

Programming Embedded 1-Wire Devices as
Custom Remote Sensing tools on Ethernet Networks

Prepared by Doug Warden
Spring 2006…to Jan 2007.

Mint Capstone Project

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 2 of 65

Backgrounder

When most people think of networks, they typically think of Ethernet networks; such as
10 or 100baseT connecting PC’s together, since that is what they used on a daily basis.
As a stretch they may recognize that Ethernet sections may be connected to each other
via different types of physical networking WAN infrastructures, such as FDDI or ATM.
The reality is that a network is the connection of two or more computer systems linked
together in some way. This somewhat vague definition includes many types of networks
and possibilities. A node on a network may be, and often is, a standard PC, but may also
be something else entirely, such as a Bluetooth enabled device, a router, some sort of
embedded device, or a wireless handheld PDA. For some time I have been interested in
learning how to incorporate the collection of data from traditionally “non-collectable”
and non-networked sources, like thermostats, lights, and appliances to gather that
information and carry out some form of useful work, and bring them into the realm of the
more familiar LAN.

This project will remotely gather data from sensing devices, transmit it via a 1-wire
network (described later) to an embedded device which will collect this data and transmit
it via standard Ethernet to a server. The application of this technology could be adapted to
a wide variety of purposes, such as remote sensing of conditions in manufacturing, oil
and gas production environments, or security systems. Once the data is on an Ethernet
network, the technology is well established to save, store, share, and act on that data.

In this case, I was visiting a cousin on Pender Island and he asked if I could help him
network the buildings on his property together. As this is seemed like a fairly
straightforward implementation, I agreed to help him. I did not foresee any great
difficulties since what he wanted was essentially a very large home network, with few
nodes but some large distances between them. As we discussed further I learned he also
wanted an external webcam and weather station which would stream data continuously to
a web server, and I also agreed to this, thinking there would likely be some sort of simple
off the shelf solution which I could simply plug into the network and leave. There was an
off the shelf answer for the cameras, but surprisingly (to me, anyways) this turned out to
not be the case for the weather station. There were many weather sensing products that
could be plugged into a PC via some sort of cable, like a USB, or which came with some
sort of LCD digital display which connected to the weather station using cabling or
wireless connection, but I was unable to find a product which took the data, and allowed
me to take the data to a centralized location, where it could be “served” via the web to
any clients requiring the information. Following a number of years in industry; it was
easy to think of practical, lucrative applications that would involve the remote sensing of
data, and capturing it in a common and usable form in a web page. For this project I used
weather as the remote sensing data, but it could be anything that you could get sensors
for, humidity in a paper production environment, pressure in a pipeline, or power
consumption in a deserted downtown office building.

The next step in the development would be to then reverse the flow of information, and
act on the sensed device, depending on the information that was gathered.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 3 of 65

Table of Contents
Backgrounder.. 2
Tables and Figures.. 4
Introduction ... 5
Network Installation and Equipment Selection... 6

Weather Station .. 6
Data Acquisition.. 8

TINI Hardware ... 9
TINI O/S Installation and configuration .. 10
A quick Slush Primer.. 11
Java Development in Embedded Environments – A cautionary tale................. 12

Network topology.. 14
Linux server... 15
Domain Name Registration.. 15
Uninterupted Power Supply... 16
Cabling ... 17
Switch... 18
Wireless.. 19
Network Camera’s..20

1-Wire Functionality ... 24
1-Wire Communication .. 25
1-Wire Transactions... 26

Sample 1-Wire Transactions.. 27
1-Wire Addressing..30

Getting the Device ID.. 31
Limitation in terms of number of devices on 1-Wire network 33

1-Wire protocol/network limitations ... 34
TINI limitations ... 35

Software Development.. 36
Sample TINI output .. 39

MintWX.tini running example .. 39
The mintwx.class... 41

Areas of Future Research... 44
Conclusions.. 45
References.. 46
Appendix A – ListOW.java for 1-Wire addressing discovery 47
Appendix B - Build.bat - Batch file compiling and uploading to TINI 49
Appendix C - List of 1-Wire devices and capabilities.. 50
Appendix D – MintWx.java ... 52
Appendix E – Onewire.java... 56

(Use Ctrl+Click to jump to that section in soft copy)

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 4 of 65

Tables and Figures
Figure 1 - disassembled TA18515-1... 6
Figure 2 - Internals of TAI 18515... 7
Figure 3 - TA18515 Schematic... 8
Figure 4 - DSTINIm400 and DSTINIs400 ... 9
Figure 5 - TILT board – 10 cm2 ... 10
Figure 6 - T-Stik with DS80C400 chip – standard 72 pin DIMM.................................... 10
Figure 7 - Physical Network Layout... 14
Figure 8 - Server, UPS enclosed in portable rack... 16
Figure 9 - 3 Inch long Spider .. 17
Figure 10 - Cable run equipment shed.. 17
Figure 11 - Cable run, basement to Conduit ... 18
Figure 12 - patch panel and networking equipment in basement 21
Figure 13 - Camera and Weather station installation.. 22
Figure 14 - Waterproof container holding Electrical Devices .. 23
Figure 15 - A simple 1-Wire configuration .. 25
Figure 16 - An example transaction on a 1-wire network – getting a temperature
conversion. .. 27
Figure 17 - An example transaction on a 1-wire network - receiving temperature
conversion data ... 29
Figure 18 - 1-Wire device list for devices used in this project ... 31
Figure 19 - 1-Wire Network topologies.. 33

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 5 of 65

Introduction

I spent several years working for a paper packaging manufacturer in an IT capacity. It
would have been extremely useful to us to be able to automatically monitor the status of
things like inventory, power consumption, humidity and temperature on the factory floor
and have been able to converge it to a single location to be able to do some useful work
with that data. I have long wanted the opportunity to learn how to do this, when this came
along, I didn’t realize what it was at first - it began more as a favor to a relative, but soon
turned into the challenge of collecting and sharing analog data collected on non-standard
network in a digital format easily accessible through standard means.

This report will start with a discussion into the installation, configuration and
considerations of the standard network installation, including equipment and challenges
experienced. The report will then turn to a discussion of 1-Wire technologies, networking
and communication. It will conclude with an analysis of the software framework that I
used to query and save the data from the 1-Wire sensors.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 6 of 65

Network Installation and Equipment Selection

Equipment for this project needed to meet a number of criteria. I was looking for
something that was reasonably inexpensive, but ultimately flexible. I required equipment
that would be more than just an off the shelf solution to the problem but at the same time
also needed to be a non-obscure (supported) solution. I needed flexibility for the
equipment in the project, and in terms of my learning requirements, I was looking for
something which was scalable and industry supported. I was hoping to find solutions
which would have a wide application. Not only did I need to build a working weather
station, I needed to build something which was robust – both physically and technically.
It became clear to me that much of the equipment which was marketed as tough and easy
to use had never been installed by the people who sold it. The weather station itself
needed to be run out over a dock to an exposed pole. Cabling, and all gear needed to be
completely weather proof as well as capable of withstanding incursions of salt water.

Weather Station

After searching around I settled on the following equipment for the weather station; A
TAI8515 1-Wire Weather Instrument Kit V3.0 from aagelectronica1 see Figure 1.

Figure 1 - disassembled TA18515-1

This weather station will measure wind speed, direction, and temperature. I also
purchased two add-on products which measure barometric pressure and rainfall. The
selection of this product was influenced by (and in turn influenced) the use of 1-wire
networking as a means of gathering and transmitting raw data. As data is collected it is
transmitted via a 1-wire network to the embedded networking device. The weather station
can be seen disassembled in Figure 2.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 7 of 65

Figure 2 - Internals of TAI 18515

Showing the top and bottom sides of the inside of the TA18515. This is a fairly simple
device, consisting of a very simple circuit board holding the 1-Wire devices, which are
actuated by reed switches. There are two RJ-11 connectors on the one side, and all of the
circuitry on the board connects the sensing devices in a daisy chain fashion (as explained
later in more detail in the 1-Wire networking section). This can be seen more clearly in
Figure 3. In addition to the sensors contained in this device, I also added a rain gauge and
barometric pressure sensor, which were added into the “daisy chain” using standard cat-5
cabling with RJ-11 connectors, external to the TA18515.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 8 of 65

Figure 3 - TA18515 Schematic

The above schematic contains three one-wire sensors, the DS18S20 is a temperature
sensor (embedded in the circuit board), the DS2450 is a 4 way analog to digital converter
for measuring wind direction and uses read switches on the underside of the circuit board,
while the DS2423 is for calculating wind speed (again through reed switch), based on the
rotational speed on the top of the circuit board.

Data Acquisition

The data acquisition from the TA18515 Weather station can be done in a number of
ways. Connection can be done using a direct connection to a PC using a standard RS-232
9 pin serial interface (with pre-built software), a USB to PC connector, or a strictly 1-
wire interface. Using 1-Wire requires the use of TINI, which stands for T iny InterNet
Interfaces and is a produced by Dallas Semiconductors. According to the Dallas
Semiconductors website, the TINI is a “microcontroller-based development platform that
executes code for embedded web servers. The platform is a combination of broad-based
I/O, a full TCP/IP stack, and an extensible Java runtime environment that simplifies
development of network-connected equipment.”2 Dallas Semiconductor manufactures
their own microcontrollers to host TINI which are high speed 8 bit microcontrollers and
come with various configurations, including built in interfaces to both Ethernet LAN and
1-Wire networking. The implementation of TINI which I used was the T-stick,

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 9 of 65

constructed by Systronix, which uses the Dalsemi microcontroller (DS80C400) on their
own hardware - a 72 pin SIMM stick. Interfacing this device with a TILT board (also by
Systronix) allowed me to provide to install and run the TINI in the form of the T-Stick
module while the TILT board provided a 1-wire, Ethernet and serial interfaces to the
TINI device. Development on the TINI platform is designed to run JAVA and JAVA web
servers, but can also be done in C through the use of the Kiel compiler. My original
position in developing this project is that it would be easier and more network efficient to
query, and save data on the TINI and then transmit this data to the Linux server via a
socket program rather than hosting and trying to do all the development on the TINI
server itself. Dallas Semiconductors manufactures their own version of the same
controller, in a networked board, the DSTINIm400, which is interchangeable with the
Systronix equipment (I have now used both, and they seem to have the same functionality
and have had no problem with either of them), but I purchased the T-Stick on a
recommendation, and this recommendation was seconded by the difficulty of using the
Dallas Semiconductors e-commerce website.

Figure 4 - DSTINIm400 and DSTINIs400

TINI Hardware

The TINI device requires an operating system be manually loaded in order to operate and
any further programs uploaded. Loading the OS turned out to be somewhat problematic
in ways I had not anticipated. The Tilt board, see Figure 5, provides numerous interfaces
to allow information to reach the server, including a RJ-45 connector, male and female
serial connectors, and a 4 pin RJ-11, which is a 1-wire connector.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 10 of 65

Figure 5 - TILT board – 10 cm2

The actual DS80C400 processor is placed by Systronix on a “T-Stik”, which is a good,
old fashioned, 72 pin SIMM, and can be seen in Figure 6.

