
University of Alberta

MULTIMAPPING ABSTRACTION AND STATE-SET SEARCH THEORY

by

Bo Pang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Bo Pang
Fall 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

Abstract

This thesis consists of two parts. First, we invented an abstraction framework called multimapping

which allows multiple admissible heuristic values to be extracted from one abstract space. The key

idea of this technique is to design a multimapping function which maps one state in the original

space to multiple states in the abstract space. The fundamental differences between this new tech-

nique and other existing ones is that this technique is completely domain independent and can be im-

plemented without increasing the size of the abstract space. Based on this multimapping framework,

we have implemented multimapping domain abstraction for the HIDA* algorithm. To benchmark

its performance, extensive experiments have been run on the Sliding Tile Puzzle, Pancake, Topspin

and Blocks World domains. The results show that the new technique outperforms existing domain

abstraction with a single or multiple abstract spaces in terms of CPU time and memory usage.

The second part of this thesis is focused on the theory of state-set search. This theory investigates

the scenario that a set of states are manipulated as a single state-set by a search algorithm. This

scenario occurs frequently in abstraction and planning system and we are the first to formally define

and analyze it. Based on this theory, we have found a path-based distance, dww, which is the

maximum admissible distance between two state-sets.

Acknowledgements

First of all, I would like to thank my supervisor Dr. Robert Holte for his tremendous help in this

project. The discussion with Rob is always inspiring and makes me feel energetic. I have learnt a

lot from Rob about the way of tackling challenging problems, great attention to details and other

valuable assets. Thank you, Rob!

I would like to thank Neil Burch for providing his PSVN compiler which makes things way more

easier and faster. I also want to thank Mehdi Samadi for the help he provided in experiment section.

At last, I would like to thank my family for their endless support and encouragement during my

entire education. Thanks to Wendy for her support during the writing process.

Table of Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Approach to Problem . 2

1.2.1 Multimapping Abstraction . 2
1.2.2 State-Set Search Theory . 2

1.3 Contributions of this Research . 3
1.4 Outline . 4

2 Essential Background 5
2.1 State Space Search . 5
2.2 State Space Representation . 6
2.3 Puzzle Domains . 7

2.3.1 Sliding Tile Puzzle . 7
2.3.2 Pancake Puzzle . 8
2.3.3 TopSpin Puzzle . 9
2.3.4 Blocks World With Table Positions . 10

2.4 Heuristics . 11
2.4.1 Properties of a Heuristic . 11
2.4.2 Generating Heuristics Using Abstraction 12

2.5 Search Algorithms . 14
2.5.1 A* . 14
2.5.2 IDA* . 15
2.5.3 HIDA* . 16

2.6 Summary . 17

3 Multimapping Abstraction 18
3.1 Multimapping Abstraction Framework . 18
3.2 Enhancements . 23

3.2.1 Choosing A Good Mapping Factor . 23
3.2.2 Goal Aggregation . 24
3.2.3 Remapping . 25
3.2.4 Combining Remapping and Goal Aggregation 26

3.3 Experiments . 27
3.3.1 Difference Between the Forward and Backward Heuristic Calculation . . . 28
3.3.2 The Best Version of Multimapping . 30
3.3.3 Comparison With Other Methods Using Small State Spaces 33
3.3.4 Experiment with Large State Spaces . 35
3.3.5 Conclusions . 38

3.4 Implementation with Partial-State Abstraction . 46
3.4.1 Definition . 46
3.4.2 Experiments . 49

3.5 Conclusions . 52

4 State-Set Search 53
4.1 Formal Analysis . 53

4.1.1 State-set Matching, Paths, and Distances 54
4.2 Properties of Weak and Strong Paths and Distances 58

4.2.1 Inverting Operators and Paths . 62
4.2.2 Challenge of Building a Pattern Database With State-sets 63

4.3 Planning as State-Set Search . 64
4.4 The State-Set View of Abstraction . 66

4.5 Multimapping Revisited . 68
4.6 Conclusions . 69

5 Conclusions 70
5.1 Limitations . 71
5.2 Final Words . 71

Bibliography 72

A Abstractions for Large Domains 74
A.1 15-Puzzle . 74

A.1.1 Domain Abstraction . 74
A.1.2 Multimapping Abstraction . 75
A.1.3 Multiple Abstraction . 75

A.2 Glued 15-Puzzle . 76
A.2.1 Domain Abstraction . 76
A.2.2 Multimapping Abstraction . 77
A.2.3 Multiple Abstraction . 78

A.3 14-Pancake . 78
A.3.1 Domain Abstraction . 78
A.3.2 Multimapping . 78
A.3.3 Multiple Abstraction . 79

A.4 (15,4)-Topspin . 79
A.4.1 Domain Abstraction . 79
A.4.2 Multimapping Abstraction . 79
A.4.3 Multiple Abstraction . 80

A.5 (12,3)-Blocks World . 80
A.5.1 Domain Abstraction . 80
A.5.2 Multimapping Abstraction . 81
A.5.3 Multiple Abstraction . 81
A.5.4 Multimapping Abstraction (GARM) . 82

List of Tables

2.1 An example of a domain abstraction function. 13

3.1 Domain abstractions φ1 and φ2. 23
3.2 Number of Nodes Expanded at the Base Level for Different Mapping Factors. . . . 24
3.3 Multimapping domain abstractions used for goal aggregation. 25
3.4 Multimapping domain abstractions used for remapping. φ0 consists of two abstrac-

tions φ10 and φ20 while φ1 is the abstraction at the next level. 26
3.5 . 27
3.6 φ11(s), φ21(s) and φ31(s) are three abstractions at the first level, φ2(s), φ3(s) and

φ4(s) are abstractions at second, third and forth level respectively. 30
3.7 Number of Abstractions for Each Domain and Enhancement Techniques. 31
3.8 Domain abstractions φ1 and φ2. 32
3.9 The 15-Puzzle. 36
3.10 The Glued 15-Puzzle. 36
3.11 The 14-Pancake Puzzle. 37
3.12 The (15,4)-TopSpin Puzzle. 37
3.13 The (12,3)-Blocks World. 38
3.14 The (12,3)-Blocks World with the MMGARM technique. 39
3.15 An example of abstraction used for the Partial-State technique. Step 1 is to apply a

domain abstraction to s to create 3 pairs of duplicated tiles. Step 2 is to pick one out
of each pair and one additional tile, 4 tiles in total, to make them into variables. The
final abstracted Partial-State is 〈1, x1, x2, 2, 3, x3, x4, 8〉 50

List of Figures

2.1 Goal states of the 8-Puzzle (left) and the 15-Puzzle (right). 8
2.2 An example of the 3-Pancake puzzle. 9
2.3 Caption for LOF . 9
2.4 An example of the (3,2)-Blocks World. 10
2.5 An example of an 8-Puzzle state and its abstraction. 13
2.6 Abstraction Hierarchy . 16

3.1 Difference between multimapping Abstraction and Multiple Abstractions. 19
3.2 Differences between three HIDA* setups. 28
3.3 Heurisitc Value Difference Between the Forward and Backward Calculation. 29
3.4 Nodes expanded at the base level: multimapping domain abstraction (remapping)

Vs. multimapping domain abstraction (plain). 40
3.5 Memory usage: multimapping domain abstraction (remapping) Vs. multimapping

domain abstraction (plain). 40
3.6 CPU time: multimapping domain abstraction (remapping) Vs. multimapping do-

main abstraction (plain). 40
3.7 Nodes expanded at the base level: multimapping abstraction (goal aggregation) vs.

multimapping abstraction (plain). 41
3.8 Memory usage: multimapping abstraction (goal aggregation) vs. multimapping ab-

straction (plain). 41
3.9 CPU time: multimapping abstraction (goal aggregation) vs. multimapping abstrac-

tion (plain). 41
3.10 Nodes expanded at base level: abstraction comparison between MMRM, MMGA

and MMGARM. 42
3.11 Memory usage: abstraction comparison between MMRM, MMGA and MMGARM. 42
3.12 CPU time: abstraction comparison between MMRM, MMGA and MMGARM. . . 42
3.13 Nodes expanded at the base level: multimapping abstraction (GARM) vs. domain

abstraction. 43
3.14 Memory usage: multimapping abstraction (GARM) vs. domain abstraction. 43
3.15 CPU time: multimapping abstraction (GARM) vs. domain abstraction. 43
3.16 Nodes Expanded at the base level: Multimapping Abstraction (GARM) vs. Mul-

timapping Abstraction (MA). 44
3.17 Memory Usage: Multimapping Abstraction (GARM) vs. Multimapping Abstraction

(MA). 44
3.18 CPU Time: Multimapping Abstraction (GARM) vs. Multimapping Abstraction (MA). 44
3.19 Nodes Expanded at the base level: comparison between DA, MM and MA. 45
3.20 Memory Usage: comparison between DA, MM and MA. 45
3.21 CPU Time: comparison between DA, MM and MA. 45
3.22 8-Puzzle: Partial-State Abstraction vs. Domain Abstraction. 51
3.23 9-Pancake: Partial-State Abstraction vs. Domain Abstraction. 51
3.24 9-Pancake: Abstractions Comparison. 51
3.25 8-Puzzle: Abstractions Comparison. 51

4.1 (upper) Operator ω is strongly (and weakly) applicable to P . (lower) Operator ω is
weakly applicable to P . 55

4.2 State-set P and state-set Q. 56
4.3 Strong (upper) and weak (lower) paths from P to Q. 57
4.4 Example of dwwviolating the triangle inequality. 60
4.5 The shortest weak path from P to R2 on the way to Q is not necessarily the shortest

weak path from P to R2. 61

4.6 Backward and corresponding forward strong path calculated by regression planning.
The dashed line in the middle represents omitted state-sets Q3 to Qk−1 and Q′3 to
Q′k−1. 66

4.7 Potential for dwwto produce an inconsistent heuristic. 69

Chapter 1

Introduction

This chapter gives a introduction to the thesis. First, we are going to give a brief description of state

space search problems. Second, after the introduction of existing methods of solving state space

search problems our approach is presented. In the third section, we will talk about our contributions

in this thesis. Finally, a short description of each chapter is presented.

1.1 Problem Definition

Imagine that you are traveling from Edmonton to Jasper to enjoy the beautiful Rocky Mountains.

You jump into the car, and enter the name Jasper into your GPS. Then this magical device guides

you through the city, leading you all the way west to the mountains. How does this tiny device

help you through the complicated road network? The general problem of this kind is what we are

interested in in this thesis. In this particular example, to solve it, the road network is represented by

a mathematical model, a graphG. All intersections and points of interest along the road are modeled

as nodes in graph G. Roads between nodes are represented by directed edges. Now the problem of

navigating from Edmonton to Jasper becomes finding a path from a node to another node in graph

G. In general, each edge in G is associated with a non-negative cost. Any path between two nodes

in G is also associated with a cost, which is the sum of costs of all edges along the path. What we

are interested in is to find a path between two nodes with the lowest cost possible. This lowest cost

path from one node to another is called an optimal solution. In the following discussion, we will

refer nodes as states and G as a state space. This problem is called the state space search problem.

We also need to solve the state space search problem within a reasonable memory and time limit.

This is challenging because unlike road networks, the state space of many problems is usually so

large that it is impossible to fit the whole space into memory. For this reason, the state space is stored

in the computer implicitly. That is to represent the space by a set of rules which are used to generate

the space. Also searching in such a big space could take a long time to find a solution. To tackle the

challenge of how to solve state space search problems within reasonable time and memory limit is

the focus of the “heuristic search” research community.

1

1.2 Approach to Problem

The state of the art technique to solve state space search problem uses a search algorithm guided by

a heuristic. A heuristic is an estimate of the distance from a state to a goal state. If the heuristic

value is guaranteed to never overestimate the true distance, we call the heuristic admissible. With an

admissible heuristic, standard search algorithms are guaranteed to produce optimal solutions. The

method of generating heuristics is the issue we will focus on in this thesis.

One popular method to create heuristics is abstraction. The idea of abstraction is to use a function

to map every state in the original state space to a new state space which we call the abstract space.

This function is specially designed so that the distance between states in original space is never less

than the distance between their images in the abstract space. Thus the abstract distance can be used

as an admissible heuristic. Meanwhile, the abstract space should be much smaller than the original

space so that it can be explored efficiently. The size of the abstract space has an important influence

on the quality of heuristic extracted from it. With a larger abstract space, the heuristic value is, in

general, closer to the true distance, so a search algorithm with this heuristic is faster. However, the

improvement of heuristic quality with bigger abstract space does not come free; a bigger abstract

space will cause more memory consumption and more time to explore it. If we want to have better

heuristic quality without using a bigger abstract space, we need to come up with a more advanced

technique of abstraction.

1.2.1 Multimapping Abstraction

The multimapping abstraction we present in this thesis is a novel framework for designing abstrac-

tions. There are three important characteristics of multimapping. First, each state in the original

space has several images in the abstract space. In contrast, if using traditional abstraction, every

state in the original space only has one image in the abstract space. Second, having multiple images

for each state in the abstract space does not necessarily increase the size of the abstract space. This

is because the abstraction function is specially designed so that all images of a state are in the same

abstract space. Third, the distance from each image of a state to the nearest abstract goal state is still

an underestimate of the distance from the state to the goal state in the original space. Since there

exist several images of a state, and each of these images provide an admissible heuristic, the calcula-

tion of the heuristic value of a state in the original space can take the maximum of the heuristic value

returned by each of its images. In this way, the heuristic quality can be improved without increasing

the size of the abstract space.

1.2.2 State-Set Search Theory

Designing an abstraction function for multimapping also inspired us to investigate another important

issue, which is the second part of this thesis: the state-set search theory. This theory investigates

the scenario that a set of states are manipulated by a search algorithm as a single state-set. We give

2

a formal analysis of this scenario and develop four kinds of distances between state-sets. Among

these four kinds of distance, we find that the cost of a “weak path” (defined in Chapter 4) between

two state-sets P and Q is the largest possible admissible estimate for the true distance between any

state in P and any state in Q. Thus it can be used as a way of generating a strong heuristic.

1.3 Contributions of this Research

The main contributions of multimapping abstractions are as follows:

1. We introduced the multimapping abstraction framework, which allows a state in the original

space to have multiple images in a single abstract space. We investigated two specific methods

to implement the multimapping abstraction framework. One of them is called multimapping

domain abstraction, which we showed experimentally to be a successful method. The other

method is called the Partial-State technique. This method still needs to be further developed

but it inspired us to develop the state-set search theory.

2. We developed three enhancement techniques for the multimapping abstraction framework.

These techniques can be implemented together and our experiments show that multimapping

domain abstraction implemented with these three techniques is better in terms of memory use

and CPU time than multimapping domain abstraction without these enhancements.

3. Experiments both in small scale and in large scale are done to compare multimapping do-

main abstraction to two existing methods: (1) domain abstraction with one abstract space,

and (2) domain abstraction with multiple abstract spaces. The results show that domain mul-

timapping abstraction in most domains has better performance in both CPU time and memory

consumption.

Most of this material has been published in the 2012 Symposium on Combinatorial Search [29].

The main contributions of state-set theory are as follows:

1. We investigated the scenario in which a set of states in the original space is manipulated

as a state-set by a search algorithm. A state-set theory has been developed to describe the

properties and behavior of state-set search. This theory is independent on how a state-set is

represented.

2. We discovered four kinds of distances between state-sets. The most important one among

them is called a “weak path”. Our analysis shows that the cost of a “weak path” between two

state-sets P andQ is the largest possible admissible estimate for the true distance between any

state in P and any state in Q. Thus this “weak path” can be utilized as a way of generating a

strong heuristic.

Most of this material has been published in the 2011 Symposium on Combinatorial Search [28].

3

1.4 Outline

The rest of the thesis is going to be presented in the following way.

In Chapter 2, the background knowledge needed to understand the whole thesis is presented.

This includes: (1) the representation of a state space search problem, (2) the state spaces we are

going to use in the experiment sections, and (3) heuristics and heuristic search algorithms.

Chapter 3 begins by presenting the multimapping abstraction framework and an implementation

of the framework called multimapping domain abstraction. Then the enhancement techniques for

multimapping abstraction are described. In the experiment section, we designed both small scale

and large scale experiments to investigate and verify the performance of multimapping domain ab-

straction. In the last part of the chapter, a new technique called Partial-State abstraction is presented.

In Chapter 4, the formal definition of the state-set theory is presented at the beginning of the

chapter. Later, we described how the theory can be used to explain the behavior of some existing

planning systems.

In Chapter 5, we summarize the contributions and limitations of the techniques and theories

presented in this thesis.

If there is work related to our theory or technique, it is presented within corresponding chapters.

Thus, we do not have a specific chapter that focuses on related work.

4

Chapter 2

Essential Background

In this chapter, we are going to introduce all the background knowledge readers need to have in

order to understand the rest of the thesis. First, we are going to introduce the concept of heuristic

search in Section 2.1. Next, we are going to talk about the representation of a state space search

problem. The method we use to encode problems is presented in Section 2.2. For the purpose

of evaluating our technique, we are going to test our method on several problem domains. Those

domains are introduced in Section 2.3. The introduction of heuristics and the traditional way of

creating heuristics is presented in Section 2.4. The search algorithms used in our experiments are

introduced in Section 2.5.

2.1 State Space Search

The state space search problem is to find a solution path between two nodes in a graphG. The graph

G is the mathematical model to represent the search space. Each node in G represents a state in the

search space. Every directed edge between two nodes, say an edge from node a to node b, represents

an action that can change state a to state b. All edges in G are associated with a non-negative cost.

In this thesis, the cost for all edges is always 1. A path from node a to node b is a sequence of edges

that connect a and b. The cost of this path is the sum of cost of all edges along the path. Because all

edges cost 1 in all of our problems in this thesis, the cost of a path is simply the length of the path.

There are two kinds of solution path: optimal and suboptimal. An optimal solution is a path with

the lowest cost. We denote the cost of the shortest path from a to b as c(a, b) and the length of it

as d(a, b). In this thesis, c(a, b) = d(a, b). A solution with cost larger than the cost of the optimal

solution path is called a suboptimal solution. In this thesis, we only focus on the problem of finding

an optimal solution.

Dijkstra’s algorithm [8] finds an optimal solution from one node to every other node in the graph.

However, Dijkstra’s algorithm needs to save every node it has visited in memory. Because our

problems have a huge state space, running Dijkstra’s algorithm on those problems will be infeasible

due to its memory requirements. The state-of-the-art technique to solve state space search problem

5

uses a search algorithm guided by extra information about the state space. This extra information is

called a heuristic, and will be introduced in Section 2.4. With this extra information and the search

algorithms described in Section 2.5, solving big state space search problems becomes possible.

Searching under the guidance of heuristics is called heuristic search.

2.2 State Space Representation

As we mentioned previously, any state space search problem can be formulated as a search problem

in a state space. In order to represent a state space, we need a formalism to describe the state space

to the computer. If the state space is small, we can store it explicitly into memory by a technique

such as an adjacency matrix [4]. However, large spaces cannot be stored in memory explicitly

because they require too much memory. For large spaces, we use an implicit representation. Instead

of storing every node in memory, an implicit representation describes the rules based on which the

entire state space can be generated. In this thesis, we are going to employ the PSVN language [16, 2]

to describe and implement state spaces.

First, we will introduce the definition of state space. The following definition of state space is

taken from Zilles et al.[35].

Definition 1 (State Space) A state space is a triple S = (D, k,Π) where D is a finite alphabet,

k ∈ N, and Π ⊆ Dk ×Dk. Every s ∈ Dk is called a state and every pair (s, s′) ∈ Π is called an

edge from state s to state s′.

Note that the states defined in the above are not necessarily reachable from each other. In con-

trast, another definition commonly used in the literature is to define a state space to be a set of states

reachable from a seed state s0 ∈ Dk [15, 16, 19]. However, differences between these two kinds of

definition do not affect the content of this thesis.

Definition 2 (PSVN State) A PSVN state s is a vector of fixed length k. For i = {1, . . . , k}, the

constants in each position i of s is from a finite set of possible values Di. We define D = ∪ki=1Di.

Edges between states are represented by operators in PSVN.

Definition 3 (PSVN Operator) A PSVN operator ω is a pair of vectors 〈LHS,RHS〉. Each of

these vectors is of length k. The LHS describes the precondition of the operator and the RHS

describes the effect. For each position i in LHS and RHS, it is either a constant from Di or a

variable.

An operator defines two things. First, it defines the states to which the operator can be applied.

Second, it defines the result of applying the operator. The following description of how a state is

matched to an PSVN operator is taken from Burch et al. [2].

6

“For the operator matching rules, a state s can be applied with operator ω = 〈LHS,RHS〉 if

s matches LHS according to the following rule. For i = {1, 2, . . . , k}, if LHS[i] is a constant,

s[i] must equal LHS[i]. For i, j = {1, 2, . . . , k}, if LHS[i] and LHS[j] are the same variable, s[i]

must equal s[j]”.

For producing the result of an operator, there are two situations:

Deterministic Operators

An operator is deterministic if every variable in theRHS of the operator is also in theLHS. Assume

s′ = 〈s′1, . . . , s′k〉 is the result of applying the operator 〈LHS,RHS〉 to s = 〈s1, . . . , sk〉. For i, j =

{1, . . . , k} if RHS[j] ∈ Dj then s′[j] = RHS[j]. If RHS[j] is a variable and RHS[j] = LHS[i]

then s′[j] = s[i].

Non-deterministic Operators

An operator is non-deterministic if one or more variables in the RHS of the operator does not occur

in the LHS. We call this kind of variable an unbound variable. The result of applying this kind of

operator is a set of states. For positions in RHS that are not unbound variables, the corresponding

positions in the resulting states are calculated in the same way as for deterministic operators. If

position i in RHS is an unbound variable, the value for position i in the resulting states is drawn

from Di and the set of resulting states must include all possible combinations of values for unbound

variables.

2.3 Puzzle Domains

In this section, we are going to introduce four problem domains which we will use in our experi-

ments. For each domain, we used a small version and a large version.

2.3.1 Sliding Tile Puzzle

The sliding tile puzzle [32], as illustrated in Figure 2.1, is a l by l grid containing one blank location

(represented by 0) and l2−1 tiles numbered from 1 to l2−1 (some variants have different names for

the tiles but the basic mechanism of the puzzle is the same). The only way to change the arrangement

of the tiles is to swap the blank tile with one of the adjacent tiles. The goal of this puzzle is to

rearrange the tiles to become a desired permutation. In the following, we use “state” to refer to a

permutation of tiles.

The small version of the puzzle we used later in our experiments is 3 by 3. This is called the

8-Puzzle. The large version of the puzzle we used is 4 by 4. This is called the 15-Puzzle. The

goal states of 8-Puzzle and 15-Puzzle are presented in Figure 2.1. We define the size of a problem

domain to be the number of reachable states in the corresponding search space. In this case, the size

of 8-Puzzle is 181, 440 (9!2) and the size of 15-Puzzle is 16!
2 . Next, we will define the asymptotic

7

0 1 2

3 4 5

6 7 8

0 1 2 3

4

8

5

9

6

10

7

11

12 13 14 15

Figure 2.1: Goal states of the 8-Puzzle (left) and the 15-Puzzle (right).

branching factor [11]. The asymptotic branching factor is a measurement of the ratio of the number

of children to their parents in a search space. We call it the branching factor for short in the following

discussion. For the 8-Puzzle, it is 1.5 at even depths and 2 at odd depths. For 15-Puzzle, it is 2.1304

for both even and odd depths.

