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Abstract 

In this thesis we present two generalized methods to determine similarity solutions 

for the coagulation equations. The first is an indirect method applied to a quasilinear 

first order partial differential equation associated with the coagulation equation that 

determines a local Lie group of point transformations that leaves the PDE invariant. 

The second method is a new generalized version of the direct methods that determine 

the symmetry group of the point transformations to integro-differential equations. 

We apply this second method to the coagulation equations. These methods provide 

us with new family of exact and asymptotic solutions to the coagulation equations. 

The group symmetry methods are further used for numerical studies. In this 

thesis, we focus on two classes of coagulation kernels: bounded kernels and unbounded 

kernels. For the class of bounded kernels we present two reliable numerical methods 

for solving the coagulation equation: the collocation technique, and adaptive power 

series method at successive points. For the class of product kernels we propose a 

numerical method that is very accurate and relies on combining the numerical scheme 

with the knowledge of the total mass or the asymptotic behaviour of solutions at large 

sizes. 

In addition, we prove the global uniqueness of solutions to the coagulation equation 

with source terms in a suitable Banach space for which the global existence holds. 
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Chapter 1 

Introduction 

We divide our introduction into five sections. In the first section, we provide some 

general ideas about coagulation processes. The second section describes the mathe­

matical model for the coagulation equation with particle source terms and sinks. In 

the third section, we provide some motivation for studying these coagulation equa­

tions. The fourth reiterates some previous results in the mathematical theory of 

coagulation. Finally, in the fifth section we provide an overview of this thesis. 

1.1 Coagulation processes 

Disperse systems (aerosols) consisting of solid or liquid particles suspended in fluid 

or gas, play an important role in nature and industry. The clouds, composed of a 

suspension of water drops in the atmosphere, are a major factor affecting climate. The 

atomization of liquid fuels and the pulverization of solid fuels are common industrial 

operations which generate disperse systems. Many chemical materials are handled in 

the form of emulsions during manufacture. Many industrial operations also produce 

aerosols either as an intentional part of the operation or as an undesirable byproduct, 

such as dusts formed during mechanical processing of rocks or radioactive dust in a 

nuclear reactor accident and smoke evolved during the combustion of fuel. 

Particulate matter processes are "emerging as a new frontier" in environmental 

studies as aerosols negatively affect human health, reduce visibility and modify warm­

ing through scattering and absorption of solar radiation. In general, disperse systems 

consist of particles of many different sizes, and knowledge of the size distribution is 

necessary for understanding the behaviour of the system as a whole. A better under­

standing of the particle size distribution of disperse systems has applications in the 

processing of emulsions, gas cleaning, water treatment, study of air cleaning and air 
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pollution. 

Particles in a disperse system move in response to external forces such as grav­

itational and electrical forces, and fluctuating forces due to thermal motion of the 

fluid host. This relative movement of particles can bring them into contact; when 

they collide and stick together, the process is called coagulation. As a result of co­

agulation, diffusion, and fragmentation, the particle size distribution of a disperse 

system changes continually. Coagulation of particles has been observed in various 

phenomena, such as Brownian coagulation, polymerization, as well as clustering of 

planets, stars and galaxies. A physical phenomenon similar to coagulation takes place 

in physical processes such as the growth of crystals. 

The aim of this thesis is to study the particle size distribution as a function of 

particle size (or volume) and time as the aerosol population undergoes changes due 

to various physical and chemical transformations. Coagulation forms new particles 

of volume A + // from the collision of two particles of volumes A and fi; the collision 

rate is proportional to the number of available particles and to the coagulation kernel, 

which will be defined below. 

1.2 Mathematical model 

Of particular interest to us is the coagulation process of particles in a disperse system 

governed by the Smoluchowski coagulation equation with particle sources and sinks: 

^ ( A , t) = lJX K(X - (*, fi) /(A - M, t) /(/x, t) dv - /(A, t) J™ K(X, ft) /(/x, t) d» 

+ S(X,t)-R(t)f(X,t), (1.1) 

subject to initial condition 

/(A,0) = /o(A) (1.2) 

where the size and time variables A, t range in [0, oo), the function K(X,fi) is the 

coagulation coefficient for particles of sizes (or volumes) A and /J,, S(X, t) is the rate 

of addition of new particles to the system and R(t) is the rate of removal of particles 

from the system. Each of the terms will be explained in detail below. 

Equation (1.1) models a system of a large number of particles that can coagulate 

to form larger clusters of particles, with particle sources and sinks; each particle 

in the system is assumed to be fully identified by its size (or volume) A. From a 
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physical point of view, the basic mechanisms taken into account are the processes 

of particle coalescence to form larger clusters, emissions and depositions (or sources 

and sinks). Other effects such as multiple coagulation, fragmentation, condensation, 

sedimentation and spatial fluctuations are not considered. Derivations of similar 

equations as well as further details and examples, including a 'discrete' summation 

version of (1.1), can be found in Drake [25] and Dubovskii [26] and references therein. 

The terms in equation (1.1) mean the following: /(A, t) is the density function of 

the particle distribution. The system is assumed to be homogeneous and unbounded 

and the interaction occurs only between two particles at a time. Moreover, we also 

assume that the total number of particles is large enough to justify the use of the 

density function, with /(A, t) d\ representing the average number of particles per unit 

volume having mass between A and A + dX at time t. 

The coagulation kernel K(X, fi) models the rate at which particles of mass A 

coalesce with those of mass /x, and is known from the physics of the process. For 

physical reasons, K is assumed to be a symmetric and non-negative function. In 

Section 4.3 of this thesis the kernel K is also allowed to be time-dependent. 

The first integral on the right-hand side of (1.1) represents the rate of increase in 

the number of particles of mass A as a result of the coalescence of two particles the 

masses of which add up to A. The factor 1/2 has been included to prevent double 

counting. The second integral represents the rate of disappearance of particles of 

mass A, due to their coalescence with all other particles in the system. The function 

S(\, t) is the rate of addition of new particles into the coagulating system (the source 

term), and R(t) determines the rate of removal of particles from the system (the sink 

or removal term). For physical reasons, S and R are assumed to be non-negative 

functions, known from the physics of the process. Neither of the functions S and R is 

assumed to be continuous as we would like to "turn the source and removal terms on 

and off" at various times. In addition, throughout the thesis, R is assumed to be a 

locally integrable function on an interval [0, T) C [0, oo). For a complete description 

of the terms in (1.1) see e.g. [25, 26, 74, 104]. 

For a description of physical processes, it is necessary to specify the functional 

forms for the coagulation coefficient K{\, ji), the rate of production of new particles 

S^A, i) and the rate of particle removal R(t). In a realistic environment, these func­

tions would be complicated nonlinear functions of size (or volume) and time, which 

would necessitate the numerical solution of equation (1.1) in nearly all cases. An­

other important consideration in solving the Smoluchowski coagulation equation is a 
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realistic choice of the initial size distribution /o- From a physical point of view, / 0 

is assumed to be non-negative, and f0(X)d\ is the total number of particles whose 

volume lies between A and A + dX per unit volume of air. 

Parameters in the coagulation equation 

(i) Moments of size distribution 

Prom a physical point of view, the following quantities are important in this thesis: 
/•oo 

Mk(t) = Xkf(X,t)d\, where k = 0,1,2, ... 
Jo 

which represent the k-th moment of the size distribution / . In particular, Mo(t) is 

the total number of particles per unit volume at time t, Mx(t) is the total mass of 

particles per unit volume at time t. 

(ii) Coagulation kernels 

The coagulation kernels we use in this thesis are those proposed by Stockmayer 

[108] in the chemical process of branched-chain polymerization. Stockmayer assumed 

that no rings can form in a polymer and every unreacted binding site has an equal 

chance of reacting with an available site on another polymer. With these assumptions, 

Stockmayer pointed out a connection of the polymer size distribution with the pure 

coagulation equation (1.1), where the coagulation kernel is 

K(X, p) = [(p - 2) A + 2] [(p - 2) n + 2], where A, \i > 0, p > 2. 

Polymeric molecules (/c-mers) are composed of k monomeric units. Each monomeric 

unit carries p functional groups which are capable of interacting with each other. 

Hence, the coagulation kernel K above represents the number of possible links be­

tween A-mers and /a-mers. This kernel is physically relevant in the polymerization 

process where frequent branching of chains is structurally permissible. One example 

occurs in the glycerol-phthalic anhydride reaction, where the material gels suddenly 

at a certain extent of reaction independent of the temperature at which the reaction 

is carried out (see e.g. [108]). Stockmayer also observed that a coagulation equation 

with a multiplicative kernel K(X,p) — Xp can be obtained in fact from (1.1) in the 

limit p —> oo by scaling the time appropriately (by using (p — 2)21 as a new time 

variable). 
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The coagulation kernels of interest in our thesis are given by 

K{\,ii) = 0{\)9(ii), where 8(\) = a + p\, (1.3) 

with a, /3 > 0 arbitrary constants. These kernels are particularly important for ana­

lyzing the "gelation" phenomenon that occurs in the case when the parameter /3 > 0. 

Examples of some commonly used coagulation kernels used in the literature and their 

applications can be found in [21, 22, 25, 26, 63]. 

(iii) Particle source terms and sinks 

Source terms and sinks are potentially useful in industrial applications where one 

might want to exercise some control over the coagulation processes. For instance, it 

may be desirable to increase or restrict the limiting number of particles of a particular 

size. One might attempt to achieve this by the introduction of particles of some 

prescribed size to enable the coagulation process to arrive at some desired limiting 

state. 

1.3 Motivation 

The Smoluchowski's coagulation equation models various kinds of phenomena such as: 

in chemistry (polymerization), in physics (aggregation of colloidal particles, dispersion 

of airborne particles), in astrophysics (formation of stars and planets), in engineering 

(behaviour of fuel mixtures in engines), in genetics, in graph theory, etc. 

The contribution of this thesis is the study of industrial processes in which parti­

cles are being added to and removed from the system while the processes occur. One 

example of application of such processes is the manufacturing of aluminium alloys. 

Here, molten metal is kept in a holding furnace for several hours while particles of 

titanium diboride are added for further solidification and casting. During this process 

these foreign particles can agglomerate and be lost from the melt by attachment to 

the furnace walls, thus jeopardizing the desired properties of the alloy, and increas­

ing manufacturing costs (see, e.g. Wattis et al. [114]). Although there have been 

significant studies regarding the size distribution in molten aluminum, still not much 

is known about the kinetics of the coagulation in this system. Another application 

is in the study of water treatment, controlling particle mass loss is what allows the 

removal of tiny particles (called colloids, measured as total suspended solids) in raw 

5 



water. These are just a few examples of industrial processes where one may wish 

to increase or modify the number of particles of a particular size. The only way to 

achieve this would be by the introduction or removal of particles of some prescribed 

size to enable the coagulation process to arrive at some desired limiting state [97]. 

The main purpose of this thesis is to study the dynamic behaviour of aerosol size 

distributions under the influence of the particle source terms and sinks. 

1.4 Previous work 

There is considerable literature on the mathematical theory of coagulation, both de­

terministic and stochastic, discrete and continuous, beginning with the pioneering 

work of Smoluchowski in 1917 on modeling binary coalescence of particles. Smolu-

chowski was the first to derive a mathematical model, assuming that the fluctuations 

in density were small in order that collisions occur at random. For a very compre­

hensive survey of work up to 1970, including applications, different derivations of the 

equation from physical assumptions, and discrete versions of the equation, see Drake 

[25]. The pioneering works of Melzak [74] (on cloud formation) include some of the 

earliest applications of the theory, and more applications can be found in F. da Costa 

[21], Drake [25], Dubovskii [26], Fiiedlander [45], Krivitsky [58], Lee [68], Leyvraz 

[63], Peterson et al [85], Zhang et al. [113], Wattis et al. [114]. The presence of exter­

nal particle sources, and the removal of particles from the system, however, has not 

received a great deal of mathematical attention, the work of Calin et al [15, 16, 17], 

Dubovskii [26], Escobedo et al. [36], Lushnikov [70], Sandu et al. [90, 91], Simons 

[98], Shirvani et al. [97] being just a few notable recent exceptions. In [97, 98, 102], 

the discrete version with constant kernel and source terms is investigated. Also, so­

lutions to the coagulation equation with a multiplicative kernel prior to the gelation 

have been provided in [101]. We divide this section into a few subsections in order to 

illustrate a few theoretical and numerical aspects that have been investigated in the 

literature of coagulation equations (with possible fragmentation). 

1.4.1. Existence (local and global) of solut ions 

In papers dealing with the pure coagulation equation (without the effect of sources 

and sinks), the main theoretical questions are related to the study of existence and 

uniqueness of solutions in suitable denned Banach spaces. Almost all prior work on 
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Smoluchowski's equation has been established either for the case of pure coagula­

tion or coagulation with fragmentation. Existence of solutions to the coagulation 

equations with possible fragmentation (the initial distribution / 0 and therefore the 

function / possibly enjoying additional regularity properties) have been the subject of 

study of several papers since the pioneering works of Aizenman and Bak [3], McLeod 

[73], McLaughlin et al. [72], Melzak [74], Spouge [101, 102], White [116]. Recent 

contributions to the existence of solutions have been brought by Calin [15], Escobedo 

et al. [35, 36, 38, 39], Laurengot [61], Fournier and Laurengot [42]. 

For bounded kernels K(X, /x), global existence of solutions to the pure coagulation-

fragmentation equations is investigated in [3, 8, 15, 72, 74, 95, 97]. In [16], we have 

extended the global existence to the case when particle sources and sinks are added 

into the coagulating system and for bounded, time-dependent kernels K(X, n, t). The 

global existence for unbounded kernels has been studied in [8, 26, 28, 39, 47, 49, 102, 

103, 104, 116]. However, some authors (see e.g. [26, 47, 104]) assumed certain growth 

conditions on the coagulation kernel K(X,fi), such as: 

K{\,/i) < M (1 + A + n), V(A, n) € M+, and some M > 0. (1.4) 

For coagulation equations with fragmentation, Stewart [104] proved a general 

existence theorem under certain hypotheses on the growth of the coagulation and 

fragmentation kernels. Solutions are shown to exist in the positive cone of the Banach 

space defined by 

X+ = {/ e X : / > 0 a.e.}, where 

/ •oo 

X = {/ e L\0, oo) : / (1 + x) \f(x)\ dx < oo} 
Jo 

provided that the initial distribution /o belongs also to X+. Later, Laurengot [61] 

proved the existence of solutions to the coagulation equations with a weak fragmenta­

tion for product-type coagulation kernels in the same Banach space X+ considered by 

Stewart [104]. However, a stronger notion of solution has been defined, compared to 

the weaker notion introduced in [104]. In [15], we have extended the global existence 

results for a coagulating system with particle sources and sinks. 

1.4.2. Uniqueness of solutions 

Global uniqueness of solutions to the pure coagulation-fragmentation has been inves­
tigated for bounded kernels in [3, 8, 15, 72, 74, 95, 97], and for unbounded kernels in 
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[8, 26, 28, 39, 47, 49, 73, 105]. In [16], we have extended the global uniqueness for 

bounded, time-dependent kernels K(X, //, t) in a coagulating system where particle 

sources and sinks may be included. 

Norris [79] proved the local existence and uniqueness of solutions to the stochastic 

Smoluchowski equation for kernels K(\,fi) < <p(X) </?(/x), for some continuous, sub-

linear functions ip : (0, oo) —> (0, oo) provided that the initial distribution satisfies 

/(o,oo) M d A ) ¥>(*)2 < oo. 

In a recent article, Fournier and Laurengot [42] prove the uniqueness of measure-

valued solutions to Smoluchowski's equations for a class of homogeneous kernels sat­

isfying K(u X,ufi) = u1 K(X, /x), for some parameter 7 € (—00,2] \ {0} provided that 

the moment of order 7 of the initial condition and solution are finite. The uniqueness 

of solutions in [42] holds in the class of measures having a finite moment of order the 

degree 7 of homogeneity of the coagulation kernel K. 

Ernst et al. [34] investigated the product kernels and proved the uniqueness of 

solutions by constructing explicit solutions to the pure coagulation equation by means 

of the Laplace transform (see also Dubovskii [26], Theorem 4.2). Using the same 

method, Shirvani and van Roessel [96] presented some results on the pure coagulation 

equation for coagulation kernels K(X,n), for a,/3 > 0 defined in (1.3). 

1.4.3. Conservation of mass. Gelation phenomenon 

Another interesting topic has been the existence of mass-conserving solutions to the 

pure coagulation equation and the occurrence of gelation. A physically relevant and 

mathematically challenging question is to see whether the total mass of solutions to 

(1.1) remains constant in time, that is Mi(t) = M^O), for all t > 0. Either formal 

arguments or explicit solutions have been provided to show that the conservation of 

mass holds true for all time t € R+ in the following cases: 

(i) If K(X,fi) < M, for some constant M > 0 and for all (X,fi) G R2
+ (see [8, 72]). 

(ii) If K(X, n) < C (X + fi + 1), for some constant C > 0 and for all (A, 11) € M+ (see 

[104, 105]). 

(Hi) If K{X,n) = (Xfi)a, when a £ [0,1/2] and for all (X,fi) € R^., (see, e.g. [8, 21, 

39]). 

One interesting property of some coagulation equations that occurs in cases where 

kernels K(X,[i) increase sufficiently rapidly with their sizes A, /i is that runaway 

growth takes place in the system producing particles with infinite size in finite time 
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which are removed from the system. As a result the total mass starts to decrease. In 

the literature this phenomenon is known as gelation, and it is interpreted physically 

as corresponding to the occurrence of a dynamic phase transition in the system or by 

the appearance of an infinite "gel" or "superparticle". 

In the chemical process of polymerization, gelation can be interpreted as being 

the transition from polymers dissolved in solution to a gel. Roughly, one can think 

of a gel as a macroscopic network of polymer in solution that behaves as a solid. 

Theoretical investigation of the gelation phenomenon goes back to the early work 

of Flory [44] in 1941 and Stockmayer [108] in 1943 on condensation polymerization. 

Theoretical and experimental studies conducted by Flory [44] yield strong evidence 

that gel formation in three-dimensional polymerizations is caused by the appearance 

of macroscopic branched-chain molecules. More specifically, Flory analyzed the size 

distribution of polymers and determined theoretically the critical conditions for the 

formation of "infinitely large three dimensional molecules" (gel). 

In the literature of coagulation, the onset of gelation has been defined by the blow 

up of the second moment M2(t) of the distribution (see e.g. [34, 70, 97]). There have 

been many reviews on models of coagulation and gelation, see e.g. Leyvraz [63]. The 

effect of removal terms on the gel-time was studied by Singh et al. [100], and similarly 

source terms were considered by Davies et al. [22]. 

Mathematical proofs regarding the occurrence of gelation including initial condi­

tions for which gelation occurs, properties of the gelling solutions and classes of coag­

ulation rates and fragmentation have been supplied recently in [21, 38, 39, 61]. Rates 

of decay for the zeroth and first moments of the solutions to Smoluchowski's equation 

are proved in [15, 36, 38, 61]. Ernst et al [34] provide asymptotic large t —> oo be­

haviour for the total mass M\(i). These estimates have been further applied to obtain 

upper and lower bounds for the gelation time, see e.g. [15, 19, 34, 38, 61, 100, 114]. 

Explicit gel-times and pre- and post-gelation formulas for the total mass have been 

provided recently in [34, 70, 89, 96]. In [89, 96], the authors provide an explicit 

formula for the total mass for all time t > 0 for a bilinear kernel of the form (1.3). 

Ernst et al [34] prove that for the multiplicative kernel K(X, fi) = A //, the gel-time 

corresponds to the first instance at which the second moment of solution defined by 

M2(t) = /0°° A2 /(A, t) dX diverges. This result was also shown to be true recently in 

[15, 97] in the absence and presence of sources for a, (3 > 0. 
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1.4.4. Explicit solutions 

Analytical solutions to the pure coagulation equation and explicit formulas for the 

moments of solutions are also important in understanding the behaviour of the size 

distribution. However, these types of solutions have only been found for a few forms 

of K(X,/j,), including K(\,n) = 1, X + /J,, and A/i. Scott [94] and Ernst et al. [34] 

investigate the multiplicative kernel and construct explicit solutions to the pure co­

agulation equation by means of Laplace transforms. These solutions are also unique, 

see e.g. Dubovskii [26], Theorem 4.2. Also, using the saddle point method, Ernst et 

al [34] provide some asymptotic large size behaviour of the solution. They prove that 

the solution to (1.1) decays exponentially for all time t < Tgei, however beyond this 

time the solution decays algebraically. 

Using the same method of Laplace transforms, and method of characteristics, 

Shirvani and van Roessel [96] determine necessary and sufficient conditions under 

which the solution to the pure coagulation equation is mass conserving. The authors 

consider the general coagulation kernel K(X,fi) defined in (1.3). In a recent article, 

Lushnikov [70] provided some exact solutions to (1.1) for a product kernel K(X,fi) = 

X fi and a constant source term under the assumption that there exist no particles at 

t = 0 (i.e. the initial size distribution /o(A) = 0). 

Spouge [101] provided some practical solutions to the pure coagulation equation 

in the form of recursion and infinite series for kernels of the form K(X,fx) = A + 

B (A + y) + C X jj, for times t < Tgel. In [15] using the method of Laplace transforms, 

we derived some formal series solutions to the coagulation equation with a constant 

kernel. Our examples include both time-dependent and time-independent examples 

of source terms. 

Analytical solutions and their behaviour have also been provided to the discrete 

version of the coagulation equation in [52, 98, 110]. Dubovskii [26] obtained some 

properties of the equilibrium solution to the coagulation equation with a constant 

kernel and a time-independent source term. In addition, the author also proved the 

convergence of the time-dependent solution to the stationary solution. 

Based on a result given by Simons [98] for the discrete equation and time-dependent 

source terms, in [15] we proved that the long-term behaviour of the distribution tends 

to be independent of the initial value and entirely determined by the source term. 

Questions regarding the convergence still have to be answered. For practical applica­

tions, either an analytical proof of convergence, or a numerical method of computing 
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the inverse Laplace transform has to be used. 

1.4.5. Numerical methods 

In situations of practical interest, the functional forms of K, S and R are such that 

the time evolution of the size spectrum can only be obtained through the numeri­

cal solution of the coagulation equation. During the last century, several numerical 

methods have been developed for solving the coagulation equation (1.1). In the open 

literature, two families of methods have been developed for dealing with the coagu­

lation equations: deterministic and stochastic. Some deterministic methods include: 

method of moments, finite element methods, weighted residual methods, orthogonal 

collocation method over finite elements, discretized population balances, finite differ­

ence methods, mesh techniques, finite volume methods, power series solutions, etc. A 

survey of popular numerical methods is given in [25, 59, 88, 113]. In Section 5.1 we 

have detailed some of the numerical methods described above. Among the variety of 

stochastic methods, the mass flow algorithm developed originally by Babovsky in [6] 

and then developed further by Eibeck and Wagner [31] is one of the most accurate 

methods as it provides convergence of the solution after the gelation time, which is 

difficult to capture with deterministic methods. 

1.4.6. Asymptotics and self-similarity 

Numerical simulations have confirmed that the size distribution function / should 

approach a mass-conserving self-similar function fs for large times t. More precisely, 

the so-called dynamical scaling hypothesis predicts that for homogeneous coagulation 

kernels K such that K(uX,ufj,) = ua
 K(X,/JL), for some exponent a, where u, A, 

/j, > 0, we have 

/(A, t) ~ fs(K t) = s(t)-^(X/S(t)) (1.5) 

where s(t) represents the mean particle size at time t > 0, ip is a non-negative 

function and fs is a self-similar solution to (1.1). The assertion (1.5) goes back 

to Friedlander [45] and van Dongen and Ernst [24] for pure coagulation equations, 

however no rigorous proofs were given with respect to the existence of ip or convergence 

(1.5). The first approach to self-similarity (or dynamical scaling) has been established 

rigorously for pure coagulation equation for the kernel K = 2 by Kreer and Penrose 
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[57]. The authors recognize the importance of the use of the Laplace transform. 

Menon and Pego [75, 76] extend the approach to self-similarity to a larger class of 

solvable, homogeneous kernels including K = A+/x, Xfx. In [57], the importance of the 

use of the Laplace transform was recognized. In 2005, Fournier and Lauren$ot [43] 

proved the existence of at least one scaling profile tp for three classes of homogeneous 

kernels with degree of homogeneity 7 < 1. The existence of self-similar solutions for 

some other classes of kernels appears in [37]. Self-similar solutions are interesting 

particular solutions as they may describe the behaviour of the general solutions of 

the coagulation equations [24, 35, 36]. For a summary of self-similar solutions see 

Section 4.1 in this thesis. 

1.4.7. Lie-group theoretic methods 

In the recent theory of fragmentation equations a new direction has emerged: a general 

method for the determination of Lie groups of point transformations. Zawistowski 

[112] was the first to extend the method of Ovsiannikov [81] for differential equations 

to integro-differential equations. A generalized version of the direct methods has 

been given recently by Akhiev and Ozer [4] to determine symmetry groups for the 

collisionless Boltzmann equation. The authors also propose a new approach to solve 

the nonlocal determining equations. For the fragmentation equation with continuous 

mass-loss, Elhanbaly [32] obtained the symmetry groups and a complete classification 

of all possible non-trivial similarity solutions. 

The main purpose in this thesis is to propose a generalized method in order to 

derive a Lie symmetry group of point transformations for the coagulation equation 

in the absence/presence of particle source terms. Our aim is to obtain a new family 

of similarity solutions to the coagulation equation for a (non)-homogeneous kernel. 

1.5 Thesis Overview 

In this thesis we conduct a theoretical analysis in the field of the coagulation equations 

with particle sources and sinks. The thesis is divided into seven chapters. Our main 

goal in this section is to provide a summary of each of the subsequent chapters in the 

thesis. 

In Section 2.1, using the technique of re-scaling the time variable t, the general 
Smoluchowski coagulation equation (1.1) is simplified to a coagulation equation with 
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source terms only. In Section 2.2, we prove the global uniqueness of solutions to the 

coagulation equation with source terms (2.8) subject to (2.9) in the same Banach 

space used in Calin [15] for which we proved the global existence result. 

In Chapter 3 we summarize a few facts from Lie theory, providing a brief sum­

mary of the theory of one-parameter Lie groups of point transformations and some 

generalized symmetries for general partial differential equations with one dependent 

variable and two independent variables. 

In Section 4.1 we summarize a few self-similar solutions that have been obtained 

for the pure coagulation equation. Following the general description in Chapter 3, this 

thesis continues with some new approaches in the theory of coagulation equations. In 

Section 4.2, we provide the group analysis for a new form of a quasilinear first order 

partial differential equation associated to the coagulation equation in the presence 

of particle source terms. This analysis provides us with similarity (group-invariant) 

solutions and asymptotic behaviour of solutions to the coagulation equations with 

particle source terms as A —+ oo for a few special classes of initial conditions and a 

bilinear separable coagulation kernel in the pre- and post-gelation stages. For some 

special values of the parameters, we also obtain the expression of the total mass 

of the solution for alH > 0 and the gelation time. In Section 4.3, we apply a new 

generalized version of the direct methods that determine the symmetry group of point 

transformations for integro-differential equations to the coagulation equation in the 

presence of source terms. These methods yield new family of similarity solutions to 

the coagulation equations which can be further used for numerical studies. 

Section 5.1 summarizes a family of deterministic numerical methods existing in 

the literature for solving the coagulation equation. We also point out some of the 

advantages and disadvantages that each method brings, and the classes of kernels 

that each of these methods solve. In Section 5.2, we present two reliable numerical 

methods for solving the coagulation equation that are most suitable (reliable) for a 

class of bounded kernels with particle source terms: the collocation technique, and 

adaptive power series method at successive points. In Section 5.3, we present a 

numerical method for a class of unbounded kernels. 

In Chapter 6 we propose new future directions and steps that we need to complete 

in order to generalize the methods proposed in this thesis. Chapter 7 includes the 

proofs of some of the theorems in Section 4.2. 
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Chapter 2 

Existence and Uniqueness of 
Solutions 

In this chapter we are interested in studying the global existence and uniqueness of 

solutions to the Smoluchowski coagulation equation with source terms. 

2.1 Coagulation equations with sources. Technique 
of rescaling 

Let /(A, t) be the concentration (or the density function) of clusters of size A at time 

t and assume that the rate K at which clusters of particles coalesce is independent of 

time t. Then the coagulation equation with particle source terms and sinks is given 

by 

%(W = \J K(X ~ /*. /*)/(A " M- *)/(/*, t) dp - /(A, t) J°° K(X, /i)/(/i, 0 dn 

+ S(\,t) - R(t) f{X,t) (2.1) 

subject to the initial condition 

/(A,0) = /o(A) (2.2) 

where the size variable A and the time variable t range in [0, oo). 

For the purpose of this chapter, we assume the rate K is a symmetric, bilinear 

function given by 

K{X,n) = e(X)6(fi), where 0(A) = a +/3A, VA > 0 (2.3) 
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with a, (3 any positive real numbers. The coagulation kernel K above includes the 

constant and the product kernel as special cases. 

The main objective of the present section is to obtain, using a technique of re-

scaling the time variable t, a new but simplified form of Smoluchowski coagula­

tion equation with particle source terms only. Indeed, multiply (2.1) by H(t) := 

exp (/„' R(s) ds) and let w(X, t) := /(A, t) H(t). We obtain 

d'W 1 fX roo 
H^~dt^X,t^ = 2 # (*-/*» MM* ~ MM/* . *) <fy* ~ W ( V ) / K{\,ii)w(ji,t)dy 

+ H2(t)S(X,t) (2.4) 

subject to the initial condition 

^ A , 0 ) = /(A,0)tf(0) = /o(A). 

We can rescale the time variable further. For this purpose, we introduce a new 

parameter r = F(t), where the function F(t) is chosen such that it satisfies the initial 

value problem 

F'(t) = — T with initial condition F(0) = 0. 
H{t) 

Next, define c(A,r) := w(X,t) and g(X,r) := [//(F-1(r))]25(A, F " 1 ^ ) ) > 0. Hence, 

we obtain the following form of the coagulation equation with source terms, where 

we rename r to t 

dc 1 fx f°° 
T^-(A, t) = - / K{\-n, n)c(X-n, t)c(n, t) d/j, -c(A, t) / K(X, ^)c(fi, t) dfi + g(X, t) 

(2.5) 

subject to the initial condition 

c(A,0) = co(A) = /o(A). 

Therefore, any coagulation equation (2.1) with particle source terms and removal 

terms R(t), where JR is an arbitrary, non-negative function of t such that R(t) is 

locally integrable (for definition see e.g. [15]) can be simplified to a coagulation 

equation (2.5) with particle source terms only by rescaling the time variable t. For 

this reason, in the remainder of this thesis we only consider coagulation equations 

with particle source terms of the form (2.5). 
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2.2 Uniqueness of solutions 

Our main purpose in this section is to prove the global uniqueness of solutions to the 

coagulation equation for the case when the initial data c0) and the source term g(X, t) 

satisfy certain assumptions and the coagulation kernel is a bilinear, non-homogeneous 

function. 

For this purpose, consider the coagulation equation with particle source terms 

(2.5) given in Section 2.1, where we assume the coagulation kernel K(\,n) is of the 

following form 

K(X,n) = 9(X)9(n), where 6(\) = a + f3\, V A > 0 , (2.6) 

with a, (3 > 0 any strictly positive real numbers. One can easily prove that any 

coagulation kernel K(\, n) of the form (2.6) can be reduced to the coagulation kernel 

\I/(A, y) = £ (A)£( / J ) , where £(A) = 1 + A. Indeed, if we rescale the size and time 

variables and denote by 

( Ot O? \ 0 (OL O? \ 

-A, — t) and p(X,t):=^g^-X,jtj 
and 

tf(A,,x):=£(AK(,i), V(A,/x)eR*. where £(A) = 1 + A. (2.7) 

Then the coagulation equation with particle source terms takes the following form 

s 1 fx f°° 
-CM) = o / *(*_A*> n)u(X-fi, t)u(n, t) dn -u(A, t) / *(A, fjt)u(ti, t) dy + p(X, t) 

2 Jo Jo 

du, 
~di' 

(2.8) 
subject to the initial condition 

u(A,0) = «0(A). (2.9) 

In the existing literature on the coagulation equations, the main theoretical ques­

tions are related to the study of existence and uniqueness of solutions in suitable 

denned Banach spaces. The proof of existence of solutions to the coagulation equa­

tions with particle source terms (2.8) in a suitable less complicated Banach space and 

for a non-homogeneous coagulation kernel of the form (2.7) has already been the sub­

ject of study in [15]. However, as pointed out in Section 1.4, the proof of uniqueness 

of solutions to (2.8) for such a coagulation kernel was left as an open problem in [15]; 
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and to our knowledge the proof of uniqueness for such a kernel in the presence of 

sources and sinks has not been proved yet (from a deterministic point of view). 

In a recent article, Fournier and Laurencot [42] prove the uniqueness of measure-

valued solutions to Smoluchowski's equations for a class of homogeneous kernels sat­

isfying K(u \,un) = u1 K(X, fi), for some parameter 7 € (-00,2] \ {0} provided that 

the moment of order 7 of the initial condition and solution are finite. However, the 

class of kernels considered in [42] does not cover the non-homogeneous coagulation 

kernels (2.7) of interest in this thesis. 

Our main purpose in this section is to prove the global uniqueness of solutions 

to the coagulation equation with source terms (2.8) subject to (2.9) in the Banach 

space X$, and for the non-homogeneous coagulation kernel ^ defined by (2.7). For 

this purpose, we consider the same Banach space X$ used in [15] for which we proved 

the global existence result, i.e. 

Xs = {/ G ̂ (0 ,00) : ||/||€ < 00} = LJ(0,00; £(A) dX) (2.10) 

endowed with the norm || • ||̂  defined by 

/<00 

l l / lk= / £(A)|/(A)|dA for feX( (2.11) 
./o 

where £(A) = 1 + A. Let X^ be the positive cone of X$, i.e. X£ = {/ G X$ : f > 

0 o.e.}. 

Let T G (0,oo] be arbitrary. We denote by C([0,T]; L^O, 00)) the space of contin­

uous functions from [0, T] into L^O, 00) endowed with the usual sup-norm (or uniform 

norm) ||</?||oo = suPte[o,r] 1^(01 ( see Edwards [30], p.77). As usual the strong conver­

gence in L^O, 00) is be denoted by —>. Full details about this type of convergence 

can be found in [29, 30]. 

Assumptions for ito(A) and p(X, t) 

A l . The initial distribution UQ 6 Xf. 

A2. The source term p(X, t) is a non-negative function of A, 

the following hypothesis: 

*•-> / f(A)p(AJt)dAG£~(0,T) 
Jo 

t > 0 and satisfies 

(2.12) 
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Before stating any result let us define the notion of solution to the coagulation equa­

tion (2.8), (2.9) that will be used further: 

Definition 1 Let T € (0, oo] be arbitrary. A solution u of the equation (2.8) is a 

function u : [0,T) —> Xf such that for every t G (0,7"), there holds 

(a) u E C([0, t]; L^O, oo)) n L°°(0, t; X() 

(b) 
(A, t) t-» f(A)u(A, t) 6 L1 ((0, oo) x (0, t)) (2.13) 

(c) For almost every A 6 [0, oo): 

u(X, t) = UQ{\) + I p(X,s)ds+- / / ^(A — fi,fi)u(X — fj,,s)u(fj,,s)dfj,ds 
Jo ^ J0 J0 

pt poo 

- I u(X,s) / $(\,n)u(n,s)dnds (2.14) 
Jo ./o 

with UQ and p satisfying the assumptions Al and A2, respectively. For our definition 

of solution we impose the same strong property (b) as suggested in [61]. 

Theorem 2.1 (Global existence and uniqueness of solutions to (2.8), (2.9)) 

Assume the coagulation kernel $ is as in (2.7) and the source term p satisfies A2. 

For every UQ satisfying Al, there exists a unique (strong) solution u € X^ to the 

equation (2.8) on [0,T] for every T G (0, oo) with u(0) = u0 satisfying 

H roo 

M1{t)<M1{0)+ / Xp(\,s)d\ds for every te[0,T] (2.15) 
Jo Jo 

Proof. The global existence of solutions to the coagulation equation (2.8) has al­

ready been the subject of study in [15]. So, in this thesis we only prove the uniqueness 

of solutions. The proof of uniqueness follows by means of a contradiction argument, 

and is based on the use of Laplace transforms. To our knowledge, the idea for the 

proof of uniqueness we present below has not been proposed in the literature of co­

agulation, so far. To prove uniqueness of solutions we assume that there are two 

distinct solutions u(X,t) and i>(A, t) to the initial value problem (2.8), (2.9) with the 

same initial data u(A, 0) = v(X, 0). 
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Let us denote their difference by D(X, t) := u(X, t) — v(X, t). Then, we have 

dD 1 fx f°° 
— (\,t) = - I *(\-ii,(i)D(\-fi,t)D(ii,t)dii-v{\,t)J $(\,fi)D(fi,t)dii 

/•OO / - 0 0 

-D(\,t) %{\,fi)D(ii,t)dfi-D(\,t) V(\,n)v(n,t)dii 
Jo Jo 

+ I m{\-n,ii)D{\~n,i)v(n,t)dpL (2.16) 
Jo 

Multiply (2.16) by £(A) and let R{\, t) := £>(A, t) £(A), where £(A) = 1 + A. Therefore, 

we obtain 

dR £(A) rX rX 

lSr(V) = / R(\-fi,t)R(n,t)diJ, + Z(\) / R(\- /j,,t)£(ij,)v(n,t)dfj, 
Jo Jo 9t 

/•oo /•oo /•oo />oo 

-£(\)R(\,t) Rift^dfjL-^Ri^t) ^)v(fi,t)dfi 
Jo Jo 

/•oo 

-Z2(\)v{\,t) / R(n,t)dn (2.17) 
Jo 

Next, we denote by 

/•oo 

Y(z,t):=C{R(X,t)}{z,t) = e~zXR(X,t)dX, where ze [0 ,oo) 
io 

/•oo />oo 

P(t):= ^(/i)u(/i,t)rf/i > 0 and Q(t) := R{p,t)dn = Y(0,t) 
Jo Jo 

where, as usual £{...} denotes the Laplace transform. Formally apply Laplace trans­

forms to the equation (2.17) to obtain 

~(z,t) = \c{^)(R*R)(\t)}(z,t) + c{ax)(R*^v))(\,t)}(z,t) 

- {P(t) + Q(t))£{a\)R(\,t)}(z,t)-Q(t)£{e(\)v(\,t)}(z,t) (2.18) 

We take each Laplace transform in (2.18) separately and using Laplace transform 

properties we obtain 

£{e(A) (R * R)(X, t)}(z, t) = F2(z, t) - 2 Y(z, t)^(z, t) (2.19) 

£{£(\)(R * (^))(A, t)}(z, t) = G(z, 0V(2, *) - ^-(z, t)F(z, t) (2.20) 

£{£(A) H(A, *)}(*, i) = Y(z, t) - ^(z, t) (2.21) 

dF 
£{e(\)v(\, t)}(z, t) = F(z, t) - — ( z , t) = G(z, 0 , (2.22) 
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where, we denote by 

/•oo 

F(z, t) := C{£(X)v(X, t)}(z, t) = / e-zX£(\)v{\, l) dX and 
Jo 

dF 
G(z,t):=F(z,t)-—(z,t). 

The function G(z, t) is well-defined for z > 0 and t > 0. Furthermore, G(0, i) is 

only well-defined for t < mm{Tgel(u), Tgei(v)}, where Tgei(u) denotes the time when 

gelation occurs for the coagulation equation in u. From the definition of F(z, t) it 

follows that P{t) = F(0,t). Substituting all (2.19 - 2.22) into (2.18) we obtain 

BY 1 r BY ^ BY 
^(z, t) = t {Y*{Z, t) - 2Y(z: t)^(z, t)} + Y(z, t)G(z, t) - — ( z , t)F(z, t) 

- (P(t) + Q(t)) [Y(z, t) -—(Z,t)}- Q{t)G{z, t) 

Therefore, Y(z, t) satisfies the following P.D.E. 

^ + ^ {Y(z, t) + F(z, t) - Q(t) - P(t)} = \ Y\z, t) 

+ Y{z, t) {G(z, t) - P(t) - Q(0} - Q{t)G{z, t) (2.23) 

It is worth pointing out that the P.D.E. (2.23) is on the domain (z, t) € (0, oo) x (0, oo). 

Also, no boundary condition is required at z = 0 since 

Y(z,t) + F(z,t)-Q(t)-P(t) = 0. 
z=0 

Since Z?(A,0) = UQ(\) — t>o(A) = 0 we have R(\,0) — 0. Hence, the partial 

differential equation (2.23) has the initial condition Y(z, 0) = C{R(X, 0)}(z, 0) = 0. 

The initial value problem derived above is not a standard one since the PDE (2.23) 

has coefficients that are not completely known functions, such as Q(t) and P{t) which 

depend on the solution. 

To prove the uniqueness of solutions to the coagulation equation (2.8) we investi­

gate the solution Y(z, t) of the P.D.E. (2.23) above. Our method of proof is as follows: 

Using a contradiction argument, we show that the solution of the PDE (2.23) does not 

have a shock at any point, in other words the gradient of the solution Y(z, t) does not 

blow up at any time t. Having proved this assertion we can then conclude by using 

the method of characteristics that the system of characteristic equations associated 

to the PDE (2.23) can always be inverted (for every time t > 0). This statement 

yields the conclusion that the PDE (2.23) has a unique solution with I.C. zero, that 
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is the trivial solution Y(z,t) = 0, for all time t > 0. The latter will eventually lead 

to a contradiction with our assumption at the beginning of the proof (that (2.8) has 

two distinct solutions u and v). 

First, we show that the solution of the PDE (2.23) does not have a shock at 

any point. Indeed, assume otherwise, i.e. assume there exists a time Tb € [0, oo) at 

which the gradient \Yz(z, TJ,)| = oo, but \Yz(z, t)\ stays finite for all t € [0, Tb), where 

Tb :— inf{t > 0 s.t. ||^(-,f)lloo = oo}. The characteristic equations associated to 

the first order partial-differential equation (2.23) with the initial condition Y(z, 0) = 0 

are given by 

dj- = W - Q(t) + F(Z, t) - P(t) Z | t = 0 = 7 (2-24) 

^ = I W 2 + w [G(Zj t) _ P{t) _ g ( 4 ) ] _ Q(t)G(Z, t) W\t=0 = 0, (2.25) 

where we denote by Z = Z(7, t) and W = W^, t) the solution of the characteristic 

system (2.24-2.25) satisfying the initial conditions 2(7,0) = 7 and W(7,0) = 0, 

respectively. In addition, we assume that the functions on the right hand sides above 

are continuously differentiable. 

From the conditions Q(t) = Y(0, t) and P(t) = F(0, t), if we set z = 0 in (2.23) 

then we obtain an IVP for Q(t) of the following form 

^jp- = - \Q 2 { t ) - P(t)Q(t) subject to I.C. Q(0) = Y(0, 0) = 0. (2.26) 

From the assumption above, this I.V.P. is valid only for values of t € [0, Tb) such 

that both gradients dF/dz and dY/dz are finite. On the one hand, it has already been 

proved in [15, 96] that the breaking time (or shock time) for the pure coagulation 

equation (2.8) (p(A, t) = 0) corresponds in fact to the time at which the gradient 

of the Laplace transform of the solution £(A) u(\, t), or Uz(z, t) becomes unbounded. 

In addition, it was proved in [15, 96] that the breaking time Tb coincide in fact 

with the gelation-time. Based on the assumption at the beginning of the proof, that 

the equation (2.8) does not have a unique solution, this means that both solutions 

f (A) u(X, t) and £(A) v(X, t) have the gradients of their Laplace transforms, that is 

Uz(z, t) and Vz(z, t) unbounded at t = Tb. 

On the other hand, the ODE in (2.26) is a Ricatti equation and it can be solved 

exactly in terms of P(t). One particular solution to the I.V.P. is Q(t) = 0, for 

t £ [0, Tb). Using the existence and uniqueness results for ODEs one can easily prove 

that Q(t) = 0 is indeed the unique solution to the I.V.P. (2.26) for all t e [0,Tb). 
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Having proved that Q(t) = 0, for all values of t 6 [0, Tb), we show next that this 

implies that the function Y(z,t) = 0, for all t € [0,Tb). Indeed, since Q(t) = 0 then 

the equation (2.25) in the characteristic system becomes 

^- = lw2 + W[G(Z,t)-P(t)], subject to W(0) = 0. 

This is a Ricatti equation and either solving it or using again existence and uniqueness 

theorems for ODEs it can be proved that this equation has a unique solution, that is 

the trivial solution, or w = W(z, t) = 0. Therefore, the solution Y(z, t) of the Cauchy 

problem becomes Y(z,t) = 0, provided that t < min{T9ej(u),Tsej(t>)}, Tgei(u) > 0 

and Tgel(v) > 0. Hence, the inverse Laplace transform of Y(z, t) also equals zero, 

i.e. R(X,t) = £(A) [u(X,t) - v(\,t)} = 0, for all t < min{rse,('u),T5e(('<;)} and A > 0. 

Consequently, we obtain that 

u(A, t) = v(X, t), Mt < min{T3e;(u), Tgei{v)} and A > 0. 

However, the latter contradicts our assumption and thus the uniqueness of solutions 

to (2.8) holds for all t <Tb and A > 0. Our next step is to prove that Yx(z, Tb) = 0, 

for z > 0. This follows since Xe~zX € Lx(0, oo) and R(X, t) —> 0 as t — • Tb a.e. as 

a consequence of the continuity of the solutions u and v. The Lebesgue dominated 

convergence theorem then readily implies 

POO 

lim / Ae~zxR(X, t) dX = 0, for z > 0. 
t-Tf JQ 

Therefore, \Yz(z,t)\ < oo for any z > 0, provided that Tb > 0. Thus, there is 

no time t at which the gradient Yz(z,t) would become infinite. It remains only to 

prove that Yz(z, t) stays finite also at z = 0 for all t > 0. We leave the latter for 

future work. Then we obtain that there is no shock time for the solution of the 

PDE (2.23). Therefore, one can write the characteristic equations (2.24-2.25) for all 

0 < t < min{Tgei(u),Tgei(v)} and these equations can always be inverted for such 

time t. Moreover, the function Q(t) is now given by the ODE (2.26). 

Next, we return to the equation (2.16) above and using the information on Q(t) = 

0 for all t G [0, Tb] we rewrite (2.16) in the following form 

dD 1 fx 
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/»oo 

- / $(A, n) [it(A, t)u{ii, t) - v(\,t)v(n,t)] dn 
Jo 

= - *(A - fi, /x){ [u(A - //, t) - v(A - M, *)]«(/*. 0 + [u(Mi 0 - «(/*, O M * - A*. 0 } <*A* 

TOO /-OO 

- / *(A,/i)[u(A,0-w(A,i)]«(/*.*)dM- / *(\,ti)[u(ii,t)-v(n,t)]v(\,t)dp 
Jo Jo 

Hence, 

dt 
(X,t) = ^f *(\-ti,ti)D{\-n,t)u{n,t)dii+^J 9(\-fi,fi)v(X-n,t)D(n,t) 

/•oo /-oo 

-D(X,t) *(A,/x)u(^t)d/x-r;(A,0/ *(A,/z)D(M)<*/i (2.27) 
Vo JO 

Since 

(•A 

/ * ( A - ii,fi)D(n,t)v(X- fj,,t)dn= / ^(X-fjt,n)D(\-fj,,t)v(n,t) 
Jo Jo 

djj, 

then (2.27) becomes 

cfyz 
3D 1 /* 
— (A, 0 = 2 / *(A ~ ^' ^ D ( A - ^ ') [ t t^' ') + ^ ' ) ] 

/•OO /-OO 

- D(A, 0 / tt(A, /*)«(/*, 0 dp - t/(A, t)Z(X) / S{n)D(n, t) dpi (2.28) 
Jo Jo 

Since we have already proved that Q(t) = /0°° £(/i) D((i,t)dfi = 0, W 6 [0,T] for 

some arbitrary time T < 71 then we obtain 

<9D 1 /"A 

— ( A , 0 = 2 / ^ A - ^D(x ~ * <)£M K M , 0 + *(/*. 0 ] <*/* 
/•oo 

-S{\)D(\,t) £{riu(n,t)dii 
Jo 

for any t € [0, T], with T < Tj. Moreover, using the previous notations, we can 

rewrite the equation above in terms of R(X, t) and P(t) as follows: 

^ ( A , 0 = ^ J Z(l*)R(\ - M, 0 [«(/*> 0 + «(/*, t)} dfi - £(A)fl(A, t)P(t) (2.29) 

for any t € [0, T], with initial condition R(X,0) = 0. Equivalently, equation (2.29) 

can be rewritten as 

R(\,t) = ^Q / / R(\-n,s)S(fi)[u(ft,s) + v(ii,s)]diids-t(\) f R(X,s)P(s)ds 
2 Jo Jo Jo 

(2.30) 
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Since u(A, t), v{\, t)>0, VA > 0, t E [0,T] then we have 

\R(X,t)\ <^Y~ f J \R(X ~ H,s)\Z(n)[u{fi,s)+v(vt,s)] diids 

+ £(A) / \R{X,s)\P{s)ds (2.31) 
Jo 

Let us now define 

m(X,T):= max \R(X,t)\ 

Then we obtain the following inequality 

\JQ Jo S(fi)[u(ii,s)+v(Hs)]dndS+^ P(s)ds\vX,T 

(2.32) 

If m(X, T) = 0 then i?(A, £) = 0. So, D(X, t) = 0 and thus uniqueness of solutions 

holds, i.e. u(X,t) = v(X,t), for all 0 < A < X,0 < t < T < Tb. Otherwise, if 

uniqueness fails, then for every T > 0, there exists X > 0 such that R(X, T) ^ 0, so 

m(X,T) > 0. For any such X, we divide (2.32) by m(X,T) and (2.32) becomes 

! < £ ( * ) / {\J ^i)H^s) + v{ti,s)]d^ + P(s)]ds (2.33) 

Let 

AT := {* : m(X, T) > 0} and XT := inf AT 

Then, by continuity (2.33) also holds at X = XT, i.e. 

