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Abstract

In this thesis, we perform a systematic study of the Allee effect in cancer stem cell (CSC) 

models with an application to non-small cell lung cancer (NSCLC). Previously, it was 

shown that an Allee effect exists in mathematical tumor growth models incorporating 

cancer stem cell (CSC) dynamics. Here, we extend CSC models to study the Allee 

effect further. Through the analysis of the models using geometric singular perturbation 

theory, as well as linear stability analysis, we show the existence of the Allee region, 

which captures the densities at which natural tumor remission occurs. We find that the 

Allee region can be enlarged by several mechanisms, such as increasing the death rates 

of the cancer cells. However, decreasing the self-renewal capabilities of CSCs is much 

more effective at enlarging the region. This signifies that targeted therapy along with 

conventional cytotoxic therapies can be more effective at treating the tumor rather than 

conventional therapy alone. Finally, we reduce the CSC model and fit it to the gross 

tumor volume data of NSCLC patients, by using Latin Hypercube Sampling to sample a 

parameter space. The data is obtained from patients who received intensity-modulated 

radiotherapy alongside chemotherapy. We find that the Allee effect and the distinction 

between the heterogeneous cell types in the tumor are not needed to explain the data. 

Although the patients have varying responses to treatment and varying parameters, 

we nevertheless find a ratio that may indicate how well patients will respond to the 

treatment.
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Preface

In this thesis, I continue the study of how tumor growth dynamics can be explained

using mathematical modelling. The work presented here is interdisciplinary, where

I draw from mathematics, biological sciences, as well as medical sciences to propose

plausible mathematical models for cancer growth.

Cancer stem cells (CSCs) have been identified to being able to repopulate the tumor

post treatment [4, 43]. As CSCs have the ability to self-renew and are generally resistant

to treatment, CSCs are the leading cause of treatment failure [17, 37, 60, 69]. The

tumor also has other cell types, which lack stemness and are unable to sustain the

tumor [1, 68]. These cells will be referred to as tumor cells (TCs) for simplicity. In rare

occasions after diagnosis, a tumor can spontaneously decay without a clear cause [39].

This phenomenon is called spontaneous tumor remission, and a possible explanation

as to why it occurs is the Allee effect [39]. The Allee effect typically arises in ecology,

and is observed when a species requires a substantial population to survive within an

environment, as cooperation is necessary [13]. Here, I show when an Allee effect is

present in tumors, by modelling tumor growth mathematically and accounting for CSC

and TC dynamics as well as feedback mechanisms. The presence of the Allee effect

can give rise to an Allee region, which captures the tumor densities that experience

spontaneous decay. By building onto our understanding of why an Allee effect can

occur in a tumor, further insight on spontaneous tumor remission could be gained, which

may lead to innovative and more effective treatments for cancer. Further, I propose

a simple mathematical model to explain the gross tumor volume from the non-small

cell lung cancer (NSCLC) data. I observe that accounting for an Allee effect or having

a distinction between CSCs and TCs is not necessary to explain the data. However,

including a damaged compartment is necessary to accurately model the long term tumor

volume. The model fits to patient data well, and there is significant variability in

the resulting model parameters between patients. I find a criterion based on model
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parameters that may indicate patient outcomes. By gaining the ability to accurately

model tumor growth, patient treatment response can be predicted, leading to optimized

treatments and improved patient outcomes.

This thesis is related to a book chapter I co-authored with Dr. Thomas Hillen

called “Modelling of cancer stem cell driven solid tumors” published in Problems in

Mathematical Biophysics — a volume in memory of Alberto Gandolfi [32]. This book

chapter contains a review of existing research focused on modelling tumor growth with

cancer stem cell dynamics. None of the results contained in this thesis have been

included in that publication.

This thesis also references a paper I published with Dr. Thomas Hillen and others

in the Bulletin of Mathematical Biology called “The tumor invasion paradox in cancer

stem cell-driven solid tumors” [62]. The paper is referenced to provide the background of

what was previously done with a cancer stem cell model incorporating spatial dynamics.

None of the content in this thesis was published in that paper.

The patient data for gross tumor volume of non-small cell cancer (NSCLC) used here

was provided by the Center for Radiation Research in Oncology in Dresden, Germany.

The data was pseudonymized and has received the ethics approval number BO-EK-

86022022, which was granted by the Ethics Committee of the Technische Universität

Dresden, Germany.

Alexandra Shyntar

Edmonton, June 2023
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Chapter 1

Introduction

Cancer is a broad name given to related types of diseases, many without cure to this

day [36, 59]. These diseases arise from uncontrollable cell division, often resulting in

a tumor [27, 67]. Such a tumor is heterogeneous, consisting of different cell types,

which can grow large and/or spread to other areas of the body [67, 72]. To get an idea

as to how complicated cancer is, Hanahan and Weinberg published The Hallmarks of

Cancer [28] and later Hallmarks of Cancer: The Next Generation [29] and Hallmarks of

Cancer: new dimensions [27] outlining in total 14 key differences between regular and

cancerous tissues. Some of these differences include the unlimited ability to replicate,

resistance to cell death, avoidance of growth suppressors, the ability to invade nearby

and distant tissues, and avoidance of being destroyed by the immune system. It has

been shown that cancer stem cells (CSCs) are key players responsible for the different

behaviour in cancerous tissue in comparison to regular tissue [17, 32]. This means

that CSCs are involved in many of the hallmarks. Another aspect of cancer that is

poorly understood is spontaneous remission [54]. This is a rare phenomenon where a

tumor decays naturally, with an unknown cause [54, 39]. In many cases, spontaneous

remission has been reported to occur after an acute infection [54]. As the immune

system activates to combat the infection, it can also target a tumor [54]. A potential

explanation of spontaneous remission is the presence of an Allee effect [39]. Here, we
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will propose mathematical models incorporating CSC dynamics applicable to general

solid tumors and study the tumor dynamics when an Allee effect is present.

1.1 Cancer Stem Cell Models

Cancer stem cells (CSCs) were first discovered in leukemia (a type of blood cancer) and

later in other cancers [4, 43]. These cells were shown to have the ability to reinitiate the

cancer if isolated [4, 43]. Now, CSCs are generally characterized as having unlimited

ability to replicate, prolonged life span, and having resistance to cancer treatments

[17, 37, 60]. An early paper titled Successful therapy must eradicate cancer stem cells

[16], outlined through mathematical modelling the role of CSCs in cancer recurrence.

In particular, they showed that in order to have a successful treatment, all CSCs must

be eliminated. As tumors have different cell types, such as transient amplifying cells

and differentiated cells, in addition to CSCs [68], we refer to the cells lacking stemness

as tumor cells (TCs), as is typically done when modelling tumor dynamics [19, 31]. TCs

have a shorter lifespan than CSCs and are also more common than CSCs in a tumor

[68, 72].

Due to the significance of CSCs in cancer, mathematical models incorporating the

CSC dynamics have been proposed [31, 38]. Due to varying assumptions on how CSCs

divide, three main models arose in literature [32]. A schematic of them is shown in

Figure 1.1. Here, we outline the mathematical models arising from each diagram and

show that they are mathematically equivalent. We do this because the models we

examine later build upon these base models.

The Complete model in Figure 1.1 (left) takes into account all possible offspring

that a CSC can yield. A CSC can divide symmetrically into two CSCs. We denote the

fraction of symmetric CSC divisions by a1. A CSC can also divide asymmetrically to

yield a CSC and a tumor cell (TC) where a2 is the fraction of asymmetric divisions.

Finally, a CSC can divide to yield two TCs (which we call a symmetric commitment

event) and a3 represents the fraction of symmetric commitment events. Further, a1 +
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Figure 1.1: Illustration of three possible CSC models. In each model, k represents the mitosis
rate. In the Complete Model, a1 is the fraction of symmetric divisions into two CSCs, a2 is the
fraction of asymmetric divisions, and a3 is the fraction of symmetric commitment events. The
parameter δ in the No Symmetric Commitment Model is the fraction of pure CSC offspring
and the parameter p in the No Asymmetric Division Model is the probability of obtaining
pure CSC offspring.

a2 + a3 = 1 since these fractions can also be interpreted as probabilities, and the total

probability of different outcomes is one. A mathematical model can be derived from

the first diagram in Figure 1.1, by writing the down the changes in the CSC and TC

populations. Note that if the fraction value is multiplied by k, the mitosis rate, then

the product will yield the rate of a particular division. If we let u(t) represent the CSC

population and v(t) represent the TC population, we obtain

u̇ = ka1u− ka3u,

v̇ = ka2u+ 2ka3u,
(1.1)

where ka1 is the rate of symmetric division into two CSCs, ka2 is the asymmetric

division rate, and ka3 is the symmetric commitment rate. The first term of the first

equation in (1.1) is obtained by noting that the net gain from symmetric division into

two CSCs is one CSC cell, since one CSC replaces the mother cell. In symmetric

commitment events one CSC is used up since no CSCs are produced, which gives the

second term in the first equation. One TC is produced from asymmetric division giving

the first term of the second equation. Note that in asymmetric division the net change

in CSC is zero since one CSC replaces the mother cell. Finally, the second term in

the second equation is obtained by noting that two TCs are produced in a symmetric

3



commitment event. Model (1.1) can be rewritten in terms of two parameters by using

the relationship a1 + a2 + a3 = 1 to eliminate a1, yielding

u̇ = k(1− a2 − 2a3)u,

v̇ = k(a2 + 2a3)u.
(1.2)

By following the same derivation that was used for the complete model, we can write

down the mathematical model for the No Symmetric Commitment Model in Figure 1.1

(middle) as follows

u̇ = δku,

v̇ = (1− δ)ku,
(1.3)

where δ is the fraction of pure CSC offspring (assuming δ > 0), and δk defines the rate

of symmetric division into two CSCs and (1 − δ)k is the rate of asymmetric division.

Model (1.3) was used in [31] since their underlying assumption was that CSCs self-renew

during cell division. In general, δ can be negative which means that CSCs prioritize

creating differentiated cells (TCs) rather than self-renewal. Hence, the CSC population

declines in that case.

We can also derive the No Asymmetric Division Model from Figure 1.1 (right) which

is given by

u̇ = 2pku− ku,

v̇ = 2(1− p)ku,
(1.4)

where p is the self-renewal probability. Two CSCs are produced with rate pk when

symmetric division occurs giving the first term in the first equation of (1.4). Since

a mother CSC is lost during a mitosis event, this gives the second term in the first

equation. The term in the second equation of (1.4) is obtained by noting that two TCs

are produced with probability 1 − p. Model (1.4) is used when asymmetric division is

neglected. Some examples of when model (1.4) was used can be found in [45, 21, 38, 70].

We now show that the three models outlined above are mathematically equivalent.

Lemma 1.1.1. The dynamics of models (1.2), (1.3), (1.4) are equivalent.
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Proof. If δ = 2p−1, then (1.3) gives (1.4) and if p = (δ+1)/2, (1.4) gives (1.3). Hence,

(1.3) and (1.4) are equivalent. If a2 and a3 are known then setting

δ = 1− a2 − 2a3 (1.5)

in model (1.3) yields model (1.2). If δ is known, then by using the relationship in (1.5)

we can recover model (1.2) and there are infinitely many ways to choose a2 and a3 to

satisfy (1.5). So models (1.2) and (1.3) have equivalent dynamics.

1.2 Allee Effects in Cancer Models

An Allee effect is a phenomenon that arises when a small population fails to establish

itself in an environment whereas a larger population can establish itself [13]. Sometimes

organisms need to cooperate to survive a harsh environment. When there are few or-

ganisms, the drawback from a lack of cooperation can outweigh the benefits of nutrients

and space that a smaller population would have, and thus the small population fails to

sustain itself in an environment [13]. Following this idea from ecology, an Allee effect

is hypothesized to also be present in tumors [39]. Further, an Allee effect was shown to

exist in a CSC model incorporating feedback mechanisms from self-renewal activators

and differentiation promoters in [38].

In our modelling, we will first consider two possibilities for an Allee effect: a strong

Allee effect and a weak Allee effect [13]. The strong Allee effect occurs when there

exists some Allee threshold, which dictates when a population is unable to establish

itself in an environment. The Allee effect can be typically modelled by the following

ODE

Ṅ = N(1−N)(N − A) (1.6)

where N is the density of organisms and 0 < A < 1 is the Allee threshold [13]. We

see that (1.6) has 3 equilibria, where N∗
1 = 0 and N∗

2 = 1 are stable whereas N∗
3 = A

is unstable. These dynamics show that if the population density starts off below A

5



Figure 1.2: Illustration of strong and weak effects where F (N) is given by the right hand
side of (1.6). For the strong Allee effect A = 0.2, and for weak Allee effect A = −0.2. Here
we see the dynamics of the strong Allee effect where the blue arrows show the flow of the
trajectories. For the weak Allee, the trajectories flow to the right converging to 1 and the
population cannot die out.

the population dies out, whereas the population density starting above A grows to the

carrying capacity of 1, as shown in Figure 1.2.

A weak Allee effect on the other hand is characterized by slower density growth

of small populations and no Allee threshold, meaning that the organisms cannot die

out [13]. This can be modelled by setting A ≤ 0 in (1.6), which yields that N∗
1 = 0

is unstable and N∗
2 = 0 is stable. The other equilibrium, if present, is biologically

irrelevant. An example of the weak Allee effect is shown in Figure 1.2.

In Chapters 2 and 3, we study the implications of strong and weak Allee effects on

tumor growth dynamics. In Chapter 4, we use a different approach to study the Allee

effect, by incorporating feedback mechanisms like was done in [38].

1.3 Lung Cancer and Treatments

After studying the Allee effects in cancer stem cell models in general, we study whether

an Allee based model is appropriate to explain a set of gross tumor volume data in

lung cancer. About 85% of lung cancer cases are categorized as non-small cell lung

cancer (NSCLC), which is a heterogeneous disease with low survival rate [8]. Due to

the low survival rate, extensive research has been performed as to which treatments
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give a longer survival time [8, 51]. In the early stages of NSCLC, it is possible to sur-

gically remove the tumor [8], however this is not an option in the later stages. Typical

non surgical treatments include chemotherapy, which involves giving a patient a spec-

ified dose of anti cancer drugs, and intensity-modulated radiotherapy, which involves

giving a specified radiation dose to the patient [23]. Here, we refer to chemotherapy

and radiotherapy treatments as cytotoxic, as they are focused on killing cancer cells.

After a cytotoxic treatment, it takes times to see shrinkage in the treated tumor, which

is referred to as the latency time effect [49, 66]. It has been concluded that concur-

rent chemoradiotherapy treatments are superior at prolonging the survival period in

comparison to treatments comprising of solely chemotherapy or radiotherapy and even

sequential chemoradiotherapy treatments [23, 51].

In Chapter 5, we will derive a model for the gross tumor volume of NSCLC. The data

that we work with is from a study conducted in 2021 by OncoRay - National Center

for Radiation Research in Oncology in Dresden, Germany where the effect intensity-

modulated radiotherapy treatments on non-small cell lung cancer (NSCLC). Our model

will account for radiotherapy and chemotherapy treatments. We find that our simple

model is able to explain the data well, where accounting for the Allee effect is not

necessary.

1.4 Previous Modelling Incorporating Cancer Stem

Cell Dynamics

1.4.1 Existence of the Tumor Growth Paradox

CSCs have been linked to a number of surprising phenomena in a tumor. One such

process is the so called tumor growth paradox. The tumor growth paradox is a phe-

nomenon when a tumor with a higher cell death rate grows larger than a tumor with a

lower death rate [31]. Enderling et al. [19] tested an agent based model that simulated

CSCs and TCs on a lattice grid. The biological assumptions of their model are that
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CSCs are immortal, TCs can spontaneously die, and that CSCs and TCs compete for

space. From their simulations, it was found that with an increased cell death rate, the

tumor initially decreases but then grows back faster than it would have without the

increased death rate. The accelerated growth occurs because as TCs die, the CSCs

become liberated and can proliferate within the available space. The tumor then gets

repopulated and grows faster, illustrating the tumor growth paradox (see section 1.5.2

for more details). This liberation of CSCs serves as an explanation as to why there can

be tumor relapse post treatment.

Following the work of Enderling et al. [19], Hillen et al. [31] propose a mathemat-

ical model with the same biological assumptions, in order to prove the tumor growth

paradox mathematically. Here, we outline the derivation of the Hillen et al. [31] model

and outline how to prove the tumor growth paradox in Section 1.5.2. The specific

assumptions of the Hillen et al. [31] model are the following

A1. TCs can only produce TCs and have a proliferation limit.

A2. TCs are mortal hence have a positive death rate given by a.

A3. CSCs are immortal on the observed timescale.

A4. CSCs and TCs compete for space, and if there is no space available there is no

growth.

To derive the Hillen et al. [31] model we start with the no symmetric commitment

model (1.3) and add the outlined assumptions above. Mathematically accounting for

assumptions A1 and A2 is straightforward, where A1 requires a term that counts the

contributions from TCs to the TC population and A2 requires a death term, both of

which need to be added to (1.3). In order to incorporate assumption A4 a competition

function F (n) where n = u+ v is introduced with the following assumptions:

F1. F (n) is Lipschitz continuous, where F (0) = 1 and for n ≥ K, F (n) = 0 where K

is some maximum density that n can reach.
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F2. F (n) is nonincreasing: if n1 < n2 then F (n1) ≥ F (n2)

Essentially, the competition function limits growth due to space limitations. Another

interpretation of F (n) is that it models a negative feedback. As space becomes limited,

cancer cells release proliferation inhibitors slowing down tumor growths. It follows that

F (n) is incorporated into the model by having it multiply the growth rates. With these

modifications, model (1.3) becomes

u̇ = δkF (n)u,

v̇ = (1− δ)kF (n)u+ k2F (n)v − av,
(1.7)

where the second term in the second equation accounts for the net contribution of TCs

to the TC population, with k2 being the mitosis rate of TCs, and the last term of

the second equation being the death term with death rate a. Notice that (1.7) satisfies

assumption A3 since there is no CSC death. For simplicity, the densities are normalized

so that K = 1 and the mitosis rates k and k2 are set to 1. These simplifications do not

affect the generality of the results. To analyze (1.7), geometric singular perturbation

theory is required [30, 31], which we outline in Section 1.5 and make use of in Section

1.5.2 to show the tumor growth paradox.

1.4.2 Existence of the Tumor Invasion Paradox

The Hillen et al. [31] model (1.7) derived above is actually a reduced version of the full

birth-jump model also proposed in [31]. In a birth-jump process, population spread

and growth are interdependent, unlike in reaction-diffusion models where spread and

growth are assumed to be independent [32]. The birth-jump model in [31] arose by

mathematically formulating the search for space by a daughter cell from the compu-

tational model of Enderling et al. [19]. It has been shown that the birth-jump model

proposed in [15] has a unique global solution [44], and that the spatially homogeneous

version of the model also has a unique global solution [5].

What makes the birth-jump model in [31] difficult to analyze is the integral operator.
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This integral operator has been expanded where the leading order terms are kept,

yielding a reaction-diffusion model. The resulting reaction-diffusion models have been

analyzed [20, 62]. In [62], the resulting reaction-diffusion model is simply an extension

of (1.7) with respective diffusion terms for CSCs and TCs. By using geometric singular

perturbation theory and travelling wave analysis, we prove in Shyntar et al. [62] that

a tumor invasion paradox exists. The tumor invasion paradox is a phenomenon when

a tumor with a higher death rate spreads more than a tumor with a lower death rate

[62]. The existence of the tumor invasion paradox has been verified numerically and

through an agent based model proposed by Enderling et al. [19] in [62]. The main

implication is that during a long term cytotoxic treatment, the elevated death rate can

liberate CSCs, and cause the tumor to spread faster [62]. We found in Shyntar et al.

[62] that invasion paradox is not as significant in fractionated treatments that have a

short treatment time.

1.4.3 Inclusion of Feedback Mechanisms

Models incorporating feedback mechanisms and CSC dynamics have been proposed

to model tumor growth and spread. Youssefpour et al. [70] proposed a mathematical

model applicable to solid avascular tumors, which incorporates CSC and TC, as well

as transient amplifying cells. Transient amplifying cells are cells that have not fully

differentiated. The Youssefpour et al. [70] model also accounts for spatial dependence,

mechanical forces, nutrient and oxygen uptake, growth promoter and inhibitor factors,

as well as signalling factors produced by the cancer cells, which stimulate various feed-

back mechanisms. Specifically, they incorporated a positive feedback mechanism from

self-renewal activators that stimulate the self renewal of CSCs and the negative feed-

back mechanism caused by differentiation promoters which cause CSCs to differentiate.