Figure 6 - T-Stik with DS80C400 chip – standard 72 pin DIMM

TINI O/S Installation and configuration
The standard method for loading an OS involves connecting to the serial connector and
uploading the O/S3. Unfortunately, most laptops no longer have serial interfaces, and to
circumvent this problem, I was required to get a USB to serial adapter and load the
appropriate drivers for this. This lead to other problems as the standard way of loading
the O/S is to download the desired O/S from Dallas Semiconductors and upload the
firmware using the Javakit, which really didn’t work. I downloaded the latest TINI O/S,
specifically the TINI 1.17 version. Installation of this O/S creates a “Slush shell”, which
is like traditional Unix shells, but with no text editor and a very compressed and reduced
command set. The O/S also contains a serial (TTY), FTP and Telnet server, to allow for
easy uploading of the finished (compiled) programs and execute them in the slush
shell/JAVA environment provided by the TINI O/S.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 11 of 65

A quick Slush Primer

The initial connection to upload the firmware and O/S also proved to be problematic, as
the recommended method of loading, namely using the Javakit, is no longer built or
maintained for Windows operating systems. As someone trying to ramp up on Java, I
found this a bewildering initial set of configurations that needed to be done to enable the
Javakit, only to learn that it was no longer supported for Windows clients. My difficulties
were compounded by the fact that the “serial cable” I was using was actually an old 9 pin
null modem cable that I had lying around. I was able to find and download an older copy
of this application, but setting up this software is very tricky, and I spent considerable
time attempting to get this to work. Whether I was stymied by the inability of the Javakit
to recognize the serial connection or because of some configuration error I never
determined. I eventually tried an alternative to the Javakit in the form of the
Microcontroller Tool Kit (MTK) which I downloaded from Dallas Semiconductors and
was able to install and upgrade and install the Firmware and O/S with little trouble by
following the Getting Started with TINI guide from Dallas Semi Conductor3.

Once loaded the TINI O/S is fairly easy to use – there are three built in servers in the
Operating System; FTP, telnet, and a Serial Server. The serial and telnet servers allow for
access to the device, and the FTP server allows for uploading files. The slush
environment itself is a very stripped down shell for the embedded environment. The
default install leaves a blank TINI with a single /etc folder, containing a .startup file,
entries in this file will execute automatically on startup, and a passwd file, like in a Unix
environment. There is no built in editor in this environment, so text files needed to be
uploaded, which was a fairly small problem, given the built in FTP and telnet servers.
Reasonable help functionality provides guidance on the following commands;

Available Slush Commands:
 addc append arp cat
 cd chmod chown copy
 cp date del df
 dir downserver echo ftp
 gc genlog help history
 hostname ipconfig java kill
 ls md mkdir move
 mv netstat nslookup passwd
 ping ps pwd rd
 reboot rm rmdir sendmail
 setenv source startserver stats
 stopserver su touch useradd
 userdel wall wd who
 whoami

This is designed to be instantly familiar to anyone who has done any work in any sort of a
Unix environment, and as such, is quite easily picked up.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 12 of 65

Java Development in Embedded Environments – A cautionary tale

In retrospect, choosing to develop in Java for this project was not the greatest decision. I
do not have a strong programming background, am not terribly familiar with object
oriented programming, and have almost no experience with Java. I was enticed, however,
by the hype surrounding Java, and the wealth of resources for doing development.
Everything I read and people I spoke to indicated that embedded development is the forte
of Java. Having traveled far down this road, I am not keen to go back and start over, but
the early decision to ignore C as a development vehicle with the Kiel compiler may have
been a mistake. In that I haven’t done any work with the Kiel compiler I don’t know if
this is true or not.

The TINI platform is designed to run Java, comes with a built in Java Virtual Machine
(JVM), according to my understanding, the JVM should allow any Java compiled
application to be portable. It should run in any JVM, independent of the hardware. The
DS80C400 is an 8 bit microcontroller, and does run Java compiled programs, but only
after extensive modification. I found development difficult and time consuming, I could
do the development of the application in an IDE (I used Netbeans initially) which was
syntactically useful, but a program which compiles and runs in the IDE will not
necessarily work on the TINI. So once changes were made, the project needed to be
manually built, converted to a *.TINI file, uploaded and tested. Complicating this process
was some sort of a short in the 1-Wire cabling on Pender island, I could still connect to
and Telnet into the TINI, and upload my applications to run them from Calgary, but
could not connect to any of the 1-Wire devices to test the application. I managed to
duplicate the work environment by purchasing another DS80C400 (this one directly from
Dallas Semiconductors) and a second weather station. I was able to build, test and run my
applications, and should now be able to relatively easily modify the program as required
to run in the real environment once the 1-Wire cabling problem is fixed, which should
happen by April.

I eventually wound up using JCreator by Xinox software to work in Java – which was a
free and simpler tool than Netbeans, I combined this with a batch file to automate and test
the code. Using the batch file really helped me to get over an obstacle in the development
process. I found that with Netbeans, once I finished the code and wanted to test it, I was
endlessly looking up paths, build dependencies and 1-Wire container references along
with syntax and typing in impossibly long strings at the command line. It took longer to
compile and test the code than it had to write it. (as an example, I initially spent 6 hours
scratching my head trying to figure out why my code couldn’t be run on the TINI,
assuming it was some terrible coding mistake, only to realize that the TINIconvertor used
in the creation of the executable *.tini file is not the same as the TINIconverter, which is
what I had typed in). Automating this process simplified things immensely and allowed
me to make modifications to code and then quickly compile and test them with a single
command4.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 13 of 65

TINI with Java does support some excellent possibilities – one being the simple support
of a web server – this allows for the possibility of combining 1-Wire device detection and
considerable computing power directly with a Web Server. A programmer could then
create a web site with forms that would allow for input from clients to modify and update
commands or requests manually. Ideally, I see this as a good area for embedded
development to go; information needs to be available to clients, and http/web is the
simplest method (and widely used) for doing this. Any standard browser could connect to
the server and get the data, if modifications needed to be made in the environment, a web
form would be a able to configure the 1-Wire network or other devices, according to the
commands of the user. One of the limitations of using the TINI as a web server is the
limited memory, but through careful design, it should also be possible to use frames to
maintain a small website on the TINI, while referencing larger more complex pictures
and web pages for the client, appearing to seamlessly come from the TINI server.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 14 of 65

Network topology
The physical network design impacts the design of the program on the embedded devices.
The physical network is strung between several spread out buildings and resembles
Figure 7.

Figure 7 - Physical Network Layout

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 15 of 65

Linux server

The Linux server is running Debian (Etch) distribution. I chose this distribution because I
am familiar with it, the operating system is free, supports all the services required and
sports the very simple “apt” software configuration tools. Debian is now one of the
higher quality and most popular Linux distributions.

One of the requirements of this server is that it is remotely configurable so it has SSH
installed. The installation is a fairly simple and small one, with no X-Windows or
extraneous software installed. Considerable care was taken to harden the server, using the
guidelines supplied by Debian5. This server runs several roles, including firewall, NAT,
DHCP, SSH, Http, DNS, and Apache.

Firewalling was accomplished through using some standard open source Linux packages,
notably iptables, ipmasq, and dnsmasq. I needed to create some specific port forwarding
rules to allow inbound traffic on specific ports to be forwarded to port 80 on three
separate internal IP Camera’s with different IP addresses (80 was taken by the
www.portwash.ca website). Rules also needed to be created to allow SSH and web traffic
to the Linux Server. Internally on the LAN I used telnet and FTP to connect to the TINI
server, once I had connected through SSH to the Linux server.

Domain Name Registration

Having secured a dedicated Internet connection and static (sort of) IP address
Pendercable, I registered the portwash.ca domain name online through a website called
EasyDNS.com. I only mention this because of a problem that would never have occurred
to me if it hadn’t happened to me. ICANN requires certain information in order to
register a Domain Name, it requires name, a Canadian address, and contact information,
including an email address. As all Domain name registrations are public, within 48 hours
of registering my email address in the ICANN database, I began, for the first time in my
life, to be barraged by spam. I have since changed my registration to a dead end e-mail
address, but some of the spam remains.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 16 of 65

Uninterupted Power Supply

The power in the Gulf Islands is largely above ground, and as such, susceptible to
outages, spikes, winter storms and the occasional drunk driver knocking over power
poles. In that I need to manage this network remotely, I needed the capability to protect
the server from power spikes, and have some way to reset the server in the event of a
problem. I purchased a standard UPS with more than enough capacity for the power
requirements to last for a considerable time. Power outages are common and often last for
several hours. This results in losing remote access to the network. I toyed with the idea of
a phone connection directly to the server or some sort of KVM control, but eventually
bought and configured the UPS, which I needed for power protection anyway, to cycle
the power to the server and the cable modem at 2 AM every third day, in the event of a
loss of connection due to power outage, the system cycles and comes back online once
every few days. The server, UPS and cable modem went into a small enclosed rack.

Figure 8 - Server, UPS enclosed in portable rack

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 17 of 65

Cabling

Cabling the network was also very problematic, the conditions were rough, requiring
crawling through small, spider infested (see Figure 9) spaces in shorts. It is difficult to
describe the size or virulence of these spiders without actually seeing one and being
bitten by it.

Figure 9 - 3 Inch long Spider

 The physical layout of the buildings meant for some very long cable runs, generally
through conduit and PVC piping, which ran underground and was occasionally mouse
infested, unlabelled and held no pull strings to begin with. A lot of ingenuity was
required to get the standard cat5 cables through conduits, buildings and to various drop
points.

Figure 10 - Cable run equipment shed

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 18 of 65

Figure 11 - Cable run, basement to Conduit

Switch

The switch was a fairly standard issue D-Link 24 port model, I didn’t feel like there was
enough need to justify an expensive Cisco switch. The D-Link switch sports a simple to
use web interface which made setup and configuration simple.

All that was really required of the configuration was a method to VLAN the two separate
internal subnets – wireless and LAN from each other to allow for separation without
using a router to allow me to maintain the iptables firewalling rules.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 19 of 65

Wireless

In the end, I wound up using Netgear “Rangemax” equipment. On testing I found that the
wireless AP’s that I originally purchased did not have the range required. The Rangemax
access points use Multiple In Multiple Out (MIMO) technology, this is still not an
802.11n ratified devices, although they are hopefully advertised as “pre-n” access points
as competing vendor technologies have not yet been agreed on.

This AP gave better range and coverage than the 802.11g Access points I had originally
tried, and allowed me to set up a sizable wireless roaming network across the property,
spanning 6 different access points. I originally setup the wireless network to be secure –
the access points were capable of meeting a number of different standards for
authorization and encryption. Given the known weaknesses of the WEP standard, I
selected WPA2-PSK [AES] to encrypt all data –I quickly found that this configuration
turned out to be completely unworkable from an administrative implementation
standpoint. Every user who had problems connecting to the wireless network, which was
almost all of them, soon contacted me and I had to try to troubleshoot the connection
issues. Many older wireless cards were not capable of running the standard, and virtually
all cards came with their own wireless connection utilities, which required learning
different vendor utilities to troubleshoot users’ connection issues. Much of this was done
over the phone from Calgary to the West coast. It soon became clear to me that the WPA
standard was unworkable, and reduced the security requirements to WEP, which proved
little better in terms of its workability.

I eventually removed all security requirements and allowed unencrypted access; clearly
vendors and industry have a lot of work to do in this area, probably 80% of all clients
were unable to connect to the Wireless network at all once a security protocol was used
for authentication and/or encryption, rendering the implementation completely useless. In
a production environment where everyone had the same hardware and software it would
be manageable, but in an environment where people were bringing their own equipment
it was simply unworkable. I was unhappy with leaving the network open, but had little
choice. I decided this was alright given the size of the property, and the difficulty I had
getting enough range for even basic coverage inside the buildings. There was no coverage
off the property and I did maintain strict iptable firewalling rules for traffic originating on
the wireless network.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 20 of 65

Network Camera’s

An interesting sidebar to the project was the inclusion of IP Camera’s as part of the
project. The “scope creep” by this point was in full swing, and my straightforward
implementation was entering my second trip to the coast and about three and a half weeks
of dedicated time, and I had yet to even begin working with the TINI. I was dealing with
a client who wanted every possible bell and whistle, and money was simply no object to
getting them. Having agreed to a simple implementation, new possibilities were endlessly
added as they occurred to the owner.