1<Z(XT)J {\J Ttbj)[u(n,s) + v(n,s)]dn + P(s)}ds (2.34) 

We first show that XT is an increasing sequence in T. Indeed, if 7\ < T2, then 

Therefore, m(X,T2) > ropf.Ti), for all X > 0, which proves that m(X,T) is 

an increasing function in T, for all X. Thus, if A € J4TI then m(A,7i) > 0 and 

since m(A, T2) > m(A, Ti) > 0, for all A e [0, X] then m(A, T2) > 0 which proves that 

A S Ar2. Therefore, ATX C J4T2. So, X r i < X r2 and thus XT is an increasing sequence. 
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We may now let T —> 0+ in (2.34) and we get the following contradiction: 

1<Z{XT)J {\J Tti(ii){u(v,s) + v(Li,s)}dLi + P(s)}ds^O as T - 0+ 

Therefore, u(A, i) = v(A, i) holds for 0 < A < X, 0 < t < T, for X fixed and T 

sufficiently small. Since X (though) fixed was arbitrary, this in fact covers all values 

of A > 0 as well. Next, we prove the uniqueness holds for all t > 0. Indeed, let u and 

v be two solutions to the initial value problem (2.8), (2.9) such that u(A, 0) = v(X, 0). 

Let us denote by 

T 0 : = s u p { t > 0 s.t. U(X,T) = V(X,T), VA > 0 and r e [0,t]} 

Since we have proved that there is a unique solution on some small interval [0, To], we 

have To > 0. Suppose, To < oo. Then it follows, by continuity of the solutions u and 

v, that u(X,T0) = v(X,T0). Consequently, it results that the following limit 

P0(A) := lim u(X, t) = u(X, T0) = u(A, T0) € X^ exists. (2.35) 
t-T0-

Therefore, both u and v are solutions to the initial value problem (2.8), (2.9). Since 

we have proved that local uniqueness of a solution holds, it will result that u = v 

on some interval [T0, To + T0] and thus we have a contradiction. Thus, T0 = oo as 

required. Therefore the initial value problem (2.8), (2.35) has a unique non-negative 

solution for all t G [0, oo), and thus the proof of the theorem is now complete. • 
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Chapter 3 

Symmetry methods. Generalities 

3.1 Importance of Lie symmetry analysis 

Most of the mathematical models used to describe physical problems involve solving 

differential equations. Although there are a variety of techniques available for obtain­

ing exact solutions to differential equations, most of them can be applied only for a 

limited class of problems [53]. There are still many open problems that need to be 

solved, mainly because they are either of a higher order or highly nonlinear. 

In the late 19th century, the Norwegian mathematician Sophus Lie developed a 

remarkable theory that gave rise to a powerful mechanism for solving differential 

equations. Lie's fundamental discovery was that most of the well-known solution 

methods, such as the integrating factor, reduction of order, homogeneous or separable 

solutions, conservation laws, invariant solutions or invertible linear transformations 

are in fact special cases of a more general integration theory based on the invariance 

of the equation under a continuous group of symmetry transformations [80]. 

Lie introduced the notion of a continuous group of transformations in order to deal 

with the wide variety of techniques for solving ODEs. A symmetry group of a system 

of differential equations is a group of transformations which maps each of its solutions 

to another solution of the same system. Of course, there are an infinite number of ways 

to represent such a mapping by allowing an arbitrary change of independent variables. 

However, a unique representation occurs if the independent variables are kept fixed. 

In the classical framework of Lie, these groups depend on continuous parameters and 

consist of either point transformations (also called classical symmetries) acting on the 

space of independent and dependent variables or contact transformations acting on 

the space including all first derivatives of the dependent variables [14]. 

In most of the cases where exact solutions of differential equations can be obtained, 
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the fundamental property used is the symmetry of that equation. For example, using 

Lie symmetry analysis one can obtain the ansatz y(x) — Ce^x for linear homogeneous 

equations with constant coefficients y"(x) + ay'(x) + by(x) = 0. 

Finding solutions (exact or analytical) to higher order differential equations or 

nonlinear partial differential equations is one of the most challenging problems in 

applied mathematics. Lie symmetry methods provide a powerful tool for generating 

transformations that can be used to reduce the given differential equation into a 

simpler equation while preserving the invariance of the original equation. When 

dealing with differential equations for which there is no direct method of solution, 

we usually look for transformations that either reduce the order of the differential 

equations (in the case of an ODE) or the number of independent variables (in the 

case of a PDE), such that the differential equation also remains invariant (unchanged) 

under these symmetry transformations. 

Lie proved that for a given differential equation, a continuous group of point trans­

formations acting on the space of its independent and dependent variables admitted by 

the equation, can be determined by using a straightforward computational algorithm 

(Lie's algorithm). Lie's First Fundamental Theorem (2.3.1-1 see e.g. [13]) shows 

that such Lie symmetry groups are completely characterized by their infinitesimal 

generators, which form a corresponding Lie algebra under the commutation operator 

[12, 13, 14, 53, 80, 81]. The functions that appear in the infinitesimal generator of 

a Lie group of transformations satisfy an overdetermined system of linear differential 

equations [13]. In the case of point transformations, these functions depend only on 

the independent and dependent variables. Common examples of such Lie groups of 

transformations include translations, rotations, and scalings. For instance, an au­

tonomous system of first order differential equations (or a stationary flow) essentially 

defines a one-parameter Lie group of point transformations [14]. 

After being determined, the symmetry group of a differential equation has many 

applications. For example, in some cases one can determine new solutions using the 

defining property of such a group. Thus, from known solutions one obtains classes 

of equivalent solutions, where equivalence means that one solution can be obtained 

by applying a symmetry to a different solution. For example, the heat equation 

lit — uxx admits the constant solution u = C. From this solution one can derive 

the fundamental solution u(x, t) = (4nt)~1^2 exp(—x2/4t) using only the knowledge 

of its symmetries. In some other cases, if a system of PDEs is invariant under a Lie 

group of point transformations, one can find constructively special solutions kn own as 
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group invariant solutions, or similarity solutions, which are solutions that are invariant 

under a particular symmetry or some subgroup of the full Lie group admitted by the 

system. These solutions result from solving a reduced system of differential equations 

with fewer independent variables. For many nonlinear systems of partial differential 

equations (which include our PDE in Section 4.2), these types of solutions are the only 

available and thus they are of great importance. Self-similar solutions are particular 

similarity solutions which are invariant by some scaling transformation. Similarity 

solutions are extremely important in Chapter 4 of this thesis, and in general in the 

symmetry analysis of systems of PDEs or IDEs. These types of solutions may describe 

the behaviour of general solutions of systems of PDEs or IDEs. 

Lie groups and their infinitesimal generators can be naturally extended to act on 

the space of independent and dependent variables and the derivatives of the dependent 

variables up to any finite order. Thus the applicability of symmetry methods to 

differential equations can be extended by considering invariance under the so-called 

Lie-Backlund transformations, whose existence was recognized by E. Noether in 1918 

and discussed in detail by Olver [80] and Ibragimov [54]. A very comprehensive 

reference book containing symmetries of many PDEs is [54]. 

3.2 Group symmetry methods for partial differen­
tial equations 

In this section we provide a short summary of the theory of one-parameter Lie groups 

of point transformations for general partial differential equations with one dependent 

variable and two independent variables. For a complete study of the general similarity 

methods see e.g. [12, 13, 14, 18, 53, 54, 69, 80, 81]. 

Consider a general PDE with two independent variables (x and t) and one depen­

dent variable F of the form 

K{x,t,F,Fx,Fu...) = 0 (3.1) 

where the subscripts denote partial differentiation of the dependent variable w.r.t. 

the independent variables. 

Consider a general one-parameter (e) Lie group of point transformations acting 

on the independent and dependent variables of the equation (3.1) defined by the 
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equations 

x* = </>(x, £, F; e) 

t* = *(x , t ,F ;e ) 

F* = n(x,t,F;e) (3.2) 

where £ is a real parameter that varies over some open interval |e| < £Q containing 

zero. Moreover, (f>, ty, and fi are analytic functions on their respective domains. 

When e = 0, the transformation above corresponds to the identical transformation, 

that is x* = x, t* = t and F* = F. For a fixed s, the transformation above is a 

diffeomorphism that maps the surface (x, t, F) to the surface (x*,t*, F") parametrized 

by x and t. In addition, the one-parameter Lie group is assumed to be a local Lie 

group of transformations (for definition see e.g. [13, 14, 53, 81]). 

Definition 2 (Symmetry Condition) A partial differential equation (3.1) is called 

invariant under a local Lie group of point transformations if and only if 

H(x*,f,F',F^,F^,...) = 0 when Tl{x,t,F,Fx, Ft,...) = 0. (3.3) 

/ / (3.3) holds, then we say that the point transformation (3.2) is a point symmetry 

admitted by (3.1). In this case, the Lie group is called a Lie symmetry for the PDE. 

Often, the symmetry condition (3.3) for a differential equation is nonlinear and 

extremely complicated, so we will not attempt to solve (3.3) directly. Lie proved 

that it is possible to replace this condition with the so-called linearized symmetry 

condition [53], also called the infinitesimal criterion for the invariance of the PDE 

(see e.g. [13, 14]). 

For this purpose, we consider the infinitesimal generator of the Lie group of point 

transformations defined by 

X = « x , t,F)^ + C(*, t,F) | + »,(*, t, F) A (3.4) 

see e.g. [13, 53, 80], where 

r\ r\ r\ 

£(x, t, F) = —4>{x, t, F; 0), ((x, t, F) = -^*(x, t, F; 0), n(x, t, F) = —n(ar, t, F; 0) 

are called the generators of the Lie group of point transformations. Here, X represents 
the linear part or the 0(e) terms in a Taylor series expansion of the one-parameter 
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(s) Lie group of transformations about e = 0. Thus, we seek for Lie point symmetries 

of the form 

x* = x + e£(x, t, F) + 0{e2) 

t* = t + e({x,t,F) + 0{e2) 

F* = F + en{x,t,F) + 0{e2) (3.5) 

In order to derive a condition for the invariance of the PDE (3.1) in terms of the 

generators of the local Lie group, we expand the left-hand side of the first equation 

in (3.3) and carry out the differentiation by using the chain rule. For this purpose, 

we need to consider the prolongation of the point transformation to first derivatives 

(see e.g. [12, 13, 80]) 

F*. = Fx + e nx(x, t, F, Fx, Ft) + 0(e2) 

F* = Ft + e v\x, t, F, Fx, Ft) + 0(e2) 

where rf and rf represent the infinitesimals of F*. and F*. given by 

Vx = Vx + (VF - 6 ) Fx -CxFt- ^F F2 - CF FX Ft (3.6) 

Vt = m + (riF-(t)Ft-{;tFx-(;FF?-SFFxFt (3.7) 

where the superscripts are function labels. Furthermore, we also consider the prolon­

gation of the infinitesimal generator X to first order derivatives given by [12, 14, 53]: 

For higher order PDEs one also needs to consider the prolongation of the Lie group of 

point transformations and infinitesimal generator X to second, ..., fc-th order deriva­

tives. Therefore, we obtain the following invariance condition for the PDE (3.1) 

Definition 3 The one-parameter Lie group of point transformations is a point sym­

metry of the PDE (3.1) if and only if X^U=0 when K = 0. 

More explicitly, using the definition of X^K obtained in (3.8) we have the following 

Definition 4 (Infinitesimal Criterion for the invariance of the PDE (3.1)) 

The PDE (3.1) is said to be invariant under the Lie group of point transformations 

if and only if 

an an &R x an t &n n 

*ih+<iK+r>dF+ri dFx
+r}wr°- (3-9) 
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The equation (3.9) is called the invariance condition [12, 13, 14, 80, 81] or the lin­

earized symmetry condition [53]. 

If a solution to the PDE (3.1) is invariant under the group of transformations, then 

the solution must map into itself, which means F*(x*,t*) = F(x*,t*). These types 

of solutions are also known as similarity solutions. In terms of the transformation 

functions, the equation above can be written as 

F(x + e £, t + e C) = F{x, t) + e n(x, t, F) + 0{e2) (3.10) 

Expanding the left-hand side of the equation (3.10), and equating the coefficients of 

£, we obtain the following 

Definition 5 (see e.g. [53]) A surface F = F(x,t) is called invariant under a Lie 

group of point transformations if and only if the characteristic of the group defined by 

dF OF 

Q(x, t, F, Fx, Ft) = n(x, t, F) - £(x, ^F) — - C(.r, t, F) — 

satisfies the so-called invariant surface condition, 

Q{x,t,F,Fx,Ft) = 0 when F = F{x,t). (3.11) 

The generated similarity solution satisfies the auxiliary first order partial differ­

ential equation (3.11) whose coefficients depend on the infinitesimals of the group. 

In order to find the infinitesimal elements (£,(,7?) leaving (3.11) invariant (thus 

satisfying (3.1)), the original PDE may be used to eliminate one of the derivatives (if 

possible) and then substitute these in (3.9). The resulting equation is treated as a 

form in the derivatives of the solution F whose coefficients depend on (x, t, F) and the 

unknowns (£, (, n). After the substitution, the remaining terms are split with respect 

to their dependence on the derivatives of F. Next, we collect together the coefficients 

of like derivative terms in F and set all of them equal to zero. By doing so, we obtain 

an overdetermined linear system of so-called determining equations for the generators 

£, C,?7. Having determined the infinitesimals of the group, we return to the invariant 

surface condition (3.11). Solving the corresponding characteristic equations of this 

first order PDE 

dx dt dF 

£{x,t,F) = <0M,F) = r/(x,i,F) 

one finds the functional form of the similarity solution, and thus candidates for self-

similar solutions. This solution involves two constants, one becomes the independent 
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variable s(F, x, t), called the similarity variable and the other is the dependent variable 

V>(s), also called the similarity profile. Thus, we obtain the similarity solution to be 

F = F(x,t,s,tl;(s)) (3.12) 

with the dependence of T on x, t and the arbitrary function i/>(s) known explic­

itly. Substitution of (3.12) into (3.1) results in an ordinary differential equation for 

the function V>(s). Thus, the invariance under a one-parameter Lie group of point 

transformations reduces a PDE with two independent variables to an ODE which in 

general is much easier to solve than the original PDE. After we study the invariance 

of the PDE, we also analyze the symmetries of the initial and boundary conditions 

and seek the subalgebra of the infinitesimals leaving invariant the boundary curves 

and the boundary/initial conditions prescribed on them. 
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Chapter 4 

Application of Lie methods to the 
coagulation equation 

4.1 Self-similar solutions: Previous work 

It has been conjectured for several years that Smoluchowski's coagulation equations 

admit self-similar solutions, also known as scaling invariant solutions. These conjec­

tures have been predicted by physicists Priedlander and Wang [45, 46], van Dongen 

and Ernst [24], and numerical simulations (Man Hoi Lee [68]) have also confirmed 

the validity of such assertions. The existence of self-similar solutions though not rig­

orously justified by physicists, have been mathematically proved in recent years for a 

few special classes of homogeneous coagulation kernels. It is important to investigate 

the existence of such special solutions in order to identify their properties for large 

times t —• oo and also the behaviour of the size distributions near the gelation time 

Tgei. This approach offers a better understanding of the gelation mechanism which 

is important in this thesis and for the theory of coagulation in general. The purpose 

of this section is to provide a brief review of the previous work in the literature with 

regards to the existence of self-similar solutions to the pure coagulation equations 

(no particle sources present in the system). Self-similar solutions are interesting par­

ticular solutions as they may describe the behaviour of the general solutions of the 

coagulation equations [24, 35]. 

There has been lot of scientific interest to study self-similar or dynamical scaling 

behaviour of the size distribution c(A, t) solution to (2.5) beginning with Priedlander 

and Wang [46] in 1966 for coagulation by Brownian motion. The authors observed 

that if the coagulation kernel K is a homogeneous function of degree a, that is 

K(u\,uy) = uaK(X,/z), for some exponent a, where u, A, ju > 0, 
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then the transformation (ansatz) 

77 = ~ and Z(t)c(\,t) = MQ(t)il>(Ti) 

reduces the coagulation equation to an ordinary integro-differential equation for 'ip(r]). 

This solution is called self-preserving solution of the Smoluchowski's coagulation equa­

tion. Such a solution ip{r\) is an asymptotic solution to which the system is expected 

to converge, regardless of the initial distribution co(A). The authors have obtained 

this form of the self-preserving solution by solving the coagulation equation numeri­

cally up to the point where the size distribution, expressed in the form ijj(r)), remains 

fixed with some preset accuracy. Other self-similar solutions have been obtained in 

[11, 75]. The investigation of the structure of scaling solutions of Smoluchowski's 

coagulation equation continued in 1988 with the work provided by the physicists van 

Dongen and Ernst [24]. The authors asserted that the solutions approach a scaling 

invariant form 

c(X,t) S; cs(A,t) = K*)]">r(A/s(t)) (4.1) 

where r > 0, s(t) represents the average cluster size and fT(x) is a scaling function, 

also known as the similarity profile, where x = X/s(t). Thus, in the scaling limit, 

c,s(A, t) becomes independent of the details of the initial distribution. The authors 

calculated the time dependence of the mean cluster size s(t), and studied the shape 

of the function y>T(x) for different classes of coagulation kernels K(X, fj). Moreover, 

they provide formal arguments suggesting that gelation occurs if a > 1, and does 

not occur if a < 1. Both gelling and nongelling models are characterized by the 

divergence of the average cluster size s(t) as t —> Tgei and t —> 00, respectively. In the 

gelling and nongelling models, the particle mean size s(t) and the self-similar profile 

ipT need to be determined. These functions depend on the coagulation kernel but not 

on specific properties of the initial data c0(A). In the gelling models, it was proved 

(see e.g. [24]) that s(t) diverges at a finite time as s(t) ~ (Tgel — t)'1/", where 

the critical exponent a = (a — l)/2. The value of r is correct for a = 2 (i.e. the 

multiplicative kernel). Moreover, the scaling function y>T(x) falls off algebraically as 

x —> 0 in the form fT(^) ~ Bx~T, where the value T = (a + 3)/2 has been proposed. 

However, numerical simulations performed in [68] seem to indicate a different value 

for the exponent r. 

The approach to self-similarity (or dynamical scaling) has only been recently es­
tablished rigorously for the pure coagulation equation (g = 0), for a class of solvable 
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and homogeneous kernels K = 2, A + \i, X/J, (see e.g. [57, 75, 76]). For the constant 

and linear kernels, some explicit examples of self-similar solutions are already known 

in the literature (see e.g. [35, 75, 76]), as follows: for K(X,fi) = 1, the solution is 

c(A,<) = 4 r 2 e - 2 A / t , t>0 

while for K(X, /x) = A + /x, the solution is 

c(A,i) = (2 7r)-1/2
e-'A-3/2e-e"2tA/2 

For the multiplicative kernel K(X,n) = A/x it was shown in [75] that there exists an 

interval of values for r € [5/2,3) for which a self-similar solution of the form (4.1) 

exist. For this particular kernel, the form of s(t) and <pT are known explicitly (see e.g. 

[75]) to be 

s(t) = (T - i)-1'*3-*) and v?5/2(x) = (4TT)-1 / 2 X~ 5 / 2 e'x/i, for r = 5/2 

and, for T 6 (5/2,3), 

fT(x) ~ c0x~T as x —> 0 and yT(x) ~ C00X~^2T~3''^T~2' as x —> oo 

for some positive constants Co, COO and T. Menon and Pego [75, 76] have also consid­

ered the approach to self-similarity (or dynamical scaling) of the cluster size distri­

bution for the "solvable" coagulation kernels above. In the case of continuous cluster 

size distributions, the authors prove the uniform convergence of the size distributions 

to a self-similar solution with exponential tail. This convergence is proved under the 

regularity hypothesis that a suitable moment has an integrable Fourier transform. 

For general homogeneous kernels with degree of homogeneity a 6 [0 ,oo) \{ l} , 

van Dongen et al [24], Escobedo et al. [35], Leyvraz [63], provided some forms of 

self-similar solutions to the pure coagulation equation, as follows: For a € [0,1), 

cs(A,0 = r2/(1-°)v(Ar1/(1-0)) 

where i/>(z) satisfies the nonlinear ordinary IDE 

2i/){z) + zil/(z) + (1 - a)C(tP)(z) = 0 

and C denotes the coagulation operator given by [35] 

I nz r-oo 

CW(z) = - J K{z- z\ z') 4>(z - z') V(*') dz' - 4(z) J K(z, z') V;(z') dz' 
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Furthermore, for a > 1, 

cs(\,t) = (i-tr^(x(i-tY) 

where a, /? satisfy a + 1 = /3 (1 + a). The author acknowledges that the case a > 1 

reduces to solving a non-linear eigenvalue problem for the similarity profile ^(z). 

The latter is left as an open problem in [35], however the author refers to a similar 

related problem for the solution of a linearised Uehling Uhlenbeck equation. Rigorous 

mathematical proofs for the existence of at least one scaling profile il>{z) for three 

classes of homogeneous (nongelling) kernels with degree of homogeneity a < 1 have 

been provided recently by Fournier and Lauren£ot [43] and Escobedo et al [37]. 

For more practical coagulation kernels, which include non-homogeneous functions, 

in a process where particle sources and sinks may be present in the coagulating system, 

one might be interested in the existence of self-similar solutions. To our knowledge, 

there are no scaling invariant forms (or self-similar solutions) currently available for 

the size distributions, as in this case it is not straightforward to predict a general 

ansatz for the solutions or a scaling form to which these systems could converge. 

Since self-similar solutions are particular solutions that are invariant by some scaling 

transformation (see the ansatz (4.1)), our goal is to determine special classes of so­

lutions which possess a type of invariance under more general transformations of the 

variables, such as: stretchings, rotations, scalings, translations. Hence the self-similar 

solutions obtained so far in the literature of coagulation are in fact particular examples 

of similarity solutions. Our main purpose in this thesis is to obtain general similarity 

solutions using a systematic and practical method based on invariance under continu­

ous Lie groups of transformations as described in Chapter 3. In the next two sections 

of this chapter we apply the Lie symmetry group methods to derive general similarity 

solutions for coagulation equations. In Section 4.2 we apply this method to a PDE 

associated to the coagulation equation with the kernel K(\, /x) = (a + /3 A) (a + (3 /i). 

We call this an indirect method. In Section 4.3 we generalize the method in Section 

4.2 for PDEs and apply this to the coagulation equation directly with the kernel 

K(X, /x, t) = (a{t) + P(t) A) (a(t) + (J(t) /z). We refer to this as a direct method. The 

theoretical approach we propose in Sections 4.2, 4.3 is presented for a class of coagula­

tion kernels of the form (4.4) and (4.171), respectively. Our methods can be extended 

to include more general kernels (at least of product type and possibly others) and can 

also be applied to coagulation-fragmentation equations with sources and sinks or to 

kinetic equations (specially integro-differential equations). 
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We obtain a few similarity solutions to the coagulation equation and show that 

for some special initial conditions these are in fact exact solutions to the original 

equation (4.2). In some cases we recover previous known explicit solutions for the pure 

coagulation equations, however we also provide new family of solutions (analytical, 

formal series and asymptotic) in the presence or absence of sources. Furthermore, 

using the scaling transformation for the time variable t described in Section 2.1, 

one can derive then solutions to the original coagulation equation (1.1) with particle 

sources and sinks. 

It is important to obtain similarity (group-invariant) solutions for the coagula­

tion equation as these solutions can be used to derive particular solutions that may 

describe the behaviour of the general solutions of the coagulation equations. These 

similarity solutions can be used to provide a study of the asymptotic behaviour of 

solutions to the coagulation equations for large sizes (A —> oo) and near the gelation 

point (t —> Tgei). This asymptotic behaviour of solutions will be further used for 

numerical purposes in Section 5.3 when dealing with the improper integral there. An 

analysis of the asymptotic large size behaviour of solutions was provided by Ernst 

et al. in [34] based on the saddle point method for the inverse Laplace transform. 

However, the method in [34] relies on a knowledge of the expression of the total mass 

(first moment of the solution c). The advantage of working with a modified version of 

the coagulation equation (as in Sections 4.2, 4.3) is that when we develop the general 

similarity method for these equations the similarity solutions depend on the zeroth 

and first moments which are determined as solutions of first order differential equa­

tions. In some cases it is not straightforward to obtain the solution c(X,t), however 

as will be shown in Section 5.3, knowledge of the gelation time and the first moment 

of the solutions are also invaluable. 
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4.2 Symmetry methods applied to a P D E associ­
ated to the coagulation equation 

In this section, we provide the group analysis for a quasilinear first order partial 

differential equation associated to the coagulation equation in the presence of particle 

source terms. This analysis provides us with a family of similarity solutions or group-

invariant solutions for the coagulation equation. In some particular cases we derive 

explicit solutions c(A, t) and the asymptotic behaviour of solutions to the coagulation 

equations with particle source terms at large size (A —• oo) for a few special classes 

of initial conditions and a bilinear, separable coagulation rate (kernel) in the pre-

and post- gelation stages. These solutions depend on the first moment of solution 

M\(t) which is itself a solution to an ordinary differential equation. In most of the 

cases we determine explicitly the formula for the total mass for all £ > 0 and also the 

expression of the gel-time. These similarity solutions can also be used to investigate 

the size distribution function numerically. 

Consider the coagulation equation with particle source terms given by 

dc 1 fx f°° 
-Ql^ *) = 2 / K(A ~ Pi ^)C(A - P> i)c( 'u ' l)dP ~ C(A- *) / ^ ( A ' M)c(M. t)dn + g(X, t) 

(4.2) 

for any A, t > 0, subject to initial condition 

c(A,0) = co(A), A > 0 . (4.3) 

In this section, we consider a particular case of coagulation kernel of the form 

K(\, /x) = 0(A) 9(n), where 0(A) = a + P A, a > 0, /3 > 0 arbitrary constants. 
(4.4) 

As described in Chapter 1, the following quantities are important for our study 

/•oo 

Mk{t)= / \kc{X,t)d\, where A; = 0,1,2 (4.5) 
Jo 

which represent the kth moment of the solution c(A, t). 

Due to the very special form (4.4) of the kernel K, we may use Laplace transforms 

formally to convert the equation (4.2) to a first order quasilinear PDE. For this 
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purpose, we introduce the following notations: 

/•oo 

u{x, t) := / e~Xx0(A)c(A, t)dX = C{6(\)c(A,t)}{x, t) 
Jo 
/•oo 

N{t):= 6{\)c(\,t)d\ => u(0,t) = N(t),Vt>0 
Jo 

/•oo 

H(x,t):= / e-Xx6(\)g(\,t)d\ = £{6(\)g(\,t)}(x,t) 
Jo 

poo 
h{x):= e-Xxe{\)co(\)d\ = u(x,0) => /i(0) = N(0) (4.6) 

Jo 
where, as usual £{...} denotes the Laplace transform. The condition u(0, t) = N(t) 

is called the "compatibility condition" (see e.g. [89]). We begin by eliminating the 

"infinite integral" from the equation (4.2), in the form of the function 0(A) N(t) c(A, t) 

by means of an integrating factor. To do this, multiply (4.2) by ee^^\ where 

Q(t) = JQ N(T) dr and denote by 

/(A, t) := eeM «(*) C(A, t) and p(X, t) := ee^ W> g(X, t). 

Then the coagulation equation reduces to the following IDE for /(A, t): 

-(A, t) = i e-a(3W | 0(A - /x) 0(/*)/(A - /i, 0 /(/i , 0 d/i + p(A, i) (4.7) 

subject to initial condition 

/(A,0) = c(A,0) = Co(A). (4.8) 

Next, define the Laplace transforms of 0(A)/(A, i) and 0(A)p(A, t) by 

/•oo 

F(x, t) := / e~Xx 0(A) /(A, *) dX = C{9{X) /(A, *)}(*, t) = eaQ^ u(x -/3Q{t), t) 
Jo 

/•OO 

G(x, *) := / e~A* 0(A) p(A, t) dX = C{6(X) p(A, t)} (x, t) = eaQ(t) H(x - (3 Q(t), t) 
Jo 

(4.9) 

Multiplying (4.7) by 0(A) and formally taking the Laplace transform, we obtain the 

following PDE for the transformed variable F(x, t): 

^(x, t) e"«W + (3 F(x, t) ^-(x, <) = | F2(x, t) + e<^> G(x, t), 

(for x > /3Q(t), t > 0) (4.10) 

d_£, 
dt 
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subject to the initial condition 

F(x,0) = h(x)>01 where x > 0 (4.11) 

and the compatibility condition 

F(PQ(t),t) = Q'(t)eaQ^\ t>0 (4.12) 

where Q'(t) denotes the derivative of Q(t) with respect to t. The equation (4.12) 

is derived from the first equation in (4.9) by substituting x — (3 Q(t) and using the 

compatibility condition. The initial boundary value problem (IBVP) (4.10-4.12) is 

not a standard one since the PDE (4.10) has coefficients that are not completely 

known functions, such as Q{t), which depends on N(t) and thus must be determined 

as part of the solution [89]. Moreover, the domain of the IBVP is time dependent i.e. 

Domain IBVP = | J (0Q(t), oo) x {t}. 
t>o 

In this section, we present the classical point group analysis of the PDE (4.10) 

that is based on the classical technique for investigating Lie symmetry groups of 

differential equations as described in Section 3.2. Such a group analysis provides 

similarity solutions to PDEs and systems of PDEs containing an arbitrary number 

of dependent and independent variables by reducing the original system to a system 

with a reduced number of independent variables, see e.g. the reference books [12, 14, 

18, 53, 69, 80, 81]. 

4.2.1 Determining equations for a PDE associated to coagu­
lation equation 

Consider the first order PDE (4.10) with the independent variables x, t and the 

dependent variable F written as a differential function 

U{x, t, F, Fx, Ft) := ea«W Ft + f3 Fx F - | F2 - ea™ G(x, t) = 0. (4.13) 

Since the group symmetry method is independent of the initial and boundary condi­

tions, we disregard for the moment these conditions and concentrate only on the new 

form of the PDE (4.13). We will take these conditions into account when we have 

determined the form of the similarity solution /(A, t) to provide explicit (analytic) or 
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asymptotic (A —> oo) behaviour of the solutions / and thus of solutions c and also 

the functions Q(t) and N(t). 

As described in Section 3.1, we look for a Lie group of point symmetries of the 

form (3.5) under which the PDE (4.13) is left invariant. This reduces to solving the 

invariance condition (3.9) which in this case takes the following form 

- £ e a Q W Gx + CeaQit) (aQ'(t)Ft - aQ'(t)G - Gt) + r/(/?Fs - aF) 

+ r]xf3F + rfeaQ{t) = 0 

To find the Lie point symmetries (3.5), we need to use first the expressions of the 

infinitesimals rf and rf given by (3.6), (3.7) to obtain 

- £ ea QU Gx + a(,Q\t)ea Q « (Ft - G) - C ea «<*> Gt + r,(/3Fx-a F) 

+ (3F[r)x + (VF - &)Fx -QxFt- £ F F 2 - QFFxFt] 

+ ea Q{i) fa + (VF -Ct)Ft-ttFz- ZF FX Ft - CF Ff] = 0 . (4.14) 

In general, the invariance condition (3.9) contains enough information to determine 

the unknown infinitesimals (£, C, v) f°r a given PDE. We present below a strategy for 

determining the infinitesimals for the PDE (4.13). We apply the basic Lie algorithm 

to solve the linearized symmetry (invariance) condition (4.14) as follows (see e.g. 

[18, 53]): 

Step 1. First, identify the terms in the invariance condition (4.14) that are multiplied 

by the highest powers of the highest derivatives of F. These terms will give some 

of the determining equations which should be solved first. In our case, we start 

by equating the terms Fx and Ff to zero. Based on the Fx terms we obtain 

(,F = 0 and thus we have £ = £(x, t). Also, from Ft
2 terms we get (p = 0, 

so C = COM)- We use these results to simplify the remaining terms in the 

linearized symmetry condition (4.14). 

Step 2. Next, write down the terms that are multiplied by the highest remaining 

powers of the highest remaining derivatives in (4.14). The new resulting deter­

mining equations become 

- £ e a ™ Gx + a(Q\t) eQ«« (Ft - G) - Ce a ™ Gt + r)((3Fx - aF) 

+ [3F[r)x + (r]F - &) Fx - G Ft] + eaQ(t) [m + (VF ~ Ct) Ft - $t Fx] = 0 
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Step 3. Using the original PDE (4.13) we can eliminate Ft. Substitute, Ft = 

-Pe-aQM p Fx + § e-a(?W F2 + G into (4.14). 

Step 4. Split the terms according to their dependence on the derivatives of F, i.e. Fx 

and the remaining terms. We obtain the following linear system of determining 

equations of the group for the infinitesimal generators £, £, rj: 

- aPQ'(t)(F + PV-PFZX + P2e-Q(3W (xF2 - eaQ^Zt + pQF = 0 (4.15) 

- ^ , ) ^ « + y C Q ' ( ^ - C e a « ( , ) G r < M l F + U F i I , - Y C , e - ( ' ( ¥ 

-^xCF + ea^r1t + ^r]FF2-^CtF
2 + ea^GrlF-Gea^Ct = 0 

(4.16) 

where £ = £(x, t), £ = £(x, t) and rj = rj(x, t, F). 

The result of the steps above is usually an overdetermined system of linear PDEs 

in the unknown infinitesimals (£, (, 77). 

To verify the determining equations (4.15), (4.16) above we have also used a 

software package called MathLie provided by G. Baumann [10] and implemented in 

Mathematica. First, we call the function DeterminingEquations to generate the 

determining equations of the group. 

>> EQ = {[D[F[x, t], t] * Exp[a * Q[t\\ + b* F[x, t] * D[F[x, t],x] 

- a * F[x, t}.2/2 - Exp[a * Q[t]] * G[x, t]}; EQ//LTF 

» DETEQ = DeterminingEquations [EQ, {F}, {x, t}, {D[F[x, t],t]}]; DETEQ//LTF 

Using equation (4.15) we can determine the infinitesimal 77 as 

T](x, t,F) = AF2 + BF + C 

where, for simplicity we denote by 

A;=-(ie-aQV^ B:=aQ'(t)( + Zx-<;t, and C:=^ea™?jt (4.17) 

with A, B, C functions of x, and t. Substituting r\ together with the derivatives 

r)x = AxF
2 + BxF + Cx, r\t = AtF

2 + BtF + CU VF = 2AF + B 
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into (4.16) and gathering like powers of F we obtain 

F 2 

+ [f3Cx-aC-(3(xG + eaQ{t) Bt + 2eaQW AG] F 

+ eaQit)[-GxZ-Gt( + Ct + BG-G(t] = 0 (4.18) 

Since the coefficients of the algebraic equation (4.18) are independent of F and F 

is arbitrary, we obtain the following system of determining equations 

°^A + (3AX = 0 (4.19) 

«!A Q'{t) - | B - | Ct + P Bx + eaQ{t) At = 0 (4.20) 

(3CX - aC - (3(XG + Bte
aQW +2AGeaQ{i) = 0 (4.21) 

Gs£ + GtC + G ( C t - B ) - C f = 0 (4.22) 

From (4.19) we obtain A(x, t) = Fi(t)e~^x, where Fi(t) is an arbitrary function 

of t. To determine B(x, t) we need to solve for the infinitesimal £(x, t) first. Based 

on the definition of A(x, t) we have Qx(x, t) = — i A(x, £) e a Q ^ . 

At this point, in order to determine £(x, £) and the remaining unknown functions 

B, C and £, 77 we need to consider two separate cases for the constant a, i.e. a = 0 

(thus the kernel is /C(A, //) = A /x) and a > 0, (so the kernel is K(X, //) = (a+/3 A) ( a+ 

/?/*)), where in both cases we have G(x, t) > 0. 

Coagulation kernel K(\, //) = A/U and </(A, £) > 0 

This case corresponds to the case when a = 0 and G(x, t) > 0. In this subsection, 

we consider /? = 1 as one can rescale the space and time variables in the PDE (4.13). 

The system (4.19-4.22) takes the form 

Ax = 0 =• Cxx = 0 (4.23) 

Bx + At = 0 =* £xx-2Cxt = 0 (4.24) 

2 ^ - C « - 3 C , G = 0 (4.25) 

G U + G,C + ( 2 C t - & ) G = & (4.26) 

V(x, t, F) = -C* F2 + (& -Ct)F + 6 (4.27) 

From Cxx = 0 we obtain ((x,t) = Co(0x + &(*)> where Co(0 and Ci(0 are arbitrary 
functions of i. Using (4.24) we have fxx(x, t) = 2 ££(*), so £(x, £) = Co(̂ ) ^2 + €o(<)x + 
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£i(£), where the coefficients £o(t) and £x(i) are arbitrary functions of t. Substituting 

£(x, £) and £(x, i) into (4.25) we obtain 

3<%(t)x + 2&(t)-g(t)=3<;0{t)G(x,t). (4.28) 

Fix t > 0, and let x —• oo in (4.28). Then the right-hand side of (4.28) tends to zero. 

Therefore, we must have Co(0 = 0 a n d 2 ^ ( 0 _ Ci'(0 = 0> f° r a ^ *• Since we have 

assumed that £0 is differentiate, then we have £0(0 = at + b, for some constants a 

and 6. Moreover, (0(t) G(xi 0 = 0, for all x, t. Therefore the two cases are: 

(a) (0(t) not identically zero. Thus, G(x, t) is identically zero for all x, t. 

(b) Co(i) = 0 is identically zero. 

In view of the previous analysis, we consider the two subcases above as follows: see 

Section 4.2.2: G(x, t) — 0 (i.e. no sources) and Section 4.2.3: G(x, t) > 0 (i.e. 

sources) below, where in both cases we have a = 0. 

Coagulation kernel K(\, fi) = (a + (3 A) (a + @ /x) and g(X, t) > 0 

In this case, from (4.19) and using the definition of A(x, t) in (4.17), we obtain 

A(x,t) = F1(t)e-^x and ((x, t) = - Fl(t)e~^x eaQit^ + F2(t) (4.29) 

where Fi(t) and F2(£) are arbitrary functions of t. Using (4.20) and the definition of 

A(x,t) and B(x,t) in (4.17), we obtain (after integration w.r.t. x) 

B(x,t) = ±e*k'F<{t)-(FUt)-"<nt)W)) (4-30) 

ax,t) = -A-^e-^xe^)F[{t) + Fi{t)e^-2I- ^(t) - aQ'(t) F2(t) + ^ - ) 

(4.31) 

C(x, t) = - - e2a^ Q'{t) F[(t) e'^x - \ e2aQ^ F['(t) e~^x 

+ - eaQ{t) F'A{t) <&x~\ ea<?(0 fat) -<*Q"(t) F2(t) - aQ'(t) F'2{t) + ^ ) 

(4.32) 

where F3(t) and F4(t) are arbitrary functions of t. Furthermore, using (4.21) which 

is equivalent to f)Cx - aC + Bte
aQ^ = -3AGeaQW and the formulas above we 
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obtain 

{2 e a Q W Q'(t) F[(t) + - eaQ{t) F?{t)} 

+ \ ^ x {*?(*) - aQ"(t)F2(t) - aQ'{t)F'2{t) + ^ } = -Fx{t)G(x,t) 

(4.33) 

Equation (4.33) suggests that we have to consider two separate cases for G(x, t). 

Since G(x, t) —> 0 as x —> 00 (recall it is expected to be a Laplace transform), we 

may let x —> 00 in (4.33) to realize that necessarily we have 

Pl{t) := 2 eaQM Q'{t) F[{t) + - eaQ^ F"{t) 
a 

V2{t) := F '̂(i) - a Q"(t) F2(t) - a Q'(t) F&t) + ^p-

Inserting these back in (4.33) leads to Fi(t)G(x,t) = 0 and thus we consider two 

separate cases for G{x,t): either G(x, t) > 0 which implies Fi(t) = 0 or G(x,t) = 0. 

We take each of the cases above and detail them separately as two Subsections 4.2.4 

and 4.2.5. 

4.2.2 Coagulation kernel K(\,n) = \(JL and g(\,t) = 0 (no 
sources) 

In this case, we have a = 0 and G(x, t) = 0, so the PDE (4.13) reduces to the 

well-known inviscid Burgers' equation 

Ft(x, t) + F(x, t) Fx(x, t) = 0. (4.34) 

Generators for the one-group of transformations 

The system of determining equations for the generators reduces to the following equa­

tions 

C** = 0 => ((x,t) = (at + b)x + Ci(t) 

£tt = 0 => £(M) = &(aO * + &(*) 

£x* = 2Cxt =• %{x)t + %(x)-2a = 0 

2£*t = C« => 2&(x) = g(t) 

fi = -<*F2 + (Sx-Ct)F + zt 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 
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(4.38) is possible only if they are both equal to an arbitrary constant c. This means 

that, $ (x ) = 0 and thus &(x) = c. Also, (4.37) yields £3'(x) = 2 a. Finally, (4.38) 

implies that 2£t'2(x) = ("(t) = 2c, for some constant c. Thus, with a change in 

notation we obtain £0(£) = a5 + a61, d(t) = at + a± t + a8 i
2, ^(zO = 07 + «8£> a Qd 

£3(x) = a2 + a3 x + a6 x2, where ai,..., ag are arbitrary constants. 

Therefore, the generators of the one-group of point transformations that leave the 

PDE (4.34) invariant take the following form 

£(x, t) = a%xt + a7t + a6 x
2 + a3 x + a2 

C(x, £) = ae x t + a& x + ag t2 + 0,41 + a\ 

rj(x, t, F) = -(a6t + a5) F2 + (a6 x - a8t + a3 - a4) F + a8 x + a7 (4.40) 

The infinitesimal generator X associated with the above Lie group of point-

transformations can be written as 

+ a°(xlTx+xtm + {xF-tF)w)+a'(tirx
 + dF) 

+ as(xtd-x+tm + ^-tF)0F)-
Therefore, the inviscid Burgers' equation (4.34) has an eight-parameter Lie group 

of point transformations. More precisely, the infinitesimal symmetry group of (4.34) 

is spanned by the following eight Lie symmetry vector fields Vi, V2,..., V&: 

*-£• *-£• v'-*h+Fw v'='m-FiF- v°=xli-FlW' 
v°=x2i+It!i+{*F-tFl)jF- Vi=ti+W' "* 
v>=xti+eli+^-tF^ <4 4 1> 
which generate an eight-dimensional Lie algebra L8. We note that, Vi,V2 generate 

translations in t and x directions, respectively; V5 represents a Galilean transforma­

tion in the x direction or a kind of "Galilean boost" to a moving coordinate frame 

(see e.g. [80]), V7 generates the rotation in space followed by a translation in the F 

direction; V3, V4 are scalings; and V ,̂ Vg are some local groups of transformations. 

The symmetry groups generated by V\ and V2 demonstrate the time- and space- in-

variance of the equation. The Galilean group generated by V5 is in fact a product of 

a translation F* = F — e F2 and a "boost" t* = t + ex. 
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These operators form a basis for the corresponding Lie algebra L%. The Lie algebra 

is defined by a skew-symmetric bilinear operation, named the Lie bracket (commu­

tator). The commutator of any two vector fields Vj and Vj, is a first order operator 

defined by 

[V» Vj] = Vi Vj - Vj Vi (see e.g. [13, 80, 81]). (4.42) 

The commutator table for the Lie algebra arising from the infinitesimal generators 
Vi, where i = 1,2,..., 8 is presented in Table 4.1. To compute the commutator 
between two vector fields we used a package called tensor in Maple, calling the 
functions create; commutator; coord within this package. 

MM] 
Vi 

v2 
v3 
v4 
Vs 
Ve 

v7 
V8 

Vi 

0 
0 
0 

-Vi 

0 
-Vs 
-Vi 

-V3-2V4 

v2 
0 
0 

-Va 
0 

-V 
- 2 V 3 - V 4 

0 

- v 7 

v3 
0 

v2 
0 
0 

-V5 

- v 6 
v7 
0 

v4 
Vi 

0 
0 
0 

V5 

0 
-V7 

- v 8 

v5 
0 

Vi 

v5 
- v 5 

0 
0 

v A - v 3 
-V6 

v6 
v5 

2V3 + V4 

V6 

0 
0 
0 

V8 

0 

v7 
v2 
0 

- v 7 
v7 

V3-V4 

-V8 

0 
0 

Vs 
V3 + 2V4 

v7 
0 
Vs 

v6 
0 
0 
0 

Table 4.1: Commutator [V̂ , Vj] table for the Lie algebra L8 spanned by Vt and Vj. 

From this table it can be seen that V\ and VQ generate V5, V2 and V5 generate 

Vj, etc. So, for example, invariance under translation in x (operator V2) and under 

the Galilean transformation (operator V5) implies invariance under translation in t 

(operator Vi). It is worth mentioning that several of the groups in the commutator 

Table 4.1 can be deduced by inspection, particularly invariance under translation of 

the independent variables (operators Vi and V2), or scaling of the dependent and 

independent variables (operators V3 and V4). However, operators such as VQ and Vg 

cannot be found by inspection. 

In general, if a PDE (or a differential equation) admits a Lie algebra Lr of di­

mension r > 1, one could in principle consider invariant solutions based on one, two, 

etc, dimensional subalgebras of LT [54]. However, there are an infinite number of 

subalgebras of Lr, for example one-dimensional subalgebras. This problem becomes 

manageable by recognizing that if two subalgebras are similar, i.e. they are connected 

with each other by a transformation from the symmetry group (with Lie algebra Lr), 
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then their corresponding invariant solutions are connected with each other by the 

same transformation. Therefore, it is sufficient to put into one class all similar subal-

gebras of a given dimension, say s, and select a representative from each class. The 

set of these representatives of all these classes is called an optimal system of order s 

[54]. In order to find all invariant solutions with respect to s-dimensional subalgebras, 

it is sufficient to construct invariant solutions for the optimal system of order s. The 

set of invariant solutions obtained in this way is called an optimal system of invariant 

solutions. The optimal system is determined to ensure that a minimal complete set 

of reductions of variables is obtained from the symmetries of the given equations. Of 

course, the form of these invariant solutions depends on the choice of representatives. 

In the following we investigate the subalgebra structure (4.41) of the PDE (4.34). 

In particular, we are interested in determining the optimal system of one-dimensional 

subalgebras of (4.34) and the corresponding invariant solutions. 

For this purpose, we investigate the one-parameter group of adjoint transforma­

tions of the one-parameter subgroup exp(e Vi) generated by the vector field Vi act­

ing on the vector field Vj, where i,j = 1,...,8. This representation is denoted by 

Ad(exp(e Vj)) V} and is given by the Lie series 

Ad(exp(e Vi)) Vj = Vj-s [V, V-] + E- [VJ, [Vi, V-]] - ... (4.43) 

where [•, •] is the usual Lie bracket, defined by (4.42) (see the reference books of 

Olver [80], and Ovsiannikov [81], for the detailed information for adjoint representa­

tion and an optimal system). The corresponding adjoint representation structure for 

(4.41) can be easily constructed by using the formula (4.43) based on the infinitesimal 

generators given in the Table 4.1. The resulting operators are given in Table 7.1 in 

Chapter 7, where each (i,j)-ih entry indicates Ad(ex.p(e Vi)) Vj. We adopt the method 

suggested by Olver [80] to obtain the optimal system of subalgebras for the inviscid 

Burgers' equation (4.34). We obtain the following result (the proof of Theorem 4.1 is 

included in Chapter 7). 

Theorem 4.1 A one-dimensional optimal system of one-dimensional subalgebras of 

the full symmetry algebras for the inviscid Burgers' equation (4-34) is given by the 
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following vector fields 

(i) V8 + V5 + a2V2 + aiV1, V8 + V3 + a2 V2 + ax Vu VB±VU V8 + a2V2; 

(zt) V7 + V5 + a4VA, V7 + a4V4 + aiVh V7 + V6 + aAV4 + aM; 

(Hi) V6 + V3 + a2V2 + a1Vu Vt + axVu V6 + a2V2; 

(iv) V5 + V4 + a3Vs + a2V2, V5 + a3V3 + a2V2\ 

(v) V4 + a3V3 + a2V2, VA + a3V3, ^4 + 02^2; 

(vi) V3 + aiVi\ 

(vii) V2 + CI1V1; 

(viii) Vi, 

where ai,a2,a3, a4 G R are any real numbers. 

Symmetry reductions for the inviscid Burgers' equation 

In this section we present some examples of exact invariant solutions to (4.34) as 

technical applications. In the theory of Lie groups, if a partial differential equation 

(or a system) is invariant under a Lie group of point transformations, then some 

special solutions of these equations can be found. These solutions are called group 

invariant or similarity solutions, and can be obtained from the solutions of the reduced 

system of the differential equations with fewer independent variables as described in 

Chapter 3. 

Next, we present the reduction forms of the inviscid Burgers' equations (4.34) by 

using the corresponding symmetry groups based on the classification of subalgebras 

in the Theorem 4.1. According to the optimal system of one-dimensional subalgebras 

of the full symmetry algebras of (4.34), it is possible to obtain the classification of all 

possible corresponding reduced forms of (4.34). 

For illustrating the method in detail, we start by considering the one-dimensional 

subalgebra spanned by the infinitesimal generator V4 + a3 V3 + a2 V2 + a\ V\ in the 

case (v) of Theorem 4.1, where we have also included the translational symmetry 

vector V\. In this case, we obtain invariant solutions to (4.34), by using the so-called 

invariant form method (see e.g. [12, 13, 14]). In some cases we obtain exact invariant 

solutions to (4.34) and thus explicit (analytic) solutions to the coagulation equation 
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(4.2). In other cases, we obtain the asymptotic large-size behaviour for the solution 

c(\,t) of (4.2). 

Case I: Vector field V = VA + a3 V3 + a2 V2 + ax Vx 

In this case, the generators of the one-parameter group of transformations that leave 

the PDE (4.34) invariant are given by 

£(x,t) = a3x + a2, ({x,t) = t + a1, r)(x,t,F) = (a3 - 1) F, (4.44) 

where a2, a3 ^ 0 and a3 ^ 1. The case a3 = 1 is not of interest since it leads to a 

solution F(x, t) = j ^ - which is not completely monotonic. 

To obtain invariant solutions one needs to solve the invariant surface condition given 

by 

£(x, t) Fx + C(x, t) Ft = n(x, t, F) (4.45) 

The equation (4.45) is a first order partial differential equation and it can be solved 

by the method of characteristics. The characteristic system is given by 

dx _ dt _ dF 
£(x,t) " C(x, 0 " r?(x, t, F) 

Integrating the first pair of equations gives the first integral (or invariant) 

s = s(x, t) = constant. 