We note that the spatially homogeneous version of the Youssefpour et al. [70] model

is a more involved version of the No Asymmetric Division Model (1.4). To incorpo-

rate the feedback mechanisms they propose an explicit probability function for p in
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(1.4). Recall that p is the probability of symmetric divisions into two CSCs. The pro-

posed function for p incorporates self-renewal activator and differentiation promoter

concentrations. To analyze their model, Youssefpour et al. [70] performed 2D and 3D

simulations. They find that CSCs tend to be spread uniformly in a tumor and that

more invasive tumors tend to form finger-like structures where CSCs tend to self renew

more at the boundary of the tumor. Further, if CSCs are not sensitive to negative

feedback from the differentiation promoters, the tumor grows quickly, forming invasive

finger-like structures. As sensitivity increases to the differentiation promoters, the tu-

mor retains its sphere-like shape and grows slower in general and the concentration of

differentiation promoters within a given cluster was found to be uniform. Youssefpour

et al. [70] also test two treatments, a cytotoxic treatment like radiotherapy and a tar-

geted therapy treatment, which increases the amount of differentiation promoters. The

idea with a targeted therapy treatment is to increase the amount of differentiated cells

since differentiated cells tend to be more sensitive to cytotoxic treatments. They find

that applying only radiotherapy or only differentiation therapy is insufficient at elimi-

nating the tumor. Radiotherapy also tended to make the tumor more aggressive post

treatment, but differentiation therapy does not seem to have an effect on invasiveness.

However, a combined treatment which incorporates both radiotherapy and targeted

therapy was effective at eradicating the tumor.

Rodriguez-Brenes et al. [58] studied feedback mechanisms by taking the No Asym-

metric Division Model (1.4) and extending it to include the negative feedback from

only TCs. That is, they assume that as TCs increase, the rate of cell division and the

probability of symmetric division into two CSCs decrease. Hence, they incorporate a

proliferation feedback and a differentiation feedback from TCs. Rodriguez-Brenes et

al. [58] find that the negative feedback on proliferation slows down the growth of the

tumor, and if both feedbacks upon proliferation and differentiation are lost, the tumor

grows exponentially. Essentially, this shows that the feedback mechanism is required

in order to regulate tumor growth, and in order to cause the tumor to decay, p in (1.4)

must become less that 0.5 so that the CSC population begins to die out.
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Following the work of Youssefpour et al. [70], Konstorum et al. [38] took the spatially

homogeneous model of Youssefpour et al. [70] and examined it mathematically. As

mentioned before, the spatially homogeneous model is a more involved version of the

No Asymmetric Division Model (1.4) which incorporates feedback mechanisms. They

assume that the amount of differentiation promoters is proportional to the amount of

CSCs and that the amount of self-renewal inhibitors is assumed to be constant. By

analyzing the reduced model mathematically, Konstorum et al. [38] prove that the

model can exhibit an Allee region, which is a region capturing the tumor densities

that experience spontaneous decay. The Allee region increases as the inhibition of self-

renewal promoters increases and decreases as the strength of the self renewal-activators

increases. They find that cytotoxic treatments may increase the Allee region. Moreover,

a combination treatment comprised of targeted therapy and a cytotoxic treatment can

significantly increase the Allee region, thus significantly improving the chances that

the tumor will fully decay post treatment. This shows that full eradication of the

tumor during treatment may not be required in order to cause the tumor to fully decay.

Rather, it is enough to push it to a size below a certain threshold, and the tumor can

decay naturally. Interestingly, the Konstorum et al. [38] model can also explain the

two cases of spontaneous tumor remission. The first case is when a tumor decays after

an unrelated infection. This is explained in the model by lowering the CSC population

(due to an elevated immune response) which helps push the tumor into the Allee region.

Further, the Allee region arising in the model has non linear trajectories, showing that if

a tumor falls within it, there may be a period of growth before natural decay, explaining

the second case of tumor remission where the tumor appeared to decay without any

significant change in heath or medication. In this thesis, we extend the Konstorum et

al. [38] model to incorporate TC dynamics, as well as competition between TCs and

CSCs and show that the Allee region may be present as well.
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1.4.4 Other Results from Modelling Cancer Stem Cells

Using the Hillen et al. model (1.7), Bachman et al. [1] incorporated feedback mechanisms

by following a similar approach as in [70]. To incorporate the feedback mechanisms,

they use the fact that the models in Figure 1.1 are mathematically equivalent, in order

to derive a version of the Hillen et al. model (1.7) that depends on p (probability of

symmetric division into two CSCs). The function to model p is the same one used by

Youssefpour et al. [70], where Bachman et al. [1] make an additional assumption, which

is that the concentration of self-renewal activators is constant. The purpose of their

work was to test whether the findings in [70] persist with biologically realistic parameters

for head and neck cancer, brain cancer, as well as breast cancer. Like in [70], they

focus on a radiotherapy treatment as well as a targeted therapy treatment focused on

increasing the amount of differentiation promoters. Therapy effects on growth rates are

ignored for simplicity, as was also done in [70]. To assess treatment success, the tumor

control probability (TCP) is calculated based on the number of CSCs that remain, as

CSCs are able to reinitiate the tumor and a tumor comprised of TCs dies out. Hence,

the less CSCs remain the greater the TCP. Bachman et al. [1] were able to confirm the

findings of [70], which is that the combined treatment significantly improves TCP for

these particular cancers. Further, differentiation therapy can decrease the amount of

radiation required in order to achieve an acceptable TCP.

Dedifferentiation of TCs is also possible, where TCs revert to expressing stem like

behaviour [63]. A protein called survivin has been linked to promote dedifferentiation,

which could lead to radio-resistance in cancer [14]. Iwasa et al. [35] tested the role of

a survivin inhibitor YM155 on mice afflicted with NSCLC. In [35], they found that a

combined radiotherapy treatment with YM155, is superior to a radiotherapy treatment

alone. Rhodes et al. [56] proposed a mathematical model incorporating CSC dynamics

to explain the data in [35]. In [56], they propose a mathematical model that builds upon

the Hillen et al. [31] model. Their extended model incorporates survivin dynamics by

assuming that survivin is released when cells die and that CSCs release more survivin
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then TCs. They find that their proposed model fits the mice data from [35] well with

and without treatment. Further, they confirm that a combined treatment comprised

of both radiotherapy and YM155, is better at delaying the progression of a tumor

rather than a treatment of only radiotherapy. Moreover, they find that the optimal

radiotherapy regimen depends on the tumor based on its sensitivity to radiation or its

density composition. Including survivin dynamics into our proposed models, is outside

the scope of this thesis.

1.5 Geometric Singular Perturbation Theory

In our analysis of the models, we will employ geometric singular perturbation theory

[30]. This theory is especially useful when there is a separation of time scales, that

is the rate of change with respect to time of one variable is much lower than the rate

of change of another variable. In this section, we outline the theory and apply it two

examples. More details can be found in [30].

Our models will naturally have the form

ẋ = εf̃(x, y, ε),

ẏ = g̃(x, y, ε),
(1.8)

where we use the dot to indicate d
dt
. System (1.8) is called a fast system, which is

typically analyzed by taking ε → 0 and studying the resulting reduced system. A

formal perturbation expansion will be shown in the example which yields the same

simplification. By taking the limit, we obtain the fast reduced system

ẋ = 0,

ẏ = g̃(x, y, 0).
(1.9)

We see that the flow of the trajectories in (1.9) are simple, where x(t) is constant. y(t)

can either converge or repel from the nullcline determined from the second equation of
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(1.9). Formally, this nullcline is expressed as a manifold

M := {(x, y) : g̃(x, y, 0) = 0}. (1.10)

Parts of M can be normally hyperbolic and attracting or normally hyperbolic and

repelling. M is also called the slow manifold, since it contains the long term dynamics

of system (1.8).

Definition 1.5.1. (Normally Hyperbolic Manifold) In (1.8), a slow manifold M is

normally hyperbolic if the eigenvalues λ of the Jacobian ∂g̃
∂y
(x, y, 0)

⃓⃓⃓
M

are uniformly

bounded away from the imaginary axis, that is Re(λ) ̸= 0.

Definition 1.5.2. (Attracting and Repelling Normally Hyperbolic Manifolds) In (1.8),

if a slow manifold M is normally hyperbolic, it is also attracting if

∂g̃

∂y
(x, y, 0)

⃓⃓⃓
M
< 0

or repelling if
∂g̃

∂y
(x, y, 0)

⃓⃓⃓
M
> 0.

Notice that Definition 1.5.1 implies that for an arbitrary slow manifold, there are

cases when not all eigenvalues of the Jacobian specified in the definition are uniformly

bounded away from the imaginary axis. In those cases, we get non hyperbolic points.

Definition 1.5.3. (Non Hyperbolic Points) In (1.8), the points on the slow manifold

M at which the eigenvalues λ of the Jacobian ∂g̃
∂y
(x, y, 0)

⃓⃓⃓
M

satisfy Re(λ) = 0 are called

non hyperbolic points.

System (1.9) can be solved to obtain the so called inner solution (x(t), y(t)), which

will be used as a part of the full solution of (1.8). To obtain the rest of the solution,

the fast system (1.8) can be rescaled using τ = εt where τ corresponds to time on a

slow time scale, and t corresponds to time on a fast time scale. Using this scaling, we
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obtain the slow system

x′ = f̃(x, y, ε),

εy′ = g̃(x, y, ε),
(1.11)

where we use ′ to indicate d
dτ
. Notice that (1.11) and (1.9) are fully equivalent when

ε ̸= 0. To analyze (1.11) a perturbation expansion is performed, which is equivalent to

taking ε→ 0 giving the slow reduced system

x′ = f̃(x, y, 0),

0 = g̃(x, y, 0).
(1.12)

Notice that the last equation of (1.12) is precisely the nullcline used to obtain M .

System (1.12) can be analyzed using stability analysis, since it is a one dimensional

ODE were y can be determined from the second equation. The so called outer solution

(x(τ), y(τ)) can be obtained by solving (1.12), giving the other part of the full solution.

The solutions are then “glued together” using the matching conditions

lim
t→∞

x(t) = lim
τ→0

x(τ),

lim
t→∞

y(t) = lim
τ→0

y(τ).

In practice, obtaining explicit inner and outer solutions is difficult. Hence, the focus is

on understanding the dynamics of the fast and slow system which can be sufficient in

understanding how the full solution behaves. Note that the above was performed for

the case when ε = 0 only, since M is defined when ε = 0. To show that the dynamics

from the fast and slow reduced systems persist when ε ̸= 0 and ε is small, Fenichel

theory is used [30].

Theorem 1.5.1. (Fenichel Theorem 1, Hek [30]) Suppose M is compact and normally

hyperbolic. Then for ε > 0 with ε small enough there exists a manifold Mε that is

1. O(ε) close to M ,
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2. diffeomorphic to M ,

3. locally invariant for the problem (1.8).

Theorem 1.5.2. (Fenichel Theorem 2, Hek [30]) Given the assumptions in Theo-

rem 1.5.1, there exist stable and unstable manifolds associated with Mε: W
s(Mε) and

W u(Mε) that are ε-close to W s(M) and W u(M).

The Fenichel theorems state that M and its dynamics persist even when ε ̸= 0, given

that ε is sufficiently small, since the original problem (1.8) has Mε that is O(ε) close to

M and Mε retains all essential characteristics of M .

1.5.1 Example 1

Now we give a concrete example. We choose

ẋ = εx(0.5− y)(1− x),

ẏ = x− y.
(1.13)

To analyze this formally, we perform a perturbation expansion, where

x(t) = x0(t) + εx1(t) + ε2x2(t) + h.o.t,

y(t) = y0(t) + εy1(t) + ε2y2(t) + h.o.t.

where h.o.t. stands for “higher order terms”. Substituting these into (1.13), and keeping

the leading order terms which are the ones containing ε0 = 1 yields

ẋ0(t) = 0,

ẏ0(t) = x0(t)− y0(t).
(1.14)

Notice that obtaining the simplified system (1.14) is equivalent to taking ε → 0 in

(1.13) and dropping the subscript. The expansion above shows why it is enough to

simply take the limit, as is often done in the literature [30].
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By plotting a phase portrait of system (1.14) as seen in Figure 1.3 (a), it can be

seen that the flow is trivial, where all flows either flow up or down, settling onto the

nullcline arising in the second equation of (1.14). Hence, the nullcline is also a slow

manifold defined by

M̃ = {(x0, y0) : 0 = x0 − y0}. (1.15)

This manifold is normally hyperbolic and attracting because

∂g̃

∂y
(x, y, 0)

⃓⃓⃓
M

=
∂

∂y0
(x0 − y0)|M̃ = −1 < 0.

Notice that there are no non hyperbolic points. We can also solve (1.14) to obtain the

inner solution which is x0(t) = x̄ and y0(t) = x̄ + (ȳ − x̄)e−t where x0(0) = x̄ and

y0(0) = ȳ. Note, that limt→∞ x0(t) = x̄ = limt→∞ y0(t), which is good to know when

we later compare to the outer solution. With this, we are finished analyzing the fast

reduced system, and now study the slow system.

(a) (b)

Figure 1.3: Phase portraits for example (1.13). For each image, the manifold M̃ is given in
pink, some trajectories are shown in blue, the equilibria are in black. In (a), a phase portrait
of the fast system (1.14) is shown. In (b), a full phase portrait incorporating the fast and
slow systems is shown, where the dynamics of the slow system are on the slow manifold.
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Rescaling (1.13) using τ = εt gives

x′ = x(0.5− y)(1− x),

εy′ = x− y.
(1.16)

Performing an expansion in ε for x(τ) and y(τ) as we did previously and keeping the

leading order terms ε0 yields the slow reduced system

x′0(τ) = x0(τ)(0.5− y0(τ))(1− x0(τ)),

0 = x0(τ)− y0(τ). (1.17)

Again, obtaining system (1.17) is equivalent to letting ε → 0 in (1.16) and dropping

the subscripts. We see that the first equation of (1.17) is a one dimensional ODE where

y0(τ) = x0(τ). This ODE can be analyzed using standard techniques to find that there

are three steady states which are (x∗1, y
∗
1) = (0, 0), (x∗2, y

∗
2) = (0.5, 0.5), (x∗3, y

∗
3) = (1, 1)

where (x∗1, y
∗
1) is unstable, (x

∗
2, y

∗
2) is stable and (x∗3, y

∗
3) is unstable on M̃ . The stabilities

of the equilibria outline the dynamics on the slow manifold M̃ , which are summarized in

(b) of Figure 1.3. System (1.17) can also be solved explicitly to give the outer solution

where limτ→0 x0(τ) = x̄ = limτ→0 y0(τ), since x0(0) = x̄ and y0(τ) = x0(τ). With this,

we can “glue together” the inner and outer solutions by using the matching conditions.

We have already calculated the limits, showing that the inner and outer solutions meet

at (x0, y0) = (x̄, x̄). This is also seen in Figure 1.3, where the inner solution from

the fast system and the outer solution which begins on the slow manifold meet on M̃ ,

hence they meet at the coordinates (x̄, x̄). In practice, explicitly calculating the limits

is challenging, but it is nice to illustrate how both solutions are put together for this

example. Using Fenichel theory, we conclude that these solutions persist when ε ̸= 0

and ε is small.
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1.5.2 Example 2: Tumor Growth Paradox

We now outline how the tumor growth paradox in (1.7) can be proved. First, we define

the tumor growth paradox mathematically.

Definition 1.5.4. (Tumor Growth Paradox ) [31] Let nα(t) for times t ≥ 0 denote a

tumor population with a spontaneous death rate a for TCs. The population exhibits

a tumor growth paradox if there exist death rates a1 < a2 and times t1, t2 and T0 > 0

such that

na1(t1) = na2(t2) and na1(t1 + T ) < na2(t2 + T ) for (0 < T < T0).

Next, we use geometric singular perturbation theory where the slow reduced system

of (1.7) is given by

u′ = F (n)u,

0 = F (n)u+ F (n)v − av,
(1.18)

which captures the essential dynamics of (1.7). The trajectories of (1.18) converge to

the slow manifold Ms given by

Ms = {(u, v) : F (n)n− av, n = u+ v}. (1.19)

Once the trajectories have converged toMs, the trajectories flow to the global attractor

(u∗, v∗) = (1, 0) on Ms which is proved in [31]. Using the properties of Ms, the tumor

growth paradox can be proved analytically, where detailed calculations are done in

[31]. Here, we show the tumor growth paradox numerically. In Figure 1.4, we see the

illustration of the tumor growth paradox. In (a), the manifold with the lowest death

rate is in green, and is almost diagonal whereas the manifold with the highest death

rate is in blue and connects to the origin. In (b) the respective trajectories are shown.

The trajectory in green solves (1.7) with a = 0.1 where it starts at the initial condition

u(0) = v(0) = 0.1. We see that the green trajectory, quickly converges to the manifold
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and starts growing along it, towards the steady state (u∗, v∗) = (1, 0). Now, the blue

trajectory solves (1.7) with a = 1.1 with the initial condition u(0) = v(0) = 0.1. We

also see that the blue trajectory quickly converges to its respective manifold and grows

along it, towards the steady state (u∗, v∗) = (1, 0). At the final stop time of t = 900,

the blue trajectory has grown to larger total density than the green trajectory with a

lower growth rate, showcasing the tumor growth paradox.

(a) (b)

Figure 1.4: For each figure the diagonal black line corresponds to n = u + v = 1, δ = 0.01,
k, k2,K = 1, and the final simulation time is t = 900. In (a) an illustration of 3 different
manifolds is shown. The manifold in green has a = 0.1, the manifold in pink has a = 0.6, and
the manifold in blue has a = 1.1. In (b) the corresponding solutions to (1.7). Each solution
started at the same initial condition u(0) = v(0) = 0.1. The green trajectory is the solution
of (1.7) with a = 0.1, the pink trajectory is the solution of (1.7) with a = 0.6, and the blue
trajectory is the solution of (1.7) with a = 1.1. The brown lines are guide lines indicating
when n = 0.9 and when n = 0.95.

Above we outlined the main dynamics of (1.7), which are well understood, given the

assumptions F1 and F2 [31]. A natural question that arises is what occurs if F (n) is

extended to account for sizes at which tumor experiences poor growth or decay because

the tumor population is unfit to sustain itself in an environment. This is one of the

questions we answer in the following Chapters 2 and 3, by studying extending (1.7) to

incorporate the Allee effect.
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1.6 Outline

Here we summarize the structure of the thesis. In Chapter 2, we study the natural

extension of (1.7), which has an Allee effect. We show that the arising model is a

well defined dynamical system. The fast and slow systems are studied in detail in

order to understand the full dynamics of this original model. We find that for certain

parameter values the slow manifoldM has non hyperbolic points. These non hyperbolic

points separate attractive and repulsive regions of M , which show how the Allee effect

impacts the dynamics. We also find that in the model there exists an Allee region,

which captures the tumor densities that experience spontaneous decay. This regions

size depends on the parameters such as the Allee threshold and the death rate of TCs. In

particular, the Allee region can increase as those parameters increase. An issue with the

proposed model in Chapter 2, is that it is not biologically realistic since some solutions

may become negative. We address this issue in Chapter 3, where we make a modification

to the system from Chapter 2 to avoid negative solutions. The analysis from Chapter 2

carries over almost unchanged and we find that in the modified model there also exists

an Allee region. Next, we examine how cytotoxic treatments influence the Allee region.

We find that even though the treatment can increase the Allee region, its maximum size

is limited by the Allee threshold. In Chapter 4, we use a different approach to study

the Allee effect in cancer stem cell models. In particular, we follow the approach as in

[38] and start with the model (1.4) that is based on the CSC self renewal probability

p. To this model we add TC dynamics, competition between CSCs and TCs, and a

positive feedback mechanism which stimulates self-renewal of CSCs. We show that the

Allee region can also exist in this case, given that the parameters satisfy the required

criteria. We find that that increasing the death rate can increase the Allee region but

decreasing self-renewal probability is much more effective at increasing the Allee region.

In Chapter 5, we reduce the cancer stem cell models and fit them to NSCLC data. We

find that accounting for the Allee effect and the distinction between CSCs and TCs are

not required to explain the data. However, accounting for the latency time effect, by
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including a damaged cell compartment explains the tumor shrinkage that occurs post

treatment well. Further, we find that the treatment outcome can be indicated by a

ratio comprised of growth rate, clearance rate, and chemotherapy kill rate parameters.