This part of the project stemmed from a casual discussion, with suitable beverages while
watching the sun set, and I wound up installing three separate cameras. After searching
for an appropriate “webcam”, I realized that what was actually required was a “Network
camera”. Network (or IP) camera’s, typically host, or at least stream, video display data
to a web server. I first bought some cameras and tried them but the resolution was poor. I
wound up purchasing some high end camera’s from Axis. One “PTZ” – Pan Tilt Zoom
camera (Axis214) and two fixed camera’s (Axis211a). This introduced some new levels
of complexity to the project. These cameras needed to be set up and integrated into the
Ethernet network. The two fixed cameras were used as “public domain” cameras – one
providing a view of the channel of the North End of Pender Island. Free public access
was granted to users of Pender Cable as a promotion, and in return, Pender Cable
provided us with a free Internet cable connection for our network. Since this is in the
Gulf Islands, providers of even moderate bandwidth Internet connections are something
of a rarity, so this was exactly what we needed. The second camera was fixed on a view
of Port Washington – this camera is used to provide a view of the location where float
planes regularly land in Grimmer’s Bay – the exchange of a view of conditions in the
Bay, along with the weather conditions – wind speed and direction proved to be useful in
striking a deal with the local charter companies to provide cheap plane access to the
island. The third camera provides a remote controllable view of the property.

All three of these cameras now needed to be integrated into the network, mounted,
protected from the elements and sea water, and provided DC power. We erected an
aluminum pole to mount the weather station and the cameras on the dock. One of the
reasons I selected the fixed 211a cameras was the fact that they were standard Power over
Ethernet (PoE) devices, which meant I also needed to find a PoE injector. I wound up
pulling all cable to a centralized location in the basement of the main house, and
attaching it to a patch panel. I placed the switch and the PoE at this location to centralize
management. I had hoped to put all the equipment in the control shed where the Internet
connection was brought in, but it turned out that one of the conduits running between two
of the buildings had been crushed, so there was not enough room in the conduit to pull all
the cables back to that location. I wound up leaving the server at in the control shed and
centralizing the rest of the network in the basement of the house. (see Figure 12)

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 21 of 65

Figure 12 - patch panel and networking equipment in basement

All the cables pulled into the basement and the back of this patch panel. In this figure you
can also see the switch and the PoE device (white box). The white PVC pipe at the top of
the picture eventually (once the mouse nest was removed) runs to a point under the dock,
some 70 meters away. Behind and to the left is one of the Wireless AP’s.

The PTZ camera required DC power, for which we installed a transformer and strung
both power and data cables through conduit to the cameras. To protect the camera’s I
purchased appropriate enclosures and mounted all three cameras and the weather station
on an aluminum pole on the dock (as another aside, I actually got the opportunity to weld
aluminum,- not only something I’d never done, but also something I didn’t know was
possible). This installation can be seen in Figure 13.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 22 of 65

Figure 13 - Camera and Weather station installation

The cables were installed in the tubing to the left of the picture on the second rail. Pulling
cable in exposed outdoor environments requires careful consideration of things you’d
never have to do otherwise, like taking care in the slope of the conduit, it would never do
to have water accumulating and running down the conduit into the “waterproof”
enclosure. My experience this summer would teach me that waterproof devices are
perfectly waterproof, provided you don’t stand up and walk away from them. The
ramifications of blowing a transformer because of a short when you are in a remote
location and can not get access to new parts can easily add an extra five days to an
installation.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 23 of 65

Figure 14 - Waterproof container holding Electrical Devices

Another issue that arose because of the cameras was that I now had four distinct (five
depending on how I chose to implement the publishing of the TINI data) web servers
using port 80 from our single internet connection. I set up port forwarding rules for the
network Camera web servers to use non-standard ports.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 24 of 65

1-Wire Functionality

The development of the 1-Wire standard is a joint effort of Dallas Semiconductor with
various electronic companies. It follows an open source philosophy, with standards being
openly shared; allowing various manufacturers to create devices, if a vendor device is
compatible with the standard, then it is a 1-wire device. Although what primarily occurs
is that companies will request 1-Wire devices from Dallas Semiconductor, and either
have them placed into a circuit board by DS or in their own manufacturing facility. The
following is a brief discussion of the technical aspects of the 1-Wire networking
standards; more in depth information is included later in this report and is available on
the web6. By using 1-wire devices, we can customize the type of sensing we wish to do,
plug this device into a 1-Wire bus, and through communication with the “Master” on the
bus, convert this information to a format which can be transmitted, from the sensor
device, read by the master and forwarded to other nodes on different types of networks.

The miniaturization of all electronic components is well known. One need not think back
too far to remember mammoth calculators, televisions, and stereos. In the computer
industry the advantages of miniaturization are fairly obvious, allowing more circuitry to
be packed into smaller, increasingly complex devices using less power. One disadvantage
of increasingly small chip size coupled with increased complexity is that this has lead to
smaller and smaller devices feeding larger and larger data buses. Finding space to put
more pin connectors on small devices becomes more difficult. The 8 bit processors of 20
years ago were not significantly different in size than the 64 bit processors of today. This
is an 8 fold increase in data carrying requirements, to say nothing of the other connectors
to supply power and monitoring, etc. Chip manufacturers were under pressure to put
larger data busses into smaller and smaller devices. Engineers at Dallas Semiconductors
chose to take this to the extreme in the opposite direction – build a system with a single
data bus, which would allow for scalability and expansion. The result was 1-Wire.

A 1-Wire network is somewhat misleadingly named; in this type of network, two wires
are actually used, one is used to carry signal, while the other is used as ground. The
reason we need a ground wire will become apparent with the discussion of the function of
the network, although strictly speaking, the ground could be anywhere, it need not
necessarily be a short to the ground wire. This type of network is diagramed in Figure 15.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 25 of 65

Figure 15 - A simple 1-Wire configuration7

This diagram shows a usual configuration structure of a 1-wire network – There is always
a single “master” on a 1-Wire network, in our case the T-Stik/TILT board combination
hosting the TINI O/S, and any number of “slave” nodes on the network. The nodes are
effectively on a serial bus, and the master will control all access to the bus. The master is
indicated to the left of the picture, the other points of interest are the MOSFET (metal-
oxide-semiconductor field-effect transistor) gates, and the Pull Up transistor (VPUP)
which maintains a set level of electrical potential on the data bus, which can be shorted
by 1-Wire slaves through the gates.

1-Wire Communication

Devices can communicate at either regular or overdrive speeds on the network – the
regular speed is 16.3 kilobits/sec while the overdrive allows 144 kilobits/sec, but this
capability can only be reliably used on small networks with few slaves. 1-wire devices
are open drain driven and so they drive the bus low, and the bus is returned to a high state
by the pull-up resistor, which is typically integrated into the master end of the bus.

The Master system can use four discrete signals to signal the other 1-wire devices;
1. reset sequence
2. write 0
3. write 1
4. read data

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 26 of 65

The reset sequence returns all devices on the bus to a known initial state. The reset
sequence consists of a master generated reset pulse followed by a device generated
presence pulse. The master will drive the bus low for a lengthy period and then release
the bus to indicate it is ready to receive; the bus is then taken to a high state via the pull
up resistor (VPUP in above diagram) devices on the bus will then detect the rising edge on
the bus and transmit the presence pulse, by simply driving the bus low for a
predetermined (but short) amount of time. This interaction simply resets all devices into a
listening state, and the presence pulse indicates the presence of devices other than the
master on the bus.

Data is transmitted through the use of write 0 and write 1 signals. Data transmission is
accomplished on the network by dividing time on the network into timeslots. The master
drives the bus low for at least 1 µs and releases the bus. Voltage is returned to a high state
by the pull up resistor and devices on the bus are synchronized to the master by
monitoring the falling edge. In a write timeslot, a device can either drive the bus low (a 0)
or leave the bus high (a 1). The master continuously samples the data line in the read time
slots and can use this to determine if any of its transmissions had any corruption or
contention issues.

1-Wire Transactions

Data on a 1-wire network is transmitted through a “transaction”. A transaction consists
of three phases;

Initializing
Addressing
Data exchange

a) Initializing phase
The master begins a transaction by initializing the network, which consists of the reset
sequence described above; the master drives the bus low for an extended period (a
minimum of 480 µs) and devices on the network respond by transmitting a presence
pulse. This notifies the master that there are other 1-wire devices on the network.

b) Addressing phase
The master can then initiate the collection of data through the addressing phase. The
addressing phase consists of the master transmitting the entire 64 bit address of the device
which the master is interested in communicating with. All devices listen for and receive
this broadcast. All devices except the targeted device then drop off the bus and master
can then transmit a specific command to the targeted device to do something. Each 1-
wire device has specific commands which it is capable of carrying out, depending on the
function (or family) of the device. The bus can then be reset by the master to allow for
another transaction. The following two figures demonstrate two transactions between the
master and a DS18S20, a 1-wire device capable of sampling temperature.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 27 of 65

Sample 1-Wire Transactions
__

__

Figure 16 - An example transaction on a 1-wire network – getting a temperature conversion.

To begin the above transaction, the master will drive the bus low for at least 480 µsec,
resetting the bus. This stops all incidental “noise” on the network, and notifies all devices
(which are continuously monitoring the voltage of the bus) that a transaction is being
commenced by the master. As the voltage is pulled up by the pull up transistor, the
devices are all aware of the rising edge, and then signal their presence and awareness on
the bus by driving the bus low in a presence pulse. The master can then transmit the
unique address of the targeted device, causing all other devices to drop off the network
and only leaving the master and the target device. The address of the device (as explained
later) indicates the family of the target device and the commands which can e carried out
by that device. The master then submits the command it wishes completed to the target
device.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 28 of 65

In this case there are a few interesting notes; the master initiates and controls all
transmission on the network, dealing with contention issues. At the end of the transaction,
all devices other than the master and the targeted device are idle – so to initiate
communication in subsequent transactions, the master must always reset the bus at the
start of every transaction. Also of interest is the ability of the master to power the bus
high for a long enough period of time to allow the targeted device to do the work
required, this means that 1-Wire devices do not require an independent power source.
This is known as parasitic power, the device using the power on the line to complete its
required commands. This has certain advantages and introduces concerns, sensing
devices do not require any power, which is difficult in many locations where one wishes
to do sensing. On a large 1-Wire network, many devices will drain the power from the
line, causing devices to think that a reset sequence has been initiated. Likewise, the
transmission of a large number of consecutive 0’s may also inadvertently trigger a reset
in devices, although this is extremely unlikely given the length of time of a reset
sequence.

Of course at this point, the device has done the sampling and conversion, but the
information it has stored has yet to be sent to the master, which will need to be taken care
of in subsequent transactions.

__

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 29 of 65

__

Figure 17 - An example transaction on a 1-wire network - receiving temperature conversion data

In this case the pattern is the same, with the master resetting the bus, targeting the
specific device and then issuing the command, which in this case is a request for the
contents of the “scratchpad”, a 256 bit page in memory of the device which acts as a
buffer for data. After the scratchpad command is issued, the device transmits the data in a
series of write 0 and 1 commands by driving the bus low (or leaving it alone) in the
appropriate time slots.

1-wire networks utilize this very simple communication protocol – all communications
are initiated by the master, preventing collisions on the network, and providing power to
remote devices at the same time. 1-Wire cabling has an outside physical length limitation
of approximately 750 m8, due to timing issues. The master also has the capability to drive
the bus high to allow for longer distance transmission.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 30 of 65

1-Wire Addressing

Obviously, given the steps of this communication protocol, every device on the network
must be uniquely identified. To this end, all devices have a 64 bit address which is of the
following format;

{[8 bit CRC] [48 bit device ID] [8 bit family ID]}

The family ID identifies which group of devices the appliance falls into, identifying it’s
capabilities to the master. The large Device ID ensures uniqueness, and the CRC portion
allows confirmation of correct transmission of the identifier, for both the device ID and
the family ID portions. There are literally hundreds of different 1-Wire devices, all with
different capabilities. A complete list of 1-Wire devices and families can be found at
Dallas semiconductor / maxim-com9 Website. The simple nature of these devices allows
a user to innovate and customize the sorts of sampling that is done by the 1-wire network
(and how). I chose to use weather sampling as a typical sort of example, but really the
possibilities are endless in terms of what is possible, allowing the user to customize what
and how data is sampled, and provided in a format that is flexible enough to allow the
user to again customize what is done with the data and how it is worked.