This is the similarity variable (or the independent variable). Letting x = X(s, t) then 

the second pair becomes: 

dt dF 

C(X(s,t),t)~r)(X(s,t),t,F) 

which can be integrated to obtain another first integral w(s, t, F) — constant. This 

equation determines F which is the similarity solution in terms of s. In principle, 

the general solution of equation (4.45) can be found. It involves two constants, one 

becoming the independent variable s = s(x, t) and the other the dependent variable 

ip(s). Consequently, we obtain the general similarity solution of (4.45) in the form 

F = ^"(x, t, s, 4>{s)) with the dependence of T on x, t and the arbitrary function 

4>(s) known explicitly, as one substitutes F into the original equation and obtains an 
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ODE for ^(s) . Therefore, we obtain the similarity solutions F and thus candidates 

for self-similar solutions. 

We now return to equation (4.45), where by using the generators (4.44), the 

invariant surface condition reads as 

(a3 x + a2) Fx + (t + a,) Ft = (a3 - 1) F. (4.46) 

The system of characteristic equations for (4.46) is given by 

dx dt dF lA t „ . 
(4.47) a3x + a2 t + ai (a3 — l)F 

For simplicity, we let a :— a2/a3 ^ 0 and q := aj, where q is any constant. 

Integrating the first pair of equations in (4.47) yields the similarity variable 

s = s(x, t) = (x + a)(t + q)~a3 = constant, 

whereas the second pair of DEs in (4.47) determines the similarity solution for (4.34), 

which reads as 

F(x, t) = (t + <7)a3_1 ip(s), where ip(s) is an arbitary function of s. (4.48) 

Substituting F, Fx, and Ft into (4.34) results in an ODE for ip(s) 

n s ) = PtW (4.49) 

where p := (1 — a3)/a3. The solution of (4.49) satisfies the algebraic equation 

[tP(s)}~1/pA + iP(S)-s = 0, (4.50) 

where A is a constant of integration. Based on the definitions of s and ip(s), one 

derives an algebraic equation for the similarity solution F(x, t) of the form: 

A [F(x, t)] ~1/P + (t + q) F(x, t)-(x + a) = 0, (4.51) 

The constant A depends on the initial condition F{x, 0) = h{x) for (4.34). In partic­

ular, when t = 0 one obtains the equation satisfied by the initial condition h(x) (for 

which such similarity solutions F occur) 

A[h(x)]-1/p + qh(x) - a = x. (4.52) 
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Based on the definition (4.6) of h(x) as a Laplace transform, we have h(x) —> 0 

as x —» oo. If we take the limit as x —» oo in (4.52) we obtain that p > 0 or 

0 < 03 < 1. Since (4.52) holds for all x > 0, in particular it also holds for x = 0. 

Hence, A = {a - q h(0)) h(0)^P. 

Define 

Jr(h) = Ah~1/p + qh-a = x. 

Differentiating the above with respect to x we obtain 

F(h) h'{x) = 1. (4.53) 

Since h(x) is a completely monotonic function for all x > 0, we have h'(x) < 0, so 

F'{h) < 0 which leads to 

q - - [Hx)}-^ < 0. (4.54) 
P 

Differentiating (4.53) again w.r.t. x and using the complete monotonicity of h we 

get T"(h) > 0, which gives A > 0 and thus a > qh(0). Gathering the information 

obtained so far, we conclude that the PDE (4.34) has a similarity solution F(x, t) 

given by 

F(x, t) = (t + g)"?+i tjj({x + a)(t + q)'^1) 

where ip(s) satisfies (4.50). In principle, once the function ij;(s) is known, one can 

use the Laplace transform inversion theorem [23, 117] to obtain the size distribution 

function c(A, t) in the general form 

c(\,t)=V^q> * Z[it + q)^x\) (4.55) 

where Z{fi) denotes the inverse Laplace transform of ip(s). 

For some particular values of the constant p > 0 one can obtain exact solutions 

ij)(s) for the algebraic equation (4.50) which lead to the analytic distribution function 

c(A, t) satisfying (4.2). However, in general the solution of (4.50) cannot be obtained 

explicitly. To understand the properties of the size distribution function c(A, t), one 

can investigate the large size (A —> 00) behaviour of c(A, t), for all t > 0. According 

to the theory of Laplace transforms (see e.g. [23]) one can deduce the asymptotic 

behaviour (and properties) of the original function /(A, t) near infinity (A -+ 00) 

when its inverse Laplace transform (F(x,t)) is many-valued at the singular point 
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with the largest real part. For this purpose, it is enough to determine the singular 

points and the asymptotic behaviour of ip(s) near these points. 

For a general first order differential equation 

v'(s) = -—— where a, b, m, d are arbitrary constants and <r, m ^ 0 
bv(s) — ms + a 

one can determine, based on the implicit function theorem, a branch point of the 

solution v(s) with the largest real part to be given by 

1 (Cimim + a) ,™ , \m +" ,„,.„., 
s0 = — .-!—i L b^ +d) 4.56 

m \ a j 

where C\ is a constant of integration. 

For the function (f>(s) satisfying (4.49) we have a = p, b = p + 1, m = 1, d = 0 

and A defined above. Thus, we obtain that the branch point of I/J(S) is given by 

so = (p + 1) (A/p) ^ = (p + 1) a0. 

Using Newton's polygon method (for more details see e.g. [109, 115]), we obtain the 

asymptotic behaviour of ip(s) 

I2a0p , a/2 
1>{s) ~ a0 - W --—- (s - so) as s -> s0, 

where ao = so/(p+l). The dominant small s —> so singularity in I/J(S) is a square root 

branch point which gives an algebraic tail ~ A-3/2 in the inverse Laplace transform 

Xc(X,t) as A —> oo (see Theorem 37.2 in [23]). Therefore, the asymptotic behaviour 

of the inverse Laplace transform of ip(s) is given by 

£ - ^ ( s ) } ( ^ ) = Z ( M ) ~ ^ y i ^ £ ^ - » / » e « » t p + i ) M as „ - o o 

which, when substituted into the general formula (4.55) yields the following asymp­

totic behaviour for the size distribution function c(A, t) for all t > 0: 

as A —> oo 

where Q(t) is obtained from the boundary condition (4.12). Thus Q(t) is given by 

the following I.V.P. 

Q'{t) = F{Q{t),t) subject to I.C. Q(0) = 0 where F(x,t) satisfies (4.51). 
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To determine completely the expression of c(A, t), we need to find the function 

Q(t). This can be obtained by substituting x = Q(t) into (4.51). Thus, we obtain an 

ODE for Q(t) which later can be used to determine the expression of the first moment 

of the solution 

l - i /p [Q'(t)]-l/pA + (t + q)Q'(t) = Q(t) + a. 

Differentiating this equation with respect to t gives 

A M{(t) • {t + , - ± [MM]-™*} = 0. 

In this particular case, where no particle source terms are present in the coagulat­

ing system, it is expected that the total mass Mi(t) be conserved, i.e. M\{t) = M\{Q) 

up to the gel-time Tgel. After this moment, M\{t) starts to decrease. For the expres­

sion of the gel-time we use the definition in [96], 

T^ = -f^W)=^m]''Ef-q>0- (457) 

According to [96], Tgei is defined as the instance when the second moment M2(t) 

diverges. We detail below the pre and post gelation stages: 

In the pre-gelation stage t S [0,Tge{), we have M[{t) = 0, so Q"(t) = 0. Also, 

using the initial condition Q(Q) = 0 and since Mi(t) = Mi(0) = /i(0), we find that 

Q(t) = h(Q) t, where /i(0) satisfies the algebraic equation A [/i(0)]_1/,p + qh(0) = a 

and A, a, q > 0 are arbitrary constants. 

In the post-gelation regime t > Tgei, the equality M\(t) = Mi(0) no longer holds, 

and thus we have Q"(t) ^ 0. The latter yields 

tf(9 =[£(« + ?)]"*• 

Integrating the above equation on [Tgei, t] and using the continuity of Q(t) (as the 

primitive of a bounded function) at t = Tgti , to get Q(Tgei) = h(0) Tgei and the 

definition of Tgei, we obtain 

Q(t) = -a + (p + 1) ( - ) "+1 (t + </)-pfr = -a + a0 (p + 1) (t + q)-&, for t > Tgd. 

Thus we have obtained the following example. 
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Example 4.1 (Asymptotic solutions for the pure coagulation equation (4-%)) 

Let the initial condition be defined such that A c(A, 0) is the inverse Laplace transform 

of the function h(x) satisfying the algebraic equation 

A [h{x))-1/p + q h{x) - {x + a) = 0, 

where A, p, q, a > 0 satisfy conditions which ensure complete monotonicity of h(x). 

Assume the coagulation kernel is K(X,p) — \p and the source term is g(X,t) = 0. 

Then the solution c(A, t) of (4-2) for every t > 0 behaves as follows 

;(A, t) ~ — J ^ {t + q)-ffi& A-5/2 e- M+°-"° (P+D(t+<^<»+1>) A as A oo 

where 

where A, p, q, a > 0 are constants, and ao 

h(0)t, for te[0,Tgel) 
+ a 0 ( p + l ) ( i + </)"'&, for t>Tgel 

( * ) 
p+i Here Tgei represents the 

gelation time and is given by Tgei — j [h(0)] p — q. In addition, the total mass 

M\(t) is given by 

l U \ao(t + q)-¥h, for t>Tgel D 

Particular choice of constants 

In particular, if we choose p = 1 and a, q > 0 then we obtain the exact solution ^(s) 

of the quadratic equation (4.50) as ip(s) = \ (s — y/s2 — 4 A). Moreover, we have 

A; 
u(x, t) = Fix + Q(t), t) = = 

x + Q{t) + a+^(x + Q{t) + a)2-2kt-r2 

where k := 2 A and r2 := 2qk. At t = 0 we obtain the initial conditions for (4.34) 

and (4.2), respectively to be 

h(x) = and CQ (A) = 
ke -a A 

A(Ar), 
x + a + y/(x + a)2 - r2 " ""v 'v ?"A2 

where I\ represents the modified Bessel function of the first kind [1]. Moreover, in 

this case, we can calculate the inverse Laplace transform Z(p) of ijj(s) exactly 

V2 p 
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Substituting this result into the general formula (4.55) we obtain an exact family of 

solutions to the coagulation equation (4.2) and an expression for the total mass for 

all t > 0. 

Example 4.2 (New family of explicit solutions to the pure coagulation 

equation (4-2)) Let the initial condition to (4-2) be CQ(X) — ke
r£i h{Xr) and 

the source term g(X,t) = 0. Assume the coagulation kernel K(X,/J,) = X/i. Then the 

solution c(X, t) is given by 

ke-(Q(t)+a)x U\^2kt + r2) 
c(X, t) = — _ 

where Q(t) is given by 

W ) = \ y/2kt + r2 - a, for t > Tgel 

where k, r, q > 0, a > r > 0 and m := y/a2 — r2 are arbitrary constants and the 
2 

gel-time is given by Tgei = k 7 ^ ^ . The expression of the total mass Mi{t) is given by 

k for te[0,Tgd) a-j-m 
M^ = Tsfcr. f°r l >-T* gel D 

Remark 4.1 In particular, if ai = 0- then q = 0. In this case, we can determine 

explicitly the initial condition h{x) of the Burgers' inviscid equation (4-34) (see Case 

la below). 

Case la: Vector field V — V4 + a3 V3 + a2 V2 

In this case, the similarity variable and the similarity solutions are given by 

s = s(x,t) = (x + a)t~p+i and F(x, t) = i~?+r i/)(s) 

where a := a2/a3 and p = (1 — a3)/a3. The function ip(s) satisfies (4.49) or (4.50), 

while F(x,t) satisfies the algebraic equation 

- I / P 
A[F{x,t)] /p + tF(x,t)-(x + a) = 0, 
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*>-(ifJ 

where A is the constant of integration, which depends on the initial condition F{x, 0) = 

h(x) of (4.34). In particular, when we set t = 0 in the equation above we obtain an 

expression for the initial condition 

A \P 

+ 
that gives such similarity solutions F as above, where A, p, a > 0 arbitrary constants. 

This explicit expression of h(x) allows us to determine the inverse Laplace transform 

of h(x), i.e. the initial condition Ae0(A) and thus we obtain 
Ap \ p - 2 g _ a ^ 

co(A) = p-r-7 (the gamma distribution). 

Hence, we obtain the asymptotic behaviour of the size distribution c(A, t) of (4.2). 

Same as in Case I, our results agree with those derived by Ernst et al. in [34] by using 

the saddle point method (see Eq. (3.13) in [34]). Our result is summarized below: 

Example 4.3 Assume the initial condition c0(A) to (4-2) is given by 

,,N ApXp-2e~aX 

**> - —m~ 
where A, p, q, a > 0 are constants. Let the coagulation kernel be K(X,fi) = Xfj, and 

the source g(X,t) = 0. Then the solution c(\,t) of (4-2) for every t > 0 behaves as 

follows 

c ( A i i ) ^ 1 / ^ E r ^ A - s / a e - C o W + ^ - o O H - i ) ^ ^ ) ) * a s A _ ^ 
v ' V ^ : V P + 1 

(4.58) 
where 

Q(t) 
f / M , for te[0,Tgd) 
\ - a + ao(p + l ) r p f r , for t>Tgel 

where a0 := ( 4 j > Po : = ( ^ ) andTgei = - (/?0)
 p is the gel-time. Moreover, 

the total mass Mi(t) is given by 

M m J Po, for t£[0,Tgel) 
m ) = \aor*, for t>Tgel 

In particular, ifj4 = a = p = l > 0 then we obtain the solution in [34]. 

Remark 4.2 With the asymptotic large size (X —* oo,) solutions obtained in Examples 

4-1 and 4-3 we recover the asymptotic solution [3.13] in Ernst et al [34]• Here, we have 

takes z0(t) = Q(t) + a - a0 (p + 1) (t + q)l^+1\ where q > 0 and q = 0, respectively. 
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Case lb: Vector field V = VA + a2 V2 

In this case, the generators of the one-parameter group of transformations that leave 

the PDE (4.34) invariant are given by 

Z{x,t) = ai, ((x,t) = t, 7}{x,t,F) = -F. (4.59) 

Thus the similarity variable and the similarity solutions become 

s = six, t) = x ln(£) and F(x, t) = ip(s) t - 1 , 
P 

where p := l/a2 > 0. The function ip(s) satisfies the ODE 

if/(s) = Pfy with solution V(«) = - - W{-^pe-sp) (4.60) 
Pw\s) - 1 p 

where we denote by 70 = e~pk > 0 (with k a constant of integration) and W is the 

Lambert W-function defined by the equation y exp(y) = x. Moreover, the function 

ip(s) also satisfies the transcendental equation 

Ms) - - ln(^(s)) = 5 - l ^ - (4.61) 
P P 

Using the definition of the function F(x, t) we obtain that F satisfies the equation 

tF(x,t)--ln(F(x,t) = x - 1 ^ - (4.62) 

In particular, when t = 0 we obtain the initial conditions for (4.34) and (4.2) for 

which such similarity solutions F as in (4.62) occur 

h(x) = 70 e~px and Ac0(A) = 70 S(X - p), 

where the assumption that p > 0 is made to ensure the complete monotonicity of 

h(x) for all x > 0 and the condition h(x) —• 0 as x —> 00. 

In general, the equation (4.62) cannot be solved explicitly. To understand the 

behaviour of the solution c to (4.2), we investigate its asymptotic behaviour as A —* 00 

for t > 0. For this purpose, we look at the asymptotic behaviour of its image function 

F(x, t) near the singular (branch) point with the largest real part. 

Since the equation y ey = x has an infinite number of solutions y for each (non­

zero) value of x, W has an infinite number of branches. Using the asymptotic formula 

w (a) = -W(-e~3) ~ 1 - V2 (5 - 1)1/2, as s -» 1 
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we obtain 

II \ l "fi~P t M/2 1 + l n ( 7 o p) 
ip{s) ~ (s - so) a s s —* so '•= • 

p p p 

Therefore, the asymptotic behaviour of F(x, t) is given by 

t pt y/pt \ / P 

where t is fixed. Therefore, the dominant small x —• x0(t) singularity in F(x,t) 

is a square root branch point, implying an algebraic tail ~ A-3/2 in the inverse 

Laplace transform A c(A, t) as A —> oo (see Theorem 37.2 in [23]). Thus we obtain the 

asymptotic behaviour of the original function c(A, i) for alH > 0 as 

c ( A , 0 ~ - 4 = = A - 5 / 2 e - ( ^ - i ± 1 : ^ £ i ) A as A - oo, 
t y2~K p 

where Q(t) is given by the following I.V.P. 

Q'(t) = F(Q(t),t) subject to I.C. Q(0) = 0, where F(x,t) satisfies (4.62). 

Substituting x = Q(t) into the equation (4.62) we obtain the following I.V.P. for Q(t) 

tQ'(t)--\n{Q'{t)) = Q(t)-1^^- subject to Q(0) = 0 
P P 

which by differentiation w.r.t. t yields 

Q"(t)-(tQ'(t)--)=0. 

In this case, using again the same definition in [96], we obtain the gel-time: Tgei = — . 

Next, we investigate the pre- and post-gelation stages. 

In the pre-gelation regime, for 0 < t < Tgei we have Q"(t) = 0 with I.C. Q(0) = 0, 

and thus the solution Q(t) = h(0) t = 701. On the other hand, in the post-gelation 

stage, for t > Tgei we obtain 

Q'{t) = j f withLC. Q{Tgei)=
l- =• Q(t)=1 + Hlopt). 

Consequently, we have obtained the following 
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Example 4.4 Let 70, p > 0 be arbitrary constants. Suppose the initial condition 

c0(A) to (4-2) is Ac0(A) = 7o<$(A — p), the source g{\,t) — 0 and the coagulation 

kernel K(\, p) — A/x. Let the function Q(t) be given by: 

nf* J 7 0 * ' f°r te^T9el) 

Q{t) - I i±j ste£!l j for t > Tffei 

Then the solution c(X, t) of (4-2) behaves as follows 

c(A, t) i = A~5/2
 e - (Q ( t ) - 1 + l n (J n" ) )A

 a s A -» 00 and for all t > 0. 
t y/2lT p The total mass Mi(t) is given by 

Mx(t) = ( 2 ' 

w/iere Tgei = -^-, represents the gel-time. 

for t£[0,Tgel) 
for t > Tgel. 

Remark 4.3 In order to obtain new invariant solutions to the inviscid Burgers' equa­

tion (4-34), we have also considered other vector fields in Theorem 4-1. We enumerate 

a few vector fields for which we have obtained explicit similarity solutions F(x, t): 

(ii) Vf+a V\, with a < 0 with the similarity solution F(x, t) = i t—\—% ( x — j ^ ) 

(Hi) V§ + c V3, with c^O, with the similarity solution F(x, i) = ^ 

However, none of the similarity solutions we obtained satisfy the definition of 

Laplace transform, and thus they are of no interest to our study. Other vector fields 

have been considered, however they lead to Abel's equation of the second kind for 

which we haven't obtained explicit solutions. For these types of equations, one either 

uses numerical methods or asymptotic analysis. We have left these vector fields for 

future work. One can also apply group methods for search of solvable Abel equations 

(see e.g. [111]). 

Summary for Cases I, la, lb in 4.2.2 

In Cases I, la and lb, we obtain a more general family of asymptotic solutions that 

depend on the total mass Mi(t), which also include the solution of Ernst et al. [34] as 

a particular case (one takes A = a = p > 0 and q = 0 in Cases I and la, or p = 70 = 1 

in Case lb). The advantage of our method is that we obtain a general formula for the 
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solution c(A, t) that includes the total mass as part of the solution. In our case we do 

not need to know the expression of the total mass in advance in order to derive the 

solution of the coagulation equation as in [34]. The expression of M\(t) results as a 

solution to an I.V.P. Furthermore, we provide a more systematic method which does 

not rely on the saddle point method. 

4.2.3 Coagulation kernel K(\,n) = Xfi and g(\,t) > 0 (sources) 

In this particular case, the PDE (4.13) reduces to a Burgers' equation with source 

terms of the form: 

Ft{x, t) + F(x, t) Fx{x, t) = G(x, t) (4.63) 

Generators for the one-group of transformations 

It was proved in 4.2.1 that (x(x,t) = 0 and (0(0 = 0, so £(x,t) = 6 ( 0 is a 

function of t only. Thus, (4.25) becomes 2&(t) = <J'(0i so Ci(0 = 2£0(0 + ax 

and £(x, t) = £0(0 x 4- 6(0> where ax is an arbitrary constant. Moreover, since the 

generators also satisfy (4.26), we obtain the generators admitted by (4.63) to be 

£(x, 0 = &(0 x + 6 ( 0 , <(*, t) = 6 ( 0 , ri{x, t, F) = -[&(*) + <n]F + &{t) x + 6 ( 0 

where 

Ci{t) = 2£0(t) + ai and 

[&t)x + 6 (0 ] Gx + 6 ( 0 Gt + [3&(t) + 2 ox] G = £,'(0 * + £i'(0- (4-64) 

In this case, the invariant surface condition (3.11) becomes 

[6.(0 x + 6(01 Fx + 6(0 *1 + [6>(0 + ai] F = ^(0 ^ + €1(0-

Assume that £o(0 7̂  0. The case £o(0 — 0 is left for future work. Then, using the 

definition of F(x, 0 as a Laplace transform, it follows that a necessary condition for 

the above equation to hold for all x > 0 is £Q(0 = 0, s o £o(0 = c i a n ( i £o(0 = 
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0. Thus, the generators for the one-parameter group of Lie point transformations 

admitted by the equation (4.63) are 

£(x,t) = ciX + 6 ( 0 . C{x,t) = (i(t), r1{xXF) = -(al + c1)F + ([{t). 

In this case, the invariant surface condition and equation (4.64) take the form 

[Cl x + fat)] Fx + Ci(0 Ft = - (c i + ai)F + £ ( i ) (4.65) 

[Cl x + &(*)] Gx + d ( 0 Gt = - ( 3 C l + 2 a 0 G + £'(*). (4.66) 

To solve the equations above, we use the method of characteristics. There are two 

subcases to consider here. We refer to these cases as Case A and Case B. In both 

cases we determine the general similarity solutions for the Burgers' equation (4.63) 

with source terms. 

Symmetry reductions for Burgers' equation with sources 

Case A. Assume d(t) = 0, for every t > 0 

Using the definition of F(x, t) as a Laplace transform and letting x —> oo in (4.65), 

we obtain £[(t) = 0, so £j(£) = c<i any constant. Thus, the solution of (4.65) becomes 

F(x,t)=p(t){c1x + c 2 y ^ (4.67) 

where p(t) > 0 is an arbitrary function of t and ci, c2 > 0 and a\ are arbitrary 

constants such that ai/ci > —1. 

Next, we prove that the only condition that guarantees the function F(x, t) van­

ishes as x —> oo is that c\ — 0. Indeed, assume the contrary, i.e. c\ ^ 0. To solve the 

equation (4.65) we use a procedure called "T/ie Direct Substitution Method' (see e.g. 

[13, 14]), that is computationally better than the "Invariant Form Method' that we 

used in Section 4.2.2. Next, we substitute F(x, t) into (4.63) and we obtain that the 

function G(x, t) is given by the following expression 

G(x, t) = p'(t) (ci x + c 2 y ^ - (0 l + ci) P
2{t) (a x + 0 2 ) - ^ ^ 

Substituting G(x, t) above into the determining equation (4.66) we find 

-p'(t) (ax + ci) (ci x + c2)'^~1 = -p'{t) (3ci + 2 oi) (ci x + c 2 )~^ _ 1 . 
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So, the constants a\ and c\ satisfy the relation ai + c\ = 3 c\ + 2 a\, or a! = - 2 ci, 

which fails to satisfy the inequality a\jc\ > — 1 obtained above. Therefore, we have 

c*i = 0. Thus the generators of the Lie group of point transformations become 

£(>,£) = c2, COM) = 0, r){x,t,F) = -aiF. 

If c2 = 0 then we have two subcases to consider here: 

(a) If ai j£ 0, then from (4.65) we have the unique solution F = 0. This solution 

yields G(x, t) — 0, which contradicts the assumption G(x, t) > 0. 

(b) If a\ = 0 then there is no nontrivial group of transformations admitted by 

the Burgers' equation with source terms (4.63). 

Therefore, we only consider the case c2 ^ 0 for all t > 0. Then using c\ = 0, the 

solution (4.67) becomes 

F(x,t) =p(t)e~%x. 

Substitution of F(x, t) into the original PDE (4.63) gives rise to a function G(x, t) of 

the form 

G(x,t) =p'{t)e-%x - -p2{t)e-^x 

c2 

which when substituted into (4.66) gives aipl(t)e~c^ x = 0, so p(t) = C3 > 0, where 

C3 is an arbitrary constant. Thus, 

F(x ,0 = c 3 e " ^ x and G(x, t) = -— <?ze~^x. (4.68) 
c2 

Since G(x, t) < 0 then the definition of G(x, t) as a completely monotonic function in 

x fails to be true. To summarize, there are no completely monotonic functions G(x, t) 

for which similarity solutions F(x, t) of the form (4.68) exist for the equation (4.63). 

Case B. Assume d(t) ^ 0, for every t >0 

In this case, the generators of the Lie group of point transformations admitted by the 

Burgers' equation with source terms (4.63) are given by 

< ( M ) = c i * + &(*). COM) = &(*). r1(x,t,F) = -(al+c1)F + Ci(t), 
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where (i(t) ^ 0 and ([(t) = 2£0(t) + ai — 2ci + ai, since £0(0 = ci- So, d(t) = 

(2ci + a,i)t + c2, where c2 is an arbitrary constant. In addition, using the definition 

of Ft as a Laplace transform, we can deduce from (4.65) that £[(t) = 0 and thus 

fi(t) = C3 is an arbitrary constant. We illustrate below a few steps that we take to 

determine similarity solutions: 

Step 1. First, we solve the invariant surface condition (4.65) by using the method 

of characteristics and obtain that the similarity variable and the similarity solution, 

respectively are given by 

s = (x + c 3 ) | C i ( ' ) r ^ and F{x, t) = (^(s) + AJ I G W f ^ 

where Ax is an arbitrary constant. 

Step 2. Solve the PDE (4.66) for G(x, t) using again the method of characteristics. 

We obtain 

G(x, t) = (<p(s) + A2) | C i ( 0 r ^ ^ (4-69) 

where Ai is an arbitrary constant. 

Step 3. Finally, substitute F(x, t) and G(x, t) obtained in Steps 1 and 2 into (4.63) 

to get 

if>(s) V-'(s) - y»(s) - {ci s tf(s) + (oi + ci) ij>(s)} + if>'(s) Ax - (ax + cx) Ax - A2 = 0, 

Using the steps above, the generators for the one-group of Lie point transformations 

become 

t(x, t) = ci x + c3, ((x,t) = d(t) = (2c1 + a1)t + c2, r)(x,t,F) = - (c i + at) F 

where ai, ci, c2, c3 are arbitrary parameters. Hence, a nontrivial four-parameter Lie 

group of transformations acting on the (x, t, F)-space is admitted by the Burgers' 

equation with source terms (4.63). 

The infinitesimal generator X associated with the above Lie group of point-

transformations can be written as 

x-a^tm-Fw)+c\xd-x+2tdi-FdF)+^Wt + ^m 
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Therefore equation (4.63) admits a Lie algebra L4 spanned by the following four 

vector fields: 

d r, d „ d d „ d „ d „ d 
V1 = t—-F^7;, F2 = x — + 2 i — - F — , Va = —, V4 = — dt ' dF' ' dx dt dF' " dt' "* dx 

The commutator table for the Lie algebra arising from these infinitesimal generators 

is given in Table 4.2. 

KVi] 
Vi 

v2 
v3 
v, 

Vx 

0 
0 

v3 
0 

v2 
0 
0 

2V3 

v. 

v3 
-v3 

-2V3 

0 
0 

vA 
0 

-VA 
0 
0 

Table 4.2: Commutator [Vt, V3] table for the Lie algebra L4 spanned by Vi and Vj. 

We consider first the case of the most general one-parameter group of symmetry 

transformations by choosing a general linear combination v = ai V\ + c\ V2 + c2 V3 + 

C3V4, where ci, c2 ^ 0, c3 are arbitrary and 2ci + a\ ^ 0. Using the method of 

characteristics to solve the invariant surface condition (4.45), we obtain the following 

general result: 

Theorem 4.2 Let Ai, A2 be arbitrary constants. In addition, assume ci, c2 7̂  0, 

c3 arbitrary and 1c\ + a\ ^ 0. Let <p(s) —> 0, as s —> 00. /n addition assume 

<fi(s) 4- A2 > 0 /or a/Z s, and —<p'(s) is a completely monotonic function for all s € K, 

where 

a = (s + C3)|Ci(0l 2c i+a i 

represents the similarity variable, where Ci(£) = (2ci + ai) t + c2. Assume the function 

G(x, t) has the similarity form given by 

G(x,t) = (<p(s) + A2)\(1(t)\-
?£^ 

Then the partial differential equation (4-63) has a similarity solution given by 

F(M) = (v(«)+^)id(*)r^ 
where ip(s) satisfies the ODE 

ip(s) + {ai + ci) i/)(s) + A2 + (ax + ci) Ai 
1>'(s) = 

The constants a\ and c\ are such that: 

I/J(S) + Ai - a s 
(4.70) 
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(a) tp(s) vanishes to zero as s —>• oo; 

(b) '4>{s) satisfies 'tp(s) + A\ > 0; 

(c) —il>'{s) is a completely monotonic function for all s. 

Remark 4.4 Without loss of generality we may assume the constants A\ and A2 in 

Theorem 4-2 to be zero. In addition, we also consider the constant c3 ^ 0 as otherwise 

we obtain solutions that are not realistic, from a physical point of view. Future work 

will investigate a few examples of constants at and c\ for which the function tp to 

(4-70) satisfies conditions (a-c) in Theorem 4-2. To illustrate a few examples of 

similarity solutions we consider below a few one-parameter subalgebras generated by 

X above. 

Case I: Vector field V = a1Vl + cxV2 + c2 V3 + c3 V4 

Our aim is to look for examples of functions ip(s) that are completely monotonic 

in s and for which the ODE (4.70) can be solved explicitly. By solving (4.70) we 

obtain ip(s). Since we are interested only in those functions ip(s) that are completely 

monotonic in s, we need to impose certain conditions (restrictions) on the non-zero 

constants a\ and c\ satisfying 2 a\+c\ / 0. By doing so, we obtain similarity solutions 

F(x, t) for the PDE (4.63), which in some cases become exact solutions. We present 

an example of such an exact solution to (4.2) below. 

Example 4.5 (i) Assume a,k,q > 0 are arbitrary constants such that a > kq. 

Let the coagulation kernel be K(\,n) = A/x. If the source term g(X,t) is given by 

fce-MQ(t)+<») 
g ( A ' * ) = (t + q)\2 h{kXt + k\q), 

where I\ is the modified Bessel function of the first kind [1], then the solution to the 

coagulation equation (4-2) is given by 

^e-X(Q{t)+a) 

c(X,t)= h(kXt + k\q), 
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where the function Q(t) is given by 

f tfc7+2«> f0r 0<t< Tgel , N 

Q(t) = l 2(o+v£5-fcV) J ~ 9 (4.71) 
{ k{t + q)-a for t> Tgel 

Tgei represents the gelation time given by 

Tgel = ° - J W « a - * V ( 4 . 7 2 ) 

Let the initial condition of (4-2) be co(A) = ke~aX ^Jl K In addition, the total mass 

Mi(t) is given by 

( k'(t+q) f 0<t <T , 
Mx(0 = { a + v / ^ V / 0 r - lsel (4.73) 

\k for t> Tgd 

(ii) Assume a,k,q > 0 are arbitrary constants such that a = kq. Then gelation 

occurs instantaneously, i.e. Tgei = 0. 

Proof. Indeed, consider the particular example ip(s) = ip(s). In this case ip(s) 

satisfies the ODE: 

tf(3)= Jf^— where p = o1 + c1 + l, (4.74) 
i>(s) -cis 

or tfi(s) satisfies the algebraic equation 

L J C\ -T p 

where A is a constant of integration and cx and p satisfy the condition c\/p > 0 in 

order to ensure complete monotonicity for the function 'ip{s). One can use a similar 

analysis as for ip(s) in (4.51) and obtain the asymptotic behaviour of ip(s) near the 

branch point s0 oiip(s). 

In particular, we choose the constants p = Cj = 1. Moreover, if we denote by 

k := \/2A, a := C3 and q := ci and assume a, q > 0, then, ai = —1 and in this case 

the similarity solution F(x, t) and the function G(x, t) become 

™ - IT? " y/W1""*™ - iTi {frf - JW1^ 
Therefore, the initial condition F(x, 0) = h(x) becomes 

, , . x + a l/x + a\2 ~ 
h(x) = — ~ V ( — ) ~k 
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Next, let us prove that (4.73) and (4.72) hold. Indeed, using the boundary condi­

tion (4.12) it follows that Q(t) satisfies the I.V.P. 

Q'(t) = Q® + a-J(Q® + ay-k? subject to I.C. Q(0) = 0. (4.75) 

If we denote by v(t) := ^§^ then (4.75) simplifies to an I.V.P. for v(t) 
t+q 

dv dt . . T _. .„. a 
subject to I.C v{0) = - . y/v2 - k2 t + q q 

Thus v(t) satisfies 

Jv*(t)-k* = a+"/a2~k2q2 -v(t) (4.76) 
C "T" Q 

The solution of (4.76) is given by 

2 (t + q) 2(a + y/a?-k?q*) 

The expression of t;(£) obtained in (4.77) is valid only for values of t £ [0,TC) where 

Tc corresponds to the time t such that the following inequalities hold 

k<v(t)<a+^a2-k2q2 

t + q 

Thus, we obtain 
_ a - kq + \Ja2 - k2 q2 

c~ k 

On the other hand, using the definition of the gelation time [70, 96] as the 

instance when the second moment of solution M^it) diverges and the definition 

M2(t) = —Fx(Q(t), t), we obtain that Tgei is given by 

T9e; = inf{*>0 s.t. v{t) = k} = Tc 

Hence, the expression (4.77) holds for t 6 [0,Tgei). In addition, the expression in 

(4.77) yields the formula for the function Q(t) obtained in (4.71) and the expression 

for the total mass, Mi(t) in the pre-gelation regime, as 

M^t) =—^~+J4±==-, V*e[0,Tse() 
2 (a + y/a4 — k2 q2) 



In the post-gelation regime, we use as an initial condition the expression of v(t) in 

(4.77) at t = Tgei to ensure continuity of Q{t) and thus of Mi(t) at the gel-time. We 

obtain v(Tgei) = k. Moreover, for any t > Tge[ we have v(t) = k and the solution of 

(4.75) becomes 

Q(t) = k(t + q)-a, V* > Tga (4.78) 

This expression yields the formula in (4.73) and thus the total mass is constant for 

t > Tge[, which completes the proof. • 

Case II: Vector field V = c1V2 + c2V3 + c3V4 

In this case, the generators of the one-group of Lie point transformations admitted 

by the Burgers' equation with sources (4.63) become 

£(x, t) = ci x + c3, COM) = 2ci i + c2, rj(x,t,F) = -ciF, 

where c\ ^ 0. The case c\ — 0 is treated separately as Case III. Then the following 

result holds 

Example 4.6 (Similarity solutions for the Burgers' equation with sources 

(4>63)) Let p, q > 0 and m < — 1 be arbitrary constants such that 

. M e x p f e ^ ) 
l n ( - „•>,, , _N > (1 - m) y/q where A = — \ J= 

\ l -m 

*} +A 
Assume tfie initial condition of (4-63) is given by 

( 2 M e x p f ^ ^ ) 

Mx) = Z\x + a-}J{x + a)» + ^ - ^ (x + a ) ^ j 

The function h(x) is well-defined and completely monotonic for values of x such that 

( 2 _(ni=A
T^ 

^ p2(l + m) y 

where a > 0 is arbitrary. In addition, for x > ^t, assume the function G(x, t) is 

given by 

G{x,t) = (x + a)m (2pt + q)~^. 
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Then the similarity solution F(x, t) to (4-63) has the form 

F<*-"- wr,\*+a-V('+aY+2(2/(iVm7 {x+°)1+" 
where 

A2 exp (-(l-m)v/2pt+9)--j 2 

2 
X-m 

Q(i)=<{ V ^ \ 2Apexp(-i^V2P+^) y 9e' 

v/2pH^(-?T^I)
T^-fl, for t>Tgel 

where 

2 

2 p ( l - m ) 2 L V A2(l + m). 
- ^ - > 0 . 

2p 

Proof. Indeed, according to Theorem 4.2, the similarity solution and the function 

G(x,t) take the form 

F{x,t) = ]$ih and G{x't) = ]iw~2 where s=(a;+c3)iciwr l /2 

is the similarity variable and d( i ) = 2 ci £ + c2. Moreover, (4.70) becomes 

_ ^O+fuM (479) 

Since (4.79) is an exact ODE, its solution can be determined by solving the algebraic 

equation 

•L~-L-cisij(s)- cp{s)ds + A = 0 =• 

ip{s) = ci s ± W (Cl s)2 - 2 ( ^ - / y>(s) da) 

where y>(s) is a completely monotonic function in s such that c\ s2 + 2 J s </>(s) ds — 

2 v4 > 0. The variety of functions <p(s) that are completely monotonic in s such that 

i/)(s) itself is completely monotonic and also vanishes to zero as s —> oo is limited. 

We have investigated a few such examples of functions <p(s). However, we illustrate 

below one particular interesting example for which we obtain the expression of the 

total mass of the solution explicitly for all t > 0 and also the gel-time Tgel. 
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First, we denote by a := C3 and assume ip(s) = sm, where m < 0 to ensure the 

definitions of F and G are both satisfied. Then we obtain 

1 A 2 «1+m 

iP(s) = c1s-\/cls2 + T ^ - + ^ (4.80) 
w v/ x 1 + m 1 + m v ; 

Therefore the similarity solution becomes 

F(g, 0 = iCiWI-1] ct (a; + a) - J c j (x + a)» + ^ ^ ^ lCi(01 + 2 ' ^ ' ^ — (^ + a) 

1+m 

1+m 

and G{x,t) = (x + a)m\Ci{t)\-2, where &(t) = 2pt + C2. 

In order to obtain an explicit formula for the total mass, we set A = 0, and denote 

by p :— c\. In addition, we assume m < — 1, such that F(x,t) vanishes to zero as 

x —• 00 and also p > 0 to keep the complete monotonicity of F(x,t). With these 

notations and assumptions we obtain that G(x, t) and F(x, t) are given by 

G(x, t) = (x + a)m \2pt + (si -**2 , 

and 

F(I'') - wr^\ {*+• - V ( I+a)2+2 'Ta+t?' ( I+a )1+m} (4-81) 
When t = 0, if we denote by q := [c2J > 0 then we obtain the initial condition 

F(x, 0) = h(x) of (4.63) to be 

h(x) = l^x + a-]J(x + ay + ^ ^ (x + a)*™ 

Notice that h(x) is well-defined for values of x such that 
m - l 

x > -a + ( - 7 ) 1 ^ where 7 := -5-7- < 0. (4.82) 
p2 (1 + m) 

For these values of x it can be shown that h(x) is completely monotonic. Indeed, we 

have 

h(x) = - ( x + a - y/(x + a)2 + 7 (x + a) 1 + m J > 0 

One can calculate the derivative h'(x) and obtain that /i'(x) is a product of two 

completely monotonic functions gi{x) and g^ix) defined by 

P 
Q 

P 9i(x) = ^ \(x + a)m + jf- -h(x)\ and g2(x) = - £ (x + a) - h(x) 
pi (1+m) v ' J »*K ' Vq 

-1 
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for all values of x satisfying (4.82). It is not straightforward to obtain the inverse 

Laplace transform of the function h(x), and thus an exact formula for co(A). Moreover, 

obtaining exact solutions to (4.2) may not be possible. For this purpose, we restrict 

our attention to finding an explicit formula for Q(t) and thus the total mass for all 

t > 0 and the expression for the gel-time. For simplicity we assume c<i > 0. We start 

with the derivation of Q(t). 

Using the condition (4.12), i.e. Q'(t) = F(Q(t),t) we obtain 

Q'(t) =-
Q(t) + a ( Q(t) + a 

+ 
Q(t) + a 

l+m 

^2pt + q\y/2pt + q \\ y^pt + q) p 2 ( l + m) y^2pt + q 

(4.83) 

subject to I.C. Q(0) = 0. To simplify (4.83), we denote by v(t) := $ $ $ 5 . Then 

(4.83) becomes a separable ODE 

dv dt , . .„. a 
— . subject to v{Q) = —-

y/2pt + q VQ y/p^v 2 1 2v1+» 
l + m 

The above is equivalent to 

v 2 

VP^HW 
Using the substitution z = pv * we obtain 

•dv = — 
dt 

y/2pt + q 

z(t) + yj*{t) + 3 - ^ - = A exp ( - £-JHl ^2pT^) (4.84) 

where 

exp (^v?) 

>(*r +p2(%) 
1—m 

+ l+m 

where z(t) = p [v(t)\ 2m and the constants a, p, q, m satisfy p2 14= J 

Solving (4.84) we obtain 

1—m 

> l+m" 

t/(0 
A2 exp Um - 1) y/2pt + qj 2 

l+m 
- 1 2 

1 - m 

2Apexp(- ^ p 1 y/2pt + q\ 
(4.85) 
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However, the expression for v(t) obtained in (4.85) is valid only for values of 

t e [0,TC), where T« is defined as an upper bound of the solution to the system of 

inequalities 

/ 2 \V2 / ( 1 - m ) r- \ 
z(t)>-[-- and z(t)<Aexp - „ JJ2pt + q). 

V 1 + m/ \ 2 / 
We obtain that Tc is given by 

2 p ( l - m ) 2 In 
A2 (l + m). )}'- 2p" 

Using the definition of the gel-time as in the previous case or [34, 70] we find that 

M2(t) = — Fx(Q(t),t) diverges at t such that z2(t) = —2/(1 + m), which gives us 

Tgei = Tc. The gel-time Tgei is greater than zero provided that In ( — A$ ,l+m\ 1 > 

-y/i^l — m) holds. Therefore, the expression of v(t) given in (4.85) is valid up to the 

gelation time. As a result, the function Q(t) can also be obtained 

, (A2 exp ( - (1 - m)^t+^) - T 4 \ ^ 
Q(t) = y/2pt + q ^ — y , - a , for 0 < t < Tgel 

V 2Apexp(-^V2pt + q) J 

The total mass is given by Mx(t) =•• Q'(t), so 

( 1 - m ) ^=\£M-^^^)-T^M^^^) 
l+m 
1-m 

A ( (1 -m)\/2pt + q\ .. ± ,_1/2 nl - e x p ( - i ' - ^ H-J[(2pt + q) V 2 _ ! ] _ 

'(l-m)V2p<±£J[(2p4 + g)_1/a + 1]' 1 
exp ( ! 

A (l + m) ~"r V 2 

On the other hand, in the post-gelation regime, we have that 

2 
«(*) = for * > T„i. 

(l + m)p2\ 

This yields an expression for Q(t) and A/i(i) of the form 

2 

gei-

Q{t) = s/2pt + q - a and Mx(t) (l + m)pzl 

where both formulas hold for t > Tgei. D 
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Remark 4.5 Obtaining an explicit expression for c(A, t) requires the calculation of 

the inverse Laplace transform ofF(x, t) in (4-81), since c(A, t) — s—^— C"1{F(x, t)}(\, t), 

where C~l denotes the inverse Laplace transform of F(x, t). We provide below a for­

mal series solution c for the coagulation equation. 

Example 4.7 (Formal series solution for the coagulation equation (4-2)) 

Assume the coagulation kernel is K(X,/j,) = A/x. Assume the source term is given by 

a(Xt) A - m " 2 ( 2 p * + g ) - ^ c-AfQ(«Ha) 
9 { , ) ~ T(-m) 

where Q(t) is defined in Example 4-6. Then the solution c(X,t) of (4-2) is given by 

the following formal series 

p e-W M-HQA ~ {2k - 2)! (2(2Pt + q ) ^ \ k 1 (1_m)fc 
{ ' ; A2 {2pt + q) f^ 2^-ik\{k - 1)! ^ p2 (_! _ m ) J r ( ( ! _ m)k _ !) A 

Proof. Formally expanding the square root and taking the inverse Laplace trans­

form term by term we obtain 

1 —m 

_ ~P ^ (2(2pt + q)Lr\k fl/2\ . A 1 

- a A °° 

~(2pITaWh 

where (a J is the binomial coefficient, defined by (f\ = »fr-i?fr-a)-fr-*+i) a n d 

where the coefficients are 

_ (2k~2)\ (2(2pt + q)lT\k 1 ( 4 8 7 ) 

22k~1k\(k - 1)\\ p2{-l-m) J T((l-m)k-l) 
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Since ra < — 1 then the series YIT-i ^k(t)^1~m^k with positive terms is convergent 

for all values of A > 0. Therefore, the solution c(A, t) to the coagulation equation 

(4.2) is given by the following convergent series with positive terms (for all A > 0): 

pc-WM+a)* « (2fc-2)! (2(2pt + q)kr\k 1 (1_m) 
1 ' j A2 (2pt + q) ^ 22fc-1fc!(fc - 1)! \̂  p2 ( -1 - m) J T((l - m)fc - 1) 

where Q(t) is defined in Example 4.6. In particular, when t = 0 we obtain the initial 

condition of (4.2) to be given by the convergent series with positive terms 

k 

g A2 ^ 2 2 *- 1 i f c ! (A; - l ) ! lp 2 ( - l -m) j r(( l - ro) ifc - 1) 
D 

Case III: Vector field V = c2Vi + ciVl 

Consider the infinitesimal generator of the point symmetry group of the form V — 

C2 Vz + C3 V4, where C2, C3 ̂  0. In this case, the generators for the one-group of Lie 

point transformations admitted by the Burgers equation with sources (4.63) become 

£(x,t) = c3, ((x,t) = c2, n{x,t,F) = 0. 

Using the method of characteristics to solve the invariant surface condition (4.45), we 

obtain the following result: 

Theorem 4.3 Let 02,03 ^ 0 be some arbitrary constants. Let <p(s) —• 0, as s —* 00 

and ifi(s) is a completely monotonic function in s, where s = x — f-t, represents the 

similarity variable. Assume the function G(x, t) has the similarity form G{x, t) = 

<p(s). Then the partial differential equation (4-63) has a similarity solution given by 

where IJJ(S) satisfies the ODE 

F{x, t) = ${s) + - (4.88) 
c2 

*(.) = 2$. (4.89) 

The constants c2 and C3 are chosen such that the function ^{s) —•> 0 as s —> 00. In 
addition, ip(s) satisfies tp(s) + f1 > 0 and —^'(s) is a completely monotonic function 
for all s. 
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Equivalently, ip(s) satisfies the equation 

t M = J ip(s)ds + A2 or V(s) = ±v / 2( I ip(s)ds + A2Y
2 (4.90) 

where (p(s) is a completely monotonic function in s such that A^ + /* </?(s) ds > 0 and 

A2 is an arbitrary constant. 

Remark 4.6 The complete monotonicity of the function if>(s) + ^ and (4-89) imply 

that ip(s) < 0, for all s e t . 

One particular example that provides a family of similarity solutions F(x, t) to (4.63) 

is 

Example 4.8 Let w(s) be a function that satisfies the following conditions: 

(HI) w(s) > 0, for every s > 0; 

(H2) w'(s) is completely monotonic in s; 

(H3) lim^oo w'(s) e~wM = 0 and l irn.-^ w(s) = 00. 

Assume the initial condition of (4-63) is given by 

h(x) = ^ (1 _ J l - M e-t»(«) ) (4.91) 1? 
c2 \ V c\ 

In addition, assume 

G(x,t) = w'(x-^t)e-w{x-%t) (4.92) 
\ Co. ) 

where c2 and C3 are arbitrary constants such that a > y/2. 

Then the Burgers' equation with sources (4-63) admits a family of similarity solutions 

of the form 

^ t H ' - f ^ " ) (4-93) 
Proof. Indeed, consider the function <p(s) = w'(s) e"M'J'. Then the solution to 

(4.90) is 

V»(a) = ±V2 y/A2-e-w<-sl 
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Moreover, from (4.88) we obtain 

F(x, t) = — - y/2A2-2e-w(s). 
C2 

Since w(s) —> oo as s —• oo then in order to ensure that F(x, t) —» 0 as x —» oo for 

all t > i 

obtain 

.2 

all i > 0 we choose &-, A2 > 0 such that 2A2 = %. With this choice of constants, we 
C2 Co 

F(x,t) = y/2M | 1 " ^ - J - ^ " ^ 

Moreover, the function G(x, t) is given by G(x, t) = w'lx — f-tj e~w "^ . It is clear 

that G(x, t) is completely monotonic for all x > a t as a composition of a completely 
C2 

monotonic function and an absolutely monotonic function (see Lemma 7.1, Chapter 

7). Also, G(x, t) vanishes to zero, as x —> oo, since w(s) satisfies conditions (H1-H3) 

above. Clearly, the function F(x, t) is completely monotonic in x > 0. Indeed, one 

can calculate Fx and obtain 

{
N - 1 / 2 

1 ^ e v c2 / > w [x tie v c2 I 
4 J V c2 / 

The function — Fx is a product of two completely monotonic functions 

s| _„.^_<a,U-i/2 
c 2 / - • • v c | 

/ ^ t l ^ e - ^ ^ ^ ' f i - ^ t ) and ffat) = ( l - ^ f e ^ " ^ ) ) " 

The function /i is a composition of an absolutely monotonic function (1 — /2) -1^2 and 

a completely monotonic function f2 = e~w and as a result f\ is completely monotonic 

for all x > 0 (see Lemma 7.1 in Chapter 7) and thus our example is now complete. 

• 

Examples of functions w(s) satisfying conditions (H1-H3). 

Two examples of functions w(s) satisfying (H1-H3) are: 

(a) w(s) = sa, where a € (0,1]. 

(b) w(s) = ln(l + (s + a)13), where a > 0 arbitrary and /3 £ (0, 1]. 
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For the purpose of illustrating an example of a similarity solution we consider here 

the first example and leave the second example for future work. 