Encoding

We use a vector of length l2 to represent a state for the l × l sliding tile puzzle. The blank tile is

represented by 0. The numbered tiles are represented by the corresponding numbers. The tiles in

a state are recorded in top-to-bottom and left-to-right fashion. For example, the 8-Puzzle state in

Figure 2.1 is represented by 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉. An operator that moves blank to the right when

it is in the top left corner is encoded as 〈0, A,B,C,D,E, F,G,H〉 → 〈A, 0, B, C,D,E, F,G,H〉.

2.3.2 Pancake Puzzle

The l-Pancake puzzle [9] is a stack of l pancakes numbered from 1 to l. The operators reverse the

order of the top i pancakes for i ∈ {2, . . . , l}. For example in the 3-Pancake state presented in the

left of Figure 2.2, if we the flip the top 2 pancakes, we will get the state on the right with pancake

2 on the top of pancake 1. The aim of this puzzle is to the rearrange the pancakes to a desired

arrangement. In our experiment, we used the 9-Pancake and 14-Pancake puzzles as the small and

large versions respectively. The size of the 9-Pancake and 14-Pancake state spaces is 9! and 14!

respectively. The branching factor for the 9-Pancake puzzle is 8 and for the 14-Pancake puzzle is

13.

Encoding

A state of l-Pancake puzzle is a vector of length l. Pancakes are encoded in a top-to-bottom fashion.

For example, the left state of the 3-Pancake puzzle in Figure 2.2 is encoded as 〈1, 2, 3〉 and the right

state is encoded as 〈2, 1, 3〉. An operator reversing the top 2 pancakes is encoded as 〈A,B,C〉 →

〈B,A,C〉

8

1
2
3

2
1
3

Figure 2.2: An example of the 3-Pancake puzzle.

2.3.3 TopSpin Puzzle

The (20,4)-Topspin puzzle is presented in Figure 2.3. This puzzle consists of 20 tokens in a round

track and a turnstile which can reverse 4 tokens at one time. Because tokens are placed in a round

track and all of them can be slid along the track, any successive 4 tokens can be slid into the turnstile.

The aim of this puzzle is to use the turnstile to rearrange the tokens into a specific order, usually in

ascending order from 1 to 20. The small version of this puzzle used in our experiment is (10,4)-

Topspin, meaning there are only 10 tokens and a turnstile of capacity 4. The large version we used

is (15,4)-Topspin. In the following discussion, the order of tokens in the track is a “state”. This

state only represents to the relative order rather than the absolute positions of the tokens in the track.

Sliding tokens along the track will not change the state of the puzzle. The size of (10,4)-Topspin is

10! and the size of (15,4)-Topspin is 15!
2 [3]. The branching factors for (10,4)-Topspin and (15,4)-

Topspin are 10 and 15 respectively.

Figure 2.3: A picture of (20,4)-Topspin Puzzle1.

Encoding

The encoding of the Topspin puzzle is a little bit tricky. Because tokens have no fixed position in

the track, they are encoded in their position relative to a flag token. This flag token can be any token

in the track. When we encode the state into a vector, the flag token is fixed at the beginning of the

vector and is never moved no matter how we flip the turnstile. For this reason, we can ignore this

1This image is taken from http://www.passionforpuzzles.com/puzzles/top-spin.php

9

http://www.passionforpuzzles.com/puzzles/top-spin.php

flag token in the vector of a state. Therefore, a (m,n)-Topspin puzzle state can be encoded with a

vector of lengthm−1. For example, in Figure 2.3, if we choose token 1 as the flag token, the vector

of the state will be 〈2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20〉. Note that there is no

value 1 in this vector. An example of an operator which reverses positions 2 to 5 is

LHS : 〈a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s〉

RHS : 〈d, c,b, a, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s〉

2.3.4 Blocks World With Table Positions

The (m,n)-Blocks World [35] is a variant of traditional Blocks World puzzle [31]. The (m,n)-

Blocks World consists of m blocks numbered from 1 to m, n table positions, and one claw. Blocks

can be stacked on each other as long as the stack is at a legal table position. If the claw is empty,

it can pick up the top block of any stack. If the claw is holding a block, it can put it down on top

of any stack or on an empty table position. The goal of this puzzle is to rearrange all blocks to be

at a particular table position with a specific order. The small blocks world puzzle we used is (8, 3)-

Blocks World and the big one is (12, 3)-Blocks World. An example of the (3, 2)-Blocks World is

presented in Figure 2.4. A state of the blocks world includes the position of each block, including

the block held by the claw if any. The size of the (8,3)-Blocks World is 3, 265, 920. We have not

calculated the exact size of (12,3)-Blocks World but it is certainly larger than 12!. For branching

factor, we do not know the exact value but for both domains it will not exceed 3. Generally, for the

Blocks World with n table positions the branching factor will not exceed n.

2

Position 1 Position 2

1

3

Figure 2.4: An example of the (3,2)-Blocks World.

10

Encoding

The following method to encode the (m,n)-Blocks World was invented by Zilles and Holte [35]. To

encode a state of (m,n)-Blocks World, we used a vector of length (m+ 1)× n+ 1 as illustrated in

the following.

〈 i1︸︷︷︸
name of the block held by the claw

,

first table position︷ ︸︸ ︷
i2, . . . , im+2 , . . .︸︷︷︸

remaining n− 1 table positions

〉

The first value of the vector is the name of the block held by the claw. It is 0 if no block is held by

the claw. The nextm+1 values represent the first table position and the remaining (m+1)×(n−1)

value represents the remaining n− 1 table positions. For the m+ 1 values that represent a position,

the first value represents how many blocks are at this table position. For example i2 in the above

example is the number of blocks located at the first table position. The remaining m values are

the names of the blocks at the current position for each level from bottom to top, 0 if empty. For

example, the encoding of Figure 2.4 is the following:

〈 0︸︷︷︸
is 0 because no block is held by the claw

,

first table position︷ ︸︸ ︷
2, 2, 1, 0 , 1, 3, 0, 0︸ ︷︷ ︸

second table position

〉

Operators that pick up a block on the first table position are:

〈0, 3, A,B,C, 0, 0, 0, 0〉 → 〈C, 2, A,B, 0, 0, 0, 0, 0〉

〈0, 2, A,B, 0, 1, C, 0, 0〉 → 〈B, 1, A, 0, 0, 1, C, 0, 0〉

〈0, 1, A, 0, 0, 2, B,C, 0〉 → 〈A, 0, 0, 0, 0, 2, B,C, 0〉

2.4 Heuristics

A heuristic is an estimate of the distance from the current state s to goal state g. It provides extra

information to search algorithms to speed up search. We denote the heuristic value of state s as h(s).

The closer h(s) is to the real distance from s to g, the better the heuristic quality is. Heuristics with

good quality will largely reduce the number of nodes expanded in the search process [25]. At the

beginning of this section, we are going to introduce two important properties of a heuristic: admis-

sibility and consistency. After that, we will introduce how to create a heuristic using abstraction.

2.4.1 Properties of a Heuristic
Admissibility

We say heuristic h is admissible if for all s, h(s) ≤ d(s, g) where g is a goal state. That is to say, the

heuristic h never overestimates the true distance from any state to the goal state. If h(s) = d(s, g)

11

for all s, the heuristic is called a perfect heuristic. With the guidance of an admissible heuristic,

the solution we find using search algorithms like A*[13] and IDA*[22] is guaranteed to be optimal.

In this thesis, because we only focus on finding optimal solutions, we will only use admissible

heuristics.

Consistency

Another important property of a heuristic is consistency. Heuristic h is consistent if for every state

n and every successor of n, p, the following holds:

h(n) ≤ c(n, p) + h(p)

Because c(n, p) = d(n, p) in all domains in this thesis, we can also write the above inequality as

h(n) ≤ d(n, p) + h(p)

This is a desirable property of a heuristic. The reason why consistency is desirable will be

discussed in Section 2.5. In this thesis, we only use consistent and admissible heuristics.

2.4.2 Generating Heuristics Using Abstraction

An effective way to generate heuristics is by abstraction. The fundamental idea is to create a smaller

space, which retains some information from the original space, and use the true distances in the

smaller space as the heuristic. Usually, this smaller space should be small enough so that we can

enumerate all the states in the space. An abstraction is a method to generate this smaller space out

of the original space. Specifically, we use an abstraction function φ(·) to map states in the original

space to abstract states, and this abstraction function φ must have a property called state space

homomorphism [16]. The following definition is taken from Hernádvölgyi and Holte [16].

Definition 4 (State Space Homomorphism) Let S and T be state spaces with operators ΩS and

ΩT respectively. φ : S → T is a state space homomorphism if the following always holds: for every

state u, v ∈ S if ∃ω ∈ ΩS such that ω(s) = t, then ∃ω′ ∈ ΩT such that ω′(φ(s)) = φ(t).

If the abstraction function φ have the property of state space homomorphism, then for any pair

of states p and q in original space, the following always holds:

d(φ(p), φ(q)) ≤ d(p, q)

That is to say, the true distance from φ(p) to the abstract goal state φ(g) is always an admissible

heuristic value for p in the original space [16]. It can be proved that the heuristic generated by

abstraction is consistent [16].

12

s 0 1 2 3 4 5 6 7 8
φ(s) 0 1 1 1 1 2 3 4 5

Table 2.1: An example of a domain abstraction function.

Domain Abstraction

Domain abstraction [16] is an abstraction method based on a total function φ : D → D′, where

|D′| < |D|. This φ induces a state space abstraction, which we will also call φ, as follows: if

s = 〈s1, . . . , sk〉, then φ(s) = 〈φ(s1), . . . , φ(sk)〉.

It has been proven that domain abstraction has the property that d(φ(p), φ(q)) ≤ d(p, q) for any

pair of p, q in original space [16].

Example 1 (Using domain abstraction on the 8-Puzzle) An example of a domain abstraction is

presented in Table 2.1. Suppose the original state of the 8-Puzzle is 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉. After

applying this domain abstraction function, the abstract state is 〈0, 1, 1, 1, 1, 2, 3, 4, 5〉, as illustrated

in Figure 2.5.

0 1 2

3 4 5

6 7 8

0 1 1

1 1 2

3 4 5

Figure 2.5: An example of an 8-Puzzle state and its abstraction.

Granularity

Granularity [15] is a property of a domain abstraction function. The following defintion is taken

from Hernadvolgyi et al. [15]:

Definition 5 (Granularity) The granularity of a domain abstraction φ : D → D′ is a vector

〈n1, . . . , nj〉, where j = |D′|. Each ni is the number of constants in D being mapped to constant

di ∈ D′. We reorder ni so that ni ≥ ni+1 for all i. Sometimes, when |D| is clear from the context,

we will omit the 1’s in the vector.

Example 2 The granularity of domain abstraction in Table 2.1 is 〈4, 1, 1, 1, 1, 1〉.

We use granularity to classify abstractions into different categories in the experiments in Chap-

ter 3. An important reason to do this is because the granularity of the domain abstractions used in

13

this thesis determines the size of the abstract space generated by the domain abstraction. However,

granularity does not generally determine the size of a abstract space created by domain abstrac-

tion [15].

Projection

A projection abstraction [10, 35] φ is defined by a subset {i1, . . . , im} ⊂ {1, . . . , k}. Applying φ to

state 〈s1, . . . , sk〉 gives state 〈si1 , . . . , sim〉.

The basic idea of projection abstraction is to eliminate certain fixed positions in the state vector.

Example 3 Let φ be a projection abstraction which eliminates second position in a state and s be

state 〈1, 2, 3, 4〉. Then φ(s) = 〈1, 3, 4〉.

Pattern Database

A pattern database[6] is a common technique to represent heuristics created using abstraction. A

pattern database is lookup table containing the distances from each abstract state to the abstract goal

state. To get a heuristic value for a state s, we look for the corresponding abstract state φ(s) in the

pattern database and return the value.

A pattern database is created by using breadth-first search [4] backward from the abstract goal

state. In this way, when the search reaches a state the distance from this state to the abstract goal

state is immediately acquired and stored in the PDB. This process continues until all abstract states

are visited and stored in the PDB.

2.5 Search Algorithms

In this section, we are going to introduce three heuristic search algorithms, A*, IDA* and HIDA*.

Even though we only use HIDA* in our experiments, the other two serve as a foundation to under-

stand HIDA*. In the following discussion, for a state s, we use h(s) to denote the heuristic value

of s and g(s) to denote the cost of the path from the start state to s. The f -value of s is defined as

f(s) = g(s) + h(s). We say a state is expanded when a search algorithm applies the operators to it

and generates all its children.

2.5.1 A*

A*[13] is a kind of best first search algorithm [30]. It uses two lists of states: OPEN and CLOSED .

OPEN is a list of states the algorithm has reached but not yet expanded. It is always sorted according

to the f -value of the states. CLOSED is a list of states the algorithm has already expanded. A*

always expands a state in OPEN with the lowest f -value. For a successor p of the expanded state,

if p does not exist in either OPEN or CLOSED, it will be added to OPEN. If p already exists in

14

OPEN and the newly generated p has a lower f -value, the f -value of p in OPEN will be updated.

If p already exists in CLOSED and the newly generated p has a lower f -value, p will be removed

from CLOSED and be added to OPEN with the new f -value. The algorithm terminates when the

goal state is expanded. If used with an admissible heuristic, A* is guaranteed to return an optimal

solution*[13]. If the heuristic is consistent, it is guaranteed that A* will not re-expand any state [13].

The drawback of A* is that it has a high memory requirement. This is because it will store

every state it has reached during the search process. If the search space is large and the heuristic is

imperfect, A* will usually run out of memory before finding a solution, and thus be an infeasible

approach.

2.5.2 IDA*

IDA* [22] is a search algorithm often used in large search spaces. This is because the memory

requirement of IDA* is proportional to the length of the solution it finds. Unless the solution length

is exponentially long, IDA* will have a low memory requirement for large spaces. The idea of IDA*

is to perform depth-first search [4] within a certain cost bound. Any state with its f -value higher

than the bound is immediately pruned. If the goal is not found in the current iteration, the bound is

increased to the minimum f -value of the pruned states in this iteration. The algorithm terminates

immediately if a goal state is found with an f -value equal to the current cost bound. Like A*,

provided with an admissible heuristic IDA* will find an optimal solution[22].

Besides having a low memory requirement in most cases, another advantage of IDA* is that it

is easy to implement. Because it does not involve implementation of OPEN and CLOSED like A*,

the code for IDA* is short and succinct. However, in IDA* most states in the search tree will be

expanded numerous times and this can be a big computational cost. The overall overhead of IDA*

is dominated by the last iteration [22]. Pseudocode for IDA* is shown in Algorithm 1.

Algorithm 1 IDA*

IDA(start, goal)
bound← h(start)
while goal not found:

bound← DFS(start,goal,0,bound)

DFS(s, goal, g, bound)
If s == goal: exit with success
g← g + 1
newbound←∞
Iterate over x ∈ children(s):

f(x)← g + h(x)
if f(x) ≤ bound: f(x)← DFS(x, goal, g, bound)
if f(x) < newbound: newbound← f(x)

Return newbound

15

2.5.3 HIDA*

HIDA*[18] is a search algorithm that combines IDA* with hierarchical abstractions. Hierarchical

abstractions, as illustrated in Figure 2.6, are designed to be a set of abstract spaces labeled from

level 1 to level l. For each i = {2, . . . , l}, abstract space level i is an abstract space for level (i− 1)

created by treating abstract space level (i−1) as an original space and applying the abstraction φi−1.

Abstract space level 1 is an abstract space for the original space. We call the original space the base

level in the following discussion. In the hierarchy of abstractions, the heuristic value for any state s

in level i can be obtained by calculating the true distance between φi(s) to the closest abstract goal

state in abstract space level (i+ 1).

Abstraction Hierarchy

Original Space

Abstract Level 1

Abstract Level

Abstract Level 2

l

0

1

Figure 2.6: Abstraction Hierarchy

The idea of HIDA* is to apply the IDA* algorithm to the original space and all the abstract

spaces. If a heuristic value of state s in original space or abstract space level from 1 to (l − 1)

is needed, IDA* is used to search in the immediately higher level abstract space and return the

true distance as a heuristic value. If the heurisitic value of any state in level l is needed, a default

heuristic value 0 is used. During the search, the heuristic value for any state s in abstract space is

stored in memory to prevent wasting resource to recompute it again in the future. HIDA* also uses

two techniques to improve its search performance. The first technique is called P-g caching [21],

which is presented in bold lines in Algorithm 2. It improves the heuristic value during the search.

Another technique is called optimal path caching. It saves search effort by detecting if the optimal

path from the current abstract state to goal abstract state has already been found during a previous

search.

An advantage of HIDA* is that it does not require providing a PDB or a heuristic function for

guidance. This algorithm will calculate heuristic values on its own and only calculate the heuristic

16

values needed to solve an instance. For this reason, if the number of problem instances is small, the

overhead of generating a PDB might outweigh the overhead of using HIDA*. Thus, HIDA* is ideal

for situations in which the number of problem instances is small or the goal state of each instance is

different.

Algorithm 2 HIDA*

HIDA(start, goal)
bound← h(start,goal)
while goal not found:

bound← DFS(start,goal,0,bound)
For all nodes x on the solution path:

cache[x].exact← True
cache[x].dist← distance from x to goal

DFS(s, goal, g, bound)
If s == goal: exit with success
g← g + 1
newbound←∞
Iterate over x ∈ children(s):

// P-g caching
cache[x].dist← max(cache[x].dist, bound-g, h(x,goal))
f← g + cache[x].dist
// Optimal path caching
if (f==bound) and (cache[x].exact == True):

exit with success
if f ≤ bound: f← DFS(x, goal, g, bound)
if f < newbound: newbound← f

Return newbound

h(s,goal)
If at the top abstraction level, return 0
if cache[φ(s)].exact == False:

HIDA(φ(s),φ(goal))
Return cache[φ(s)].dist

2.6 Summary

In this chapter, we introduced the essential information needed to understand our research. We

have introduced the basic concept of heuristic search, the PSVN representation of state spaces, four

problem domains, the properties of heuristics, and three search algorithms (A*, IDA*, and HIDA*).

17

Chapter 3

Multimapping Abstraction

In this chapter, we are going to introduce the multimapping abstraction technique. The fundamental

idea of this technique is about making abstractions such that a state in the original space could have

multiple images in the abstract space. Multimapping abstraction itself is a framework rather than a

specific method. The details of this framework will be discussed at the beginning of this chapter.

After that we are going to present two specific methods of implementing the multimapping abstrac-

tion framework. The first method, based on domain abstraction, will be presented in Section 3.1.

Extensive experiments are carried out in different problem domains and our results show that mul-

timapping abstraction with domain abstraction is superior to standard alternatives in terms of both

memory usage and CPU time . The second method incorporates multimapping with a Partial-State

technique, which is a completely new method. This method will be presented in Section 3.4. For the

second method, only limited experiments are done to evaluate this technique. Most of the material

in this chapter has been published in the 2012 Symposium on Combinatorial Search [29].

3.1 Multimapping Abstraction Framework

The framework of multimapping abstraction is defined by the following two characteristics. Firstly,

the output of abstraction φ(·) is a set of abstract states rather than a single abstract state. Secondly,

the following holds for any pair of states s, t in the original space:

∀s′ ∈ φ(s) : min
t′∈φ(t)

d(s′, t′) ≤ d(s, t)

We define n to be the Mapping Factor, which is the number of abstract states an original state

will be mapped to. In order to guarantee admissibility and maintain a good quality of heuristic value,

h(s) is extracted from the abstract space as follows:

h(s) = max
s′∈φ(s)

min
g′∈φ(g)

d(s′, g′)

g in this formula represents the goal state. This idea is illustrated in Figure 3.1. In this figure, let s

and g be states in the original space and each of them have three images in the abstract space, namely

18

Multimapping Abstraction

g1’ g2’ g3’

s1’ s3’ s2’

Multiple Abstractions

s1’

g1’

s2’

g2’

s3’

g3’

Figure 3.1: Difference between multimapping Abstraction and Multiple Abstractions.

φ(s) = {s′1, s′2, s′3} and φ(g) = {g′1, g′2, g′3}. To get the heuristic value for s in this multimapping

abstraction, there are 9 distances we can use, d(s′i, g
′
j) for i, j ∈ {1, 2, 3}. First, we calculate

the minimum distance for each abstract state s′ by ming′∈φ(g) d(s′, g′). In this particular case,

assume that the three distances we get are d(s′1, g
′
2), d(s′2, g

′
3) and d(s′3, g

′
2) shown as bold lines in

Figure 3.1. The final heuristic of s is the maximum distance among these three, and in this case we

assume it is d(s′3, g
′
2). This distance is used as the heuristic value for s. We can prove the distance

we have chosen is an admissible heuristic providing that the multimapping abstraction φ(·) fits into

the multimapping abstraction framework that is defined at the beginning of this section. Also it is

consistent but asymmetric as we will discuss below.

Admissible Heuristic

Theorem 4 Given a multimapping abstraction defined as above, then

h(s) = max
s′∈φ(s)

min
g′∈φ(g)

d(s′, g′) (3.1)

provides admissible heuristic value for s.

Proof. Based on definition of multimapping, we know that for each s′i ∈ φ(s), ming′∈φ(g) d(s′i, g
′)

provides an admissible heuristic, therefore picking the maximum value returned by each s′i still

provides an admissible heuristic. So h(s) is guaranteed to be an admissible heuristic.

Consistent Heuristic

Theorem 5 The heuristic defined above is consistent.

19

Proof. Let us assume s and t are two states in original space. In order to prove that h(s) ≤

d(s, t)+h(t), we first choose two abstract states s′ and g′s such that d(s′, g′s) = h(s). For any original

state t, there must exist t′ such that d(s′, t′) ≤ d(s, t) according to the definition of multimapping.

Let us assume the closest abstracted goal state to t′ is g′t, then we have d(s′, g′s) ≤ d(s′, g′t). Because

s′, t′ and g′t are in the same abstract space, the triangle inequality holds for them, i.e.,

d(s′, g′t) ≤ d(s′, t′) + d(t′, g′t)

We have:

h(s) = d(s′, g′s)

≤ d(s′, g′t)

≤ d(s′, t′) + d(t′, g′t)

≤ d(s, t) + d(t′, g′t)

Because h(t) = maxd′∈φ(t) d(d′, g′d) ≥ d(t′, g′t), we have:

h(s) ≤ d(s, t) + h(t)

Heuristic h is consistent. �

Asymmetric Heuristic

First, we need to define symmetric state space.

Definition 6 (Symmetric Space and Heuristic) A state space is symmetric if for any pair of states

p and q we have d(p, q) = d(q, p). A heuristic h is symmetric if for any pair of states p and q we

have h(p, q) = h(q, p).

We call a state space or a heurisitc asymmetric if this symmetric property does not hold. For heuristic

based on multimapping, it is asymmetric even if the abstract space is symmetric. The heuristic

calculated from start state to goal state might be different from the heuristic calculated from goal

state to start state. We call the calculation from start state to goal state the forward fashion and the

other way the backward fashion in the following discussion. The fact that the forward and backward

calculation can be different is illustrated in the following example.