We conclude the thesis with a discussion chapter, where we summarize the key results

and propose possible future work.
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Chapter 2

Cancer Stem Cell Model with an

Allee Effect

To begin our study of the Allee effect in cancer stem cell driven solid tumors, we start

modifying (1.7). By setting the mitosis rates k = k2 = 1 for simplicity, we obtain

u̇ = δF (n)u,

v̇ = (1− δ)F (n)u+ F (n)v − av,
(2.1)

where u is the CSC density, v is the TC density, δ is the fraction of symmetric divisions,

a is the TC death rate, and n = u+ v. We let F (n) = (1− n)(n−A) where now F (n)

represents the cell fitness to reproduce in an environment. So if F (n) > 0, then cells are

in a favourable environment and have space to reproduce but if F (n) < 0 then cells are

in an unfavourable environment and thus die. Here, A is the Allee constant. Since our

densities are normalized, we only consider the cases when |A| < 1. When 0 < A < 1,

this corresponds to a case when there is a strong Allee effect, that is A forms a “density

threshold.” In this case, when the total density n is greater than A, the density grows

due to being in a favourable environment, but if density is less than A, the density

decays. Now, in the case when −1 < A ≤ 0, there is a weak Allee effect, meaning that

smaller densities grow slower than expected.
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We emphasize that the model (2.1) is not biologically relevant, since there are

trajectories that become negative if they begin in the biologically relevant domain

D = {(u, v) : u ∈ [0, 1], v ∈ [0, 1]}. We address this issue in Chapter 3 and for now

focus on understanding how solutions of (2.1) behave. By doing this first, we can more

easily understand the behaviour of the modified system (2.1) which we introduce later.

We begin by first recalling the definition of a dynamical system.

Definition 2.0.1. (Dynamical System, Perko [53]). Let X be an open subset of Rn.

Then a dynamical system on X is a C1-map defined by

φ : R×X → X

where if φt(x) = φ(t, x) then φt satisfies the following

1. φ0(x) = x for all x ∈ X

2. φt(φs(x)) = φt+s(x) for all t, s ∈ R and x ∈ X

In our proof that (2.1) is a dynamical system we make use of the Picard–Lindelöf theo-

rem, which states the conditions required for the existence and uniqueness of solutions

to an ODE system.

Theorem 2.0.1. (Picard–Lindelöf, Teschl [65]). Suppose f ∈ C(U,Rn), where U is an

open subset of Rn+1, and (t0, x0) ∈ U . If f is locally Lipschitz continuous in the second

argument, uniformly with respect to the first, then there exists a unique local solution

x̄(t) ∈ C1(I) of the initial value problem

ẋ = f(t, x), x(t0) = x0,

where I is some interval around t0.

Lemma 2.0.2. Together with an initial condition (u(0), v(0)) = (ū, v̄), ū, v̄ ∈ R, (2.1)

forms a dynamical system in R2.
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Proof. Let x = (ū, v̄) be the initial condition and

G(u, v) =

⎛⎝ δF (n)u

(1− δ)F (n)u+ F (n)v − av

⎞⎠ ,

that is G(u, v) denotes the right hand side of (2.1). Because G(u, v) is differentiable at

every point, it follows from the Mean Value Theorem that G(u, v) is locally Lipschitz

continuous. Hence, by the Picard–Lindelöf Theorem 2.0.1 there exists a unique solution

φ(t, x) = (u(t), v(t)) solving (2.1).

Now, item 1 from Definition 2.0.1 follows immediately due to (2.1) having an initial

condition. To show item 2 from Definition 2.0.1, fix s, and let φ̂(t, x) = φ(t, φ(s, x0))

and φ̃(t, x) = φ(t + s, x0) where s and x0 ∈ X are arbitrary. Then, φ̂(t, x) and φ̃(t, x)

also solve (2.1). Hence,
d

dt
(φ̂(t, x)) = G(φ̂(t, x)),

d

dt
(φ̃(t, x))t = G(φ̃(t, x)),

with initial conditions φ̂(0, x) = φ̂0(x) = φ(s, x0) (by item 1) and φ̃(0, x) = φ(s, x0).

Since the initial conditions are the same, it follows that φ̂(t, x) = φ̃(t, x) by uniqueness

of solutions.

Now that we have established that (2.1) defines a dynamical system in R2, our goal

in this chapter is to study and describe its full dynamics.

2.1 Fast System

The system (2.1) is naturally in the fast system form since δ is small [19, 31]. So, we

can simplify the system by letting δ → 0. This yields

u̇ = 0,

v̇ = F (n)u+ F (n)v − av.
(2.2)
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The nullcline in the second equation of (2.2) forms a manifold

M := {(u, v) ∈ R2 : 0 = f(u, v), n = u+ v}. (2.3)

where

f(u, v) = F (n)n− av, (2.4)

and

F (n) = (1− n)(n− A). (2.5)

We will now show that M in (2.3) has normally hyperbolic regions and also non

hyperbolic points. By differentiating f(u, v) given in (2.4), we find that

∂f

∂v

⃓⃓⃓
M

= F ′(u+ v)(u+ v) + F (u+ v)− a,

= −3(u+ v)2 + 2(1 + A)(u+ v)− A− a. (2.6)

Now if we set (2.6) to zero and solve for u + v, this will give the points at which the

manifold is not hyperbolic. Hence, we find that

u+ v =
(1 + A)±

√︁
(1 + A)2 − 3(A+ a)

3
. (2.7)

We note that when (1+A)2−3(A+a) < 0 there are no non hyperbolic points. Therefore,

condition (2.7) determines when non hyperbolic points exit, which is summarized below.

Lemma 2.1.1. (Sufficient conditions for the existence of non hyperbolic points)

Let

d = (1 + A)2 − 3(A+ a). (2.8)

Model (2.1) contains

i) two non hyperbolic points if d > 0,

ii) one non hyperbolic point if d = 0,
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iii) no non hyperbolic points if d < 0.

If d < 0, then M is normally hyperbolic. Hence, for the following calculations, we

assume that the condition d ≥ 0 holds. We rearrange (2.7) to obtain

u = k± − v, (2.9)

where

k± =
(1 + A)±

√
d

3
(2.10)

with d defined by (2.8). Next, v values of the non hyperbolic points can be found by

substituting (2.9) into f(u, v) = 0 (where f(u, v) is defined by in (2.4)) which is then

solved for v giving

v± =
−k3± + k2±(1 + A)− Ak±

a
. (2.11)

In summary, k± has at most two possible values, hence we obtain at most two non

hyperbolic points which we denote by (unh, vnh). Note that it is possible to obtain the

coordinates of the non hyperbolic points if k± values are known by using equations

(2.9) and (2.11). To be specific, we represent the non hyperbolic point determined from

the value of k+ and k− by (unh+ , vnh+) and (unh− , vnh−), respectively. Notice that if

k+ = k−, then (unh+ , vnh+) = (unh− , vnh−) and there are no non hyperbolic points if k±

are complex. We also define a set N that contains the non hyperbolic points, that is

N = {(unh+ , vnh+), (unh− , vnh−)}. (2.12)

Having found the explicit formulas for the coordinates of the non hyperbolic points,

we use this knowledge to prove that there exist two attractive branches and one repelling

branch on M (2.3).

Lemma 2.1.2. Let d be defined by (2.8) and k± defined by (2.10) then

i) If d ≥ 0 then M in (2.3) is normally hyperbolic and attracting when u + v > k+

or u+ v < k−.
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ii) If d > 0 then M in (2.3) is normally hyperbolic and repelling when k− < u+ v <

k+.

iii) If d < 0 and 0 < A < 1 then M in (2.3) is normally hyperbolic and attracting

everywhere.

Proof. If (2.9) is substituted into (2.6), we obtain the following

−3k2± + 2(1 + A)k± − A− a = 0, (2.13)

since the ∂f
∂v

= 0 at the non hyperbolic points. To show item i), we start with u+v > k+

case. Let c > 0, c ∈ R and set u+ v = k+ + c > k+ so that

u = k+ + c− v. (2.14)

Substituting (2.14) back into the (2.6) gives

∂f

∂v
= −3k2+ − 6k+c− 3c2 + 2(1 + A)k+ + 2(1 + A)c− A− a.

Using (2.13), we can simplify the above equation by removing 3 terms and obtain

∂f

∂v
= c(−6k+ − 3c+ 2(1 + A)).

Since

6k+ = 2(1 + A) + 2
√
d,

> 2(1 + A),

we see that ∂f
∂v
< 0 for all c, showing that when u+ v > k+, M in (2.3) is attracting.

Similarly for the u + v < k− case, we let u + v = k− − c < k− where c < 0, c ∈ R

and substitute

u = k− − c− v (2.15)
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into (2.6) to get

∂f

∂v
= −3k2− + 6k−c− 3c2 + 2(1 + A)k− − 2(1 + A)c− A− a.

Using (2.13) we remove the three terms and obtain

∂f

∂v
= c(6k− − 3c− 2(1 + a)).

In this case

6k− = 2(1 + a)− 2
√
d,

< 2(1 + a), (2.16)

which means that ∂f
∂v
< 0 for all c, showing that when u + v < k−, M in (2.3) is also

attracting.

In order to show item ii), we take u+ v = k+ − c where

0 < c < k+ − k− =
2
√
d

3
. (2.17)

This makes it so k− < u+ v < k+ (since k− < k+) and hence

u = k+ − c− v. (2.18)

Then substituting (2.18) into (2.6) gives

∂f

∂v
= −3k2+ + 6k+c− 3c2 + 2(1 + A)k+ − 2(1 + A)c− A− a.

Using (2.13), we again cancel the 3 terms and obtain

∂f

∂v
= c(6k+ − 3c− 2(1 + A)).
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Substituting in (2.10) (the value of k+) into the above equation gives

∂f

∂v
= c(2(1 + A) + 2

√
d− 3c− 2(1 + A)),

= c(2
√
d− 3c).

Since

3c < 2
√
d,

which follows from (2.17), ∂f
∂v
> 0 for all c > 0 showing that when k− < u+ v < k+, M

in (2.3) is repelling.

To show item iii), note thatM is normally hyperbolic when d < 0. Further, because

there are no non hyperbolic points, ∂f
∂v

in (2.6) is either only positive or only negative as

it cannot cross the axis, meaning it cannot switch signs. Hence, it is enough to evaluate

∂f
∂v

⃓⃓⃓
(0,0)

where (0, 0) ∈ M to determine the sign of ∂f
∂v
. We see that ∂f

∂v

⃓⃓⃓
(0,0)

= −A − a

hence ∂f
∂v
< 0 if 0 < A < 1 meaning that M is attracting in this case.

For Lemma 2.1.2, we have only shown item iii) for the strong Allee effect case, since

by assumption 0 < A < 1. The weak Allee effect case −1 < A ≤ 0 is shown below.

Note that item i) and ii) in Lemma 2.1.2 still hold when |A| < 1.

Corollary 2.1.2.1. Let d be defined by (2.8). Assume −1 < A ≤ 0 and d < 0. Then

M in (2.3) is normally hyperbolic and attracting everywhere.

Proof. From Lemma 2.1.2 it is sufficient to show that ∂f
∂v

⃓⃓⃓
(0,0)

= −A− a < 0. If A = 0,

this follows immediately.

If A < 0, it is enough to show that −A < a. Rearranging (2.8) gives that

(A2 − A+ 1)/3 < a.

From here, since

0 < (A+ 1)2 (2.19)
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for |A| < 1, it follows that

−A < (A2 − A+ 1)/3

by rearranging (2.19).

Note that the Implicit Function Theorem states that if

∂f

∂v

⃓⃓⃓
(u0,v0)

̸= 0

then v = v(u) in a neighbourhood of (u0, v0). Hence, the neighbourhoods of the non

hyperbolic points is exactly where v is not a graph of u. This means that when non

hyperbolic points exist, M in (2.3) will need to be studied in sections. Further, we can

only apply Fenichel’s theorems to the normally hyperbolic regions of M , and the non

hyperbolic points need to be studied separately, which we do later in this chapter.

Lemma 2.1.2 shows that M given by (2.3) can be divided into 3 sections, I and III

being the attracting/stable branches and II being the repelling/unstable branch granted

d > 0. The branches are separated by the non hyperbolic points as illustrated in Figure

2.1 (a) where M is the pink curve and the open white circles are the non hyperbolic

points. If d = 0, then only item i) of Lemma 2.1.2 holds and consequently there are

two attracting branches I and III, and branch II degenerates to a single non hyperbolic

point. This is seen in Figure 2.1 (b). Finally, if d < 0, then M has one branch that is

normally hyperbolic and attracting as seen in Figure 2.1 (c). These branches can be

mathematically formulated as

M :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I : 0 := F (n)(u+ v)− av, u+ v > k+

II : 0 := F (n)(u+ v)− av, k− < u+ v < k+

III : 0 := F (n)(u+ v)− av, u+ v < k−

∪ N (2.20)

where N is again the set of non hyperbolic points defined by (2.12). In (2.20) I, III

correspond to the attractive branches and II corresponds to the repelling branch. Note
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that in this formulation, it follows from Implicit Function Theorem that each branch is

a graph of u, since no branch contains a non hyperbolic point.

(a) (b) (c)

Figure 2.1: Phase portraits of (2.2). In each figure, the curve in pink is the manifold M
defined in (2.20) which comprised of branches separated by a non hyperbolic point(s) (open
white circle(s)). The lines in blue are the flows of the solutions which either flow up or down.
In (a), a = 0.12 and A = 0.2 yielding three branches. In (b), a = 0.28 and A = 0.2 yielding
two attractive branches. In (c), a = 0.4 and A = 0.2 yielding one attractive branch. The
parameters were chosen like this to purely illustrate the possible cases.

In addition to summarizing the possible cases of M in (2.20), Figure 2.1 also shows

the dynamics of the reduced fast system (2.2). The lines in blue illustrate the trajec-

tories of the solutions. Examining (a) in Figure 2.1 closer, we see that if the initial

condition is not on M then the trajectories converge to either the stable branch I or

III. If trajectories are near the unstable branch II, they repel from it, and converge to

one of the stable branches. Similar behaviour can be seen in (b) and (c) which lack

the repelling branch. In this case the trajectories simply converge to the nearby stable

branch. Note that if the initial condition of the trajectory is exactly on M , it stays

at that point for all time. Hence, we see that the dynamics are trivial for (2.2), and

we need to look at the slow system to obtain the dynamics on M , which we do in the

following section.

To finish this section, we show that M in (2.20) is well defined.

Lemma 2.1.3. M in (2.20) is well defined where the non hyperbolic points connect

continuously to the branches.
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Proof. Denote the non hyperbolic points by (unh, vnh). We first compute ∂f(u,v)
∂u

where

f(u, v) is defined in (2.4), and F (n) = (1− n)(n− A), n = u+ v. So,

∂f(u, v)

∂u
= −(n− A)n+ (1− n)n+ (1− n)(n− A)

= −3n2 + 2(1 + A)n− A. (2.21)

Using (2.21) we verify that u = u(v) in a neighbourhood of a non hyperbolic point.

Indeed,
∂f(u, v)

∂u

⃓⃓⃓
(unh,vnh)

= a ̸= 0

since (2.6) is zero at the non hyperbolic points (unh, vnh). So by the Implicit Function

Theorem, u can be expressed as a function of v (u = u(v)). Now, we can differentiate

f(u(v), v) = 0 implicitly by v and solve for u′(v) to obtain

u′(v) = −1 +
a

−n(n− A) + n(1− n) + (1− n)(n− A)
, (2.22)

where n = u(v)+v. If we substitute the non hyperbolic points (unh, vnh) into (2.22), we

get u′(vnh) = 0. Hence, the derivative exists at the non hyperbolic points meaning that

the graph u(v) is continuous and differentiable at the non hyperbolic points. Going one

step further, we can calculate the second derivative

u′′(v) =
−2a(u′(v) + 1)(−(n− A)− n+ (1− n))

(−n(n− A) + n(1− n) + (1− n)(n− A))2
.

If we substitute in a non hyperbolic point (unh, vnh), we obtain

u′′(vnh) =
−2a(−((unh + vnh)− A)− (unh + vnh) + (1− (unh + vnh)))

a2
. (2.23)

where u′(vnh) = 0. Since the second derivative exists, the first derivative u′(v) is

continuous at the non hyperbolic points. Hence,M is well defined smooth manifold.
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2.2 Slow System

In this section, we study the slow system of (2.1) to obtain the remaining dynamics.

The slow system is obtained by rescaling time with τ = δt where t corresponds to the

fast time scale and τ corresponds to the slow time scale. This yields

δu′ = δF (n)u,

δv′ = (1− δ)F (n)u+ F (n)v − av.
(2.24)

Then, taking δ → 0 gives the following slow reduced system

u′ = F (n)u,

0 = F (n)u+ F (n)v − av.
(2.25)

The first equation in (2.25) defines the dynamics on the normally hyperbolic regions

of the nullcline given by the second equation. The nullcline of the second equation is

precisely the manifold M which was previously defined by (2.3). We define

g(u, v) = F (n)u. (2.26)

where F (n) = (1 − n)(n − A). Using (2.26), we will now study the dynamics on each

branch. For the following three subsections we consider the case when three branches

exist, that is d > 0. We calculate the equilibria on each branch and describe their

stabilities on M . Note that when we talk about the stability of an equilibrium, we

are assuming that it is not a non hyperbolic point. In the case when the equilibrium

coincides with a non hyperbolic point, we have to study the stability numerically since

no branch is a graph in a neighbourhood of an equilibrium, as was shown before.
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2.2.1 Dynamics on Branch I

We first study the dynamics on the attracting branch I when d > 0. The equilibria

are obtained by setting the first equation of (2.25) to zero and calculating the critical

points. If |A| < 1, the equilibrium (u∗1, v
∗
1) = (1, 0) is always present on branch I. If, in

addition,

(1 + A)2 − 4(A+ a) > 0, (2.27)

then (u∗2, v
∗
2) = (0, v+) exists on branch I, where

v+ =
1 + A+

√︁
(1 + A)2 − 4(A+ a)

2
, (2.28)

which was obtained by solving

0 = (1− v)(v − A)− α. (2.29)

Essentially, (u∗2, v
∗
2) = (0, v+) is present on branch I when v+ is a real number and not

a non hyperbolic point.

We illustrate some examples in Figure 2.2 where the pink and blue curves are exam-

ple manifolds M which are defined by (2.20). In Figure 2.2, the equilibria are denoted

by black circles and the non hyperbolic points are denoted by open circles. The non

hyperbolic point (unh+ , vnh+) connects branch II and I for each example manifold, and

the dashed line is a helper line showing a segment of u+ v = k+ where the value of k+

can be determined from the intersection of the dashed line and the u-axis. Similarly,

the non hyperbolic point (unh− , vnh−) connects branch II and III with its respective k−

value labeled. In Figure 2.2 (a), A > 0 and we see that the equilibrium (u∗1, v
∗
1) = (1, 0)

is always present on branch I but the presence of (u∗2, v
∗
2) = (0, v+) depends on the

parameters. In Figure 2.2 (b), A < 0 and in both examples, (u∗1, v
∗
1) and (u∗2, v

∗
2) are

present. It is also possible to have only one equilibrium (u∗1, v
∗
1) on branch I by making

(2.27) not hold, which correlates to shifting k+, as shown by the example manifolds in
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(a).

(a) (b)

Figure 2.2: For each figure, the pink and blue curves are example manifolds M defined
by (2.20), the equilibria are denoted by black circles and the corresponding non hyperbolic
points in each manifold are denoted by open circles. The dashed lines are helper lines showing
segments of u+ v = k+ and u+ v = k− lines. The k+ and k− labels on the u-axis show where
the respective k+ and k− would fall. In (a), A > 0 and fixed for both manifolds In (b), A < 0
and fixed for both manifolds.

To determine the stability of these equilibria on branch I, we can use g(u, v) defined

in (2.26). If g(u, v(u)), then we can use linear stability analysis to classify the stability

of equilibria on M . This can be done since M is locally invariant by Fenichel theory

and M is a smooth manifold. The implicit derivative of g(u, v(u)) is given by

∂g(u, v(u))

∂u
= (−2(u+ v(u))(1 + v′(u)) + (1 + A)(1 + v′(u)))u+ F (n). (2.30)

where F = (1 − n)(n − A). As noted before, each branch is a graph of u meaning

that f(u, v) = f(u, v(u)) where f(u, v) is defined in (2.4). Hence, we can use (2.30) to

determine the stability of equilibria on each branch. Before we do that, we prove some

useful inequalities.

Lemma 2.2.1. Suppose that d ≥ 0, |A| < 1, and a > 0.

i) On branch I, 1 + v′(u) > 0 at (u, v) = (1, 0).
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ii) On branch III, given a fixed A, if 0 < A < k− or A < 0 then 1 + v′(u) > 0 at

(u, v) = (A, 0).

iii) On branch II, given a fixed A, if A > k− > 0 then 1+ v′(u) < 0 at (u, v) = (A, 0).