Example (a): Let w(s) — sa, a £ (0,1]. It follows immediately that w(s) satisfies 

(H1-H3) in Example 4.8. For simplicity, denote by 

Then the initial condition (4.91) becomes h{x) = f- (1 — \ / l — qe~x<x J. Moreover, the 

similarity solution in this case takes the form 

F{x,t) = f{l-y/l-qe-^^}, 

G(x, t) = a(x-°-^ t)0"1 e~ix-%t)a (4.94) 

C2 

whereas the function G(x, t) becomes 

. 0 . - 1 

t 

Our aim is to determine the solution c(A, t) to (4.2). This follows from the general 

formula 

C(V) = ^P-C^{l - Jl-qe-^°}(X,t) 

where Q(t) satisfies the I.V.P. 

Q'{t) = ^ ( l - yj\ -qe~
m)-^t)a } subject to I.C. Q(Q) = 0. (4.95) 

Next, we make the assumption that a = 1 and consider two different cases of study 

for q: Case 1: q < 1 and Case 2: q = 1 and determine whenever possible a formula 

for Q(t) and Mi(t) in both cases. 

Case 1. Assume q < 1 

If q < 1 then the differential equation (4.95) can be solved exactly as in this case it 

reduces to a separable differential equation whose solution is 

c, (B2 exp ( - ^ -1) + q exp (£*-1) \ c , /B2\ 
Q(t) = ^ t + 2 In \ ' 2 for 0 < t < Tc := - In ( — ). 

c2 y IB J c3 V q ) 

(4.96) 
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where B := 1 + A/1 - q > 0. 

Furthermore, we notice that for t > Tc, the function Q(t) = \nq + f-t satisfies 

(4.95). Hence, we obtain the expression of Q(t) for all time t > 0 in the form: 

Q(t) = \21* { *TS * - J 
l ^ + S* 

+ a t for 0 < t < Tc 
C? — — c 

for t > Tc 

Moreover, the expression of the total mass in this case is obtained for alH > 0 from 

the definition Mx(t) = Q'(t), 

, , / X N J * * / " ' v / v. for 0 < £ < T C 

M i ( t ) = < C3
 B 2 e x p ( _ ^ t ) + g e x p ( ^ t ) ' - -

f2, for i > Tc 

where Te = f l n ( f ) . 

It remains only to show that Tc represents in fact the gel-time. This reduces to 

proving the following are true 

Afi(t) = Mj(0) + / / A5(A, s) dAds for 0 < t < TC (4.97) 
Jo Jo 

rt poo 

Mi(t)<Mi(0)+ / Xg{X,s)d\ds for i > TC (4.98) 

Indeed, to show (4.97) holds, we calculate M[(t) and /0°° Xg(X, t) dX. We have 

dMi(t) 4B 2 

dt 
(4.99) 

( s 2 e x p ( - ^ 0 + 9 e x p ( ^ i ) ) 

Moreover, using the definition of A g(X, t) we obtain 

rXg(X,t)dX = H(0,t) = G(Q(t),t) = e-WW-?«) = c -*> = *M± 
Jo at 

where u(i) = Q(t) - ^ i, from which (4.97) follows. Let us prove that (4.98) holds. 

Indeed, we have 

E(t):=M1(0)+ f rXg(\s)dXds= ^ + f e~^ ds 
Jo Jo c^{BI + q) Jo 
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The test tarn of E(i) i§ 

f e-»M ds= f ' e -" w ds + f e~v^ ds = h + I2 
Jo Jo JTC 

Using the expression of v(s) we obtain that 

J" ( B 2 < * P ( - & < ) + « < « P («;<)) ,C3 

Thus (4.98) holds if and only if 

c2 q q c3 \ q / qc3 c2 qc3 q q 
Tc<t 

where we used the definitions of Tc and q. Using (4.97) and (4.98) we can now 

conclude that Tc = T9eJ. 

An explicit expression for the solution c(X,t) to the coagulation equation (4.2) 

requires the calculation of the inverse Laplace transform of F(x, t) given by 

F(x, t) = — ( l - \ll-qe~{x~%t} } where q<l. (4.100) 

This can be obtained either by expanding the'square root in (4.100) (using the bi­

nomial theorem) and then formally taking the inverse transform term by term or by 

directly computing the inverse Laplace transform of F(x, t) in (4.100) with the help 

of contour integration. We leave the latter as future work. Next, we determine the 

asymptotic large size (A —• oo) solution. 

Remark 4.7 Case 2 (i.e. q = 1) is obtained from Case 1 in the limit as q —• 1. 

Asymptotic large size (A —• oo) behaviour of the solution (for q < 1) 

Based on the form of the similarity solution (4.100), we investigate the behaviour 
of c(X,t) for A —» oo, for q £ (0,1]. For this reason, we return to the form of 
F(x, t) — ^ + ip(s) and apply the theory in [23] with regards to the image function 
F(x, t). First, we need to determine the branch points xo(t) for F(x, t) and find the 
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asymptotic behaviour of F(x, t) as x —> xo(t) for all times t > 0, by first determining 

the asymptotic behaviour of ip(s) as s —> SQ. 

We have ip(s) = —^2(k — e~s), where A; = ^ = i Then, the branch points 

for ip(s) are s0 s.t. fc = e_s° =4> s0 = — ln(fc) = lnf-^-J . We can rewrite 

'</>(«) as follows (/>(s) = -V2l \ /T^-e- ( s - a o) = -& Vl - e-(a-a°). We want to find 

a Puiseux series for I/J(S) as s —> s0. Using the MacLaurin series for e~x we obtain 
V>(s) ^ ( s _ So)i/2 + ja_ ( s _ SQ)3/2 + _ a s s - > s0. In terms of F(x, t), the 

asymptotic behaviour reads as 

F(x,t) ~ - - - (x - x0(i))1/2 + -¥- {x - x0(t))3/2 + ... as x - » x0(t) 
c2 c2 2 c2 

where x0(t) = f-t + In (-^-J and £ is fixed. Using [23] we obtain the asymptotic 

behaviour of A /(A, t) = £ - 1 { F ( . T , £)}(A, *), as A —• oo, in the form 

/(A, i) ~ n ° V A"5/2 ex°W A, as A ^ oo and for any £ > 0. 
2C2V7T 

In addition, we also obtain the asymptotic behaviour of c(A, t) to be 

c(A, t) = e~XQU /(A, t) ~ e-A«W- I O«) — ^ — A"5/2, as A ̂  oo, and for any t > 0, 

where Q(i) is given in Case 1 and Case 2 above. Consequently, we have 

Example 4.9 Assume C2, c$ are some arbitrary constants such that ^ G (0, \/2\. 

Let q = -$• and £? := 1 + \/l — q > 0. Lei tfie initial condition to the coagulation 

equation (4-2) be given by 

^ - ^ - { • - f l F h (•* «w~^5/vA'"(4)) 
Let the function Q(t) be given by 

2 1n( P^ ^ 2 V p V - ' ) + *« , / o r 0 < * < T g e , 

ln? + a t , /or * > T3ei 

where Tgei = ^ In ( — J denotes the gel-time. Assume the source function is such that 

Xg(\,t) = S(\ — l)e~^*^ ~c2 '. Let the coagulation kernel be K{\,ii) = A/J. Then 

the asymptotic behaviour of the solution c(A, t) to the coagulation equation (4-2) is 

given by 

C(\,t) ~ — ^ _ A-5/2e-MOW-^t-ln,)> flS A _ , M | a n d y t > 0 D 

2c2 v7r 
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4.2.4 Coagulation kernel K(\,/JL) = (a + (3 A) (a + (3 fi) and 

g(\,t) = 0 

In this case, the PDE (4.10) reduces to 

Ft(x, t) eaQ{t) + (5 F(x, t) Fx(x, t) = | F\x, t). (4.101) 

Generators for the one-group of transformations 

We determine the generators for the Lie group of point-transformations admitted by 

(4.101). In this case, equation (4.33) becomes 

2 eaQU Q'(t) FUt) + - eaQU F?(t) 
a 

+ l-e^x |F2"(t) -aQ"(t) F2(t) -aQ'(t) F&) + ^ ^ } = 0 (4.102) 

Since the coefficients of (4.102) are arbitrary functions of t then in order for (4.102) 

to hold for all values of x > 0 the following conditions for the functions F\(t), F2{t) 

and F3(t) must hold 

F['(t) + a Q\t) F[(t) = 0 and F£{t) - a ^ ( F 2 ( « ) Q'(t)) + j F$(t) = 0 (4.103) 

from which we obtain the general solution in the form 

Fi(«) = 6i R(t) + b2 where R(t) = f e-
aQ{s) ds (4.104) 

Jo 

where bt and b2 are arbitrary constants. In addition, using (4.22) we have Ct = 0 and 

from the definition of C(x, t) in (4.17) we obtain that the generator £(x,t) satisfies 
the equation 

&t(M) + <*#(*UtOM) = 0. (4.105) 

On the other hand, using (4.31) to calculate ft and ftt, (4.105) becomes 

e~^x Rx(t) + e^SxR2(t) + R3(t) = 0 (4.106) 

where 

Rx(t) := ~ eaQ{t) {0"(t) F&) + a [Q'(t)}2 F&) + Q'(t) F['(t) + Q'(t) F?(t) 

+ i F{"(t) + a [Q'(t)f F{(t) + Q'{t) F?(t)} 
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R2(t) := F'l{t) + aQ'{t) fA(t) and R3(t) := #A(t) + aQ'(t) R4(t) 

IU{t) := 
2/3 

a 
F'^t) - a Q"(t) F2(t) - a Q'(t) Ffc) + j F&) 

If we take the coefficient Ri(t) of e 2<*x in (4.106) separately and use (4.104) we 

obtain 

Rt(t) = i ^ l e - m |Q"(t) _ a [Q'(t)f + 3a[Q'(t)]2 - 2 a [Q'{t)f - Q"(t)} = 0 

Hence, (4.106) becomes e^x R2(t) + Rs(t) = 0, from which when using (4.103) we 

obtain 

FZ(t) + aQ'(t)F"4(t) = 0 and Fg(t) + aQ'{t) F"3{t) = 0. 

Moreover, we also have 

Fm-ajt[F2(t)Q>(t)]+^F>(t) = 0. 

(4.107) 

(4.108) 

Therefore, the functions Fi(t), with i = 1,2,3,4 are given by 

^ ( 0 = 61^(0+^2 . ^3(0 = oi R(t) + 02, F4(0 = a3/2(t) + O4 (4.109) 

F2(f) = e<*«« {a6 - ^ - /" /?,(t) e-aQW dt + a5 i?(t)} (4.110) 

where R(t) = /„' e-
Q<3M dr, and 

a i) a2t a3i a4i 6i and 62
 a r e arbitrary constants. Sub­

stituting these functions into (4.29-4.32) and using the definition rj = A F2 + B F+C, 

we obtain 

COM) = eaQV \^R(t)e-^x + ^ e - ^ x - ^ R2 (t) + a5 R(t) + a6 l a a p 

£(x,0 = — - R{t) + a3 e*e x R(t) + a4 e'i> x ^ - e *0 x - (—- + -J—^-) 
a az \ a a / 

r)(x,t,F) = ai( 

(4.112) 

2R(t)F , _2_\ _AxfaR(t)F , 1' 
a /3 / 

- a5 F + bi R(t) F2 e~^x + b2 F
2 e~^x (4.113) 

+;s)+"'e" (-rj- + «)+ a '2fle W F 

If we denote by Ci = - a 5 - | a2; c2 = a6; c3 = a4; c4 = a3; c5 = - | a2 - ?JL a5; c6 = 
| a!; C7 = &x; c8 = 62 then the generators of the Lie group of point-transformations 

83 



admitted by (4.101) are given by the following formulas 

4/3 ^ 
£(x, t) = c3 e*e x + c4 ew x R(t) + c5 + c6 R(t) -c7 — e 20 

OLA 

p 2p 

a a 

»/(x, i, F) = - C l F + c3 — e " * F + c4 e^x[— R{t) F + - J + c5 - F 

+ c6 | i ty) F + i ] + c7 fl(t) F
2 e"ft * + c8 F

2 e " ^ : 

r̂  p J 

where ci,..., eg are arbitrary constants (depending on ai,..., a$) and /?'(£) = e_aQ(T ' dr. 

Therefore, the equation (4.101) has an eight-parameter Lie group of point transfor­

mations. More precisely, (4.101) admits an eight-dimensional Lie algebra C» spanned 

by the following eight Lie symmetry vector fields Vi, V2,..., V^. 

d 

d aR2(t)naQ(t)d 

d d a d a „ d 
Vl = eA.m^+e^mF+i]fF, Vs = ^ze^m^F.gF 

6 {)dx 2/3 dt. Jw*]£ 
V7 = J® e~nx^- + - R(t) e ^ ' e - ^ l + R(t) F2e~^x^ 

a* dx a dt 8F 

Vs = -e-^xeaQV- + e-?sxF2~ 
a dt dF 

(4.114) 

Similar as in 4.2.2, we start by computing the commutator table and also the 

adjoint representation table. The commutator table for the Lie algebra arising from 

the infinitesimal generators Vt, where i = 1,2, ...,8 is presented in Table 4.3. 

84 



Table 4.3: Commutator [V*, Vj] table of (4.101) for the Lie algebra £§ spanned by Vt 

and Vj. 

In the following we investigate the subalgebra structure for (4.114) of the PDE 

(4.101). In particular, we are interested in determining the optimal system of one-

dimensional subalgebras of (4.101) and the corresponding invariant solutions. For 

this reason, we proceed similarly as in 4.2.2 and investigate the one-parameter group 

of adjoint transformations of the one-parameter subgroup exp(e V*) generated by the 

vector field Vj acting on the vector field Vj, where i,j = 1,..., 8, defined by (4.43) (for 

more details about the adjoint representation and optimal systems see e.g. [80, 81]). 

The corresponding adjoint representation structure for (4.114) can be easily con­

structed by using the formula (4.43) based on the infinitesimal generators given in 

the Table 4.3. The resulting operators are given in Table 7.2 in Chapter 7, where 

each (i,j)-th entry indicates Ad(exp(e Vj)) Vj. 

Following a similar analysis as in 4.2.2, we have obtained an optimal system of one-

dimensional subalgebras. The proof of Theorem 4.4 below is presented in Chapter 7. 

Theorem 4.4 A one-dimensional optimal system of one-dimensional subalgebras of 

the full symmetry algebra for the PDE (4-101) is given by the following vector fields 

(i) Vs+V6+c3V3+c2V2+ClVi; Vs+V4+ClVi; V8+c3 V3+a Vu V6+V5+c\ Vlf 

(where c\ ± f) and Vs + V5 + | Vx + c2 V2; 

(ii) V7 + V2 + c4V4 + c3V3, V7 + V2 + Vi + c6 V6 + c3 V3, W + CBVfc + ^Vi , 

and V7 + V3 + ceV6 + c5V5; 

(Hi) Ve+V2+c1V1, V6+c3V3, Ve+Vi+caVs, V6+V5+^ V^d V4, V*+Vh+cxVx, 
where cx± f^; 
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(iv) V5 + ci Vi, where ci 7̂  | , ^ , and V5 + | Vi + c2 V2; 

(ty V4 + Vi + c2 V2, and V"4 + c2 V2; 

(wj V3 + C2V2, and V3 + C1V1; 

fvnj V2 + C1V1; 

(viii) Vi, 

lu/iene ci, c2, C3, C4, c5, C6,c*,Ci G R are arbitrary constants, with c\, c\, c\ subject to 

constants in (iv), (i) and (Hi), respectively. 

According to the optimal system of one-dimensional subalgebras given in Theo­

rem 4.4 of the full symmetry algebras of (4.101), it is possible to obtain the classifi­

cation of all possible corresponding reduced forms of the partial differential equation 

(4.101). To illustrate some of the reductions forms of the PDE (4.101) we consider 

some of the vector fields in Theorem 4.4 and the corresponding similarity solutions 

F(x,t): 

(viii) V = Vi 

2 
F(x, t) — C\(t) e^x , where C\(t) is an arbitrary function of t. 

(vii) V = V2 + m V\, where m is an arbitrary constant 

F(x, t) = C2(t) e^x — where C2{t) is an arbitrary function of t. 
oc(\ + tt[t)) 

(vi) V = V3 -)- fi Vi where \i is an arbitrary constant 

F(x, t) = e^-""-" ^ ^ *RW e"c" e% x e ^ ^ ' 

where W is the Lambert W-function. 

(v) V = V4 + 5 Vi, where 5 ^ 0 is an arbitrary constant 

Remark 4.8 None of these similarity solutions obtained in the cases above satisfy 

the definition of F as a Laplace transform, and thus they are not of interest to our 

study. 
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Vector field V = V5 + bVi 

According to Theorem 4.4 (iv), the constant b ̂  | , f^. In this case the generators of 

the Lie group of point transformations admitted by the PDE (4.101) take the form 

£(*,*) = 1, C ( M ) = ( & - | ) e Q Q ( t ) i ? W , r}{x}t,F) = -(b-^)F. 

Thus, the invariant surface condition (4.45) becomes a first order PDE 

Fx+(b- ^) ^y\ Ft^-(b-^) F, where we used the definition: R'(t) = t~aQ{t) 

\ p J R\t) V p) 
(4.115) 

from which using the method of characteristics, we obtain the similarity solution and 

the similarity variable 

F(x,t) = ip(s)e'yx and s = -x - - \n[R{t)}, (4.116) 
7 

where 7 = 9L^-- Substituting the invariant solution (4.116) into (4.101) we obtain 

that the similarity profile ip(s) satisfies the ODE 

= ^ ^ ) c i ( 4 1 1 7 ) 

whose solution is given by 
26 /3 -q 

_7g e-7^ ( s ) + 1 ^ - =^a)Al (4.118) 

where C\ = (bP-a)\2bP-a) a n c j c2 = a — bf5 and Ai is an arbitrary integration constant. 

Using the definitions of F and s in (4.116), we obtain e~ia = eJX R(t), from which 

we can derive an algebraic equation for F(x,t) in the form 
2b0-g 

%R(t)F(x,t) + l] " = e^xF(x,t)A, (4.119) 

where A = A\ (—7)" <*~ . In particular, if we take t = 0 we obtain that the initial 

condition to the PDE (4.101) for which a similarity solution as in (4.119) arise, is 

given by h(x) = meyx, where we denote by m := 1/A Based on the expression of 

h(x) we obtain some necessary conditions for h(x) to be completely monotonic in x 

and also to vanish to zero as x —> 00. These conditions are 7 < 0 and m > 0. The first 

condition implies that b > | (and thus the parameter b is strictly positive). Moreover 

if we denote by n — 2 &~a then the above condition yields \i > 1. Therefore, we 

obtain the following result 
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Example 4.10 Let 7 := ^f- < 0, /x = m ^ > 1 and m = ^ f > 0. 

Suppose the initial condition to (4-101) or (4-2) is 

/i(x) = me7a :, V x > 0 (so, co(A) = m £(A+ 7), VA > 0) 

Assume i/ie coagulation kernel is K(\,n) = (a + /?//) (a + /3 A). Lei t/ie source be 

g(X, t) = 0. TTien £/ie solution c(A, t) 0/ (^.#J has the form 

- («+/? A) <?(t) 
c ( v ) = ~ ^ r £ {HM)}(A,O 

where F{x, t) is the similarity solution of (4-101) and satisfies the equation 

m ( | R(t) F{x, t) + l ) " = F(x, t) e~^x (4.120) 

and Q(t) satisfies the I. V.P. 

Q'(t) = e-aQ{t) F((3Q{t), t) subject to I.C. Q(0) = 0. (4.121) 

Finding a general solution F(x, t) for the equation (4.120) or the behaviour of the 

solution c(A, t) for a general constant /z > 1 is not straightforward. An asymptotic 

behaviour of the solution c(A, t) based on the Newton polygon method can be applied 

in this case (see the similar analysis in 4.2.2). However, we restrict our attention 

to providing an expression for the total mass M\(t) of the solution c(A, t) to the 

coagulation equation (4.2) in the pre- and post-gelation regimes. We also determine 

the expression of the gelation time Tgei and the formula for N(t) for all time t > 0. 

We start by solving the I.V.P. (4.121) to determine the function Q{t). Substituting 

x = (3Q(t) into (4.120) and using the definition of 7 to get a — 7/? = 6/3 we obtain 

m ( | R{t) ea<™ Q\t) + if = e(<*-̂ )<?W Q'(t) = e*/»«(0 g' ( i) 

Using the definition of R(t), we rewrite the equation in the form 

Next, we take the derivative w.r.t t on both sides. Multiplying the result by 2 [Q'(t)]2 

and using the definition of /i, we obtain 

I*mt)}> + 2Q"(t)\h-*W + 2(9M.)1/>i °-ft/? e ^ f ^ W - U p . (4.122) 
L J l V m J lop — a i 



In the absence of particle source terms and since CQ has a finite second moment, 

it is expected that prior to the occurrence of a shock (gelation) the total mass be 

conserved, i.e. 

M,{t) = Mx(0) = J°° Aco(A)d\ = mW- a) for t€[0,Tgel). 

In addition, in this case, the function N(t) satisfies the I.V.P. 

N'(t) = ~ N2{t) subject to I.C N(0) = h{0) = m > 0, (4.123) 

(see for example [96]). The shock/gel time Tget is still unknown at this stage and 

needs to be determined. On the other hand, using the definition N(t) = Q'(t), the 

equation (4.123) takes the form 

W ) = " § [ Q W =* a[Q'(t)}2 + 2Q"(t) = 0, for te[0,Tgel) 

(which corresponds to the first factor in (4.122)). One can solve the equation (4.123) 

and obtain an expression for N(t) prior to the occurrence of gelation: 

Q'(t) = N(t) = nlh}uLt =• N^ = TrLrf for *e[o,:zu 
l + ah\\j) t 1 + ami 

Moreover, we also obtain an expression for Q(t) in this case to be 

g(t) = |ln(2 + amt) for t€[0,Tgel). (4.124) 

For the expression of Tgei we use the same definition in [96] which corresponds to the 

instance when M2(t) = Fx(Q(t), t) —> —oo, or 

Tgel = - • = --= = —Tj-5 r > 0. (4.125) 
* f3h'(0+) flmy m(b/3-a) x ' 

After the occurrence of a shock (so, for t > Tgei), it is expected that the equation 

2Q"(t) + aQ'(t)2 = 0 is no longer valid. According to the equation (4.122) for Q{t) 

this means that in the post-gelation regime we have 

.0(0 , o f Q W ^ a~bP .$!&&Q<t) Q 
\ m J 2bd-a lb/3-

Therefore, for t > Tgei, we have 
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Using the definition of \i we get that jM^ = b(3 and thus the above equation 

simplifies to 

tfw-i^r--1™ w)«ww,=?0)" <"*> 
Integrating (4.126) from Tgei to t we obtain 

J0Q(t) = eb0Q{T9cl) + m 6 / 3 / a - 2 6 / 3 \ ^ ( f _ ^ (4.127) 

For the expression of Q(Tgei) we use the formula obtained for Q(t) in the pre-gelation 

stage, ensuring the continuity of Mi(t) and thus of Q(t) and c(A, £) at t = Tge\. Using 

the definition of Tgei and the expression (4.124) we obtain 

w-MiS) 
Then (4.127) becomes 

„bPQ(t) tmb/3 

( 6 / 3 - a ) , 

\ (26/8/a)-l ,„, „ , , , 

2 6 / 3 - ^ _ a (26/3 - a) W/" ) - 1 

2 b/3/a 

So, 

««>-£•». 

2(6/3 - a) 

2 6 / 3 - a 

[2 (6/3-a)] 
(4.128) 

2(6/3 - a) 

(26/J/a)-l 

("**-«ST^)) 2(6/3 - a) 

Therefore we obtain the formula for Q(t) for all t > 0 as 

' f l n ( ^ p i ) , for i6[0,T9 e ;) 

("*^-53fe)l for *£T« 

(4.129) 

<3(0 
4 t a [" 26/3-a 

2(6/3-a) 

(26/3/a)-l 
lge( 

(4.130) 

where Tffej represents the gel (shock)-time and is given by (4.125). From this formula 

one easily obtains the expression for N(t) = Q'(t) for all t > 0 

2m 

N(t) 2-i-a m £ 
2m(b/3-a) 

26/3m(t/3-a)t-a 

for ie[0 ,T 9 e / ) 

for t > T, gel 
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On the other hand, we make use of the definition of N(t) as a linear combination 

of the zeroth and first moments, or 

N(t) = aM0(t) + (3M1(t). (4.131) 

Since we only know the expression of the total mass Mi(t) in the pre-gel stage we 

can determine the zeroth moment from the above equality. So, Mo(t) = ^ < N(t) — 

/3Mi(t)\, for t £ [0,Tgel), takes the form 

2m m(bp — a) m(amt + 2 — b0mt) 
M0(t) = for t€[0,Tael). a(2 + am t) abp 6/3(2 + and) 

To determine the expression of Mi(t) for t > Tgei we need to find the zeroth moment 

for t > Tgei. For this purpose, integrate (4.2) w.r.t. x on [0, oo) and use the definitions 

of M0(t) and Mi(t). Thus we obtain that the zeroth moment satisfies the I.V.P. 

M'Q{t) = -]- N2(t), for all t > 0. (4.132) 

It remains only to determine M0(t) in the post-gelation regime. For this stage, we 

solve the ODE above and impose the initial condition Mo(Tge[) such that the function 

Mo(t) is continuous at t = Tge[. Therefore, we need to solve the I.V.P. (4.132) subject 

to M0{Tgel) = ^tp-ly Integrating (4.132) from Tgel to t we obtain 

Mo(0 = M0(Tgel) If 2 k. N
2(s)ds = m 

2 ^ ^ - 2 ( 6 ^ ) ) 
+ 

Tgel 

m(b/3 — a) 
b~P(2b/3-a) 

m bp-a m(bP - a)t - 1 m(bp — a) 
2 6 / 3 - a bp mbpt 2(b0-a) bp 2(6/? - a)mbpt - a 

for t > Tgei. Substituting M0(t) above into (4.131) we obtain the expression of the 

first moment 
m(bp - a)(2bp - a) A/i(0 = 

bp2 2(6/3 - a)mb0t - a\ 

Therefore, we have obtained the expression of the total mass for all time t > 0 

for t > T, gel 

Afi(t) 

( m{b0-a) 
b02 

m(b0-a)(2b0-a) 

6/32 1(b0-a)mb0t-a 

where Tgei represents the gelation time defined by (4.125). 

for te[0,Tgel) 

for t > Tgd 

• 
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Particular choice of constants. Asymptotic and formal series solutions 

In particular, if /i = 2 then b = | | and 7 = - | j j . Moreover, in this case the algebraic 

equation (4.119) becomes quadratic and we obtain an explicit formula for F(x,t) 

(4.133) 

The function F(x, £) is completely monotonic for all x > 0. In addition, F(x, t) 

has a branch point 
20 

x0 = xM) = — \n(2amR(t)). 
a 

Expanding F(x, t) about the branch point Xo(t) we obtain the asymptotic behaviour 

of F(x, t) as x —> xo(i) to be 

2 f /~aT / 23 \ 1/2 1 
F(x, t) ~ m a 2 f l a ( t ) j «m/J(0 -2amR(t)J—(x - - ^ ln(2am/?(t))J + ... J 

Therefore, according to [23] we obtain the asymptotic behaviour of the solution /(A, t) 

as A —> 00 to be 

Using the definition of c(A, t) we obtain the asymptotic behaviour for the solution 

c(A, t) of (4.2) as A —> 00 for alU > 0 to be 

A -3/2 e-(a+0X) Q(t) / ^ r , 2£ A 
C(A< 0 ~ -7 ovx O/,N \hr 2 a f i ( 0 m as A ^ 00, Vt > 0 (4.134) 

v ' (a + 0\)aR(t) V /3TT L W J _ v / 
where Q(t) is obtained in (4.130) where we substitute 6/3 = 3a/2, so 

<?(,)=( J t o M < fot ( e l ° 'T" ' ) (4.135) 
^ £ ln(6anU - 4), for t > T,a = £ 

Alternatively, we can proceed as in Example 4.9 and expand the square root in 

F(x,t) defined by (4.133) using the binomial theorem (or the Newton's generalized 

binomial theorem), and then formally take the inverse Laplace transform term by 
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term to obtain the inverse Laplace transform of F(x, t): 

C-i{F(x, OKA, t) = 8m £ ( - l ) W ( V 2 ) [2amR(t)]k-2 s(\ - ^ ~ ^ ) 
k=2 
oo 

—i:^& [«i'~2 < - T ) 
ft=2 

Thus, the solution c(A, t) of the coagulation equation becomes 

8 m e - ( ^ ) W f (2fc-2)l r o , fc-2 / a ( f c - l ) x 
C ( A ' i } = a + /3A g 2tt-ifcl(fc-l)l [ 2 a m H ( 0 ] H A 2 0 ~ ) 

and the initial condition is given by c0(A) = a " A 5(A — ^ J. In this case, the expres­

sion of the total mass becomes: 

M 1 W - S 4m f t > T = _2_ 
I 3 /J (3ora l -2) 1 U l l — X S e ' a m 

4.2.5 Coagulation kernel K(X,fx) — (a + (3 X) (a + (3 fi) and 
0(A,t)>O 

In this case, the PDE is given by the general form 

Ft(x, t) eaQU + p F(Xi t) F i ( X | t) = 1 F2(X) f) + e»Q(t) G,(a.j 4) ( 4 1 3 6 ) 

Generators for the one-group of transformations 

In this case, since a > 0, then from 4.2.1 the function F\(t) = 0. Thus, the functions 

A(x, t) and £(x, £) defined in (4.29) become A(x, t) = 0 and thus 

((x,t) = F2(t), (4.137) 

where F2(t) is an arbitrary function of t. Moreover, we have r?(x, t, F) = B(x, t) F + 

C(x,t), and (4.30) and (4.32) take the form 

B(x,t) = ^e^xFA{t) - (F&)-aQ'(t)F2(t)) (4.138) 

C(x, t) = - ea^ F*(t) e^x~l ea«<'> iF^t) -aQ"{t) F2(t) -aQ'(t) F&t) + %j& 

( 4 . 1 3 9 ) 
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where F3(t) and F4(£) are arbitrary functions of t. Furthermore, using Fi(t) = 0 

equation (4.33) gives rise to 

F?(t) -aQ"(t) F2(t) -aQ'(t) F2'(i) = - | F$(t) (4.140) 

which by integration w.r.t. t twice yields 

F2(t) = - | eoQ{t) I F3(t) e-°m dt + aie
aQ® I e~aQ^ dt + cx e

aQ^ (4.141) 

where a\,c\ are arbitrary constants of integration. Combining the formulas (4.139) 

and (4.140) we obtain 

C(x, t) = i eaQW fat) e^x + ^ F${t)}. (4.142) 

On the other hand, since C(x, t) = ± eaQW &(a;,*), we obtain &(x,«) = F[(*) eft x + 

| F^t) , which by integration w.r.t t gives us 

e(x, 0 = F4(0 eft * + - F3(t) + A2(x), (4.143) 
a 

where A2(x) is an arbitrary function of x. In addition, substituting the expression of 
F2(t) obtained in (4.141) into (4.138) we obtain 

B(x,t) = ^e^xFi(t) + ^F3(t)-al. 

Furthermore, using the expressions of B(x, t) and C(x, t) obtained above we also 

determine the infinitesimal generator TJ(X, t, F) = B(x, t) F + C(x, t) to be 

r1(x,t,F) = {^e^xF4(t) + ^F3(t)-a1}F + ^ea^{Fi(t)e^x + lFi(t)} 

(4.144) 

Therefore, the generators of the Lie group of transformations admitted by the 

PDE (4.136) are given by the equations (4.143), (4.137), and (4.144). With the help 

of these expressions we can proceed to determine the group-invariant or similarity 

solutions F(x, t) of the PDE (4.136). Such similarity solutions are obtained by solving 

the invariant surface condition (4.45). Thus we obtain a first order linear PDE for 

F(x, t) 

2 
fat) eft * + - F3(t) + A2(x)} Fx(x, t) + F2(t) Ft(x, t) 

2L e f t * Fi(t) + | F3(t) - fll] F(x, t) + ± = [ ^ eft * F4(0 + - F3(t) - ai] F(x, t) + - e«™ fat) eft* + 1 ?&) 

(4.145) 
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To illustrate our analysis in this case we only consider below the particular case 

A2{x) = a2, where a2 is an arbitrary constant and F2(t) ^ 0. The general case, /^(x) 

arbitrary function of x is left for future work. 

Prom the invariant surface condition (4.145) we obtain 

r | F2(t) ^_ jfreft' + fflW-a! p 

F 4 ( 0 e ^ x + fF3(t) + a2 ' F4(t) e%x + f F3(t) + a2 

• • • e ^ ™ + * * M (4.146) 
F 4 (* )e^ x + fF3(£) + a2 ot F4(*)e^x + £ F3(t) + a2 

Using the definition of F(x, t) we have Fx —* 0 as x —• co, then taking the 

limit lim^^oo of (4.146) we obtain that a necessary condition for the new equality to 

hold for all i > 0 is that the function F4(£) is a constant. Indeed, assume first that 

F4(£) ^ 0, then taking the limit in (4.146) as x —> oo we obtain that the left hand-side 

approaches zero while the right hand-side tends to F4(t)/F4(t). Therefore, F'A{t) = 0, 

i.e. F4(i) = a3 is a constant. On the other hand, if F4(£) = 0 then taking linix-.oo of 

(4.146), the equality holds for all t > 0 if F^(t) = 0 which means that F3(t) = a4 is 

an arbitrary constant. 

Therefore, the generators of the one-group of point transformations that leave the 

PDE (4.136) invariant take the following form 

Z{x,t) = a3e^x + -F3(t) + a2 
a 

C(x, 0 = F2(i) = ~ eaQ® f F3{t) e-°«W dt + ax e
t tQ(t) f e~aQ^ dt + a5 eaQ® 

ri(x,t,F) = {^e^xa3 + ^F3(t)-a1}F + ~e-^F^t) 

where we use the notation a5 := c\. In addition, from (4.22) the generators satisfy 

the following equality 

a3e^x + - F3{t) + a21 Gx{x, t) + F2(t) Gt(x, t) 
a 

= -G 
2 m-^^^-lm+aA + iF'^) 2/3 (i 

(4.147) 

where G(x, t) is a completely monotonic function for all x > 0 such that its inverse 
Laplace transform exists and the arbitrary functions F2 ,F3,F4 satisfy one of the 
following 
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(i) F4(£) = as ^ 0 arbitrary number and Fa(i) arbitrary function of t. 

(ii) FA(t) = 0 and Fz(t) = a4. 

In both cases above, the function F2(t) is determined using the formula (4.141). 

In the case (i), the invariant surface condition (4.145) takes the form 

(a 3 e$* + 2Ml + a2) Fx(x, I) + ea^ ( - | f F3(t)e-
aQ^dt + fll R(t) + a5) Ft(x, t) 

= (^eft-a8 + ^ - a 1 ) F ( x 1 t ) (4.148) 

where Fs(t) is an arbitrary function of t, unknown at this point, yet to be deter­

mined, such that (4.147) holds. To obtain F^t), one can consider a few examples 

of functions G(x,t) and solve the equation (4.147), use being made of the formula 

(4.141), to find F2{t) thus obtaining the function F3(t). Using the formulas for the 

functions Fi(t), (i = 2,3,4) above one then solves the PDE (4.148) and thus obtains 

the similarity solutions. However, we leave this approach for future work. 

In the following we present an example of a similarity solution F(x, t) that we 

obtain in the second case (ii) above. In this case, since Fs(t) = a4 and F4(£) = 0 and 

using (4.141), we obtain 

F2(t) = { («i - ^j) RM + °5} eaQ(t) where R® = f e~aQ{T) dT- (4149) 

Therefore, the generators of the one-group of transformations that leave the PDE 

(4.136) invariant become 

£(*, t) = a2 + - a4, C(*. t) = fll R(t) eaC*M _ ^ | i R(t) e««<«) + a 5 e«0(«)) 
a p 

r](x,t,F) = -{a1-^ai)F. (4.150) 

Next, substituting the functions F2, F3, F4 above into the PDE (4.147) we can deter­

mine the form of the function G(x, t), solution to (4.147) 

( ^ i + a2)Gx(x, t) + { (ai - 2-f) R(t) + a5} ea™ G t ( x > t) 

0 

{2 (f l l ~ ) + " Q'(t) eaQ(t) [(ai - 2~f) R(t) + an] } G(x, t) (4.151) 
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Moreover, in this case the invariant surface condition (4.145) takes the following form 

(2fi + fl2) Fx(X) t) + { ( 0 l - ^ ) fl(t) + a5} *-«<«> Fc(x, t) = (^ - 0 l ) F(s, t) 

(4.152) 

The infinitesimal generator X associated to the above Lie group of transformations 

can be written as 

V = a1Vl + a2V2 + a4 Vz + a5 VA 

where the vector fields are given by 

VA = eaQU j (4.153) 

These operators form a basis for the corresponding Lie algebra £4 . The com­

mutator table for the Lie algebra arising from the infinitesimal generators VJ, where 

i = 1,2, 3,4 is presented in Table 4.4. In addition, the corresponding adjoint repre­

sentation structure for (4.153) can be easily constructed by using the formula (4.43) 

based on the infinitesimal generators given in the Table 4.4. 

WuVi] 
Vi 
Vi 
Vz 
Vi 

Vi 
0 
0 
0 

Vi 

v2 
0 
0 
0 
0 

v3 
0 
0 
0 

-In 

v4 
-Vi 

0 

> 
0 

Table 4.4: Commutator [Vi, Vj] table for the Lie algebra £4 spanned by V< and Vj. 

The resulting operators are given in Table 4.5, where each (i, j)-th entry indicates 

Ad(exp(eVd)Vj. 

Ad 

vx 
v2 
v3 
Vi 

Vx 
V, 
Vi 

vx 
Vx-eVi 

v2 
v2 
v2 
v2 
v2 

v3 
v3 
v3 
v3 

V3 + 'fVi 

Vi 
exp(e) Vi 

Vi 
e x p ( - f ) Vi 

Vi 

Table 4.5: Adjoint representation table for (4.136). The (i,j)-th entry is 
Ad{exP{EVi))Vj. 
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Using the same method suggested by Olver [80] we obtain the optimal system of 

subalgebras for the PDE (4.136). For the proof of Theorem 4.5 see Chapter 7. 

Theorem 4.5 A one-dimensional optimal system for the PDE (4-136) is given by 

the following vector fields 

(i) Vi + o2 V2 + a4 V3, Vi + - V3 + a2 V2 + a5 VA, where a4 ^ - , a2,a5 arbitrary; 

(ii) V2 + a4 V3, V2 + as V4 where a4 7̂  0 and a5 arbitrary; 

(in) V3; and (iv) V4. 

Vector field V = Vx + a2V2 + a ^ + a5V4 

Our aim is to present a general similarity solution F(x,t) for the PDE (4.136). For 

this purpose, we consider the one-dimensional subalgebra generated by the vector 

field 

v = V\ + a2 V2 + a4 V3 + as V4, with a4 ^ /3/2, a2, a$ arbitrary. The solutions G(x, t) 

of (4.151) are obtained by using the method of characteristics to be 

G(x,t)=r/
 e " T ) y > ( 8 )

 1 2 where s S x - ^ | In f( l - 2-£) R(t) + a5 

( l - 2a*) f?(0 + as] ^ " f * LV ^ 

with tp(s) an arbitrary function of s. On the other hand, using the same method of 

characteristics to solve (4.152), we obtain that the similarity solution and similarity 

variables are given by 

F(x,t) = - - J ^ L where s = x - ^ ± ^ In f ( l - *£) R(t) + a 5 

(l-lf)R(t) + a5 1-y LV P ' 

with ^>(s) an arbitrary function of s. Substituting F, Ft and Fx into the PDE (4.136) 

we obtain that (4.136) becomes an ODE for ip(s) in terms of <p(s) 

a^(«)+( l-2f)^(a) + v»W 
1> (s) = - * . 

/?V(5)-(a2 + ^ J 

The result obtained above can be formulated as follows 
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Theorem 4.6 Assume <p(s) is a completely monotonic function in s and G(x, t) is 

given by 

e-aQ(t) 
G(x,t) = — 

(l-^R(t) + a5 

where s is the similarity variable given by 

<fl(s) 

s = x — 
n _J_ 2 ° 4 
a2 + -r-
1 - 2a4 

In {i-2f)m + a5 

and R(t) = / 0V a Q (T>dr, where the function Q{t) satisfies (4-12). Then the PDE 

(4-136) admits a similarity solution F(x,t) of the form 

F(x,t) 
(l-2-f)R(t)+a5 

The constants 04 ^ f and a-i are arbitrarily chosen such that the similarity profile 

4>(s) satisfies the ODE 

V/(s) = (4.154) 

In addition, t/j(s) is a completely monotonic function such that '<//fc)(s) —> 0, for 

k = 0,1, . . . , as s —* 00. 

Remark 4.9 In order to solve the equation (4-154), we have considered a few ex­

amples of functions <p(s) such that the ODE (4-154) can be solved explicitly and the 

solution ip(s) and the function ip(s) satisfy the hypotheses of Theorem 4-6. 

We present below an example of such a function y>(s) for which we determine an 

explicit expression for the similarity solution F(x, t) for (4.136). 

Example 4.11 (Similarity solutions for the general PDE (4-136) associ­

ated to the coagulation equation (4-2)) If the function G(x,t) is given by 

\ 

e 2 / 3 " 

s(ty+l a {p + 1) [a(p + l)]2\ (4.155) 
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where S(t) = R(t) + a5 = J0 e~aQ^ dr + a5l and p,a5 > 0 are some arbitrary 

constants. 

Then the PDE (4-136) admits a similarity solution F(x,t) given by 

J ew X 

Ffc" = ^w\sW^- a ( p + 1) 

\ 

e20X 

s(ty+i a (p + 1) _ [ a ( p + l ) ] H (4.156) 

Proof. Indeed, let us consider the function ip(s) = pip(s), with p > 0. Then (4.154) 

becomes a separable ODE in tp(s) 

fV2(*) + (p + i - ^ ) v ( s ) 
V>'(*) = ^ 7 f ^ (4.157) 

/ ^ ( s ) - (a2 + 2 f ] 

In the following, we choose a4 = 0 such that the condition a4 ^ § holds. (In principle, 

one can choose a4 arbitrary). Therefore, the solution ip(s) of (4.157) satisfies the 

algebraic equation 

fV>(s)+p+ir+ 1 

V(a) I 
( | ^ ( s ) + p + l ) ^ = e M , (4.158) 

where /I is an arbitrary constant of integration, which depends on the initial condition 

F(x, 0) = h(x). Taking the limit of (4.158) as s —• oo and using the fact that ^ > 0 

and tp(s) —> 0, then we obtain that a2 > 0 and A > 0 are necessary conditions for 

the new equality to hold. For simplicity, consider A = 1 (one can rescale the space 

variable x). 

Moreover, in terms of the function F(x,t) = |i|f and using the definition of 

s = x-a2 \n[S(t)] to get e* = ex [S(t)]-a2, equation (4.158) reads 

^nx,t)S(t)+P + lJ =F{X
S{^

X (4.159) 

where fi = 1 + ' ^ • To obtain an explicit solution ip(s) we consider the parameter 
/j = 2 or a2 = p + 1 > 1. Substituting these values into (4.159) we obtain the 
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expression of the similarity solution F(x,t) as in (4.156). Clearly, both functions 

F(x, t) and G(x, t) are completely monotonic for all x > 0 and they vanish to zero 

(together with all their derivatives w.r.t x, as x —> oo). 

In particular, when t = 0we obtain the initial condition h(x). If 05 ^= 0 then h(x) 

is given by 

2 e^Bx 

a2a5 \ap
5
+1 

\ 

e2<* 
a (p + 1) [a(p+i)}'' 

To ensure complete monotonicity of h(x) we need to assume that 05 > 0. If a5 = 0 

then the initial condition is h(x) = 0 and thus Co(A) = 0, (i.e. no particles are present 

at t = 0). 

In order to determine the solution c(A, t) completely, we need only obtain the 

expression of Q(t) for all i > 0 and the inverse Laplace transform of F(x, t). Let us 

determine first the expression of Q(t). For this purpose, we use again (4.12). Thus, 

the equation (4.156) becomes 

9 f Pf O(0 / Pf 0(0 \ 

(4.160) 

Moreover, using the definition of R(t) = J0 e'aQ^ dr we obtain 

S'(t) = e~aQ{t)- e^Q{t) = - • and eaQ{t) O'(t) = S"^ 
b{t) 6 ' 6

 y/s^), a n d C y i j aS'(i)2" 

Therefore (4.168) becomes an equation in S(t) of the form: 

a S"(t) S(t) 1 

2 S'(*)2 ^57(I)5(t)P+ 1 a(p + 1) 

^ Vv^w^o^1 -a(p+l) K P + I)]2 (4.161) 

For simplicity, we denote by io(t) := y/S'(t) S(t)p+1. Thus, we obtain 

, . . w(t)S'(t) (s"(t)S{t) \ 

S(0 2 5'(i)2 
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So> - f ? ( ? = a (P + 1 ) - a S S and (4.161) becomes now 

5(f) 
-a w'(t) - ^ = 1 - 2 a(p + 1) w(t) - y/l-2a(p+l)w{t). (4.162) 

5 (i) 

Denote by z(t) = 1 - 2 a(p + 1) w(<) and j/(t) = Vz(7j. Then for all values of t > 0 

such that z(£) > 0 or w(t) = y/S'(t) S(t)p+1 < 2a(
1

+n *he equation above becomes a 

separable ODE in z(t) 

=2(p+1)fi * /^^W + 1 1' 
z(t) - v^y 

Thus C + In | yfz -11 = ln[S(£)]p+1, where C is an integration constant. Moreover, 

since w(t) > 0 then 1 > z(t) = 1 — 2 a(p + 1) w(t). Thus, we obtain 

C l-y/l-2a(p + l)w{t) =S{t)p+1 

So, 

1 - \]l-2a{p + l)yfSr(t)S{t)P^ = S{t)p+1 A, 

where A = 1/C > 0 (this holds since LHS above is > 0 and also S{ty+1 > 0). The 

equation above can be rewritten in the following form 

Since 5(0) = R{0) + a5 = a5 (as R(Q) = 0) and S"(0) = i?'(0) = 1 then if we set t = 0 

we obtain that the constant A is given by the equation A2 a^+ — 2 A + 2a(p + 1) = 0. 

If a5 = 0 then we get A = a(p + 1), and if a5 ^ 0 we can rescale the time variable 

such that a5 = 1 and in this case we obtain A = 1 — y/l — 2a(p + 1) > 0, and we 

need to assume that a e (0, | ) and p e ( 0 , ^ - 1 ] , Therefore, in this case, we obtain 

Taking the derivative w.r.t. t on both sides and using the definition of S(t) we obtain 

|e*Q^Q'(t) = ± ( ^ P jl - ^±H e - f W)V+1 

If we denote by v(t) := e^Q(t) then we obtain an I.V.P for v(t) (where we make 

use of Q(0) = 0): 

A A _^ (v(t) - s ^ ) ^ 1 

v'(t) = - (^)P+l A— / subject to I.C v(0) = l. (4.163) 
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This equation is valid only for values of t such that t G [0, Tc), where Tc is obtained 

as an upper bound (if any) of the solution to the inequality w(t) < 2a(p+i) • 
The 

last inequality is equivalent to v(t) < 2 " y " ^ and using (4.163), one can prove that 

there is a time Tc such that v(Tc) = ?£!i£±!2_ One can solve the equation (4.163) and 

determine an implicit formula for v(t) = et^W and thus obtain 

S(t) = / e~aQ^ dr + a5 for all values t € [0,Tc). 
Jo 

In general, numerical methods need to be employed in order to solve (4.163). We 

leave this for future work. 

On the other hand for values of t such that w(t) = \/S'(t) S(t)p+1 > 2a(
1

+i)i t n e 

equation (4.162) has the solution w(t) = 2a(
1+iv Thus, S(t) satisfies the I.V.P. 

^/S7{t)S{ty+1 = * subject to I.C. S(TC) = lim S{t) (4.164) 
JiOLyP "T" 1 ) t—>Tc 

where, in the last equality S{t) is given by (4.163). Next, we solve (4.164) by simply 

integrating it w.r.t t from Tc to t and obtain 

5(t)2p+3 = 5(TC)2"+3 + 4 J ^ +
+

3
1 ) 2 (t ~ Te) iovt>Tc. (4.165) 

Conjecture 4.1 Similar to ^.2.3, one can prove that the time Tc above corresponds 

in fact to the gelation time Tgei. However, we leave the proof of this statement for 

future work. 

In particular, if p = 1 then we can solve the ODE (4.163) and obtain that v(t) is 

given implicitly by the equation 

vM0WF? + , l n ( ! ^ ± ^ 5 U i ( | ) ' ' % + v ^ (4.166) 

where q = ^ . Therefore, in this case we obtain an implicit equation for Q(t) 

yJe»W{e>W-q) + qlal _ J L _ = _ * U _ ( _ ) t + ^T^q. 
1 + v ^ ^ 

(4.167) 

103 



This equation is valid for values t S [0, Tc), where Tc is an upper bound of the 

inequality s/S'(t) S(t)2 < ^ , where S(t) = £ e~aQ{-T>> dr + a5, where a5 > 0. Next, 

using Q(t) from the equation (4.167), one obtains S(TC) — limt_>rc S{t) and use this 

as an I.C. to solve the I.V.P (4.164). Using (4.167) and v(Tc) = 2 a (^+ 1 ) , we determine 

Tc in the particular case p — 1 to be 

*-5\/!H+«"(i^)-^) 
Using a similar approach as in 4.2.4 we determine the behaviour of the solution 

c(A, t) of (4.2) for A —> oo and all t > 0. In addition, we also present a series solution 

for c(A, t). 

Asymptotic and formal series solution 

The function F(x,t) in (4.156) has a branch point x0 = x0(t) = 21 In 2a(p + 

l )5(t)p + 1] . 
Expanding F(x, t) about the branch point x0(t) we obtain 

F ( j ' t ) ~ ^ f e ^ ~ PaS(t) - ( ^ - ^ ^ ) ) 1 / 2 + C ( x - x Q ( 0 ) as x - x 0 ( * ) . 

