% gains in ADG and feed intekpectively for the more

efficient bulls (ranking higher than 105) comparedthe low efficient bulls
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(ranking below 95). These two classes of animats dimilar yearling weights.
This demonstrates that profitability can be maxediat all levels and segments
of production, if industry adoption of such an irds expedited. However,
measurement of the trait requires expensive andidzed equipment and this
has been the major factor hindering wide-scale tolowf feed efficiency as an
economically relevant trait and its inclusion ineéding programs. Effective
selection could be enhanced if marker assisteduatrah tools were used.
Consequently, there have been concerted effods\elop genetic and molecular

tools which indirectly measure RFI.

1.1.6Indicator traits for residual feed intake (RFI)

Due to the expense involved in measuring individuamal feed intake,
various physiological parameters have been exanasgubssible indicator traits
for RFI. These include the measurement of the seokinsulin-like growth factor
| (IGF-I) and leptin in blood samples. Even thowgium leptin concentration has
been shown to be associated with RFI in cattlepagsl (Nkrumah et al., 2007a;
Hoque et al., 2009), its use as a possible indit¢edd has not seen widespread
adoption. By far, IGF-I showed the most promisa aseful indicator and has
received considerable research attention. Insikengrowth factor, IGF-I, is a
hormone that regulates growth and cellular metabyland is secreted in
response to growth hormone. Circulating levelsGfl have been shown to be

associated with increased feed efficiency (Bishogd.e1989; Stick et al., 1998).
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The use of this physiologic marker as an indiretéction criterion for RFI has

been demonstrated (Davis and Simmen, 2006).

However, even though lower IGF-1 concentrations associated with
improved efficiency ¢ = 0.6), and has high heritability of 0.4 (Moore at,
2005), IGF-I is correlated with some growth trglavis and Simmen, 2006) and
carcass measures. To obtain a highly accurate E&W fGF-1 measures alone,
much more testing would be required. The use of-IGik feed efficiency
selection will likely be more useful where RFI dat available, where its
incorporation in RFI evaluations will increase aemy of the EBV obtained.
Kahi and Hirooka (2007) used IGF-I and RFI in aes#gbn strategy resulting in
higher accuracy and profitability for Japanese bleattle. However, results from
recent studies (Carstens et al., 2007; Lancasta&l,e2008) have cast doubt as to
the usefulness of IGF-I as a physiologic indicadbiRFI and its suitability has
increasingly fallen into question. The effect of A& has proven to be breed
specific, with consistent correlations with RFI ebg&ed for Taurine breeds.
However, inconsistent results have been obtainedirfdicine and cross-bred
cattle. The correlation between RFI and IGF-I Hae proven to be dependent on
the age of animal at the time of blood sample ctbb@ such that different
collection times (e.g. pre-weaning and post-weanimgsult in different
correlations. Other results have also shown anvenéible correlation between
IGF-I with reproductive traits (Carstens, 2007)htecnkamp et al. (2004) and
Basarab et al. (2007) have shown that high seruralli@vels are associated with

increased twinning rate. IGF-I is thought to havela in follicular stimulation,
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proliferation, differentiation and steroidogenesv#th associated inhibition of
follicular apoptosis thereby leading to multiplecm@tment of follicles during
ovulation. Consequently, high RFI cows had higlezus IGF-1 levels, increased
twinning rates, low calf weights, and increased daath. On the other hand more
efficient (low RFI) cows calved 5 days later (Bagaet al., 2007). Also, because
IGF-1 levels are associated with fertility, verywlovalues may lead to
reproductive problems, such that selecting hedwatyincreased efficiency (low
RFI, low IGF-1) may lead to reduced fertility inegHong term. In view of these
results, further studies will be needed before IG=n be widely applied as an

indicator for RFI.

1.1.7 The molecular basis for residual feed intake (RFI)

Considerable research has been undertaken to degetine genetic basis
of RFI with varying degrees of success with onlyea studies having been
published (Moore et al., 2006; Arthur and Herd, 08krumah et al., 2007b;
Sherman et al., 2008a,b). Nkrumah et al. (2007bjppraed a primary genome
scan to identify quantitative trait loci (QTL) thanhderlie variation in RFI in
young growing steers sired by Angus, Charolais lrea Hybrid bulls. In this
study, eight QTL for RFI, located on 8 differentr@mosomes and significant at
the 5% chromosome-wise threshold were identifiedriracross-family analysis.
Some of these QTL were in the same regions as fdeséfied for traits related
to RFl such as ADG, FCR and DMI suggesting sharedetic components

among these traits. This is expected due to thengtrand positive genetic
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correlations between RFI, FCR and DMI. In a bidn@row the confidence

intervals for the detected QTL, Sherman et al. 8)@erformed a fine mapping
study by increasing the number of markers arouedrétevant regions on four
select chromosomes. This resulted in a substadéetease in the confidence
intervals of these QTL from an average of 30cM&®25cM. Such a narrowing of
the confidence region enhances considerably thecelseof finding the causative

genes.

In a whole-genome association study of a populat@msisting of various
breeds of cattle with extreme RFI values, Barergisal., (2007) obtained 161
SNPs significantly (P < 0.01) associated with RBiithe 161 SNPs, 90 contained
mi-RNA motifs while 86 contained promoter elemeimghe sequence flanking
the SNPs. Sherman et al. (2008a,b) identified warjpolymorphisms associated
with RFI among which was one within an intronigion of the growth hormone
receptor (GHR). However, no gene governing a sjegibcess known to have a
huge impact in feed efficiency has been identitiedlate. These results indicate
that finding a set of genes responsible for feditiehcy is still a formidable
challenge, and a practical solution may be to ifierst set of SNP in linkage
disequilibrium (LD) with putative genes underlyingpe various metabolic
pathways that underpin variation in RFI. These rttagn be combined into a
panel that will be useful for marker assisted sedeac(MAS) and marker assisted

genetic evaluation of RFI.
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The transition from discovery of significantly assded polymorphisms
to a viable genetic test that is commercially amgilie requires that such
associations undergo third party validation in peledent populations to ensure
consistent and repeatable results. So far two cooiahegene tests for RFI
(GeneStar feed efficiency from Pfizer animal healtid Igenity feed efficiency
from Merial Igenity) are available. However, theoportion of RFI genetic
variance accounted for by these marker panelstiknown. It has been suggested
that for marker panels to be useful for genetieden and evaluation purposes,
they must account for over 10% of the genetic vagaof RFI (Crews et al.,

2008).

1.2 OVERALL OBJECTIVES
The overall objective of this research was to destrate the use of

molecular markers for the genetic evaluation oities feed intake (RFI).

Specific objectives were as follows

1. To assess the effect of climate parameters onifdakle and efficiency
for steers tested in fall and winter seasons.

2. Estimate variance components and genetic paranfetdrs-1.

3. To assess the utility of SNPs preselected for @$oe with RFI using
single marker association analysis in predictingnatypes for RFl,

DMI and ADG.
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4. To compare the accuracy of prediction of genomieedmg values
(GEBV) derived from three genomic selection methatith RFI, DMI

and ADG.

19



Table 1.1 Genetic correlations between residual fdentake (RFI) and

production traits

Trait Ry Source

Back Fat 0.16 — 0.17 Arthur et al., 2001a; Schenkel et al.,
2004.

FCR 0.66 — 0.85 Arthur et al., 2001a,b ; Schenkel et al.,
2004 ; Herd and Bishop, 2000.

Fl 0.64 — 0.81 Arthur et al., 2001a,b ; Schenkel et al.,
2004 ; Herd and Bishop, 2000.

IMF/Marbling -0.44 Crews et al., 2003.

Score

REA -0.17 Schenkel et al., 2004.

Methane 0.44 Nkrumah et al., 2006.

Feeding duration 0.43 Lancaster et al., 2005.

Heat production 0.68 Nkrumah et al., 2006.

Ry— genetic correlation
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CHAPTER 2 : Season of testing and its effect on feed intaked efficiency in

growing beef cattlé

2.1 INTRODUCTION

Residual feed intake (RFI) is increasingly becontimg standard measure for
evaluating feed efficiency. The trait is typicallylinear function of feed intake,
live weight and weight gain (Koch et al., 1963; At et al., 2001) and any other
measurable “energy sinks” (Crews, 2005), such adybcomposition, and
lactational performance (Veerkamp, 1995; Montankabhl., 2009). The intention
of having RFI net of correlated traits is such théferences in efficiency between
animals are due to differences in metabolic efficierather than in production

(Crews, 2005).

Variations in animal performance occasioned by @®as changes in
environmental and climatic conditions are knowrotcur (Birkelo et al., 1991).
Such variations are thought to be due to differsnneadaptation and efficiency
of energy utilization in response to the requigitergy demands. The effects of
ambient temperature on animal performance have la¢sem widely studied in
beef cattle. Exposure to extended periods of caidlead to cold stress, invoking
various thermoregulatory mechanisms such that eramice requirements remain
unchanged until a critical temperature is surpag¥eming, 1983). Metabolic
acclimatization due to exposure to cold temperatings been thought to reduce

performance and efficiency in animals comparedhtusé¢ not exposed to such

A version of this chapter has been published. nimASci. 1910. doi:10.2527
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conditions at the same level of feed intake (Youl281). Residual feed intake
(RFI) measures individual animal differences in m@mance requirements after
adjusting for growth. Consequently, due to theeased physiological load in
cold conditions, RFI estimated in winter periodsymapresent a different trait to
that obtained in warmer seasons. This study sotgl@ompare if there were
significant differences in the performance andcgdficy of groups of steers tested
for feed intake in two periods (Fall-Winter and \WnrSpring seasons) over 3

successive years.

2.2 MATERIALS AND METHODS

2.2.1Animal resource and data collection

The data consisted of 378 beef steers, offsprin@g @foss between a
composite dam line, generated as an experimentalpdgoulation after 30 yrs of
selection and Angus, Charolais or University of é&tia hybrid bulls. The dams
used were produced from crosses am®rgpmposite cattle lines, namely beef
synthetic 1, beef synthetit; and dairy x beef syntheti®BS). Beef synthetid
was composed of 33% Angus, 33% Charolais, and &t Gallowayamong
other beef breeds while beef syntheticc@dnprised 60% Hereford with the
remaining 40% being othbeef breeds. The dairy x beef synthetic was contpbose
of approximately60% dairy breeds (Holstein, Brown Swiss, or Simragrand
40%beef breeds, mostly Angus and Charolais (Goonewareée al.2003). Sire
and breed distributions for fall tested and wirtemted groups are shown in Table

2.1. Feed intake data was collected using the Gafev&utomated feeding system
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(GrowSafe Systems Ltd) over a period of three yeatts two cohorts of animals
tested for feed efficiency in each year, excepyear 1 where one cohort was
included in the analysis (Table 2.1). Feeding be&hradata (number of feeding
events, feeding duration and head-down time) wa® a&bllected from the
GrowSafe system and summed to obtain daily cowtkswing similar methods

as those in Basarab et al. (2003).

The test diets consisted of standard high energglidé diets as shown in
Table 2.2 (Nkrumah et al., 2007). Each formulatobrihe test diet was sampled
every two weeks and stored for future analysis fdesnwere pooled prior to
analysis) to ascertain nutrient and dry matter exanas described by Nkrumah et
al. (2006). The testing periods lasted approxinye@8l days and animals had free-
choice access to feed and drinking water. Body mtgiBW) data were recorded
every two weeks, with the first weight obtainedtba day preceding the test. The
exception was for year 1 where weights were reacbmleekly. The last weight
was obtained as close to the end of test as pesgbherally within 2 — 3 d.
Ultrasound back fat thickness, measured betweeri2he 13' rib, was obtained
at the end of the feed intake test using an ultnagdransducer as described by
Basarab et al., (2003). All animals were caredfédlowing the protocols and

guidelines outlined by the Canadian Council on Aadi@are, CCAC (1993).

Climate data (average, minimum and maximum air eyatpre, average
relative humidity, average solar radiation and wsped) for the years 2003-

2004 (designated year 2004) and 2004-2005 (200% el#ained from the
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University of Alberta Kinsella meteorological stati The Kinsella station was
installed in October 2003, such that data for 200@3 (2003) was obtained from

the Vikings AGCM, the weather station closest tad€lla (about 20km away).
2.2.2 Trait derivations

Each animal's average daily gain (ADG) was obtaiasdthe slope of the
regression of body weight (BW) on test days, with intercept being the weight
at start of test (SWT). Metabolic mid-weight (MMWWgs calculated as the mid-
weight on test raised to 0.75 (M\W). Average daily feed intake was converted
into daily dry matter intake (DMI) by multiplyingntake with the dry matter
content of the diet. The DMI of the diet was théandardized across the different
years to 10 MJ of ME/kg of DMI by multiplying intakwith diet metabolizable
energy (ME) content then dividing by 10 (Basarahlgt2003). All animals tested
between Sept and Jan belonged to the Fall-Winteag& 1) test group, while
those tested between Jan and May were assignbd Wihter-Spring (Season 2)
test group. Individual animal RFI was calculatedtlas difference between an
animal’'s average daily dry matter intake (DMI) aitsl expected feed intake

(EFI), using one of 3 methods;

1. By fitting a regression model (eq. 1), RF DMI — (Bo +p:ADG +

BsMWT) to each test group (cohort) separately asandBab et al. (2003).
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2. By fitting a regression model (eq. 2), RF DMI — (3o +p.Cohort +
BADG + B3MWT) to pooled data (overall) consisting of allteegroups

but including test group as a fixed effect (Artletial., 2001).

3. Or by fitting a regression model (eq. 3), REl DMI — (Bo +B1Cohort +
BADG + B3sMWT) to pooled data with test group as a fixed effeut
within seasonal (Fall-Winter (1) or Winter-Sprir@))X groups.

where, By is the intercept anf@, B2, Ps are partial regression coefficients, and
Cohort is a group of steers tested together fat fielake. Models 2 and 3 assume
that regressions of DMI on ADG and MWT are the sammss groups, with

Model 3 allowing for separate regressions withiases, while model 1 considers
regression within group thus allowing for differemsidual variances between
groups. Other traits evaluated included ultrasoback fat (UBF), measured at
the end of test, body weight at start of test (SWARd body weight at slaughter

(SLTWT), measured one day before animals were shipp slaughter.

2.2.3Statistical analysis
Least square means and differences between seasdreohorts for climate
as well as performance data were obtained usingib&D procedure of SAS
(SAS Inst. Inc.Cary, NC). Because there were differences in thighweand age
(at start of test) of the animals between the 2@eaat the start of the test, start
weight was included as a covariate in the modeHl usecompare the means
between the two seasonal groups. The model usedefiagd as follows:

Yik = + SWT + Seasof gy eq. 4
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where Yy represent various traits to be evaluajed the overall mean, SWT
the weight of k-th animal at start of test, seasbtest (j = 1 or 2) anéj random

residual associated with each record.

Phenotypic correlations between feed intake, efficy and body composition
traits were calculated using the CORR procedureSAS while regression
parameters were estimated using the REG procedwerage air temperature,
average relative humidity and wind speed were s=g@ on feed intake to assess
where these parameters influenced the amount af éeasumed within each
season. However, wind speed was found to only hasignificant effect on DMI

in the winter cohort and the final model used wafoHows:
DMljjx = Bo + B1Temp +B.RH + BsSeason +ig eq.5

Where, DMI is the average daily dry matter intaRel, the relative humidity,
TEMP the average daily temperatutgeason the season when the test was

performed (1 or 2) an€) the random residual associated with each record.

Two different forms of animal model were used tdineate variance
components, genetic parameters and breeding vatieg the ASREML program

(Gilmour et al., 1998). The models were definedodlews:
Yik = p + age + Breed + Cohorf+ a + i M1

Yik = + age + Breed + Season a + gj M2
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wherey is any one of Rl RFlp or RFk, p is the overall mearageis the age
of the k-th animal at start of test and is used aevariateBreed is the breed of
the sire (i = Angus, Charolais, or Hybrid), Cohatthe test group (j = 2-6),
seasornis the season in which the feed intake test weemeed (j = 1-2)a is the
random genetic effect of the k-th animar(0, Ac?%)), ande is the random
residual €~N(0, 16%)) with A being the numerator relationship matrix of all
animals and an identity matrix with order equal to the numbémanimals with

records.

Estimated breeding value (EBV) accuracies wereutatied using elements of

the inverse coefficient matrix as accuracy(i— s¢ I(1+ f,)o?), where & is the

prediction error variance associated with the BLfdP the K" animal, f the
inbreeding coefficient for the"kanimal ando? the additive genetic variance

(Gilmour et al., 1998). The effect of year withieason was not included in the
final model because it neither changed the mokeliiood nor was it significant.
The interaction of year by season was equivalefittiog a fixed effect of cohort.
Genetic correlations between traits were obtaimeoh fa bivariate analysis based

on model M1.

2.3 RESULTS

The distribution of steers within sire breeds iswh in Table 2.1. There was
more Angus type steers than Charolais or Hybrice tgpeers. The number of
steers per sire ranged between 1 and 28, with arage of about 10 steers per

sire, when considering sires with more than 1 offgp Of the 89 sires in the
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pedigree, 57 had a single offspring (Table 2.1pbl@&.2 details the ingredients
and nutrient composition of the diets fed. The giekre typically high energy

rations with similar energy density for the 3 yegpanning the tests.

The integrity of the feed intake data used to dateuRFI is important so that
parameter estimates are comparable across testtiooadregions and breeds.
Often, there is a need to discard data for a nundbedays due to system
malfunction and data collection problems. In thigly, a relatively small amount
of data, up to 2%, was lost in this way. Also, giveportion of DMI variance
accounted for by ADG and MWT should be sufficiertlyge. Usually, between
30% and 45% of DMI variance is available as RFIs@ab et al., 2003; Crews,
2005). Cohort specific values for expected feedkat prediction equations
ranged between 54.12% to 76.93% (data not provided)average, ADG and
MWT accounted for 60% of the variation in DMI. Adidnally, RFI is not
expected to have phenotypic correlations with gsnponent traits, ADG and
MWT, as seen in this analysis. To remove geneticetations between RFI and
its component traits, genetic RFI is often caledai{Kennedy et al., 1993).
However, because of the high correlation betweesnptypic and genetic RFI
(typically 0.9 or higher; Hoque et al.,, 2006; Nkramet al., 2007), only

phenotypic RFI was used in this study.

Average values for climate parameters in the twasges are given in Table
2.3. As expected, season 1 temperatures were rouen bn average than season

2 temperatures. Similarly, solar radiation and wspeed were lower in season 1
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than season 2. On the other hand, relative humvdity higher in season 1 than
season 2. A similar trend was seen on a year to pasis, with season 1
temperatures being lower than season 2 temperatflinesaverage temperatures

for cohorts 2, 3, 4, 5 and 6 were -5.13, -11.051 3-8.71 and 0.32, respectively.

Table 2.4 provides means and adjusted means fdrifiégke and efficiency,
feeding behavior and performance traits. Seasamriads started the feed intake
test approximately 80 days later than the seasgrodp and were subsequently
older and heavier (by about 92 kg) at the beginmhghe test. Consequently,
season 2 animals had a higher feed intake (DMIjl metabolic mid weight
(MWT) compared to the season 1 group. The feekéntser metabolic weight
(DMI/MWT) of season 1 animals was higher comparedttiat of season 2
animals (124.6 vs. 113 g DMI'd/kg MWT, respectively). Additionally, the
season 2 group had lower ultrasound back fat tlesgnlower feeding duration
(5.19 vs. 7.83 min/kg DMI), lower number of visttsthe feeding bunk (0.48 vs.
2.98 events/kg DMI), and a shorter “head down” ti(2e89 vs. 3.83 min/kg
DMI). Even though ADG was not significantly differtebetween the fall and
winter groups, after adjusting for differences tarsweight, season 1 animals had
comparatively higher growth rates than season @asi As shown in Table 2.5,
the difference between ADG regression coefficiéotshe two seasonal groups is
not significant (P = 0.0808) until a start weigBW/T) adjustment is applied (P =

0.0444).
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The correlation between air temperature and DMI maslerate and negative
in season 1, while moderate and positive in se&dmhable 2.6). The trends
between air temperature and feed intake are illtexirin Figures 2.1 to 2.5. Feed
intake seemed to drop after sharp decreases ineati@imperature (Figure 2.3,
2.5, 2.6). Feed intake (DMI) for animals tested@ason 1 was correlated with the
minimum and average measures of relative humidRid)( while season 2
animals did not show significant correlations betw®MI and any measurement
of RH. There were significant correlations betw&il and minimum, average
and maximum solar radiation for season 1 while $eason 2, significant
correlations were only observed between DMI and imarn solar radiation.

Wwind speed was significantly correlated with DMIs@ason 2.

Regression of mean climate parameters on DMI inelicthat air temperature
and RH had a significant joint effect on DMI in sea 1 but not season 2. For
season 1, average air temperature accounted faf H#é variation in DMI, while

average RH accounted for 3.3% (Table 2.7).

Genetic and phenotypic correlations between thiereéiit measures of RFI,
performance and behavior traits are shown in T&® Genetic correlations
between RH, RFIlc and ADG were not significant given the large stadderrors
observed. However, there was significant corretatietween RKH and ADG.
The correlations between RfFor RFk and DMI were moderate and within the
range observed by other studies, while the coroglator RFb was slightly

higher. Feeding duration was not genetically catezgl with RFI, number of visits
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showed a high correlation with RFI, while Hdown ¢invas moderately correlated
with RFI. Ultrasound back fat (UBF) did not havesignificant correlation with

RFI. Phenotypic correlations between RFI, UBF aeéding duration were
significant in contrast to genetic correlations. @werage, ADG and MWT

accounted for 60% of the variation in DMI.

Estimates of variance components, heritability &Y/ accuracy are shown
in Table 2.9. Irrespective of the model used tolate RFI, RRt had a better
model fit, while RFb had the least favorable fit, based on the modgLL&ingle
trait direct heritability and EBV accuracy were tégt for RFE and lowest for
RFlo. In all instances evaluation of the various RHAlidgions with models M1

and M2 led to higher residual variance estimate&félo.

2.4 DISCUSSION

Table 2.3 gives mean values for climate parameterd the p-values
associated with differences between season 1 asdi$e groups. In this study as
expected, season 1 temperatures were lower thaors@atemperatures, because
the Fall-Winter feed intake tests ended in Janedy, And thus span the coldest

months (Nov, Dec and Jan) in Alberta.

The average minimum air temperature in season 1cleae to the proposed
critical body temperature (-20) for cattle (NRC, 1996; Young, 1981). Under
thermo-neutral conditions, the core body tempeeat(temperature of the inner
body of the animal) is between 38 and 88.%Sjaastad et al., 2003). Exposure to

cold conditions below the critical body temperatin@s been associated with
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metabolic cold acclimatization, which results iewted levels of resting heat
production (Young, 1983). Lefcourt and Adams (19%8und that ambient
temperature affected body temperature when a nddai threshold was attained.
In a separate study, Berman (2004) estimated ggnif increases in metabolic
heat production as well as increased maintenampgereenents due to exposure to
cold at -16C using published experimental data. Similar reswire observed by
several other studies reviewed by Young (1983) Wwihittribute increased energy
requirements in winter to enhanced resting headymtoon (RHP) brought about
by the effects of cold climates on body core terapge. However, Kennedy et
al. (2005) found no relationship between exposurescold with metabolic
acclimatization in crossbred beef heifers exposed$ much as 10H'do -20°C
conditions. Similarly, Birkelo et al. (1991) foundo effect of season on
maintenance requirements in Hereford steers. Nosdelss, various studies
provide evidence suggesting that lower temperattggslts in poor performance
in terms of feed efficiency (Delfino and Mathisd®91) and ADG (Birkelo et al.,

1991).

In this study, the animals tested in season 2 wigler and heavier at the start
of the feed intake test, while ADG was not sigrfidy different between the
groups. In order to remove differences attributablbody size, the weight at start
of test was used to adjust growth and performaraiés tusing eq. 4. Feeding
behavior for season 1 animals (increased feedingtidan, feeding events and
visits to the feed bunk) suggests increased fetzken and less efficiency. This

group also had longer meal durations, and visitesl feed bunk more than
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animals tested in season 2. More energy was rehforehe more feeding events
especially because the animal would be more expistte elements, increasing
the chances of heat loss. On a weight to weighspaisd considering the adjusted
DMI estimates and intake per MWT, season 1 animaisumed more feed than
season 2 animals, even though animals that arerlangsize are expected to
consume more feed. Given that this ‘higher’ intake not translate into faster
growth rates (unadjusted ADG is the same for bathugs), feed energy may
have been allocated to mitigate the effects oftharsather conditions, such as
increasing heat production or accumulation of bfadyo aid in insulation against
heat loss. As shown in Table 2.4, season 1 animats on average higher

ultrasound back fat thickness compared to seasmin2als.

The trend of increased feed intake with reducingt@mperature is further
supported by the negative correlations between BMI air temperature (Table
2.6). Correlations between DMI and solar radiatfdable 2.6) also suggest that
feed intake increased with higher levels of sotatiation. The magnitude of this
correlation was higher for season 1 compared tsase&, suggesting that the
prospect of reduced heat loss may have encouragetila to venture out to the
feed bunks, as opposed to huddling together inramleonserve heat. Young
(1981) suggests that the lower critical temperatidra group of animals is much
more reduced compared to that of a single aninmalthéir simulation study,
Keren and Olson (2006) showed that in cold conagjosolar radiation is
important in lowering the effects of extreme weatbe metabolic requirements.

On the other hand, wind velocity increases metab@guirements due to the
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“chill” factor, such that ambient temperature ferlach colder with higher wind
speed. The negative correlations for season 1 sttjugt days with higher wind
speed accompanied by typically low temperaturébahseason may have led to a
reduction in feed intake, by necessitating incrdaseiddling behavior or
restricted movement by the animals so as to coadardy heat. Similarly, higher
humidity levels may often result into wet hair céat the animals thus reducing
insulation capabilities. For season 1, days withelohumidity showed increased
feed intake (Table 2.6). On the whole, air tempegeatind relative humidity had
the biggest impact on feed intake in season 1 €rabi). Regression of DMI on
climate parameters did not yield any detectablects$f for season 2 despite the

correlations observed between DMI and climate patara for this group.

Metabolic acclimatization to cold may possibly beeaponse to changes in
the core body temperature and such changes affeog\epartitioning. Individual
animals are bound to show differences in metakam@ptation to these changes.
Given the differences in the correlation and regjoes parameter estimates for
feed intake and climate parameters in the two seasthese results suggest
possible differences in energy partitioning, adaptaand hence efficiency of
energy utilization in the two seasons. ConsequeRBi calculated in these two
seasons may actually be indicative of 2 differeaits, each capturing different
components of energetic efficiency. However, beeao$ the confounding
brought about by animals in the two seasons betrjfferent age and weight
levels, it is impossible to specify a cause andatffelationship between climate

parameters and feed intake.
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None-the-less, having observed differences in DMWT and UBF for the
two groups, and possible individual animal diffexesin metabolic adaptation to
cold conditions, it seems appropriate to group ¢bhorts into season 1 and
season 2 for genetic evaluation purposes. Furthaiso becomes necessary to
assess how effective the various methods usedltolate RFI perform, with
respect to these groups. Normally, RFI is calcdlas the differences between
observed feed intake and expected feed intake .(Elpically, EFI is predicted
by regressing DMI on ADG, MMWT and any other “engginks” (Crews, 2005)
that show a correlation with RFI either within (Beeb et al., 2003) or across test
groups (Arthur et al., 2001; Hoque et al., 2006)m& body composition traits
such as ultrasound and carcass back fat (Arthak.,e2001; Robinson and Oddy,
2004) and rib eye area (Hoque et al., 2005) haga beown to be associated with
RFI. However, these correlations as reported in litexature are small in
magnitude with large standard errors. A third wéyderiving RFI is used here
following the method of Arthur et al., (2001), bilie regression is performed
separately in each seasonal group. The reasomudbran approach is to try and

account for season specific influences on DMI.

Estimates of least square means for the differétdRrivations are provided
in Table 2.4. Within seasonal groups, both R&hd RF§ sum to O while RKJ
does not. This is to be expected based on the uaethpplied, where RFI will
average zero in the group (or across the groupsettimated. Table 2.8 provides
estimates of genetic and phenotypic correlatiortesdn RFI and growth, feed

behavior and body composition traits. The geneticratations between REl
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RFls and ADG, MWT were not significant. On the contrathere was a
significant correlation between Rfland ADG. Even though RFI may be
genetically correlated with ADG and MWT, the fabat RFE and RF§ did not
show this correlation and R&-tlid, points to reduced efficiency in minimizingeth
correlation between RFI and its component traitmil&rly, RFlo has a higher
correlation with head down time, and lower corielatwith number of visits to

the feeding bunk compared to REhd RF¢.

The high genetic correlations between RFI and nurobeisits or head down
time would imply reduced feed efficiency for anisaésted in season 1, given
that this group had a higher number of visits ®fgeding bunk. Even though the
magnitude of the differences between the correlatior the three measures of
RFI is well within the range of the S.E., therermssdo be a trend that suggests
that RFb performs differently from the other two measuréfel. Estimates of
variance components (Table 2.9) using either m@délor M2) resulted in RK
having the smallest residual variance, and higksstnates of heritability and
EBV accuracy. Given the LogL, model M2 was best épnluating RK and
RFlo while model M1 was suitable for evaluating RHFor RFE, the results
suggest that seasonal effects can be partly acadudat by including a season
effect in the evaluation model (M2). However, foFIR trying to account for
seasonal effects in the evaluation model resultthenworst fit. These results
suggest that the method of Basarab et al., (20€8Jing to RRl is the most
suitable for evaluating RFI in animals tested ia ttvo seasons. No matter what

evaluation model was used, estimation of RFI ynfita separate regression for
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each test group (RE) seems to be more robust than when done withisoseh
groups (RK). However, the method of Basarab et al., (2003)ld/¢ail when the
intention is to assess gain in efficiency due td Bdection. Typically, a single
regression would need to be applied to all selegimups so that the progressive
change in mean EBV with successive generationleicson is assessed. The
method of Basarab et al. (2003) ensures that eaxttpdested has a mean of null
while for the Arthur et al. (2001) method, eachugravill have a different mean
allowing for changes in mean RFI value to be eagimntified as selection
proceeds. Where selection has been undertakerthambpulation under study is
tested for feed intake in different seasons, éngisaged that the season specific
adjustments suggested in this study would becoretuligiiven no confounding

factors.

The results in this study are suggestive of sedsdfexts on feed intake and
RFI estimation. However, because the two groupanahals started the tests at
different ages, there is confounding of age witassea and it is hard to separate
these two such that the differences in intake ofeskibe wholly attributed to
seasonal influences. The inclusion of age as ar@tgan the evaluation model
only allows a mathematical equalization to a commge (given that animals
started the test at different ages) but does littl@adjust for the real metabolic
differences caused by the animals being at diftepdysiological stages. Even
though the differences in the estimated parametanaot be wholly attributed to
seasonal influences, it is apparent that feed entakasured in the two seasons

relates differently to climate parameters, andrtfamner in which RFI is derived
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impacts variance component estimation. Howeverthasdrive to obtain more
efficient cattle using RFI becomes intensified, enstudies need to be conducted
to understand how animals respond to environmgetalirbations in situations of

cold stress and how this may impact selection &remergy efficiency.

2.5 CONCLUSIONS

This study sought to assess the influence of cérparameters on feed intake
and whether residual feed intake (RFI) calculatedelgressing feed intake (DMI)
on growth rate (ADG) and metabolic weight (MWT) 3ndifferent ways led to
similar estimates of genetic parameters and vagiacmmponents for young
growing cattle tested for feed intake. There wasgaificant difference between
Fall-Winter (season 1) and Winter-Spring (seasom 2hean climate parameters
to warrant separation of the tested cohorts in&s@eal groupings. For season 1
animals, feeding behavior observed was indicativenareased intake although
unadjusted DMI was lower than for season 2 anim@istrelation between
climate parameters and feed intake showed increéseding with reducing
temperature for season 1. Results obtained sutigesgiven no selection for RFI
in previous generations, RFI is best estimateddgyessing DMI on ADG and
MWT for each test group separately, followed by ejenevaluation using a
model that includes season as a fixed effect. Hewexonfounding in terms of

age and weight of animals in the two seasons &ffieitte results observed.
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Table 2.1 Summary of the number of steers per sire, within tst group and

sire breed

Steers Steers
Year Cohorts (Seasonl, Seaon)Seasonl) (Season2)

2003 Cohort 1, 2 NA 64
2004 Cohort 3, 4 80 76
2005 Cohort 5, 6 80 78
Breed

Angus 70 93
Charolais 53 44
Hybrid 37 81
Sires

Total number of sires 34 55
Average number of offspring per sire 4.7 3.96
No of sires with single offspring 19 38
Average number of offspring per sire 9.4 10.59

@Averaged for sires with more than one offspringas®m1 — Fall-Winter;
Season2 — Winter-Spring; NA — Not included.
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Table 2.2. Nutrient composition and ingredients oéxperimental diets for the

years tested

Diet ingredient (% as fed basis) ~ 200< 2004 200¢
Dry-rolled corr 80.0( - -
Barley grait - 64.5( 64.5(
Oat grait - 20.0¢ 20.0¢
Alfalfa hay 13.5C 9.0C 9.0C
Beef feedlot suppleme* 5.0( 5.0C 5.0C
Canola o 1.5C 1.5C 1.5C
DM, % 90.5( 88.9( 88.9(

Nutrient Composition, DM badis

ME, Mcal/kc 2.9C 2.91 2.91
CP, % 12.5( 14.0( 14.0(
CF, % -- -- --
NDF, % 18.3( 21.4¢ 21.4¢
ADF, % 5.61 9.5(C 9.5(C

'Contained 440 mg/kg of monensin, 5.5% Ca, 568 0.28%64% K, 1.98% Na, 0.15%
S, 0.31% Mg, 16 mg/kg |, 28 mg/kg Fe, 1.6 mg/kg &€ mg/kg Cu, 432 mg/kg Mn,
432 mg/kg Zn, 4.2 mg/kg Co, as well as a minimurB@DOO0 1U /kg vitamin A, 8,000
IU/kg vitamin D, and 1,111 IU/kg Vitamin E.