Example 6 s and t are two states in original space. Given a multimapping with a Mapping Factor

of 2, each of them is mapped to two states, s′1, s′2, t′1 and t′2 respectively. First, let us choose s to be

the start state and t to be the goal state, we have

h(s, t) = max{min{d(s′1, t
′
1), d(s′1, t

′
2)},min{d(s′2, t

′
1), d(s′2, t

′
2)}}

20

If we choose t to be the start state and s to be the goal state, we will have

h(t, s) = max{min{d(t′1, s
′
1), d(t′1, s

′
2)},min{d(t′2, s

′
1), d(t′2, s

′
2)}}

Suppose d(s′1, t
′
1) = 1, d(s′1, t

′
2) = 2, d(s′2, t

′
1) = 3, d(s′2, t

′
2) = 4, then we will have h(s, t) = 3

and h(t, s) = 2. Therefore, it is possible that h(s, t) does not equal h(t, s) in certain situations.

In the experiment section, we will investigate this issue further by comparing the differences of

heuristic values calculated in the forward fashion and the backward fashion. We can also utilize this

property to enhance heuristic quality by taking maximum of the heuristic values calculated in the

forward and backward fashions. However, this enhancement of the heuristic value will come with

increased computational overhead so we did not explore this in our experiment.

Differences Between Multimapping and Multiple Abstractions

The multiple abstractions technique [17, 20] also involves multiple mappings and multiple lookups

of heuristic values. In multiple abstractions technique, we first createm independent abstract spaces.

Let h1(s) . . . hm(s) be the heuristic values of state s extracted from these independent abstract

spaces. The final heuristic value of s is calculated as follows:

h(s) = max
i
hi(s).

The advantage of multiple abstractions technique is that the heuristic extracted fromm small abstract

spaces of size z
m using multiple abstractions technique tends to be better than the heuristic extracted

from a single abstract space of size z in general [17].

The fundamental differences between multimapping and multiple abstractions can be illustrated

using Figure 3.1, where s and g are states in the original space. s′i and g′i are the abstract states

corresponding to s and g respectively. For the multiple abstractions technique, the heuristic value is

extracted from isolated abstract spaces. We say those abstract spaces are isolated because there is no

path from an abstract state in one abstract space to any abstract state in another abstract space. Be-

sides, there is only one goal abstract state in each abstract space for multiple abstractions, therefore

it does not need to choose minimum distance to different abstract goal states like the multimapping

technique does.

For the multimapping abstraction framework, we aim to have all abstract images of a state in

the same abstract space. In order to make multimapping have this property, the abstraction function

of multimapping must be carefully designed. If the abstraction function cannot be designed in this

way, the multimapping abstraction framework will become multiple abstractions and the features

and advantages of multimapping abstraction framework will disappear.

Differences Between Multimapping and Symmetry

Symmetry techniques [34, 12, 24, 7] also involve multiple lookups when a heuristic value for a state

s is needed. Assuming S is a state space, the idea of a symmetry technique is to design a set of

21

functions simi(·) : S → S such that d(s, g) is guaranteed to be the same as d(simi(s), g). In this

case, h(simi(s)) is guaranteed to be an admissible heuristic value for s. The final heuristic value

of s can be generated by max{h(s),maxi{h(simi(s))}}. An example of using symmetry in the

(3, 3)-Blocks World is given below.

Example 7 In (3, 3)-Blocks World puzzle, lets assume that the goal state is

〈0, 3, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0〉.

For state s

s = 〈0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 0〉

a symmetry state sim(s) is

sim(s) = 〈0, 0, 0, 0, 0, 2, 2, 3, 0, 1, 1, 0, 0〉.

If there exists a path π from s to the goal state, there must exist a path πsim with equal length of

π from sim(s) to the goal state. We can create this πsim from π by changing every action on the

second and third table positions to an action on the third and second table positions respectively. In

such cases, max{h(s), h(sim(s))} can be used as a heuristic value for both s and sim(s).

There is a major structural difference between the multimapping and the symmetry technique.

In the symmetry technique, the multiple lookups are generated by having multiple original states but

only one abstraction. However, in the multimapping technique, multiple lookups are generated by

having multiple abstractions but there is only one original state.

Another difference for implementing these two techniques is that symmetry techniques are do-

main specific while multimapping is not. It is not guaranteed that a symmetry technique can be

implemented in any domain. For example, in the Glued-15 Puzzle we used in Section 3.3.4 where

the tile 9 is fixed, symmetry technique cannot be applied. While multimapping abstraction is a

general method and can be implemented in any domain.

Implementation with Domain Abstraction

Up to now, we have given a framework for multimapping abstraction. To implement this idea, all

we need to do is to define an abstraction which takes a single state as input and gives a set of states

as output. In this section, we propose a simple extension of domain abstraction to implement this

idea. We call this technique multimapping domain abstraction.

The key idea is to design a set of abstraction Φ(·) = {φ1(·), φ2(·), · · · , φn(·)}, where each φi(·)

is a normal domain abstraction. Φ(·) defined in this way is a multimapping domain abstraction. For

an input state s , applying Φ(·) would be equivalent to applying each abstraction φi(·) to the state s.

The result is a set of abstract states, Φ(s) = {φ1(s), φ2(s), · · · , φn(s)}. Each domain abstraction

φi(·) should be carefully designed so that {φ1(s), φ2(s), · · · , φn(s)} are reachable from each other.

22

Theorem 8 Domain multimapping conforms to the definition of multimapping abstraction.

Proof. Firstly, domain abstraction generates a set of abstract states. Secondly, given s and t, for each

φi(s), because φi() is an abstraction we must have d(φi(s), φi(t)) ≤ d(s, t) �

Example 9 We choose 9-Pancake as the domain to illustrate this idea. Suppose we have a start state

s = 〈1, 4, 6, 5, 7, 0, 8, 3, 2〉, and we define the multimapping function to be Φ(·) = {φ1(·), φ2(·)}

which means any state in original space will be mapped to two abstract states. For this particular

example, we design φ1(·) and φ2(·) to be functions presented in Table 3.1. Applying Φ(·) to start

state s, we have Φ(s) = {s′1, s′2} = {〈a, b, 6, b, 7, 0, 8, a, a〉, 〈b, a, 6, a, 7, 0, 8, a, b〉}. These s′1 and

s′2 are abstract states in the same abstract space because all permutations of tiles are reachable

from each other in the Pancake problem space. The heuristic value for s derived from the abstract

space, simply takes the maximum of the distance from s′1 , s′2 to the closest goal abstract state.

s 0 1 2 3 4 5 6 7 8
φ1(s) 0 a a a b b 6 7 8
φ2(s) 0 b b a a a 6 7 8

Table 3.1: Domain abstractions φ1 and φ2.

3.2 Enhancements

In this section, we are going to introduce three enhancements for multimapping domain abstraction.

These three enhancements do not have anything to do with the algorithm but only involve the design

of the abstraction.

3.2.1 Choosing A Good Mapping Factor

The mapping factor affects the performance of multimapping abstraction in two ways. Firstly, the

heuristic value is calculated by taking a maximum over the states in φ(s). If there is a larger number

of such states, or a higher mapping factor, the final heuristic value will be higher. This is the bright

side of a higher mapping factor. Secondly, when computing the distance to goal for each state in

φ(s), a minimum is also taken over all the states in φ(g). If there is a higher number of states in

φ(g), which means a higher mapping factor, the distance for each state in φ(s) will be lower. This

is a harmful effect caused by a high mapping factor.

As discussed, a higher mapping factor is a double-edged sword, so the question is what Mapping

Factor that will give us best heuristic quality?

We have chosen the 8-Puzzle domain to investigate this issue. We design a first level abstrac-

tion configuration with granularity of 〈3, 3, 2, 1〉. In all of our experiments, the blank tile is never

abstracted and is kept unique, so only tiles 1 to 8 are abstracted.

23

For the 8-Puzzle domain with a 〈3, 3, 2〉 granularity on tiles 1 to 8, there are 280 different choices

of domain abstractions. Multimapping domain abstraction of mapping factor n can be generated

by choosing n different domain abstractions and using them together. We generated 280 domain

multimapping abstractions for each mapping factor. In our experiment, the goal state is set to be

〈0, 1, 2, 3, 4, 5, 6, 7, 8〉 where 0 represents the blank. The start states we used for evaluating the

abstractions are 500 randomly generated states from all reachable states in the problem domain. For

each abstraction, the median and average number of nodes expanded at the base level in solving the

500 test cases was recorded. The results (truncated to integer values) for each mapping factor are

presented in Table 3.2.

Mapping Factor Median Average
1 3742 3699
2 1725 1824
3 1549 1545
4 1597 1610
5 1693 1699
...

...
...

24 4108 4100

Table 3.2: Number of Nodes Expanded at the Base Level for Different Mapping Factors.

From Table 3.2, we can see that both the median and average of number of nodes expanded are

showing the same trend. Both numbers begin with a high value then continue to drop as the mapping

factor increases. Both reach a minimum when the mapping factor is 3. At this point, the average

number of nodes expanded at the base level is only 50% of that when the mapping factor is 1. After

that, the numbers rise with each further increase of the mapping factor. When the mapping factor

reaches 24, both numbers exceed the value when the mapping factor is 1.

In this experiment, the best heuristic quality occurs when the mapping factor is 3. In the rest of

the experiments in this chapter, we will use 3 as the mapping factor. Using 3 as mapping factor for

all domains might not be the best choice because 3 is chosen only based on a experiment done in the

8-Puzzle domain. However, for our convenience we used 3 in all our following experiments.

3.2.2 Goal Aggregation

Another enhancement technique we used to improve multimapping is called goal aggregation (GA).

The basic idea of this technique is to map goal state g to abstract states g′i which are near to each

other. For example, in the 9-Pancake puzzle, with the abstractions presented in Table 3.3 the

goal state 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉 will be mapped to two abstract states 〈1, 3, 2, 1, 2, 4, 2, 1, 8〉 and

〈1, 2, 3, 1, 2, 4, 2, 1, 8〉. These two abstract states are only one step away from each other in the

abstract space.

24

s 0 1 2 3 4 5 6 7 8
φ1(s) 1 3 2 1 2 4 2 1 8
φ2(s) 1 2 3 1 2 4 2 1 8

Table 3.3: Multimapping domain abstractions used for goal aggregation.

The reason we want to minimize the distance ∆ between abstract goal states is that this is an

upper bound of the “harm” that can be done by taking the minimum. This idea can be illustrated by

the following inequality: for any abstract state s′,

max
g′∈φ(g)

d(s′, g′) ≤ ∆ + min
g′∈φ(g)

d(s′, g′)

For small ∆, the harm of taking the minimum is limited.

There is another benefit when we implement this technique with HIDA*. Because the goal ab-

stract states are close to each other, the abstract space around them will be fully explored and cached

in memory after a few searches. This will speedup the following searches and reduce memory usage.

Goal aggregation is not effective in all domains. For some domains, it is impossible to map the

goal state to abstract goal states which are close to each other. For example, in the (8,3)-Blocks

World domain, at least 8 steps are required to transform one abstract goal state to another abstract

state which we can map the goal state to. This is because all disks must be stacked at the first table

position so that we can abstract the goal state to the abstract state. Swapping the top two disks

requires 8 steps. If we want an additional abstract goal state, it will require shuffling the top 3 disks,

which needs at least 12 steps. In our experiment, we have used abstractions of the (8,3)-Blocks

World with granularity of 〈3, 3〉. The average heuristic value in this case is 24.7, so a ∆ of 12 is

probably too big to be useful.

3.2.3 Remapping

When implementing multimapping domain abstraction with HIDA*, we noticed that there is an issue

about heuristic quality when searching with multiple goal states. In this setting, there is only one

goal state at the base level. However, this goal state will be mapped to several abstract states in the

first abstract level. The problem we are facing now is how to get effective heuristic values to guide

search in the first abstract level. The only way we can guarantee an admissible heuristic value is

to do the following. For any state s′ in abstract level 1 (the abstract space immediately above base

level), the heuristic for this abstract state is

h(s′) = min
g′i∈φ(g)

d(φ1(s′), φ1(g′i))

where φ1() is a single abstraction mapping states from level 1 to next higher abstract level. We will

use a single abstraction at this level and all levels above, the reason will be explained later. The

heuristic generated this way for s′ is actually very weak. Since we don’t know which goal state is

25

closest to s′, we have to consider all g′i and as long as we want to maintain admissibility, we have

to choose the smallest heuristic value. In an initial experiment, this issue degraded performance to

a great extent, especially in large domains like the 15-Puzzle. The method we used to solve this is

called “remapping”. Simply put, we define φ1(φ0(g)) to be a single state. In this way, all g′i are

mapped to a single state at the second abstract level and we no longer need to choose the smallest

value to maintain admissibility. In this way, we have

h(s′) = d(φ1(s′), φ1(g′i))

Here, different i will give us the same result since φ1(g′i) will be the same state no matter which i

we choose. This actually imposes a constraint on the design of the abstraction, so that φ1(φ0(g))

is a single state rather than a set of states. We sacrifice this flexibility of design to get a boost in

performance. To implement this technique, all we need to do is to design the abstraction with the

property we described above. An example of multimapping domain abstraction with remapping is

the following.

Example 10 In the 8-Puzzle domain, the abstraction presented in Table 3.4 will have the remapping

property. We can verify this property by applying φ0() to any state s, getting two resulting states, and

then applying φ1() to the two resulting states, the result will be equivalent to applying abstraction

φ1(φ0(s)). In other words, any state will be mapped to 2 different abstract state by φ0(), then these

two states will be mapped to a single state by φ1().

s 0 1 2 3 4 5 6 7 8
φ10(s) 0 1 1 1 2 2 2 3 4
φ20(s) 0 1 2 2 1 1 2 3 4
φ1(s) 0 1 1 3 4 5 6 7 8
φ1(φ0(s)) 0 1 1 1 1 1 1 3 4

Table 3.4: Multimapping domain abstractions used for remapping. φ0 consists of two abstractions
φ10 and φ20 while φ1 is the abstraction at the next level.

The key point of remapping is to keep number of abstract goal states small in the abstract space

above the first level. Keeping number of abstract goal states small is also the reason that we use a

single abstraction at level 1 and higher. Using a multimapping abstraction to go from one abstract

level to the next will make number of goal abstract states grow very quickly.

3.2.4 Combining Remapping and Goal Aggregation

Remapping and goal aggregation both involve restricting the design of an abstraction, and each

technique brings different constraints on the design of the abstraction. For some granularities, if we

want to generate a remapping abstraction, it is hard to also design it as a goal aggregation abstraction

as well. In order to combine both techniques, we have to carefully choose the granularity. The

following example shows how sometimes it is difficult to combine the two techniques together.

26

Example 11 Suppose in the 9-Pancake Puzzle, we want to design a multimapping abstraction using

both goal aggregation and remapping, with a granularity of 〈4〉 at the first level. Each level higher

will have one more tile abstracted. The first step is to pick a domain abstraction and apply it to

the goal state. In this example, we pick φ10 as in Table 3.5, and the resulting abstract goal state g′

would be 〈1, 1, 1, 1, 2, 3, 4, 5, 6〉. Next, we calculate two adjacent abstract states of g′, which are

〈2, 1, 1, 1, 1, 3, 4, 5, 6〉 and 〈3, 2, 1, 1, 1, 1, 4, 5, 6〉. With these three abstract states, we can design

our goal aggregation multimapping abstraction by using the three abstractions that map the goal

state to these three abstract states. This give us φ10, φ
2
0 and φ30 as in Table 3.5. However, if we also

want to apply remapping, we need to map (1, 2, 3) to the same tile at next level which makes the next

level with a granularity at least of 〈6〉. This illustrates where goal aggregation and remapping have

conflicts. It is impossible for us to make next higher abstract level with granularity of 〈5〉 and we

need to sacrifice this flexibility of design to combine goal aggregation and remapping.

s 0 1 2 3 4 5 6 7 8
φ10(s) 1 1 1 1 2 3 4 5 6
φ20(s) 2 1 1 1 1 3 4 5 6
φ30(s) 3 2 1 1 1 1 4 5 6

Table 3.5

3.3 Experiments

The experiments are split into four parts. First, we are going to investigate how much difference it

will make if we calculate the heuristic value in forward fashion or in backward fashion. Second,

we are going to investigate what is the best enhancement method for multimapping domain abstrac-

tion. After we determine this, we will implement this enhancement as the default for multimapping

domain abstraction in the remaining experiments. Third, we are going to compare multimapping

domain abstraction against a single domain abstraction and against multiple domain abstractions in

small problem domains. This experiment with the small domains is designed to be very thorough

so that we have a good understanding of the behaviors of each abstraction technique. Finally, we

are going to test multimapping domain abstraction, single domain abstraction and multiple domain

abstractions in large problem domains to verify the behaviors we found in small domains. The

experiment in the large domains is small in scale because the computational cost is huge in large

domains thus only limited experiments are feasible.

There are 4 small problem domains used in the Section 3.3.1, Section 3.3.2, Section 3.3.3. They

are the 9-Pancake, (8,3)-Blocks World, (10,4)-Topspin and 8-Puzzle.The description of these four

domains was presented in Section 2.3. For each small domain, we generated 500 random solvable

start states as test cases. The large problem domains we use in the Section 3.3.4 are the 15-Puzzle,

27

Glued 15-Puzzle, 14-Pancake, (15,4)-Topspin and (12,3)-Blocks World. Except for the 15-Puzzle,

we generated 100 random solvable start states as test cases for each large problem domain. For the

15-Puzzle, we used the 100 standard test cases [22].

We use Hierarchical IDA* as our search algorithm to implement with each abstraction. The

abbreviations DA-HIDA*, MM-HIDA* and MA-HIDA*, are used to refer to HIDA* implemented

with single domain abstraction, multimapping domain abstraction and multiple domain abstractions

respectively. The difference between three methods is illustrated in Figure 3.2. For DA-HIDA*,

every abstract level only consists of one abstract space and each state is mapped to just one state at

the next higher level. For MA-HIDA*, each abstract level consists of more than one abstract space,

each state in the original space is mapped to one state in each space at the first abstract level. After

that, each abstract state in each abstract space is only mapped to one abstract state in one space at the

next higher level. For MM-HIDA*, each state in the original space is mapped to multiple abstract

states in the abstract space immediately above original space. Each abstract state is mapped to one

abstract state at higher abstract level.

All the experiments are run on a computer with two AMD Opteron 250 (2.4GHz) CPUs and

8GB of memory.

MM-HIDA* MA-HIDA* DA-HIDA*

Original Space

Abstract Level 1

Abstract Level 2

Figure 3.2: Differences between three HIDA* setups.

3.3.1 Difference Between the Forward and Backward Heuristic Calculation

In this section, we are going to investigate how heuristic values will be affected if we calculate them

in the forward fashion or backward. As reported in Section 3.1, the heuristic values calculated in the

forward fashion and backward fashion could be different, but we have no idea how different they

will be. We have set up a small experiment to explore this issue. The results show that the majority

of states in the tested problem domains will have the same heuristic value, and neither the forward

fashion nor the backward fashion is a better choice than the other.

We have used the four small domains mentioned above, 9-Pancake, (8,3)-Blocks World, (10,4)-

Topspin and 8-Puzzle, to investigate this issue. For each domain, we generated 500 random reach-

able states as test cases and randomly created a multimapping domain abstraction for each problem

domain. The first level of all multimapping domain abstractions are designed to be 〈3, 3〉 with a

mapping factor of 3. This is the only level that affects the heuristic value of states in the base level.

28

For each test case, we calculated the forward heuristic and the backward heuristic respectively, as

hf (s) and hb(s). The histograms of hf (s)− hb(s) are shown for each domain in Figure 3.3

-2 -1 0 1 2

0

50

100

150

200

250

300

350

400

5

68

335

87

5

Heuristic Value Difference

C
o

u
n

t

(a) 9-Pancake

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

50

100

150

200

250

300

0 2 4

21

80

261

99

22
7 2 2

Heuristic Value Difference

C
o

u
n

t

(b) (8,3)-Blocks World

-2 -1 0 1 2

0

50

100

150

200

250

300

350

400

1

58

364

74

3

Heuristic Value Difference

C
o

u
n

t

(c) 10-4 Topspin

-6 -4 -2 0 2 4 6

0

50

100

150

200

250

300

2

24

89

275

83

26

1

Heuristic Value Difference

C
o

u
n

t

(d) 8-Puzzle

Figure 3.3: Heurisitc Value Difference Between the Forward and Backward Calculation.

From Figure 3.3, firstly, we can see that all four figures show the same trend. More than half

of the test states in each domain have the same heuristic value no matter whether it is calculated

in the forward fashion or in the backward fashion. Secondly, the histogram is generally symmetric

around the value 0. This tells us that neither calculation in the forward fashion nor in the backward

fashion will generate a superior heuristic to the other. However, it is technically hard to utilize this

phenomenon by taking the maximum of hf (·) and hb(·). This is because when calculating in the

backward fashion, the start states become the goal state and change constantly in the search process.

Because of this, we have to calculate hb(·) from scratch every time and this computational cost is

obviously huge compared to the benefits it brings.

29

3.3.2 The Best Version of Multimapping

In this section, we are going to find out what is the best enhancement technique for multimapping

domain abstraction. Experiments are designed first to compare the enhanced multimapping domain

abstraction against plain multimapping domain abstraction in order to find out how much bene-

fits of CPU time and memory usage we can get from these enhancement techniques. Second, the

enhancement techniques are compared against each other and the results show us that combining

goal aggregation and remapping is the best enhancement. This enhancement is implemented as the

default technique for multimapping domain abstraction in the subsequent experiment sections.

In this section, we also used 4 domains, 8-Puzzle, 9-Pancake, (10,4)-Topspin and (8,3)-Blocks

World, and we generated 500 random start states for each domain, . The multimapping domain

abstraction we used is a 4-level abstraction. The abstraction in the first level is a 〈3, 3〉multimapping

domain abstraction1 with a mapping factor of 3. In level 2, the two tiles representing the abstracted

tiles from the base level are mapped to the same tile so the granularity of level 2 is 〈6〉. In level 3

and 4, an additional tile is added to the abstracted tiles in each of these level so the granularity of

levels 3 and 4 are 〈7〉 and 〈8〉. An example of this multimapping domain abstraction is presented in

Table 3.6.

s 0 1 2 3 4 5 6 7 8
φ11(s) 1 3 4 2 2 2 1 1
φ21(s) 3 1 2 1 1 2 4 2
φ31(s) 3 1 1 2 4 2 2 1
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1

Table 3.6: φ11(s), φ21(s) and φ31(s) are three abstractions at the first level, φ2(s), φ3(s) and φ4(s) are
abstractions at second, third and forth level respectively.

We designed four versions of multimapping domain abstractions for each domain. (1) Plain,

(2) remapping, (3) goal aggregation and (4) remapping with goal aggregation. The number of ab-

stractions of each kind is presented in Table 3.7. For the (8,3)-Blocks World, we did not implement

goal aggregation, thus only two kinds of abstraction are used. For plain multimapping (MMP), we

generate each by randomly choosing 3 different 〈3, 3〉 domain abstractions and using them together.

remapping (MMRM) is generated in a similar way, but we require the 6 tiles that will be abstracted

at level 1 to be the same for all three domain abstractions, namely φ11(s), φ21(s) and φ31(s), at the

first level. For generating goal aggregation multimappings (MMGA), we first pick a random domain

abstraction φ11, apply it to the goal state to get an abstract state s′g1. Second, we calculate two closest

abstract states of s′g1, called s′g2 and s′g3, that the goal can be mapped to. Third, we calculate the two

domain abstractions φ21 and φ31 such that φ21(g) = s′g2 and φ31(g) = s′g3. Using φ11, φ21 and φ31 we will
1For 8-Puzzle, (10,4)-Topspin and (8,3)-Blocks World only tiles 1 to 8 are abstracted. For 9-Pancake, tiles 0 to 8 are

abstracted.

