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Abstract

In this thesis we present two generalized methods to determine similarity solutions
for the coagulation equations. The first is an indirect method applied to a quasilinear
first order partial differential equation associated with the coagulation equation that
determines a local Lie group of point transformations that leaves the PDE invariant.
The second method is a new generalized version of the direct methods that determine
the symmetry group of the point transformations to integro-differential equations.
We apply this second method to the coagulation equations. These methods provide
us with new family of exact and asymptotic solutions to the coagulation equations.

The group symmetry methods are further used for numerical studies. In this
thesis, we focus on two classes of coagulation kernels: bounded kernels and unbounded
kernels. For the class of bounded kernels we present two reliable numerical methods
for solving the coagulation equation: the collocation technique, and adaptive power
series method at successive points. For the class of product kernels we propose a
numerical method that is very accurate and relies on combining the numerical scheme
with the knowledge of the total mass or the asymptotic behaviour of solutions at large
sizes.

In addition, we prove the global uniqueness of solutions to the coagulation equation

with source terms in a suitable Banach space for which the global existence holds.
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Chapter 1

Introduction

We divide our introduction into five sections. In the first section, we provide some
general ideas about coagulation processes. The second section describes the mathe-
matical model for the coagulation equation with particle source terms and sinks. In
the third section, we provide some motivation for studying these coagulation equa-
tions. The fourth reiterates some previous results in the mathematical theory of
coagulation. Finally, in the fifth section we provide an overview of this thesis.

1.1 Coagulation processes

Disperse systems (aerosols) consisting of solid or liquid particles suspended in fluid
or gas, play an important role in nature and industry. The clouds, composed of a
suspension of water drops in the atmosphere, are a major factor affecting climate. The
atomization of liquid fuels and the pulverization of solid fuels are common industrial
operations which generate disperse systems. Many chemical materials are handled in
the form of emulsions during manufacture. Many industrial operations also produce
aerosols either as an intentional part of the operation or as an undesirable byproduct,
such as dusts formed during mechanical processing of rocks or radioactive dust in a
nuclear reactor accident and smoke evolved during the combustion of fuel.
Particulate matter processes are “emerging as a new frontier” in environmental
studies as aerosols negatively affect human health, reduce visibility and modify warm-
ing through scattering and absorption of solar radiation. In general, disperse systems
consist of particles of many different sizes, and knowledge of the size distribution is
necessary for understanding the behaviour of the system as a whole. A better under-
standing of the particle size distribution of disperse systems has applications in the
processing of emulsions, gas cleaning, water treatment, study of air cleaning and air



pollution.

Particles in a disperse system move in response to external forces such as grav-
itational and electrical forces, and fluctuating forces due to thermal motion of the
fluid host. This relative movement of particles can bring them into contact; when
they collide and stick together, the process is called coagulation. As a result of co-
agulation, diffusion, and fragmentation, the particle size distribution of a disperse
system changes continually. Coagulation of particles has been observed in various
phenomena, such as Brownian coagulation, polymerization, as well as clustering of
planets, stars and galaxies. A physical phenomenon similar to coagulation takes place
in physical processes such as the growth of crystals.

The aim of this thesis is to study the particle size distribution as a function of
particle size (or volume) and time as the aerosol population undergoes changes due
to various physical and chemical transformations. Coagulation forms new particles
of volume X + g from the collision of two particles of volumes A and p; the collision

rate is proportional to the number of available particles and to the coagulation kernel,
which will be defined below.

1.2 Mathematical model

Of particular interest to us is the coagulation process of particles in a disperse system
governed by the Smoluchowski coagulation equation with particle sources and sinks:

/m o) SO0 1 s = F0,8) [ KOum) )
+ SO\ 1) = R(t) fM £), (1.1)

subject to initial condition

F(A0) = fo(A) (12)

where the size and time variables A, ¢ range in [0, 00), the function K (A, ) is the
coagulation coefficient for particles of sizes (or volumes) A and u, S(\,t) is the rate
of addition of new particles to the system and R(t) is the rate of removal of particles
from the system. Each of the terms will be explained in detail below.

Equation (1.1) models a system of a large number of particles that can coagulate

to form larger clusters of particles, with particle sources and sinks; each particle
in the system is assumed to be fully identified by its size (or volume) A. From a

2



physical point of view, the basic mechanisms taken into account are the processes
of particle coalescence to form larger clusters, emissions and depositions (or sources
and sinks). Other effects such as multiple coagulation, fragmentation, condensation,
sedimentation and spatial fluctuations are not considered. Derivations of similar
equations as well as further details and examples, including a ‘discrete’ summation
version of (1.1), can be found in Drake [25] and Dubovskii [26] and references therein.

The terms in equation (1.1) mean the following: f(,t) is the density function of
the particle distribution. The system is assumed to be homogeneous and unbounded
and the interaction occurs only between two particles at a time. Moreover, we also
assume that the total number of particles is large enough to justify the use of the
density function, with f(, t) dX representing the average number of particles per unit
volume having mass between A and A + dA at time ¢.

The coagulation kernel K(\, ) models the rate at which particles of mass A
coalesce with those of mass u, and is known from the physics of the process. For
physical reasons, K is assumed to be a symmetric and non-negative function. In
Section 4.3 of this thesis the kernel K is also allowed to be time-dependent.

The first integral on the right-hand side of (1.1) represents the rate of increase in
the number of particles of mass A\ as a result of the coalescence of two particles the
masses of which add up to A. The factor 1/2 has been included to prevent double
counting. The second integral represents the rate of disappearance of particles of
mass A, due to their coalescence with all other particles in the system. The function
S(A, t) is the rate of addition of new particles into the coagulating system (the source
term), and R(t) determines the rate of removal of particles from the system (the sink
or removal term). For physical reasons, S and R are assumed to be non-negative
functions, known from the physics of the process. Neither of the functions S and R is
assumed to be continuous as we would like to “turn the source and removal terms on
and off” at various times. In addition, throughout the thesis, R is assumed to be a
locally integrable function on an interval [0,7) C [0,00). For a complete description
of the terms in (1.1) see e.g. [25, 26, 74, 104].

For a description of physical processes, it is necessary to specify the functional
forms for the coagulation coefficient K (), p1), the rate of production of new particles
S(A,t) and the rate of particle removal R(t). In a realistic environment, these func-
tions would be complicated nonlinear functions of size (or volume) and time, which
would necessitate the numerical solution of equation (1.1) in nearly all cases. An-

other important consideration in solving the Smoluchowski coagulation equation is a



realistic choice of the initial size distribution f;. From a physical point of view, fy
is assumed to be non-negative, and fo(A)d A is the total number of particles whose
volume lies between A and A + dA per unit volume of air.

Parameters in the coagulation equation

(i) Moments of size distribution

From a physical point of view, the following quantities are important in this thesis:
M(t) = / Nef(A\t)d\, where k=0,1,2, ...
0

which represent the k-th moment of the size distribution f. In particular, My(t) is
the total number of particles per unit volume at time ¢, M;(¢) is the total mass of
particles per unit volume at time .

(ii) Coagulation kernels

The coagulation kernels we use in this thesis are those proposed by Stockmayer
[108] in the chemical process of branched-chain polymerization. Stockmayer assumed
that no rings can form in a polymer and every unreacted binding site has an equal
chance of reacting with an available site on another polymer. With these assumptions,
Stockmayer pointed out a connection of the polymer size distribution with the pure
coagulation equation (1.1), where the coagulation kernel is

K\p)=[p-2)A+2][(p—2)p+2], where A\, p>0, p>2.

Polymeric molecules (k-mers) are composed of kK monomeric units. Each monomeric
unit carries p functional groups which are capable of interacting with each other.
Hence, the coagulation kernel K above represents the number of possible links be-
tween A\-mers and y-mers. This kernel is physically relevant in the polymerization
process where frequent branching of chains is structurally permissible. One example
occurs in the glycerol-phthalic anhydride reaction, where the material gels suddenly
at a certain extent of reaction independent of the temperature at which the reaction
is carried out (see e.g. [108]). Stockmayer also observed that a coagulation equation
with a multiplicative kernel K (A, z) = Ap can be obtained in fact from (1.1) in the
limit p — oo by scaling the time appropriately (by using (p — 2)?¢ as a new time
variable).



The coagulation kernels of interest in our thesis are given by
K(Ap) =0(\)0(n), where 6(A\)=a+ A, (1.3)

with &, 8 > 0 arbitrary constants. These kernels are particularly important for ana-
lyzing the “gelation” phenomenon that occurs in the case when the parameter 8 > 0.
Examples of some commonly used coagulation kernels used in the literature and their
applications can be found in [21, 22, 25, 26, 63].

(iii) Particle source terms and sinks

Source terms and sinks are potentially useful in industrial applications where one
might want to exercise some control over the coagulation processes. For instance, it
may be desirable to increase or restrict the limiting number of particles of a particular
size. Omne might attempt to achieve this by the introduction of particles of some
prescribed size to enable the coagulation process to arrive at some desired limiting
state.

1.3 Motivation

The Smoluchowski’s coagulation equation models various kinds of phenomena such as:
in chemistry (polymerization), in physics (aggregation of colloidal particles, dispersion
of airborne particles), in astrophysics (formation of stars and planets), in engineering
(behaviour of fuel mixtures in engines), in genetics, in graph theory, etc.

The contribution of this thesis is the study of industrial processes in which parti-
cles are being added to and removed from the system while the processes occur. One
example of application of such processes is the manufacturing of aluminium alloys.
Here, molten metal is kept in a holding furnace for several hours while particles of
titanium diboride are added for further solidification and casting. During this process
these foreign particles can agglomerate and be lost from the melt by attachment to
the furnace walls, thus jeopardizing the desired properties of the alloy, and increas-
ing manufacturing costs (see, e.g. Wattis et al. [114]). Although there have been
significant studies regarding the size distribution in molten aluminum, still not much
is known about the kinetics of the coagulation in this system. Another application
is in the study of water treatment, controlling particle mass loss is what allows the
removal of tiny particles (called colloids, measured as total suspended solids) in raw
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water. These are just a few examples of industrial processes where one may wish
to increase or modify the number of particles of a particular size. The only way to
achieve this would be by the introduction or removal of particles of some prescribed
size to enable the coagulation process to arrive at some desired limiting state [97].
The main purpose of this thesis is to study the dynamic behaviour of aerosol size
distributions under the influence of the particle source terms and sinks.

1.4 Previous work

There is considerable literature on the mathematical theory of coagulation, both de-
terministic and stochastic, discrete and continuous, beginning with the pioneering
work of Smoluchowski in 1917 on modeling binary coalescence of particles. Smolu-
chowski was the first to derive a mathematical model, assuming that the fluctuations
in density were small in order that collisions occur at random. For a very compre-
hensive survey of work up to 1970, including applications, different derivations of the
equation from physical assumptions, and discrete versions of the equation, see Drake
[25]. The pioneering works of Melzak [74] (on cloud formation) include some of the
earliest applications of the theory, and more applications can be found in F. da Costa
[21], Drake [25], Dubovskii [26], Friedlander [45], Krivitsky [58], Lee [68], Leyvraz
[63], Peterson et al [85], Zhang et al. [113], Wattis et al. [114]. The presence of exter-
nal particle sources, and the removal of particles from the system, however, has not
received a great deal of mathematical attention, the work of Calin et al [15, 16, 17],
Dubovskii [26], Escobedo et al. [36], Lushnikov [70], Sandu et al. [90, 91], Simons
[98], Shirvani et al. [97] being just a few notable recent exceptions. In [97, 98, 102],
the discrete version with constant kernel and source terms is investigated. Also, so-
lutions to the coagulation equation with a multiplicative kernel prior to the gelation
have been provided in [101]. We divide this section into a few subsections in order to
illustrate a few theoretical and numerical aspects that have been investigated in the
literature of coagulation equations (with possible fragmentation).

1.4.1. Existence (local and global) of solutions

In papers dealing with the pure coagulation equation (without the effect of sources

and sinks), the main theoretical questions are related to the study of existence and

uniqueness of solutions in suitable defined Banach spaces. Almost all prior work on



Smoluchowski’s equation has been established either for the case of pure coagula-
tion or coagulation with fragmentation. Existence of solutions to the coagulation
equations with possible fragmentation (the initial distribution fo and therefore the
function f possibly enjoying additional regularity properties) have been the subject of
study of several papers since the pioneering works of Aizenman and Bak [3], McLeod
[73], McLaughlin et al. [72], Melzak [74], Spouge [101, 102], White [116]. Recent
contributions to the existence of solutions have been brought by Calin [15], Escobedo
et al. [35, 36, 38, 39], Laurengot [61], Fournier and Laurencot [42].

For bounded kernels K'(\, 1), global existence of solutions to the pure coagulation-
fragmentation equations is investigated in [3, 8, 15, 72, 74, 95, 97]. In [16], we have
extended the global existence to the case when particle sources and sinks are added
into the coagulating system and for bounded, time-dependent kernels K(A, u,t). The
global existence for unbounded kernels has been studied in [8, 26, 28, 39, 47, 49, 102,
103, 104, 116]. However, some authors (see e.g. [26, 47, 104]) assumed certain growth
conditions on the coagulation kernel K(A, i), such as:

KO\ p) €M1+ X+ p), Y\, p) € RE, and some M > 0. (1.4)

For coagulation equations with fragmentation, Stewart [104] proved a general
existence theorem under certain hypotheses on the growth of the coagulation and
fragmentation kernels. Solutions are shown to exist in the positive cone of the Banach
space defined by
Xt={f€eX:f>0 ae.}, where

X = {fELl(O,oo):/000(1+:c)[f(x)|d:v<oo}

provided that the initial distribution fo belongs also to X*. Later, Laurencot [61]
proved the existence of solutions to the coagulation equations with a weak fragmenta-
tion for product-type coagulation kernels in the same Banach space X * considered by
Stewart [104]. However, a stronger notion of solution has been defined, compared to
the weaker notion introduced in [104]. In [15], we have extended the global existence
results for a coagulating system with particle sources and sinks.

1.4.2. Uniqueness of solutions

Global uniqueness of solutions to the pure coagulation-fragmentation has been inves-
tigated for bounded kernels in (3, 8, 15, 72, 74, 95, 97], and for unbounded kernels in
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[8, 26, 28, 39, 47, 49, 73, 105]. In [16], we have extended the global uniqueness for
bounded, time-dependent kernels K(A, u,t) in a coagulating system where particle
sources and sinks may be included.

Norris [79] proved the local existence and uniqueness of solutions to the stochastic
Smoluchowski equation for kernels K (A, ) < ¢()) ¢(x), for some continuous, sub-
linear functions ¢ : (0,00) — (0,00) provided that the initial distribution satisfies
ooy Ho(dN) 93 < c0.

In a recent article, Fournier and Laurengot [42] prove the uniqueness of measure-
valued solutions to Smoluchowski’s equations for a class of homogeneous kernels sat-
isfying K (u X\, u p) = u? K(\, u), for some parameter v € (—o0, 2]\ {0} provided that
the moment of order « of the initial condition and solution are finite. The uniqueness
of solutions in [42] holds in the class of measures having a finite moment of order the
degree 7 of homogeneity of the coagulation kernel K.

Ernst et al. [34] investigated the product kernels and proved the uniqueness of
solutions by constructing explicit solutions to the pure coagulation equation by means
of the Laplace transform (see also Dubovskii [26], Theorem 4.2). Using the same
method, Shirvani and van Roessel [96] presented some results on the pure coagulation
equation for coagulation kernels K (A, i), for a, 8 > 0 defined in (1.3).

1.4.3. Conservation of mass. Gelation phenomenon

Another interesting topic has been the existence of mass-conserving solutions to the
pure coagulation equation and the occurrence of gelation. A physically relevant and
mathematically challenging question is to see whether the total mass of solutions to
(1.1) remains constant in time, that is M;(t) = M;(0), for all ¢ > 0. Either formal
arguments or explicit solutions have been provided to show that the conservation of
mass holds true for all time ¢ € R, in the following cases:
(i) If K(\, p) < M, for some constant M > 0 and for all (A, u) € R% (see [8, 72]).
(if) If K(\, p) < C(A+ p+1), for some constant C' > 0 and for all (A, i) € R (see
(104, 105]).
(iii) If K(A, p) = (Ap)*, when a € [0,1/2] and for all (X, u) € RZ, (see, e.g. [8, 21,
39]).

One interesting property of some coagulation equations that occurs in cases where
kernels K()\, ) increase sufficiently rapidly with their sizes A, u is that runaway
growth takes place in the system producing particles with infinite size in finite time



which are removed from the system. As a result the total mass starts to decrease. In
the literature this phenomenon is known as gelation, and it is interpreted physically
as corresponding to the occurrence of a dynamic phase transition in the system or by
the appearance of an infinite “gel” or “superparticle”.

In the chemical process of polymerization, gelation can be interpreted as being
the transition from polymers dissolved in solution to a gel. Roughly, one can think
of a gel as a macroscopic network of polymer in solution that behaves as a solid.
Theoretical investigation of the gelation phenomenon goes back to the early work
of Flory [44] in 1941 and Stockmayer [108] in 1943 on condensation polymerization.
Theoretical and experimental studies conducted by Flory [44] yield strong evidence
that gel formation in three-dimensional polymerizations is caused by the appearance
of macroscopic branched-chain molecules. More specifically, Flory analyzed the size
distribution of polymers and determined theoretically the critical conditions for the
formation of “infinitely large three dimensional molecules” (gel).

In the literature of coagulation, the onset of gelation has been defined by the blow
up of the second moment Ms(t) of the distribution (see e.g. [34, 70, 97]). There have
been many reviews on models of coagulation and gelation, see e.g. Leyvraz [63]. The
effect of removal terms on the gel-time was studied by Singh et al. [100], and similarly
source terms were considered by Davies et al. [22)].

Mathematical proofs regarding the occurrence of gelation including initial condi-
tions for which gelation occurs, properties of the gelling solutions and classes of coag-
ulation rates and fragmentation have been supplied recently in [21, 38, 39, 61]. Rates
of decay for the zeroth and first moments of the solutions to Smoluchowski’s equation
are proved in [15, 36, 38, 61]. Ernst et al [34] provide asymptotic large ¢ — oo be-
haviour for the total mass M;(t). These estimates have been further applied to obtain
upper and lower bounds for the gelation time, see e.g. [15, 19, 34, 38, 61, 100, 114].
Explicit gel-times and pre- and post-gelation formulas for the total mass have been
provided recently in [34, 70, 89, 96]. In [89, 96], the authors provide an explicit
formula for the total mass for all time ¢ > 0 for a bilinear kernel of the form (1.3).

Ernst et al [34] prove that for the multiplicative kernel K(A, u) = A g, the gel-time
corresponds to the first instance at which the second moment of solution defined by
My(t) = f;° A% f(A,t) dX diverges. This result was also shown to be true recently in
[15, 97] in the absence and presence of sources for a, 3 > 0.



1.4.4. Explicit solutions

Analytical solutions to the pure coagulation equation and explicit formulas for the
moments of solutions are also important in understanding the behaviour of the size
distribution. However, these types of solutions have only been found for a few forms
of K(\, u), including K(\, ) = 1, A+ g, and Ap. Scott [94] and Ernst et al. [34]
investigate the multiplicative kernel and construct explicit solutions to the pure co-
agulation equation by means of Laplace transforms. These solutions are also unique,
see e.g. Dubovskii [26], Theorem 4.2. Also, using the saddle point method, Ernst et
al [34] provide some asymptotic large size behaviour of the solution. They prove that
the solution to (1.1) decays exponentially for all time ¢ < T, however beyond this
time the solution decays algebraically.

Using the same method of Laplace transforms, and method of characteristics,
Shirvani and van Roessel [96] determine necessary and sufficient conditions under
which the solution to the pure coagulation equation is mass conserving. The authors
consider the general coagulation kernel K (A, u) defined in (1.3). In a recent article,
Lushnikov [70] provided some exact solutions to (1.1) for a product kernel K(A, u) =
A and a constant source term under the assumption that there exist no particles at
t =0 (i.e. the initial size distribution fo(\) = 0).

Spouge [101] provided some practical solutions to the pure coagulation equation
in the form of recursion and infinite series for kernels of the form K(\ u) = A +
B (A+p) + CAp for times ¢ < Tye. In [15] using the method of Laplace transforms,
we derived some formal series solutions to the coagulation equation with a constant
kernel. Our examples include both time-dependent and time-independent examples
of source terms.

Analytical solutions and their behaviour have also been provided to the discrete
version of the coagulation equation in [52, 98, 110]. Dubovskii [26] obtained some
properties of the equilibrium solution to the coagulation equation with a constant
kernel and a time-independent source term. In addition, the author also proved the
convergence of the time-dependent solution to the stationary solution.

Based on a result given by Simons [98] for the discrete equation and time-dependent
source terms, in [15] we proved that the long-term behaviour of the distribution tends
to be independent of the initial value and entirely determined by the source term.
Questions regarding the convergence still have to be answered. For practical applica-
tions, either an analytical proof of convergence, or a numerical method of computing
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the inverse Laplace transform has to be used.

1.4.5. Numerical methods

In situations of practical interest, the functional forms of K, S and R are such that
the time evolution of the size spectrum can only be obtained through the numeri-
cal solution of the coagulation equation. During the last century, several numerical
methods have been developed for solving the coagulation equation (1.1). In the open
literature, two families of methods have been developed for dealing with the coagu-
lation equations: deterministic and stochastic. Some deterministic methods include:
method of moments, finite element methods, weighted residual methods, orthogonal
collocation method over finite elements, discretized population balances, finite differ-
ence methods, mesh techniques, finite volume methods, power series solutions, etc. A
survey of popular numerical methods is given in [25, 59, 88, 113]. In Section 5.1 we
have detailed some of the numerical methods described above. Among the variety of
stochastic methods, the mass flow algorithm developed originally by Babovsky in [6]
and then developed further by Eibeck and Wagner [31] is one of the most accurate
methods as it provides convergence of the solution after the gelation time, which is
difficult to capture with deterministic methods.

1.4.6. Asymptotics and self-similarity

Numerical simulations have confirmed that the size distribution function f should
approach a mass-conserving self-similar function fg for large times ¢. More precisely,
the so-called dynamical scaling hypothesis predicts that for homogeneous coagulation
kernels K such that K(u\,up) = u® K(A,p), for some exponent a, where u, A,
u > 0, we have

SN ~ fs(At) = s(t) (N /s(t)) (1.5)

where s(t) represents the mean particle size at time ¢ > 0, % is a non-negative
function and fs is a self-similar solution to (1.1). The assertion (1.5) goes back
to Friedlander [45] and van Dongen and Ernst [24] for pure coagulation equations,
however no rigorous proofs were given with respect to the existence of 1 or convergence
(1.5). The first approach to self-similarity (or dynamical scaling) has been established
rigorously for pure coagulation equation for the kernel K = 2 by Kreer and Penrose
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[57]. The authors recognize the importance of the use of the Laplace transform.
Menon and Pego (75, 76] extend the approach to self-similarity to a larger class of
solvable, homogeneous kernels including K = A+p, A p. In [57], the importance of the
use of the Laplace transform was recognized. In 2005, Fournier and Laurengot [43]
proved the existence of at least one scaling profile ¢ for three classes of homogeneous
kernels with degree of homogeneity v < 1. The existence of self-similar solutions for
some other classes of kernels appears in [37]. Self-similar solutions are interesting
particular solutions as they may describe the behaviour of the general solutions of
the coagulation equations [24, 35, 36]. For a summary of self-similar solutions see
Section 4.1 in this thesis.

1.4.7. Lie-group theoretic methods

In the recent theory of fragmentation equations a new direction has emerged: a general
method for the determination of Lie groups of point transformations. Zawistowski
[112] was the first to extend the method of Ovsiannikov [81] for differential equations
to integro-differential equations. A generalized version of the direct methods has
been given recently by Akhiev and Ozer [4] to determine symmetry groups for the
collisionless Boltzmann equation. The authors also propose a new approach to solve
the nonlocal determining equations. For the fragmentation equation with continuous
mass-loss, Elhanbaly [32] obtained the symmetry groups and a complete classification
of all possible non-trivial similarity solutions.

The main purpose in this thesis is to propose a generalized method in order to
derive a Lie symmetry group of point transformations for the coagulation equation
in the absence/presence of particle source terms. Our aim is to obtain a new family

of similarity solutions to the coagulation equation for a (non)-homogeneous kernel.

1.5 Thesis Overview

In this thesis we conduct a theoretical analysis in the field of the coagulation equations
with particle sources and sinks. The thesis is divided into seven chapters. Our main
goal in this section is to provide a summary of each of the subsequent chapters in the
thesis.

In Section 2.1, using the technique of re-scaling the time variable ¢, the general

Smoluchowski coagulation equation (1.1) is simplified to a coagulation equation with
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source terms only. In Section 2.2, we prove the global uniqueness of solutions to the
coagulation equation with source terms (2.8) subject to (2.9) in the same Banach
space used in Calin [15] for which we proved the global existence result.

In Chapter 3 we summarize a few facts from Lie theory, providing a brief sum-
mary of the theory of one-parameter Lie groups of point transformations and some
generalized symmetries for general partial differential equations with one dependent
variable and two independent variables.

In Section 4.1 we summarize a few self-similar solutions that have been obtained
for the pure coagulation equation. Following the general description in Chapter 3, this
thesis continues with some new approaches in the theory of coagulation equations. In
Section 4.2, we provide the group analysis for a new form of a quasilinear first order
partial differential equation associated to the coagulation equation in the presence
of particle source terms. This analysis provides us with similarity (group-invariant)
solutions and asymptotic behaviour of solutions to the coagulation equations with
particle source terms as A — oo for a few special classes of initial conditions and a
bilinear separable coagulation kernel in the pre- and post-gelation stages. For some
special values of the parameters, we also obtain the expression of the total mass
of the solution for all ¢ > 0 and the gelation time. In Section 4.3, we apply a new
generalized version of the direct methods that determine the symmetry group of point
transformations for integro-differential equations to the coagulation equation in the
presence of source terms. These methods yield new family of similarity solutions to
the coagulation equations which can be further used for numerical studies.

Section 5.1 summarizes a family of deterministic numerical methods existing in
the literature for solving the coagulation equation. We also point out some of the
advantages and disadvantages that each method brings, and the classes of kernels
that each of these methods solve. In Section 5.2, we present two reliable numerical
methods for solving the coagulation equation that are most suitable (reliable) for a
class of bounded kernels with particle source terms: the collocation technique, and
adaptive power series method at successive points. In Section 5.3, we present a
numerical method for a class of unbounded kernels.

In Chapter 6 we propose new future directions and steps that we need to complete
in order to generalize the methods proposed in this thesis. Chapter 7 includes the
proofs of some of the theorems in Section 4.2.
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Chapter 2

Existence and Uniqueness of
Solutions

In this chapter we are interested in studying the global existence and uniqueness of
solutions to the Smoluchowski coagulation equation with source terms.

2.1 Coagulation equations with sources. Technique
of rescaling

Let f(A,t) be the concentration (or the density function) of clusters of size A at time
t and assume that the rate K at which clusters of particles coalesce is independent of

time ¢. Then the coagulation equation with particle source terms and sinks is given
by

A )
GO0 =3 [ KO=uwrO= 05wt ds = 5000 [ KOS 0 d

+ S(A\t) — R(t) f(A\ 1) (2.1)
subject to the initial condition
F(A,0) = fo(A) (2.2)

where the size variable A and the time variable ¢ range in [0, 00).
For the purpose of this chapter, we assume the rate K is a symmetric, bilinear
function given by

K\ p)=0(\)0(n), where 6(AN)=a+8X YA>0 (2.3)
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with a, 3 any positive real numbers. The coagulation kernel K above includes the
constant and the product kernel as special cases.

The main objective of the present section is to obtain, using a technique of re-
scaling the time variable ¢, a new but simplified form of Smoluchowski coagula-
tion equation with particle source terms only. Indeed, multiply (2.1) by H(t) :=
exp (fot R(s)ds) and let w()\,t) := f(\,t) H(t). We obtain

H(t) T2 (0, 0) = /m o WA = o Y, €) dps wu/ KO ww(p,t) dy

+ H2(t) S(\, ) (2.4)
subject to the initial condition

We can rescale the time variable further. For this purpose, we introduce a new
parameter 7 = F(t), where the function F'(t) is chosen such that it satisfies the initial
value problem -

1
F'(t) = 0] with initial condition ~F(0) = 0.
Next, define ¢(A, 7) := w(\,t) and g(A, 7) := [H(F~Y(1))]2 S(A, F71(7)) > 0. Hence,
we obtain the following form of the coagulation equation with source terms, where
we rename 7 to ¢

e hh) = /m el )i ) =l 8) [ KON )l ) d+ 903,

(2.5)
subject to the initial condition

(A, 0) = co(A) = fo(N).

Therefore, any coagulation equation (2.1) with particle source terms and removal
terms R(t), where R is an arbitrary, non-negative function of ¢ such that R(t) is
locally integrable (for definition see e.g. [15]) can be simplified to a coagulation
equation (2.5) with particle source terms only by rescaling the time variable ¢. For
this reason, in the remainder of this thesis we only consider coagulation equations
with particle source terms of the form (2.5).
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2.2 Uniqueness of solutions

Our main purpose in this section is to prove the global uniqueness of solutions to the
coagulation equation for the case when the initial data cg, and the source term g(A, t)
satisfy certain assumptions and the coagulation kernel is a bilinear, non-homogeneous
function.

For this purpose, consider the coagulation equation with particle source terms
(2.5) given in Section 2.1, where we assume the coagulation kernel K(X, u) is of the

following form
K\ u)=0(\)0(n), where 6(A\)=a+p8A VA>0, (2.6)

with o, 8 > 0 any strictly positive real numbers. One can easily prove that any
coagulation kernel K(\, ) of the form (2.6) can be reduced to the coagulation kernel
W\ ) = () E(n), where £(A) = 1+ A. Indeed, if we rescale the size and time
variables and denote by

N B fa,
u()\, t) = C('B /\,—B"t) and p()\, t) = —Jig([_j /\,"B—t)
and
U\ p) =N Ep), Y\ p)eRL where £(N)=1+A (2.7)

Then the coagulation equation with particle source terms takes the following form

ou 1 o0
SO0 =5 [ 0= yulu O du—u(n ) [ T Wl ) du+ (1)
(2.8)
subject to the initial condition
u(A, 0) = up(A). (2.9)

In the existing literature on the coagulation equations, the main theoretical ques-
tions are related to the study of existence and uniqueness of solutions in suitable
defined Banach spaces. The proof of existence of solutions to the coagulation equa-
tions with particle source terms (2.8) in a suitable less complicated Banach space and
for a non-homogeneous coagulation kernel of the form (2.7) has already been the sub-
ject of study in [15]. However, as pointed out in Section 1.4, the proof of uniqueness
of solutions to (2.8) for such a coagulation‘ kernel was left as an open problem in [15];
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and to our knowledge the proof of uniqueness for such a kernel in the presence of
sources and sinks has not been proved yet (from a deterministic point of view).

In a recent article, Fournier and Laurengot [42] prove the uniqueness of measure-
valued solutions to Smoluchowski’s equations for a class of homogeneous kernels sat-
isfying K (u A, up) = u” K(, p), for some parameter v € (—o0, 2]\ {0} provided that
the moment of order ~ of the initial condition and solution are finite. However, the
class of kernels considered in [42] does not cover the non-homogeneous coagulation
kernels (2.7) of interest in this thesis.

Our main purpose in this section is to prove the global uniqueness of solutions
to the coagulation equation with source terms (2.8) subject to (2.9) in the Banach
space X¢, and for the non-homogeneous coagulation kernel ¥ defined by (2.7). For
this purpose, we consider the same Banach space X used in [15] for which we proved

the global existence result, i.e.
Xe={f€LY0,00): | flle < oo} = L(0,00; £(X) dA) (2.10)

endowed with the norm || - ||¢ defined by

Il = | TeMIFOlAA for  f e Xe (2.11)

where £(A) = 1+ A. Let Xf"" be the positive cone of X¢, i.e. X? ={feX;: f>
0ae}.

Let T € (0, 00] be arbitrary. We denote by C([0, T]; L!(0, o)) the space of contin-
uous functions from [0, T] into L*(0, co) endowed with the usual sup-norm (or uniform
norm) |||l = SUPseo. 1y [0(t)| (see Edwards [30], p.77). As usual the strong conver-
gence in L!(0,00) is be denoted by —. Full details about this type of convergence
can be found in [29, 30].

Assumptions for up(A) and p(A,t)
Al.  The initial distribution ug € X£+ )

A2.  The source term p()\,t) is a non-negative function of A, ¢ > 0 and satisfies
the following hypothesis:

£ / T e p(\ 1) dr € L(0, T) (2.12)
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Before stating any result let us define the notion of solution to the coagulation equa-
tion (2.8), (2.9) that will be used further:

Definition 1 Let T € (0, 00| be arbitrary. A solution u of the equation (2.8) is a
function u: [0,T) — X such that for everyt € (0,T), there holds

(@) ueC(0,t];L}0,00) N L0, 8 Xe)

(b)
(A1) = Eu(A, 1) € L((0,00) x (0, 1)) (2.13)

(¢)  For almost every X € [0,00):

t t A
u(A, t) = ug(A) + /0 p(A,s)ds + %/0 /0 U(A = gy pu(A = p, s)u(p, s) duds

_ / “u(ns) / " WO wulu, s) du ds (2.14)

with 4y and p satisfying the assumptions Al and A2, respectively. For our definition
of solution we impose the same strong property (b) as suggested in [61].

Theorem 2.1 (Global existence and uniqueness of solutions to (2.8), (2.9))
Assume the coagulation kernel W is as in (2.7) and the source term p satisfies A2.
For every ug satisfying A1, there exists a unique (strong) solution u € X 2’ to the
equation (2.8) on [0,T] for every T € (0, 00) with u(0) = ug satisfying

My(t) < My(0) + /Ot /()oo)\p()\,s) dAds  for every t€0,T) (2.15)

Proof.  The global existence of solutions to the coagulation equation (2.8) has al-
ready been the subject of study in [15]. So, in this thesis we only prove the uniqueness
of solutions. The proof of uniqueness follows by means of a contradiction argument,
and is based on the use of Laplace transforms. To our knowledge, the idea for the
proof of uniqueness we present below has not been proposed in the literature of co-
agulation, so far. To prove uniqueness of solutions we assume that there are two
distinct solutions u(\,t) and v(\,t) to the initial value problem (2.8), (2.9) with the
same initial data u(A,0) = v(A,0).
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Let us denote their difference by D(\, t) := u(A,t) — v(A,t). Then, we have

/ T(A— iy 1) D(A =, ) D1, £) dp — v, 1) /Oww,mom,t)du
~D(\H) / (A, 1) D, ¢) di — DA, 1 / T(\ ol t) du

A
+ /0 V(A =, ) DO\ =, D)o, t) dp (2.16)

Multiply (2.16) by £(\) and let R(A, t) := D(A, t) §(A), where £(A\) = 1+ A. Therefore,

we obtain

A A
O )= “2—” /0 RO — )R { ) dp + E(N) / RO — o ) (o (r 2) s

/\t)/ (1) dp — &(A /\t/é“ Ju(p, t)
- &4(N) /\t/ R(p,t)d (2.17)

Next, we denote by
Y(z,t) :=L{R()\, t)}(z,1) =/ e"R(\t)d)\, where 2z € [0,00)
0

/f t)dp >0 and Q(t) /R,u, du =Y(0,t)

where, as usual £{...} denotes the Laplace transform. Formally apply Laplace trans-
forms to the equation (2.17) to obtain

O (2.0 = 2 L{EMR* RO }2,8) + L{EN (R (€)M 1)} (2,)

— (P + (1) L{EWR( )}z t) - 1) £{EMw(A D} (2,1 (218)

We take each Laplace transform in (2.18) separately and using Laplace transform

properties we obtain

cfeM) (Rx YA (2 8) = Y3(2,0) - 2Y (3, t)%)—/—(z, £) (2.19)
CENR Y €O =0) = Gl 0¥ (2,8) = T (5 0F(zt)  (220)
LEW RN = Y (a.1) - T (2,0) (2.21)
LN\ 1)} (2, 8) = F(z,t) ~ %g(z, t) = G(z 1), (2.22)
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where, we denote by

Fz,t) = L{EN o O}z, 1) = /0 T e e (oA, 0 dA and
G(z,t) := F(z,t) — %—?—(z, t).

The function G(z,t) is well-defined for z > 0 and ¢t > 0. Furthermore, G(0,t) is
only well-defined for ¢ < min{Te;(u), Tgei(v)}, where Ty.i(u) denotes the time when
gelation occurs for the coagulation equation in u. From the definition of F(z,t) it
follows that P(t) = F(0,t). Substituting all (2.19 - 2.22) into (2.18) we obtain

g}:(z, t) = % {Yz(z,t) - 2Y(z, t)%)z:(z, t)} +Y(z,t)G(z,t) — %—}Z:(z, t)F(z,t)

ot B
~ (P + @) {Y(20) = 520} - QG2

Therefore, Y(z,t) satisfies the following P.D.E.

X ¥+ Pt - Q) - PO} = s Y220

ot 0z
+Y(28) {G(z,0) - P(t) - Q(t)} —Q(t)G(2,t) (2.23)

It is worth pointing out that the P.D.E. (2.23) is on the domain (z,t) € (0, 00)x (0, co).
Also, no boundary condition is required at z = 0 since

Y(z,t) + F(2,t) — Q@t) — P(t)L=0 =0.

Since D(A,0) = ug(A) — vo(A) = 0 we have R(A,0) = 0. Hence, the partial
differential equation (2.23) has the initial condition Y(2,0) = L{R(),0)}(2,0) = 0.
The initial value problem derived above is not a standard one since the PDE (2.23)
has coefficients that are not completely known functions, such as Q(¢) and P(t) which
depend on the solution.

To prove the uniqueness of solutions to the coagulation equation (2.8) we investi-
gate the solution Y'(z, t) of the P.D.E. (2.23) above. Our method of proof is as follows:
Using a contradiction argument, we show that the solution of the PDE (2.23) does not
have a shock at any point, in other words the gradient of the solution Y (z,¢) does not
blow up at any time t. Having proved this assertion we can then conclude by using
the method of characteristics that the system of characteristic equations associated
to the PDE (2.23) can always be inverted (for every time ¢ > 0). This statement
yields the conclusion that the PDE (2.23) has a unique solution with I.C. zero, that
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is the trivial solution Y'(z,t) = 0, for all time ¢ > 0. The latter will eventually lead
to a contradiction with our assumption at the beginning of the proof (that (2.8) has
two distinct solutions u and v).

First, we show that the solution of the PDE (2.23) does not have a shock at
any point. Indeed, assume otherwise, i.e. assume there exists a time T}, € [0,00) at
which the gradient |Y,(z, T;)| = oo, but |Y;(z,t)| stays finite for all ¢ € [0,T}), where
Ty :=inf{t >0 s.t. |Y;(-,t)|lcc = 00}. The characteristic equations associated to
the first order partial-differential equation (2.23) with the initial condition Y'(2,0) = 0

are given by

2 —w Q)+ F(z,0) - P() ia=r (220
W Iwrw (62,0 - PO - Q] —QUOEZ  Who=0, (225

where we denote by Z = Z(v,t) and W = W(,t) the solution of the characteristic
system (2.24-2.25) satisfying the initial conditions Z(v,0) = v and W(~,0) = 0,
respectively. In addition, we assume that the functions on the right hand sides above
are continuously differentiable.
From the conditions Q(t) = Y (0,t) and P(t) = F(0,t), if we set z = 0 in (2.23)
then we obtain an IVP for Q(t) of the following form
dQ(t)

= —%QQ(t) — P(t)Q(t) subject to 1.C. Q(0) = Y(O,‘ 0) =0. (2.26)

From the assumption above, this I.V.P. is valid only for values of ¢t € [0,7}) such
that both gradients 0F/9z and 0Y/9z are finite. On the one hand, it has already been
proved in [15, 96] that the breaking time (or shock time) for the pure coagulation
equation (2.8) (p(A,t) = 0) corresponds in fact to the time at which the gradient
of the Laplace transform of the solution £(A) u(A,t), or U,(z,t) becomes unbounded.
In addition, it was proved in [15, 96] that the breaking time T, coincide in fact
with the gelation-time. Based on the assumption at the beginning of the proof, that
the equation (2.8) does not have a unique solution, this means that both solutions
E(A)u(A,t) and £(A)v(\, t) have the gradients of their Laplace transforms, that is
U,(z,t) and V,(z,t) unbounded at ¢ = Tj.

On the other hand, the ODE in (2.26) is a Ricatti equation and it can be solved
exactly in terms of P(t). One particular solution to the I.V.P. is Q(¢) = 0, for

t € [0,T,). Using the existence and uniqueness results for ODEs one can easily prove
that Q(t) = 0 is indeed the unique solution to the I.V.P. (2.26) for all ¢ € [0,T5).
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Having proved that Q(t) = 0, for all values of ¢t € [0,T}), we show next that this
implies that the function Y(z,t) = 0, for all ¢ € [0,T}). Indeed, since Q(t) = 0 then
the equation (2.25) in the characteristic system becomes

% = % Wi+ w [G’(Z, t) — P(t)], subject to W (0) = 0.

This is a Ricatti equation and either solving it or using again existence and uniqueness
theorems for ODEs it can be proved that this equation has a unique solution, that is
the trivial solution, or w = W (z,t) = 0. Therefore, the solution Y (z,t) of the Cauchy
problem becomes Y(z,t) = 0, provided that ¢ < min{Tge;(u), Tgei(v)}, Tger(u) > 0
and Tye(v) > 0. Hence, the inverse Laplace transform of Y (z,t) also equals zero,
ie. R(At) = &) [u(A,t) —v(At)] =0, for all ¢ < min{T,e(u), Tpe(v)} and A > 0.
Consequently, we obtain that

u(A t) = v(\ 1), YVt < min{T,e(u), Tya(v)} and A >0.