Proof. We show the inequality in item i) by using implicit differentiation. First, we

differentiate f(u, v(u)) = 0 defined in (2.4) with respect to u to obtain

0 = (−1− v′(u))(u+ v(u)− A)(u+ v) + (1− u− v(u))(1 + v′(u))(u+ v(u))

+ (1− u− v(u))(u+ v(u)− A)(1 + v′(u))− av′(u). (2.31)

Plugging in (u, v(u)) = (1, 0) into (2.31), we obtain

0 = (−1− v′(u))(1− a)− αv′(u).

Solving the above equation for v′(u) gives

v′(u) =
1− A

−1 + A− a
= −1 +

a

1− A+ a
(2.32)

where a/(1− A+ a) > 0. Hence, 1 + v′(u) > 0 at (u, v) = (1, 0).

To show item ii), we solve (2.31) for v′(u) and substitute in (u, v) = (A, 0) which

gives

v′(u) =
A2 − A

−A2 + A− a
= −1 +

a

A2 − A+ a
. (2.33)

If A > 0, then

A < k− =
(1 + A)−

√︁
(1 + A)2 − 3(A+ a)

3

which can be rewritten as

√︁
(1 + A)2 − 3(A+ a) < 1− 2A.
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Squaring both sides and simplifying yields the condition

0 < A2 − A+ a. (2.34)

So, v′(u) + 1 > 0 at (u, v) = (A, 0) when 0 < A < k−. When A < 0, it follows

immediately from (2.33) that 1 + v′(u) > 0 at (u, v) = (A, 0). It also follows that

1 + v′(u) < 0 when A > k− > 0 at (u, v) = (A, 0) since the inequality flips in (2.34)

which shows item iii).

Lemma 2.2.2. (Equilibria Stability on Branch I) Suppose that (u∗1, v
∗
1) = (1, 0) and

(u∗2, v
∗
2) = (0, v+) where v+ is defined in (2.28) are not non hyperbolic points. The equi-

librium (u∗1, v
∗
1) = (1, 0) always exists on branch I, and is stable on M . The equilibrium

(u∗2, v
∗
2) = (0, v+) is unstable on branch I, if it exists.

Proof. Substituting in the equilibrium point (u∗1, v
∗
1) = (1, 0) into (2.30) we obtain

∂g

∂u

⃓⃓⃓
(1,0)

= −2(1 + v′(u)) + (1 + A)(1 + v′(u))

= (1 + v′(u))(−1 + A)

< 0

since |A| < 1 and 1 + v′(u) > 0 at (1, 0) by item i) in Lemma 2.2.1. This shows that

(u∗1, v
∗
1) = (1, 0) is stable on M .

Now we substitute (u∗2, v
∗
2) = (0, v+) into (2.30) and find that

∂g

∂u

⃓⃓⃓
(0,v+)

= a > 0

which was obtained by substituting in (2.29) into (2.30). This means that (u∗2, v
∗
2) is

unstable on M given that it is not a non hyperbolic point.
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2.2.2 Dynamics on Branch III

Now, we analyze the dynamics on the other attracting branch III. Like branch I, if

A > 0 this branch can have up to two equilibria (u∗0, v
∗
0) = (0, 0) and (u∗3, v

∗
3) = (A, 0).

This branch always has the (u∗0, v
∗
0) equilibrium. We see this in Figure 2.2 (a), where

the pink curve denotes the case when only (u∗0, v
∗
0) = (0, 0) is on branch III and the

blue curve denotes the case when both equilibria are present on branch III. Notice that

in the case that (u∗3, v
∗
3) is present, A < k−.

We summarize the stabilities in a lemma.

Lemma 2.2.3. (Equilibria Stability on Branch III, Strong Allee Effect A > 0) Suppose

(u∗0, v
∗
0) = (0, 0) and (u∗3, v

∗
3) = (A, 0) are not non hyperbolic points. If A > 0, (u∗0, v

∗
0) =

(0, 0) always exists on branch III, and is stable on M . If A < k−, the equilibrium,

(u∗3, v
∗
3) = (A, 0) exists and is unstable on branch III.

Proof. Substituting (u∗0, v
∗
0) = (0, 0) into (2.30) we obtain

∂g

∂u

⃓⃓⃓
(0,0)

= A.

Hence, (u∗0, v
∗
0) is stable when A > 0.

The equilibrium (u∗3, v
∗
3) = (A, 0) can only exist on branch III when A < k−. This

is because branch III contains all points on M which satisfy u + v < k− by definition

in (2.20). Hence, it also contains (u∗3, v
∗
3) = (A, 0) since (u∗3, v

∗
3) ∈ M . Note that if

A ≥ k−, branch III, cannot contain (u∗3, u
∗
3) = (A, 0).

Substituting in (u∗3, u
∗
3) = (A, 0) into (2.30) gives

∂g

∂u

⃓⃓⃓
(A,0)

= (−2A(1 + v′(u)) + (1 + A)(1 + v′(u))A) + 0,

= (1 + v′(u))(1− A)A. (2.35)

By Lemma 2.2.1 item ii), 1 + v′(u) > 0 at (u, v) = (A, 0). So if A > 0, then (u∗3, v
∗
3) is

unstable on branch III.
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For the case when A < 0, branch III can also have up to two equilibria where

(u∗3, u
∗
3) = (A, 0) always exists. The equilibrium (u∗4, v

∗
4) = (0, v−) can also exist on this

branch given that (2.27) is satisfied where

v− =
1 + A−

√︁
(1 + A)2 − 4(A+ a)

2
. (2.36)

The equilibrium (u∗0, v
∗
0) = (0, 0) may be present on this branch instead of (u∗4, v

∗
4).

These cases are shown in Figure 2.2 (b). The pink manifold shows the case when

(u∗3, u
∗
3) = (A, 0) and (u∗4, v

∗
4) = (0, v−) exist on branch III. In that case k− < 0. The

blue manifold shows the case when (u∗3, u
∗
3) and (u∗0, v

∗
0) = (0, 0) exist on branch III and

this occurs when k− > 0. We summarize the dynamics in a lemma.

Lemma 2.2.4. (Equilibria Stability on Branch III, Weak Allee Effect A < 0) Suppose

that A < 0. Then, (u∗3, u
∗
3) = (A, 0) always exists on branch III and is stable on M . If

(2.27) holds, then (u∗4, v
∗
4) = (0, v−) where v− is defined by (2.36) can exist on branch

III and is unstable on M . If the equilibrium (u∗0, v
∗
0) = (0, 0) exists on branch III, it is

unstable on M .

Proof. From the calculations in the proof of Lemma 2.2.3, we see from the equation

(2.35), that (u∗3, u
∗
3) = (A, 0) is stable on M if A < 0 (which also used Lemma 2.2.1

item ii)).

Using (2.30), we compute

∂g

∂u

⃓⃓⃓
(0,v−)

= a > 0

which was obtained by substituting in (2.29) into (2.30). We see that (u∗4, v
∗
4) is always

unstable on M .

From the calculation in the proof of Lemma (2.2.3), we see that (u∗0, v
∗
0) = (0, 0) is

unstable on M since A < 0.
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2.2.3 Dynamics on Branch II

Finally, we analyze the unstable branch II. If A > 0, this branch can also have at

most two equilibria, and it is possible to have no equilibria as well. The equilibrium

(u∗3, v
∗
3) = (A, 0) can exist on this branch. If (2.27) holds, then (u∗4, v

∗
4) = (0, v−) can

exist on this branch where v− is defined in (2.36). It is possible to have these equilibria

exist simultaneously on branch II, or have one or neither. In Figure 2.2 (a), we see that

on the pink manifold M , branch II has two equilibria. Notice that in this case k− < A.

Now, as k− shifts to the right, the equilibria gradually disappear form branch II, and

the blue manifold M shows a case when branch II has no equilibria. We summarize the

equilibria stability in a lemma.

Lemma 2.2.5. (Equilibria Stability on Branch II, Strong Allee Effect, A > 0 ) Suppose

that A > 0 and that (u∗4, v
∗
4) = (0, v−) where v− is defined by (2.36) and (u∗3, v

∗
3) = (A, 0)

are not non hyperbolic points. On branch II, if (2.27) holds, then (u∗4, v
∗
4) = (0, v−) can

exist on branch II and is always unstable on M . If k− < A < k+ then (u∗3, v
∗
3) = (A, 0)

exists and is stable on branch II.

Proof. By the same calculation as in Lemma 2.2.4 we see that (u∗4, v
∗
4) is always unstable

on branch II. It also follows that (u∗3, v
∗
3) = (A, 0) exists on branch II if k− < A < k+,

by definition of M in (2.20). Further, (u∗3, v
∗
3) is always stable on this branch which

follows from (2.35) in the proof of Lemma 2.2.3 because of the condition k− < A making

v′(u)− 1 < 0 by Lemma 2.2.1 item ii).

Now, we discuss the case when A < 0. In this case, the possible equilibria on branch

II are (u∗4, v
∗
4) = (0, v−) with v− defined by (2.36) and (u∗0, v

∗
0) = (0, 0). In Figure 2.2, we

see that on the pink manifold, branch II has (u∗0, v
∗
0) = (0, 0). Notice that for this case

k− < 0. Now as k− gets shifted, branch II in the blue manifold has one equilibrium now

at (u∗4, v
∗
4) = (0, v−), and in this case k− > 0. It is also possible to have no equilibria on

the branch II, like in Figure 2.2 (a). We summarize the stabilities of these equilibria in

a lemma.
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Lemma 2.2.6. (Equilibria Stability on Branch II, Weak Allee Effect, A < 0 ) Suppose

that A < 0 and that (u∗4, v
∗
4) = (0, v−) where v− is defined by (2.36) and (u∗0, v

∗
0) = (0, 0)

are not non hyperbolic points. On branch II, if (2.27) holds, then (u∗4, v
∗
4) = (0, v−) can

exist on branch II and is always unstable. If (u∗0, v
∗
0) = (0, 0) exists on branch II, it is

unstable.

Proof. By the same calculation as in Lemma 2.2.4 we see that (u∗4, v
∗
4) is always unstable

on M . It also follows that (u∗0, v
∗
0) = (0, 0) is always unstable on branch II from the a

calculation in Lemma 2.2.3.

2.2.4 Summary of Dynamics on M

The full dynamics when A > 0 and M has three branches (d > 0) is summarized

in Figure 2.3. Figure 2.3 combines the fast dynamics we have seen before, and the

dynamics on the slow manifold. The non hyperbolic points are denoted with the open

white circles and the equilibria are denoted by the black circles. The manifold is in pink

and some trajectories are shown in blue. The arrows in black help show the direction

of flow. The plots (a), (b), (c) in Figure 2.3 show the cases when k− < A, k− = A,

and k− > A, respectively. Notice that in case (a), the equilibrium (u∗3, v
∗
3) = (A, 0) is

stable but in case (c) it is unstable as shown in the above analysis. Case (b) shows a

special case when all the non hyperbolic points coincide with equilibria. That is, the

equilibria (u∗3, v
∗
3) = (A, 0) and (u∗2, v

∗
2) = (u∗4, v

∗
4) are the non hyperbolic points. We

note that it is possible to have (u∗3, v
∗
3) coincide with a non hyperbolic point and have

the two equilibria (u∗2, v
∗
2) = (0, v+) and (u∗4, v

∗
4) = (0, v−) exist.

Figure 2.4 summarizes the cases when there are 3 branches and A ≤ 0. In (a) and

(b) the case when k− < 0 and k− > 0 are shown, respectively. In (c), the case when

(u∗2, v
∗
2) = (u, v+) and (u∗4, v

∗
4) = (u, v−) coincide with the non hyperbolic point is shown.

The other case we have when A > 0 is where there are two attractive branches I, III

and the repelling branch II degenerates into a single non hyperbolic point, that is d = 0.

This case occurs when k+ = k− and we only have 3 equilibrium points sinceM in (2.20)
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(a) (b) (c)

Figure 2.3: Phase portraits of (2.1) when A > 0 with δ = 0.001. The curve in pink is the
manifold comprised on branches separated by a non hyperbolic point(s) (white circle). The
equilibria are denoted by black circles. The lines in blue illustrate the flow of the solutions at
various initial conditions. In (a) a = 0.12 and A = 0.2, in (b) a = 0.16 and A = 0.2, and in
(c) a = 0.20 and A = 0.2.

(a) (b) (c)

Figure 2.4: Phase portraits of (2.1) with A ≤ 0 and δ = 0.001. The curve in pink is the
manifold comprised on branches separated by a non hyperbolic point(s) (white circle). The
equilibria are denoted by black circles. The lines in blue illustrate the flow of the solutions at
various initial conditions. In (a) a = 0.25 and A = −0.4, in (b) a = 0.25 and A = −0.1 and
in (c) a = 0.25 and A = 0. In (c), (0, v±) degenerate into a non hyperbolic point and (A, 0)
and (0, 0) are the same equilibrium.
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(a) (b)

Figure 2.5: Phase portrait of (2.1) with A > 0 and δ = 0.001. The curve in pink is the
manifold comprised on branches separated by a non hyperbolic point(s) (white circle). The
equilibria are denoted by black circles. The lines in blue illustrate the flow of the solutions at
various initial conditions. In (a) a = 0.28 and A = 0.2 yielding one non hyperbolic point. In
(b) a = 0.4 and A = 0.2 yielding only one attractive branch.

(a) (b)

Figure 2.6: Phase portrait of (2.1) with A ≤ 0 and δ = 0.001. The curve in pink is the
manifold comprised on branches separated by a non hyperbolic point(s) (white circle). The
equilibria are denoted by black circles. The lines in blue illustrate the flow of the solutions
at various initial conditions. In (a) a = 0.4375 and A = −0.25 yielding two branches. In (b)
a = 0.5 and A = −0.25 yielding one branch.
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can intersect the v-axis at most once. The dynamics for this case are summarized in

Figure 2.5 (a).

In the case of the weak Allee effect, A ≤ 0, it is also possible to have the repelling

branch II degenerate into a non hyperbolic point, with two attracting branches I, III

remaining. There are also only three equilibria in this case and the dynamics are

summarized in Figure 2.6 (a).

Finally, we analyze the case for when there is only one normally hyperbolic attractive

branch, that is d < 0. This is a special case when branch I and III “merge” and become

one normally hyperbolic branch, which we call branch I. The dynamics are very similar

to the above cases with 2 attractive branches and one non hyperbolic point. The

dynamics of this case when A > 0 are summarized in Figure 2.5 (b) and what occurs

for a similar case when A < 0 is shown in Figure 2.6 (b).

Now we consider the case when A = 0. The general dynamics for the weak Allee

effect hold as outlined above. The key difference is that (u∗0, v
∗
0) = (0, 0) and (u∗3, v

∗
3) =

(A, 0) degenerate into one equilibrium at (u∗0, v
∗
0) = (0, 0), and we cannot comment on

its stability from the analytical calculations. We can illustrate the dynamics numerically

as shown in Figure 2.4 (c). Numerically, it appears that in this case the equilibrium at

(u∗0, v
∗
0) = (0, 0) has one sided stability.

Notice that from the numerical examples shown in Figures 2.3 and 2.5, A remains

fixed and a varies. We see that with increasing a the manifold M eventually becomes

normally hyperbolic everywhere, for sufficiently large a. Similarly, if a is fixed and

A increases, then manifold M becomes normally hyperbolic for sufficiently large A as

shown Figure 2.4.

2.2.5 Behaviour at Non Hyperbolic Points

We discuss now about what occurs at the non hyperbolic points. The behaviour is

summarized in Figure 2.7. In (a), if we follow the dark blue trajectory, we see it

quickly converges to the unstable branch I, and then flows to the left towards the non
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hyperbolic point. As it reaches it, the trajectory “falls off” or jumps down converging

to the stable branch III. From there it flows toward the stable equilibrium. Likewise, in

the light blue trajectory in (a), the solution converges to the stable branch III, and flows

toward the other non hyperbolic point. Once the trajectory reaches the non hyperbolic

point it jumps up to the stable branch I, converging toward the stable equilibrium at

(u, v) = (1, 0). The jump in (b) of the light blue trajectory is more subtle, yet still

occurs. This shows that when the trajectory reaches the non hyperbolic point, it will

quickly jump towards the other stable branch. During the jump, the trajectory will

have dynamics of the fast system (2.2), and once the trajectory has settled onto the

slow manifold, it will exhibit the dynamics of the slow system (2.25).

(a) (b)

Figure 2.7: Phase portrait of (2.1) with A < 0 and δ = 0.001 illustrating the behaviour at the
non hyperbolic points. The curve in pink is the manifold comprised on branches separated
by a non hyperbolic point(s) (white circle). The equilibria are denoted by black circles. The
lines in blue illustrate the flow of the solutions at various initial conditions. In (a) a = 0.22
and A = −0.07 and in (b) a = 0.4375 and A = −0.25.

2.3 Allee Region

We have now fully analyzed model (2.1) which incorporates the Allee effect. Recall that

u denoted the CSC density and v the TC density. Since the densities are normalized

in (2.1), the carrying capacity K = 1. Hence, the biologically relevant domain is given
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by the triangle

△ = {(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, u+ v ≤ 1} (2.37)

since by assumption tumors start growth below carrying capacity, that is u+v = n ≤ 1.

In Figure 2.3, we notice an interesting region within △ where tumors naturally

decay. This region is highlighted in green for case (b) of Figure 2.3, in Figure 2.8 where

the black diagonal and the positive parts of u and v axes enclose △. We call the green

region the Allee region.

Figure 2.8: Phase portrait of (2.1) with A > 0.2, a = 0.16, and δ = 0.001. The curve in pink
is the manifold comprised on branches separated by a non hyperbolic point(s) (white circle).
The equilibria are denoted by black circles and the black diagonal marks when n = 1. The
line in blue illustrates an example trajectory. Trajectories within the highlighted green region
converge to the origin.

Definition 2.3.1. (Allee region Λ) A region Λ ⊂ △ where TC or CSC densities decrease

naturally, is called the Allee region. A key characteristic of this region is at least one

density dies out completely.

For the cases illustrated in Figures 2.3 and 2.5, the Allee region can also be charac-

terized by the intersection of the basin of attraction of (u∗0, v
∗
0) = (0, 0) and quadrant

I. We provide a more general definition above to incorporate more general cases, which

do not require the existence of a stable steady state at the origin. We also want to

quantify the size of the Allee region, which we do by calculating the relative area to △

and we call the resulting value the Allee index.

48



Definition 2.3.2. (Allee index σ) The Allee index, σ, is the measure of the relative

area of the Allee region Λ to the area of the biologically relevant region △. To calculate

the Allee index, let ω be the area of Λ, and T be the area of the domain △, then

Allee index = σ =
ω

T
= 2ω. (2.38)

since T = 1/2. If σ = 1, then the whole domain is the Allee region.

Figure 2.8 illustrates a flaw of model (2.1), which is that the trajectories escape the

Allee region and the TC density becomes negative. In a biologically realistic model,

densities should not become negative, if they begin within the biologically relevant

domain △. We address this issue in Chapter 3, by modifying the model (2.1) and study

how to increase the Allee region.
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Chapter 3

Biologically Relevant Cancer Stem

Cell Model with an Allee Effect

In the previous chapter, we analyzed the model (2.1) in detail. As remarked before, that

model is not biologically realistic as some trajectories may flow below the u-axis even

when the initial condition is contained within the biologically relevant region △ defined

by (2.37). This can give negative densities which should not happen in a biologically

relevant model. In this section, we fix this issue and propose a closely related model to

(2.1) that is biologically relevant. We will then analyze the modified model, where we

benefit greatly from the detailed analysis in Chapter 2.

We propose the following modified model

u̇ = δF+(n)u,

v̇ = (1− δ)F+(n)u+ F (n)v − av,
(3.1)

where

F+(n) = max(F (n), 0) =

⎧⎪⎨⎪⎩F (n) if F (n) > 0,

0 otherwise.

(3.2)

Notice that the only difference between the previously studied model (2.1) and the

current one (3.1) is the introduction of F+(n) which is done so that the CSC growth
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term remains non-negative. Hence, the interpretation of the terms and the dynamics in

the phase space are almost the same as before. Here, we highlight the differences. Like

before, F (n) = (1 − n)(n − A) where A is the Allee constant, |A| < 1 and n = u + v.

Recall the biological interpretation of F (n), which is that it is a function describing

the cells fitness to reproduce in a certain location. Hence, if F (n) is positive this

corresponds to a favourable region and cells grow, and if F (n) is negative cells decay

due to a limitation of space and nutrients. For F+(n), we take the positive parts of

F (n) and connect them with a constant zero function, as defined in (3.2). Notice,

that the terms describing contributions from the CSCs have F+(n) whereas the terms

describing contributions from the TCs have F (n). Let’s examine the term F (n)v first

in the second equation of (3.1). When F (n) is positive, F (n)v contributes positively to

the overall TC density, meaning that the environment is favourable and TCs are able

to replicate. When F (n) is negative, F (n)v contributes negatively to the overall TC

density, meaning that TCs die due to being in an unfavourable environment. Now, CSCs

can only contribute positively and they do not kill TCs. Hence, the term (1−δ)F+(n)u

is either positive or zero, fixing the issue that model (2.1) had.