30

8-Puzzle 9-Pancake (10,4)- Topspin (8,3)-Blocks World
MMP 280 840 280 280
MMRM 280 840 280 280
MMGA 180 772 267 N/A
MMGARM 100 68 13 N/A

Table 3.7: Number of Abstractions for Each Domain and Enhancement Techniques.

get a goal aggregation multimapping. The combined remapping and goal aggregation (MMGARM)

are generated by inspecting each MMGA abstractions to see if the 6 tiles that will be abstracted

at level 1 are the same for all three abstractions; if so we put it into the MMGARM category and

remove them from the MMGA category. For this reason, MMGA and MMGARM always add up to

the number of 280 (840 for the 9-Pancake). In the following experiments, we are going to compare

techniques in terms of (1) number of nodes expanded at the base level, (2) memory usage2 and (3)

CPU time (in seconds).

MMRM Against MMP

First, we are going to compare remapping and plain multimapping. The results are presented in

Figure 3.4, Figure 3.5 and Figure 3.6, starting at page 40. For each data point, the x-coordinate

represents the average performance measurement for a particular test case (start state) averaged

across all the MMRM abstractions and the y-coordinate represents the analogous average for plain

multimapping. Points below the diagonal mean that plain multimapping outperforms the MMRM

abstraction on that start state and points above the diagonal mean the opposite.

From these results, we can see that the remapping outperforms the plain multimapping domain

abstraction in terms of CPU and memory (Figure 3.6 and Figure 3.5) but loses in terms of the number

of nodes expanded at the base level (Figure 3.4). The poorer performance in nodes expanded at

the base level is an indicator of a decrease of heuristic value quality because of remapping. This

is brought about by the constraints of constructing remapping abstractions. Plain multimapping

domain abstraction are constructed by randomly selecting 〈3, 3〉 domain abstractions and using them

together. When constructing remapping abstractions we cannot freely choose domain abstractions,

thus we could miss some good abstraction combinations.

MMGA Compared to MMP

Next, we compared goal aggregation to plain multimapping. The results are presented in Figure 3.7,

Figure 3.8 and Figure 3.9 (page 41), which present the results in the same manner as Figure 3.4,

Figure 3.5 and Figure 3.6.

This experiment is only done in three domains because goal aggregation was not implemented

in the (8,3)-Blocks World domain for the reason stated in Section 3.2.2.
2In this thesis, memory usage is measured in terms of the number of entries cached in memory.

31

From these results, we can see that goal aggregation is slightly better than plain multimapping

in terms of memory usage and CPU time (Figure 3.9 and Figure 3.8). However, goal aggregation

does not generate the better heuristic values we expected. The nodes expanded at the base level are

almost the same as plain multimapping in the 9-Pancake and (10,4)-Topspin and slightly worse in

the 8-Puzzle (Figure 3.7). The decrease of heuristic value quality can be explained by two reasons.

First, constructing goal aggregation abstraction also involves constraints on which abstractions can

be used together, which may limit the quality of the heuristic. Second, besides the goal state, other

states are also mapped to abstract states which are close to each other. For example, in 9-Pancake

domain let 〈0, 1, 2, 3, 4, 5, 6, 7, 8〉 be goal state and φ1, φ2 in Table 3.8 be two abstractions applied to

it. The corresponding two abstract goal states are 〈1, 3, 2, 1, 2, 4, 2, 1, 8〉 and 〈1, 2, 3, 1, 2, 4, 2, 1, 8〉

which are only one step away. However, if we apply φ1 and φ2 to 〈3, 1, 2, 0, 4, 5, 6, 7, 8〉, we will get

the same two abstract states which are also one step away. Because start states could also be mapped

to adjacent abstract states, the fundamental advantage of multimapping is compromised, resulting in

degraded heuristic value quality.

s 0 1 2 3 4 5 6 7 8
φ1(s) 1 3 2 1 2 4 2 1 8
φ2(s) 1 2 3 1 2 4 2 1 8

Table 3.8: Domain abstractions φ1 and φ2.

Comparison of MMRM, MMGA and MMGARM

Next, the comparison is made between remapping, goal aggregation and remapping with goal ag-

gregation. For the (8,3)-Blocks World domain, we only have remapping so this comparison is only

made in the 8-Puzzle, 9-Pancake and (10,4)-Topspin domains. The results are presented in Fig-

ure 3.10, Figure 3.11 and Figure 3.12 (page 42). These figures are presented using box plots. For

each problem domain there are three box plots represents the three enhancement techniques. The

first one is for remapping (MMRM) and the second and the third are for goal aggregation (MMGA)

and remapping with goal aggregation (MMGARM) respectively. A data point in the figures repre-

sents the average performance of a particular abstraction over all the test cases (start states). The

box contains the data points of exactly half of the abstractions for the corresponding technique. The

horizontal line inside the box shows the median performance. The bottom line and the top line rep-

resent 75th and 25th percentiles respectively. The vertical line below the box extends to the best

performance or to 1.5 times the interquartile range IQR, whichever is larger. If there are perfor-

mance values beyond 1.5 × IQR, they are plotted as individual points. The vertical line above the

box is analogous.

According to the results of the experiments, MMGARM beats the other two techniques in terms

of both memory usage and CPU time in all three domains (Figure 3.11 and Figure 3.12), which

32

makes MMGARM the most desirable technique. MMRM technique is the second desirable tech-

nique because it beats MMGA in terms of memory usage and CPU time in all three domains. In

the following experiment section, we will use MMGARM as the default version of multimapping

domain abstraction.

3.3.3 Comparison With Other Methods Using Small State Spaces

In this section, we are going to compare the MMGARM version of MM-HIDA* to DA-HIDA* and

MA-HIDA* in an extensive way in small problem domains. We like to use small domains because

it is practical to do large amount of experiments in these domains to obtain statistically persuasive

results. The domains we used in this experiment are the 8-Puzzle, 9-Pancake, (10,4)-Topspin and

(8,3)-Blocks World. We also used the same 500 test cases for each domain as in Section 3.3.2. For

the abstraction design, we used the same granularity and 4-level design as described in Section 3.3.2.

For MM-HIDA*, we used the remapping goal aggregation technique for the 8-Puzzle, 9-Pancake

and (10,4)-Topspin. For (8,3)-Blocks World domain, we only used remapping. The performance

measurements we used are the same as we used previously, namely: number of nodes expanded at

the base level, CPU time and memory usage. The total number of nodes expanded is usually an

important performance measurement used in numerous papers, but in our experiment, we found that

this indicator is always consistent with CPU time. Therefore, for the purpose of having experiment

results succinct, we decided to only present CPU time. This experiment is split into three parts.

First, we will compare MM-HIDA* to DA-HIDA*. Next, MM-HIDA* is compared to MA-HIDA*.

Finally, we compare all three techniques based on a different perspective. All results show us that

MM-HIDA* is the best technique in terms of CPU time and memory usage.

Comparison With A Single Domain Abstraction

First, we are going to compare MM-HIDA* to DA-HIDA*.

For DA-HIDA*, we generated all 280 abstractions which abstract tiles 1 to 8 on the first level.

This set of 280 abstractions are used on the 8-Puzzle, (10,4)-Topspin and (8,3)-Blocks World. For

9-Pancake, we need to abstract all 9 tiles (0 to 8), so the complete set consists of 840 abstractions.

In Figure 3.13 (page 43), the number of nodes expanded at the base level is presented. For every

test case, we calculate the average number of nodes expanded across all the abstractions of each

type, so each point in the plot is an average across 280 abstractions (840 for the 9-Pancake) and

there are 500 data points in each plot. From these results, we can see that multimapping expanded

fewer nodes at the base level than domain abstraction in all domains. This supports our claim that

multimapping abstraction provides better heuristics than domain abstraction given that the size of

abstract space is the same.

The comparison of memory usage between MM-HIDA* and DA-HIDA* is presented in Fig-

ure 3.14, the measurement unit in these figures is the number of nodes cached during the HIDA*

33

search process. MM-HIDA* has lower memory use in all four domains. In the 9-Pancake and

(10,4)-Topspin, we notice that the plot converges to a point where DA-HIDA* and MM-HIDA*

have the same memory consumption. This is because harder cases will have the abstract space thor-

oughly explored for these two particular domains, thus DA-HIDA* and MM-HIDA* will use the

same amount of memory.

CPU time is presented in Figures 3.15. We see that MM-HIDA* is faster than DA-HIDA* in all

four domains. Taking all these results together, we can see that MM-HIDA* beats DA-HIDA* in

terms of heuristic quality, memory usage and CPU time.

Comparison With Multiple Domain Abstractions

In this section, we are going to compare MM-HIDA* to MA-HIDA*. The problem domains, test

cases and measurements of performance are the same as in the previous section.

The abstractions we used for MM-HIDA* are the same we used in the previous experiments. For

MA-HIDA*, the abstractions are also 4-level and are made from MMGARM abstractions by treating

the three abstractions at the first level of MMGARM as separate domain abstractions. We generated

the same number of abstractions as MMGARM for the 8-Puzzle, (10,4)-Topspin and 9-Pancake.

For the (8,3)-Blocks World, the abstractions are generated in the same fashion as for MMRM. The

number of nodes expanded at the base level is presented in Figure 3.16 (page 44). From these results,

we can see that MA-HIDA* generates fewer nodes at the base level than MM-HIDA*. This result is

what we expected because MA-HIDA* does not take the minimum over a set of abstract goal states.

In terms of memory usage, the experiment results are presented in Figure 3.17. These results

all show the same trend, MA-HIDA* always consumes more memory than MM-HIDA*. This is

also what we expected because the size of the abstract space for MA-HIDA* is 3 times bigger than

MM-HIDA* and both abstract spaces tend to be totally explored when the test cases become harder.

For overall CPU time, the results are presented in Figure 3.18. As with memory usage, MM-

HIDA* has better CPU time than MA-HIDA* in all domains.

Final Comparison

In this section, we will present our experiment results in another way to see how MM-HIDA* com-

pares to the other two methods. We compute the average number of nodes expanded at the base

level, memory usage and CPU time for each abstraction and plot abstractions according to method

category. Each point in each figures is an average over 500 test cases. The results are presented

using the same type of box plots as in Figure 3.10 to 3.12

The average number of nodes expanded at the base level is presented in Figure 3.19 (page 45).

In all four domains, multiple abstractions achieved the least number of nodes expanded at the base

level while domain abstraction always expanded more nodes at the base level than the other two

methods. Multimapping tends to be in the middle of the two. Since multiple abstractions used an

34

abstract space 3 times larger than the other two methods, it is no surprise that it has better heuristic

quality and expanded fewer number of nodes at the base level.

The memory usage of each method is presented in Figure 3.20. Since multiple abstractions uses

abstract spaces 3 times bigger than the other two methods, it is no surprise that it uses more memory

than the other two. Even though the size of abstract space of multimapping and domain abstraction

are the same, multimapping tends to use less memory than domain abstraction.

CPU time results are presented in Figure 3.21. They resemble the memory usage results. From

these results, we can see that multimapping abstractions have the best CPU time in all four domains.

Overall, multimapping domain abstraction has the best CPU time and memory usage among the

three methods.

3.3.4 Experiment with Large State Spaces

In this section, we will run a set of experiments in large state spaces in order to verify the conclusions

we made using small spaces.

The large domains we have chosen are the 15-Puzzle, the Glued 15-Puzzle (the tile in the second

column, second row from bottom cannot be moved from its goal location), the 14-Pancake Puz-

zle, (15,4)-TopSpin and (12,3)-Blocks World. For the 15-Puzzle, we used the standard 100 start

states [22] in our experiment. For all other domains, we generated 100 random start states as test

cases in our experiments. Because the size of these spaces is very large, it is not practical to have

extensive experiments like we did in the small spaces. Instead, we hand-generated 5 abstractions for

each of DA-HIDA*, MM-HIDA* and MA-HIDA*. First, we made 5 abstractions for DA-HIDA*

for each domain. For MM-HIDA*, we used mapping factor of 3 and we made the size of the abstract

space equal to that of DA-HIDA*. In order to do this, we designed abstractions for MM-HIDA* to

be the same granularity as the abstractions for DA-HIDA*. MM-HIDA* is designed to be related

to DA-HIDA*. Each abstraction of MM-HIDA* is made with one abstraction from the DA-HIDA*

together with two abstractions determined by goal aggregation and remapping. In some situations,

we cannot make two abstractions from the abstraction from DA-HIDA* because of the conflicts

explained in Section 3.2.4. In this case, we generate MM-HIDA* from a new abstraction. For

MA-HIDA*, we used the same abstractions as MM-HIDA* except for the 15-Puzzle where we used

coarser-grained abstractions because of memory limitations. Therefore the total memory usage of

MA-HIDA* should be substantially larger than MM-HIDA* and DA-HIDA*. The abstractions we

used for each domain and abstraction method are presented in Appendix A. For multimapping, we

used remapping and goal aggregation for all domains except the (12,3)-Blocks World. For (12,3)-

Blocks World, we only used remapping. We will investigate goal aggregation in the (12,3)-Blocks

in the next section. Since the number of abstractions is quite small, we cannot make conclusions

statistically. These results are only to verify conclusions we made in the previous sections. Results

are presented in Tables 3.9 to 3.13. In each table, there are three columns on the right which de-

35

scribe the performance measurements. Nodes represents the number of nodes expanded at the base

level. CPU and Mem represent average CPU time in seconds and average memory consumption as

entries cached in memory, respectively. The left wide column describes which kind of abstractions

the experiment used. There are 5 abstractions of each kind and they are all numbered. For MM

and MA abstractions, if there is an asterisk beside the number that means this MM abstraction is

made from corresponding DA abstraction. For MA abstractions if there is an asterisk beside the

number that means this MA used the same abstractions as corresponding MM. All results are sorted

according to average CPU time.

DA MM MA Nodes CPU(s) Mem (×107)
1* 3,669,519 768.2 2.784
2* 1,667,888 782.0 2.758
5* 7,945,182 798.1 2.802

1 20,571,539 806.4 2.758
2 5,545,817 914.6 2.687
5 24,547,168 1,029.4 2.753

3* 2,910,399 1,040.6 4.430
1 552,289 1,224.7 3.673

3 54,322,104 1,253.1 4.453
5 906,147 1,344.0 4.297
2 789,905 1,360.4 4.295
4 1,007,468 1,557.2 5.092
3 926,771 1,616.2 4.435

4* 1,178,024 1,681.8 5.978
4 16,793,560 1,909.7 5.834

Table 3.9: The 15-Puzzle.

DA MM MA Nodes CPU(s) Mem (×106)
1* 78,519 54.2 2.176

1 1,172,133 58.4 2.143
4* 3,104,027 60.3 1.529
2* 3,777,306 65.4 2.163

3 4,247,013 73.8 2.287
3* 345,574 73.9 2.474

2 9,108,588 74.2 2.087
5 23,194,543 98.5 2.144
4 20,474,809 103.5 1.469

5* 12,363,685 104.2 2.189
1* 29,862 112.8 4.196
4* 1,405,176 114.3 3.269
2* 1,502,349 115.2 4.307
5* 4,333,375 131.3 4.430
3* 108,947 134.9 4.687

Table 3.10: The Glued 15-Puzzle.

From these results, we can see that MM-HIDA* takes the best ranking in all 5 domains. In

15-4 Topspin and 14-Pancake, MM-HIDA* takes the top 5 rankings. In the 15-Puzzle, MM-HIDA*

takes the top 3 positions. In Glued 15-Puzzle, MM-HIDA* takes 4 out of 6 top positions. In (12,3)-

36

DA MM MA Nodes CPU(s) Mem (×106)
5* 587,931 284.6 7.646
3* 454,853 293.3 7.976
4* 480,962 304.8 7.934
2* 217,028 312.2 7.887
1* 206,675 322.1 7.758

2 1,369,956 397.9 8.892
1 1,176,908 401.2 8.778
4 2,861,843 507.0 11.745

5* 118,043 525.1 13.870
3 1,818,312 531.6 11.780

4* 114,719 535.1 14.197
2* 79,196 540.1 13.837
1* 46,751 565.3 13.849
3* 102,077 593.6 14.350

5 1,253,427 635.1 11.963

Table 3.11: The 14-Pancake Puzzle.

DA MM MA Nodes CPU(s) Mem (×106)
2* 11,870 143.5 5.390
1* 12,312 147.6 5.433
4* 12,471 150.7 5.387
3* 12,849 153.8 5.328
5* 13,498 160.8 5.456

4 47,907 183.3 6.649
2 52,970 186.8 6.676
3 47,905 197.2 6.604
1 43,576 199.5 6.720
5 47,959 217.5 6.651

2* 3,506 279.7 9.838
4* 3,541 286.0 9.783
1* 3,338 300.5 9.874
3* 3,458 301.5 9.783
5* 3,759 309.8 10.018

Table 3.12: The (15,4)-TopSpin Puzzle.

Blocks World domain, MM-HIDA* does not have as big an advantage over other abstractions as it

does in the other domains.

In terms of memory usage, it is almost the same trend as CPU time. This is because, in general,

the longer HIDA* runs, the more memory it consumes, so lower CPU time means the algorithm is

likely to use less memory. From the results presented, we can see that multimapping also has a big

advantage in memory usage.

In conclusion, the results in the large domain verified the performance advantage revealed in the

small domains. It shows that multimapping domain abstraction takes less time and memory than

single domain abstraction and multiple domain abstractions.

37

DA MM MA Nodes CPU(s) Mem (×106)
2 43,896 77.4 2.062
3 589,399 106.4 2.464

2* 6,202,221 123.1 2.117
2* 2,109 126.3 3.506

4* 1,065,182 131.8 3.514
1* 3,138,661 138.1 3.033

1 6,310,237 143.7 2.930
5 6,271,341 147.6 3.531

3* 7,647,763 166.4 2.538
3* 22,149 187.4 4.441

4 18,038,164 194.9 3.510
1* 5,214 204.1 5.295

5* 13,099,419 218.9 3.648
4* 46,776 222.8 6.567
5* 48,895 229.3 6.690

Table 3.13: The (12,3)-Blocks World.

Apply GA Abstraction on Blocks World Domain

We mentioned that we do not apply GA abstraction on Blocks World domain because the distances

between abstract goal states are too far away compared to the average heuristic value, as discussed

in Section 3.2.2. However, because the (12,3)-Blocks World is much larger, implementing this tech-

nique could be beneficial. In this experiment, we generated 5 MMGARM abstractions3 for the

(12,3)-Blocks World. These 5 abstractions are generated from scratch and not from any domain

abstraction. We compared MMGARM with DA, MM (remapping version) and MA and the experi-

ment results are presented in Table 3.14. The results show us that MMGARM performs better than

the other three methods in terms of CPU time. But the advantage of MMGARM is less obvious than

it is in the other domains.

3.3.5 Conclusions

From the experiments in this chapter, we have understood some properties of multimapping domain

abstraction. Firstly, in terms of heuristic quality, this technique could provide better heuristic values

then a single domain abstraction. This is achieved with the same size of abstract space. Secondly,

for HIDA* equipped with multimapping domain abstraction, the experiment results show that MM-

HIDA* outperformed both DA-HIDA* and MA-HIDA* in terms of CPU time and memory usage.

3The MMGARM abstractions for (12,3)-Blocks World are described in Appendix A.

38

DA MM MA MMGARM Nodes CPU(s) Mem (×106)
1 67,970 60.3 1.308

2 43,896 77.4 2.062
5 521,272 89.3 1.945

3 589,399 106.4 2.464
3 506,178 117.1 2.566

2* 6,202,221 123.1 2.117
2* 2,109 126.3 3.506

2 316,069 128.1 3.987
4* 1,065,182 131.8 3.514

4 232,302 132.0 3.550
1* 3,138,661 138.1 3.033

1 6,310,237 143.7 2.930
5 6,271,341 147.6 3.531

3* 7,647,763 166.4 2.538
3* 22,149 187.4 4.441

4 18,038,164 194.9 3.510
1* 5,214 204.1 5.295

5* 13,099,419 218.9 3.648
4* 46,776 222.8 6.567
5* 48,895 229.3 6.690

Table 3.14: The (12,3)-Blocks World with the MMGARM technique.

39

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

M
M

RM
1e

4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

MMP

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

M
M

RM
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

MMP

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0
1

2
3

4
5

6
M

M
RM

1e
3

0123456 MMP

1e
3

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0.
0

0.
5

1.
0

1.
5

2.
0

M
M

RM
1e

5

0.
0

0.
5

1.
0

1.
5

2.
0

MMP

1e
5

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

4:
N

od
es

ex
pa

nd
ed

at
th

e
ba

se
le

ve
l:

m
ul

tim
ap

pi
ng

do
m

ai
n

ab
st

ra
ct

io
n

(r
em

ap
pi

ng
)V

s.
m

ul
tim

ap
pi

ng
do

m
ai

n
ab

st
ra

ct
io

n
(p

la
in

).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

RM
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

RM
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

RM
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
1

2
3

4
5

6
7

M
M

RM
1e

4
01234567 MMP

1e
4

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

5:
M

em
or

y
us

ag
e:

m
ul

tim
ap

pi
ng

do
m

ai
n

ab
st

ra
ct

io
n

(r
em

ap
pi

ng
)V

s.
m

ul
tim

ap
pi

ng
do

m
ai

n
ab

st
ra

ct
io

n
(p

la
in

).

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

M
M

RM

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

MMP

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

M
M

RM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

MMP

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

RM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
1

2
3

4
5

6
7

8
M

M
RM

012345678 MMP

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

6:
C

PU
tim

e:
m

ul
tim

ap
pi

ng
do

m
ai

n
ab

st
ra

ct
io

n
(r

em
ap

pi
ng

)V
s.

m
ul

tim
ap

pi
ng

do
m

ai
n

ab
st

ra
ct

io
n

(p
la

in
).

40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

M
M

G
A

1e
4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

MMP

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
M

G
A

1e
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MMP

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

M
M

G
A

1e
3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

MMP

1e
3

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

7:
N

od
es

ex
pa

nd
ed

at
th

e
ba

se
le

ve
l:

m
ul

tim
ap

pi
ng

ab
st

ra
ct

io
n

(g
oa

la
gg

re
ga

tio
n)

vs
.m

ul
tim

ap
pi

ng
ab

st
ra

ct
io

n
(p

la
in

).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
A

1e
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
A

1e
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
A

1e
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

1e
4

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

8:
M

em
or

y
us

ag
e:

m
ul

tim
ap

pi
ng

ab
st

ra
ct

io
n

(g
oa

la
gg

re
ga

tio
n)

vs
.m

ul
tim

ap
pi

ng
ab

st
ra

ct
io

n
(p

la
in

).