However, the latter contradicts our assumption and thus the uniqueness of solutions
to (2.8) holds for all t < T} and A > 0. Our next step is to prove that Y,(z,T;) = 0,
for z > 0. This follows since Ae™** € L1(0,00) and R(A,t) —» 0 as t — T a.e. as
a consequence of the continuity of the solutions u and v. The Lebesgue dominated
convergence theorem then readily implies

lim Ae** R\ ) dA =0, for z> 0.

t—-T, J0

Therefore, |Y,(2,t)] < oo for any z > 0, provided that T, > 0. Thus, there is
no time ¢ at which the gradient Y,(z,t) would become infinite. It remains only to
prove that Y,(z,t) stays finite also at z = 0 for all ¢ > 0. We leave the latter for
future work. Then we obtain that there is no shock time for the solution of the
PDE (2.23). Therefore, one can write the characteristic equations (2.24-2.25) for all
0 <t < min{Ty(u), Tya(v)} and these equations can always be inverted for such
time ¢. Moreover, the function Q(t) is now given by the ODE (2.26).

Next, we return to the equation (2.16) above and using the information on Q(t) =
0 for all t € [0, T3] we rewrite (2.16) in the following form

A
%?(/\, t) = % /O U(A = g ) [(X — p, tu(p, ) — (X — p, )u(p, t)] du
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_/w\p A t) [u(X, t)u(p, ) = v\, (e, £)] du

l/ T(X - p, #){[ u(A =, t) = v(A — g, t)]u(p, t) + [u(u,t)~v(u,t)]v(/\—-u,t)}d#

=[O0, = O s )= [ WO ) = )] o0,
Hence,

oD 1

20y =3 / "W @) DO iy Ol £) dp + ; / T(A — )0 — i t)D( 1)

~ D\ ) / B wuln O du - v(0 ) / T YWD dn  (2:27)

Since
A

A
J w0 =)D 0= = [ = ) DO~ )0,
0
then (2.27) becomes

%?(A t) = ; /0 (A =, ) DN = o, ) [u(ps, t) +v(p, 8)] dpe

=D [ ¥ Wl = o006 [ €D Od (229

Since we have already proved that Q(t) = [5°&(u) D(u,t)du = 0, Vt € [O,T] for
some arbitrary time T < T), then we obtain

éz)?()‘ t) = “/ E = ) DA =, )€(1) [u(ps, 1) + v(p, )] dp

M)/O §(p)u(

for any t € [0,T], with T < T,. Moreover, using the previous notations, we can
rewrite the equation above in terms of R(),t) and P(t) as follows:

/ ()R — 1, t) [u, ) + v(, )] dps — ENVR(N, OP(E)  (2.29)

for any t € [0,T], with initial condition R(),0) = 0. Equivalently, equation (2.29)
can be rewritten as

R\ t) = // R\ = p,8)&(p) [u(p, s) + v(u, s)] duds — &( /R)\s 230)
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Since u(A, t), v(A,t) >0, YA >0, t € [0,T] then we have

RO 01< S [ 1RO el s 9)+ (0 )] dds
+E(N) /0 IR(\, 5)|P(s) ds (2.31)

Let us now define

m(X,T):= max |R()t)|

T 0<ALX, 0<t<T
Then we obtain the following inequality
1 T rX T
m(X,T) < m(X,T)&(X) 5/ / () [ulps, s)+v(p, 5)] d,uds—}—/ P(s)ds p VX, T
o Jo 0

(2.32)
If m(X,T) = 0 then R(\,t) = 0. So, D(\,t) = 0 and thus uniqueness of solutions
holds, i.e. u(A,t) = v(At), for al 0 < A < X,0 € ¢t < T < T;. Otherwise, if
uniqueness fails, then for every T' > 0, there exists X > 0 such that R(X,T) # 0, so
m(X,T) > 0. For any such X, we divide (2.32) by m(X,T) and (2.32) becomes

T X
1< {(X)/O {%/0 E(p)[ulp, s) +v(p, s) dp + P(s)} ds (2.33)
Let
Ar={X:m(X,T) >0} and Xr:=inf Ar

Then, by continuity (2.33) also holds at X = X7, i.e.
T 1 Xr
t<e) [ {5 ] ewuin e +omsldut Ps)}ds (230

We first show that X7 is an increasing sequence in T'. Indeed, if T} < T3, then

m(X,T1) = max  |R(\ )] < max R\ 8] = m(X, Ts).

0<A<X, 0<t<T, T 0KACX, 0<t<Ty

Therefore, m(X,T) > m(X,Ty), for all X > 0, which proves that m(X,T) is
an increasing function in 7', for all X. Thus, if A € Ap, then m(\,T) > 0 and
since m(A, Tz) > m(\, T1) > 0, for all A € [0, X] then m(\, T3) > 0 which proves that
A € Ar,. Therefore, A, € Ar,. So, X1, € X7, and thus X7 is an increasing sequence.
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We may now let 7 — 0% in (2.34) and we get the following contradiction:

Xr

1 < €(Xr) /OT{é [ ) bus9) + ol 9) i+ P(9)} do 0 a5 T 0"

Therefore, u(\,t) = v(\¢) holds for 0 < A< X,0<¢ < T, for X fixed and T
sufficiently small. Since X (though) fixed was arbitrary, this in fact covers all values
of A > 0 as well. Next, we prove the uniqueness holds for all ¢ > 0. Indeed, let u© and
v be two solutions to the initial value problem (2.8), (2.9) such that u(A,0) = v(}, 0).
Let us denote by

Ty .= sup {t >0 st uA1)=v(\T), YA>20 and 7€ [O,t]}

Since we have proved that there is a unique solution on some small interval [0, 7o}, we
have Ty > 0. Suppose, Ty < o0. Then it follows, by continuity of the solutions u and
v, that u(\, Tp) = v(\, Tp). Consequently, it results that the following limit

P()(/\) = lim 'LL(/\, t) = ’LL(/\,TQ) = U(A,T()) € X{ exists. (235)

t—»TO" :

Therefore, both v and v are solutions to the initial value problem (2.8), (2.9). Since
we have proved that local uniqueness of a solution holds, it will result that u = v
on some interval [Ty, Ty + 79 and thus we have a contradiction. Thus, Ty = oo as
required. Therefore the initial value problem (2.8), (2.35) has a unique non-negative
solution for all t € [0, 00), and thus the proof of the theorem is now complete. a
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Chapter 3

Symmetry methods. Generalities

3.1 Importance of Lie symmetry analysis

Most of the mathematical models used to describe physical problems involve solving
differential equations. Although there are a variety of techniques available for obtain-
ing exact solutions to differential equations, most of them can be applied only for a
limited class of problems [53]. There are still many open problems that need to be
solved, mainly because they are either of a higher order or highly nonlinear.

In the late 19th century, the Norwegian mathematician Sophus Lie developed a
remarkable theory that gave rise to a powerful mechanism for solving differential
equations. Lie’s fundamental discovery was that most of the well-known solution
methods, such as the integrating factor, reduction of order, homogeneous or separable
solutions, conservation laws, invariant solutions or invertible linear transformations
are in fact special cases of a more general integration theory based on the invariance
of the equation under a continuous group of symmetry transformations [80].

Lie introduced the notion of a continuous group of transformations in order to deal
with the wide variety of techniques for solving ODEs. A symmetry group of a system
of differential equations is a group of transformations which maps each of its solutions
to another solution of the same system. Of course, there are an infinite number of ways
to represent such a mapping by allowing an arbitrary change of independent variables.
However, a unique representation occurs if the independent variables are kept fixed.
In the classical framework of Lie, these groups depend on continuous parameters and
consist of either point transformations (also called classical symmetries) acting on the
space of independent and dependent variables or contact transformations acting on

the space including all first derivatives of the dependent variables [14].
In most of the cases where exact solutions of differential equations can be obtained,
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the fundamental property used is the symmetry of that equation. For example, using
Lie symmetry analysis one can obtain the ansatz y(x) = C e** for linear homogeneous
equations with constant coefficients y"(z) + ay'(z) + by(z) = 0.

Finding solutions (exact or analytical) to higher order differential equations or
nonlinear partial differential equations is one of the most challenging problems in
applied mathematics. Lie symmetry methods provide a powerful tool for generating
transformations that can be used to reduce the given differential equation into a
simpler equation while preserving the invariance of the original equation. When
dealing with differential equations for which there is no direct method of solution,
we usually look for transformations that either reduce the order of the differential
equations (in the case of an ODE) or the number of independent variables (in the
case of a PDE), such that the differential equation also remains invariant (unchanged)
under these symmetry transformations.

Lie proved that for a given differential equation, a continuous group of point trans-
formations acting on the space of its independent and dependent variables admitted by
the equation, can be determined by using a straightforward computational algorithm
(Lie’s algorithm). Lie’s First Fundamental Theorem (2.3.1-1 see e.g. [13]) shows
that such Lie symmetry groups are completely characterized by their infinitesimal
generators, which form a corresponding Lie algebra under the commutation operator
[12, 13, 14, 53, 80, 81]. The functions that appear in the infinitesimal generator of
a Lie group of transformations satisfy an overdetermined system of linear differential
equations {13]. In the case of point transformations, these functions depend only on
the independent and dependent variables. Common examples of such Lie groups of
transformations include translations, rotations, and scalings. For instance, an au-
tonomous system of first order differential equations (or a stationary flow) essentially
defines a one-parameter Lie group of point transformations [14].

After being determined, the symmetry group of a differential equation has many
applications. For example, in some cases one can determine new solutions using the
defining property of such a group. Thus, from known solutions one obtains classes
of equivalent solutions, where equivalence means that one solution can be obtained
by applying a symmetry to a different solution. For example, the heat equation
Uy = iy, admits the constant solution u = C. From this solution one can derive
the fundamental solution u(z,t) = (47 ¢t)~1/2 exp(—x?/4t) using only the knowledge
of its symmetries. In some other cases, if a system of PDEs is invariant under a Lie
group of point transformations, one can find constructively special solutions known as
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group invariant solutions, or similarity solutions, which are solutions that are invariant
under a particular symmetry or some subgroup of the full Lie group admitted by the
system. These solutions result from solving a reduced system of differential equations
with fewer independent variables. For many nonlinear systems of partial differential
equations (which include our PDE in Section 4.2), these types of solutions are the only
available and thus they are of great importance. Self-similar solutions are particular
similarity solutions which are invariant by some scaling transformation. Similarity
solutions are extremely important in Chapter 4 of this thesis, and in general in the
symmetry analysis of systems of PDEs or IDEs. These types of solutions may describe
the behaviour of general solutions of systems of PDEs or IDEs.

Lie groups and their infinitesimal generators can be naturally extended to act on
the space of independent and dependent variables and the derivatives of the dependent
variables up to any finite order. Thus the applicability of symmetry methods to
differential equations can be extended by considering invariance under the so-called
Lie-Backlund transformations, whose existence was recognized by E. Noether in 1918
and discussed in detail by Olver [80] and Ibragimov [54]. A very comprehensive
reference book containing symmetries of many PDEs is [54].

3.2 Group symmetry methods for partial differen-
tial equations

In this section we provide a short summary of the theory of one-parameter Lie groups
of point transformations for general partial differential equations with one dependent
variable and two independent variables. For a complete study of the general similarity
methods see e.g. [12, 13, 14, 18, 53, 54, 69, 80, 81].

Consider a general PDE with two independent variables (z and ¢) and one depen-
dent variable F' of the form

R(z,t,F,Fy, F,y..) =0 (3.1)

where the subscripts denote partial differentiation of the dependent variable w.r.t.
the independent variables.

Consider a general one-parameter (¢) Lie group of point transformations acting
on the independent and dependent variables of the equation (3.1) defined by the
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equations

" = ¢(z,t, F;e)
t*=¥(z,t, F;¢)
F* =Q(z,t, F;¢e) (3.2)

where ¢ is a real parameter that varies over some open interval |e| < €y containing
zero. Moreover, ¢, ¥, and () are analytic functions on their respective domains.
When ¢ = 0, the transformation above corresponds to the identical transformation,
that is z* = z,t* = t and F* = F. For a fixed ¢, the transformation above is a
diffeomorphism that maps the surface (z,t, F') to the surface (z*, t*, F*) parametrized
by z and t. In addition, the one-parameter Lie group is assumed to be a local Lie
group of transformations (for definition see e.g. [13, 14, 53, 81]).

Definition 2 (Symmetry Condition) A partial differential equation (3.1) is called
wnvariant under a local Lie group of point transformations if and only if

R(z* £ F* Fo. Fi,.) =0 when R(x,t F,Fy F,..)=0. (3.3)

If (3.83) holds, then we say that the point transformation (3.2) is a point symmetry
admitted by (3.1). In this case, the Lie group is called a Lie symmetry for the PDE.

Often, the symmetry condition (3.3) for a differential equation is nonlinear and
extremely complicated, so we will not attempt to solve (3.3) directly. Lie proved
that it is possible to replace this condition with the so-called linearized symmetry
condition [53], also called the infinitesimal criterion for the invariance of the PDE
(see e.g. [13, 14]).

For this purpose, we consider the infinitesimal generator of the Lie group of point
transformations defined by

o, 0 0
see e.g. [13, 53, 80|, where

2 17, a
E(.’E,t, F) = —a'g¢(x,t, F,O), C(.’E,t, F) = EE\II(x,t, F,O), T](l',t,F) = ézﬂ(x,t,F,O)

are called the generators of the Lie group of point transformations. Here, X represents
the linear part or the O(e) terms in a Taylor series expansion of the one-parameter
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() Lie group of transformations about ¢ = 0. Thus, we seek for Lie point symmetries
of the form

" =z +e€(x,t, F) + O(e?)
t* =t +el(z,t, F) + O(e?)
F* = F +en(z,t, F) + O(e%) (3.5)
In order to derive a condition for the invariance of the PDE (3.1) in terms of the
generators of the local Lie group, we expand the left-hand side of the first equation
in (3.3) and carry out the differentiation by using the chain rule. For this purpose,
we need to consider the prolongation of the point transformation to first derivatives
(see e.g. [12, 13, 80])
F: = Fp +en®(x,t, F, Fp, F) 4+ O(e%)
Fr=F, +en'(z,t, F, Fy, F,) 4+ O(e?)

where 1* and 7' represent the infinitesimals of F% and F}% given by
N =1+ (r = &) Fo = G R = Ep FY = (p 3 Fy (3.6)
' =n+0r—C)F—&Fo— (p F} —€ép Fo F, (3.7)

where the superscripts are function labels. Furthermore, we also consider the prolon-
gation of the infinitesimal generator X to first order derivatives given by [12, 14, 53]

9 8 8 P 8
W ¢ 2 - . T t_Z
X = 5 5F T 35 T 3R (3.8)

For higher order PDEs one also needs to consider the prolongation of the Lie group of
point transformations and infinitesimal generator X to second, ..., k-th order deriva-
tives. Therefore, we obtain the following invariance condition for the PDE (3.1)

Definition 3 The one-parameter Lie group of point transformations is a point sym-
metry of the PDE (8.1) if and only if XOR =0 when R =0.

More explicitly, using the definition of X (DR obtained in (3.8) we have the following

Definition 4 (Infinitesimal Criterion for the invariance of the PDE (3.1))
The PDE (8.1) is said to be invariant under the Lie group of point transformations
if and only if

R  _OR OR ,LO0R  ,OR
o e tTaF T AE Y oE O (39
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The equation (3.9) is called the invariance condition [12, 13, 14, 80, 81] or the lin-
earized symmetry condition [53].

If a solution to the PDE (3.1) is invariant under the group of transformations, then
the solution must map into itself, which means F*(z*,t*) = F(z*,t*). These types
of solutions are also known as similarity solutions. In terms of the transformation
functions, the equation above can be written as

Flz+e& t+e¢)=F(z,t)+en(z,t, F)+ O(?) (3.10)

Expanding the left-hand side of the equation (3.10), and equating the coefficients of
€, we obtain the following

Definition 5 (see e.g. [53]) A surface F = F(z,t) is called invariant under a Lie
group of point transformations if and only if the characteristic of the group defined by

oF oF
Q(mac,vaz’Ft) =7’($1t,F) _g(lvtaF)'gx— —((.’E,t,F)—gt-
satisfies the so-called invariant surface condition,
Qz,t,F,F, F}) =0 when F = F(z,t). (3.11)

The generated similarity solution satisfies the auxiliary first order partial differ-
ential equation (3.11) whose coefficients depend on the infinitesimals of the group.

In order to find the infinitesimal elements (¢, (,n) leaving (3.11) invariant (thus
satisfying (3.1)), the original PDE may be used to eliminate one of the derivatives (if
possible) and then substitute these in (3.9). The resulting equation is treated as a
form in the derivatives of the solution F' whose coefficients depend on (z, ¢, F') and the
unknowns (£, ,n). After the substitution, the remaining terms are split with respect
to their dependence on the derivatives of F'. Next, we collect together the coefficients
of like derivative terms in F' and set all of them equal to zero. By doing so, we obtain
an overdetermined linear system of so-called determining equations for the generators
€,¢,n. Having determined the infinitesimals of the group, we return to the invariant

surface condition (3.11). Solving the corresponding characteristic equations of this

first order PDE
dz dt dF

@ t,F) ~ ((t.F) 7ot F)
one finds the functional form of the similarity solution, and thus candidates for self-

similar solutions. This solution involves two constants, one becomes the independent
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variable s(F, z, t), called the similarity variable and the other is the dependent variable
¥(s), also called the similarity profile. Thus, we obtain the similarity solution to be

F = F(z,t,5,9(s)) (3.12)

with the dependence of F on z, t and the arbitrary function ¢(s) known explic-
itly. Substitution of (3.12) into (3.1) results in an ordinary differential equation for
the function ¥(s). Thus, the invariance under a one-parameter Lie group of point
transformations reduces a PDE with two independent variables to an ODE which in
general is much easier to solve than the original PDE. After we study the invariance
of the PDE, we also analyze the symmetries of the initial and boundary conditions
and seek the subalgebra of the infinitesimals leaving invariant the boundary curves
and the boundary/initial conditions prescribed on them.
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Chapter 4

Application of Lie methods to the
coagulation equation

4.1 Self-similar solutions: Previous work

It has been conjectured for several years that Smoluchowski’s coagulation equations
admit self-similar solutions, also known as scaling invariant solutions. These conjec-
tures have been predicted by physicists Friedlander and Wang [45, 46], van Dongen
and Ernst [24], and numerical simulations (Man Hoi Lee [68]) have also confirmed
the validity of such assertions. The existence of self-similar solutions though not rig-
orously justified by physicists, have been mathematically proved in recent years for a
few special classes of homogeneous coagulation kernels. It is important to investigate
the existence of such special solutions in order to identify their properties for large
times ¢ — 0o and also the behaviour of the size distributions near the gelation time
Tyer- This approach offers a better understanding of the gelation mechanism which
is important in this thesis and for the theory of coagulation in general. The purpose
of this section is to provide a brief review of the previous work in the literature with
regards to the existence of self-similar solutions to the pure coagulation equations
(no particle sources present in the system). Self-similar solutions are interesting par-
ticular solutions as they may describe the behaviour of the general solutions of the
coagulation equations [24, 35].

There has been lot of scientific interest to study self-similar or dynamical scaling
behaviour of the size distribution (), t) solution to (2.5) beginning with Friedlander
and Wang [46] in 1966 for coagulation by Brownian motion. The authors observed
that if the coagulation kernel K is a homogeneous function of degree a, that is

K(uMup)=u*K(\ p), for some exponent a, where u, A, > 0,
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then the transformation (ansatz)
n= A
£(t)

reduces the coagulation equation to an ordinary integro-differential equation for 4/(n).

and £(t) c(\ t) = Mo(t) ¥(n)

This solution is called self-preserving solution of the Smoluchowski’s coagulation equa-
tion. Such a solution v¥(n) is an asymptotic solution to which the system is expected
to converge, regardless of the initial distribution co(A). The authors have obtained
this form of the self-preserving solution by solving the coagulation equation numeri-
cally up to the point where the size distribution, expressed in the form #(n), remains
fixed with some preset accuracy. Other self-similar solutions have been obtained in
[11, 75]. The investigation of the structure of scaling solutions of Smoluchowski’s
coagulation equation continued in 1988 with the work provided by the physicists van
Dongen and Ernst [24]. The authors asserted that the solutions approach a scaling
invariant form

M) S, es(At) = [s(0] g (Ms(D) (4.1)

where 7 > 0, s(t) represents the average cluster size and ¢,(z) is a scaling function,
also known as the similarity profile, where z = A\/s(t). Thus, in the scaling limit,
cs(\, t) becomes independent of the details of the initial distribution. The authors
calculated the time dependence of the mean cluster size s(t), and studied the shape
of the function ¢,(z) for different classes of coagulation kernels K(\, u). Moreover,
they provide formal arguments suggesting that gelation occurs if @ > 1, and does
not occur if a < 1. Both gelling and nongelling models are characterized by the
divergence of the average cluster size s(t) as t — Ty, and t — 00, respectively. In the
gelling and nongelling models, the particle mean size s(t) and the self-similar profile
o, need to be determined. These functions depend on the coagulation kernel but not
on specific properties of the initial data co()\). In the gelling models, it was proved
(see e.g. [24]) that s(t) diverges at a finite time as s(t) ~ (T, — ¢)71/%, where
the critical exponent ¢ = (a — 1)/2. The value of 7 is correct for a = 2 (i.e. the
multiplicative kernel). Moreover, the scaling function ¢.(z) falls off algebraically as
z — 0 in the form ¢, (z) ~ Bz~", where the value 7 = (a + 3)/2 has been proposed.
However, numerical simulations performed in [68] seem to indicate a different value
for the exponent 7.

The approach to self-similarity (or dynamical scaling) has only been recently es-
tablished rigorously for the pure coagulation equation (g = 0), for a class of solvable
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and homogeneous kernels K =2, A + u, A p (see e.g. [57, 75, 76]). For the constant
and linear kernels, some explicit examples of self-similar solutions are already known
in the literature (see e.g. [35, 75, 76]), as follows: for K(\, u) = 1, the solution is

c(Mt)=4t"2e 2V 150
while for K(\, u) = A + u, the solution is
e\ t) = (2m) W2t \THE e N2

For the multiplicative kernel K(\, p) = Ay it was shown in [75] that there exists an
interval of values for 7 € [5/2,3) for which a self-similar solution of the form (4.1)

exist. For this particular kernel, the form of s(t) and ¢, are known explicitly (see e.g.
[75]) to be

S(t) = (T — t)—l/(3—‘r) and (Ps/g(l‘) — (4 71.)—1/2 1—5/2 e—z/4, for T = 5/2

and, for 7 € (5/2,3),

T —-(27-3)/(r-2)

or(x) ~cpz™" as z—0 and @ (2) ~cxx as T — 00

for some positive constants cg, co and T. Menon and Pego [75, 76] have also consid-
ered the approach to self-similarity (or dynamical scaling) of the cluster size distri-
bution for the “solvable” coagulation kernels above. In the case of continuous cluster
size distributions, the authors prove the uniform convergence of the size distributions
to a self-similar solution with exponential tail. This convergence is proved under the
regularity hypothesis that a suitable moment has an integrable Fourier transform.
For general homogeneous kernels with degree of homogeneity a € [0,00) \ {1},
van Dongen et al [24], Escobedo et al. [35], Leyvraz [63], provided some forms of
self-similar solutions to the pure coagulation equation, as follows: For a € [0,1),

Cs(/\, t) = t'Z/(l—a) ’l/) (/\ t—l/(l—a))
where 1(z) satisfies the nonlinear ordinary IDE

29(2) + 2¥/(2) + (1 - a) C(¥)(2) =0

and C denotes the coagulation operator given by [35]
1 z o
W) =3 [ K220 = e =) [ K uE)

35



Furthermore, for a > 1,
es(M 1) = (1= (A (1 - 1)

where a, 0 satisfy o+ 1 = (1 4+ a). The author acknowledges that the case a > 1
reduces to solving a non-linear eigenvalue problem for the similarity profile ¥(z).
The latter is left as an open problem in [35], however the author refers to a similar
related problem for the solution of a linearised Uehling Uhlenbeck equation. Rigorous
mathematical proofs for the existence of at least one scaling profile 1)(z) for three
classes of homogeneous (nongelling) kernels with degree of homogeneity a < 1 have
been provided recently by Fournier and Laurengot [43] and Escobedo et al [37].

For more practical coagulation kernels, which include non-homogeneous functions,
in a process where particle sources and sinks may be present in the coagulating system,
one might be interested in the existence of self-similar solutions. To our knowledge,
there are no scaling invariant forms (or self-similar solutions) currently available for
the size distributions, as in this case it is not straightforward to predict a general
ansatz for the solutions or a scaling form to which these systems could converge.
Since self-similar solutions are particular solutions that are invariant by some scaling
transformation (see the ansatz (4.1)), our goal is to determine special classes of so-
lutions which possess a type of invariance under more general transformations of the
variables, such as: stretchings, rotations, scalings, translations. Hence the self-similar
solutions obtained so far in the literature of coagulation are in fact particular examples
of similarity solutions. Our main purpose in this thesis is to obtain general similarity
solutions using a systematic and practical method based on invariance under continu-
ous Lie groups of transformations as described in Chapter 3. In the next two sections
of this chapter we apply the Lie symmetry group methods to derive general similarity
solutions for coagulation equations. In Section 4.2 we apply this method to a PDE
associated to the coagulation equation with the kernel K(\, u) = (a+ 8 2) (a+ O u).
We call this an indirect method. In Section 4.3 we generalize the method in Section
4.2 for PDEs and apply this to the coagulation equation directly with the kernel
KA\ i, t) = (a(t) + B(t) A) (a(t) + B(t) 1n). We refer to this as a direct method. The
theoretical approach we propose in Sections 4.2, 4.3 is presented for a class of coagula-
tion kernels of the form (4.4) and (4.171), respectively. Our methods can be extended
to include more general kernels (at least of product type and possibly others) and can

also be applied to coagulation-fragmentation equations with sources and sinks or to
kinetic equations (specially integro-differential equations).
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We obtain a few similarity solutions to the coagulation equation and show that
for some special initial conditions these are in fact exact solutions to the original
equation (4.2). In some cases we recover previous known explicit solutions for the pure
coagulation equations, however we also provide new family of solutions (analytical,
formal series and asymptotic) in the presence or absence of sources. Furthermore,
using the scaling transformation for the time variable ¢ described in Section 2.1,
one can derive then solutions to the original coagulation equation (1.1) with particle
sources and sinks.

It is important to obtain similarity (group-invariant) solutions for the coagula-
tion equation as these solutions can be used to derive particular solutions that may
describe the behaviour of the general solutions of the coagulation equations. These
similarity solutions can be used to provide a study of the asymptotic behaviour of
solutions to the coagulation equations for large sizes (A — 00) and near the gelation
point (¢ — T,). This asymptotic behaviour of solutions will be further used for
numerical purposes in Section 5.3 when dealing with the improper integral there. An
analysis of the asymptotic large size behaviour of solutions was provided by Ernst
et al. in [34] based on the saddle point method for the inverse Laplace transform.
However, the method in [34] relies on a knowledge of the expression of the total mass
(first moment of the solution c). The advantage of working with a modified version of
the coagulation equation (as in Sections 4.2, 4.3) is that when we develop the general
similarity method for these equations the similarity solutions depend on the zeroth
and first moments which are determined as solutions of first order differential equa-
tions. In some cases it is not straightforward to obtain the solution c(\, t), however
as will be shown in Section 5.3, knowledge of the gelation time and the first moment
of the solutions are also invaluable.
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4.2 Symmetry methods applied to a PDE associ-
ated to the coagulation equation

In this section, we provide the group analysis for a quasilinear first order partial
differential equation associated to the coagulation equation in the presence of particle
source terms. This analysis provides us with a family of similarity solutions or group-
invariant solutions for the coagulation equation. In some particular cases we derive
explicit solutions ¢(A, t) and the asymptotic behaviour of solutions to the coagulation
equations with particle source terms at large size (A — oo) for a few special classes
of initial conditions and a bilinear, separable coagulation rate (kernel) in the pre-
and post- gelation stages. These solutions depend on the first moment of solution
M, (t) which is itself a solution to an ordinary differential equation. In most of the
cases we determine explicitly the formula for the total mass for all ¢ > 0 and also the
expression of the gel-time. These similarity solutions can also be used to investigate
the size distribution function numerically.

Consider the coagulation equation with particle source terms given by

=3 / KO =y w)e(h — i, e, )dps — e, 1) / " KO, we(us Hdu + g0 1)
(4.2)

for any A, t > 0, subject to initial condition
c(A,0) =co(N), A2>0. (4.3)
In this section, we consider a particular case of coagulation kernel of the form

K(A p)=0(X)6(r), where 6(\)=a+FA a>0,8 >0 arbitrary constants.
(4.4)

As described in Chapter 1, the following quantities are important for our study
Mi(t) = / MNee(\t)d), where k=0,1,2 (4.5)
0

which represent the k** moment of the solution c(A, t).
Due to the very special form (4.4) of the kernel K, we may use Laplace transforms
formally to convert the equation (4.2) to a first order quasilinear PDE. For this
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purpose, we introduce the following notations:

w(z,t) = / T e g0 el £ dA = L{O(N) o\ B} . 1)
0
N(t) = / Ty dN = u(0.f) = N(t), ¥t > 0

Ht)= [ e00) g0t dh = L{B0) 90 0) 2.0

0

o0
h(z) = / e 0(N)co(A) dh = u(z,0) = h(0) = N(0) (4.6)

0

where, as usual £{...} denotes the Laplace transform. The condition u(0,t) = N(t)
is called the “compatibility condition” (see e.g. [89]). We begin by eliminating the
“infinite integral” from the equation (4.2), in the form of the function 8(\) N(t) ¢(A, t)

by means of an integrating factor. To do this, multiply (4.2) by e#™Q®  where
Qt) = fot N(7)dr and denote by

fOLt) =N (A1) and p(A,t) i= PN g() 1),

Then the coagulation equation reduces to the following IDE for f(\,t):

A
FO0 =590 [T00 = ) 0T~ ) Fm O 450 (4)

subject to initial condition
F0,0) = ¢(A,0) = co(). (4.8)
Next, define the Laplace transforms of #(A)f(), ) and 8(A)p(}, ) by
Flz,t) := /0 T e00) £ £) dA = £{8() FO, D} (o) = 9 u(z ~ FQ(E), )
Glat) = [ T e 000 plr, ) dh = £{8(N) P, D} (3,1) = €220 H(z — BQ(1), )
(4.9)

Multiplying (4.7) by 6(\) and formally taking the Laplace transform, we obtain the
following PDE for the transformed variable F(z,t):

oF
ot

(z,t)e* 9 + 8 F(x,t) %g—(x, t) %F2(a:, t) + €290 G(x, t),

(for = > BQ(L), t > 0) (4.10)
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subject to the initial condition

F(z,0) = h(z) >0, where z>0 (4.11)
and the compatibility condition

F(BQ),t) =Q(t)e*?®, t>0 (4.12)

where Q'(t) denotes the derivative of Q(t) with respect to ¢t. The equation (4.12)
is derived from the first equation in (4.9) by substituting z = G Q(t) and using the
compatibility condition. The initial boundary value problem (IBVP) (4.10-4.12) is
not a standard one since the PDE (4.10) has coefficients that are not completely
known functions, such as Q(t), which depends on N(t) and thus must be determined
as part of the solution [89). Moreover, the domain of the IBVP is time dependent i.e.

Domain IBVP = U (BQ(t),00) x {t}.

t>0

In this section, we present the classical point group analysis of the PDE (4.10)
that is based on the classical technique for investigating Lie symmetry groups of
differential equations as described in Section 3.2. Such a group analysis provides
similarity solutions to PDEs and systems of PDEs containing an arbitrary number
of dependent and independent variables by reducing the original system to a system
with a reduced number of independent variables, see e.g. the reference books [12, 14,
18, 53, 69, 80, 81].

4.2.1 Determining equations for a PDE associated to coagu-
lation equation

Consider the first order PDE (4.10) with the independent variables z, ¢t and the
dependent variable F' written as a differential function
R(z,t, F, Fy, F,) = e*®O F, + BF, F — %F2 — 2?0 G(z, 1) = 0. (4.13)

Since the group symmetry method is independent of the initial and boundary condi-
tions, we disregard for the moment these conditions and concentrate only on the new
form of the PDE (4.13). We will take these conditions into account when we have

determined the form of the similarity solution f()\,t) to provide explicit (analytic) or
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asymptotic (A — o00) behaviour of the solutions f and thus of solutions ¢ and also
the functions Q(t) and N(t).

As described in Section 3.1, we look for a Lie group of point symmetries of the
form (3.5) under which the PDE (4.13) is left invariant. This reduces to solving the
invariance condition (3.9) which in this case takes the following form

—£e290) G, + (e (aQ () F, — aQ' (t)G — Gy) + n(BF; — oF)
+ ’I]z,BF + nteaQ(t) =0

To find the Lie point symmetries (3.5), we need to use first the expressions of the
infinitesimals 7° and n* given by (3.6), (3.7) to obtain

~£e0 Gy +a Q1) e* 0 (R = G) —(e* G+ (BF: ~ a F)
+ﬂF [nz+(nF'—§z)Fz—Ca:Ft"‘§FFz2—CFFzﬂ]
+e [+ (np—) R —&F— & R F,— (p FPl =0, (414)

In general, the invariance condition (3.9) contains enough information to determine
the unknown infinitesimals (¢, ¢, ) for a given PDE. We present below a strategy for
determining the infinitesimals for the PDE (4.13). We apply the basic Lie algorithm
to solve the linearized symmetry (invariance) condition (4.14) as follows (see e.g.
(18, 53)):

Step 1.  First, identify the terms in the invariance condition (4.14) that are multiplied
by the highest powers of the highest derivatives of F. These terms will give some
of the determining equations which should be solved first. In our case, we start
by equating the terms F2 and F? to zero. Based on the F? terms we obtain
¢r = 0 and thus we have & = £(z,t). Also, from F? terms we get (r = 0,
so ¢ = ((z,t). We use these results to simplify the remaining terms in the
linearized symmetry condition (4.14).

Step 2. Next, write down the terms that are multiplied by the highest remaining
powers of the highest remaining derivatives in (4.14). The new resulting deter-
mining equations become

—£e* G, +a(Q(t)e* ¥ (F, - G) — (e*? G, +n(BF, — o F)
+0F [Ne+(p—&) Fa— G B+ [+ (np— Q) R — & Fy] =0
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Step 3. Using the original PDE (4.13) we can eliminate F;. Substitute, F, =
—Be 2RO FF, + 27400 F2 1 G into (4.14).

Step 4.  Split the terms according to their dependence on the derivatives of F, i.e. Fy
and the remaining terms. We obtain the following linear system of determining

equations of the group for the infinitesimal generators &, ¢, n:

—afQU)F+8n—BF &+ e F? -0 + G F =0 (4.15)
2
- e* MG, + %ccz'(t) F? — (220 G, — an F + § Fn, — 22 ¢, 7200 p8

2
— B¢ GF+e*90Wp 4 —np F? - %g FP4 e Gnp—Ge ¢, =0

(4.16)

«

2

where ¢ = ((z,t), £ = &(z,t) and n = n(z, t, F).

The result of the steps above is usually an overdetermined system of linear PDEs
in the unknown infinitesimals (€, ¢, 7).

To verify the determining equations (4.15), (4.16) above we have also used a
software package called MathLie provided by G. Baumann [10] and implemented in
Mathematica. First, we call the function DeterminingEquations to generate the
determining equations of the group.

>> EQ = {[D[F|z,t],t] * Exzpla x Q[t]] + b* Flz,t] x D[F[z, t], z]
—ax Flz,t].2/2 — Expla * Q[t]] * Gz, t]}; EQ//LTF
>> DETEQ = DeterminingEquations(EQ, {F'}, {z,t}, { D[F|[z, t], t]}]; DETEQ//LTF

Using equation (4.15) we can determine the infinitesimal n as
n(z,t,F)=AF*+BF +C
where, for simplicity we denote by
A= —Be@0¢ BimaQ()C+t—C, and Cim %e"Q(t) & (417)
with A, B, C functions of x, and ¢t. Substituting n together with the derivatives

Ne=Ae F24+ B, F+Cy, m=AF +BF+C;, ng=2AF+B
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into (4.16) and gathering like powers of F' we obtain

2
(FA+04) P+ [ 2@ —aB+pB+e90 4+ 2B -S¢] F°
+[BC,—aC—-BGG+e* B, +2e* W AG] F
+e* % [~ G 6 -G (+Ci+BG -G =0 (4.18)

Since the coefficients of the algebraic equation (4.18) are independent of F and F
is arbitrary, we obtain the following system of determining equations

%A+5Az=0 (4.19)
2

04_25 Q) - % B - %Ct +BB,+e*% A, =0 (4.20)
BC,—aC - B¢ G+ B e 1 2A4Ge*?W =0 (4.21)
G:£+G(+G(G—B)-C,=0 (4.22)

From (4.19) we obtain A(z,t) = Fy(t) e 28 %, where F}(t) is an arbitrary function
of t. To determine B(z,t) we need to solve for the infinitesimal ((z,t) first. Based
on the definition of A(z,t) we have (;(z,t) = —1 A(z, t) e*?®.

At this point, in order to determine ((z,t) and the remaining unknown functions
B, C and &, n we need to consider two separate cases for the constant ¢, ie. =0
(thus the kernel is K'(\, ) = Ap) and a > 0, (so the kernel is K (A, p) = (a+8 ) (a+
B 1)), where in both cases we have G(z,t) > 0.

Coagulation kernel K(\, ) =Ap  and g()\t) >0

This case corresponds to the case when o = 0 and G(z,t) > 0. In this subsection,
we consider 8 = 1 as one can rescale the space and time variables in the PDE (4.13).
The system (4.19-4.22) takes the form

A, =0 = (=0 (4.23)
B, +Ai=0 = §0z—2(ux=0 (4.24)
2%~ —3¢GG=0 (4-25)
Go€+Gi(+(2¢G—&)G =&y (4.26)
0z, t, F) =~ F*+ (6 — G) F + & (4.27)

From (;; = 0 we obtain ((x,t) = (o(t) x + (1(t), where (o(t) and (i(t) are arbitrary
functions of ¢. Using (4.24) we have &z(x,t) = 2 ({(t), so &(z, t) = {4(t) 2> +&(t) z+
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& (t), where the coefficients &y(¢) and & (t) are arbitrary functions of ¢. Substituting
&(z,t) and ¢(z,t) into (4.25) we obtain

3G () z+28(t) — ¢(8) = 3Go(t) G(x, t). (4.28)

Fix t > 0, and let £ — 0o in (4.28). Then the right-hand side of (4.28) tends to zero.
Therefore, we must have (j(t) = 0 and 2&(t) — ({(t) = 0, for all £. Since we have
assumed that (, is differentiable, then we have {y(t) = a ¢ + b, for some constants a
and b. Moreover, (y(t) G(z,t) =0, for all z, ¢. Therefore the two cases are:

(a)  ¢o(t) not identically zero. Thus, G(z,t) is identically zero for all z,¢.

(b)  (o(t) = 0 is identically zero.

In view of the previous analysis, we consider the two subcases above as follows: see
Section 4.2.2: G(z,t) = 0 (i.e. no sources) and Section 4.2.3: G(z,t) > 0 (ie.
sources) below, where in both cases we have a = 0.

Coagulation kernel K(\, p) = (a+8X)(a+By) and g(\t)>0

In this case, from (4.19) and using the definition of A(z,t) in (4.17), we obtain
Az, t) = Fi(t)e %5 and ((z,t) = %Fl(t) €787 290 1 Fy(t) (4.29)

where F(t) and Fy(t) are arbitrary functions of ¢. Using (4.20) and the definition of
A(z,t) and B(z,t) in (4.17), we obtain (after integration w.r.t. z)

B(z,t) = % e?5% Fy(t) — (FL(t) — a Q'(t) Fy(t)) (4.30)
§(z,t) = —i—f e 1% 0 F(t) + Fy(t) e ” -iﬁ (Fg(t) - aQ'(t) Fy(t) + F3T(t))
(4.31)
C(z,t) = —g 90 () Fi(t)e %5 ~ ;45 290 Fr(4) ¢~ 15
1 a 2 L (t
# 5 e90 FR e = 2290 (R0 -0 Q") R - Q0 B0 + ) |
(4.32

where F3(t) and Fy(t) are arbitrary functions of ¢. Furthermore, using (4.21) which
is equivalent to 8C; — aC + B;e*?®) = —3 4G e*?® and the formulas above we
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obtain
(07 2 e
{2e°0QO) Fi()) + S (1)}

+

2F3’(t)}

ef5® {F;(t) - aQ'(t) Fy(t) - a Q' () Fy(t) + —5

= —F(t)Gl(z,t)
(4.33)

COf =

Equation (4.33) suggests that we have to consider two separate cases for G(z, t).
Since G(z,t) — 0 as £ — oo (recall it is expected to be a Laplace transform), we
may let £ — oo in (4.33) to realize that necessarily we have

2
pi(t) =290 Q/(1) Fi(t) + = &>V F (1)

2 F§(t)

p2(t) = Fy(t) — Q" (t) Fa(t) — a Q'(t) Fy(t) + 5

Inserting these back in (4.33) leads to Fi(t) G(z,t) = 0 and thus we consider two
separate cases for G(z,t): either G(z,t) > 0 which implies Fy(t) = 0 or G(z,t) = 0.
We take each of the cases above and detail them separately as two Subsections 4.2.4
and 4.2.5.