Therefore, according to [23] we obtain the asymptotic behaviour of the solution /(A, t) 

as A —> oo to be 

(a + /3A)/(A,£)~ ; ' 
a 5(0 /3TT 

2a(p+l)S(t)p+1 

Using the definition of c(A, t) we obtain the asymptotic behaviour for the solution 

c(A, 0 of (4.2) as A -v oo for all * > 0 to be 

c(A,t) 
^-3/2g-(a+^\)Q(t) / y ^ 

(a + /?A)a5(t) V^TT 
2a(p+l)S(*) p + 1 

2 1 A 

as A —> oo, Vi > 0 

Moreover, we can also obtain the solution c(A, t) to (4.2) in series form. For this 

purpose, we expand the square root in F(x, t) defined by (4.156) using the binomial 
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theorem 

„ , , 2 ( e%x . 1N e * x / 2a(p+l)S(ty+1\1/2\ 

= ^ S(-1)fc+1 CO ^ ( P + ^ r f e ^ 1 (4.168) 
k=i 

Next, we formally take the inverse Laplace transform term by term to get the inverse 

Laplace transform of F(x, t) Thus we obtain the solution c(A, t) of the coagulation 

equation becomes 

2 e-(afWq(«) ~ ( 2 f c _ 2 ) , fc / a(fc-lh 
C ( M ) = (a + i8A)a»5(t) 2 . 2»-ifc!(fc-l)! N P + W ) " ] *(A — ) 

where 5(i) is determined above and the initial condition is given by: 

(a) If a5 ^ 0 then 

m 2 ^ ( 2 * - 2 ) ! f0 ^ , x p+iifce/, a ( f c - l ) \ 

(b) If as = 0 then co(A) = 0 which corresponds to the case when no particles are 

initially present in the system. 
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4.3 Symmetry methods applied directly to the co­
agulation equation 

We apply a new generalized version of the direct methods that determine the symme­

try group of point transformations for integro-differential equations to the coagulation 

equation in the presence of source terms. These methods provide us with a new fam­

ily of similarity solutions to the coagulation equations which can be further used for 

numerical studies. Due to the presence of the non-local (integral) terms, the classical 

approaches for investigating the symmetry groups of differential equations cannot be 

applied directly to integro-differential equations (IDEs). 

The existence of symmetry groups for IDEs with non-local structure has been de­

veloped only recently in the work of Zawistowski [112], Akhiev et al. [4]. Applications 

of this method are currently provided for a few classes of IDEs, such as: Vlasov-

Maxwell equations, collisionless-Boltzmann equations and fragmentation equation 

[32]. Some very special cases of IDEs can be reduced to differential equations. How­

ever, this is not the case of the most important IDEs in physics such as equations 

of kinetic theory. Coagulation equations are such examples of equations that cannot 

always be reduced to PDEs, if for example the coagulation kernel is not a bilinear, 

separable kernel (see Section 4.2) or has coefficients that depend on time t, as is the 

case in this section. 

The study related to the symmetry groups for coagulation equations has not re­

ceived much attention in the literature. The main difficulty for developing a direct 

and general theory is related to the existence of the integral terms in these equa­

tions, in particular the convolution-type integral with nonlinear functions. In the 

literature of coagulation equations, Chetverikov and Kudryavtsev [20] are the first 

to construct a theory of symmetries and conservation laws for IDEs. The authors 

provide a method that is known as the method of boundary differential equations, 

which is applied to the coagulation kinetic equation by reducing this equation into a 

boundary differential equation and using the concept of covering (see e.g. [20]). 

In this section, we provide a more general and direct method for determining a 

point symmetry group for coagulation equations with particle source terms. In our 

study, we extend the direct methods proposed by Akhiev et al. [4] that determine the 

symmetry group of point transformations to IDEs. We propose a new generalized 

method for dealing with the convolution-type integral by transforming the coagula-
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tion equation into a system that consists of an IDE and a PDE. For this purpose, 

we make use of the general definition of the point symmetry group for IDEs and the 

extended infinitesimal generator that includes the nonlocal variables as the variables 

of the jet space as given in the recent work of Zawistowski [112] and later by Akhiev et 

al. [4]. We obtain some similarity solutions and similarity reductions of the coagula­

tion equation for the case when the kernel function K is a bilinear, separable function 

that may depend on the time variable t. For some particular kernels we have also 

obtained the expressions of the total mass, and studied the occurrence of the gelation 

phenomena. The group method is applied to a modified coagulation equation (4.176) 

that involves only the convolution integral. To our knowledge, this is the first ex­

ample of application of the symmetry group to convolution-type integro-differential 

equations. The method that we propose in this section can be extended to include 

other special cases of coagulation kernels, and nonlocal terms. 

The advantage of this method over the previous methods used in the self-similarity 

theory is that we obtain a few similarity solutions without assuming a priori any 

special ansatz or structure of the scaling solutions to the coagulation equation as 

assumed in the work of [35, 36, 45, 24]. 

4.3.1 New modified version of the coagulation equation 

Consider the coagulation equation with particle source terms given by 

dc 1 fx f°° 
^r(A> t) = 2 / K(X ~ 'x' /*' 0C(A - V, i)c(/i> t)dV - c(A, t) / K{\, /i, t)c(fi, t)dfi 

+ g(\,t) (4.169) 

subject to the initial condition 

c(A,0) = c0(A), (4.170) 

where the space variable A and the time variable t range in the interval [0, oo). 

In this section, we assume that the rate of coagulation of particles or the kernel 

K(\, /i, t) and the source function g(X, t) are both non-negative functions. In addi­

tion, we assume the coagulation kernel is a separable and bilinear function whose 

coefficients depend on time t 

K(\,n,t) = 6(\,t)6(ti,t), where 0(A, t) = a(t) + 0(t)\ (4.171) 
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for any A, t > 0, where a{t) and (3{t) are arbitrary non-negative functions of t. 

For the moment, tbe foiicfeni a(t) M $(t) m asBumed to be arbitrary. Spicirlc 
examples of such functions and special examples of source terms will be established 

later in this section in such a way that similarity solutions for the coagulation equation 

(4.169) exist. As part of our analysis, we allow the coagulation kernel to have one of 

the following forms: 

(a) tf(A,Mlt) = a2W; 

(b) K(\,fi,t) = /32(t)\fi; 

(c) K(\, fi, t) = (a0 + (30 A) (ao + 0o yu), where ao, A> > 0 are some arbitrary con­

stants, 

and a(t) and 0(t) arbitrary at this point. However, we will show in this section that 

these functions satisfy a coupled system of ODEs. 

Due to the very special form (4.171) of the coagulation kernel K we make the 

following notation 

poo 

N{t) = / 0(A, 0 c(A, t) d\ = a{t) M0{t) + 0{t) Mx(t), 
Jo 

where M0(t) and M\{t) represent the zeroth and first moments of the solution c(A, t), 

respectively as defined in (4.5). Using the above notations, equation (4.169) becomes: 

dc 1 fx 

— (A, t) + 9(X, t) N(t) c{\, 0 = 2 / ^ A - A*' * ) 6 ^ f ) c (A - /*' * ) c ^ ' f ) ^ + 9(X>*) 
(4.172) 

We begin by eliminating the "infinite integral" from the equation (4.172), in the 

form of the function #(A, t) N(t) c(A, t) by means of an integrating factor. For this 

reason, let 

$(A, t) := / 0(A, r)N{r)dT = / {a(r) + \f3(T))N(r)dT and (4.173) 
Jo Jo 

Y(t) := f a(r)N{T)dT. (4.174) 
Jo 

We multiply the equation (4.172) by e * ^ e^ao+0°A>ff = e * ^ e0^", where a0 = 

«(0), 0O = 0(0), and a are arbitrary real numbers. The parameter a has been 

108 



included here for physical reasons, as will be explained later in this section. Using 

the above notations we rewrite the convolution integral in (4.172) in the following 

form 

Moreover, for simplicity we define the functions 

/(A,t) = c(A,t)e*<A'V(A'0)ff and h(X,t) = g(X,t)e^x't) e0{x'o),T (4.175) 

Thus, we obtain a new modified version of the coagulation equation (4.169): 

|£(A, t)=l- e-CW+«o*) J e{x _ j[i] t) e{^ t) /(A _ jU) t) /(M> t) dfl + h{Xi t) 

(4.176) 

subject to the initial condition 

/(A,0) = /o(A) = e ^ + * A ^ c 0 ( A ) (4.177) 

where / and h represent the new solution and source term of the modified coagulation 

equation (4.176). 

Since the group symmetry method is independent of the initial condition, we 

disregard for the moment the initial condition (4.177) and concentrate only on the 

new form of the coagulation equation (4.176). We will take the initial condition into 

account when we have determined the form of the similarity solution /(A, t) with the 

purpose of providing explicit (analytic) or asymptotic large size (A —> oo) behaviour 

of solutions / and thus c. 

4.3.2 Transformation of the coagulation equation into a sys­
tem of PIDEs 

In order to illustrate our method we make some transformations to the equation 

(4.176). First, we rewrite (4.176) such that the limits of integration are independent 

of A. This can be achieved with the help of the Heaviside step unit function 

m w - l x' if A > 0 

^ ( A ) - \ 0, if A < 0 
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Therefore, the convolution integral in (4.176) takes the form 

/•oo 

/ P(A, /i) 6(X - n, t) 6»(/i, 0 /(A - M, t) /(/x, 0 d/i 
Jo 

where P(A, /z) = 1 - H(ji - A). Next, let 

v(X, /x, *) = P(A, /*) 0(A - /*, t) /(A - /x, 0 

If we calculate the partial derivatives of v, then we obtain the following PDE for the 

function v(\, fi, t) 

vx + vlx = 0. 

Using the transformations above, the coagulation equation (4.176) changes into a 

coupled system of IDE and PDE in / and v, or a system of partial integro-differential 

equations (PIDEs) of the form 

8f 1 f°° 
^-(A, t) = - e-W)-*"CT> J v(X, M, t) /(/*, t) 6(n, t) dfi + h(\, t) 

vx + v^O (4.178) 

4.3.3 Symmetry groups of point transformations for the co­
agulation equation. Theoretical approach 

In this subsection we adapt the theoretical description in Section 3.2 for a general first 

order PDE and apply this to the system (4.178) in order to determine a Lie symme­

try group of point transformations (see e.g. the articles [4, 112] for the collisionless 

Boltzmann equation). For the new system (4.178), we need to impose the invari-

ance conditions to both the IDE and the PDE, and solve a system of determining 

equations, that consists of both local (PDEs) and nonlocal equations (IDEs). These 

new determining equations that we derive are much easier to solve than the original 

coagulation equation. We present a new approach for solving the resulting system of 

determining equations which, to our knowledge, are new to the theory of coagulation 

equations. The approach we suggest below can be applied to other special cases of 

integro-differential equations of the form (4.176) or (4.169). 
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First, we consider the equations in the system (4.178) as two surfaces T\ and Ti 

defined by 

Tx = h - \ e-(*-W+«°*) T ( / , v) - h(X, t) = 0 

JF2 = vx + vli = 0 (4.179) 

given in the space of variables (t,X, //, / , ft, vx, v^, T(f,v)), where 

Tif,v)= fv0{ii,t)dfj,= rn(fx,v,f,t)diJ, 
Jo Jo 

represents the nonlocal variable (integro-differential operator), where for simplicity 

we let 

m(fM, v,f,t) = fv 0(M, t) = (a(t) + /3{t)fM) f v. 

As described in Section 3.2, we look for a Lie group of point transformations 

admitted by the PIDE system (4.178). For this purpose, we concentrate now on the 

system of equations above which we write in the following general form 

*i(A, /i, t, f(X,t), / t(A,i), v(\, /i, t), T(f,v)(X,t)) = 0 

F2(X, fi, t, v(X, n, t), vx(X, n, t), uM(A, M, t)) = 0. (4.180) 

Next, we consider the one-parameter (e) Lie group of point transformations: 

A = esG(X) = X + e£i(A, fx, t, / , v) + 0{e2) 

fl = e*G(fj) = fi + e&(A, n, t, / , v) + 0{e2). 

i = esG(t) = t + £&(A, /x, i, / , «) + 0(£2) 

/ = eeG(/) = / + sm(\, fi, t, / , v) + 0(e2) 
v = eeG(v) = v + e J]2(X, ft, t, / , v) + 0(e2) (4.181) 

with the infinitesimal generator 

_ , d t d , d d 8 

where £,-(A, ft, t, / , v) and rji(X, //, t, f, v) are sufficiently smooth functions, which 

represent the generators of the point group of transformations. 

Similar to the Ovsiannikov's method for DEs [81] and following the theoretical 

description in Section 3.2 for PDEs, we consider the 1st order extension of the group 

111 



(4.181) from the space of variables (\,fj.,t,f,v) into the space of independent and 

dependent variables, and derivatives of dependent variables (A, /i, t, / , v, ft, V\, v^) 

A = eeGW (A) = A + e£i(A, ^ t, / , v) + 0(e2) 

A = esG(1)(//) = n + e6(A, M, t, / , v) + 0(e2) 

t = e^
(1) (i) = * + £ U\ /*, t, f,v) + 0(s2) 

f = eeG(1)(/) = / + £ »h(A, /x, t, / , «) + 0(e2) 

5 = e£°a) (v) = v + e 772(A, /i, t, / , v) + 0(e2) 

fi = eEG(1\ft) = ft + er,[ + 0(s2) 

vr> = e£G<1) («„) = «„ + £»# + 0(£
2) (4.182) 

where 77 j , ^> 2̂ represent the infinitesimals of the group defined by (see e.g. [4]) 

Vi = Vu + (vij ~ fr,t) /t - f i,t /A - &./ /t2 - 6 , / h ft 

12 = 12,X + (V2,v ~ £I ,A) <;A - 6,A Vt - 6,1; '"A ~ 6,w "A '^ 

and G ^ represents the extended infinitesimal generator given by 

Similar as in Section 3.2, invariance of a system of equations means invariance 

of the space of its solutions. Therefore, the point transformation (4.182) maps any 

solution {/, v} of the system of PIDE (4.179) into another solution {/, v} of the same 

system of equations. In our geometric language, where solutions are represented by 

their graphs in a jet space, the above can be formulated as follows 

Definition 6 (Criterion of invariance of the system of PIDEs (4.180)) If 

the system of PIDEs (4-180) transforms to the following form of invariant equations 

under the group of point transformations (4-182) then this group is called a point 

symmetry group for the system of equations: 

•Fi(A, ft t, f(X,i), fi(\t), u(A, ft t), f(f,v)(\,t)) = 0 

F2{\ ft i, v(\, ft t), v-x(X, ft t), %(A, ft i)) = 0 (4.183) 
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where 
rOC 

f(f, 5)(A, t) = / m(fl, f, v, t) dy. (4.184) 
Jo 

is obtained by the extended transformation (4-182). 

According to (4.184), we act on the system of PIDEs (4.180) by extended trans­

formations (4.182) writing down explicitly only terms up to the order e, that is linear 

terms with respect to the parameter e. Next, we expand in Taylor series the integrand 

function m in (4.184). After changing the integral variable and applying (4.182) we 

obtain that the nonlocal term T(f, v)(\, i) has the form 

f(f, v) = T(f, v) + e PT(f, v) + 0(e2) (4.185) 

where P? is given by 

r0° ' dm dm dm dm dm 
<f,v) = J {^^ + ^~+^z^ + rii::^ + V2: 

+ m t + a 7 ^ + ^7^)/d/ i (4186) 
\ dpi df dy, do dfi 

Consequently, the extension of the point group (4.182) on the nonlocal variable T(f, v) 

is defined by (4.182, 4.185). Therefore, we can consider the generator of the extended 

group (4.182, 4.185) as follows 

eg) _ 0(1 + * ( / . „ ) - ^ (4.187) 

Substituting the expressions (4.182), (4.185), (4.186) and (4.187) into the general 

system (4.183), and using Taylor expansion, the invariance criterion of the system of 

PIDEs (4.180) under the group of transformations gives the following 

Definition 7 (Determining equations for the system of PIDE (4-180)) 

The PIDE system (4-183) is said to be invariant under the point group of transfor­

mations (4-182, 4-185) if and only if the following system of determining equations 

holds 

G^T1{\,n,t,f,ft,v,T{f,v)) = 0 (4.188) 

G £ } T2{\, ft, t, v, vx, W/1) = 0 (4.189) 
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for any arbitrary solutions /(A, t) and v(X, //, t) of the system (4-183) of PIDEs. The 

infinitesimal generator of the extended group (4-182, 4-185) is defined by the operator 

/ii + d ^ d ^ d d d t d „ , , x d 

+ % 
d 

(4.190) 

In the following, we apply the theoretical approach presented above to the system 

(4.179) of PIDEs. In particular, we apply the extended generator G^ defined by 

(4.190) to the frames (surfaces) T\ and Ti to obtain the invariance criteria for (4.179). 

The solutions of the determining equations will provide us with similarity solutions 

to the modified and original coagulation equation, respectively. For some initial 

conditions these solutions are in fact analytical solutions, while in other cases they 

are only similarity solutions or group invariant solutions, nevertheless any type of 

solution that we obtain is of interest for our study. 

4 . 3 . 4 D e t e r m i n i n g e q u a t i o n s for t h e s y s t e m o f P I D E s 

The invariance condition for Eq. T\ — 0 

Using (4.190), the definition (4.179) of T\ and n[, the determining equation (4.188) 

takes the form 

< a f e + < f 1 , - ( * ' ( 0 + « o . ) v 7 r t r f f ^ dhi din 0& d(a 2 d& 

+ ( 
dm 9&\ / i 
-df dt 

where 

/•OO 

PT(f,v)= / 
Jo 

dfJt df 

) ( I e-O-W+oo c) r ( / ) v) + h{x^_l_ P r ( / ) v) e-(Y(t)+ao c) = 0 

(4.191) 

+ / v e(fi, *) fr /* + fv6(ii, t)~vA dp (4.192) 

Since the left hand-side of (4.191) is a sum of local and nonlocal terms, we split 
(4.191) into local terms (LT) and nonlocal terms (NLT). Thus we obtain 
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The local term of (4.191) is given by 

dh dh drn fdrn d&\ ah 0& 2 dix 

(4.193) 

To solve (4.193), we use the standard Lie algorithm as in Section 4.2. This reduces to 

splitting LT with respect to the local variables and their derivatives, and equating like 

derivatives to zero (see e.g. [4, 12]). Thus, setting the coefficients of like derivatives 

to zero, we obtain 

fx terms: £ u = 0 (4.194) 

/ A / t terms: ^ = 0 (4.195) 

ft terms: f3i/ = 0 (4.196) 

n ^ dh ^ dh (dm <9£3\ , dm ,M „ „ „ . 
•"tern.: 6 _ + 6 _ _ (JL_ JL)» + J L (4.197) 

Prom the equations (4.194) and (4.195), it follows that £1 is independent of t 

and / . Therefore, we obtain £1 = fi(A,/i,v). Moreover, equation (4.196) yields 

£3 is independent of / , i.e. £3 = £3(A,//, t,v). The equation (4.197) is a first order 

hyperbolic PDE satisfied by the source function h(X, t). This equation gives the family 

of source terms for which solutions of the equation T\ = 0 that are left invariant by 

the group of transformations exist, i.e. group invariant or similarity solutions exist. 

Furthermore, the analysis of the nonlocal terms (NLT) reduces to solving the 

following nonlocal determining equation for the generators of the group of transfor­

mations: 

NLT : I r ( 0 e - < y W + « - > T ( / , r , K 3 + ( ^ - ^ ) (\e-^+^T(f,v)) 

- \ Pr(f, v) e-(HO+ao») = 0. (4.198) 

If we multiply (4.198) by 2erW+ao<T then equation (4.198) becomes 

W , v) = T(f, v) (Y'(t) b + ^-Hky (4.199) 

Consequently, the system of equations (4.194 - 4.197) and (4.199) gives the first 

set of determining equations for the generators that are obtained from the invariance 

criterion of the equation J î = 0 in the system of PIDEs (4.179). 
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The invariance condition for Eq. ^2 = 0 

Using (4.190) and the definition of T<i, ^ and life we obtain the second determining 

equation in the form 

41)(jr2) = 0 => r/2
A + rtf = 0. So, 

^ + ̂  + {^-WVx + [-^--dil)v^[-dx+Jll)
Vt--^^-^v-

-^v,vt-^Vlivt = 0 (4.200) 

Similar to the analysis of the local term LT above, we solve (4.200) by splitting 

this term with respect to the local variables and their derivatives, and equating like 

derivatives to zero. We also make use of the equation T2 ='0 or v^ — —v\. Thus we 

obtain 

(4.201) 

(4.202) 

(4.203) 

(4.204) 

(4.205) 

From (4.196) and (4.201) we obtain & = &(A,/*,*), while from (4.194-4.195) and 

(4.202), we have £1 = £i(A,/i). Next, we rewrite the nonlocal operator Pr{f,v) in 

(4.192) as follows 

(4.206) 

In addition, we assume that the term {...} in (4.206) does not depend on \i so that it 

can be moved outside of the integral. This is equivalent to assuming that 

e ' / ' v ' dp' df / " ' dv v" 

v\vt terms: 

v\ terms: 

V\ terms: 

vt terms: 

•° terms: 

6.« = 0 

&,» = 0 

6,M = &.A 

6,A + 6,M = 0 

m,x + m,n = 0 
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do not depend on /i. For simplicity, we assume that these are functions of t and also 

£2 is independent of t, v and / . In view of the previous choices, the following identity 

holds 

PT(f,v) = A(t)T(f,v), (4.207) 

where A(t) is an arbitrary function of t which will be defined below. As a result of 

(4.207), we obtain that the factor Y'(t) £3 + 771,/ — £3^ in (4.199) is a function of t 

only. Thus, we get K'(£)£3 + r?i,/ — £3^ = A(t). This means that £3 is independent 

of A and fj,. On the other hand, due to the independence of / of the generators £1 

and since the equation (4.197) holds for all functions h, it follows that the generator 

r/x must be a linear function of / with arbitrary constants as coefficients. In other 

words, based on (4.192), we have r]i(f) = B\ f. 

4.3.5 Generators of the one-group of point transformations 

Following the description in the previous section, we obtain: 

(i) The following two relations for the generators £2 and £3 hold 

~^ = C3 and /3 (£K2M+&(*)^ ( /M) = C 2 0(M) (4.208) 

where C2, C3 are arbitrary constants. Of course, C2 can be chosen as an arbitrary 

function of t. From the first relation in (4.208) and since (4.203) holds for all A, /i > 0, 

it seems reasonable to assume that £2 = £2(AO, and thus £x = £i(A). In particular, 

we have £2(/z) = C3 H + C5 and £i(A) = C3 A + C4, with C4, C5 arbitrary constants. 

Moreover, since the second equality in (4.208) also holds for all fi, t > 0 then using 

the definition of 8(fi, t) we can set power-like terms in \i to zero. Thus, we obtain a 

coupled system of ODEs for the functions a(t) and (3(t) in the form 

Ut)P'(t) = (C2-C3)f}(t) (4.209) 

£3(0 ot'{t) - C2 a(t) = -C4. P(t) (4.210) 

It is worth mentioning at this point that the only case of interest is ̂ (t) ^ 0, for 

all t > 0. Otherwise, if £s(t) — 0 then independent of the choice of the constants C2 

and C3, the system (4.209, 4.210) has either a unique solution (trivial) a(t) = f3(t) = 0 

or if C2 = C3 then a(t) and 0(f) are multiples of each other. Moreover, f3(£) will be 
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determined from the equality that defines the operator Px first by using its definition 

(4.192) and second by using the determining equation (4.199) that this satisfies. More 

precisely, using (4.208) then £3(0 satisfies the following equation 

J00 {c2e(n,t)fv + B10(fi,t)fv + ri2{t,v)e{n,t)f + C39(it,t)fv}dii 

= T(/l«)(r(*)6(0 + £ i - £ ( 0 ) (4-211) 

(ii) To ensure both identities (4.207) and (4.205) are satisfied, we choose 772 = 

V2(v, t) = B2(t) v, where B2(t) is
 a n arbitrary function of t. 

(iii) Using (4.211) and the information on r?2 in (ii) we obtain an ODE for £3(£) 

&(t)-Y'(t)Z3(t) = A(t), (4.212) 

where A(t) = -{C2 + C3 + B2(t)), with C3, C2 and B2{t) arbitrary. 

Since we have the freedom to choose the function B2(t), then we will consider below 

two separate cases for which £3(0 can be determined explicitly. First, we discuss the 

simplest case B2(t) = B2 = constant and provide a few similarity solutions. This first 

case will be identified as 4.3.6. Second, we choose B2(t) = B3(t)£3(t), where B3(t) is 

allowed to be arbitrary, yet we establish its dependence on the function Y(t) to ensure 

the existence of similarity solutions to (4.176) which cannot be obtained otherwise 

(for instance, from 4.3.6 or any general function B2(t)). We will identify the latter 

case as 4.3.7. Moreover, in each of the cases above, we determine the corresponding 

functions a(t) and (5{t), from the system of equations (4.209), (4.210). 

4.3.6 Generator 772 = T)2{V) = B^V 

In this case, the generators of the Lie group of point transformations admitted by the 

system (4.179) are given by: 

6 = 6 ( A ) = C3A + C4 

& = 6(/*) = c3/i + c5 

6 - 6(0 

772 = Vi(v) = B2v 
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where B\, B2, C3, C4, C5 are arbitrary constants and £3(£) satisfies (4.212) and is 

given by 

&(*) = A2 e
r « - (Ca + C3 + 52) eY® f e~

Y^ dr 
Jo 

where A2 is an arbitrary constant. Consequently, the generators of the Lie group 

of point transformations admitted by the modified coagulation equation (4.176) are 

given by 

6(A) = C3A + C4 

m(f) = Bif 

where Ax,A2,B\,C$, C4 are arbitrary constants, and for simplicity we denote by 

M — Bi + C2 and Z(t) = J0 e~Y^ dr. The infinitesimal generator X associated with 

the Lie group of point transformations above can be written as 

*-«.W £ +6(01+ *</)£ 

Therefore, the coagulation equation (4.176) has a five-parameter Lie group of 

transformations. More precisely, (4.176) admits a five-dimensional Lie algebra L5 

spanned by the following five Lie symmetry vector fields V%,..., V5: 

y. = e
Y® — Vo = f — Vi = -Z(t) ent) — V*. = A — - Z(t) e r ( ( ) — 

V5 = | . (4.213) 

These operators form a basis for the corresponding Lie algebra L5. Similar, as in 

Section 4.2, we construct the commutator table for the Lie algebra arising from the 

infinitesimal generators V*, where i = 1,2,...,5, in Table 4.6. 

Symmetry reductions for the coagulation equation 

In order to obtain the similarity reductions for the coagulation equation (4.176), we 
have to solve first the corresponding characteristic equations in the invariant surface 
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WuVf) 
Vi 

v2 
V3 

v, 
v5 

Vx 
0 
0 

Vi 
Vi 
0 

V2 
0 
0 
0 
0 
0 

v3 
-v, 

0 
0 
0 
0 

v4 
-Vi 

0 
0 
0 

v5 

v5 
0 
0 
0 

-v 5 
0 

Table 4.6: Commutator [Vj, V,] table for the Lie algebra spanned by Vj and Vj in 
(4.213). 

condition (4.45) 

dX _ _dt__ df 

associated to the generators ^ , £3, 771. Using the explicit forms of the generators 

above we obtain 

_J^_ = m* = JL (4214) 
C3A + C4 A2-(B2 + C2 + C3)Z(t) Bxf

 K' ) 

As is the case with the Lie symmetry method, the solution of (4.214) involves two 

arbitrary constants, one of which plays the role of the similarity variable s and the 

other one plays the role of the similarity profile ip(s) from which the similarity solution 

/(A, t) will be obtained. 

There are two major differences in this section when compared to Section 4.2. 

First, when solving for the similarity solution in this section, the substitution of the 

similarity solution /(A, t) into the original coagulation equation (4.176) results in an 

IDE for tl>(s), instead of an ODE as in Section 4.2. Second, the solutions obtained by 

solving this IDE will generate directly the family of similarity solutions (or invariant 

solutions under the group of transformations) for the coagulation equation. In other 

words, we do not need to apply Laplace transforms to obtain the similarity solution 

c. In particular, we take the initial condition (4.177) into account and impose the 

invariance condition (4.45) for it. This reduces to imposing the invariance of /(A, t) 

along the curve t = 0 and using the original equation (4.176) to replace /((A, 0) in 

(4.45). In this way, we obtain particular solutions for the coagulation equation, which 

in some cases become exact, analytical solutions to (4.176) or (4.169). 

We assume first that C3 ^ 0 and treat the case C3 = 0 separately. Moreover, we 
also assume B2 + C2 + C3 ^ 0. In this case, the first and second pair of DEs in the 
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characteristic equations (4.214) provide us with the similarity variable and similarity 

solution, respectively, in the form 

s = ( A + — J [.R(£)]b = constant, where b = 

and 

C3 / B2 + C2 + C3 

/(A, i) = [/«(«)]« ^(s), where a = - — | ^ _ - (4.215) 

with 

R(t) = A2-(C2 + C3 + B2) f e-Y(j)dr 
Jo 

h{\, t) = [R(t)]a-i e-yW <p{s) where s = (A + ^ ) [i?(*)]6. (4.216) 

where the constants J42, #2, C2, C3 are chosen such that R(t) > 0, for all t > 0. 

It remains now to determine the type of source function h(\, i) for which similarity 

solutions to (4.176) exist. This follows from the equation (4.197) and using the 

expressions of £1, £3,171. We obtain 

(C3 A + C4) ^ ( A , t) + eY^ [A2 - (B2 + C2 + C3) Z(t)] ^ ( A , *) = (BX - £(*)) h(X, t). 

Since this is a first order PDE then using the method of characteristics, we obtain 

that the source function h(X, t) takes the form 

C± 

To obtain group invariant solutions for (4.176), we have to proceed one more step, 

that is to substitute /(A, t), s and /i(A, t) above into (4.176) and obtain the equation 

satisfied by the similarity profile •(p(s) (which is in fact an ordinary IDE). For this 

purpose, we start by rewriting the convolution integral in (4.176), which for simplicity 

we denote as RHS, using the form (4.215) of /(A, t) 

RHS = \ e-™+ao^[R(t)]2a-b [' 4>{s - s') ^(s'){a(t) + (3(t) (s - s') [R(t)]-"} 

x{a(t) + (3(t)(s'[R(t)}-b-^)}ds' 

(4.217) 

On the other hand, substituting /(A, t) into the left-hand side we obtain 

ft = R'(t) [Rit)}"-1 {aV(s) + bsiP'(s)} 

= - ( C 2 + C3 + Bt) e-YW [-R(*)]a-1 {ai/>{s) + bsip'(s)}. (4.218) 

121 



From (4.217), (4.218) and (4.216), we obtain 

- (C2 + C3 + Bx) [R{t)]a-1 {arl>(s) + bs^'(s)} = \ e~a^ [R(t)]2a-b J' ^(s - s') 

x W) {a(t) + (5{t) (s - s') {R(t)}-»} {a{t) + (5{t) (V [R(t)}-" - g ) } ds' 

+ [R(t)}a-l<p(s) (4.219) 

where q := § [R(t)}b. 

In order to obtain invariant solutions, we need to eliminate first the time depen­

dence in the integral in (4.219). One possibility to achieve this would be to make q = 0 

so, C4 = 0. Using this information, we return to the coupled system of ODEs (4.209, 

4.210) for the functions a(t) and f3(t), from which we obtain the general solutions in 

the form: 

a(t) = a0 e°7 /o' ^ dT = a0 [R(t)]cimd fi(t) = A, e(C2~Cz) & 5W d r = A, [R(t)}c+b 

(4.220) 

where c = c 7^\B , use being made of the definitions of a, b and c, where «o > 0 

and /3Q > 0 are arbitrary constants. 

Using the definitions of a(t) and /9(f) in (4.220), the R H S becomes 

RHS n 

2 
i e - 0 ^ ^ * ) ] 2 0 - ^ | % ( S - S W ) [ a o +A) ( * - * ' ) ] [<*o + /W" ds' 

(4.221) 

Using (4.221) and since -a (C2 + C3 + fli) = Bi and -b(C2 + C3 + Bx) = - C 3 then 

the equation (4.219) reduces to the following 

[R(t)}a-1{B1^(s)-C3s^'(s)} = [ JJ ( i ) rMs) 

+ ^ e-Qoff [i?(i)]2a-6+2c | S </>(* - 5') V(s') [a0 + P0(s- s')] [a0 + A) a'] <^'. (4.222) 

Prom the equation (4.222), it follows that a necessary condition for invariant solutions 

solutions /(A, t) to (4.176) to exist is given by the following equality 

a - 6 + 2c = - l => B2 = B1+C2. (4.223) 

So, c = 6~%~1- Therefore, the similarity profile ?/>(s) satisfies the following ordinary 

IDE 

Si V(s) - C3si/{s) = J e " 0 0 ' f (a0 + ft(s - a')) («o + A>a')^(s ~ s')W)dif + p(a) 

Gathering all the results obtained so far, we conclude with the following 
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General similarity solutions for the coagulation equation 

Proposition 4.1 Assume the source function h(X,t) has the similarity form 

/i(A,0 = [fl(0r1e~y( ' )^), 

where Y(t) is defined in (4-173) and tp(s) is an arbitrary, non-negative function for 

all s > 0 and s denotes the similarity variable 

C B 
s = X [R(t)]b, where b — —— — and a = — -

and the function R(t) is given by 

R{t) = A2-{2C2 + Bx + Cz) ! e~Y^dr, 

Jo 

with A2, C2, Bi, C3 arbitrary constants such that R(t) > 0, for every t > 0. Assume 

the coagulation kernel K(X, fi, t) has the form 

K(X, /i, t) = (a(t) + 0(t) X) (a(t) + 0{t) /*), 

where the functions a(t) and j3(t) are given by 

b-a-l 3b-a-l 

a(t)=a0\R(t)\ 2 and 0(t) = A) \R(t)\ ' (4.224) 

with a0, 0o > 0 some arbitrary constants. Then the coagulation equation (4-176) has 

a similarity solution of the form 

f(\,t) = [R(t)]a1>(s), 

where the similarity profile tl)(s) satisfies the ordinary IDE: 

Bx 1>{s) - <p(a) - C3*l/(s) = — j (a„ + 0o{s - s')) (a0 + /30 /)</-(* - s')i>(s') ds' 

(4.225) 

In addition, we assume the constants A2, Bx, C2, C3 are such that the function tjj(s) 

is non-negative for all s > 0. 

In addition, the source function g(X, t) and the similarity solution c(\, t) are given by 

g(X, t) = h(X, t) e-*(Alt)
 e-

{ao+l3a A)"' and c(X, t) = [R(t)]a V>(s) e-*(A,t)
 e-

(ao+0°x)cr 

where &(X,t) and Y(t) are defined in (4-173). 
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Remark 4.10 To illustrate a family of similarity solutions c(X,t), we consider first 

an example of similarity functions <p(s) satisfying Proposition 4-1- Since the similarity 

profile ip(s) is a non-negative function of s, for any s > 0 we consider a family of 

functions ip(s) of the form: 

ip(s) = Hoip(s), where Ho>0 is a non-negative constant. (4.226) 

In particular, if Ho — 0 then h(X,t) — 0 and so, g{X,t) = 0 corresponding to the 

sourceless case. The idea that we present below can be applied to more general exam­

ples of functions ip(s), not necessarily depending on '4>(s). Our aim is to make use 

of the Laplace transform method to determine analytically (if possible) the similarity 

profile ip(s). For this reason, the choice we make in (4-226) seems appropriate to 

pursue our goal. For the functions <p(s) in (4-226), we present a few particular ex­

amples of coagulation kernels, for which we provide similarity solutions c(X, t) to the 

coagulation equation (4-169). 

The coagulation kernels of interest to our analysis are as follows: 

(a) K(X,fi,t) = a2(t); 

(b) K(\,[i,t) = l32(t)\Li; 

(c) K(X, n, t) = (ao + A) X) (a0 + Pa /i), where a0, /30 > 0 are some arbitrary con­

stants, 

and a(t) and P(t) are given by (4.224). For these examples we have obtained similarity 

solutions c(A, t), which for some particular initial conditions (and thus special choices 

of constants) become analytical solutions. 

Case I: Coagulation kernel K(X, JJL, t) = a2(t) 

Assume that a(t) > 0 and (i(t) — 0. Choose the parameters (30 = 0, a0 > 0 and 

cr = 0. One can rescale the space and time variables in the coagulation equation and 

set ao = 1. Using the assumptions above and the definitions (4.224), the coagulation 

kernel takes the form 
K{X, /x,i) = a2{t) = R(t)"-a-1. 
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The function R(t) is given by 

R(t) = A2-(2C2 + Bi + C3) f e-Y{r)dT (4.227) 
Jo 

where A2, C2, C3 are some arbitrary constants s.t. R(t) > 0, for every t > 0 and 

using the definition (4.173) we have 

Y(t) = f a2{r) M0(T) dr =• M0(t) = Y'(t) [R{t)]a+1-b. (4.228) 
Jo 

In this case, based on the assumption in (4.226) that <p(s) = Hoxl)(s) then the IDE 

(4.225) for ip(s) takes the form 

(£1 - HQ) ip(s) - C3 s 'iP'(s) = I f ${s - s') <iP(s') ds' (4.229) 
^ Jo 

To determine the solutions of (4.229), we use the method of Laplace transforms. 

For this purpose, denote the Laplace transform of ip(s) by 

G(z) = C{ip(s)}{z) = f e-sztp(s)ds 
Jo 

then applying the Laplace transform operator C to the equation (4.229) gives rise to 

a separable ODE for G{z): 

G'(*) = —J--G(z)[G(*)-2,z] 
Z O 3 2 

where fx = B1 + C3 — H0. The solution of this ODE can be obtained explicitly in the 

form 
G{z) = i-cU 

where C is an arbitrary integration constant. The constant C will be completely 

determined from the initial condition (4.177) of the coagulation equation as will be 

shown in Example 4.12 below. Based on the definition of G{z) as a Laplace transform, 

we assume the following necessary conditions hold: the constant C < 0 and the 

function r{z) = 1 — Cz^Cs is absolutely monotonic for all z > z0, for some constant 

z0, ensuring the complete monotonicity of the function G(z) for all z > ZQ. One way 

to achieve the latter would be by assuming that 11/C3 = 1 and C3 > 0. This condition 

gives /x = C3 and thus we have B1 + C3 — H0 = C3 from which we obtain H0 = B\ > 0. 

For simplicity, denote by p = —l/C > 0. Thus, we obtain G(z) = =^fL
 X_\/C or 
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Taking the inverse Laplace transform of G(z) above, the similarity profile ip(s) is 

given explicitly by 

# ) = 2C3 Pe-P s 

where C3, p > 0 are arbitrary constants that depend on the initial condition (4.170), 

/o(A) = c0(A) that one chooses initially for the coagulation equation. 

Using the definitions in Proposition 4.1, we obtain the form of the source function 

g(X, t) to be 

g{X,t) = 2 H0C3p[R(t)]a-1 e~2YU e-pRVx (4.230) 

Therefore, the coagulation equation (4.169) has a similarity solution of the form 

c{X,t) = 2C3p[R(t)]ae-P^^bxe-Y^, (4.231) 

where p > 0 arbitrary and a = -2C2$o+C3 and b= 2Ca$0+Ca. 

To complete 4.3.6, Case I we need only to determine the expression of Y(t). This 

can be obtained from the expression of the zeroth moment of solution obtained on 

the one hand from the general form of the similarity solution in (4.231) and on the 

other hand from (4.228). As a result we get 

/'OO 

(t) = / c(X, t)d\ = 2 C3 e~YV [R(t)}a-b = Y'(t) [R(t,)}° 
Jo 

The latter equality gives rise to an I.V.P. for Y{i): 

Y'(t) = e - r « | ^ = e~YV [S(t)}-\ subject to I.C. Y(0) = 0, 
R{t) 

where, for simplicity we denote by 

S(t) = m = A__ 2Ca + g 0 + C, f e-r(T)dT 
2 C3 2 C3 2 C3 J0 

So, 

(2 C2 + H0 + C3) _Y^ 
2C3 

S'(t) = — — -e 

Using the initial condition Y(0) — 0, we determine e Y® in terms of S(t) 

nt) = -2g3 m ^ Y(t) = -2 c jsjty 
KJ 2C2 + H0 + C3 S(t) (J 2C2 + H0 + C3 \ 5(0) 
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Hence, we obtain 

,-Y(t) -
S(t) 

2 C 3 

5(0) 
2C2 + H 0 + C 3 S(t) 

•\2b (2C3)2b 

(A2)26 

and thus an I.V.P. for S(t) in the form 

S'(t) [S(t)]-™£%*>3 = J2C* + Ho + C3) [5(o)]-^2+S3
0+63 

2(73 

(4.232) 

subject to the initial condition 5(0) = ^|?-. There are two cases to consider here in 

order to describe the general solution of (4.232). 

(i) If 2 C2 + H0 # C3 then the general solution of (4.232) is given by 

S(t) = A. 
2CS 

2C 2 + "0+C3 

1 2C2 + H0~C3ty
c2+Ho'°3 

(4.233) 

where ^ 2 l C2 and C3 are some arbitrary constants that depend on the initial 

condition of (4.176). If we denote by r == _2Ci+Hv-ca a s s u m e ^hat r > 0 and 

set A<i = 2 C3 then the function S(t) becomes 

S(t) = (l + rt)r-^. 

(ii) If 2 C2 + #0 = C3 then the general solution of (4.232) becomes 

S(t) = 5(0) e~^or = M -2-^t 
2C5 

e A2 (4.234) 

Similar as in (i), we set A2 = 2 C3 and obtain 5(f) = e '. 

In both cases (i) and (ii) above, if we substitute R(t) = 2 C3 S(i) and e~yW into 

(4.231) and (4.230) we obtain the following similarity solution 

c{\,t) = 2C3pR{t)ae-pRM"xe-YU 

, „ s.a+26+l 

- ( ^ 2 6 PWJ e 

and source function 

g(X, t) = 2H0C3p Rity-1 e'"^"x e~2 Y^ 

H0p(2C3) 
a+ib 

[s(t)] a+46-1 -p(2C3)
b S(t)b X 

(A2y 

As a result of (i) and (ii) and all the above, we have derived the following general 
similarity solutions (family) for the coagulation equation (4.169) with particle source 
terms: 
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Example 4.12 (New families of explicit solutions to the coagulation equa­

tion for a time-dependent kernel) 

(i) Assume that the coagulation kernel is given by 

K(X^,t)=«-(l + rt)ii^±^ 
m 

where r > 0, r ^ 1, H0 > 0, C3 > 0 and 

H0 and b = 
2C3(l-r) 2(1-r) 

and m = p (2 Cz)a+l > 0 and q — p (2 C3)6 > 0 are some arbitrary constants. If the 

source function </(A, t) has the form 

9(A,i) = a m ( r - l ) ( l + r O S i ± i ^ i i e - ' M 1 + r t ) ^ > 0 . (4.235) 

Then the coagulation equation (4-169) has an explicit (similarity) solution of the form 

c(X, t) = m (1 + r t)
(a+2T-1]

 e-9Hi+rt)hJ^ A ( 4 2 3 6 ) 

(ii) Assume that the coagulation kernel is given by 

tf(A,M) = - e ( a + 5 } t 

m 

where a = —j^- < 0, and HQ > 0, C3 > 0, q, m are arbitrary constants defined in 

(i). If the source function g(X, t) has the form 

g(X,t) = -am,e-{a+l)te-qXe~t/2 > 0. 

Then the coagulation equation (4-169) has an explicit solution of the form 

c(X,t) = m e - M ' e - ^ ' " " 1 . (4.237) 

In particular, when t = 0, we obtain the initial condition Co(A) = me" ' A and thus 

a new analytical solution for the coagulation equation with sources. Furthermore, if 

we choose m — q in (i) then we recover the analytical solution in [17]. 

Remark 4.11 (Regarding the solution (4-236)) To check completely our result in 

(i), we also compare the solution (4-236) to the well-known explicit solution for the 

pure coagulation equation of M. Smoluchowski [99] for which K = 1. For this purpose, 

we choose a + 1 = b and H0 — 0 then we get a = 0. So, g(X, t) = 0 and q — m. 
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Moreover, from the definitions of a and b we obtain C2 = 0 and 6 = 1 which yields 

r = 1/2 and thus the constant kernel K = 1. Hence, we recover the well-known 

explicit solution (see e.g. [94]) 

, , N 4771 3mA 

/n particular, ifm = l the solution above is M. Smoluchowski's solution in 1916. 

Mass conservation property 

Although in this case the coagulation kernel is a time-dependent function, K is inde­

pendent of the particle sizes A and /u. As is general the case with these kernels, it is 

expected that the mass conservation property holds for all time t > 0. This is indeed 

what happens. To confirm our expected result, we prove that the following equality 

holds 

Ml(t) = M1(0) + G(t) = Ml(0) + / \g{\,T)d\dr, W > 0 (4.238) 
Jo Jo 

where G(t) is such that its derivative G'(t) represents the mass of the source function 

(i) Indeed, on the one hand, using (4.236) we calculate Mi(t) and obtain 

M j 

/"OO 

( * ) = / Ac(A,t) = ^ ( l + r i ) ^ =» MM = ~2-
Jo Q Q 

On the other hand, using (4.235) we calculate G(t) and obtain 

G{t) = ~ 2 + j2{l + rt) r . 

Therefore, as expected the conservation of mass (4.238) holds for all t > 0. 

(ii) Similarly, 

and 

in this case we obtain 

M,(() = 

o(0 - ™ 

m 

92 

(e-a t 

• a t 

- 1 ) 

So, the conservation of mass also holds for the solution (4.237). 
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Case II: Coagulation kernel K(\, //, t) = (32(t)\n 

Assume a(t) = 0 and (3(t) > 0. Next, let us choose the parameters ao = 0, /?o > 0 and 

a 7̂  0. One can rescale the space and time variables in the coagulation equation and 

set fio = 1. Using the assumptions above and the definitions (4.224), the coagulation 

kernel takes the form 

K{\, fi, t) = P2(t) \ft = [R(t)]3b~a-1 A ft. 

The function R(t) is given in this case by 

R{t) = A2-{2C2 + B1 + C3) f e~Yi-T)dT (4.239) 
Jo 

where H0 > 0 and C2, Bi and C3 are some arbitrary constants s.t. R{t) > 0, for 

every ( > 0. Using the definition (4.173), we obtain 

Y(t) = I a(r) M I ( T ) dr = 0. (4.240) 

Jo 

Thus, we obtain 

R(t)=A2-(2C2 + B1 + C3)t. 

In this case, based on the assumption in (4.226) that tp(s) = Ho^(s) then the IDE 

(4.225) for 'ip(s) becomes 

(£1 - Ho) V M - C3 s ip'(s) = 1 T (a - s') s' ̂ {s - s') ^{s') ds' (4.241) 

To determine the similarity profile tp(s) we apply again the method of Laplace trans­

forms as in 4.3.6, Case I. Due to the form of the integrand in (4.241), we first multiply 

(4.241) by s and denote by u(s) = sxp(s). We obtain 

(Bi + C3- HQ) u(s) - C3 s u'(s) = ^ / S w(s - s') u>{s') ds' (4.242) 
2 Jo 

Next, we consider the Laplace transform of w(s) 
/•oo 

W(z) = £{w(s)}(z) - / e~zs u(s) ds. 
Jo 

Applying the Laplace operator £ to the new IDE (4.242) and using the properties of 

the Laplace Transforms then we obtain as usual an ODE for W(z) in the form 

W'^= Ji^^n w h e r e Q = H0-B1-2C3. (4.243) 
W{z) + C3 z 
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Define ji := 1 — C3/q. If we assume that q, \i ̂  0 then the solution of (4.243) satisfies 

also an algebraic equation of the form: 

— W(zY - z WizY'1 + A = 0, (4.244) 
fiq 

where A is a constant of integration that depends on the initial condition (4.170). To 

study closely the algebraic equation (4.244), we rewrite this equation as follows 

1 A 
z = — W{z) + Hq w W{zY~l 

Taking the limit as z —> oo on both sides and using the definition of W(z) as a Laplace 

transform to get W(z) —> 0, we obtain a necessary condition in the form /z > 1, which 

gives C3/q < 0. 

Moreover, define ^(W) := - j - W + J^J=T — z. Differentiating both sides w.r.t. 

W, we obtain T'{W) = ± + A (1 - /i) W~i*. Define W^ to be the critical point of 

^(W), i.e. Wcp satisfies the equation Wgp = —-^-,—.1(1_ , > 0. So, we obtain Aq > 0. 

Moreover, we expect that the function W(z) > 0 for all values z > z$ (where ZQ is an 

arbitrary constant). One way to achieve this would be by assuming f"(W) > 0, i.e. 

A\i ((J, — 1) W"M_1 > 0 which yields A > 0. The latter guarantees that q > 0, and 

thus C3 < 0 and H0> Bi + 2 C3. 

Particular choice of constants. Explicit solutions to (4.169) 

To illustrate how the method of Laplace transforms helps us determine some exact 

solutions to (4.244) and thus exact solutions to the coagulation equation (4.169) and 

corresponding source terms g, we choose a particular value for \i for which (4.244) 

can be solved explicitly. Since (j, > 1, then if we choose fj, = 2 the equation (4.244) 

in W(z) becomes quadratic and thus it can be solved analytically. Since (J, = 2 we 

obtain q = —C3 > 0 and using the definition of q then we get B\ = Ho — C3. Thus 

we obtain 

Y W{zf - z W(z) + A = 0 =» W{z) = qlz-Jz2-—\. 

In this case, we can calculate explicitly the inverse Laplace transform of W(z). We 

obtain the similarity profile X/J(S) to be 

2j7rqh(2J±s) 
^(s) = \ V q J (4.245) 
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where I\ represents the modified Bessel function of the first kind [1]. 

Therefore, we obtain the similarity solution / and the source function h as follows 

f(X,t) = [R(t)}a^(s) and h(X,t) = - ^ f(X,t) 

where R(t) = A2 — (2C2 -t- #0) t, use being made of the equality H0 = Bt + C3. 