Next, we show that (3.1) is a dynamical system.

Lemma 3.0.1. Together with an initial condition (u(0), v(0)) = (ū, v̄), ū, v̄ ∈ R, (3.1)

forms a dynamical system in R2.

Proof. It is enough to show that F+(n) in (3.2) is locally Lipschitz continous. The rest

follows from the Picard–Lindelöf Theorem 2.0.1 like in the proof of Lemma 2.0.2.

Because F (n) = (1 − n)(n − A) and constant functions are Lipschitz continuous

(follows from Mean Value Theorem), it is enough to show that for arbitrary functions

n(x),m(x), x ∈ R2 which are both locally Lipschitz, h(x) = max(n(x),m(x)) is also

locally Lipschitz.

Since n(x) is locally Lipschitz, |n(x) − n(y)| ≤ L1|x − y| where y ∈ R2 and L1
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depends on x and y. So the right inequality of

−L1|x− y| ≤ n(x)− n(y) ≤ L1|x− y| (3.3)

implies

n(x) ≤ n(y) + L1|x− y| ≤ h(y) + L1|x− y|. (3.4)

Similarly,

m(x) ≤ m(y) + L2|x− y| ≤ h(y) + L2|x− y|. (3.5)

where L2 depends on x, y. From (3.4) and (3.5) it follows that

h(x) ≤ h(y) + L|x− y| (3.6)

where L = max(L1, L2).

The left inequality of (3.3) implies

n(y) ≤ n(x) + L1|x− y| ≤ h(x) + L1|x− y|. (3.7)

Similarly,

m(y) ≤ m(x) + L1|x− y| ≤ h(x) + L1|x− y|. (3.8)

Together, (3.7) and (3.8) imply that

h(y) ≤ h(x) + L|x− y| (3.9)

where L = max(L1, L2). Combining (3.6) and (3.9) yields that

|h(x)− h(y)| ≤ L|x− y|. (3.10)

Hence, h(x) is locally Lipschitz continuous.

We also find that the biologically relevant domain △ given by (2.37) in system (3.1)
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is positively invariant.

Lemma 3.0.2. (Positively Invariant Region △) System (3.1) has a positively invariant

region △ defined in (2.37).

Proof. To show △ is positively invariant, it is enough to look at the vector field on the

boundaries: u = 0, v ∈ [0, 1], u + v = 1, and v = 0, u ∈ [0, 1]. When u = 0 we see

from (3.1) that the vectors only flow up or down. Hence, when u = 0, v = 1 the flow is

downward and when u = 0, v = 0 there is a steady state. When u+ v = 1, all vectors

flow down, where there is a steady state at u = 1, v = 0. Now when v = 0, if u > A

then u̇, v̇ ≥ 0 and when u ≤ A then u̇, v̇ = 0. This shows that the triangle is positively

invariant, since no vectors leave △.

It is enough to analyze (3.1) in △ since on the boundary u+ v = 1 the tumor is at its

carrying capacity density. By assumption, no tumor starts off at a density larger than

the carrying capacity density, so our biologically relevant domain is now △.

3.1 Fast System

We analyze (3.1) in a similar manner as (2.1) in Chapter 2 by first looking at the fast

system. Again, taking δ → 0 yields

u̇ = 0,

v̇ = F+(n)u+ F (n)v − av.
(3.11)

The nullcline from the second equation of (3.11) gives the manifold

M̄ := {(u, v) : 0 = F+(n)u+ F (n)v − av, n = u+ v}. (3.12)
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which can be rewritten as

M̄ =

⎧⎪⎨⎪⎩0 = F (n)v − av if n < A,

0 = F+(n)u+ F (n)v − av if n ≥ A.

(3.13)

Notice that for n ≥ A M̄ =M with M defined by (2.20). Hence, all of the previous

results from model (2.1) hold under this constraint. Further, if A < 0 then F (n) ≥ 0

in △. Hence, we only need to examine what occurs when 0 < n < A, A > 0.

When n < A and A > 0

v̇ = (F (n)− a)v := s(u, v). (3.14)

Using (3.14), we show that M̄ is normally hyperbolic and attracting when n < A.

Calculating the derivative of s(u, v) with respect to v, we obtain

∂s

∂v

⃓⃓⃓
M

= F ′(n)v + F (n)− a. (3.15)

Notice that s(u, v) = 0 implies that v = 0 when n < A, since F (n) < 0. So (3.15)

reduces to

∂s

∂v

⃓⃓⃓
M

= F (n)− a, (3.16)

which shows that ∂s
∂v

⃓⃓⃓
M
< 0, when n < A. This proves that M̄ is normally hyperbolic

and attracting when n < A, A > 0.
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We can express M̄ into branches as follows

M̄ :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I : 0 = F+(n)u+ F (n)v − av, n > k+

II : 0 = F+(n)u+ F (n)v − av, k− < n < k+, n ≥ A

III : 0 = F+(n)u+ F (n)v − av, A ≤ n < k− ∪ 0 = F (n)v − av, n ≤ A

∪N+

(3.17)

where k± is defined in (2.10) and

N+ = {(unh, vnh) : vnh+ , vnh− ≥ 0}, (3.18)

that is N+ is the set of non hyperbolic points with non negative v-coordinate. Es-

sentially, the difference between M and M̄ is that in the regions when M falls into

quadrants III and IV of the uv-plane, M̄ has a horizontal interval at v = 0 connecting

continuously to the other positive branches. Moreover, we are only interested in the

parts of M̄ that fall within △.

To summarize, we show some possible cases in Figure 3.1. We focus on when A > 0

since when A ≤ 0, the behaviour of system (3.1) is the same as system (2.1) in △.

Like before, the manifold M̄ is in pink in each case, the trajectories are in blue, and

the non hyperbolic points are the open white circles. The black diagonal line shows

the boundary of △. In (a), the case where there are three branches is shown. We see

that the unstable branch II meets the stable branch III at A and branches II and I are

not connected in △. In (b), the case when branch II degenerates into a non hyperbolic

point is shown. This case shows how the positive part of F (n) meets s(u, v) = 0 at A,

creating the attracting branch III. Finally, we have the case where M̄ is a single branch

in (c) where again we have the connection of the positive part of F (n) with s(u, v) = 0

forming a single attracting branch.

We highlight the Allee region Λ in green in Figure 3.1. We see that if a trajectory

starts in the Allee region Λ, the flow is downward until the u-axis is reached. So if
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(a) (b) (c)

Figure 3.1: Phase portraits of (3.11). In each figure, the curve in pink is the manifold M̄
where the non hyperbolic points are denoted by open white circles. The lines in blue are
the flows of the solutions which either flow up or down. The branches are labeled by their
respective numbers. The position of the parameter A is also labelled, where A = 0.2 for each
case. The Allee region, Λ, is highlighted in green. In (a) a = 0.12 yielding three branches and
the Allee index σ = 0.0866. In (b) a = 0.28 yielding two attracting branches and σ = 0.36.
In (c), a = 0.4 yielding one attracting branch and σ = 0.36.

the cancer starts out with CSC and TC densities contained within Λ, the TCs die out

naturally, decreasing the overall size of the tumor. Hence, in Λ it is possible to achieve

tumor control, as no tumor growth occurs.

In Figure 3.1, the Allee Indices in (a), (b) and (c) are σ = 0.0866, σ = 0.36, and

σ = 0.36, respectively. So we see that as a increases and A remains fixed, the Allee

index, σ, increases up to a point and remains fixed regardless of how large a is. Hence,

σ is limited by the value of A. If A increases then σ also increases, and the increase in

the σ is much more drastic.

3.2 Slow System

We now examine the slow system of (3.1) which is obtained by rescaling time using

τ = δt and taking δ → 0 giving

u′ = F+(n)u,

0 = F+(n)u+ F (n)v − av.
(3.19)
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All five equilibria discussed for the model (2.1) are present in the above model. If the

equilibria fall on the positive part of F (n), then the dynamics discussed for (2.1) remain

the same as well. The key difference is that when A > 0, we have a continuum of steady

states on the segment v = 0 and u ∈ [0, A) because u′ = 0. This means that if the flow

converges to the piece of M̄ defined by s(u, v) (3.14), it stays at that point for all time

unable to increase or decrease in u.

The examples shown in Figures 2.3, 2.4, 2.5, 2.6, 2.7 summarize the dynamics of

(3.1) if restricted to △. Notice that the Allee region, Λ, is the region enclosed by branch

II, branch III and u = 0. From these examples, we see that if a tumor starts growing in

the Allee region, the TC density decreases but the CSC density remains constant. That

means the CSCs go quiescent unable to cause the tumor to grow. If the tumor starts

growing outside of Λ, then the tumor will select for CSCs, until a tumor comprised of

only CSCs is obtained. This is because the trajectories outside of Λ converge to the

steady state (u∗1, v
∗
1) = (1, 0).

To finish this section, we remark that when A ≤ 0, there is no Allee region Λ. This

is because if the trajectory starts anywhere within △, it will converge to the manifold

and eventually reach the equilibrium (u∗1, v
∗
1) = (1, 0), as shown in Figures 2.4, 2.6, 2.7.

Hence, no matter what size the tumor is, if A ≤ 0 the tumor grows and eventually

becomes comprised of only CSCs.

3.2.1 Remarks

Before moving on to study what happens if we include treatment to (3.1), we would

like to mention what would occur if F (n) was used in the first equation of system (3.1)

instead of F+(n). In that case, the CSCs can die due to the Allee effect, since when

n < A the first equation of (3.1) is negative. This yields dynamics on branch III in

the region of n < A, instead of a continuum of steady states. Hence, the flows that

converged to branch III, in the region n < A, would flow towards the steady state at

the origin since it is stable. Everything else outside of the region n < A remains the
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same. Thus, if CSCs are affected by the Allee effect, the tumor becomes extinct if it is

in the Allee region.

3.3 Cancer Stem Cell Model with Allee Effect and

Treatment

Now that we have established that (3.1) is biologically relevant, we incorporate treat-

ment into this model. As before, u(t) and v(t) denote the CSC and TC densities,

respectively. To incorporate treatment into the model, we need to include a function

that will model the kill rate which will depend on the type of treatment. We also need

account for the latency time effect which occurs because cancer cells take time to die

and get cleared from the tissue [49, 66]. This can be accounted for mathematically

by having a damaged cell compartment w(t). In this damaged compartment all cells

eventually die, as we assume that the damaged cells are focused on repair and cannot

produce offspring. Further, we assume that the damaged cells are focused on repair

and thus do not produce offspring. By adding treatment and the latency time effect

into (3.1), we obtain the modified model

u̇ = δF+(n)u− ηδH(t)u

v̇ = (1− δ)F+(n)u+ F (n)v − av −H(t)v,

ẇ = ηδH(t)u+H(t)v − γw,

(3.20)

where n(t) = u(t)+v(t)+w(t). The parameter δ is the fraction of symmetric divisions,

a is the death rate of TCs, and A is Allee constant as before. Here, H(t) is a function

modelling the kill rate from treatment which depends on time. Hence, when treatment

is applied H(t) ̸= 0 but when treatment stops H(t) = 0. Since H(t) models the kill

rate from treatment, it can represent a generic cytotoxic treatment. We assume for

simplicity that because CSCs have low treatment sensitivity, the kill rate of CSCs from

treatment is on the same scale as δ. Therefore, the treatment function in the CSC
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compartment is multiplied by δ. We also multiply the function by 0 ≤ η ≤ 1 which

is a parameter accounting for various treatment resistances that CSCs have. The cells

affected by treatment become damaged and join the damaged volume compartment.

The first two terms in the third equation of (3.20) model the amount of damaged volume

resulting from treatment. Since damaged cells can only die, the third term describes

the clearance of the damaged volume with clearance rate γ.

System (3.20) is much more difficult to analyze analytically. Here, we write down

the fast reduced system to get an idea of what the slow manifolds look like, and plot

them numerically. The fast reduced system of (3.20) is

u̇ = 0,

v̇ = F+(n)u+ F (n)v − av −H(t)v,

ẇ = H(t)v − γw.

(3.21)

To analyze the fast system, we assume for now that the treatment termH(t) is constant.

If H > 0 then the treatment is on and if H = 0 then the treatment is off. We see that

(3.21) has two manifolds which are given by

M1 = {(u, v, w) : F+(n)u+ F (n)v − av −Hv = 0, u+ v + w ≤ 1}, (3.22)

and

M2 = {(u, v, w) : Hv − γw, u+ v + w ≤ 1}. (3.23)

We represent the intersection of the two manifolds by

M1 ∩M2 =MT , (3.24)

where for all H > 0 we call MT the treatment manifold. An example as to how these

manifolds can look like is given in Figure 3.2 (a). The manifold M1 is shown by the

blue surface and M2 is given by the pink surface. The two manifolds intersect giving
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the pink curve MT . The blue curve in the uv-plane is the no treatment manifold M̄

defined in (3.12) which is from the two dimensional system (3.1). This blue curve is

shown for comparison.

(a) (b) (c)

Figure 3.2: In all cases H(t) = 0.5, η = 0.3, δ = 0.01, and a,A, γ = 0.1. In (a), the blue
surface is M1, the pink surface is M2, and the pink curve is the treatment manifold MT .
The blue curve is the no treatment manifold M̄ defined in (3.12). In (b), the blue and pink
curves are still M̄ and MT , respectively. The curves in green, purple and yellow are example
trajectories of (3.20). The equilibrium is denoted by a black circle. The plot in (c) shows the
top view of (b) where the black diagonal line represents u + v = 1. The shaded area in blue
is the Allee region of (3.1) and the shaded area in pink plus the shaded area in blue is the
Allee region for (3.20).

Now, the slow reduced system of (3.20) is given by

u′ = F+(n)u− ηHu,

0 = F+(n)u+ F (n)v − av −Hv,

0 = ηδHu+Hv − γw.

(3.25)

It is difficult to solve for equilibria explicitly, so we show what occurs numerically in

Figure 3.2 (b). In (b), the pink curve is still MT , and the blue curve is still M̄ defined

in (3.12). In green, purple, and yellow are some example trajectories and H(t) is

constant. We see that for the green trajectory v always decreases, u remains constant,

and w increases at first but then decreases. The purple and yellow trajectories converge

to MT and then grow along it. For the example parameters we chose, there is a stable
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steady state to which the two trajectories converge to. This is seen more clearly in

Figure (3.2) (c) which shows the top view of (b). The area shaded with blue is the

Allee region of (3.1) which is what it would be without treatment. In pink is the

additional region that becomes part of the Allee region during treatment. Hence, the

areas shaded in blue and pink is the Allee region of (3.20) for the example parameters

listed in Figure 3.2. Since the green trajectory falls within the new Allee region, the TC

density decreases, but CSC density remains fixed. This is the case when tumor control

is obtained. Without treatment, the green trajectory would have converged to the no

treatment manifold M̄ (the blue curve) and the cancer would have progressed. However,

with the same treatment but different initial starting densities, the trajectories in purple

and yellow converge to a steady state on the treatment manifold MT defined by (3.24).

In this case, the growth of the tumor was haltered since the trajectories converged to a

steady state. However, once treatment stops (H = 0), the cancer is expected to start

growing since the purple and yellow trajectories will begin to converge to towards the

no treatment manifold M̄ .

Notice that treatment does not influence the Allee constant A. This means that

the maximum Allee region is preset and it can be predicted which trajectories are

expected to attain tumor control given that A is known. In particular, this shows that

cancers starting out with few CSCs and many TCs are more likely to end up in the

extended Allee region during treatment, whereas cancers with many CSCs and few TCs

are expected to persist.

3.3.1 Fractionated Treatment

Now we look at what occurs during a fractionated cytotoxic treatment. A fractionated

treatment is when treatment is applied for a period of time followed by a break where

there is no treatment given. The treatment is then applied again, followed by a break.

This repeats until the required dose to a patient is given. An example of this type

of treatment is radiotherapy [7, 23]. To illustrate the dynamics, we consider a very

61



prolonged treatment with long break periods in order to clearly see the behaviour. In

particular, we study what a treatment is applied for 100 time units followed by a break

of 100 time units. Further, we assume that during treatment application, the kill rate H

is constant which is the typical assumption for fractionated treatments [23]. We see the

response during fractionated treatment in Figure 3.3. For each plot in Figure 3.3 the

green is the computed solution using Matlab ODE45, the pink curve is the treatment

manifold MT defined by (3.24), and the blue curve is the no treatment manifold M̄

defined in (3.12) like before. In Figure 3.3 (a), we see that the treatment successfully

decreases the TC density and that during treatment the trajectory converges to MT

where CSC density begins to decrease. Once treatment is lifted, the TCs begin to re-

populate and the trajectory converges to the blue curve M̄ . Once treatment is applied

again, the trajectory converges to MT again. In this case, due to the treatment, the

equilibrium on MT is towards the left of the initial condition, and the treatment gen-

erally decreases the CSC and TC densities. Note that in Figure 3.3 (a), the treatment

has increased the Allee region and we get a similar situation as in Figure 3.2 (c). In

Figure 3.3 (b), we see a worse treatment case where the treatment was also to push

the equilibrium on MT to the left. In this case, the treatment is able to lower the TC

density but the CSC density increases with or without treatment. The Allee region

also did not increase since the unstable branch of the treatment manifold MT almost

matches the unstable branch of the no treatment manifold M̄ meaning that the Allee

regions are similar for both cases.

We conclude this section by summarizing the three cases that occur during treatment

in system (3.20). The best case is when the tumor falls within the new Allee region

during treatment. In this case, tumor control is guaranteed if the treatment is long

enough. The second case is when the tumor does not fall within the Allee region, but

the treatment is able to decrease the CSC and TC densities like was seen in Figure 3.3

(a). Tumor control in this case can only be achieved if the CSC and TC densities are

pushed towards (u, v) = (A, 0) (a steady state of system (3.1)). The final case is when

treatment is unsuccessful, and the CSC density increases during treatment as was seen
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(a) (b)

Figure 3.3: Examples of fractionated treatments 100 time units on, 100 time units off, for
a total treatment period of 200 time units. In each figure, the green curve is the computed
solution using Matlab ODE45, in pink the treatment manifold MT , and in blue is the no
treatment manifold M̄ defined in (3.12). In each figure η = 0.3, δ = 0.01, and a,A, γ = 0.1.
In (a) H(t) = 0.7 during the treatment period and the trajectory moves to the left. In (b)
H = 0.07 during the treatment period and the trajectory moves to the right. The initial
condition is the same for both where u(0) = 0.4 and v(0) = 0.5

in Figure 3.3 (b).

Now that we understand the dynamics of (3.20) under a cytotoxic treatment, we

move on to see if there are other ways to increase the Allee region and if a better

treatment exists. In the next chapter, we find that by accounting for the feedback

mechanisms present in cancer, there is a way to significantly increase the Allee region.
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Chapter 4

Feedback Mechanisms and the Allee

Effect

4.1 Introduction

Deregulation of signalling pathways plays a central role in cancer development [47].

There are a number of pathways that have been linked to influence CSC renewal such

as the Wnt, Notch, and Sonic Hedgehog signalling pathways [2, 6, 47]. For example,

upregulated Wnt signaling has been shown to increase the CSC population in colorectal

cancer [47]. In the Wnt signalling pathway, stem cells maintain their population by

secreting Wnt proteins, which stimulate self-renewal in stem cells [11, 47]. Stem cells

can also release an inhibitor such as Dkk molecules, that suppress the Wnt proteins

[11]. Additionally, differentiation promoters can be produced by differentiated cells

[55]. In colorectal cancer, bone morphogenetic proteins (BMPs), which belong to the

transforming growth factor-β (TGF-β) family have been linked to stimulate CSCs to

differentiate [47, 55]. Other members of the TGF-β family, can also increase tumor

invasiveness [50]. It has also been shown that as cancer progresses, more self-renewal

promoters are released and sensitivity to growth inhibitors is lowered [29, 41, 38].

Previously, Konstorum et al. [38] showed that an Allee effect exists for a modified
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system related to the model (1.4). Recall that model (1.4) was derived based on the

probability of self-renewal, p. To show the Allee effect, Konstorum et al. [38] incorpo-

rated the feedback mechanism from the self-renewal promoters such as Wnts and from

differentiation promoters such as BMPs. The self-renewal probability was modified to

incorporate the concentration of self-renewal promoter c and the concentration of the

differentiation promoter T . The amount of self-renewal inhibitors was assumed con-

stant in [38]. However, competition between CSCs and TCs was not accounted for in

[38]. In this section, we build upon (1.4) by introducing a competition function F (n)

and TC dynamics and add a positive feedback mechanism relating to self-renewal acti-

vators. Our goal in this chapter is to study under which conditions on the self renewal

probability, p, in the extended model (1.4), an Allee effect exists, if any.