4.2.2 Coagulation kernel K(\ u) = Ay and g(A\,t) = 0 (no
sources)

In this case, we have @ = 0 and G(z,t) = 0, so the PDE (4.13) reduces to the
well-known inviscid Burgers’ equation

Fi(z,t) + F(z,t) Fy(z,t) = 0. (4.34)

Generators for the one-group of transformations

The system of determining equations for the generators reduces to the following equa-

tions
Ge=0 = ((z,t)=(at+b)z+ ((t) (4.35)
§u=0 = {&(z,t) =E(z)t + &(2) (4.36)
bo =20 = &(2)t+&(z) ~2a=0 (4.37)
26=GCe = 2&(z)=(() (4.38)
N=—CGF+ (-G F+& (4.39)
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(4.38) is possible only if they are both equal to an arbitrary constant c¢. This means
that, ¢(x) = 0 and thus &)(z) = c. Also, (4.37) yields £5(z) = 2a. Finally, (4.38)
implies that 2&,(z) = (J(t) = 2¢, for some constant c¢. Thus, with a change in
notation we obtain (o(t) = as + agt, (1(t) = a1 + agt + agt?, &(z) = a7 + agz, and
£3(z) = ag + a3 T + ag 22, where ay, ..., ag are arbitrary constants.

Therefore, the generators of the one-group of point transformations that leave the
PDE (4.34) invariant take the following form

E(z,t) =agxt+art+agz® +asx +ay
C(z,t) =agzt+asz+agt® +ast+a
n(z,t, F) = —(agt +as) F*+ (agz — agt + a3 — a4) F +ag  + a7 (4.40)

The infinitesimal generator X associated with the above Lie group of point-
transformations can be written as

X—algt—i—azaa +a3( ;-%—F;;)+a4(aat FaaF)-l-as( gt anap)
+ae<w2§+xt§+($F—tF2)"a—)+“7( 86 +58—)
+a8(zt§—+f2g7+(x—t1’)ai)

Therefore, the inviscid Burgers’ equatlon (4.34) has an eight-parameter Lie group
of point transformations. More precisely, the infinitesimal symmetry group of (4.34)
is spanned by the following eight Lie symmetry vector fields Vi, V4, ..., Va:

9,0 Y. IR Y
N=gp V=g VW=ogtlfagn Vistg-Fap W=z -Fap
0 0 ] 3] 0
_ .29 g Ly 9 _; 9 .9
Ve=x P +act(9 + (zF tF)aF’ Ve t8x+8F’ and
o ,0 )
Vs—mta +t éz—k(x—tF)aF (4.41)

which generate an eight-dimensional Lie algebra Lg. We note that, V}, V, generate
translations in ¢ and z directions, respectively; V; represents a Galilean transforma-
tion in the z direction or a kind of “Galilean boost” to a moving coordinate frame
(see e.g. [80]), Vz generates the rotation in space followed by a translation in the F
direction; V3,V are scalings; and Vg, Vg are some local groups of transformations.
The symmetry groups generated by V) and V; demonstrate the time- and space- in-

variance of the equation. The Galilean group generated by Vs is in fact a product of
a translation F* = F — ¢ F? and a “boost” t* =t + ex.
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These operators form a basis for the corresponding Lie algebra Lg. The Lie algebra
is defined by a skew-symmetric bilinear operation, named the Lie bracket (commu-

tator). The commutator of any two vector fields V; and Vj, is a first order operator
defined by

Vi, V] =ViV; = V; V, (see e.g. [13, 80, 81]). (4.42)

The commutator table for the Lie algebra arising from the infinitesimal generators
Vi, where i = 1,2,...,8 is presented in Table 4.1. To compute the commutator
between two vector fields we used a package called tensor in Maple, calling the
functions create; commutator; coord within this package.

Vi, Vil Vi Vol Vo Wy Vs Ve v Vs
Vi 0 0 0l W 0 Vs Vo | Va+2V)
Vo 0 0] V; 0 Vi|2Va+ Vg 0 Va
Va 0 —Va 0 0 Vs Ve =Vi 0
Vi -V 0 0 0 ~Vs 0 Vy Vs
Vs 0 -V =-Vs| Vs 0 0| Vs-V, Ve
Ve Vs | =2Va—-Vi|-Vs| O 0 0 —Vs 0
1% -V 0| Vo | =Va|Vui—-V3 Vs 0 0
Vs -3 -2V, -V7 0| —Vs —Ve 0 0 0

Table 4.1: Commutator [V;, V;] table for the Lie algebra Lg spanned by V; and V.

From this table it can be seen that V} and Vi generate Vs, V; and V; generate
V1, ete. So, for example, invariance under translation in z (operator V5) and under
the Galilean transformation (operator Vs) implies invariance under translation in ¢
(operator V;). It is worth mentioning that several of the groups in the commutator
Table 4.1 can be deduced by inspection, particularly invariance under translation of
the independent variables (operators Vi and V3), or scaling of the dependent and
independent variables (operators V3 and V,). However, operators such as Vg and V3
cannot be found by inspection.

In general, if a PDE (or a differential equation) admits a Lie algebra L, of di-
mension r > 1, one could in principle consider invariant solutions based on one, two,
etc, dimensional subalgebras of L, [54]. However, there are an infinite number of
subalgebras of L,, for example one-dimensional subalgebras. This problem becomes
manageable by recognizing that if two subalgebras are similar, i.e. they are connected
with each other by a transformation from the symmetry group (with Lie algebra L,),
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then their corresponding invariant solutions are connected with each other by the
same transformation. Therefore, it is sufficient to put into one class all similar subal-
gebras of a given dimension, say s, and select a representative from each class. The
set of these representatives of all these classes is called an optimal system of order s
[54]. In order to find all invariant solutions with respect to s-dimensional subalgebras,
it is sufficient to construct invariant solutions for the optimal system of order s. The
set of invariant solutions obtained in this way is called an optimal system of invariant
solutions. The optimal system is determined to ensure that a minimal complete set
of reductions of variables is obtained from the symmetries of the given equations. Of
course, the form of these invariant solutions depends on the choice of representatives.

In the following we investigate the subalgebra structure (4.41) of the PDE (4.34).
In particular, we are interested in determining the optimal system of one-dimensional
subalgebras of (4.34) and the corresponding invariant solutions.

For this purpose, we investigate the one-parameter group of adjoint transforma-
tions of the one-parameter subgroup exp(e V;) generated by the vector field V; act-
ing on the vector field V;, where ¢,5 = 1,...,8. This representation is denoted by
Ad(exp(e V;)) V; and is given by the Lie series
2
Ad(exp(e V)V = V; = Ve Vil + 5 |
where [-,] is the usual Lie bracket, defined by (4.42) (see the reference books of
Olver (80], and Ovsiannikov [81], for the detailed information for adjoint representa-

Vi, Vi, Vil] = ... (4.43)

tion and an optimal system). The corresponding adjoint representation structure for
(4.41) can be easily constructed by using the formula (4.43) based on the infinitesimal
generators given in the Table 4.1. The resulting operators are given in Table 7.1 in
Chapter 7, where each (7, j)-th entry indicates Ad(exp(e V;)) V;. We adopt the method
suggested by Olver [80] to obtain the optimal system of subalgebras for the inviscid
Burgers’ equation (4.34). We obtain the following result (the proof of Theorem 4.1 is
included in Chapter 7).

Theorem 4.1 A one-dimensional optimal system of one-dimensional subalgebras of
the full symmetry algebras for the inviscid Burgers’ equation (4.34) is given by the

48



following vector fields

i) Ve+Vet+taVat+aVi, B+Vi+taVo+taVy, VetV Ve+ayVa;
i) Vi+Vs+aVy, VitaVi+aVi, Vi+Ve+aVg+aiVi;
i) Ve+VataVo+a Vi, Ve+a Vi, Ve+ax Vi

w) Ve+Vi+asVa+agVa, Vs+asVs+axVy;

v) VitazVataole, VitasVa, Vit+axl;

vi) Va+a Vg
vit) Vo+ay Vi;
vitg) VA,

(
(
(
(
(
(
(
(

where a1, az,03, a4 € R are any real numbers.

Symmetry reductions for the inviscid Burgers’ equation

In this section we present some examples of exact invariant solutions to (4.34) as
technical applications. In the theory of Lie groups, if a partial differential equation
(or a system) is invariant under a Lie group of point transformations, then some
special solutions of these equations can be found. These solutions are called group
invariant or similarity solutions, and can be obtained from the solutions of the reduced
system of the differential equations with fewer independent variables as described in
Chapter 3.

Next, we present the reduction forms of the inviscid Burgers’ equations (4.34) by
using the corresponding symmetry groups based on the classification of subalgebras
in the Theorem 4.1. According to the optimal system of one-dimensional subalgebras
of the full symmetry algebras of (4.34), it is possible to obtain the classification of all
possible corresponding reduced forms of (4.34).

For illustrating the method in detail, we start by considering the one-dimensional
subalgebra spanned by the infinitesimal generator V; + a3 V3 + as Vo + a; V; in the
case (v) of Theorem 4.1, where we have also included the translational symmetry
vector V;. In this case, we obtain invariant solutions to (4.34), by using the so-called

invariant form method (see e.g. {12, 13, 14]). In some cases we obtain exact invariant

solutions to (4.34) and thus explicit (analytic) solutions to the coagulation equation
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(4.2). In other cases, we obtain the asymptotic large-size behaviour for the solution
c(\, t) of (4.2).

CaseI: Vectorfield V=V, +a3Vs+aVo+ a1 V)

In this case, the generators of the one-parameter group of transformations that leave
the PDE (4.34) invariant are given by

£(z,t) =asz +as, ((z,t)=t+a;, n(z,t,F)=(az—1)F, (4.44)

where ay, az3 # 0 and a3 # 1. The case a3 = 1 is not of interest since it leads to a
solution F(z,t) = %g—f which is not completely monotonic.

To obtain invariant solutions one needs to solve the invariant surface condition given
by

&(z,t) Fr + ((z,t) Fy = n(z,t, F) (4.45)

The equation (4.45) is a first order partial differential equation and it can be solved
by the method of characteristics. The characteristic system is given by

de__ _dt _ _dF
&x,t) ~ ((z,t)  n(z,t,F)

Integrating the first pair of equations gives the first integral (or invariant)

s = s(z,t) = constant.

This is the similarity variable (or the independent variable). Letting x = X (s,t) then
the second pair becomes:

dt aF

C(X(s,t),8) ~ n(X(s,1),¢, F)

which can be integrated to obtain another first integral w(s,t, F) = constant. This

equation determines F' which is the similarity solution in terms of s. In principle,
the general solution of equation (4.45) can be found. It involves two constants, one
becoming the independent variable s = s(z,t) and the other the dependent variable
¥(s). Consequently, we obtain the general similarity solution of (4.45) in the form.
F = F(x,t,s,v¢(s)) with the dependence of F on z, ¢t and the arbitrary function
¥(s) known explicitly, as one substitutes F into the original equation and obtains an
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ODE for 9(s). Therefore, we obtain the similarity solutions F' and thus candidates
for self-similar solutions.

We now return to equation (4.45), where by using the generators (4.44), the
invariant surface condition reads as

(asz+ag) Fo+ (t+ay) Fy=(as— 1) F. (4.46)

The system of characteristic equations for (4.46) is given by

dt dF
o _ = (4.47)
azr+az; t+a; (a3—1)F
For simplicity, we let a := as/ag # 0 and ¢ := aj, where ¢ is any constant.

Integrating the first pair of equations in (4.47) yields the similarity variable
s = s(z,t) = (z 4+ a) (t + ¢)~* = constant,

whereas the second pair of DEs in (4.47) determines the similarity solution for (4.34),
which reads as

F(x,t) = (t+q)® '4(s), where 1(s) is an arbitary function of s. (4.48)
Substituting F, F,, and F, into (4.34) results in an ODE for (s)

py(s)
(p+1)¢(s) —s

where p := (1 — a3)/a3. The solution of (4.49) satisfies the algebraic equation

Y(s) = (4.49)

[¥(s)] P A+ p(s) —s =0, (4.50)

where A is a constant of integration. Based on the definitions of s and 4(s), one

derives an algebraic equation for the similarity solution F(z,t) of the form:
A[F(z, )] + (¢ + q) F(z,t) — (z +a) =0, (4.51)

The constant A depends on the initial condition F(z,0) = h(z) for (4.34). In partic-
ular, when ¢t = 0 one obtains the equation satisfied by the initial condition h(z) (for
which such similarity solutions F' occur)

A=) + qh(z) —a = z. (4.52)

51



Based on the definition (4.6) of h(z) as a Laplace transform, we have h(z) — 0
as £ — oo. If we take the limit as £ — oo in (4.52) we obtain that p > 0 or
0 < a3 < 1. Since (4.52) holds for all z > 0, in particular it also holds for z = 0.
Hence, A = (a — q h(0)) R(0)/7.
Define

Fh)=AhY? 4 qh—a=1.

Differentiating the above with respect to z we obtain
F'(h) K (z) =1. (4.53)

Since h(z) is a completely monotonic function for all z > 0, we have A'(z) < 0, so
F'(h) < 0 which leads to

g- f h(@)] % <o, (4.54)

Differentiating (4.53) again w.r.t. = and using the complete monotonicity of h we
get F"(h) > 0, which gives A > 0 and thus a > ¢h(0). Gathering the information
obtained so far, we conclude that the PDE (4.34) has a similarity solution F'(z,t)
given by '

F(z,t) = (t+ q)‘zﬂ_1 Y((x+a)(t+ q)“p—}ﬁ)

where 1/(s) satisfies (4.50). In principle, once the function ¥(s) is known, one can
use the Laplace transform inversion theorem [23, 117] to obtain the size distribution
function c(A, t) in the general form

(t + q) 17 e~ (QW+a)
A

where Z(u) denotes the inverse Laplace transform of ¢(s).

c(At) =

z((t + g7 /\) (4.55)

For some particular values of the constant p > 0 one can obtain exact solutions
¥(s) for the algebraic equation (4.50) which lead to the analytic distribution function
c(A, t) satisfying (4.2). However, in general the solution of (4.50) cannot be obtained
explicitly. To understand the properties of the size distribution function c(A,t), one
can investigate the large size (A — o0o) behaviour of ¢(, t), for all £ > 0. According
to the theory of Laplace transforms (see e.g. [23]) one can deduce the asymptotic

behaviour (and properties) of the original function f(\,t) near infinity (A — o0)
when its inverse Laplace transform (F(z,t)) is many-valued at the singular point
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with the largest real part. For this purpose, it is enough to determine the singular

points and the asymptotic behaviour of ¥(s) near these points.
For a general first order differential equation

_ o v(s)
buv(s)—ms+d

V(s)

where o, b,m,d are arbitrary constants and o,m # 0

one can determine, based on the implicit function theorem, a branch point of the
solution v(s) with the largest real part to be given by

4

m+o
Sg = 1 (————-——Cl m(;n +9) bs + d) (4.56)

m

where C is a constant of integration.
For the function (s) satisfying (4.49) we have c = p, b=p+1,m=1,d=10

and A defined above. Thus, we obtain that the branch point of #(s) is given by
so=(p+1) (A/p)

P = (p+1)ap.
Using Newton’s polygon method (for more details see e.g. [109, 115]), we obtain the
asymptotic behaviour of ¥(s)

2app

7 (s s 25 52

Y(s) ~ g —

where ag = so/(p+1). The dominant small s — sq singularity in ¥(s) is a square root
branch point which gives an algebraic tail ~ A~%2 in the inverse Laplace transform
Ac(A,t) as A — oo (see Theorem 37.2 in [23]). Therefore, the asymptotic behaviour
of the inverse Laplace transform of ¢(s) is given by

1 2app
2y Vp+1
which, when substituted into the general formula (4.55) yields the following asymp-
totic behaviour for the size distribution function ¢(), t) for all ¢ > 0:

L7Hp()Hu) = Z(p) ~

“32gro@HE a5 45 00

o p (t—}-q)—% \=5/2 o= (Q()+a-ao (p+1) (t+)H/ @1 ) A s Ao oo

1
V2r Vp+1

where Q(t) is obtained from the boundary condition (4.12). Thus Q(t) is given by
the following L.V.P.

e(At) ~

Q'(t) = F(Q(t),t) subject to L.C. Q(0)=0 where F(z,t) satisfies (4.51).
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To determine completely the expression of ¢(),t), we need to find the function
Q(t). This can be obtained by substituting z = Q(t) into (4.51). Thus, we obtain an
ODE for Q(t) which later can be used to determine the expression of the first moment
of the solution

QO™ A+(t+9) Q) = Q) +a.

Differentiating this equation with respect to ¢ gives
A —(p+1
OB (R R L0 I S

In this particular case, where no particle source terms are present in the coagulat-
ing system, it is expected that the total mass M, (t) be conserved, i.e. M,(t) = M;(0)
up to the gel-time Tj,. After this moment, M, (t) starts to decrease. For the expres-
sion of the gel-time we use the definition in [96],

Tyer = _E'“(lﬁf) = —g [h(O)]—p:;_1 —-q¢>0. (4.57)
According to [96], Ty is defined as the instance when the second moment My(t)
diverges. We detail below the pre and post gelation stages:

In the pre-gelation stage ¢t € [0,T,.), we have M|(t) = 0, so Q"(t) = 0. Also,
using the initial condition Q(0) = 0 and since M;(¢t) = M;(0) = h(0), we find that
Q(t) = h(0)t, where h(0) satisfies the algebraic equation A [h(0)]7Y/? + qh(0) = a
and A, a, ¢ > 0 are arbitrary constants.

In the post-gelation regime ¢ > T, the equality M;(t) = M;(0) no longer holds,
and thus we have Q”(t) # 0. The latter yields

QW= [Ea+o] ™

Integrating the above equation on [Ty, t] and using the continuity of Q(t) (as the
primitive of a bounded function) at ¢t = Ty , to get Q(Tye) = h(0) Ty and the
definition of Ty, we obtain

AviE _ _
Qt)=—-a+(p+1) (;) ! (t+q) 5%=—a+ao(p+1)(t+q) EET, for t > Tges.

Thus we have obtained the following example.
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Example 4.1 (Asymptotic solutions for the pure coagulation equation (4.2))
Let the initial condition be defined such that A c(X,0) is the inverse Laplace transform
of the function h(zx) satisfying the algebraic equation

A[MZ)] P + ghz) - (x +a) =0,

where A, p, q, a > 0 satisfy conditions which ensure complete monotonicity of h(x).
Assume the coagulation kernel is K(X\, u) = Au and the source term is g(\,t) = 0.
Then the solution c¢(\,t) of (4.2) for every t > 0 behaves as follows

O t) ~ e [ 2P (4 4 )T 52 o (At D GV )Ny
V2r {p+1

where

h(0) ¢, for  te€0,The)

Q(t) = —_B_
—a -+ Qo (p+ 1) (t+Q) Pty fOT' t2 Tgel
7

where A, p, q, a > 0 are constants, and ap = (%)p . Here Ty represents the

gelation time and is given by Tge = i}:}[h(O)]‘l’%l — q. In addition, the total mass

M (t) is given by

h(0), for  te€[0,Tg)
ap (t+ (1)_55;7, for  t 2> Ty O

() =

Particular choice of constants

In particular, if we choose p = 1 and a, ¢ > 0 then we obtain the exact solution (s)
of the quadratic equation (4.50) as ¢(s) = (s — v/s> —4 A). Moreover, we have

k
T 24+Q)+a++/Z+Q0) +aZ—2kt—12
where k := 2 A and 2 := 2qgk. At t = 0 we obtain the initial conditions for (4.34)
and (4.2), respectively to be

h(z) i and ¢o(A) ke 2 Li(Ar)
— = —— Tr y
z+a++/(z+a)?—r? 0 raz !

u(z,t) = F(z + Q(¢),t)

where I represents the modified Bessel function of the first kind [1]. Moreover, in
this case, we can calculate the inverse Laplace transform Z(u) of ¥(s) exactly

2(p) = _\/\—/5_% L(pV2k)
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Substituting this result into the general formula (4.55) we obtain an exact family of
solutions to the coagulation equation (4.2) and an expression for the total mass for
allt > 0.

Example 4.2 (New family of explicit solutions to the pure coagulation
equation (4.2)) Let the initial condition to (4.2) be co(A) = k:j\;)\ Li(Ar) and
the source term g(\,t) = 0. Assume the coagulation kernel K(A, u) = Apu. Then the
solution c(\, t) is given by

_ ke~ @QUHaA [ (A\V2kt+12)

A1) X2 J2ktT 2

where Q(t) is given by

a_fm t, for  t€0,Tye)
Q) = V2kt+r1?—a, for  t > T

where k,r, g >0, a > 1 >0 and m = Va2 — 12 are arbitrary constants and the
gel-time is given by Toe = E‘(rffi’n”) The expression of the total mass M(t) is given by

E’f?{’ for  t €0, Tye)
Ml(t) = \/2_k—++75’ for t> Tgel 0

Remark 4.1 In particular, if a; = O then ¢ = 0. In this case, we can determine
explicitly the initial condition h(z) of the Burgers’ inviscid equation (4.84) (see Case
Ia below).

Case Ia: Vector field V=V, +a3Vz+ay,V;

In this case, the similarity variable and the similarity solutions are given by
1 B
s=s(z,t)=(z+a)t 71 and F(z,t) =1t 21 (s)

where a := ay/a3 and p = (1 — a3)/as. The function 1¥(s) satisfies (4.49) or (4.50),
while F(z,t) satisfies the algebraic equation

A[F(z,t)] " +tF(z,t) — (z+4a) =0,
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where A is the constant of integration, which depends on the initial condition F(z,0) =
h(z) of (4.34). In particular, when we set ¢t = 0 in the equation above we obtain an
expression for the initial condition

h(a:)=( A )p

z+a
that gives such similarity solutions F' as above, where A, p, a > 0 arbitrary constants.

This explicit expression of h(z) allows us to determine the inverse Laplace transform
of h(z), i.e. the initial condition Aco(A) and thus we obtain

AP NP2 ger

Hence, we obtain the asymptotic behaviour of the size distribution ¢(), t) of (4.2).

(the gamma distribution).

Same as in Case I, our results agree with those derived by Ernst et al. in [34] by using
the saddle point method (see Eq. (3.13) in {34]). Our result is summarized below:
Example 4.3 Assume the initial condition co(\) to (4.2) is given by

AP NP2 g—ad
A 7

where A, p, q, a > 0 are constants. Let the coagulation kernel be K(A, p) = Ap and
the source g(A,t) = 0. Then the solution c(\,t) of (4.2) for every t > 0 behaves as
follows

1 QP L g - ( - 1/(p+1))
c(A,t) ~ ——’/ 30 \75/2 o~ Q) +a—ao (p+1)¢t A as Ao oo
A0 ver Vp+1 -
(4.58)

where

Q(f) — /Botv ' fO’f' t € [Ongel)
’ —a+ag(p+1)t7H,  for £ 2> Ty

A\ 7 4\?P A -BfL .
where ag 1= (-p-) , Bo = (;) and Tye = 3 (,60) P s the gel-time. Moreover,

the total mass M;(t) is given by

Mi(t) = {

In particular, if A =a =p =1 > 0 then we obtain the solution in [34].

Bo, for  t€0,Tyu)
Qo t_ﬁT’ fO’I" t 2 Tgel

Remark 4.2 With the asymptotic large size (A — 00) solutions obtained in Examples
4.1 and 4.8 we recover the asymptotic solution [3.13] in Ernst et al [34]. Here, we have
takes zg(t) = Q(t) +a — ag (p + 1) (t + )/ where ¢ > 0 and q = 0, respectively.
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Case Ib: Vector field V=V, + a3 V3

In this case, the generators of the one-parameter group of transformations that leave
the PDE (4.34) invariant are given by

§(z,t) =az, ((z,t)=t, nlz,t,F)=—F. (4.59)
Thus the similarity variable and the similarity solutions become
1
s=s(z,t)=z— p In(t) and F(x,t) =¥(s)t™!,

where p := 1/ap > 0. The function (s) satisfies the ODE

Y'(s) = _p¥s) with solution (s) = —-/1; W(—vpe*f) (4.60)

 pi(s) -1
where we denote by v, = ™% > 0 (with k a constant of integration) and W is the

Lambert W-function defined by the equation y exp(y) = z. Moreover, the function
1(s) also satisfies the transcendental equation

1 In(~
¥() = L Inu(s)) = 5 - 200 (4.61)
p p
Using the definition of the function F'(z,t) we obtain that F' satisfies the equation
t F(z,t) — 'll; In(F(x,t) =z — @ (4.62)

In particular, when ¢t = 0 we obtain the initial conditions for (4.34) and (4.2) for
which such similarity solutions F as in (4.62) occur

h(z) =ve™?® and Acg(A) =70\ — p),

where the assumption that p > 0 is made to ensure the complete monotonicity of
h(z) for all z > 0 and the condition h(x) — 0 as z — oo.

In general, the equation (4.62) cannot be solved explicitly. To understand the
behaviour of the solution c to (4.2), we investigate its asymptotic behaviour as A\ — oo
for ¢t > 0. For this purpose, we look at the asymptotic behaviour of its image function
F(z,t) near the singular (branch) point with the largest real part.

Since the equation ye¥ = x has an infinite number of solutions y for each (non-
zero) value of x, W has an infinite number of branches. Using the asymptotic formula

w(s) = -W(—e*)~1-v2(s—1)2, ass—1
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we obtain

Y(s) ~ % - @ (s = so)'/? as §— Sg = 1+ In(x h:)(%_p)'

Therefore, the asymptotic behaviour of F(z,t) is given by

Ps) 1 V2 )1/2 1+ In(yo pt)
=22 0 = Y2 gt t) = ——— 1P
Pl =57 ~ =2 (o= o) e v a0 ;
where t is fixed. Therefore, the dominant small z — x¢(t) singularity in F(z,t)
is a square root branch point, implying an algebraic tail ~ A=%2 in the inverse
Laplace transform Ac(A,t) as A — oo (see Theorem 37.2 in [23]). Thus we obtain the
asymptotic behaviour of the original function ¢(,¢) for all ¢ > 0 as

C(/\, f) ~ 1 /\_5/2 o (Q(t)— l+ln(;lgpz) )/\

A —
. as 00,

where Q(t) is given by the following I.V.P.

Q'(t) = F(Q(t), t) subject to I.C. Q(0)=0, where F(z,t) satisfies (4.62).
Substituting z = Q(t) into the equation (4.62) we obtain the following I.V.P. for Q(t)
£Q/(t) — % In(Q'(t)) = Q(¢t) — 1@ subject to Q(0) = 0

which by differentiation w.r.t. ¢ yields
" 1
Q- (1t -)=0

In this case, using again the same definition in [96], we obtain the gel-time: Tye = ;(%—,;.
Next, we investigate the pre- and post-gelation stages.

In the pre-gelation regime, for 0 < ¢ < T, we have @"(t) = 0 with I.C. Q(0) =0,
and thus the solution Q(t) = h(0)t = vot. On the other hand, in the post-gelation
stage, for ¢t > T, we obtain

Q/(t)=;1—t with L.C. Q(Tge[)=,.{1; N Q(L)=Lnf)w_p_t)

Consequently, we have obtained the following
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Example 4.4 Let v, p > 0 be arbitrary constants. Suppose the initial condition
co(A) to (4.2) is Acg(A) = v0 (X — p), the source g(A,t) = O and the coagulation
kernel K (A, i) = A p. Let the function Q(t) be given by:
_ Yo t; fOT te [OaTgel)
Q(t) = 1+In(yo PQ, fOT‘ t> Tgel

p

Then the solution c(A,t) of (4.2) behaves as follows
c(\t) ~ % Aoz (QU-EERAN)N oy and forall t>0.
TP
The total mass M;(t) is given by

{ Yo, fO'f' te [OaTgel)

ﬁ, for t2>T4a.

Ml(t) =

where Tye = ;;7’ represents the gel-time.

Remark 4.3 In order to obtain new invariant solutions to the inviscid Burgers’ equa-
tion (4.34), we have also considered other vector fields in Theorem 4.1. We enumerate
a few vector fields for which we have obtained explicit similarity solutions F(z,t):

a Ta

(iti) Vi + c Vs, with ¢ # 0, with the similarity solution F(z,t) =

(i) Vi+aVi, witha < 0 with the similarity solution F(z,t) = 1t—,/~2 (m - %)

z_
t+c

However, none of the similarity solutions we obtained satisfy the definition of
Laplace transform, and thus they are of no interest to our study. Other vector fields
have been considered, however they lead to Abel’s equation of the second kind for
which we haven’t obtained explicit solutions. For these types of equations, one either
uses numerical methods or asymptotic analysis. We have left these vector fields for
future work. One can also apply group methods for search of solvable Abel equations
(see e.g. [111]).

Summary for Cases I, Ia, Ib in 4.2.2

In Cases I, Ia and Ib, we obtain a more general family of asymptotic solutions that
depend on the total mass M;(t), which also include the solution of Ernst et al. [34] as
a particular case (one takes A=a=p>0and¢=0inCaseslandIa,orp="y =1
in Case Ib). The advantage of our method is that we obtain a general formula for the
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solution ¢(A, t) that includes the total mass as part of the solution. In our case we do
not need to know the expression of the total mass in advance in order to derive the
solution of the coagulation equation as in [34]. The expression of M;(t) results as a
solution to an I.V.P. Furthermore, we provide a more systematic method which does
not rely on the saddle point method.

4.2.3 Coagulation kernel K(\, u) = Ap and g(A,t) > 0 (sources)

In this particular case, the PDE (4.13) reduces to a Burgers’ equation with source

terms of the form:

Fi(z,t) + F(z,t) Fp(z,t) = G(z,t) _ (4.63)

Generators for the one-group of transformations

It was proved in 4.2.1 that (,(z,t) = 0 and (o(t) = 0, so ((z,t) = (i (t) is a
function of t only. Thus, (4.25) becomes 2&4(t) = (7(¢), so {((t) = 2&(t) + a1
and {(z,t) = &(t) x + & (t), where a; is an arbitrary constant. Moreover, since the
generators also satisfy (4.26), we obtain the generators admitted by (4.63) to be

g(l‘, t) = SO(t)m + gl(t)v C(xa t) = Cl(t)a ’7(9% t, F) = —[5o(t) + al] F+ ‘E(’)(t) T+ gll(t)

where

(1(t) =2&(t) +a; and
[Eo(t) z + &(1)] Gz + G (1) Gi + [3&(t) +2a1] G = & (t) = + €1 (D). (4.64)

In this case, the invariant surface condition (3.11) becomes
[Go(t) = + &1 ()] Fo + Gu(t) Fy + [o(t) + a1] F = §(8) = + €1 ().

Assume that £o(t) # 0. The case &(t) = 0 is left for future work. Then, using the

definition of F(z,t) as a Laplace transform, it follows that a necessary condition for
the above equation to hold for all z > 0is &j(¢) = 0, so &(t) = c; and €4(t) =
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0. Thus, the generators for the one-parameter group of Lie point transformations
admitted by the equation (4.63) are

Et)=az+&l), ((z)=00), n@tF)=-(a+c)F+&(t)

In this case, the invariant surface condition and equation (4.64) take the form

vz + & Fo + Q) B = —(cr + 1) F + £1(t) (4.65)
lerz +&(8)] Ga+ G(t) Ge = —(Ber +2a1) G + & (1). (4.66)

To solve the equations above, we use the method of characteristics. There are two
subcases to consider here. We refer to these cases as Case A and Case B. In both
cases we determine the general similarity solutions for the Burgers’ equation (4.63)
with source terms.

Symmetry reductions for Burgers’ equation with sources
Case A. Assume ((t) =0, for every t>0

Using the definition of F'(z,t) as a Laplace transform and letting z — oo in (4.65),

we obtain £j(t) = 0, so &;(t) = ¢ any constant. Thus, the solution of (4.65) becomes

F(z,t) = p(t) (crz +c3) o (4.67)

where p(t) > 0 is an arbitrary function of ¢t and c;, c2 > 0 and a; are arbitrary
constants such that a,/¢; > —1.

Next, we prove that the only condition that guarantees the function F(z,t) van-
ishes as x — 00 is that c¢; = 0. Indeed, assume the contrary, i.e. ¢; # 0. To solve the
equation (4.65) we use a procedure called “The Direct Substitution Method’ (see e.g.
[13, 14]), that is computationally better than the “Invariant Form Method’ that we
used in Section 4.2.2. Next, we substitute F(z,t) into (4.63) and we obtain that the
function G(z,t) is given by the following expression

~atey _203+3c
G, t) =p'(t) (crrx+ )™ 1 — (ay +c1) pPP(t) (c1 T + ¢3) t3e1
Substituting G(z,t) above into the determining equation (4.66) we find
P (W) +a)(ar+e) o =—pt)Ba+2a) (i +c) 7"
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So, the constants a; and ¢, satisfy the relation a; +¢; =3¢y +2a;, 0r a; = -2¢4,
which fails to satisfy the inequality a,/c; > —1 obtained above. Therefore, we have
¢y = 0. Thus the generators of the Lie group of point transformations become

&(z,t) =cy, ((z,t)=0, n(z,t,F)=—a; F.
If ¢o = 0 then we have two subcases to consider here:

(a)  If a; # 0, then from (4.65) we have the unique solution F' = 0. This solution
yields G(z,t) = 0, which contradicts the assumption G(z,t) > 0.

(b)  If a; = O then there is no nontrivial group of transformations admitted by
the Burgers’ equation with source terms (4.63).

Therefore, we only consider the case ¢; # 0 for all ¢ > 0. Then using ¢; = 0, the
solution (4.67) becomes

F(z,t) = p(t)e %2

Substitution of F(z,t) into the original PDE (4.63) gives rise to a function G(z,t) of
the form

a 2a
Gla,f)=p()e 3"~ 2 (t)e s
2

which when substituted into (4.66) gives a;p’ (t)e_%;“z =0, so p(t) = c3 > 0, where
cs3 is an arbitrary constant. Thus,

F(z,t) = c3 e %7 and G(z,t) = —?C—l s e G e, (4.68)
2

Since G(z,t) < 0 then the definition of G(z,t) as a completely monotonic function in
z fails to be true. To summarize, there are no completely monotonic functions G(z, t)
for which similarity solutions F(z,t) of the form (4.68) exist for the equation (4.63).

Case B. Assume ((t) #0, for every t>0

In this case, the generators of the Lie group of point transformations admitted by the

Burgers’ equation with source terms (4.63) are given by
§(z,t) =crz+&(t), C(=t) =), n(z,t F)=—(a1+c1)F+ (),
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where (;(t) # 0 and ((t) = 2&(t) + a3 = 2¢1 + ag, since &(t) = ¢1. So, (1(t) =
(2¢) + a;) t + ¢z, where ¢, is an arbitrary constant. In addition, using the definition
of F; as a Laplace transform, we can deduce from (4.65) that £{(t) = 0 and thus
€1(t) = c3 is an arbitrary constant. We illustrate below a few steps that we take to
determine similarity solutions:

Step 1. First, we solve the invariant surface condition (4.65) by using the method
of characteristics and obtain that the similarity variable and the similarity solution,

respectively are given by

S W
l 2cyitay

s=(z+c)GM) T and  F(z,t) = ($(s) + A1) [G(8)

where A; is an arbitrary constant.

Step 2. Solve the PDE (4.66) for G(z, t) using again the method of characteristics.
We obtain

2a1+3c

G(z,t) = (p(s) + A2) [QL(6)] 7= (4.69)

where Aj is an arbitrary constant.

Step 3.  Finally, substitute F(z,t) and G(z, t) obtained in Steps 1 and 2 into (4.63)
to get

P(s)9'(s) = p(s) — {e1s9'(s) + (a1 +c1)¥(s)} +9'(s) A1 — (a1 + 1) Ay — A2 =0,

Using the steps above, the generators for the one-group of Lie point transformations

become
fz,t)=caz+te, ((z,t)=0()=02a+a)t+e, n@t,F)=—(a+a)F

where a1, ¢, c2, c3 are arbitrary parameters. Hence, a nontrivial four-parameter Lie
group of transformations acting on the (z,¢, F')-space is admitted by the Burgers’
equation with source terms (4.63).

The infinitesimal generator X associated with the above Lie group of point-

transformations can be written as

P SUNA BRVL Y SR N |

X = t— —
“‘( ot oF ot aF ot Bz
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Therefore equation (4.63) admits a Lie algebra Ly spanned by the following four
vector fields:

d d d a 0 0 0
istg —Fop Viszg +2tg —Fap V=g Visg

The commutator table for the Lie algebra arising from these infinitesimal generators
is given in Table 4.2.

AZ I ARANAR
Vi 0] 0] -] 0
Vs 0] 0] -—2Vi|-Va
Vs Vi | 2V5 0] o0
Vi 0 Vi 0] 0

Table 4.2: Commutator [V;, V;] table for the Lie algebra Ly spanned by V; and V;.

We consider first the case of the most general one-parameter group of symmetry
transformations by choosing a general linear combination v =a; V; +¢; Vo + ¢ V3 +
c3 V4, where c¢i, co # 0, c3 are arbitrary and 2¢; + a7 # 0. Using the method of
characteristics to solve the invariant surface condition (4.45), we obtain the following
general result:

Theorem 4.2 Let Ay, Ay be arbitrary constants. In addition, assume ¢, c3 # 0,
c3 arbitrary and 2¢y +a; # 0. Let o(s) — 0, as s — oo. In addition assume

@(s) + Ay > 0 for all 5, and —¢'(s) is a completely monotonic function for all s € R,
where

PR3 -
5 = (z +c3) |G (B)| 7=

represents the similarity variable, where {1(t) = (2¢1+a1) t+c3. Assume the function
G(z,t) has the similarity form given by

_2a3+43c

143y
G(z,t) = (p(s) + A2) [(1(8)] TrFa
Then the partial differential equation (4.63) has a similarity solution given by
_.a1+cy
F(z,t) = ((s) + A1) |G (8)]” Fer¥es
where (s) satisfies the ODE

W (s) = ps) +(@m+c)p(s)+ A+ (a+c1) A
P(s)+ A1 —as
The constants a; and ¢, are such that:

(4.70)

65



(a)  ¥(s) vanishes to zero as s — oo,
(b)  (s) satisfies Y(s) + Ay > 0,

(c)  —=y'(s) is a completely monotonic function for all s.

Remark 4.4 Without loss of generality we may assume the constants A, and A in
Theorem 4.2 to be zero. In addition, we also consider the constant c3 # 0 as otherwise
we obtain solutions that are not realistic, from a physical point of view. Future work
will investigate a few eramples of constants a; and ¢, for which the function i to
(4.70) satisfies conditions (a-c) in Theorem 4.2. To illustrate a few examples of
similarity solutions we consider below a few one-parameter subalgebras generated by
X above.

Case I: Vector field V=g, Vi+c Vot V3 +e3Vy

Our aim is to look for examples of functions ¢(s) that are completely monotonic
in s and for which the ODE (4.70) can be solved explicitly. By solving (4.70) we
obtain 1(s). Since we are interested only in those functions v(s) that are completely
monotonic in s, we need to impose certain conditions (restrictions) on the non-zero
constants a; and c; satisfying 2 a; +c¢; # 0. By doing so, we obtain similarity solutions
F(z,t) for the PDE (4.63), which in some cases become exact solutions. We present
an example of such an exact solution to (4.2) below.

Example 4.5 (i) Assume a,k,q > 0 are arbitrary constants such that a > kq.
Let the coagulation kernel be K (A, u) = Ap. If the source term g(\,t) is given by

ke~ (Q(0)+a)
g\ t) = Wfl(k)\t‘*' kAq),

where I, is the modified Bessel function of the first kind [1], then the solution to the
coagulation equation (4.2) is given by
k e_’\ (Q(t)+ﬂ)
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where the function Q(t) is given by

tk2 (t+2¢q) r 0<t<T
t) = 2(a+\/;2—k2 q?) fo - gel (4.71)
k(t+q)—a for t > Ty

Tyer Tepresents the gelation time given by

a—kq+ /a2 — k2 ¢2
Ty = q ’ 1 (4.72)

Let the initial condition of (4.2) be co()\) = ke %* !l(%’—&. In addition, the total mass
M;(t) is given by

_kzgt;tL fotr Ost<Tg€l

M (t) = { I«:+\/a7—k’q2 (4.73)

Jor t 2 Ty
(i) Assume a,k,q > 0 are arbitrary constants such that a = kq. Then gelation

occurs instantaneously, i.e. Ty = 0.

Proof.  Indeed, consider the particular example ¢(s) = ¥(s). In this case ¥(s)
satisfies the ODE:

pY(s)

¢P'(s) = —  where =a;+ec +1, 4.74
or ¢(s) satisfies the algebraic equation
..EPL 1
A [z//(s)] + P P(s) —s =0,

where A is a constant of integration and c¢; and p satisfy the condition ¢;/p > 0 in
order to ensure complete monotonicity for the function ¢(s). One can use a similar
analysis as for ¢(s) in (4.51) and obtain the asymptotic behaviour of v(s) near the
branch point sg of ¥(s).

In particular, we choose the constants p = ¢; = 1. Moreover, if we denote by
k:=+v2A, a:=c3and q := ¢y and assume a, q > 0, then, a; = —1 and in this case
the similarity solution F(x,t) and the function G(z,t) become

_:c+a_ z+a 2_ 2— _ 1 x+a_ _3_:__—{-_@ 2_ 5
F(x’t)_t+q V(t+q) kanda(x’t)_t+q{t+q \/(t —q) k}

Therefore, the initial condition F(z,0) = h(x) becomes

h(z)=$:a— (x::a)2_k2
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Next, let us prove that (4.73) and (4.72) hold. Indeed, using the boundary condi-
tion (4.12) it follows that Q(t) satisfies the I.V.P.