The arbitrary constants A2 and A will be determined from the initial condition (or 

from the invariance of the initial condition) and such that R(t) > 0, for all t > 0. 

Furthermore, using the expression of •ip(s) in (4.245) we obtain that the similarity 

solution /(A, t) and source term /i(A, t) above take the form 

/(A,t) = 2v5A V Vg
A2 Lm)r*b and k(\,t) = jjjLf{\,t). 

Moreover, using the definitions (4.173) and since N(t) — 0(t) Mi(t), we get 

$ ( A , 0 = / \p2{T)M1(T)dr = \ f [R(T)]3b-a-1 M^dr = XV(t), 
Jo Jo 

where for simplicity, we denote by 

V(t) = f [R(T)]3b-a-1 Mi(r) dr => Afi(t) = V'{t) [R(t)]a+1-3b. (4.246) 
Jo 

Finally, these notations and the definitions (4.175) yield the general similarity solution 

c(A, t) and the source term g(X, t) for (4.169) in the form 

ph(m[R(t)}bx) 11 
c{Kt)= \>[R(t)]*>- e~Ha+m) a n d ^ A ' * ) = ^ c ( A , t ) (4.247) 

where 

IA 
p — 2 WA q and m = 2 

" 7 

where m, p > 0 are some arbitrary constants and R(t) = A2 — (2 C2 + #0) *• 

It is worth mentioning at this point, based on the form of the solution tp(s) 

obtained in (4.245) for fi = 2, that for large s —> 00 the convolution integral in 

(4.241) diverges. This is due to the fact that i/>(s) in (4.245) develops a tail of the form 

e V"«* s - 5 /2 as s —> 00, since for a large argument we have h{x) ~ r̂ —;> as x —> 00. 

We have also performed an asymptotic large size behaviour (s —> 00) for the similarity 

profile ip(s) for a general // > 1 (based on Newton's polygon method), however the 
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analysis shows that again the function i/>(s) has a tail •ip(s) ~ e v « s s - 5 /2 as s —> oo. 

Furthermore, these similarity solutions have the property that their similarity profile 

xp(s) have an infinite mass, in the sense that 

* ! = r s 4,(s) ds = J ^ f°° e2^3 s-W ds oo. 

However, in spite of the properties of the function ip(s), the similarity solution c(A, t) 

given by (4.247) to the coagulation equation (4.169) has finite mass M\(t) < oo, for 

all time t > 0. Moreover, due to the presence of the exponential decaying factor 

e-(*+v(t))A) t h e soiution c(\,t) in (4.247) is well-defined, for all A, t > 0. 

Based on the argument presented above, we proceed further to determine the 

solution c(A, t) in (4.247) completely, that is we obtain the function V(t). For this 

purpose, first we make use of the similarity solution c(A, t) and the first moment of 

the solution Mi (t) and since q = p/m, we obtain 

W) = T ^ J * + ^(0 - ^{° + V{t)?-rn*R{t)A = V'{t) fl(t)"-8t+1 

use being made of (4.246). The last equality gives rise to an IVP for the unknown 

function V(t) 

V'(t) = -2- U + V(t) - y/(a + V{t)f - m2 [R{t)]2b \ subject to I.C. V{0) = 0, 

(4.248) 

where R(t) = A2 - (2 C2 + H0) t, with the constants A2, C2 depending on the initial 

condition that one chooses for the problem. Having determined V(t), then we can 

completely determine the solution c(A, t). 

In the following we provide a few examples of initial conditions for which we derive 

exact similarity solutions. These initial conditions are obtained from the similarity 

solution (4.247) when we set t =• 0. With the first example we recover the solution of 

Ernst et al [34], while the second example is a completely new explicit solution. Our 

both solutions are general (similarity) solutions which depend on the function V(t). 

The latter satisfies an I.V.P. which in some cases can be solved analytically, however 

in general numerical methods need to be employed. The expression of V(t) yields the 

total mass M\(t) for all time t > 0 and eventually the formula for the gel-time Tge;. 
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Case II. A: Coagulation kernel K(X,/i,t) = Xfi 

If we assume a +1 = 3 b, then from the definitions of a and b and since B\ = H0 — C3, 

we get C3 = C2. In addition, from (4.246), we get V(t) = Q(t). Moreover, in this 

case the coagulation kernel K(X,fj) = A/x. We have obtained the following explicit 

solution to (4.169). 

Example 4.13 Assume the initial condition to (4-169) is given by 

g-A<7 
c oM = —»— with a > 0 any rea^ number. (4.249) 

A 
Suppose the coagulation kernel K(X,/J,) = Xy, and the source function g(X,t) = 0. 

Then the coagulation equation (4-169) has an exact (similarity) solution of the form 

c(X, t) = x2J} V ; (4.250) 

where the function Q(t) is given by 

f £ for te[0,Tgel) 

\2V~t-a for t> Tgel 

and Tgei = a2 denotes the gelation-time. In addition, the total mass of the solution 

M\(t) is obtained as 

^-m-ntit1^ 
In particular, if a = 1 the solution (4.253) above reduces to the solution in Ernst 

et al. [34]. 

Proof. In order to determine the similarity solution to the coagulation equation 

(4.169) subject to (4.249) we need to obtain the particular values for all the constants 

in (4.247). This can be done on one hand by imposing the invariance of the solution 

/(A, t) along the curve t — 0 (see [13, 14]), on the other hand by using the expression 

(4.249) above. 

First, we impose the invariance condition for the initial data /(A, 0) = eXa Q)(A) = 

\ and we obtain 

&(A) /A(A, 0) + $3(0) ft(X, 0) = Vl(f(X, 0)). (4.251) 
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Using 6(A) = C2 A, 6(0) = R(0) = A2, m(/o(A)) = fli /o(A) = f and Q(0) = 0, 

and also the expression of ft from (4.176) 

r\ u \ H 1 ft{x'0) = \ l ( A - M ) M / ( A - M , O ) / ( M , O ) ^ + / ( A , O ) - ^ = ^ + o _ 
A 2 X 

then (4.251) reduces to the simpler equation 

^ A + (Ho -C2-B1)j = 0 

which holds for any A > 0. Since we have B\ = HQ — C2 then the above equation 

yields A2 = 0. Also, we have q == H0 - Bx — 2C2 = —C2. Therefore, we obtain 

a = g - ^ and 6 = tfo+|C2. Moreover, R(t) = -(tf0 + 2 C2) t, with C2 < 0. If, in 

addition we make the assumption that Ho + 2 C2 < 0, or 0 < HQ < — 2 C2 so that 

ft(£) > 0, for all t > 0, then we obtain 6 > 0. Thus, the similarity solution becomes 

pe-^WW h(mtb\) 
c(A, 0 - - j ^ l (4.252) 

where, for simplicity we denote by 

^ " r , r r , n ^ M k , 2 V ^ 4 ^ m = 2^^-[-(H0 + 2C2)]
b and p = 

\-{Ho + 2C2)Y-b-

It remains now to make use of the initial condition (4.249) to determine all the 

constants. First, let's calculate c0(A), which in this case has the form 

for A > 0 arbitrary but fixed and b > 0 an arbitrary constant. 

One can use the asymptotic behaviour of the modified Bessel function h(-), for small 

arguments in order to evaluate the limit above and obtains 

h(mtbX) mt2"-1
 n + 

" W * 2X~ f ° r ' - * 0 -
The only possible value for the constant b such that the limit is nonzero and finite, 

would be b = 1/2, which when combined with the definition of b = H ^ | c = | gives 

the unique solution HQ = 0 and thus, a = 1/2. 

As a result of the argument above, the initial condition (4.249) gives rise to sim­

ilarity solutions of the form (4.252) if and only if g(X, t) = 0 (no source terms). 

Substituting b — \ into the expression of c(A, t) above we obtain 

mpe~Xa 2Ae~Xa 

c(A,0) = 
2A A 
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where we use mp = 4 A To match the initial condition above with (4.249) we need 

only to set A = 1/2. 

To summarize so far, the initial condition (4.249) in this example leads to analyt­

ical solutions (of a similarity type) only for the case when no particle source terms 

are included into the coagulating system, so g(X, t) = 0 (or HQ = 0). In this case, we 

obtain a = b = 1/2, q = -C2 and R(t) = - 2 C2I = 2 q t > 0 (since C2 < 0). Hence, 

the similarity solution reads as 

c ( A , t ) = 2 V A e " > W " , t " J ' ^ ^ A ) =
 e - > W " ) + " y 2 ^ X » (4.253) 

where we use A = 1/2 to obtain the explicit solution given by Ernst et al. [34], using 

the saddle point method. The advantage of our method is that we obtain the exact 

solution without any knowledge of the total mass. It can be seen from (4.253), that 

c(A, t) has the total mass incorporated as part of the solution, in the form of the 

function Q(t). Consequently, the group symmetry method provides us with a more 

general form of a solution, that depends on M\{t). The latter is in fact determined 

as a solution of an I.V.P. and will occupy us below. 

In order to determine the expression of the function Q(t) for Ho = 0 (sourceless 

case), we return to the I.V.P (4.248) which now reads 

q^qto+T-ywM+»)'-" subject t0 Q(0) = 0. (4.254) 
Li V 

Denote by v{t) := Q(t) + cr, then v(Q) = a > 0. Thus, (4.254) becomes an I.V.P for 

v(t) 

,, s v(t) - JvHt) -At , „ , ^ , 
v (l) = — — Y 7 T T J subject to Q(0) = 0 (4.255) 

t[v'(t)]2-v(t)v'(t) + l = 0 => v"(t)-{2tv'{t)-v{t)) = Q (4.256) 

The equations in (4.256) hold for values of t € [0, tc) such that 

v2(t)>4t and v(t) - 2tv'(t) > 0, (4.257) 

where Tc denotes the upper bound of the solution of the system (4.257) above. Thus, 

for any t € [0, Tc) we have 

v"(t) = 0 or v(t) = - + a =* Q(t) = - for t G [0,Tc = a2) 
a a 

by using Mi(0) = \ and v(0) = a. Therefore, Mt(t) = Q'{t) = l . 
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Remark 4.12 The critical time Tc above corresponds to the gelation time. 

Indeed, on one hand the gel time Tgd corresponds to the first instance t when 

the second moment of solution blows up, or Mzit) — ux(0, t) —• —oo. On the other 

hand, using the definition of u(x, t) as a Laplace transform of A c(A, £), we obtain that 

Tgei satisfies the equation v2(t) = At or (£ + a)2 = 4t, so (i - a2)2 = 0 which 

gives Tgei = a2, so Tc = Tgei = a2. Therefore, the expression obtained above for Q(t) 

corresponds in fact to the pre-gelation regime (for t G [0,Tflei))-

In the post-gelation stage (t > Tge[), we no longer have v"(t) = 0, however in this 

case, v(t) satisfies the ODE 

v'(t) = — v(t) whose solution is v(t) = k y/i, where k > 0 is an arbitrary constant. 
UK/ 

Therefore, we obtain the function Q(t) = k \fi - a, for t > Tgei. To determine 

the constant k, we use as an initial condition for the ODE above, the function v(t) 

obtained for t € [0,T9ej) or v(Tgei) = 2a, ensuring thus the continuity of the total 

mass M\{t) at t = Tgti- This means that ko — a = a or k = 2. Alternatively, one 

simply notices, that for t > Tgei, the function v(t) = 1\/t satisfies both the equation 

(4.255) and the I.C. v(Tgei) = 2 a. 

Therefore, we obtain the expression of Q{t) for t > a2 i.e. Q(t) = 2\/i-a and 

thus Mi(t) — Q'(t) = \ . Therefore, the expressions of the function Q(t) and the 

total mass Mi(t) in Example 4.13 hold and thus our example is complete. • 

Our next example is for a different initial condition that is obtained from the 

similarity solution when we set t = 0. 

Example 4.14 Assume the initial condition is given by 

Co(A) = ^ }- (4.258) 

where a, k, m > 0 are arbitrary constants and cr >m. Suppose the coagulation kernel 

K(\,fi) = X/J,. 

(i) If the source function is given by 

p(2b-l)ke-xWW+") h(m(l+ptf x) 

«(*• <> = x H i + Ptr> l <4'259> 
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Then the coagulation equation (4-169) has an exact (similarity) solution of the form 

ke-^Q^+^h(m(l+pt)bx) 

C ( A ' l ) = A»(i + p * ) " " ' ( 4 - 2 6 0 ) 

where p > 0 and b > 5 ore arbitrary and the function Q(t) satisfies the I. V.P. 

Q'(t)= * .(Q(t) + a-y/{Q{t) + a)2-m2[l+pt}2b) subject to Q(0) = 0. 
m(l +pt) \ / 

(4.261) 

fizj /ra particular, if g(\, t) = 0, then the coagulation equation (4-169) has an exact 

(similarity) solution of the form 

k e-
x ««+") h (m Jl + ^ t X) 

c(A, t) = i ^ L m ^ (4.262) 

w/iere k, cr, m > 0 are arbitrary and the function Q(t) can be obtained explicitly as 

' ±(a-<r0)t, for te[0,Tgel) 
Q(t) := { 

[ my/l + %t-a for t>Tgel 

where the gelation time is given by Tgei = fcff_™ , and <70 := yja2 — rn2. In addition, 

the total mass of the solution Mi(t) is obtained to be 

m , m (<r ~ cr0) for t € [0, T„ei) 

Remark 4.13 In particular, if we choose b = 1, a = a, p = \/q and m = kq then 

we obtain the Example 4-5 in Section 4-2. 

Proof. (i) Indeed, from (4.247) it follows that the similarity solution c(A, t) at 

t = 0 takes the form 

_ 2 v ^ 4 e - ^ / 1 ( 2 v / | ( / i 2 ) i A ) 
C(A, 0) - ( ^ 2 ) i - 6 A 2 

where q, Ai =fc 0. To determine the constants, we need to impose certain conditions 

such that co(A) above matches the initial condition (4.258). For this reason, we first 

choose A, A2, C2 as follows 

p f l = * and 2Jj(A2)» = m. 
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Alternatively, we can impose the invariance condition for the initial data /o(A) as in 

the previous two examples. Moreover, if we define 

p . . R(t) H0 + 2C2i H0 + 2C2^n 
P { t ) : = - A 2 - = 1—^—*• and p:=—ir~>0' 

u(*>0 = f,k * (x + Q(0 + °~ V(* + QV) + ff)2 - m 2 ( l + Pt)2b) 
m(1 + pr) V / 

then P(t) = l + pt. From the definitions of b = H ^ ' | c and p above, it follows that 

— = — p = 2pb-p = p(2b-l) 
J\I /12 

where we make the additional assumption that b > 1/2, so that H0/A2 > 0. Substi­

tuting all the above into the expressions (4.247) then the similarity solution c(A, t) 

and the source function g(\, t) take the form (4.260) and (4.259), respectively. It 

remains to show that the function Q(t) satisfies the I.V.P. (4.261). Indeed, taking 

the Laplace transform u(x, t) of Ac(A, t), we obtain 

k_ 

m{l + pt) 

and substituting x = 0 we get u(0,t) = Mj(i) = Q'(t), which proves (i) holds. 

Therefore, the function Q{t) satisfies the I.V.P. (4.261). In general, the equation 

(4.261) cannot be solved analytically and numerical methods have to be employed. 

(ii) We present below the case H0 = 0 which corresponds to <7(A, t) = 0, as this 

is the only case for which one obtains exact similarity solutions c(A, t) to (4.169). 

Assume the constant Ho — 0, then we have Bx = q = —C2 and p = — 2 C2/A2 and 

thus a = b= 1/2. Therefore, the I.V.P. (4.261) becomes 

Q'{t) = ——-—- • fQ(t) + 0- ^/{Q(t) + a)2-m2{l + pt)) subject to Q(0) = 0 
m [1 + p t) \ I 

We can simplify the I.V.P for Q(t) if we define v(t) := Q(t) + a and thus obtain an 

I.V.P. for v(t) in the form 

k_ 

m(l + pt) 

For all values of t > 0 such that the following system of inequalities hold 

v'(t) = —j r • (y(t) - \fvZ{t) - m2 (1 + p t)\ subject to w(0) = a. (4.263) 

v2{t) > m2{l+pt) and kv(t) - mv'(t){l+pt) >0 (4.264) 

we rewrite the differential equation in (4.263) as follows 

2 «"(*)• (v'(t)m(l+pt)-kv(t))+[v'(t)]2(mp-2k)=0 (4.265) 
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Using the definitions of p = —^r1 a n d m = 2 J— A\, and since q = — C2, we obtain 
A 2 

where we use the definition of k and the fact that b — 1/2. Then p = ^ and (4.265) 

takes the simpler form 

2u"(i)[v'(t)m(l + p O - M t ) ] = 0 (4.266) 

For all values of t G [0, Tc), where Tc is an upper bound of the solution to the 

system (4.264) above, we have v"(t) = 0. This gives us the solution 

k k 
v(t) = — (<T-<r0)t + <T =• Q(t) = — {a - <To) t, for t G [0, Te) m m 

where using v(t) above to solve the system (4.264), we obtain an upper bound as the 

critical time Tc = fcf
Q_" >. The solution v(t) above follows by using the I.C. v(0) = a 

and the expression of Mi(0) = J0°° A co(A) dA = ^ (a — Co), where ao := Vc2 — TJ2 

with a > m > 0. Therefore, for £ G [0, Tc), we have Mi(t) = Q'{t) = ^ (CT - <r0). 

Similar as in Example 4.13, we show that the critical time Tc in fact coincides with 

the gelation time. Indeed, from the definition of the gel time, Tgei corresponds to the 

first instance when the second moment of solution blows up or M2(i) = ux(0, t) —> —00 

which gives us v2(t) = m2 (1 + p t) or 

( — (a — a0) t + a ) —m2pt = m2 

\m J 

Then using the definition of oa, we obtain (^ (a — ao) t — a0\ = 0 which gives 

the root t = Tgei = fcf
Q_™o). Therefore, the expression we obtained above for Q(t) 

corresponds to the pre-gelation regime. 

On the other hand, in the post-gelation stage (t > Tgei), we no longer have v"(t) = 

0. Here, we have 

At) 
v(t) m(l + pt) 

v(t) == C \J\ + p t, where C is an arbitrary constant. 

It follows that Q(t) = C^1+pt — a. To determine the constant C, we use as an ini­
tial condition the function v(t) obtained in the pre-gelation stage or v(Tgei) = a0 + a 
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to ensure the continuity of M\(t) at t = Tgei. Therefore, we obtain C = m and since 

p = ^ then v(t) = m-i/l + ^ t, for t > TL(. Therefore, we obtain the expression of 

Q(t)ioit>Tgel i.e. Q{t) = myfl + % t-a md thus M^t) = Q'{t) =-^~. 

Thus we have obtained the similarity solution (4.260) with Q(t) and Mi(£) given as 

in (ii), and our example is now complete. • 

Case II. B: Coagulation kernel K{\, /x, t) = (1 + k t)3b-a~1 A \x, where k > 0 

Gelation phenomenon 

In this subsection, we consider the example of a coagulation kernel that increases with 

the particle sizes A and /i, however it is allowed to be time-dependent. As described 

above, for this kernel the similarity solution c and the source function g are given 

by the formulas (4.247). In the following, we assume 36 ^ a + 1, and A; > 0 are 

some arbitrary constants. If the time-dependent factor (1 + H ) 3 ( , - a - 1 of the kernel 

K(\, /x, t) decays sufficiently rapidly with time, then the second moment of solution 

M2{t) remains finite, for all t > 0. 

Conjecture 4.2 The total mass is conserved for all time t > 0 and thus gelation 

does not occur as a result. 

For the remainder of this subsection, our main focus is to analyze the validity 

of this conjecture. For this reason, we investigate the circumstances under which 

the gelation phenomenon can be completely prevented. This reduces to analyzing 

the conditions satisfied by the exponent 36 — a — 1 and thus conditions for a and 6 

and the initial second moment M2(0) of the solution c. To investigate the onset of 

gelation we make use of the original coagulation equation (4.169) and determine the 

second moment of solution M2(t). Indeed, based on the form of the kernel K in this 

conjecture, one can derive an ODE for A ^ i ) in the form 

^ ^ = \ M*(t) (1 + k O3"-"-1 (4.267) 

provided that the third moment of solution M^{t) is finite. Thus, one can derive an 

explicit formula for the second moment in the form 

1 1 1 - (1 + kt)3b~a 

M2{t) M2(0) 2fc(36-a) 
(4.268) 
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Provided that M2(0) is small enough and 3 6 - a < 0 then one can prove that M2(t) > 

M2(0) > 0 remains finite for all time t > 0. The latter is a consequence of the fact 

that the right-hand side of (4.268) is strictly positive for all time ( > 0, if we assume 

that 36 - a < 0. 

To prove the conjecture completely, one also needs to investigate the expression 

of the first moment M\(t) and show that the conservation of mass property holds, i.e. 

M1(0 = M1(0)+ / / Xg(X,s)dXds, V* > 0 (4.269) 
Jo Jo 

Furthermore, one also has to investigate whether the usual gelation time (that is the 

first time t at which the conservation of mass property (4.269) breaks down) coincide 

with the blow up time of the second moment. The latter is only proved rigorously for 

the pure coagulation, for a few special cases of initial conditions and a multiplicative 

kernel K(X, fi) = (a + j5 X) (a + j3/z), a, /3 > 0 (see e.g. [34, 96]). However, we leave 

the last two points in the conjecture for future work. 

Case I I I : Coagulation kernel K(X, /J, t) = (ao + Po A) (ao + A) /-0 

In this case, we have a(t) = a0 > 0 and /3(t) = /30 > 0. We choose C3 = C<i = 0. We 

have B2 — B\ + C2 = Bi and 

= ——- = —1 and b = —— — = 0 
2 C<i + B\ + C3 B\ 2 C2 + B\ + C3 

In addition, we choose the parameter a > 0 to be any real number. Furthermore, in 

view of (4.173), we have 

*(A,0 = (ao + A>A)Q(t) and Y{t) = aQQ(t) 

and thus the similarity variable and similarity solution take the form 

s = X, and c(A,t) = M e - ( * ° + ^ « « + * ) (4.270) 
R(t) 

Also, the source function is given by 

g(X,t) = [R(t)}-2e-yW y>(A) = |^e-(a«*o+A.^)W(«)+') 
R(ty 
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where R(t) is given by R{t) = A2- B2 /0 e-°°^T)dT and ip(\) > 0 is an arbitrary, 

non-negative function for all A > 0. In addition, -^(X) satisfies the following IDE 

1 fx 

B2 </>(A) - ip(X) = - e~ao " j [a0 + #> (A - /i)] [c*0 + A> /*] V(A - M) ^(/X) <*M, 

(4.271) 

where the constants A2, B2 are chosen such that the function i[>(X) > 0, for all A > 0 

and R(t) > 0, for every t > 0. For simplicity, choose a = 0. 

Multiply (4.271) by (a0 + (30 A) and define w(A) = (a„ + A) A) V(A), then 

1 /"A 

fl2 w(A) - ( a 0 + & A) <p(A) =-(«<> + #> A) / w(A - /x)u;(/i)d/i (4.272) 

Next, we attempt to solve (4.272) explicitly (if possible) by using the method of 

Laplace transforms. Define W(z) = £{u>(X)}(z) and H(z) = £{y>(X)}(z), then 

(4.272) reduces to an ODE in W(z): 

B2 W(z) - a0 H{z) + A. H'(z) = ^ W\z) - f30 W{z) W'(z) (4.273) 

In particular, if H(z) = 0 (which corresponds to y?(A) = 0), so g(X, t) = 0, then we 

obtain 

whose general solution is given by 

an Ro 

W{z) = Ae**>x--1 

where A is the integration constant. From the definition of W(z) as a Laplace trans­

form, we obtain A = 0 which yields a constant function W(z) — — J^ as a solution. 

Consequently in Case III, if there are no particle source terms in the system, then 

the coagulation equation (4.169) does not possess any similarity solutions of the form 

(4.270). 

Next, we look for some particular examples of functions H(z) so that we can 

solve the ODE explicitly to determine W{z). One such possible choice for H(z), for 

example would be H(z) = pW(z), or <p(X) = puj{X) = p(a0 + f30X)ip(X), where 

143 



p > 0 arbitrary. In this case, using the properties of Laplace transforms the equation 

(4.273) becomes a separable ODE of the form: 

. „ > M _ ^ ) ( ^ W ( g ) + Sttg&) 
{Z) W(z)+p 

whose solution satisfies the algebraic equation 
2 Bg - QQ p 

^ W ( 2 ) + a o p _ £ ? 2 ) a°" = W X * ) e - a , £ i r a « A (4.274) 

Since W(z) —» 0 as 2 —> 00, then we obtain some necessary conditions for the 

constants, as follows: ao p — B2 < 0 and A > 0, we set A = 1 for simplicity. Thus, 

we obtain 2 g r ? o p > 1. 
«0P 

In particular, if 2 B ^ ° o p = 2, or 5 2 = ^ > 0, then (4.274) becomes a quadratic 

equation in W(z) whose solution is given by 

W(z) = \ | e ^ * + q - y/{e^z + qf - q2\ (4.275) 

where q := ^ > 0, and a0, #, > 0. Here, we have R(t) = A2 - ^ / 0
4

e - a o Q ^ dr 

where A2 will be determined from the initial condition /o(A) that one chooses. 

It remains to determine the function Q'(t) = JV(£) = aoM0(t) +/30Mi(t). One 

possible way to determine Q(t) would be through W(z) using both its definition and 

its explicit formula. On one hand, from the definition of W(z) as a Laplace transform 

we obtain 

W(z) = a0 R{t) eao Q{t) / c(A, t) e~x (z~00 Q^ d\ 
Jo 

/ •oo 

+ P0R(t)eaoQ{t) / A c f A . O e - ^ ' - ^ ^ ^ d A (4.276) 
Jo 

where we substitute ip(\) in terms of the solution c(A, t). It can be seen that W(z) 

in (4.276) reduces to a linear combination of Mo(t) and Mx(i) if we set z = 0Q Q(t). 

Then we obtain 

W(j3o Q(t)) = (a0 M0(t) + A. Mx{t)) R(t) ea°™ = g ' ( t) R(t) e«oOW (4.277) 

On the other hand, substituting z = (30Q(t) into the explicit formula (4.275), and 

equating this new form and (4.277), we obtain an I.V.P for Q(t): 

Q'(t) R(t) e"°W = ^ L + e^Q{t) - \j(q + e^ <?«)2 _ q2\ ( 4 . 2 7 8 ) 
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subject to the initial condition Q(0) = 0. Since R'(t) = -B 2 e~ a o C ? w < 0 and 

R"(t) = 5 2 a 0 g ' ( i ) e - a "0(0 then eQ°«« = - ^ and Q'{t) = - ^ $ ) then (4.278) 

becomes 

B2 R"(t) R{t) _ 2 

a0 #(0 #(<) ~ ag <? + 
rm 

q + 
IB~I 

V^W) \ \ y/=W) -r 
If we denote by y(t) — \/—R'(t) and v(t) = q + * ^ . then the I.V.P. above simplifies 

to a separable DE %M = — J^j_. where v(0) = q + 1 and y(0) = y/~B2. Integrating 

both sides w.r.t. t from 0 to t we obtain 

v(t) + y/v2(t) ~q2 + q In ((v(«) + y/v*(t) - <?2) (v(t) - </)) = c/2 ln(J2(i)) + Const. 

which in terms of R(t) reads 

q + 
rWo 

+ q + 
/E~* 

V^W) \\H ^W) 
q2 + q In 9 + 

/B* 

g2 ln[fl(0] + 9 + 1 + V 2 i + l (4.279) 

In principle, one solves the differential equation (4.279) for R(t) and obtains an 

implicit equation for Q(t) which is valid for all t > 0. However, finding analytically 

the inverse Laplace transform of the function W(z) defined by (4.275) may not be 

straightforward as pointed out already in Example 4.11. Then one either obtains 

a series solution for c(A, t) by formally expanding the square root in W(z) or an 

asymptotic behaviour as A —• oo. Since we have not obtained an expression for 

the function Q(t) or the gel-time in this case, we will leave this subcase as an open 

problem for future work. 

4 . 3 . 7 G e n e r a t o r r]2 = rj2(t, v) = £3(i) B^(t) v 

In this case, the generators of the Lie group of point transformations admitted by the 

system (4.179) are given by: 

6 = 6 ( A ) = C3A + C4 

6 = 6(M) = c,3/i + c 5 

6 = 6(0 
Vl = m(f) = Bif 

V2 — %(£, v) = B3(t) &(t) v (where B${t) is an arbitrary function of t) 
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where C3, C4, C5, B\ are arbitrary constants. Using (4.212) with A(t) = —(C2 + C3 + 

B2(t)), where here we choose B2{t) = £3(t) ^ ( t ) , we obtain that £3(4) satisfies the 

ODE 

&(t)+&(t)Wt)-Y'(t)) = -(C2 + C3) 

whose solution is given by 

&(«) = e-WO-VW) U _ (Ca + C3) / " e f l ( r )-y ( r ) dr 
L Jo J 

where R(t) = / #3(7-) dr and v42 is a constant of integration 
Jo 

and Y(t) was defined in (4.173). 

Proceeding similarly as in 4.3.6, we consider C3 ^ 0 and set C4 = 0 to obtain 

invariant solutions. Consequently, the generators of the Lie group of point transfor­

mations admitted by the modified coagulation equation (4.176) are given by 

6(A) = C3 A 

&(*) = A2 e-(«W-y<4» - (C2 + C3) e-(«W-yW> f eR^~Y^ dr 

where A2, B\, C2, C3 are arbitrary constants. In this case, since 

the functions a(t) and f3(t) are given by 

Lw)dr= c2+c3 

(4.280) 

a(t) = a0 [P(t)] ^ ^ and 0(t) = /3b [ P ( 0 ] ~ ^ > (4.281) 

where 

P(i) = A2 - (C2 + C3) f e ^ - W dr. 
Jo 
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Symmetry reductions for the coagulation equation 

In order to obtain the similarity reductions for the coagulation equation (4.176), we 

solve the correspondent characteristic equations in the invariant surface condition 

(4.45) associated to the generators £lf £3, rji, which in this case become 

dX Z'{t) dt df 

C3A A2-(C2 + C3)Z{t) Bxf 
(4.282) 

where Z(t) — JQ eR^~Y^ dr. We only consider here the case of C3 ^ 0. In addition, 

we assume Bi # 0 and C2 + C3 ^ 0. With these assumptions, the first and second pair 

of DEs in the characteristic equations (4.282) provide us with the similarity variable 

and similarity solution, respectively, in the form 

s = X [P{t)}b = constant and /(A, t) = [P(t)]a 4>{s) 

where b = TT%T- and a = — „B}„ and also C2+03 02+03 

P(t) = A2 - (C2 + C3) / eR{T)~Y{r)dT 
Jo 

where again the choice of the constants A2,C2,C3 is made subject to I.C. that one 

chooses, and so that P(t) > 0, for every t > 0. 

It remains now to determine the type of source function h(X,t) for which similarity 

solutions to (4.176) exist. This follows from the equation (4.197) and the specific 

expressions of £1,̂ 3,771 in this case. We obtain 

Cz A ^ ( A , t) + Ut) |£(A, 0 = [C2 + C3 + Bt - &(*) Y'(t) + B3(t) &(*)] h(X, t) 

Since this is a first order PDE we use again the method of characteristics. We obtain 

the following form for the source function that will provide us with invariant solutions 

/ for the coagulation equation 

h(\t) = [F(i)]a_1 e*«-yW ip(s). 

To obtain group invariant solutions for (4.176), we need to substitute f(X,t), s 

and h(X,t) above into (4.176) and perform similar calculations to those leading to 

(4.222) in 4.3.6. By doing so, and using the new definitions of a and 6, and the new 

147 



functions a(t) and (3{t) in (4.281), the equation (4.176) takes the form 

+r ^ Vo L J 

(4.283) 

where d = — c°£c . Prom the equation (4.283), it follows that a necessary condition 

for invariant solutions solutions /(A,£) to (4.176) to exist is given by the following 

equality 

eR(t) = [p{t)]a-b+2d+l ^ Q^ = <± + d ( 4 2 8 4 ) 

that holds for all £ > 0, where for simplicity we disregard a possible constant fac­

tor that may be present in (4.284). The last equality in (4.284) holds by differ­

entiating w.r.t. t and using b — d = 1. Thus, we choose R(t) such that R(t) = 

(a-b + 2d + l) ln(P(t)) = (a + d) ln(P(*)). 

Furthermore, in this case the similarity profile tp(s) satisfies the following ordinary 

IDE 

B Ms) - C3si//(s) = \<Tao° f (<*o + #>(* - s')) (oo + PoJ)l>(s - s')TP(s')ds' + <p(s) 
^ Jo 

Our aim is to present a few examples of new similarity solutions c(A, t). For this 

purpose, we have considered the same class (4.226) of functions tp(s) as in 4.3.6, that 

is 

<p(s) = H0ip(s), where Ho>0 is a non-negative constant. 

The more general case of functions <p(s) is left for future work. For such a family of 

functions ip(s), the function h(X,t) takes the form 

h(X, t) = H0 [P(t)}a~1 e*W-yW i/>(s), where H0 > 0. 

In the following we consider some of the particular coagulation kernels in 4.3.6, for 

which we provide new similarity solutions c(A, t) to the coagulation equation (4.169). 

As it will be shown below these similarity solutions cannot be obtained otherwise, for 

example by assuming that the function B2{t) = B^ is only a constant (see 4.3.6). 
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Case I: Coagulation kernel K(\, /j,, t) = 1 

In this case, we have a(t) = 1 and /3(t) = 0. So, the constants are given by a$ = 1, 

/30 = 0 and C2 = 0. Using the definitions of a, b, d, we obtain d — 0, b — 1 and 

a = —B1/C3. In addition, we choose the parameter a = 0. Then, in view of the 

necessary condition (4.284) we obtain 

eR(t) = p^a 

Also, the similarity variable and similarity solution become 

s = A [P{t)\ = constant and /(A, t) = [P(t)]a ip{s), 

and 

P(t) = A2-C3 f eR^~Q^dr 
Jo 

since here Y(t) = Q(t). Moreover, the IDE for ip(s) becomes 

(Bl - H0) 1>{s) - C3 s tf{s) = \ [' rl>{s - s') T/J(S') ds' (4.285) 
^ Jo 

for which we apply again the method of Laplace transforms. Consider the Laplace 

transform oi^(s) to be G(z) = C{tp(s)}(z). Then, same as in 4.3.6, Case I, we obtain 

a separable ODE for G(z): 

G'(z) = * ' Ci where n = B1 + C3-H0 => G{z) = — 

ZG3 2 2 + 1/ 

where i/ > 0 is an arbitrary constant that depends on the constant of integration. This 

constant will be completely determined from the initial condition for the coagulation 

equation. From the definition of G(z) as a Laplace transform, it follows that G(z) 

is completely monotonic for all z > z0, where ZQ is some arbitrary constant (one can 

choose z0 = —1/). One way to achieve this would be assuming C3 = // > 0 which 

gives B\ = Ho > 0. This means that a — —HQ/C3 < 0. 

Next, taking the inverse Laplace transform we obtain the similarity profile ip(s) 

to be 

i;(s) = 2C3ve-l/s 

from which we derive the similarity solution /(A, t) and the source term h(\, t) to be 

f(\,t) = 2C3v[P(t))-%e-x^pW and h(\, t) = - ^ eR^~^ /(A, t). (4.286) 
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Example 4.15 (Initial condition c0(A) — e x see e.g. [17]). Let the initial 

condition (4-170) to the equation (4-169) be co(A) = e~A. Let the coagulation kernel 

K = l. 

Let R(t) be a non-decreasing, non-negative function for all t > 0, such that R(0) = 0. 

Set 

T(t) = £ . 

Assume the source term is 

g(X, t) = R'(t) T2(t) eR{t)-XT{t\ (4.287) 

Then the similarity (exact) solution to the coagulation equation (4-169) is 

c(\,t) = T2(t)eRU-XTU. (4.288) 

Proof. First, we impose the invariance condition (4.45) for the similarity solution 

/(A, i) along the curve t = 0 in a similar manner as in 4.3.6, Case II and obtain 

A2 = 2C3, with m — \. Moreover, from (4.286) we calculate /(A, 0) and obtain 

/(A,0) = 2Czv[A<2\ae~uMk. On the other hand, since we have /0(A) = e~x we can 

set 2 Cz v = 1 and A2 = 1. So, C3 = | and v = 1. Then the similarity solution /(A, t) 

in (4.286) takes the form 

P(t\ 9 — f' PRHJ)-Q(T) JT 

f(X,t) = e-XT^[P(t)}a^e-XT^eR^\ where T(t) = W. = f_Jof . ^ 
^ 2 2 

where we make use of [.P(£)]a = e f l^ and P(t) = T(t). From here we obtain 

eR{t)-Q(t) = _2T'(t) . Moreover, we have c{X,t) = f(\,t)e'^ = e-xr{t)eR(t)-Q(t) 

and since Q'(t) = iV(£) = Mo(£), then we can calculate 

Q'(t) = M0(t) = /°° c(A, t) d\ = C*W-QW f ° e-AT(t) d A = _ 2 ^ 
Jo Jo T(t) 

So, <?'(£) = - 2 y | subject to Q(0) = 0 and T(0) = 1, which by integration w.r.t t 

gives rise to e_(5W = T2(t) and T(£) can then be rewritten as follows 

2T{t) = 2- ^eR^[T(r)fdr =» - _ A | = £ _ subject to T(0) = 1. 

Therefore, we obtain a new form of function T(t) in terms of R(t) 

0 
Tit) = ; > 0. 

W 2 + /0*e«(T)rfr 
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Let us briefly show that the properties of R(t) in this example hold. Indeed, since 

T'(t) = - C 3 e^W-^W < 0 (as C3 > 0) then from R'(t) = a ^ > 0 it follows that 

R(t) > R(0) = 0. So, R(t) is a non-decreasing, non-negative function for all £ > 0 such 

that R{0) = 0. In addition, since e*®-™ = -T'(t)/C3, and T'(t)/T{t) = R'(t)/a 

then we obtain (4.287, 4.288), or 

c(A, t) = e
R « - A T « e-«W = T2(£) e

m-XT{t) 

g(\, t) = ^ r e
flW-9(«) c ( A j t) = #(*) c(A, t) = R'(t) T2(t) e ^ " * ^ • 

i (tj 

Mass conservation property 

In this case, since the kernel K(\,[i) = 1 then we expect that the total mass M\{t) 

satisfies the equality 

ft pOO 

M1(e) = Afi(0) + G(*) = M1(0)+ / / \g(\,r)dTd\ 
Jo Jo 

Indeed, the equality above holds and we obtain the total mass to be given by 

Ml{t) = eR{t). 

In particular, if R(t) — 0 then we get M\(t) = Mi(0) = 1. Moreover, in this case we 

recover the old solution given by M. Smoluchowski [99]. 

Case II: Coagulation kernel K(X, /u, t) = A/x 

In this case, a(t) = 0 and (5{t) = 1. Thus, the constants are given by a0 = 0, /?o = 1 

and C3 = Ci- Using the definitions of a, b, d, we obtain b = 1/2, d = 6 — 1 = —1/2 

and a — —B\/{2C2)- In addition, we choose the parameter <r > 0 arbitrary. Then, 

in view of the necessary condition (4.284) we obtain 

em = [pW](«-i) o r R(t) = f fl3(r) dr=(a- 1 ) ln[P(t)\. 

Also, in this case the similarity variable and similarity solution become 

s = A [P(t)}1/2 = constant and /(A, t) = [P(t)]a ip(s), 

where 
rt 

P{t) = A2-2C2 / e* w O!T since Y(t) = 0. 
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Then the IDE equation for tjj(s) reduces to 

(fli - H0) V>(s) - C2 a V>'(a) = I I V(s - a') ip(s') (a - a') a' ^ ' (4.289) 
2 Jo 

where the same particular source function as in 4.3.6, Case II has been considered as 

an example for our analysis, that is <p(s) = Ho'ip^s). 

Since (4.289) is the same equation as (4.241) in 4.3.6, Case II, we refer to the 

details there. We obtain an ODE for the Laplace transform of SX/J(S), that is for 

W(z) in the form 

— W{z)'l-zW(z)+A=:0 

where A is the constant of integration that depends on the initial condition (4.170) 

and \i — 1 — C2/q. For the same choice of constants as in 4.3.6, Case II, that is [i = 2, 

we obtain an analytical solution to (4.169). This implies that q = HQ — B\ — 2C2 = 

—C2 > 0, so, B\ = Ho — C2 and the solution W(z) becomes 

W(z) = q\z-J2*-^Y 

whose inverse Laplace transform gives the similarity profile r/)(s) explicitly as 

V>(s) == \ V J (4-290) 

where I\ represents the modified Bessel function of the first kind. 

Therefore, the similarity solutions for the equations (4.176) and (4.169) take now 

the following form 

f{X,t) = [P(t)]ai>{s) => c(X,t) = /(A,i)e- (Q( t )+(T)A = [ P ( t ) ] 8 e - W ^ ' » ^(A [P(t)}1/2) 

The source functions for which such similarity solutions occur are given by 

h(X, t) = ^0e f i ( t )[F(i)]a"V(s) and g(X, t) = - ^ — c(A, t) 

where a = -Bl/{2 C2) and P(t) = A2 - 2 C2 /„ efi(r) dr. The arbitrary constants A2 

and A will be determined from the initial condition that one chooses to solve (4.169) 

and s.t. P(t) >0,\/t> 0. 
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Using the expression (4.290) for 4>(s) we obtain the following similarity solution 

and source function 

e-x «(*)+„) h U IA F W A 

c(X,t) = 2^A A2 [ p ^jU L and g(X,t) = - j ^ V ) -
(4.291) 

In the following we choose the same initial condition (4.258) as in Example 4.14 and 

derive some new similarity solutions to (4.169) however, this time in the presence of 

particle source terms. 

Example 4.16 (initial condition c0(A) = ke~x'J^(,mX)\ 

(i) Assume the initial condition to (4-169) is 

, , , ke~X!T IAmX) 
Co (A) = — where a, k, m > 0 are arbitrary constants. 

Xz 

Assume the coagulation kernel K(X,n,t) = A/z. Let S(t) > 0 defined by 

5(t)= fl + —(3-2a)t 
L m 

where a > 1/2 is an arbitrary constant. Assume the source function g(X, t) has the 

form 

,<;, t) _ *. w t » ^ » m~» (4.292) 

where Ho > 0 is an arbitrary constant. Then the coagulation equation (4-169) has an 

exact (similarity) solution of the form 

*0 = ̂ j p « (4,93) 

where Q(t) satisfies the I. V.P. 

Q'(t) = m g ^ 3 / 2 - a fa) + a - >/(Q(0 + ^ ) 2 ~ ™2 S(t)) subject to Q(0) = 0. 

(4.294) 

(ii) In particular, if a — 1 and HQ = —, then the function S(t) takes the form 

S(t) = (1 + — t) > 0, Vt > 0. 
V m / 
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/ / the source function g(X, t) is given by 

Then the coagulation equation (4-169) has an exact (similarity) solution of the form 

A2 

where the function Q(t) is given by 

Q(t) = i ^ ^ - ^ ( i t ' + mt), for te[0,Tgel) 

kt + m — a, for t > Tgei 

and the gel-time is defined as Tgel = '-£ ( A/^f2- — 1) where OQ — Vo~2 — m2, 

a > m > 0. In addition, the total mass of the solution Mi(t) is obtained as 

w)=Q\t)={f{(r~<To){kt+m)> fr 11[°>Tgd) 

[_ fc) for t > Igei 

R e m a r k 4 .14 Example 4-16 is a particular case of Example 4-14> where 6 = 1 and 

m 

Proof. (i) Indeed, the similarity solution at t = 0 becomes 

If we choose 

2 v ^ =k and 2J-A2 = m (4.297) 
(A2y-a v ^ 

and set S(t) = fg l = l - 2Cfc f*eR(TUr, where C 2 < 0 and A2 = 1, then using 

(4.291) the similarity solution c and the source term g are given as in (4.293) and 

(4.292), respectively. From the definition of R(t) we have R(t) = (a — | ) ln[P(£)] and 

since P(0) = A2 = 1, then R(0) — 0. Moreover, since a = - j ^ r and Bx = H0 — C2 

then we obtain a = — ̂  + | , and with —C2 > 0 and Ho > 0, we obtain a > 1/2. 
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Using the notations (4.297), the form (4.291) for the solution c(X,t), and since 

P(t) = S(t), we obtain 

Prom (4.297), and setting A2 = 1, we obtain q = - £ . On the other hand, we have 

q = H0 — Bi — 2 C2 and since H0 — Bi = C2 then q = —C2. Thus equating the above 

forms of q we get — C2 — ^ . So, 

5(t) = l - 2 C 2 f e
R^dr = l + — f' eR^ dr 

Jo rn J0 

Then 

5'(<) = —e f lW = — 5 ( 0 ° - 1 / 2 , m m 

which is a separable ODE for S(t) with initial condition 5(0) — 1, whose general 

solution is 

5(i) = f l + - ( 3 - 2 a ) A 5 = ^ . 

Then the source function g(X, t) in (4.291) takes the form 

if pR(t) 
g(\,t) = ^^-c(\,t) =» g(\,t) = H0S(ty-3'2c(\,t) 

R fce-MQ(^)/l(mv^)A) 5/2 
•sw 

Thus (4.292) holds true. In particular, if a = 1/2 then we have Bi = —C2 which 

gives Ho — 0 and thus we obtain the sourceless case g(\, t) = 0 which has already 

been covered in Example 4.14. Moreover, since P(t) and P'(t) > 0 it follows that 

R(t) is a non-negative and non-decreasing function for all t > 0. 

In addition, we obtain that the function Q{t) satisfies the I.V.P. 

Q'{t) = m g (03 /2- (Q{t) +a~ ^{Q{t) + ^ ~ ^ S{t))' s u b J e c t t o Q(0) = 0. 
(4.298) 

In general, one cannot solve (4.298) to obtain Q(t) analytically. There are a few 
particular choices that one can make to solve the DE and study the occurrence of 
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gelation. One such example corresponds to the choice of a = 1. 

(ii) Choose a = 1. So, S(t) = (l + £ i)2 . For simplicity, define p(t) = m y ^ = 

fct + m. Then we obtain, H0 = - C 2 > 0 and thus q = - C 2 = #o- Moreover, if we 

divide the equations (4.297) to each other then we obtain q = H0 = ^ . Then the 

function S(t) takes the form: 

S(t) = 1 + — / eH(r> dr > 0, for all t > 0. 
m Jo 

Let's also denote by v(t) := Q(<) + a. Then (4.298) becomes an I.V.P. for v(t) of the 

form 

v'(t) = - 4 T • \v(t) - y/v2(t) - ^(t)} subject to w(0) = <r. (4.299) 
y>(t) L J 

For values of t > 0 such that the following system of inequalities hold 

v(t) > (fi(t) and jfew(«) - y>(0u'(0 ^ 0. (4.300) 

we rewrite the equation (4.299) as follows 

_ 2M<M<) _ 

and by differentiating this equation w.r.t. £ we obtain 

From this equation we get two DEs 

v"(t)-^v'(t) = 0 (4.301) 

and 

v'(t)--^v(t)=0 (4.302) 

It remains now to identify which of the equations is valid in the pre-gelation stage 

and which is valid post-gelation. We know that prior to the occurrence of gelation in 

the coagulating system, the total mass of the solution is given by 

J
rt /»oo 

' / Xg(X,s)d\ds, for t e [0,Tgel) (4.303) 

o Jo 
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In terms of differential equations, the above reads 

/•oo 

M[(t)= Xg(X,t)d\ for te [0,Tgd) (4.304) 
Jo 

r°° h 
subject to I.C. Af!(0) = / A c0(A) dX = — (a - y/a2 - m2). (4.305) 

Jo m 

Furthermore, after the gelation has occurred it is expected that the equality no longer 

holds and we have 

Mi( i )< Mi(0)+ / / Xg(X,s)dXds, for t>Tgd. (4.306) 
Jo Jo 

(see e.g. [15]). Based on these relations we decide next on the corresponding equa­

tions (4.301) and (4.302) for v(t) in the pre- and post- gelation stages. 

Claim 4.1 The differential equation (4-301) corresponds to the pre-gelation regime. 

Proof. Indeed, since v'(t) = Q'(t) = Mx(i) and v"(t) = M[(t) then using the form 

of the function </?(£) = kt + m, the ODE (4.301) becomes 

v»(t) = —^—v'(t) v ; kt + m v ' 

which reduces to an I.V.P. for M\(t): 

k 
M[{t) = — Mi(t), subject to Mi(0) = — (a - Va2 - m2). 

Integrating the above w.r.t from 0 to ( we obtain the following equality 

fl k 
Mx(t) = Mi(0) + / M I ( T ) dr. (4.307) 

J0 KT + m 

More explicitly, M\(t) = \ (p — y/a2 — m2) (kt + m). On the other hand, if we 

rewrite the source function g(X, t) in terms of known functions tp(t) and c(A, t) then 

we have 
k eR{t) 

and using the definitions of S(t), R(t) and since A2 = a — 1 then we obtain 

S(t) = P{t) = && =• e«M = [P(t)?» = VW) = ^ and ^ m 

5(0 *>(*)' 
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Therefore, we obtain R(t) — ln (—i 2 1 ) . Substituting everything into g(\,t), we 

obtain 

k fl f°° fl k 
5(A,0 = -77TC(A,0 =* / / Xg(X,r)dXdr= / -——M^dr. (4.308) 

VW 7o Jo 7o kr + m 

Combining (4.307) with (4.308) then (4.303) holds which makes (4.301) hold for the 

pre-gelation stage (still Tgei is unknown) and thus the claim is proved. 

Now, it remains to show that the other DE (4.302) corresponds to the post-gelation 

regime (t > Tge/), that is we need to show (4.306) is a result of (4.302). In order to 

solve the DE (4.302) we need to know the gelation time Tgei since the initial condition 

for (4.302) is considered as v(Tgei), where v is the solution to (4.301). As is the case 

[34, 70], the gel-time is determined as the first instance when the second moment of 

solution M2{t) = ux(0,t) blows up to infinity. This corresponds to the time when 

v(t) = <p{t), where v(t) is the solution of (4.301). First, let's calculate the expression 

oiv(t) in (4.301). We have 

v'(t) = M^t) = ^{<J- <TO) {kt + m) 

subject to the I.C. v(0) = <r, where CTQ = y/a2 — m2, with a > m > 0. We obtain 

k , v tk 
v<f) = ° + ^2 (a ~ a<>) (2 *2 + m *) f o r * € f° ' T'J^ (4-309) 

Or, 
'k 

Q(t) = ^(a-a0)(^t2 + mt). 