4.2 Cancer Stem Cell Model Incorporating Feed-

back Mechanisms

We begin by adding a birth term from TCs, a death term for TCs, and a competition

function F (n) to (1.4) where we set the growth rate k = 1 for simplicity. This yields

u̇ = (2p(c, T )− 1)F (n)u,

v̇ = 2(1− p(c, T ))F (n)u+ F (n)v − av,
(4.1)

where the self-renewal probability p(c, T ) depends on the self-renewal promoter con-

centration c and on the differentiation promoter T . The competition function F (n)

satisfies assumptions F1 and F2 which were outlined in Section 1.1. In our analysis,

we choose F (n) = 1 − n, which is the simplest function satisfying F1 and F2. Recall

that if 2p − 1 = δ then (4.1) is fully equivalent to (1.7) by Lemma 1.1.1, hence the

interpretation of the terms in (4.1) is the same as in (1.7) where u is the CSC density,

v is the TC density, a is the TC death rate, n = u + v. The case for when p(c, T ) is
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fixed has been studied in [31] where they showed that

Ms = {(u, v) : (1− n)n− av, n = u+ v} (4.2)

is an attracting slow manifold of (4.1) given that 2p− 1 = δ and p is fixed.

The explicit function for the self-renewal probability p(c, T ) used in Konstorum et

al. [38] was been proposed by Youssefpour et al. [70]. The probability function is given

by

p(c, T ) = pmin + (pmax − pmin)

(︃
ψ1c

1 + ψ1c

)︃(︃
1

1 + ψ2T

)︃
(4.3)

where c is the concentration of CSC self-renewal promoters such as Wnts, T is the

concentration of differentiation promoters such a BMPs. The parameters ψ1 and ψ2 are

the feedback strengths on p. Notice that p in (4.3) generally increases when self-renewal

activators, c, increase and decreases when differentiation promoters, T , increase. So if

T is fixed in (4.3), then (4.3) is a saturating monotonically increasing function in c. If

c is fixed then (4.3) is a monotonically decreasing function of T .

Here, we want to study how the concentration of self-renewal activators, c, affects

tumor growth. Hence, we assume that T is constant. We also simplify (4.3) further,

where we assume that c is directly proportional to the total tumor density, n. Hence,

we set p(c, T ) = p(n) so that the self-renewal probability depends on the total tu-

mor density directly. The probability functions we will examine satisfy the following

assumptions

P1. p(n) ≥ 0 is monotonically increasing and p(n) ∈ [0, 1].

P2. There exist pmin, pmax ∈ [0, 1] such that p(0) = pmin and p(1) = pmax.

P3. There exists n∗ ∈ [0, 1] such that p(n∗) = 0.5.

P4. If n < 0 or n > 1, p(n) = 0.

Assuming that p(n) is a monotonically increasing function means that as the tumor

increases in size (meaning that cancer progresses), the amount of self-renewal promoters,
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c, increases, falling in line with what is observed experimentally [29, 41]. Here, n∗ is

a critical point between differentiation and self renewal. At n∗, the CSCs are able

to sustain their population and produce TCs. If n < n∗, then p(n) < 0.5 and from

(4.1) we see that the term in the first equation is negative, meaning that CSCs are

solely producing TCs, sacrificing themselves in the process. If n > n∗, then p(n) > 0.5

and CSCs are focused on self renewal, producing more CSCs. So if n∗ is large, it is

harder for CSCs to self renew, and differentiation is favoured. This situation can occur

if the differentiation promoters T are outweighing the self-renewal promoters c, hence

decreasing p(n).

Now, we replace p(c, T ) by p(n) in (4.1) and obtain

u̇ = (2p(n)− 1)(1− n)u,

v̇ = 2(1− p(n))(1− n)u+ (1− n)v − av.
(4.4)

Additionally, if |2p(n) − 1| << 1 then Ms defined in (4.2) is also a slow manifold of

(4.4).

4.3 Linear Stability Analysis

We now show that there exists a positively invariant region which is a triangle enclosed

by u = 0, v = 0, u + v = 1. This is exactly the region △ that was defined earlier in

(2.37).

Lemma 4.3.1. (Positively Invariant Region △) System (4.4) has a positively invariant

region in D = {(u, v) : u ∈ [0, 1], v ∈ [0, 1]} which is the triangular region given by

(2.37).

Proof. We first look at the boundary u = 0 and v ∈ [0, 1] then we see from (4.4) that

the flows are either up or down, where the flow is down if v = 1 and at v = 0 there

is an equilibrium. Hence, the flows do not escape this boundary. On the boundary

u + v = 1, the flow is always down. Finally, on the boundary v = 0 and u ∈ [0, 1],
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vt > 0 based on the assumptions on p(n). Hence, no flows escape △ therefore it is

positively invariant.

The positively invariant region △ contains all of the essential dynamics, since all the

equilibria are contained within this region, as we will now see. We find the equilibria by

looking at the first equation of (4.4). It follows that in order to have equilibria either

u = 0, or n = 1, or p(n) = 1/2. If u = 0, then from the second equation of (4.4) either

v = 0 or v = 1−a. Hence, we obtain two equilibria (u∗0, v
∗
0) = (0, 0), (u∗1, v

∗
1) = (0, 1−a).

If n = 1 or equivalently u = 1 − v, we obtain from the second equation in (4.4) that

v = 0. Hence, (u∗2, v
∗
2) = (1, 0). If p(n) = 1/2 then the second equation in (4.4) gives

0 = (1− n)u+ (1− n)v − av

which can be solved for v

v =
−(2u− 1 + a) +

√
4au+ a2 − 2a+ 1

2
(4.5)

where we only consider the positive root, since v must be positive to be biologically

relevant. The exact equilibrium can be found by taking the intersection of (4.5) and

p(n) = 1/2. So the final equilibrium is given by

(u∗3, v
∗
3) =

(︃
ū,

−(2ū− 1 + a) +
√
4aū+ a2 − 2a+ 1

2

)︃

where ū is the u-coordinate of the intersection between (4.5) and p(n∗) = 1/2, if it

exists. Note that u∗3, v
∗
3 = n∗.

We now determine the stabilities of the equilibria, by using linear stability analysis.

The Jacobian is given by

J(u, v) =

⎡⎣ θ − ζu+ ζ(1− n) θ − ζu

−θ − 2ξu+ 2ξ(1− n)− v −θ − 2ξu− v + (1− n)− a

⎤⎦ (4.6)
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where θ = 2p′(n)(1−n)u, ζ = 2p(n)−1, ξ = 1−p(n). For (u∗0, v∗0) = (0, 0) the Jacobian

is given by

J(0, 0) =

⎡⎣ 2p(0)− 1 0

2(1− p(0)) 1− a

⎤⎦ . (4.7)

Since p(0) < 1/2, it follows that 2p(0)− 1 < 0. Hence, (u∗0, v
∗
0) is asymptotically stable

if a > 1 and unstable if a < 1. For (u∗1, v
∗
1) = (0, 1− a) the Jacobian is given by

J(0, 1− a) =

⎡⎣ a(2p(1− a)− 1) 0

2(1− p(1− a))a− 1− a a− 1

⎤⎦ . (4.8)

So if a > 1 then the (u∗1, v
∗
1) is unstable since p(1 − a) = 0 and also not biologically

relevant. If a < 1 and p(1 − a) < 1/2, then (u∗1, v
∗
1) asymptotically stable. Finally, if

a < 1 and p(1− a) > 1/2 then (u∗1, v
∗
1) is unstable. For (u

∗
2, v

∗
2) = (1, 0) the Jacobian is

given by

J(1, 0) =

⎡⎣−(2p(1)− 1) −(2p(1)− 1)

−2(1− p(1)) −2(1− p(1))− a

⎤⎦ . (4.9)

In this case, trace of J(1, 0) is

tr(J(1, 0)) = −2p(1) + 1− 2 + 2p(1)− a = −a− 1 < 0

and the determinant of J(1, 0) is

det(J(1, 0)) = 2(2p(1)− 1)(1− p(1)) + a(2p(1)− 1)− 2(1− p(1))(2p(1)− 1)

= a(2p(1)− 1) > 0

since p(1) > 0.5. Hence, (u∗2, v
∗
2) is asymptotically stable. Finally, we show that (u∗3, v

∗
3)

is an unstable saddle point by calculating the determinant of J(u∗3, v
∗
3). The determinant

simplifies significantly by noting that p(n∗) = 0.5 in this case. So

det(J(u∗3, v
∗
3)) = −2p′(n∗)(1− n∗)u∗3a < 0 (4.10)
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since p′(n∗), a, u∗3 > 0. Hence, (u∗3, v
∗
3) is a saddle point.

4.4 Existence of an Allee Region

Following the same approach as in [38], we show that (4.4) has an Allee region. In the

proof, we make use of the Stable Manifold Theorem.

Theorem 4.4.1. (The Stable Manifold Theorem [38]) Let E be an open subset of Rn

containing the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear system

ẋ = f(x). Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real

part and n − k eigenvalues with positive real part. Then there exists a k-dimensional

differentiable manifold S tangent to the stable subspace Es of the linear system ẋ = Ax

at 0 where A = Df(0), such that for all t ≥ 0, φt(S) ⊂ S for all x0 ∈ S and

lim
t→+∞

φt(x0) = 0.

Theorem 4.4.2. (Existence of Allee region)

i) If a > 1 there exists a separatrix in system (4.4) that separates the basin of

attraction of (u∗0, v
∗
0) = (0, 0) from (u∗2, v

∗
2) = (1, 0). The basin of attraction of

(u∗0, v
∗
0) contained within △ forms the Allee region, in which tumor extinction is

achieved.

ii) if a < 1 and p(1− a) < 1
2
there exists a separatrix in system (4.4) that separates

the basin of attraction of (u∗1, v
∗
1) = (0, 1 − a) from (u∗2, v

∗
2) = (1, 0). The basin

of attraction of (u∗1, v
∗
1) contained within △ forms the Allee region, in which tu-

mor control is achieved, that is CSCs are eradicated and the remaining TCs go

quiescent.

Proof. We have already shown that △ is a positively invariant region. For case i), we

have shown that (u∗0, v
∗
0) = (0, 0) and (u∗2, v

∗
2) = (1, 0) are asymptotically stable and that

(u∗3, v
∗
3) is a saddle point. Thus, system (4.4) satisfies the assumptions of the Stable
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Manifold Theorem guaranteeing the existence of a stable manifold S corresponding

to (u∗3, v
∗
3). This manifold S, hence forms the separatrix S, separating the basins of

attraction of (u∗0, v
∗
0) and (u∗2, v

∗
2).

Similarly, we have shown that (u∗1, v
∗
1) = (0, 1−a) and (u∗2, v

∗
2) = (1, 0) are asymptot-

ically stable and that (u∗3, v
∗
3) is a saddle point under the constraints in case ii). Hence,

in this case the assumptions of Stable Manifold Theorem are also satisfied, hence guar-

anteeing the existence of the separatrix S, which separates the basins of attraction of

(u∗1, v
∗
1) and (u∗2, v

∗
2). See Figure 4.1 (b).

(a) (b)

Figure 4.1: Illustration of the cases in Theorem 4.4.2. The area shaded in green is the
Allee region Λ, the blue curve is the separatrix S, and the black triangle is △. The case
of item i) is shown in (a) where S separates the basins of attractions of (u∗0, v

∗
0) = (0, 0)

and (u∗2, v
∗
2) = (0, 0). In (b), the case of item ii) is shown where S separates the basins of

attraction of (u∗1, v
∗
1) = (0, 1− a) and (u∗2, v

∗
2) = (1, 0).

Now, we want to get an idea of how the Allee region looks like. Due to the assump-

tions on p(n), the manifold Ms (4.2) is still present in system (4.4), and trajectories

converge to it. Therefore, the u-coordinate of the saddle point (u∗3, v
∗
3) is a good ap-

proximation of the separatrix. We show this in the numerical examples.
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4.5 Numerical Examples

We choose to examine the functions p(n) shown in Figure 4.2. It turns out that any p(n)

satisfying the assumptions P1-P4 which have the same n∗ yield very similar behaviour,

hence we choose to analyze linear functions as they are simple. The three functions we

consider are

A : p(n) = 0.2(n+ 0.3) + 0.4, (4.11)

B : p(n) = 0.2n+ 0.4, (4.12)

C : p(n) = 0.2(n− 0.3) + 0.4. (4.13)

In Figure 4.2, the linear functions A, B, and C. The blue line is the probability

function A (4.11) which has the lowest n∗. The green line is the probability function C

(4.13) and has the highest n∗. Since p(c, T ) defined by (4.3) is monotonically decreasing

in T , C (4.13) has the highest T concentration whereas A (4.11) has the lowest T

concentration.

(a)

Figure 4.2: Probability functions p(n) satisfying the assumptions. The blue line is the prob-
ability function A defined by (4.11). The pink line is the probability function B defined by
(4.12). The green line is the probability function C defined by (4.13).

In Figure 4.3, we summarize the general behaviour of system (4.4) given the prob-

ability functions in Figure 4.2. In each plot in Figure 4.3, the equilibria are denoted
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by black circles, and some example trajectories are shown in blue. The black diagonal

line as well as the u-axis and v-axis enclose △. The approximate Allee region Λ, is

highlighted in green and Ms is the dashed pink line. The death rate a is varied across

columns and the probability function type is varied across rows. In the first column

((a)-(g)) a = 0.3, in the second column ((b)-(h)) a = 0.7, and in the third column

((c)-(i)) a = 1.3. In the first row ((a)-(c)), second row ((d)-(f)) and third row ((g)-(h)),

the probability functions are A defined by (4.11), B defined by (4.12), and C defined

by (4.13), respectively. We see that Λ increases as a increases. The top row has the

smallest n∗ whereas the bottom row has the largest n∗ and we see that as n∗ increases

Λ also increases.

Taking a closer look at the second row containing (d), (e), and (f), in Figure 4.3, we

see an example of how a cytotoxic treatment affects the dynamics. For this example,

we suppose that (d) is the no treatment case, where tumors have a natural TC death

rate of a = 0.3. In (d), there is no Allee region Λ, so all tumors grow until a tumor

comprised of only CSCs is obtained, that is trajectories converge to the steady state

(u∗2, v
∗
2) = (1, 0). Note that the trajectories in (d) first converge to Ms defined in (4.2)

and then grow towards the full CSC steady state. If a cytotoxic treatment is given,

which raises the TC death rate to a = 0.7, then we get case (e). In (e), due to an

increased death rate, an Allee region Λ is present. Tumors falling within Λ converge to

the steady state at (u∗1, v
∗
1) = (0, 1− a) = (0, 0.3). Note that in Λ in (e), some tumors

decay and some grow, but the CSC density completely dies out. Tumors falling outside

Λ in (e), converge to the full CSC density steady state. If the treatment is lifted, then

we return to case (d), where tumors that converged to (u, v) = (0, 0.3), converge to

the new steady state at (u∗1, v
∗
1) = (0, 1 − a) = (0, 0.7) but the CSC density does not

increase. In this case, the tumor remains controlled. The trajectories that did not

converge to the steady state at (u, v) = (0, 0.3) will converge to the full CSC steady

state. Case (f) shows a cytotoxic treatment with a high death rate a. In this case, the

tumors falling within Λ in (f), converge to the steady state at (u∗0, v
∗
0) = (0, 0) hence

the tumor can completely die out. Again, tumors that do not fall within Λ in (f) grow
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Phase portraits of system (4.4). In each figure, the region in green is approximate
Λ and the black diagonal along with the axes enclose △. In (a)-(c) the probability function
A defined by (4.11) is used, in (d)-(f) the probability function B defined by (4.12) is used,
and in (g)-(i) the probability function C defined by (4.13) is used. In (a),(d),(g) a = 0.3, in
(b),(e),(h) a = 0.7, and in (b),(f),(i) a = 1.3. In (c) σ ≈ 0.15, in (e) σ ≈ 0.27, in (f) σ ≈ 0.52,
in (g) σ ≈ 0.46, in (h) σ ≈ 0.82, and in (i) σ ≈ 0.90.
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towards the full CSC density steady state. Now, the treatment in (f) may seem better

than the one in (e), since in (f) Λ is larger and tumors can reach full extinction within

it. However, notice that as the TC death rate increases,Ms defined by (4.2) compresses

and with a high enough TC death rate a, connects to the origin. Recall that in Section

1.5.2, we discussed the tumor growth paradox. Here, the tumor growth paradox is

also present, and the tumors in (f) not falling within Λ grow faster than tumors in (d)

and (e) (see Figure 1.4 for an illustration of the tumor growth paradox). So case (f)

illustrates a trade off of a cytotoxic treatment. On one hand, the Allee region Λ has

increased allowing more tumors to fully decay. On the other hand, tumors that did not

fall within Λ, grow at an accelerated rate by selecting for CSCs faster.

Now we examine a targeted therapy treatment, focused on increasing the concen-

tration of differentiation promoter T . For example, we examine the cases (d), (g) in

Figure 4.3. Again, we suppose that (d) illustrates the dynamics of the tumors that did

not receive treatment where the self-renewal probability function p(n) is given by B

(4.12). In (g), the self-renewal probability function p(n) is given by C (4.13), hence (g)

has a higher concentration of T . We see that (g) gains an Allee region Λ, and within

it the tumors can grow or decay, where the CSC density completely dies out. Notice

that in (g), Ms defined by (4.2) remains unchanged as the TC death rate a is the same

as in (d). Therefore, there is no tumor growth paradox, so the tumors that do not fall

within the Allee region Λ, grow as they would without treatment. If we look at case (i),

which has a high TC death rate a and high differentiation promoter T concentration,

we see that the Λ is almost all of the domain △. Case (i) can represent a combined

targeted therapy and cytoxic treatment, showing that two of these treatments together

substantially increase the Allee region Λ hence improving the chances that the tumor

will decay completely.

We summarize the trends as n∗ and a vary in Figure 4.4, where (a) shows the effect

of increasing a with fixed n∗. The blue curve has the smallest n∗ whereas the green

curve has the largest n∗. We see that the curves quickly saturate, where after a certain

point increasing a gives negligible increase to σ (Allee index). In (b), the impact of
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increasing n∗ on σ is shown. The yellow curve has the lowest death rate a whereas the

blue curve has the highest a. We see that as n∗ → 1, σ → 1. In (c), these trends are

reiterated, where the value of Allee index is indicated by the color of the plot, where

yellow indicates σ ≈ 1 and blue indicates σ ≈ 0. We see that if a > 1, as n∗ increases,

then σ increases. If a ≤ 1, then σ > 0 only when n∗ has surpassed a certain value. This

shows that at a higher a, it is easier to increase σ with n∗.

(a) (b)

(c)

Figure 4.4: In (a) the changes of the Allee indices with respect to a is summarized. The blue
curve uses the probability function A (4.11), the pink curve uses the probability function B
(4.12), and the green curve uses the probability function C (4.13). In (b), the changes of the
Allee indices with respect to n∗ are summarized. The yellow curve corresponds to a = 0.3,
the green curve corresponds to a = 0.7, and the blue curve corresponds to a = 1.3. To obtain
(b), n∗ was determined from 0.5 = p(n) = 0.2(n+ b) + 0.4 by varying b between -0.5 and 0.5.
In (c) a surface plot is shown which varies a on the x-axis and n∗ on the y-axis, where the
value of the Allee index σ is indicated by the colorbar. Plots (a) and (b) are cross sections
of (c). In each figure, σ is approximated from ū, the u-coordinate of the intersection between
(4.5) and p(n) = 1/2.
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We have found that a combined cytotoxic treatment along with targeted therapy

focused on increasing differentiation promoters such as BMPs, significantly increases

the Allee region thereby greatly improving the chances of achieving tumor control from

treatment. This falls in line with previous findings by Youssefpour et al. [70] and

Bachman et al. [1], as they also found that a combined treatment consisting of radio-

therapy and targeted therapy is more effective at eradicating the tumor. Interestingly,

Youssefpour et al. [70] found that a cytotoxic treatment increases tumor aggressiveness

post treatment whereas tumor aggressiveness was not impacted post targeted therapy

focused on increasing the concentration of differentiation promoters. Our simulations

can explain why this occurs. We have seen that increasing the death rate of TCs can

lead to a tumor growth paradox. In particular, a tumor which did not fall within the

Allee region during the cytotoxic treatment, selected CSCs more quickly. This tumor

then has a higher CSC density post treatment, which leads to accelerated growth and

invasion. Further, we observed that increasing the amount of differentiation promoters,

did not accelerate the selection for CSCs. Hence, once treatment is lifted after targeted

therapy, the tumor has similar growth dynamics which were prior to treatment.