2 Obtained from digestibility trials and subsequemtiximate analysis as described by
Nkrumah et al. (2006).

ME — metabolizable energy; CP, - Crude protein-GFrude fat; NDF — Neutral
detergent fiber; ADF — Acid detergent fiber
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Table 2.3 Means (£ S.E.) and significance levelsrfGlimate parameters for

fall and winter tested groups

Seasonl Season2
Paramete Mean + Sl Mean + St P-value
Min Air T emperature’C) -14.58 £ 0.7 -6.72 + 0.6 Fhx
Max Air TemperaturéC) -4.95 + 0.8, 5.20 £ 0.6: Hohx
Average Air Temperaturé@) -9.7 +0.7! -0.72 £ 0.6. Fhx
Average Relative Humidity (%) 78.59 £ 1.l 64.56+1.0 rxk
AverageSolar Radiatio 43.18 £3.5 161.85 +3.6¢ Fhx
(W/m?)
Wind speed scalar (m/s) 3.37+£0.1. 3.92+0.1 *x

***P.yalue < 0.0001, **P-value < 0.01; Seasonl H¥dinter; Season2 — Winter-

Spring.
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Table 2.4. Adjusted and unadjusted least squares rames (+ S.E.) for various feed intake and performare traits

evaluated on steers tested in fall and winter

Seasonl Season2 Seasonl Season2

Trait Mean+ S.E. Mean + S.E. Adj Mean + S.E. Adj Mean £ S.E.
ADG (kg d}) 1.49 +0.02 1.48+0.02 1.55* + 0.03 1.44* +0.02
Age (d) 211.72 £1.39 293.91 £ 1.19 - -
DMI (kg DM d™%) 10.43 £0.11 11.14 £ 0.09 11.58 £0.12 10.31100.
Duration (min d) 81.70+1.23 57.84 +1.06 84.36 +1.68 56.02351.
HDown (min d*) 39.95 +0.90 32.25+0.77 39.84+1.23 32.48990.
MWT (kg) 83.70+0.52 98.77 £ 0.45 92.74 +0.18* B2+ 0.14*
RFIc 0.00'+ 0.06 0.06+ 0.05 - -
RFlo 0.21 +0.07 -0.15+0.06 - -
RFls 0.00'+0.07 0.06+ 0.06 - -
SLTWT (kg) 561.20 + 4.67 524.42 + 4.01 616.55 + 4.74 483.49 + 3.82
SWT (kg) 311.67 +3.00 404.42 +2.58 - -
UBF (mm) 10.77 £ 0.27 9.02+0.23 12.06 + 0.36 8:1029
Visits (events @) 31.12+0.51 23.02+0.44 262980.62 26.18+0.50
WWT (kg) 241.22 +2.81 182.48 +2.42 - --

IMeans for fall and winter do not significantly d@iff -- No adjustment done; Season1 — Fall-WintegsBn2 — Winter-Spring;



*P-value < 0.05. All other P-values < 0.001; Sedsertrall-Winter; Season2 — Winter-Spring;
Adjmean — Adjustment mean; Adjustment obtainednigjuiding weight at start of test (SWT) as a covaria

ADG - Average daily gain; DMI — standardized drytteaintake; HDown — Head down time; MWT — Metabatid-weight;
SWT — Weight at start of test; SLTWT — Weight auglhter; UBF — Ultrasound back fat; Age — represtrg age at the
beginning of test; Visits — number of visits to fieeding bunk; WWT — Weaning weight. RF RFI obtained by regressing
ADG and MWT on DMI for each cohort separately; RFRFI obtained by regressing ADG and MWT on DMeoyooled data,
with test group as a fixed effect; RFIRFI obtained by regressing ADG and MWT on DMithatest group as a fixed effect but
within seasonal (fall, winter) groups.
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Table 2.5. Differences between estimated regressioaefficients for Fall and

Winter test groups based on different models for égnated expected feed

intake (EFI)
Model Parameter Seasonl Season2 Difference p-value

Model: DMI = GROUP + ADG + MWT + ADG*GROUP + MWT*GOUP

Intercept -3.14+0.94 -2.25+0.92 -0.89 £ 1.41 5302
ADG 2.05+0.24 1.38 +0.28 0.67 +£0.38 0.0808
MWT 0.13+0.01 0.12+0.01 0.01+0.02  0.5379

Model: DMI = STWT + GROUP + ADG + MWT + ADG*GROUP MWT*GROUP

Intercept -7.36 £3.17 28.98+£8.78 -1.09 +1.43.4460
SWT -0.03 +0.02 0.21 +0.06 -- 0.5272
ADG 0.86 +0.88 8.63 +2.07 0.80 £ 0.40 0.0444
MWT 0.31+0.13 -115+0.36 0.01+0.02 0.5372

ADG — Average daily gain; MWT — Metabolic mid wetg®WT — Weight at start of
test; -- parameter not estimated; RSQ for both 1isddeé0%; Seasonl — Fall-Winter;

Season2 — Winter-Spring.
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Table 2.6. Estimates of correlation coefficients ahassociated significance
levels for the correlation between daily measured alimate parameters and

feed intake (DMI) data for fall and winter seasons

Season Season

'Estimatc  p-value  'Estimatc  p-value

Max Air Temperature°C) -0.2¢ 0.001 0.27 <.0001
Min Air Temperature®C) -0.2¢ 0.000¢ 0.3¢  <.0001
AverageAir Temperature®C) -0.2¢ 0.001: 0.31 <.0001
Max RelativeHumidity (%) 0.0C 0.952¢ 0.1¢  0.094¢
Min RelativeHumidity (%) 0.32 <.000! -0.0¢  0.316:
Average Felative Humidity (%) 0.2% 0.003¢ -0.0¢  0.659¢
Max Solar Fadiation W/m?) 0.1¢ 0.013¢ 0.21  0.010¢
Average Solar radiion (W/m?) 0.3C 0.000: 0.1¢ 0.095:
Total Solar radiationW/m?) 0.3C 0.000: 0.1¢ 0.09¢
Wind Speed (m/: -0.1¢ 0.071: 0.1€  0.049¢

TEstimate obtained by correlating each of the cknpetrameters with daily DMI within
season. Seasonl — Fall-Winter; Season2 — Wintengs[DMI — Dry matter intake. Dry
matter intake data used is the daily average famaials in each season
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Table 2.7. Parameter estimates (+ S.E) obtained ltlge regression of weather
parameters on feed intake for fall and winter testd groups.

Seasonl Season2

Estimate Estimate

Intercept 8.890+0.82 9.36+0.82
Cohort -0.42+£0.08 0.08 +£0.011

Average air temp -0.02+£0.01 0.05%0.02

Average RH 0.03 0.01+0.01
RSQ 0.283+0.01 0.03
Model P-value <0.0001 0.1584

®Average air temperature accounts for 5% of vanmsitioDMI while average RH
accounts for 3.3%; RH — Relative humidity, RSQ efficient of determination.;
Seasonl — Fall-Winter; Season2 — Winter-Spring
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Table 2.8. Genetic and phenotypic correlations (+.5.) among various

measures of RFI and feed intake, performance and baviour traits

Genetic correlations Phenotypic correlations
RFl¢ RFlo RFls RFI¢ RFlo RFls
ADG 0.21 +0.37 0.53 +0.46 0.31+0.39 -0.00 0.00 0.00
DMI 0.45+0.29 0.68 +0.24 0.51+0.28 0.56 0.63 0.58
MWT -0.33+0.55 -0.32+0.59 -0.27+0.58 -0.00  -0.00 0.00
UBF -0.92+1.05 -0.79+1.15 -0.99+1.20 0.19 0.23 170.
Duration 0.03+0.45 0.29+041 0.04 +0.47 0.36 0.46 0.36
Visits 0.95+0.31 0.64 +0.50 0.94+0.34 0.25 0.16 0.21
HDown 0.46 +0.38 0.74 +£0.35 0.51+0.39 0.41 0.49 0.45

ADG - Average daily gain; DMI — dry matter intak@uration — length of time spent on
a meal; HDown — head down time; MWT — metabolic mideight; UBF — ultrasound
back fat; Visits — number of visit to the feed bunk

RFlc — RFI obtained by regressing ADG and MWT on DM feach test group
separately; RR - RFI obtained by regressing ADG and MWT on DMI alh pooled
data, with test group as a fixed effect; RFRFI obtained by regressing ADG and MWT
on DM, with test group as a fixed effect but witlieasonal groups.

57



Table 2.9. Variance component and genetic paramet@&stimates obtained from the genetic evaluation dfie three measures of

RFI using two different evaluation models

Model M1 Model M2

RFIc RFlo RFls RFI¢c RFlo RFIs
Direct genetic
variance 0.15 0.12 0.13 0.13 0.14 0.14
Residual varianc 0.47 0.5¢ 0.5C 0.4¢ 0.61 0.5¢
Heritability, 0.24+£0.1 0.18+0.1. 0.20£0.11 0.22zx0.L 0.18x0.1. 0.21z0.L
EBV accurac 0.5 0.4¢ 0.5C 0.51 0.4¢ 0.5C
Model LocL -113.0: -131.6: -116.5: -108.4¢ -144.7: -123.1¢

RFIc — RFI obtained by regressing ADG and MWT on DM éach test group separately; BRFRFI obtained by regressing ADG and MWT on
DMI on all pooled data, with test group as a fixedfibct; RFL - RFI obtained by regressing ADG and MWT on DMithatest group as a fixed
effect but within seasonal groups.
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Figure 2.1 Plots for trends of average air temperature and\aerage daily dry

matter intake (DMI) for animals tested in the Winter-Spring of 2002 — 2003.
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Figure 2.2. Plots for trends of average air tempetare and average daily dry
matter intake (DMI) for animals tested in the Fall-\Winter of 2003 — 2004.
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Figure 2.3. Plots for trends of average air tempetare and average daily dry
matter intake (DMI) for animals tested in the Winter-Spring of 2003 — 2004.
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Figure 2.4. Plots for trends of average air tempetare and average daily dry
matter intake (DMI) for animals tested in the Fall-\Winter of 2004 — 2005.
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Figure 2.5. Plots for trends of average air tempetare and average daily dry
matter intake (DMI) for animals tested in the Winter-Spring of 2004 — 2005.
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CHAPTER 3 : Associations of marker panel scores with feed iake and

efficiency traits in beef cattle using pre-selecte8NPs

3.1 INTRODUCTION
Feed efficiency is often measured as residual fiekake (RFI), the
difference between an animal’'s actual feed intake i&s expected requirement
for growth and maintenance of body weight over ec8ped period (Koch et al.,
1963). The trait is moderately heritable (Arthuradt, 2001b) with estimates
ranging from 0.16 to 0.58 (Herd and Bishop, 2000ew3 et al., 2003) and
considerable variation has been reported withirugsoof cattle tested for RFI
(Herd and Bishop, 2000; Basarab et al., 2003). &d$on et al. (1998) and
Arthur et al. (2001c) demonstrated that selectmnRFI was effective and the
benefits of improved feed efficiency can be achieve a beef operation.
However, the collection of individual feed intakeata that is required for
implementation of selection in breeding programs e@en hindered by the need
for expensive and specialized equipment. On tofhaf, there are other hidden
costs associated with data collection, such aspaation of test animals to a
centralized testing facility, the cost of feed aaddage, estimated at about $250 -
350/hd (John Basarab, personal communication) badcost of the actual feed
intake test ($1-1.25/hd/day). Given that resulterfifeed intake tests can only be
obtained after at least one year from birth, seactould be enhanced if DNA
markers associated with RFI were used in the manege and selection of

animals early in life as well as in the geneticleaon of RFI.
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Recent advances in marker technology have led ¢od#velopment of
various DNA based selection tools (Van Eenenaand.ef007a, b; Johnston et
al., 2008). These tools are useful not only for-ggkection of superior animals
without own records, but also for increasing theuaacy of breeding value
estimation for traits that are difficult or expersito measure such as RFI. Such
selection tools would serve to augment the natiodatabase supporting
traditional polygenic EPD selection. In the abseoicphenotypic measurements,
DNA tools may still be used to estimate EBV as wall predict future
performance for a particular trait, especially fgyung unproven sires. This
however, is contingent on the structure of the reefee population used to
estimate marker effects. Such a population shoalde hboth genotypes and
phenotypes, and potentially large numbers of imlligls for low heritability

traits.

The usefulness of DNA selection tools depend onpttogortion of the
true genetic variance accounted for by the markerels selected. Crews et al.
(2008) suggested that for marker panels to be Ldbky would need to account
for 10-15% of the genetic variance in the traitimterest. In this chapter, the
utility of marker panels in the prediction of ADBMI and RFI was evaluated for
a group of crossbred beef steers. The marker pamsis derived from SNPs
preselected for association with the various trdiisspite the relatively small
number of individuals in the dataset, the potenigdfulness of genetic markers

as an additional tool for the selection of RFI wamonstrated.
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3.2 MATERIALS AND METHODS

3.2.1Animal resource, data collection and study design

The data consisted of 721 spring born beef steffispring of a cross between
a composite dam line and Angus, Charolais or Usityeof Alberta hybrid bulls.
The 3 composite dam lines used consisted of beethsiic 1 (BS1), beef
synthetic 2 (BS2) and dairy beef synthetic (DB$he breed composition of BS1
included Angus and Charolais (each approximateB6)335alloway (20%) and
other beef breeds (approximately 14%). The BS2h&yit consisted of Hereford
(60%) and other beef breeds (40%), while the DB&hstic was made up of 60%
dairy breeds (Holstein, Simmental, or brown Swissld 40% beef breeds

(Goonewardene et al., 2003).

Feed intake data was collected over a 5 year pavitd two groups (Fall-
Winter and Winter-Spring, also referred to as picand 2, respectively) tested
every year for the first three years. The datatlier Fall-Winter period in year 1
was not included in the analysis due to inconsistered intake records
occasioned by a drought in that year. In year €, gnoup of animals was tested
for two consecutive periods (Fall-Winter then Wm8pring), first on a low
energy feedlot diet in period 1 then a high endegyllot diet in period 2. In year
5, two groups of animals were tested in two conseeyeriods as follows: The

first group was put on a high energy feedlot degtldoth periods 1 and 2, while
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the second group was first tested on a lower engiggyin period 1 then switched

to a high energy diet in period 2 as shown in T&ole

The consequence of feeding a low energy diet infits¢ testing period
implies potential carry over effects of diet on ¥enter-Spring test results, thus
making it necessary for animals thus treated tgrbaped separately (Table 3.1).
However, despite the separate grouping, periodstl data for the diet switch
group was not included in the analysis, so thay aldta obtained from high
energy feedlot diets was included. Animals had-tleeice access to feed and
water. In total, 9 batches of animals were avadldbl analysis, a batch being a
combination of year and period of testing. Theseewsrganized into 3 groups
namely, the Fall-Winter, Winter-Spring, and dietitsiv groups (Table 3.1). Table

3.2 gives the number of animals in each of thegesips.

Animal body weight data was collected every two keefor the duration of
the test, except in year 1 when weights were rexbrdeekly. The test periods
lasted approximately 90 days or until 70 days afuisdata was available. The
Canadian Council on Animal Care, CCAC (1993) prote@nd guidelines were

followed when caring for the animals.

3.2.2 Diets and feed composition

Test diet composition and associated nutritionala d@lable 3.3) were
obtained after digestibility trials and proximateafyses as described by Nkrumah
et al. (2006). All the diets were barley based legkrgy feedlot rations, except in
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year 1 where a shortage of feed barley led to dseom. In typical feedlot

practice, a mineral supplement was also offerepagisof the diet. Animals were
tested for feed intake using the respective tetsdollowing a 2 week adjustment
period to familiarize the animals with the testieomment and feeding bunks. All
diets for periods 1 and 2 within each year were shme except where diet

switching from a low energy to a high energy degndiét occurred.

3.2.3Trait derivation

Individual animal feed intake and feeding behawlata was collected using
the GrowSafe automated feeding system (GrowSafte®gs Ltd., Airdrie, AB)
at the University of Alberta Kinsella ranch. Dafed intake was converted into
daily dry matter intake (DMI) by multiplying intakey the dry matter content of
the diet. Daily DMI was then standardized across different years to 10 MJ
ME/kg DM by multiplying daily DMI with the diet mabolizable energy (ME)
content then dividing by 10 (Basarab et al., 2088rage daily gain (ADG) was
calculated as the slope from the regression of lweglght on test day. Metabolic
mid weight (MMWT) was obtained as the mid-weighttest raised to the power

of 0.75.

RFI was calculated within group using the followiiegmula

RFI = DMI — (o +B;Batch +B,ADG + BsMMWT),

wherep, B2, Bs are partial regression coefficients dadhe intercept.

72



Training and validation data sets were obtainedsphltting the data into two

distinct sets as follows:

)] by randomly splitting the data into a training €48, n=490) and a
testing set (1/3, n=203) based on sire family so there was no
overlap of sires in the two sets. This was desghats split 1
(Table 3.2). This strategy reduces the relatedrizssveen
individuals in the training and testing set, whickatedness
could inflate the accuracy of prediction (Habierakt 2007).

This random split was replicated 5 times.

i) by retaining all animals with no known pedigre&atienships as
the validation set. The validation set had a tatél 148
individuals that did not have apparent relationshwpth any of
the sires or any other animal in the training datta¥his was
determined using a custom script and approx. 9écs&NPs
specifically chosen for parentage assignment. Thias
designated as split 2 (Table 3.2). Because of ck laf
relationship between training and testing dataskésprediction
observed will be truly due to LD between SNPs antiLQ

underlying the trait.

All association analyses were performed in thealning sets, while the

ability of selected markers to predict the phenetyms explored in the 5 testing
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set. The final estimates were obtained as the geeo the results from the 5

testing data sets.

3.2.4Genetic data

More than 50,000 SNP, part of the lllumina InfiniBovineSNP50 bead
chip (lllumina, San Diego, CA) were genotyped fdi57eef steers (some sires
were included in the genotyping) using the lllumiménium Il platform. The
50K chip was designed such that markers were unijodistributed across all
chromosomes (Van Tassell et al., 2008; Matukunealdil., 2009) as well as being
polymorphic in the various breeds used in the t@Bonal Bovine HapMap
Project. The selection criteria applied to obtalPS for further analysis was
performed using the Rosetta Syllego data managensgstem (Rosetta
Biosoftware, Seattle, WA, USA) where SNPs wereetgdbr Hardy-Weinberg
Equilibrium (P > 0.05), minor allele frequency ($%0pand SNP Call frequency (>
88%). Consequently, 38,158 SNPs met the test ieritand were selected for
further analysis. Genotypes were coded as 0, R2anith O being the SNP allele
with the lower frequency and 1 the allele with f@gfrequency, such that the two
homozygotes were represented as 0 and 2, and the/dseterozygote. Missing
genotypes (about 1% of all genotypes) were imphtesubmitting SNP genotype
calls as well as missing genotype information tstR&IASE (Scheet and
Stephens, 2006) chromosome by chromosome, the $&bBWsg been ordered
according to their chromosomal position. The patanseused were as follows:

Ten (10) random starts of the EM algorithm (T), B€rations of the EM
74



algorithm (C), 15 cross-validation clusters (K),damo sampling of haplotypes
from the posterior distribution of each randomtstéithe EM algorithm (H). The
most probable genotype imputed by fastPHASE wassidered the true
genotype. All SNPs with unknown chromosomal posgiovere discarded. A

final 37,959 SNPs were included in the analysis.

3.2.5Polygenic breeding value estimation

The following animal model was used in the wholtadset to estimate
polygenic breeding values, variance componentgyandtic parameters using
ASReml (Gilmour et al., 1998). The model (eq. Duled fixed effects of breed

of sire, test group and batch, with age at staréstfas a covariate:
y1i=Xip+Zia+e, 1)

where, the design matric¥s, andZ relate phenotypic observations in
the vectoly; to fixed @), and polygenicd) effects, respectively. The vecter

contains random residual terms specific to animdie. parameters ande were

assumed to be normally distributed with a mean, @h@ variance\o? and

| .02, respectively. The matrik, is an identity matrix of order equal to the
number of animals with RFI observations, wiilés the additive relationship

matrix, g2 is the random polygenic effect variance, aridthe residual variance.

2
Accuracy was calculated using the formalzuracy = /1 - 32 , with s€® being
a
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the prediction error variance aafithe additive genetic variance (Gilmour et al.,

2008).

3.2.6Pre-selection of SNPs

In order to reduce the available SNPs to a mogtabde number, the effect of
each SNP on RFI, DMI and ADG was assessed indilliduaing single marker
association analysis. The model applied extendedl9do include SNP data as

follows:
y1=X1p + X0+ Zia+e (2)

where, X, relates phenotypic observations in the veciaioySNP effects (g),
with elementsXy; = 0, 1, or 2, corresponding to the genotype of ahimwith the
parameterg being the allele substitution effect. All otherrgaeters were as
previously described. Only SNPs with associatidgeificant at P< 0.05 in the

pre-selection analysis were retained for furthexysis.

3.2.7 Selection of the final SNP panel
Of the SNPs retained from pre-selection, the tap S3RPs, corresponding to a
significant value of P < 0.002 were chosen for etahl and fit simultaneously
using a random regression BLUP (RR-BLUP) model. $hés were assumed to
be random to allow for shrinkage of the estimatdslevassuming a constant

variance of azgj for all instances qf, as follows:

y1=Xip+Zia+7Z,9+e, (3)
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where,Z, relates phenotypic observations in the vegioio SNP effects (g),

with elementsZ,; = 0, 1, or 2, corresponding to the genotype of ahinandg

normally distributed with mean 0, and variamégj . The solutions fog were

obtained by solving the normal mixed model equatiavith SNP variance

0’g,=02/n, n being the number of SNPs jointly fitted in the rabdThe

estimatesy; obtained differed in the level of shrinkage duelifferences in allele
frequency between SNPs (Moser et al., 2009). OMlPsSthat were jointly
significant were retained in the model (eq. 3) sa@maximize the correlation
between the panel of SNPs selected and the tigiifiance was assessed by
running a model equivalent to eq. (3) where SNIesfitted as fixed effects and
sequentially discarding any SNP that was not diggmit at P < 0.05. The
remaining SNPs were then re-run using eq. (3) &edprior estimate of SNP

variance adjusted accordingly using the mew

3.2.8Estimation of marker effects

For split 1, the SNP pre-selection and creatioparfels was done using
one of the 5 replicates for split 1. The final panef SNP markers selected from
the above process were then used to re-estimalec aubstitution effects in the
remaining 4 replicates such that each of the sdeSNP had an estimated effect
for each of the replicate data sets. For splih@rd was only one estimate for the
selected SNPs, given that there was no replicafibese final estimates gfwere

obtained using model eq. 3, with SNPs fitted asdirffects.
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3.2.9Cumulative marker phenotype (CMP) estimation

The marker panels obtained from the analysis alwet® used to calculate
marker scores (MS). These MS were calculated faramals in the testing data
as a weighted sum of the number of copies of theenfrequent allele at each
SNP locus, with the weights being the allele stnstin effects §) obtained from
the RR-BLUP. The summation of all MS for each indial yielded a cumulative

marker phenotype (CMP, Johnston et al., 2008):
N, ~
CMP =3 "X,§,, (4)

where, X;; represents the marker genotype of animatl SNPj, coded 0, 1, 2

as previously described in the training dafg, is the allele substitution effect

estimate of SN, andN, is the number of SNPs. The CMP nomenclature was
adopted since the model fitted a small number ofkera, as opposed to
molecular breeding values and genomic breedingegahbtained from whole
genome analyses. The trait specific CMP were dasighCMP™, CMP?™' | and

CMP*"®, for RFI, DMI and ADG marker panels, respectively.

3.2.10 Genomic predictions

The predictive ability of the marker panels waseased as the correlation
between CMP and the phenotype (also called accwfpyediction), within and

across traits. Comparisons in accuracy of predictiere also made within sire
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breeds. For split 1, mean accuracies were obtasedhe average of the

correlations observed in the 5 replicates of tkértg data.

3.3 RESULTS
Table 3.5 gives a summary of the descriptive stesigor RFI, DMI and
ADG. On average, the diet switch group exhibiteghlr feed intake and gain
compared to Fall-Winter and Winter-Spring groupise Bstimated RFI mean was
null for all groups, given that RFI was calculateihin group. The distributions
of the resulting F statistic from the single markegression analysis for all SNPs
in both splits 1 and 2 was as expected, with aelangmber of SNPs with small F
values and a small number of SNPs with large Fem(dppendix 3, Figures 1 to

6).

For split 1, the single marker association analyskled 2,242, 2,158 and
2,587 SNPs that were significantly associated witMIl, ADG and RFlI,
respectively, at an F statistic value of 3.84 (B.652). The top 100 SNPs were
selected for each trait to run the RR-BLUP analyaigl these corresponded to F
statistic values of 10.14 (P = 0.002), 9.8 (P =0Q)Cand 10.38 (P = 0.001) for
DMI, ADG and RFI, respectively. In split 2, a totad 2,409, 2,380 and 2,196
SNPs were significant for DMI, ADG and RFI, respeely, at an F value of 3.84
(P = 0.052). The distribution of the test stati§tam these analyses is shown in
Appendix 3, Figures 1 to 6, and was as expectel avitarge number of SNPs

having small F-values while a small number of SN&d large F-values.
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From these SNPs, the top 100 SNPs were chosentheétisignificance
threshold corresponding to F statistic values ab4QP = 0.002), 10.45 (P =
0.001) and 9.38 (P = 0.002) for DMI, ADG and RFespectively. The final
marker panels selected for DMI, ADG and RFI hadedént numbers of SNPs,

ranging between 34 and 44 as shown in Table 3.6.

Correlations between traits and CMP were useddesasthe ability of the
selected marker panels in the two data splits édlipt phenotypes for animals in
the testing dataset. Table 3.6 provides trait $jgemdrrelations between CMP and
ADG, DMI and RFI phenotypes. For split 1, the ctatens between CMP and
traits were low, ranging between 0.27 for DMI texdnpanels to 0.414 for ADG
trained panels, given that the polygenic EBV accyrfar all animals in the data
before the split was 0.575, 0.504 and 0.602 for ADGII and RFI, respectively.
For split 2, correlations between CKfPand CMPP® with their respective traits

were practically null.

Results of CMP by trait correlations within sireeéd in split 1 are shown
in Tables 3.7. For DMI and RFlI, the correlationstfte Charolais breed tended to
be lower than those observed for Angus and Hybrallweeds. Generally, there
was similar predictive ability within and acrossesbreeds. The proportion of
phenotypic variance attributable to SNPs was obthias a product of the
prediction accuracy in the testing data. The propor of total variance
attributable to SNPs can also be found by compa®sglual variances when the

analysis model contains or excludes the SNPs. Tiferehce between these two
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variances gives the SNP variance (Appendix 4, TableFor both testing and
validation data, a larger proportion of phenotygmciances could be explained for

RFI while the lowest was for DMI.

An attempt to run a bivariate analysis between GMB the traits in the
testing data to assess the gain in EBV accuracgsomeed by inclusion of the
CMP in the trait evaluation failed because thenestes of variance components
obtained for the various traits in the bivariatealgsis, (particularly genetic
variance estimates) were too small in the testseftao the point of causing

model convergence problems.

3.4 DISCUSSION

3.4.1ntake data integrity check

In this study, the test length for feed intake daglection averaged 80 days,
well within the range for similar studies. Wang at (2006) and Archer and
Bergh (2000) suggest that test period for feedkmtmeasurements intended for
RFI calculation last between 63 to 84 days, when iB\Weasured weekly, while
Archer et al. (1997) estimate a 70d test periodnMB®/ data is collected every
two weeks. The test period target for this study \epproximately 90 days or
until 70 days of usable data were obtained. To renthat the feed intake data
used for RFI calculation was not erroneous, a sasfeaudits and checks were
instituted as detailed in Table 3.4. The qualityhef feed intake data is monitored

by the “Check Audit Data” routine of the GrowSafgstém, and is considered
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acceptable when the average of all feeding noddsinvpen and day have an
“Assigned Feed Disappearance” (AFB)95%. In addition, no feeding node
within pen or day can have an ADF value less tH@#.9This limits the inclusion
of unaccounted feed disappearances, which mayriase estimations. The AFD
values for the last two years of the study are iglexy in Table 3.4 and only days
with acceptable AFD values were used to calcukxel intake. However, in year
5, additional days were removed from the analyssystem problems caused the
feeding bunks to go offline or if there was lackdafta recording due to power
failure. For years 1, 2 and 3, this information wexd available at the time of

analysis.

The percentage of DMI variance accounted for by ARGl MWT is
important in assessing the integrity of the daggidally, these two traits account
for 60% or more of the DMI variation (Basarab et 28D03) even though lower
values have been reported (Crews, 2005). Valuesfisantly lower than 60%
may indicate a problem with the data. In this sfulpG and MWT accounted

for 61.2% of the variation in DMI.

3.4.2Parameter estimates for RFI and feed intake traits

Table 3.4 gives summary statistics for the traial@ated. There was
considerable variation in RFI and DMI (SD rangetiteen 1.27 to 1.65 for DMI
and 0.73 to 1.05 for RFI), at levels slightly higliean those observed by similar

studies (Archer and Berg, 2000; Archer et al., 198nhur et al., 2001a).
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However, this may be attributed to larger familieghose studies compared to
the current study. In this study, there were orraye 4 offspring per sire (Table
3.2). Animals in the diet switch group were firgstied on a lower energy diet in
period 1 then a high energy diet in period 2. Basedhe groups’ mean ADG
observed for the period 2, there was compensatmwth during this period,
given the significantly higher (P <0.0001) growtlter compared to the Fall-
Winter and Winter-Spring groups. This group alsd laasignificantly higher (P
<0.001) DMI compared to the other two groups, whitlay have further
accelerated their growth rate. The difference taka between Fall-Winter and
Winter-Spring groups would mostly be due to thet fdm@at animals tested in
period 2 were older and larger in size than thestet in period 1, and as such are
expected to have a higher intake to meet their bodtarequirements. However,
seasonal effects unique to each period are lilkefuitther confound differences
between these groups, especially where feed intal@ncerned. Variation in
ambient temperature, solar radiation and photogdeai@ known to affect feed

intake and efficiency in animals (Young 1983; Daifiand Mathison, 1991).

Single trait heritability estimates (Table 3.5) eb&d for all traits are
within the range observed by similar studies (Kethl, 1963; Crews et al., 2003)
suggesting that polygenic selection can resuligniicant genetic improvement
for RFI, given adequate data and selection intgrest evidenced by studies by

Richardson et al. (1998) and Arthur et al. (200Id)e emphasis on RFI is
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because it is a newer trait, with potentially lasmnomic benefits for feedlot

producers.

3.4.3An LD-MAS approach for RFI selection

Following the observations of Kizilkaya et al. ()1 the strategy
employed in this study was such that marker pasediscted for each of the traits
consisted of SNPs highly associated with the tth@reby maximizing the
possibility of capturing as many QTL underlying thait as possible. In this way,
CMP derived from such panels would possibly be Iyiglorrelated with the trait
and offer a better prospect as indicator traiteeisfly where RFI is concerned.
Given the inconsistent results observed for IGRkvhich had previously shown
promise as a viable proxy for RFI (Kahi et al., 20W/ood et al., 2004; Moore et
al., 2005; Carstens et al., 2007; Lancaster eR@08), it has become of immense
importance to access a panel of SNPs with suchbddigs, given the cost of

feed intake testing is still high.

3.4.4Correlations between CMP and phenotypes

Different strategies have been used to create #dedc#&aining and
validation (testing) data sets. Random splits (Leal., 2009), splits made based
on sire family or generation number in a populafidayes et al., 2009; Moser et
al., 2009) or use of other independent datasetilidiza et al., 2010) have all
been employed to this end. All the strategies seekninimize as much as

possible, an overlap of related individuals in titaéning and testing data sets such
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that correlations between CMP and phenotypes astlynoased on LD between
markers and causative mutations, and not genetiatioleships between
individuals. Genetic markers have been shown tducaprelationship between
individuals and thus have the potential to confowstimates of correlations
between observed merit and marker predicted métabier et al., 2007).
However, in practice such confounding may be difficto remove in any

population.

Two different data splits were used in this studlgalysis using split 2
was similar to a situation where SNPs were traimedne crossbred population
and the resulting CMP used for prediction in aedé#ht crossbred population. It is
important to note that the training dataset used wa admixed population
consisting of steer offspring of a cross betweegus) Charolais, or University of
Alberta hybrid bulls and a composite dam line csimsg of various beef and
dairy breeds (Goonewardene et al.,, 2003). The atahid dataset in split 2
consisted of offspring from U of A hybrid bulls. |1Ahe offspring were therefore
crossbred, but the composition of the validationvezs quite different from that

of the training set.

In split 1, the pattern of the correlations obsdrbetween the traits and
CMP reflected the magnitude of trait varianceshvidiMl, which had the largest
genetic variance and thus heritability estimateyirigathe smallest correlation.
This is a reflection of the number of polymorphismegjuired to explain the

phenotypic variation in a trait, and given that DM&d a larger phenotypic
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variance, a larger marker panel would be necedsaaccount for a substantial

proportion of the trait variance.

The results in Table 3.6 also exemplify the folliytaining SNPs in a
population with a very different breed compositioompared to the validation
population. In split 2, correlations between CMRI araits performed poorly,
except for DMI whose correlation was close to difat was obtained in split 1.
Correlations for RFlI and ADG were practically ndlhese results suggest that the
genetic composition of animals borne of hybrid siire the validation set is very
different from that of steers from Angus and Chaiokires. De Roos et al., 2008
have shown that LD between breeds extends to shdig&ances such that QTL
captured by the training set may not reflect ang breed satisfactorily. Such
factors as differences in allele frequencies betwkrseds, differences in LD
phase as well as potential instances of differepfistatic interactions between
QTL in different breeds may contribute to low pitin accuracy. Even though
hybrid animals were included in the training datased for split 2, prediction in
the validation data (composed solely of the hylymk) seemed to fail for traits
with low variation (ADG and RFI). It is also posklthat the lack of substantial
correlations for this split may also be due to ma size problem rather than a
lack of congruency in the genetic composition betwéaining and testing data
such that increasing the number of individualshia training set would improve
accuracy. In their simulation, Toosi et al. (20i@)nd that increasing the percent

contribution of a certain breed in an admixed papah used for training leads to
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an increase in accuracy of prediction when validpin the single breed. One
possible explanation is that for a SNP to be setkot a multi-breed scenario, it
has to be in LD with QTL in all breeds or most bétbreeds. This scenario is
further complicated by the fact that the hybrid plagion is a mixture of many
other breeds. However, given that the number ahals in the validation dataset
for split 1 and 2 is not markedly different (Tall&), sample size is possibly not
the biggest driver of the reduced correlations okesk in split 2. Perhaps of
greater importance in the results obtained foit lis the fact that there were no
known pedigree relationships between the animathenvalidation set. This low
information density would likely be the greatesusa of reduced predictive

ability.

The study by Kizilkaya et al. (2010) showed thabas breed predictions
are possible if a substantial number of causatiwations are captured in the
prediction panel. Increasing the number of markerstrong association with the
traits in the SNP panel would have possibly inedashe extent of the

correlations observed (de Roos et al., 2009).

3.4.5Within sire breed correlations

The results in Table 3.7 show breed specific cati@hs in the validation
set for CMP selected using the admixed trainingupstpn in split 1. The
interpretations offered from this analysis are ¢oviewed with caution due to the

small number of individuals within each sire bredthe within breed results
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illustrate similar prediction for the sire bree@sen though predictions for the
Charolais breed tend to be lower compared to theerobreeds. A similar
correlation pattern is seen within breed as achwsed, with DMI having the

lowest prediction accuracy.

Other studies such as Dunner et al. (2003), haeevrstthat functional
mutations can be breed specific thereby limiting tisefulness of the marker
panels to breeds in the discovery data. Howeveenwthe validation population is
admixed, another level of complexity is introduckhiting prediction accuracy.
It is thus important that marker panels be testeddifferent breeds and
environments, but in a manner congruent to thereafe population used for

training.

The small number of animals in this study notwiinsting, the results
obtained point to a lack of significant differences accuracy of prediction
between the breeds studied, such that the predietocuracy obtained for this
analysis is likely due to LD between QTL and tralienotypes and not because
the SNPs trace breed differences. This may fursiggest that the composite
population used can serve as a useful resourcéesting of the SNP panels
selected here in other populations with breedsiroflar genetic background as

the component breeds in our population.

For most practical purposes, gene tests that ¢otestinly a small subset

of markers, especially those in high LD with putaticausative mutations are
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desirable. Even though significance testing in @ssion analyses limits the
proportion of genetic variance accounted for by $bkected SNPs because the
estimates are inflated and have a positive erroanee (Beavis, 1994; Lynch and
Walsh, 1998), marker panels derived from SNPs #@ssacwith the trait allow
gene tests on fewer polymorphisms, reducing the oéstests, while still
integrating genetic marker information into exigtigenetic evaluations through

BLUP or selection index methodology, to facilitate efficient LD-MAS scheme.