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
M

G
A

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

MMP

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

M
M

G
A

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

MMP

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
A

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MMP

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

9:
C

PU
tim

e:
m

ul
tim

ap
pi

ng
ab

st
ra

ct
io

n
(g

oa
la

gg
re

ga
tio

n)
vs

.m
ul

tim
ap

pi
ng

ab
st

ra
ct

io
n

(p
la

in
).

41

M
M

RM
M

M
G

A
M

M
G

AR
M

0

50
0

10
00

15
00

20
00

25
00

30
00

Nodes Expanded at Base Level

(a
)8

-P
uz

zl
e

M
M

RM
M

M
G

A
M

M
G

AR
M

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Nodes Expanded at Base Level

(b
)9

-P
an

ca
ke

M
M

RM
M

M
G

A
M

M
G

AR
M

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Nodes Expanded at Base Level

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

10
:N

od
es

ex
pa

nd
ed

at
ba

se
le

ve
l:

ab
st

ra
ct

io
n

co
m

pa
ri

so
n

be
tw

ee
n

M
M

R
M

,M
M

G
A

an
d

M
M

G
A

R
M

.

M
M

RM
M

M
G

A
M

M
G

AR
M

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

Memory Usage (Entries)

(a
)8

-P
uz

zl
e

M
M

RM
M

M
G

A
M

M
G

AR
M

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

Memory Usage (Entries)

(b
)9

-P
an

ca
ke

M
M

RM
M

M
G

A
M

M
G

AR
M

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Memory Usage (Entries)

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

11
:M

em
or

y
us

ag
e:

ab
st

ra
ct

io
n

co
m

pa
ri

so
n

be
tw

ee
n

M
M

R
M

,M
M

G
A

an
d

M
M

G
A

R
M

.

M
M

RM
M

M
G

A
M

M
G

AR
M

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

CPU Time (s)

(a
)8

-P
uz

zl
e

M
M

RM
M

M
G

A
M

M
G

AR
M

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

CPU Time (s)

(b
)9

-P
an

ca
ke

M
M

RM
M

M
G

A
M

M
G

AR
M

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

CPU Time (s)

(c
)(

10
,4

)-
To

ps
pi

n

Fi
gu

re
3.

12
:C

PU
tim

e:
ab

st
ra

ct
io

n
co

m
pa

ri
so

n
be

tw
ee

n
M

M
R

M
,M

M
G

A
an

d
M

M
G

A
R

M
.

42

0
1

2
3

4
5

M
M

G
AR

M
1e

4
012345 DA

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

M
M

G
AR

M
1e

4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

DA

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
AR

M
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

DA

1e
4

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0.
0

0.
5

1.
0

1.
5

2.
0

M
M

RM
1e

6

0.
0

0.
5

1.
0

1.
5

2.
0

DA

1e
6

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

13
:N

od
es

ex
pa

nd
ed

at
th

e
ba

se
le

ve
l:

m
ul

tim
ap

pi
ng

ab
st

ra
ct

io
n

(G
A

R
M

)v
s.

do
m

ai
n

ab
st

ra
ct

io
n.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
M

G
AR

M
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DA

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
AR

M
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

DA

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
AR

M
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

DA

1e
4

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
1

2
3

4
5

M
M

RM
1e

4
012345 DA

1e
4

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

14
:M

em
or

y
us

ag
e:

m
ul

tim
ap

pi
ng

ab
st

ra
ct

io
n

(G
A

R
M

)v
s.

do
m

ai
n

ab
st

ra
ct

io
n.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

M
M

G
AR

M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

DA

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

M
M

G
AR

M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

DA

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

M
M

G
AR

M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

DA

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
2

4
6

8
10

12
14

M
M

RM

02468101214 DA

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

15
:C

PU
tim

e:
m

ul
tim

ap
pi

ng
ab

st
ra

ct
io

n
(G

A
R

M
)v

s.
do

m
ai

n
ab

st
ra

ct
io

n.

43

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

M
M

G
AR

M
1e

4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

MA

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0
1

2
3

4
5

6
7

8
M

M
G

AR
M

1e
3

012345678 MA

1e
3

y
=
x

(b
)9

-P
an

ca
ke

0
1

2
3

4
5

M
M

G
AR

M
1e

3
012345 MA

1e
3

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0.
0

0.
5

1.
0

1.
5

2.
0

M
M

RM
1e

5

0.
0

0.
5

1.
0

1.
5

2.
0

MA

1e
5

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

16
:N

od
es

E
xp

an
de

d
at

th
e

ba
se

le
ve

l:
M

ul
tim

ap
pi

ng
A

bs
tr

ac
tio

n
(G

A
R

M
)v

s.
M

ul
tim

ap
pi

ng
A

bs
tr

ac
tio

n
(M

A
).

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

M
M

G
AR

M
1e

4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

MA

1e
4

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

M
M

G
AR

M
1e

4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

MA

1e
4

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

M
M

G
AR

M
1e

4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

MA

1e
4

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
1

2
3

4
5

6
7

M
M

RM
1e

4
01234567 MA

1e
4

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

17
:M

em
or

y
U

sa
ge

:M
ul

tim
ap

pi
ng

A
bs

tr
ac

tio
n

(G
A

R
M

)v
s.

M
ul

tim
ap

pi
ng

A
bs

tr
ac

tio
n

(M
A

).

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

M
M

G
AR

M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

MA

y
=
x

(a
)8

-P
uz

zl
e

0.
0

0.
5

1.
0

1.
5

2.
0

M
M

G
AR

M

0.
0

0.
5

1.
0

1.
5

2.
0

MA

y
=
x

(b
)9

-P
an

ca
ke

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

M
M

G
AR

M

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MA

y
=
x

(c
)(

10
,4

)-
To

ps
pi

n

0
1

2
3

4
5

M
M

RM
012345 MA

y
=
x

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

18
:C

PU
Ti

m
e:

M
ul

tim
ap

pi
ng

A
bs

tr
ac

tio
n

(G
A

R
M

)v
s.

M
ul

tim
ap

pi
ng

A
bs

tr
ac

tio
n

(M
A

).

44

D
A

M
M

M
A

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Nodes Expanded at Base Level

(a
)8

-P
uz

zl
e

D
A

M
M

M
A

0

10
00

20
00

30
00

40
00

50
00

Nodes Expanded at Base Level

(b
)9

-P
an

ca
ke

D
A

M
M

M
A

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

Nodes Expanded at Base Level

(c
)(

10
,4

)-
To

ps
pi

n

D
A

M
M

M
A

10
1

10
2

10
3

10
4

10
5

10
6

Nodes Expanded at Base Level

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

19
:N

od
es

E
xp

an
de

d
at

th
e

ba
se

le
ve

l:
co

m
pa

ri
so

n
be

tw
ee

n
D

A
,M

M
an

d
M

A
.

D
A

M
M

M
A

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Memory Usage (Entries)

(a
)8

-P
uz

zl
e

D
A

M
M

M
A

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

Memory Usage (Entries)

(b
)9

-P
an

ca
ke

D
A

M
M

M
A

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

Memory Usage (Entries)

(c
)(

10
,4

)-
To

ps
pi

n

D
A

M
M

M
A

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

Memory Usage (Entries)

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

20
:M

em
or

y
U

sa
ge

:c
om

pa
ri

so
n

be
tw

ee
n

D
A

,M
M

an
d

M
A

.

D
A

M
M

M
A

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

CPU Time (s)

(a
)8

-P
uz

zl
e

D
A

M
M

M
A

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

CPU Time (s)

(b
)9

-P
an

ca
ke

D
A

M
M

M
A

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

CPU Time (s)

(c
)(

10
,4

)-
To

ps
pi

n

D
A

M
M

M
A

012345 CPU Time (s)

(d
)(

8,
3)

-B
lo

ck
s

W
or

ld

Fi
gu

re
3.

21
:C

PU
Ti

m
e:

co
m

pa
ri

so
n

be
tw

ee
n

D
A

,M
M

an
d

M
A

.

45

3.4 Implementation with Partial-State Abstraction

In this section, we are going to introduce a new technique, called Partial-State abstraction, to rep-

resent abstract states. The reason it is called Partial-State abstraction is that only a part of the state

is specified. The unspecified part of the state are variables which make the Partial-State represent

a set of states rather than a specific one. For Partial-State abstraction, we developed corresponding

operators and rules for operator matching and goal testing. The system altogether is a state represen-

tation and abstraction technique. However, this method is still a premature method with significant

drawbacks. We have only performed limited experiments on this technique. This method inspired

us and led us to develop a theory about manipulating states as a single state-set and multimapping

in general, which will be presented in Chapter 4.

3.4.1 Definition
Partial-State

We continue to use the PSVN representation of a state. A state is a vector 〈D1, D2, . . . , Dk〉 where

k ∈ N, each Di is a finite set called a “domain”. A Partial-State is a vector 〈V1, V2, . . . , Vk〉 where

each Vi is drawn from Di ∪ X . X here is a set of variable symbols distinct from the values in all

the Di. A Partial-State will represent a set of states in the following way. A state s is contained in a

Partial-State sp iff ∀i, spi ∈ Di =⇒ spi = si, and we denote this as s ∈ sp.

Example 12 We define the following states and Partial-States:

s1 = 〈1, 2, 3, 4〉

s2 = 〈1, 3, 2, 4〉

sp = 〈1, 2, x1, x2〉

In this example, we have s1 ∈ sp and s2 /∈ sp.

Multiple occurrences of variable x in a partial state carries a special meaning. In the above

example, x1 and x2 do not exert any constraints on sp. If we define sp as 〈1, 2, x1, x1〉 then the third

and fourth state values are required to be the same. This is a feature of Partial-State that enhances

its representation power.

Because the Partial-State has the power to represent a set of states, it can be considered as an

abstract state and this is the foundation of our new technique. The way we abstract an ordinary

state is to turn values in the state into variables from X . In this way, the Partial-State we make

will contain the original state plus a set of other states. We describe the abstraction function with a

vector 〈m1,m2, . . . ,m|D|〉 where D = ∪ki=1Di and mi specifies how many occurrences of value

di are to be replaced by a variable symbol. Assuming the number of occurrences of di is ni in the

46

original state, an abstraction function is legal only if 0 ≤ mi ≤ ni. If 0 < mi < ni, we are facing a

situation of choosing mi out of the ni occurrences and that is where multimapping comes from for

this technique.

Example 13 Let D = {1, 2, 3}, state s be 〈1, 1, 1, 2, 3, 3〉 and the partial-state abstraction be

〈2, 0, 1〉. There are three ways to choose two of the three 1’s and two ways to choose one of the

two 3’s, so this abstraction maps 〈1, 1, 1, 2, 3, 3〉 to six different abstract states (〈1, x1, x2, 2, 3, x3〉,

〈x1, 1, x2, 2, 3, x3〉, 〈x1, x2, 1, 2, 3, x3〉, 〈1, x1, x2, 2, x3, 3〉, 〈x1, 1, x2, 2, x3, 3〉, 〈x1, x2, 1, 2, x3, 3〉).

By construction, all of them contain the state 〈1, 1, 1, 2, 3, 3〉.

An ordinary state in PSVN notation can be viewed as a special Partial-State which only covers

one state. In the following discussion, anything applicable to a Partial-State also is applicable to an

ordinary state.

Abstraction using Partial-State

In order to create a multimapping abstraction with the Partial-State technique, it is required that

there are duplicate constants in a state vector. But this is not a common case for most problem

domains. Our solution is to use domain abstraction on states at first to create duplicated constants

and then apply the Partial-State technique. We also use granularity to describe abstraction using the

Partial-State. The definition of the granularity of the Partial-State is given below:

Definition 7 (Partial-State Granularity) The granularity of the Partial-State is defined as 〈n〉where

n indicates how many constants in the original state are mapped to variables.

An example of abstraction using domain abstraction and Partial-State is presented as follows.

Example 14 Given a state 〈1, 2, 3, 4〉 with D = {1, 2, 3, 4}, we want to generate abstract states

of granularity of 〈2〉 with multimapping and the Partial-State technique. First, we apply a domain

abstraction which maps (1, 2) → 1 and (3, 4) → 3 to the state. The resulting state is 〈1, 1, 3, 3〉.

Next, we apply Partial-State abstraction 〈1, 0, 1, 0〉 which will pick a tile 1 and a tile 3 and turn them

into variables in X . The resulting states are four Partial-States of granularity of 〈2〉 〈x1, 1, x2, 3〉,

〈x1, 1, 3, x2〉, 〈1, x1, x2, 3〉, 〈1, x1, 3, x2〉.

Representation Power Between Domain Abstraction, Projection and Partial-State Technique

In this section, we are going to discuss the representation power of three different abstraction tech-

niques: domain abstraction, projection and the Partial-State technique. In order to discuss this issue,

we will first formally define representation power. Then comparisons are made between the Partial-

State technique and the other two techniques.

Definition 8 (Representation Power) First, we define PA to be an abstract state w.r.t abstraction

A in problem space S. For abstraction A and B. We say A and B have equal representation power

47

iff for any PA we can find a PB to cover the same set of states in original space, and for any PB we

can find a PA to cover the same set of states in original space. We say A has better representation

power than B iff for any PB we can find a PA to cover exactly the same set of states covered by PB ,

but for same PA, there does not exist a PB such that PB will exactly cover the same set of states

covered by PA. We say the representation power of A and B is incomparable iff neither for all PA

we can find a PB to cover exactly the same set of states covered by PA nor for all PB we can find a

PA to cover exactly the same set of states covered by PB .

Based on this definition, we claim that Partial-State has better representation power than projec-

tion. The reason for this claim is that for every abstract state Pprojection generated by projection,

we can substitute the positions that are projected out with distinct variables in the Partial-State, re-

sulting a Partial-State PPS which covers exactly the same set of states of Pprojection. However, for

an abstracted state generated by Partial-State technique, if the same variable occurs twice or more

in the Partial-State, projection cannot generate a corresponding abstract state. For example in state

〈1, 2, 3, 4〉 with D = {1, 2, 3, 4}, a Partial-State 〈1, x1, x1, 4〉 will never have a corresponding ab-

stract state generated by projection. This is because projection has no way to enforce that the second

and third position have the same value.

Domain abstraction and Partial-State abstraction are incomparable. This can be shown using

two examples. Given a state 〈1, 2, 3, 4〉 , we apply a domain abstraction (2, 3) → 2 on it and get

〈1, 2, 2, 4〉 as result. This abstract state can represent 4 states: 〈1, 2, 2, 4〉, 〈1, 3, 3, 4〉, 〈1, 2, 3, 4〉 and

〈1, 3, 2, 4〉. However, it is impossible to design a Partial-State to represent these 4 states. On the

other hand, a Partial-State 〈1, x1, x1, 4〉 can represent 4 states: 〈1, 1, 1, 4〉, 〈1, 2, 2, 4〉, 〈1, 3, 3, 4〉

and 〈1, 4, 4, 4〉. These 4 states also cannot be represented using a single abstract state generated by

domain abstraction.

Operators

We can use PSVN operators with the Partial-State technique. A PSVN operator can be seen as two

Partial-States. An operator is defined as a pair 〈LHS,RHS〉, where LHS and RHS look like the

Partial-States defined above. LHS defines the precondition of the operator and we can apply the

operator to any state contained in LHS . RHS has two meanings. Firstly, it defines a set of states

which are the possible results of the operator. Secondly, RHS and LHS together define how an

operator acts on a state.

Applicability of Operators

Given a Partial-State sp and an operator ω = 〈LHS,RHS〉, ω can be applied to sp iff for all i,

LHS[i] ∈ Di and sp[i] ∈ Di =⇒ sp[i] = LHS[i]. The meaning of this applicability rule is that

when considered as Partial-State, LHS ∩ sp 6= ∅. In other words, the set of states represented by sp

and LHS have some common states. We leave the discussion of the reason behind this applicability

48

rule to the next chapter.

The result of the operator is produced using rules presented in Section 2.2.

Example 15 Given a Partial-State P = 〈1, x1〉 and an operator 〈1, A〉 → 〈A, 1〉, left part of the

operator matches P because 1 in the first position matches the corresponding 1 in P andA is bound

to x1. The resulting state is 〈x1, 1〉.

Goal Testing

A big difference between the Partial-State technique and the multimapping domain abstraction is

that in the Partial-State technique we do not abstract the goal state. This actually overcomes the

problem that performance will degrade once the mapping factor increase beyond a certain point. We

consider Partial-State sp have reached goal state g when g ∈ sp.

Duplicate Testing

We will face the problem of detecting duplicated Partial-States when we implement the Partial-State

technique with search algorithms. A typical example would be detecting if a newly generated Partial-

State already exists in the CLOSED list of the A* algorithm. Because a Partial-State can represent

a set of states, a more fundamental question is that if the states contained in the newly generated

Partial-State are already covered by Partial-States in the CLOSED list. A straightforward way to

answer this question is to explicitly enumerate all the states contained in the newly generated Partial-

State and test each to see if it is contained in a Partial-State in the CLOSED list. To implement this

detection will require us to explicitly list all states contained in a Partial-State and this will introduce

huge computational cost. We still have not found an efficient way to do this test. Therefore the

method we used in our experiment is to simply detect if exactly the same Partial-State already exists

in the cached states.

3.4.2 Experiments

In this section, limited experiments are done to compare the Partial-State technique with domain

abstraction. The experiment results show that Partial-State technique does not show much advantage

over domain abstraction.

Experiment Setting

The algorithm we used in this experiment is HIDA*. We use DA-HIDA* and PS-HIDA* to refer

to HIDA* implemented with domain abstraction and the Partial-State technique respectively. We

only used two small domains, the 8-Puzzle and 9-Pancake, in this experiment. For each domain, we

generated 500 solvable start states as test cases. To measure the performance of each technique, we

calculated the average number of nodes expanded at the base level, CPU time (in seconds) and the

number of memory entries cached, as we did in Section 3.3.2.

49

The number of levels in the hierarchy of abstractions and the granularity of each level are de-

signed to be the same for both techniques. The granularity of the first level is 〈4〉 and for each level

higher an additional tile will be abstracted, so the granularity for the second, third and fourth level

is 〈5〉, 〈6〉 and 〈7〉. In both domains, only tiles 1 to 8 will be abstracted. At the first level of domain

abstraction 4 tiles out of these 8 tiles are chosen and mapped to the same tile. In this way we can

generate a total of 70 domain abstractions. For the Partial-State technique, we first apply a domain

abstraction of granularity 〈2, 2, 2〉 on the state to create 3 pairs of duplicated tiles, then pick one out

of each pair and one additional tile, 4 tiles in total, to make into variables. In this way, the granularity

of the first level of a Partial-State abstraction still has a granularity of 〈4〉, and the mapping factor

is 8. This is because there are 8 different ways to choose one occurence out of each of the 3 pairs

of duplicate tiles. For each 〈2, 2, 2〉 domain abstraction, we can generate 2 Partial-State abstrac-

tions4, thus the total number of Partial-State abstractions are 840. The same domain abstractions

and Partial-State abstractions are used in both the 8-Puzzle and 9-Pancake problem domains.

Example 16 An example of abstraction used for the Partial-State technique is presented at Ta-

ble 3.15.

s 1 2 3 4 5 6 7 8
Step 1 1 1 2 2 3 3 7 8
Step 2 1 x1 x2 2 3 x3 x4 8

Table 3.15: An example of abstraction used for the Partial-State technique. Step 1 is to apply a
domain abstraction to s to create 3 pairs of duplicated tiles. Step 2 is to pick one out of each pair
and one additional tile, 4 tiles in total, to make them into variables. The final abstracted Partial-State
is 〈1, x1, x2, 2, 3, x3, x4, 8〉

Results and Discussions

The results for the 8-Puzzle and 9-Pancake are presented in Figure 3.22 and Figure 3.23 respectively.

Another perspective in boxplots is presented in Figure 3.25 and Figure 3.24. The trends shown in

both domains are the same. For the number of nodes expanded at the base level, Partial-State

abstraction performs better than domain abstraction. Because the granularities of the first level of

all abstractions are 〈4〉, the size of abstract space of the first level is the same for both Partial-

State abstraction and domain abstraction. This is to say the improved heuristic quality of Partial-

State abstraction is gained without using a larger abstract space. However, both the CPU time and

memory usage for Partial-State abstraction is inferior to that of domain abstraction. This shows us

that in order to get a better heuristic value, the Partial-State technique has done more work in the

abstract levels than domain abstraction. The workload in the abstract levels is large enough that the

overall CPU time and memory usage have been compromised.
43 tiles are chosen from 3 pairs of duplicated tiles, and then we always need to choose one additional tile from the

remaining 2 tiles.

50

0.0 0.5 1.0 1.5 2.0 2.5
Partial-State Abstraction 1e4

0.0

0.5

1.0

1.5

2.0

2.5

D
om

ai
n

Ab
st

ra
ct

io
n

1e4

y=x

(a) Nodes Expanded at Base Level

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Partial-State Abstraction

0.0

0.2

0.4

0.6

0.8

1.0

D
om

ai
n

Ab
st

ra
ct

io
n y=x

(b) CPU Time

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Partial-State Abstraction 1e4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
om

ai
n

Ab
st

ra
ct

io
n

1e4

y=x

(c) Memory usage

Figure 3.22: 8-Puzzle: Partial-State Abstraction vs. Domain Abstraction.

0.0 0.5 1.0 1.5 2.0 2.5
Partial-State Abstraction 1e4

0.0

0.5

1.0

1.5

2.0

2.5

D
om

ai
n

Ab
st

ra
ct

io
n

1e4
y=x

(a) Nodes Expanded at Base Level

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Partial-State Abstraction

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
D

om
ai

n
Ab

st
ra

ct
io

n

y=x

(b) CPU Time

0.0 0.5 1.0 1.5 2.0
Partial-State Abstraction 1e4

0.0

0.5

1.0

1.5

2.0

D
om

ai
n

Ab
st

ra
ct

io
n

1e4

y=x

(c) Memory usage

Figure 3.23: 9-Pancake: Partial-State Abstraction vs. Domain Abstraction.

DA PS102

103

104

No
de

s
Ex

pa
nd

ed
 a

t B
as

e
Le

ve
l

(a) Nodes Expanded at Base Level

DA PS0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CP
U

Ti
m

e
(s

)

(b) CPU Time

DA PS8500

9000

9500

10000

10500

11000

11500

12000

12500

13000

M
em

or
y

Us
ag

e
(E

nt
rie

s)

(c) Memory usage

Figure 3.24: 9-Pancake: Abstractions Comparison.

DA PS102

103

104

No
de

s
Ex

pa
nd

ed
 a

t B
as

e
Le

ve
l

(a) Nodes Expanded at Base Level

DA PS0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

CP
U

Ti
m

e
(s

)

(b) CPU Time

DA PS2000

3000

4000

5000

6000

7000

8000

9000

M
em

or
y

Us
ag

e
(E

nt
rie

s)

(c) Memory usage

Figure 3.25: 8-Puzzle: Abstractions Comparison.

51

At the beginning, we mentioned that this is a premature technique and it is still far away from

being implemented practically. This technique suffers from the following problems:

• When we apply an operator on a Partial-State, it is possible that the resulting Partial-State will

contain fewer states. We call this the shrinking problem. For example, suppose we have

Partial-State sp = 〈1, 1, x1, x2〉 and operator 〈1, x3, 1, 1〉 =⇒ 〈2, x3, 2, 2〉. The operator will

turn sp to 〈2, 1, 2, 2〉which is a fully grounded state. This is the major shortcoming preventing

the use of this technique in most domains. We will discuss this “shrinking” problem in more

detail in Chapter 4.