Bachman et al. [1] used a similar model to (4.1) to assess which treatment succeeds

by fixing the concentration of self-renewal promoters and varying the concentration of

differentiation promoters. To assess treatment success they calculate the tumor control

probability (TCP) based on the amount of CSCs that remain and find that a combined

treatment consisting of radiotherapy and targeted therapy is more effective than ap-

plying only one of those treatments. Here, we fixed the concentration of differentiation

promoters and varied the concentration of self-renewal activators, which resulted in the

same conclusion. We do not evaluate TCP, as we know that if a tumor falls within

the Allee region and that treatment is applied long enough, tumor control is achieved.

Note that in some cases, we saw that when CSCs completely die out, a substantial TC

density can remain. We still say that the tumor is controlled, as the TC density cannot

sustain itself without CSCs and it will eventually die out. For tumors falling outside

the Allee region, tumor control is not possible, and a different treatment is required.
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Note that we did not examine a cytotoxic treatment that also effects CSCs which can

improve the amount of tumor cases that reach tumor control.

Now that we have studied the impact of the Allee effect in cancer stem cell models,

we move on to testing whether an Allee model can explain experimental data of tumor

growth better than a model without it. Due to the limited data, we must significantly

simplify our models. To do this, we return to the models in earlier chapters as there is

not enough data to fit a full cancer stem cell model with feedback mechanisms.
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Chapter 5

Model Fitting to Lung Cancer Data

5.1 Modelling of Non-Small Cell Lung Cancer

A number of mathematical models have been proposed to model the tumor volume

dynamics of non small cell lung cancer (NSCLC) [23, 34, 40, 3, 64]. Geng et al. [23]

proposed a fairly simple one dimensional ODE model, which incorporated radiotherapy

and chemotherapy treatments. In [23], tumor growth was modelled using a Gompertz

curve (which is similar to a logistic growth curve), radiotherapy was modelled by a

standard linear quadratic model (details of this model are found in Section 5.3), and

chemotherapy was modelled using the log-cell kill model. A log-cell kill model proposes

that the kill rate from chemotherapy can be described by an exponentially decaying

function that depends on the drug dosage given. By using available survival data in the

literature, they were able to estimate the parameters for their one dimensional ODE

model. Geng et al. [23] found that their model is able to explain the survival data

well, and that concurrent chemo-radiotherapy is superior at extending survival time in

comparison to sequential chemo-radiotherapy. The one dimensional model proposed

by Geng et al. [23] lacks the latency time effect which was found to be crucial in

explaining the gross tumor volume NSCLC data [64]. Tariq et al. [64] contrasted one

dimensional and two dimensional models which model tumor growth and radiotherapy
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treatment. The difference between the one dimensional models is that one assumes

that the growth of the tumor is exponential whereas the other assumes that the tumor

growth is logistic. The two dimensional models extended the one dimensional models

by adding a damaged volume compartment to incorporate the latency time effect. The

radiotherapy treatment was modelled by the linear quadratic model. The models were

then fit to data obtained from 18 patients diagnosed with stage I NSCLC who had their

gross tumor volume collected for about 16 days. An exponential growth model with a

latency time was found to fit the gross tumor volume data the best.

Other differential equation models for NSCLC have been proposed that account for

treatment resistant and treatment sensitive cells in chemotherapy [40], latency time

effect [34], and metastasis [3]. In this chapter, we focus on developing the simplest

mathematical model that is able to describe the long term gross tumor volume dynamics

of NSCLC. Our resulting model will resemble a two dimensional logistic growth model

proposed by Tariq et al. [64]. The difference will be in the way we implement the linear

quadratic model and we also account for chemotherapy. Further, we will employ a

similar method to the one used in [64] for choosing optimal parameters.

5.2 Patient Data

The data we use was provided from a study conducted in 2021 by OncoRay - National

Center for Radiation Research in Oncology in Dresden, Germany. In this study, 39

patients diagnosed with stage III NSCLC had their gross tumor volume collected. The

patients received either concurrent chemotherapy and intensity-modulated radiotherapy

type I or concurrent chemotherapy and intensity-modulated radiotherapy type II. The

difference between intensity-modulated radiotherapy type I and type II is the particle

used to deliver the radiation. Each patient had a planning CT scan collected before

treatment, and once the treatment started, a CT scan was collected every two weeks

following the start date of treatment, where the final CT scan was collected on the sixth

week after the treatment start date. Follow up CT scans were then collected 3, 6, 9,
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and 12 months after the treatment end date.

The patients received intensity-modulated radiotherapy type I or type II 6 times

per week with an approximate dosage of 2 Gy per day until a total dose of 66 Gy was

reached. Further, patients received chemotherapy where 45 mg/m2 of paclitaxel and

2 AUC (mg·min/mL) of carboplatin was given per week. The specific amount of the

chemotherapy drugs given in milligrams depends on the patient, due to fluctuations in

body mass during treatment. Further, the amount of weeks chemotherapy lasts is also

patient dependent, due to different responses to treatment. There is also some delay

between the planning CT scan and the start of treatment. The dates when the planning

CT scan and the start date of chemotherapy are available. Further, the gender and age

of the patients was recorded as well.

Although 39 patients were enrolled into the study, only 26 of them had 5 or more CT

scans collected. So we focus on fitting the model to those 26 patients, where 11 out of

the 26 patients received concurrent chemotherapy and intensity-modulated treatment

type I whereas the other 15 patients received concurrent chemotherapy and intensity-

modulated treatment type II. Further, 8 out of the 26 patients are female, and the rest

are male. We reduce the data set to 26 patients, as each of them yields a reasonable

amount of data points to estimate our model parameters using the Latin Hypercube

Sampling Method, which will be explained in Section 5.4.

5.3 Model Derivation

Since only the gross tumor volume is available, the CSC and TC volumes are indistin-

guishable in the data. Hence, we derive a simplified model for tumor growth that is

based on the gross tumor volume.

We derive a model that describes the gross tumor dynamics by simplifying model

(1.7), which is the model that describes the CSC and TC dynamics while accounting

for space limitations. From our previous analysis, we have seen that the long term

dynamics of the tumor occurs on the slow manifold. We can therefore assume that the
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tumors in the data have already settled onto the slow manifold M (given by (1.19)).

Hence, we consider the slow system of (1.7) which is given by

u̇ = kF (n)u,

0 = kF (n)u+ k2F (n)v − av,
(5.1)

where n = u+v and F (n) satisfies assumptions F1 and F2. Now we assume that u ≈ n

since the tumors have been growing for a while and CSCs have naturally been selected

for. With this assumption, we rewrite (1.7) as

ṅ = kF (n)n. (5.2)

We choose F (n) = 1− (n/K) which satisfies assumptions F1 and F2, and makes (5.2)

exhibit logistic growth. Letting x denote the tumor volume, we rewrite (5.2) to obtain

ẋ = r
(︂
1− x

K

)︂
x (5.3)

where r is the growth rate of the tumor and K corresponds to the carrying capacity

volume. Doing a similar reduction with the Allee model (2.1), we obtain a related

equation to (5.3) with an Allee factor

ẋ = r
(︂
1− x

K

)︂
(x− A)x. (5.4)

The next step is to incorporate treatment and the latency time effect. Treatment

can be incorporated using a general treatment function H(t) which will be specified

shortly, and the latency time effect is accounted for with a damaged compartment y.

With this, (5.3) becomes

ẋ = r

(︃
1− x+ y

K

)︃
x−H(t)x,

ẏ = H(t)x− γy. (5.5)
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where γ is the clearance rate. Here, as cancer cells get damaged, a volume y of damaged

cells is formed. We assume that the damaged cells do not contribute new cancer cells

and the damaged volume gets cleared with rate γ (either from death or the immune

system). Further, since space is limited we modify the logistic term to account for the

damaged volume as well.

Now we define an explicit treatment function H(t) which will incorporate radio-

therapy and chemotherapy treatments. We employ the linear quadratic (LQ) model to

model the effect from radiation therapies [25, 23]. When the fraction dose is less than

10 Gy, the LQ model describes the effect of radiation on a tumor well [23]. The LQ

model is given by

ẋ = −(α + βd)d(t)x (5.6)

where α and β are the radiosensitivity parameters, d is the dose, and d(t) is the dose

rate.

To model chemotherapy, we use the model given below

ẋ = −µ(1− e−C(t))x

Ċ = b(t)− ξC(t)
(5.7)

where µ is the rate of fractional tumor cell kill by chemotherapy, C(t) is the concen-

tration of the drug and ξ is the decay rate of the drug determined from ξ = ln(2)/HL

where HL is the half-life of the drug. The dose rate b(t) depends on the treatment

schedule. During treatment time b(t) = D where D is the specified dose rate, otherwise

b(t) = 0. This model is linear for low dose of chemotherapy but as the dose increases the

concentration saturates to µ. This model is typically used in modelling chemotherapy

and has been shown to match experimental data well [52, 22]. With this, we get the
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model which incorporates treatment

ẋ = rx

(︃
1− x+ y

K

)︃
− (α + βd)d(t)x− µ(1− e−C1(t))x− µ(1− e−C2(t))x,

ẏ = (α + βd)d(t)x+ µ(1− e−C1(t))x+ µ(1− e−C2(t))x− γy,

Ċ1 = b1(t)− ξ1C1(t),

Ċ2 = b2(t)− ξ2C2(t).

(5.8)

We call system (5.8) Model 1. Analogously, we obtain a second model which incorpo-

rates the Allee effect

ẋ = rx

(︃
1− x+ y

K

)︃
(x+ y − A)− (α + βd)d(t)x− µ(1− e−C1(t))x− µ(1− e−C2(t))x,

ẏ = (α + βd)d(t)x+ µ(1− e−C1(t))x+ µ(1− e−C2(t))x− γy,

Ċ1 = b1(t)− ξ1C1(t),

Ċ2 = b2(t)− ξ2C2(t).

(5.9)

We call (5.9) Model 2. Model 2 is nearly identical to (5.8) except the growth term of

the tumor takes the Allee effect into account. As the total volume x+y decreases below

the threshold volume A, the growth rate is negative and the tumor decays. Here is a

summary of the parameter meanings:

• r is the growth rate (1/day)

• K is the carrying capacity (cm3)

• α, β are the radiosensitivity parameters (Gy−1), (Gy−2)

• d is the radiation dose per fraction (Gy)

• d(t) is the radiation dose rate (Gy/day)

• µ is the rate of tumor cell kill by chemotherapy (1/day)

• γ is the clearance rate (1/day)
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• A is the Allee constant (cm3)

• Ci is the concentration of the chemotherapy drug i = 1, 2 (mg/L)

• ξi is the decay rate of the drug i (1/day)

• bi is the dose rate of the drug i (mg/(L·day))

5.4 Model Fitting

To fit the model, we use Latin Hypercube Sampling (LHS) to obtain random parameter

sets to use for model simulations. LHS is a random sampling method which has been

described in [46] and here we outline how the method works.

To understand LHS, it is best to consider a simple two dimensional example. Sup-

pose we want to estimate two parameters, a and b, where the parameter ranges are

a ∈ [a, ā] and b ∈ [b, b̄]. Call the intervals Ia = [a, ā] and Ib = [b, b̄]. Now, these intervals

can be divided into N equidistant subintervals. If we choose N = 5, then for this exam-

ple Ia yields 5 intervals of equal length: [a0, a1], [a1, a2], [a2, a3], [a3, a4], [a4, a5] where

a0 = ā and a5 = a. Similarly, we can obtain five equidistant intervals for Ib. Note that

for general N , we obtain N equidistant intervals: [ai−1, ai], i = 1, 2, ..., N where ai is a

parameter.

Now that we have N intervals, an interval is selected randomly for each parameter.

Suppose, [a1, a2] and [b4, b5] were chosen. Now, a random number from each of these

intervals is chosen uniformly from the interval. As an example, af is chosen from [a1, a2]

and bf is chosen from [b4, b5]. Hence, (af , bf ) defines the parameter set from this cycle.

If [a1, a2] = [0.88, 1.66] and [b4, b5] = [12, 17.7] then (af , bf ) = (1.4, 16.1), for example.

This parameter set falls into the green square in Figure 5.1.

The method then repeats this process to choose more parameter sets where pre-

viously chosen intervals cannot be chosen again. This means that for the example in

Figure 5.1 anything from the highlighted row in yellow, and the highlighted column in
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Figure 5.1: Illustration of the Latin Hypercube Sampling method. Here the parameter ranges
for a and b are divided into 5 equidistant intervals. In Iteration 1, 5 parameter sets are
semi randomly generated where each parameter set is denoted by X. In Iteration 2, 5 new
parameter sets are generated.

blue in Figure 5.1 cannot be chosen. Hence, for this example we obtain 5 parameter

sets as shown in Figure 5.1 in Iteration 1.

In general, we consider m parameters p(1), ..., p(m) within intervals p(j) ∈ I(j) where

I(j) = [p(j), p̄(j)], j = 1, ...,m. We divide each interval I(j) into N equidistant subinter-

vals and randomly choose subintervals for each parameter in a way that subintervals are

only used once. Then, in each chosen subinterval we randomly choose a representative

value of p(j).

The above outlines the Latin Hypercube Sampling method. The advantage to using

this method is that the semi randomness allows us to sample the entire space, which

is an advantage over the Monte Carlo method. In the Monte Carlo method there is

a greater chance to underrepresent parameter values due to the chance of choosing

a parameter set from only a particular region in the parameter space. The Latin

Hypercube Sampling method takes care of this issue.

Now to generate parameter sets for the model (5.8), we set N = 7500. This value is

chosen so that that the intervals are sufficiently fine for accuracy but not too large that

it becomes computationally expensive. As our data is limited for each patient we choose

to fix the radiosensitivity parameters in order to reduce the amount of parameters. We

set α = 0.0398Gy−1 which is the average value that Geng et al. estimated in [23]. We

then set α/β = 10Gy which is an approximation typically used in lung cancer [23, 64].

We use the following parameter ranges for parameter estimation in Model 1. These
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intervals were chosen as they give sufficient fits to the data and do not deviate far from

the reported values in the literature:

• The parameter range for growth rate r with units day−1 was set to be [0.00001,0.2].

We choose to extend it below the lower bound in Tariq et al. [64] used in order to

allow for slower growth. We use the upper bound of 0.2 which is approximately

the upper bound of growth rates of cancer reported in the literature [9, 48, 57],

and contains the computed growth rates of NSCLC [3, 23].

• The parameter range for the clearance rate γ with units day−1 was set to be

[0.0001, 0.05]. The range falls into the range used by Tariq et al [64] where the

lower bound is the same. In [10], half lives of cell disintegration post radiation are

reported where the half life for squamous cell carcinoma is 28.2 days and the half

life for adenocarcinoma is 72.4 days. Hence, an estimate for the clearance rates is

given by 0.0246 day−1 and 0.0096 day−1 using the relationship ln(2)/half-life for

squamous cell carcinoma and adenocarcinoma, respectively. We choose to double

0.0246 day−1 and set that as our upper bound. This is done to account for faster

clearance rates.

• The parameter range for the rate of fractional tumor cell kill by chemotherapy µ

with units day−1 was set to be [0,1]. We set the lower bound to be 0 in order to

represent no effect from chemotherapy and the upper bound is extended beyond

the µ = 0.9 reported in [52] to account for a more sensitive chemotherapy response.

• The carrying capacity K with units cm3 depends on the planning CT tumor

volume VCT for each patient. If VCT < 100, then the range was set to be [VCT , 150].

If 100 < VCT < 200 then the range was [VCT , 200] and if VCT > 200 then the range

was [VCT , 550]. This is done so that the intervals are less broad and more focused.

• In addition to the above parameters we also set the initial volume of the tumor

V0 as a parameter and set the range to be [VCT − 0.25VCT , VCT + 0.25VCT ].
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• The parameter range for the Allee constant was set to be [−10, 10]. This interval

is quite wide in order to find the appropriate constant for each patient. Further,

the average of the initial data is 119.76cm−3 so 10% of this is approximately 10

which forms the upper bound.

For Model 2, the same parameter ranges were used with the exception of the growth

rate range. For Model 2 r ∈ [0.00001, 0.02] where the upper bound is decreased by a

factor of 10 to account for faster growth in Model 2. The growth term in Model 2 is

cubic, which grows faster than quadratic growth in Model 1. We simulate Model 1

(5.8) and Model 2 (5.9) using parameter sets from the LHS procedure. Each model was

simulated using Matlab ODE45 solver.

As patients usually did not receive treatment immediately after their planning CT

scan, the time between the planning CT and treatment was estimated for each patient.

We use the date of the planning CT scan and the start date of chemotherapy to estimate

when treatment begins. As the start date of radiotherapy is unavailable, we assume that

radiotherapy began three days prior to chemotherapy. For chemotherapy, we assume

that it is applied weekly on the same day each week. The amount of milligrams the

patient receives of each drug is estimated and then divided by 5L which is approximately

the average blood volume in adults [61]. This yields the approximate drug concentration

dose that the patient received per day. We set the half life of paclitaxel to be 9.5h which

is the average of the reported range in [24] and the half life of carboplatin to be 4h

which is the average in the reported range in [33] (ξ is estimated by ln(2)/HL). For

intensity-modulated radiotherapy treatments, we assume that patients receive 2 Gy

each day. Hence, on treatment days when radiation is applied the rate of radiation is 2

Gy/day.

Note that for some patients, data was missing. For patients who did not have the

start date of chemotherapy available, we use the average amount of days it took to start

treatment, which was computed from other patients. Two patients had chemotherapy

applied, where some applications had the dose in mg available but other application
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doses were unknown. In these cases, we take the average of the known doses, and use

the resulting value as the estimated dose for the unavailable doses. One patient had all

doses in mg unavailable. In that case, we estimate the dose given by taking average of

all patient doses, for a particular drug.

After the models have been simulated, a modified residual sum of squares (RSSmod)

is used to calculate the error. The RSSmod formula is given by

RSSmod =
n∑︂

i=1

(ln(yi)− ln(f(ti; p̂)))
2 (5.10)

where yi is the data points and f(ti; p̂) = x(ti; p̂) + y(ti; p̂) which is the total tumor

volume at ti. We choose to take the logarithm of yi and f(ti; p̂) as the data for certain

patients can vary several orders of magnitude. This decreases the emphasis on error

from large measurements and increases emphasis on error from small measurements

giving a more representative measure of error.

Finally, after simulating the model N times the parameter set with the minimum

RSSmod is chosen. This process is repeated 10 more times to choose the parameter set

that gives the least error between the data and the curve. We note that due to the

random selection of parameters each fit is slightly different with each simulation but

the general shape of the curve is consistent for each run.