The proportion of genetic variance that SNP markeauld explain to be
useful in a MAS scheme is a subject of currentarede Crews et al. (2008)
suggests that markers need to explain at leas6¥%®df the genetic variance in
RFI or feed intake to be useful. So far in therditare, there is no genetic test that
accounts for such variability for RFI. In this syudhe genetic polymorphisms
identified account for about 17.1%, 7.29% and 16df%he phenotypic variance
in ADG, DMI and RFI, respectively, obtained &sr being the average accuracy
of prediction in the 5 replicate validation datésser split 1. Appendix 4, Table 1
gives estimates of variance component observeldernraining data sets, as well
as the proportion of the phenotypic variance tlzat loe attributed to SNPs (9%,
6% and 10% for ADG, DMI and RFI, respectively) hose data. These results
follow the same trends as those seen in the validaata. However, the higher
prediction accuracies in the testing data may fumetion of the small number of
individuals in the testing data, and validationlamger populations would be

necessary.
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3.5 CONCLUSION

Several marker panels predictive of RFI, DMI and@ere developed from
a small number of genetic markers pre-selectedhigh association with the
traits. These marker panels were able to preditall proportion of the trait
phenotypic variance. However, the correlations olesk were still low for all
traits compared to polygenic EBV accuracies. Resolttained from split 1
suggest that the breed composition of the traimiata did not have significant
effect on the within sire-breed predictions. Givke results from split 2, using an
admixed training population to select SNPs followsd prediction in another
crossbred population, whose type was also includethe training population
yielded very low correlations for traits with lovawation (ADG and DMI), and
this strategy is not recommended. However, a lepdause of this may be due to
a lower information density in the validation dafor split 2 since no pedigree
relationships between individuals in this data wiamewn. The results from this
study suggest that the composite breed used ity may be a useful resource
for assessing prediction accuracy in similar breasighose in this population.
Ultimately, the utility of the panels will be deteined if validated in an

independent population.
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Table 3.1Summary of the testing groups, study design and maber of

animals used

Year Year No. Batch Season  Group No.
2002/3 1 1 1 - 86
2 2 Group 2 64
2003/4 2 3 1 Group 1 80
4 2 Group 2 76
2004/5 3 5 1 Group 1 80
6 2 Group 2 78
2005/6 4 7 2% Group 3 176
2006/7 5 8 2 Group 1 88
9 2% Group 3 87

*This batch was removed from analysis due to proslelentified with the
phenotypes.

®Season 1 = Fall-Winter, Season 2 = Winter-Spi@mup 1 = Fall-Winter
tested; Group 2 = Winter-Spring tested; Group 3iet Bwitch.

* These batches were also tested in the fall, biyt winter values were included
in the analysis

NB: The term batch is used to refer to a cohodromals tested in the same
period. It is synonymous in its use here to a qoptarary group.
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Table 3.2 Summary of the number of steers per sirayithin test group and

sire breed

‘tem  Tsplita  sSplit2
Sire Breed Train Test Train Test
Angus 177 42 219
Charolais 48 49 97
Hybrid 168 61 229
Unassigned 97 51 0 148
Totals 490 203 545 148
Sres
Total number of sires 197

Average number of offspring per
sire 3.5

No of sires with single offspring 161
Range of number of offspring 1-51

Average number of offspring per
sire? 14.77

@Averaged for sires with more than one offspringsit2s had offspring ranging from 3
to 48 and 53 sires had 1 offspring each for split 1

'Some animals were removed in split 1 because thdyrissing genotypes
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Table 3.3 Composition of experimental diets for thelifferent years tested.

Diet ingredient 2002-3 2003-4 2004-5 2005-6 2006-7
Dry-rolled corr 80.0( - - - -
Barley grait - 64.5( 64.5( 56.7C  56.7(
Oat grait -- 20.0¢ 20.0¢ 28.3( 28.3(
Alfalfa hay 13.5( 9.0C 9.0C 10.0¢ 10.0¢
Beef feedlot suppleme' 5.0C 5.0( 5.0( 5.0C 5.0C
Canola oi 1.5C 1.5C 1.5C -- -

DM, % 90.5( 88.9( 88.9( 87.0( 87.0(

Nutrient Composition, DM

basig

ME, Mcal/kc 2.9C 2.91 2.91 2.9C 2.9C
CP, ¥ 12.5( 14.0( 14.0( 13.5( 13.5(
CF, % - -- -- 3.2¢ 3.2¢
NDF, % 18.3( 21.4¢ 21.4¢ 29.5] 29.5]
ADF, % 5.61 9.5(C 9.5(C 10.2¢ 10.2¢

'Contained 440 mg/kg of monensin, 5.5% Ca, 568 0.28%64% K, 1.98% Na, 0.15%
S, 0.31% Mg, 16 mg/kg |, 28 mg/kg Fe, 1.6 mg/kg &€ mg/kg Cu, 432 mg/kg Mn,
432 mg/kg Zn, 4.2 mg/kg Co, as well as a minimurB@DOO U /kg vitamin A, 8,000
IU/kg vitamin D, and 1,111 IU/kg Vitamin E. 1Mcal4=185 MJ.

2 Obtained from digestibility trials and subsequemiximate analysis as described by
Nkrumah et al. (2006). ME — metabolizable enerdy; €Crude protein; CF — Crude fat;
NDF — Neutral detergent fiber; ADF — Acid detergéber.

'Only the periods of high energy diet were usedafalysis, so the diets presented are
only the high energy rations for the 5 years testé low energy diets for 2005/6 and
2006/7 are not included in the table.
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Table 3.4 Details of some parameters associated wieed intake data used to

calculate RFI

Years 2002-3,2003-4, 2004-5 2005-6, 2006-7
Days on test, d 84 92,74

Days deleted, d 1-2% 16, 23

Average AFD (%) 2 94.8,97.7

Days used to calculate RFI, d ~80 76, 51

Days with acceptable feed - P 76, 62

disappearance (95%), d

®Percentage of total number of days, Nkrumah €2aD7)
*Information not available

AFD — Average feed disappearance; ADG — Averagly dain; DMI — Dry matter
intake; MWT — Metabolic midweight; RFI — residuakf intake
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Table 3.5 Descriptive statistics and heritability stimates for traits analysed

Group 1 Group 2 Group 3* Overall

Trait Mean+SD Mean+SD Mean+=SD Mean +SD Hduiiity
RFI, Kg.d® -0.00+0.73 -0.00+0.88 0.02+1.05 0.01+0.92.29 +0.12
ADG, Kg.d* 1.49+027 153+0.28 182028 1.62+0.31 8&D.11

DMI, Kg 1043 +£1.2 11.45:-1.4% 1259+16 11.63+x1.7' 0.41+0.1

ADG - average daily gain; DMI — dry matter intalef:| — residual feed intake; Groupl
= Fall-Winter; Group 2 = Winter-Spring tested; Gp8u= Diet Switch; overall = across
all groups.

*This group was tested on a low energy diet in fddethen a high energy diet in the
winter. Only winter data is analysed for this group
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Table 3.6. Correlations ¢ SE) between CMP and trait phenotypes in the
validation data for the two data splits used in theanalysis, with number of

SNPs in the panel for Split 1 and 2, respectivelyibrackets

Split ADG (35/35)  DMI (44/34)  RFI (35/34)
*Splitl1  0.414 +0.051 0.270 +0.066 0.402 +6.06
Split2  0.007 0.156 -0.042

*Average from 5 replicates. Split 1 = validatiortad®t obtained from a random split of
the data (1:2) based on sire family; Split 2 = datiion data obtained by using animals
with undetermined parentage, thus with undefinéatiomship to those in the training set.
ADG —Average daily gain; DMI — dry matter intakel-R- residual feed intake.
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Table 3.7 Correlations (obtained as the average &freplications, + SE)

between CMP and trait phenotypes by sire breed ine split 1 validation

dataset
Breed ADG DMI RFI
Across Breed 0.414 +0.051 0.270 £0.066 0.402065
Angus 0.440 +0.060 0.314 +0.045 0.462 =0.010
Charolais 0.368 +0.051 0.249 +£0.128 0.295009.
Hybrid 0.387 +£0.057 0.429 £0.068 0.465 =0.106
'Undefined 0.298 =0.069 0.381 +0.081 0.4149€69.1

'Sire breed not known.
ADG —Average daily gain; DMI — dry matter intakel-R- residual feed intake.
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CHAPTER 4 : Accuracy of genomic breeding values for residudeed intake

in crossbred beef cattle

4.1 INTRODUCTION

A large number of genomic tools have become aJeaildbe to the rapid
advancement of DNA marker technology after the nrapgand more recently
the sequencing) of the bovine genome. This hastdethcreasing interest in
inclusion of DNA marker tools into traditional ewation systems, which
typically combine pedigree and phenotypic datadionfan estimated breeding
value (EBV) which is then used in some form of xder selection purposes.
Incorporation of DNA marker tools in a marker assisevaluation system results
in marker assisted EBVs (MEBYV), often with higheccaracy compared to
traditional EBVs. Such increase in accuracy wél ighest for traits which are
difficult or expensive to measure, such as resideedl intake (RFI). The DNA
marker tools can also be used to predict futureptypes as well as predict EBV

where there is little or no phenotypic data.

Various strategies have been suggested for inclusidd marker
information into genetic evaluations. Results franDNA test can be used to
create a molecular score (MS) or a molecular brepdalue (MBV), which are a
weighted sum of the number of copies of the frequalieles of several
polymorphisms with the weights being allele substin effects estimated in a

reference dataset (Kachman, 2008). Because therM@BY is derived from a
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marker genotype related to the genotype associatitil the economically
relevant trait (ERT) of interest, it may be regaldes a separate and correlated
trait to the ERT. Selection of SNPs with high asstian with the economically

relevant trait can lead to greater correlation leetwthe trait and the MS or MBV.

Given that MS will likely only account for a smalbrtion of the total
genetic variance, it will be necessary to combimdygenic and molecular
breeding values into a single selection tool. SaEv&rategies have been advanced
to this effect. Selection index methodologies hbgen shown in simulation and
with real data to be useful in combining polygericd molecular/genomic
breeding values (Dekkers, 2007; Crews, 2008; Mesat., 2009). A strategy that
makes use of multi-variate analyses of MS and ewdcally relevant traits has
also been proposed, and benefits from a familiavitii the current EPD selection
framework, by taking advantage of the genetic dati@n between the MS and
the trait (Johnston et al., 2008; Kachman, 2008)leldular markers have also
been shown to accurately approximate the genetiatiorships between
individuals, such that the numerator relationshgtrir could be replaced with a
genomic relationship matrix, in what has been refitrto as genomic BLUP

(Habier et al., 2007; Van Raden, 2008; Hayes £2a09).

Perhaps the greatest development has been inehaf genomic selection
to predict future performance of individuals (Megsgn et al., 2001). In this
technique, selection decisions are based solelyg@momic breeding values

obtained by estimating marker effects in the wiggaome. The technique makes
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assumptions about sufficient linkage between genetiarkers and genes
underlying the trait, such that marker effects t&nused to estimate breeding
values for animals, especially in situations whbeeselection candidates have no

performance records of their own.

Recently, Bayesian estimation has emerged as tileoch@f choice for
genomic selection because it allows different vares to be fitted to each SNP as
opposed to BLUP estimation, which assumes a honsmgesvariance for all loci.
Newer methods for efficient implementation of gemoselection continue to be
developed (Legarra and Misztal, 2008; VanRaden8p@ad it may soon be that
genomic selection becomes the method of choicanfarker assisted selection.

Genomic selection proceeds in two steps:

)] A training dataset is used to estimate the efféeallanarkers. The
individuals in this set typically have both phermgyg and
genotypes. Care is taken so that there is miniwvedlap of related
individuals between the training data set and testing or
validation data set. The reason for this is thatetje markers are
able to capture relationship information therebgsing upwards

the accuracy of prediction (Habier et al., 2007).

i) The estimates obtained in the training data arebawed with the
genotypes of individuals in the testing (valida)iatata set (as a

weighted sum) to obtain a genomic breeding valueR@ which
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is then compared to a realized breeding valueasg@mt or used to

predict the phenotype of animals in the testingdat

The predictive ability of the GEBV is usually high# individuals in the

training and testing data sets are related oreot#ime genetic base.

In this Chapter, Bayesian based methods and tleeythaderlying genomic
selection were used to select a subset of mar&adcsyltimately derive GEBV to

predict RFI, DMI and ADG for a group of steers &ektor feed intake.

4.2 MATERIALS AND METHODS

4.2.1Animal resource and study design

Data consisted of 721 crossbred steers sired by#rgharolais or University
of Alberta Hybrid Bulls with a composite dam linéhe composition of the
damline is described in detail by Goonewardenel.ef2803). Feed intake data
was collected over a 5 year period with two gro(igall-Winter and Winter-
Spring) tested every year for the first three yebryear 4, one group of animals
was tested for two consecutive periods (Fall-Witlemn Winter-Spring), first on
a low energy feedlot diet in period 1 (Fall-Wintémgn a high energy feedlot diet
in period 2 (Winter-Spring). In year 5, two grougfsanimals were tested in two
consecutive periods as follows: The first group wason a high energy feedlot
diet for both periods, while the second group west fested on a lower energy
diet and then switched to a high energy diet ingoe2 as shown in Table 4.1.

Animals had free-choice access to feed and wateiothl, 9 batches of animals
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were available for analysis, a batch being a cosatlmn of year and season of
testing (Table 4.1). All batches were placed irdtee¢ groups as follows: Fall-
Winter tested animals were in Group 1, Winter-Spriest animals in Group 2,
and diet switch animals in Group 3. Phenotypic résdor average daily gain
(ADG), daily dry matter intake (DMI) and residuatedd intake (RFI) were

available for analysis.

Training and validation data sets were defineddndomly splitting the data
into a training set (2/3, n = 485) and a testing (463, n = 243) based on sire
family so that there was no overlap of sires intthe sets. This random split was
replicated 5 times such that there were 5 traiming 5 testing data sets. Random
splitting by sire family reduces the ability of g#it markers to approximate the
relationship between individuals in the trainingdatesting data, thereby
minimizing chances of an inflated correlation of BBEand trait phenotype in the
prediction process (Habier et al., 2007). The fieplicate of the training data was
used for SNP pre-selection, and the selected SN#Ps thien re-analysed in all
replicates of the training data. The associatidwben genotypes and phenotypes
was tested in the training set, while the accuratyrediction of the marker
derived breeding value explored in the testing astthe correlation between

GEBV and phenotypes.
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4.2.2Genetic data

Approximately 50,000 SNP were genotyped for 745 k&sers using the
lllumina Infinium Il platform. These SNPs were wstfor Hardy-Weinberg
Equilibrium (P > 0.05), minor allele frequency ($0pand SNP Call frequency (>
88%) with non qualifying SNPs being discarded. fdétely a total of 38,158
SNPs were selected for further analysis. Genotymge coded as 0, 1 and 2 with
0 being the SNP allele with the lower frequency dnthe allele with higher
frequency, respectively, such that the two homogaere represented as 0 and
2, and 1 was the heterozygote. Missing genotyplesu(al% of all genotypes)
were imputed by submitting SNP genotype calls al§ as missing genotype
information to fastPHASE (Scheet and Stephens, ROflftomosome by
chromosome, the SNPs having been ordered accotdirtbeir chromosomal
position. The parameters used were as follows:(I8hrandom starts of the EM
algorithm (T), 30 iterations of the EM algorithm)(@5 cross-validation clusters
(K), and no sampling of haplotypes from the postedistribution of each random
start of the EM algorithm (H). The most probablenggpe imputed by
fastPHASE was considered the true genotype. All SN#th unknown
chromosomal positions were discarded. A final 39,881Ps were included in the

analysis.

The following animal model was used in the wholtadset to estimate
polygenic breeding values, variance componentsgyandtic parameters using

ASReml (Gilmour et al., 1998). The model includeed effects of
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contemporary group (breed, batch, and test groogbowtions) with age at start

of test as a covariate:
y1=X1p+Za+e (1)

where, the design matric¥s, andZ; relate phenotypic observations in
the vector yto fixed 3), and polygenicd) effects, respectively. The vecter

contains random residual terms specific to anintdige. parameters ande were
assumed to be normally distributed with a mean, @h@ variance\ o’ and

| .o’ respectively. The matril, is an identity matrix of order equal to the
number of animals with RFI observations, wiilés the additive relationship

matrix, g2 is the random polygenic effect variance, andthe residual variance,

2
. . [ se
respectively. Accuracy was calculated using thenfda accuracy =,/1-—-,
a

with se? being the prediction error variance afdhe additive genetic variance
(Gilmour et al., 2008). A bivariate model was usedompute genetic

correlations between the traits by extending egtqInclude a second trait.

4.2.3Bayesian estimation of marker effects

Estimation of marker effects was performed using tmodels

i) Random regression BLUP (RR-BLUP), which assumesstmae prior

variance for all random SNPs as described by Mesenigt al. (2001).
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i) BayesB, where a locus specific variance is estidhabeit the loci are
divided into two groups: a group of relatively stmaimber of SNPs with
large effects that contribute to the genetic vargawith probability (1 —
m), and a second group of large number of SNPs witheffect, with
probability 7 (Meuwissen et al., 2001). The BayesB model used wa
similar to Meuwissen et al., (2001), except thdéeas of SNP genotypes
and not haplotype were fit. Also the polygenic aesidual variances were

sampled using a Gibbs algorithm.

BayesB makes strong assumptions about the pridribdison of marker
effects, namely a large proportion of SNPs havesffiect. The BayesB and RR-
BLUP models used are implemented in the AlphaBagtvare (Hickey and
Tier, 2009), which utilizes a modified version betGibbs sampling algorithm to
solve for model effects. The SnpBlup and BayesBFRagilementations in
AlphaBayes were used for RR-BLUP and BayesB ang)ysaspectively. Even
though the real value of was unknown for this dataset,was set at 0.95 for all
analyses, such that 5% of SNPs were fitted simedasly in each cycle of the

Gibbs chain.

The model of analysis used for RR-BLUP and BayesB as follows:

y1=X1p +Z1a* + Zog + €, (1)

where, the design matric&s, Z; andZ,relate phenotypic observations in

the vectory; to fixed @), residual polygenical) and SNP ¢) effects, with
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elementsZ,; = 0, 1, or 2, corresponding to the genotype of ahinat locusj,

with g normally distributed with mean 0, and variamj‘e for RR-BLUP, and

drawn from an inverse chi-squared distribution vathbabilitys in BayesB. The

varianceg;; = o2/n in RR-BLUP, and was estimated for each instanceirf

BayesB. The vectoe contains random residual terms specific to animéke
parameterg* ande were treated as random. The matrixs an identity matrix of

order equal to the number of animals with trait estations, whileA is the

additive relationship matrixg? is the random residual polygenic effect variance,

and g? the residual variance. Fixed effects fitted ineldccontemporary group

(breed-batch-test group combinations) while agetatt of test was used as a

covariate.

The first 20,000 iterations from the total 100,0@0ations were discarded
as burn-in. Mean SNP substitution effects were inbth from the posterior
samples for each trait and SNPs ranked from higteedowest based on the
magnitude of the allele substitution effect. Frdms tranking, the top 200 SNPs
were selected for further analysis. Allele subsititueffects for the selected SNPs
were re-estimated in each of the 5 replicates eftthining data, with the first
5,000 iterations of the total of 20,000 discardedbarn in. For this analysig,

was set to 0.0005 so that estimates for all 200s¢dRaId be obtained.
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4.2.4Genomic value estimation
Trait specific marker panels were obtained fromlymis using the various
methods outlined above. The SNPs were subsequaesdyg to derive marker
scores. Marker scores (MS) were calculated as ghaexi sum of the number of
copies of the more frequent allele at each SNPsloaith the weights being the
allele substitution effectsp) estimated. The summation of all MS for each

individual yielded a genomic estimated breedingigdlGEBV):
Nim ~
GEBV =) 7 X, ,

where X;; represents the marker genotype of aninsdISNFj, coded 0, 1,
2 as previously described; is the estimate of SNP effeft and N is the

Trait

number of SNPs. The following nomenclatuB&EBV, g Was used for clarity.

GEBV were derived for panels with all 37,959 maskes well as the top 200

SNPs for each trait.

4.2.5Genomic predictions

The accuracy of prediction for the GEBV was assksse the correlation

between GEBV and the phenotype both within andsacsae breeds.

4.2.6Candidate gene analysis for RFI

For the trait of RFI, the 1:2 ratio of validatioo training records was
randomly replicated 5 times, and each replicatdyaad using both RR-BLUP

and BayesB methods so as to obtain SNPs that tem$ysranked within the top
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200, as these were likely viable candidate geneRFd. The number of times that
a SNP was ranked within the top 200 after the 9yara yielded the ‘detection’
frequency, expressed as a percentage. The posiioSNPs with the highest
detection frequency were used to search for gemetations and associated
publications in Entrez Gene, HomoloGene, and PuhMisthg a custom Perl

script.
4.3 RESULTS

4.3.1Genetic parameters and variance components

Phenotypic and genetic correlations between theaidstanalyzed are
shown in Table 4.1. Correlations were highest betw&DG and DMI and lowest
between ADG and RFI. There were significantly higenotypic and genetic

correlations for DMI with both RFI and ADG.

Table 4.2 gives variance components and genetanpsters for the traits
evaluated. Estimates of phenotypic and geneticamae were highest for DMI
and lowest for ADG. Subsequently, single trait tadmiity estimates for RFI and

ADG were moderate to low, while DMI heritability & the medium range.

4.3.2Accuracy of GEBYV prediction

Table 4.3 shows trait specific as well as betweait torrelations for

GEBV with RFI, DMI and ADG. For both BayesB and BRUP with the 200

SNP panel, the highest correlation was observedesst RFI andGEBV,3
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while the lowest correlation was observed betweelll DandGEBV o .

Accuracies between ADG WitiGEBV.,5;' (GEBV obtained from estimates for
association with ADG but using SNPs identified bsirting on RFI) were very
low, while association between DMI anGEBV,y" (GEBV obtained from

estimates for association with DMI but using SN&Rmtified by training on RFI)
yielded higher correlations than trait specificued. Correlations between traits
and GEBV with all the markers included yielded loveerrelations than using
only a subset of the top 200 SNPs for both BayesiB RR-BLUP (Table 4.3).
Generally, the RRBLUP method yielded higher predictaccuracies than

BayesB, while prediction accuracy for RFI was higtian for DMI and ADG.

In Table 4.4, trait specific correlations for diéat sire breeds are shown,
for panels trained using BayesB and RR-BLUP. Fdh lBayesB and RR-BLUP,
the correlation of GEBV and RFI was slightly difet within sire breed
compared to the value obtained in across-breed aosgms. Further, for RR-
BLUP, there is a pattern of differential accuracithm sire breed, where the
correlations between sire breed tended to diffpedding on what trait was being
evaluated. For ADG, the Hybrid and Angus breedsdlednto be different, while
for RFI, the Charolais sire breed tended to hagistinct correlation pattern from

the others (Table 4.4).
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4.3.3Candidate genes for RFI

Eleven (11) SNPs associated with RFI were congigteanked within the
top 200 in 3 of 5 replicates (detection frequenty@) when the training data
was analysed using the RR-BLUP model. The higheteation frequency
obtained using the BayesB method was 40% witha &5t28 SNPs having been
detected, while 92 SNPs had a detection frequehd®% or higher with the RR-
BLUP method. Seven of the 11 SNPs with detectiegquency 60% were either
located within a gene or close to a gene whosedifumcould affect feed intake or
feed efficiency (Table 4.5). Further, 4 of the INPS were also identified with a
40% detection frequency using the BayesB methodgevall 92 SNPs from RR-
BLUP had a detection frequency of at least 20% withBayesB method. A total

of 6 SNPs were common between the 92 from RR-BLuP28 from BayesB.

4.4 DISCUSSION

The strategy employed in this analysis, to lim& thumber of SNPs used for
GEBYV estimation to the top 200, was to maximizedhance of capturing a large
number of SNPs in high LD with underlying QTL aslvas reduce the number of
redundant markers. Studies by Kizilkaya et al. (04nd Zhong et al. (2009)
have shown that panels that include QTL or markersigh LD with QTL
perform better when predicting across breeds arsscmultiple generations. The
foregoing assumption is that markers with largeafsignify markers in high LD
with the trait, and thus account for a larger mortof the trait variance. This

strategy in itself has a practical implication lmat by using a subset of SNPs
116



instead of the whole range of markers availablthenanalysis, equivalent levels
of prediction accuracy can be achieved without iining the costs of genotyping
associated with high density SNP chips when usedcommercial application. In
any case, it is very probable that for the 50K hevBNP chip, only a subset of
markers are useful for prediction purposes for owggitraits, and inclusion of
additional SNPs increases ‘noise’ without a suligthrthange in prediction
accuracy. This has been demonstrated in severdlestfLuan et al., 2009;
Kizilkaya et al., 2010) where smaller subsets ofkaes have achieved equivalent

or higher accuracies as larger sets.

In this study, for all traits with 200 SNP markethe BayesB method
performed marginally lower than the RR-BLUP methdthen allele substitution

effects of SNPs selected using RFI were re-estiinasing ADG as the training
phenotype, the resulting GEBVGEBV.5'") could not predict ADG for both
BayesB and RR-BLUP. However, process with DMI re=iiin higher predictive

accuracy for than trait specific GEB\GEBV "' ) as shown in Table 4.3. The
RFI SNP panel was able to achieve higher accuracigs DMI than using the

within trait panel. This offers the prospect of altntrait panel, which can be
used for both DMI and RFI. When using all availal8&Ps (37,959), the
predictive accuracy was much lower than that sedm avsmaller subset of 200

SNPs.
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4.4 .1Differences between methods

The performance of BayesB and RR-BLUP were quiteeda given the
differences in assumptions for the Bayesian and Bloukthods. In the Bayesian
methods, posterior estimates are influenced torge l@xtent by the choice of
parameters given by the prior distribution. On éliger hand, parameters utilized
in the RR-BLUP analysis are optimized by minimizithg prediction error. The
biggest difference between the methods is in tearaptions associated with SNP

variances. Typically, the genetic variance assediatith each SNP in RR-BLUP

2

. . g. . L
is assumed to be small, and a uniform valuegzof- 2, is often used (as in this
n

study), whereo? is the total genetic variance estimated by REMt;the

variance associated with each SNP amglthe number of loci. This SNP variance
structure has been deemed unrealistic since mariieoSNPs are believed to
have small or no effect on trait variance, and meiffgcts are fitted compared to

number of records present (Xu, 2003). An altermativdefinition,

2
2 g

g, = 2
¢ sz P; (1- pj)

has been proposed (withbeing the frequency of an allele

at locusj), under assumptions of Hardy-Weinberg equilibriamd linkage

equilibrium between QTL (Fernando et al., 2007).

Given that RR-BLUP fits all marker effects in theodel, with marker
variances obtained as a fraction of the total genetriance, a larger number of

markers would be needed to account for substagéiaétic variance, especially
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for traits with low genetic variance. This meanattfor the RR-BLUP method, to
achieve equivalent levels of prediction accuracyngared to the Bayesian
methods, larger SNP panels would be necessaryciapegor ADG and RFI,
whose trait variance is small compare to DMI. Thene the results obtained in
this study run contrary to that expectation. Suatesalt may be possible if the
SNPs selected actually capture a reasonable propayt QTL underlying the

traits. This can only be tested by validating inradependent population.

Further, based on the suggestion by Meuwissen,ef28i01) that large QTL
are heavily regressed back to the mean in RR-BlthiPeffects estimated by RR-
BLUP will typically be small in comparison to tho$®m Bayesian analyses,
which only fit a fraction {- ) of the total numbers of SNPs available. This
means that given the SNP selection was accompliblyechnking SNPs from
highest to lowest in order of effect magnitude,hsuegression would lower the

rank of erstwhile larger QTL.

The use of a Bayesian model that includes a polggeffiect is expected to
aid in effect estimation by properly partitioniniget phenotypic variance to the
various components. However, some studies suchCakig and VeerKamp,
2007) have alluded to minimal influence of incluglipolygenic effects on

accuracy in genomic selection analyses

In all instances, the RR-BLUP method obtained higberrelations than

BayesB. This difference may be related to the ugithgy genetic architecture of
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the traits. The infinitesimal model applied by RRWB® may fit the RFI and DMI
data quite well compared to the notion of a few Q&L underlying the traits, as
implemented in BayesB. Given that the range of bwia processes that underlie
RFI is quite large (Richardson and herd, 2004) moeént discoveries suggesting
that many putative genes may be associated witth i@@ke (Barendse et al.,
2007; Chen et al., 2009), there is increasing emdeto suggest that a larger
portion of the trait variance is under influencenmdiny QTL of small effect. This
lends support to assertions that the assumptioderpimning RR-BLUP may
closely approximate the genetic architecture fol RRd DMI compared to
Bayesian models. Still, there may be a substantiaiber of QTL of large effect

affecting these two traits.

On the other hand, given that there is typicathielivariation in ADG between
animals both in this study as well as in similardgts, it is logical to assume that
the genic contribution towards this trait may bmiled to a smaller number of
QTL compared to RFI and DMI. Thus, the assumptiohthe Bayesian model
would be expected to favor a trait like ADG. Itnet immediately clear why this
isn’'t the case in this study and further analysithva larger dataset will be
necessary to verify this result. Estimates of vamacomponents obtained from
the 5 replicates of the training data are showdppendix 4, Tables 2 and 3.
Estimates obtained with the BayesB method weretanbally higher than those
obtained for RR-BLUP and the proportion of the &nde attributable to the SNPs

in BayesB was quite high (Appendix 4: Tables 2,F)wever, the correlations
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observed using both BayesB and RR-BLUP were lowat those observed for
the polygenic EBV (0.575, 0.504, and 0.602 for ADGMI and RFI,

respectively).

4.4 . 2Nithin breed correlations

The admixed population of cross bred animals usedhis analysis
consisted of steers sired by bulls of various se@d@curacy of prediction within
sire breed showed greater variation between bresitdg the RR-BLUP method
that with the BayesB method. There was also higiediction accuracy within

breed than across breed.

This pattern of higher within breed accuracy witR-BLUP was clearly
different than that observed using BayesB, wheeswithin breed correlations
were closer to the across breed estimates. Algessason for this may be due
to the possibility that SNPs selected using RR-BLdyy trace breed differences
(SNPs are optimized to capture breed differenceagh that the accuracy
observed across breeds is confounded and not pdwelyo LD between SNP and

underlying QTL.

Given that varying amounts of shrinkage are apple@&NPs based on
differences in allele frequencies (the shrinkagentes the same for all SNPs for
the RR-BLUP method), any differences in allele freacies between breeds for
any locus will impact the size of the allele sulositon effect and by extension the
prediction accuracy. Habier et al. (2007) showeal tlor RR-BLUP, genetic

121



relationships captured by the genetic markers affeediction accuracy to a
larger extent than in Bayesian methods, since mmakers are fit in the model.
The consequence of this is that there would benarease in prediction accuracy
if validation animals become more related to tragnanimals, especially if the

markers are able to resolve relatedness more ligaaverage relationship matrix.

A key issue in genomic selection of RFI is theitytbf GEBV in selection
of un-phenotyped animals. In this study, the aadasa obtained were low,
compared to those seen in studies using dairy bredtere more accurate
phenotypes are used to train SNPs. A framework dlatvs incorporation of
EPD and GEBYV into a single unit of merit after aggpiate weighting will be
useful. The weights used could be derived fromréiiability of the polygenic
EBV and the percentage of genetic variance accduoteby the marker panels
(VanRaden, 2001; Dekkers, 2007; Cerén-Rojas ek@08; Moser et al., 2009).
A framework that utilizes BLUP (Kachman, 2008) la¢éso been proposed. Such a
combined index for selection seems to be the ljEgimg especially for beef cattle
until such a time when large populations of aninf@se been tested for feed
intake and GEBV accuracies are higher than the BB3Uracies obtained using

traditional BLUP evaluations.

The number of animals in the training set also aabearing on the
accuracy of GEBV (Hayes et al., 2009). For RFlré¢his therefore a need for
increased testing of feed intake, despite the @sstociated with such an

undertaking. This is a priority for several Canadallaborations involving the
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Universities of Alberta and Guelph, Alberta Agricuke and Rural Development

(AARD) and Agriculture and Agri-Food Canada (AAFC).

4.4.3Candidate genes for RFI

Several studies have attempted to characterizentblecular basis of RFI.
Barendse et al. (2007) and Sherman et al. (20080)28escribe a series of
polymorphisms associated with RFI, but the usekgsnef these SNP and
associated genes in explaining the total RFI vadas yet to be determined. In
this study several SNPs with a high detection feeqy were in close proximity
of genes that may be useful in controlling feedcefhcy (Table 4.10). Other
SNPs that were detected in the top 100 in onlyglsireplicate were also located
within other useful genes (Appendix 2). Despite thet that these SNPs are
associated with some genes of interest, their iddat contribution was small. So
far, no study involving RFI has shown a gene(shwitsignificantly large effect,
such that a candidate gene approach may not deetestrategy in characterizing
the molecular basis of RFI. The SNPs identifiethis study may be more useful
when seen as key elements of a gene network climiy&FI, as the contribution
of individual genes is likely to be small. Furthesearch and analysis of gene

networks for RFI is therefore warranted.

4.5 CONCLUSION
In this study, accuracy of prediction, defined ks torrelation between

ADG, DMI and RFI and trait specific GEBV was compaibetween SNP panels
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derived using two genomic selection methods, narBelyesB and RR-BLUP.
The accuracies obtained for all 3 traits were Isignaling a need for continued
feed intake testing to acquire a large number @nptyped animals. RR-BLUP
derived GEBV achieved higher correlations withttgienotypes with accuracy
being highest for RFI. Differences in accuracy lexw sire breeds were observed
with the RR-BLUP method. This may imply that themay be significant
differences between the component breeds useceisttidy population and the
SNPs selected are consensus SNPs that wouldn’t egprédly well for all breed

and trait combinations evaluated.
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Table 4.1.Genetic (below diagonal) and phenotypi@ove diagonal)

correlations between feed intake and efficiency tigs

RFI ADG DMI
RFI 0.01* 0.55
ADG -0.03 £0.30 0.64
DMI 0.51+ 0.18 0.53+0.18

*Not significantly different from zero; all otherhpnotypic correlations significant
(P<0.001). ADG — average daily gain; DMI — dry reatintake; RFI — residual feed
intake; MWT — metabolic body weight.
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Table 4.2 Variance components and parameter estimes for feed intake and

efficiency traits

Model Item® ADG DMI RFI

Variance component

Var(P) 0.08 2.09 0.85
Var(G) 0.02 0.86 0.25
Var(E) 0.05 1.23 0.61
Parameter

h? 0.28+0.11  0.41+0.12 0.29+0.12

&/ar (P) = phenotypic variance; Var (G) = direct génvariance; Var (E) = residual
variance; h = direct heritability.
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Table 4.3 Correlations between GEBYy and GEBV37959with trait phenotypes for BayesB and RR-BLUP analyss

Replication
. 1 2 3 4 5
Trait GEBV Method (n=203) (n=194) (n = 255) (n = 203) (n = 198) Average
ADG  GEBV/A® BAYESB200 0.119 0.344 0.255 0.116 0.284 0.223 +0.05
RRBLUP200 -0.003 0.517 0.459 0.421 0.462 0.371 £ 0.09
GEBV /258 BAYESB37959 0.149
RRBLUP37959 0.126
DMI GEBVZDO?)’” BAYESB200 -0.030 0.287 0.289 0.081 0.352 0.196 +0.07
RRBLUP200 0.267 0.383 0.351 0.382 0.545 0.385 +0.05
GEBV s BAYESB37959 0.239
RRBLUP37959 0.246
RFI GEBVZ%E' BAYESB200 0.153 0.566 0.472 0.446 0.526 0.433 +£0.07
RRBLUP200 0.184 0.574 0.499 0.611 0.526 0.479 +£0.08
GEBV XL, BAYESB37959 0.117
RRBLUP37959 0.114
ADG  GEBV," BAYESB_RFI200 0.055 0.062 -0.003 0.062 -0.023 0.030 + 0.02
RRBLUP_RFI200 -0.021 0.074 -0.064 -0.222 -0.119 -0.070 £ 0.05
DMI GEBVZFS(F)'H BAYESB_RFI200 0.293 0.471 0.308 0.327 0.222 0.324 £0.04
0.406 0.424 0.245 0.430 0.476 0.396 £ 0.04

RRBLUP_RFI200

ADG — Average daily gain; DMI — Dry matter intakeEF| — residual feed intake; BAYESB — Bayesian eation using an algorithm called
BayesBFast implemented in AlphaBayes; RR-BLUP —danregression BLUP; GEBV — Genomic breeding vaBiandard errors for the

average calculated % where SD = standard deviaticBEBV ,' - GEBV obtained from ADG effects, with SNPs sedectising RFI.