Q) = gi—%iqg - \/(9515_)‘_—:9—)2 — k% subject to L.C. Q(0) =0. (4.75)

If we denote by v(t) := 9—%;& then (4.75) simplifies to an I.V.P. for v(¢)

dv dt a
= - bject to 1.C. 0)=-—.
N —— subject to v(0) p
Thus v(t) satisfies
/7T 12 2
= Ve SRS g (4.76)

The solution of (4.76) is given by
U(t)_a+\/a2—k2q2+ K2 (t+q)
2(t+q) 2(a+‘/a2_k2q2)'

The expression of v(t) obtained in (4.77) is valid only for values of t € [0,T.) where
T. corresponds to the time ¢ such that the following inequalities hold

(4.77)

0+

k< u(t) <
<o) = t+q

Thus, we obtain

T _a—kg++/a® - k¢
e k

On the other hand, using the definition of the gelation time [70, 96] as the
instance when the second moment of solution M,(t) diverges and the definition
M,(t) = —F;(Q(t), t), we obtain that Ty is given by

Ty =inf{t >0 st. v(t)=k} =T,

Hence, the expression (4.77) holds for t € [0,7y). In addition, the expression in
(4.77) yields the formula for the function Q(t) obtained in (4.71) and the expression
for the total mass, M;(t) in the pre-gelation regime, as

k*(t+q)

2 (a+ /a2 — k2q?)’
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In the post-gelation regime, we use as an initial condition the expression of v(t) in
(4.77) at t = Ty, to ensure continuity of Q(t) and thus of M,(t) at the gel-time. We
obtain v(Tge) = k. Moreover, for any ¢ > Ty we have v(t) = k and the solution of
(4.75) becomes

Q(t) =k (t + q) —a, vi > Tgel (478)

This expression yields the formula in (4.73) and thus the total mass is constant for
t > Ty, which completes the proof. a

Case II: Vector field V=c; Vo +cVz+c3Vy
In this case, the generators of the one-group of Lie point transformations admitted
by the Burgers’ equation with sources (4.63) become

f(z,t) =ciz+e3, ((z,t)=2c1t+co, n(z,t,F)=—-c F,

where ¢; # 0. The case ¢; = 0 is treated separately as Case III. Then the following
result holds

Example 4.6 (Similarity solutions for the Burgers’ equation with sources
(4.63)) Let p, g > 0 and m < —1 be arbitrary constants such that

a-m)
}ln(—m)!>(l—m)\ﬁi where A= ;Xp( : ﬂz—m .
P() 7 P ()

Assume the initial condition of (4.63) is given by

_(m-1)

h(w)=§(z+a— \/(x+a)2+p%(x+a)l+m>

The function h(x) is well-defined and completely monotonic for values of x such that

1

N 9 Cmn\ T
T —_— Z -
T 2> Za+m) q a,

where a > 0 is arbitrary. In addition, for x > 21, assume the function G(z,t) is
given by

G(z,t) = (x+a)™ (2pt+q)~ 7.
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Then the similarity solution F(z,t) to (4.63) has the form

m—1
p 2@2pt+q)~T
F(z,t) = — 4/ (z + a)? ; L+m
(z,t) 2pt+q{m+a \/(T+0) + 20+ m) (z + a)
where
2
A? exp (—(l-m)\/ﬁptﬁ-q)—l—g—- -
V2pt + dm —a, or 0<t<T,
Q(f) — p q ( 2Apexp (_SL.;ﬂl T—pt+q) f yel
i
\/2pt+CI(—;§(-12:q,T)> R for t > Ty
where
1 2 2 gq
Tzt (-2 )] - L >0
T 2p(1—m) [m A2(1+m)) 2”0

Proof.  Indeed, according to Theorem 4.2, the similarity solution and the function
G(z,t) take the form

o P(s) _ 9l _ -1/2
F(z,t) = IROEE and G(z,t) = AGIEE where s = (z + c3) |(1(t)]
is the similarity variable and (i(t) = 2 ¢, t + ¢co. Moreover, (4.70) becomes
iy — P8 Hed(s)
(/} (S) - l/)(S) —c s (479)

Since (4.79) is an exact ODE, its solution can be determined by solving the algebraic
equation

¢22(S) —clsw(s)—/sgo(s)ds—l—A:O =

w(s)zcls:t\/(015)2—2(A—/sgo(s)ds)

where ¢(s) is a completely monotonic function in s such that c2s? +2 [* ¢(s) ds —

2 A > 0. The variety of functions y(s) that are completely monotonic in s such that
(s) itself is completely monotonic and also vanishes to zero as s — oo is limited.
We have investigated a few such examples of functions ¢(s). However, we illustrate

below one particular interesting example for which we obtain the expression of the
total mass of the solution explicitly for all ¢ > 0 and also the gel-time Tye;.
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First, we denote by a := ¢3 and assume ¢(s) = s™, where m < 0 to ensure the
definitions of F and G are both satisfied. Then we obtain

2A 2 sitm
= — ]2 2
Y(s)=c1 s \/cls +1+m+1+m (4.80)
Therefore the similarity solution becomes
- 2A 2G(1)] "
- 1 Y 2 . 1+m
F(z,t) = |6t {cl (z+a) \/c1 (z+a)?+ 1+m|C1(t)l+ T (x+a)

and G(z,t) = (x+a)™ |C1(t)|_%3, where (1(t) =2pt+ cs.

In order to obtain an explicit formula for the total mass, we set A = 0, and denote
by p := ¢;. In addition, we assume m < —1, such that F(xz,t) vanishes to zero as
x — 00 and also p > 0 to keep the complete monotonicity of F(z,t). With these
notations and assumptions we obtain that G(z,t) and F(z,t) are given by

Gz, t) = (x +a)™[2pt + e "5,

and

F(z,t) P {:r +a-— \/(x+a)2 + 2[2pt +caf " (z + a)ttm } (4.81)

=|2pt+02| p? (1 +m)

When t = 0, if we denote by q := |cz] > 0 then we obtain the initial condition
F(z,0) = h(z) of (4.63) to be

h($)=§(x+a—\/(a:+a)2+;%(x+a)l+m>

Notice that h(x) is well-defined for values of z such that

x> —-a+ (—'y)lTlvﬁ where y:= ’ <0. (4.82)

For these values of x it can be shown that h(x) is completely monotonic. Indeed, we
have

h(x)zg(m—ka—- \/(x+a)2+’y(x+a)1+’") >0

One can calculate the derivative i'(z) and obtain that h'(z) is a product of two

completely monotonic functions g;(z) and go(x) defined by

2

p m q
ai(z) = 55 {(m-{-a) +

pr(1+m) h(x)] and  go(z) = ~ [5 (x +a) - h(z)] )
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for all values of z satisfying (4.82). It is not straightforward to obtain the inverse
Laplace transform of the function h(z), and thus an exact formula for co(A). Moreover,
obtaining exact solutions to (4.2) may not be possible. For this purpose, we restrict
our attention to finding an explicit formula for @(t) and thus the total mass for all
t > 0 and the expression for the gel-time. For simplicity we assume cy > 0. We start
with the derivation of Q(t).

Using the condition (4.12), i.e. Q'(t) = F(Q(t),t) we obtain

Q'(t) =——n Qt)+a | [ QM) +a 2+ 2 oty+a) ™
TV2pttaq | V2ptta Jipirs) T+ m \ Vopies
(4.83)

subject to I.C. Q(0) = 0. To simplify (4.83), we denote by v(¢) := —Q—%"i“;. Then
(4.83) becomes a separable ODE

dv _ dt
P2 o2 4 2T V2pt+g

subject to v(0) = 2

Vi

The above is equivalent to

v _ dt
oy - (E) Y
1+m

Using the substitution z = pvl“%m we obtain

z(t) + zz(t)+—2—:=A exp(— (1—2m) «/2pt+q) (4.84)

14+m

where

1-m 1-m
2 2
() "+ \/ #(s) ik
—_m 1-m
where 2(t) = p[v(t)]l‘z— and the constants a, p, g, m satisfy p? (—;—_5) > -—Him.
Solving (4.84) we obtain

2

A% exp ((m—l)\/Zpt—l-q) "ﬂ%‘n‘ =m
v(t) = -
2Ap exp(—i—2—ml\/2pt+q)

(4.85)
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However, the expression for v(t) obtained in (4.85) is valid only for values of

t € [0,T.), where T, is defined as an upper bound of the solution to the system of
inequalities

2(t) > _<_ L)UQ and z(t) < A exp(— @ \/ME)

1+m
We obtain that T, is given by

7= gy (" (- 7)) 5

¢ 2p(1 - m)? A2 (1+m) 2p
Using the definition of the gel-time as in the previous case or (34, 70] we find that
My(t) = —F,(Q(t),t) diverges at t such that 2%(t) = —2/(1 + m), which gives us
Tyet = T,. The gel-time Ty, is greater than zero provided that In ( - Zg(—f_l—_-;n—)) >
/@ (1 —m) holds. Therefore, the expression of v(t) given in (4.85) is valid up to the

gelation time. As a result, the function Q(t) can also be obtained

A exp (— (1-m)v2pi¥q) - &
2ApeXP(—(-l%@\/2pt—+q)

The total mass is given by My (¢) = Q'(t), so

2

i-m
) —a, for 0<t < T

Q<t>=m(

313

o (- 057 VETE) - gty oo (0572 B |
{g oxp (- L= YZPEF G

=
N
il
—
ES
@

)[(2pt+q)‘l’2—1]—

1 ) exp((l—m) \2/2pt+q) [(2pt+q)_1/2+l]}

On the other hand, in the post-gelation regime, we have that

2 1
= - [ > .

v(t) [ ) p2] for t> Ty

This yields an expression for Q(t) and M;(t) of the form
2 1-1m 2 x._l" p
=/ - — M(t) = | —

Q) 2pt+q[ (1+m)p2] a and Mi(f) [ (1+m)p2] 2pt+gq
where both formulas hold for ¢ > T;. 0
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Remark 4.5 Obtaining an explicit expression for c(\,t) requires the calculation of
the inverse Laplace transform of F(z,t) in (4.81), since c(\, t) = E#ﬁ LY F(z,t)}(A ),
where L™ denotes the inverse Laplace transform of F(x,t). We provide below a for-

mal series solution c¢ for the coagulation equation.

Example 4.7 (Formal series solution for the coagulation equation (4.2))
Assume the coagulation kernel is K(\, p) = Apu. Assume the source term is given by

g0y = R OTE gge
? F(—'m) )

where Q(t) is defined in Example 4.6. Then the solution c(\,t) of (4.2) is given by
the following formal series

oo 1-m k
(Ot) = pe—(Q(t)+a)A (2k — 2)! 2(2pt +q)2 1 \(L-m)
TN (2pt+q) & TRk — DI\ p(-1-m) ) T(A-mk—1) '

Proof. Formally expanding the square root and taking the inverse Laplace trans-
form term by term we obtain

l-m

- _ 2(2pt+q) 2
Y F(z, t =_P 1 — 2P 2 m-1
LHF(z,t)}(\t) 2pt+q£ {m—l—a (x+a)\/1+ 2 (1T m) (z + a) ()\‘,t)
-p X [202pt+ )T * 1/2 1
I s\éprT4q) ® 1)L
T 2pt+g ; < p*(1+m) ) ( k ) £ {($+a)(1‘”)’“}(’\’t)
pe—a/\ i’_‘: (1=m) &
= ap(t) A\
(2pt + ¢) A2 po
where <Z) is the binomial coefficient, defined by (:) = "("‘1)("_2"'(”_'““) and
where the coefficients are
K
1/2\ {2(2pt+q)=" ~1
t) = .
(i) (k>( Pitm ) Na=mk=D " (4.86)

O 2k=2)  [2(2pt+q)F" 1
= TRk = 1)) ( P (=1 = m) ) Ma-mpk-17 487
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Since m < —1 then the series Y o, ax(t) \!~™* with positive terms is convergent
for all values of A > 0. Therefore, the solution ¢(\,t) to the coagulation equation
(4.2) is given by the following convergent series with positive terms (for all A > 0):

-(Qt)+a) A X 2% — 2\ 2 (2pt )%’2 ¢ 1
e\ 1) = pe ( )! pt+4q A(1-m)k
’ N2 (2pt + q) — 2%-1fN(k — 1)\ p?(-1~—m) (1 -m)k—-1)

where Q(t) is defined in Example 4.6. In particular, when ¢ = 0 we obtain the initial
condition of (4.2) to be given by the convergent series with positive terms

—ax ® == k
_pe® (2k — 2)! 2q73 1 (1-m) k 0
co(A) = g2 Z %1l k- DI\ p2(-1—-m) ] T(1-m)k—1) A

k=1

Case III: Vector field V =c, Vs +c3 Vi

Consider the infinitesimal generator of the point symmetry group of the form V =
ca V3 + c3 Vi, where cg, cg # 0. In this case, the generators for the one-group of Lie
point transformations admitted by the Burgers equation with sources (4.63) become

£(z,t) =c3, ((x,t)=c, n(z,t,F)=0.

Using the method of characteristics to solve the invariant surface condition (4.45), we
obtain the following result:

Theorem 4.3 Let cp,c3 # 0 be some arbitrary constants. Let ¢(s) — 0, as s — 00
and ¢(s) is a completely monotonic function in s, where s =z — %} t, represents the
similarity variable. Assume the function G(z,t) has the similarity form G(z,t) =
@(s). Then the partial differential equation (4.68) has a similarity solution given by

Flz,t) = ¥(s) + ? (4.88)
where Y(s) satisfies the ODE
() = 28)
Y'(s) = 503 (4.89)

The constants ca and c3 are chosen such that the function (s} — 0 as s — co0. In
addition, ¢ (s) satisfies 1(s) + 2 > 0 and —'(s) is a completely monotonic function
for all s.
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Equivalently, 1(s) satisfies the equation

@ = /s o(s)ds+ Ay or Y(s)= iﬂ(/s o(s)ds + A2)1/2 (4.90)

where p(s) is a completely monotonic function in s such that As+ [° ¢(s)ds > 0 and
Ay is an arbitrary constant.

Remark 4.6 The complete monotonicity of the function ¢(s) + & and (4.89) imply
that ¥(s) <0, for all s € R.

One particular example that provides a family of similarity solutions F(z, t) to (4.63)
is

Example 4.8 Let w(s) be a function that satisfies the following conditions:
(H1)  w(s) >0, for everys > 0;

(H2)  w'(s) is completely monotonic in s;

(H3)  lim, o w'(s)e ™ =0 and lim,_,, w(s) = co.

Assume the initial condition of (4.63) is given by

2
hiz) =2 (1 —4f1- Q—?e—w@) ) (4.91)

C2 63

In addition, assume

G(z,t) =v (a: - Z—z t) eV GY (4.92)

where ¢z and c3 are arbitrary constants such that —g—g— > V2.

Then the Burgers’ equation with sources (4.68) admits a family of similarity solutions

of the form
_8(y_ |1 28 ~ue-20
F(z,t) = . (1 \/1 2 e 2 (4.93)

Proof.  Indeed, consider the function ¢(s) = w'(s)e™). Then the solution to
(4.90) is

Y(s) = £V2 Ay — e v,
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Moreover, from (4.88) we obtain

Since w(s) — oo as s — oo then in order to ensure that F(z,t) — 0 as £ — oo for
all t > 0 we choose £, A, > 0 such that 2 4, = 3§ With this choice of constants, we

C:
c2 c
obtain

Moreover, the function G(z,t) is given by G(z,t) = w’ (x —-a t) e 3 Y Tt is clear
that G(z,t) is completely monotonic for all x > %3 t as a composition of a completely
monotonic function and an absolutely monotonic function (see Lemma 7.1, Chapter
7). Also, G(z,t) vanishes to zero, as z — o0, since w(s) satisfies conditions (H1-H3)
above. Clearly, the function F(z,t) is completely monotonic in z > 0. Indeed, one
can calculate F; and obtain

C3 2 Ca

—1/2
Fz(ac,t) =_2{1_20_c22_e—w(m—%t)} w'(x_%t) e—-w(x-glet)
3

The function —F, is a product of two completely monotonic functions

f3(z,t) = e_w(z_%t) w'(z = t) and fi(z,t) = ( - 2_0_3’6‘“’(*%3‘))—1/2'

Co Cg

The function f; is a composition of an absolutely monotonic function (1 — f3)~'/2 and
a completely monotonic function fs = e and as a result f; is completely monotonic

for all z > 0 (see Lemma 7.1 in Chapter 7) and thus our example is now complete.
0

Examples of functions w(s) satisfying conditions (H1-H3).

Two examples of functions w(s) satisfying (H1-H3) are:
(a) w(s)=s*% where ac€(0,1].

(b) w(s) = In(1 + (s + a)?), where a > 0 arbitrary and 8 € (0, 1].
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For the purpose of illustrating an example of a similarity solution we consider here

the first example and leave the second example for future work.
Example (a): Let w(s) = s*, a € (0,1]. It follows immediately that w(s) satisfies
(H1-H3) in Example 4.8. For simplicity, denote by

q:=2c}/c}

Then the initial condition (4.91) becomes h(z) = & (1 —v1- qe‘zu). Moreover, the
similarity solution in this case takes the form

F(z,t) = z—z {1 —y\/1—gqe 5" },

whereas the function G(z,t) becomes
a-—-1 c; o
G(z,t) = « (1; -3 t) e (4.94)

Our aim is to determine the solution c(\,t) to (4.2). This follows from the general
formula

cse-2Q®)

o) = E— L1~ Vi-ge @3 o

where Q(t) satisfies the I.V.P.

Q'(t) = ? { 1- \/ 1-qe @O-Z 0" } subject to L.C.  Q(0) =0.  (4.95)
2

Next, we make the assumption that o = 1 and consider two different cases of study
for ¢: Case 1: ¢ < 1 and Case 2: ¢ = 1 and determine whenever possible a formula
for Q(t) and M, (t) in both cases.

Case 1. Assume ¢<1

If g < 1 then the differential equation (4.95) can be solved exactly as in this case it
reduces to a separable differential equation whose solution is

2B q
(4.96)

Brexp(— 2t)+qexp (2t B?
Q(t)=g§t+21n( P( 2@) 1 p(Zcz )>for0St<Tc:=?ln(—).
2 3
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where B:=1+4+/1—-¢>0.
Furthermore, we notice that for ¢ > T, the function Q(t) = Ing + &1 satisfies
(4.95). Hence, we obtain the expression of Q(t) for all time ¢ > 0 in the form:

B? exp (—52 t)+qexp (52t e
Q) = 21n( e “2)3" p("’L))ﬁ--cft for 0<t<T.
lnq+§§t for t>T,

Moreover, the expression of the total mass in this case is obtained for all £ > 0 from
the definition M,;(t) = Q'(t),

4 exp (f*}t)
M (t) = —c—:szexP(—z—c%t)-:qexp(%t ) for 0<t<T,

e

for t>1T,

cp?

where T, = ﬁg In %2- .
It remains only to show that T, represents in fact the gel-time. This reduces to

proving the following are true

t 0
My(t) = My(0) + / / Ag(\,s)drds for 0<t<T, (4.97)
0 JO

t =]
M (t) < My(0) +/ / Ag(X, s)drds for t>T, (4.98)
0 Jo

Indeed, to show (4.97) holds, we calculate M{(t) and f;° Ag(A,¢) dA. We have

dMy(t) 4 B?
e (4.99)

2
(32 exp (— E%t) +q exp (%t))

Moreover, using the definition of A g(\,t) we obtain

/ Ag(A 1) = H(0,1) = G(Q(), 1) = & @950 = g0 - 20
0

where v(t) = Q(¢) — 2¢, from which (4.97) follows. Let us prove that (4.98) holds.
Indeed, we have

t o 462 t
Et:=M0+// A /\,sd/\ds=——+/e‘”(’)ds
() 1() o Jo g( ) 03(B2+Q) 0
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The last term of E(#) 18

t T. t
/ e—u(s) ds = / e~ gs + / e—v(S) ds =1+ I,
0 0 e

Using the expression of v(s) we obtain that

Te 4 BZ BZ -
I = / 5 ds = %ﬂ and
0 (B2 exp(—zﬁc?;t)—%—qexp(z—cg;t)) qcs
¢ , 2
L= / e gs = X [t 2 (-B—)]
p q 3 q
Thus (4.98) holds if and only if
B2 ; o T.
ﬁslt—lclln(—)+2—(3 o 8 20 Ll oy
Cy q qCs q qcs €2 qce3 q q
where we used the definitions of T, and ¢q. Using (4.97) and (4.98) we can now

conclude that T, = Ty.
An explicit expression for the solution c(A,t) to the coagulation equation (4.2)
requires the calculation of the inverse Laplace transform of F(z,t) given by

F(z,t) = (c—z {1 —-\/1- qe_(z_%t)} where ¢ < 1. (4.100)

This can be obtained either by expanding the square root in (4.100) (using the bi-
nomial theorem) and then formally taking the inverse transform term by term or by
directly computing the inverse Laplace transform of F(z,t) in (4.100) with the help
of contour integration. We leave the latter as future work. Next, we determine the

asymptotic large size (A — co) solution.

Remark 4.7 Case 2 (i.e. ¢ = 1) is obtained from Case 1 in the limit as ¢ — 1.

Asymptotic large size (A — o) behaviour of the solution (for ¢ < 1)

Based on the form of the similarity solution (4.100), we investigate the behaviour
of ¢(\ t) for A — oo, for ¢ € (0,1]. For this reason, we return to the form of
F(z,t) = & + 4(s) and apply the theory in [23] with regards to the image function
F(z,t). First, we need to determine the branch points zy(t) for F(z,t) and find the
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asymptotic behaviour of F(z,t) as ¢ — zo(t) for all times t > 0, by first determining

the asymptotic behaviour of ¥(s) as s — sq.
2

We have 9(s) = —1/2(k —e*), where k = ;% = . Then, the branch points

2¢3
for ¥(s) are s s.t. =e% = g =-Ink) = ln (—1}) We can rewrite
P(s) as follows P(s) = —v2k/1—e-G-%) = — \/—_e_(m We want to find
a Puiseux series for ¢(s) as s — so. Using the MacLaurm series for e we obtain
Y(s) ~ -2 (s - so) 2+ 2 (s —50)¥2+ ... ass — sg. In terms of F(z,t), the

asymptotic behaviour reads as

F(z,t) ~ a % (x — zo(t))/? + i (x - mo(t))3/2 +.. as T — xo(t)

202

where zo(t) = €¢ 4+ In (—21) and t is fixed. Using [23] we obtain the asymptotic
behaviour of A ( ) = LHF(z,t)}{(\t), as A — oo, in the form

fAE) ~ \/_)\ 5/2g2@WA 35 A — oo and for any ¢ > 0.
T

In addition, we also obtain the asymptotic behaviour of c(),t) to be

M t) = e=AQ0) F() 1) m e~} (@0-50(0) ~5/2 >
c(\t)=¢e fA ) ~e 2c2\/7_r)‘ , as A — 00, and for any t > 0,

where Q(t) is given in Case 1 and Case 2 above. Consequently, we have
Example 4.9 Assume ca, 3 are some arbitrary constants such that £ € (0, \/-2_}

Let ¢ = 2—(? and B := 1+ /1T -—-q > 0. Let the initial condition to the coagulation
equation (4.2) be given by

co(N) = ” {1— 1—%—026‘“}0\) (so, co(A) ~ 2\/_)\“5/2 Mn("’%))

3
Let the function Q(t) be given by

Q(t) _ 21n <32 eXP( 2:2?)B+q eXP(2cz )) + _g_gt, fo,,,_ 0 <t< Tgel

Ing+ 21, for  t> Ty
where Tgep = —2 In ( . ) denotes the gel-time. Assume the source function is such that

Ag(\t) = 5( - )e—(Q(t))‘ a9 Let the coagulation kernel be K(A, p) = Ap. Then
the asymptotic behaviour of the solution c(A,t) to the coagulation equation (4.2) is
given by

c(A £) ~ 2 A2 RO-GInd) e oo and VE > 0. o

QCzﬁ
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4.2.4 Coagulation kernel K(\,u) = (o + N (o + fu) and
g\ t) =0
In this case, the PDE (4.10) reduces to

Fy(z,t) €0 4 B F(z,t) Folz,t) = % F2(z,¢). (4.101)
Generators for the one-group of transformations

We determine the generators for the Lie group of point-transformations admitted by
(4.101). In this case, equation (4.33) becomes

2
2790 Q (1) (1) + = e F (1)

38 (B0 - 2@ R0 - a0 A0+ 2B} <0 @

w

Since the coefficients of (4.102) are arbitrary functions of ¢ then in order for (4.102)
to hold for all values of z > 0 the following conditions for the functions Fy(t), Fa(t)
and F3(t) must hold

2

(O +aQFO=0 and F(0)-ag(ROYM)+3

F3(t) =0 (4.103)
from which we obtain the general solution in the form
t
Fi(t) =b R(t) + by where R(l)= / e~ Q0 gs (4.104)
0

where b; and b, are arbitrary constants. In addition, using (4.22) we have C; = 0 and
from the definition of C(z,t) in (4.17) we obtain that the generator ¢(z,t) satisfies
the equation

Eie(z,t) + a Q') &(x,t) = 0. (4.105)
On the other hand, using (4.31) to calculate &; and &, (4.105) becomes

e 75% Ry(t) + €28 % Ry(t) + Rs(t) = 0 (4.106)

R = =22 =90 { Q1) Fi(1) + o [Q/ (O Fi(0) + Q') FI(0) + Q1) ()

FLEO) +al@OF F©) + @0 )
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Ro(t) := Fy(t) + aQ'(t) F4(t) and Rs(t) := Ry(t) + a Q' (t) Ra(t)

Ru(t) = == [F() = a @) Fa) — « QO F5(0) + 5 Fy()]

If we take the coefficient R;(t) of e 257 in (4.106) separately and use (4.104) we
obtain

Ri(t) = 202 290 [ () — o [Q (P +3a Q0O - 20[Q ) - @"()} =0

Hence, (4.106) becomes 78 Ry(t) + Rs(t) = 0, from which when using (4.103) we
obtain

F/t)+aQ'(t) F;(t) =0 and Fj(t)+aQ'(t) F3(t) =0. (4.107)

Moreover, we also have

d

! _ s
FJ(t) o

(RO Q®) + % Fi(t) = 0. (4.108)

Therefore, the functions F;(t), with ¢ = 1,2, 3,4 are given by

F](t) = b1 R(t) + b2, Fg(t) = A R(t) + a2, F4(t) = as R(t) + a4 (4109)

t
Fy(t) = e*Q® {a(,- - ?-ﬁ“—l R(t) e™*9® gt + g R(t)} (4.110)

where R(t) = fot e~®Q() dr . and ay, ag, as, a4, b; and by are arbitrary constants. Sub-
stituting these functions into (4.29-4.32) and using the definition n = A F2+ B F+C,
we obtain

2b a 2b a
((z,t) = 90 {_.a.l R(t)e™25% + —&Ze'ﬁx — %Rz(t) +as R(t) + aﬁ}
(4.111)
2a - T i B 43b - T 2a 28a
02 ) ) e - A28 e (2, 20
(4.112)
2R(t)F 2 e, (aRH)F 1 a e
L, F)= — 28 s —_eip”
n(z,t, F) al( 5 +aﬁ)+ae ( 55 +ﬁ)+a42ﬂe F
—asF+b R(t)F?e 28 4+ by F2e 187 (4.113)
If we denote by ¢; = —a5 — %az; Co = Qg; C3 = Q4 C4 = A3} C5 = —%az - %Ea5; Cg =

%al; ¢y = by; cg = by then the generators of the Lie group of point-transformations
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admitted by (4.101) are given by the following formulas

o a 4 —a
E(z,t) = c3e2F " +¢cqe28” R(t) + c5 + g R(2) —c-,ﬁeﬂﬁ ’

2
C(5,8) = ¢ €290 R() 4 0290 _ ¢, & };(t) 290 _ ¢ %ﬂ(t) Q)
2 R(t)

o

+ ¢y e ~35¢ aQ(t)—*—nge 25 eaQ(t)

a « 1 «
S & e R W(—RtF —) g

n(z,t, F) c1F+C32ﬁe +cye 23 (t) +ﬁ +C5ﬁ

o 1
e [FROF+ ]
where ci, ..., cg are arbitrary constants (depending on ay, ..., ag) and R'(t) = e~*@() dr.
Therefore, the equation (4.101) has an eight-parameter Lie group of point transfor-
mations. More precisely, (4.101) admits an eight-dimensional Lie algebra £g spanned
by the following eight Lie symmetry vector fields V1, Va, ..., V5!

0 0

+C7R(t)er—;_ﬁI+c8er_ﬁz

a o 6 8% a (9
el _p 0 el el @ e O
W= RNg —Fap Va=e"Tlg Va=ed g +oger Fap
., a 110 _ 0 % g )
Vi = i3 R(t) — e [ZBR(t)F-i-ﬂ]aF, V=g 5e R(t) +ﬁFaF
aR(t) 0 o 17 0
= R(P) e — il X2 o9 Q(E)
(f)az- 58 °© 8t+[ﬁR()F+[3]BF
6 2,8 2 e o8 8
V7=—a—€-€ 28 a—-+—R()€ 287 @ Q(t)a +R()F2€ 2ﬂ '5?'
Vo= %e—z—azeacz(ng te s Fz'a% (4.114)

Similar as in 4.2.2, we start by computing the commutator table and also the
adjoint representation table. The commutator table for the Lie algebra arising from
the infinitesimal generators V;, where ¢ = 1,2, ..., 8 is presented in Table 4.3.
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ANRARZ Vs Vi| Va] Ve Vi Ve
‘/1 0 '—‘/2 0 ‘/4 0 Vs 0 —Vg
Va V| 0 0 Vs|—22| Vs 0
a a 3V; AL Vo
V3 ; - : : —-i_?. —2—‘2 —EL h 2_(‘1/5- 3V_7§ 2V
AR R I Y I 2
Vs 0] 22 aly —a% 0| —2% _aVy 173
8 23 28 8 283 243
Vo |-Va|V B 0] =& 0 o
i 0|V —%/L ~ %f 3V —% %Zé V0 0 )
A RAN Pl s % 00

Table 4.3: Commutator [V}, V] table of (4.101) for the Lie algebra Lg spanned by V;
and Vj.

In the following we investigate the subalgebra structure for (4.114) of the PDE
(4.101). In particular, we are interested in determining the optimal system of one-
dimensional subalgebras of (4.101) and the corresponding invariant solutions. For
this reason, we proceed similarly as in 4.2.2 and investigate the one-parameter group
of adjoint transformations of the one-parameter subgroup exp(e V;) generated by the
vector field V; acting on the vector field V;, where 1,5 = 1, ..., 8, defined by (4.43) (for
more details about the adjoint representation and optimal systems see e.g. [80, 81]).

The corresponding adjoint representation structure for (4.114) can be easily con-
structed by using the formula (4.43) based on the infinitesimal generators given in
the Table 4.3. The resulting operators are given in Table 7.2 in Chapter 7, where
each (4, j)-th entry indicates Ad(exp(e V;)) V;.

Following a similar analysis as in 4.2.2, we have obtained an optimal system of one-
dimensional subalgebras. The proof of Theorem 4.4 below is presented in Chapter 7.

Theorem 4.4 A one-dimensional optimal system of one-dimensional subalgebras of
the full symmetry algebra for the PDE (4.101) is given by the following vector fields

(i)  VstVstcsVatarVota Vi, VetVataVi; VeteVata Vi, VeVt Vi,
(where ¢} # %) and V3 +Vs+5Vi+cVy;

(i) Vi+VoteVi+esVs, VetVot+VideVoteVs, VetesVs+aV,
and V7+ Va+ce Vs +cs5 Vs,

(i)  Ve+Vata Vi, Vet Vs, Vet+ViteaVa, Vet+Vstgg Vitea Ve, Ve+Ve+a W,
where ¢ # 35
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(v) Vs+aW, uwherec #3, 55 ond Vs+5Vi+calVy
(v) Vi+Vi+ceVy, and Vi+caVy;
(vi) Va+caVo, and Va+c Vi,
(vii) Vo+a Vi,
(vii) W,
where ¢y, ¢a, 3, C4, C5, C6,C},C1 € R are arbitrary constants, with c;, ¢}, & subject to
constants in (i), (i) and (iii), respectively.

According to the optimal system of one-dimensional subalgebras given in Theo-
rem 4.4 of the full symmetry algebras of (4.101), it is possible to obtain the classifi-
cation of all possible corresponding reduced forms of the partial differential equation
(4.101). To illustrate some of the reductions forms of the PDE (4.101) we consider
some of the vector fields in Theorem 4.4 and the corresponding similarity solutions
F(z,t):

i) V=W
a 2
F(z,t) = Cy(t) e ® — o where C(t) is an arbitrary function of .

(vit) V =Vz+mV), where m is an arbitrary constant

. 28m . . .
- mm, where Cy(t) is an arbitrary function of ¢.

|

w)|

F(z,t) = Cy(t) e?

(vi) V =V3+uVi where p is an arbitrary constant
P 7

F(z,t) = e"v‘/(‘ﬂ“‘f”“}%i R() g—ch o35 % o242 e 1o

where W is the Lambert W-function.

(v) V =V, + 0V, where 6 # 0 is an arbitrary constant
1 2 «

F(a:,t):meﬁ” and F(x,t).—.-aR(t)_w&R(t

Remark 4.8 None of these similarity solutions obtained in the cases above satisfy

e38% A,
)

the definition of F as a Laplace transform, and thus they are not of interest to our
study.
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Vector field V=V;+bV;

According to Theorem 4.4 (iv), the constant b # 3, 5%. In this case the generators of
the Lie group of point transformations admitted by the PDE (4.101) take the form

E@t) =1, (b= (b- %) QO R(E), n(z,t, F) = —(b - %) F

Thus, the invariant surface condition (4.45) becomes a first order PDE

a\ R(t) . _ (, « nition: R () = e—*Q®
F.+ (b [3) 0 F, = (b ﬁ) F, where we used the definition: R'(t) = e
(4.115)

from which using the method of characteristics, we obtain the similarity solution and
the similarity variable

1
F(z,t) =9y(s)e"® and s=-z— S In[R(t)], (4.116)
where v = %ﬁ. Substituting the invariant solution (4.116) into (4.101) we obtain
that the similarity profile ¥(s) satisfies the ODE

Y. _ 6-73'9[)2(3) C1
V) = T e (o)

(4.117)

whose solution is given by

2bf—-a

[— 5 (% e 1P(s) + 1)] =) A (4.118)

where ¢; = Qﬁ;%;bﬁa_) and ¢ = a—b 3 and A, is an arbitrary integration constant.
Using the definitions of F' and s in (4.116), we obtain e™”® = ?* R(t), from which
we can derive an algebraic equation for F'(z,t) in the form

o 2bp-a

[-2- R(t) F(x,¢) + 1] " = e F(a, 1) A, (4.119)

where A = A, (_7)_23%1_ In particular, if we take t = 0 we obtain that the initial
condition to the PDE (4.101) for which a similarity solution as in (4.119) arise, is
given by h(z) = me?®, where we denote by m := 1/A. Based on the expression of
h(z) we obtain some necessary conditions for h(z) to be completely monotonic in x
and also to vanish to zero as x — o0. These conditions are v < 0 and m > 0. The first
condition implies that b > % (and thus the parameter b is strictly positive). Moreover

8
if we denote by u = gbi—"a then the above condition yields u > 1. Therefore, we

obtain the following result
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Example 4.10 Let v := 2:}-‘1 <0, p= Qan—a >1 and m= g_A?u 0.
Suppose the initial condition to (4.101) or (4.2) is

h(z) =me'®, Yz >0 (so, co(N) =

m
>
TR A VA2 o)
Assume the coagulation kernel is K(\, pu) = (o + Bp) (o + BA). Let the source be
g(\,t) = 0. Then the solution c(\,t) of (4.2) has the form
i e~ (a8 X) Q1) V(e DY ¢

where F'(z,t) is the similarity solution of (4.101) and satisfies the equation

m (% R(H) F(z, ) +1)" = F(z,t) e (4.120)
and Q(t) satisfies the L.V.P.
Q'(t) =e 22O F(BQ(t),t) subject to I.C. Q(0) = 0. (4.121)

Finding a general solution F(z,t) for the equation (4.120) or the behaviour of the
solution ¢(\, ¢) for a general constant g > 1 is not straightforward. An asymptotic
behaviour of the solution c(), t) based on the Newton polygon method can be applied
in this case (see the similar analysis in 4.2.2). However, we restrict our attention
to providing an expression for the total mass M;(t) of the solution ¢(A,t) to the
coagulation equation (4.2) in the pre- and post-gelation regimes. We also determine
the expression of the gelation time T, and the formula for N(t) for all time ¢ > 0.

We start by solving the I.V.P. (4.121) to determine the function Q(t). Substituting
z = (Q(t) into (4.120) and using the definition of v to get a — 8 = b we obtain

m(g- R(t) ex?® Q'(t) + 1)” = =718 Q1) Q(t) = Q) Q'(t)

Using the definition of R(t), we rewrite the equation in the form

S R+ e;;(Qt(;) = Q) w7 o (8-a) Q) (%)‘“‘

Next, we take the derivative w.r.t ¢ on both sides. Multiplying the result by 2 [Q’(¢)]
and using the definition of u, we obtain

{a Q') +2 Q”(t)} {e“’Q“) 42 (Q’I;E,t))l/u 20; E iﬁa . Q<t>} =0. (4.122)
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In the absence of particle source terms and since ¢y has a finite second moment,
it is expected that prior to the occurrence of a shock (gelation) the total mass be
conserved, i.e.

M, (t) = M,(0) = /waco(x) dX = T—(’-’bﬁﬂ%‘) for t €0, The)-

In addition, in this case, the function N(t) satisfies the I.V.P.
N'(t) = -% N%(t) subject to LC N(0) = h(0) = m > 0, (4.123)

(see for example [96]). The shock/gel time Ty is still unknown at this stage and
needs to be determined. On the other hand, using the definition N(¢) = Q'(t), the
equation (4.123) takes the form

QW) =-5QOF = «@QOP+2Q()=0, for te[0,Tp)

(which corresponds to the first factor in (4.122)). One can solve the equation (4.123)
and obtain an expression for N(t) prior to the occurrence of gelation:

2 h(0) 2m

Q'(t)=N(t) = N(t) = Trami

Moreover, we also obtain an expression for Q(¢) in this case to be

Qt) = 21n(

24+amt
= — ———-———) for
o

2

For the expression of T, we use the same definition in [96] which corresponds to the
instance when M»(t) = F,(Q(t),t) — —oo, or

t € [0, Tyer). (4.124)

1 1 1

TBR(0Y) T Bmy m(bB-a)

After the occurrence of a shock (so, for ¢ > T), it is expected that the equation

2Q"(t) + «Q'(t)*> = 0 is no longer valid. According to the equation (4.122) for Q(t)
this means that in the post-gelation regime we have

Tgel =

> 0. (4.125)

e~ 4 9 (Ql(t))w @ b0 sfgRfon _g,
m 2b03 -«

Therefore, for t > Ty, we have

, m (o —2b0\# _absu g
Q0= (Gopg) ™=
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Using the definition of p we get that 59‘51"75_“; = b and thus the above equation

simplifies to

oy Moga—2bB\k , o _m (a—2bB\k
Q(t)——Q;(——ma_bﬁ) e PP o Q(t)ebﬁQt)_Ql‘(_—_a—bﬂ) (4.126)

Integrating (4.126) from T, to ¢t we obtain

2bfB—a
bAQU) _ bBQT,) | MbB(a—=2bB\7
e e P B (S ; ) T (- T (4.127)

For the expression of Q(T,) we use the formula obtained for Q(t) in the pre-gelation
stage, ensuring the continuity of M, (t) and thus of Q(t) and c¢(A, t) at t = Ty,. Using
the definition of Ty and the expression (4.124) we obtain

Q(Tget) = %111 ('2"2(_:%”}%)

Then (4.127) becomes

(2b8/a)-1
28 — a (208 — o) Bple)-1
Q0 — tmbg (‘—_—z(bﬂ-a)> T s W (4.128)
So,
(2b8/a)-1
. _1_ 2 bﬁ - _ o
A =5 I { [z(bﬂ = a)] (bt = 55— a))} (4.129)

Therefore we obtain the formula for Q(t) for all ¢ > 0 as

Lin (2tgme), A for ¢ €[0,Tya)
Q) = b ] (28/2)-1
5% In [%&%‘3‘] (mbﬂt - m) y for t > Tgel
(4.130)

where T, represents the gel (shock)-time and is given by (4.125). From this formula
one easily obtains the expression for N(t) = Q'(t) for all t > 0

N(t) _ { 2—_*_—%:1'7—"7 fOI‘ t € [0, ng)

2m(b3—-a)
2bBm(bB—a)t—a for t = Tgel
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On the other hand, we make use of the definition of N(t) as a linear combination
of the zeroth and first moments, or

Since we only know the expression of the total mass M;(t) in the pre-gel stage we
can determine the zeroth moment from the above equality. So, My(t) = % { N(t) -
ﬂMl(t)}, for ¢ € [0, Tyes), takes the form

_ 2m _ m(bB —a) _ m(amt + 2 — bfmt)

T a2+ amt) abf  bB(2+amt)
To determine the expression of M;(t) for ¢ > T,.; we need to find the zeroth moment

for ¢ > Tye. For this purpose, integrate (4.2) w.r.t. z on [0, 00) and use the definitions
of My(t) and M;(t). Thus we obtain that the zeroth moment satisfies the I.V.P.

Mo(t)

for t € [0, Tyer).