To determine Tgei we need to solve the quadratic equation in t. Using the definition 

of CTQ above we obtain 

a + jL(a-(TQ)(!it* + mt)=kt + m =• t - ^ ( / ^ ± £ o _ i ) = 0 . 
ml \2 / k \ \ a — a0 / 

Therefore, the gel-time is given by 

r - - T ( / f ^ - 1 ) - = 1 - ( » > 0 ) . (4,!0) 

In the post-gelation regime (t > Tgei), the unique solution v(t) to the equation 
(4.299) is given by v(t) = </?(£) = kt + m. Such an assertion holds indeed true since it 
is clear that such a function satisfies the ODE (4.299) and the I.C. v(Tgcl) = v(t)\t=T 
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where v(t) is the solution obtained in (4.309). Hence, the expression oiv(t) for t > Tgei 

is given by v(t) = kt + m. Then, v'(t) = Mx(t) = k, so Mx{t) = A; = constant and 

Q'(t) = Mi (*) = *• 

Alternatively, to show that v(t) = kt + m is indeed the post-gelation solution to 

(4.299) or Mx{t) = k for t > Tgd then we return to the inequality (4.306), for t > Tgel 

and see that this holds true. 

Comparing the gel-time in (4.310) to the gel-time Tgel(g = 0) := j - -^^ that 

we obtained in Example 4.14, for the sourceless case we obtain as expected that 

Tgei(g > 0) < Tg(ii(g = 0), as a > m, i.e. that the gel-time in the presence of source 

terms occurs sooner than in the absence of source terms (as was proved in general for 

the kernels K{\,\i) — Xfj, in [15]). Thus, we have obtained the formula for Q(i) in 

the particular case of Example 4.16, and thus our example is completely proved. 

Some remarks for the general coagulation kernel K(X, /A) 

Prior to studying the application of the symmetry group methods to the modified 

coagulation equation (4.176) we also applied the group method successfully to the co­

agulation equation (4.169) with both nonlocal terms: the convolution and the infinite 

integrals. For a general coagulation kernel K(\,n), where the coagulation equation 

cannot be modified to obtain (4.176), and assuming that there are no particle source 

terms in the system, the generators of the Lie group of point transformations admit­

ted by (4.169) are given by £i(A) = 0, £3(i) = -cx t + c2, r/i(/) = cx / , where c1; c2, 

are arbitrary constants. In this case, solving the invariant surface condition (4.45), 

we have obtained the similarity variable and similarity solution to be given as 

s = A = constant and c(A,t) = ip(X) It J 

where the similarity profile 'ip(X) satisfies the IDE 

1>W = ~ J ^(A-/x,M)^(A-/i)^(M)^ + ^(A)|°0
Jft:(A,/x)^(/i)c/M (4.311) 

In general, (4.311) cannot be solved analytically, and numerical methods need to be 

employed. We leave this as future work. 

Remark 4.15 Solutions of the form | ^ , where c is an arbitrary constant, are con­

structed by da Costa [21] and Leyvraz [64] for the discrete coagulation equation. These 

solutions were actually the first examples of gelling solutions for kernels of the form 

Kij = ia f 4- i0 j a , where 1 < a + (3 < 2. 
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Chapter 5 

Numerical methods for coagulation 
equations 

5.1 Review of previous work 

In this section we present a brief summary of a family of deterministic numerical 

methods existing in the literature for solving the coagulation equation 

dc 1 fx [°° 
-gj(x, 0 = g / K^x ~y> V)c(x -y> *)c(l/, *) dy - c(x, t) / K(x, y)c(y, t) dy + g(x, t) 

(5.1) 

The exact evolution of the size distribution c(x, t) depends on the nature of the 

collision kernel, the amount of inclusion/removal of particles and the initial size dis­

tribution. Analytical solutions to the coagulation equation (5.1) have only been found 

for a few forms of K(x, y) and g(x, t), including the forms in Chapter 4. 

In situations of practical interest, the functional forms of K and g are such that 

(5.1) must be solved numerically. Due to the computational difficulties in solving 

(5.1), only a few numerical solutions have been reported in which both coagulation 

processes with sources and sinks are included. Analytical solutions are available for 

certain special cases of equation (5.1). Three major approaches are used to represent 

the size distribution of aerosols: continuous, discrete and parametrized. In this thesis 

we focus only on the numerical approximations of continuous models, that is both 

the size distributions and coagulation equations are in continuous form. 

During the last century, several numerical methods (algorithms) have been pro­

posed to solve the coagulation equation (5.1). The first term is of nonlinear Volterra 

type in the language of integral equations. The difficulty of solving accurately such 

an integro-differential equation is due to the fact that the limit of integration in the 

160 



convolution integral depends on the size variable x and the integrands are quadratic 

functions. On the other hand, the infinite integral which depends on the size distri­

bution function seems to create difficulties, especially if one truncates the domain to 

a finite range. 

In the open literature, several numerical methods have been developed for solving 

the coagulation equations. These methods include: the method of moments, finite 

element methods and weighted residual methods, orthogonal collocation method over 

finite elements, discretized population balances, finite difference methods, mesh tech­

niques, finite volume methods, power series solutions, etc. Surveys of several popular 

numerical methods for particulate dynamic equations are given in [25, 59, 88, 113]. 

In the following we present briefly some of the deterministic methods that have been 

developed in the literature for population balance equations (PBEs) that include the 

coagulation equation as a particular case. 

5.1.1 Method of moments 

The method of moments is one of the oldest and most widespread methods for solving 

the coagulation equation. This method works by representing the equation in terms 

of the size distribution moments. The moment method tracks the time dependence of 

the lower order radial moments of the distribution defined as /ifc = f rk / ( r ) dr, where 

the index k refers to the kth moment and f(r) is the size distribution function. The 

basic idea behind this method is that the coagulation equation is transformed into a 

closed set of ordinary differential equations that provide the exact solution for the mo­

ments [9, 78]. The conventional formulation of the moment method requires that the 

moment evolution equations involve only functions of the moments themselves. This 

requirement significantly restricts the application of the method to aerosol-related 

problems, since only for very few special cases of coagulation kernels one can reduce 

(5.1) to a closed form equation for the moments. In the method of moments, the 

particle size distribution is not tracked directly but through its moments. Previous 

studies have shown that the accuracy and computational time depend largely on the 

relative magnitude of the moments - one then needs to modify the moments in a 

controlled manner. In addition, solution of differential equations for the moments 

requires excessive computational resources. 
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5.1.2 Finite element methods and methods of weighted resid­
uals 

These methods retrieve the size distribution by approximating the solution as a lin­

ear combination of basis functions over a finite number of subdomains, also called 

"elements", whose coefficients are to be determined so that their sum satisfy the co­

agulation equation. Weighted residual methods with global functions were among the 

first to be tried in the early work of Ramkrishna [87]. 

The earliest notable attempt to solve the coagulation equation with FEMs was 

provided by Gelbard and Seinfeld [48] in 1978, who considered both orthogonal col­

location on finite elements and spline collocation for the solution of the PBEs that 

include coagulation equation (5.1). In their article, the semi-infinite particle size do­

main is truncated at some large value and then scaled logarithmically. Furthermore, 

the finite domain is divided into elements, to avoid ill-conditioning systems. The 

authors evaluate the "finite-domain error", i.e. the error incurred by the solution on 

a finite domain [va, Vb], where the lower and upper limits va and Vb on the volume are 

selected such that 

/

Vb TOO 

x% c(x, t) dx I x% c(x, t) dx, for i = 0,1 
do not differ appreciably from unity. The authors notice from their experiments that 

in the case of a constant and linear kernel K, the deviation between the numerical 

and exact solutions increases with time - the numerical solution lies above the exact 

one. This is due to the fact that the numerical solution does not account for collisions 

between particles inside the computational domain [va, Vb] with those particles of sizes 

larger than Vb. The authors suggest that the finite domain errors can be significantly 

reduced by the presence of removal mechanisms which serve to reduce the number of 

particles at the large end of the spectrum (see e.g. [48, 85]). 

The method proposed in [48, 85] was later applied to solve the population balance 

equation (see Erasmus et al [33]) and the Lifshitz-Slyozov equation of continuity (see 

Eyre [40]). Their approach is based on a projection method with cubic B-splines (as 

basis functions) where Galerkin and collocation techniques were used to determine 

the spline coefficients. In their formulation, the authors scaled the domain with a 

singular function by using a change of variable which maps the infinite domain for 

the particle size onto [—1,1] such as x € [0, oo) H-» Q ( j r^) G [—1,1]. However, it 

seems more difficult to control the distribution of mesh points [41]. Moreover, the 
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methods provided by Erasmus et al [33] and Eyre [40] rely upon well-chosen mapping 

parameters. The authors acknowledge that a good choice of their mapping parameter 

( (selection being made by trial and error) contribute to the success of their methods. 

In a recent work, Sandu et al [93] generalize the work of Seinfeld et al [48] to splines 

of arbitrary orders. A general framework for the discretization of particle dynamics 

equations has been proposed recently by Sandu et al [90] by using projection methods, 

which include Galerkin and collocation techniques. Test problems include very small 

constant coefficients of the form K(x,y) = 2.166 x 10~6. The methods proposed by 

Sandu et al [90] are not conservative, i.e. they do not exactly conserve the total 

particle number and volume. Also they are not positive definite, i.e. they do not 

guarantee a nonnegative numerical distribution. One of the main disadvantages of 

this framework is the computational expense associated with some of the tensors 

corresponding to the coagulation integrals. 

5.1.3 Discretized population balances (DPBs) 

These methods emerged as the main alternative to FEMs: they are esentially finite 

difference schemes. These methods consist of discretizing the particle-size domain 

into intervals and assuming the particle size distribution function be constant within 

each of these intervals. In the classical formulation of these methods, the integrals are 

replaced with summations. The DPBs differ in their choice of discretization (linear, 

geometric, arbitrary) and the assumption about the shape of the size distribution 

within each interval [67]. Hounslow et al [78] have used and developed a geometric 

discretization of the size domain Xi+i/x, = 2 which correctly predicts the rate of 

change of total number of particles and volume. However, for higher particle size 

distributions a much finer grid (discretization) is needed. This could be achieved by 

using an adjustable geometric size discretization of the form xi+\/xi = 21lq, where 

q is an integer larger than 1, as proposed by Litster et al [67]. The latter technique 

allows for a precise prediction of higher moments and the shape of the particle size 

distribution. Hounslow et al [78] show that some of the DPBs yield significant errors 

in the prediction of the total number or total volume of particles. In general, the 

most accurate DPBs are the most tedious to solve numerically, with many integra­

tion within each size interval. As pointed out by Gelbard et al [48], these methods 

lead to severe errors unless a uniform grid is employed, which is only valid for systems 

that exhibit very small size ranges. However, for such processes such as coagulation of 
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aerosols, where very large particles are created rapidly through aggregation, a nonuni­

form exponential grid must be employed (see [67, 78]). Kumar and Ramkrishna [59] 

reviewed the previous methods, and observed that uniform discretization in volume 

(size) gives good accurate results but requires a large number of classes (sections) 

to cover the whole size range. They proposed a generalized method that preserves 

two arbitrary particle size distribution properties (such as the moments) while relax­

ing other properties. This fixed pivot technique uses a geometric grid of the form 

Xj+i = sXi. For example, for the pure coagulation equation with K(x,y) = xy: for 

moderate sizes a course grid with 5 = 1.5 provides accurate solutions, whereas for 

larger sizes a finer grid with s = 1.15 is required. This leads to an improvement in 

accuracy and reduced computational effort. Kumar et al [60] also presented a moving 

pivot method which takes into account the variation of the number density within 

each size range. This method gives extremely accurate results. 

A comparison of the methods in 5.1.2 and 5.1.3, shows that due to the exces­

sive computational demands and the complexity of the implementation raised by the 

FEMs and other function approximation methods, the DPBs seem to attract more 

and more attention, especially when applied to the population balance equations (see 

the recent work of Rigopoulos and Jones [88]). 

5.1.4 Finite difference methods 

Krivitsky in [58] obtained the numerical solution to the pure coagulation equation 

(5.1) for two types of coagulation kernels K(x, y) « (x + y)x and K(x, y) « (x y)^2, 

where 0 < A < 2. The author introduced a finite limit size M up to which compu­

tations were executed (physically corresponding to a sink of particles at large sizes). 

The collision integral on the right-hand side was computed by the trapezoidal formula, 

using a linear interpolation, while the second integral was truncated to the finite value 

M and then approximated by the trapezoidal rule. The resulting differential equa­

tion was solved by using a second-order Runge-Kutta method. It was found that for 

rapidly growing kernels, at some time a small distortion appeared in the plot of the 

distribution function, which grows rapidly after a short time. To make the procedure 

stable, it is necessary to take a very small stepsize At at the expense of increasing 

the parameter M. The author investigated the cases when the gelation phenomenon 

is present and the influence of a finite M on the solution. The numerical experiments 

show that the total mass begins to decrease earlier than the gel-time Tgei; also there 
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is a rise on the right-end of the distribution function at x « M for t larger than the 

gel-time Tgel. 

5.1.5 Finite volume methods 

Filbet and Laurengot [41] developed a numerical scheme for the pure coagulation 

equation which relies on a conservative formulation and a finite volume approach. In 

their paper, the authors truncate the volume variable to some maximal value R, and 

choose a nonconservative approximation of the coagulation term that is suitable for 

reproducing the gelation phenomenon. Using explicit available solutions to test the 

accuracy of the numerical scheme, it has been observed that for rapidly increasing 

coagulation coefficients K a larger truncation parameter R has to be chosen as these 

kernels yield a faster transfer of matter towards larger and larger volumes. For kernels 

such as K(x, y) = xy the truncation of the particle domain seems to greatly influence 

the large size behaviour after the numerical gelation time. Also, a decrease of the 

moments has been observed after the gel-time. In these cases, a much larger trun­

cation parameter R is needed and thus computationally the cost and the numerical 

error are both increased. 

5.1.6 Power series methods 

Melzak [74], was the first to provide theoretical results through the technique of power 

series expansion in the time variable. Melzak approximated the solution of the pure 

coagulation equation by means of a power series of the form c(x, t) = Y^oai(x) ^• 

However, a few problems arise when one attempts to use this type of series, such as: 

the amount of computation becomes prohibitive very rapidly as i increases in value; 

many terms are needed in the series to give a good approximation for c(.x-, t) at large 

values of x; the interval of convergence for the series is very small. Martynov et al 

[71] suggested that the finite interval of convergence of such series can be eliminated 

by a change of time variable in the system of the form: T = 1 — Mo(t)/Mo(0) and 

a series of the form u(x,T) = ]CSoa*(x)^" c a n ^ e u s e ( i - However, the authors soon 

understood that the use of such a series is only practical for the initial stages of the 

evolving spectrum under arbitrary initial conditions and with variable kernel K(x, y). 
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Conclusion 

Most of the numerical work proposed in the literature of coagulation equations ap­

plies to the case when no particle sources and sinks are present in the system since 

only in these cases analytic solutions are known. Moreover, all the deterministic nu­

merical methods presented above are able to accurately predict the size distribution 

function for cases where the rate of coagulation K(x, y) is either constant or linear 

in the variables x and y. For gelling-type kernels K(x,y) = xy with g = 0, these 

methods provide qualitative agreement between the numerical and analytical solu­

tions only for a small period of time. The methods developed by Kumar et al [59, 60] 

is one of the first methods that provides good estimates for the solution of the pure 

coagulation. However, as pointed out earlier, these methods rely on the fact that the 

discrete equations for aggregation processes be internally consistent (preservation of 

two properties of the distribution) with regard to some specific moments of the size 

distribution. Even though such a method brings an improvement over other previous 

numerical methods its applicability to more general kernels K is limited. 

In the next two sections of this chapter we provide a few numerical (improved) 

approaches to obtain accurate numerical approximations to the solution of the co­

agulation equation with particle source terms. To validate our numerical work we 

compare the numerical solutions using the explicit available solutions (g(x, t) = 0) 

to (5.1) obtained in the literature, or our new similarity (group invariant) solutions 

provided in Sections 4.2 and 4.3 for g(x, t) > 0. 
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5.2 Bounded coagulation kernels 

In this section, we present two reliable numerical methods to solve the coagulation 

equation for a class of bounded coagulation kernels with particle source terms 

dc 1 fx f°° 
— (x,t) = - / K(x-y,y)c(x-y,t)c(y,t)dy -c{x,t) / K(x,y)c{y,t)dy + g(x,t) 

(5.2) 

subject to the initial condition 

c(x, 0) = c0(x). (5.3) 

Quite a few numerical schemes were investigated, and the two methods yielding the 

most accurate results (when tested in cases where exact solutions are known) were 

found to be the weighted residual method (collocation method) and the method of 

adaptive power series at successive points. Using these methods we investigate the 

dynamic behaviour of the size distribution c for some choices of the problem param­

eters (initial condition Co, coagulation coefficient K and source term g). In addition, 

we analyze the dependence of the solution on these parameters. 

One of the issues we address in this section regards the computation of the values 

of c(x, t) for a bounded, pre-determined range of values 0 < x < X and 0 < t < T. 

This is the correct setting in many industrial problems, where the physical limits X 

on the particle size and T on the reaction time arise naturally. In such cases we may, 

if desired, find constants m, n, p such that the change of variables 

i = m i ' , t = nt*, c = pc*, 

transforms (5.2) into an analogous equation with the same K, but with 0 < x*, t* < 1 

(or any other finite upper limits; the modification is in c0 and g being multiplied by 

various constants). In other words, in this type of problem it is legitimate to confine 

x and t to a pre-determined range of values. 

The other problem (which we shall not discuss here) typically involves a change 

of variables t* = ip(t), the function I/J being chosen in such a way that the entire 

interval 0 < t < oo corresponds to 0 < t* < 1; a popular choice is t* = /0°°(co(x) — 

c(x, t))dx j /0°° c0(x) dx . This is most suitable for studying the long-time properties 

of c(x, t), since t —> oo corresponds to t* —> 1". The method, however, appears to be 

less reliable numerically for bounded ranges of the values of t (see e.g. [25, 71]). 
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5.2.1 Adaptive power series method (APS) at successive points 

One of the more reliable methods of obtaining numerical solutions to (5.2) especially 

for coagulation kernels K that are bounded functions of x and y, turns out to be the 

use of adaptive power series. If K is independent of time, then we can approximate 

both the solution and the source term by power series of the form 

oo oo 

c(x, t) = y~] 7J(X) t1 and g(x, t) = V ] 6i(x) tl 

i=0 z=0 

for some interval of values of x and t. If we substitute c and g above into (5.2) and 

equate like powers of t, then the following recursion formula for the coefficients 7n(x) 

can be derived: 

7o(.x) = c0(x) 

and 

1 v-̂  fx 

(n + l)7n+i(-T) = Sn(x) + - > / K{y, x - y) yt(y) ^(x - y) dy 

/ •oo 

~YL^X">I K(x^y)rn(y)dy^ for n ^ ° - (5-4) 
i+j=n Jo 

Melzak [74] was the first to prove theoretical results (global existence and unique­

ness of solutions) for the pure coagulation equation (g = 0) using the technique of 

power series expansion in the time variable t (see e.g. [25, 74]). The question of the 

convergence of the series X ^ o ^ (x) ** *s a v e r y interesting one, not least because there 

is more than one sense in which the series can converge. The question of convergence 

and an example of its use will be discussed in a future work, see e.g. Calin et al [16]. 

In principle, given the coagulation kernel K, the initial size distribution Co and 

the source term g, one can evaluate the coefficients j n one by one and obtain the 

exact solution of (5.2). However, solving the nonlinear, many-term recursion formula 

in (5.4) for the general term j n is not straightforward. Moreover, the integrals in 

(5.4) can only be evaluated in closed form for very special cases of K, c0 and g; in 

general, numerical integration needs to be employed. Hence, one can attempt to make 

use of truncated power series approximations for c(x, t) and g(x, t). However, even 

with a truncated power series, as n increases the amount of computation becomes 

burdensome. This is due to the fact that many terms are needed in the series in order 

to obtain a good approximation for c(x, t) at large values of x. 
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For additional comments on the method of power series expansions in terms of the 

small parameter t* = ip(t), see Martynov et al [71]. They comment that, for certain 

kernels, using 10 terms in the series yields reasonable results only for t* x < 2. This is 

only practical for the initial stages of the evolving spectrum. Drake [25] suggests the 

use of power series combined with asymptotic methods for obtaining global numerical 

solutions. 

Our proposed numerical method (APS) is as follows: In using a partial sum 

t=0 

for relatively large times t, a modification is found to be useful: Let 6 > 0 be small, 

and suppose we want to find the value of c(x, t) at t = n 5 for some large n. For this 

reason, we start with 70 = c0 and compute 71 , . . . , 7 m using the recursion formula 

(5.4). For the approximation of these integrals the trapezoidal rule yields the most 

accurate results. However, for the approximation of the second integrals in (5.4) 

we use Simpson's rule. Thus, we obtain c(x,5) ~ (M\x) = YllLoli^)^1- However, 

to compute c(x,25), it is better to start with a new 7Q = c^\ re-compute the 

corresponding 7J , . . . ,7m from (5.4), and then use 

rn 

c(x,2S)~cW(x) = ^2)(x)5i. 

This is tantamount to computing the Taylor series at t = 5, which is in turn equivalent 

to shifting the origin of time to t = 6, and then solving the initial-value problem. 

Proceeding in this way, we have found that the numerical results are much more 

precise than when a single series X)2=oT»(x)^ w a s use<^ ^or increasingly larger values 

oft. 

For numerical purposes, to approximate (5.4) and thus (5.2) we consider a uniform 

grid Xk = (fc — 1) Ax, where Ax = J£J, for k = 1,..., N. First, we impose that the 

equation (5.4) holds exactly at the node points x^, (collocation points). Based on 

the description above, we calculate the discretized numerical solution ch(xk,t) at a 

large time t = n5. In the framework of purely discrete populations and uniform grid, 

the size of a new aggregate always matches exactly with the size of one of the Xj's. 

Therefore, a uniform grid allows us to avoid the use of an interpolation technique, 

which otherwise would be needed especially to deal with the approximation of the 

convolution integral in (5.4), even with a trapezoidal rule. 
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5.2.2 Collocation method 

To validate the results of our numerical scheme (using APS method) in cases where 

no exact solutions are known, we have also implemented the collocation method 

suggested by Sandu et al [90], with slight modifications. 

To solve numerically the equation (5.2) using the collocation method, we first 

discretize the particle size domain [0, X] in a finite number N of size bins (increments 

in space) of the form Bk = [xk, x'fc+i], for k = 1, 2 , . . . , JV — 1, with x\ = 0 and x^ — X, 

and same width Ax as in Section 5.2.1. As is generally the case with the weighted 

residual method, the approximated size distribution function c(x, t) is searched for in 

the form of a finite-dimensional approximation: 

N 

ch(x,t) = Yl Ci(t)4n(x), 

where {fa(x),..., (j>^(x)} is a set of continuous functions called basis (or trial) func­

tions. This approximation is substituted into (5.2). Next, we multiply the residual 

equation by a test function £j{x), for j = 1,2,..., iV and integrate over the domain 

[0, X] to obtain a variational (weak) formulation. In the collocation framework, the 

test functions are chosen as delta Dirac functions at special points, called collocation 

points. In our study case, we choose the collocation points as the node points. Thus, 

the test functions are given as follows £j(x) = S(x — Xj). The advantage of using 

node points is that the "mass" matrix becomes the unit matrix IN*N which helps 

minimizing the computational cost. In addition, we choose as basis functions the 

piecewise polynomial functions 

C m , if.r i_1<.x-<.x i , 
&(*) = < B^E, ifxi<x<xi+1, 

\ 0, otherwise 

for i = 1,2,..., iV. These basis functions are piecewise continuous linear functions 

that satisfy (j>%{xj) — 1, if i = j and 0, if i ^ j , which in addition have a compact sup­

port. The latter property for the basis functions fa, helps us simplify the calculations 

for the coagulation tensors (which we denote by Ii and I2) since only the nonzero 

entries are computed. For the computation of the coagulation tensors we use a 3-

point and 2-point Gaussian numerical quadrature, respectively. Having performed the 

pointwise evaluation of the coagulation terms at the nodal points, the original coagu­

lation equation (5.2) is transformed into a set of nonlinear ordinary differential equa-
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tions, where the dependent variables are the coefficients c(t) — [ci(t), . . . , Cflf(t)}T, 

see [90]: 

<f(t) = [(h-h)xc{t)]c(t) + g(t) (5.5) 

where g(t) = \cn(t),..., gN{t)]T, with a(t) = c{xut) and g{{t) = g{x.ht), for i = 

1,2.. . , TV. Our experiments showed excellent accuracy even with piecewise-linear 

elements and with a small number N of size bins. 

The use of collocation methods over Galerkin methods is preferred since it does not 

require extensive integral evaluations, and thus it leads to considerable computational 

savings. For a complete theoretical description of the projection methods (including 

Galerkin and collocation methods) see e.g. Atkinson [5]. 

5.2.3 Some numerical experiments 

Our numerical results are presented for 0 < x < 5 and 0 < t < 1 following the com­

ments at the beginning of Section 5.2. Even though the collocation method requires 

integration only at the nodal points and seems to have good accuracy even with linear 

elements, computationally speaking it is an expensive method. For instance, if we 

choose the parameters g = 0, K = 1 and c(x, 0) = exp(—x) then using 31 bins yields 

a maximum error of 1.67 x 10 - 3 with the collocation method, and a maximum error 

of 1.72 x 10~3 for the adaptive power series method (with terms up to and including 

t2). Moreover, the errors were found to be of a similar order of magnitude in other 

examples we looked at. Our conclusion from repeated testing is that, for examining 

the qualitative behaviour of the solutions, the adaptive power series is quite accurate 

even with as few as three terms. For more precise numerical solutions the collocation 

method is preferred. 

Our first two examples consider the coagulation equation with a constant kernel 

K = 1, an initial distribution c(z,0) = exp(—x) and two cases of source terms 

g(x,t) = 0 and g(x,t) = T{t)2 exp(i - xT(t)), where T(t) = 2/(1 + exp(t)). In 

this case, the corresponding exact solutions are c(x, t) — (1 + t/2)~2e~2x^'2+t^ and 

c(x, t) — T2(t) exp(t -xR(t)), respectively. Both solutions have been obtained using 

Example 4.15 (with R(t) = 0 and R(t) = /, in the notation of that example). Our 

numerical results show that both the adapted power series and collocation methods 

accurately predict the numerical solution ch(x, t). For our purposes we have sketched 

the approximation ch (using both methods) and the analytical solution c at a fixed 

time as shown in Figures 5.1, 5.2). 
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Figure 5.1: Plot of the numerical solution ch(x, 1) for g = 0, using the collocation 
and the adaptive power series methods and analytical solution c(x, 1). 
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Figure 5.2: Plot of the numerical solution ch(x, 0.5) for g > 0, using the collocation 
and the adaptive power series methods and analytical solution c(x,0.5). 

Next, we consider a few examples of kernels K for which no analytical solutions 

are known. The adaptive power series method is used in the next examples and 

subsequent graphs. Longer time periods can be investigated by a suitable change of 

variables as indicated earlier in this section, but result in no qualitative change in 

behaviour. 

Figure 5.3 shows the propagation of an initial global maximum c(x, 0) = e~^x_1^ 
through time. 
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Figure 5.3: K(x,y) = 1/(1 + x + y), g(x,t) = e'x, c(x,0) = e'{x-^2. 

Similarly, if the initial condition has two maxima, as in Figure 5.4, then the same 

feature appears to persist in the solution for all time. Figure 5.4 shows the solution 

c^x, t) at various times t = 0,0.25,0.5,0.75,1. 

Figure 5.4: c(x,0) = e- s i n x + e ^ - 1 ) 2 , K(x,y) = 1/(1 + x + y), g(x, t) = e~x. 

The graph in Figure 5.5 shows the influence of the source term on the solution. 

The solution increases from its initial value of c0(x) = 0. The series of graphs in 

Figure 5.5 also indicates the fact that the kernel K exerts a relatively small and 
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transient influence on the form of the solutions, with the initial conditions c0 and the 

source term g being the more dominant factors. 
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Figure 5.5: K(x, y) = 1/(1 + x + y), g(x, t) = e~x, c(x, 0) = 0. 

Our last example in this section (Figure 5.6) is that of another intractable kernel, 

K{x,y) = e - ^ + y -1) = e -( r _ 1 ) ' (in polar coordinates). Here we observe that 

the maxima of K initially appearing in the solution is being smoothed out by the 

coagulation process. 

Figure 5.6: K{x,y) = e~^+y2-^\ g{x,t) = e'x, c(x,Q) = e~x 
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5.3 Unbounded coagulation kernels 

Although there have been many attempts in the literature to solve the coagulation 

equation numerically, there still is not a good, accurate numerical method that deals 

with bilinear, separable kernels of the form K(x,y) = (a + (3x)(a + [3y), where a > 0 

and P > 0 are some arbitrary constants, in the presence of particle sources. Our main 

purpose in this section is to provide some numerical results for unbounded kernels of 

the form above in the absence and presence of particle source terms. The method 

that we provide is based on a direct discretization of (5.2), followed by quadrature 

methods for the integral terms (based on Trapezoidal, Simpson and Gauss-Laguerre 

quadrature) and time-integration of the system of ODEs. A uniform grid was used for 

numerical discretization. To test our numerical results we compare the numerical so­

lutions with corresponding solutions obtained by collocation methods (Section 5.2.2) 

and also explicit solutions obtained in Sections 4.2 and 4.3. 

As described in the review of numerical methods in Section 5.1, when solving the 

coagulation equation numerically, the first step is to reduce the theoretical infinite 

domain for the size variable x to a finite range 0 = Xmin < x < Xmax. This constraint 

comes from a physical limit Xmax in many industrial problems. Based on the form of 

the coagulation kernel K at the beginning of this section, it seems more natural to 

provide the numerical method for the function n(x, t) = 0(x) c(x, t). For this purpose, 

we multiply the equation (5.2) by 6(x) to obtain the new form of the coagulation 

equation 

dn d(x) fx f°° 
•QI (&.0 = ~2~ / n ( x _y>*)nfo'*)dy ~e^n(x>e) / n(y^)dy + e(x)9{x,t) 

(5.6) 
subject to the initial condition 

n(.x, 0) = n0(x) = 0(x) c0{x) = (« + /? x) c0(.x). (5.7) 

5.3.1 T h e numerical method 

After we have reduced the computational domain to a finite interval, the next step in 

solving equation (5.6) numerically is to introduce the size and time discretization. For 

this purpose, we choose a mesh of [0, X„MX\ to be a uniform grid x.;, 0 < i < Nx with 

spacing Ax = j ^ * - such that Xj = (i — 1) Ax, for i = 1,2,..., A^. In addition, let 
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nh denote an approximation to the solution n. We discretize the space (size) variable 

x and obtain the following continuous version of (5.6) 

drH^t) = ̂  p ^^ _ ̂ t) nh^t) dy _ 6{xi) nh{^t) j ~ ^ t ) ^ 
(5.8) 

nh{xi,0) = d(xi)c%(xi) = nk{xi), 

for i = l,2,...,Nx. To obtain a discrete version of the equation (5.8) we need 

to approximate the integrals in (5.8). For the discretization of these terms we use 

quadrature formulas: 

J a 3=1 

where Nq is the number of quadrature points, the Wj are the appropriate weights 

and the Xj are the node points in the grid, if a closed Newton-Cotes formula is used 

(see e.g. [91]), or the quadrature nodes, otherwise. We allow different quadrature 

formulas and thus different weights for the collision integrals. 

In order to approximate the convolution integral in (5.8), which for simplicity we 

denote by H\, we use (5.9) which yields 

/•Xi l 

Hi(Xi, t) := 6{Xi) I nk(xi - y, t) nh(y, t) dy ~ 6(xi) V" Wj nh(xi - Xj, t) nh(xj, t) 

(5.10) 

for i = 1,2,..., Nx. For the numerical computation of H\, we have used two different 

quadrature rules (both low order): trapezoidal and Simpson's rule. Note that a 

discrete coagulation equation that is obtained from (5.8) using (5.10) needs to be 

expressed only in terms of the size distribution at the node-points. In this sense, the 

choice of a uniform grid is rather convenient as in this case the size of a new aggregate, 

such as Xi—Xj matches exactly one of the grid points, i.e. .%-,—Xj — (i—j) Ax = Xi-j+i. 

However, when using a nonuniform grid (such as a geometric or logarithmic), the size 

Xi — Xj usually falls between the grid points. For this reason, one needs to interpolate 

the distribution nh between the nodes of the grid. An example of such an interpolation 

technique is provided below (for the discretization of H2)-

To approximate the second integral in (5.8), (which, for simplicity, we denote by 

H2), we use two different quadrature rules: Simpson's and Gauss-Laguerre quadrature 
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rules. The discretization of the integral H^ by the Gauss-Laguerre quadrature rule 

reads as: 
poo 

H2(xu t) = 6(Xi) nh(Xi, t) / e-*\e*n\y, t)]dy 
Jo 

(2 m)! 

/o 
m 

OixJn^XirffeukexpiCk^ifat) + ̂  [ecn"(£, i ) ] ^ ) ) , C > 0 
fc=i ^ m'' 

(5.11) 

Here, m is the number of Gauss-Laguerre nodes, and ^ and u^ are the Gauss-

Laguerre nodes and weights, respectively. It is well known that the rule (5.11) is 

convergent if the function nh satisfies the inequality |n'l(x)| < xl+p, for some p > 0. 

Using Gauss-Laguerre rule requires some knowledge of the discretized solution nh 

at the Gauss-Laguerre nodes 0t for k = 1, ...,m. Since the solution is known only 

at the node points xt, i = 1,2,..., Nx of the uniform grid, we need to resort to 

interpolation of the distribution function nh((k, t) between the node points Xj of the 

grid. For this reason we use the following interpolation/extrapolation: If ^ < x\ = 0 

then we choose nh((k,t) = nh(xi,t). If Xi < 0t < XN* then we use piecewise linear 

interpolation 

nh((k, t) = (l - ^ ~ s = i ) n'Wi, 0 + Cj^L± nh(xq, t), 

where £fc € (xg_i, xq], q = 1,2,.. .Nx — 1. This corresponds to the index q defined by 

where ceil(p) denotes the smallest integer greater than or equal to p. Finally, if 

Cfc > %NX then we extrapolate nfc (£&,£) according to the formula 

nh((k,t) = (l - £LZ£*L) n»{xNmtt) + ^^n\XNx_ut). 

Remark 5.1 A similar type of interpolation can be used to discretize the convolution-

type integral H\ in the case of a non-uniform grid, the modification being in (k above 

being replaced by x, — Xj. Hence, the distribution nh(xi — Xj,t) is obtained from 

nh(xs, t), where s = l,2,...,Nx by use of an interpolation as above. 

The numerical method described so far leads to a discrete version of the coagula­

tion equation (5.6) and thus to a system of ODEs for the unknowns nh(xi, t) =: Ui(t): 

_n^2 = _^Y/wjni„j+1(t)nJ(t)-e(xi)ni(t) J > , n^) (5.12) 
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for i = 1,2, ...,JVX, where the initial condition n;(0) = nh(xi,0) = 8(xi)c(xi,0) is 

given in the problem and th6 woightg wj and Tj are implemented in Matlab. 

It remains only to solve the resulting system of ODEs (5.12) to determine the 

unknown vector [ni(£), ri2(0> • • • i nNx{t)]T- For the time-integration of the system of 

ODEs (5.12) we choose again a uniform grid tk, 1 < k < Nt where £jvt = Tmax, with 

spacing At = |fff such that tk — (fc — 1) At, for k = 1,2,..., Nt. We denote by n* = 

nh(xi, tk) the value of the function nh at the grid point (XJ, tk) G [0, Xmax] x [0, Tmax\. 

For the time integration of the system (5.12) of ODEs, we use a variety of numerical 

schemes that include: explicit Forward-Euler method and Runge-Kutta method. For 

the latter, we make use of the ode45 Matlab function. To verify the correctness of our 

numerical method, we compare the numerical solution with known explicit solutions 

in the absence of particle source terms. Although in Section 4.2 we obtained some 

asymptotic solutions for the coagulation equation (5.6) in the case of a bilinear kernel 

K(x, y) = (a + f3 x) (a + f3 y) with a, (3 > 0, the initial conditions involve dirac delta 

functions which are not easy to implement numerically. For this reason, to test our 

numerical method we have only considered the case of a product kernel K(x, y) = xy, 

(a = 1 and /3 = 0) without sources (g{x, t) = 0). 

5.3.2 Experimental results 

In this subsection we present some comparison results of the numerical and analytical 

size distributions. First, we consider the explicit solution given by Ernst et al [34]. 

Let the initial size distribution be n(x, 0) = exp(—x) and g(x, t) = 0. Then the exact 

solution of (5.6) is given by 

n{x, t) = u ^ ' e-Tx (5.13) 
X y/t 

where T = 1 + 1 , for t < 1 and T = 2\/i, for t > 1. Note that Tgei - 1. Also, h is 

the modified Bessel function of the first kind [1]. To implement the modified Bessel 

function of the first kind numerically, we use the following approximations provided 

by Abramowitz and Stegun [1]: 

h(x) ~ x • (Px + P2y2 + P3y
i + Piy

6 + P5y
8 + P6y

10 + P7y
n), if x € [0,3.75] 

and 

Ii(x) ~ -̂ = • (Qi + Q2 w + Q3 w
2 + Q4 ™

3 + Q5 ™
4 + Qe w

5 + Q7 w
6 + Q8 w

7 + Qg ws\ 

178 



if x € [3.75, oo), where Pi, i — I,... ,1 and Qj, j = 1 , . . . , 9 are given in ([1], p.378) 

and y = x/3.75, w = \/y. For the discretization of the integral terms we use trape­

zoidal and Gauss-Laguerre rules respectively, whereas for the time-discretization we 

use fourth order Runge-Kutta method. This combination seems to yield accurate 

results when compared with other methods we tried. 

First, we investigate the L1 discrete error norm (numerical error): 

Nx 

Eh(tk) = J^ \nk - n(xu tk)\ Ax (5.14) 
t=i 

where n denotes the exact solution to (5.6) and nk the approximate solution. We 

have computed the discrete error (5.14) for a fixed Xmax — 100 and using a successive 

number of points Nx = 101, 201,401. The results are presented in Figure 5.7. As ex­

pected, the numerical error Eh = 0((Ax)2) is proportional to (Ax)2 (before gelation 

occurs, so for t < Tgei = 1). Hence, the numerical scheme is second order accurate 

(in space). 
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Figure 5.7: Time evolution of the numerical error in (5.14) for Xmax = 100 using 
Wx = 101,201,401 points. 

Next, we look at the time evolution of the numerical approximation nh and analyt­

ical distributions n in (5.13) for the pure coagulation equation for a fixed size x = 50, 

where we choose a truncation parameter Xmax = 100. The results are presented in 

Figure 5.8. 
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Figure 5.8: Time evolution of the particle size distribution n(x, t) at x = 50, where 
Xmax = 100. 

As can be seen from Figure 5.8, there is good agreement between the numerical 

and exact solutions up to the gel-time Tgei — 1. However, after this time there 

is an almost constant deviation of the numerical solution from the exact solution: 

the numerical solution lies above the exact solution. This discrepancy between the 

solutions had been observed earlier in the work of Filbet et al [41] for the same 

rapidly growing coefficients K(x, y) = xy using the finite volume method. To obtain 

accurate results, Filbet et al [41] suggest choosing a larger parameter Xmax. The 

reason for this choice is that rapidly growing coefficients K induce a faster transfer of 

matter towards larger and larger sizes as the coalescence has the effect of shifting the 

distribution function n(x, t) to the right as time goes by. On the other hand, these 

rapidly growing kernels also give rise to solutions that develop an algebraic tail upon 

the occurrence of gelation. 

For comparison purposes we have also analyzed the time evolution of the discrete 

first and second moments Mf (t), M^t) and the exact corresponding moments of the 

solution c(x, t). Figure 5.9 shows that the larger the truncation parameter the closer 

the discrete first moment M^(t) gets to the exact one M\(t). 
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Figure 5.9: Time evolution of the discrete and exact moments M^(t) and M\{t) of 
the size distribution c(x, t) for Xmax = 100,200,400,600, oo (left to right) 

However, no matter how large we choose the parameter Xmax the total mass 

decreases after the numerical gelation time. In addition, it seems difficult to capture 

the exact behaviour of the discrete M^{t) at t = Tgei and estimate accurately the 

gelation time. As known from the articles of Ernst et al [34], Lushnikov [70] the 

gelation time corresponds to the first instance when the second moment of solution 

diverges. For this reason, one way to investigate the onset of gelation is to find an 

approximate interval of time t on which l/M^t) is negligibly small. Our numerical 

observations of the discrete value l/M^it) from repeated testing is that a very large 

truncation parameter Xmax is needed to locate the gel-time. Similar conclusions have 

been pointed out in Filbet et al [41] who investigated the sudden growth of the second 

moment M^it) and considered an Xmax as large as 44110. 

Our suggestion is that for the types of growing kernels considered in this section it 

is best to estimate the gelation time using Laplace transforms. To illustrate our idea, 

we return to the coagulation equation (5.6), formally apply Laplace transforms, and 

derive a first order PDE associated to (5.6). Based on the method of characteristics, 

solve the PDE for the Laplace transform and study the circumstances under which 

the system of characteristic equations can be inverted [15, 96]. This analysis leads 

to determining the gel-time, which in [15, 96] was proved to coincide with the so-

called "breaking time", that is the first instance t at which the solution £>(£, t) of the 
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following system of ODEs vanishes. 

with initial conditions: £>(£,0) = 1; -^r(^.°) = /^'(0> w n e r e £ > ° 

r)P rv 

with initial condition: P(£,0) = /3(fe(0 - /i(0)) 

where R(z,t) := G(Z(£,,t),t) - G(0,t), and V(z, t) defines the Laplace transform of 

the distribution n(x, t). In the system of ODEs above, G(z, t) and h(z) represent the 

Laplace transforms of the source d(x)g(x,t), and n(x,t), respectively. The system 

can be solved analytically in some special cases, while in general numerical methods 

need to be employed (we have used fourth order Runge Kutta methods). Table 5.1 

presents the exact values where known and the range for computed gel-times for a 

few classes of sources and initial conditions. 

g(x,t) 
0 
0 
0 
exp(-x) 
exp(—x) 
exp(—x) 
8{x) 
5(x) 
texp(-x) 
texp(-x) 

c(x,0) 
exp(—x)/x 

exp(—x) 
5(x - 1) 

exp(—x)/x 
exp(—x) 
5{x - 1) 

exp(—x)/x 
exp(—x) 

exp(—x)/x 
exp(-x) 

Exact Tgel 

1 
0.5 

1 
? 

? 

? 

1 
0.5 

? 
? 

Range for computed Tge( 
l ± l e - 4 

0 . 5 ± l e - 4 
l ± l e - 4 

[0.67533,0.67553] 
[0.4351,0.4352] 

[0.67533,0.67553] 
1 ± le - 4 

0 . 5 ± l e - 4 
[0.45825,0.45835] 
[0.09991,0.09993] 

Table 5.1: Numerical and analytical experiments on the gelation time using Laplace 
transform methods. 

5.3.3 Comparison with finite volume methods 

To verify our numerical method we compare the numerical solution proposed in Sec­

tion 5.3.1 with the corresponding solution obtained by Filbet et al [41] using the finite 

volume method for the same choice of parameters as in 5.3.2 (or the same exact so­

lution (5.13)). The results of the comparison of the numerical methods are presented 
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in Figure 5.10. We obtain the same numerical results with the collocation method in 

Section 5.2. 

„ 1 0 ' Plot n(19.92B7, t): Tmax.t.95, dt.0.015, Xmax.20 

5 

2 

"0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
time 

Figure 5.10: Time evolution of the numerical and exact distribution n(x,t) at x = 
19.9287 

5.3.4 Proposed improvements in the numerical scheme 

In this subsection we propose two ways of improving the accuracy of the numerical 

scheme and thus lowering the numerical error that we get when truncating the problem 

to a finite domain and approximating the improper integral. The methods that we 

propose below are based on estimates of the improper integral in (5.6). 

(a) Use of zeroth and first moments of the solution 

In the attempt to lower the error that we obtain in the numerical solution, we have 

closely analysed the improper integral in the coagulation equation (5.6). Based on 

the form of the coagulation kernel K at the beginning of Section 5.3, the improper 

integral is a linear combination of the zeroth and first moments, so the coagulation 

equation (5.6) can be expressed in the following form 

dn 9(x) fx 

— {x, t) = -YJ n(x - y, t)n(y, t) dy - 6(x) n(x, t)N{t) + 6(x) g(x, t) (5.15) 

where N(t) = aM0(t) + /3 Mi(t). The truncation of the infinite domain to a finite 
upper limit clearly leads to an underestimation of N(t) which reduces (5.6) to an 
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approximation of this equation over a finite domain. Due to the finite computational 

domain [0, Xmax] that we use in the numerical solution and the nature of the equa­

tion (5.6), it is clear that particles within the finite domain interact with particles 

outside the computational domain. Moreover, due to the rapidly growing coefficients 

K considered in this section, more particles are formed outside the computational 

domain. Hence, unavoidable errors are introduced into the computed distribution 

and in particular into the improper integral(s) in equation (5.15). 

To demonstrate that the effect of truncation on the improper integral is one of 

the sources of error in the numerical scheme, we investigate the possibility of lowering 

the error in the improper integral(s). For this purpose, we look at ways of coupling 

the equation (5.15) with corresponding ODEs (or general algebraic formulas) for the 

function N(t). First, we consider a few special classes of initial conditions co(x) for 

which explicit general formulas for N(t) are available. The results of our experiments 

show that if instead of numerically approximating the zeroth and first moments as in 

5.3.1, one couples (5.15) with an explicit formula or a correspondent ODE satisfied 

by N(t), then one obtains excellent agreement between the numerical and explicit 

solution for a very large interval of time and large particle sizes. 

To illustrate the idea presented above we consider the coagulation kernel K(x, y) = 

xy, and no sources (g(x, t) = 0). In this case, the explicit solution is given by (5.13). 

The time evolution of the particle size distribution n(x, t) at x = Xmax is illustrated 

in Figure 5.11. In this instance, the function N(t) = Mx{t) is known explicitly as: 

Mx{t) = 1, if t < 1 and Mx(t) = 1/y/i, if t > 1. For the discretization of the 

convolution integral in (5.15) we have used Simpson's rule. 
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Figure 5.11: Time evolution of the approximated and exact distribution n(x,t) using 
(a) for x = Xmax = 20. 

Figure 5.11 shows that the numerical solution is in excellent agreement with the 

exact solution for the truncation parameter x = Xmax = 20. Therefore, such a coupled 

system yields accurate results and is not expensive computationally (no unnecessarily 

large truncation parameters are needed for the numerical solution to converge to 

the exact one). We have also looked at larger truncation parameters and obtained 

accurate numerical results. This improvement in the numerical solution is anticipated 

at the beginning of (a). A few possible explanations for such an improvement are 

provided below. On the one hand, the truncation of the infinite domain to a finite 

upper limit Xmax results in an underestimation of the ith moment of the solution in 

(5.15) by an amount 

Mt
i
de(t)= / xic(x,t)dx 

where M^(t) represents the error that occurs in the ith moment due to the trunca­

tion of the domain. On the other hand, we have already proved in some cases (see 

Sections 4.2, 4.3), that the distribution function c(x, i) converges (asymptotically) to 

zero at sufficiently large particle sizes x. Thus, one has to choose a sufficiently large 

value for Xniax so that this error is negligibly small. However, one has to carefully 

select the values of X m a i so that they are not unnecessarily large as the distribution 

functions have tail regions that are difficult to represent. In addition, due to the very 

small values that these functions can take at large sizes they are computationally 

expensive to converge. 
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Gelbard and Seinfeld [48] were the first to provide a method of selecting appro­

priate upper limits Xmax of the domain. Their approach is based on the concept of 

"finite domain error". Let 

FDEi{t) = ^jf^dX. 
The authors select Xmax such that FDE0(t) and FDEi(t) do not differ appreciably 

from unity. As authors acknowledge, this approach is restricted to cases where an 

analytical expression for M!-de(t) is available. However, to investigate the onset of 

gelation, the second moment M2 is preferred. A systematic method for choosing the 

values of Xmax is suggested in Nicmanis et al [77] for the steady-state population 

balance equations. The authors suggest that selection of Xmax be made to ensure 

that M2 > 0.999. This yields the additional criteria M0 > 0.999, Mx > 0.999. 

However, in the criterion suggested in [77] the quantities Mi, i = 0,1,2 are constants, 

as c(x, t) = c(x). 

Another explicit solution for which we have shown the improvement (a) on the 

accuracy is the solution in Example 4.16. For this purpose, we choose in Example 

4.16 the following parameters: a = 1, (3 = 0, K{x,y) = xy, the initial condition 

n0(x) = ke~ax l\(mx)jx and the source function 

9(I, t) _ H0 ' ' - " ' " f ^ " *<„*-*, (5,6) 

where S(t) = (1 + ^ t) . Then the exact solution to (5.2) is given as in Example 4.16: 

„(M) = ̂ ^ ^ i M (5.17) 
X 

where the total mass M\(t) = Q'{t) is denned in Example 4.16. Our numerical and 

analytical results are represented for k = m = y/a2 — a\ = V3, a = 2, a® = 1, 

Xmax — 50 and two different cases of sources g(x, t). In Figure 5.12 we represent the 

time evolution of the numerical and exact solutions in the case g = 0 (no sources), 

which corresponds to HQ = 0, and a = 1/2. In this case the gelation time is given by 

the formula Tgel = a0m/((cr — <r0)k) = 1. In Figure 5.13, we sketch the solutions in 

the presence of source terms, we choose H0 = k/m = 1, so a = 1. Here, the gelation 

time is given by the formula Tgei = (m/k) (\/{<J + 0o)/(cr — <x0) — 1) = Vs — 1. 
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Figure 5.12: Time evolution of the numerical and exact distribution (5.17) using (a) 
for x = Xmax = 50 and g(x, t) = 0. 
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Figure 5.13: Time evolution of the numerical and exact distribution (5.17) using (a) 
for x = Xmax = 50 and g(x, t) > 0 as in (5.16). 