GEBV,5 " - GEBV obtained from DMI effects, with SNPs selettsing RFI.
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Table 4.4 Correlations (= SE, as the average of gplications) between

GEBV oo and trait phenotypes by sire breed for GEBV trainel using BayesB

and RR-BLUP
Methods Breed ADG DMI RFI
Bayes Across 0.223 +£0.046 0.196 £0.073 0.433 £0.073
Angus 0.252 £0.051 0.333 £0.068 0.550 +0.040
Charolais 0.280 £0.132 0.200 +0.098 0.304 +0.120
Hybrid 0.352 +0.097 0.261 £0.078 0.454 =0.076
"Undefined 0.168 +0.062 0.291 +0.075 0.312 £0.143
RR-BLUP  Across 0.371+£0.095 0.385+0.045 0.479 +£0.076
Angus 0.359 +£0.112 0.514 +0.037 0.542 +0.042
Charolais 0.445 £0.133 0.319 +0.171 0.314 +0.083
Hybrid 0.510 £0.078 0.495 £0.075 0.533 +£0.089
'Undefined  0.386 +0.115 0.362 +0.105 0.435 +0.128

'Sire breed not known. ADG — Average daily gain; DMDry matter intake; RFI —
residual feed intake; RR-BLUP — Random regressibdB
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Table 4.5. Locations, closest genes and associatethe functions for SNPs that ranked within the tof200 in 3 of 5 replicates of

the training data analysed using the RR-BLUP method

Detection| Position Distance to
SNPID Freq (%) | (bp) BTA | Genet Gene name Gene function
$s86322201| 60 147355780 21,611 ES 1 protein Inhibition of cellular growth
$s86274038| 60 45908516 24 51,911 SET binding prdte| SET binding protein
Mediates protein folding in the

Chaperonin containing cytosol; Folding of actin and
586285204 | 60% 14738309 19 121,112| TCP1, subunit 6B tubulin

Caspase regulator Ubiquitin ligase/protein
rs41641502 | 60% 14541593 19 5,326 (CARP2) metabolism

Endonuclease reverse Endonuclease reverse
rs42316404 | 60% 8899286 17 179,149 | transcriptase transcriptase

Trancient receptor

potential cation

subfamily M, member
rs43557189 | 60 53208327 8 0 6 (TRPM®6) lon exchange/Mg++ transport
rs42142693 | 60% 24107627 28 0 ) o

Bovine homolog of Binding in trans-membrane
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SLC25A16 solute transport
carrier family
(Mitochondrial solute
carrier)

60 No gene annotation
rs41636768 55150035 | 18 n/a found

60 No gene annotation
$s105256889 44671099 | 21 n/a found

60 No gene annotation
rs41579807 14667205 | 19 n/a found

60 No gene annotation
rs41663853 14379998 | 28 n/a found

tDistance to closest gene (bases); n/a — No gdeatfied; Detection Freql — detection frequenaoymber of times a SNP ranks in the top 200
in 5 replicates for the RR-BLUP method.

$SNP also detected using the BayesB method witfuénecy 40%. SNPID — NCBI rsSNP ID; BTA — Chromosamenber.
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CHAPTER 5 : General discussion

5.1 INTRODUCTION
Residual feed intake (RFI) continues to be thejemtibof tremendous
interest and research, given that it is a relagivedwer metric for assessing feed
efficiency. Given the considerable gap that stikises in the knowledge
surrounding this trait, characterization of its g&n nature is essential in order to

understand the full impact of its selection on othaits.

There are lingering fears as to the effect thag lerm selection for RFI
may have on other reproductive and fitness tralisis is driven by the
observation in various studies that more efficieattle tend to have greater
carcass leanness. Many producers fear that inctdasaness in animals may
have a negative impact on reproductive fithesse@afly in breeding cows.
Generally, leaner cattle experience problems ggfitto calve year after year.
However, based on results from Basarab et al. (20010 examined maternal
productivity in 10 production cycles as well asatiyent selection experiments in
Australia (Arthur and Herd, 2008), there seemsddittle evidence to associates

cows that calve efficient animals with lower repuotive capacity.

Refinement of models that are used for RFI estonatis well as for
genetic evaluation in presence of molecular marlesdill ongoing, and will be
necessary if genetic gain in true metabolic efficie is to be achieved. The
guestion of whether to include body compositiontgran RFI estimation models
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is still unresolved and for all purposes ought éopopulation driven. Different

breeds will have different carcass characteristans] the magnitude of the
correlations between these traits and RFI will vacgordingly. At present, there
is little evidence to warrant inclusion of sucheeffs in most populations analysed
so far, given that the correlations observed betwREI and carcass traits are
small and the datasets used to estimate them bhoptsmal in terms of accuracy

of feed intake measurements and sample size.

5.1.1The effect of season on RFI

Being a relatively new trait, RFI has seen concketiéorts to characterize
its genetic properties. However questions abourto &se effect of RFI selection
on fitness and reproductive traits, the interplaiRBl with different environments
and RFI repeatability at different stages of ammtis life cycle. It is apparent,
however, that RFI selection can lead to consideragponse in genetic gain as
exemplified by divergent selection experiments attle and chickens (Bordas et
al., 1992; Arthur et al., 2001). Kahi and HirookZ0Q7), who did an economic
analysis of a breeding strategy that included IG&Rd RFI in the selection index,
showed higher accuracy of selection and increasafttability for Japanese black

cattle.

Apart from genetic influences on RFI, environmentdluences play an
important role in the expression of the trait. Hetdl. (2004) and Richardson and

Herd (2004) suggest five major processes that itomér to variability in
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efficiency. These are heat increment due to fe¢ak@ digestion, metabolism,
physical activity and thermoregulation which togetlaccount for about 33% of
variation in RFI. Any factor in the physical worlthat can affect any or a
combination of these processes may affect effigieRlowever, it is much more
difficult to measure these parameters in beefesadthd more studies are needed
to further characterize the influence environmerftdtors have on overall

efficiency.

In Chapter 2, we demonstrated that when feed intakeneasured in
different seasons defined largely by differencesambient temperature, solar
radiation and relative humidity, there was a catieh of feed intake with these
weather parameters. Feed intake was correlated auithemperature, relative
humidity, solar radiation and wind speed, but tla¢ure and magnitude of the
correlations were different for the two seasonsll{Fénter, Winter-Spring).
Despite the fact that the differences observeeda fintake and body composition
may not wholly attributed to differences in the wea parameters in the two
seasons due to age-weight-season interactiongesiodts in this chapter imply
that feeding habits in the two periods of testimg mot the same. This has a
bearing on feed efficiency, depending on how prgézh adaptive measures
necessitated by the changing climatic conditiores iar effect. It also became
apparent that inclusion of a season effect in th¢ &aluation model yielded
similar results as current evaluation models tistitteate RFI for each individual

test group. However, such a scheme would failgfittiention is to assess genetic
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gain due to RFI selection. In such a situationingls regression model is applied
to all test groups across multiple years as desdrily Arthur et al., (2001). This
ensures that the mean for all the groups would Wk but within the different
years (selection groups) the estimate of RFI me#rbevdifferent and will reflect
the gain in efficiency resulting from RFI selectiddo matter what evaluation
method is used, it would appear there is a caskirtber study the effect of
climate parameters on feed intake, with care b&kgn to minimize age-weight-
season interactions. This would allow definitionsafason specific adjustments
such that real metabolic efficiency is estimatedeliminary results at the
University of Alberta have shown that RFI repedtgbis low (approx. 0.4),
between successive feed tests (Durunna et al.,)2@i@ether this is due to the
influence of differential environmental adaptation effect of the animal being at
different physiological stages in the testing peésiois unclear. Further studies

into this subject are warranted.

The models used in the estimation of RFI in Chafteid not include a
body composition trait such as back fat depth. @afby, RFI is a function of live
weight gain and metabolic weight as suggested bghkai al. (1963). However,
in North America, there has been a leaning towaidusion of body
composition traits, especially back fat depth. €ntlly, there is no universal
model that is applied in the evaluation and esionabf RFI, with models
including not only back fat thickness, but alsodagbund muscle depth as in the

model used by Francois et al. (2002) for Frenchegh&lodels in use for RFI
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estimation will need refinement as more informatioagarding genetic
correlations between RFI with various fitness, ogpictive, fertility and body
condition traits is obtained. So far, RFI has bgieown to be correlated with only
a limited number of traits (Table 1.1). Perhapsimhost importance are studies
supporting the fact that selection for RFI does inghact negatively on fithess

and reproductive traits (Arthur et al., 2005; Basaet al., 2007).

The standard tool for genetic selection for alma#it economically
important traits is the EBV (or EPD), which becaodés success has seen wide
application and acceptance. Selection for RFI wdaddefit if such a tool were
developed. As more interest grows in selectingirioreased feed efficiency, for
the most part, most producers will be accessing EBV first generational
pedigree phenotypes, meaning that accuracies wilhbvitably low because of
the small numbers of animals with phenotypic dateese accuracies are bound to
slowly increase as more animals are tested andaeyenerations of data become
available. As seen in Chapter 2, the average acgwhEBV obtained in our
study was 0.51. Such levels of accuracy may be lveégw acceptance levels for
most producers when compared to traits that undesgtine evaluation. This
may be a hard sell considering the level of investinrequired to access RFI
technology. In order to maximize genetic gain inl RElection, strategies to

increase EBV accuracy will need to be implemented.

139



5.1.2Molecular breeding values as correlated traits folRFI

The use of genetic markers to obtain tools usefuRFI selection is
gaining increased interest. Genetic markers gise to molecular or genomic
breeding values (GEBV) which are weighted averagésthe number of
favourable alleles at a locus (with allele subsititueffects as weights; Kachman,
2008) summed over a large number of loci. These \GHBving been derived
from marker genotypes related to the genotype &gedcwith the economically
relevant trait under evaluation, are often corsglawith the trait of interest. These
tools can then be used for genetic prediction eitige correlated traits in a
multivariate BLUP framework or incorporated intoiadex as a weighted sum of
an animals EPD (EBV) and its GEBV, the weights befnctions of the
reliability of the EPD and proportion of variancepained by the GEBV (Moser
et al., 2009). Of critical importance in the usagds of such DNA based tools is

the need for accurate estimation of marker effects.

Various strategies have been proposed for the astimof SNP marker
effects, ranging from single marker regressiongdgnomic selection. However,
despite the differences in these methodologiey, daigequire that SNP effects be
independently validated. This is most effective whidertaken as a third party
validation using a group of animals that are aselated as possible, but
biologically similar to the population used for SNfect estimation. Such has
been the framework adopted by the national bedfecatvaluation consortium

with regards to commercially available marker t€$tsn Eenenaam et al., 2007a,
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b). This independent validation is important beeaitisensures that SNP effects
are repeatable across multiple populations and geament structures and are not
fortuitous. Industry confidence in the technology thus enhanced in such

situations and adoption of the marker test for wide may become much faster.

However, it is often necessary to do a within sawallidation to estimate
the predictive ability of the set of markers setector further testing. This is
mostly because for some traits such as RFI, oniglaively small number of
individuals have feed intake records worldwide, &nthay be necessary to pool
together records from different sub-populationsasdo increase the accuracy of
parameter estimation. In such situations, it magobee difficult to have a set of
unrelated animals with feed intake data to be Usedndependent validation.
This problem is often mitigated by dividing the d&ble dataset into a training
set and a testing set (Whittaker et al., 1997; @s8ho2000). SNP effects are
estimated in the training set and the predictionagiqns generated evaluated in
the testing set. This provides some sort of sedependent validation of the
estimated SNP effects, and reduces possibilityraggyover-representation of the
usefulness of selected panels. The selected paaeisthen be used in an
independent validation. This strategy is common rfarst types of association
analyses and genomic prediction studies. Sucleisréimework undertaken in the

analyses carried out in Chapters 3 and 4.
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5.1.3Utilizing molecular data for prediction

One of the best ways to increase EBV accuracydifificult to measure
traits is to incorporate in their genetic evaluattoaits that are easily measured,
have moderate to high heritability and most impaitaare correlated with the
trait of interest. A multivariate BLUP model as iteid by Kachman (2008) could

then be used to incorporate GEBV into RFI genetaliations.

A similar strategy of multivariate analysis may applied for RFI to
specifically increase estimates of EBV accuracye Thallenge has been to
identify traits correlated with RFI that may be dises indicators. Various studies
have shown that RFI has some correlation with Batkhickness, although the
magnitude of the correlation is often small. Thesmpromising indicator trait
studied so far is serum insulin-like growth fadtofl GF-1), an endocrine hormone
produced primarily in the liver in response to gtiolwormone stimulation and has
effect on growth and metabolism (Wood et al., 200#owever, this
physiological marker has proved to be inconsistemerms of its correlation with
RFI (Lancaster et al., 2008) and especially acthsrent breeds. Preliminary
data in Australia suggests that if blood sampléectibn is restricted to a certain
age of animals (150 — 250 d) and collection is eaming or just before weaning,
a consistent heritability for the trait (serum IGkevels) is obtained, meaning that
the same trait is measured each time. Howeverdhelations for post-weaning

and finishing RFI with IGF-I are different and omgite in magnitude. This

142



complicates the use of IGF as an indicator traitR&1. The National beef cattle
evaluation consortium (NBCEC) has issued a pospiper discouraging the use

of IGF-I as an indicator trait for RFI (Carstensakt 2007).

Since the genetic make-up of an individual is tlne from birth
throughout life, molecular markers offer the adaget of a consistent correlation
between marker score and phenotype irrespectivestafe of life, if
polymorphisms associated with the trait are obthiriéhis has led to concerted
efforts to identify polymorphisms associated withlRor prediction purposes. A
strategy that combined EBV and GEBV can then bdiegpgo increase EBV
accuracy. This has already been achieved for catcaiss (Johnston et al., 2008;
MacNeil et al., 2009). In Chapters 3 and 4, magaarels that consisted of SNPs
that account for a small proportion of RFI variatiwere developed. The strategy
employed in Chapter 3 consisted of applying simgéeker regressions to identify
SNPs highly associated with ADG, DMI and RFI folleavby random regression
BLUP of the top 100 SNPs for each trait, sequdgtidtopping out from the
model SNPs that were not jointly significant. Thesategy was in a bid to
maximize the chances of capturing some QTL of laffect in the final marker
panels developed. In Chapter 4, genomic selectiethadology was used to
estimate marker effects, and the top markers, basesNP effect size chosen to

define marker panels.

The cumulative marker phenotypes (CMP) and gendmeeding values

(GEBV) obtained in Chapters 3 and 4 respectivelgrenthen used to assess
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accuracy of predicting phenotypes. This is an ingrdrexercise especially given
the potential of predicting the performance of asnthat have not been tested
for feed intake. Interestingly, despite the varymgnber of SNPs identified as
being associated with RFI, similar levels of gemgirediction were achieved

despite the different strategies applied in Chapdeand 4 (Table 5.1).

The pre-selection of SNPs associated with RFI tjinosingle marker
association (Chapter 3) followed by RR-BLUP did rsgems to limit the
capability of obtaining a SNP panel with similaegdictive ability compared to
genomic selection models applied in Chapter 4fatt, it may be that the pre-
selection process in Chapter 3 mimics the Bayesiadels in that only a small
fraction of markers are fitted in the final estimatmodel, the assumptions about
SNP variance notwithstanding. Consequently, the-sphection strategy in
Chapter 3 was actually more effective for predgtilDG that the Bayesian
methods. Studies by Kizilkaya et al. (2010) havewshthat if QTL in high LD
with the underlying trait are used to generate markpanels, the accuracy
observed is equal or may be higher in comparisguateels with larger numbers
of SNPs having SNPs in weaker LD with QTL. The hssabserved in this study
seem to concur with that sentiment, even thoughkmowledge of QTL is
claimed. However, the prospect that the marker Ipafashioned after a pre-
selection step may harbor some SNPs in high LD witterlying QTL is high,

given only the top 100 (Chapter 3) SNPs were camsidl Using all SNPs that
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were available for analysis yielded lower correlat (except for DMI) and

doesn’'t seems to be a good strategy with this datas

For all methods evaluated, RFI marker panel was tbpredict DMI with
greater accuracy than the trait specific panelsTihcreases the prospect of a
multi-trait panel, which may be desirable in certaituations where individual

feed intake data necessary for RFI estimation neayrtavailable.

The results in Chapter 4 showed that the performaoic Bayesian
estimation methods was related to trait heritab#is well as underlying genetic
architecture of the trait. Accuracy for DMI was lewthan for RFI and ADG,

given that DMI had the highest phenotypic variance.

The folly of validating SNPs in a population inhetlg different than the
reference population used to define the prediotiguations can be deduced from
Chapter 3. In split 2, the validation animals n@kn pedigree relationships with
any individuals in the training data set, and fklead a genetic constitution much
different from that of the admixed population ugedtraining. Given that LD in
different breeds extends to much shorter distarares the large variety of breeds
in the training data, it is possible that SNPs ctel# in the training data are a
‘consensus’ set that is a poor match to the gerstticcture of animals in the
validation set. This phenomenon was exacerbatetbiomheritability traits (RFI
and ADG), where prediction accuracy was practicallyl. It is envisaged that

increasing the sample size in the training dataldvtxelp improve accuracy of
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prediction. Generally, for low heritability traitgrge numbers of individuals are
required to achieve accuracy equivalent to hightddality traits (Daetwyler et

al., 2008).

There were important differences in prediction aacy between sire
breeds with the differences being specific to thé evaluated. This difference in
accuracy by sire breed was most pronounced wherRERBLUP model was
used, especially for RFI. Possibly, this patternddference in accuracy may
generally signify that the marker panels selectetl teacing breed differences
alongside the main purpose of predicting the phgreousing the LD between
SNP and QTL. Lower correlations were observed uiiegBayesB method with

estimates closer to those seen across breeds.

Predictive accuracy was generally higher for RRhbwithin and across
breeds. This result indicates that RFI is not jaistextension of DMI, but a
distinctive trait whose selection may lead to dedént response, despite the high
correlation with DMI. However, the fact that RFllessted SNPs when used to
estimate GEBV for DMI, gave higher prediction a@aies than when using DMI
specific panels implies that RFI selection may dsaused successfully to effect
change in DMI much faster than when selecting diyd¢or DMI. However, these
result needs to be replicated in independent pt@pok with larger animal

resources.
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In summary, the use of marker panels in phenotypédigtion achieved
low accuracy compared to polygenic EBV accuracythis study population,
requiring that continued and concerted efforts beip phenotype collection to
increase the sample size available for use aseeserefe population. Our purpose
of demonstrating that genetic markers associatdd RFI can be used as a
correlated trait has shown promise despite the doeuracies observed. At the
moment, it is envisaged that better utility of nerknformation may involve use
of a selection index or BLUP framework to combireditional BLUP EBV with
GEBYV such as described by Moser et al (2009). Aengit to use a bivariate
model that fits RFI with CMP or GEBYV in the testidgta following Kachman et
al. (2009) was not successful and suffered from ehednvergence problems.
Consequently, given the results in this study atiteroefforts elsewhere, the
prediction of RFI phenotypes using molecular data uUntested individuals in
beef cattle may take a while to be realised. Howewenore objective conclusion
may be obtained when a larger dataset is usechflmpendent validation of the

prediction equations derived in this study.

5.2 IMPORTANT CONSIDERATIONS FOR RFI SELECTION
At present, there are still many unknowns wheréiREoncerned
and there is need for continued research to fullgracterise the trait. The fact
that many metabolic mechanisms (such as feed intdiestibility, physical
activity, thermoregulation, body composition andpieation rate; Richardson and

Herd, 2004) contribute to variation in RFI requiteat the full consequence of
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selection for this trait be well investigated. \Wées it is routine to rank animals
for efficiency based on differences in feed inté@kéh or without including body
composition), true metabolic efficiency may alsocessitate expressing feed
intake net of physical activity as well.

Physical activity is a seldom measured componeheef cattle that likely
contributes more to variation in efficiency thardigacomposition (Richardson et
al., 1999; Basarab et al., 2003). The effect ofhsactivity is even more
pronounced in other species such as pig (De Hael.etl993) and chicken
(Luiting et al., 1991). Yet, in North America, tlieeseems to be a trend towards
inclusion of body composition traits, especiallyrasound back fat thickness in
RFI estimation protocols but not physical activitjhis may be attributed to the
fact that there is no simple measure that is reptesive of physical activity
related to feeding with various parameters suathadly pedometer count, feeding
frequency, feeding events and feeding time haviegnbstudied. Whether or not
to include such measures in RFI estimation, or idenghem as separate traits is
subject to debate. One of the biggest issues ib#wuse of the relatively small
contribution of these traits to overall RFI vari#lgiin beef cattle, it is unclear
whether adjusting for such effects to obtain adwesli value, as necessitated by
RFI calculation, is the best strategy, there bamptential that selection for RFI
would lead to antagonistic outcomes for such traits

An alternative approach would to incorporate adl traits correlated with

RFI into one selection objective using selectiodeix methodology. It is thus
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imperative that both the physiological and molecubasis of RFI be well
characterised to maximize the benefits of seledtiofieed efficiency. Ultimately,
the magnitude of genetic change begins with a sdusaework for genetic
evaluation of RFI, which this thesis tries to defin

Preliminary results at the University of Albertavbashown that the
correlation of post-weaning RFI measured at twoseontive test periods is
moderate at best, often being below 60% for yourgnong steers. The re-
ranking of animals in RFI hierarchy presents questias to the best time to
measure life-long efficiency. Archer et al. (20@B)served near unity correlations
between heifer post-weaning RFI and mature cow Rffbwever, more studies
that relate growing RFI, finishing RFI and matuoevcRFI are needed to validate
results by Archer et al. (2002). Also, very fewdsés have related finishing RFI
to mature cow RFI. This will also need to be chemased in view of different
energy densities of the diets.

Although multiple genetic markers associated witlrl Fhave been
described in a number of studies, no major geniestafg metabolic processes
underlying efficiency have been characterized. dtyrbe worthwhile to expand
this molecular exploration so that comparisonsraagle between gene networks
and functional systems as opposed to single cardgiznes. These will allow
interactions between putative genes to be expldrased on the observed

expression patterns. Similarly, once important geatvorks are identified, it

149



may be easier to have an overview of how seledimorRFI will affect other
related and economically important traits.

Ultimately however, the full potential for RFI imcreasing production
efficiency will only be realized if feed intake tewg) is undertaken on a large scale
so that many animals with well characterized pesigr are phenotyped in
addition to having molecular data available. Thigll wequire substantial

investments in data collection and associated tdolgies.

5.3 CONCLUSION

This thesis set about to demonstrate how genetikarscan be applied in
the genetic evaluation of RFI so as to increase BBXracy. Chapter 1 gives an
overview of the current state of knowledge on REkearch. Chapter 2
demonstrates the typical low accuracies associattdRFI evaluations and the
potential influence of climate parameters on feethke and feed efficiency.
Chapters 3 and 4 describe a suite of genetic mathat are predictive of RFI and
evaluate the value of marker panels to predict ptypes for 3 feed intake and
efficiency traits.

Much still remains that is unknown about RFI andrenoesearch in
warranted. The quest for genes underlying RFIngotng and more efficient
methodology both for gene discovery and markersessigenetic evaluation are
still being sought. Suggestions for future researehlisted below.

1. Development of efficient algorithms necessary tlecethe most

informative suite of genetic markers predictiveR#l.
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2. Analysis of gene networks and expression patteonsahimals
with different efficiency profiles, in relation tditness and
reproductive traits.

3. Pursuit of indicator traits that may be used tckranimals in terms
of RFI in a more cost effective manner.

4. Better characterization of the relationship betw&#f measured
in growing, finishing and mature stages of an atisviée cycle.

5. Characterization of the influence of environmergatturbations,
such as weather and climatic changes on feed irdake feed
efficiency.

Table 5.1. Accuracy of prediction for various trats obtained by using RFI

panels derived from various methods.

Method ADG DMI RFI
BLUP 0.414 -0.051] 0.270 £0.06 0.402 +0.06
BAYESB20( 0.223 +0.04 0.196 +0.07 0.433 =0.07
RRBLUP20( 0.37110.09¢ 0.385 £0.04 0.479 =0.07
BAYESB3795¢ 0.14¢ 0.23¢ 0.11%
RRBLUP3795! 0.12¢ 0.24¢ 0.11¢

ADG - Average daily gain; DMI — Dry matter intak®E| — residual feed intake; RR-
BLUP — Random regression BLUP; PS RR-BLUP — PresedeRR-BLUP (Pre-
selection using single marker analysis followedRR+BLUP of the top 100 SNPs).
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CHAPTER 6 SUPPLEMENTARY WORK: Genetic parameters for calving

ease, gestation length and birth weight in Charolaicattle?
6.1 INTRODUCTION

6.1.1 The accuracy problem for RFI EBV

As shown in Chapter 2, because of the few nhumbemohals tested for
feed intake, the accuracies of the RFI estimatedding values are typically low.
This implies that selection for RFI using such E®W not result in the projected
levels of efficiency for any specific sire, buthrat exhibit wide variability with
respect to the offspring obtained. For effectiveplimation of RFI EBV for
selection purposes, the EBV accuracies need tmdredsed. The best option to
do this would be to measure more individuals fer tifait. Ideally we may want to
measure many offspring from particular sires suwt their EBV will be more
accurate given the large families. However, duaéolack of widespread progeny
testing schemes for beef cattle, and the relatiselgll half-sib families compared
to dairy cattle, the utility of such a strategylimited at present. Also, given the
cost associated with measuring feed intake, tlisgss would take a considerable
amount of time, the expense notwithstanding. Alévely, if we could find a
trait that is relatively easy to measure, has nmadia high heritability with a
sizeable correlation with RFI, we could use a mmaliate analysis strategy to

increase the accuracy of the RFI EBV, by allowinfipaving of the information

2 A version of this chapter has been published; Majhd Crews (2009); J. Anim Sci. 87:2759-
2766.
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between the traits by way of the genetic corretabetween them. In this way,
we mitigate to some extent the lack of data andatiser trait values to increase
the density of the information available for eactlividual, such that we can rank
the animals accurately on the basis of their gemeérit. A highly predictive RFI

panel, once identified, fits such a criterion andBBUP based strategy as

described by Kachman (2008) may be used to inciRBsaccuracy.

Such multivariate analyses have been used forwsddficult to measure
traits to increase the accuracy of parameter estmaAn illustration of how this
may be done is the subject of this chapter usihgrtpease as an example for a

hard to measure trait.

6.1.2 Case study: Calving easy as a hard to measure trait

Calving difficulty (dystocia) is a significant cosb beef production.
Dystocia has been associated with calf and cowatikystincreased postpartum
interval, and increased veterinary labor costs jdMieig, 1984). Genetic
improvement of calving ease has in some cases based on the high and
positive genetic correlation estimated betweenatyatand birth weight (Koots
et al., 1994b), but the use of bulls with low bivkight EPD is often associated
with lower growth rates and lighter weights in peag. Calving ease EPD
directly predict the genetic potential for animats produce calves without
difficulty and typically include birth weight as amdicator trait, thereby

increasing the evaluation accuracy and the nundfesises evaluated.
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The threshold model approach has been applied ny mases to evaluate
calving ease phenotypes (e.g., Wang et al., 199ggans et al., 2003). However,
a scale with four or more calving ease scores temdank animals similarly using
linear and threshold models (Varona et al., 199 let al., 2002; Ramirez-
Valverde et al., 2001). Snell (1964) suggested airsg procedure for ordered
categorical data such as calving ease score whidte e use of a linear model
more appealing, especially for large field datas.s&eginning in 2005, the
Canadian Charolais Association (CCA) has publistelging ease EPD from a
three-trait model including birth weight and gestatlength. In this system,
inclusion of gestation length as another indic&bordystocia is desirable because

of its relative ease of recording and higher hbilitg (Crews, 2006).

Complete genetic correlations among birth weigrangformed calving
ease scores and gestation length have not beershpdlwith field data. This
study sought to: 1) estimate genetic parametengnegtfor genetic evaluation of
transformed calving ease score, including birthghtiand gestation length as
indicators, and 2) estimate genetic trend in cgl@ase in the Canadian Charolais

population.

6.2 MATERIALS AND METHODS

6.2.1 Data

A dataset (n = 40,420) consisting of birth weigiestation length and

calving ease records from first parity heifers vex¢racted from the Canadian
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Charolais Association Charolais Herd and Record dadament (CHARM)
performance database which included artificial ims@tion (Al) and calving date
records on animals born between 1979 and 2004th Bieight (BWT) records
were pre-adjusted for age of dam and sex of cédfcef following procedures
outlined by the Beef Improvement Federation (BIB02). The reported breed
average for birth weight in Canadian Charolaisleas 46 + 5 kg (Crews,
2006).Gestation length (GEST) was calculated asntimber of days between Al
mating and birth date and all GEST records werastelg for age of dam and sex
of calf using estimates reported by Crews (2008)vi@g ease (CE) records were
used for first parity heifers only and were scoasd\, U, A, E, H, S, and M. The
scores represented a normal or unassisted birtkNassisted or easy pull birth
(A, E), hard pull or mechanically assisted birth),(Kurgical birth (S) and mal-
presentation or dead calf (M). These scores wera tonverted into numerical
scores 1, 2, 3, 4, and 5, respectively. Only arsméath phenotypic data for at
least two of the three traits were included inghealy. Contemporary groups were
constructed as a combination of herd of origin gedr of birth subgroups.
Groups with less than 10 animals were excluded faoalysis since there were
many groups with one or a few individuals and theestly represented animals
missing data for two of the three traits. A tot&l10664 groups were obtained,
with all ancestral animals without birth date orcheaformation placed into one
contemporary group. The dams were classified inag® classes, 2, 3, 4, 5-10

and 11 years or older, according to BIF guidelifi®&, 2002). The final pedigree
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included 69,118 animals (Table 3.1) with year offbranging from 1979 to 2004

that comprised at least two ancestral generationarfimals with records.

6.2.2 Snell scores

In order to fit a three-trait linear model involgirCE, BWT and GEST,
14,403 CE phenotypes, recorded as 5 categorice¢sémm first parity heifers,
were transformed to a continuous scale (Snell, 198%ese scores reflect percent
unassisted calving (SC). The basic premise is tinate exists an underlying
continuous distribution of calving ease scores bicl the Snell scores represent
class interval midpoints. Snell scores were coottdi following the
approximation procedure of Snell (1964), which uadsgistic model to obtain
scores that can be generalized to a normal disivibuThe procedure consists of

three basic steps.

1. Estimation of class boundaries, and class intervals midpoints
(Snell scores,b

2. Estimation of Snell score means for the variousdepalf x age of
heifer groups

3. Scaling of raw Snell scores to range between 018086

There being five (k = 5) CE categories to be tramagd into Snell scores
S (j = 1to 5), six class boundariegjx O to 5) were estimated. Four groups (m =
4) were constructed based on age of heifer and&ealf combinations. There

were two age classes (2 and 3 year old heifershwodexes (male and female).
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Cumulative frequencies,pnere obtained for each group such that Snell score
category 5 had a cumulative frequency of 1. Maxintikelihood estimates of the
group intervals, X were then obtained forsx x;, to X — X intervals using
equation (5) of Snell (1964).

N,_ u R
- m Ny _;(ni,k—l 0 )P

where N is the total number of animals in the Snell scoaggory kK,
while j = k -1. pi k1 is the cumulative frequency for ease category jguodp i.

To obtain the value of the class boundaries, tigimrx; was arbitrarily set to O.
Snell scores were calculated as the midpoints efctass intervals. However for
the extreme categories, Snell scoresaisd § were obtained from the relative
proportion (Q) of CE score in that category usinglBs equations below:

$1= X1 - (—(INP)/Qy)

S= X4+ (=(INR)/Qs)

where, PRis the probability of a value less thanwhile Q is the relative
proportion of the calving ease scores in the Suelte category. Snell score
means for each group were obtained as in sectafrbiell (1964). The overall
Snell score mean, was calculated as the averaye ébur Snell score group
means. The difference between the group meansharaverall meary, was
used to update the raw Snell scores, by subtradbdhe expected proportions. A
scaling factor forced the Snell score to range betw0 and 100% such that a
score of 0% indicated the lowest calving ease &@dd highest calving ease.
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6.2.3 Variance Component Estimation Models

Univariate models were used to obtain starting ealior each trait while
bivariate models provided covariance parametensdezt the traits. A three-trait
linear model was used for final estimation of vac& components and to obtain
BLUP of breeding values. Since birth weight andtag@sn length records were
pre-adjusted for sex of calf and age of dam, oné/dontemporary group effects
were treated as fixed for these traits. Howevarcédving ease, sex of calf, age of
dam and contemporary group effects were treateiiked, while direct genetic
effects, maternal genetic effects and the residwgak treated as random for all
traits. Calving ease was treated as a trait ot#ie The three-trait model can be
represented in matrix notation as:

yi X10 0 ]|b Z:0 0 ||& Zn 0 0 |am

y2| =10 Xz 0||b2| ¥ |0z:0]||a|*|0 zw 0||am
ys| |0 0 Xa||bs 00 Zs||as| [0 0 Zu||am

(S8

T e

€3
where X, Z, are £are incidence matrices relating records with tlkedi
effects, direct genetic, and maternal genetic &ffaespectively. The vectors,y
Y2 Y3, contain the BWT (measured on the calf), SC and G&fdasured on the
heifer but specific to the calf) phenotypes whileah &, and e contain fixed

effects, direct genetic effects, maternal genéffieces, and the random residual,

respectively. The expectations of the vectors amajvériances of the random

terms for the model used are as follows:-
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y )(;b a Ao? Symmetric
a
E = ,Var|a, |=|Ad?, Ad?
a, ’
. e 0 0 .07

Direct genetic, maternal genetic and residual nagea are represented by
the termss?s, o°m ando’ respectively. A is the numerator relationship iwaif
all animals, while 4 is an identity matrix with order equal to the nweniof
animals with records for the particular trait. \éarxte components were estimated
using ASREML (Gilmour et al., 2006) which uses arerage information
algorithm. The program also routinely reports liglihood statistics which were
used for model comparison while variance componemse used to estimate
phenotypic and genetic parameters. The initial emlwf the variance and
covariance parameters for BWT and GEST were fix@ds/dlues reported by
Crews (2006). The animal variance component reptedean estimate of the
additive genetic variances%), while the phenotypic variance’) was obtained
from the sum of all variance components. Heritabilh?) was computed as the

ratio between the additive genetic and phenotyar@ances.

6.2.4 Genetic trends

Genetic trends were obtained by regressing aveE&y€obtained for the
three traits from the three-trait analysis on yefbirth of the animals, which
ranged from 1979 to 2004. Trends were also obtdioedll traits by regressing

average EBV on year of birth for the period betw#&880 and 2004. Further, the
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animals were ranked based on their estimated brgedilues (EBV), the ones
with the highest EBV (negative values for BWT anBS3, and positive values
for SC) having the best rank. Both spearman rankeladions and Pearson

correlation analyses were performed.

6.3 RESULTS AND DISCUSSION

Three traits, BWT, GEST and CE, expressed as peurassisted calving
(SC) were evaluated. Table 3.1 gives summary statisbserved for these traits.
Less than half of the animals evaluated had CE. dathis number is small
because of the imposed condition that allowed aniynals with phenotypes for
at least two traits to be included in the analy$§lse mean percentage unassisted
calving (SC) score was high, indicating that a éanggjority of first parity heifers
(72%), calved without assistance (Table 3.2), simib estimates obtained by
Wang et al. (2005) and Basarab et al. (1993). @néynall proportion of heifers
required surgical delivery or bore a dead calf (8&h2). The average GEST was
286.48 d, a result comparable to that observed.2&8pby Crews (2006) using a

larger dataset from the same population. The aedBAT was 46.54 kg.

6.3.1 Choice of models

It would appear that for parameter estimation wgttegorical traits,
threshold traits perform better because linear sodpplied to an underlying
scale seem to under-estimate the parameters (AMmiel-and Berger, 1999;

Steinbock et al., 2003). However, for field datae tomparative advantages of
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threshold models over linear models are small (lsaien et al., 2008; Matos et
al., 1997; Phocas and Laloé, 2003), in so far a¥ BB EPD estimation is

concerned. The ranking of animals using both modetsostly the same (Weller
and Ron, 1992). None the less, the accuracy olatdioen having 5 categories of
calving ease is still high even where parametees uender-estimated. Further,
implementation of threshold models is complicatedd acomputationally

expensive and not easily extended to multiple categl traits within the same
analysis (Misztal et al., 1989; Abdel-Azim and Bargl999; Ramirez-Valverde,
2001; Lee et al.,, 2002). Threshold animal modelgehbeen known to have
problems with convergence leading to biased estéisnétuo et al., 2001). For
these reasons, a multivariate linear animal mod®raach was used. A
transformation to Snell scores provides desiralgidutional properties ideal for

fitting a linear model to CE data (Jamrozik et 2005).