My(t) = —-% N3*(t), forall t>0. (4.132)

It remains only to determine Mj(¢) in the post-gelation regime. For this stage, we
solve the ODE above and impose the initial condition My(7,.;) such that the function
Mqy(t) is continuous at t = Tj;. Therefore, we need to solve the I.V.P. (4.132) subject
to Mo(Tyet) = %. Integrating (4.132) from Ty to ¢ we obtain

t
1 rt m m(bf — o)
Mo(t) = Mo(Tyet) = = [ N*(s)ds = t 82— a)
0= 05 [ 0,
__m {bﬂ—a_m(bﬂ—a)t—-l}= m(bB — a)
208 —a | b8 mbBt =g | u[2(8 - aymbpt— o]

for t > T,u. Substituting My(t) above into (4.131) we obtain the expression of the
first moment

_ m(bB — o) (260 — @)
b2 [Q(bﬂ —~ a)mbgt — a]

Therefore, we have obtained the expression of the total mass for all time ¢ > 0

M (t) for t> Tyu

m(zg;‘ai fOI‘ te [OaTgel)
m(bi~a)(2b3~a) for t> Tge[

Mi(t) =
1( ) b32 [2(bﬂ—a)mbﬂt—a

where Ty represents the gelation time defined by (4.125). O
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Particular choice of constants. Asymptotic and formal series solutions

In particular, if 4 = 2 then b = %_—%‘ and v = ——5‘3‘5. Moreover, in this case the algebraic
equation (4.119) becomes quadratic and we obtain an explicit formula for F(z,t)

Fla,t) = a?fRT({) {ez%z —amR(t) - \/(e_ﬂ - amR(t)>2 - (amR(t))2}
(4133)

The function F(z,t) is completely monotonic for all £ > 0. In addition, F(x,t)
has a branch point

To = zo(t) = %? In(2amR(t)).

Expanding F(z,t) about the branch point zo(t) we obtain the asymptotic behaviour
of F(z,t) as  — zo(t) to be

F(z,t) ~ —TE&—%—QG)-{amR(t) _2 amR(t)\/;% (=~ 22 mamr(e) " + }

Therefore, according to [23] we obtain the asymptotic behaviour of the solution f(\,t)
as A — o0 to be

2amR(t) A2, /&
(a+BN) FOME) ~ —2 o © 28 ) o22 n(omA() A
’ ma?R2(t) r(-)

Using the definition of ¢(A,t) we obtain the asymptotic behaviour for the solution
c(\t) of (4.2) as A — oo for all t > 0 to be

A"3/2 o=@+ Q1) [57, 22 )
(A, t) ~ ’/E [2aR(t) m] as A—oo, Vt>0 (4.134)

(a+ BA) aR(t)
where Q(t) is obtained in (4.130) where we substitute b8 = 3a/2, so
2 24+amt
Qt) = azln ( 2 ) for ¢ €0, Tgu) , (4.135)
3o In(6amt — 4), for t>Thu==

Alternatively, we can proceed as in Example 4.9 and expand the square root in
F(z,t) defined by (4.133) using the binomial theorem (or the Newton’s generalized
binomial theorem), and then formally take the inverse Laplace transform term by
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term to obtain the inverse Laplace transform of F'(z, t):

- - 1/2 k-2 a(k—-1)
LY F(z, )} (\t) = 8m ; (—1)k+ ( ,/c ) [2amR()] 5( - _-27—)
e 2k 2 k—2 a(k-1)
Thus, the solution ¢(A, t) of the coagulatlon equation becomes
8me (@FANRM) 2 (2k — 2)! k—2 ak—1)
I ] [2emR(®)]* ™ 5(x - 28 )

and the initial condition is given by co(A) = 354 (/\ 3 ﬁ) In this case, the expres-
sion of the total mass becomes:

LN f t Tee
My(t) = { 38 or  t€[0,Tgu)

am _ 2
3ﬂ(3a1mt—2) for  t2Tha=735

4.2.5 Coagulation kernel K(A\,u) = (¢ + BA) (@ + fu) and
g(\t) >0

In this case, the PDE is given by the general form

Fy(z,t) e*®® 4 § F(z, 1) Fo(z, t) = 52'- F(z, ) + 290 G(z, 1) (4.136)
Generators for the one-group of transformations

In this case, since o > 0, then from 4.2.1 the function Fi(t) = 0. Thus, the functions
A(z,t) and {(z,t) defined in (4.29) become A(z,t) =0 and thus

((z,t) = Fy(b), (4.137)

where F3(t) is an arbitrary function of t. Moreover, we have n(z, t, F) = B(z,t) F +
C(z,t), and (4.30) and (4.32) take the form

B(z,t) = 55 e % Fy(t) - (F3(t) — a Q'(t) Fa(t)) (4.138)
O ) = 50 B o7 = Z et {Fé’(t) - QO B0 - a @) B +

(4.139)
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where F3(t) and Fy(t) are arbitrary functions of . Furthermore, using Fi(t) = 0
equation (4.33) gives rise to

FU(t) — Q" (8) Fat) — a@(6) Fi(t) = —% Fi(8) (4.140)

which by integration w.r.t. ¢ twice yields
Fo(t) = _% e Q) / F3(t) e 90 gt 4 q,e*9® / e QW dt 4 ¢, e*90  (4.141)

where ay,¢; are arbitrary constants of integration. Combining the formulas (4.139)
and (4.140) we obtain

Clo,t) = %ean {Fi(t)efs=+ % Fi). (4.142)

On the other hand, since C(z,t) = §e*%0) €,(z,t), we obtain &(z,t) = Fj(t) e?8” +

% Fj(t), which by integration w.r.t ¢ gives us

£(s,t) = Falt) e + % Fy(t) + Ag(2), (4.143)

where Ay(z) is an arbitrary function of z. In addition, substituting the expression of
F,(t) obtained in (4.141) into (4.138) we obtain
x a 2
B(z,t) = — €287 Fy(t) + — F3(t) — a;.
(@,0) =55 e  Full) + 5 3(6) —

Furthermore, using the expressions of B(z,t) and C(z,t) obtained above we also
determine the infinitesimal generator n(z,t, F) = B(z,t) F + C(z,t) to be

o 2 1 o, 2
n(z,t, F) = {i e28% Fy(t) + = Fy(t) — al} F+ 3 e {Fg(t) e26” + = Fg(t)}

2 B
(4.144)

Therefore, the generators of the Lie group of transformations admitted by the
PDE (4.136) are given by the equations (4.143), (4.137), and (4.144). With the help
of these expressions we can proceed to determine the group-invariant or similarity
solutions F'(z,t) of the PDE (4.136). Such similarity solutions are obtained by solving
the invariant surface condition (4.45). Thus we obtain a first order linear PDE for
F(z,t)

Fat) + Ax()| Fule,t) + Bo(t) iz, )
= [ e R + -;- Fi(t) — ] Fz, 1) + %ea%) [Fit) P + -z- F().

(4.145)
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To illustrate our analysis in this case we only consider below the particular case

Az(z) = ay, where a, is an arbitrary constant and Fy(t) # 0. The general case, Ay ()
arbitrary function of z is left for future work.

From the invariant surface condition (4.145) we obtain

. Fy(t) A e+ ZR(t) —
TR eT T L 2Rt +ay | Fa(t) e + 2 Fy(t) +ag
—%x ' /
SR 42 £ (4.146)

Fy(t)e” + 2 Fy(t) +ay @ Fa(t)e™” + 2 Fy(t) + ag
Using the definition of F(x,t) we have F, — 0 as £ — o0, then taking the
limit lim,_,o of (4.146) we obtain that a necessary condition for the new equality to
hold for all ¢ > 0 is that the function Fy(t) is a constant. Indeed, assume first that
Fy(t) # 0, then taking the limit in (4.146) as x — oo we obtain that the left hand-side
approaches zero while the right hand-side tends to Fy(t)/Fy(t). Therefore, F;(t) =0,
i.e. Fy(t) = a3 is a constant. On the other hand, if F,(¢) = 0 then taking lim,_,, of
(4.146), the equality holds for all ¢ > 0 if F3(t) = 0 which means that F3(t) = a4 is
an arbitrary constant.

Therefore, the generators of the one-group of point transformations that leave the
PDE (4.136) invariant take the following form

a, 2
&(x,t) = age?s +aFg(t)+a2

2
((z,t) = Fp(t) = 3 e* QW / F3(t) 79" gt 4 g, *9®) /e_‘"Q(‘) dt + a5 e*9®)

=T 2 2 o ’
'l’)(iL’,t,F)-——‘ {%eQH a3+5F3(t)—-a1}F+EBe Q) F3(t)

where we use the notation as := ¢;. In addition, from (4.22) the generators satisfy
the following equality

o 2
[ag, e28” + - F(t) + (12] Gi(z,t) + Fy(t) Gi(z, t)

. 2 2
=-G [Fz’(t) - 2—0‘5 % a5 — 5 Fy(t) + al] += Fil(tl)u)

where G(z,t) is a completely monotonic function for all z > 0 such that its inverse

Laplace transform exists and the arbitrary functions Fy, F3, Fy satisfy one of the
following
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(1)  Fu(t) = as # 0 arbitrary number and F3(t) arbitrary function of ¢.
(ii)  Fa(t) =0 and F3(t) = aq4.

In both cases above, the function F,(t) is determined using the formula (4.141).

In the case (i), the invariant surface condition (4.145) takes the form

o 2F5(t
(a;;emm + —-F—Z(—Z + az) Fy(z,t) + e"‘Q(t)( - —Z— / F3(t)e W dt + a; R(t) + a;,) Fi(z,t)

_ (0% ZL:E 2F3(t)
- (éﬁe oy + —al) F(z,1t) (4.148)

where F3(t) is an arbitrary function of ¢, unknown at this point, yet to be deter-
mined, such that (4.147) holds. To obtain F3(t), one can consider a few examples
of functions G(z,t) and solve the equation (4.147), use being made of the formula
(4.141), to find Fy(t) thus obtaining the function Fj(t). Using the formulas for the
functions F;(t), (i = 2, 3,4) above one then solves the PDE (4.148) and thus obtains
the similarity solutions. However, we leave this approach for future work.

In the following we present an example of a similarity solution F(z,t) that we
obtain in the second case (ii) above. In this case, since F3(t) = a4 and Fy(t) = 0 and
using (4.141), we obtain

2a4 ¢ —
Fy(t) = - 22V R(t Q) wh R(t) = aQM) dr.  (4.149
2(0) = { (0= 25) RO +as} @0 where B = [ eo@dr. (4149)

Therefore, the generators of the one-group of transformations that leave the PDE
(4.136) invariant become

9
§(z,t) =az+ —as ((2,t) = a1 R(t) e — Z_Ei R(t) e*9® 4 g5 290

n(z,t, F) = —(a1 - —Z—m) F. (4.150)

Next, substituting the functions Fy, F3, Fy above into the PDE (4.147) we can deter-
mine the form of the function G(z,t), solution to (4.147)

(2_22 + az) Gy (z,t) + {(al - ?_gﬁ) Re) + as} Gl )

--{2(a - Q—B‘fi) +aQ() e (a - %‘é) R(t) +a5] } Gla,t) (4151)
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Moreover, in this case the invariant surface condition (4.145) takes the following form

(%1— + a2> Fao(z,t) + {(al - '2%) R(t) + a5} e @ Fi(z,t) = (?% — al) F(z,t)
(4.152)

The infinitesimal generator X associated to the above Lie group of transformations
can be written as

V=aiVi+aVetaVi+asVy

where the vector fields are given by

8 8 8 28 2 8 2.0
_ee gl g o =9 _20 2 @y 9 2 p O
Vi= eV R(t)s ~Fam, Va=5-, Va= =2 ﬁR(t)e 5" 55 aF
9
— 20 9
Va=exd0 = (4.153)

These operators form a basis for the corresponding Lie algebra £,. The com-
mutator table for the Lie algebra arising from the infinitesimal generators V;, where
t =1,2,3,4 is presented in Table 4.4. In addition, the corresponding adjoint repre-
sentation structure for (4.153) can be easily constructed by using the formula (4.43)
based on the infinitesimal generators given in the Table 4.4.

ViVil [ V| Va Va| Vy
Vit 01 0 0| -V
Vo 0} O 0 0
Vas| 0] O 0| 5Vs
Vo Vaj O —% Vi 0

Table 4.4: Commutator [V;, V;] table for the Lie algebra L4 spanned by V; and V;.

The resulting operators are given in Table 4.5, where each (i, j)-th entry indicates
Ad(exp(e Vi) V;.

Ad Vi Vo Va Vy
Vi Vi Va Vs exp(e) Vs
Vs Vi Va Va Vi
Va Vi Ve Vs exp(—%) Vi
Vi [Vi—eVa [ [+ EV [ Vi

Table 4.5: Adjoint representation table for (4.136). The (4,j)-th entry is
Ad(exp(e V;)) Vj.
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Using the same method suggested by Olver [80] we obtain the optimal system of
subalgebras for the PDE (4.136). For the proof of Theorem 4.5 see Chapter 7.

Theorem 4.5 A one-dimensional optimal system for the PDE (4.136) is given by
the following vector fields

(1)) VitazVa+asVs Vi+ g Va+as Vo + a5 Vy, where ag4 # g, aq, as arbitrary;
(15) Vo+ayqVs, Va+asVy where ag # 0 and as arbitrary,
(#91) Vi; and (w) Vi

Vector field V=V, +a, Vo +a4V3+ a5V,

Our aim is to present a general similarity solution F(z,t) for the PDE (4.136). For
this purpose, we consider the one-dimensional subalgebra generated by the vector
field

v=V,+ay Vo + a4 V3 + a5 Vy, with ag # /2, as, a5 arbitrary. The solutions G(z, t)
of (4.151) are obtained by using the method of characteristics to be

Gz, t) = [(1 —e;;‘;/():)s: a5]2 where s =z — -‘12—:”—22? 1 [(1 - %) R(t) + a5]

with ¢(s) an arbitrary function of s. On the other hand, using the same method of
characteristics to solve (4.152), we obtain that the similarity solution and similarity

variables are given by

(s) - 2o
F(z,t) = (1 ~ —27‘;)8}2(’:) o where s =z - alzjz_;i In [(1 - %) R(t) +a5]

with ¢(s) an arbitrary function of s. Substituting F, F; and Fy into the PDE (4.136)
we obtain that (4.136) becomes an ODE for ¢(s) in terms of ¢(s)

s = 100+ (10 “a*)+ ¥0) + 9(0)

Bus) = (az + 2)

The result obtained above can be formulated as follows
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Theorem 4.6 Assume (s) is a completely monotonic function in s and G(x,t) is
given by

Cle. 1) e 20 (5
T,t) = 5 ¢(s
[(1 - 251) R(t) + a5]

where s 1is the similarity variable given by

(1,2"1"2—;:'A 20.4
s=r— 1_2_34 ln[(l——B—)R(t)+a5]

and R(t) = [ e~ dr, where the function Q(t) satisfies (4.12). Then the PDE
(4.186) admits a similarity solution F(z,t) of the form

P(s)
(1 - Zﬂﬂ) R(t) +as

F(x,t) =

The constants a4 # g— and ag are arbitrarily chosen such that the similarity profile
Y(s) satisfies the ODE

P'(s) = (4.154)

In addition, ¥(s) is a completely monotonic function such that *)(s) — 0, for
k=0,1,..., as s — 00.

Remark 4.9 In order to solve the equation (4.154), we have considered a few ez-
amples of functions p(s) such that the ODE (4.154) can be solved explicitly and the
solution ¥(s) and the function ¢(s) satisfy the hypotheses of Theorem 4.6.

We present below an example of such a function ¢(s) for which we determine an
explicit expression for the similarity solution F(z,t) for (4.136).

Example 4.11 (Similarity solutions for the general PDE (4.136) associ-
ated to the coagulation equation (4.2)) If the function G(z,t) is given by

2pe~2QW) [ 252
G(z,t) = a2 5(t)2 | S(t)rHt —a(p+1)

£ ’
_\l [S%)—H—l—a(wl)] — [a(p+1)]2} (4.155)
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where S(t) = R(t) + a5 = f(f e~ dr + a5, and p,as > 0 are some arbitrary
constants.

Then the PDE (4.136) admits a similarity solution F(z,t) given by

2 2%
Flz.t) = 2 S(®) {S‘zt)pﬂ —a(p+l)

- J [g?(;_%i—l —a(p—{— ]_)j| — [a (p+ 1)]2} (4156)

Proof. Indeed, let us consider the function ¢(s) = py(s), with p > 0. Then (4.154)
becomes a separable ODE in ¥(s)
g PO (p+1-22) p(s)
S) =

Bu(s) — (a2 +224)

/

(4.157)

In the following, we choose a4 = 0 such that the condition a4 # g holds. (In principle,
one can choose a4 arbitrary). Therefore, the solution 1(s) of (4.157) satisfies the

algebraic equation

o 2 2
TR PV

where A is an arbitrary constant of integration, which depends on the initial condition
F(z,0) = h(z). Taking the limit of (4.158) as s — oo and using the fact that % >0
and ¥(s) — 0, then we obtain that as > 0 and A > 0 are necessary conditions for
the new equality to hold. For simplicity, consider A = 1 (one can rescale the space
variable ).

Moreover, in terms of the function F(z,t) = ’_éi(:—)) and using the definition of

s =1 — ag In[S(t)] to get e* = e* [S(t)]~*2, equation (4.158) reads
F(z,t) e

St (4.159)

{%F(x,t)S(t)+p+1} =

where p =1+ %—Q. To obtain an explicit solution (s) we consider the parameter
¢4 = 2o0ray = p+1 > 1. Substituting these values into (4.159) we obtain the
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expression of the similarity solution F(z,t) as in (4.156). Clearly, both functions
F(z,t) and G(z,t) are completely monotonic for all z > 0 and they vanish to zero
(together with all their derivatives w.r.t z, as ¢ — 00).

In particular, when ¢ = 0 we obtain the initial condition h(z). If a5 # 0 then h(z)
is given by

a g L 2
h(z) = a22a5 {% —a(p+1) - \J [%;—i—l— —a(p+ 1)] ~ [a(p+ 1)]2}
To ensure complete monotonicity of h(x) we need to assume that a5 > 0. If as =0
then the initial condition is h(z) = 0 and thus ¢o(X) = 0, (i.e. no particles are present
at t = 0).

In order to determine the solution ¢(A,t) completely, we need only obtain the
expression of Q(t) for all ¢ > 0 and the inverse Laplace transform of F(x,t). Let us
determine first the expression of Q(t). For this purpose, we use again (4.12). Thus,
the equation (4.156) becomes

2Qu) e5Q0) ’
Q0 (1) = " ;(f) {;(t)l’ﬂ —a(p+1) - \l (W —a(p+ 1)) ~ [a(p+ 1)]2}
(4.160)

Moreover, using the definition of R(t) = [, e=*?") dr we obtain

"
; and e“‘Q(t)Q’(t)=——S—(L)—

S(t) = e~ QW (50U - _
t)=e ° aS(t)?

S'(t)
Therefore (4.168) becomes an equation in S(t) of the form:
a S"(t)S(t)

1
O o T R

2
: \J (\/7—'(?)%5‘(2)_7 Tl ”) -la+P (416

For simplicity, we denote by w(t) := 1/5'(t) S(t)**!. Thus, we obtain

iy = wt) ') [ 5"(t) S(¢)
w'(t) = 50 ( 3500) +p+1>.
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So, —% %,%755@ =alp+1)— ai’)—((:)l gf(% and (4.161) becomes now

—aw'(t) gL(tt)) —1-2a(p+ Duwlt) - VI—2alp+ D (D). (4.162)

Denote by z(t) =1 —2a(p+ 1) w(t) and y(t \/ . Then for all values of ¢t > 0
such that z(t) > 0 or w(t) = \/S'(¢) (t)’"H 5o (p =y the equation above becomes a
separable ODE in z(t)

() §'(t) / y 1
+ = dy = In[S(t)P*!).
- Vi 2(p )() - [S()P*]

Thus C+In|y/z—1| = In[S(t)]P*', where C is an integration constant. Moreover,
since w(t) > 0 then 1 > z(¢t) =1 — 2a(p+ 1) w(t). Thus, we obtain

¢ [1 ~V1-2a(p+1) w(t)] = S(t)PH

So,

1— /1= 2a(p+1) /5O S+ = S 4,
where A = 1/C > 0 (this holds since LHS above is > 0 and also S(¢)P*! > 0). The
equation above can be rewritten in the following form

1
20(p+1)
Since S(0) = R(0) + a5 = a5 (as R(0) = 0) and S'(0) = R'(0) = 1 then if we set £ =0
we obtain that the constant A is given by the equation A2 a2 —2 A+2a(p+1) = 0.
If a5 = 0 then we get A = a(p + 1), and if a5 # 0 we can rescale the time variable
such that a5 = 1 and in this case we obtain A = 1 — /1 — 2a(p+ 1) > 0, and we
need to assume that o € (0, §) and p € (0, 5 — 1]. Therefore, in this case, we obtain

S(t)p+1 — % {1 — ﬁ(ﬁ}}l Sl(t)}

Taking the derivative w.r.t. ¢ on both sides and using the definition of S(t) we obtain

+1
o 20(t) 1y ___A A p41-1 a(p+ 1) -2Q® F
€ Q(t)—-——(——) l—-————*¢72

5 = (2 A— A? S(t)”“).

a \2

If we denote by v(t) := e% 9®) then we obtain an I.V.P for v(t) (where we make

use of Q(0) = 0):

AN 7 .
(%) oS subject to LG v(0) = 1. (4.163)



This equation is valid only for values of t such that t € [0,T,), where T, is obtained
1

m. The

last inequality is equivalent to v(t) < and using (4.163), one can prove that

there is a time T such that v(T,) = 2"’(’:”1). One can solve the equation (4.163) and

determine an implicit formula for v(t) = €2 ?® and thus obtain

as an upper bound (if any) of the solution to the inequality w(t) <
2a(p+1)

t
S(t) = / e % dr + a5 for all values t € [0,Tv).
0

In general, numerical methods need to be employed in order to solve (4.163). We
leave this for future work.

On the other hand for values of ¢ such that w(t) = /S'(t) SP+ > 21—
equation (4.162) has the solution w(t) =

/ */ S(t)p+1

zagprT) the

2a(p+1) Thus, S(t) satisfies the I.V.P.

—(—Tﬁ subject to L.C. S(T,) = tllr% S(t) (4.164)
where, in the last equality S(t) is given by (4.163). Next, we solve (4.164) by simply
integrating it w.r.t ¢ from T, to ¢ and obtain

2p+3

2p+3= 2p+3
S = ST + 3y

(t—-T,) fort>T,. (4.165)

Conjecture 4.1 Similar to 4.2.3, one can prove that the time T, above corresponds
in fact to the gelation time Ty,. However, we leave the proof of this statement for
future work.

In particular, if p = 1 then we can solve the ODE (4.163) and obtain that v(t) is
given implicitly by the equation

\/v(t)(v(t)—q)+qln< 1+\/““‘v1— )-—a(—>1/2t+x/1—-q (4.166)

where g = =&. Therefore, in this case we obtain an implicit equation for Q(t)

- - 2Q() 1 /eTR0 _ 1/2
\/e'g‘Q(t)(efQ(t)_q)_*_qln ez + ez q :é(é_) t+*/]__.
1+v1—g¢ «a

(4.167)
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This equation is valid for values t € [0,T.), where T, is an upper bound of the
inequality \/S—’(t_)S(t)2 < 2, where S(t) = fot e~*9) dr + a5, where ag > 0. Next,
using Q(t) from the equation (4.167), one obtains S(T,) = lim7, S(t) and use this
as an I.C. to solve the I.V.P (4.164). Using (4.167) and v(T;) = 3—"%, we determine
T, in the particular case p = 1 to be

a [2 29+ /1
T.=5\5evV2+qlm (=) - vVi-q
°= 2 A(qf”“ I+v1-q 1
Using a similar approach as in 4.2.4 we determine the behaviour of the solution

c(A, t) of (4.2) for A — oo and all ¢t > 0. In addition, we also present a series solution
for c(A, t).

Asymptotic and formal series solution
The function F(z,t) in (4.156) has a branch point z¢q = zo(t) = gf_ In [2a(p +

1)S(t)v+1].
Expanding F'(z,t) about the branch point z¢(t) we obtain

2p+1) 4(1’“)\/%(

PO~ =50 ~ a0

I—xo(t))1/2+0(x—x0(t)) as = — zo(t).

Therefore, according to [23] we obtain the asymptotic behaviour of the solution f(A,t)
as A — 0o to be

-3/ o 2
(@480 S0 ~ I 2 ooy 1) ]

Using the definition of ¢(\,t) we obtain the asymptotic behaviour for the solution
¢(A,t) of (4.2) as A — oo for all t > 0 to be

| gy A2 eernan \/Ta o] B \
~ — >
c( ,t)’ aroNas® \ B {2a(p+ 1)S(¢) ] as A—oo, Yt>0

Moreover, we can also obtain the solution ¢(A,t) to (4.2) in series form. For this
purpose, we expand the square root in F(z,t) defined by (4.156) using the binomial
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theorem

o o 1/2
9 et " e ” 2a(p +1)S(t)r*!
Flo.t) = a25(t){5(t)”+1 ‘“"’“"W<1" e

k
_ 2 [ e#” effT & 1/2\ [ 2a(p + 1)S(t)"+
“a2s<t>{5(t>v+1“‘(”“)“Wg(“”k (4 )( T ) }
=3 i’(t) 2,0 (1//3) Ra(p+ )] e 5 * (4.168)

Next, we formally take the inverse Laplace transform term by term to get the inverse
Laplace transform of F'(z,t) Thus we obtain the solution ¢(A,t) of the coagulation
equation becomes

e~ (@+BNQ) X2 (2k — 2)!

c(Mt) = (o + BN) 02 S(t) & 2F-TI(k — 1)

- [20(p+ 1)S(ty])* 81 - g(_l;B—_l_) )

where S(t) is determined above and the initial condition is given by:
(a) If as # O then

2 = (2k-2)! pr17k a(k—1)
o) = TN aTa; 2 PRI - Ty o@D i(-=5)

(b) 1If a5 = 0 then ¢o(X) = 0 which corresponds to the case when no particles are
initially present in the system.
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4.3 Symmetry methods applied directly to the co-
agulation equation

We apply a new generalized version of the direct methods that determine the symme-
try group of point transformations for integro-differential equations to the coagulation
equation in the presence of source terms. These methods provide us with a new fam-
ily of similarity solutions to the coagulation equations which can be further used for
numerical studies. Due to the presence of the non-local (integral) terms, the classical
approaches for investigating the symmetry groups of differential equations cannot be
applied directly to integro-differential equations (IDEs).

The existence of symmetry groups for IDEs with non-local structure has been de-
veloped only recently in the work of Zawistowski [112], Akhiev et al. [4]. Applications
of this method are currently provided for a few classes of IDEs, such as: Vlasov-
Maxwell equations, collisionless-Boltzmann equations and fragmentation equation
[32]. Some very special cases of IDEs can be reduced to differential equations. How-
ever, this is not the case of the most important IDEs in physics such as equations
of kinetic theory. Coagulation equations are such examples of equations that cannot
always be reduced to PDEs, if for example the coagulation kernel is not a bilinear,
separable kernel (see Section 4.2) or has coefficients that depend on time ¢, as is the
case in this section.

The study related to the symmetry groups for coagulation equations has not re-
ceived much attention in the literature. The main difficulty for developing a direct
and general theory is related to the existence of the integral terms in these equa-
tions, in particular the convolution-type integral with nonlinear functions. In the
literature of coagulation equations, Chetverikov and Kudryavtsev [20] are the first
to construct a theory of symmetries and conservation laws for IDEs. The authors
provide a method that is known as the method of boundary differential equations,
which is applied to the coagulation kinetic equation by reducing this equation into a
boundary differential equation and using the concept of covering (see e.g. [20]).

In this section, we provide a more general and direct method for determining a
point symmetry group for coagulation equations with particle source terms. In our
study, we extend the direct methods proposed by Akhiev et al. [4] that determine the
symmetry group of point transformations to IDEs. We propose a new generalized

method for dealing with the convolution-type integral by transforming the coagula-
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tion equation into a system that consists of an IDE and a PDE. For this purpose,
we make use of the general definition of the point symmetry group for IDEs and the
extended infinitesimal generator that includes the nonlocal variables as the variables
of the jet space as given in the recent work of Zawistowski {112] and later by Akhiev et
al. [4]. We obtain some similarity solutions and similarity reductions of the coagula-
tion equation for the case when the kernel function K is a bilinear, separable function
that may depend on the time variable {. For some particular kernels we have also
obtained the expressions of the total mass, and studied the occurrence of the gelation
phenomena. The group method is applied to a modified coagulation equation (4.176)
that involves only the convolution integral. To our knowledge, this is the first ex-
ample of application of the symmetry group to convolution-type integro-differential
equations. The method that we propose in this section can be extended to include
other special cases of coagulation kernels, and nonlocal terms.

The advantage of this method over the previous methods used in the self-similarity
theory is that we obtain a few similarity solutions without assuming a priori any
special ansatz or structure of the scaling solutions to the coagulation equation as
assumed in the work of (35, 36, 45, 24].

4.3.1 New modified version of the coagulation equation

Consider the coagulation equation with particle source terms given by

Jde 1/ o
T =3 /0 KN = iy 1, (X — o, )elp, i — (A, £) / KO\ s, B)e(u, g
' . J0

+g(A 1) - (4.169)

subject to the initial condition
c(A,0) = co(N), (4.170)

where the space variable A and the time variable ¢ range in the interval [0, 00).

In this section, we assume that the rate of coagulation of particles or the kernel
K(\, p,t) and the source function g(),t) are both non-negative functions. In addi-
tion, we assume the coagulation kernel is a separable and bilinear function whose
coefficients depend on time ¢

KX\ p,t)=6(\¢t)0(p,t), where 8(\t) = a(t)+ B(t) (4.171)

i
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for any A, t > 0, where «(t) and B(t) are arbitrary non-negative functions of ¢.

For the moment, the finictions a(f) aiid f(#) ate assumed to be arbitrary. Specific
examples of such functions and special examples of source terms will be established
later in this section in such a way that similarity solutions for the coagulation equation
(4.169) exist. As part of our analysis, we allow the coagulation kernel to have one of
the following forms:

(a) K\ p,t) =a®(t);
(b) K(A p,t) = B2(t) Ap;

() K(\ p,t) = (g + Bo A) (a0 + Bo i), where o, By > 0 are some arbitrary con-
stants,

and a(t) and G(t) arbitrary at this point. However, we will show in this section that
these functions satisfy a coupled system of ODEs.

Due to the very special form (4.171) of the coagulation kernel K we make the
following notation

M) = [T 00,00 8)dr = a(t) Molt) + H(8) M),

where Mo(t) and M;(t) represent the zeroth and first moments of the solution ¢(\, t),
respectively as defined in (4.5). Using the above notations, equation (4.169) becomes:

%()\, )+ 0(A ) N(t) (A t) = %/0 (A — p, t) O(p, t)e(N — p, t)e(p, t) du + g(),t)

(4.172)

We begin by eliminating the “infinite integral” from the equation (4.172), in the
form of the function 8(A,t) N(t) c(\,t) by means of an integrating factor. For this
reason, let

S\ 1) = / "0\ )N (r)dr = / (a(r) + AB(r))N(r)dr and (4.173)
0 0
Y(t) := /LQ(T)N(T)d’T. (4.174)

We multiply the equation (4.172) by e2t) geotho Mo — (2(A1) BAN0) ¢ where a =

a(0), Bo = B(0), and o are arbitrary real numbers. The parameter ¢ has been
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included here for physical reasons, as will be explained later in this section. Using
the above notations we rewrite the convolution integral in (4.172) in the following
form

A
e~ (Y (t)+aoo) / O\ = 1, 1)0(1s, t) {efb(/\—u,t)CB(z\—u,O)ac()\ -, t)} {eé(u,t)CG(u,O)ac(“, t)}du
0
Moreover, for simplicity we define the functions
FOLE) = (A1) e2PD A0 and  h(\ t) = g(\, t) 2O R0 (4.175)

Thus, we obtain a new modified version of the coagulation equation (4.169):

) 1 _ A
SO0 = 000 00 0 8) 6, ) SO~ 1) £ t) d + B
(4.176)
subject to the initial condition
F(N0) = fo(A) = etV o g ()) (4.177)

where f and h represent the new solution and source term of the modified coagulation
equation (4.176).

Since the group symmetry method is independent of the initial condition, we
disregard for the moment the initial condition (4.177) and concentrate only on the
new form of the coagulation equation (4.176). We will take the initial condition into
account when we have determined the form of the similarity solution f(),t) with the
purpose of providing explicit (analytic) or asymptotic large size (A — 00) behaviour
of solutions f and thus c.

4.3.2 Transformation of the coagulation equation into a sys-
tem of PIDEs

In order to illustrate our method we make some transformations to the equation
(4.176). First, we rewrite (4.176) such that the limits of integration are independent
of A. This can be achieved with the help of the Heaviside step unit function

1, if A>0
H(’\)‘{o, if A<0
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Therefore, the convolution integral in (4.176) takes the form

| PO = 18018 FA= ) F )
where P(\,pu) =1 — H(pu — A). Next, let

v(A p,t) = PN ) 0(A = i, 8) F(A — i, t)

If we calculate the partial derivatives of v, then we obtain the following PDE for the

function v(A, g, t)
Uy + Uy = 0.

Using the transformations above, the coagulation equation (4.176) changes into a
coupled system of IDE and PDE in f and v, or a system of partial integro-differential
equations (PIDEs) of the form

) 1 _ oo O *
SO0 =500 [T 000 () G0 ) + B
vx+ v, =0 (4.178)

4.3.3 Symmetry groups of point transformations for the co-
agulation equation. Theoretical approach

In this subsection we adapt the theoretical description in Section 3.2 for a general first
order PDE and apply this to the system (4.178) in order to determine a Lie symme-
try group of point transformations (see e.g. the articles [4, 112] for the collisionless
Boltzmann equation). For the new system (4.178), we need to impose the invari-
ance conditions to both the IDE and the PDE, and solve a system of determining
equations, that consists of both local (PDEs) and nonlocal equations (IDEs). These
new determining equations that we derive are much easier to solve than the original
coagulation equation. We present a new approach for solving the resulting system of
determining equations which, to our knowledge, are new to the theory of coagulation
equations. The approach we suggest below can be applied to other special cases of
integro-differential equations of the form (4.176) or (4.169).
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First, we consider the equations in the system (4.178) as two surfaces F; and F;
defined by
Fi= fom g e VORI T(f ) — b3, 6) =0
Fo=uv+v,=0 (4.179)

given in the space of variables (¢, X, p, f, fi, v, vu, T(f,v)), where

1) = [ Fostutydu= [ mu v, £, du

represents the nonlocal variable (integro-differential operator), where for simplicity
we let

m(p, v, f, t) = fvb(u,t) = (at) + B(t)u) fv.

As described in Section 3.2, we look for a Lie group of point transformations
admitted by the PIDE system (4.178). For this purpose, we concentrate now on the

system of equations above which we write in the following general form

fl(A’ l’L7 t? f(A7 t)7 ft(A7 t)7 IU(A7 IL7 t)7 T(f’ ’U)(A7 t)) = 0
Fa(A, u, t, v(A, 1, ), va(A, 1, 8), vu(A, 1, t)) = 0. (4.180)

Next, we consider the one-parameter (¢) Lie group of point transformations:

A=eCN) = A+e&(\ p, t, f, v) + O(E?)

i=eCu) =p+eb) pt, f,v)+O()

t=eCt) =t+e&(\ p, t, f, v) 4+ O(e%)

f=eC(f) = f+em p t, f,v)+0(?)

7 =eCW) =v+em\ umt, f,v)+O0(E?) (4.181)

with the infinitesimal generator

0 0 0
G=& v + +
616/\ 528 §3 4 +7718f+772
where &;(A, p, ¢, f, v) and (A, p, t, f, v) are sufficiently smooth functions, which
represent the generators of the point group of transformations.
Similar to the Ovsiannikov’s method for DEs (81} and following the theoretical
description in Section 3.2 for PDEs, we consider the 1% order extension of the group
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(4.181) from the space of variables (), i, t, f,v) into the space of independent and
dependent variables, and derivatives of dependent variables (\, u,t, f, v, fi, v, Us)

H

eCV () =A+e&(\ p t, f,v) + O
eV () = u+e&a(\ g t, f,v) +O()
eEG(l)(t) =t+el(\ p t, f,v)+ O(e?

= e (f) = f+em(\ m t, £, ) +O(?)

eV (W) = v+em, ¢, f,v) + 0@
~t" = e (f)) = fe+eni +O(e)
5 = &SV (1)) = vy + 7} + O(e?)

GV (,) = v, +ent + 0(?) (4.182)

St “;1

Up=¢€ Uy

where 1, 73, 4 represent the infinitesimals of the group defined by (see e.g. [4])

mi=met+ Oy —&as) fi— b h—Esfi—shfe
m = o+ (M2w — E12) Ua — €32 v — €14 V3 — €30 UV

- 2
M2 = N2+ (20 — &100) U — Ea e — €10V, — &30V 01

and G represents the extended infinitesimal generator given by

d

d d
o - AT, S AR i
G G+771 aft+n2 (9U,\+nz av“

Similar as in Section 3.2, invariance of a system of equations means invariance
of the space of its solutions. Therefore, the point transformation (4.182) maps any
solution {f, v} of the system of PIDE (4.179) into another solution { f,} of the same
system of equations. In our geometric language, where solutions are represented by
their graphs in a jet space, the above can be formulated as follows

Definition 6 (Criterion of invariance of the system of PIDEs (4.180)) If
the system of PIDEs (4.180) transforms to the following form of invariant equations
under the group of point transformations (4.182) then this group is called a point
symmetry group for the system of equations:

t)) =0 (4.183)



where

DD = [ mi .60 dn (4.184)
0

is obtained by the extended transformation ({.182).

According to (4.184), we act on the system of PIDEs (4.180) by extended trans-
formations (4.182) writing down explicitly only terms up to the order €, that is linear
terms with respect to the parameter €. Next, we expand in Taylor series the integrand
function m in (4.184). After changing the integral variable and applying (4.182) we
obtain that the nonlocal term T'(f,#)(), %) has the form

T(f,9) = T(f,v) + € Pp(f,v) + O(?) (4.185)

where Pr is given by

X Om om om om om
P = - il = - ndddd
w(0) = [ {65 +aTe +aor +ugr +
0y 06 0f | 06 v
+m (3,& + 3 o + 5 au)}du (4.186)
Consequently, the extension of the point group (4.182) on the nonlocal variable T'( f, v)
is defined by (4.182, 4.185). Therefore, we can consider the generator of the extended

group (4.182, 4.185) as follows

0
GP =GW + Pr(f,v) s 4.187
T ) (180
Substituting the expressions (4.182), (4.185), (4.186) and (4.187) into the general
system (4.183), and using Taylor expansion, the invariance criterion of the system of

PIDEs (4.180) under the group of transformations gives the following

Definition 7 (Determining equations for the system of PIDE (4.180))
The PIDE system (4.183) is said to be invariant under the point group of transfor-

mations (4.182, 4.185) if and only if the following system of determining equations
holds

GO F Oty £, fov, T(f,v)) =0 (4.188)
G Fo(\ iyt 0,05, 0,) = 0 (4.189)
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for any arbitrary solutions f(\t) and v(\, i, t) of the system (4.183) of PIDEs. The
infinitesimal generator of the extended group (4.182, 4.185) is defined by the operator

0 0 0 0 0 0 0
vy __ g Y -
GT _616)\+€28 +€3 +7710f+772 +Thaf +PT(fa )G(T(f,v))
o 0
+m o, T B, (4.190)

In the following, we apply the theoretical approach presented above to the system
(4.179) of PIDEs. In particular, we apply the extended generator GS}) defined by
(4.190) to the frames (surfaces) F; and F; to obtain the invariance criteria for (4.179).
The solutions of the determining equations will provide us with similarity solutions
to the modified and original coagulation equation, respectively. For some initial
conditions these solutions are in fact analytical solutions, while in other cases they
are only similarity solutions or group invariant solutions, nevertheless any type of
solution that we obtain is of interest for our study.

4.3.4 Determining equations for the system of PIDEs

The invariance condition for Eq. F; =0

Using (4.190), the definition (4.179) of F, and 7!, the determining equation (4.188)
takes the form

—61 55+ [ VOO T - G + G- S - G - G,
(f;r? %is) ( e~ (Y O+e00) T £ 1) 4 B(N, t)) ~ > Pr(f,0) e~ (Y (OHaoo) _ g

(4.191)

where

Pr(f,v) = /0 { [52 B(t)+&s g—f(u, t)] Fo+muo(u,t)+mn fO(u,t)+0(u,t) fu %i%

982

+ fob(p,t) =5 af

Jut+ fob(u, t) } du (4.192)

Since the left hand-side of (4.191) is a sum of local and nonlocal terms, we split
(4.191) into local terms (LT) and nonlocal terms (NLT). Thus we obtain
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The local term of (4.191) is given by

96

ft af

—hf=
(4.193)

3 3’1 3771 om 353) 351 083 o
- hil SR Y NS —
To solve (4.193), we use the standard Lie algorithm as in Section 4.2. This reduces to
splitting LT with respect to the local variables and their derivatives, and equating like
derivatives to zero (see e.g. [4, 12]). Thus, setting the coefficients of like derivatives
to zero, we obtain

/> terms : &4=0 (4.194)
I [y terms : £5=0 (4.195)
f7 terms : §3f = O (4.196)
om 9% om
-0 M r— - —
terms: & O 8/\ 40 at (af a ) ht = (4.197)

From the equations (4.194) and (4.195), it follows that &; is independent of ¢
and f. Therefore, we obtain & = & (A, u,v). Moreover, equation (4.196) yields
&3 is independent of f, i.e. & = &3(A, ¢, v). The equation (4.197) is a first order
hyperbolic PDE satisfied by the source function i(\, t). This equation gives the family
of source terms for which solutions of the equation F; = 0 that are left invariant by
the group of transformations exist, i.e. group invariant or similarity solutions exist.