• When we abstract a ground state into a Partial-State, this Partial-State might contain some

states which are unreachable in the original space. For example, in 2 × 2 sliding tile puzzle,

we want to turn a state 〈0, 1, 2, 3〉 into a Partial-State of granularity of 〈2〉. A possible result

is 〈0, x1, x2, 3〉. However, this Partial-State will contain some unreachable states such as

〈0, 3, 3, 3〉. This is because the information that only one tile of 1 and one tile of 2 are turned

into variables is not encoded in the Partial-State. Currently, our technique cannot encode this

information into Partial-States, thus in some domains, some Partial-States might mismatch

some operators. This problem that abstract states contain some illegal states is not specific to

the Partial-State technique. It also occurs in domain abstraction and projection. The related

problem is well studied by Zilles and Holte [36, 35].

For these reasons, the Partial-State technique is far from practical at present, but it overcomes a

problem which arises with multimapping domain abstraction. With Partial-State technique, the goal

state is not abstracted when solving the problem. Therefore with an increase of the Mapping Factor,

the performance shouldn’t degrade like it does with multimapping domain abstraction.

3.5 Conclusions

In this chapter, we introduced the multimapping framework and two multimapping techniques. The

first one, based on domain abstraction, was thoroughly explained and extensive experiments were

run to compare the performance between this new technique and existing single and multiple domain

abstraction technique. The second method, Partial-State abstraction, is not fully developed, only the

basic idea is explained. These techniques inspired us to develop a general theory of abstraction in

which each abstracted state is a set of states. This will be presented in the next chapter.

52

Chapter 4

State-Set Search

This chapter will introduce a state-set search theory. This theory is inspired by the Partial-State

abstraction technique, but the situation this theory can be applied to commonly occurs in heuristic

search and planning research. For example, in the domain abstraction we described in Chapter 2,

each abstract state actually represents a set of states in the original space. This theory studies this

kind of state space, a space where each state represents a set of states that from some underlying

state space. We call this space the state-set space. To distinguish states in the state-set space and

the underlying space in following discussion, we use “state-set” to refer to the states in the state-set

space and “state” to refer to the states in the underlying space. The main contribution of this theory

is that it shows us theoretically what is the best possible admissible abstract distance (dww) in the

state-set space. This theory can also help us explain certain behaviors of some existing planning and

abstraction systems. This chapter is split into two parts. First, we will give a formal analysis of state-

set search theory. Second, we will discuss applications of the theory: explaining some behaviors of

existing systems, such as Grounded TWEAK [1] and the hm method [14]. Most of the material in

this chapter has been published in the 2011 Symposium on Combinatorial Search [28].

4.1 Formal Analysis

In this section, we will first formally define the state-set space and and two matching mechanisms

for state-sets. Based on these two matching mechanisms, we introduced four kinds of distances

between any pair of state-sets. First, the very basic notions of state-set space are defined as follows:

Definition 9 (State-set) Let S be a non-empty set of states. A state-set (with respect to S) is a

non-empty subset of S. We equate state s ∈ S with the state-set {s}.

Notationally, we allow a function f : A→ B to be applied to a subset A′ ⊆ A instead of just an

element of A, with f(A′) = {f(a) | a ∈ A′}. Under this convention f(∅) = ∅.

Definition 10 (State Multimap) Let S be a non-empty set of states. A state multimap ω on S is a

function from S to 2S, the powerset of S. If P is a state-set, ω(P) =
⋃
s∈P ω(s).

53

Definition 11 (State Space, Operator) A state space is a pair S = (S,Ω) where S is a non-empty

set of states, and Ω is a set of state multimaps on S called operators. For each operator ω ∈ Ω the

set of states to which ω can be applied is PREω = {s ∈ S | ω(s) 6= ∅} and the set of states that

can possibly be produced by ω is POSTω = ω(S). Without loss of generality we assume for all

ω ∈ Ω that PREω is non-empty and therefore it and POSTω are both state-sets.

By defining an operator to be a multimap, we permit one operator to generate more than one

successor of a state. This is to be interpreted like the non-deterministic operators in PSVN—the

operator produces all the successors.

These definitions do not allow costs to be associated with operators. We leave this extension for

future work.

Definition 12 (State Distance) Let S = (S,Ω) be a state space. A finite sequence of operators

π = (ω1, ω2, . . . , ωz) ∈ Ω+ is applicable to state s ∈ S iff π(s) = ωz(ωz−1...ω2(ω1(s))...) 6= ∅. π

is a path from state s ∈ S to state t ∈ S iff t ∈ π(s). The distance d(s, t) between two states is the

length of the shortest path from s to t (∞ if no such path exists).

Definition 13 (State-set Space) Let S = (S,Ω) be a state space. The state-set space induced by S

is SS = (2S ,Ω).

4.1.1 State-set Matching, Paths, and Distances

With the definition of state-set space, now we will introduce two matching mechanisms and four

types of paths in state-set space. The two matching mechanisms,weak match and strong match, are

defined as follows.

Definition 14 (Strong Match) Let S = (S,Ω) be a state space and P and Q state-sets w.r.t. S. We

say that P strongly matches Q iff P ⊆ Q,

Definition 15 (Weak Match) Let S = (S,Ω) be a state space and P and Q state-sets w.r.t. S. We

say that P weakly matches Q iff P ∩Q 6= ∅.

We will say simply that P matches Q where strongly/weakly is determined by the context or where

either definition can be used.

Definition 16 (Operator Strong Match) Let S = (S,Ω) be a state space and P a state-set w.r.t.

S. Operator ω is strongly applicable to P iff P strongly matches PREω .

Definition 17 (Operator Weak Match) Let S = (S,Ω) be a state space and P a state-set w.r.t. S.

Operator ω is weakly applicable to P iff P weakly matches PREω .

Definitions 16 and 17 are shown graphically in Figure 4.1. State-sets are depicted with circles.

State-sets representing operator preconditions are shaded. The upper part of Figure 4.1 shows that

54

operator ω’s precondition contains state-set P ; ω is therefore strongly applicable to P . In the lower

part of Figure 4.1 operator ω’s precondition intersects P but does not contain it; ω is therefore only

weakly applicable to P . In both parts of the figure Q = ω(P) = ω(P ∩ PREω).

P Q
ω

PREω

P Q
ω

PREω

Figure 4.1: (upper) Operator ω is strongly (and weakly) applicable to P . (lower) Operator ω is
weakly applicable to P .

Definition 18 (Operator Sequence Strong Match) Let S = (S,Ω) be a state space and P a state-

set w.r.t. S. A finite sequence of operators π = (ω1, ω2, . . . , ωz) ∈ Ω+ is strongly applicable to P iff

z = 1 and ω1 is strongly applicable to P , or z > 1, ω1 is strongly applicable to P , and the sequence

(ω2, . . . , ωz) is strongly applicable to ω1(P).

Definition 19 (Operator Sequence Weak Match) Let S = (S,Ω) be a state space and P a state-

set w.r.t. S. A finite sequence of operators π = (ω1, ω2, . . . , ωz) ∈ Ω+ is weakly applicable to P iff

z = 1 and ω1 is weakly applicable to P , or z > 1, ω1 is weakly applicable to P , and the sequence

(ω2, . . . , ωz) is weakly applicable to ω1(P).

These definitions immediately imply the following.

Corollary 17 Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S such that P ⊇ Q, and

π ∈ Ω+ a finite sequence of operators that is strongly or weakly applicable to both P and Q. Then

π(P) ⊇ π(Q).

Corollary 18 Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S such that P ⊇ Q, and

π ∈ Ω+ a finite sequence of operators that is weakly applicable to Q. Then π is weakly applicable

to P .

Corollary 19 Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S such that P ⊇ Q, and

π ∈ Ω+ a finite sequence of operators that is strongly applicable to P . Then π is strongly applicable

to Q.

Definition 20 (State-set Distance) Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S,

and π ∈ Ω+ a finite sequence of operators that is applicable to P . π is a path from P to Q iff π(P)

matches Q. The distance from P to Q, denoted d(P,Q), is the length of the shortest path from P to

Q (∞ if no such path exists). We say that Q is reachable from P if there exists a path from P to Q.

55

There are actually four different definitions of path, distance, and reachable here, depending on

whether strong or weak matching is used to test if π is applicable to P and whether strong or weak

matching is used to test if π(P) matches Q. The two definitions we will focus on are:

• When strong matching is used throughout Definition 20, a path from P to Q is applicable

to all states in P and guaranteed to map each state in P to a state in Q. We call such paths

“strong paths” and denote the corresponding distance and operator sequence as dss(P,Q) and

πss(P,Q) respectively.

• When weak matching is used throughout Definition 20, a path from P to Q maps at least one

state in P to a state in Q. We call such paths “weak paths” and denote the corresponding

distance and operator sequence as dww(P,Q) and πww(P,Q) respectively.

Figure 4.3 depicts these two definitions, with the upper part showing a strong path from P to Q

and the lower part showing a weak path from P toQ. Because every strong path is also a weak path,

dww(P,Q) ≤ dss(P,Q). It can easily happen that dss(P,Q) is infinite but dww(P,Q) is finite. For

example, this would happen with the sliding tile puzzle if P contained states in which the blank was

in different locations. This is shown in the following example.

Example 20 In the 2×2 sliding tile puzzle, let us assume that P = {〈0, 1, 2, 3〉, 〈1, 0, 2, 3〉}, Q =

{〈3, 2, 1, 0〉}, as illustrated in Table 4.2. For any operator ω, it is only possible that ω is applicable

to one of the states in P , i.e., weakly applicable to P . This is because the blank (tile 0) is at different

positions in those two states in P while an operator can only be applied to a state with the blank

at a specific position. dss(P,Q) is infinite in this example because there is no operator which is

applicable to both states in P .

0 1

2 3

1 0

2 3

3 2

1 0

P Q
Figure 4.2: State-set P and state-set Q.

Theorem 21 The fact that there exists a weak path π from P to Q is equivalent to there existing a

pair of states s and t such that s ∈ P , t ∈ Q and π(s) = t.

56

P

ω1
PREω1

P

P1
ω1

PREω1

P1

PREω2

ω2 Q

P2

PREω2 Q

P2ω2

Figure 4.3: Strong (upper) and weak (lower) paths from P to Q.

Proof. First we will prove that the existence of a weak path π = 〈ω1, · · · , ωk〉 from P to Q is a

sufficient condition for there existing a pair of states s and t such that s ∈ P , t ∈ Q and π(s) = t.

We choose t to be any state in π(P) ∩Q. Because π(P) ∩Q 6= ∅, such a t must exist.

We prove the rest using mathematical induction. The base case is that there must exist a sk ∈

〈ω1, · · · , ωk−1〉(P) such that ωk(sk) = t. This statement holds because according to the rule of

weak matching, PREωk
∩ 〈ω1, · · · , ωk−1〉(P) 6= ∅. This sk must exist. The inductive hypothesis

for this proof is that there exists si such that 〈ωi, ωi+1, · · · , ωk〉(si) = t. We need to prove that there

exists si−1 ∈ 〈ω1, · · · , ωi−2〉(P) such that ωi−1(si−1) = si. This is obvious because PREωi−1 ∩

〈ω1, · · · , ωi−1〉(P) 6= ∅, this si−1 must exist. Because the base case and inductive step both hold,

there must exist s1 such that 〈ω1, ω2, · · · , ωk〉(s1) = t and s1 ∈ P . This s1 is the s we need to find.

Second, we will prove that the existence of a weak path π = 〈ω1, · · · , ωk〉 from P to Q is a

necessary condition for there existing a pair of states s and t such that s ∈ P , t ∈ Q and π(s) = t.

The base case of this proof is to let s1 = ω1(s), we have s1 ∈ ω1(P). This is obvious because

s ∈ PREω1
∩P . The inductive hypothesis for the proof is that there exists si ∈ 〈ω1, · · · , ωi−1〉(P).

We need to prove for si+1 = ωi(si) , si+1 ∈ 〈ω1, · · · , ωi〉(P). Because si ∈ PREωi
, we have

〈ω1, · · · , ωi〉(P) ∩ PREωi 6= ∅. Therefore si+1 ∈ 〈ω1, · · · , ωi〉(P). Because both base case and

inductive step hold, t ∈ 〈ω1, · · · , ωk〉(P) thus π(P) ∩Q 6= ∅. π is a weak path from P to Q.

�

The two definitions of path and distance that we will not focus on in this chapter are:

• If, in Definition 20, strong matching is used to test applicability and weak matching to test if

π(P) matches Q, a path from P to Q is guaranteed to be applicable to all states in P and is

guaranteed to map at least one state in P to Q, but it is not guaranteed to map all states in P

to Q.

• If, in Definition 20, weak matching is used to test applicability and strong matching to test if

π(P) matches Q, a path from P to Q is guaranteed to be applicable to at least one state in P ,

57

but is not guaranteed to be applicable to all states in P , and it is guaranteed to map any state

in P to which it is applicable to a state in Q.

We are not interested in these two kinds of paths because the distances provided by them can neither

serve as an admissible heuristic nor carry practical meaning.

4.2 Properties of Weak and Strong Paths and Distances

In this section, we will discuss some important properties of weak and strong paths.

Theorem 22 Let S = (S,Ω) be a state space, P , Q, and R state-sets w.r.t. S such that R ⊇ Q.

• Let π be a weak path from P to Q. Then π is a weak path from P to R and dww(P,R) ≤

dww(P,Q).

• Let π be a strong path from P to Q. Then π is a strong path from P to R and dss(P,R) ≤

dss(P,Q).

Proof.

• Because π is a weak path from P to Q, we have π(P) ∩ Q 6= ∅. Since R ⊇ Q, we have

π(P)∩R 6= ∅. Therefore, π is also a weak path from P to R and its length is an upper bound

for the length of the shortest weak path from P to R.

• Because π is a strong path from P to Q, we have π(P) ⊆ Q . Since R ⊇ Q, we have

π(P) ⊆ R. Therefore, π is also a strong path from P to R and its length is an upper bound

for the length of the shortest strong path from P to R.

�

Theorem 23 Let S = (S,Ω) be a state space, P , Q, and R state-sets w.r.t. S such that R ⊇ P , and

π a weak path from P to Q. Then π is a weak path from R to Q and dww(R,Q) ≤ dww(P,Q).

Proof. Because π is a weak path from P toQ, there must exist a state s ∈ P such that π(s)∩Q 6= ∅.

Because R ⊇ P , s ∈ R. Therefore π is also a weak path from R to Q and the length of it is an

upper bound for the shortest weak path from R to Q. �

The preceding two theorems show that if we have two state-sets, P and Q, and “abstract” them

to supersets P ′ ⊇ P and Q′ ⊇ Q, then the “abstract” distance dww(P ′, Q′) is a lower bound on

dww(P,Q). This is not true for dss since Theorem 23 does not hold for strong paths. Indeed, as the

next theorem shows, the opposite holds. It immediately follows that dss cannot, in general, be used

in abstraction systems to define admissible heuristics.

Theorem 24 Let S = (S,Ω) be a state space, P , Q, and R state-sets w.r.t. S such that R ⊆ P , and

π a strong path from P to Q. Then π is a strong path from R to Q and dss(R,Q) ≤ dss(P,Q).

58

Proof. Because π is a strong path from P to Q, for any state s ∈ P we have π(s) ⊆ Q. Because

P ⊇ R, we have π(R) ⊆ Q. Therefore π is a strong path from R to Q and its length is an upper

bound for the length of the shortest strong path from R to Q. �

Theorem 25 dww(P,Q) = min
p∈P,q∈Q

d(p, q).

Proof.

First, we will discuss the special situation that dww(P,Q) = ∞. Then, we will prove this

theorem by contradiction. This is split into two steps, we will prove that it is impossible to have

dww(P,Q) > min
p∈P,q∈Q

d(p, q). Next, we will prove that it is impossible to have dww(P,Q) <

min
p∈P,q∈Q

d(p, q) either. This leaves dww(P,Q) = min
p∈P,q∈Q

d(p, q) as the only possibility.

For the situation that dww(P,Q) = ∞, using Theorem 21 we know that min
p∈P,q∈Q

d(p, q) = ∞.

Now, assume dww(P,Q) is finite.

• Assume dww(P,Q) < min
p∈P,q∈Q

d(p, q). Because πww(P,Q) maps at least one state in P to a

state in Q, there must exist a pair of states 〈p′, q′〉 such that p′ ∈ P, q′ ∈ Q and d(p′, q′) <

min
p∈P,q∈Q

d(p, q). This leads to a contradiction.

• Assume dww(P,Q) > min
p∈P,q∈Q

d(p, q). Let p ∈ P and q ∈ Q be states with minimum d(p, q).

Because p ∈ P , the shortest path from p to q, π, is also applicable to P according to Corollary

18. According to Corollary 17, π(P) ⊇ π(p) = q, which means π is a weak path from P to

Q, therefore we found a path that is shorter than dww(P,Q). Because dww(P,Q) is already

the shortest path from P to Q by definition 20, this leads to a contradiction.

�

This theorem shows that dww has the property that is needed to guarantee that abstracting states

(or state-sets) by mapping them to supersets and using the dww between supersets as an estimate of

the distances between the original states (or state-sets) will be an admissible heuristic. The other

distance measures defined in Definition 20 are not guaranteed to have this property, so a general-

purpose abstraction system cannot use them if admissibility is required. Moreover, dww(P,Q) is the

largest distance from P to Q that is guaranteed to be an admissible estimate of the distance between

a subset of P and a subset of Q.

The following shows that dss obeys the triangle inequality.

Lemma 26 Let S = (S,Ω) be a state space, and P , Q and R state-sets w.r.t. S, Then dss(P,Q) ≤

dss(P,R) + dss(R,Q).

Proof. The corresponding operator sequence of the strong paths πss(P,R) and πss(R,Q) can be

combined together and the resulting operator sequence which generate a strong path from P to Q.

We can do this because πss(P,R)(P) ⊆ R and R ⊆ PREω′ where ω′ is the first operator in the

operator sequence πss(R,Q). So dss(P,R) + dss(R,Q) is an upper bound for dss(P,Q) �

59

The same is not true of dww, and therefore it is not a true distance metric. Figure 4.4 shows

an example in which dwwviolates the triangle inequality. dww(P,Q) = 1 (using operator ω) but

dww(P,R) = 0 because P ∩R 6= ∅ and dww(R,Q) = 0 as well. Hence dww(P,Q) > dww(P,R)+

dww(R,Q). Since the standard proof of the consistency of heuristics defined by distances in an

abstract space relies on the abstract distances obeying the triangle inequality, the fact that dww does

not obey the triangle inequality raises doubts about the consistency of heuristics based on computing

dww in an abstract space.

PREω

Q

ω

R
P

Figure 4.4: Example of dwwviolating the triangle inequality.

Theorem 27 Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S, we have:

(1) Let π = (ω1, ω2, . . . , ωz) ∈ Ω+ be a shortest weak path from P toQ, andRi the ith intermediate

state-set along the path (i.e., Ri = (ω1, ω2, . . . , ωi)(P) for i ∈ {1, . . . , z−1}). Then dww(Ri, Q) =

z − i, and dww(P,Ri,) ≤ i.

(2) Let π = (ω1, ω2, . . . , ωz) ∈ Ω+ be a shortest strong path from P to Q, and Ri the ith inter-

mediate state-set along the path (i.e., Ri = (ω1, ω2, . . . , ωi)(P) for i ∈ {1, . . . , z − 1}). Then

dss(Ri, Q) = z − i, dss(P,Ri,) = i.

Proof. First, we need to approve that dww(Ri, Q) = dss(Ri, Q) = z−i. For the dww(Ri, Q) = z−i

part, because π exists, we have dww(Ri, Q) ≤ z − i. We prove the following by contradiction. If

dww(Ri, Q) < z − i, then we can connect πww(Ri, Q) with the path (ω1, ω2, . . . , ωz)(P) and have

a dww(Ri, Q) < z. Because z is already the shortest length of weak path from P to Q, dww(Ri, Q)

cannot less than z − i. Therefore, dww(Ri, Q) = z − i. dss(Ri, Q) = z − i can be proved in the

same way.

Second, we need to prove that dss(P,Ri,) = i, and dww(P,Ri,) ≤ i. For dss(P,Ri,) = i, we

first can deduce that dss(P,Ri) ≤ i because there is already a strong path from P to Ri. We prove

the following by contradiction. If dss(P,Ri) < i, we can concatenate this πss(P,Ri) with the rest

of πss(Ri, Q) and get a strong path shorter than z. This contradicts the fact that z is already the

shortest strong path from P to Q. Therefore, dss(P,Ri) = i. This does not hold for πww(P,Ri)

60

because πww(P,Ri) and πww(Ri, Q) cannot, in general, be concatenated to be a weak path from P

to Q. This is illustrated in the following discussion. �

The surprising part of Theorem 27 is the last part, that dww(P,Ri) can be less than i. Figure 4.5

illustrates how this can happen. The shortest weak path from P to Q passes through R1 and then

R2 but there is weak path directly from P to R2 so dww(P,R2) = 1 even though R2 is distance 2

from P on the shortest path to Q. As the figure shows, this happens because the path directly from

P to R2 intersects with R2 in a state-set (X) from which Q cannot be reached.

P

ω1

PREω1
R1

PREω2

ω2

R2

PREω3

Q

R3

ω3

PREω4

X
ω4

Figure 4.5: The shortest weak path from P to R2 on the way to Q is not necessarily the shortest
weak path from P to R2.

Because dww(Ri, Q) = dss(Ri, Q) = z− i, systems like HIDA* [18] and Hierarchical A* [21],

which compute abstract distances by searching in the forward direction (from start to goal), will

correctly calcuate dww or dss for methods that abstract states (or state-sets) by mapping them to

supersets.

Definition 21 (Simple Space) Let S = (S,Ω) be a state space and SS = (2S ,Ω) the state-set

space induced by S. State-set P ∈ SS is “simple” if for all state-sets Q and R reachable from P ,

either Q = R or Q ∩R = ∅. SS is simple if all state-sets P ∈ SS are simple.

Theorem 28 Let S = (S,Ω) be a state space, P and Q state-sets w.r.t. S, P a simple state-set,

π = (ω1, ω2, . . . , ωz) ∈ Ω+ a weak path from P to Q, and Ri the ith intermediate state-set along

the path (i.e., Ri = (ω1, ω2, . . . , ωi)(P) for i ∈ {1, . . . , z − 1}). Then dww(P,Ri,) = i.

Proof. Because P is a simple state-set, if there exists an operator sequence π1 which can generate a

weak path from P to Ri, then π1(P) = Ri. We denote the length of this weak path as dπ1(P,Ri).

We prove the following using contradiction. If dπ1
(P,Ri) is shorter than dww(P,Ri) = i, then we

can concatenate π1 with operator sequence (ωi+1, · · · , ωz) and get a new weak path from P to Q

which is shorter than dww(P,Q). Since dww(P,Q) is already the shortest weak path from P to Q,

the length of weak path dπ1
(P,Ri) cannot be less than i. Therefore i is the shortest possible length

of a weak path from P to Ri. Thus dww(P,Ri) = i. �

61

4.2.1 Inverting Operators and Paths

Definition 22 (Inverse Operator) Let S = (S,Ω) be a state space and ω ∈ Ω an operator. The

inverse of ω, denoted ω−1, is defined to be the state multimapping, ω−1 : POSTω → PREω , such

that, for any state r ∈ POSTω , ω−1(r) is defined to be {s ∈ PREω | r ∈ ω(s)}. If r /∈ POSTω
then ω−1(r) is defined to be ∅.