5.5 Results

Now, we show the resulting fits of the models to the data. Figures 5.2 and 5.4 summarize

the resulting fits from Model 1. Figure 5.2 shows 11 out of 11 good fits from intensity-

modulated radiotherapy treatment type I, and Figure 5.4 shows the 12 out of 15 good fits

from intensity-modulated radiotherapy treatment type II. The 3 poor fits from Model

1 are summarized in Figure 5.6. In each figure, the blue curve shows the simulation

from the model, the black curve is the predicted tumor volume without treatment

and the pink dots are the data. The light blue bar marks the duration of the radiation
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treatment. Similarly, the 23 good fits from intensity-modulated radiotherapy treatment

type I and II for Model 2 are shown in Figure 5.3 and Figure 5.5. The 3 poor fits are

summarized in Figure 5.7 for Model 2. Note that Patient 33 did not have the start date

of the chemotherapy treatment available, Patients 8 and 9 had some chemotherapy

doses available, and Patient 10 had no chemotherapy doses available. We see that

Model 1 and Model 2 yield similar fits, and both fail to explain the data for Patient

19, 30 and 36. We also see that there appears to be no significant difference in patient

outcomes for the intensity-modulated radiotherapy treatments type I and II, since both

have about the same amount of cases of tumor decay and tumor regrowth.
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Figure 5.2: Model 1 (5.8) fits to patients who received intensity-modulated radiotherapy
treatment type I. For each figure, the y axis denotes the total volume in cm3 and the x axis
denotes the time measured in days. The blue curve shows the simulated tumor volume with
treatment and the black curve shows the simulated tumor volume without treatment. The
pink dots denote the data corresponding to each patient and the blue highlight marks the
duration of the radiation treatment.
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Figure 5.3: Model 2 (5.9) fits to patients who received intensity-modulated radiotherapy
treatment type I. For each figure, the y axis denotes the total volume in cm3 and the x axis
denotes the time measured in days. The blue curve shows the simulated tumor volume with
treatment and the black curve shows the simulated tumor volume without treatment. The
pink dots denote the data corresponding to each patient and the blue highlight marks the
duration of the radiation treatment.
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Figure 5.4: Model 1 (5.8) fits to patients who received intensity-modulated radiotherapy
treatment type II. For each figure, the y axis denotes the total volume in cm3 and the x axis
denotes the time measured in days. The blue curve shows the simulated tumor volume with
treatment and the black curve shows the simulated tumor volume without treatment. The
pink dots denote the data corresponding to each patient and the blue highlight marks the
duration of the radiation treatment.
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Figure 5.5: Model 2 (5.9) fits to patients who received intensity-modulated radiotherapy
treatment type II. For each figure, the y axis denotes the total volume in cm3 and the x axis
denotes the time measured in days. The blue curve shows the simulated tumor volume with
treatment and the black curve shows the simulated tumor volume without treatment. The
pink dots denote the data corresponding to each patient and the blue highlight marks the
duration of the radiation treatment.
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Figure 5.6: Poor fits from Model 1 (5.8). All patients in this figure received intensity-
modulated radiotherapy treatment type II. For each figure, the y axis denotes the total
volume in cm3 and the x axis denotes the time measured in days. The blue curve shows
the simulated tumor volume with treatment and the black curve shows the simulated tumor
volume without treatment. The pink dots denote the data corresponding to each patient and
the blue highlight marks the duration of the radiation treatment.
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Figure 5.7: Poor fits from Model 2 (5.9). All patients in this figure received intensity-
modulated radiotherapy treatment type II. For each figure, the y axis denotes the total
volume in cm3 and the x axis denotes the time measured in days. The blue curve shows
the simulated tumor volume with treatment and the black curve shows the simulated tumor
volume without treatment. The pink dots denote the data corresponding to each patient and
the blue highlight marks the duration of the radiation treatment.
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To assess which model fits the data better, we use the corrected Akaike Information

Criterion (AICc) since we have few data points. The AICc formula is given by

AICc = 2LL(p̂)− 2np
N

N − np − 1
(5.11)

where LL represents the log-likelihood, p̂ represents the parameters, np is the number

of parameters, and N is the number of data points [15]. Since maximizing the log-

likelihood is equivalent to minimizing the sum of squares, we can write (5.11) as

AICc = − 1

σ2
SS(p̂)− 2np

N

N − np − 1
(5.12)

where

SS = min
n∑︂

i=1

(yi − f(ti; p̂))
2 (5.13)

and σ2 is the variance of the data [15]. This test suggests that the value with the highest

AICc is the better model. Since each patient has a different set of data, we compute

the AICc for each patient. We ignore the patients that have N −np− 1 = 0 for at least

one of the models and choose the best model based on which has the highest AICc for

the greatest amount of patients. Since there are no replicate data points, we assume

that σ = 10 as that seems appropriate for the data set. The AICc values for both

models are summarized in Table 5.1. From Table 5.1, it is evident that Model 1 (5.8)

has higher AICc values for most of the patients, hence it is predicted to be the better

model. This shows that the Allee effect is not necessary to explain the NSCLC data,

even though it appears to also fit the data. From here, we focus on studying Model 1.

To access how well Model 1 is able to explain the data we calculate the R2 values.

The R2 value is called the coefficient of determination and is a typical statistical measure

used to assess how well a given model is able to explain the data in linear regression

[12]. The coefficient is calculated by

R2 = 1− RSS

TSS
(5.14)
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Patient Model 1 AICc Model 2 AICc Patient Model 1 AICc Model 2 AICc

2 -145.77 -137.31 22 -38.85 -50.78
4 -27.04 -51.01 24 -34.18 -47.64
6 -26.18 -44.35 26 -23.70 -62.34
8 * * 27 * *
9 -22.93 -42.34 28 -305.23 -394.31
10 -29.57 -72.11 30 -132.71 -151.58
11 * * 32 -21.79 -41.00
12 * * 33 -65.96 -139.95
15 -21.89 -40.68 34 -24.66 -44.89
16 * * 35 -23.90 -42.21
17 * * 36 * *
19 -26.65 -45.35 37 -47.72 -70.01
21 * * 39 -21.33 -40.00

Table 5.1: Table of AICc values. Patients who have N − np − 1 = 0 are denoted by *.

where RSS is the residual sum of squares given by

RSS =
n∑︂

i=1

(yi − f(ti; p̂))
2, (5.15)

Here yi are the data points and f(ti; p̂) = x(ti; p̂) + y(ti; p̂) which is the total tumor

volume at ti. The total sum of squares is given by

TSS =
n∑︂

i=1

(yi − ȳ)2 (5.16)

where ȳ is the average of the data points calculated by

ȳ =
1

n

n∑︂
i=1

yi. (5.17)

If R2 = 1 then the model is able to explain the observed data for a linear regression

model [12]. Here, since we have a nonlinear model, the R2 values must be interpreted

with caution. We compute the R2 in order to identify patients with low R2 values, as

this suggests that the model fits poorly to these patients. The R2 values are summarized
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in Table 5.2 and the patients with the lowest R2 values are indeed the ones that had

poor fits in Figures 5.6 and 5.6.

Patient R2 Patient R2

2 0.87 22 0.89
4 0.97 24 0.81
6 0.61 26 0.51
8 0.98 27 0.98
9 0.89 28 0.55
10 0.59 30 -3.47
11 0.98 32 0.97
12 0.98 33 0.82
15 0.69 34 0.96
16 0.85 35 0.72
17 0.74 36 -9.30
19 -0.33 37 0.93
21 0.80 39 0.95

Table 5.2: Table of R2 values. Patients with poor R2 values are highlighted in red.

In the poor fit cases shown in Figures 5.6 and 5.7, Patients 19 and 30 have data

that does not behave like the ones in the good fit cases (Figures 5.2, 5.3, 5.4, 5.5).

We see that for patients 19 and 30, the gross tumor volume peaks around 200 days,

and then the gross tumor volume data decreases in the following data points. This

behaviour in the data is only present for these two patients suggesting that there is a

potential measurement error or that these patients received another treatment that was

not documented. In the case of patient 36, the data is limited and the fit may improve

if more data for that patient is provided.

Now that we have determined for which patients the model is able to fit the data,

we remove the poor fits from our study. That is, we remove the cases with poor R2

values and focus on analyzing the rest. Hence, we focus on the remaining 23 patients.

We first analyze the parameter ranges by plotting the box plots of them which are

seen in Figure 5.8. We see that for the growth rate, r, and the clearance rate, γ, the

parameter ranges are fairly narrow whereas the parameter ranges for the initial volume

V0 and carrying capacity K are wide due to the way we sampled these parameters.
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Further, the chemotherapy kill rate µ is fairly spread out through the chosen interval

[0, 1] however the median of µ is fairly low.
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Figure 5.8: Box plots of the parameter ranges obtained from the data fits. Here r is the
growth rate, γ is the clearance rate, V0 is the initial volume, K is the carrying capacity and
µ is the effectiveness of chemotherapy.

Using these parameters, we observed that a certain parameter ratio seems to indicate

patient outcome

ρ =
r

γµ
=

growth rate

death rate× kill rate
. (5.18)

This ratio arises intuitively by noting that the lower the growth rate the slower the

tumor grows. Further, the tumor dies more if the tumor death rate and the kill rate

from treatment are high. Here, the kill rate from treatment is assessed by µ (the

kill rate from chemotherapy) since the kill rate from intensity-modulated radiotherapy

treatments is fixed for all cases. Hence, we expect that the lower the ρ the better the

outcome from treatment, and if ρ is high then the treatment is likely to fail, and tumor

recurrence is expected. Indeed, this pattern is verified by computing the ratios from

the fitted parameters which are summarized in Table 5.3.

In Table 5.3, the patients who do not respond well to treatment are highlighted
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in blue which were determined from the fits based on how quickly the tumor regrew.

Specifically, if the fitted curve shows tumor regrowth within the observed time period,

then we say that the patients had a poor treatment response. We see a clear trend

where the patients who do not respond well to treatment generally have a significantly

higher ρ ratio in comparison to the patients who do respond to treatment. This sug-

gests that focusing on lowering the tumor growth rate, and raising the clearance rate

and improving treatment effectiveness will decrease ρ hence increasing the chances of

successful treatment. We also find that 1 female patient out of 8 has a poor treatment

response whereas 7 out of 15 males have a poor treatment response. So for this study,

females tended to respond better to treatment.

Patient Gender ρ Patient Gender ρ

2 f 5.53 22 m 18.29
4 f 9.48 24 m 4.65
6 m 7.44 26 f 46.27
8 f 9.13 27 m 373.1
9 m 55.89 28 m 72.87
10 f 3.96 32 m 20.19
11 m 7.42 33 m 11.46
12 f 11.31 34 m 71.66
15 m 9.74 35 m 5.67
16 m 0.67 37 f 8.26
17 m 0.01 39 f 15.32
21 m 2.11

Table 5.3: Table of ρ ratios. Highlighted in blue are are patients who do not respond well to
treatment. Here, m stands for male and f stands for female.

5.6 Conclusion

In this chapter, we derived a simple model called Model 1 (5.8) which was able to fit

to 23 patient cases out of 26. The damaged volume compartment in Model 1 describes

the gross tumor volume decrease post treatment well, showing that it is important

to account for the damaged volume in order to accurately describe the long term tu-
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mor volume dynamics. As Model 1 is fairly simple, it may be possible to determine

the parameters clinically for each patient, which will be useful in tailoring the cancer

treatment in order to attain the target tumor volume.

From the Latin Hypercube Sampling fitting method, we found that there is signif-

icant variation in parameter values between each patient. The variation in parameter

values highlights that each patient is different with a unique response to treatment.

Hence, it is difficult to assign a general set of parameter values that will pertain to

each patient. Nevertheless, we found a pattern in parameter ranges, that could indi-

cate patient outcome. In particular, the ratio ρ comprised from the tumor growth rate

r, tumor clearance rate γ, and tumor cell kill rate by chemotherapy µ, suggests that

patients with a low r and high γ, µ will respond to treatment better based on the data.

Validating this ratio against more data is future work.

Our findings support some of the conclusions in Tariq et al. [64]. Like in [64], we find

that accounting for the latency time effect through a damaged volume compartment

explains the tumor volume dynamics well. This also means that a one dimensional

ODE model proposed in [23] is insufficient to explain our gross tumor volume data.

Further, we find that logistic tumor growth, is more accurate at modelling the long

term dynamics of NSCLC unlike the exponential growth model that was argued for in

[64]. This is because Tariq et al. [64] had only short term gross tumor volume data

available, for which an exponential growth model was found to be sufficient.

As our model is able to explain the long term gross tumor volume dynamics well,

it could be used to find an optimal treatment regimen. Based on the patient param-

eters obtained from LHS, we have modified the treatment schedule. We found that

a treatment applying both radiotherapy and chemotherapy is superior to a treatment

that applies only radiotherapy at delaying tumor regrowth. Further, we found that

sequential radio-chemotherapy delays tumor regrowth more than concurrent chemo-

radiotherapy. This is interesting as in the findings of Geng et al. [23], they found that

concurrent chemo-radiotherapy improves survival time. Because of the limited data,

we assumed that all patients have the same radiosensitivity parameters meaning that
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all patients have the same radiation sensitivity. With more data, this parameter should

also be ideally estimated for as well. Once the radiosensitivity parameters are fine

tuned to each patient, the treatment regimen which delays tumor regrowth may change

accordingly, and perhaps be in more favour of concurrent chemo-radiotherapy. Never-

theless, a combined treatment comprised of both chemotherapy and radiotherapy is still

expected to outperform a treatment comprised of solely chemotherapy or radiotherapy.

We have compared Model 1 to a model accounting for the Allee effect (Model 2). We

found that both models yield fairly similar fits to the available NSCLC data. The models

were derived from full models incorporating CSC and TC dynamics, and the resulting

models, Model 1 and 2, did not distinguish between the CSC and TC populations.

Hence, the distinction between CSCs and TCs is not necessary to explain the gross

tumor volume data. Further, we found that Model 1 fits the data better than Model

2, based on the AICc values. Therefore, an Allee effect is also not necessary to explain

the gross tumor volume dynamics.

Proposing a model that explains the gross tumor volume data, is the first step in

modelling NSCLC. Modern medical imaging can provide more information, such as

the spatial resolution of the tumor area as well as the identification of physiological

features such as organs, major bronchi, and blood vessels. Inclusion of such features is

outside of the scope of this thesis. By including spatial components to Model 1, some

of these features can be accounted for, which could help identify the ideal locations for

treatment application in order to cause tumor remission.
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Chapter 6

Discussion

Spontaneous tumor remission is poorly understood to this day, and it is still an open

question as to how to make it occur more frequently [54, 39]. By accounting for various

feedback mechanisms in our mathematical models for tumor growth, we showed that

an Allee effect may be present. The presence of the Allee effect means that certain

sizes of tumors are unable to establish themselves or grow in an environment, serving

as a possible explanation as to why spontaneous tumor remission occurs [38, 39]. In

Chapter 2, 3, and 4, we studied the Allee effect by building upon existing cancer stem

cell models. In Chapter 2, we extended the Hillen et al. [31] model by modifying the

feedback mechanism arising from spatial limitations. Specifically, this mechanism is a

negative feedback mechanism, where due to limited space, cell proliferation decreases.

We extended this feedback mechanism to also account for the cell fitness to reproduce

in an environment. We found that the model proposed in Chapter 2 has its dynamics

organized by a slow manifold, which is comprised of attracting and repelling branches

separated by non hyperbolic points. The existence and position of the repelling branch

dictates the shape of the Allee region, which captures the densities at which tumors

experience spontaneous decay. Moreover, the size of the Allee region generally increases

as the TC death rate and Allee threshold parameters increase. The existence of an

Allee region shows that it is enough for a treatment to push the tumor density to a size

102



contained within the Allee region in order to attain tumor control. Hence, treatments

do not need to fully eradicate the tumor.

In Chapter 3, we modify the negative feedback mechanism in the model proposed

in Chapter 2, to ensure that the tumor densities within the Allee region do not become

negative, so that all solutions are biologically realistic. The analysis from Chapter 2,

carries over to the modified model with minimal changes. When we add treatment to

the modified model, we also incorporate a damaged cell compartment. We saw that

a cytotoxic treatment focused on killing both cell types, without a particular target,

can increase the Allee region, but this increase is limited by predetermined parameters,

which vary depending on the tumor. From a cytotoxic treatment, we saw that there are

three possible outcomes. The first outcome is that if a tumor falls within the enlarged

Allee region, then tumor control is attained. The second outcome is when the treatment

fully eradicates the TCs, which corresponds to the treatment pushing the tumor to the

Allee region. The last outcome is when the treatment fails to shrink the tumor to a

size that is contained in the Allee region. In this case, if treatment stops the tumor

regrows. Moreover, if the treatment is poor at killing CSCs, it may instead promote

the tumor to select for CSCs. We generally find that the less CSCs the initial tumor

has, the more likely the treatment can force tumor control. Therefore, a pure cytotoxic

treatment may not be the best treatment for all tumors reiterating the conclusions

found by Youssefpour et al. [70] and Bachman et al. [1], where it was found that a

cytotoxic treatment alone, like radiotherapy, is unlikely to fully control the tumor.

In Chapter 4, we extended the work of Konstorum et al. [38] by incorporating feed-

back mechanisms into a base CSC model derived by using the self-renewal probability

p and accounting for the CSC and TC dynamics. Specifically, we accounted for the

positive and negative feedback mechanisms stimulated by the self-renewal and differ-

entiation promoters onto CSC ability to self renew, as well as the negative feedback

mechanism onto cell proliferation arising from spatial limitations. We showed that an

Allee region still exists, and increases as the TC death rate and the amount of differ-

entiation promoters increase. Falling in line with the results from Chapter 2, we find
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that a cytotoxic treatment focused on solely targeting the TCs can increase the Allee

region, but also promote the tumor to select for CSCs hence causing a tumor growth

paradox. This means that if the treatment fails to control the tumor, the tumor regrows

more aggressively post treatment, which was also observed in the tumor growth sim-

ulations post cytotoxic therapy by Youssefpour et al. [70]. Targeted therapy focused

on increasing the amount of differentiation promoters, can increase the Allee region

much more, without any drawback from the tumor growth paradox, meaning that if

the treatment fails, there is no significant change in tumor aggressiveness, falling in

line with what was observed in [70]. We find that targeted therapy combined with a

cytotoxic treatment like radiotherapy, increase the Allee region significantly more than

the respective treatments by themselves. Hence, a combined treatment has a greater

chance at attaining tumor control which was also concluded by Youssefpour et al. [70]

and Bachman et al. [1]. Targeted therapies are currently being tested, some of which

are precisely designed to decrease the amount of self-renewal activators, for example

suppressing the Wnt pathways [69]. These therapies have shown some promising re-

sults, and one of the current directions in cancer treatment is to find the best way to

combine targeted therapy along with typical cytotoxic treatments [71]. We note that

specific behaviours of the signaling pathways such as Wnt are cancer specific due to

varying gene mutations between cancers and are also currently being researched [26].

Hence, when applying the models to a specific cancer, appropriate modifications to the

feedback mechanisms in the mathematical models may be required.

We have accounted for different processes present in the tumors in the mathemati-

cal models in Chapters 2, 3, 4 but there are many more processes occurring in cancer

outlined by the hallmarks [28, 29, 27]. For example, we accounted for the cancer tis-

sue’s ability to divide uncontrollably, death resistance, and replicative immortality by

incorporating CSC dynamics. A natural extension would be to incorporate cancer’s

ability to evade immune response into the model. By incorporating a full immune cell

response into our models, we can study if an Allee effect is still present and gain insight

on how to make treatments which boost the immune response (immunotherapy) more
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successful. Incorporating the immune response could be done by combining our mod-

els with the cancer model incorporating the immune response proposed by Kuznetsov

et al. [42], which has been recently validated against cancer data [18]. Moreover, tu-

mor growth dynamics also depend on the tumor microenvironment and nutrient uptake

[28, 29, 27], which are processes we neglect for model simplicity. Another open question

that remains is whether the slow manifolds we have seen in Chapters 2 and 3 forms

a dynamical system in itself. As the slow manifolds are the organizing center for the

dynamics of our models, understanding all properties of the slow manifolds is impor-

tant. Other questions arise regarding the optimization of treatment. It is important to

optimize treatment application time as well as the location of treatment, in order to

improve the chances of tumor remission [72]. One specific question is how long should

the treatment last, before it can be lifted and the tumor cannot regrow. For the models

presented in Chapters 2, 3, and 4, this question is relevant, if the tumor does indeed fall

within the increased Allee region formed from treatment. Like in [38], the answer we

find is that the treatment should be applied until the total tumor density falls within

the naturally occurring Allee region, but knowing the size of the original Allee region

will depend on the parameters of a specific cancer, which may be difficult to estimate.

In Chapter 5, we proposed a simple model accounting for radiotherapy and chemother-

apy treatments which is able to fit to the available NSCLC data well. We found that

accounting for the Allee effect is not necessary to explain the data nor is the distinc-

tion between CSCs and TCs. However, the damaged cell compartment is necessary to

incorporate in order to accurately model the tumor shrinkage seen post treatment in

the data. This falls in line with findings by Tariq et al. [64], as they also concluded

that a damaged cell compartment is necessary to explain NSCLC data. By fitting the

model to each patient, we found that there is a fair spread in the resulting parameters.

This is because patients have varying ages, weights, diets, etc., which showcases that

a one fits all approach does not work. Nevertheless, we find a ratio that can indicate

treatment outcome, which is comprised of the growth rate, clearance rate, as well how

well the patient responds to chemotherapy. Moreover, it may be possible to determine
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some of these parameters prior to the start of treatment. Modern imaging techniques

can provide information about the structure and location of the tumor. By using this

data and extending the simple model we proposed in Chapter 5 to account for spatial

aspects, tumor shape and spread can be modelled. Through this, it may be possible

to identify which regions in a tumor to target in order to cause tumor remission. This

would be another approach to study the Allee effect, which inherently depends on which

environments or locations the tumor has grown and spread to.

Here, we performed a systematic study of the Allee effect in cancer stem cell models

with an application to NSCLC. We found that an Allee effect is present under different

assumptions for feedback mechanisms, suggesting that it is an underlying phenomenon

in cancer dynamics. The ODE models presented here are capturing the essential dy-

namics between cancer stem cells and cancer cells lacking stemness. By gaining an

understanding of these essential dynamics through mathematics, we are one step closer

to understanding tumor growth, cancer treatment responses, and spontaneous tumor

remission.
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