Furthermore, the analysis of the nonlocal terms (NLT) reduces to solving the
following nonlocal determining equation for the generators of the group of transfor-
mations:

1 o &
NIT: 5 Y/()e @O0 T(f,0) ¢+ ( 5 e )

-5 PT( fv) e (Ftaa) — g (4.198)

If we multiply (4.198) by 2eY ()20 then equation (4.198) becomes

Pr(f,v) =T(f,v) (Y’(t) &+ %% - —‘?%3). (4.199)

Consequently, the system of equations (4.194 - 4.197) and (4.199) gives the first
set of determining equations for the generators that are obtained from the invariance
criterion of the equation F; = 0 in the system of PIDEs (4.179).
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The invariance condition for Eq. 7; =0

Using (4.190) and the definition of F3, 73 and 75 we obtain the second determining
equation in the form

G(F)=0 = n+75=0. So,

37)2+5772 (?173 25_1_)

™ T T \m *+<an2 862)”

O 06 93 | 9 %1 o081 o
v o (a,\+aﬂ)” Bv A By Uk

B
_% Vv = 0 (4.200)

Similar to the analysis of the local term LT above, we solve (4.200) by splitting
this term with respect to the local variables and their derivatives, and equating like

derivatives to zero. We also make use of the equation F; =0 or v, = —v,. Thus we
obtain
Uy U; terms: €3, =0 (4.201)
v} terms: £, =0 (4.202)
vy terms: &g, = &1 (4.203)
v terms:  &3a+ &3, =0 (4.204)
9 terms: T+ =0 (4.205)

From (4.196) and (4.201) we obtain &3 = &3(A, g, t), while from (4.194-4.195) and
(4.202), we have & = &1(\, ). Next, we rewrite the nonlocal operator Pr(f,v) in
(4.192) as follows

g o6
PT(f, v) - /0 fv f {52 ﬂ(t) +&3 ot (l‘l‘at) + m + 2 652 (9{2 (){2

Pl Jut du.

0 f v af
(4.206)

In addition, we assume that the term {...} in (4.206) does not depend on u so that it
can be moved outside of the integral. This is equivalent to assuming that

& 0(t) + & B (ut) m m 9% afzf ?_53_
o f v’ o af " e
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do not depend on pu. For simplicity, we assume that these are functions of ¢ and also

£, is independent of t, v and f. In view of the previous choices, the following identity
holds

Pr(f,v) = A(t) T(f,v), (4.207)

where A(t) is an arbitrary function of ¢ which will be defined below. As a result of
(4.207), we obtain that the factor Y'(t) & + n1, 5 — §3,¢ in (4.199) is a function of ¢
only. Thus, we get Y'(t) &3 + m, 5 — &, = A(t). This means that &3 is independent
of XA and p. On the other hand, due to the independence of f of the generators §;
and since the equation (4.197) holds for all functions h, it follows that the generator
m must be a linear function of f with arbitrary constants as coefficients. In other
words, based on (4.192), we have n,(f) = B, f.

4.3.5 Generators of the one-group of point transformations

Following the description in the previous section, we obtain:

(i) The following two relations for the generators §; and &3 hold

By oand B0+ 60 F 00 = C20n) (4.208)

where Cy, C3 are arbitrary constants. Of course, Cy can be chosen as an arbitrary
function of . From the first relation in (4.208) and since (4.203) holds for all A\, 4 > 0,
it seems reasonable to assume that & = &(u), and thus & = & ()\). In particular,
we have &(p) = C3pu + Cs and &(N\) = C3 A + Cy, with Cy, Cs arbitrary constants.
Moreover, since the second equality in (4.208) also holds for all u, ¢ > 0 then using
the definition of 8(y,t) we can set power-like terms in 4 to zero. Thus, we obtain a
coupled system of ODEs for the functions a(t) and 3(t) in the form

&(t) B'(t) = (C2 — C5) B(t) (4.209)

&3(t) o/ (t) — Caa(t) = —Cy B(t) (4.210)

It is worth mentioning at this point that the only case of interest is £3(t) # 0, for

all t > 0. Otherwise, if £3(t) = O then independent of the choice of the constants C

and Cs, the system (4.209, 4.210) has either a unique solution (trivial) o(t) = B(t) = 0
or if Cy = Cj3 then o(t) and B(t) are multiples of each other. Moreover, £3(t) will be
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determined from the equality that defines the operator Pr first by using its definition
(4.192) and second by using the determining equation (4.199) that this satisfies. More
precisely, using (4.208) then £3(¢) satisfies the following equation

/0 ) {C20(u,) Fo+ Br0(u,t) fo -+ m(t, v) 0(u,t) f + CaB(u, ) f v} d
=T(f,9) (Y'(t) (t) + B. - &(1)) (4.211)

(ii) To ensure both identities (4.207) and (4.205) are satisfied, we choose 1, =
ne(v,t) = Bs(t) v, where Bs(t) is an arbitrary function of ¢.

(iii) Using (4.211) and the information on 7, in (ii) we obtain an ODE for &5(t)

&(t) — Y'(1) &(t) = A1), (4.212)

where A(t) = —(C; + C3 + Ba(t)), with C3, Cy and Bs(t) arbitrary.

Since we have the freedom to choose the function By(t), then we will consider below
two separate cases for which €3(¢) can be determined explicitly. First, we discuss the
simplest case B;(t) = By = constant and provide a few similarity solutions. This first
case will be identified as 4.3.6. Second, we choose Bs(t) = Bs(t) &5(t), where Bs(t) is
allowed to be arbitrary, yet we establish its dependence on the function Y (¢) to ensure
the existence of similarity solutions to (4.176) which cannot be obtained otherwise
(for instance, from 4.3.6 or any general function By(t)). We will identify the latter
case as 4.3.7. Moreover, in each of the cases above, we determine the corresponding
functions «(t) and g(t), from the system of equations (4.209), (4.210).

4.3.6 Generator 7, = 15(v) = By v

In this case, the generators of the Lie group of point transformations admitted by the
system (4.179) are given by:

=LA =C3 A+ Cy
=&(p) =Csp+Cs
= £3(t)

m=m(f) =

M2 = n2(v) = Byv
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where Bj, By, C3, Cy, Cs are arbitrary constants and &s(t) satisfies (4.212) and is
given by

¢
f3(t) = A2 ey(t) - (CQ -+ C3 + Bg) ey(t) / B—Y(T) dr
0

where A, is an arbitrary constant. Consequently, the generators of the Lie group
of point transformations admitted by the modified coagulation equation (4.176) are
given by

€1(/\)=C3/\+C4 )

(1) = "9 (42— (41 + C5) 2(0)

m(f) =B f
where A;, A, By, Cj3, C4 are arbitrary constants, and for simplicity we denote by

A = By+Cyand Z(t) = [ t¢=Y() dr. The infinitesimal generator X associated with
the Lie group of p01nt transformations above can be written as

o 0
X = 51()‘) E)\ + &3(t ) +771(f) W
0 0 0 o o
— Y() =2 Y(t) Y(t)
Aze at+31faf+’4‘( 20 5) +Cs (A g5 ~ 2070 5) + Cugy

Therefore, the coagulation equation (4.176) has a five-parameter Lie group of
transformations. More precisely, (4.176) admits a five-dimensional Lie algebra Ls
spanned by the following five Lie symmetry vector fields Vi, ..., V;:

d00 s 9y el a2 _gperel
Vi = %, (4.213)

These operators form a basis for the corresponding Lie algebra Ls. Similar, as in
Section 4.2, we construct the commutator table for the Lie algebra arising from the
infinitesimal generators V;, where ¢ = 1,2, ..., 5, in Table 4.6.

Symmetry reductions for the coagulation equation

In order to obtain the similarity reductions for the coagulation equation (4.176), we
have to solve first the corresponding characteristic equations in the invariant surface
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VoVl Vil Vel Vol Va] Vs
Vi 0 0| —Vi [ =Vi| O
Va 0ol 0| o] 0] 0
Va Vilol ol 0] o0
v, Vil 0] 0] 0]—Vs
v 0] 0] 0] Vs| O

Table 4.6: Commutator [V;, V] table for the Lie algebra spanned by V; and V; in
(4.213).

condition (4.45)

i dt df
&) T &) m(f)

assoclated to the generators &), &3, m1. Using the explicit forms of the generators

above we obtain

d Z'(t) dt _df
CsA+Cy Ay —(Bi+C:+Cy)Z(t) Bif

(4.214)

As is the case with the Lie symmetry method, the solution of (4.214) involves two
arbitrary constants, one of which plays the role of the similarity variable s and the
other one plays the role of the similarity profile ¢/(s) from which the similarity solution
f(A,t) will be obtained.

There are two major differences in this section when compared to Section 4.2.
First, when solving for the similarity solution in this section, the substitution of the
similarity solution f(,t) into the original coagulation equation (4.176) results in an
IDE for 9(s), instead of an ODE as in Section 4.2. Second, the solutions obtained by
solving this IDE will generate directly the family of similarity solutions (or invariant
solutions under the group of transformations) for the coagulation equation. In other
words, we do not need to apply Laplace transforms to obtain the similarity solution
c. In particular, we take the initial condition (4.177) into account and impose the
invariance condition (4.45) for it. This reduces to imposing the invariance of f(A,t)
along the curve ¢ = 0 and using the original equation (4.176) to replace f;(\,0) in
(4.45). In this way, we obtain particular solutions for the coagulation equation, which
in some cases become exact, analytical solutions to (4.176) or (4.169).

We assume first that C3 # 0 and treat the case C3 = 0 separately. Moreover, we
also assume B; + Cy + C3 # 0. In this case, the first and second pair of DEs in the
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characteristic equations (4.214) provide us with the similarity variable and similarity

solution, respectively, in the form

s= ()\ + %) [R(t)]® = constant, where b= m_gz_;_cg
and
f(At) =[R(t)]*¢(s), where a= —-____1_31— (4.215)
By +Cy + Cs
with

t
R(t) =Ay— (Co+C3+ Bz) / e Y dr
0

where the constants Ay, By, Ca, Cs are chosen such that R(t) > 0, for all ¢t > 0.

It remains now to determine the type of source function h(A, ¢) for which similarity
solutions to (4.176) exist. This follows from the equation (4.197) and using the
expressions of &;,&3, 7. We obtain

(Cs A+ Cy) —g—i(x, £) +e’® [A2 — (By+Ca+ C3) Z(t)] %(A, ) = (B1 - gg(t)) h(A £).

Since this is a first order PDE then using the method of characteristics, we obtain
that the source function h(,t) takes the form

h(\t) = [R()]* " e¥® o(s) where s= (/\ + %:) [R@®))°. (4.216)

To obtain group invariant solutions for (4.176), we have to proceed one more step,
that is to substitute f(},¢), s and h()\,t) above into (4.176) and obtain the equation
satisfied by the similarity profile ¢(s) (which is in fact an ordinary IDE). For this
purpose, we start by rewriting the convolution integral in (4.176), which for simplicity
we denote as RHS, using the form (4.215) of f(),t)

1 S
RHS = = ¢~ (Y()+x09)[p(¢)]2a-b s—s) Yo s— &) [R(t)]®
: (R ()] /J V6= V20480 (=) 1R )

’ —b Cy /
x {a(t) + (L) (s [R(t)]™ — 5;)} ds
(4.217)
On the other hand, substituting f()\,t) into the left-hand side we obtain
fe=R ()[R {ay(s) + bsy'(s)}
= —(Co + Cs5+ By) e VO [R(t)]* {ay(s) + bsy'(s)}. (4.218)
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From (4.217), (4.218) and (4.216), we obtain

~ (Cr+ Gy + B RO {a0(9) + b)) = 57 RO [ w(s =)

x 9(s") {a(®) + A(t) (s - &) [REW] ™} {a(t) + 80) (o' [R(E)]™ - —Z—;—) } ds'
+[R(6)]* o(s) (4.219)

where ¢ := & [R(t)]".

In order to obtain invariant solutions, we need to eliminate first the time depen-
dence in the integral in (4.219). One possibility to achieve this would be to make ¢ = 0
so, Cy = 0. Using this information, we return to the coupled system of ODEs (4.209,
4.210) for the functions a(t) and B(t), from which we obtain the general solutions in

the form:
a(t) = ag e B THY = a9 [R(t)%and  B(1) = fo el b &N = gy [R(r)]+
(4.220)
where ¢ = 3'?4-;6%—13—2’ use being made of the definitions of a, b and ¢, where ap > 0

and Gy > 0 are arbitrary constants.
Using the definitions of a(t) and 3(t) in (4.220), the RHS becomes

1 8
RHS = 7 e 7 [R(t)[~+ / $ls =) (s oo + Bo (s = )] [a0 + By s'] d’
0
(4.221)
Using (4.221) and since —a (Cy + C3 + By) = By and —b(Cy + C3+ By) = —Cs then
the equation (4.219) reduces to the following
[RW)* {B19(s) = Cas9/(s)} = [R(B)]* 7 (s)
1 g
+3 e™07 [R(t)]2abt2e / Y(s — s ¥(s) [ao + Bo (s — s')] [ag + Gy s'] ds'. (4.222)
Jo
From the equation (4.222), it follows that a necessary condition for invariant solutions
solutions f(\,t) to (4.176) to exist is given by the following equality
a—b+2=-1 = By=DB+C,. (4.223)

So, ¢ = &=4=1. Therefore, the similarity profile 1(s) satisfies the following ordinary

IDE
Byy(s) ~ Csi(s) = 5" / " (a0 + Aol — ) (a0 + o) 0(5 — ' )0(s)ds' + o(s)

Gathering all the results obtained so far, we conclude with the following
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General similarity solutions for the coagulation equation

Proposition 4.1 Assume the source function h(\,t) has the similarity form
(A1) = [ROI* e (s),

where Y (t) is defined in (4.178) and ¢(s) is an arbitrary, non-negative function for
all s > 0 and s denotes the similarity variable

C. B
= b = —————-—-E—-—-—-— == _..—_1_..___
s = A[R(t)]°, where b 2T B 10, and a 3G BTG

and the function R(t) is given by
t
R(t) = Ay — (2C; + By + Cs) / e Y dr,
0

with Ay, Ca, By, Cs arbitrary constants such that R(t) > 0, for every t > 0. Assume
the coagulation kernel K(\, p,t) has the form

KX p,t) = (aft) + B(t) M) (aft) + B(t) ),

where the functions a(t) and 3(t) are given by

b—a—-1 3b-a-1

a(t) = ap [R(t)] T and B(t) = fo [R(t)] ? (4.224)

with o, By 2> 0 some arbitrary constants. Then the coagulation equation (4.176) has

a similarity solution of the form

) = [R(®)]* ¢ (s),
where the similarity profile ¢(s) satisfies the ordinary IDE:

e~

But(s) — ¢(s) — Cos/(s) = / " (a0 + ol = #)) (o0 + o ) (s — #)(s)
(4.225)

In addition, we assume the constants Az, By, Ca, C3 are such that the function 1(s)
is non-negative for all s > 0.

In addition, the source function g(A,t) and the similarity solution c(\,t) are given by
g(At) = h(\,t) e 2O gml@o+BoNo gng (N, 1) = [R()]* ¢(s) e~ 2 g (co+ho N

where ®(A,t) and Y (t) are defined in (4.173).
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Remark 4.10 To illustrate a family of similarity solutions c(\,t), we consider first
an example of similarity functions p(s) satisfying Proposition 4.1. Since the similarity
profile ¥(s) is a non-negative function of s, for any s > 0 we consider a family of
functions @(s) of the form:

o(s) = Ho(s), where Hy > 0 is a non-negative constant. (4.226)

In particular, if Hy = 0 then h(A,t) = 0 and so, g(A\,t) = 0 corresponding to the
sourceless case. The idea that we present below can be applied to more general exam-
ples of functions ¢(s), not necessarily depending on ¥(s). Our aim is to make use
of the Laplace transform method to determine analytically (if possible) the similarity
profile Y(s). For this reason, the choice we make in (4.226) seems appropriate to
pursue our goal. For the functions ¢(s) in (4.226), we present a few particular ez-
amples of coagulation kernels, for which we provide similarity solutions c(A,t) to the
coagulation equation (4.169).

The coagulation kernels of interest to our analysis are as follows:
(a) KA p,t) = a(t);
(b) K(\ 1) = B2(t) A i

(c) KA p,t) = (a0 + BoA) (o + Bo ), where o, Bp > 0 are some arbitrary con-
stants,

and a(t) and B(t) are given by (4.224). For these examples we have obtained similarity
solutions c(, t), which for some particular initial conditions (and thus special choices

of constants) become analytical solutions.

Case I: Coagulation kernel K()\, u,t) = o?(¢)

Assume that «(t) > 0 and 8(t) = 0. Choose the parameters 3y = 0, o > 0 and
o = 0. One can rescale the space and time variables in the coagulation equation and
set ag = 1. Using the assumptions above and the definitions (4.224), the coagulation

kernel takes the form
K\ u,t) =a?(t) = R(t)* "
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The function R(t) is given by

t
R(t) = A2 — (2C; + B1 + Cs) / e Y dr (4.227)
0

where Ay, Cq, C3 are some arbitrary constants s.t. R(t) > 0, for every ¢t > 0 and
using the definition (4.173) we have

Y(t) = /0 ta"’(r) My(r)dr = My(t) =Y'(t) [R(t)]*T10. (4.228)

In this case, based on the assumption in (4.226) that ¢(s) = Hp¢(s) then the IDE
(4.225) for 9(s) takes the form

(By — Ho) w(s) ~ Cas/(s) = 5 /0 " (s — &) p(s) ds’ (4.229)

To determine the solutions of (4.229), we use the method of Laplace transforms.

For this purpose, denote the Laplace transform of ¥(s) by

G(2) = L{(s)}(2) = / Cemt(s) ds

then applying the Laplace transform operator £ to the equation (4.229) gives rise to
a separable ODE for G(z):

1
G'(2) = —— - G(2) |G(z) — 2
()= 555 -G [0 - 24
where p = By + C3 — Hy. The solution of this ODE can be obtained explicitly in the
form

2p
G(z) = 1—C z#/Cs

where C is an arbitrary integration constant. The constant C' will be completely
determined from the initial condition (4.177) of the coagulation equation as will be
shown in Example 4.12 below. Based on the definition of G(z) as a Laplace transform,
we assume the following necessary conditions hold: the constant C' < 0 and the
function 7(z) = 1 — C 2#/3 is absolutely monotonic for all z > z,, for some constant
29, ensuring the complete monotonicity of the function G(z) for all z > zy. One way
to achieve the latter would be by assuming that u/C3 = 1 and Cs > 0. This condition
gives 4 = C3 and thus we have By + (5 — Hy = C3 from which we obtain Hy = B, > 0.
For simplicity, denote by p = —1/C > 0. Thus, we obtain G(z) = =28 L~ or

2 C: o z—1/C
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Taking the inverse Laplace transform of G(z) above, the similarity profile y(s) is
given explicitly by

P(s) =2C3pe™*

where C3, p > 0 are arbitrary constants that depend on the initial condition (4.170),
fo(A) = co(A) that one chooses initially for the coagulation equation.

Using the definitions in Proposition 4.1, we obtain the form of the source function
g(A,t) to be

g(\t) =2 HyCs p[R(t)]* ' e 2Y® g~ RO A (4.230)

Therefore, the coagulation equation (4.169) has a similarity solution of the form

(A t) = 2C3 p[R(t)]? e PIBONP A =¥ (1), (4.231)
, ; — H — Jo;
where p > 0 arbitrary and o = —5573f— and b= SeTe

To complete 4.3.6, Case I we need only to determine the expression of Y'(t). This
can be obtained from the expression of the zeroth moment of solution obtained on
the one hand from the general form of the similarity solution in (4.231) and on the
other hand from (4.228). As a result we get

Mo(t) = / e\ 1) dA=2C3e YO [R(1)]%° = Y'(t) [R(£)]>H'°.
/0
The latter equality gives rise to an I.V.P. for Y (¢):

2C.
Y'(t) =e YO -1—%—(2—;- =e YO [S(#)]™, subject to L.C. Y(0) =0,

where, for simplicity we denote by

SO =356,"3¢, " 26, /Oe ar

So,

QG+ Hy+Ch) _yg

/ =
S'(t) 50,

Using the initial condition Y (0) = 0, we determine e™¥®) in terms of S(t)

o —2C3 S'(t) _ —2C; S(t)
Y(t)‘2C2+H0+C3 S(t) = Y(t)_2C2+H0+C3 In (S(O)
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Hence, we obtain

e Y = [.‘?_@_] reriHyTe; _ [S(t)] 2 (2C3)%*

5(0) (A2)®
and thus an LV.P. for S(t) in the form
S/(t) [S(t)]_—-*L-ZC?igU”‘C:i - — (2 02 + HO + 03) [S(O)]“_LTQCQiIC{()-P a (4232)

203

subject to the initial condition S(0) = -24@2;. There are two cases to consider here in
order to describe the general solution of (4.232).

(i) If2C,+ Ho # Cj then the general solution of (4.232) is given by

20+ Hy+C,
}2524-110—33

s = Ao {1 _2C+ Ho -Gy, (4.233)

T 2Cs Ay
where A,, C; and C; are some arbitrary constants that depend on the initial

condition of (4.176). If we denote by r = —g—gﬁﬁﬂi—% assume that r > 0 and
set Ap = 2 Cj then the function S(t) becomes

S@t)=(1+rt)+.

(ii)  If 2Cy 4+ Hy = Cj; then the general solution of (4.232) becomes

S(t) = S(0) e 5@ = 2A—CQ3 et (4.234)

Similar as in (i), we set Az = 2C35 and obtain S(t) = e™".
In both cases (i) and (ii) above, if we substitute R(t) = 2C3S(t) and e ¥® into
(4.231) and (4.230) we obtain the following similarity solution

(A t) = 2Csp R(t)* e P RO X g~V ()

_ P (2 CS)a+2b+1

a+2b _ !
G SO eracraen

and source function

g(\,t) =2 HyCyp R(t)*™? e PRO® X o=2Y (1)
- (Ay)%
As a result of (i) and (ii) and all the above, we have derived the following general

similarity solutions (family) for the coagulation equation (4.169) with particle source
terms:

[5(8)] atdb-1 —p(203)* S(t)" A
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Example 4.12 (New families of explicit solutions to the coagulation equa-
tion for a time-dependent kernel)
(i) Assume that the coagulation kernel is given by

KO t) = L (1475

wherer >0, r#1, Hy>0,C;>0 and

T S
2C;(1~r) T 2(1-1)

a =
and m = p(2C3)*tt > 0 and ¢ = p(2C3)® > 0 are some arbitrary constants. If the
source function g(A,t) has the form

b(r-1
{atdb-1) (r-1) o= (L t)JIrl

gAt)=am(r—1)(14+rt) r > 0. (4.235)

Then the coagulation equation (4.169) has an explicit (similarity) solution of the form

a e b(r-1)
(A t) = m (14 rt) HER gmar g T (4.236)
(it) Assume that the coagulation kernel is given by
q 1
K\ p,t) = =elota)t
A s t) = —
where a = —«2—%’3- <0, and Hy 2 0, C5 > 0, q, m are arbitrary constants defined in

(1). If the source function g(\,t) has the form
g(\t) = —ame @Dt gare™ 5
Then the coagulation equation (4.169) has an explicit solution of the form
¢(A t) = me (@1 eI, (4.237)

In particular, when t = 0, we obtain the initial condition co(\) = me~9* and thus
a new analytical solution for the coagulation equation with sources. Furthermore, if
we choose m = ¢ in (i) then we recover the analytical solution in [17].

Remark 4.11 (Regarding the solution (4.236)) To check completely our result in
(i), we also compare the solution (4.236) to the well-known ezplicit solution for the

pure coagulation equation of M. Smoluchowski [99] for which K = 1. For this purpose,
we choose a +1 = b and Hy = 0 then we get a = 0. So, g(A\,t) = 0 and g = m.
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Moreover, from the definitions of a and b we obtain C; = 0 and b = 1 which yields

r = 1/2 and thus the constant kernel K = 1. Hence, we recover the well-known
explicit solution (see e.g. [94])

O l) = T i

(2+1)

In particular, if m = 1 the solution above is M. Smoluchowski’s solution in 1916.

Mass conservation property

Although in this case the coagulation kernel is a time-dependent function, K is inde-
pendent of the particle sizes A and u. As is general the case with these kernels, it is
expected that the mass conservation property holds for all time ¢ > 0. This is indeed
what happens. To confirm our expected result, we prove that the following equality
holds

My(t) = My (0) + G(t) = My(0) + /0 t /0 oo/\g()\,'r) dhdr, Vt>0  (4.238)

where G(t) is such that its derivative G'(t) represents the mass of the source function
g(\b).
(i) Indeed, on the one hand, using (4.236) we calculate M;(t) and obtain

m

My(t) =/ Ac(\t) = = (1+rt)ﬂ;ﬁ =  M(0) = ;n_2
0

]

On the other hand, using (4.235) we calculate G(t) and obtain

m m a(r-
G(t) = —(—I§+ ? (1 +’r‘t)—rll.

Therefore, as expected the conservation of mass (4.238) holds for all £ > 0.

(ii) Similarly, in this case we obtain

and

So, the conservation of mass also holds for the solution (4.237).
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Case II: Coagulation kernel K(\, u,t) = 62(t) A p

Assume «(t) = 0 and 8(t) > 0. Next, let us choose the parameters g = 0, Gy > 0 and
o # 0. One can rescale the space and time variables in the coagulation equation and
set Bp = 1. Using the assumptions above and the definitions (4.224), the coagulation
kernel takes the form

K\ p,t) = 82(8) Ap = [RE)P A

The function R(t) is given in this case by
t
R(t) = Ay — (2C2 + By + C3) / e Y dr (4.239)
0

where Hy > 0 and Cs;, B; and Cj are some arbitrary constants s.t. R(t) > 0, for
every t > (. Using the definition (4.173), we obtain

t
Y(t) = / a(r) Mi(r)dr = 0. (4.240)
o ,
Thus, we obtain
R(t) = Ay — (2Cy+ B; + C3) t.
In this case, based on the assumption in (4.226) that ((s) = Hy(s) then the IDE
(4.225) for 1)(s) becomes
1 8
(Bi - H)w(s) = Cosd/(s) = 5 [ (s=9)s'bls=)u(shas (@2a1)
0

To determine the similarity profile ¥(s) we apply again the method of Laplace trans-
forms as in 4.3.6, Case I. Due to the form of the integrand in (4.241), we first multiply
(4.241) by s and denote by w(s) = s¢(s). We obtain

(B1+ C3 — Hy) w(s) — C3suw'(s) = g /08 w(s —sHw(s')ds (4.242)

Next, we consider the Laplace transform of w(s)

W(z) = L{w(s)}(z) = /0 " e w(s) ds.

Applying the Laplace operator £ to the new IDE (4.242) and using the properties of
the Laplace Transforms then we obtain as usual an ODE for W (z) in the form

W/(Z) — Wq W(Z)

m where q = Hg bt Bl -2 C3. (4243)
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Define y := 1 —C3/q. If we assume that ¢, 4 # 0 then the solution of (4.243) satisfies
also an algebraic equation of the form:

/_}5 W —2W(EP 14+ A=0, (4.244)
where A is a constant of integration that depends on the initial condition (4.170). To
study closely the algebraic equation (4.244), we rewrite this equation as follows

1 A
z= —“—5 W(z) + W
Taking the limit as z — oo on both sides and using the definition of W (z) as a Laplace
transform to get W(z) — 0, we obtain a necessary condition in the form x > 1, which
gives C3/q < 0.

Moreover, define F(W) = ﬁ W + whs — 2. Differentiating both sides w.r.t.
W, we obtain F'(W) = EIE + A (1 = p) W=+, Define W, to be the critical point of
F(W), ie. W, satisfies the equation Wk = —m > 0. So, we obtain Aq > 0.
Moreover, we expect that the function W(z) > 0 for all values z > zy (where 2 is an
arbitrary constant). One way to achieve this would be by assuming F"(W) > 0, i.e.
Ap(p—1)W=#1 > 0 which yields A > 0. The latter guarantees that ¢ > 0, and
thus C3 < 0 and Hy > B; +2C5.

Particular choice of constants. Explicit solutions to (4.169)

To illustrate how the method of Laplace transforms helps us determine some exact
solutions to (4.244) and thus exact solutions to the coagulation equation (4.169) and
corresponding source terms g, we choose a particular value for p for which (4.244)
can be solved explicitly. Since p > 1, then if we choose u = 2 the equation (4.244)
in W(z) becomes quadratic and thus it can be solved analytically. Since u = 2 we
obtain ¢ = —C3 > 0 and using the definition of ¢ then we get By = Hy — Cs. Thus

we obtain

2—1(;W(z)2—zW(z)+A-—-O = W(z)=q<z—— 22—-%—14).

In this case, we can calculate explicitly the inverse Laplace transform of W (z). We
obtain the similarity profile ¥(s) to be

Y(s) = Ak (2 \/373) (4.245)

52
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where I; represents the modified Bessel function of the first kind [1].
Therefore, we obtain the similarity solution f and the source function h as follows

Hy
R(t)
where R(t) = Ay — (2Cy + Hp)t, use being made of the equality Hy = By + Cs.
The arbitrary constants A, and A will be determined from the initial condition (or

from the invariance of the initial condition) and such that R(t) > 0, for all ¢t > 0.
Furthermore, using the expression of ¢(s) in (4.245) we obtain that the similarity

FA ) =[R(O)]*¢(s) and k(A t) = 5= (A1)

solution f(A,t) and source term A(A,t) above take the form

fOLt) =24/qA ( ‘[[ O )[R(t)]“‘“ and h(), t)—% f(AD).

Moreover, using the definitions (4.173) and since N(¢) = B(t) My (t), we get

S\ t) = /0 ABH7) My(7)dr = A / [R(7‘)]3"““'1 Mi(r)dr = AV (t),

0

where for simplicity, we denote by
t
Vi) = / [ROPP* My(rydr = My(t) = V'(t) [R(e)]*T%0. (4.246)
o U

Finally, these notations and the definitions (4.175) yield the general similarity solution
¢(A, t) and the source term g(\, t) for (4.169) in the form

pL{mI[R(®)° A
e(\t) = )\2<[R(t)]2b—a ) e VO and  g(At) =

Ho
R COD @

where

p=2vAq and m=2\/——g
q

where m,p > 0 are some arbitrary constants and R(t) = Az — (2C, + Hy) t.

It is worth mentioning at this point, based on the form of the solution ¥(s)
obtained in (4.245) for p = 2, that for large s — oo the convolution integral in
(4.241) diverges. This is due to the fact that ¥(s) in (4.245) develops a tail of the form
Ve 5512 a5 5 0o, since for a large argument we have 1 (z) ~ -&=, asz — co.
We have also performed an asymptotic large size behaviour (s — 00) for the similarity

profile 9(s) for a general p > 1 (based on Newton’s polygon method), however the
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. . . . 2 \/Z 8 —5/2
analysis shows that again the function ¢(s) has a tail Y¥(s) ~e"Ve~s as § — 00.
Furthermore, these similarity solutions have the property that their similarity profile
¥(s) have an infinite mass, in the sense that

o0 o
o, =/ s(s)ds = V% / ez‘/—%-ss’?’/zds:oo.
0 0

However, in spite of the properties of the function 1(s), the similarity solution ¢(), t)
given by (4.247) to the coagulation equation (4.169) has finite mass M;(t) < oo, for
all time ¢t > 0. Moreover, due to the presence of the exponential decaying factor
e~ @tV the solution c(\,t) in (4.247) is well-defined, for all A, ¢ > 0.

Based on the argument presented above, we proceed further to determine the
solution c(\,t) in (4.247) completely, that is we obtain the function V(t). For this
purpose, first we make use of the similarity solution c(A,t) and the first moment of
the solution M,(t) and since ¢ = p/m, we obtain

]\/Il(t) = -j—{—gsb—_;{d + V(t) - \/(0’ + V(t))2 — 2 R(t)Zb} — V’(t) R(t)a-Sb-H

(t)

use being made of (4.246). The last equality gives rise to an IVP for the unknown
function V()

V(t) = EC(IE {a + V() = (o +V(t)? —m? [R(t)]“} subject to I.C. V(0) =0,

(4.248)

where R(t) = Ay — (2Cy + Hy) t, with the constants Ay, Cy depending on the initial
condition that one chooses for the problem. Having determined V(t), then we can
completely determine the solution c(\,t).

In the following we provide a few examples of initial conditions for which we derive
exact similarity solutions. These initial conditions are obtained from the similarity
solution (4.247) when we set t = 0. With the first example we recover the solution of
Ernst et al [34], while the second example is a completely new explicit solution. Our
both solutions are general (similarity) solutions which depend on the function V'(t).
The latter satisfies an I.V.P. which in some cases can be solved analytically, however
in general numerical methods need to be employed. The expression of V(t) yields the
total mass M,(t) for all time ¢ > 0 and eventually the formula for the gel-time T,.
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Case II. A: Coagulation kernel K(\ p,t) = Ap

If we assume a+ 1 = 3 b, then from the definitions of @ and b and since B, = Hy — Cj,
we get C3 = Cy. In addition, from (4.246), we get V(1) = Q(t). Moreover, in this
case the coagulation kernel K(A, ) = Apu. We have obtained the following explicit
solution to (4.169).

Example 4.13 Assume the initial condition to (4.169) is given by

co(A) = with 0 > 0 any real number. (4.249)

Suppose the coagulation kernel K(\, p) = Ap and the source function g(\,t) = 0.
Then the coagulation equation (4.169) has an ezact (similarity) solution of the form

e~ QW+9) [1(24/t ))
AV

(A t) =

(4.250)

where the function Q(t) is given by
t
- for t €0, T,a)
Q(t) = ’
2\/2"‘7 f07‘ tZTgel

and Ty = o? denotes the gelation-time. In addition, the total mass of the solution
M, (t) is obtained as

My % for te]0, Tgel)
—h for t>T,

In particular, if o = 1 the solution (4.253) above reduces to the solution in Ernst
et al. [34].

Proof. In order to determine the similarity solution to the coagulation equation
(4.169) subject to (4.249) we need to obtain the particular values for all the constants
n (4.247). This can be done on one hand by imposing the invariance of the solution
f(\t) along the curve t = 0 (see [13, 14]), on the other hand by using the expression
(4.249) above.

First, we impose the invariance condition for the initial data f(\,0) = e*? ¢o(\) =
+ and we obtain

£1(A) Fa(X,0) + &5(0) fo(X,0) = m(f (X, 0)). (4.251)
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Using &(A) = C2 A, &(0) = R(0) = Az, m(fo(N) = Bi fo()) = 5 and Q(0) =0,
and also the expression of f; from (4.176)

A H, A Hpl
OO0 =5 [ = S =10 (0 0) it FOL0) 5 = 5+ 22 5

then (4.251) reduces to the simpler equation

Ay 1

22y —Cy—B)) <=

5 + (Ho — Co 1) 3 0

which holds for any A > 0. Since we have B; = Hy — Cs then the above equation
yields As = 0. Also, we have ¢ == Hy — B; — 2Cy; = —C,. Therefore, we obtain
a = £ and b = 7. Moreover, R(t) = —(Ho +2Ch) ¢, with Cp < 0. If, in
addition we make the assumption that Hy 4+ 2Cy < 0, or 0 < Hy < —2C% so that

R(t) > 0, for all t > 0, then we obtain b > 0. Thus, the similarity solution becomes
pe@E+) [ (m o))

c(At) = VI (4.252)
where, for simplicity we denote by
A 2v—-AC,
=24/ —[—(Hy +2C)}° d p= .
m __CZ [ ( 0 + 2)] an 4 ["(HO n 9 C2)]1__b

It remains now to make use of the initial condition (4.249) to determine all the
constants. First, let’s calculate co()), which in this case has the form
Ao I (m tb/\>
_ _pe .
o)== I —
for A > 0 arbitrary but fixed and b > 0 an arbitrary constant.
One can use the asymptotic behaviour of the modified Bessel function I;(-), for small

arguments in order to evaluate the limit above and obtains
L (m t”/\) m 21
AZ gl-b 22
The only possible value for the constant b such that the limit is nonzero and finite,
would be b = 1/2, which when combined with the definition of b = %4 = 1 gives
the unique solution Hy = 0 and thus, a = 1/2.

for t— 0F.

As a result of the argument above, the initial condition (4.249) gives rise to sim-
ilarity solutions of the form (4.252) if and only if g(\,t) = 0 (no source terms).
Substituting b = % into the expression of c(\, t) above we obtain

mpe=?° . 2Ae™H0

A0 =—5—=">
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where we use mp = 4 A. To match the initial condition above with (4.249) we need
only to set A=1/2.

To summarize so far, the initial condition (4.249) in this example leads to analyt-
ical solutions (of a similarity type) only for the case when no particle source terms
are included into the coagulating system, so g(A,t) = 0 (or Hy = 0). In this case, we
obtain a =b=1/2, q=—Cy and R(t) = ~2C2t =2qt > 0 (since Cy < 0). Hence,
the similarity solution reads as

oA e~ MQ(t)+o) L(2 VoA \/f,\) 3 e~ M Q(t)+a) L(2 \/Z,\)
A2y/2¢ B A2t

where we use A = 1/2 to obtain the explicit solution given by Ernst et al. [34], using

(A t) (4.253)

the saddle point method. The advantage of our method is that we obtain the exact
solution without any knowledge of the total mass. It can be seen from (4.253), that
¢(\, t) has the total mass incorporated as part of the solution, in the form of the
function @Q(t). Consequently, the group symmetry method provides us with a more
general form of a solution, that depends on M;(¢). The latter is in fact determined
as a solution of an L.V.P. and will occupy us below.
In order to determine the expression of the function Q(t) for Hy = 0 (sourceless -
case), we return to the I.V.P (4.248) which now reads
- 2_
Q) = Qt)+o \/th(t) +0)2 -4t
Denote by v(t) := Q(t) + o, then v(0) = ¢ > 0. Thus, (4.254) becomes an I.V.P for
u(t)

subject to  Q(0) = 0. (4.254)

oy = 2= 2’“;(” —4t ubject to Q(0) =0 (4.255)

t P —v®) V() +1=0 = ") (2t (t) - v(t)) =0 (4.256)

The equations in (4.256) hold for values of t € [0,t.) such that
v2(t) >4t and w(t) —2tv'(t) >0, (4.257)

where T, denotes the upper bound of the solution of the system (4.257) above. Thus,
for any t € [0,T;) we have

V() =0 or w(t)= i— +o0 = Q@{)=- for t€[0,T, = 0%

Qe

by using M;(0) = 2 and v(0) = 0. Therefore, M\(t) = Q'(t) = L.

(-2
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Remark 4.12 The critical time T, above corresponds to the gelation time.

Indeed, on one hand the gel time T}, corresponds to the first instance ¢ when
the second moment of solution blows up, or Ms(t) = u,(0,t) — —oo. On the other
hand, using the definition of u(z,t) as a Laplace transform of A ¢(), t), we obtain that
T, satisfies the equation v?(t) = 4t or (£ +0)* = 4t, so (t —0?)® = 0 which
gives Ty, = o, 50T, = Toet = o2, Therefore, the expression obtained above for Q(t)
corresponds in fact to the pre-gelation regime (for ¢ € [0, Tyer)).

In the post-gelation stage (¢ > Tyer), we no longer have v”(t) = 0, however in this
case, v(t) satisfies the ODE

1
V(t) = % v(t) whose solution is v(t) = kv't, where k > 0 is an arbitrary constant.

Therefore, we obtain the function Q(t) =k Vt—o, fort > Tger. To determine
the constant k, we use as an initial condition for the ODE above, the function v(t)
obtained for t € [0,Tye) or v(T,e) = 20, ensuring thus the continuity of the total
mass M;(t) at t = Tye. This means that ko — o =0 or k = 2. Alternatively, one
simply notices, that for t > T, the function v(t) = 24/t satisfies both the equation
(4.255) and the 1.C. v(T,u) = 20.

Therefore, we obtain the expression of Q(t) for t > 02 ie. Q(t) =2vt— ¢ and
thus Mi(t) = Q'(t) = ;. Therefore, the expressions of the function Q(t) and the
total mass M;(t) in Example 4.13 hold and thus our example is complete. a

Our next example is for a different initial condition that is obtained from the
similarity solution when we set t = 0.

Example 4.14 Assume the initial condition is given by
_ ke“’\" Il(m )\)
VA
where o, k, m > 0 are arbitrary constants and o > m. Suppose the coagulation kernel
(i) If the source function is given by

co(A) (4.258)

p(2b—1) ke QW+ ) (m (1+pt)® )\)

9x 1) = N (1+pt)2b

(4.259)
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Then the coagulation equation (4.169) has an exact (similarity) solution of the form
ke @&+ [y (m (1+pt) )\)
A2 (1+pt)i-b
where p > 0 and b > 3 are arbitrary and the function Q(t) satisfies the I.V.P.

vk
MR e

c(\ 1) = , (4.260)

(Q(t) +o- QW)+ o) —m 1+ pt]Zb) subject to Q(0) = 0.
(4.261)

(i)  In particular, if g(\,t) =0, then the coagulation equation (4.169) has an exact
(similarity) solution of the form

ke~A@+o) (m 14 2ky )\)

m

:

c(M\t) = (4.262)

(&
ko

A2 /1425t

3

where k, o, m > 0 are arbitrary and the function Q(t) can be obtained explicitly as

k(g —oo)t,  for t€0,Tha)
Qt) =

my/l1+2t—0 for t > Ty
where the gelation time is given by Tge = ﬁ_iz—oj and gp 1= Vo? —m?2. In addition,
the total mass of the solution M,(t) is obtained to be
—T% (i‘ —ag) for t €0, Tye)

\/—IE for t 2> T
Remark 4.13 In particular, if we choose b =1, 0 = a, p = 1/q and m = kq then

Mi(t) = Q1) = {

we obtain the Example 4.5 in Section 4.2.