The definition immediately implies the following.

Lemma 29 Let S = (S,Ω) be a state space and ω ∈ Ω an operator. Then:

1. ω−1 is an operator in the sense of Definition 11.

2. (ω−1)−1 = ω, the inverse of ω−1, is ω.

3. For any state s ∈ PREω and any state t ∈ ω(s), s ∈ ω−1(t).

4. PREω−1 = POSTω .

5. POSTω−1 = PREω .

6. For any state-set P to which ω is strongly/weakly applicable, ω−1 is strongly applicable to

ω(P) and (P ∩ PREω) ⊆ ω−1(ω(P)).

7. For any state-set P to which ω−1 is strongly/weakly applicable, ω is strongly applicable to

ω−1(P) and (P ∩ POSTω) ⊆ ω(ω−1(P)).

Proof.

• Lemma 1, 3, 4, 5 follow immediately from Definition 11 and Definition 22.

• For Lemma 2, first, (ω−1)−1 : PREω → POSTω . Second, we have:

(ω−1)−1(s) = {r ∈ POSTω|s ∈ ω−1(r)}

= {r ∈ POSTω|s ∈ PREω, r ∈ ω(s)}

= {r ∈ POSTω|r ∈ ω(s)}

= ω(s)

�

• For Lemma 6, ω−1 is strongly applicable to ω(P) because ω(P) ⊆ POSTω and PREω−1 =

POSTω . (P ∩ PREω) ⊆ ω−1(ω(P)) follows immediately from Definition 22. Lemma 7

follows from Lemma 6 and Lemma 2.

Definition 23 (True Inverse) Let S = (S,Ω) be a state space and ω an operator. ω is said to be

a true inverse if ω(ω−1(P)) = P for every state-set P ⊆ POSTω , and ω−1 is said to be a true

inverse if ω−1(ω(P)) = P for every state-set P ⊆ PREω .

62

The last two parts of Lemma 29 show that ω−1 in not guaranteed to be a true inverse of ω

and that neither is ω guaranteed to be a true inverse of ω−1. To be true inverses they should exactly

reverse each other’s actions, which would require (P ∩PREω) = ω−1(ω(P)) and (P ∩POSTω) =

ω(ω−1(P)). The following example shows that ω is not guaranteed to be a true inverse.

Example 30 Assuming in a state space where D1 = D2 = {1, 2, 3}, State-set P only consists

of one state 〈2, 2〉. Applying operator ω : 〈A,A〉 → 〈1, 1〉, ω(P) = {〈1, 1〉}. ω−1(ω(P)) =

{〈1, 1〉, 〈2, 2〉, 〈3, 3〉} according to Definition 22. In this case (P ∩PREω) ⊂ ω−1(ω(P)) and ω−1

is not a true inverse. We can also create an example which shows ω is not a true inverse.

Note that it is possible for one of ω and ω−1 to be a true inverse and the other one not.

Example 31 In the previous example setting, let ω−1 : 〈1, 1〉 → 〈A,A〉. For state-set Q = {〈1, 1〉}

we have (Q ∩ POSTω) = ω(ω−1(Q)). ω is a true inverse but ω−1 is not.

Theorem 32 (Inverses of Weak Paths) Let S = (S,Ω) be a state space, P a state-set, π =

〈ω1, . . . , ωk〉 an operator sequence that is weakly applicable to P , and Q any state-set such that

Q ∩ π(P) 6= ∅. Then π−1 = 〈ω−1k , . . . , ω−11 〉 is a weak path from Q to P .

Proof. If π = 〈ω1, . . . , ωk〉 is an operator sequence that is weakly applicable to P andQ∩π(P) 6= ∅,

there must exist a state sequence L = 〈s0, . . . , sk〉 such that s0 ∈ P , sk ∈ Q and si+1 = ωi(si)

for i ∈ {0, . . . , k − 1} according to Theorem 21. If we apply the inverse operator sequence π−1 =

〈ω−1k , . . . , ω−11 〉 to sk, we will have L−1 = 〈sk, . . . , s1〉 according to Lemma 29.6 , which is the

reverse state sequence of L. Again, because sk ∈ Q and s1 ∈ P , π−1 is an weak path from Q to P .

�

The equivalent theorem for strong paths does not hold.

4.2.2 Challenge of Building a Pattern Database With State-sets

Pattern Databases (PDBs) [5, 6, 23] are a powerful tool for heuristic search and planning. A PDB is a

lookup table containing the distance-to-goal for each abstract state. When a heuristic value is needed

for a state s, we search for the abstract state of s, φ(s), in the PDB and return the corresponding

value. A PDB is generated by searching backward from the abstract goal state and saving the

distance from every abstract state it reaches from the abstract goal state. Since a PDB is a good tool

for heuristic search and planning, we would like to see how they fit in the state-set search theory.

Even though state-set theory provides theoretical analysis of searching with state-sets, which can

be considered as abstract state in the PDB terminology, this theory cannot help much in practical

aspects of building a PDB. This is because the theory assumes there is always a compact way to

represent a set of states, but representing an arbitrary set of states compactly is, in general, infeasi-

ble [26]. Assuming g is a goal state, any state-set that is one step away from g can be represented

as

ω−1(g) = {s|ω(s) = g}

63

for any operator ω. However, in general it is impossible to represent {s|ω(s) = g} compactly thus

a PDB for state-set will not, in general, be practical.

4.3 Planning as State-Set Search

Bäckström [1] describes two planning formalisms that explicitly support reasoning about state-sets

(called partial states by Bäckström), Grounded TWEAK and SAS+. Although these are planning

formalisms, and not planning systems, they formally define the semantics of operator applicability

and goal testing. The following theorems show that in both formalisms strong matching is used for

both operator applicability and goal testing.

Theorem 33 SAS+, as described by Backstrom [1], uses strong matching for testing operator ap-

plicability and goal satisfaction.

Proof Sketch. States in SAS+ are exactly as we define states in Definition 2: vectors of a fixed

length, with each position in the vector having its value drawn from a finite set of possible values.

In addition, SAS+ has a special symbol (u) that allows a state to specify that the value in one or

more of its positions is unknown. An SAS+ state with one or more u values therefore represents the

set of states which agree on the known values and have all possible combinations of values for the

unknown positions. This feature resembles the Partial-State technique discussed in Section 3.4.

Operator preconditions, in our sense, are divided into preconditions and prevail conditions in

SAS+, but here we will call them all preconditions. An SAS+ state s satisfies the preconditions p of

an operator if the values specified by p are known in s. From a state-set point of view, this means

that s must be a subset of p (having known values that agree with those specified in p, and possibly

more known values, means that s represents a subset of the states that p represents). Hence, SAS+

does strong matching to determine if an operator applies to a state. The goal is defined exactly like

a precondition, and matching a state to the goal is done exactly as matching a state to a precondition

is done, hence SAS+ also does strong matching to determine if a state matches the goal. �

Theorem 34 Grounded TWEAK, as described by Backstrom [1], uses strong matching for testing

operator applicability and goal satisfaction.

Proof Sketch. In Grounded TWEAK a state is a set of literals, positive or negative facts that are

known to hold in the state. Atoms that have no corresponding literal in a state may be either true or

false. Hence, every “state” s in Grounded TWEAK represents the set of states, in our perspective,

for which the literals in s are true and the atoms having no corresponding literal in s have all pos-

sible combinations of truth value assignments. Operator preconditions are also sets of literals, and

precondition p is satisfied by state s if s contains all the literals in p. From a state-set point of view,

this means that s must be a subset of p (having all the literals in p, and possibly more, means that s

represents a subset of the states that p represents). In other words, Grounded TWEAK does strong

64

matching to determine if an operator applies to a state. The goal is also a set of literals, and state s

satisfies the goal if s contains all the literals in the goal. Again, this is strong matching. �

In the following analysis, it is revealed that the hm heuristics [14] used in regression planning

are actually trying to find a suboptimal strong path from the start state to the set of goal states.

Regression planning is a kind of planning in which the search for a plan is done in a backward

fashion. In the following discussion, we will use propositional the STRIPS planning [27] formalism

to describe states and operators. In this formalism, a state is represented by a set of atoms initially

true. An operator consists of three set of atoms: pre(a), add(a) and del(a). Each operator is

associated with a cost cost(a). The operators + and − are union and set subtract operations on

atoms of a state. In the hm method, each operator a can be applied on state s in a backward fashion

iff s∩del(a) = ∅. The result applying a to s in the backward fashion is s′ = (s−add(a))+pre(a).

The hm heuristic is defined as follows, R(p) is the search space of a regression planning problem

P :

hm(s) =

 0 ifs ⊆ s0
mins′:(s,a,s′)∈R(P) h

m(s′) + cost(a) if |s| ≤ m
maxs′⊆s,|s′|≤m h

m(s′) otherwise

Note that all lower case letters above refer to sets of atoms rather than state-sets, thus all operators

are set operators. In the following proof, we use capitalized letter such as P,Q to represent state-

sets, and use the notation Lit(P) to represent the set of atoms that describe P . In this case, P ⊆

Q⇔ Lit(P) ⊇ Lit(Q).

Theorem 35 The length of the shortest path from P to Q found by regression planning, as defined

by Haslum and Geffner [14], is dss(P,Q).

Proof. This proof is illustrated by Figure 4.6. Let ω′ be the backward operator defined in the

regression planning method for operator ω, let O′ = 〈ω′k, . . . , ω′1〉 be the path found by regression

planning from Q to P , with the states along the path being 〈Q,Qk, . . . , Q1〉. Thus, O′(Q) =

Q1 ⊇ P . It looks different from the definition of hm above because here P is a state-set, if P has

more atoms than Q1, it is actually a smaller state-set. From the definition of ω′, we can see that

ω(ω′(S)) ⊆ S. This is because ω(ω′(S)) = (Lit(S)− add(a)) + pre(a) + add(a)− del(a) could

contain more atoms than Lit(s) so that it is a smaller state-set. Next, we are going to prove that

O = 〈ω1, . . . , ωk〉 is strongly applicable to P . First, we will prove that O is strongly applicable

to Q1 and O(Q1) ⊆ Q so that O is also strongly applicable to P and O(P) ⊆ Q. The following

is proved by mathematical induction. Base case: Because Q1 = ω′1(Q2), applying ω1 on both

sides, we get ω1(Q1) = ω1(ω′1(Q2)) ⊆ Q2. We denote ω1(Q1) by Q′2, so Q′2 ⊆ Q2. Inductive

hypothesis: assume in a certain position of the forward path, we have Q′i ⊆ Qi. We want to prove

that ωi(Q′i) ⊆ Qi+1. Applying ωi to Qi, we have ωi(Qi) = ωi(ω
−1
i (Qi+1)) ⊆ Qi+1, so we have

ωi(Q
′
i) ⊆ Qi+1. Because the base case and inductive step both hold,O = 〈ω1, . . . , ωk〉 is applicable

on Q1 and O(Q1) ⊆ Q. Since P ⊆ Q1, we have O(P) ⊆ Q. This is a strong path because a state

65

S must contain all the atoms in an operator’s precondition, which makes state-set PREω ⊇ S. This

conforms to the definition of a strong path.

�

Figure 4.6: Backward and corresponding forward strong path calculated by regression planning.
The dashed line in the middle represents omitted state-sets Q3 to Qk−1 and Q′3 to Q′k−1.

Corollary 36 hm(P,Q), as defined by Haslum and Geffner [14], is a lower bound on dss(P,Q).

Proof. This follows immediately from Theorem 35 and Theorem 22. If m is small enough such that

hm(s) = maxs′⊆s,|s′|≤m h
m(s′) is used, this is equivalent to replacing the strong path from S (S is

the state-set equivalent of s) to Q with a strong path from a superset of S to Q.

�

If the same idea was used in forward planning, i.e., replacing a state R reached while searching

forward from P to Q with a superset R′ ⊇ R, the distance calculated would be an upper bound on

dss(P,Q), not a lower bound (see Theorem 24).

4.4 The State-Set View of Abstraction

In order to formally analyze existing abstraction systems, we will first review the definition of them.

The following formalization is a blend of ideas from Zilles and Holte [35] and Yang et al. [33] and

is equivalent to the definition we introduced in Chapter 2.

Definition 24 A vector state space is a triple S = (k, {D1, D2, . . . , Dk},Ω) where k ∈ N, each

Di is a finite set called a “domain”, and Ω is a set of operators. The set of states in S is S =

D1 ×D2 × . . .×Dk.

We consider two types of abstraction of vector state spaces.

Domain abstraction. A domain abstractionψ of vector state space S = (k, {D1, D2, . . . , Dk},Ω)

is defined by a set {ψ1, ψ2, . . . , ψk} of mappings ψi : Di → Ei where Ei ⊆ Di and,

for at least one i, Ei 6= Di. State 〈σ1, . . . , σk〉 ∈ D1 ×D2 × . . .×Dk is mapped by ψ

to abstract state 〈ψ1(σ1), . . . , ψk(σk)〉.

66

Projection. A projection abstractionψ of vector state space S = (k, {D1, D2, . . . , Dk},Ω)

is defined by a subset {i1, . . . , im} ⊂ {1, . . . , k}. State 〈σ1, . . . , σk〉 ∈ D1 × D2 ×

. . .×Dk is mapped by ψ to abstract state 〈σi1 , . . . , σim〉.

In both types of abstraction, each abstract state represents a set of states, i.e., is a state-set over

D1 × D2 × . . . × Dk. The abstract state spaces created by both types of abstraction are simple

as defined in Definition 21. For projection this follows from the fact that if two abstract states are

not the same, they must differ in the value of at least one variable. No state can have two different

values for the same variable and therefore two different state-sets created by projection cannot have

any state in common.

The abstract state spaces created by domain abstraction are also simple, for a similar reason.

Two different abstract states, α1 and α2, created by the same domain abstraction ψ must differ in at

least one position. Let i be a position in which they differ (α1[i] 6= α2[i]). Because ψi maps each

value in the original domain Di to one value in the abstract domain Ei, α1[i] 6= α2[i] implies that

there cannot exist a state s such that ψi(s[i]) = α1[i] and ψi(s[i]) = α2[i]. Therefore there is no s

mapped to both α1 and α2, so α1 ∩ α2 = ∅.

If ψ is any abstraction mapping of state space S, and ω is an operator that can be applied to

state s, then it is required by a property of abstraction, the state space homomorphism, that ω be

applicable to ψ(s), the abstract state corresponding to s. This immediately implies that abstraction

systems use weak matching to define if an operator is applicable, since there may be another state,

t, such that ψ(t) = ψ(s) but ω is not applicable to t.

A path from P to Q in an abstract space is a sequence of operators π such that π(P) = Q.

This requirement for exact matching is more demanding than strong matching. However, for the

types of abstraction we are considering (projection and domain abstraction) exact matching, strong

matching, and weak matching are all equivalent when used to test if π(P) matches Q.

Having concluded that projection and domain abstraction systems use weak matching to test

operator applicability and the equivalent of weak matching to test if π(P) matchesQ, one is tempted

to conclude that these systems compute dww. This is not true: dabs(P,Q), the distance from P to

Q computed by a projection or domain abstraction system, can be strictly smaller than dww, as the

following example illustrates.

Example 37 A state is a 3-tuple of binary variables and there are only two operators, ω1 : 〈1, 1, 1〉 →

〈0, 0, 1〉 and ω2 : 〈1, 0, 1〉 → 〈1, 0, 0〉. If the first state variable is projected out, states 〈0, 0, 1〉 and

〈1, 0, 1〉 are mapped to the same abstract state, 〈0, 1〉, creating a path of length 2 from abstract

state 〈1, 1〉 to 〈0, 0〉: ω1(〈1, 1〉) = 〈0, 1〉 and ω2(〈0, 1〉) = 〈0, 0〉. Thus dabs(〈1, 1〉, 〈0, 0〉) = 2.

However, dww(〈1, 1〉, 〈0, 0〉) = ∞. The difference in distances is because of a subtle difference

between how ω1(〈1, 1〉) is defined in the projected space and how it is defined from a state-set point

of view. In the latter, ω1(〈1, 1〉) is not 〈0, 1〉, it is 〈0, 0, 1〉. This is because 〈1, 1〉 denotes the state-set

67

{〈0, 1, 1〉, 〈1, 1, 1〉} and ω1 maps that state-set to the state-set {〈0, 0, 1〉}. No operator is applicable

to {〈0, 0, 1〉}, hence dww(〈1, 1〉, 〈0, 0〉) =∞.

An analogous example can be given to show that the distances computed by domain abstraction

systems can be strictly less than dww.

Example 38 The domain D of the state space in this example is {1, 2, 3, 4} and the length k of

a state vector is 2. Three states we picked in this space are: 〈1, 3〉, 〈1, 2〉, and 〈3, 3〉. There are

only two operators in this state space: ω1 : 〈1, 2〉 → 〈2, 1〉 and ω2 : 〈3, 1〉 → 〈3, 3〉. The domain

abstraction φ is defined as φ : (2, 3) → 4. In this case, the three states are mapped to two abstract

states 〈1, 4〉 and 〈4, 4〉. Operators are mapped to φ(ω1) : 〈1, 4〉 → 〈4, 1〉 and φ(ω2) : 〈4, 1〉 →

〈4, 4〉. Therefore, dφ(〈1, 4〉, 〈4, 4〉) = 2 but dww(〈1, 4〉, 〈4, 4〉) =∞.

We record these observations in the following theorem.

Theorem 39 Let dabs(P,Q) be the distance from P to Q computed by a projection or domain

abstraction system. Then dabs(P,Q) ≤ dww(P,Q) and there exist projections and domain abstrac-

tions such that dabs(P,Q) < dww(P,Q) for some P and Q.

Proof. dabs(P,Q) > dww(P,Q) is impossible because dabs is admissible and Theorem 25 estab-

lished that dww is the largest distance that is guaranteed to be admissible. Examples 37 and 38

prove the second part of the theorem. �

The reasoning underlying Examples 37 and 38 apply broadly: any state-set space that imposes

constraints on state-set reachability beyond those implied by the operator preconditions themselves

runs the risk of having to approximate the state-set produced by applying an operator with a superset

in order to enforce the extra constraints. Doing this can create paths that would not otherwise exist,

which can reduce distances and make state-sets reachable that would not be reachable otherwise

(“spurious states” [36]).

On the other hand, abstraction systems that exactly compute dww run a different risk: if operators

are able to reduce the cardinality of a state-set, as happens in Example 37, the number of reachable

state sets might become very large. In the worst case, a sequence of operator applications might lead

to a state in the original state space making the reachable portion of the abstract space a superset of

the original space. This can be viewed as the “problem” that hm solves in the context of regression

planning: when the cardinality of a state-set gets too small, its cardinality is increased artificially by

replacing it by a superset (actually, several supersets—see the next section). Here we see that the

same “problem” may occur in any abstraction system that attempts to compute dww.

4.5 Multimapping Revisited

The analogy with hm leads to a final point that may give an advantage to abstraction systems that

exactly compute dww over existing abstraction systems. When hm reaches a state-set P whose

68

cardinality is too small, it does not replace it with just one superset of a sufficiently large cardinality.

It enumerates all supersets of P having a sufficiently large cardinality and uses the maximum of

their distances to Q as a lower bound estimate for P ’s distance to Q. An abstraction system could

do exactly the same: instead of computing one superset (abstraction) of the given state-set P , several

could be computed and the maximum taken over all the distances thus computed. When the abstract

state spaces are simple, this idea is exactly equal to using multiple abstractions [17]. However, in

non-simple abstract spaces, a given state (or state-set) could have multiple abstract images that are

reachable from one another. This is exactly the idea of multimapping studied in Chapter 3. As we

saw in Chapter 3, multimapping can result in memory savings over having multiple non-overlapping

abstract spaces.

There is an additional reason to consider looking up several supersets of a given state (or state-

set). If a consistent heuristic is desired (e.g., if A* search is being done) doing just one lookup is

more likely to result in inconsistency than if several lookups are done. Figure 4.7 illustrates this.

Suppose a and b are two states (small letter inside circles A and B1 ∩ B2) and ω1(a)=b. h(a) is

computed as dww(A,G) = 3 (the operator sequence is ω1, ω2, ω3), whereA is a state-set containing

a and G is the goal state-set. If h(b) is computed as dww(B2, G) = 1, an inconsistency in the

heuristic values will occur. If it were computed as dww(B1, G) or max(dww(B1, G), dww(B2, G))

the heuristic values would be consistent.

A

ω1

PREω1
B1 PREω2

ω2

PREω3

G

ω3
B2

PREω4

ω4

a
b

Figure 4.7: Potential for dwwto produce an inconsistent heuristic.

4.6 Conclusions

This chapter presents the state-set search theory which investigates the scenario that a set of states

are manipulated as a single state-set by a search algorithm. Using this theory, we could explain

behaviour of some existing abstraction techniques and planning systems. Based on this theory, we

have found that dww, a path using weak matching and weak goal testing, is the maximum admissible

distance between two state-sets. This can be used to generate strong heuristics.

69

Chapter 5

Conclusions

In this thesis, we presented a new multimapping abstraction framework which allows a state in the

original space to be mapped to multiple abstract states within a single abstract space. This technique

is a framework rather than a specific method, thus there should be numerous ways to implement

it. We have also developed three enhancement techniques for the framework, namely, (1) choosing

an appropriate Mapping Factor, (2) remapping and (3) goal aggregation. Choosing an appropri-

ate Mapping Factor is to choose the number of abstract states a state in the original space will be

mapped to. Bad choice of Mapping Factor will degrade the quality of heuristic generated by the

multimapping domain abstraction. Remapping targets the problem that the number of abstract goal

states increases exponentially if multimapping is applied at every level of an abstraction hierarchy.

It solves this problem by mapping abstract states which are images of the same state to one ab-

stract state at the next higher level. Goal aggregation prevents abstract goal states from being spread

out in the abstract space by deliberately mapping abstract goal states close together in the abstract

space. Supported by experiment results, the implementation with all three technique together per-

formed best among implementations with only a subset of the three techniques. To implement this

framework, we have introduced two techniques: multimapping domain abstraction and Partial-State

abstraction. Multimapping domain abstraction was thoroughly investigated. It is a simple extension

of existing domain abstraction by using several domain abstraction functions together. We designed

extensive experiments to test the performance of it in terms of CPU time and memory consumption.

The results show that multimapping domain abstraction outperforms traditional domain abstraction

with a single abstract space and with multiple abstract spaces. Partial-State abstraction is a new

way of doing abstraction. The basic idea of Partial-State abstraction is to introduce variables in

the PSVN vector, allowing it to represent a set of states. For Partial-State abstraction, we only ran

limited experiments to test the technique. The results show that Partial-State cannot completely beat

traditional domain abstraction. Thus this technique still needs to be further improved.