A list of the devices used in this project, family identifiers and capabilities is presented in
Figure 18.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 31 of 65

Device
Name

Family Description Interfaces MemoryBanks

DS1920

DS1820

DS18S20

10 Temperature
and alarm
trips

Temperature-
Container

DS2406

DS2407

12 1K EPROM
memory,
dual switch

SwitchContainer MemoryBank
PagedMemoryBankOTPMemoryBank

DS2423 1D 4K
NVRAM
memory
with
external
counters

 MemoryBank PagedMemoryBank

DS2450 20 quad A/D ADContainer MemoryBank PagedMemoryBank

Figure 18 - 1-Wire device list for devices used in this project10

Getting the Device ID

As mentioned in the above discussion, the Master needs to know the correct device ID to
be able to communicate. This can be done in the course of the operation of the program
on the master, but would normally be pre-determined by the programmer and placed into
the program in some way. These ID’s can be obtained in different ways; depending on
the vendor, some devices come with the Device ID on the side of the appliance and
Dallas Semiconductor provides snippets of Java code to do various tasks which can be
implemented, including learning Device ID’s. A programmer could embed the command
to learn the ID’s into their program, or determine the ID’s ahead of time and hard code
the device ID’s, assuming they won’t change, into your own code – which is what I
initially did, or use a separate text file to list ID’s and have the program query the file
when required, which is what I did when I started using replacement equipment in
Calgary, and knew that I would have to switch it back once the 1-Wire network on
Pender was repaired.

Included with the download of the TINI OS (TINI SDK) is sample code for a variety of
tasks that can be done using the TINI. The following is the output of the compiled code

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 32 of 65

running the ListOW application, which is designed to query the network to discover the
addresses of all devices on the network11.
The following is the redirection of the output of running the compiled ListOW.java
program on the TINI;

TINI0247f4 /> java ListOW.TINI

Adapter: TINIExternalAdapter Port: serial1

A0000000008B6120
B200080014188810
75000000017A161D
F70000000106991D
9C0000000936D626

The above ListOW output allows us to not only determine the ID’s of the device, but also
identifies the family to which the device belongs, the capabilities inherent in that family,
and which build dependencies will need to be included in the compilation of the
application.

The above addresses can be examined in light of the discussion surrounding the 1-Wire
addresses. Each address is discovered as 16 hex values, or 64 bits. As discussed, the last
byte (2 hex values) indicate the family to which the device belongs. A complete list of
families can be found on the web12. Examination of the last two hex values of each
device in comparison with a list of 1-Wire families allows us to identify what families
these devices belong to;

A0000000008B6120 - DS2450 – AtoD for Wind Direction FC=20
B200080014188810 - thermostat DS18S20 FC=10
75000000017A161D - DS2423 - Wind Speed FC=1D
F70000000106991D – Rain Gauge FC= 1D
9C0000000936D626 – Pressure Barometer FC=26

The first two hex values are the CRC values for the address (an in depth discussion of 1-
Wire CRC values and algorithm can be found in Don Loomis’s 1-wire development
guide13). The first two values are for CRC calculation while the next 12 values ensure
the uniqueness of the address, while the last two values indicate the family to which the
device belongs.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 33 of 65

Limitation in terms of number of devices on 1-Wire network

A 1-Wire network usually has what is known linear format, but can also take on one of
two other topologies; star or stub.

Figure 19 - 1-Wire Network topologies

There really is no difference between stub and Star topologies, a stub network with
several devices on each stub is not considered a star, generally stub networks have arms
less than 3m, while star topologies feature at least one arm over 3.

A 1-Wire network is often described as a Microlan, and can have different topologies and
number of sensors. Two critical terms to the performance of a Microlan are the “weight”
and the “radius”. The radius of the Microlan is described as the maximum distance of the

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 34 of 65

wire between the Master and the furthest 1-Wire device. The weight of the network is the
distance, expressed in meters, of the total amount of wire used for the Microlan. As an
example, you may have a star topology on your 1-Wire network, with 4 distinct arms of
the following lengths; 5, 10, 15, and 20 meters. The radius would be 20 meters and the
weight would be 50 meters. Since there is a single Pull Up resistor, larger weighted
networks will impact the pull up times on the entire network. Once the pull up resistor is
unable to overcome the weight of the network, sensing devices will think a reset signal
has been initiated, or simply lose power entirely. The radius will impact the timing of the
slowest (longest) signal reflections. A Microlan which features a star topology with two
arms, one short and the other very long will have trouble regulating time slots for read
and write operations. In this case the reflection of signals from the short arm effects the
devices on the long arm rather like old unterminated 10base2 networks, and because of
this, this design is not recommended. This problem does point out the need for inclusion
of impedance in the network to dampen reflecting signals, and to terminate all cable runs
with a 1-wire device.

Each 1-Wire or ibutton (an ibutton device is essentially a self contained 1-Wire device ‘in
a can”) sensor adds to the capacitance of the network, and can be thought of in terms of
the effect it has on the bus’ ability return to it’s normal resting potential, and in this way
can be thought of as adding weight to the network equivalent to that of a small portion of
wire. Each device has different operating requirements, depending on its Family Class, its
functionality and what the master device requires of it. As a rule of thumb, an ibutton
device is considered to add on average 1 meter of weight, while a regular 1-Wire device
adds .5m. Any other connectors or circuit board traces will add weight to the network.
Studies have shown that standard Microlans cannot exceed a radius of 750m, the timing
delays between the master and furthest slaves becoming too great for the protocol. This is
a smaller problem than weight, since weights exceeding 200m is beyond the capabilities
of a simple pull up resistor. Intelligent pullup designs have increased the maximum
weight to 500m through the use of higher voltage active pull-up resistor under some form
of logic control. It is possible to get repeater devices and hubs to extend the ability of the
resistor to carry more weight and manage complex topologies.

The limitations on a 1-Wire network caused by the weight of the Microlan is further
compounded by the parasitic powering of 1-Wire devices, particularly on networks which
are carrying a weight approaching the capacity of the pull-up resistor.

Other than the weight of the given network, there is a limitation to the number of devices
a 1-wire Microlan can reasonably handle, depending on the frequency of the queries
which need to be made.

1-Wire protocol/network limitations

If one considers the above discussion, it becomes apparent that the protocol used in 1-
Wire communications comes with tremendous overhead. Even so, if we evaluate the
transaction discussed in Figure 16 above, it is clear that the other problems associated

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 35 of 65

with weight are much larger than the issues of the number of devices on the network.
Even with the relative speed of the bus, it takes a considerable period of time to do this
transaction. This discussion assumes the standard 1-Wire transmission rate of 16.3
kilobits/second. 1-Wire is capable of an overdrive speed of 144 kilobits/second, but is
only feasible over extremely short cable distances with few devices.

To initiate the above sequence, the reset pulse lasts for at least 480 µsec. A Microlan with
a larger radius and weight would require even more time than the minimum prescribed in
the protocol. The presence pulse can then be sent back to the master. Following the reset
pulse, the devices detect the rising edge on the bus and wait up to 60 µsec and then drive
the bus low for up to a further 240 µsec. Following the presence pulse, devices
communicate in master controlled timeslots, which are 60 µsec each. The master then
transmits the match address command byte (0x55), ordering all devices to listen for the
target address (480 µsec). The master transmits the 64 bit address of the target device
(3840 µsec) and then transmits the requested function (depends on device) – usually a
single byte specific to the functions available on the device (480 µsec). If required (as in
the example in Figure 16), the bus is then maintained in a high state for a prolonged
period to provide power to the device – in this case approximately 750 µsec. So in this
case a single transaction from the bus initiation to conclusion can take up to 6330 µsec.
To then acquire the data generated in the previous step, much of the same process is
repeated and takes a further 20940 µsec to return the data to the master, in all for the
Master to initiate the communication and receive the data back from the device will take
up to approximately 27270 µsec or almost 30 milliseconds. Assuming no contention or
data corruption issues requiring retransmission, then every device on the network would
require 30 milliseconds to be polled; 10 devices would require .03 seconds, allowing us
to sample up to 2000 devices a minute. On a real 1-Wire network there would likely be
more issues, but the primary area for failure is shortages, insufficient power to restore the
bus to its potential, usually determined by the overall weight of the network.

TINI limitations

The other limitation in the DS80C400 is the ability of the processor, and the amount of
memory available to it. The 1-Wire bus might comfortably hold 150 different devices,
but the TINI must query these devices, save information, run any other services required
of it. The TINI is capable of hosting a small website, but the memory available and clock
speed of the processor result in web page’s being small, simple and low in physical
memory. If we were to try to sample 1-Wire devices with any regularity and log the
information, we would run out of room on the device within a short period (in the range
of a few days to a few weeks depending on the quantity and type of data). If the TINI is
working to continuously sample data, crunch the data it receives, publish a website and
log, the DS80C400 will be sorely taxed and response times will increase greatly.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 36 of 65

Software Development

Compiling programs to run on the TINI proved to be challenging. The DS80C400 is a
microcontroller designed to hold the TINI OS – ideally it is designed to hold Java
programs, but it can also run C compiled programs. The java interface allows for the use
of the built in FTP, Telnet, and Serial Server. Java allows programs to be written in an
object oriented format, and can also run a simple http server. There are some great
possibilities for using the TINI as a standalone web server. For these reasons I chose to
go with Java rather than trying to develop my programs in C, which is possible with a
Kiel compiler. However, not being familiar with Java, I found compiling, even simple
Java programs, into a format that is could be run on the TINI extremely difficult. The
process of compiling these java programs is as follows;

A current version of java needs to be downloaded, and can be obtained from the sun
website14. I downloaded java 1.4.2 and installed it, although a newer version of Java has
been released since I began this project. The programs can be written in a regular java
format, but then need to be compiled and converted into a format that will run on an 8-bit
Microprocessor. This can be done by downloading the TINI Software Development Kit
(SDK) System from Dallas Semiconductors15. There were 2 primary downloads from this
site, an older version (1.02), and a newer (1.17) which has substantial changes over the
earlier version. I downloaded and ran all development in version 1.17. The 1.17 firmware
comes in a tar file and extraction of the file resulted in the firmware, source code, files a
number of required “jar” files including the TINI.jar, TINIclasses.jar, TINI.db, and the
TINI_400.tbin.

The TINI.jar file is a Java ARchive which contains three utilities, the Javakit (responsible
for firmware loading) the TINIconvertor modifies Java class files and creates binary
versions suitable for execution in a TINI environment and the TINI.db is a database used
by the TINIconvertor to modify the Java code to TINI compatible executables.

TINIclasses.jar contains all the classes in TINI’s API.

TINI_400.tbin is a TINI binary and is the firmware that needs to be loaded to the Flash
ROM on the TINI server. The tbin file holds a combination of the native operating
system and the Java API – the TINI Java runtime environment and slush shell
application.

As previously mentioned, uploading the tbin file was problematic, both because of the
obsolescence of the javakit and the lack of finding an “old school” serial cable to upload
the TINI_400.tbin. This was eventually accomplished, and by utilizing the built in
functionality of the TINI OS, I was able to log on to the TINI server over the network via
telnet. The Operating system is small and simple, and working in the Slush environment
intuitive to anyone who has ever worked in a UNIX shell like bash. The file system is
very simple and the directory structure holds an etc directory with a configuration file and

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 37 of 65

a passwd file. The commands accepted by the TINI OS are typically Unix shell based,
but stripped down and can be viewed with a “help” command.