Proof. (i) Indeed, from (4.247) it follows that the similarity solution c(),t) at
t = 0 takes the form

2VgAe I, (2 \/§ (Ag)® ,\)
(A2)1—b /\2

where g, Ay # 0. To determine the constants, we need to impose certain conditions

c(A,0) =

such that ¢o(A) above matches the initial condition (4.258). For this reason, we first
choose A, A,, C, as follows

2 A
ﬁ@:k and 2\/;(A2)b=m.
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Alternatively, we can impose the invariance condition for the initial data fo(\) as in
the previous two examples. Moreover, if we define

RE) | Ho+20s, _Ho+2C

= d = 0,
P(t) A , and p "
then P(t) =1+ pt. From the definitions of b = —%—ig—cz and p above, it follows that
Hy  2Cy _ _
4, =4, ~P=2eb p=p(2b-1)

where we make the additional assumption that b > 1/2, so that Ho/Az > 0. Substi-
tuting all the above into the expressions (4.247) then the similarity solution c(A,t)
and the source function g(A,t) take the form (4.260) and (4.259), respectively. It
remains to show that the function Q(t) satisfies the I.V.P. (4.261). Indeed, taking
the Laplace transform u(z,t) of A¢(),t), we obtain

(m+Q(t) +0-(z+Q()+0)2—m? (1+pt)2”)

R ()

and substituting z = 0 we get u(0,t) = M;(t) = Q’'(t), which proves (i) holds.
Therefore, the function Q(t) satisfies the L.V.P. (4.261). In general, the equation
(4.261) cannot be solved analytically and numerical methods have to be employed.

(i) We present below the case Hy = 0 which corresponds to g(\,t) = 0, as this
is the only case for which one obtains exact similarity solutions c¢(),t) to (4.169).
Assume the constant Hy = 0, then we have B; = ¢ = —C; and p = —2C3/A; and
thus a = b= 1/2. Therefore, the I.V.P. (4.261) becomes

k

Q'(t) = pny T (Q(t) +0—/(Qt)+0)2 —m2(1+ pt)) subject to Q(0) =0

We can simplify the LV.P for Q(t) if we define v(t) := Q(t) + 0 and thus obtain an
L.V.P. for v(¢) in the form

V(1) u 2 ('u(t)- Vo) —mE (1 + pt)) subject to v(0) = 0. (4.263)

T m (1+pt
For all values of ¢ > 0 such that the following system of inequalities hold

v(t) >m? (1+pt) and kv(t)—mv'(t)(1+pt) >0 (4.264)
we rewrite the differential equation in (4.263) as follows

207(t) - (V(E)m (A +pt) —kv(t)) + V()] (mp—2k) =0 (4.265)
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Using the definitions of p = —~27(;1 and m =2 \/—é A%, and since ¢ = —C,, we obtain

mp=2\/§Ag(—2—C2-)=2-2—@=2k

where we use the definition of k and the fact that b = 1/2. Then p = 2% and (4.265)

m

takes the simpler form
20"(t) [V'(t)m (L +pt) —kv(t)] =0 (4.266)

For all values of t € [0,T,), where T, is an upper bound of the solution to the
system (4.264) above, we have v”(t) = 0. This gives us the solution

k

m

v(t) = —rkﬁ (c0—ag)t+o = Q) (6 —o9)t, for te€]0,T,)

where using v(t) above to solve the system (4.264), we obtain an upper bound as the
critical time T, = £Z2%-. The solution v(¢) above follows by using the 1.C. v(0) = ¢
and the expression of M1(0) = [;° Aco(A) dX = £ (0 — g9), where 0 := Vo2 — m?

with ¢ > m > 0. Therefore, for ¢ € [0,7;), we have M, (t) = Q'(t) = £ (0 — a9).

Similar as in Example 4.13, we show that the critical time T in fact coincides with
the gelation time. Indeed, from the definition of the gel time, T, corresponds to the
first instance when the second moment of solution blows up or M3(t) = u,(0,t) —» —o0
which gives us v%(t) = m? (1 +pt) or

(%(a—»aro)t—l—a)z—7712;1)t=m2

2
Then using the definition of oy, we obtain (ﬁ (6 —ag)t — oo) = (0 which gives
the root t = Ty = ﬁfﬂu—) Therefore, the expression we obtained above for Q(t)
corresponds to the pre-gelation regime.
On the other hand, in the post-gelation stage (¢ > Tye.), we no longer have v"(t) =

0. Here, we have

v'(¢) k

0 = — FD) = v(t) =C+/1+pt, where C is an arbitrary constant.

It follows that Q(t) = C' /1 + pt—o. To determine the constant C, we use as an ini-
tial condition the function v(t) obtained in the pre-gelation stage or v(Tge) = g + o
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to ensure the continuity of M, (t) at t = Tye. Therefore, we obtain C = m and since

p= ";—’f then v(t) = my/1+ % t, for t > Ty Therefore, we obtain the expression of

Q) for t> Ty ie. Q(t) =m/1+ %t~ o and thus My (1) = Q(t) = —kee.

Thus we have obtained the similarity solution (4.260) with Q(t) and M;(t) given as
in (ii), and our example is now complete. O

Case II. B: Coagulation kernel K (A, u,t) = (1 +kt)® 1Ay, where k>0

Gelation phenomenon

In this subsection, we consider the example of a coagulation kernel that increases with
the particle sizes A and p, however it is allowed to be time-dependent. As described
above, for this kernel the similarity solution ¢ and the source function g are given
by the formulas (4.247). In the following, we assume 3b # a + 1, and k > 0 are
some arbitrary constants. If the time-dependent factor (1 + kt)3~9~1 of the kernel
K(\, u,t) decays sufficiently rapidly with time, then the second moment of solution
M;(t) remains finite, for all £ > 0.

Conjecture 4.2 The total mass is conserved for all time t > 0 and thus gelation
does not occur as a result.

For the remainder of this subsection, our main focus is to analyze the validity
of this conjecture. For this reason, we investigate the circumstances under which
the gelation phenomenon can be completely prevented. This reduces to analyzing
the conditions satisfied by the exponent 3b — a — 1 and thus conditions for a and b
and the initial second moment M;(0) of the solution ¢. To investigate the onset of
gelation we make use of the original coagulation equation (4.169) and determine the
second moment of solution M;(t). Indeed, based on the form of the kernel K in this
conjecture, one can derive an ODE for M(t) in the form

My(t 1
d—% =3 MZ(t) (1 + kt)%—a? (4.267)
provided that the third moment of solution Mj(t) is finite. Thus, one can derive an
explicit formula for the second moment in the form
L1 1=(1+kt)¥e
My(t) ~ M3(0) 2k(3b — a)

(4.268)

141



Provided that M;(0) is small enough and 3b—a < 0 then one can prove that Ms(t) >
M,(0) > 0 remains finite for all time t > 0. The latter is a consequence of the fact
that the right-hand side of (4.268) is strictly positive for all time ¢ > 0, if we assume
that 3b—a < 0.

To prove the conjecture completely, one also needs to investigate the expression
of the first moment M;(t) and show that the conservation of mass property holds, i.e.

t o0
My(t) = My(0) + / / Ng(As)drds, V>0 (4.260)
0 0

Furthermore, one also has to investigate whether the usual gelation time (that is the
first time t at which the conservation of mass property (4.269) breaks down) coincide
with the blow up time of the second moment. The latter is only proved rigorously for
the pure coagulation, for a few special cases of initial conditions and a multiplicative
kernel K(\, p) = (a+ BN (a+Bp), a, B >0 (see e.g. [34, 96]). However, we leave
the last two points in the conjecture for future work.

Case III: Coagulation kernel K(\, u,t) = (ag + Go A) (g + Go 1)

In this case, we have a(t) = a9 > 0 and 3(t) = By > 0. We choose C3 = Cy = 0. We
have By = B; + C3 = By and

B —&=—1 and b= Cs

T e ————e————— —————-————=O
= T3C,+B+Cs B 2C, + B; + Cs

In addition, we choose the parameter o > 0 to be any real number. Furthermore, in
view of (4.173), we have

FO) = (o + AN Q) snd Y(t) = apQ(t)

and thus the similarity variable and similarity solution take the form

s=A and c\f) = ’%((’%)Z o—(a0+60 ) (Qt)+2) (4.270)

Also, the source function is given by

— -2 =Y (t) = PA) _—@aotto » @1)+e)
g()" t) [R(t)] € 4,0(/\) R(t)2 e
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where R(t) is given by R(t) = Ay — B, [, e™*°9" dr and ¢()) > 0 is an arbitrary,
non-negative function for all A > 0. In addition, 1(\) satisfies the following IDE

By (X)) — p(A) = %6_0‘” /0 [0 + Bo (A — )] [0 + Bo ] Y(A — ) ¥(p) dps,

(4.271)

where the constants Ay, By are chosen such that the function 4(A\) > 0, for all A > 0
and R(t) > 0, for every t > 0. For simplicity, choose o = 0.

Multiply (4.271) by (ag + By A) and define w(X) = (o + Bo A) ¥(A), then

A
Baw(A) = (o + o A) (X)) = % (a0 + Bo ) /0 WA — pw(p)du (4.272)

Next, we attempt to solve (4.272) explicitly (if possible) by using the method of
Laplace transforms. Define W(z) = L{w(A)}(z) and H(z) = L{p(N)}(2), then
(4.272) reduces to an ODE in W (z):

(o]

BoW(z) —agH(z) + o H'(z) = Y W2(2) — B W(z) W'(2) (4.273)

In particular, if H(z) = 0 (which corresponds to ¢(A) = 0), so g(A,t) = 0, then we
obtain

By

Qg :
W'(z)= —W(z) -
=55 W -5
whose general solution is given by
W() = Aeth® _ 22
Bo
where A is the integration constant. From the definition of W (z) as a Laplace trans-
form, we obtain A = 0 which yields a constant function W(z) = —gf as a solution.

Consequently in Case II1, if there are no particle source terms in the system, then
the coagulation equation (4.169) does not possess any similarity solutions of the form
(4.270).

Next, we look for some particular examples of functions H(z) so that we can
solve the ODE explicitly to determine W (z). One such possible choice for H(z), for
example would be H(z) = pW(z), or ¢(A) = pw(A) = p(ag + Bo A) ¥ (), where
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p > 0 arbitrary. In this case, using the properties of Laplace transforms the equation
(4.273) becomes a separable ODE of the form:

W(e) (£ W)+ 20252 )
W(z) +p

whose solution satisfies the algebraic equation

W'(z) =

2By~agp an p—B
((—;(—) W(z)+aop— Bg) T =W(2)e” Gr - * A, (4.274)
Since W(z) — 0 as z — oo, then we obtain some necessary conditions for the
constants, as follows: agp — By < 0 and A > 0, we set A = 1 for simplicity. Thus,
we obtain 23—;-;—:‘—“-2 > 1.
In particular, if 232—0'1‘:‘02 =2,0r By = 3—"‘2,0-2 > 0, then (4.274) becomes a quadratic
equation in W (z) whose solution is given by

W(z) = Z?E {eh® 4 q- V(e 1q)" - e} (4.275)

where ¢ := -a—'z—’f > 0, and o, By > 0. Here, we have R(l) = Ay — @219 ]Ot e~ Q) 4r
where A, will be determined from the initial condition fo(A) that one chooses.

It remains to determine the function Q'(t) = N(t) = ap My(t) + Bo Mi(t). One
possible way to determine Q(t) would be through W(z) using both its definition and
its explicit formula. On one hand, from the definition of W (z) as a Laplace transform
we obtain

W (z) = ag R(t) €™ Q(t)/ c(A, t) e EPo Q1) g\
0

o
+ Bo R(t) >0 @® / Ac(A, t) e EF QM) gy (4.276)
0

where we substitute ¥(\) in terms of the solution ¢(A,t). It can be seen that W(z)
in (4.276) reduces to a linear combination of My(¢t) and M;(t) if we set z = Gy Q(¢).
Then we obtain

W (Bo Q(t)) = (co Mo(t) + Bo Mi(t)) R(t) €90 = Q/(t) R(t)e*@®  (4.277)

On the other hand, substituting z = By Q(¢) into the explicit formula (4.275), and
equating this new form and (4.277), we obtain an I.V.P for Q(¢):

2 o «, 2
Q) Ry e = 5 {q +e7 0 — \/ (a+e? ) — q2} (4.278)
0
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subject to the initial condition Q(0) = 0. Since R'(t) = —Bye % < 0 and
R(t) = By ag Q'(t) €709 then ¢ = — % and Q'(t) = _% then (4.278)
becomes

By R'(t) R(t) _ 2 VB VB, 2_
azm—'u‘raz{"*—‘fm J("* —R/<t>) "2}

If we denote by y(t) = /—R'(t) and v(t) = ¢+ ‘/g_)z then the I.V.P. above simplifies

to a separable DE y;((tt)) = —5%% where v(0) = ¢+ 1 and y(0) = v/—By. Integrating

both sides w.r.t. ¢t from 0 to ¢t we obtain

o(t) + Vot — @ +qln ((v(t) + V020 — ) (u(t) — q)) = ¢® In(R(t)) + Const.

which in terms of R(t) reads

LB (q+__@)2_q2+qm[(q+ .
—R'(¢) —-R(t) V-R(t)) (¢+1) v-R()
=¢ In[R(t)] +q+1++/2q+1 (4.279)

In principle, one solves the differential equation (4.279) for R(t) and obtains an
implicit equation for Q(t) which is valid for all t > 0. However, finding analytically
the inverse Laplace transform of the function W (z) defined by (4.275) may not be
straightforward as pointed out already in Example 4.11. Then one either obtains
a series solution for c(),t) by formally expanding the square root in W(z) or an
asymptotic behaviour as A — o0o0. Since we have not obtained an expression for
the function Q(t) or the gel-time in this case, we will leave this subcase as an open
problem for future work.

4.3.7 Generator 7, = 19(t,v) = &(t) B3(t) v

In this case, the generators of the Lie group of point transformations admitted by the
system (4.179) are given by:

Li=6(A)=C3A+Cy

o =&(u) = Cap+ Cs

&3 =&3(t)

m=m(f) =

np = 1n2(t,v) = B3(t)&3(t) v (where Bs(t) is an arbitrary function of t)

It
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where Cs, Cy, Cs, By are arbitrary constants. Using (4.212) with A(t) = —(Cy+Cs+
Bs(t)), where here we choose By(t) = &3(t) Bs(t), we obtain that &3(t) satisfies the
ODE

&(t) + &(t) (Bs(t) — Y'(t)) = —(Ca + C3)
whose solution is given by
£5(t) = e~ (RO-Y () [ Ay — (Cy + Cs) /0 t eR(M=Y(7) dr]
where R(t) = /0 t Bs(r)dr and A, is a constant of integration

and Y'(t) was defined in (4.173).

Proceeding similarly as in 4.3.6, we consider C3 # 0 and set Cy = 0 to obtain
invariant solutions. Consequently, the generators of the Lie group of point transfor-
mations admitted by the modified coagulation equation (4.176) are given by

&i(N) = C3 A
t
&(t) = A e (BEO-Y(t) _ (Cy + Cs)e—(R(t)-—Y(t)) / cRD-Y(7) 4
0
m(f)=B1f

where Ay, By, C;, C3 are arbitrary constants. In this case, since

1 (PO
L[ &me= (P((») (4.280)

the functions «(t) and f(t) are given by

~

a(t) = 0o [P(t)] %7 and  B(t) = fo [P(t)] Shves (4.281)
where

t
P(t) = Ay — (C2 + C3) / =Y dr.
0
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Symmetry reductions for the coagulation equation

In order to obtain the similarity reductions for the coagulation equation (4.176), we
solve the correspondent characteristic equations in the invariant surface condition
(4.45) associated to the generators &, &3, 71, which in this case become

dx Z'(t) dt i
Cs\~ Ay—(Ca+C3)Z(t) Bif

(4.282)

where Z(t) = fOt ef=Y(") dr. We only consider here the case of C3 # 0. In addition,
we assume B; # 0 and Cy+C3 # 0. With these assumptions, the first and second pair
of DEs in the characteristic equations (4.282) provide us with the similarity variable

and similarity solution, respectively, in the form

s = A[P(t)]’ = constant and f(\,t) = [P(t)]* ¥(s)

= _C3 - __B_
where b e and a ETe and also

t
P(t) = Ay — (Cy + Cs) / =Y gr
0

where again the choice of the constants Ay, Cs, C3 is made subject to I.C. that one
chooses, and so that P(t) > 0, for every ¢t > 0.

It remains now to determine the type of source function h(A, ¢) for which similarity
solutions to (4.176) exist. This follows from the equation (4.197) and the specific
expressions of &1,&3,m in this case. We obtain

oh oh

Cs A o3 (A 0) +&s(t) 5o (0 1) = [Cz + C3 + By — &(t) Y'(t) + Bs(t) fa(t)] h(A, t)

Since this is a first order PDE we use again the method of characteristics. We obtain
the following form for the source function that will provide us with invariant solutions
f for the coagulation equation

h(A 1) = [P(2)]*7 €070 ().

To obtain group invariant solutions for (4.176), we need to substitute f(A,t), s
and h(\,t) above into (4.176) and perform similar calculations to those leading to
(4.222) in 4.3.6. By doing so, and using the new definitions of a and b, and the new
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functions «(t) and B(t) in (4.281), the equation (4.176) takes the form

[POI {Brb(s) — Cas ¥/ (5)} RO = [PO] RO o(s)
+ %e——aoa [P(t)]Za—b-i-Zd /) w(s _ SI) ¢(8’) [ao +ﬂ(3 _ Sl)] (ao + ﬂO Sl) ds’

(4.283)
where d = — Cffca. From the equation (4.283), it follows that a necessary condition
for invariant solutions solutions f(A,t) to (4.176) to exist is given by the following
equality

d
eR(t) - [P(t)]a-b+2d+1 = B3(t) — a};l(_t) (4'284)

that holds for all ¢ > 0, where for simplicity we disregard a possible constant fac-
tor that may be present in (4.284). The last equality in (4.284) holds by differ-
entiating w.r.t. ¢ and using b —d = 1. Thus, we choose R(t) such that R(t) =
(@ —=b+2d+ 1) In(P(t)) = (a + d) In(P(t)).

Furthermore, in this case the similarity profile ¢/(s) satisfies the following ordinary
IDE

Bib(s) = Cast/(5) = 3 [ (a0 + Bols = 1)) (0w + 6o} bls = )u(s)ds' + (o)

Our aim is to present a few examples of new similarity solutions c(A, t). For this
purpose, we have considered the same class (4.226) of functions ¢(s) as in 4.3.6, that
is

w(s) = Hov(s), where Hy > 0 is a non-negative constant.

The more general case of functions (s) is left for future work. For such a family of
functions ¢(s), the function h(),t) takes the form

B\ t) = Ho [P(1)]* 1 FO-Y® y(s),  where Hy > 0.

In the following we consider some of the particular coagulation kernels in 4.3.6, for
which we provide new similarity solutions c¢(A, ) to the coagulation equation (4.169).
As it will be shown below these similarity solutions cannot be obtained otherwise, for
example by assuming that the function Bs(t) = Bs is only a constant (see 4.3.6).
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Case I: Coagulation kernel K(A, p,t) =1

In this case, we have a(t) = 1 and 3(t) = 0. So, the constants are given by ap = 1,
Bo = 0 and C; = 0. Using the definitions of a,b,d, we obtain d = 0, b =1 and
a = —By/C3. In addition, we choose the parameter ¢ = 0. Then, in view of the
necessary condition (4.284) we obtain

Rt — P(t)%.
Also, the similarity variable and similarity solution become
= A[P(t)] = constant and f(\,t) = [P(t)]*¥(s),

and

t
P(t) = Ay — Cs / eRN-Q) gr
0

since here Y (t) = Q(t). Moreover, the IDE for ¢(s) becomes

(By — Hy)¥(s) — C3s¢'(s / P(s — §')¥(s') ds (4.285)

for which we apply again the method of Laplace transforms. Consider the Laplace
transform of ¢(s) to be G(z) = L{¢(s)}(z). Then, same as in 4.3.6, Case I, we obtain
a separable ODE for G(z):
oy _ G(2)(G(:) — 2) _ 20y
G'(z) = 5Cu s where pu=B1+Cs—Hy = G(z)= P

where v > 0 is an arbitrary constant that depends on the constant of integration. This

constant will be completely determined from the initial condition for the coagulation
equation. From the definition of G(z) as a Laplace transform, it follows that G(z)
is completely monotonic for all 2 > 2y, where z;, is some arbitrary constant (one can
choose zyg = —v). One way to achieve this would be assuming Cj = g > 0 which
gives B; = Hp > 0. This means that a = —Hy/C3 < 0.

Next, taking the inverse Laplace transform we obtain the similarity profile 1(s)
to be

Y(s)=2C3ve™?*
from which we derive the similarity solution f(A,t) and the source term h(\,t) to be

Hy

FONE) =2Csu [P e PO and A\, ¢) = 20

eRO-0W £() ¢). (4.286)
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Example 4.15 (Initial condition cy(\) = e see e.g. [17]). Let the initial
condition (4.170) to the equation (4.169) be co(\) = e™>. Let the coagulation kernel
K=1.

Let R(t) be a non-decreasing, non-negative function for allt > 0, such that R(0) = 0.
Set

2
2+ [, e dr
Assume the source term is
g\ t) = R'(t) T?(t) fO-AT®), (4.287)

Then the similarity (exact) solution to the coagulation equation (4.169) is

c(\ t) = T2(t) FO-ATO, (4.288)

Proof.  First, we impose the invariance condition (4.45) for the similarity solution
f(A,t) along the curve t = 0 in a similar manner as in 4.3.6, Case II and obtain
Ay = 2C5, with m = 1. Moreover, from (4.286) we calculate f(A,0) and obtain
f(),0) = 2C3v[A5]* e~ ““2* On the other hand, since we have fy(\) = e™* we can
set 2C3v =1and A, = 1. So, C3 = % and v = 1. Then the similarity solution f(A,t)
in (4.286) takes the form

P(t) 2— [ efn-20)qr
A 2

where we make use of [P(¢)]* = €% and P(t) = T(t). From here we obtain
eft)-Q®) = _2T'(t). Moreover, we have c(\,t) = f(\,1)e Q0 = AT R(H)-Q()
and since Q'(t) = N(¢t) = My(t), then we can calculate

ft) =erTO[PR))e = e *TO RO where T(t) =

/ °° Re-Q®) [ AT T'(t)
Q'(t) = My(t) = c(A\t)ydh=e e dA = =2 ——=
0 0 T(t)
So, Q'(t) = -2 %f—)l subject to Q(0) = 0 and T'(0) = 1, which by integration w.r.t ¢
gives rise to 9" = T?(t) and T(t) can then be rewritten as follows
T'(t) ef)

t
2T(t) =2 — '/0 LOT(Pdr = TR T 3 subject to  T'(0) = 1.

Therefore, we obtain a new form of function T'(¢) in terms of R(t)

2

TM) = —Fg—— >
) 2+ [ R dr

0.
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Let us briefly show that the properties of R(t) in this example hold. Indeed, since
T'(t) = —C3 €=t < 0 (as C3 > 0) then from R'(t) = a %5)2 > 0 it follows that
R(t) > R(0) = 0. So, R(t) is a non-decreasing, non-negative function for all ¢ > 0 such
that R(0) = 0. In addition, since eRF-Q®) = —T'(t)/Cs, and T'(t)/T(t) = R'(t)/a
then we obtain (4.287, 4.288), or

(A, t) = eROATO ~QU) = T2(4) RO-ATX)

g\ ) = —fl%e’*“)’q“) 1) = R(E) (A ) = RI(£) T (1) ROATO g

Mass conservation property

In this case, since the kernel K (), i) = 1 then we expect that the total mass M, (t)
satisfies the equality

t poo
M (t) = M(0) + G(t) = M,(0) +/ / Ag(A, ) drdA
0 Jo
Indeed, the equality above holds and we obtain the total mass to be given by
Ml(t) = eR(‘).

In particular, if R(t) = 0 then we get M;(t) = M;(0) = 1. Moreover, in this case we
recover the old solution given by M. Smoluchowski [99).

Case II: Coagulation kernel K (A u,t) = Ap

In this case, a(t) = 0 and S(t) = 1. Thus, the constants are given by cg =0, fp =1
and C3 = Cy. Using the definitions of a,b,d, we obtain b=1/2, d=b—-1= ~1/2
and a = —B;/(2C3). In addition, we choose the parameter o > 0 arbitrary. Then,
in view of the necessary condition (4.284) we obtain

t
RO — [p(t)](a—%) or R(t) :—./ Bs(r)dr = (a - %) In[P(t)].
0
Also, in this case the similarity variable and similarity solution become
s = A[P(t)]¥? = constant and f(\t) = [P(t)]*¥(s),

where .

P(t) = A2 —2Cy / " dr  since Y (t) = 0.
Jo
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Then the IDE equation for t(s) reduces to

(B~ Ho) 9(s) ~ Cos/(s) = 5 / o - () (- ) o'ds (4:280)

where the same particular source function as in 4.3.6, Case II has been considered as
an example for our analysis, that is ¢(s) = Hg¢(s).

Since (4.289) is the same equation as (4.241) in 4.3.6, Case II, we refer to the
details there. We obtain an ODE for the Laplace transform of s(s), that is for
W(z) in the form

1
— Wt —-—zW(=z)+A=0
Hq
where A is the constant of integration that depends on the initial condition (4.170)
and p = 1—Cy/q. For the same choice of constants as in 4.3.6, Case II, that is u = 2,
we obtain an analytical solution to (4.169). This implies that ¢ = Hy — B; —2C; =

—C3 > 0, so, By = Hy — C; and the solution W (z) becomes

) = 2/Adh (2 ‘ s) (4.290)

where [ represents the modified Bessel function of the first kind.
Therefore, the similarity solutions for the equations (4.176) and (4.169) take now
the following form

FN) =[PP 9(s) = (M 1) = f(A 1) e”@OIX = [P(1)]2 @A y(A[P(2)]'/2)

The source functions for which such similarity solutions occur are given by

H() CR(t)

hA6) = Hoe" [P "9(s) and (N 1) = —ps

(A t)
where a = —B,/(2C;) and P(t) = A; —2C, fot ef") dr. The arbitrary constants A,
and A will be determined from the initial condition that one chooses to solve (4.169)

and s.t. P(t) >0, Vvt > 0.
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Using the expression (4.290) for ¢/(s) we obtain the following similarity solution
and source function

e 2 QW+ 1 (2 /% P(t) ) H, eR®
C(Av t) =2 V qA A2 [P((t)]l—-a ) and g(/\7 t) = P(t) C(/\, t)'
(4.291)

In the following we choose the same initial condition (4.258) as in Example 4.14 and
derive some new similarity solutions to (4.169) however, this time in the presence of
particle source terms.

Example 4.16 (Inz’tial condition cy(A\) = ke—erM)
(i) Assume the initial condition to (4.169) is
k Ao
co(A) = ___e_:___)\i;(m_)d where o, k, m > 0 are arbitrary constants.
Assume the coagulation kernel K (A p,t) = Ap. Let S(t) > 0 defined by

k 5
St = [1+=(3-20)¢)
) =[1+=(3-2q
where a 2 1/2 is an arbitrary constant. Assume the source function g(A,t) has the
form

ke QW+ [ (m /S(t) A o
o(\ ) = Hy L VIO gpau-sa
where Hy > 0 is an arbitrary constant. Then the coagulation equation (4.169) has an
ezact (similarity) solution of the form

(4.292)

_ ke QB [ (m \/S(t) N)

(A1) = SO (4.293)
where Q(t) satisfies the L V.P.
Q'(t)= ;{S‘.('f)ii/ﬁ (Q(t) +0 —V(Q(t) +0)2 —m? S(t)) subject to  Q(0) = 0.
(4.294)

(i)  In particular, if a =1 and Ho = £, then the function S(t) takes the form
oy k \2
S(t) = (1+;n—t) >0, Vt>0.
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If the source function g(A,t) is given by

k2 e 2 @QWO+9) [1((kt 4+ m) A
g\ ) = ; i )
N (kt+m)

(4.295)

Then the coagulation equation (4.169) has an ezact (similarity) solution of the form

ke 2 @O+ 1 ((kt +m)N)
/\2

c(Mt) = (4.296)

where the function Q(t) is given by

#(0’—0‘0) (%t’“’-{-mt), for t € [0, Tger)
kt+m—0, fOT' tZTgel

Q) =

and the gel-time is defined as Ty = 2 (,/Ziﬂl - 1) where gy = Vo? — m2,

k ag—agp

o 2 m > 0. In addition, the total mass of the solution Mi(t) is obtained as

e T
Mi(t) = Q'(t) = { ],(;L,Q (o — a0) (kt +m), jzg: z _€>_[’-?";ez gel)

Remark 4.14 Ezxample 4.16 is a particular case of Example 4.14, where b =1 and
k=2

m’

Proof. (i) Indeed, the similarity solution at ¢t = 0 becomes

o0 = 2 gAe I, (2 \/ﬁ,\)

(A2)1—a /\2

&:;’fa =k and 2 % Ay =m (4.207)

and set S(f) = —P}? =1- %%—;1 /Ot e dr, where Cy < 0 and A; = 1, then using
(4.291) the similarity solution ¢ and the source term g are given as in (4.293) and
(4.292), respectively. From the definition of R(t) we have R(t) = (a— 1) In[P(t)] and
since P(0) = A, = 1, then R(0) = 0. Moreover, since a = —-2302 and B; = Hy — C,
then we obtain a = —2%0; + %, and with —Cs > 0 and Hy > 0, we obtain a > 1/2.

If we choose

154



Using the notations (4.297), the form (4.291) for the solution c¢(A,t), and since
P(t) = S(t), we obtain

ke~ A QW+ [ (m /S (E) \)
(A ) = A2 5(t)e

From (4.297), and setting A, = 1, we obtain ¢ = —%. On the other hand, we have
q = Hy— By —2C; and since Hy — By = C; then ¢ = —C;. Thus equating the above
forms of g we get —Cy = £. So,

t 2k t
S(t)=1—202/eR(T)dT=1+—/eR(T)dT
0 m Jo

Then

’ 2k gy _ 2K o/ va-1p2
= 8 =%
S'(t) —e — S(t)*=%,

which is a separable ODE for S(¢) with initial condition S(0) = 1, whose general
solution is

k 5
S(t) = (1+—W—L—(3—2a)t) .
Then the source function g(\,t) in (4.291) takes the form

Hy ekt
S(t)

c(At) = g(\t)=HoSt)* 2 c(\1)
_H, ke Qt)+o) /(;(m VS(t)A) S(t)%-5/2

Thus (4.292) holds true. In particular, if a = 1/2 then we have B; = —C, which
gives Hy = 0 and thus we obtain the sourceless case g(A,t) = 0 which has already
been covered in Example 4.14. Moreover, since P(t) and P'(t) > 0 it follows that

g(At) =

R(t) is a non-negative and non-decreasing function for all ¢ > 0.

In addition, we obtain that the function Q(t) satisfies the 1.V.P.

Qt) = W (@) +0 - QW ToP —m5W), subject to Q(0) = 0.

(4.298)

In general, one cannot solve (4.298) to obtain Q(t) analytically. There are a few

particular choices that one can make to solve the DE and study the occurrence of
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gelation. One such example corresponds to the choice of a = 1.

(i) Choosea=1. So, S(t)= (1+ £ t)°. For simplicity, define ¢(t) = m /S(t) =
kt+ m. Then we obtain, Hy = ~C > 0 and thus ¢ = —C; = H,. Moreover, if we
divide the equations (4.297) to each other then we obtain ¢ = Hy = £. Then the

m
function S(t) takes the form:

2k [t
Sty=1+= [ Ddr >0, forall t>0.
m Jy

Let’s also denote by u(t) := Q(t) + 0. Then (4.298) becomes an I.V.P. for v(t) of the

form
k
)

V'(t) =
(t) ”
For values of t > 0 such that the following system of inequalities hold

. [v(t) — Vv2(t) = <p2(t)] subject to v(0) = 0. (4.299)

v(t) > () and kv(t) — p(t)v'(t) >0, (4.300)
we rewrite the equation (4.299) as follows
,_ 20 V()
o(t)

and by differentiating this equation w.r.t. ¢t we obtain

" ko, , k _
(v (t) - S—D—(zjv (t)) : (v (t) - o) v(t)) =0.

From this equation we get two DEs

v'(¢) = —k?

v (t) — % V(t) =0 (4.301)
and
() = — () =0 (4.302)
()

It remains now to identify which of the equations is valid in the pre-gelation stage
and which is valid post-gelation. We know that prior to the occurrence of gelation in
the coagulating system, the total mass of the solution is given by

t o]
M (t) = M;(0) + / / Ag(A, s)dMds, for t € [0, Tyes) (4.303)
o Jo
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In terms of differential equations, the above reads
MI(8) = / Aot dA  for ¢ € [0, Th) (4.304)
0
m

subject to I.C. M;(0) = / Aco(A) dA = L3 (0 — Vo2 —m?). (4.305)
0

Furthermore, after the gelation has occurred it is expected that the equality no longer
holds and we have

M (t) < M;p(0 / / Ag(A,s)dAds, for t > Tge. (4.306)

(see e.g. [15]). Based on these relations we decide next on the corresponding equa-
tions (4.301) and (4.302) for v(t) in the pre- and post- gelation stages.

Claim 4.1 The differential equation ({.801) corresponds to the pre-gelation regime.

Proof.  Indeed, since v'(t) = Q'(t) = M;(t) and v"(t) = M|(t) then using the form
of the function ¢(t) = k¢ + m, the ODE (4.301) becomes

" . '
(t) kt+m ' (t)
which reduces to an I.V.P. for M;(¢):
k k =
! pd S i = — —_— 2 2
M;(¢t) iEm M;(t), subject to M;(0) ~ (¢ — Vo? - m?).

Integrating the above w.r.t from 0 to ¢t we obtain the following equality

My(t) = My(0) + /O Lk k Mi(7) dr. (4.307)

T+m
More explicitly, Mi(t) = % (¢ — v/o? —=m?) (kt + m). On the other hand, if we
rewrite the source function g()\, t) in terms of known functions ¢(t) and c(),t) then

we have
kRO

g\ t) = mS® c(A )
and using the definitions of S(t), R(t) and since A; = a = 1 then we obtain
R

S(t) = P(t) = ‘”;ff) = "= [POI = VS0 = % od 5 = o
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m

Therefore, we obtain R(t) = In (’—“«‘ﬂ) Substituting everything into g(A,t), we
obtain

k

T+m

g(A\t) = —-If—c(/\, t)y = /Ot /Ow)\g()\,'r) didr = /Ot p M;(1)dr. (4.308)

o(t)

Combining (4.307) with (4.308) then (4.303) holds which makes (4.301) hold for the
pre-gelation stage (still T is unknown) and thus the claim is proved.

Now, it remains to show that the other DE (4.302) corresponds to the post-gelation
regime (¢t > T,), that is we need to show (4.306) is a result of (4.302). In order to
solve the DE (4.302) we need to know the gelation time T since the initial condition
for (4.302) is considered as v(Tye), where v is the solution to (4.301). As is the case
(34, 70], the gel-time is determined as the first instance when the second moment of
solution M, (t) = u,(0,t) blows up to infinity. This corresponds to the time when
v(t) = @(t), where v(t) is the solution of (4.301). First, let’s calculate the expression
of v(t) in (4.301). We have

V() =M, (t) = —n% (0 —aq) (kt +m)

subject to the I.C. v(0) = o, where gy = vo2 — m2, with ¢ > m > 0. We obtain

k k
v(t) =0+ — (¢ — 00) (5 £+ mt) for ¢ € [0, Tye) (4.309)

Or,

k k
To determine Ty, we need to solve the quadratic equation in t. Using the definition
of 09 above we obtain

0+T—nk'5(0*00) (gtz—i—mt) =kt+m = t—%(“%{——;—z—l)zo.

Therefore, the gel-time is given by

m g+ 0
nd=z(J °—Q=:W@>m. (4.310)

g — 0p

In the post-gelation regime (¢ > T,.;), the unique solution v(¢) to the equation
(4.299) is given by v(t) = ¢(t) = kt+m. Such an assertion holds indeed true since it
is clear that such a function satisfies the ODE (4.299) and the I.C. v(Tye) = V(t)|e=rye
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where v(t) is the solution obtained in (4.309). Hence, the expression of v(t) for t > Ty
is given by v(t) = kt +m. Then, v'(t) = M;(t) = k, so Mi(t) = k = constant and
Q1) = My(t) = k.

Alternatively, to show that v(t) = kt + m is indeed the post-gelation solution to
(4.299) or M;(t) = k for t > T, then we return to the inequality (4.306), for t > Ty,
and see that this holds true.

Comparing the gel-time in (4.310) to the gel-time Tye(g = 0) := R ;%= that
we obtained in Example 4.14, for the sourceless case we obtain as expected that
Tyei(g > 0) < Tye(9 = 0), as 0 > m, i.e. that the gel-time in the presence of source
terms occurs sooner than in the absence of source terms (as was proved in general for
the kernels K(\, #) = Ay in [15]). Thus, we have obtained the formula for Q(¢) in
the particular case of Example 4.16, and thus our example is completely proved.

Some remarks for the general coagulation kernel K (A, u)

Prior to studying the application of the symmetry group methods to the modified
coagulation equation (4.176) we also applied the group method successfully to the co-
agulation equation (4.169) with both nonlocal terms: the convolution and the infinite
integrals. For a general coagulation kernel K (), ), where the coagulation equation
cannot be modified to obtain (4.176), and assuming that there are no particle source
terms in the system, the generators of the Lie group of point transformations admit-
ted by (4.169) are given by £;(A) =0, &(t) = —c1t + ¢z, m(f) = ¢1 f, where ¢y, ¢,
are arbitrary constants. In this case, solving the invariant surface condition (4.45),

we have obtained the similarity variable and similarity solution to be given as
-1
s=A=constant and c(\¢t) =(N) (t - %2-)
1

where the similarity profile 1)()\) satisfies the IDE

A oo
v =3 [ KO=pn s dar o) [TKO WU de (31)

In general, (4.311) cannot be solved analytically, and numerical methods need to be
employed. We leave this as future work.

Remark 4.15 Solutions of the form 'f—f}cl, where ¢ is an arbitrary constant, are con-
structed by da Costa [21] and Leyvraz [64] for the discrete coagulation equation. These
solutions were actually the first examples of gelling solutions for kernels of the form

Kij =1%3° 4% j*, where 1 < a + 3 < 2.
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Chapter 5

Numerical methods for coagulation
equations

5.1 Review of previous work

In this section we present a brief summary of a family of deterministic numerical
methods existing in the literature for solving the coagulation equation

. (3 00
%;(-’v, t) = -;- / K(z—y,y)e(z—y, e(y, t) dy —c(z,t) / K(z,y)c(y, t) dy + g(z,t)
t 0 0

(56.1)
The exact evolution of the size distribution c¢(z,t) depends on the nature of the
collision kernel, the amount of inclusion/removal of particles and the initial size dis-
tribution. Analytical solutions to the coagulation equation (5.1) have only been found
for a few forms of K(z,y) and g(z,t), including the forms in Chapter 4.

In situations of practical interest, the functional forms of K and g are such that
(5.1) must be solved numerically. Due to the computational difficulties in solving
(5.1), only a few numerical solutions have been reported in which both coagulation
processes with sources and sinks are included. Analytical solutions are available for
certain special cases of equation (5.1). Three major approaches are used to represent
the size distribution of aerosols: continuous, discrete and parametrized. In this thesis
we focus only on the numerical approximations of continuous models, that is both
the size distributions and coagulation equations are in continuous form.

During the last century, several numerical methods (algorithms) have been pro-
posed to solve the coagulation equation (5.1). The first term is of nonlinear Volterra
type in the language of integral equations. The difficulty of solving accurately such

an integro-differential equation is due to the fact that the limit of integration in the
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convolution integral depends on the size variable x and the integrands are quadratic
functions. On the other hand, the infinite integral which depends on the size distri-
bution function seems to create difficulties, especially if one truncates the domain to
a finite range.

In the open literature, several numerical methods have been developed for solving
the coagulation equations. These methods include: the method of moments, finite
element methods and weighted residual methods, orthogonal collocation method over
finite elements, discretized population balances, finite difference methods, mesh tech-
niques, finite volume methods, power series solutions, etc. Surveys of several popular
numerical methods for particulate dynamic equations are given in [25, 59, 88, 113].
In the following we present briefly some of the deterministic methods that have been
developed in the literature for population balance equations (PBEs) that include the
coagulation equation as a particular case.