Another contribution we made in the thesis is state-set search theory. This theory investigated the

scenario that a set of states in the original space is manipulated as a state-set by a search algorithm. In

this theory, we formally defined and analyzed the scenario and showed that it gives a new perspective

70

on abstraction and planning. The most important finding of the theory is that there are naturally four

ways to define the distance between state-sets. Among these four kinds of distance, we find that the

cost of the shortest weak path between two state-sets P and Q, namely dww(P,Q) , is the largest

possible admissible estimate for the true distance between any pair of states in P andQ respectively.

5.1 Limitations

In the multimapping abstraction framework, for each original state, the multiple abstract states for it

are required to be contained in the same abstract space. However, this requires careful design of the

multimapping abstraction function and knowledge of the domain this technique is working on. If we

cannot design an abstraction function meeting this requirement, the implementation would just act

like multiple independent abstractions. In this case, the features and advantages of multimapping

abstraction will disappear.

Combining enhancement techniques can also be problematic. As discussed in Section 3.2.4,

combining goal aggregation and remapping will be impossible under constraints of certain granular-

ity. The performance of multimapping greatly depends on those enhancement techniques and losing

any of them will cause noticeable increase in CPU time and memory usage.

Another limitation concerns the mapping factor. The choosing of a mapping factor is quite

complicated because both high and low mapping factor will causes heuristic values to decrease. We

do not have a theory of choosing a good mapping factor so it must be chosen based on experimental

results. The best mapping factor could depend on the specific domain. The practice of using 3 as

mapping factor for all domains is not guaranteed to be the best approach to implement multimapping

abstraction but only for convenience for our experiments.

The limitation for state-set theory is that even though the dww is guaranteed to be the best possi-

ble admissible abstract distance measurement, its implementation could be problematic because of

the shrinking problem described in Section 4.4 and Section 3.4.2. The state-sets along a weak path

could contain fewer and fewer states and finally contain only one state. In this case, the search is

done in the original space and state-sets can no longer be used as abstract states.

5.2 Final Words

Heuristic search is an important method to solve many real world problems. Generating better

heuristics is a powerful way to speed up heuristic search. In this thesis, we first developed a new

framework for an abstraction system. With strong evidence from extensive experiments, an imple-

mentation of our system proved to outperform two existing popular abstraction systems in terms

of both CPU time and memory consumption. We also developed the state-set search theory which

helps us to better understand abstraction techniques and planning systems.

71

Bibliography

[1] Christer Bäckström. Expressive equivalence of planning formalisms. Artificial Intelligence,
76:17–34, 1995.

[2] Neil Burch and Robert C. Holte. Automatic move pruning in general single-player games.
In Daniel Borrajo, Maxim Likhachev, and Carlos Linares López, editors, SOCS. AAAI Press,
2011.

[3] Ting Chen and Steven S. Skiena. Sorting with fixed-length reversals. Discrete Applied Math-
ematics, 71:269–295, 1996.

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[5] Joseph C. Culberson and Jonathan Schaeffer. Efficiently searching the 15-puzzle. Technical
Report 94-08, Department of Computing Science, University of Alberta, 1994.

[6] Joseph C. Culberson and Jonathan Schaeffer. Searching with pattern databases. In Proceedings
of the Canadian Conference on Artificial Intelligence, volume 1081 of LNAI, pages 402–416.
Springer, 1996.

[7] Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[8] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE MATHE-
MATIK, 1(1):269–271, 1959.

[9] Harry Dweighter. Problem E2569. American Mathematical Monthly, 82:1010, 1975.

[10] Stefan Edelkamp. Planning with pattern databases. In PROCEEDINGS OF THE 6TH EURO-
PEAN CONFERENCE ON PLANNING (ECP-01), pages 13–24, 2001.

[11] Stefan Edelkamp and Richard E. Korf. The branching factor of regular search spaces. In
AAAI/IAAI, pages 299–304, 1998.

[12] Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive pattern database heuristics. Journal
of Artificial Intelligence Research (JAIR), 22:279–318, 2004.

[13] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
SCC-4(2):100–107, 1968.

[14] Patrik Haslum and Héctor Geffner. Admissible heuristics for optimal planning. In Proceedings
of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS 2000),
pages 140–149, 2000.

[15] István Hernádvölgyi and R. C. Holte. Steps towards the automatic creation of search heuristics.
Technical Report TR04-02, Department of Computing Science, University of Alberta, 2004.

[16] István Hernádvölgyi and Robert Holte. PSVN: A vector representation for production systems.
Technical Report TR-99-04, Department of Computer Science, University of Ottawa, 1999.

[17] Robert C. Holte, Ariel Felner, Jack Newton, Ram Meshulam, and David Furcy. Maximizing
over multiple pattern databases speeds up heuristic search. Artificial Intelligence, 170(16-
17):1123–1136, 2006.

72

[18] Robert C. Holte, Jeffery Grajkowski, and Brian Tanner. Hierarchical heuristic search revis-
ited. In Proceedings of the 6th International Symposium on Abstraction, Reformulation and
Approximation (SARA 2005), volume 3607 of LNAI, pages 121–133. Springer, 2005.

[19] Robert C. Holte and Istvn T. Herndvolgyi. A space-time tradeoff for memory-based heuristics.
In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99, pages
704–709. AAAI Press, 1999.

[20] Robert C. Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David Furcy. Multiple
pattern databases. In ICAPS, pages 122–131, 2004.

[21] Robert C. Holte, M. B. Perez, Robert M. Zimmer, and Alan J. MacDonald. Hierarchical A*:
Searching abstraction hierarchies efficiently. In Proceedings of the 13th AAAI Conference on
Artificial Intelligence (AAAI 1996), pages 530–535, 1996.

[22] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

[23] Richard E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases. In Pro-
ceedings of the 14th AAAI Conference on Artificial Intelligence (AAAI 1997), pages 700–705,
1997.

[24] Richard E. Korf and Ariel Felner. Disjoint pattern database heuristics. Artificial Intelligence,
134:9–22, 2002.

[25] Richard E. Korf, Michael Reid, and Stefan Edelkamp. Time complexity of iterative-deepening-
a*. Artificial Intelligence, 129(1-2):199–218, 2001.

[26] Bhaskara Marthi, Stuart J. Russell, and Jason Wolfe. Angelic semantics for high-level actions.
In ICAPS, pages 232–239, 2007.

[27] Nils J. Nilsson and Richard E. Fikes. Strips: A new approach to the application of theorem
proving to problem solving. Artifical Intelligence, 2(3-4):189–208, 1971. this paper about
strips is the foundation of any further planning research.

[28] Bo Pang and Robert C. Holte. State-set search. In Symposium on Combinatorial Search, 2011.

[29] Bo Pang and Robert C. Holte. Multimapping abstractions and hierarchical heuristic search. In
Symposium on Combinatorial Search, 2012.

[30] Ira Pohl. The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic
weighting and computational issues in heuristic problem solving. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence (IJCAI 1973), pages 12–17, 1973.

[31] John K. Slaney and Sylvie Thiébaux. Blocks world revisited. Artificial Intelligence, 125(1-
2):119–153, 2001.

[32] Jerry Slocum and Dic Sonneveld. The 15 Puzzle. Slocum Puzzle Foundation, 2006.

[33] Fan Yang, Joseph Culberson, Robert Holte, Uzi Zahavi, and Ariel Felner. A general theory
of additive state space abstractions. Journal of Artificial Intelligence Research, 32:631–662,
2008.

[34] Uzi Zahavi, Ariel Felner, Robert C. Holte, and Jonathan Schaeffer. Duality in permutation
state spaces and the dual search algorithm. Artificial Intelligence, 172(4-5):514–540, 2008.

[35] Sandra Zilles and Robert C. Holte. Downward path preserving state space abstractions (ex-
tended abstract). In Vadim Bulitko and J. Christopher Beck, editors, Symposium on Abstrac-
tion, Reformulation, and Approximation, 2009.

[36] Sandra Zilles and Robert C. Holte. The computational complexity of avoiding spurious states
in state space abstraction. Artificial Intelligence, 174(14):1072–1092, 2010.

73

Appendix A

Abstractions for Large Domains

A.1 15-Puzzle
φ2 to φ9 are all the same for all abstractions for 15-Puzzle. We only describe φ1 in the following subsections.

φ2 to φ9
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1
φ8(s) 1 1 1 1 1 1 1
φ9(s) 1 1 1 1 1 1 1 1

A.1.1 Domain Abstraction
Domain Abstraction #1

0 1 1 3
2 1 1 4
2 1 1 5
6 7 8 9

Domain Abstraction #2
0 2 2 3
1 1 1 4
1 1 1 5
6 7 8 9

Domain Abstraction #3
0 1 1 1
2 1 1 1
2 3 4 5
6 7 8 9

74

Domain Abstraction #4
0 2 2 3
1 1 4 5
1 1 6 7
1 1 8 9

Domain Abstraction #5
0 1 1 3
2 2 1 4
1 1 1 5
6 7 8 9

A.1.2 Multimapping Abstraction
Multimapping Abstraction #1

0 1 1 3 0 1 1 3 0 2 1 3
2 1 1 4 1 2 1 4 1 1 1 4
2 1 1 5 2 1 1 5 2 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #2

0 2 2 3 0 1 2 3 0 1 2 3
1 1 1 4 2 1 1 4 1 2 1 4
1 1 1 5 1 1 1 5 1 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #3

0 1 1 1 0 1 1 1 0 2 1 1
2 1 1 1 1 2 1 1 1 1 1 1
2 3 4 5 2 3 4 5 2 3 4 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #4

0 2 2 3 0 1 2 3 0 1 2 3
1 1 4 5 2 1 4 5 1 2 4 5
1 1 6 7 1 1 6 7 1 1 6 7
1 1 8 9 1 1 8 9 1 1 8 9

Multimapping Abstraction #5

0 1 1 3 0 2 1 3 0 2 1 3
2 2 1 4 1 2 1 4 2 1 1 4
1 1 1 5 1 1 1 5 1 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

A.1.3 Multiple Abstraction
From φ2 to φ7:

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1

75

Multiple Abstraction #1

0 1 1 1 0 2 3 4 0 1 1 2
1 1 1 1 5 6 7 8 1 1 1 3
1 2 3 4 1 1 1 1 1 1 1 4
5 6 7 8 1 1 1 1 5 6 7 8

Multiple Abstraction #2

0 1 1 2 0 1 2 1 0 1 1 1
1 1 1 3 3 4 5 1 1 1 1 1
1 1 1 4 6 7 8 1 1 2 3 4
5 6 7 8 1 1 1 1 5 6 7 8

Multiple Abstraction #3

0 1 1 1 0 1 2 3 0 1 2 3
1 1 1 2 4 5 6 1 1 1 1 4
3 1 1 4 1 7 8 1 1 1 1 5
5 6 7 8 1 1 1 1 1 6 7 8

Multiple Abstraction #4

0 1 2 3 0 1 1 1 0 1 1 2
1 1 1 4 2 3 4 1 1 1 3 4
1 1 1 5 5 6 7 1 1 1 5 6
1 6 7 8 8 1 1 1 1 1 7 8

Multiple Abstraction #5

0 1 1 2 0 1 2 1 0 1 1 1
1 1 3 4 3 4 1 1 1 1 1 2
1 1 5 6 5 6 1 1 3 1 1 4
1 1 7 8 7 8 1 1 5 6 7 8

A.2 Glued 15-Puzzle
φ2 to φ9 are all the same for all abstractions for 15-Puzzle. We only describe φ1 in the following subsections.

φ2 to φ9
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1
φ8(s) 1 1 1 1 1 1 1
φ9(s) 1 1 1 1 1 1 1 1

A.2.1 Domain Abstraction
Domain Abstraction #1

0 1 1 3
2 1 1 4
2 1 1 5
6 7 8 9

76

Domain Abstraction #2
0 2 2 3
1 1 1 4
1 1 1 5
6 7 8 9

Domain Abstraction #3
0 1 1 1
2 1 1 1
2 3 4 5
6 7 8 9

Domain Abstraction #4
0 2 2 1
1 1 1 1
3 4 1 5
6 7 8 9

Domain Abstraction #5
0 1 1 3
2 2 1 4
1 1 1 5
6 7 8 9

A.2.2 Multimapping Abstraction
Multimapping Abstraction #1

0 1 1 3 0 1 1 3 0 2 1 3
2 1 1 4 1 2 1 4 1 1 1 4
2 1 1 5 2 1 1 5 2 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #2

0 2 2 3 0 1 2 3 0 1 2 3
1 1 1 4 2 1 1 4 1 2 1 4
1 1 1 5 1 1 1 5 1 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #3

0 1 1 1 0 1 1 1 0 2 1 1
2 1 1 1 1 2 1 1 1 1 1 1
2 3 4 5 2 3 4 5 2 3 4 5
6 7 8 9 6 7 8 9 6 7 8 9

Multimapping Abstraction #4

0 2 2 1 0 1 2 1 0 1 2 1
1 1 1 1 2 1 1 1 1 2 1 1
3 4 1 5 3 4 1 5 3 4 1 5
6 7 8 9 6 7 8 9 6 7 8 9

77

Multimapping Abstraction #5

0 1 1 3 0 2 1 3 0 2 1 3
2 2 1 4 1 2 1 4 2 1 1 4
1 1 1 5 1 1 1 5 1 1 1 5
6 7 8 9 6 7 8 9 6 7 8 9

A.2.3 Multiple Abstraction
Level 1 abstraction φ1 is the same as for multimapping abstraction.

A.3 14-Pancake
φ2 to φ8 are all the same for all abstractions for 15-Puzzle. We only describe φ1 in the following subsections.

φ2 to φ8
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1
φ8(s) 1 1 1 1 1 1 1

A.3.1 Domain Abstraction
Domain Abstraction #1

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1(s) 1 1 1 1 1 1 2 2 3 4 5 6 7 8

Domain Abstraction #2
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1(s) 1 1 2 2 2 2 2 2 3 4 5 6 7 8

Domain Abstraction #3
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1(s) 3 1 1 1 1 1 1 2 2 4 5 6 7 8

Domain Abstraction #4
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1(s) 3 1 1 2 2 2 2 2 2 4 5 6 7 8

Domain Abstraction #5
s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1(s) 3 4 1 1 1 1 1 1 2 2 5 6 7 8

A.3.2 Multimapping
Multimapping Abstraction #1

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 1 1 1 1 2 2 3 4 5 6 7 8
φ2
1(s) 2 1 1 1 1 1 1 2 3 4 5 6 7 8
φ3
1(s) 2 2 1 1 1 1 1 1 3 4 5 6 7 8

78

Multimapping Abstraction #2

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 2 2 2 2 2 2 3 4 5 6 7 8
φ2
1(s) 1 2 2 1 1 1 1 1 3 4 5 6 7 8
φ3
1(s) 2 2 1 1 2 2 2 2 3 4 5 6 7 8

Multimapping Abstraction #3

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 1 1 2 2 1 1 3 4 5 6 7 8
φ2
1(s) 2 1 1 1 1 2 1 1 3 4 5 6 7 8
φ3
1(s) 2 2 1 1 1 1 1 1 3 4 5 6 7 8

Multimapping Abstraction #4

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 1 2 2 1 1 1 3 4 5 6 7 8
φ2
1(s) 2 1 1 1 2 1 1 1 3 4 5 6 7 8
φ3
1(s) 1 2 2 1 1 1 1 1 3 4 5 6 7 8

Multimapping Abstraction #5

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 2 2 1 1 1 1 3 4 5 6 7 8
φ2
1(s) 2 1 1 2 1 1 1 1 3 4 5 6 7 8
φ3
1(s) 1 2 2 1 1 1 1 1 3 4 5 6 7 8

A.3.3 Multiple Abstraction
Level 1 abstraction φ1 is the same as for multimapping abstraction.

A.4 (15,4)-Topspin
φ2 to φ8

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1
φ8(s) 1 1 1 1 1 1 1

A.4.1 Domain Abstraction
We used the same domain abstractions as used in 14-Pancake

A.4.2 Multimapping Abstraction
Multimapping Abstraction #1

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 1 1 1 1 2 2 3 4 5 6 7 8
φ2
1(s) 1 1 1 1 2 2 1 1 3 4 5 6 7 8
φ3
1(s) 1 1 1 3 2 1 1 2 3 4 5 6 7 8

79

Multimapping Abstraction #2

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 1 1 2 2 2 2 2 2 3 4 5 6 7 8
φ2
1(s) 2 2 1 1 2 2 2 2 3 4 5 6 7 8
φ3
1(s) 1 2 2 2 1 2 2 2 3 4 5 6 7 8

Multimapping Abstraction #3

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 3 1 1 1 1 1 1 2 2 4 5 6 7 8
φ2
1(s) 3 1 1 1 1 2 2 1 1 4 5 6 7 8
φ3
1(s) 3 1 1 1 2 1 1 1 2 4 5 6 7 8

Multimapping Abstraction #4

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 3 1 1 2 2 2 2 2 2 4 5 6 7 8
φ2
1(s) 3 2 2 1 1 2 2 2 2 4 5 6 7 8
φ3
1(s) 3 1 2 2 2 1 2 2 2 4 5 6 7 8

Multimapping Abstraction #5

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
φ1
1(s) 3 4 1 1 1 1 1 1 2 2 5 6 7 8
φ2
1(s) 3 4 1 1 1 1 2 2 1 1 5 6 7 8
φ3
1(s) 3 4 1 1 1 2 1 1 1 2 5 6 7 8

A.4.3 Multiple Abstraction
Level 1 abstraction φ1 is the same as for multimapping abstraction.

A.5 (12,3)-Blocks World
φ2 to φ8

s 1 2 3 4 5 6 7 8 9 10 11 12
φ2(s) 1
φ3(s) 1 1
φ4(s) 1 1 1
φ5(s) 1 1 1 1
φ6(s) 1 1 1 1 1
φ7(s) 1 1 1 1 1 1
φ8(s) 1 1 1 1 1 1 1

A.5.1 Domain Abstraction
Domain Abstraction #1

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1(s) 1 1 1 1 1 2 3 4 5 6 7 8

Domain Abstraction #2
s 1 2 3 4 5 6 7 8 9 10 11 12
φ1(s) 2 3 4 5 6 7 8 1 1 1 1 1

80

Domain Abstraction #3
s 1 2 3 4 5 6 7 8 9 10 11 12
φ1(s) 2 3 4 5 1 1 1 1 1 6 7 8

Domain Abstraction #4
s 1 2 3 4 5 6 7 8 9 10 11 12
φ1(s) 1 2 1 3 1 4 1 5 1 6 7 8

Domain Abstraction #5
s 1 2 3 4 5 6 7 8 9 10 11 12
φ1(s) 2 1 3 1 4 1 5 1 6 1 7 8

A.5.2 Multimapping Abstraction
Multimapping Abstraction #1

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 1 1 1 1 1 2 3 4 5 6 7 8
φ2
1(s) 2 1 1 1 1 1 3 4 5 5 6 8
φ3
1(s) 1 2 1 1 1 1 3 4 5 6 7 8

Multimapping Abstraction #2

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 2 3 4 5 6 7 8 1 1 1 1 1
φ2
1(s) 1 3 4 5 6 7 8 2 1 1 1 1
φ3
1(s) 1 3 4 5 6 7 8 1 2 1 1 1

Multimapping Abstraction #3

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 2 3 4 5 1 1 1 1 1 6 7 8
φ2
1(s) 1 3 4 5 2 1 1 1 1 6 7 8
φ3
1(s) 1 3 4 5 1 1 2 1 1 6 7 8

Multimapping Abstraction #4

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 1 2 1 3 1 4 1 5 1 6 7 8
φ2
1(s) 2 1 1 3 1 4 1 5 1 6 7 8
φ3
1(s) 1 1 2 3 1 4 1 5 1 6 7 8

Multimapping Abstraction #5

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 2 1 3 1 4 1 5 1 6 1 7 8
φ2
1(s) 1 2 3 1 4 1 5 1 6 1 7 8
φ3
1(s) 1 1 3 1 4 1 5 2 6 1 7 8

A.5.3 Multiple Abstraction
Level 1 abstraction φ1 is the same as for multimapping abstraction.

81

A.5.4 Multimapping Abstraction (GARM)
Multimapping Abstraction #1

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 3 4 5 6 7 8 1 1 1 1 1 2
φ2
1(s) 3 4 5 6 7 8 1 1 1 1 2 1
φ3
1(s) 3 4 5 6 7 8 1 1 1 2 1 1

Multimapping Abstraction #2

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 1 1 1 3 4 5 6 7 8 1 1 2
φ2
1(s) 1 1 1 3 4 5 6 7 8 1 2 1
φ3
1(s) 1 1 1 3 4 5 6 7 8 2 1 1

Multimapping Abstraction #3

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 1 2 3 1 1 1 7 8 9 1 1 2
φ2
1(s) 1 2 3 1 1 1 7 8 9 1 2 1
φ3
1(s) 1 2 3 1 1 1 7 8 9 2 1 1

Multimapping Abstraction #4

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 3 1 1 1 4 5 6 7 8 1 1 2
φ2
1(s) 3 1 1 1 4 5 6 7 8 1 2 1
φ3
1(s) 3 1 1 1 4 5 6 7 8 2 1 1

Multimapping Abstraction #5

s 1 2 3 4 5 6 7 8 9 10 11 12
φ1
1(s) 3 4 5 6 7 1 1 1 8 1 1 2
φ2
1(s) 3 4 5 6 7 1 1 1 8 1 2 1
φ3
1(s) 3 4 5 6 7 1 1 1 8 2 1 1

82

	Introduction
	Problem Definition
	Approach to Problem
	Multimapping Abstraction
	State-Set Search Theory

	Contributions of this Research
	Outline

	Essential Background
	State Space Search
	State Space Representation
	Puzzle Domains
	Sliding Tile Puzzle
	Pancake Puzzle
	TopSpin Puzzle
	Blocks World With Table Positions

	Heuristics
	Properties of a Heuristic
	Generating Heuristics Using Abstraction

	Search Algorithms
	A*
	IDA*
	HIDA*

	Summary

	Multimapping Abstraction
	Multimapping Abstraction Framework
	Enhancements
	Choosing A Good Mapping Factor
	Goal Aggregation
	Remapping
	Combining Remapping and Goal Aggregation

	Experiments
	Difference Between the Forward and Backward Heuristic Calculation
	The Best Version of Multimapping
	Comparison With Other Methods Using Small State Spaces
	Experiment with Large State Spaces
	Conclusions

	Implementation with Partial-State Abstraction
	Definition
	Experiments

	Conclusions

	State-Set Search
	Formal Analysis
	State-set Matching, Paths, and Distances

	Properties of Weak and Strong Paths and Distances
	Inverting Operators and Paths
	Challenge of Building a Pattern Database With State-sets

	Planning as State-Set Search
	The State-Set View of Abstraction
	Multimapping Revisited
	Conclusions

	Conclusions
	Limitations
	Final Words

	Bibliography
	Abstractions for Large Domains
	15-Puzzle
	Domain Abstraction
	Multimapping Abstraction
	Multiple Abstraction

	Glued 15-Puzzle
	Domain Abstraction
	Multimapping Abstraction
	Multiple Abstraction

	14-Pancake
	Domain Abstraction
	Multimapping
	Multiple Abstraction

	(15,4)-Topspin
	Domain Abstraction
	Multimapping Abstraction
	Multiple Abstraction

	(12,3)-Blocks World
	Domain Abstraction
	Multimapping Abstraction
	Multiple Abstraction
	Multimapping Abstraction (GARM)