Linear models have been routinely used to evalcetegorical traits using
an animal model. Gutiérrez et al. (2007) used BWE, calving interval and
weaning weight data in their study, while Cole &t (2007) evaluated two
categorical traits, CE and still birth. The incorgtton of correlated traits such as
GEST in addition to BWT should lead to increaseshim accuracy of predicted
breeding values compared to those obtained threuWT and CE bi-variate

analysis.
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6.3.2 Variance components and parameter estimates

The estimate of heritability obtained for GEST wamilar to that reported
by Crews (2006). However, a lower value was seanB@&/T (Table 3.3).
Heritability estimates for BWT and SC obtained sirailar to those obtained by
Wang et al. (2005) in their analysis of BWT and SGe SC estimate was also
equivalent to that obtained for French Charolaid4pas reported by Phocas and
Laloé (2003). Maternal heritability estimates fovwWB and SC are within the
ranges observed in other studies (Koots et al.449Hriksson et al., 2004; Wang
et al., 2005). Generally, reproductive traits sashCE are known to have lower
heritabilities. These results suggest that respeoasselection for CE would be

low, especially for the maternal component.

Table 3.4 gives variance components estimates @roBtained from
single trait and multitrait analyses. The multitranalysis resulted in higher
estimates of direct and maternal genetic comporsmiB that the corresponding
direct and maternal heritability were higher conggito those in single trait
analysis. The genetic correlation between dirext maternal effects saw the

greatest change, with a substantial reductionarstandard error as well.

6.3.3 Genetic and residual correlations

A wide range of results has been obtained in diffesstudies for genetic
correlations, especially involving maternal ancedirgenetic effects for BWT and

CE (or dystocia). The correlation obtained in thmalysis (Table 3.5) was very
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high but by no means unique. Correlations rangiogf-0.60 to -0.98 have been
reported (Koots et al.,, 1994b; Bennett and Gregd2@@1l and Gutiérrez et al.,
2007). There was a smaller number of CE recordgada, compared to BWT
records. Also, 74% of animals with CE records h&Caof 90% or higher, with a
mean BWT of 44.33 compared to the herd averageés&44 This contributed to
the high correlation observed between BWT and S@ng\et al. (2005) obtained

a correlation of -0.67 between BWT and SC.

Even though the correlation observed between SCGEBST (-0.38 +
0.08) direct genetic effects was smaller than Wit BWT, the estimate obtained
was higher than that observed by Jamrozik et &0%2 and Lee et al. (2002),
even though the former modeled CE as a trait ofhisiéer. These two studies
obtained correlations of 0.19 and 0.22, respedtiithle signs are different due to
different CE definitions). The correlations betwedinect and maternal effects
among the different traits were negligible to madey ranging from 0.01 between
maternal GEST and direct SC to 0.26 between mdt&8@Gaand direct BWT

(Table 3.5).

The correlation of maternal effects of SC and GE&E higher than that
between direct effects. Similarly, the correlatibatween maternal effects of
BWT and GEST were higher than those for direct at$fe This implies an
important maternal component in the associatiowéen these traits. The genetic
correlation between maternal and direct genetiecesf for BWT were smaller

than those reported elsewhere (Phocas and Lal68; Zrews, 2006) but similar
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to Wang et al. (2005), while the GEST estimate iokethwas within the range of
that observed in related studies, such as Phochtaoé (2003), Eriksson et al.
(2004) and Wang et al. (2005). However, differenaesthe magnitude of
correlations observed between this study and therstreferenced above can be
attributed to the use of either a two trait modelnzlusion of different traits in
the analysis. Further, the initial variance andaz@ance parameters for BWT and
GEST used for the three-trait analysis in this gtwere fixed to values reported
by Crews (2006), since these are used for the medtioattle evaluation. The
negative genetic correlation between direct andemat effects for SC (Table
3.5) is indicative of an antagonistic relationshgmd can be attributed to
physiological and biological factors of the heifsuch as size of pelvic opening
(Bennett and Gregory, 2001; Phocas and Sapa, 2004heir analysis of CE,

Phocas and Sapa (2004) treated CE as a trait ofiine

Estimates of residual correlations (Table 3.6) emhdrom small to
moderate. Residual correlations between SC and Gi&S& negligible (-0.04 £
0.04), while a moderate negative correlation simitathat obtained by Wang et
al. 2005 was observed between SC and BWT (-0.3®%)0The estimate of the

correlation between GEST and BWT was small andtipes(0.06 + 0.04).

6.3.4 Gain in EBV accuracy for SC

One of the biggest advantages of using multivaaatggyses is the gain in

accuracy of the resulting evaluations, becausesthesdels reduce the prediction
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error variance (Mrode, 2005). Further, missing-riedbe records can be handled
if the animals have data for other traits. Simyladelection or culling bias is
accounted for supposing that any selection has baeied out indirectly for one

trait based on another correlated trait includeth@evaluation.

In this study, there was a significant increasE®BY accuracy for SC after
the multivariate analysis, with the largest incee@1%) being for calves with CE
records. Sires and dams of calves evaluated hadaises of 51% and 39%,
respectively (Table 3.7). One possible explanatmnthis increase is the large
difference in the genetic and residual correlatibesveen SC with BWT (-0.93
vs. -0.35) and GEST (-0.38 vs. -0.04). Schaefei84)1%uggests that larger
differences between genetic and residual correlatioetween the traits yield
greater increases in accuracy. Thompson and M@@86) also contend that
residual covariance between traits lead to betirnections in the data, such that

accuracy is increased.

6.3.5 Genetic trend

Regression of average EBV on year of birth fromal8y 2004 yielded
significant genetic trends for all traits. HoweveFgression of average maternal
EBV for BWT, GEST and SC on year of birth resultedsery small regression
coefficients that were not significantly differeritom zero. There was a
significant increase in the average birth weightVEBetween 1990 and 2004

(Figure 3.1). All preceding years had an averag®/ EB zero. Regression of
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direct EBV on year of birth for data excluding yeasrior to 1990 yielded
significant genetic trends of similar magnitude dinect effects as those obtained
using data from all years. The trends for BWT, GESW SC had regression
coefficients of magnitude -0.06, -0.08 and 0.18pestively for 1990 to 2004 and
-0.04, -0.08 and 0.10, respectively when all yesese included. However, the
changes in GEST and SC are due to a correlatedrresf selecting for lower
birth weight, since the CCA had not published GESTCE EPD prior to 2005.
The trends observed for maternal effects for theodel990 to 2004 were

insignificant (Figure 3.2).

Average direct birth weight EBV showed the greatdstnge, from an
average of 0 in 1989 to -2.15 in 2004. Direct gémtalength and percent
unassisted calving EBV followed the same patterhitebed by direct BWT,
(albeit in the opposite direction for SC) changbygapproximately -1.25 and 2.66
units, respectively. There was no observable chamgeerage maternal EBV as
the birth weight became progressively lower. Thgs particularly important
considering the antagonistic behavior of direct andternal effects. For the
population analyzed, there has neither been arpeefselection for direct effects
over maternal effects nor use of an index to dthestrends to what is seen in

Figure 3.1 and 3.2, other than selection usingiphet EPD.
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6.4 CONCLUSION
In summary, the genetic evaluation of calving e&seh weight
and gestation length yielded heritability and genebrrelation estimates that
were comparable to most studies involving beeflediteeds. The use of Snell
scores expressed as percentage unassisted calving wuseful means of
implementing an all-linear genetic evaluation ofvoay ease. The antagonistic
effect between direct and maternal effects, espped@ calving ease means that
improvement of both effects at the same time cquiove a challenge, and
selection strategies need to have this in mintiat been shown that a selection
index that incorporates both direct and maternal EEV with subsequent
assortative mating of sires having desirable dieEtEBV to first-parity heifers
provides optimal results compared to using an irtlek only considers direct CE
in Canadian Holsteins (Dekkers, 1994). Though snmainagnitude, a genetic
trend was observed for BWT and by correlated respdor GEST and SC in the
population analyzed. However, on average materfiatts did not show any
change. A large increase in EBV accuracy after itrailt analysis was observed
for SC compared to accuracy from single trait eatiun. These results suggest
that incorporation of birth weight and gestatiomdéh data into calving ease
evaluation can provide a tool for direct and acusglection for reduced calving
difficulty in beef cattle. However, given the higfenetic correlations between
BWT and CE, for both direct and maternal genetfea$, lower dystocia rates

could also be achieved effectively by selectionléever BWT in situations where
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CE data is not available or is difficult to obtaas is common practice. The
outcome of such a strategy would be limited by teduction in growth
performance resulting from decreasing BWT selectieor this reason, genetic

improvement programs should consider both dystaethgrowth.
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Table 6.1 Descriptive statistics, means and standadeviations of variables

analyzed

Basic data summary N
Number of animals 69,118
Number of records 40,420
Number of contemporary groups 1,664
Number of sires 857
Number of dams 24,400
Number of dams with own recdrd 5,388

Number of first-parity dams with recdtd 1,782

Traits N Mean SD Min Max

Birth weight, kg 39,759 46.54 4.79 36.29 80.74
Gestation length, d 37,663 286.48 4.93 266.00 3J07.7

Snell score, % 14,377 83.29 23.31 3.44 100.00

"Number of animals with data for any or all of theits analyzed
*The dams have birth weight, gestation length, nglease or combination of records

*The dams have own calving ease record as well@seifer progeny each, with record
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Table 6.2 Percent incidence of calving ease categs and the corresponding

Snell scores (% unassisted calving, in brackets)

Calving ease score

Sex AOD 1 2 3 4 5

2 32.26 (100) 12.21(62) 2.65(38.6) 1.71(23.7) 76q10.4)
Male 3 0.62(92.7) 0.15(54.7) 0.03(31.3) 0.00 (16.4) .00q3.1)
2 38.42(93.1) 8.28(55) 1.26(31.6) 0.41(16.8) 5803.4)

Female 3 0.57 (89.6) 0.08 (51.6) 0.02(28.2) 0.00 (13.3) .00q0.0)

Totals (%) 71.87 20.72 3.96 2.12 1.34

" = normal or unassisted birth; 2 = assisted oy ea#l birth; 3 = hard pull or
mechanically assisted birth; 4 = surgical births Bnal-presentation or dead calf;
Sex — sex of calf, AOD — Age of dam.
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Table 6.3 Variance component and parameter estimase(x SE) for birth

weight (BWT), gestation length (GEST) and percent massisted calving (SC)

Model item" BWT GEST sC
Variance (kg®) (days) (%)
component
Vp 19.68 +0.22 23.1£0.30 428.7 £5.76
Va 9.09 +0.71 14.28 +1.02 60.93 + 10.36
COVam -1.31 £ 0.39 -2.08 £0.51 -10.77 £ 6.84
- 2.66 +0.32 2.34 +0.37 25.76 + 9.59
Ve 9.23 +0.38 8.61 + 0.53 352.8 +10.14
Parameter
h 0.46 +0.03 0.62 +0.04 0.14 £ 0.02
hm 0.14 £ 0.02 0.10 £ 0.02 0.06 +0.02
Fam -0.27 £0.06 -0.36 +0.06 -0.27+0.14

1Vp = phenotypic variance, )= direct genetic variance, Coy = direct by
maternal genetic covariance,,\= maternal genetic variance, ¥ residual
variance, h, = direct heritability, Rn = maternal heritabilityr, m = the genetic
correlation between maternal and direct genetecedf SE = standard error.
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Table 6.4 Comparison of variance component and pameter estimates (+
SE) for percent unassisted calving (SC) obtaineddm single trait (UniSC)
and multiple trait (TriSC) models

Model item" TriSC UniSC
Component (% (%)
Vp 428.1+5.75 424.5+10.95
Va 60.07 £ 10.25 45.68 +12.16
COVam -10.52 £6.79  -10.87 +8.63
Vi 25.89+9.55 2257 +11.06
Ve 201.9 +49.08 356.2 +11.99
Parameter
ha 0.14 +0.02 0.11+0.03
hm 0.06 +0.02 0.05 +0.03
Fam -0.27+0.14  -0.34+0.22

"V, = phenotypic variance, )= direct genetic variance, Cgy = direct by
maternal genetic covariance,n\¢ maternal genetic variance,,&/= maternal
permanent environmental variance2tesidual variance 2= direct heritability,

h®, = maternal heritabilityr,m» = the genetic correlation between maternal and
direct genetic effects, SE = standard error.
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Table 6.5 Estimates of genetic correlations + SEptained from the three-
trait analysis of birth weight (BWT), gestation lergth (GEST) and percentage

unassisted calving, (SC)

Model item BWTm GEST( GESTn SCc SCn

1

BWTd -0.27£0.00 0.43+0.00 -0.21+£0.00 -0.93+0.00 0.27+0.1.
BWTm -0.26 £0.00 0.72+0.00 0.15+0.1 -0.68+0.1.
GESTc -0.36 +0.00 -0.38+0.00 0.18+0.1.
GESTn 0.01+0.1: -0.49+0.1
SCc -0.27 £ 0.1.

"BWTd = direct birth weight, BWTm = maternal birtreight, GESTd = direct
gestational length, GESTm = maternal gestatiomgjtte SCd = direct percentage
unassisted calving, SCm = maternal percentage istegalving.
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Table 6.6 Estimates of residual covariancé)and residual correlation @), +
SE obtained for tri-variate analysis of birth weigh (BWT), gestation length

(GEST) and percentage unassisted calving ease, (SC)

Trait GEST sc GEST sC
BWT 056+0.34 -1512+156 0.06+0.04 -0.3589
GEST -1.52 +1.66 -0.04 +0.04
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Table 6.7 Comparison of EBV accuracy and mean EBVséimates (+ SE) for

EBV derived from Single trait and multiple trait analyses. Correlations

(Spearman rank and Pearson) between single and migte trait derived

EBVs are also given for animals with percent unassied calving (SC) records

as well as their sires and dams.

Sire Dam Animals

EBV Accuracy

Uni-variate 0.359 + 0.008  0.169 + 0.001 0.436.801

Tri-variate 0.699 + 0.008  0.434 + 0.001 0.678600

Gain (%) 95 157 56
EBV Means

Uni-variate 0.039 +£0.111 0.238 £0.011 1.289@2Q.

Tri-variate 0.607 £ 0.230 0.983 +£0.031 3.962a44a.
Correlations between single and multiple trait EBV

Spearman 0.47 0.41 0.61

Pearson 0.51 0.51 0.62
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Figure 6.1 Genetic trend of average direct estimatebreeding value for birth
weight (BWT), gestation length (GEST) and percent massisted calving (SC)

for Charolais cattle.
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Figure 6.2 Genetic trend of average maternal estintad breeding value for
birth weight (BWTm), Gestation length (GESTm) and gercent unassisted

calving (SCm) for Charolais cattle.
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APPENDICES

APPENDIX 1: Lists of SNPs associated with ADG, DMI and RFI
Appendix 1: Table 1. Names, chromosomal locationminor allele frequencies and allele substitution éécts for SNPs used to build

marker panels using PS RR-BLUP (Chapter 3) method.

SNPID BTA Trait g/llllglzr Freq Position | *Estimate| SE
tHapmap50890-BTA-121436 Chr24 ADG A 0.334 28961542 0.031 0.003
rs29010392 Chrll ADG G 0.439 59067281 0.033 0,003
rs41576862 Chr24 ADG C 0.12 109844p9 0.002 0.007
rs41579555 Chr18 ADG T 0.8 500598p8 0.022 0.p06
rs41597632 Chr10 ADG C 0.189 62466743 -0.043 0,007
rs41601279 Chr24 ADG A 0.2 26564151 -0.409 0.005
rs41625563 Chr7 ADG G 0.432 919032p8 0.033 0.002
rs41630325 Chr15 ADG G 0.265 37389561 -0.008 0,001
rs41635766 Chr18 ADG T 0.196 47346235 -0.022 0.002
rs41656065 Chr7 ADG T 0.216 71845956 0.022 Q.01
rs41658480 Chré ADG G 0.433 54328469 -0.029 0.005
rs41847101 Chrl7 ADG T 0.463 66962668 -0.031 0.005
rs41894363 Chr18 ADG T 0.177 58277805 -0.031 0.004
rs42117657 Chr27 ADG A 0.201 213065P6 -0.036 0.p06
rs42913880 Chr3 ADG T 0.209 9633185 -0.015 0.p06
rs43614200 Chr10 ADG A 0.192 131464p8 -0.006 0.p11
rs43709090 Chr5 ADG A 0.1p 1.2E+(8 0.0p8 0.005

189



rs43727930 Chr27 ADG T 0.111 36780954 0.076 0.p06
$s105239516 Chrl0 ADG A 0.207 14071411 -0.028 0/009
$5105291171 ss117968562 Chré ADG T 0.437 38729866 .005( 0.01
55105307554 55117968245 Chré ADG A 0.414 37963147 0.032 0.003
$5117962667 Chr3 ADG C 0.337 43428200 0.035 0]005
55117966992 Chr3 ADG A 0.122 43225815 -0.042 0,008
55117969528 Chr9 ADG A 0.394 88157050 0.031 0,005
5586276352 ss86336018 Chr3 ADG A 0.473 93173991 0380. 0.003
5586282373 Chr24 ADG T 0.438 26339920 0.032 0J002
5586283682 Chr29 ADG C 0.306 31376202 -0.049 0/003
5586283704 Chr9 ADG G 0.253 6415256 0.035 0007
5586291906 Chr2 ADG T 0.179 64159904 0.043 0004
5586293533 Chr22 ADG T 0.474 14015132 0.028 0/003
5586296291 Chr5 ADG T 0.355 1.23E+08 -0.031 0.004
5586300106 Chril ADG T 0.221 95815319 -0.045 0/004
5586304896 Chr20 ADG A 0.194 23683579 -0.059 0,008
5586305113 ss86338143 Chrun  ADG G 0.453 2993350 340.0 0.006
5586314795 Chrl8 ADG T 0.121 62373058 -0.068 0/007
5586325631 Chri10 ADG C 0.371 13666563 0.039 0j004
5586327201 Chr9 ADG A 0.05 872212p4 -0.021 0.p11
5586334058 Chr28 ADG G 0.424 45321054 0.035 0j001
5586341174 ss86312678 Chr2] ADG C 0.253 55890005 .049 0.007
rs29027007 Chr23 DMI A 0.406 11432167 -0.021 0.023
rs41565462 Chrll DMI A 0.050 1.01E+08 -0.47 0.027
rs41569387 Chrll DMI A 0.26ff 70053572 -0.061 0.029
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rs41572724 Chrl DMI A 0.056 8432955 0.B3 0.051
rs41578671 Chr19 DMI C 0.332 575113p3 -0.127 0.026
rs41593516 Chr26 DMI C 0.241 39437807 -0.3 0.035
rs41654591 Chrl0 DMI A 0.325 91420638 -0.257 0.021
rs41887389 Chri8 DMI A 0.228 50742772 0.034 0.04
rs42029905 Chr23 DMI A 0.4444 45588817 -0.174 0.033
rs42052858 Chr24 DMI C 0.146 64215863 -0.208 0.p26
rs42215930 Chrl4 DMI T 0.299 5117434 -0.128 0.033
rs42410387 Chré DMI A 0.334 1.19E+08 0.0n1 0.075
rs42411131 Chr6é DMI G 0.296 1.19E+08 0.273 0.p47
rs42484917 Chrl4 DMI T 0.11B 56901724 0.221 0.926
rs42541659 Chrl DMI A 0.449 60865899 0.077 0.031
rs42630163 Chrl DMI T 0.14p 18244760 0.302 0.022
rs42821965 Chri4 DMI G 0.08 42462385 0/31 0.052
rs43057535 Chrl DMI A 0.268 1.43E+08 0.155 0.022
rs43099270 Chrl DMI C 0.265 4284068 -0.135 0.011
rs43362139 Chr3 DMI G 0.191 1.14E+08 0.065 0.024
rs43458937 Chré DMI C 0.428 39794334 -0.209 0.p31
rs43460584 Chré DMI A 0.364 41462782 -0.042 0.027
rs43585140 Chr9 DMI C 0.156  143939p5 -0J09 0.049
55117963035 Chr2 DMI A 0.31j7 1.09E+p8 0.141 0.02
5586283078 Chr3 DMI A 0.200 1.12E+08 -0.164 0.022
5586285204 Chr19 DMI C 0.397 14738309 -0.257 0,031
5586287613 Chr21 DMI G 0.481 34754177 -0.011 0/031
5586289527 Chrl0 DMI G 0.3 362858p6 0.134 0.p16
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5586298219 Chrl2 DMI C 0.457 37801938 0.125 0022
5586298834 Chr5 DMI T 0.435 1.18E+P8 -0.178 0.p21
5586299146 Chrl3 DMI C 0.347 53356612 -0.196 0.026
5586302411 Chr26 DMI C 0.47 5128409 0.065 0.026
$586312150 Chr26 DMI C 0.285 7796869 -0.157 0.029
5586314057 Chr8 DMI G 0.102 56217967 0{39 0.p28
5586321294 Chr3 DMI A 0.4401 17276446 0.176 0.p33
5586324110 Chr2 DMI T 0.053 1.38E+P8 -0.219 0.p49
5586326499 Chr24 DMI A 0.488 331831P6 0.005 Q.02
5586329667 Chr22 DMI A 0.262 194765B2 -0.2 0.033
5586331995 55141408536 ss8633800Y ChrjL4 DM G 0.343796829 0.187 0.01p
5586333184 Chri13 DMI A 0.38  249072P4 -0.044 g.02
5586333246 Chrll DMI T 0.048 99293872 0.294 0.04
5586336486 5586310850 Chr4 DMI A 0.412 77565084 910.1 0.025
5586337384 5586319462 Chr1( DMI C 0{22 16211358 2920. 0.038
5586340488 s586290533 Chr24 DMI G 0.294 13180301 .0120 0.016
BFGL-NGS-111692 Chr21 RFI G 0.334 42187702 -0.119 .02D
rs29027007 Chr23 RFI A 0.406 11432167 -0.085 0.016
rs41569387 Chril RFI A 0.267 70053572 -0.129 0.01
rs41589498 Chr3 RFI T 0.177 2516633 0.199 0.p18
rs41591637 Chri4 RFI G 0.295 52474088 -0.123 (.03
rs41594287 Chri10 RFI C 0.222 91290322 0.14 0016
rs41615974 Chrl3 RFI G 0.281 49140747 -0.116 0/018
rs41659405 Chrl RFI C 0.122 39454543 -0.282 0./018
rs41907795 Chr19 RFI A 0.344 27060121 -0.095 0.p16
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rs41994086 Chrl6 RFI G 0.429 52549377 0.153 0/019
rs42005069 Chré RFI G 0.467 55266545 001 0.024
rs42076978 Chr25 RFI A 0.293 36565740 -0.045 0.013
rs42203217 Chrl4 RFI G 0.398 58882002 -0.082 0/019
rs42218435 Chril RFI A 0.095 33511438 -0.168 0.037
rs42244558 Chrb RFI A 0.095 1293420 -0.372 0.p11
rs42364886 Chrb RFI G 0.217 36795401 0.126 0,013
rs42598824 Chrl6 RFI T 0.35 77735267 0.111 0.022
rs42972397 Chr9 RFI G 0.392 90796431 -0.148 0,016
rs43009143 Chr28 RFI C 0.342 26852434 -0.002 0/009
rs43308427 Chr2 RFI C 0.47 60143191 -0(04 0.p22
rs43389761 Chr4 RFI G 0.277 48969929 -0.082 0017
rs43400303 Chr4 RFI A 0.14 638920p6 -0.118 0.p16
rs43557189 Chr8 RFI C 0.256 53208327 0.189 0022
5105311629 Chri13 RFI A 0.273 11334505 -0.164 0]j018
5586288579 ChrUn| RFI A 0.137 1909h5 0.161 Q.03
5586291559 Chr19 RFI A 0.254 11624568 0.138 0/021
5586301703 Chr19 RFI G 0.063 15791841 -0.p77 0}(042
5586303188 Chr23 RFI T 0.434 19562079 0.077 0]j013
5586305968 s586339265 Chr2 RFI T 0.8327 24659200 170.0 0.017

5586307289 Chr4 RFI A 0.444 15139390 -0.079 0018
5586312876 Chri18 RFI G 0.137 516655%56 0.p83 D.03
5586313507 Chr29 RFI C 0.267 8984232 0.p62 0/013
5586318987 Chré RFI A 0.475 29162222 -0.088 0007
5586321297 Chr24 RFI G 0.389 48150873 0.061 0j015
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5586339405 5586315360 | chr20 RRI| A | 0299 6554724 058J. 0.015|

Trait units are kg/d for ADG and DMI and kg DM/drf@FIl. SNPID - NCBI rs/ss SNP ID, some SNPs hawuétipie predicted IDs based on their sequence
similarities to multiple submissions in the NCBlalsase!These SNPs have no rs/ss SNP ID; BTA — ChromosBwsition — Chromosomal position (bp);
Estimate — Allele substitution effect; Freq — Miradiele frequency; SE — standard error.
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Appendix 1: Table 2. Names, chromosomal locationgsinor allele frequencies and allele substitution éécts for SNPs used to build

marker panels using RR-BLUP (Chapter 4) method.

SNPID BTA Trait ,'XIIIIZ?GI Freq Position | *Estimate | SE
rs29009742 Chr23| ADG RRBLURP A 0.345 48193360 0.09140.001
rs29009978 Chr7 ADG RRBLUR T 0.426 80131726 0.016 .00®
rs29010006 Chrl2| ADG RRBLUR T 0.437 63065550 -0.0150.004
rs29010083 Chrl5| ADG RRBLURP A 0.324 80779274 -0.0180.003
rs29010392 Chrll1| ADG RRBLUP G 0.439 59067281 -0.0030.003
rs29011971 Chrl1| ADG RRBLURP A 0.314 54363220 0.0030.004
rs29014674 Chrl1| ADG RRBLUR T 0.334 59350664 -0.0060.005
rs29018725 Chr5 ADG RRBLUR T 0.431 1.19E+08 -0.02 .000
rs29019237 Chrll1| ADG RRBLUR C 0.441 83712430 -0.0070.007
rs29019483 Chr28| ADG RRBLURP A 0.284 2765207 -0.0020.003
rs29020690 Chr2 ADG RRBLUR G 0.194 20710301 -0.0050.005
rs29023646 Chr21| ADG RRBLUR A 0.376 2637648 0.005 .006
rs29025923 Chr6 ADG RRBLUR G 0.417 23332868 -0.0170.002
rs29026930 Chr27| ADG RRBLUR T 0.444 30880998 -0.0260.006
rs41255638 Chr2 ADG RRBLUR G 0]2 7744685 -0.006 0.0
rs41568120 Chrl3| ADG RRBLUR C 0.432 1121570 0.023 .00®
rs41575911 Chr20| ADG RRBLUR T 0.268 42162193 -0.0030.004
rs41578313 Chr2 ADG RRBLUR A 0.473 1.18E+08 -0.0130.002
rs41579555 Chr18| ADG RRBLUR T 0|3 50059898 0.025 003,
rs41581215 Chr18| ADG RRBLUP C 0.35 41024459 -0.0120.004
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rs41591022 Chr6 ADG RRBLUR A 0.417 23312425 -0.0170.002
rs41596552 Chrl6| ADG RRBLUR A 0.282 8482725 -0.0130.005
rs41601279 Chr24| ADG RRBLUR A 02 26564151 -0,01 008.
rs41605791 Chrl7| ADG RRBLUR A 0.436 68881238 0.0220.003
rs41610069 Chrll| ADGRRBLUR C 0.453 43867005 0.0040.005
rs41610664 Chr4 ADG RRBLUR A 0.281 88046023 -0.0150.004
rs41614062 Chr2 ADG RRBLUR T 0.498 83013168 -0.p040.001
rs41617180 Chr21| ADG RRBLURP C 0.465 2488633 -0.0060.005
rs41620111 Chri4| ADGRRBLUR T 0.27 45628286 0.937 .00®
rs41621351 Chr6 ADG RRBLUR T 0.417 23283248 -0.0170.002
rs41623175 Chrl6| ADG RRBLUR G 0.297 10100317 0.0290.003
rs41625563 Chr7 ADG RRBLUR G 0.432 91903228 0.009 .00D
rs41628392 Chr9 ADG RRBLUR A 0.409 7408656 0.016 008,
rs41636993 Chr2 ADG RRBLUR T 0/3 17551644 -0.001 0048.
rs41639125 Chrl ADG RRBLUR C 0.473 6783109 0.014 0040
rs41640505 Chr2 ADG RRBLUR A 0.409 89276549 -0.0090.005
rs41641037 Chrl7| ADG RRBLURP C 0.304 34397253 0.0050.005
rs41641100 Chr20| ADG RRBLUR C 0.495 47353822 -0.0130.004
rs41642440 Chr22| ADG RRBLUR G 0.454 28291985 0.01%0.002
rs41648477 Chr28| ADG RRBLUR A 0.433 5772594 -0.0210.003
rs41656065 Chr7 ADG RRBLUR T 0.216 71845956 0.904 .00®
rs41656975 Chr7 ADG RRBLUR C 0.392 93869682 0.015 .00®
rs41657401 Chr7 ADG RRBLUR G 0.483 6032638 0.021 00D
rs41658480 Chré ADG RRBLUR G 0.433 54328469 -0.0240.004
rs41658634 Chrl0| ADG RRBLUR A 0.424 14285133 -0.0150.002
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rs41660664 Chr6 ADG RRBLUR A 0.384 514960 0.019 08.p
rs41663389 Chré ADG RRBLUR A 0.388 574167 0.006 0R.p
rs41665465 Chr9 ADG RRBLUR C 0.209 88701211 0.011 .00®
rs41666779 Chrl4| ADG RRBLUR A 0.372 53364955 -0.0310.002
rs41681356 Chri2| ADG RRBLUR C 0.371 84229314 0.029.003
rs41772088 Chrl5| ADGRRBLUR T 0.319 54045333 0.0070.003
rs41818125 Chrun| ADGRRBLUR C 0.368 245878 -0.002 .009
rs41846328 Chrl7| ADGRRBLUR T 0.381 67026840 -0.p030.005
rs41847101 Chrl7| ADG RRBLUR T 0.463 66962668 -0.031 0.01
rs41849313 Chr28| ADG RRBLURP C 0.421 34323647 -0.0120.002
rs41877216 Chrl8| ADGRRBLUR T 0.264 39089380 0.0150.003
rs41887415 Chri8| ADG RRBLUR A 0.32 50648768 -0.0160.002
rs41894363 Chri8| ADGRRBLUR T 0.177 58277805 0 D.00
rs41895988 Chrl9| ADGRRBLUR C 0.49 7270527 0.915 0040
rs41900270 Chri8| ADG RRBLUR C 0.45 62533850 0.008 .00®
rs41931717 Chr20| ADG RRBLUR G 0.495 6776038 -0Q.01 .00®
rs41968142 Chr7 ADG RRBLUR G 0.474 82951458 0 0.007
rs42140351 Chr28| ADG RRBLUR G 0.394 6656202 -0.0190.007
rs42149900 Chr28| ADG RRBLUR A 0.423 42772804 0.9010.004
rs42230224 Chril0| ADGRRBLUR T 0.305 29247746 0.0020.006
rs42269671 Chr2 ADG RRBLUR G 0.339 8696447 -0.p05 .00®
rs42270183 Chr2 ADG RRBLUR C 0.374 20504698 -0.0340.003
rs42338999 Chrll1| ADG RRBLUR C 0.253 60503780 -0.0110.005
rs42352144 Chr3 ADGRRBLUR T 0.423 97572111 -0.0150.005
rs42386845 Chrl6| ADG RRBLUR G 0.261 5805896 0.004 .00®
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rs42398026 Chrl3| ADGRRBLUR T 0.473 1651486 0.p15 .009
rs42406963 Chrl2| ADG RRBLUR A 0.34 63760820 0.p01 .00D
rs42425010 Chr2 ADGRRBLUR T 0.498 1.18E+H08 -0.0250.006
rs42426466 Chr2 ADG RRBLUR G 0.303 1.18E+08 -0.0020.001
rs42427384 Chr2 ADG RRBLUR G 0.307 1.18E+08 0 0.001
rs42511166 Chri3| ADGRRBLUR C 0.372 73306761 -0.0310.003
rs42571431 Chrl6| ADGRRBLUR T 0.441 8565508 -0.0020.004
rs42599209 Chrl6| ADG RRBLUR G 0.402 73429897 -0.020.005
rs42607660 Chr9 ADG RRBLUR T 0.47 3717780 0.003 060
rs42731491 Chr7 ADG RRBLUR A 0.351 1304084 0.001 004.
rs42808317 Chrll1| ADGRRBLUR T 0.475 58976747 -0.0060.002
rs42922702 Chrl ADG RRBLUR G 0.268 92325177 -0Q.02 .00®
rs42995154 Chr22| ADGRRBLUR G 0.286 9190090 0.002 .00®
rs43015221 Chr24| ADG RRBLUR C 0.464 8151719 -0.0140.006
rs43153060 Chr26 | ADG RRBLUR G 0.322 881994 -0.p11 .00®
rs43263928 Chrl ADG RRBLUR T 0.198 1.25E+08 0.019 .008
rs43272296 Chrl ADG RRBLUR A 0.327 1.34E+08 0.018 .008
rs43293349 Chr2 ADG RRBLUR A 0.213 21301376 -0.0070.005
rs43406975 Chr4 ADG RRBLUR C 0.426 78222615 0.02 00®
rs43418798 Chri2| ADGRRBLUR C 0.207 61621355 0.0210.006
rs43494032 Chr8 ADG RRBLUR C 0.439 31439257 0.044 .00®
rs43514144 Chr7 ADG RRBLUR C 0.349 36645610 -0.0060.007
rs43584717 Chr9 ADG RRBLUR G 0.401 1326785 -0.015 .00®
rs43604507 Chr9 ADGRRBLUR T 0.394 66401629 -0.0010.009
rs43651804 Chrl0| ADGRRBLUR C 0.313 93336973 -0.0130.004