To create a program which can run on the TINI device, we first need some Java code.
This takes the form of one (or more likely several) *.java files, these will represent
different class files, and the classes are declared in java files of the same name. So given
a number of java files, they can be compiled using the java compiler;

Using the java compiler requires a few things, the bin directory for the Java development
kit (JDK) needs to be in the current path, and later versions of Java requires the input of
the –target 1.1 option.

C:\javac –target 1.1 myfiles.java

This will result in the creation of a “myfiles.class” file… sometimes.

Some commands have changed between different releases of java, so we can force the
compatibility for different the source using a –source switch. If the java file contains
commands which are not part of the regular Java API, the compiling needs to be done as
follows;

C:\javac –target 1.1 – bootclasspath –source 1.2 c:\pathtotinifiles\tiniclasses.jar myfiles.java

This might be a little difficult to see in a written document, but these commands should
all be inserted on a single line. If there are multiple java files, the compiler can be helped
out with the use of a wild card character – by running the javac command from the folder
above the source code, it should pick up and compile all *.java files into class files. The
above command should create a file named myfiles.class, which then needs to be
converted into a form which is executable on the TINI.

To do this we can use the tiniconvertor;

C:\java –classpath c:\pathtotinifiles\tini.jar TIN IConvertor –f myfiles.class –o myfiles.tini –d
c:\pathtotinifiles\tini.db

this command will take the class file(s) and output a single file called “myfiles.tini” (all
existing “class” are left in the folder and need to be deleted manually). *.tini files can be
uploaded to a TINI via the FTP utility and run using the java command in the slush
environment;

tini>java myfiles.tini

A couple of other things to mention in this process, the first is that copying the tini “jar”
files from their location on the hard drive to the \bin folder of the JDK (which is one of

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 38 of 65

the things a well meaning colleague advised me to do make compiling easier) results in
programs which do not compile and run correctly in the tini, they must be specified by
the appropriate –classpath or -bootclasspath option. Another consideration is that if we
are going to be querying 1-Wire devices with this code, we will need to make further
modifications to this process. The one wire API (OWAPI needs to be compiled into the
class file, along with containers that will be referenced in the code. For example, if the
above example was being used to communicate on a oneewire network, and was going to
be querying a 1-Wire device which was a temperature sensor, meaning we would need a
temperature container from the 1-Wire family “10”. The device ID in this case would
certainly end in the number 10 for the last two digits. In this case we would need to
modify the compiling and conversion process to include all the build dependencies as
follows;

Compile:

C:\javac –target 1.1 -source 1.2 – bootclasspath c:\pathtotinifiles\tiniclasses.jar -classpath
c:\pathtotinifiles\owapi_dependencies_TINI.jar myfiles.java

Then build:
C:\java –classpath c:\pathtotinifiles\tini.jar Buil dDependency –x c:\pathtotinifiles\owapi_dep.txt
-p C:\pathtotinifiles\owapi_dependencies_TINI.jar TINIConvertor –f myfiles.class –o myfiles.tini
-d c:\pathtotinifiles \tini.db -add OneWireContainer10

Following this the resultant tini file (myfiles.tini) can be uploaded and run on the TINI as
in the above example.

To develop the software to; a) run in a TINI environment and b) query 1-Wire devices
can be developed in a couple of languages. As previously discussed, I chose to do the
development in Java, for the flexibility, power and ease of the development. I had never
done any programming whatsoever in Java, my experience being limited to some very
old languages like BASIC, Pascal and more recently C, none of which are object oriented
programming languages. I would like to point out that the “ease” part of my expectation
in terms of development was sorely misplaced; my expectation was that compiling in
Java would be like compiling in C. It wasn’t. My experience with gcc is that it always
works as expected, and once compiled that program can be consistently run. In Java, this
isn’t always the case. Installing java is a large download, resulting in many directories
and files being installed. Considerable configuration needs to be done to properly set
variables like the PATH and CLASSPATH before Java will compile a single program.
For a Java neophyte it was extremely difficult to figure out, although there is
considerable help available online and in texts, much of this information is spread out,
and needs to be pulled together. The getting started with Tini guide, for example, clearly
explains the building and compiling process, to run applications on TINI but covers none

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 39 of 65

the build dependencies or the necessity of including the owapi dependies or the container
files from the tini.db. Errors generated during attempts at compiling did not clearly
indicate a dependency problem, and for a new Java programmer, it was easy to assume
that the problem had to do with something in the code itself.

In addition to this was a physical wiring problem on the Pender, which made it
impossible for me to test my code in a 1-Wire environment. I was able to SSH to the
server, and from inside the network telnet to the TINI device, but some sort of a short in
the wire did not allow any communication with the 1-Wire devices, making it impossible
to test the 1-Wire network portions of the code. This worked when I left Pender, but
ceased working sometime shortly afterwards. To rectify this I eventually got a second
TINI device and some 1-wire gear to test my code locally, and am still waiting to return
to Pender to troubleshoot the wiring problem.

It took some time to get used to the Java concept of “classes” and class files, I tried to
think of a class as a function, and that helped. When compiling Java, the Java compiler
searches for and compiles all class files required in the code. The code I developed
generally placed whatever functionality I was attempting to add into the program into a
separate class file. All the separate class files were referenced by the “mintwx” class file,
containing the main() function.

In the end I wound up with 8 classes making up my program, the MintWX class being the
center of the program. Due to the length of these programs, they can’t reasonably be
included here, I will discuss two of these classes – MintWX and Onewire, and provide
some sample output captured via file redirection on the TINI.

Sample TINI output
MintWX.tini running example

The following text in italics is the output from a sample run on the TINI – I have included
debugging output to demonstrate. The program starts and parses a file called prefs.ini on
the TINI device. 1-Wire ID’s are included in the preferences file. I changed the frequency
of calculating wind direction, and sending data via a socket for a shorter demonstration.
The wind direction calculation is taken from Tim Bitson’s Extreme Tech Weather server
(with permission) and is quite crude, but this turns out to be very difficult to do inside the
TINI runtime due to the math libraries available. This analysis gets current values for
time and temperature, and simply takes the current value for wind direction at sampling
time. It is actually set to take an average over the sample period (5 minutes), but I have
this shortened to a single minute in this example.

Following the collection and storage of these values, MintWx connects to a socket server
program running on the server and dumps the data in a format which is mySQL friendly,
from where it can be pulled and published in the much more powerful Apache server.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 40 of 65

Starting MintWx v.4
debug on
Setting Tini's Timezone...
TINIOS Timezone = MST
MintWx Local Time = Tue Jan 09 01:17:04 MST 2007
MintWx v.4 Started
Found Adapter: TINIExternalAdapter
Invalid or No Rain Counter Device in prefs.ini
Invalid or No Pressure Device in prefs.ini
Device Error Counter Reset
Resetting 1-wire bus
Average reset
Getting weather at 1:17
Temperature: DS1920 F20008001B46B810
Temperature = 64.287498 degsF

Resetting 1-wire bus
Resetting 1-wire bus
Wind Speed: DS2423 2000000001508E1D
Count = 0 during 1168330654394ms calcs to 0.0MPH
Resetting 1-wire bus
Wind Direction: DS2450 4800000000E65A20
Wind Dir AtoD Ch A = 0.055782102
Wind Dir AtoD Ch B = 4.4328799
Wind Dir AtoD Ch C = 4.4292864
Wind Dir AtoD Ch D = 4.4386615
Wind Direction = 12

Resetting 1-wire bus
Resetting 1-wire bus
Updating Weather Page
24 Hour Index = 7
GetWindDirectionString input = 12 and cal = 0
Wind Direction Decoded = 12 = W
Bin 0 = 0
Bin 1 = 0
Bin 2 = 0
Bin 3 = 0
Bin 4 = 0
Bin 5 = 0
Bin 6 = 0
Bin 7 = 0
Bin 8 = 0
Bin 9 = 0
Bin 10 = 0
Bin 11 = 0
Bin 12 = 2
Bin 13 = 0
Bin 14 = 0
Bin 15 = 0
Wind Dir: Found max of 2.0 at index 8 Offset of 4
GetWindDirectionString input = 12 and cal = 0
Wind Direction Decoded = 12 = W
Wind Dir = 12 = W

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 41 of 65

GetWindDirectionString input = 12 and cal = 0
Wind Direction Decoded = 12 = W
Device Error Counter Reset
Connecting to 192.168.1.153
message =&dateutc=2007-01-
09+08%3A18%3A00&tempf=64.3&windspeedmph=0.0&windgus tmph=0.0&winddir=270
sending message
waiting for response…
waiting for response
response=Data received at server, thank you!
Average reset

The mintwx.class

The mintwx.class file follows a fairly straightforward layout with the usual io, java and
onewire imports – these imports are part of the TINI O/S download and the TINI sdk
(software development kit). The entire code for this class can be found in the appendix.
The program follows with the declaration of the Mintwx.class, which holds the “main”
function. This class begins by pulling together the standard constants, specific 64 bit 1-
Wire addresses and initiates a loop which sleeps for a minute and then queries the 1-Wire
devices. Specifics of querying other 1-wire devices, data logging, socket creation and
sending data to the web server are handled in other classes, which are called as required.

The central program in this project is the MintWx.java – this programs contains the main
class, and the main method, it sets up the operating environment – in general sets up the
main () method to loop once a minute, querying the 1-Wire devices on the network and
saving the information. Once every 5 minutes it calculates the average values and creates
a socket connection to the web server and dumps the data to a server program that I
created in C which listens on a specific port (5446) and then places the data into a SQL
database for long term storage and reference, and publishing to the web in Apache. I have
borrowed (with permission) from Tim Bitson’s extreme tech weather server, the weather
calculating routines in this program, the logging routine and the techniques for setting
and using preferences. The largest difference between the programs is that the ETWS
generates and serves a web page directly from the TINI, rather than forwarding the data
to a centralized server. I see my design as having two major advantages; scalability and
performance. Any number of TINI devices could then be plugged into an Ethernet LAN
forwarding data to a single reference point. This design also avoids some of the
limitations of the TINI itself, with memory limitations, the ETWS will freeze after a few
days if full logging is implemented as the available memory is used up. The TINI
performance is also slower than my server’s P4 processor with a 2G of RAM, and has a
hard limitation of 24 concurrent socket connections.

I originally built the Mintwx.java program with the 1 minute query and 5 minute loop and
then began feathering in more functionality through the addition of new classes. For
example, when the OWSocket.java program (class) is called and it generates a socket

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 42 of 65

connection to the server, and queries the other classes to get the weather data, then dumps
that information into the socket.

A quick run through of the code (refer to the appendix) reveals a reasonably small
program, and follows the convention of putting the main() function at the end. The file
begins with includes and creation of variables. Time keeping and creation of all necessary
variables for the later loops follows.

Inside the loop, the key line in terms of getting the weather is;

weather.getWeather();

this line basically calls the getWeather function in the weather class. A truncated version
of the getweather function is;

public void getWeather()
 {
 String device = ""; // device name for error message
 try
 {
 // get data from each sensor…
 device = "Temperature";
 temperature = ws.GetTemperature();
 ws.resetBus();

 device = "Pressure";
 pressure = ws.GetPressure();
 ws.resetBus();

 device = "";

 sumTemp += temperature;
 sumWindSpeed += windSpeed;
 sumPress += pressure;

 dir[windDirection]++;

 numSamples++;

 if (windSpeed > windPeak)
 windPeak = windSpeed;

 }

Inside this function, each sensor is queried in turn by the lines

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 43 of 65

 temperature = ws.GetTemperature();
 ws.resetBus();

ws is actually a variable which represents the onewire class, so this command is actually
filling the “temperature” variable with the contents of the Gettemperature() function
found in the onewire class.