Our method in (a) can be applied to the pure coagulation equation (g = 0) and 

a larger class of collision kernels K(x,y) = (a + fix) (a + j3y), (a > 0, (5 > 0). One 

needs only to couple (5.15) with the general formula for N(t) obtained by Shirvani 
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and van Roessel [89]. The authors derived a general formula for the total mass Mx(t): 

1 r&W 
Mi(t) = Mi(0) + - / h\p) e~0 " dp, for all time t > 0, 

(j Jo 

where £0(0) = 0, for 0 < t < Tgel and 

£' (t) - ft2 h* (&)(*) -f foW fo r t > T 

subject to the initial condition £o(Tgei) = 0, where Tgei = —l/(/3/i'(0)) and /i(z) 

represents the Laplace transform of the initial distribution n(rc, 0). An explicit formula 

for iV(t) that is valid up to the gel-time Tgel is given by N'(t) = -aN2{t)/2. To 

obtain a general formula for iV(£) for all time t > 0, one can use the approach in 

Example 4.10. Use M'Q{t) = - f N2{t), for all t > 0. 

The numerical computations suggested in (a) are performed in combination with 

analytical solutions for N(t). Future work extends the proposed improvement (a) 

to the general case a > 0 and (5 > 0, where N(t) cannot be solved analytically. In 

these cases we intend to solve the coupled system of equations (5.15) to obtain the 

numerical solution to nfe (5.15) by successive approximations as follows 

1. Choose a uniform partition Xi of the computational domain Q = [0, Xmax\. 

2. Calculate n°(xj, t) = n°(t) = n(xi, 0) (intial condition) at the grid nodes. 

3. For k = 1 , . . . , Nmax 

Approximate Nk(t) = / hk~l{y,t)dy by quadrature rules 
./o 

^-(x, t) + 0(x) nfc(x, t)Nk(t) = - ^ j X hk-\x - y, t)hk~\y, t) dy + B{x) g(x, t) 

4. ifmzx\hk(x,t)-nk-1(x,t)\ > Tol 

update the time step t = t + At until you have reached Tmax (5.18) 

where for simplicity we denote the approximation nh of the solution n to (5.15) as 

nh := n and N represents a numerical approximation of N(t). In the scheme pre­

sented above, Nmax is the maximum number of iterations, and Tol is some prescribed 

tolerance. 

The technique suggested above has been successfully used in the literature to 
numerically solve certain Volterra integral equations. In fact, Melzak [74] proved 
theoretical results for coagulation equations using the Picard method of successive 
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approximations, which can be used for initial stages of the evolving spectrum. How­

ever, a similar technique as in Section 5.2 can be used to provide good numerical 

results (or qualitative behaviour of solutions for large sizes). If one is interested in 

defining the entire history of an evolving spectrum then numerical solutions have to 

be combined with asymptotic solutions as suggested by Drake [25]. Our second sug­

gestion in (b) is based on the use of combined numerical methods and asymptotic 

solutions and thus it is more general. 

(b) Use of the asymptotic solution c(x, t) at large sizes x 

The method that we propose in this subsection is also intended to improve the accu­

racy of the numerical results in 5.3.1. This method is based on taking advantage of 

the asymptotic behaviour of solutions in Chapter 4 at large sizes into the numerical 

scheme. This second method is provided as a means of lowering the numerical error 

that we obtained in 5.3.1 due to the underestimation of the second integral. More 

precisely, this method takes into account the asymptotic behaviour of the solution 

c(x, t) for large x which in turn allows us to split the improper integral in (5.13) into 

two integrals: 

/•oo rXmax r°o 

/ n(x, t)dx = / n(x, t) dx + / n(x, t) dx. 
JO J0 Jxmax 

For the discretization of the first integral we use quadrature rules (as in 5.3.1). How­

ever, for the second integral we make use of the asymptotic behaviour of the solution 

for large x and either calculate it analytically (if possible) or approximate it. 

The selection of the truncation parameter Xmax plays an important role as it 

affects the computational time. Between the two methods presented in part (a) for 

selecting the upper bound Xmax we have chosen the one based on M[de. Alternatively, 

one can also make use of the method suggested by Drake [25], and determine the lower 

bound xm on the particle sizes x for which the ratio between the exact solution of 

(5.15) written in the form of an infinite series (using the approach suggested by Scott 

[94]) and the asymptotic solution (obtained by the saddle point method) remains 

within 1% of unity. Drake [25] showed that if the coagulation kernel is K(x, y) — xy, 

and for a family of initial gamma distributions of the form 

Cn(x) = (V+lY v -*(v+l) 
0 1 ' I > + 1) x e 
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If x > xm then the asymptotic solutions represent the exact solution to within less 

than 1% error. Here xm is defined by 

zm(2T)-(^+ 3) /iz + 2 ^ 
\v + l) i/ + 3 

where T = 1 — Mo(t). For example, if v — 1 then it was found that zTO = 7 and as v 

increases, xm increases. Future work will investigate more general ways of choosing 

•A-max tnat are based on moving mesh techniques. In this case the upper limit Xmax 

moves with time and does not rely on analytical results. 

For illustrating the results using the method (b), we consider the asymptotic 

solution (4.58) obtained in Example 4.3 for A large (in our case we denote x = A) 

and t > 0. Figure 5.14 shows an excellent agreement between the numerical and 

analytical solution for a truncation parameter as small as Xmax = 50 and a relative 

large interval of time t € [0,5]. In the attempt to validate our combined numerical 

and asymptotic method in (b) we have also considered the linear kernels and obtained 

that the numerical solution is in perfect agreement with the exact solution. 

Analytical 
• Numeric & Asymptotic 

Figure 5.14: Time evolution of the approximated and exact distributions (5.13) using 
(b) at x — Xmax = 50, for g(x, t) = 0. 

Conclusions 

In this chapter we have suggested a few numerical methods for solving the coagu­
lation equations in the absence/presence of particle source terms. We have divided 
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our presentation of the methods in three sections. In Section 5.1 we have reviewed 

some of the deterministic methods that have been developed so far in the literature 

of coagulation. On the basis of the conclusions of these studies, the discretized pop­

ulation balance equations method of Litster et al [67], the pivot method of Kumar 

and Ramkrishna [59, 60], and the Galerkin and orthogonal collocation on finite ele­

ment methods were found to be the most accurate and stable numerical techniques. 

Despite their predicted accuracy there are some common problems associated to the 

numerical solution of these equations. These include: the inaccurate calculation of 

the particle size distributions for highly aggregating processes, numerical instabilities, 

domain errors for high-order coagulation kernels (specially those related to gelation 

phenomenon). Due to the numerical difficulties of these methods and their limita­

tions, improved methods are of interest. 

Our main purpose, in Section 5.2 is to provide some improved methods that 

deal with general, though bounded coagulation kernels. For these types of kernels, 

we focus on two numerical methods: weighted residual methods (collocation) and 

adapted power series methods. The adapted power series turns out to be quite a 

reliable method for obtaining qualitative information about the numerical solution 

when compared to the exact known solution and the collocation method (even when 

we use only terms up to t2 in the series). One main advantage of using adapted power 

series over collocation methods is related to the computational time. Even though 

the collocation method requires integration only at the nodal points and seems to 

have good accuracy even with linear elements, it is computationally expensive. 

In Section 5.3 we provide some numerical results for kernels that increase suffi­

ciently fast, taking into account the presence of particle source terms. The method 

that we provide in this section is based on a direct discretization of the coagulation 

equation; followed by quadrature methods for the integral terms (based on Trape­

zoidal, Simpson's and Gauss-Laguerre quadrature) and time-integration of the system 

of ODEs. The method becomes more accurate when we combine the numerical scheme 

with the knowledge of the total mass (directly or through ODEs) or the asymptotic 

behaviour of solutions at large sizes. As pointed out in Chapter 4, for the coagulation 

kernels K(x, y) = (a + f3x){a + j3y), one can derive a new family of similarity (group 

invariant) solutions for the coagulation equations. These solutions depend on the 

function Q(t) and thus on N(t), which in turn satisfies an ODE. For some special 

cases, one can solve the ODE and deduce N(i) or some general formulas and thus de­

rive explicit or asymptotic solutions n(x, i) for (5.6) at large sizes and all time t > 0. 
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In general, one needs to solve the ODE for N(t) (or Q(t) in the notation of Chap­

ter 4) using numerical methods. Therefore, the methods in the subsections (a) and 

(b) prove to be quite useful in deriving a class of accurate numerical solutions to (5.6). 

192 



Chapter 6 

Summary and Future directions 

6.1 New and old solutions to the coagulation equa­
tion 

In this section we provide a brief summary of the similarity solutions we derived in 

Sections 4.2, 4.3. Our summary is divided into a few subsections that include ex­

plicit, asymptotic and power series solutions for a few types of coagulation kernels 

K(\,n,t) = l,a2(t), A/u, /32(i)A/i, (a + (3 A) (a + (3 n). We summarize the solu­

tions we obtained in Chapter 4 in the form of tables. Almost all the solutions are 

new/general family of solutions in the literature of coagulation or they are more gen­

eral family of solutions. All these solutions have been derived by using our direct and 

indirect methods in Chapter 4. For more details and derivation of the examples we 

present in the tables below see Section 4.2, 4.3. 
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6.1.1 K{\,fj,,t) = l and g{\,t)>Q 

Parameters 
c0(A) 
R(t) 
T(t) 

g(\t) 

c(X,t) 

M^t) 
Tgel 

NEW solution (Example 4.15) 
e"* 
non-decreasing, R(t) > 0, and R(0) = 0 

'2 
2+f'eWdr 
R'(t)T2(t)eRV-XTV 
T2^eR(t)-\T(t) 

em 
oo (no gelation) 

Smoluchowski's solution 
e"* 
0 

2 
2+t 

0 
4 -AA. 

( 2 + ^ e 

1 
oo (no gelation) 

Table 6.1: Explicit solutions for the kernel K(X,fj,,t) = 1 

6.1.2 K{\,/j,t) = a2(t) and g(X,t)>0 

Parameters 
Conditions 

K(X,n,t) 
co(A) 

9(\t) 

c(\,t) 

Mx(0 
rseJ 

Remarks 

NEW solution (Example 4.12 (i)) 
r, m, q > 0, r ^ 1, a (r — 1) > 0 

•^ (1 + rt) r , a 6 are arbitrary constants. 
me _ g A 

a m ( r - l ) ( l + r t ) K 4 t " ' M e - ^ ^ ' ) ^ '* 

md + r O 1 * 3 ^ ^ 1 ^ ^ * 
^ ( 1 + r t ) ^ 
oo (no gelation) 

„ n . , ^ fr = i, g = m, g = 0, A" = l 
If a = 0 , 0 = 1 =>• < , 2 m , 

[ Solution: c(A, i) = - ^ e~w x 

Table 6.2: Explicit solutions for the time-dependent kernel K(X, fj,, t) = a2(t) 
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Parameters 
Conditions 

K(X,n,t) 
c0(A) 

</(A,t) 
c(X,t) 
Mt{t) 

Tgel 

NEW solution (Example 4.12 (ii)) 
m, q > 0, a < 0 

iLgH-2)', a an arbitrary constant. 
me~ , A 

- a m e - W e - ' ^ " " 2 

m e - ( a + l ) t e - , A e - ' / » 

m fl-at 
Q 2 

oo (no gelation) 

Table 6.3: Explicit solutions for the time-dependent kernel K(\,n,t) — a2(t) 

6.1.3 K(\,n,t) = \n and g(X,t)>0 

Parameters 
Conditions 

Definitions 

A co (A) 

s(V) 
c(X,t) 

Q(t) 

Mi{t) 

Tgel 

Notes 

NEW solution (Example 4.1) 
A, p, q, a > 0 

- = - ( * ) * 
J given by the inverse Laplace transform of h(x) 

\h{x) satisfies the algebraic eq. A [h(xj\~llp + q h(x) — (x + a) = 0 
0 

1 / a S f-liffiQ \ - 5 / 2 - - (Q(t)+a-ao{p+l)tl/(p+D) A 

U(0)«, for i e [0,7^) 
\-a + a0(p+ 1) (i + g)"?+T, for t > Tgel 

|/i(o), for*e[o,rge/) 
\ao(« + 9)"'+T, for i > T s e / 

4[Mo)]-V_ g 

J We recover asymptotic Eq. [3.13] in Ernst et al. [34]; 

1 Our asymptotic solution is more general than Eq. [3.13] 

Table 6.4: Asymptotic large size (A —> oo) solutions for K(\,n,t) = A/x 
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Parameters 
Conditions 

Definitions 

c0(A) 

<?(A,0 

c(\,t) 

Q(t) 

Mx{t) 

Tgel 

Remarks 

Notes 

NEW solution (Example 4.3) 
A, p, q, a > 0 

o„ : - ( * ) * , A : - (*) ' 

r(P) 
0 

1 cc0P t £0 x_5/2c_(Q(t)+a_an(j)+1)ti/(P+i))x 
Y 2TT(P+1) 

j / 3 0 i , fori € [ 0 , 2 ^ ) 

1 - a + a0 (p +1) r ?+ i , for i > Tse, 

|A>, fori € [ 0 , 7 ^ ) 
| a 0 r i + T , for i > Tge, 

i(A)"" 
J ,4 = a = p > 0 => Eq. [3.13] in [34] 

| A = p = o = l=> Sol. [3.5a] in [34] 
We recover [3.13] in Ernst et al. [34] 

NEW solution (Example 4.4) 

7o, p > 0 

fS(X-p) 
0 
A-5/2

 P - ( W - ' + ' ° ( ; » P " ) A 

ho* , foriG[0,Tse i) 
S i ± i n ^ M ) fa t>Tgd 

j7o, foriG[0,Tpe;) 

I 
70P 

We recover [3.8a] in [34] 

Our sols, are more general 

Table 6.5: Asymptotic large size (A —> oo) solutions for K(X,/j,,t) = Aju 

Parameters 
Conditions 
Definitions 

S(t) 

c0(A) 

<7(A,i) 

Q(i) 

c(A,i) 

Mx(0 

7ffe( 

NEW solution (Example 4.16 (i)) 
<x, k, m, p, //0 > 0, a > | 

'l + £(3-2a) i ' 
3-2a 

fce-^/^TOA) 
A2 

^ *e-*W(0+-)/ l ( r o A > /5(ij) _ 5 / 2 

given by the I.V.P. (4.294) 

A2 ^ ( t ) ] 1 -

given by an IVP obt. from (4.294) 

use numerical methods (future work) 

NEW solution (Example 4.14 (ii)) 
k, p > 0, HQ = 0, a = §, CT > m > 0 
cr0 = V"-2 — "^2 

1 + ^ i 
m ke-*a h(m\) 
A2 

0 

(±(a-a0)t, for t £ [0,Tgel) 

h-M«W+») / t ( m A ^ 1 + ^ tj 

» V l + ^ « 

U l + ^ t ' t o r ' - ^ 
/c((7—t7o) 

Table 6.6: Explicit solutions for K(X, fi, t) = Xfi 
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6.1.4 K(X,fj) = A/x and e/(A,i)>0 

Parameters 
Conditions 
Definitions 

co(A) 

g(\t) 

Q(t) 

c(X,t) 

Mi(t) 

Tgej 

NEW solution (Example 4.16 (ii)) 
k, m, a > 0, <T > m > 0 

0o = Vc2 — m2 

U„-\a h{m\) 
he ^2 

fc2e-MWRa>/^(fc t + m ) A) 

A2(fet+m) 

f ^ ( ^ - ^ o ) ( | * 2 + mt) , for i€[0,Tpe;) 

[ k t + m — <x, for £ > Tge( 

A 2 Ii({kt + m) A) 

f^(ff-ffo)(fc* + m), for t€[0,Tgel) 

\k, for £ > Tgei 
m t rr+crn i \ 
k \y <?-a0

 l) 

Table 6.7: Explicit solution for K(X,p,t) = Xp 

Parameters NEW solution (Example 4.7) 

Conditions 

'p, q > 0 , m < - 1 , | In ( - Ai (1
2

+m)) | > (1 - m) y/q, where 

A c0 (A) 
given by the inverse Laplace transform of h(x) defined as 

( / ( " i - i ) \ 

S(A,«) •(2pt+g) ~^~ „-A (0(t)+a) 
T(-m) 

\ 2J4pexp(-ii^x/2pf+qj / Q(t) 
l/(l-m) 

- a, for 4 > T9d 

c(\,t) pe-(Q(t)+a)X op (2fc-2)l / 2 q p t + g ) 1 ^ ^ j x f l - m U 
A2(2pt+q) l^k=l ^-^[(fc-l)! ^ p2(-l-m) ^ r((l-m)fc-l) A 

(5e( 
1 

2p(l-m)2 111 \ A2 (1+m) j 
_2L 
2p 

Table 6.8: Formal series solution for K(X, p,t) = Xp 
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Parameters 
Conditions 

Definitions 

Examples 

h(x) 

G(x,t) 

F{x,t) 

Notes 
Remarks 

NEW solution (Example 4.8) 
^ > V2 
CO. 

i 

'w(s) > 0, Vs 

w'(s) completely monotonic in s,Vs 

lim^oo w'(s) e~w^ = 0 and lim.,-^ w(s) = oo 

J (a) w(s) = sa, where a e (0,1] 

\(b) w(s) = ln(l + (s + a)13), where (5 € (0,1], a > 0 arbitrary 

%{l-yJl-2-ie'w{x)) 
w>(x„<zt)e-w{x-%t] 

S ( ! _ ^ _ ^ e ^ - 3 0 ) 

We consider example (a) in Table 6.9 and leave case (b) for future work 
Future work investigates asymptotic and explicit solutions c(A, t) 

Table 6.9: General similarity solution for Burgers' eq. with sources: Ft + F Fx 

G(x,t) 

Parameters | NEW solution (Example 4.9) 
Conditions ^ > 0 , cj<2cj 

Definitions g = ^ and B = l + y/l-£i 

Ac0(A) 
given by an inverse Laplace transform of h(x) defined as 

h(x) = l-y/l-^er' 

Ag(A,Q J ( A _ 1 ) e - W f f l A - j * t ) 

g 2 e x P ( - ^ t ) + ? o x p ( ^ 0 

Q(t) 
2 In 

IB 

]nq+*t, 

) + | i , for i € [0 ,T 5 d ) 

for f > Tgei 

c(A, 0 
Asymptotic solution as A —> oo, and Vt > 0 

c3 ^-5/2 -A (O(0- ;f t-ln q) 
. 2 c 2 \ / i 

MS lgd 

Table 6.10: Asymptotic solution for K(\,/j,,t) = A/i 
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6 .1 .5 K(\,n,t) = (a + p\)(a + Pfi) a n d g(X,t)>0 

Parameters NEW solution (Example 4.11) 

g 5 > 0 , a £ ( p , i ) , / 3 > 0 , p g ( 0 , ^ - l Conditions 

Definitions 
S(t) = a5 + £e-<*WdT 

A = l - - N / l - 2 a ( p + l ) > 0 

G{x,t) 
2p,-gq(0 I e f t - _ , s 
a2S(t)2 1 5(t)P+! a U > T 1J 

eft 
^ r - a ( p + l) - [ a ( p + l ) ] 

given by ^ ^ e~^+^ A> <W> £-1 {gfo /,)}(A, l) (numerical)" 9(Kt) 

Q(t) | e f q (0^ ( t ) = 4 ( | ) " ; i { l - g ^ l e - f QW} 
P + l 

c(A,i) 2e~'Q 

(a+/3A) c Smm TZ, ^Sfei N F t w r ' l ' ^ - ^ 1 ) 
Remarks If a5 = 0 then CQ(A) = 0 (no particles at t — 0). 

Table 6.11: Formal series solution for K(\, jj,,t) = (a + (3 A) (a + (3 /ti) 

6 .1 .6 if(A,/x) g e n e r a l a n d gr(A, t) = 0 

Parameters 
Conditions 
.?(A, 0 
c(A,«) 

^(A) 

Remarks 

NEW solution 
c\, ci arbitrary constants 
0 
^ ( A ) ^ - ^ ) - 1 

J satisfies the IDE 

j V>(A) = - \ J* A-(A - /x, /x) V(A - /1) ̂ (/x) rf/i + V(A) J0°° K(X, , i ) ^ ) d/i 

J In general, the IDE cannot be solved analytically 

1 Numerical methods need to be employed (future work) 

Table 6.13: Similarity solutions c(A, t) for a general kernel K(X, //) and g(X, t) = 0 
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6.2 Future directions 

My research in the coagulation theory extends with several other new exciting devel­

opments. As part of my future research, I would like to branch out along some of the 

following lines: 

Theoretical work 

• Group symmetry methods for coagulation equations. I plan to extend the family 

of source terms proposed in Sections 4.2, 4.3 and obtain more explicit or asymp­

totic solutions to the coagulation equation. More specifically, I am interested 

in extending the symmetry method in Section 4.3 such that we include a more 

general, non-negative function ip(s), not necessarily depending on the similarity 

profile tft(s), and thus extend the family of source functions g(\, t). 

• Inverse Laplace transforms. Contour integration. In Section 4.2, we expressed 

the explicit solutions as formal series. My plan is to make use of the contour 

integration in order to obtain the inverse Laplace Transform and if possible to 

derive explicit solutions to the coagulation equation. 

• Group symmetry methods for coagulation-fragmentation equations with diffu­

sion. Elhanbaly [9] investigated the existence of similarity solutions for frag­

mentation equations with mass loss. In my future research, I plan to extend 

the symmetry group analysis I proposed for the coagulation equations in order 

to derive new similarity solutions to the coagulation-fragmentation equation. 

Then, I intend to apply this study for the case when both coagulation, frag­

mentation, and diffusion processes are present in the system. 

• Gelation phenomena: gel-time. I intend to investigate the gelation phenomena 

in the case when both coagulation, fragmentation and diffusion occur. I want 

to compare the gel-times in these systems with the corresponding times in the 

case when only coagulation is present. It is also interesting to provide (whenever 

possible) some explicit formulas for the gel-time, or some estimates (lower/upper 

bounds). 

• Total mass of particles. Shirvani and van Roessel [89] have provided an explicit 
formula for the total mass Mi{t) for all time for a coagulation kernel K(A, (j.) = 
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(a + 0 A) (a + (5 fj,). I plan to pursue a similar analysis to obtain a general post-

gelation formula for the first moment in the case when particle sources/sinks are 

present in the system for a bilinear, separable time-dependent kernel K(X, fi, t). 

Numerical work 

• Stability and error analysis. - Kumar et al [60] were the first to develop numeri­

cal algorithms based on moving mesh techniques and refining the grid based on 

preservation of two properties of the distribution. In my future work, I plan to 

extend these methods to the case of coagulation or coagulation-fragmentation 

equations with particle sources and sinks without imposing such restrictions. 

I also intend to investigate some ways of choosing the maximum particle size 

Xmax and other approximations for the convolution integral, such as Fast Fourier 

Transforms. 

- Sandu et al [90] suggest the use of spectral methods. I plan to apply these 

methods to the unbounded kernels in Section 5.2. 

- Another direct approach to solve the coagulation equation (5.2) is to discretize 

the system first in time and then in size. In this way, the time integration 

leads to a linear Fredholm integral equation of second kind for the distribution 

function c(x, tk+1) (see e.g. [90]). 

- Develop new numerical methods for time-dependent kernels K(\, p, t) as pre­

sented in Section 4.3. 

• New classes of efficient stochastic algorithms. Wagner [14] proposed some 

classes of stochastic algorithms for coagulation equations (without sources and 

sinks). As another long-term goal, I would like to investigate some new classes of 

efficient stochastic algorithms for the numerical treatment of these coagulation-

fragmentation equations with diffusion. This stochastic approach seems to 

evolve as a possible avenue for new research in the future. I also plan to extend 

the mass-flow algorithms to these general equations. 

• Gelation phenomena: gel-time. I intend to investigate better ways of determin­

ing the numerical onset of gelation phenomena in the case when both coagula­

tion, fragmentation and diffusion occur. 

• Numerical inversion of Laplace transforms. I propose a numerical method that 
determines the numerical solution by first solving the quasilinear associated 
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PDE (4.10) combined with a numerical inversion of the vector of discrete solu­

tions. 
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Chapter 7 

Appendix 

7.1 Proofs of some theorems in Chapter 4.2 

Optimal system of one-dimensional subalgebras of (4.34). 

Proof of Theorem J^.l: 

Indeed, consider the following vector field from the Lie algebra L8 

V = a8 Vg + a7 V7 + a6 Ve + a5V5 + a4 V4 + a3 V3 + a2 V2 + ai Vi, 

where ai,a2, • • • ,ag are arbitrary constants. Our task is to simplify V, and so its 

coefficients as much as possible. This can be done by judiciously applying adjoint 

maps to it (see [80] for details). 

Case A. Let' s assume first that a§ 7̂  0. One can scale V, if necessary and 

assume that a» = 1. By acting on the vector V by the adjoint operation V = 

Ad(exp(e V2))V we obtain the following relation 

V = V8 + (a7 -e)V7 + a6V6 + a5V5 + (a4 - £ a6) VA + (a3 - 2e a6) V3 

+ (02 - £ 03) V2 + (01 - £ a5) Vi (7.1) 

From (7.1), we can eliminate the coefficient of V7 by taking the value of the group 

parameter s = a7. Then we have 

V = V8 + a6V6 + a5V5 + a'A Vt + a3 V3 + a'2 K2 + a[ Vu 
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where a4, a'3, a2, a[ are new arbitrary constants (depending on a4, 0,3, a2, ai). Next, we 

act on V by Ad(exp((a'j2) Vi)) to cancel the coefficient of V~4, leading to 

V" = V8 + a6V6 + a'5V5 + a'3 V3 + a!2 V2 + a'x Vv 

Finally, if we act on V" by Ad(exp(ae V~5)) we can make the coefficient of V6 vanish 

and obtain 

V-= K8 + 4 l / 5 + a'3 K3 + 4 F2 + a'j 14 

We have a few cases to consider here: 

A l . If a'5 = 0 and a3 ^ 0 or a'3 = 0 and a'5 / 0 then the vector form V cannot be 

simplified further, and we obtain the vector fields V = V8 + V5 + a'2 V2 + a[ Vi, 

and ^ + ^5 + a'2 V2 + a[ Vx, where a[, a'2 G R. 

A2. If a'5 — a'3 = 0 then we can act on V by Ad(exp(e V7)) which gives 

V = Vs + a\Vl + {a'2 + £al
1)V2. 

For V, if a[ ^ 0 then we can eliminate the coefficient of V2 by choosing the 

parameter s — —a'2/a\ and obtain V — V% + a[ Vi, a[ € R \ {0}. On the other 

hand, if a[ = 0 then we have V = V$ + a'2 V2, where a2 € M. 

Thus, we obtain that every one-dimensional subalgebra generated by a vector field 

V with as i1 0 is equivalent to a subalgebra spanned by the vector fields Vs + V5 + 

a2 V2 + ax Vi, V8 + V3 + a2 V2 + ax Vi, V8 + Vi, V"8 - Vi, V8 + a2 V"2, where a1; a2 e R. 

Case B. The remaining one-dimensional subalgebras are spanned by vectors of 

the form above with a8 = 0, a-j 7̂  0. Take the following vector field 

V = V7 + a6 V6 + a5 V5 + a4 V"4 + a3 V3 + a2 V2 + ax Vi (7.2) 

In (7.2), acting on V by Ad(exp(a2 Vi)) and ylo?(exp(a3 V5)) we obtain 

V" = V7 + a6 V6 + a5 F5 + a4 V4 + a! Vi 

We need to consider the following subcases: 

B l . If «6 = 0 then acting on V" = V7 + a5 V5 + a4 V4 + «i Vi by Ad(exp(eV2)) we 

get V" = V7 + a5 V"5 + (ai — ea5) Vi + a4 V4. We have two subcases to consider: 

(a) If as ^ 0 then we can choose e = ai/as and make the coefficient of Vi 

disappear. Then V = V7 + Vs 4- a4 V4, where a4 G E. 
(b) If a5 = 0 then we get V = V"7 + a4 V4 + a! Vi, where 01, a4 e R. 
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B2. If a5 = 0 and a6 ^ 0 then we get V" = V7 4- V6 4- a4 V4 4- ax Vu where 

ai, a4 G R. 

Therefore, every one-dimensional subalgebra generated by a vector field V with 

a8 = 0 and a7 ^ 0 is equivalent to a subalgebra spanned by either V7 4- V5 4- a4 V4, 

V7 + a4 V̂  + aj Vi, or V7 4- V6 4- a4 V4 4- a,i Vit where au a4 G R. 

Case C. The remaining one-dimensional subalgebras are spanned by vectors of 

the form above with ag = a7 = 0, a^ y^ 0. In this case, we first rescale V to get a^ = 1 

and acting on V above by /W(exp(as Vi)), Ad(exp(a4 V2)), we obtain 

V = V6 + a3 V3 + a2 V2 + ai Vi 

A few subcases are included below: 

CI . If a3 = 0 then acting on the new V by Ad(exp(sV5)) we get V = V6 + a2 V2 + 

(ax + ea2) Vj. We have two subcases to consider 

(a) If a2 7̂  0 then we can choose e = —ai/a2 and make the coefficient of 

Vi disappear and thus we get the new vector form V" = V6 + a2V2, where 

a2 G R. 

(b) If a2 = 0 then we obtain V" = V6 4- ai Vi, where ai G R. 

C2. If a3 ^ 0 then we get V" = V6 4- V3 4- a2 V2 4- a! Vi, where ax, a2 G R. 

Thus, every one-dimensional subalgebra generated by a vector field V with a8 = 

a7 = 0 and a6 ^ 0 is equivalent to a subalgebra spanned by either V64-V34-a2 V24-ai Vi, 

V6 4- ax Vi, or V6 + a2 V2, where al5 a2 G R. 

Case D. The remaining one-dimensional subalgebras are spanned by vectors of 

the form above with a% — a7 — a§ = 0,05 ^ 0. In this case, by acting on V above by 

Ad(exp(ai Vi)) we obtain 

V' = V5 4- a4 V4 4- a3 V3 + a2 V2 

If a4 = 0 then we have V = V5 4- a3 V3 4- a2 V2, with «2, a3 G R. On the other hand, 

if a4 ^ 0 then the new vector form becomes V" = V5 4- V4 + a3 V3 4- a2 V2, where 

a2,a3 G R. Hence, every one-dimensional subalgebra generated by a vector field V 

with as = a7 — a§ — 0 and 05 7̂  0 is equivalent to a subalgebra spanned by either 

V5 4- a3 V3 4- a2 V2 or V5 4- V4 4- a3 V3 4- a2 V2, with a2, a3 G R. 
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Case E. The remaining one-dimensional subalgebras are spanned by vectors of 

the form above with a8 = a7 = a6 = a5 = 0, a4 ^ 0. In this case, by acting on V 

above by Ad(exp(e V2)) we obtain 

V = V4 + a3 V3 + (a2-e o3) V2 + ax Vx 

If 03 7̂  0 then we can choose e = 0,2/0,% to make the coefficient of V2 disappear and 

we get V = V4 + V3 + ai Vi, with ai G R. On the other hand, if a3 = 0 then the 

new vector form becomes V" = V4 + a2V2 + a\ Vi, where a2, «i € R- So, every one-

dimensional subalgebra generated by a vector field V with a8 = ar = a6 = 0,5 — 0 and 

a4 ^ 0 is equivalent to a subalgebra spanned by either V4 + 03 V3 + a2 V2, V4 + a2 V2, 

or V4 + a3 V3, with a2, a3 G R. 

Case F. The remaining one-dimensional subalgebras are spanned by vectors of 

the form above with as = a7 = a$ = a5 = a4 — 0,03 7̂  0. In this case, by acting on 

V above by Ad(exp(a2 V2)) we obtain V — V3 + a\ Vi, where ai € R. Similarly, we 

have two more one-dimensional subalgebras V2 + a\ Vj. and V = Vi, with a\ 6 R and 

the proof of Theorem 4.1 is now complete. • 

Optimal system of one-dimensional subalgebras of (4.101). 

Proof of Theorem 4-4: 

Indeed, take the following vector field from the Lie algebra C% 

V = c8 V8 + c7 V7 + c6 V6 + c5 V5 + c4 V4 + c3 V3 + c2 V2 + cx Vi, 

where ci, c2,..., c8 are arbitrary constants. Similar to the previous case, our task is to 

simplify V as much as possible by applying adjoint maps to it (see [80] for a details). 

Case A. Let' s assume first that c8 ^ 0. One can rescale V, if necessary, and 

assume that c8 = 1. By acting on V by the adjoint operation V = Ad(exp(s V6))V 

we obtain the following vector field 

V' = V8+ (c7 - £ ̂ ) V7 + (c6 - £ ̂ c 6 ) V6 + (c5 + £c2) V5 + (c4 - e ^ c 3 ) V4 

+ c3 V3 + c2 V2 + ci Vi (7.3) 
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It follows from (7.3), that we can eliminate the coefficient of V-j by choosing the value 

of the group parameter e = -^L. Then we have 

V = V8 + c'6V6 + c'5V5 + c'4 l/4 + c3 V3 + c2V2 + ci Vu 

where c6, c5, c4 are new arbitrary constants depending on the previous constants. 

Next, if we act on V by Ad(exp(e V2)) we obtain the vector field 

V" = Vs+c'6V6+(c'5-ec'6) V5+c'4 l/4+(c3-£C4) V3+(c2-eCl+e | c'5) V2+Cl Vi. (7.4) 

We consider next two separate cases: 

Case A l : If c'6 ^ 0 (we can rescale V" such that c6 = 1), then we can make 

the coefficient of V5 in (7.4) vanish by choosing e = c'5/d6 and obtain V" = Vg + 

^6 + c4 V4 + c3 V3 + c2 V2 + ci V\. Next, we can make the coefficient of V4 in V" 

disappear by acting on V" by Ad(exp(—„ V3)) and obtain the vector field V = 

Vg + V6 + c3 14 + c2 ^2 + Ci Vi, which cannot be simplified further. 

Case A2: If c6 = 0, then we obtain 

V" = Va + c'5 V5 + c4 V4 + (c3 -£c'4)V3+(c2-eCl+e^ c'5) V2 + Cl Vx. (7.5) 

(a) If in (7.5), we have c4 / 0, then we can choose e = c3fd4 to make the coefficient 

of V3 vanish and by rescaling V" we set c4 = 1, so we get 

V" = V8 + V, + c'5 V5 + 4 ^2 + ex Vi 

If we apply on V" the adjoint operation .A<i(exp(£ V8)) and choose s ^ V( c i ~~ 

c5a/(2/3)), we can rescale V" so that the coefficient of V8 equals to one. Next, set e = 

ac'5/2 and obtain V* = V8 +V4 + c; Vt + c2 V2. Finally, on V* apply Ad(exp(-c2 /?) V3) 

to obtain Vg + V4 + cj Vi, where c\ G M, with no possible further reduction. 

(b) If in (7.5), we have c'4 ̂  0, then acting on V" by Ad(ex.p(e V3)) we get 

V = V8 + c'5 V5 + (c3 + s c'5 ^ ) V3 + (c'2 + £ ) V2 + Cl Vi (7.6) 

(b l ) Assume that c5 ^ 0 then we can make the coefficient of V3 in V disappear if we 

choose e = -^rf, By rescaling V s.t. c'5 = 1 we obtain V"" = V8 + V5 + c2 V2 + ci Vi. 

Next, act on V"" by v4d(exp(e V2)) to get 

v = v» + v5 + c 2 + £ G ~ c i ) ] v 2 + c i V i 
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Two subcases arise here, if c\ ^ | then we get V** = V8 + V5 + cx Vi, or if ci = | 

then we have V** = V8 4- V5 4-1 Vi + c2 V2, where c2 6 1 . 

(b2) If 4 = 0 then we can act on V in (7.6) by /W(exp(—c'2 (3) V3) to obtain 

V"" = Vs + c3 V3 + ci V̂  

whose coefficients can't be simplified further. 

Therefore every one-dimensional subalgebra generated by a vector field V with 

c8 7̂  0 is equivalent to a subalgebra spanned by the following vector fields V8 + V6 + 

C3V3 + C2V2 + C1 Vi; Vs + V̂  + ciVi; V8+ c3 V3+ ci Vi, where c3,c5,C2, Ci e R, or 

Vg + V5 + ci Vi, (where ci 7̂  f) and V8 + V~5 + | Vi + c2 V2, where c2 G R. 

Case B. The remaining one-dimensional subalgebras are spanned by vectors 

with c8 = 0, C7 7̂  0 of the form 

V = V7 + c6 V6 + c5 V5 + c4 V4 + c3 V3 + c2 V~2 + cx Vv (7.7) 

In (7.7), acting by Ad(exp(e Ve)), we obtain 

V = V7 + (c6 + e ci - £^ c5) V6 + (c6 + e c2) V5 + (c4 - e •£- c3) V4 + c3 V3 + c2 V2 + Cl Vx 

(7.8) 

Next, we consider two separate cases: 

Case B l : If c2 / 0 then we can eliminate the coefficient of V5 in (7.8) by setting 

£ = —C5/C2, and rescale V s.t. c2 = 1 to get 

V' = V7 + V2 + c'6 V6 + c'4 Vi + c3 V3 + ci Vi 

By acting on V by Ad(exp(£ V4)) we have 

V" = V7 + V2 + (c'6 - £ ^ ) V6 + (</4 + eCl) V4 + (c3 + £) V3 + ci Vi (7.9) 

In (7.9), if c\ ^ 0, then choosing e = —djc\, we can make the coefficient of V4 vanish 

and obtain V" = V7 + V2 + Vi + d6 V~6 + c3 V3, which cannot be simplified further 

by taking any adjoint operations on V". However, if Ci = 0 in (7.9) then we obtain 

V" = v7 + V2+c'6 V6 + 4 V4 + c3 V3, and acting on the latter by Ad{exp(^- V4)) yields 

V"" = V1 + V2 + diVi + dzVz. 
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Case B2: If in (7.8), c2 = 0 then acting on V by Ad(exp(e V4)) we have 

VH = V7+(^-s^Vs + c5V6+(^A + ec1-e-^c6
yjV4 + c!iV3 + c1V1. 

If ex ^ a a then set £ = - c l _ a % { 2 W ) to get V" = V7 + c'6 V6 + c5 V5 + c3 V3 + cx Vi. 

Moreover, by acting on V" by Ad(exp(s V7)), where we assume £ ^ ^ , and rescaling 

the new vector s.t. the coefficient of V7 equals to one, we have 

V"" = V7 + 4 V6 + ( 4 + e i c'3) + c'3 V3 + (ci + ejf) Vi- (7.10) 

In (7.10), if c'3 ^ 0, then we can set £ = - £ £ to obtain V* = K7 + V3 + cS V6 + ctV5. 

On the other hand, if in (7.10) we have c'3 = 0 then we set e = — -^ and obtain 

Furthermore, acting on V by Ad(exp(£ VQ)) and assuming c\ ^ ^ one obtains 

^ = ^ 7 + 55^5 + 51 VI, 

which cannot be simplified further. Thus, every one-dimensional subalgebra generated 

by a vector field V with eg = 0 and c7 ^ 0 is equivalent to a subalgebra spanned by 

V7 + V2 + c4 V"4 + c3 V3, V"7 + V2 + Vx + c6V6 + c3 V3, V7 + c5 V5 + d Vi, and 

V7 + V3 + c6 Ve + c5 V5, where cu c3, c4, c5, c6 € R. 

Case C. The remaining one-dimensional subalgebras are spanned by vectors 

with eg = c7 = 0, C6 7̂  0 of the form 

V = V6 + c5 V5 + c4 V4 + c3 V3 + c2 V2 + Cl Vi. (7.11) 

In (7.11), acting by Ad(exp(e V4)), we obtain 

V = Ve + c5 V5 + (c4 + eci - e-^- c5) V4 + (c3 + £c2) V3 + c2 V2 + a Vx (7.12) 

Next, we consider two separate cases: 

Case Cl: If c2 ^ 0 then choose e = -C3/C2 in (7.12). Next, apply Ad(exp(—c$ V§)) 

on V to eliminate the coefficients of V3, and V5, respectively. We obtain 

V" = V6 + V2 + c'4Vi+ ci Vi 
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Next, by acting on V" by Ad(exp{-^ V3)) we get V" = VQ + V2 + cx Vx, where 

ci 6 i 

Case C2: If c2 = 0 in (7.12) then acting on V by Ad(exp(e V3)) we get 

V"" = V6 + c5V5 + (c'4 + e^)v4+(c3 + e^c5)v3 + clV1 

There are two subcases to consider for V"": 

(i) If c5 = 0 then we have V"" = V6+C4 V4+C3 V3+C1 Vi, and applying Ad(exp(s V4)) 

we obtain 

V = V6 + (c4 + £Cl)V4 +03^3 + 0 ^ (7.13) 

In this case, if C\ = 0 then acting on V by Ad(exp(-^ £ ±)) we get V6 + caV3. On 

the other hand, if C\ *fi 0 then choose £ = —c!Jc\ in (7.13) to obtain V6 + V\ + C3 V3, 

where for both vectors obtained above we have c% € E. 

(ii) If in (7.12), we have c5 ^ 0 then choose e = - ^ and obtain V* =V6 + V5 + 

c'[ V\C\ Vx, and applying on V* the adjoint operation Ad(exp(e V4)) we obtain 

V** = v6 + V5 + c'i + e(c1-~)]v4 + c1V1. 

In this case, if cx = ^ then we get V = V6 + V5 + ~^Vi + c4 V4, where c4 € M. On 
c" 

the other hand, if c\ =fi fg then choose e = _c +*/(2 3) t ° §e* 

V = F6 + V5 + ci Vi, where ci € RR, and ci / — 
z p 

Thus, we obtain that every one-dimensional subalgebra generated by a vector 

field V with c» = C7 = 0 and C6 # 0 is equivalent to a subalgebra spanned by either 

V6 + V2 + c1V1, V6 + c3V3, V6 + Vx + c3V3, Vk + Va + ^ V i + c ^ , where cu c3, c4 € R 

and y6 + V5 + ci Vi, where ci 7̂  ^ . 

Case D. The remaining one-dimensional subalgebras are spanned by vectors 

with cs = C7 = C6 = 0, C5 7̂  0 of the form 

V = Vr5 + C4Vr4 + C3V
r3 + C2Vr

2 + CiVi. (7.14) 

In (7.14), acting by Ad(exp(s V4)), we obtain 

V' = VB+ (c4 +eCl- e-^j V4 + (c3 +ec2) V3 + c2V2+ cx Vx (7.15) 
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Next, we consider two separate cases: 

Case D l : If ci ^ A then we choose e = ^hr in (7.15) and obtain 

V" = V5 + c'3 V3 + c2V2 + C! VI 

Next, act on V" by Ad(exp(s V2)) to obtain 

V" = V5 + c'3 V3 + (c2 - e ci + e ^ ) V2 + cx Vx (7.16) 

Then there are two subcases to consider for (7.16): 

(a) If c\ 7̂  % then set s = — a^~ m (7-16) to eliminate the coefficient of V2 and then 

apply Ad(exp(—^ V3)) to eliminate the coefficient of V3. We obtain V" = V5+Ci Vx, 

where ci any constant s.t. c\ ^ §, fa-

(b) If ci = f, then V" in (7.16) becomes V"" = V5 + fjV1 + c'3 V3 + c2V2. Acting 

on V"" by Ad(exp(—^ V3)) then we get the vector field 

cx 

V = V5 + - VI + c2 V2 where c 2 e i 

Case D2: If cx = ^ then (7.15) becomes 

^ = V5 + ^ V 1 + c4V4 + c3V3 + C2V2 (7.17) 

and applying Ad(exp(—^^ V2)) to eliminate the coefficient of V2 we get 

V* = V5 + ^V1 + ciVi + c'3V3 

Finally, acting on V* by A * ( e x p ( - ^ V3)) we can eliminate the coefficient of V3 and 

obtain the vector field 

V = V5 + -£- Vx + c4 V4 where c4 € R 
2p 

which can't be simplified further. Hence, every one-dimensional subalgebra generated 

by a vector field V with cs = c7 = c6 = 0 and c5 7̂  0 is equivalent to a subalgebra 

spanned by V5 + c\ Vx, where cx is any arbitrary constant and Cx 7̂  i , A , and 

V5 + f Vi + c2 V2 where c2 e R. 
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Case E. The remaining one-dimensional subalgebras are spanned by vectors 

with cs = c7 = c6 = c5 = 0, c4 ^ 0 of the form 

V = V4 + c3V3 + c2V2 + c1V1. (7.18) 

In (7.18), acting by Ad(exp(e V2)), we obtain 

V = V4 + (c3 - e) V3 + (c2 - e Cl) V2 + Cl Vi (7.19) 

Next, we consider two separate cases: 

Case E l : If ci ^ 0 then we choose e = f- in (7.19) and obtain V" = 

V4 + Vi + c'3 V3 + c2 V2. By acting on V" by /t<i(exp(c3 V2)), we get the vector field 

V* = Vi + Vl + c*2V2, where c ^ e l . 

Case E2: If c\ — 0 in (7.19) then we obtain V = V4 + c3 V3 + c2 V2, and acting 

on V" by Ad(exp(s V4)) we obtain 

V" = V4 + (c'3 + £ c2) V3 + c2 V2 (7.20) 

In this case, if c2 7̂  0 then set e = — ̂  to make the coefficient of V3 vanish and thus 

we have V = V4 + c2 V2, where c2 6 R \ {0}. On the other hand, if in (7.20) we 

have c2 = 0 then we can apply Ad(exp(c'3 V2)) and thus obtain V4. Therefore, every 

one-dimensional subalgebra generated by a vector field V with c8 = c7 = c6 = c5 = 0 

and c4 7̂  0 is equivalent to a subalgebra spanned by either V4 + V\ + c2 V2, and 

V4 + c2 V2 where c2 G R. 

Case F . The remaining one-dimensional subalgebras are spanned by vectors of 

the form V = V3 + c2 V2 + c\ Vi, with c8 = C7 = c^ = c$ = c4 = 0, c3 ̂  0. In this case, 

by acting on V above by Ad(exp(e V2)) we obtain 

V' = V3 + (c2-sc1)V2 + c1V1 

In this case, if cx ^ 0 then we can make the coefficient of V2 disappear by choosing 

£ = a and thus obtain the vector field V = V3 + C\ Vi, where c\ £ R \ {0}. 

Moreover, if ci = 0 then we get V3 + c2V2, where c2 € R. Hence, every one-

dimensional subalgebra generated by a vector field V with c8 = C7 = c6 = C5 = C4 = 0 

and C3 7̂  0 is equivalent to a subalgebra spanned by either V3 + c2V2, and V3 ± Vi 

where c2 6 R. Similarly, we obtain two more one-dimensional subalgebras spanned 

by the vector fields V2 + cx V\ and V = Vi, where C\ € R. Thus the proof of Theo­

rem 4.4 is now complete. • 

213 



Optimal system of one-dimensional subalgebras of (4.136) 

Proof of Theorem 4-5: 

Indeed, let's consider the following vector field from the Lie algebra £4 

v = ai Vi + a2 V2 + a4 V3 + a5 V4, 

where ai,a2,a,4,a5 are arbitrary constants. Our task again is to simplify v, and its 

coefficients as much as possble by judiciously applying adjoint maps to v. 

Let's assume first that a\ ^ 0. One can scale v, if necessary and assume that 

ai = 1. By acting on the vector v = Vi + a2 V2 + 0.4 V3 + a5 V4 by the adjoint operation 

v' — Ad(exp(e V4)) we obtain the following new vector field 

v' = Vi + a2 V2 + a4 V3 + a5 - s (l - - ^ ) VA 

If o4 ^ f then we can set e = °|a to eliminate the coefficient of V4 and thus we 
1 i> 

obtain the new vector field v" = Vi + a2 V2 + a4 V3, where a2 is arbitrary, whose 

coefficients cannot be reduced further. On the other hand, if a4 = | then we obtain 

v = Vi + I V3 + a2 V2 + 0,5 V4, which cannot be simplified further. Therefore (i) is 

proved. 

The remaining one-dimensional subalgebras are spanned by vectors with ax = 0 

and a2 ^ 0. Take the following vector field v = V2 + 04 V3 + 05 V4 and acting on v by 

Ad(exp(e V4)) we obtain v — V2 + a4 V3 + (a5 + ^ e) V4. If a4 ^ 0 then we can choose 

the group parameter s = —j^- and thus obtain v = V2 + a4 V3. Moreover, if a4 = 0 

then we obtain V2 + a5V4 with a5 arbitrary. Thus, (ii) holds. 

The rest of the one-dimensional subalgebras are spanned by vectors with a\ — 

a2 = 0 and a3 ^ 0. Consider the vector field v = V3 + 0,5 V4 and acting on v 

by ^4c?(exp(£ V4)) we obtain v'" = V3 + (a5 + | e ) V4. Choose the group parameter 

s = —TT^ Then we obtain v* = V3. Similarly, we obtain that every one-dimensional 

subalgebra spanned by the vector fields v with a\ = a2 = a4 = 0 and with as ^ 0 

is equivalent to a subalgebra spanned by V4. Thus the proof of Theorem 4.5 is now 

complete. D 
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7.2 Absolutely and completely monotonic functions 

In this subsection we provide a few definitions of absolutely and completely monotonic 

functions that we used in this thesis (see e.g. [117]). 

Definition 8 A function f : (a, b) —> R is said to be: 

(i) absolutely monotonic if f^(x) > 0, for x G (a, b), k = 0,1,2,... 

(ii) completely monotonic if (—l)k / ^ ( x ) > 0, for x £ (a, b), k = 0,1,2,... 

Remark 7.1 From the definition above it follows that the sum and the product of 

any completely monotonic functions is also a completely monotonic function. 

Lemma 7.1 / / (i) f\ is absolutely monotonic in the interval (a,b), and (ii) / 2 is 

completely monotonic in the interval (c,d) with a < /2((c, d)) < b, then /i(/2(x)) is 

completely monotonic in the interval (c, d). 
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