198



rs43664272 Chrll1| ADG RRBLURP A 0.223 2896524 -0.0120.002
rs43691104 Chrll1| ADGRRBLUR T 0.363 1.1E+08 -0.01 .008
rs43699555 Chrl2| ADGRRBLUR C 0.45 52690850 0.012 .00®
rs43706918 Chrl5| ADG RRBLUR A 0.345 12274036 0.02 .004
rs43709835 Chr3 ADG RRBLUR G 0.314 21163506 0.006 .00®
5586325009 Chrl ADG RRBLUP C 0.466 55091202 (0.02 009
5586284116 Chrl ADG RRBLUP T 0.478  1.48E+08 0.025 .00D
5586325631 Chr10| ADG RRBLUP C 0.3f1 13666563 (.02 .00
5586311219 ss86337271 Chrlp ADG RRBLUP A 0.402 78P8 0.002 0.003
5586299444 Chr10| ADG RRBLUP C 0.486 77672166 -0/018.005
$s86331115 Chrll| ADGRRBLUP T 0.295 12860331 0.008.006
5586331582 Chril| ADGRRBLUP A 0{3 54511207 -0.p03 .0049
55105239679 5586336880 ss86302477 Chrll  ADG RRBLGP 0.354| 9302336( -0.002 0.005
5117975021 Chrll| ADGRRBLUP T 0.3Y5 54437607 0/009.002
55105298676 Chrll| ADGRRBLUP C 0.3p5 83688144 0/008®.005
5586303886 Chrll| ADGRRBLUP T 0.418 59157410 (.02 .008
5586332463 Chrll| ADGRRBLUP G 0.464 1.05E+08 0.008.003
5586320135 Chrll| ADGRRBLUP C 0.489 1.1E+08 -0.0330.003
5586301030 ss86336908 Chrl2 ADG RRBLUP G 0.339 gz -0.001 0.002
5586295321 Chr12| ADGRRBLUP T 0.385 29147372 0.002.007
5586298219 Chri2| ADGRRBLUP C 0.457 37801938 .03.003)
5586331147 Chr13| ADGRRBLUP T 0.387 20921842 0.00/.005
5586338406 ss141335895 Chrl3 ADG RRBLUP T 0426 70942 -0.009 0.003
55105235969 Chr14] ADGRRBLUP C 0.284 4497878 -0/012.005
5586284999 ss86339961 55141414250 Chnl4  ADG RRBLGP 0.397] 77948993 D 0.002
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5586296210 Chr14| ADGRRBLUP C 0.489 45681753 0)013.006
55105236466 Chr14] ADGRRBLUP G 0.4Pp9 2745257 $/03 0.004
5586301413 Chrl5| ADG RRBLUP A 0.335 13630002 0.0140.005
5586320579 Chrl5| ADGRRBLUP T 0.466 53996750 -0/,019.004
5586330276 Chrl5| ADGRRBLUP C 0.493 30063426 -0j0110.003
5586312269 Chrl6| ADGRRBLUP G 0.3p3 11132371 .01.004
5586327921 Chri6| ADGRRBLUP T 0.389 46191853 -0.,0070.004
5586274657 Chrl6| ADG RRBLUP A 0.391 54648039 -0.0320.005
5586314795 Chri8| ADGRRBLUP T 0.121 62373058 -0.0410.007
$586291311 Chr18| ADGRRBLUP T 0.2Y5 18155403 0.023.004
5586287366 Chr18| ADG RRBLUP A 0.411 56410232 0.0050.004
5586303710 Chri8| ADGRRBLUP C 0.455 39864747 -0j0210.004
5586316986 5586338899 55141748132 Chr19  ADG RRBLUP 0.45| 48622410 -0.00y7 0.0d
5586298079 Chr19| ADGRRBLUP T 0.467 43301158 0.032.005
$s5117963035 Chr2 ADG RRBLUP A 0.317 1.09E+08 0.0140.004
5586294644 5586340983 5140238761 Chr2 ADG RRBLUP T 0.427| 92455931 -0.01 0.0d
5586295987 ss86340193 Chr2 ADG RRBLYUP A 0.498 8BEIT 0.004 0.001
5586299499 Chr21| ADGRRBLUP T 0.388 2594377 -0.0080.001
5586308974 Chr21| ADG RRBLUP A 0.468 34686928 -0.0170.005
5586322707 ss86339325 Chr2l ADGRRBLUP C 0483 HWB -0.002 0.001
5586341174 ss86312678 Chr22 ADGRRBLUP C 0.253 -0.008 0.002
5586312863 Chr22| ADGRRBLUP G 0.263 55912636 -0j008.002
5586330399 Chr22| ADG RRBLUP A 0.276 8241438 0.p07 .000
55141906455 5586288770 ss86336754 Chn22  ADG RRBLUP 0.314 8170453 0.01f 0.04
5586336944 ss86300614 Chr2 ADG RRBLUP T 0.827 @GOA 0.018 0.002
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5586274456 Chr22| ADG RRBLUP C 0.83 12663906 -0/0270.002
5586308836 ss86338846 Chr22  ADG RRBLUP C 0.363 GBEX 0.026 0.003
5586307905 Chr22| ADGRRBLUP T 0.397 5074898 0.006 .008
5586329969 5586341019 Chr22  ADG RRBLUP C 0.45 BH02 -0.006 0.003
5586274638 Chr22| ADGRRBLUP T 0.463 14183041 -0.0210.004
5586293533 Chr22| ADGRRBLUP T 0.4Y4 14015132 -0.0060.002
5586333969 ss86337890 Chr22 ADGRRBLUP T 0478 G345 -0.024 0.003
5586297894 Chr23| ADG RRBLUP C 0.4P5 2859323 0021 .003)
55105256273 Chr24| ADGRRBLUP T 0.2p1 26502604 0/0010.004
Hapmap50890-BTA-1214 Chr24) ADG RRBLUP A 0.334 288 0.017 0.009
5586282373 Chr24| ADGRRBLUP T 0.438 26339920 (.01 .00®
5105276721 Chr25| ADGRRBLUP T 0.287 36787467 0/0110.005
5586284697 Chr25| ADG RRBLUP G 0.387 39561967 0/018.003
5586312450 Chr25| ADG RRBLUP C 0.423 43779571 -0J00%.007
5586306823 Chr26| ADG RRBLUP A 0.293 40310048 -0.0420.005
5586290521 ss86338600 Chr26 ADG RRBLUP G 0.406 8653 0.03 0.005
5586284923 Chr26| ADG RRBLUP A 0.411 48311186 -0.0130.004
5586288380 Chr27| ADG RRBLUP G 0.383 9980281 0.001 .00%)
§5142217392 Chr27| ADGRRBLUP T 0.483 46460863 )02 0.001
5586289896 Chr28| ADG RRBLUP A 0.402 30379675 0.0060.003
5586337980 55142249816 s586303623 Chr28  ADG RRBLBP 0.415]| 33523007 ( 0.00
5586334058 Chr28| ADGRRBLUP G 0.424 45321054 0/010.006
5586304175 Chr28| ADG RRBLUP A 0.461 44198614 -0.0130.006
5586322359 Chr29| ADG RRBLUP A 0.49 13358272 -0.04 .00®
$s117962667 Chr3 ADG RRBLUP C 0.387 43428200 0)021.003
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5586332833 Chr3 ADG RRBLUP C 0.403 95154751 0005 .003)
5586339531 55140365835 5586326482 Chn3 ADG RRBLUP G 0.461| 1.01E+0§ 0.00B 0.003
5586320117 Chr3 ADG RRBLURP A 0.467 1.17E+08 0.p34 .00D
5586276352 ss86336018 Chr3 ADG RRBLYUP A 0.473 93973 -0.031 0.004
5586302003 Chr4 ADG RRBLUP C 0.403 1.17E+08 -0.0050.003
5586324094 Chr4 ADG RRBLUP A 0.48 1.16E+08 0.002 003,
Chr5 ADG RRBLUP| T 0.445 99266935 -0.029 0.9Jo3
5586289117 Chr6é ADG RRBLUP A 0.175 32765343 -0.0090.003
55140638770 ss117968523 Chr6 ADG RRBLUP T 0.316 523480 -0.009 0.00%
ss117968717 Chr6 ADG RRBLUP A 0.403 40096368 0.01 .00®
55105307554 55117968245 Chr6 ADG RRBLUP A 0.414 63747 -0.026 0.004
55105291171 ss117968562 Chr6 ADG RRBLUP T 0437 23866 -0.002 0.00%
55140642970 ss117968397 Chr6 ADG RRBLUP A 0.445 04220 -0.005 0.006
55105300789 55117968553 Chr6 ADG RRBLUP A 0.458 83360 0.006 0.008
$5105311444 ss140645091 ss117968186 Chi6 ADG RRBILGP 0.472| 44804409 0.018 0.004
5586293586 Chr7 ADG RRBLUP C 0.2Y5 71629520 0.008 .004
5586304564 ss86337150 Chr7 ADG RRBLYUP T 0.8353 145®4 0.005 0.007
5586318242 Chr7 ADG RRBLUP T 0.476 6599674 0.001 00®
5586310493 Chr8 ADG RRBLUP A 0.314 19235645 0.003 .00®
5586328642 Chr8 ADG RRBLUP G 0.316 1.16E+08 -0.0270.007
5586305956 Chr8 ADG RRBLUP C 0.362 65136890 0026 .00
$s86341071 Chr8 ADG RRBLUP C 0.365 90972338 0,005 .003)
55140894649 ss86333395 ss86335572 Chr8 ADG RRBLUP G 0.426| 1.09E+0§ -0.00p 0.005
5586283704 Chr9 ADG RRBLUP G 0.253 6415256 0.009 00D
5586310026 Chr9 ADG RRBLUP G 0.291 25009 0.003 4|00




5586318845 Chr9 ADG RRBLUP C 0.32 96255785 0.015 003
$s117969528 Chr9 ADG RRBLUP A 0.394 88157050 0.0170.002
5586328537 Chr9 ADG RRBLURP A 0.449 66360744 -0.0160.004
55105249534 Chrun| ADG RRBLUP C 0.3p9 46003 0.021 00®
5586305113 ss86338143 ChruU ADG RRBLYP G 0.453 2505 0.016 0.009
rs29011450 Chr28 DMI RRBLUP| A 0.423 37860813 0.0240.004
rs29012925 Chr5 DMIRRBLUP| C 0.416 1.18E+08 -0.0180.003
rs29014495 Chr24 DMI RRBLUP| T 0.499 33101881 0011 O

rs29016002 Chrl DMI RRBLUP| A 0.424 63611305 0.014 .o06

rs29016356 Chr19 DMI RRBLUP] A 0.185 35045329 -0.0190.003
rs29018725 Chr5 DMIRRBLUP| T 0.431 1.19E+0D8 -0.0160.004
rs29019483 Chr28 DMI RRBLUP| A 0.284 2765207 0{02 008.
rs29019540 Chrl DMI RRBLUP| A 0.334 1.15E+D8 -0.0190.006
rs29020900 Chri4 DMI RRBLUP| A 0.491 19910197 -0.0130.003
rs29023646 Chr21 DMI RRBLUP| A 0.376 2637648 -0.0120.004
rs29027007 Chr23 DMI RRBLUP| A 0.406 11432167 -0.0180.004
rs29027283 Chr19 DMI RRBLUP] C 0.489 22465360 -0.0120.005
rs41255303 Chr7 DMIRRBLUP| T 0.31 11088641 -0.028 .000
rs41569387 Chrll DMI RRBLUP| A 0.267 70053572 -0.0190.004
rs41569794 Chr4 DMI RRBLUP| A 0.348 74993512 0.022 .008

rs41571046 Chrll DMI RRBLUP| A 0.203 1.02E+P8 -0.0140.004
rs41571862 Chrl DMIRRBLUP| T 0.353 6219142 0j02 0A.
rs41578671 Chr19 DMI RRBLUP] C 0.332 57511323 -0.0170.004
rs41580132 Chr24 DMI RRBLUP| T 0.369 33160416 0.0090.002
rs41580478 Chrl4 DMI RRBLUP] T 0.428 72400485 -0.020.003
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rs41582543 Chrl DMI RRBLUP| T 0.374 60809664 -0.0080.006
rs41587678 Chr4 DMI RRBLUP| C 0.376 49069017 -0.0170.005
rs41591637 Chrl4 DMI RRBLUP| G 0.295 52474088 -0.0330.003
rs41593516 Chr26 DMI RRBLUP] C 0.241 39437807 -0.0290.002
rs41594336 Chr20 DMI RRBLUP| G 0.409 2569272 0.023 .006
rs41595934 Chr6 DMI RRBLUP| G 0.307 35095138 -0.0150.003
rs41596013 Chré DMI RRBLUP| G 0.385 45960114 0.006 .008
rs41597443 Chr8 DMI RRBLUP| G 0.42 41664453 -0.017 .008
rs41597632 Chrl0 DMIRRBLUP| C 0.189 62466743 -0.0160.001
rs41615197 Chrl1l DMI RRBLUP| G 0.4%4 37412349 0.0190.005
rs41617805 ChrUn| DMIRRBLUP| C 0.203 3459353 0.023 .008
rs41620466 Chr19 DMI RRBLUP| A 0.36 12049383 0.005 .008
rs41621136 Chri4 DMIRRBLUP| C 0.352 69508332 -0.0180.003
rs41630162 Chri13 DMIRRBLUP| T 0.368 46222328 -0.0240.003
rs41637283 Chri8 DMI RRBLUP| G 0.378 31692831 0.9120.007
rs41638079 Chri18 DMIRRBLUP| C 0.412 37573693 0.9140.005
rs41639611 Chr21 DMI RRBLUP] A 0.425 30670019 -0.0170.003
rs41640212 Chr20 DMI RRBLUP| T 0.41 39860784 0.024 .008
rs41641220 Chr25 DMI RRBLUP| A 0.374 6398911 -0j01 .00@
rs41641491 Chr19 DMIRRBLUP| C 0.333 14639908 0.9130.002
rs41641502 Chr19 DMI RRBLUP| A 0.391 14541593 -0.0230.003
rs41643439 Chr23 DMIRRBLUP| C 0.356 32266053 0.02 .008
rs41645263 Chr24 DMI RRBLUP] C 0.488 24617207 0.0160.003
rs41652463 Chr28 DMI RRBLUP| G 0.413 24176807 0.0240.003
rs41653434 Chr7 DMI RRBLUP| G 0.443 90107228 0.02 0082.
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rs41654591 Chr10 DMI RRBLUP] A 0.325 91420638 -0.0280.003
rs41655774 Chré DMI RRBLUP| G 0.348 1.2E+08 -0.004 .006
rs41658128 Chr7 DMI RRBLUP| G 0.337 11212022 -0.0220.005
rs41658343 Chr9 DMI RRBLUP| C 0.456 77100499 -0.0110.004
rs41658480 Chr6 DMI RRBLUP| G 0.433 54328469 -0.0210.002
rs41658634 Chri10 DMI RRBLUP| A 0.424 14285133 -0.0090.003
rs41665047 Chri10 DMIRRBLUP| T 0.472 62410140 -0.010.004
rs41666531 Chr26 DMI RRBLUP] C 0.482 39417271 -0.0310.002
rs41666779 Chri4 DMI RRBLUP| A 0.372 53364955 -0.0170.005
rs41667842 Chrl2 DMI RRBLUP] C 0.34 80998850 -0.0290.002
rs41696831 Chrl3 DMI RRBLUP| G 0.463 48392938 -0.020.004
rs41826110 Chrl6 DMIRRBLUP| T 0.265 69249251 -0.020.003
rs41872004 Chri18 DMIRRBLUP| G 0.499 32630275 -0.0270.004
rs41874204 Chri18 DMIRRBLUP| T 0.408 37401684 0.0140.006
rs41887389 Chri8 DMI RRBLUP| A 0.228 50742772 -0.0110.005
rs41913775 Chri4 DMIRRBLUP| T 0.334 45588041 0.0210.003
rs41936397 Chr20 DMI RRBLUP| G 0.213 13064471 0.0220.001
rs41976011 Chr21 DMI RRBLUP] A 0.291 18331255 -0.0090.005
rs42010591 Chr22 DMI RRBLUP| G 0.299 46831728 0.9210.003
rs42029905 Chr23 DMI RRBLUP| A 0.444 45588817 -0.0260.005
rs42095651 Chr26 DMI RRBLUP| A 0.299 31528736 -0.0140.003
rs42113305 Chr7 DMIRRBLUP| T 0.461 1.06E+P8 -0.0150.003
rs42205322 ChrUn| DMIRRBLUP| T 0.415 28470 0.026 Oa.
rs42211818 Chr2 DMIRRBLUP| T 0.306 41147382 -0.0090.001
rs42215845 Chrl4 DMI RRBLUP| G 0.293 5139498 -0.0220.002
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rs42215930 Chrl4 DMI RRBLUP| T 0.299 5117434 -0.0230.002
rs42244571 Chr5 DMIRRBLUP| T 0.482 1237389 0.026 008.
rs42267353 Chr8 DMIRRBLUP| T 0.489 27772306 -0.0150.005
rs42340315 Chrl3 DMI RRBLUP| A 0.414 49042803 -0.0180.003
rs42410387 Chr6 DMI RRBLUP| A 0.334 1.19E+08 0.023 .008
rs42411131 Chr6 DMI RRBLUP| G 0.296 1.19E+08 0.028 .00R
rs42541659 Chrl DMI RRBLUP| A 0.449 60865899 0.011 .o06
rs42609685 Chr24 DMI RRBLUP| T 0.467 29594856 0.0160.002
rs42686095 Chr25 DMI RRBLUP| A 0.383 22968554 0.0220.003
rs42761380 Chr24 DMI RRBLUP| G 0.433 29658911 -0.0160.003
rs42846886 Chrl4 DMI RRBLUP] A 0.206 20420772 0.0160.003
rs42848382 Chr28 DMIRRBLUP| C 0.457 35051073 -0.p170.002
rs42972397 Chr9 DMI RRBLUP| G 0.392 90796431 -0.0260.001
rs43057535 Chrl DMI RRBLUP| A 0.268 1.43E+D8 0.016 .00G
rs43066203 Chrl DMI RRBLUP| T 0.268 1.43E+PD8 0.016 .006
rs43099270 Chrl DMI RRBLUP| C 0.265 4284068 -0(02 008.
rs43157783 Chr5 DMI RRBLUP| A 0.333 2731741 0.026 00Q.
rs43235365 Chrl DMIRRBLUP| T 0.41 678013b2 -0.016 .00G6
rs43281624 Chrl DMI RRBLUP| G 0.496 1.44E+08 0102 0084.
rs43288647 Chr7 DMI RRBLUP| A 0.436 1782962 -0.014 .00Q
rs43308752 Chr17 DMI RRBLUP| A 0.308 30075837 -0.0030.003
rs43367746 Chr3 DMI RRBLUP| G 0.423 1.11E+08 -0.0060.005
rs43368994 Chr3 DMI RRBLUP| T 0.336 1.11E+0D8 -0.0080.002
rs43404908 Chr4 DMI RRBLUP| C 0.427 78161176 0.025 .00P
rs43406975 Chr4 DMI RRBLUP| C 0.426 78222615 0.024 .00D
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rs43458937 Chr6 DMI RRBLUP| C 0.428 39794334 -0.0360.005
rs43460584 Chré DMI RRBLUP| A 0.364 41462782 -0.0160.007
rs43486526 Chré DMI RRBLUP| A 0.231  1.18E+D8 0.011 .00G6
rs43488797 Chré DMI RRBLUP| A 0.247  1.19E+D8 0.021 .00@
rs43528584 Chr7 DMI RRBLUP| G 0.412 87975144 0.026 .008
rs43620039 Chri10 DMI RRBLUP| A 0.496 13936704 -0.0140.003
rs43646790 Chri10 DMIRRBLUP| T 0.395 91160685 0.0150.004
rs43659115 Chrll DMI RRBLUP] C 0.417 2119843 -0.0220.001
rs43691423 Chri2 DMI RRBLUP| G 0.333 47745184 0.9190.002
rs43707936 Chr3 DMI RRBLUP| G 0.403 4233402 0,02 08.
rs43708498 Chrl7 DMI RRBLUP] A 0.339 30117923 -0.0020.003
rs43712212 Chr3 DMIRRBLUP| T 0.461 1.07E+P8 -0.0140.002
rs43712305 Chr3 DMIRRBLUP| C 0.432 51468870 0.016 .00P
rs43732439 ChrUn| DMIRRBLUP| G 0.305 5722P8 0.025 008.
5586305181 Chrl DMI RRBLUR A 0.276 55117570 -0.0190.002
5586322201 Chrl DMIRRBLUPR C 0.419 1.47E+08 -0.0330.003
5586337384 5586319462 Chrl DMIRRBLUP C Q.22 18281 -0.027 0.003
5586289527 Chr10 DMIRRBLUR G 0{3 36285826 0.p22 00®
5586325631 Chri10 DMIRRBLUR C 0.371 13666563 0.009.004
5586323690 Chri0 DMI RRBLUR A 0.42 55467759 0.007 .009
5586333253 Chril DMIRRBLUR C 0.297 2016951 -0.0130.004
5586295624 Chril DMIRRBLUR C 0.393 98973737 0.01%0.006
5586333925 Chrll DMI RRBLUR C 0.427 99663236 0.0290.005
5586336850 Chrll DMI RRBLUR A 0.475 69550821 0.0230.005
5586319906 Chrll DMIRRBLUR T 0.495 98890768 0.0120.004
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$s86300073 Chrl2 DMI RRBLUR G 0.369 64166117 -0.0250.004
5586298219 Chrl2 DMIRRBLUR C 0.4%7 37801938 0.0230.004
5586299146 Chrl3 DMIRRBLUR C 0.347 53356612 -0.0170.003
5586333184 Chrl3 DMI RRBLUR A 0.38 24907224 -0.0120.004
55141276965 5586341012 ss86322947 Chn13 DMI RRBLUP 0.404| 13138591 -0.024 0.0(
5586327363 Chri13 DMIRRBLUR C 0.428 23104022 0.01 .00®
5586308829 Chril3 DMIRRBLUR C 0.483 28137385 -0.0110.004
5586331995 55141408536 ss86338007 Chnl4 DMI RRBLUP 0.343| 72796829 0.026 0.0(
5586321835 5586340640 Chri4 DMIRRBLUP A 0.398 8634 -0.025 0.003
55141404526 ss86340426 ss86329284 Chnl4 DMI RRBLUP 0.414| 68219827 -0.025 0.0(
55105250812 Chr14] DMIRRBLUR A 0.421 72289416 (.020.001
5586300618 Chri4 DMI RRBLUR A 0.446 68157431 0.9160.002
55105235808 Chr14| DMIRRBLUR A 0.479 6339015 0.9140.003
5586312269 Chril6 DMIRRBLUR G 0.363 11132371 0.0330.002
5586325758 Chrl7 DMIRRBLUR C 0.438 38831747 Q.01 .000
5117965187 Chr19 DMIRRBLUR C 0.2Y6 11913008 0.0020.004
5586340116 Chr19 DMI RRBLUR C 0.305 15624481 0.0190.003
5586282748 Chr19 DMIRRBLUR G 0.333 14371695 -0.0190.002
5586322196 Chr19 DMI RRBLUR A 0.343 12105345 0.9060.003
55117965228 Chr19 DMIRRBLUR C 0.385 10216561 (0.010.001
5586285204 Chr19 DMIRRBLUR C 0.397 14738309 -0.0320.002
5586340252 Chri19 DMIRRBLUR G 0.409 58653826 0.019.002
5586319269 Chr19 DMI RRBLUR A 0.433 27858989 -0.0250.001
5586287664 Chr2 DMIRRBLUPR T 0.284 65812460 -0.02 .000
$s117963035 Chr2 DMI RRBLUR A 0.317 1.09E+08 0.0230.004
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5586274327 ss86341382 ss140200326 Chi2 DMI RRBLUUP G 0.469| 40959604 -0.005 0.002
5586302454 5586341326 Chr2 DMIRRBLUP T 0.484  6266¢§ -0.01 0.007
5586291859 Chr21 DMIRRBLUR C 0.246 28089897 0.0230.004
5586327696 Chr21 DMIRRBLUR C 0.334 24163903 0.0170.005
5586299499 Chr21 DMIRRBLUR T 0.388 2594377 -0.01 .009
5586297678 s586336600 Chr2l DMI RRBLUP A 0.446 B%O7 0.017 0.002
5586287613 Chr21 DMIRRBLUR G 0.481 34754177 -0.0190.006
5586328277 Chr22 DMI RRBLUR C 0.407 43786348 0.0130.004
5586335893 5586295729 5141929725 Chn22 DMI RRBLUP 0.47| 36030389 -0.01B 0.004
$5105256273 Chr24| DMIRRBLUR T 0.291 26502604 .01 0.002
5586340488 ss86290533 Chr24 DMIRRBLUP G 0.294 (0308 -0.017| 0.00%
5586282373 Chr24 DMIRRBLUR T 0.438 26339920 0.0260.002
5586326499 Chr24 DMIRRBLUR A 0.488 33183196 -0.010.001
5586284580 Chr25 DMIRRBLUR T 0.288 40999193 -0.0130.002
5586286856 Chr25 DMIRRBLUR T 0.33 43328712 -0.0190.001
55142084607 ss86285940 ss86336419 Chr25 DMI RRBLUP 0.445 9035401 0.01# 0.002
5586291919 Chr26 DMI RRBLUR A 0.171 13563199 0.p080.005
5586312150 Chr26 DMIRRBLUR C 0.285 7796869 -0.0190.003
5586306823 Chr26 DMI RRBLUR A 0.293 40310048 -0.0330.004
5586297201 Chr26 DMI RRBLUR A 0.388 12543004 -0.0180.003
5586302411 Chr26 DMIRRBLUR C 0.47 5128409 0.013 0040
5586278429 Chr26 DMIRRBLUR A 0.497 7433501 -0.0150.003
5586295367 Chr28 DMI RRBLUR A 0.416 1185260 -0.0150.002
5586338981 5586316321 Chr28 DMIRRBLUP G 0.444 2202 -0.021 0.004
5586283078 Chr3 DMI RRBLUPR A 0.209 1.12E+08 -0.0070.004
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5586334691 Chr3 DMI RRBLUPR A 0.233 1.23E+08 -0.0240.003
5586336295 5586332960 Chr3 DMIRRBLUP C 0.242 108E+ -0.016 0.007
5586300695 Chr3 DMIRRBLUPR T 0.371 1.15E+08 -0.0140.002
$s117962856 Chr3 DMIRRBLUR T 0.38 22068686 0.p12 .00®
5586339363 ss86311787 Chr3 DMIRRBLUP T 0.433 1+D8BEH 0.006 0.006
5586321294 Chr3 DMI RRBLUR A 0.441 17276446 0.027 .00D
5586288485 Chr3 DMIRRBLUPR C 0.46 46800080 -0.014 .00®
5586314903 Chr4 DMIRRBLUPR T 0.26 86175879 -0.018 .00P
5586296136 Chr4 DMIRRBLUP G 0.346 71778598 -0.0190.003
5586291547 Chr4 DMIRRBLUPR T 0.348 77858119 -0.0190.002
5586340969 586319210 Chr4 DMI RRBLUP A 0.376 40887 -0.007 0.004
55140433225 55117975221 Chr4 DMI RRBLUP A 0.877 999649 0.017 0.004
5586306854 Chr4 DMIRRBLUR T 0.44 1.02E+08 -0.001 .o0R
5586298460 Chr4 DMIRRBLUPR C 0/5 1.01E+08 0.007 02.0
5586336111 Chrb DMIRRBLUP G 0.322  1.23E+08 0.p14 .009
5586286524 Chrb DMI RRBLUR A 0.335 1.18E+08 0,01 o0084.
5586332091 Chr5 DMIRRBLUPR T 0.331 1.15E+08 0.023 .00P
5586298834 Chr5 DMIRRBLUPR T 0.435 1.18E+08 -0.0150.002
55140599049 Chrb DMIRRBLUR C 0.464  1.19E+08 0.0170.002
55117968078 ss105300915 Chr6 DMI RRBLUP A 0.248 98305 -0.021] 0.003
55105311575 55117968559 Chr6 DMIRRBLUP G 0.414 51936 0.019 0.006
55105291171 55117968562 Chr6 DMIRRBLUP T 0.437 23886 0.023 0.001
55140642970 ss117968397 Chr6 DMI RRBLUP A 0.445 04900 -0.009 0.003
5586329848 Chré DMI RRBLUPR A 0.447 31783985 -0.0150.004
55105300789 ss117968553 Chr6 DMI RRBLUP A 0.458 83680 -0.015 0.002
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ss117968721 Chr6 DMIRRBLUR T 0.4%8 33761327 -0.0150.003
55140743800 ss86337403 5586275837 Chr7 DMI RRBLUUP A 0.442] 34102145 0.01)7 0.0(
5586312018 Chr8 DMI RRBLUPR A 0.48 53765346 0.021 008.
5586277885 Chr9 DMI RRBLUPR C 0.345 54247343 0.023 .00®
5586290757 Chr9 DMIRRBLUR T 0.407 1.05E+08 0.019 .00P
rs29011393 Chr6 RFI RRBLUP A 0.317 29139241 0.926 .00D
rs29015159 Chr2 RFI RRBLUP C 0.444 92075538 0.01 00®
rs29015265 Chr4 RFI RRBLUP T 0.402 66897419 -0.0250.003
rs29018213 Chr20 RFI RRBLUP G 0.371 72686898 -0.02%.004
rs29019540 Chrl RFI RRBLUP A 0.334 1.15E+08 -0.0150.007
rs29020900 Chrl4 RFI RRBLUP A 0.491 19910197 -0.0070.001
rs29021889 Chr6 RFI RRBLUP T 0.311 49334857 -0.0060.003
rs29022067 Chr17 RFI RRBLUP G 0.372 31309718 -0.029.003
rs29022883 Chr4 RFI RRBLUP A 0.293 51115714 0.906 .00®
rs29024293 Chr2 RFI RRBLUP T 0.242 60249495 -0.0140.003
rs29027007 Chr23 RFI RRBLUP A 0.406 11432167 -0.0170.005
rs41566885 Chr27 RFI RRBLUP C 0.421 37370739 -0/,0170.004
rs41569318 Chr25 RFI RRBLUP A 0.425 23069380 -0.p070.003
rs41569387 Chrll RFI RRBLUP A 0.267 70053572 -0.0250.005
rs41570453 Chr6 RFI RRBLUP A 0.417 22616875 0.923 .008
rs41573624 Chr6 RFI RRBLUP C 0.281 22359286 -0.0340.003
rs41576649 Chrl0 RFI RRBLUP A 0.489 96508076 -0.0040.003
rs41579492 Chrl4 RFI RRBLUP C 0.423 58838436 -0/013.004
rs41579807 Chr19 RFI RRBLUP G 0.258 14667205 -0/0110.004
rs41580123 Chrl4 RFI RRBLUP C 0.493 62673287 0.0293.003
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rs41580478 Chrl4 RFI RRBLUP T 0.428 72400485 -0.0340.004
rs41584022 Chr24 RFI RRBLUP G 0.4Y8 33074041 0.008.004
rs41587222 Chr23 RFI RRBLUP G 0.496 22815029 -0/0195.007
rs41587678 Chr4 RFI RRBLUP C 0.376 49069017 -0.0180.004
rs41588707 Chr4 RFI RRBLUP G 0.153 63995739 -0.0120.005
rs41589112 Chr8 RFI RRBLUP A 0.458 49801064 -0.0130.003
rs41589498 Chr3 RFI RRBLUP T 0.177 2516633 0.934 00D
rs41590720 Chr4 RFI RRBLUP G 0.231 21506496 0.01 00D
rs41591637 Chri4 RFI RRBLUP G 0.295 52474088 -(0.040.005
rs41593516 Chr26 RFI RRBLUP C 0.241 39437807 -0/0340.004
rs41593661 Chr5 RFI RRBLUP A 0.493 1.06E+08 0.013 .009
rs41594287 Chri10 RFI RRBLUP C 0.222 91290322 0.0210.002
rs41596511 Chr7 RFI RRBLUP A 0.483 99649982 -0.0190.004
rs41599754 Chr4 RFI RRBLUP A 0.457 50360661 0.909 .00®
rs41600388 Chr19 RFI RRBLUP C 0.48 14562521 0.003 .00,
rs41615197 Chrll RFI RRBLUP G 0.454 37412349 0.026).005
rs41615974 Chrl3 RFI RRBLUP G 0.281 49140747 -0/0220.004
rs41618669 Chrl RFI RRBLUP A 0.335 1.58E+H08 0.012 .004
rs41628306 Chri13 RFI RRBLUP C 0.262 39406173 0.029.003
rs41630507 Chr19 RFI RRBLUP A 0.371 12362294 0.0190.003
rs41636768 Chri18 RFI RRBLUP T 0.437 55150035 -0.0360.004
rs41637289 Chri18 RFI RRBLUP G 0.318 31419763 -0/0110.005
rs41641502 Chr19 RFI RRBLUP A 0.391 14541393 -0.0250.004
rs41641505 Chr19 RFI RRBLUP G 0.294 14463447 0/0170.002
rs41643757 Chr21 RFI RRBLUP C 0.3Y9 47625363 0.0210.002
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rs41644507 Chr22 RFI RRBLUP T 0.391 50130%91 -0.0030.003
rs41645263 Chr24 RFI RRBLUP C 0.488 24617207 0.0140.005
rs41649876 Chré RFI RRBLUP C 0.496 27831792 0.028 .00®
rs41652468 Chr28 RFI RRBLUP G 0.2Y5 23668737 -0/0220.003
rs41655825 Chr6 RFI RRBLUP A 0.486 1.17E+08 0.033 .008
rs41657910 Chrll RFI RRBLUP G 0.296 33989537 0.0310.004
rs41657913 Chril RFI RRBLUP G 0.464 34105348 -0.,0120.008
rs41658343 Chr9 RFI RRBLUP C 0.4%6 77100499 -0.0080.004
rs41663853 Chr28 RFI RRBLUP C 0.413 14379998 0.028.003
rs41665964 Chr5 RFI RRBLUP G 0.4%3 58236173 0.007 .00
rs41667842 Chrl2 RFI RRBLUP C 0.34 80998850 -0.0290.005
rs41703327 Chr21 RFI RRBLUP A 0.322 42104742 -0.0220.004
rs41723352 Chr3 RFI RRBLUP A 0.498 1.27E+08 0.008 .008
rs41789740 Chrl6 RFI RRBLUP G 0.388 52438 -0.023 00®
rs41831100 Chrl6 RFI RRBLUP C 0.483 75536974 -0.0030.004
rs41872004 Chri18 RFI RRBLUP G 0.499 32630275 -0.020.005
rs41907795 Chr19 RFI RRBLUP A 0.344 27060121 -0.0240.005
rs41968651 Chr21 RFI RRBLUP A 0.388 18429868 -0.0180.007
rs41994086 Chrl6 RFI RRBLUP G 0.429 52549377 0.032.004
rs42005069 Chr6 RFI RRBLUP G 0.467 55266545 0.009 .00
rs42067726 Chr25 RFI RRBLUP T 0.486 32183153 0.00%0.005
rs42068538 Chr25 RFI RRBLUP G 0.469 31892337 0.,0110.001
rs42076978 Chr25 RFI RRBLUP A 0.293 36565740 0 ».00
rs42142693 Chr28 RFI RRBLUP G 0.242 24107627 0.0340.005
rs42145142 Chr28 RFI RRBLUP G 0.392 25286084 0.032.003
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rs42153608 Chr28 RFI RRBLUP C 0.301 39481034 0.0293.004
rs42203217 Chrl4 RFI RRBLUP G 0.398 58882002 -0/0220.003
rs42205322 ChrUn| RFIRRBLUP T 0.415 284{70 0.026 09.
rs42218359 Chrl4 RFI RRBLUP C 0.496 5668165 -0.0220.003
rs42229148 Chr3 RFI RRBLUP T 0.337 79800923 0.024 .00®
rs42267353 Chr8 RFI RRBLUP T 0.489 27772306 -0.0120.004
rs42316404 Chr17 RFI RRBLUP A 0.433 8899286 0.934 .008
rs42364886 Chr5 RFI RRBLUP G 0.217 36795401 0.03 00®
rs42410387 Chr6 RFI RRBLUP A 0.334 1.19E+08 0.021 .008
rs42411131 Chr6 RFI RRBLUP G 0.296 1.19E+08 0.p25 .009
rs42425117 Chrl6 RFI RRBLUP C 0.411 74900509 -0/,009.002
rs42450575 Chr4 RFI RRBLUP T 0.329 76239483 0.003 .00®
rs42474272 Chri4 RFI RRBLUP G 0.483 25455256 0.0210.005
rs42517435 Chr29 RFI RRBLUP T 0.389 24455280 -0.0230.004
rs42598824 Chrl6 RFI RRBLUP T 0.35 77735267 0.016 .00D
rs42600007 Chrl6 RFI RRBLUP G 0.492 77819152 0.036.003
rs42611064 Chr5 RFI RRBLUP C 0.415 44176108 -0.0110.004
rs42625829 Chrll RFI RRBLUP C 0.3Y2 10237050 (.02 .008
rs42653268 Chril0 RFI RRBLUP C 0.219 1.03E+08 -0.0320.002
rs42669983 Chr4 RFI RRBLUP A 0.371 76748642 -0.0090.004
rs42746836 Chr7 RFI RRBLUP C 0.433 2310381 -0.009 .00®
rs42746858 Chr7 RFI RRBLUP T 0.471 2287322 0.014 00®
rs42756348 Chr4 RFI RRBLUP A 0.331 49674071 -0.0190.003
rs42771121 Chrl3 RFI RRBLUP G 0.421 51699788 -0/023.005
rs42848382 Chr28 RFI RRBLUP C 0.457 35051073 -0/0160.003
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rs42883957 Chr2 RFI RRBLUP G 0.447 56721815 -0.0080.006
rs42894216 Chr20 RFI RRBLUP C 0.411 74161665 0./0120.004
rs42915745 Chr7 RFI RRBLUP T 0.469 1.04E+08 0.021 .004
rs42972397 Chr9 RFI RRBLUP G 0.392 90796431 -0.0310.003
rs42975505 Chr3 RFI RRBLUP T 0.369 6606822 0.907 00D
rs43007076 Chr6 RFI RRBLUP T 0.3%6 479837 0.011 0D,
rs43095753 Chr2 RFI RRBLUP T 0.395 30197476 0.025 .00D
rs43101847 Chrl4 RFI RRBLUP T 0.378 4302229 0.013 .00®
rs43127117 Chr8 RFI RRBLUP C 0.458 49775558 -0.0130.003
rs43161947 Chr8 RFI RRBLUP T 0.401 37257077 0.p22 .00®
rs43197278 Chr2 RFI RRBLUP G 0.489 1.35E+08 0.p18 .000
rs43235106 Chrl RFI RRBLUP G 0.417 65560287 0.03 004
rs43283301 Chrl RFI RRBLUP A 0.366 1.6E+08 -0,01 008.
rs43288647 Chr7 RFI RRBLUP A 0.436 1782962 -0.011 .008
rs43301566 Chr2 RFI RRBLUP G 0.415 28418145 0.006 .00,
rs43308427 Chr2 RFI RRBLUP C 0.47 60143191 -0.011 .00®
rs43328895 Chr2 RFI RRBLUP A 0.479 1.35E+08 -0.0180.002
rs43350479 Chr3 RFI RRBLUP A 0.437 87291654 -0.0240.007
rs43368589 Chr3 RFI RRBLUP C 0.392 1.23E+08 -0.0240.006
rs43370810 Chr3 RFI RRBLUP T 0.423 1.26E+08 -0.0120.003
rs43388052 Chr4 RFI RRBLUP G 0.469 39490595 -0.0090.004
rs43389711 Chr4 RFI RRBLUP A 0.407 46392808 0.902 .00®
rs43389761 Chr4 RFI RRBLUP G 0.277 48969929 -0.0090.004
rs43390906 Chr4 RFI RRBLUP G 0.406  463255%75 0.006 .00
rs43404908 Chr4 RFI RRBLUP C 0.427 78161176 0.02 00®
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rs43406975 Chr4 RFI RRBLUP C 0.426 78222615 0.017 .00
rs43466020 Chré RFI RRBLUP C 0.302 49361007 -0.0150.004
rs43499539 Chr7 RFI RRBLUP A 0.262 5854636 0.019 003,
rs43557189 Chr8 RFI RRBLUP C 0.2%6 53208327 0.032 .00®
rs43578762 Chr8 RFI RRBLUP C 0.2Y5 1.05E+08 -0.0070.004
rs43604365 Chr9 RFI RRBLUP C 0.44 52502821 0.017 00®
rs43604391 Chr9 RFI RRBLUP C 0.44 52475302 0.015 00®
rs43712212 Chr3 RFI RRBLUP T 0.461 1.07E+08 -0.01 .009
5586322201 Chrl RFI RRBLUP C 0.419 1.47E+08 -0.04 .00
5586310901 Chr10 RFI RRBLUP A 0.342 2377496 -0.02 .00D
5586279757 ss86336164 s5140991997 Chnl0 RFI RRBLUB 0.369 2403281 -0.015 0.001
Chri10 RFI RRBLUP G 0.442 92987293 0.01 0.005
5586310828 Chri0 RFI RRBLUP C 0.4p9 99916215 -0/012.005
5586317647 Chril RFI RRBLUP A 0.36 74657887 -0.0140.001
$s86300073 Chrl2 RFI RRBLUP G 0.3p9 64166117 -0/02D.007
5586314443 Chri13 RFI RRBLUP G 0.22 53855395 -0/02%.006
$s105311629 Chr13 RFI RRBLUP A 0.2f3 11334505 -0{02 0.005
5586283788 Chrl3 RFI RRBLUP C 0.3P3 11404442 -0/039.003
5586299146 Chri13 RFI RRBLUP C 0.347 53356612 -0/01®.006
55141276965 5586341012 s586322947 Chn13 RFI RRBLUP 0.404| 13138591 -0.019 0.003
5586308829 Chril3 RFI RRBLUP C 0.483 28137885 -0/003.005
5586331995 55141408536 ss86338007 Chrl4 RFI RRBLUB 0.343| 72796829 0.036 0.003
5586283706 Chrl4 RFI RRBLUP A 0.343 67656472 -0/,009.001
55105250812 Chrl4| RFIRRBLUP A 0.4P1 72289416 0)0170.005
5586295552 Chrl5 RFI RRBLUP C 0.456 64898228 -0{02D.004
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5586291074 Chrl6 RFI RRBLUP T 0.3p4 75069607 -0/023.003
5586297871 Chrl6 RFI RRBLUP G 0.367 75470851 D.01.0030
5586326352 Chrl6 RFI RRBLUP T 0.484 33318456 0)029.004
5586301273 Chrl8 RFI RRBLUP C 0.3p2 64189447 -0/020.002
5586320018 Chri8 RFI RRBLUP C 0.483 4219281 0/009.0040
5586291559 Chr19 RFI RRBLUP A 0.254  11624%68 0.025.003
5586282748 Chr19 RFI RRBLUP G 0.3B3 14371695 -0/01D.005
5586277601 Chr19 RFI RRBLUP C 0.364 57387665 -0/018.005
5586285204 Chri9 RFI RRBLUP C 0.3p7 14738309 -0/039.003
5586305968 ss86339265 Chr2 RFI RRBLU T 0.827 2Z2B%9 0.006 0.004
5586334438 Chr2 RFI RRBLUP A 0.408 1.23E+08 -0.0190.003
5586324899 Chr2 RFI RRBLUP T 0.434 28387865 -0.003).004
5586339405 5586315360 Chr20 RFI RRBLU A 0.r99 B555 -0.02 0.003
Chr21 RFI RRBLUP G 0.334 42187202 -0.02 0.4
5586294045 Chr21 RFI RRBLUP G 0.402 45207089 -0/022.005
5586284478 Chr21 RFI RRBLUP T 0.4b2 47689910 -0J013.003
55105256889 Chr21 RFI RRBLUP T 0.469 44671099 4|02 0.006
55141991350 Chr23 RFI RRBLUP G 0.187 30661700 0/01D.005
5586311521 Chr23 RFI RRBLUP C 0.3f2 135267¥33 0/019.007
5586303188 Chr23 RFI RRBLUP T 0.484 19562079 .01.0010
5586274038 Chr24 RFI RRBLUP A 0.389 45908516 0.03%.003
5586321297 Chr24 RFI RRBLUP G 0.389 48150873 D.01.0040
5586291523 Chr24 RFI RRBLUP C 0.4D8 49258254 -0/029.003
5586329651 586341529 Chr24¢  RFIRRBLU T 0419 ecHESB 0.009 0.002
5586326499 Chr24 RFI RRBLUP A 0.488 33183196 0./0010.001