The onewire class is responsible for querying the devices on the 1-wire network, this
class begins with the declaration of the tempDevice using the temperature container used
during compiling.

private OneWireContainer10 tempDevice = null;

which will allow us to use tempDevice in the GetTemperature function

 byte[] state = tempDevice.readDevice();
 tempDevice.doTemperatureConvert(state);

 state = tempDevice.readDevice();
 temperature = (float)tempDevice.getTemperature(state);

This seems fairly explanatory – the container has been identified, and then uses this value
to execute the readDevice() function, eventually assigning the the sensed value to the
temperature variable.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 44 of 65

Areas of Future Research

It seems that a move towards greater convergence in network technologies is long
overdue. We are finally beginning to see things like phone connectivity being converged
with the data network. Investigation into the standards and protocols required for network
integration by all sorts of vendors, like companies such as Leviton, Honeywell and
General Electric should begin to allow for the development of a universal standards based
development of controls for viewing, managing and integrating all sorts of these devices
with a network.

1-Wire’s suitability for this process should be examined. Further investigation into
integration between with types of network technologies would also be an interesting
exercise, combination with wireless, Bluetooth sensors (available on many common
household devices like phones) would allow for an interesting tie in for smart home
technologies. Possibly trying to find other media to apply this protocol too might allow
for expansion to other types of media, like wireless. The necessity of using electrical
signal with the pull transistor might make that difficult.

There is more than one way to connect to a 1-Wire device, it strikes me as feasible to
create simple embedded DS80C400 microcontrollers onto a standard electronic interface,
like a PCI card, that should allow simple, direct connection with between a PC and the 1-
Wire network and the Ethernet. This might allow for the development of a “device
sensing server” that interfaces directly with Ethernet.

Some work in the open source community has developed some work towards directly
connecting to 1-wire weather sensors in a Linux environment, searching for the OWW
project on sourceforge, will yield results.

An interesting project would be to further stress test the limits of reliability of 1-wire
network design, closing examining the impact of weight and radius on the performance of
the network. It would also be interested in examination of ways to increase the maximum
supportable weight of network.

Another area of research might be to examine possible protocol enhancements,
application of protocol outside 1-wire technologies.

Accommodations for using one wire to modify settings on devices depending on the data
being collected, research into possible X-10 tie in to allow power on/off of regular
electrical devices based on the data acquired from the 1-Wire network.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 45 of 65

Conclusions

This project was an investigation into embedded networking and sensing using 1-Wire
network technologies. In the course of this project I was able to ascertain a number of
things;

The DS80C400 is a very stable, functional platform. It is inexpensive, and provides an
easy to operate interface between serial, Ethernet and 1-wire networks. The TINI O/S is
an excellent operating system that is easy to use, and flexible, with support for java built
applications, and built in FTP, telnet, and serial servers. Incorporation of this embedded
platform into custom built microcomputers should be easy, affordable and flexible.

1-Wire networks utilize a very interesting protocol for remote data sensing using 1-Wire
and ibutton devices. This protocol is stable, robust, and the use of parasitic power in 1-
wire devices makes it an ideal candidate for doing remote sensing. To try to pull AC and
or DC power to every device on a large sensor network is not feasible, but 1-Wire makes
this simple, cheap an effective.

Embedded development in java proved very difficult for me in the beginning, but I have
to confess that as I come to slowly understand it better, I am liking the use of it more all
the time, and now that I have gotten over the initial challenges of how to compile, build
and run the code, I would not have too much hesitation to embark on using the java
platform in this environment again. That being said, further investigations into using C as
a development language for embedded platforms would be a useful undertaking.

My goal in this project was to get a solid understanding of 1-Wire technologies and
embedded controllers, and querying 1-Wire devices to gather information in a practical
environment.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 46 of 65

References

Dallas Semiconductor Maxim. “TINI_GUIDE,” Rev 0.7/04 Retrieved December 2005

from: http://www.maxim-ic.com/products/TINI/pdfs/TINI_GUIDE.pdf

Stevens, Richard W., Bill Fenner, Andrew Rudoff, (2004) Unix Network Programming,

vol 1, 3rd Edition, Addison Wesley..

Waite, Mitchell, Stephen Prata, (1994) New C Primer Plus, Sams Publishing,.

Loomis, Don, (2001) TINI Specification and Developers Guide, Addison Wesley,

Toronto.

Axelson, Jan, (2003) Embedded Ethernet and Internet Complete, Lakeview Research,.

Sobell, Mark, (2005) A Practical Guide to Redhat Linux, 2nd Ed, Prentice Hall,.

Bitson, Tim, (2006) Weather Toys, Wiley Publishing Inc.,.

Arnold, Ken and james Gosling, (1998) The Java Programming Language Second

Edition, Addison Wesley,.

Reilly, Michael and David Reilly, (2002) Java Network Programming and Distributed

Computing, Addison-Wesley,.

Horstmann, Cay and Gary Cornell, (2001) Core Java vol1- Fundamentals, Sun

Microsystems Press,.

Liang, Daniel, (2005) Introduction to Java Programming, Pearson Prentice Hall.

Maxim/Dallas Semiconductors (2005)Guidelines for Reliable 1-Wire Networks.

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 47 of 65

Appendix A – ListOW.java for 1-Wire addressing discovery

/*--- --------------------------
 * Copyright (C) 1999,2000 Dallas Semiconductor Cor poration, All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentati on files (the "Software"),
 * to deal in the Software without restriction, inc luding without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permi t persons to whom the
 * Software is furnished to do so, subject to the f ollowing conditions:
 *
 * The above copyright notice and this permission n otice shall be included
 * in all copies or substantial portions of the Sof tware.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRAN TY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR RANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPO SE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONT RACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE S OFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Except as contained in this notice, the name of Dallas Semiconductor
 * shall not be used except as stated in the Dallas Semiconductor
 * Branding Policy.
 *--- --------------------------
 */

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.container.OneWireContain er;
import java.util.Enumeration;

/**
 * Minimal demo to list device found on default 1-W ire port
 * @version 0.00, 28 August 2000
 * @author DS
 */
public class ListOW
{

 /**
 * Method main
 *
 *
 * @param args
 *
 */
 public static void main (String args [])
 {
 OneWireContainer owd;

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 48 of 65

 try
 {

 // get the default adapter
 DSPortAdapter adapter = OneWireAccessProvi der.getDefaultAdapter();

 System.out.println();
 System.out.println("Adapter: " + adapter.g etAdapterName()
 + " Port: " + adapter.g etPortName());
 System.out.println();

 // get exclusive use of adapter
 adapter.beginExclusive(true);

 // clear any previous search restrictions
 adapter.setSearchAllDevices();
 adapter.targetAllFamilies();
 adapter.setSpeed(adapter.SPEED_REGULAR);

 // enumerate through all the 1-Wire device s found
 for (Enumeration owd_enum = adapter.getAll DeviceContainers();
 owd_enum.hasMoreElements();)
 {
 owd = (OneWireContainer) owd_enum.nex tElement();

 System.out.println(owd.getAddressAsStri ng());
 }

 // end exclusive use of adapter
 adapter.endExclusive();

 // free port used by adapter
 adapter.freePort();
 }
 catch (Exception e)
 {
 System.out.println(e);
 }

 return;
 }
}

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 49 of 65

Appendix B - Build.bat - Batch file compiling and uploading to TINI

@echo off
rem usage; from command line; "build 1.2.3.4"
rem where 1.2.3.4 represents the IP address of the TINI - or FTP server
rem this script will copy the current *.java and fi nished *.TINI files to a separate
rem location for backup, compile the current java f iles into associated class
rem files, and then use the TINIconvertor to create a single runnable
rem file (MintWX.TINI). This script will then redir ect a series of commands into a
rem single file (TINI.cmd) which automates the conn ection to the TINI FTP server and
rem uploading of the *.TINI file.

rem *** ********************
rem I am heavily indebted to "chenot" - a moderator in the TINI forum located at;
rem http://discuss.dalsemi.com/index.php?showforum= 5
rem for suggesting this batch filing approach, it s aved years of time and frustration
rem in building, compiling and testing the code. I had never seen the technique for
rem redirection to automate FTP connection before. Generally I used this forum when I
rem ran into trouble and it was often very helpful.
rem** ********************

echo TINI Build Script
echo FTP Address = %1

echo "backing up source files"
del c:\aab*.* /Q
copy C:\amint\Source\src*.* c:\aab*.*
copy C:\amint\Source\bin*.* c:\aab*.*

del bin*.* /Q

echo Compiling...
javac -target 1.1 -source 1.2 -bootclasspath ..\..\ TINI1.17\bin\TINIclasses.jar -
classpath ..\..\TINI1.17\bin\owapi_dependencies_TIN I.jar -d bin src*.java

echo Building....
java -classpath ..\..\TINI1.17\bin\TINI.jar BuildDe pendency -x
..\..\TINI1.17\bin\owapi_dep.txt -p ..\..\TINI1.17\ bin\owapi_dependencies_TINI.jar -f
bin -o bin\MintWX.TINI -d ..\..\TINI1.17\bin\TINI.d b -add
OneWireContainer10,OneWireContainer12,OneWireContai ner1D,OneWireContainer20,OneWireCo
ntainer26

echo Attempting FTP connection with "%1"
echo root>> TINI.cmd
echo TINI>> TINI.cmd
echo cd bin>> TINI.cmd
echo put .\bin\MintWX.TINI>> TINI.cmd
echo bye>> TINI.cmd
ftp -s:TINI.cmd "%1"

del TINI.cmd
del bin*.class

echo done

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 50 of 65

Appendix C - List of 1-Wire devices and capabilities
Device Name Family Description Interfaces MemoryBanks

DS1990A

DS2401

01 1-Wire Address only

DS1991

DS1425

02 Secure memory device

DS1994

DS2404

04 4K NVRAM memory and
clock, timer, alarms

ClockContainer MemoryBank PagedMemoryBank

DS2405 05 Single addressable switch

DS1993 06 4K NVRAM memory MemoryBank PagedMemoryBank

DS1992 08 1K NVRAM memory MemoryBank PagedMemoryBank

DS1982

DS2502

09 1K EPROM memory MemoryBank
PagedMemoryBankOTPMemoryBank

DS1995 0A 16K NVRAM memory MemoryBank PagedMemoryBank

DS1985

DS2505

0B 16K EPROM memory MemoryBank PagedMemoryBank
OTPMemoryBank

DS1996 0C 64K NVRAM memory MemoryBank PagedMemoryBank

DS1986

DS2506

0F 64K EPROM memory MemoryBank
PagedMemoryBankOTPMMemoryBank

DS1920

DS1820

DS18S20

10 Temperature and alarm trips

Temperature-Container

DS2406

DS2407

12 1K EPROM memory, dual
switch

SwitchContainer MemoryBank
PagedMemoryBankOTPMemoryBank

DS1983

DS2503

13 4K EPROM memory MemoryBank PagedMemoryBank
OTPMMemoryBank

DS1971 14 256bit EEPROM memory and
OTP register

 MemoryBank
PagedMemoryBankOTPMMemoryBank

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 51 of 65

DS1954 16 Java Powered Cryptographic
iButton

DS1963S 18 4K NVRAM memory and
SHA-1 engine

 MemoryBank PagedMemoryBank

DS1963L 1A 4K NVRAM memory with
write cycle counters

 MemoryBank PagedMemoryBank

DS2423 1D 4K NVRAM memory with
external counters

 MemoryBank PagedMemoryBank

DS2409 1F dual switch, coupler SwitchContainer

DS2450 20 quad A/D ADContainer MemoryBank PagedMemoryBank

DS1921 21 Thermochron temperature
logger

Temperature-Container
ClockContainer

MemoryBank PagedMemoryBank

DS1822 22 Econo temperature Temperature-Container

DS1973 23 4K EEPROM memory MemoryBank PagedMemoryBank

DS1904

DS2415

24 Real-time-clock ClockContainer

DS2438 26 Temperature, A/D ClockContainer ADContainer

Temperature-Container

Humidity-Container

DS2417 27 Real-time-clock with interrupt ClockContainer

DS18B20 28 Adjustable resolution
temperature

Temperature-Container

DS2890 2C single channel digital pot Potentiometer-Container

DS2760 30 Temperature, current, A/D ADContainer Temperature-
Container

DS1961S

DS2432

33 1K EEPROM memory with
SHA-1 engine

 MemoryBank

PagedMemoryBank

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 52 of 65

Appendix D – MintWx.java
/** ****************************

 File name: MintWx.java

 MintWx is a program that serves weather data colle cted using an
 AAGelectronica 1-wire weather station. Weather dat a is collected once
 per minute. After every 5 collections (5 minutes) the data is averaged and
 forwarded via a stream socket connection to a web server, weather the data is
 put together and published.

 This file is the contains the main() method. And q ueries all other class files
 as required.

 ** ***************************/

//includes
import java.net.*;
import java.io.*;
import java.util.*;
import com.dalsemi.system.*;

//class must be declared in a java file of the same name
public class MintWx
{
 // class variables and constants
 private static Prefs prefs;
 private static final String versionStr = "MintWx v.4";
 protected weather weather;
 protected Logs todaysLog, yesterdaysLog = null;
 protected static boolean debugFlag = false;
 protected static Object lock;
 private static boolean firstTime = true;
 private static long startTime;

 public MintWx() throws IOException
 {
 // get the start time of this session
 startTime = d.getTime();
 Date d = new Date();
 }

// need to declare a few more things for the main p rogram loop: Start the server,
// get the weather and send data to webserver via s ocket created in OWSocket.java

 public void mainLoop()
 {
 boolean resetFlag = true;
 Date date;
 int minute, hour;
 OWSocket wg = new OWSocket();

 try
 {

 // create a new time setter class,

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 53 of 65

// then loops forever, getting weather data
 // will later compare Minute=lastMinute – wil l activate when condition not met
 TiniTime ts = new TiniTime(prefs.timeServerUr l, prefs.timeOffset, debugFlag);
 int lastMinute = -99;
 int lastHour = -99;
 date = new Date();

 // start of primary loop – loop forever
 while(true)
 {
 // sleep for 1 second - specified milliseco nds
 Thread.sleep(1000);

 // check current time – update minute and h our variables
 date.setTime(System.currentTimeMillis());
 minute = date.getMinutes();
 hour = date.getHours();

 // only loop once a minute – at end of loop lastMinute is updated
 if (minute != lastMinute)
 {
 // gc function is the TINI "garbage colle ctor" – will free up memory
 java.lang.System.gc();

 // *** here's the call that actually gets the weather data ***
 weather.getWeather();

 //weather collected each minute but
 // if time = 5 minute, gather weather dat a calculate, and forward it
 // to server via socket (5446)
 if ((minute % 5) == 0)
 {
 // calculate weather data from weather class
 weather.crunchWeather(index, resetFlag) ;

 // send data via OWSocket class to serv er
 if (prefs.wuEnabled)
 wg.send(date, weather);

 // now clear avgs and reset flag for ne w set
 weather.resetAvg();
 resetFlag = false;
 }

 // update the time to complete loop
 lastMinute = minute;
 lastHour = hour;

 // clean up the any mess we left behind
 java.lang.System.gc();
 }
 }
 }

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 54 of 65

 catch(Throwable t)
 {
 ErrorLogs.log("drive(): " + t);
 }
 }
 //Need to carefully keep track of time
 public static boolean setTimeZone()
 {
 try
 {
 // get the OS timezone
 String tz = com.dalsemi.system.TINIOS.getTime Zone().trim();

 // get if time zone is default
 if (!tz.equals("GMT"))
 {
 try
 {
 // now try to set the java timezone
 TimeZone zone = TimeZone.getTimeZone(tz);
 if (zone == null)
 {
 try
 {
 if (tz.charAt(0) != '-')
 tz = "+" + tz;

 com.dalsemi.system.TINIOS.setTimeZo ne(tz);
 zone = TimeZone.getDefault();
 }
 catch(NumberFormatException nfe)
 { }
 }

 if (zone!=null)
 TimeZone.setDefault(zone);
 }
 }
 }
 return true;
 }
//get preferences from prefs class and prefs.ini fi le
 public static Prefs getPrefs()
 {
 return prefs;
 }
 //is debugging turned on?
public static boolean getDebugMode()
 {
 return debugFlag;
 }
//****************MAIN() function****************** ***
//in java the convention is to have main() at end o f file
 public static void main(String[] args)
 {
 System.out.println("Starting " + versionStr);

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 55 of 65

 if (args.length != 0)
 {

// check if –d option was used on starting of comma nd, if so
// print all debug flags

 if (args[0].equals("-d"))
 {
 System.out.println("debug on");
 debugFlag = true;
 }
 }

 // set Tini's Timezone
 setTimeZone();
 System.out.println("MintWx Local Time = " + new Date());

 try
 {
 prefs = new Prefs();
 prefs.read(debugFlag);
 ErrorLogs.log(versionStr + " Started");

 MintWx weatherServer = new MintWx();
 weatherServer.weather = new weather(debugFl ag, prefs);
 weatherServer.mainLoop();
 }
 catch(Throwable t)
 {
 ErrorLogs.log("Exception: Main() " + t);
 }
 finally
 {
 ErrorLogs.log("MintWx Stopped");
 System.exit(1);
 }
 }
}

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 56 of 65

Appendix E – Onewire.java

/** ****************************

 This file provides the primary interface to the 1- wire devices in the
 weather station. It utilizes a pref class to provi de weather station
 specific data such as device serial number (ID) an d calibration values.

 ** ***************************/
//imports
import com.dalsemi.onewire.*;
import com.dalsemi.onewire.adapter.*;
import com.dalsemi.onewire.container.*;

public class onewire
{

 //variable declaration
 private OneWireContainer10 tempDevice = null;
 private OneWireContainer1D windSpdDevice = null;
 private OneWireContainer20 windDirDevice = null;
 private OneWireContainer1D rainDevice = null;
 private OneWireContainer26 pressureDeviceAtoD = null;
 private TAI8570 pressureDeviceTAI = null;
 protected float temperature;
 protected float windSpeed;
 protected int windDirection;
 protected float pressure;
 protected float rain;
 private long lastCount = 0;
 private long lastTicks = 0;
 private long lastLCount = 0;
 private long lastLTicks = 0;
 private int tempErrors;
 private int windSpdErrors;
 private int windDirErrors;
 private int pressureErrors;
 private int rainErrors;
 private DSPortAdapter adapter;
 private static boolean debugFlag;
 private static Prefs prefs;
 public static final long TICKS_PER_SECOND = 1000 L;
 public onewire(boolean debugFlag, Prefs prefs) th rows OneWireException
 {

 // debug flag for print statements
 this.debugFlag = debugFlag;
 this.prefs = prefs;

 // get an instance of the TINI external adapter – must have this to communicate
 // on 1-wire network
 adapter = OneWireAccessProvider.getDefaultAdapt er();
 if (adapter != null)
 {
 if (debugFlag)
 System.out.println("Found Adapter: " + adap ter.getAdapterName());

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 57 of 65

 }
 else
 {
 ErrorLogs.log("Error: Unable to find adapter! ");
 throw new OneWireException("1-Wire Adapter No t Found");
 }
 // using the prefs data, we can now get instanc es of each weather sensor
 //we need to determine devices before we can qu ery them

 // ***temperature device***
 // routine to check for device sensitivity from Dallas Semiconductor
 if(prefs.tempDeviceAvailable)
 {
 //check to make sure we have ID and can commu nicate

tempDevice = new OneWireContainer10(adapter, prefs. tempDeviceID);
 if (tempDevice == null)
 ErrorLogs.log("No DS1820 Temperature Sensor found - Disabling Device");

 else
 {
 // does this temp sensor have greater than .5 deg resolution?
 try
 {
 if (tempDevice.hasSelectableTemperatureRe solution())
 {
 // set resolution to max
 byte[] state = tempDevice.readDevice();

tempDevice.setTemperatureResolution(tempDevice.RESO LUTION_MAXIMUM,
state);

 tempDevice.writeDevice(state);
 ErrorLogs.log("Temp Device Supports Hig h Resolution");
 }
 }
 catch (OneWireException e)
 {
 ErrorLogs.log("Error Setting Resolution: " + e);
 }
 }
 }
 else
 System.out.println("Invalid or No Temp Device in prefs.ini");

 // ***check for wind speed device
 if (prefs.windSpdDeviceAvailable)
 {
 windSpdDevice = new OneWireContainer1D(adapte r, prefs.windSpdDeviceID);
 if (windSpdDevice == null)
 ErrorLogs.log("No DS2423 Wind Counter found - Disabling Device");
 }
 else
 System.out.println("Invalid or No Wind Speed Device in prefs.ini");

 // check for wind direction device
 if (prefs.windDirDeviceAvailable)
 {
 windDirDevice = new OneWireContainer20(adapte r, prefs.windDirDeviceID);

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 58 of 65

 if (windDirDevice == null)
 ErrorLogs.log("No DS2450 Wind A to D Device found - Disabling Device");
 }
 else
 System.out.println("Invalid or No Wind Direct ion Device in prefs.ini");

 // check for rain device
 if (prefs.rainDeviceAvailable)
 {
 rainDevice = new OneWireContainer1D(adapter, prefs.rainDeviceID);
 if (rainDevice == null)
 ErrorLogs.log("No DS2423 Rain Counter found - Disabling Device");
 }
 else
 System.out.println("Invalid or No Rain Counte r Device in prefs.ini");

 // check for pressure device
 if (prefs.pressureDeviceIsTAI8570)
 {
 // make a new TAI8570
 pressureDeviceTAI = new TAI8570(adapter, pref s.pressureDeviceID1,
prefs.pressureDeviceID2, debugFlag);
 // load the calibration values
 if (!pressureDeviceTAI.readCalibration())
 {
 ErrorLogs.log("Unable to Read Cal Values fr om TAI8570 - Disabling Device");
 pressureDeviceTAI = null;
 }
 }
 else
 System.out.println("Invalid or No Pressure De vice in prefs.ini");

 // reset the 1-Wire bus
 resetBus();
 }

 try
 {
 // ****read temperature*****
 if (debugFlag)
 System.out.println("Temperature: " + temp Device.getName() + " " +
tempDevice.getAddressAsString());

//this is a straightforward call – we have determin ed in device ID
//is correct, now we can read device by readDevice() call

 byte[] state = tempDevice.readDevice();
 tempDevice.doTemperatureConvert(state);
 state = tempDevice.readDevice();
 temperature = (float)tempDevice.getTemperat ure(state);

 // convert to degs F
 if (prefs.tempF == true)
 temperature = temperature * 9.0f/5.0f + 3 2f;

 if (debugFlag)

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 59 of 65

 System.out.println("Temperature = " + tem perature + " degs" +
prefs.tempUnits + "\n");
 }
 }
 return temperature;
 }

 public float GetWindSpeed() throws OneWireExcepti on
 {
 if (windSpdDevice != null && windSpdErrors < pr efs.deviceErrorsBeforeDisable)
 {
 // is device there?
 if (!windSpdDevice.isPresent())
 {
 ErrorLogs.log("Wind Speed Counter Not Prese nt");
 windSpdErrors++;