217

06



5586288518 Chr25 RFI RRBLUP C 0.369 36525574 0/012D.004
55105292021 Chr25 RFI RRBLUP A 0.4P5 31925031 0)008.002
5586291919 Chr26 RFI RRBLUP A 0.1y1 13563199 0.0070.006
5586278429 Chr26 RFI RRBLUP A 0.497 7433501 -0.0290.005
5586274681 Chr27 RFI RRBLUP T 0.2p9 38778633 0/01@.002
5586309215 Chr27 RFI RRBLUP A 0.374 379155%98 -0.0270.003
5586293700 Chr28 RFI RRBLUP T 0.3y2 10275788 -0J009.003
5586305683 Chr3 RFI RRBLUP A 0.496 1.27E+08 -0.0150.004
5586287884 Chr4 RFI RRBLUP T 0.333 53654310 0007 .004
5586296136 Chr4 RFI RRBLUP G 0.346 71778598 -0/019.004
55140433225 ss117975221 Chr4 RFI RRBLUP A 0377 9991 0.01] 0.003
5586319491 Chr4 RFI RRBLUP T 0.42 68200162 0.018 009
5586307289 Chr4 RFI RRBLUP A 0.444 15139390 -0.0210.003
5586298460 Chr4 RFI RRBLUP T 05 1.01E+408 0.011 03/0
$s117967712 Chrb RFI RRBLUP C 0.3p8 64455406 0/000.004
55117968730 s5105291872 Chr6 RFI RRBLUP A 0.276 5835 -0.008 0.003
$5105307554 55117968245 Chr6 RFI RRBLUP A 0414 631497 0.014 0.006
5586296895 Chré RFI RRBLUP T 0.442 20609814 0028 .00%)
55140641941 ss117968124 ss105291235 Chié RFI RRBLUB 0.458| 41373555% -0.002 0.005
55140705000 ss86289221 ss86341119 Chré RFI RRBLUP C 0.468| 1.13E+0§ -0.0211 0.004
5586318987 Chré RFI RRBLUP A 0.475 29162222 -0.0210.002
5586296735 Chr7 RFI RRBLUP A 0.44 90661452 -0.004 .0049
5586311845 ss86338661 Chr7 RFI RRBLUP T 0.5 94013 0.014 0.007
5586335482 5586314126 Chr8 RFI RRBLUP A 0.411  ®O0BE 0.012 0.005
5586285282 Chr8 RFI RRBLUP T 0.446 65785346 0,019 .004




5586312018 Chr8 RFI RRBLUP A 0.48 53765346 0.025 00D
5586288121 Chr9 RFI RRBLUP T 0.389 45590253 0022 .008)
5586339067 $586292090 Chr9 RFI RRBLUP T 0.891 aAB21 0.017 0.004
5586288579 ChrUn| RFI RRBLUP A 0.127 190955 0.03 0DJ0
5117968619 ChrUn| RFI RRBLUP A 0.493 645904 -0.0190.003

*Trait units are kg/d for ADG and DMI and kg DM/drf@F!. Trait units are kg/d for ADG and DMI and Rii/d for RFI. SNPID - NCBI rs/ss SNP ID, some
SNPs have multiple predicted IDs based on theinsece similarities to multiple submissions in tH@B\ database'These SNPs have no rs/ss SNP ID; BTA —
Chromosome; Estimate — Allele substitution eff@sition — Chromosomal position (bp); Freq — Miabele frequency; SE — standard error
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Appendix 1: Table 3. Names, chromosomal locationgsinor allele frequencies and allele substitution éécts for SNPs used to build

marker panels using BayesB (Chapter 4) method.

SNPID BTA Trait Xllllgfer Freq Position [‘Estimate | SE

rs43699555 Chr12 ADG C 0.4532690850 0.037 0.007
rs43692387 Chr12 ADG G 0.294.0051336 0.02( 0.008
rs43679745 Chr28 ADG G 0.3463327704 0.024 0.00¢
rs43671345 Chrl1 ADG C 0.49@3187875 0.023 0.004
rs43657649 Chr11 ADG T 0.2828262880  -0.031 0.006
rs43514144 Chr7 ADG C 0.3486645610 -0.014 0.008
rs43457984 Chr6 ADG T 0.2p31487002y -0.02§ 0.003
rs43454260 Chré ADG T 0.475 4594143  -0.004 0.004
rs43405710 Chra ADG C 0.1680106017 0.017 0.007
rs43343756 Chr3 ADG T 0.0p80317931  -0.019 0.00¢
rs43338539 Chr6 ADG C 0.448983882y 0.024 0.004
rs43315236 Chr2 ADG T 0.2421.39E+08  -0.013 0.002
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rs43293349 Chr2 ADG 0.2121301376  -0.014 0.007
rs43263928 Chrl ADG 0.1P81.25E+08 0.035 0.008
rs43210840 Chrl ADG 0.363 5395581 0.004 0.006
rs43155744 Chr20 ADG 0.1p%2142008  -0.04§ 0.011
rs42995154 Chr22 ADG 0.2869190090 0.021 0.00¢
rs42940694 Chri4 ADG 0.1727780218  -0.017 0.01d
rs42919109 Chr4 ADG 0.4241.18E+08 -0.014 0.01¢
rs42821712 Chr15 ADG 0.1p43429015 0.023 0.008
rs42779999 Chri4 ADG 0.17%5992026  -0.023 0.005
rs42724681 Chr4 ADG 0.0p137908643  -0.02( 0.01d
rs42682890 Chr3 ADG 0.1p21.21E+08 -0.021 0.008
rs42623264 Chr7 ADG 0.466 2030863 0.033 0.007
rs42571431 Chr16 ADG 0.441 8565508 0.009 0.006
rs42555873 Chr6 ADG 0.42®3850919 0.023 0.004
rs42553298 Chr26 ADG 0.3p&9806662  -0.019 0.00¢
rs42463478 Chr26 ADG 0.3631980788 0.008§ 0.007
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rs42454677 Chr4 ADG 0.0p37617190  -0.028 0.011
rs42430657 Chr2 ADG 0.0621.13E+08 0.044 0.003
rs42409733 Chrl7 ADG 0.1843903430  -0.015 0.003
rs42384304 Chrl ADG 0.3[16L.43E+08 -0.004 0.004
rs42345023 Chr4 ADG 0.16126787861 0.00¢ 0.002
rs42331193 Chr15 ADG 0.2431202071 0.019 0.005
rs42322946 Chrl ADG 0.3891.12E+08 -0.011 0.009
rs42287574 Chr7 ADG 0.40(31326395  -0.027 0.004
rs42243754 Chr20 ADG 0.3833445531 0.012 0.008
rs42214703 Chril ADG 0.2B@B3877081 0.00¢ 0.00¢
rs42149900 Chr28 ADG 0.4p312772804  -0.00§ 0.003
rs42136181 Chr28 ADG 0.4693976932  -0.006 0.003
rs42096848 Chr26 ADG 0.08483442529  -0.017 0.006
rs42078604 Chr10 ADG 0.0f27431249  -0.004 0.011
rs42036451 Chr23 ADG 0.4151829568  -0.025 0.003
rs41974043 Chr21 ADG 0.2922950530 0.001 0.007
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rs41931717 Chr20 ADG 0.4956776038 -0.029 0.008
rs41929051 Chr19 ADG 0.3D%8330995 0.004 0.003
rs41847776 Chrl7 ADG 0.23®699479% 0.017 0.006
rs41833066 Chr17 ADG 0.0522341971 -0.007 0.016
rs41772088 Chr15 ADG 0.31%4045338 0.013 0.006
rs41767926 Chr15 ADG 0.26617461242  -0.032 0.005
rs41742877 Chrl4 ADG 0.0[731500992Y 0.014 0.006
rs41707481 Chr13 ADG 0.123174649% 0.012 0.005
rs41681356 Chri2 ADG 0.37B4229314 0.054 0.007
rs41673273 Chri2 ADG 0.1p®%6147671  -0.017 0.013
rs41667026 Chrl2 ADG 0.3P®6650688  -0.009 0.003
rs41666366 Chrl4 ADG 0.3339940208 0.004 0.007
rs41665465 Chr9 ADG 0.2088701211 0.001 0.00¢
rs41664019 Chr2 ADG 0.1p@B4004688  -0.001 0.004
rs41663389 Chr6 ADG 0.388 574157 0.02( 0.007
rs41658480 Chré ADG 0.43%4328469  -0.041 0.007
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rs41656301 Chr5 ADG T 0.3p12059218  -0.027 0.008
rs41651635 Chr4 ADG C 0.462180744P 0.027 0.003
rs41650870 Chr5 ADG C 0.3204008641 0.014 0.004
rs41642440 Chr22 ADG G 0.45£28291985 0.013 0.004
rs41638872 Chrl ADG G 0.2[796410343 -0.024 0.006
rs41630141 Chr19 ADG G 0.1j113388338 0.002 0.00¢
rs41628655 Chr2 ADG G 0.493.1060396 0.014 0.004
rs41621351 Chr6 ADG T 0.4123283248  -0.033 0.008
rs41619612 Chr20 ADG T 0.3032990038  -0.02( 0.004
rs41617949 Chr16 ADG A 0.3p2 4594441 -0.033 0.008
rs41615193 Chrl7 ADG C 0.1288879124 0.014 0.011
rs41613877 Chrl ADG C 0.15%438690Y 0.004 0.003
rs41612879 Chril ADG A 0.3p43554365  -0.014 0.003
rs41607284 Chr19 ADG A 0.26286872529  -0.026 0.008
rs41606992 Chr7 ADG G 0.16614983241 0.001 0.007
rs41603577 Chrl ADG A 0.174 6914655 -0.007 0.011
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rs41597632 Chr10 ADG 0.18%2466743  -0.019 0.01d
rs41596552 Chrl6 ADG 0.282848272% -0.029 0.011
rs41592540 Chr3 ADG 0.46(8B9047394 0.008§ 0.009
rs41591478 Chr4 ADG 0.0183032965  -0.024 0.016
rs41589985 Chr6 ADG 0.2441.05E+08 -0.023 0.004
rs41588730 Chr4 ADG 0.1525919194 0.007 0.006
rs41585993 Chr22 ADG 0.1p57400935  -0.024 0.003
rs41581215 Chr18 ADG 0.35@1024459  -0.024 0.005
rs41579865 Chr2 ADG 0.2R71.24E+08 -0.001 0.006
rs41579094 Chrl ADG 0.2167222476Y 0.01d 0.01d
rs41578721 Chrl ADG 0.490L.08E+08 0.014 0.004
rs41578313 Chr2 ADG 0.4 31.18E+08 -0.043 0.003
rs41578200 Chrl ADG 0.107.22E+08 -0.047 0.007
rs41575037 Chri4 ADG 0.1p314806128  -0.027 0.008
rs41574019 Chrl ADG 0.1r55206940  -0.025 0.008
rs41573413 Chr9 ADG 0.363 7324515 0.031 0.003
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rs41571503 Chr5 ADG T 0.411 4627083 0.014 0.003
rs41571293 Chr2 ADG G 0.1493295994  -0.023 0.008
rs41569794 Chr4 ADG A 0.34874993512 0.024 0.006
rs41566876 Chr15 ADG G 0.19460542101 0.005 0.007
rs41255638 Chr2 ADG G 0.200774468% -0.053 0.005
rs29026610 Chr27 ADG G 0.04B684339H 0.021 0.014
rs29024165 Chrl ADG A 0.2P0 8748046 0.014 0.007
rs29023646 Chr21 ADG A 0.3[76 2637648 -0.014 0.004
rs29022416 Chr28 ADG A 0.1p3 1653077 0.005 0.013
rs29021604 Chr25 ADG G 0.31@3490959 0.013 0.005
rs29019899 Chrl0 ADG A 0.4p52197725 0.003 0.009
rs29019237 Chrl1 ADG C 0.44B3712430  -0.013 0.006
rs29018725 Chr5 ADG T 0.4311.19E+08 0.002 0.005
rs29018202 Chr5 ADG A 0.2p@B8210499  -0.011 0.005
rs29013548 Chr6 ADG T 0.2056074790  -0.027 0.006
rs29012951 Chr3 ADG T 0.19%5181703  -0.024 0.006

226



rs29010006 Chri2 ADG 0.4363065550  -0.019 0.008
55105235969 Chrl4 ADG 0.2844497878 -0.029 0.007
55105238445 Chrl ADG 0.3740407178 0.001 0.003
55105246072 Chrl6 ADG 0.4931770065 0.029 0.004
55105256273 Chr24 ADG 0.2926502604  -0.024 0.004
55105261392 Chr2 ADG 0.0791965973  -0.03§ 0.008
55105301297 ss117968486 Chré ADG A 0(18311874Y  -0.044 0.009
55105307554 ss117968245 Chr6 ADG A 0(43496314y  -0.034 0.00¢
55117962901 Chri15 ADG 0.1277605914  -0.031 0.011
55117969528 Chr9 ADG 0.3948157050 0.024 0.007
5s117972668 Chr20 ADG 0.1456278762  -0.039 0.003
55140599049 Chr5 ADG 0.464.19E+08 0.024 0.008
55140894649 ss86333395 ss86335572 Chr8 ADG G 04POE+08 -0.017 0.00¢
55140965634 ss86328186 ss86336072 Chr9 ADG G 08W/B7568  -0.048 0.004
55141518308 Chrl6 ADG 0.4223342316  -0.003 0.00¢
55141661973 ss86306109 ss86337121 Chrl8 ADG C 03WwB5411 0.02§ 0.011
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Ss86273787 Chril ADG 0.2685214925  -0.01§ 0.008
5586274256 Chr4 ADG 0.106L.21E+08 0.014 0.01¢
5586274328 Chr3 ADG 0.46563882751 0.00¢ 0.003
5S86274638 Chr22 ADG 0.4634183041  -0.04( 0.005
5s86274798 Chr3 ADG 0.1191315999 0.005 0.007
5586280264 Chr8 ADG 0.336 355812 -0.004 0.001
5586284643 Chrl7 ADG 0.180°2324382 0.024 0.009
5586285720 Chrl6 ADG 0.4138736622 0.007 0.004
5586287837 ss86339738 Chr13 ADG G 0388225430 0.015 0.008
5586287995 Chr7 ADG 0.1425676801  -0.037 0.00¢
5586288744 Chr8 ADG 0.1121337906 0.041 0.017
5586289117 Chré ADG 0.1j782765348  -0.011 0.003
5586289359 Chr26 ADG 0.0844210368 0.019 0.015
5586289749 Chri5 ADG 0.4383818027 0.02( 0.006
5586290205 Chr3 ADG 0.0758198278 0.001 0.005
5586290901 Chr8 ADG 3 -0.006 0.004

0.1106815406
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5586292117 Chr8 ADG 0.1171432925 0.003 0.006
5586293022 Chr5 ADG 0.10Z20326991  -0.017 0.007
5586293616 Chr21 ADG 0.2458864408 0.013 0.007
5586294356 Chr3 ADG 0.272.05E+08 0.015 0.01d
5586294473 Chr28 ADG 0.1807271662 0.012 0.003
5586295170 Chré ADG 0.163.09E+08 -0.013 0.01¢6
5586295518 Chr28 ADG 0.102236177% 0.027 0.017
5586297248 Chr4 ADG 0.1571.18E+08 -0.014 0.008
5586299430 Chr3 ADG 0.2581.1E+08 0.011 0.001
5586300519 Chr2 ADG 0.333L.34E+08 -0.014 0.008
5586303886 Chrl1 ADG 0.4189157410 0.023 0.004
5586304300 Chr4 ADG 0.411.21E+08 -0.044 0.003
5586305525 Chri3 ADG 0.28@4965592 0.017 0.004
5586306989 ChrUn ADG 0.129 228689 -0.023 0.005
5s86307635 Chr25 ADG 0.1932219666 0.039 0.007
5586308454 Chr8 ADG 0.16a.11E+08 -0.034 0.003
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5586308458 Chr19 ADG O.J<555940162 -0.02¢ 0.007
5586308974 Chr21 ADG 0.4684686928  -0.021 0.003
5586310143 Chr21 ADG 0.34@342129y 0.024 0.003
5586311196 Chr22 ADG 0.264£28500663 0.031 0.011
5586311308 Chr21 ADG 0.0848864883  -0.017 0.00¢
5s86311376 Chré ADG 0.1933378454  -0.017 0.013
5586311555 Chrl7 ADG 0.21%5658383 0.009 0.004
5586312849 Chr21 ADG 0.416730671y  -0.04§ 0.005
5586313014 Chr9 ADG 0.1255121684 0.024 0.008
5586314403 Chr24 ADG 0.2581421418 0.001 0.006
5586314795 Chr18 ADG 0.1262373058  -0.063 0.003
5586315800 ss86341659 Chr7 ADG T 01488123861 0.011 0.009
SS86316677 Chri8 ADG 0.327 558096 -0.001 0.00¢
5s86316707 Chr8 ADG 0.44@5275580  -0.014 0.005
5586318054 Chr8 ADG 0.37171955582 0.004 0.005
5586320010 ss86339925 Chr19 ADG C 01222061928 0.00¢ 0.003
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5586320135 Chril ADG 0.4891.1E+08 -0.05¢ 0.006
5586320583 Chr13 ADG 0.3992616346 0.014 0.003
5586321151 Chr8 ADG 0.1087368038  -0.059 0.006
5586321326 Chr2 ADG 0.2071.33E+08 -0.004 0.005
5586321848 Chr25 ADG 0.2081572104 0.035 0.008
5586324718 Chr17 ADG 0.4667152339 0.029 0.005
5586325159 Chr24 ADG 0.0924519728 0.014 0.008
5586325467 ChrUn ADG 0.471 775474 -0.014 0.005
5586326514 Chrl ADG 0.4316747617Y -0.01§ 0.008
5586326932 Chr21 ADG 0.2950811545 0.011 0.003
5586327362 Chr13 ADG 0.1620884658  -0.009 0.017
5586328721 ChrUn ADG 0.27/0 6857¢ 0.014 0.006
5586329969 ss86341019 Chr22 ADG C 0.458060236 -0.02¢ 0.006
5586331488 Chrs ADG 0.3759052209 0.003 0.007
5586332609 Chril ADG 0.108.04E+08 0.044( 0.00¢
5586335492 Chr24 ADG 0.12%4469669 0.011 0.007
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5586335494 s586324637 Chr14 ADG G 0.2683480179  -0.02( 0.004
5586339066 Chrl ADG 0.4777994925 0.033 0.003
5586339080 ss86321562 Chr3 ADG C 01383899934 0.008§ 0.006
5586339282 s586279966 Chr4 ADG A 0{163%942260 0.055 0.012
5586339613 Chr9 ADG 0.1592757960 0.005 0.016
5586340327 Chrl ADG 0.154.44E+08 0.005 0.004
5586340488 ss86290533 Chr24 ADG G 0.293180301  -0.014 0.006
5586340544 Chrl ADG 0.246 1.2E+08 0.004 0.007
5586341174 ss86312678 Chr22 ADG C 0.253890005  -0.039 0.004
5586341347 Chr20 ADG 0.2316305174 -0.014 0.007
5586341614 ss140240646 ss86335177 Chr2 ADG A 0.28330524  -0.003 0.003
BTA-80441-no-rs Chr7 ADG 0.4471.03E+08 -0.004 0.004
rs43736191 Chri4 DMI 0.0B%848110y 0.031 0.008
rs43732439 ChrUn DMI 0.3p5 572298 0.065 0.008
rs43708441 Chrl5 DMI 0.3p21912987Y 0.026 0.011
rs43707936 Chr3 DMI 0.403 4233402 0.033 0.004
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rs43656295 Chril DMI C 0.4[15 1380874 0.014 0.006
rs43650985 Chr10 DMI T 0.3843464038 0.023 0.008
rs43646790 Chr10 DMI T 0.393116068% 0.044 0.013
rs43632233 Chr10 DMI G 0.4p60697851 0.00( 0.006
rs43631525 Chr10 DMI A 0.22665618423 0.043 0.018
rs43609676 Chr9 DMI A 0.38692020866 0.064 0.012
rs43551782 Chr8 DMI A 0.29953829682 0.004 0.01¢
rs43538446 Chri4 DMI A 0.343%0317494 0.021 0.007
rs43486149 Chr6 DMI T 0.384 1.1E+08 -0.023 0.00¢
rs43460584 Chr6 DMI A 0.36441462782  -0.021 0.017
rs43458937 Chré DMI C 0.4p89794334  -0.20( 0.04¢
rs43448222 Chré DMI A 0.062 6904027 0.014 0.003
rs43417449 ChrUn DMI T 0.161 57507 0.004 0.008
rs43404908 Chr4 DMI C 0.4R778161176 0.10( 0.008
rs43389761 Chr4 DMI G 0.2y'48969929  -0.03( 0.012
rs43363397 Chr3 DMI C 0.0441.14E+08 0.024 0.01¢
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rs43351271 Chr3 DMI G 0.18190315653 0.044 0.01¢6
rs43347342 Chr3 DMI A 0.48174781908 0.004 0.006
rs43333482 Chr27 DMI A 0.1Y®5339303 0.01§ 0.011
rs43266806 Chrl DMI G 0.4821.14E+08 0.00( 0.01d
rs43231384 Chrl DMI G 0.411143053682  -0.024 0.014
rs43230383 Chr7 DMI A 0.05946197724 0.004 0.01¢6
rs43192154 Chr24 DMI T 0.155 8249290 0.013 0.017
rs43138491 Chri4 DMI C 0.4Pp%6769638 0.043 0.007
rs43068911 Chr24 DMI G 0.4B6 1749526 -0.024 0.008
rs43066203 Chrl DMI T 0.2681.43E+08 0.047 0.013
rs42976268 Chrl5 DMI T 0.493%8999619 0.014 0.009
rs42935030 Chrl1 DMI G 0.244 350779% -0.035 0.018
rs42931535 Chr26 DMI C 0.41811451573 0.044 0.012
rs42846536 Chr26 DMI G 0.366 1201611 0.051 0.005
rs42843551 Chr18 DMI C 0.3p5681228Y 0.027 0.014
rs42822981 Chr29 DMI T 0.3p14318385y  -0.01d 0.009
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rs42804772 Chr15 DMI 0.484 4130261 0.017 0.011
rs42761380 Chr24 DMI 0.4529658911  -0.044 0.013
rs42657029 Chr3 DMI 0.285 5270356 -0.043 0.01¢
rs42598849 Chr22 DMI 0.4Pp%13581839 0.03¢ 0.01d
rs42581544 Chr6 DMI 0.2582434968  -0.03( 0.01¢
rs42436495 Chr6 DMI 0.49%5770568 0.017 0.01d
rs42413754 Chr10 DMI 0.34B8806659 0.021 0.008
rs42410387 Chr6 DMI 0.3341.19E+08 0.067 0.027
rs42385835 Chr17 DMI 0.11733241876  -0.037 0.02(
rs42299674 Chr13 DMI 0.1P8 1024645 -0.064 0.03(
rs42255170 ChrUn DMI 0.4p8 98208 -0.067 0.021
rs42244558 Chr5 DMI 0.095 1293420 -0.066 0.017
rs42186402 Chr29 DMI 0.48742112878  -0.01d 0.012
rs42186052 Chr29 DMI 0.2239044755 0.073 0.012
rs42142693 Chr28 DMI 0.242410762y 0.064 0.01d
rs42096562 Chr26 DMI 0.0Y626325359  -0.05( 0.029
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rs42095651 Chr26 DMI A 0.29931528736  -0.035 0.00¢
rs42069458 Chr25 DMI T 0.0913341412y 0.001 0.004
rs42029905 Chr23 DMI A 0.4444558881y  -0.07§ 0.017
rs42002618 Chr22 DMI A 0.30622393278  -0.063 0.016
rs41999849 Chr22 DMI G 0.4pA4313538 0.034 0.015
rs41981646 Chr21 DMI G 0.4p21078260y  -0.03( 0.012
rs41979341 Chr21 DMI T 0.34638142840 0.07¢ 0.027
rs41749553 Chr15 DMI T 0.470 6805538 -0.054 0.00¢
rs41712508 Chr13 DMI A 0.37478203199 0.034 0.007
rs41698238 Chr13 DMI C 0.27&16655289  -0.01( 0.01d
rs41669831 Chr24 DMI T 0.1034141197y  -0.029 0.017
rs41663665 Chrl6 DMI G 0.1726984024 0.00¢ 0.008
rs41658128 Chr7 DMI G 0.3711212022  -0.057 0.014
rs41657913 Chril DMI G 0.46484105348  -0.037 0.011
rs41654781 Chr5 DMI T 0.27326118923 0.052 0.018
rs41654591 Chr10 DMI A 0.32391420638  -0.094 0.009
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rs41642566 Chr20 DMI 0.483%528029 0.037 0.012
rs41641550 Chr22 DMI 0.4532510852 -0.029 0.008
rs41641502 Chr19 DMI 0.3911454159 -0.123 0.007
rs41640891 Chr22 DMI 0.2822235350 0.01d 0.005
rs41634228 Chr16 DMI 0.3657133297 -0.097 0.013
rs41634115 Chr13 DMI 0.1631185807 0.071 0.01d
rs41634033 Chrl3 DMI 0.4957724563 -0.011 0.004
rs41628306 Chr13 DMI 0.2628940617 0.092 0.01¢6
rs41624066 Chr13 DMI 0.268071846 -0.037 0.01d
rs41619108 Chr17 DMI 0.1p929102 -0.043 0.014
rs41617449 Chr22 DMI 0.416 802506 -0.007 0.003
rs41616927 Chr20 DMI 0.162936868 -0.043 0.009
rs41614172 Chril DMI 0.08%2230443 -0.037 0.008
rs41603148 Chri4 DMI 0.3B®154394 -0.02§ 0.021
rs41593516 Chr26 DMI 0.2413943780 -0.164 0.02¢
rs41591637 Chrl4 DMI 0.20%247408 -0.089 0.017




rs41586807 Chr28 DMI 0.2p43044356  -0.084 0.013
rs41585925 Chr3 DMI 0.3831.19E+08 0.023 0.003
rs41584106 Chr26 DMI 0.29112208280 0.02¢ 0.008
rs41583332 Chr21 DMI 0.27224520032 0.055 0.012
rs41579376 Chrl DMI 0.28671357245 0.00( 0.004
rs41576460 Chr15 DMI 0.293%9954719  -0.073 0.012
rs41573907 Chr8 DMI 0.132 5056570 0.037 0.007
rs41573752 Chr15 DMI 0.42661095348 0.064 0.008
rs41573352 Chr2 DMI 0.18496505129 0.01d 0.013
rs41573085 Chr8 DMI 0.45@27651741  -0.053 0.021
rs41571909 Chr19 DMI 0.1pP9774305  -0.061 0.017
rs41567895 Chrl2 DMI 0.4572177429  -0.009 0.008
rs41566731 Chr9 DMI 0.3p871767226 0.073 0.024
rs41566668 Chr6 DMI 0.2421.13E+08 -0.011 0.008
rs41257771 Chrl DMI 0.09995616571  -0.004 0.014
rs41255303 Chr7 DMI 0.31011088641  -0.084 0.016
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rs29027617 Chr20 DMI 0.11725738312 0.029 0.022
rs29027283 Chr19 DMI 0.4822465360  -0.047 0.026
rs29026478 Chr10 DMI 0.44049890208  -0.059 0.01¢
rs29026129 Chril DMI 0.500 5205392 -0.003 0.01d
rs29026096 Chr17 DMI 0.466 7042994 0.019 0.00¢
rs29024751 Chr9 DMI 0.403 2289236 -0.047 0.00¢
rs29024600 Chrl4 DMI 0.0935796168 0.003 0.013
rs29022067 Chr17 DMI 0.3r81309718  -0.037 0.014
rs29021346 Chr18 DMI 0.2883275745  -0.021 0.004
rs29020548 Chr25 DMI 0.2Y9B980971Y 0.026 0.01d
rs29019654 Chr3 DMI 0.168644196% 0.004 0.01¢
rs29014495 Chr24 DMI 0.4983101881 0.054 0.011
rs29014373 Chr23 DMI 0.362218860y  -0.047 0.01d
rs29013548 Chr6 DMI 0.20756074790 0.043 0.012
rs29012925 Chr5 DMI 0.4{161.18E+08 -0.087 0.008
rs29012211 Chr4 DMI 0.223%5611738 0.06(¢ 0.007

239



55105238867 Chrl DMI 0.082.49E+08 -0.037 0.011
55105241200 Chrl DMI 0.2829675490 0.047 0.008
55105241761 Chrll DMI 0.21271221315  -0.033 0.008
55105255461 Chr20 DMI 0.1760128561  -0.042 0.01d
55105263670 Chrl6 DMI 0.1713324217 -0.004 0.00¢
55105265024 Chr25 DMI 0.4632107898 0.047 0.011
55105268923 Chr25 DMI 0.3438570268  -0.067 0.013
55105311575 ss117968559 Chr6 DMI G 0(44@151936 0.031 0.014
55117962856 Chr3 DMI 0.3822068686 0.015 0.01¢6
55117963675 Chr3 DMI 0.435175897% -0.02¢ 0.013
55117966959 Chr3 DMI 0.2136469248  -0.05( 0.006
55117968721 Chré DMI 0.458376132y  -0.026 0.006
Sss117971272 Chr14 DMI 0.40@5031801 0.005 0.015
55117972526 Chr19 DMI 0.466.133800Y 0.017 0.006
55140253345 5586328775 sS86339957 Chr2 DMI A 0.348E+08 -0.014 0.004
55142238292 ss86304589 ss86340705 Chr28 DMI T 0.27491645 0.107 0.047
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5586274681 Chr27 DMI 0.208B8778633 0.034 0.012
5586274954 Chrl1 DMI 0.45383979734  -0.03§ 0.011
5586284580 Chr25 DMI 0.28810999198  -0.049 0.015
5586284631 Chr9 DMI 0.4B4 7546236 0.104 0.01¢
5586285509 Chr17 DMI 0.1682274582 0.019 0.012
5586285886 Chr21 DMI 0.3p%116870y 0.065 0.005
5586286498 Chr25 DMI 0.4831668919  -0.094 0.027
5586287003 ChrUn DMI 0.192 3435¢ -0.044 0.012
5586287290 Chr29 DMI 0.1546003286y  -0.003 0.011
5586287613 Chr21 DMI 0.48B475417y  -0.03( 0.017
5586289929 Chr21 DMI 0.4898472447  -0.023 0.009
5586290858 Chrl DMI 0.2B3 1.3E+08 0.034 0.006
5586291231 Chri5 DMI 0.20§3366906 0.025 0.017
5586292046 Chré DMI 0.298..21E+08 -0.044 0.012
5586293562 Chrl DMI 0.20@4797856 0.001 0.011
5586293796 Chr5 DMI 0.2P71.16E+08 0.044 0.016
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5586295351 Chri5 DMI 0.313134965 -0.044 0.01d
5586295367 Chr28 DMI 0.4116 118526 -0.04( 0.014
5586295521 Chrl DMI 0.410..34E+0 -0.037 0.013
5586295570 Chri2 DMI 0.206.148592 -0.024 0.00¢
5586296197 Chri10 DMI 0.36%756988 -0.007 0.01d
5586296210 Chri4 DMI 0.489568175 0.055 0.012
5586297114 Chr19 DMI 0.458%844783 -0.017 0.006
5586297371 ss86335612 Chri10 DMI T 0{38980155 0.064 0.017
5586297977 Chr19 DMI 0.1p6609479 -0.001 0.007
5586298219 Chri2 DMI 0.458780193 0.064 0.014
5586299499 Chr21 DMI 0.388 2594371 -0.044 0.016
5586300695 Chr3 DMI 0.3f11.15E+0 -0.034 0.006
5586300698 Chri4 DMI 0.25%362644 0.022 0.012
5586301441 Chr2 DMI 0.4B6798146 0.029 0.006
5586301567 Chr3 DMI 0.3B41.13E+0 -0.01§ 0.013
5586301748 Chr10 DMI 0.1638912555 -0.057 0.009
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5586304613 Chr25 DMI G 0.3234258184 0.033 0.007
5586309292 Chrl DMI C 0.2071.37E+08 0.02§ 0.013
5586312318 Chrl4 DMI A 0.3p5 741867 -0.019 0.009
5586313678 ss86338332 ChrUn DMI T 0/056113374 -0.047 0.008
5586314027 Chr3 DMI Cc 0.4121.19E+08 -0.027 0.014
5586314743 Chri4 DMI A 0.21212749386  -0.037 0.013
5586315831 Chr29 DMI G 0.1597301394 0.014 0.007
5586315942 Chr20 DMI G 0.4928542320 0.074 0.011
5s86316937 Chr21 DMI G 0.26465869305  -0.051 0.018
5s86317533 Chr7 DMI T 0.3B3967375Y 0.022 0.008
5586318343 Chr3 DMI A 0.3R01.16E+08 0.004 0.006
5586319906 Chrl1 DMI T 0.4998890768 0.027 0.008
5586320161 Chr21 DMI A 0.2Pp60785856 0.017 0.01d
5586322196 Chr19 DMI A 0.34312105345 0.043 0.013
5586322201 Chrl DMI C 0.419.47E+08 -0.137 0.017
5586322344 Chr10 DMI G 0.0629755801  -0.029 0.026
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5586325151 Chr3 DMI 0.082L.09E+08 0.032 0.007
5586325370 Chrl6 DMI 0.18@10159031  -0.019 0.027
5586325390 Chr21 DMI 0.3635440924 0.019 0.016
5586325631 Chri10 DMI 0.371.3666563 0.059 0.033
5586326539 Chr2 DMI 0.1963860450  -0.029 0.022
5586328134 Chri10 DMI 0.2[72 7588559 -0.084 0.01¢6
5586333122 ChrUn DMI 0.298 154211 -0.021 0.017
5586333925 Chril DMI 0.42P9663236 0.071 0.01¢6
5586334496 Chril DMI 0.4493030076 0.012 0.011
5586335118 Chré DMI 0.268 6995395 0.03( 0.013
5586335942 5586294357 ss141839036 Chr21 DMI G 0.413B9878 -0.037 0.007
5586336579 5141275756 ss86321211 Chrl13 DMI G 0PB854669  -0.013 0.01¢
5586337384 s586319462 Chri10 DMI C 0{226211358  -0.109 0.013
5586338759 s586333470 Chr2 DMI G 0[478544448  -0.001 0.007
5586339682 5586284681 ss141524398 Chri6 DMI A 0.29843324 0.023 0.012
5586339980 586289656 Chr5 DMI A 0145667586  -0.076 0.016
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5586340101 ss86327218 Chr26 DMI A 0/223791900 0.054 0.012
5586340188 Chr7 DMI 0.2P261.06E+08 -0.025 0.009
5586340914 Chr12 DMI 0.3420388746  -0.04( 0.02¢
BTA-67183-no-rs Chri10 DMI 0.29841694453  -0.024 0.015
rs43703976 Chr19 RFI 0.180361224  -0.014 0.014
rs43604391 Chr9 RFI 0.446%2475302 0.021 0.018
rs43604365 Chr9 RFI 0.446:2502821 0.037 0.008
rs43599152 Chr9 RFI 0.2067318410 0.014 0.008
rs43593442 Chr9 RFI 0.1423270144 0.001 0.011
rs43554522 Chr8 RFI 0.4087162094  -0.033 0.01d
rs43503728 Chr7 RFI 0.1688276028  -0.061 0.016
rs43486526 Chré RFI 0.2811.18E+08 0.054 0.021
rs43458640 Chr6 RFI 0.1968915958Y  -0.033 0.01d
rs43420802 Chr4 RFI 0.2841.18E+08 0.024 0.006
rs43389761 Chr4 RFI 0.2748969929  -0.01d 0.00¢
rs43389711 Chr4 RFI 0.4DA6392808 0.007 0.013
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rs43351692 Chr3 RFI 0.20®2572144 0.032 0.014
rs43316439 Chrl2 RFI 0.4327979158 -0.009 0.008
rs43258007 ChrUn RFI 0.4081066036 0.031 0.008
rs43242760 Chrl RFI 0.4443134248 0.022 0.007
rs43233558 Chrl RFI 0.385%2217228 0.025 0.00¢
rs43099931 Chr29 RFI 0.30@0184591  -0.02( 0.01¢6
rs43055872 Chr19 RFI 0.1168932062y  -0.01d 0.017
rs43046262 Chr21 RFI 0.158989154Y 0.051 0.008
rs42934127 Chr6 RFI 0.168%0149885  -0.024 0.017
rs42803833 Chr4 RFI 0.0p82708005  -0.059 0.014
rs42771121 Chrl3 RFI 0.4251699788  -0.051 0.016
rs42756258 Chré RFI 0.3422112069 0.014 0.01¢
rs42711594 Chr8 RFI 0.3p3B2809414  -0.037 0.015
rs42619441 Chr7 RFI 0.10589932580  -0.01( 0.015
rs42568101 Chr9 RFI 0.23681783414 0.002 0.00¢
rs42468541 Chr24 RFI 0.1937456528  -0.019 0.014

246



rs42431948 Chr2 RFI T 0.3111.13E+08 0.056 0.00¢
rs42425010 Chr2 RFI T 0.4098L.18E+08 0.019 0.009
rs42374771 Chr26 RFI A 0.2[742578304 0.013 0.006
rs42369003 ChrUn RFI A 0.2p2 279239 0.015 0.014
rs42324388 Chrl RFI T 0.098L.12E+08 -0.063 0.017
rs42316404 Chr17 RFI A 0.433 8899286 0.1146 0.026
rs42256240 Chrl2 RFI G 0.3408549943 -0.064 0.018
rs42228344 Chr4 RFI G 0.08G4932963  -0.01§ 0.01d
rs42142693 Chr28 RFI G 0.242410762Y 0.106 0.018
rs42093810 Chr26 RFI G 0.1920122895 0.094 0.013
rs42068538 Chr25 RFI G 0.469189233Y 0.054 0.009
rs42042322 Chr24 RFI T 0.2033915836 -0.08( 0.017
rs42005069 Chr6 RFI G 0.46B55266545 0.014 0.01¢6
rs41906295 Chr17 RFI A 0.46G15764457 0.001 0.005
rs41848648 Chr17 RFI G 0.40866227782  -0.05] 0.008
rs41800681 Chrl6 RFI T 0.25(34841192  -0.06( 0.008
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rs41773923 Chr15 RFI 0.4856639348  -0.044 0.011
rs41767484 Chrl5 RFI 0.20%170872y 0.044 0.015
rs41751493 Chrl5 RFI 0.2736708079 0.044 0.004
rs41728184 ChrUn RFI 0.1261172550 -0.044 0.014
rs41678672 Chr3 RFI 0.36D9728783 0.003 0.006
rs41670179 Chr7 RFI 0.1579426025  -0.06( 0.01¢6
rs41663519 Chr9 RFI 0.4378442558 0.024 0.018
rs41659569 Chr8 RFI 0.42B88510348 0.105 0.021
rs41659405 Chrl RFI 0.1239454543  -0.07( 0.018
rs41655604 Chr10 RFI 0.1487143918 0.014 0.013
rs41655005 Chré RFI 0.3686434938  -0.031 0.006
rs41649876 Chré RFI 0.49@7831792 0.043 0.014
rs41647379 Chr27 RFI 0.0485673921 0.064 0.017
rs41641502 Chr19 RFI 0.3914541598  -0.033 0.003
rs41630820 Chrl RFI 0.40%152300y 0.025 0.01d
rs41630175 Chr10 RFI 0.3296474580  -0.029 0.007
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rs41628306 Chr13 RFI 0.2639406173 0.064 0.01¢6
rs41626174 Chrl6 RFI 0.3680203519 0.02§ 0.006
rs41621937 Chr29 RFI 0.4545476041 0.047 0.011
rs41618893 Chr9 RFI 0.113769353b 0.00¢ 0.011
rs41611784 Chr7 RFI 0.48%4695094  -0.054 0.006
rs41604269 Chr2 RFI 0.21®@874631D 0.021 0.00¢
rs41599754 Chr4 RFI 0.4550360661 0.027 0.01¢
rs41591637 Chri4 RFI 0.2952474088  -0.082 0.01¢6
rs41589498 Chr3 RFI 0.1j77 2516633 0.115 0.01¢6
rs41588707 Chr4 RFI 0.158%3995739  -0.027 0.012
rs41588503 Chrl0 RFI 0.4121672044  -0.033 0.015
rs41587678 Chr4 RFI 0.37@906901y  -0.034 0.003
rs41587222 Chr23 RFI 0.49@2815029  -0.014 0.012
rs41586992 Chr29 RFI 0.4869156230 -0.037 0.002
rs41585017 Chr29 RFI 0.07983632380 0.00¢ 0.011
rs41583408 Chr21 RFI 0.30B546839% 0.051 0.003

249



rs41573624 Chr6 RFI 0.2822359286  -0.041 0.00¢
rs41568944 Chr4 RFI 0.3897446529  -0.01§ 0.008
rs41568388 Chrl5 RFI 0.3587885743  -0.013 0.003
rs41255303 Chr7 RFI 0.31a1088641  -0.0771 0.016
rs29027600 Chr10 RFI 0.1661288073 -0.05§ 0.008
rs29027193 Chr10 RFI 0.4140600523  -0.014 0.01d
rs29027007 Chr23 RFI 0.404143216Y  -0.043 0.013
rs29026804 Chri2 RFI 0.0033588884  -0.063 0.01¢
rs29026607 Chr5 RFI 0.3059756374 0.023 0.014
rs29025355 Chr4 RFI 0.17'53136031 0.002 0.011
rs29024039 Chr27 RFI 0.41%5906988  -0.044 0.013
rs29023017 Chr8 RFI 0.0983663651 0.007 0.015
rs29022883 Chr4 RFI 0.2p31115714 0.015 0.014
rs29022289 Chrl RFI 0.2P41.26E+08 -0.034 0.004
rs29022067 Chr17 RFI 0.3731309718  -0.03§ 0.007
rs29020690 Chr2 RFI 0.1920710301 0.027 0.009
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rs29020548 Chr25 RFI 0.2[78B980971Y 0.057 0.013
rs29018633 Chr2 RFI 0.4/738824136%5 0.034 0.009
rs29015935 Chrl2 RFI 0.2136810706 0.104 0.009
rs29011976 Chr3 RFI 0.46A4184278y 0.032 0.004
rs29011393 Chr6 RFI 0.31729139241 0.07( 0.016
rs29009770 Chr4 RFI 0.05B2897683 0.014 0.01d
55105237713 Chr13 RFI 0.3137853489  -0.006 0.011
55105240423 Chri2 RFI 0.0585687891 0.0217 0.01d
55105263599 Chr24 RFI 0.0956895558  -0.044 0.02(
55105275774 ss117973754 Chr25 RFI C 0.3®242634  -0.011 0.01d
55105296554 ss117971073 ss141343771 Chrl4 RFI T 36 0.3835054 0.071 0.013
55117969846 Chr10 RFI 0.3080096968  -0.077 0.015
55117971462 ss141351932 ss105247221 Chri4 RFI A 120.710201% 0.057 0.014
55140641916 ss117968758 ss105293497 Chré RFI T 1/04800911  -0.011 0.014
55140641941 ss117968124 ss105291235 Chré RFI C 8 044373555 0.001 0.007
55141276965 ss86341012 ss86322947 Chrl13 RFI T 013188591  -0.044 0.008
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55141654962 ss86318202 ss86337113 Chri8 RFI G 013218383 0.034 0.005
5586274038 Chr24 RFI 0.3895908516 0.097 0.01¢
5586274502 Chrl1 RFI 0.3384698301 0.007 0.009
5586274681 Chr27 RFI 0.2098778633 0.026 0.015
5586274799 Chr27 RFI 0.4342553132 -0.044 0.016
5586277601 Chr19 RFI 0.3687387665  -0.037 0.012
5586278327 Chr18 RFI 0.4032661190  -0.009 0.019
5586278429 Chr26 RFI 0.4977433501 -0.08¢ 0.006
5586282947 Chri10 RFI 0.2089688343 -0.034 0.012
5586283450 Chré RFI 0.0893993832  -0.007 0.015
5586283706 Chrl4 RFI 0.3487656472  -0.01d 0.013
5586283959 Chr2 RFI 0.1783159312 0.044 0.017
5586284635 Chrl RFI 0.340.43E+08 0.03( 0.012
5586285204 Chr19 RFI 0.3974738309  -0.104 0.007
5586286174 Chr4 RFI 0.3285361039  -0.011 0.012
5586287003 ChrUn RFI 0.192 34354 -0.041 0.017

252



5586287290 Chr29 RFI 0.1580032867Y  -0.047 0.005
5586287613 Chr21 RFI 0.483475417Y  -0.026 0.015
5586287884 Chr4 RFI 0.3333654310 0.017 0.014
5586288114 Chr23 RFI 0.3202348553  -0.019 0.01d
5586288579 ChrUn RFI 0.127 19095% 0.09¢ 0.042
5586289209 ss86337363 Chri8 RFI G 0.48892026%5 0.043 0.014
5586289465 ss86335977 Chr3 RFI C 0.3287E+08 -0.004 0.01¢
5586289800 Chr5 RFI 0.299.13E+08 0.034 0.00¢
5586290591 Chr23 RFI 0.3828542478 0.05( 0.01d
5586290923 Chri5 RFI 0.058256172y  -0.007 0.006
5586291559 Chr19 RFI 0.2541624568 0.077 0.011
5586291696 Chr3 RFI 0.108.24E+08 0.011 0.011
5586292530 Chril RFI 0.466.01E+08 -0.023 0.00¢
5586293317 Chr29 RFI 0.1461337489 0.013 0.004
5586293365 Chr3 RFI 0.103.15E+08 0.02( 0.004
5586293732 Chr19 RFI 0.3321582575 0.029 0.01¢
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5586294905 Chr4 RFI 0.317064083p 0.061 0.011
5586295428 Chrl6 RFI 0.3968396075 0.044 0.006
5586295552 Chrl5 RFI 0.4564898228  -0.044 0.009
5586297076 Chr25 RFI 0.3765941852 -0.014 0.004
5586297137 Chri10 RFI 0.2293529041 0.044( 0.01d
5586298248 ss86339367 Chr22 RFI T 0.4¥2663506 0.024 0.007
5586298358 Chr25 RFI 0.4023857883 0.054 0.017
5586298927 Chr23 RFI 0.1831372374 0.00¢ 0.013
5586299733 Chr2 RFI 0.128.18E+08 -0.014 0.006
ss86300073 Chri2 RFI 0.368416611y  -0.037 0.014
5586300114 Chr27 RFI 0.4887207208  -0.055 0.013
5586300928 Chr7 RFI 0.3505139569 0.014 0.009
5586301478 Chr26 RFI 0.1238823038 -0.044 0.01d
5s86303837 Chr8 RFI 0.1561629723  -0.037 0.005
5586304164 Chr3 RFI 0.0511564218  -0.019 0.015
5586304584 ss86341507 Chr15 RFI A 0[253131573 0.02¢ 0.009

254



5586305154 Chr21 RFI 0.2312880291 0.034 0.008
5586305968 ss86339265 Chr2 RFI T 01324659200 0.03¢ 0.017
5586306850 Chr28 RFI 0.3731975015  -0.004 0.009
5586307289 Chr4 RFI 0.4445139390  -0.074 0.014
5586308963 Chr21 RFI 0.4485390100 0.025 0.012
5586309185 Chril RFI 0.2983600222 0.094 0.022
5586310186 ss141371469 ss86340738 Chr14 RFI A 0Z68b7416 0.014 0.013
5586310231 Chrl6 RFI 0.383 199083 -0.053 0.017
5586310257 Chr9 RFI 0.122.08E+08 0.014 0.005
5586310909 Chr22 RFI 0.1102615481 0.03( 0.007
5586311521 Chr23 RFI 0.3723526733 0.044 0.015
5586312018 Chr8 RFI 0.48G:3765346 0.044 0.007
5586312226 Chr5 RFI 0.2069720693  -0.007 0.023
5586313043 Chr7 RFI 0.1958862105 0.037 0.004
5586314972 Chri5 RFI 0.3539397001 0.015 0.007
5586315341 Chr20 RFI 0.0580770765  -0.027 0.003
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5586316536 Chr29 RFI 0.2766274933 0.005 0.006
5586319413 Chr12 RFI 0.4959278019 -0.007 0.008
5586320103 Chr8 RFI 0.3163915440  -0.039 0.003
5586321699 Chr21 RFI 0.2088713804 0.044 0.013
5586321886 Chr4 RFI 0.0686789206  -0.034 0.008
5586322201 Chrl RFI 0.419.47E+08 -0.07§ 0.013
5586322706 Chrl1 RFI 0.1871866424  -0.031 0.008
5586323205 Chr29 RFI 0.1989862474 0.001 0.011
5586325469 Chr17 RFI 0.08@1289530 0.039 0.013
5586328652 Chri10 RFI 0.408.01E+08 0.005 0.008
5586328853 Chr13 RFI 0.3432889173 0.024 0.018
5586329750 Chr20 RFI 0.1094688816 0.00¢ 0.009
5586329753 Chré RFI 0.2068603001 0.00( 0.00¢
5586330098 Chr19 RFI 0.2683846755  -0.003 0.007
5s86330353 Chr25 RFI 0.313290665] 0.00¢ 0.007
5586331995 s5141408536 ss86338007 Chr14 RFI G 072426829 0.077 0.014
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5586332387 Chr4 RFI T 0.4778358391 0.022 0.01d
5586334240 Chr23 RFI T 0.3683527388 0.02§ 0.007
5586335969 Chr3 RFI T 0.229.07E+08 -0.034 0.011
5586336055 ss86274178 Chré RFI C 0.38361828Y 0.064 0.008
5586337928 s586332405 Chr5 RFI G 01433225409 0.034 0.007
5586339405 ss86315360 Chr20 RFI A 0298555724 -0.027 0.007
5586341015 ss86276181 Chr23 RFI G 0.3840680594 0.034 0.003
5586341174 ss86312678 Chr22 RFI Cc 0.258390005 0.069 0.00¢
5586341521 Chril RFI G 0.3177704236 -0.013 0.01d
Hapmap44010-BTA-115749 Chr4 RFI T 0.16%4330791 0.044 0.013
BFGL-NGS-111692 Chr21 RFI G 0.3342187202  -0.044 0.014
BTA-114348-no-rs Chr26 RFI A 0.43414634622 0.017 0.009

rait units are kg/d for ADG and DMI and kg DM/drfeFIl. SNPID - NCBI rs/ss SNP ID, some SNPs hauétipte predicted IDs based on
their sequence similarities to multiple submissiionthe NCBI databaséThese SNPs have no rs/ss SNP ID;: BTA — ChromosBisition —
Chromosomal position (bp); Estimate — Allele subsitin effect; Freq — Minor allele frequency; SEtandard error.
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APPENDIX 2:  Names for SNPs located within annotated genes andsociated with ADG, DMI and RFI
SNPID BTA | Position Panel Gene
ss117962667 3 43428200 ADG collagen, type XI, alpha
5117966992 3 43225815 ADG collagen, type XI, alpha
ss105307554 6 37963147 ADG leucine aminopeptidase
transposon-derived Buster3 transposasg-
rs41656065 7 71845956 ADG like
s$s105239516 10 14071411 ADG similar to 1Q motiftegring H
rs41597632 10 62466743 ADG oxysterol binding pretikde 3
rs43614200 10 13146428 ADG mitogen-activated pndtgiase kinase 1
rs41630325 15 37389561 ADG spondin 1, extracelimatrix protein
$586304896 20 23683579 ADG GC-rich promoter bingiragein 1
ATPase, Ca++ transporting, plasma
5586341174 22 55890005 ADG membrane 4
rs41601279 24 26564151 ADG UDP-Gal
microtubule associated tumor suppress
rs42117657 27 21306526 ADG 1
rs41574019 1 55206940 ADG myosin, heavy chain 15
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SNPID BTA | Position Panel Gene
rs41638872 1 6410343 ADG ubiquitin specific pezld6
rs41578313 2 118264371 ADG similar to KIAA1486 int
rs43293349 2 21301376 ADG metaxin 2
ss105307554 6 37963147 ADG leucine aminopeptidase

USO1 homolog, vesicle docking protein|
rs42555873 6 93850919 ADG (yeast)
rs43454260 6 4594143 ADG PR domain containing 5

similar to Deafness, autosomal recessiy
55140894649 8 108961258 ADG 31
5586308454 8 111309164 ADG astrotactin 2
ss86313014 9 55121684 ADG kelch-like 32 (Drosophila
$586320135 11 109899269 ADG WD repeat domain 85
rs42214703 11 33877081 ADG neurexin 1
rs41667026 12 66650688 ADG glypican 6
rs43699555 12 52690850 ADG MYC binding protein 2

protein tyrosine phosphatase, receptor
rs41707481 13 71746495 ADG type, T
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SNPID BTA | Position Panel Gene

eukaryotic translation initiation factor 3,
rs41742877 14 45009927 ADG subunit H
rs41581215 18 41024459 ADG teashirt zinc finger dolbox 3

similar to microtubule associated
rs42243754 20 13445531 ADG serine/threonine kinase family member

ATPase, Ca++ transporting, plasma
$s86341174 22 55890005 ADG membrane 4

similar to serine (or cysteine) proteinase
s$s86335492 24 64469669 ADG inhibitor, clade B (ovalbumin)

carboxypeptidase X (M14 family),
5586289359 26 44210363 ADG member 2

insulin-like growth factor binding protein
5117963035 2 108854240 DMI 5
rs43362139 3 113663829 DMI microtubule-actin ciogshg factor 1
rs42410387 6 119038391 DMI Wolf-Hirschhorn syndraraadidate 2
rs42411131 6 119003189 DMI Wolf-Hirschhorn syndraraadidate 1
rs43460584 6 41462782 DMI Kv channel interactingtg@in 4

guanine nucleotide binding protein (G
s$s86314057 8 56217967 DMI protein), q polypeptide
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SNPID BTA | Position Panel Gene

serine palmitoyltransferase, long chain
rs41654591 10 91420638 DMI base subunit 2
rs41569387 11 70053572 DMI annexin A4
5586333184 13 24907224 DMI hypothetical LOC513129

similar to Zinc finger protein ZFPM2
rs42484917 14 56901724 DMI (Zinc finger protein multitype 2) (F
rs41887389 18 50742772 DMI similar to Protein capibomolog
5586287613 21 34754177 DMI lysyl oxidase-like 1
s$s86329667 22 19476532 DMI glutamate receptor, lmoétapic 7

similar to 52 kDa repressor of the
rs42029905 23 45588817 DMI inhibitor of the protein kinase (p58IP
rs42052858 24 64215863 DMI hypothetical protein 100141140
ss86302411 26 5128409 DMI protocadherin-related 15
$586312150 26 7796869 DMI protein kinase, cGMP-dégset, type |
rs43266806 1 114096269 DMI guanine monphosphatistase
586301441 2 67981464 DMI NCK-associated protein 5
rs43389761 4 48969929 DMI similar to Cadherin-jketein 28
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SNPID BTA | Position Panel Gene

similar to THAP domain containing,
rs42244558 5 1293420 DMI apoptosis associated protein 2
rs42410387 6 119038391 DMI Wolf-Hirschhorn syndraraadidate 2
rs43631525 10 55618423 DMI protogenin homolog (@&adjallus)
$s86319906 11 98890768 DMI G protein-coupled rexept4

inositol 1,4,5-triphosphate receptor, type
rs42002618 22 22393278 DMI 1

similar to 52 kDa repressor of the
rs42029905 23 45588817 DMI inhibitor of the protein kinase (p58IP
rs41669831 24 41411977 DMI Rho GTPase activatiotepr 28
5586284580 25 40999193 DMI Ras association anddDhains

solute carrier family 25 (mitochondrial
rs42142693 28 24107627 DMI carrier; Graves disease autoantig
$s86315831 29 7301394 DMI glutamate receptor, métaic 5

Rap guanine nucleotide exchange factg
5586305968 ss86339265 2 24659200 RFI (GEF) 4

immunoglobulin-like domain containing
rs41589498 3 2516633 RFI receptor 2

=

262



SNPID BTA | Position Panel Gene
rs43389761 4 48969929 RFI similar to Cadherin-pkatein 28
similar to THAP domain containing,
rs42244558 5 1293420 RFI apoptosis associated protein 2
transient receptor potential cation
rs43557189 8 53208327 RFI channel, subfamily M, member 6
rs42972397 9 90796431 RFI iodotyrosine deiodinase
rs41569387 11 70053572 RFI annexin A4
$s105311629 13 11334505 RFI USP6 N-terminal like
ring finger and CCCH-type zinc finger
rs41994086 16 52549377 RFI domains 1
BFGL-NGS-111692 21 42187202 RFI secl family domain containing 1
ST8 alpha-N-acetyl-neuraminide alpha-|
$s86321297 24 48150873 RFI 2,8-sialyltransferase 5
5586293365 3 115359337 RFI EPH receptor A10
similar to ATPase, H+ transporting,
rs29011976 3 41842787 RFI lysosomal accessory protein 2
immunoglobulin-like domain containing
rs41589498 3 2516633 RFI receptor 2
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SNPID BTA | Position Panel Gene
rs41587678 4 49069017 RFI synaptophysin-like 1
rs43389761 4 48969929 RFI similar to Cadherin-fikatein 28
$s86313043 7 68862105 RFI similar to ichthyin pgrote
rs43604365 9 52502821 RFI ubiquitin specific pegtiel45
rs43604391 9 52475302 RFI ubiquitin specific pegtiel45
5586309185 11 63600222 RFI similar to CG17657 CGT-FA
rs42771121 13 51699788 RFI ring finger protein 24

ribosomal protein S6 kinase, 52kDa,
5586295428 16 68396075 RFI polypeptide 1

progesterone receptor membrane
rs29022067 17 31309718 RFI component 2
BFGL-NGS-111692 21 42187202 RFI secl family domain containing 1
rs42068538 25 31892337 RFI autism susceptibilindatate 2
ss86300114 27 37207203 RFI ADAM metallopeptidaseain 18

ubiquitin-conjugating enzyme E2E 2
rs29024039 27 45906983 RFI (UBC4/5 homolog, yeast)
rs42142693 28 24107627 RFI

solute carrier family 25 (mitochondrial
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SNPID BTA | Position Panel Gene

carrier; Graves disease autoantig

SNPID - NCBI rs/ssSNP IDThese SNPs have no rs/ss ID; BTA — ChromosometfiBosi Chromosomal position (bp); MA Minor alleldAF — Minor allele
frequency. Panel — Designate either RR-BLUP pain@fs Chapter 3 or B panels from Chapter 4.
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APPENDIX 3: Relative frequency distribution of F values for Simgle
marker regression analysis in splits 1 and 2 of th€hapter 3 analysis

ADG1:Relative Frequency distribution of F-\Value
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Appendix 3: Figure 1: Distribution of F-Values for Single marker regression

analysis of Average daily gain (ADG) in Split 1
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ADG2:Relative Frequency distribution of F-\Value
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Appendix 3: Figure 2: Distribution of F-Values for Single marker regression

analysis of Average daily gain (ADG) in Split 2
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DMI1:Relative Frequency distribution of F-Value
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Appendix 3: Figure 3: Distribution of F-Values for Single marker regression

analysis of dry matter intake (DMI) in Split 1
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DMI2:Relative Frequency distribution of F-Value
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Appendix 3: Figure 4: Distribution of F-Values for Single marker regression

analysis of dry matter intake (DMI) in Split 2
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RFI1:Relative Frequency distribution of F-Value
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Appendix 3: Figure 5: Distribution of F-Values for Single marker regression

analysis of residual feed intake (RFI) in Split 1
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RFI2:Relative Frequency distribution of F-Value
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Appendix 3: Figure 6: Distribution of F-Values for Single marker regression

analysis of residual feed intake (RFI) in Split 2
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APPENDIX 4:

Variance Component Estimation

Appendix 4: Table 1. Estimates of variance componés obtained in the 5 replicates

of the training data using the BLUP pre-selection rathod used in Chapter 3.

Replicate
Trait Paramete 1 2 3 4 Average
ADG  GenVar 0.001 0.022 0.027 0.000 0.024 0.015
ResVar 0.071 0.055 0.052 0.074 0.048 0.060
GenVar + SNP  0.005 0.053 0.056 0.005 0.010 0.026
Resvar + SNP  0.037 0.046 0.052 0.052 0.043 0.046
SNP variance 0.035 0.009 0.000 0.022 0.005 0.014
DMI GenVar 0.662 0.938 0.960 0.576 0.842 0.796
ResVar 1.114 0.940 1.023 1.240 0.824 1.028
GenVvar + SNP  0.000 0.823 0.646 0.094 0.380 0.389
ResvVar + SNP  0.855 0.579 0.725 1.172 0.804 0.827
SNP variance 0.260 0.361 0.298 0.068 0.021 0.201
RFI GenVar 0.124 0.228 0.283 0.432 0.418 0.297
ResVar 0.682 0.567 0.536 0.479 0.374 0.528
GenVar + SNP  0.130 0.265 0.321 0.311 0.169 0.239
ResvVar + SNP  0.354 0.385 0.328 0.371 0.410 0.370
SNP variance 0.328 0.182 0.208 0.108 -0.036 0.158

rait units are kg/d for ADG and DMI and kg DM/drfeFl. ADG — Average daily

gain; DMI — Dry matter intake; RFI — residual feéaethke; GenVar — Genetic variance;
ResVar — Residual variance; GenVar + SNP — Gemnatiance when SNPs are included

in the model as fixed effects; ResVar + SNP —&Resivariance when SNPs are

included in the model as fixed effects; SNP varancariance attributed to SNPs as the
difference between ResVar and ResVar + SNP
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Appendix 4: Table 2. Estimates of variance componésfor ADG, DMI and RFI obtained in the 5 replicates of the training data with the

RR-BLUP method used in Chapter 4.

Replicate
Trait Parameter 1 2 3 4 5 Average
ADG  Resvar 0.004 +0.003 0.021 £0.003 0.021 £0.003 02D+0.003 0.023+0.004 0.018 £0.003
GenVar  0.012+£0.004 0.005+0.003 0.006 +0.004 00®+0.004 0.004 £0.005 0.006 +0.004
SNPVar  0.036 £+0.001 0.036 +0.002 0.038 +£0.002.03®+ 0.002 0.030+0.002 0.035+0.002
DMI ResVar 0.725+0.088 0.720+0.247 0.954 £0.22004Q+0.121 0.702+0.177 0.828£0.171
GenVar 0.111+0.095 0.734+0.331 0.481+0.228 199+0.148 0.524+£0.226 0.408 + 0.206
SNPVar  0.069 +0.005 0.034 +0.005 0.032+0.004.03®+0.003 0.034+0.004 0.041+0.004
RF ResVar 0.306 +0.025 0.349+0.062 0.339+0.11838®H+0.121 0.320+0.090 0.340 £0.083
GenVar 0.022+0.025 0.166 £0.067 0.153+£0.137 200+£0.125 0.164 £0.106 0.141 +0.092
SNPVar 0.067 £+0.004 0.045+0.004 0.044 +0.006.04®»+0.008 0.046 +0.006 0.049 £+ 0.006

MTrait units are kg/d for ADG and DMI and kg DM/drfeFIl. ADG — Average daily gain; DMI — Dry mattetake; RFI — residual feed intake;

GenVar — Genetic variance; ResVar — Residual vega@enVar + SNP — Genetic variance when SNPmealeded in the model as fixed

effects; ResVar + SNP — Residual variance whensSM® included in the model as fixed effects; SHFance —variance attributed to SNPs as

the difference between ResVar and ResVar + SNP
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Appendix 4: Table 3. Estimates of variance componésfor ADG, DMI and RFI obtained in the 5 replicates of the training data with the

B method used in Chapter 4.

Replicate

Mrait Parameter 1 3 4 5 Average

ADG  Resvar  0.017 +0.005 0.020+0.010 0.023 +0.013 03D+ 0.009 0.019 +0.009 0.022 + 0.009
GenVar  0.007 £0.006 0.031+0.015 0.026 +0.016 01+ 0.010 0.023 +£0.012 0.021 + 0.012
SNPVar  0.081+0.006 0.083+0.012 0.102 +0.012.09®+0.008 0.088+0.010 0.090 * 0.009

DMI ResVar  0.582+0.150 0.662+0.151 0.720+0.120 87®+0.244 0.771+0.174 0.720 + 0.184
GenVar  0.143+0.169 0.596 +0.163 0.564 +0.210 32+ 0.234 0.289 +0.180 0.384 +0.191
SNPVar 0599 +0.081 0.523+0.064 0.483 +0.043.50D+0.096 0.492+0.049 0.521 + 0.067

RF ResVar  0.247+0.033 0.274+0.076 0.193 +0.119 189+ 0.097 0.198 +0.107 0.220 + 0.086
GenVar  0.048+0.034 0.242+0.085 0.339+0.174 36D+0.126 0.310+0.142 0.260 +0.112
SNPVar 0.410+0.049 0.364 +0.046 0.360 + 0.039.390+ 0.035 0.321+0.041 0.369 + 0.042

MTrait units are kg/d for ADG and DMI and kg DM/dfeFIl. ADG — Average daily gain; DMI — Dry mattetake; RFI — residual feed intake;
GenVar — Genetic variance; ResVar — Residual vega@enVar + SNP — Genetic variance when SNPmealeded in the model as fixed

effects; ResVar + SNP — Residual variance whensSM® included in the model as fixed effects; SHFFance —variance attributed to SNPs as

the difference between ResVar and ResVar + SNP
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