 // have we exceeded the number of allowed e rrors?
 if (windSpdErrors >= prefs.deviceErrorsBef oreDisable)
 {
 ErrorLogs.log("Windspeed Disabled");
 windSpeed = 0.0f;
 }
 }
 else
 {
 // read current wind count & time and compa re to last count & time
 if (debugFlag)
 System.out.println("Wind Speed: " + windS pdDevice.getName() + " " +
windSpdDevice.getAddressAsString());

 long currentCount = windSpdDevice.readCount er(15);
 long currentTicks = System.currentTimeMilli s();

 if (lastTicks != 0)
 {
 // calculate the wind speed based on the revolutions per second
 if (prefs.speedMph)
 windSpeed = ((currentCount-lastCount)/((currentTicks-lastTicks)/1000f)) /
2.0f * 2.453f; // MPH
 else
 windSpeed = ((currentCount-lastCount)/((currentTicks-lastTicks)/1000f)) /
2.0f * 3.862f; // KPH
 }

 if (debugFlag)
 System.out.println("Count = " + (currentC ount-lastCount) + " during " +
(currentTicks-lastTicks) + "ms calcs to " + windSpe ed + prefs.speedUnits);

 lastCount = currentCount;
 lastTicks = currentTicks;

 }
 }

 // on startup, wind might be negative, so cap i t at 0

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 60 of 65

 if (windSpeed < 0)
 windSpeed = 0.0f;

 return windSpeed;
 }

 public int GetWindDirection() throws OneWireExcep tion
 {
 if (windDirDevice != null && windDirErrors < pr efs.deviceErrorsBeforeDisable)
 {
 // is device there?
 if (!windDirDevice.isPresent())
 {
 ErrorLogs.log("Wind Direction A to D Not Pr esent");
 windDirErrors++;

 // have we exceeded the number of allowed e rrors?
 if (windDirErrors >= prefs.deviceErrorsBefo reDisable)
 {
 ErrorLogs.log("Wind Direction Disabled");
 windDirection = 16;
 }

 }
 else
 {
 // setup the wind AtoD to read all 4 channe ls 8 in bit mode with 5.12 volts
full scale
 if (debugFlag)
 System.out.println("Wind Direction: " + w indDirDevice.getName() + " " +
windDirDevice.getAddressAsString());

 byte[] state = windDirDevice.readDevice();

 windDirDevice.setADResolution(OneWireContai ner20.CHANNELA, 8, state);
 windDirDevice.setADResolution(OneWireContai ner20.CHANNELB, 8, state);
 windDirDevice.setADResolution(OneWireContai ner20.CHANNELC, 8, state);
 windDirDevice.setADResolution(OneWireContai ner20.CHANNELD, 8, state);

 windDirDevice.setADRange(OneWireContainer20 .CHANNELA, 5.12, state);
 windDirDevice.setADRange(OneWireContainer20 .CHANNELB, 5.12, state);
 windDirDevice.setADRange(OneWireContainer20 .CHANNELC, 5.12, state);
 windDirDevice.setADRange(OneWireContainer20 .CHANNELD, 5.12, state);
 windDirDevice.writeDevice(state);

 windDirDevice.doADConvert(OneWireContainer2 0.CHANNELA, state);
 windDirDevice.doADConvert(OneWireContainer2 0.CHANNELB, state);
 windDirDevice.doADConvert(OneWireContainer2 0.CHANNELC, state);
 windDirDevice.doADConvert(OneWireContainer2 0.CHANNELD, state);

 float chAVoltage =
(float)windDirDevice.getADVoltage(OneWireContainer2 0.CHANNELA, state);
 float chBVoltage =
(float)windDirDevice.getADVoltage(OneWireContainer2 0.CHANNELB, state);
 float chCVoltage =
(float)windDirDevice.getADVoltage(OneWireContainer2 0.CHANNELC, state);

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 61 of 65

 float chDVoltage =
(float)windDirDevice.getADVoltage(OneWireContainer2 0.CHANNELD, state);

 windDirection = GetWindDir(chAVoltage, chBV oltage, chCVoltage, chDVoltage);

 if (debugFlag)
 {
 System.out.println("Wind Dir AtoD Ch A = " + chAVoltage);
 System.out.println("Wind Dir AtoD Ch B = " + chBVoltage);
 System.out.println("Wind Dir AtoD Ch C = " + chCVoltage);
 System.out.println("Wind Dir AtoD Ch D = " + chDVoltage);
 System.out.println("Wind Direction = " + windDirection + "\n");
 }

 if (windDirection == 16)
 {
 ErrorLogs.log("Wind Direction Error: " +
 "Wind A2D Ch A = " + chAVoltage +
 "Wind A2D Ch B = " + chBVoltage +
 "Wind A2D Ch C = " + chCVoltage +
 "Wind A2D Ch D = " + chDVoltage);
 }
 }
 }

 return windDirection;
 }

 public float GetRain() throws OneWireException
 {

 if (rainDevice != null && rainErrors < prefs.de viceErrorsBeforeDisable)
 {
 // is device there?
 if (!rainDevice.isPresent())
 {
 ErrorLogs.log("Rain Counter Not Present");
 rainErrors++;

 // have we exceeded the number of allowed e rrors?
 if (rainErrors >= prefs.deviceErrorsBeforeD isable)
 {
 ErrorLogs.log("Rain Counter Disabled");
 rain = 0.0f;
 }
 }
 else
 {
 // read rain count from counter 15
 if (debugFlag)
 System.out.println(rainDevice.getName() + " " +
rainDevice.getAddressAsString());

 rain = (rainDevice.readCounter(15)/100F);

 if (debugFlag)
 System.out.println("Rain Counter: " + rai n + " inches");

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 62 of 65

 // convert to centimeters if required
 if (!prefs.rainInches)
 rain *= 2.54f;

 // subtract rain offset value from prefs
 rain = rain - prefs.rainZero;

 if (debugFlag)
 {
 System.out.println("Rain Offset : " + pre fs.rainZero);
 System.out.println("Rain YTD : " + rai n + " \n");
 }
 }
 }

 return rain;
 }

 public float GetPressure() throws OneWireExceptio n
 {
 if (prefs.pressureDeviceIsTAI8570)
 {
 if (pressureDeviceTAI != null && pressureErro rs <
prefs.deviceErrorsBeforeDisable)
 {
 // is device there?
 if (!pressureDeviceTAI.isPresent())
 {
 ErrorLogs.log("TAI Pressure Sensor Not Pr esent");
 pressureErrors++;

 // have we exceeded the number of allowed errors?
 if (pressureErrors >= prefs.deviceErrorsB eforeDisable)
 {
 ErrorLogs.log("Pressure Sensor Disabled ");
 pressure = 0.0f;
 }
 }
 else
 {
 // read the pressure and scale results
 if (pressureDeviceTAI.readPressure())
 {
 // get the pressure
 if (prefs.baroInHg)
 pressure = pressureDeviceTAI.getPress ureInHg();
 else
 pressure = pressureDeviceTAI.getPress ureMb();

 if (debugFlag)
 {
 System.out.println("TAI9870 Temp = " +
pressureDeviceTAI.getTempF());
 System.out.println("Station Pressure = " + pressure +
prefs.baroUnits);
 System.out.println("Gain = " + prefs.baroSlope);

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 63 of 65

 System.out.println("Offset = " + prefs.baroIntercept);
 }

 // apply calibration
 pressure = pressure * prefs.baroSlope + prefs.baroIntercept;

 if (debugFlag)
 System.out.println("Corrected Pressur e = " + pressure + "\n");
 }
 else
 pressureErrors++;
 }
 }
 }

 return pressure;
 }

 static final float lookupTable[][] = { {4.5F, 4. 5F, 2.5F, 4.5F}, // N 0
 {4.5F, 2.5F, 2.5F, 4.5F}, // NNE 1
 {4.5F, 2.5F, 4.5F, 4.5F}, // NE 2
 {2.5F, 2.5F, 4.5F, 4.5F}, // ENE 3
 {2.5F, 4.5F, 4.5F, 4.5F}, // E 4
 {2.5F, 4.5F, 4.5F, 0.0F}, // ESE 5
 {4.5F, 4.5F, 4.5F, 0.0F}, // SE 6
 {4.5F, 4.5F, 0.0F, 0.0F}, // SSE 7
 {4.5F, 4.5F, 0.0F, 4.5F}, // S 8
 {4.5F, 0.0F, 0.0F, 4.5F}, // SSW 9
 {4.5F, 0.0F, 4.5F, 4.5F}, // SW 10
 {0.0F, 0.0F, 4.5F, 4.5F}, // WSW 11
 {0.0F, 4.5F, 4.5F, 4.5F}, // W 12
 {0.0F, 4.5F, 4.5F, 2.5F}, // WNW 13
 {4.5F, 4.5F, 4.5F, 2.5F}, // NW 14
 {4.5F, 4.5F, 2.5F, 2.5F}, // NNW 15
 };

 /* convert wind direction A to D results to dire ction */
 private int GetWindDir(float a, float b, float c, float d)
 {
 int i;
 int direction = 16;

 for(i=0; i<16; i++)
 {
 if(((a <= lookupTable[i][0] +1.0) && (a >= lo okupTable[i][0] -1.0)) &&
 ((b <= lookupTable[i][1] +1.0) && (b >= lookupTable[i][1] -1.0)) &&
 ((c <= lookupTable[i][2] +1.0) && (c >= lookupTable[i][2] -1.0)) &&
 ((d <= lookupTable[i][3] +1.0) && (d >= lookupTable[i][3] -1.0)))
 {
 direction = i;
 break;
 }
 }
 return direction;
 }

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 64 of 65

 /* convert direction integer into compass directi on string */
 public String GetWindDirectionString(int input)
 {
 String[] direction = {" N ", "NNE", "NE ", "EN E",
 " E ", "ESE", "SE ", "SSE",
 " S ", "SSW", "SW ", "WSW",
 " W ", "WNW", "NW ", "NNW",
 " ERR"};
 // valid inputs 0 thru 16
 if (input < 0 || input >= 16)
 input = 16;
 else
 input = (input + prefs.northAdjust) % 16;

 if (debugFlag)
 System.out.println("Wind Direction Decoded = " + input + " = " +
direction[input]);

 return direction[input];
 }

 // reset error count for devices
 public void ResetDeviceErrors()
 {
 tempErrors = 0;
 windSpdErrors = 0;
 windDirErrors = 0;
 pressureErrors = 0;
 rainErrors = 0;

 if (debugFlag)
 System.out.println("Device Error Counter Rese t");
 }

 // reset 1-wire bus
 public void resetBus()
 {

 if (debugFlag)
 System.out.println("Resetting 1-wire bus");

 try
 {
 int result = adapter.reset();

 if (result == 0)
 ErrorLogs.log("Warning: Reset indicates no Device Present");
 if (result == 3)
 ErrorLogs.log("Warning: Reset indicates 1-W ire bus is shorted");
 }
 catch (OneWireException e)
 {
 ErrorLogs.log("Exception Reseting the bus: " + e);
 }
 }
}

Programming TINI for remote sensing and data acquisition on 1-Wire Networks

Page 65 of 65

FOOTNOTES

1 http://www.aagelectronica.com/aag/index.html
2 http://www.maxim-ic.com/products/microcontrollers/TINI/
3 Getting Started With TINI, Dallas Semiconductor/MAXIM Wireless, 2004.
4 See “build.bat” in the Appendix for further particulars regarding the batch file.
5 Securing Debian Manual, Debian, 2006, http://www.debian.org/doc/manuals/securing-debian-howto/
6 The TINI Specification and Developers Guide, Don Loomis, Dallas Semiconductor Corporation, 2001.
7 The TINI Specification and Developers Guide, Don Loomis, Dallas Semiconductor Corporation, 2001
8 http://www.maxim-ic.com/appnotes.cfm/appnote_number/148 - Guidelines for reliable 1-Wire Networks
9 http://pdfserv.maxim-ic.com/en/an/AN155.pdf
10 See list in Appendix for more comprehensive list
11 ListOW.java from TINI 1.17 examples folder – code available in appendix
12 http://owfs.sourceforge.net/simple_commands.html
13 The TINI Specification and Developers Guide, Don Loomis, Dallas Semiconductor Corporation, 2001
14 http://java.sun.com/j2se/1.4.2/download.html
15 http://files.dalsemi.com/TINI/index.html