5.1.1 Method of moments

The method of moments is one of the oldest and most widespread methods for solving
the coagulation equation. This method works by representing the equation in terms
of the size distribution moments. The moment method tracks the time dependence of
the lower order radial moments of the distribution defined as px = [ r* f(r) dr, where
the index k refers to the k** moment and f(r) is the size distribution function. The
basic idea behind this method is that the coagulation equation is transformed into a
closed set of ordinary differential equations that provide the exact solution for the mo-
ments [9, 78]. The conventional formulation of the moment method requires that the
moment evolution equations involve only functions of the moments themselves. This
requirement significantly restricts the application of the method to aerosol-related
problems, since only for very few special cases of coagulation kernels one can reduce
(5.1) to a closed form equation for the moments. In the method of moments, the
particle size distribution is not tracked directly but through its moments. Previous
studies have shown that the accuracy and computational time depend largely on the
relative magnitude of the moments - one then needs to modify the moments in a
controlled manner. In addition, solution of differential equations for the moments

requires excessive computational resources.
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5.1.2 Finite element methods and methods of weighted resid-
uals

These methods retrieve the size distribution by approximating the solution as a lin-
ear combination of basis functions over a finite number of subdomains, also called
“elements”, whose coefficients are to be determined so that their sum satisfy the co-
agulation equation. Weighted residual methods with global functions were among the
first to be tried in the early work of Ramkrishna [87].

The earliest notable attempt to solve the coagulation equation with FEMs was
provided by Gelbard and Seinfeld [48] in 1978, who considered both orthogonal col-
location on finite elements and spline collocation for the solution of the PBEs that
include coagulation equation (5.1). In their article, the semi-infinite particle size do-
main is truncated at some large value and then scaled logarithmically. Furthermore,
the finite domain is divided into elements, to avoid ill-conditioning systems. The
authors evaluate the “finite-domain error”, i.e. the error incurred by the solution on
a finite domain [v,, vs], where the lower and upper limits v, and v, on the volume are
selected such that

Up oo
M;(t) = / z*c(x, t) dx// z'c(z,t)dz, for i=0,1
Va 0

do not differ appreciably from unity. The authors notice from their experiments that
in the case of a constant and linear kernel K, the deviation between the numerical
and exact solutions increases with time - the numerical solution lies above the exact
one. This is due to the fact that the numerical solution does not account for collisions
between particles inside the computational domain [v,, vs) with those particles of sizes
larger than v,. The authors suggest that the finite domain errors can be significantly
reduced by the presence of removal mechanisms which serve to reduce the number of
particles at the large end of the spectrum (see e.g. [48, 85]).

The method proposed in [48, 85] was later applied to solve the population balance
equation (see Erasmus et al [33]) and the Lifshitz-Slyozov equation of continuity (see
Eyre [40]). Their approach is based on a projection method with cubic B-splines (as
basis functions) where Galerkin and collocation techniques were used to determine
the spline coefficients. In their formulation, the authors scaled the domain with a
singular function by using a change of variable which maps the infinite domain for
the particle size onto [~1,1} such as z € [0,00) > ( (I—’L—”) € [-1,1]. However, it

1-v
seems more difficult to control the distribution of mesh points [41}. Moreover, the
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methods provided by Erasmus et al [33] and Eyre [40] rely upon well-chosen mapping
parameters. The authors acknowledge that a good choice of their mapping parameter
¢ (selection being made by trial and error) contribute to the success of their methods.
In a recent work, Sandu et al [93] generalize the work of Seinfeld et al [48] to splines
of arbitrary orders. A general framework for the discretization of particle dynamics
equations has been proposed recently by Sandu et al [90] by using projection methods,
which include Galerkin and collocation techniques. Test problems include very small
constant coefficients of the form K(z,y) = 2.166 x 1078, The methods proposed by
Sandu et al [90] are not conservative, i.e. they do not exactly conserve the total
particle number and volume. Also they are not positive definite, i.e. they do not
guarantee a nonnegative numerical distribution. One of the main disadvantages of
this framework is the computational expense associated with some of the tensors

corresponding to the coagulation integrals.

5.1.3 Discretized population balances (DPBs)

These methods emerged as the main alternative to FEMs: they are esentially finite
difference schemes. These methods consist of discretizing the particle-size domain
into intervals and assuming the particle size distribution function be constant within
each of these intervals. In the classical formulation of these methods, the integrals are
replaced with summations. The DPBs differ in their choice of discretization (linear,
geometric, arbitrary) and the assumption about the shape of the size distribution
within each interval [67]. Hounslow et al [78] have used and developed a geometric
discretization of the size domain z;.,/x; = 2 which correctly predicts the rate of
change of total number of particles and volume. However, for higher particle size
distributions a much finer grid (discretization) is needed. This could be achieved by
using an adjustable geometric size discretization of the form z;,;/x; = 2'/9, where
q is an integer larger than 1, as proposed by Litster et al [67]. The latter technique
allows for a precise prediction of higher moments and the shape of the particle size
distribution. Hounslow et al [78] show that some of the DPBs yield significant errors
in the prediction of the total number or total volume of particles. In general, the
most accurate DPBs are the most tedious to solve numerically, with many integra-
tion within each size interval. As pointed out by Gelbard et al [48], these methods
lead to severe errors unless a uniform grid is employed, which is only valid for systerms

that exhibit very small size ranges. However, for such processes such as coagulation of
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aerosols, where very large particles are created rapidly through aggregation, a nonuni-
form exponential grid must be employed (see [67, 78]). Kumar and Ramkrishna [59]
reviewed the previous methods, and observed that uniform discretization in volume
(size) gives good accurate results but requires a large number of classes (sections)
to cover the whole size range. They proposed a generalized method that preserves
two arbitrary particle size distribution properties (such as the moments) while relax-
ing other properties. This fixed pivot technique uses a geometric grid of the form
ziy1 = sz;. For example, for the pure coagulation equation with K(x,y) = zy: for
moderate sizes a course grid with s = 1.5 provides accurate solutions, whereas for
larger sizes a finer grid with s = 1.15 is required. This leads to an improvement in
accuracy and reduced computational effort. Kumar et al [60] also presented a moving
pivot method which takes into account the variation of the number density within
each size range. This method gives extremely accurate results.

A comparison of the methods in 5.1.2 and 5.1.3, shows that due to the exces-
sive computational demands and the complexity of the implementation raised by the
FEMs and other function approximation methods, the DPBs seem to attract more
and more attention, especially when applied to the population balance equations (see
the recent work of Rigopoulos and Jones [88]).

5.1.4 Finite difference methods

Krivitsky in [58] obtained the numerical solution to the pure coagulation equation
(5.1) for two types of coagulation kernels K(z,y) =~ (z + y)* and K(z,y) ~ (z y)*?,
where 0 < A < 2. The author introduced a finite limit size M up to which compu-
tations were executed (physically corresponding to a sink of particles at large sizes).
The collision integral on the right-hand side was computed by the trapezoidal formula,
using a linear interpolation, while the second integral was truncated to the finite value
M and then approximated by the trapezoidal rule. The resulting differential equa-
tion was solved by using a second-order Runge-Kutta method. It was found that for
rapidly growing kernels, at some time a small distortion appeared in the plot of the
distribution function, which grows rapidly after a short time. To make the procedure
stable, it is necessary to take a very small stepsize At at the expense of increasing
the parameter M. The author investigated the cases when the gelation phenomenon
is present and the influence of a finite M on the solution. The numerical experiments

show that the total mass begins to decrease earlier than the gel-time Tg; also there
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is a rise on the right-end of the distribution function at x ~ M for ¢ larger than the

gel-time Tie.
5.1.5 Finite volume methods

Filbet and Laurengot [41] developed a numerical scheme for the pure coagulation
equation which relies on a conservative formulation and a finite volume approach. In
their paper, the authors truncate the volume variable to some maximal value R, and
choose a nonconservative approximation of the coagulation term that is suitable for
reproducing the gelation phenomenon. Using explicit available solutions to test the
accuracy of the numerical scheme, it has been observed that for rapidly increasing
coagulation coefficients K a larger truncation parameter R has to be chosen as these
kernels yield a faster transfer of matter towards larger and larger volumes. For kernels
such as K(z,y) = zy the truncation of the particle domain seems to greatly influence
the large size behaviour after the numerical gelation time. Also, a decrease of the
moments has been observed after the gel-time. In these cases, a much larger trun-
cation parameter K is needed and thus computationally the cost and the numerical
error are both increased.

5.1.6 Power series methods

Melzak [74], was the first to provide theoretical results through the technique of power
series expansion in the time variable. Melzak approximated the solution of the pure
coagulation equation by means of a power series of the form c(x,t) = Y 2, a;(z) t%.
However, a few problems arise when one attempts to use this type of series, such as:
the amount of computation becomes prohibitive very rapidly as ¢ increases in value;
many terms are needed in the series to give a good approximation for ¢(z,t) at large
values of z; the interval of convergence for the series is very small. Martynov et al
[71] suggested that the finite interval of convergence of such series can be eliminated
by a change of time variable in the system of the form: T = 1 — My(t)/Mp(0) and
a series of the form u(z,T) = Y oy ai(z) T" can be used. However, the authors soon
understood that the use of such a series is only practical for the initial stages of the

evolving spectrum under arbitrary initial conditions and with variable kernel K (z, y).
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Conclusion

Most of the numerical work proposed in the literature of coagulation equations ap-
plies to the case when no particle sources and sinks are present in the system since
only in these cases analytic solutions are known. Moreover, all the deterministic nu-
merical methods presented above are able to accurately predict the size distribution
function for cases where the rate of coagulation K(z,y) is either constant or linear
in the variables z and y. For gelling-type kernels K(z,y) = zy with g = 0, these
methods provide qualitative agreement between the numerical and analytical solu-
tions only for a small period of time. The methods developed by Kumar et al [59, 60]
is one of the first methods that provides good estimates for the solution of the pure
coagulation. However, as pointed out earlier, these methods rely on the fact that the
discrete equations for aggregation processes be internally consistent (preservation of
two properties of the distribution) with regard to some specific moments of the size
distribution. Even though such a method brings an improvement over other previous
numerical methods its applicability to more general kernels K is limited.

In the next two sections of this chapter we provide a few numerical (improved)
approaches to obtain accurate numerical approximations to the solution of the co-
agulation equation with particle source terms. To validate our numerical work we
compare the numerical solutions using the explicit available solutions (g(z,t) = 0)
to (5.1) obtained in the literature, or our new similarity (group invariant) solutions
provided in Sections 4.2 and 4.3 for g(x,t) > 0.
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5.2 Bounded coagulation kernels

In this section, we present two reliable numerical methods to solve the coagulation
equation for a class of bounded coagulation kernels with particle source terms

ac 1/ o
'a_t'(xv t) = 'i / K(IL' -y, y)C(.’E -Y, t)c(y, t) dy —C(.’E, t) /0 K(:C, y)C(y, t) dy + g(.’l), t)
0
(5.2)
subject to the initial condition
c(z,0) = co(x). (5.3)

Quite a few numerical schemes were investigated, and the two methods yielding the
most accurate results (when tested in cases where exact solutions are known) were
found to be the weighted residual method (collocation method) and the method of
adaptive power series at successive points. Using these methods we investigate the
dynamic behaviour of the size distribution ¢ for some choices of the problem param-
eters (initial condition o, coagulation coefficient K and source term g). In addition,
we analyze the dependence of the solution on these parameters.

One of the issues we address in this section regards the computation of the values
of c¢(z,t) for a bounded, pre-determined range of values 0 <z < X and 0 <t < T.
This is the correct setting in many industrial problems, where the physical limits X
on the particle size and T' on the reaction time arise naturally. In such cases we may,
if desired, find constants m, n, p such that the change of variables

T = mzx", t = nt*, ¢ = pc*,

transforms (5.2) into an analogous equation with the same K, but with 0 < z*, t* < 1
(or any other finite upper limits; the modification is in ¢q and g being multiplied by
various constants). In other words, in this type of problem it is legitimate to confine
x and ¢ to a pre-determined range of values.

The other problem (which we shall not discuss here) typically involves a change
of variables ¢t* = 1(t), the function ¢ being chosen in such a way that the entire
interval 0 < ¢ < oo corresponds to 0 < t* < 1; a popular choice is t* = [ I (co(z) —

oz, t))dx] / [ I co(z) d:r] . This is most suitable for studying the long-time properties
of ¢(z,t), since t — oo corresponds to * — 1. The method, however, appears to be
less reliable numerically for bounded ranges of the values of ¢ (see e.g. [25, 71]).
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5.2.1 Adaptive power series method (APS) at successive points

One of the more reliable methods of obtaining numerical solutions to (5.2) especially
for coagulation kernels K that are bounded functions of z and y, turns out to be the
use of adaptive power series. If K is independent of time, then we can approximate
both the solution and the source term by power series of the form

o(z,t) =Y w(z)t and g(z,t)=) &z)t’
i=0 i=0
for some interval of values of z and t. If we substitute ¢ and g above into (5.2) and
equate like powers of ¢, then the following recursion formula for the coefficients v, (z)
can be derived:

Yo(z) = co(x)

and

(n + Dynsr(z) = 8,(2) + % > /03c K(y,z — ) v(y) vi(z —y) dy

i+j=n

00
- Y w) [ K@uwwdy for nzo. (64
i+j=n 0

Melzak [74] was the first to prove theoretical results (global existence and unique-
ness of solutions) for the pure coagulation equation (g = 0) using the technique of
power series expansion in the time variable ¢ (see e.g. [25, 74]). The question of the
convergence of the series Y o vi(z) t* is a very interesting one, not least because there
is more than one sense in which the series can converge. The question of convergence
and an example of its use will be discussed in a future work, see e.g. Calin et al [16].
In principle, given the coagulation kernel K, the initial size distribution ¢y and
the source term g, one can evaluate the coefficients v, one by one and obtain the
exact solution of (5.2). However, solving the nonlinear, many-term recursion formula
in (5.4) for the general term 7, is not straightforward. Moreover, the integrals in
(5.4) can only be evaluated in closed form for very special cases of K, ¢y and g; in
general, numerical integration needs to be employed. Hence, one can attempt to make
use of truncated power series approximations for c(z,t) and g(z,t). However, even
with a truncated power series, as n increases the amount of computation becomes
burdensome. This is due to the fact that many terms are needed in the series in order

to obtain a good approximation for c(z,t) at large values of z.
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For additional comments on the method of power series expansions in terms of the
small parameter t* = 1(t), see Martynov et al [71]. They comment that, for certain
kernels, using 10 terms in the series yields reasonable results only for ¢*z < 2. This is
only practical for the initial stages of the evolving spectrum. Drake [25] suggests the
use of power series combined with asymptotic methods for obtaining global numerical

solutions.

Our proposed numerical method (APS) is as follows: In using a partial sum

B~ 3wt

=0

for relatively large times t, a modification is found to be useful: Let 6 > 0 be small,
and suppose we want to find the value of ¢(z,t) at t = nd for some large n. For this
reason, we start with 49 = ¢p and compute ~y,..., v, using the recursion formula
(5.4). For the approximation of these integrals the trapezoidal rule yields the most
accurate results. However, for the approximation of the second integrals in (5.4)
we use Simpson’s rule. Thus, we obtain ¢(z,8) ~ ¢W(z) = Y7 v(z)d. However,

to compute c(z,2d), it is better to start with a new fy(())

@

= ¢, re-compute the
o7 from (5.4), and then use

ez, 26) ~ c(2) Z 'y(z)(a,

i=0

corresponding 7y,

This is tantamount to computing the Taylor series at ¢ = J, which is in turn equivalent
to shifting the origin of time to ¢ = 4, and then solving the initial-value problem.
Proceeding in this way, we have found that the numerical results are much more
precise than when a single series . v;(z)¢' was used for increasingly larger values
of t.

For numerical purposes, to approximate (5.4) and thus (5.2) we consider a uniform
grid z = (k — 1) Az, where Az =
equation (5.4) holds exactly at the node points xy (collocation points). Based on

N 7, for k=1,..., N. First, we impose that the

the description above, we calculate the discretized numerical solution c*(zy,t) at a
large time ¢ = n d. In the framework of purely discrete populations and uniform grid,
the size of a new aggregate always matches exactly with the size of one of the z;’s.
Therefore, a uniform grid allows us to avoid the use of an interpolation technique,
which otherwise would be needed especially to deal with the approximation of the

convolution integral in (5.4), even with a trapezoidal rule.
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5.2.2 Collocation method

To validate the results of our numerical scheme (using APS method) in cases where
no exact solutions are known, we have also implemented the collocation method
suggested by Sandu et al [90], with slight modifications.

To solve numerically the equation (5.2) using the collocation method, we first
discretize the particle size domain [0, X] in a finite number N of size bins (increments
in space) of the form By = [z, zx41], fork =1,2,...,N-1, withz; = 0and zy = X,
and same width Az as in Section 5.2.1. As is generally the case with the weighted
residual method, the approximated size distribution function c(z, t) is searched for in

the form of a finite-dimensional approximation:

N
Mz, t) =) alt) ¢il®),
i=1
where {¢)(z),...,¢n(z)} is a set of continuous functions called basis (or trial) func-
tions. This approximation is substituted into (5.2). Next, we multiply the residual
equation by a test function &;(z), for j = 1,2,..., N and integrate over the domain
[0, X] to obtain a variational (weak) formulation. In the collocation framework, the
test functions are chosen as delta Dirac functions at special points, called collocation
points. In our study case, we choose the collocation points as the node points. Thus,
the test functions are given as follows {;(z) = é(z — z;). The advantage of using
node points is that the “mass” matrix becomes the unit matrix Iy«ny which helps
minimizing the computational cost. In addition, we choose as basis functions the
piecewise polynomial functions

T=Ti-1 . .
Aty ifri <z <,
Tifl—%
pi(z) = § BE, ifx <o < gy,
0, otherwise
for i = 1,2,..., N. These basis functions are piecewise continuous linear functions

that satisfy ¢;(x;) = 1,if ¢ = j and 0, if ¢ # j, which in addition have a compact sup-
port. The latter property for the basis functions ¢;, helps us simplify the calculations
for the coagulation tensors (which we denote by I; and [5) since only the nonzero
entries are computed. For the computation of the coagulation tensors we use a 3-
point and 2-point Gaussian numerical quadrature, respectively. Having performed the
pointwise evaluation of the coagulation terms at the nodal points, the original coagu-
lation equation (5.2) is transformed into a set of nonlinear ordinary differential equa-
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tions, where the dependent variables are the coefficients c(t) = [cy(t), ..., en(8)]7,
see [90]:

d(6) =[(h = I2) x c(t)] c(t) + g(t) (5.5)
where g(t) = [g1(t), ..., gn(£)]F, with ¢;(t) = c(z;,t) and gi(t) = g(zi,t), for i =
1,2...,N. Our experiments showed excellent accuracy even with piecewise-linear

elements and with a small number N of size bins.

The use of collocation methods over Galerkin methods is preferred since it does not
require extensive integral evaluations, and thus it leads to considerable computational
savings. For a complete theoretical description of the projection methods (including
Galerkin and collocation methods) see e.g. Atkinson (5].

5.2.3 Some numerical experiments

Our numerical results are presented for 0 < z < 5 and 0 <t < 1 following the com-
ments at the beginning of Section 5.2. Even though the collocation method requires
integration only at the nodal points and seems to have good accuracy even with linear
elements, computationally speaking it is an expensive method. For instance, if we
choose the parameters g = 0, K =1 and ¢(z,0) = exp(~=z) then using 31 bins yields
a maximum error of 1.67 x 10~3 with the collocation method, and a maximum error
of 1.72 x 10723 for the adaptive power series method (with terms up to and including
t?). Moreover, the errors were found to be of a similar order of magnitude in other
examples we looked at. Our conclusion from repeated testing is that, for examining
the qualitative behaviour of the solutions, the adaptive power series is quite accurate
even with as few as three terms. For more precise numerical solutions the collocation
method is preferred.

Our first two examples consider the coagulation equation with a constant kernel
K = 1, an initial distribution c(z,0) = exp(—z) and two cases of source terms
g(z,t) = 0 and g(z,t) = T(t)? exp(t — zT(t)), where T(¢) = 2/(1 + exp(t)). In
this case, the corresponding exact solutions are c(z,t) = (1 + t/2)~2e2/(2+%) and
c(z,t) = T?(t) exp(t — z R(t)), respectively. Both solutions have been obtained using
Example 4.15 (with R(t) = 0 and R(t) = ¢ in the notation of that example). Our
numerical results show that both the adapted power series and collocation methods
accurately predict the numerical solution c*(z, t). For our purposes we have sketched

the approximation ¢" (using both methods) and the analytical solution ¢ at a fixed
time as shown in Figures 5.1, 5.2).
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Figure 5.1: Plot of the numerical solution c¢*(z,1) for g = 0, using the collocation
and the adaptive power series methods and analytical solution ¢(z, 1).
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Figure 5.2: Plot of the numerical solution c*(x,0.5) for g > 0, using the collocation
and the adaptive power series methods and analytical solution c(z,0.5).

Next, we consider a few examples of kernels K for which no analytical solutions
are known. The adaptive power series method is used in the next examples and
subsequent graphs. Longer time periods can be investigated by a suitable change of
variables as indicated earlier in this section, but result in no qualitative change in
behaviour.

Figure 5.3 shows the propagation of an initial global maximum c¢(z,0) = e~@-1?
through time.
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Figure 5.3: K(z,y) =1/(1+z+y), g(z,t)=e% c(z,0)=e 1"

Similarly, if the initial condition has two maxima, as in Figure 5.4, then the same
feature appears to persist in the solution for all time. Figure 5.4 shows the solution
c*(z,t) at various times t = 0,0.25,0.5,0.75, 1.

3

285

051

Figure 5.4: ¢(x,0) = e~ 5% 4 e~V K(x ) =1/(1+z+7y), g(z,t)=e".
The graph in Figure 5.5 shows the influence of the source term on the solution.

The solution increases from its initial value of c¢o(z) = 0. The series of graphs in
Figure 5.5 also indicates the fact that the kernel K exerts a relatively small and
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transient influence on the form of the solutions, with the initial conditions cg and the

source term g being the more dominant factors.
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Figure 5.5: K(z,y) =1/(1+2+y), gz, t)=e* c(z,0)=0.

Our last example in this section (Figure 5.6) is that of another intractable kernel,
K(z,y) = e @+"~0" = ¢~*-1" (in polar coordinates). Here we observe that
the maxima of K initially appearing in the solution is being smoothed out by the
coagulation process.
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Figure 5.6: K(z,y) = e -V g(z.t)=e*, ¢(z,0)=e"
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5.3 TUnbounded coagulation kernels

Although there have been many attempts in the literature to solve the coagulation
equation numerically, there still is not a good, accurate numerical method that deals
with bilinear, separable kernels of the form K(z,y) = (a+8z)(a+ (y), where @ > 0
and 8 > 0 are some arbitrary constants, in the presence of particle sources. Our main
purpose in this section is to provide some numerical results for unbounded kernels of
the form above in the absence and presence of particle source terms. The method
that we provide is based on a direct discretization of (5.2), followed by quadrature
methods for the integral terms (based on Trapezoidal, Simpson and Gauss-Laguerre
quadrature) and time-integration of the system of ODEs. A uniform grid was used for
numerical discretization. To test our numerical results we compare the numerical so-
lutions with corresponding solutions obtained by collocation methods (Section 5.2.2)
and also explicit solutions obtained in Sections 4.2 and 4.3.

As described in the review of numerical methods in Section 5.1, when solving the
coagulation equation numerically, the first step is to reduce the theoretical infinite
domain for the size variable z to a finite range 0 = X,.;, < 7 < Xpmaz. This constraint
comes from a physical limit X,,4, in many industrial problems. Based on the form of
the coagulation kernel K at the beginning of this section, it seems more natural to
provide the numerical method for the function n(z,t) = 6(z) ¢(z,t). For this purpose,
we multiply the equation (5.2) by 6(z) to obtain the new form of the coagulation

equation
@0 =" [ nte =000 dy ~0@)n(e0) [ nlurt)dy +0) g(art)
(5.6)
subject to the initial condition
n(z,0) = ng(z) = 0(z) co(x) = (e + B z) co(z). (5.7)

5.3.1 The numerical method

After we have reduced the computational domain to a finite interval, the next step in
solving equation (5.6) numerically is to introduce the size and time discretization. For
this purpose, we choose a mesh of [0, X,,q;] to be a uniform grid z;, 0 <1i < N, with
spacing Az = ﬁ—:"‘j’f such that z; = (1 — 1) Az, for i = 1,2,..., N;. In addition, let
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n® denote an approximation to the solution n. We discretize the space (size) variable

x and obtain the following continuous version of (5.6)

) ) [t - )ty — B ) [t
(5.8)

n”(zi,0) = 6(z:) cg(m:) = ng(w:),

for ¢ = 1,2,...,N,. To obtain a discrete version of the equation (5.8) we need
to approximate the integrals in (5.8). For the discretization of these terms we use
quadrature formulas:

b Ng
/fmw~2ﬂmw (5.9)
a j=1

where N, is the number of quadrature points, the w; are the appropriate weights
and the z; are the node points in the grid, if a closed Newton-Cotes formula is used
(see e.g. [91]), or the quadrature nodes, otherwise. We allow different quadrature
formulas and thus different weights for the collision integrals.

In order to approximate the convolution integral in (5.8), which for simplicity we
denote by Hy, we use (5.9) which yields

Zi
Hy(zi, t) = 6(x;) / nt(z; — y,t) n(y, t) dy ~ O(x Zw] —xj, t)nt(z;,t)
0
(5.10)
fori=1,2,..., N,. For the numerical computation of H;, we have used two different

quadrature rules (both low order): trapezoidal and Simpson’s rule. Note that a
discrete coagulation equation that is obtained from (5.8) using (5.10) needs to be
expressed only in terms of the size distribution at the node-points. In this sense, the
choice of a uniform grid is rather convenient as in this case the size of a new aggregate,
such as z;—x; matches exactly one of the grid points, i.e. z;—z; = (i—j) Az = zi_j41.
However, when using a nonuniform grid (such as a geometric or logarithmic), the size
z; — x; usually falls between the grid points. For this reason, one needs to interpolate
the distribution n® between the nodes of the grid. An example of such an interpolation
technique is provided below (for the discretization of H,).

To approximate the second integral in (5.8), (which, for simplicity, we denote by

Hs), we use two different quadrature rules: Simpson’s and Gauss-Laguerre quadrature

176



rules. The discretization of the integral Hy by the Gauss-Laguerre quadrature rule

reads as:
me¢>=ewon%w¢y/ eVt (y, 1)]dy
0

(m!)?
(2m)!

] (2m)

~ O(w)n"(z., (Zwkexp CInM (G t) + o [ent (6] (), €>0

(5.11)

Here, m is the number of Gauss-Laguerre nodes, and {; and w; are the Gauss-
Laguerre nodes and weights, respectively. It is well known that the rule (5.11) is
convergent if the function n” satisfies the inequality |n”(z)| < 2'**, for some p > 0.
Using Gauss-Laguerre rule requires some knowledge of the discretized solution n®
at the Gauss-Laguerre nodes ¢ for £ = 1,...,m. Since the solution is known only
at the node points r;, « = 1,2,..., N, of the uniform grid, we need to resort to
interpolation of the distribution function n({x,t) between the node points z; of the
grid. For this reason we use the following interpolation/extrapolation: If {y <z, =0
then we choose n*((z,t) = n"*(z1,t). If z; < {4 < zn, then we use piecewise linear
interpolation
n(Got) = (1= Y (g, 1) + E I 0 g, 1),
where (; € (4-1,%4), ¢=1,2,... Ny, — 1. This corresponds to the index ¢ defined by
oSk —
qg= cexl( A.T, ) +1,
where ceil(p) denotes the smallest integer greater than or equal to p. Finally, if
¢ > xn, then we extrapolate n"((x,t) according to the formula
nh(Ct) = (1= ST (a1 + ST (),

Remark 5.1 A similar type of interpolation can be used to discretize the convolution-
type integral Hy in the case of a non-uniform grid, the modification being in (i above
being replaced by z; — z;. Hence, the distribution n"(z; — z;,t) is obtained from

n(x,,t), where s = 1,2,..., N, by use of an interpolation as above.

The numerical method described so far leads to a discrete version of the coagula-
tion equation (5.6) and thus to a system of ODEs for the unknowns n”(z;, t) =: n(t):

d?;( - _(“— Z wj -1 (8) () — Z 7 ny(t (5.12)

1=1

177



for i = 1,2,..., N;, where the initial condition n;(0) = n”(z;,0) = 6(z;) c(;,0) is
given in the problem and the waights w; and ; are implemented in Matlab.

It remains only to solve the resulting system of ODEs (5.12) to determine the
unknown vector [n,(t), na(t), ..., nx, (t)]7. For the time-integration of the system of
ODEs (5.12) we choose again a uniform grid tx, 1 < k < N; where ty, = Tpnae, With
spacing At = Iz\gﬁ such that t, = (k—1) At, fork =1,2,..., N;. We denote by n¥ =
n"(z;, ;) the value of the function n* at the grid point (z;, tx) € [0, Ximaz] X [0, Trmaz)-
For the time integration of the system (5.12) of ODEs, we use a variety of numerical
schemes that include: explicit Forward-Euler method and Runge-Kutta method. For
the latter, we make use of the ode45 Matlab function. To verify the correctness of our
numerical method, we compare the numerical solution with known explicit solutions
in the absence of particle source terms. Although in Section 4.2 we obtained some
asymptotic solutions for the coagulation equation (5.6) in the case of a bilinear kernel
K(z,y) = (a+ Bz) (o + By) with o, 8 > 0, the initial conditions involve dirac delta
functions which are not easy to implement numerically. For this reason, to test our
numerical method we have only considered the case of a product kernel K(z,y) =z y,
(e =1 and B = 0) without sources (g(z,t) = 0).

5.3.2 Experimental results

In this subsection we present some comparison results of the numerical and analytical
size distributions. First, we consider the explicit solution given by Ernst et al [34].
Let the initial size distribution be n(z,0) = exp(—z) and g(z,t) = 0. Then the exact
solution of (5.6) is given by

n(z,t) = M e T
z Vit

where T = 1+4¢, fort < 1and T = 2v/%, for t > 1. Note that Tger = 1. Also, I is

the modified Bessel function of the first kind [1]. To implement the modified Bessel

function of the first kind numerically, we use the following approximations provided

(5.13)

by Abramowitz and Stegun [1]:
L(z) ~ z- (P1 + Pyt + Pyt + Payb + Psy® + Py + P-;yu), if z€]0,3.79)]
and

4

Li(z) ~ fﬁ-(Q1+Qzw+Qaw2+Q4w3+st4+Q6w5+Q7w6+ng7+Q9w8),
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if r € [3.75,00), where P, i=1,...,7and Q;, j = 1,...,9 are given in ([1], p.378)
and y = z/3.75, w = 1/y. For the discretization of the integral terms we use trape-
zoidal and Gauss-Laguerre rules respectively, whereas for the time-discretization we
use fourth order Runge-Kutta method. This combination seems to yield accurate
results when compared with other methods we tried.

First, we investigate the L' discrete error norm (numerical error):

Ny
EMt¥) =" |nf = n(z:, 1¥)| Az (5.14)

i=1
where n denotes the exact solution to (5.6) and n¥ the approximate solution. We
have computed the discrete error (5.14) for a fixed Xmq; = 100 and using a successive
number of points N, = 101, 201, 401. The results are presented in Figure 5.7. As ex-
pected, the numerical error E* = O((Az)?) is proportional to (Az)? (before gelation
occurs, so for ¢t < Tge = 1). Hence, the numerical scheme is second order accurate

(in space).
0.12
Nx=101
= = = Nx=201
S Nxmd01
0.1}
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Figure 5.7: Time evolution of the numerical error in (5.14) for X, = 100 using
N, =101, 201, 401 points.

Next, we look at the time evolution of the numerical approximation n* and analyt-
ical distributions n in (5.13) for the pure coagulation equation for a fixed size x = 50,

where we choose a truncation parameter X,,,, = 100. The results are presented in
Figure 5.8.

179



x10

xc(x, t} = n(x.t) atx =50
4 14
o @
/

/

0.2f-

t

Figure 5.8: Time evolution of the particle size distribution n(z,t) at x = 50, where
Xomaz = 100.

As can be seen from Figure 5.8, there is good agreement between the numerical
and exact solutions up to the gel-time T, = 1. However, after this time there
is an almost constant deviation of the numerical solution from the exact solution:
the numerical solution lies above the exact solution. This discrepancy between the
solutions had been observed earlier in the work of Filbet et al [41] for the same
rapidly growing coefficients K(z,y) = zy using the finite volume method. To obtain
accurate results, Filbet et al [41] suggest choosing a larger parameter X,,,,. The
reason for this choice is that rapidly growing coefficients K induce a faster transfer of
matter towards larger and larger sizes as the coalescence has the effect of shifting the
distribution function n(z,t) to the right as time goes by. On the other hand, these
rapidly growing kernels also give rise to solutions that develop an algebraic tail upon
the occurrence of gelation.

For comparison purposes we have also analyzed the time evolution of the discrete
first and second moments M} (), M?(t) and the exact corresponding moments of the
solution ¢(z,t). Figure 5.9 shows that the larger the truncation parameter the closer
the discrete first moment M} (t) gets to the exact one M;(t).
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Figure 5.9: Time evolution of the discrete and exact moments M{(¢) and M;i(t) of
the size distribution ¢(z,t) for X, = 100,200,400, 600, co (left to right)

However, no matter how large we choose the parameter X,,,, the total mass
decreases after the numerical gelation time. In addition, it seems difficult to capture
the exact behaviour of the discrete MJ(t) at ¢t = Ty, and estimate accurately the
gelation time. As known from the articles of Ernst et al [34], Lushnikov [70] the
gelation time corresponds to the first instance when the second moment of solution
diverges. For this reason, one way to investigate the onset of gelation is to find an
approximate interval of time ¢ on which 1/M}(t) is negligibly small. Our numerical
observations of the discrete value 1/M2(t) from repeated testing is that a very large
truncation parameter X,,,, is needed to locate the gel-time. Similar conclusions have
been pointed out in Filbet et al [41] who investigated the sudden growth of the second
moment M2(t) and considered an X,,... as large as 44110.

Our suggestion is that for the types of growing kernels considered in this section it
is best to estimate the gelation time using Laplace transforms. To illustrate our idea,
we return to the coagulation equation (5.6), formally apply Laplace transforms, and
derive a first order PDE associated to (5.6). Based on the method of characteristics,
solve the PDE for the Laplace transform and study the circumstances under which
the system of characteristic equations can be inverted [15, 96]. This analysis leads
to determining the gel-time, which in [15, 96] was proved to coincide with the so-
called “breaking time”, that is the first instance ¢ at which the solution D(¢,t) of the
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following system of ODEs vanishes.

D o aD oG

with initial conditions: D(€,0) = 1; %—?({,0) = ph'(€), where & >0
oP Qa ‘

_5;(51 t) = '2_5P2(£7 t) + ,BR(Z(&, t)’ t)

with initial condition: P(£,0) = B(h(£) — h(0))

where R(z,t) := G(Z(&,t),t) — G(0,t), and Y (z,t) defines the Laplace transform of
the distribution n(z,t). In the system of ODEs above, G(z,t) and h(z) represent the
Laplace transforms of the source §(z) g(z,t), and n(z,t), respectively. The system
can be solved analytically in some special cases, while in general numerical methods
need to be employed (we have used fourth order Runge Kutta methods). Table 5.1
presents the exact values where known and the range for computed gel-times for a
few classes of sources and initial conditions.

g(z,t) c(z,0) | Exact Ty | Range for computed T
0 exp(—z)/z 1 l+le—4
0 exp(—z) 0.5 05+t1le—4
0 5w — 1) 1 Tx1c_4

0.45825, 0.45835
0.09991, 0.09993

texp(—z) | exp(—z)/z
texp(—z) exp(—2x)

exp(—z) | exp(—z)/z ? [0.67533,0.67553
exp(—z) exp(—1) ? [0.4351,0.4352
exp(—z) | d(z—1) 7 [0.67533,0.67553
3(x) exp(—z)/x 1 1+le—4
5(z) exp(—x) 0.5 05+ 1e—4
?
?

Table 5.1: Numerical and analytical experiments on the gelation time using Laplace
transform methods.

5.3.3 Comparison with finite volume methods

To verify our numerical method we compare the numerical solution proposed in Sec-
tion 5.3.1 with the corresponding solution obtained by Filbet et al [41] using the finite
volume method for the same choice of parameters as in 5.3.2 (or the same exact so-
lution (5.13)). The results of the comparison of the numerical methods are presented
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in Figure 5.10. We obtain the same numerical results with the collocation method in
Section 5.2.

«10” Plot n(19.9287, 1): Tmaxw1.85, dt«0.015, Xmax=20
(] T T T T T
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~~~~~~~~~
.,
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w
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Figure 5.10: Time evolution of the numerical and exact distribution n{z,t) at z =
19.9287

5.3.4 Proposed improvements in the numerical scheme

In this subsection we propose two ways of improving the accuracy of the numerical
scheme and thus lowering the numerical error that we get when truncating the problem
to a finite domain and approximating the improper integral. The methods that we

propose below are based on estimates of the improper integral in (5.6).

(a) Use of zeroth and first moments of the solution

In the attempt to lower the error that we obtain in the numerical solution, we have
closely analysed the improper integral in the coagulation equation (5.6). Based on
the form of the coagulation kernel K at the beginning of Section 5.3, the improper
integral is a linear combination of the zeroth and first moments, so the coagulation
equation (5.6) can be expressed in the following form

-88—?(517, t) = ?%x_)_ /oz n(z —y, t)n(y, t)dy — 0(z) n(z, t)N(t) +6(x)g(z,t) (5.15)

where N(t) = a My(t) + 8 Mi(t). The truncation of the infinite domain to a finite
upper limit clearly leads to an underestimation of N(¢) which reduces (5.6) to an
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approximation of this equation over a finite domain. Due to the finite computational
domain [0, X;n4,) that we use in the numerical solution and the nature of the equa-
tion (5.6), it is clear that particles within the finite domain interact with particles
outside the computational domain. Moreover, due to the rapidly growing coefficients
K considered in this section, more particles are formed outside the computational
domain. Hence, unavoidable errors are introduced into the computed distribution
and in particular into the improper integral(s) in equation (5.15).

To demonstrate that the effect of truncation on the improper integral is one of
the sources of error in the numerical scheme, we investigate the possibility of lowering
the error in the improper integral(s). For this purpose, we look at ways of coupling
the equation (5.15) with corresponding ODEs (or general algebraic formulas) for the
function N(t). First, we consider a few special classes of initial conditions co(z) for
which explicit general formulas for N(t) are available. The results of our experiments
show that if instead of numerically approximating the zeroth and first moments as in
5.3.1, one couples (5.15) with an explicit formula or a correspondent ODE satisfied
by N(t), then one obtains excellent agreement between the numerical and explicit
solution for a very large interval of time and large particle sizes.

To illustrate the idea presented above we consider the coagulation kernel K(z,y) =
z y, and no sources (g(z,t) = 0). In this case, the explicit solution is given by (5.13).
The time evolution of the particle size distribution n(z,t) at £ = X,y is illustrated
in Figure 5.11. In this instance, the function N(t) = M;(t) is known explicitly as:
My(t) =1, ift <1 and My(t) = 1/vt, if t > 1. For the discretization of the
convolution integral in (5.15) we have used Simpson’s rule.
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Figure 5.11: Time evolution of the approximated and exact distribution n(z,t) using
(a) for £ = Xpme = 20.

Figure 5.11 shows that the numerical solution is in excellent agreement with the
exact solution for the truncation parameter x = X, = 20. Therefore, such a coupled
system yields accurate results and is not expensive computationally (no unnecessarily
large truncation parameters are needed for the numerical solution to converge to
the exact one). We have also looked at larger truncation parameters and obtained
accurate numerical results. This improvement in the numerical solution is anticipated
at the beginning of (a). A few possible explanations for such an improvement are
provided below. On the one hand, the truncation of the infinite domain to a finite
upper limit X, results in an underestimation of the i** moment of the solution in
(5.15) by an amount

Mie(t) = / t'c(z,t) dzx

J Xmaz

where M!%(t) represents the error that occurs in the i** moment due to the trunca-
tion of the domain. On the other hand, we have already proved in some cases (see
Sections 4.2, 4.3), that the distribution function c¢(z, t) converges (asymptotically) to
zero at sufficiently large particle sizes . Thus, one has to choose a sufficiently large
value for X,,,, so that this error is negligibly small. However, one has to carefully
select the values of X4, so that they are not unnecessarily large as the distribution
functions have tail regions that are difficult to represent. In addition, due to the very
small values that these functions can take at large sizes they are computationally
expensive to converge.
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Gelbard and Seinfeld [48] were the first to provide a method of selecting appro-
priate upper limits X4, of the domain. Their approach is based on the concept of
“finite domain error”. Let

P xic(x,t)dz
FDEz((‘,) == Ig—]-w_'tge—(—t)__—

The authors select X, such that F'DEy(t) and FDE,(t) do not differ appreciably

from unity. As authors acknowledge, this approach is restricted to cases where an
analytical expression for M!%(t) is available. However, to investigate the onset of
gelation, the second moment M, is preferred. A systematic method for choosing the
values of X4, is suggested in Nicmanis et al [77] for the steady-state population
balance equations. The authors suggest that selection of X, be made to ensure
that M, > 0.999. This yields the additional criteria My > 0.999, M; > 0.999.
However, in the criterion suggested in [77] the quantities M;, i = 0,1, 2 are constants,
as c(z,t) = c(z).

Another explicit solution for which we have shown the improvement (a) on the
accuracy is the solution in Example 4.16. For this purpose, we choose in Example
4.16 the following parameters: a = 1, 8 = 0, K(z,y) = zy, the initial condition
no(z) = ke ?* I;(mz)/z and the source function

ke~ @O+ [ (m (/S(t) x)
72

S(t)*12, (5.16)

g(z,t) = Ho
2
where S(t) = (1 +E t) . Then the exact solution to (5.2) is given as in Example 4.16:

ke Q@WB)+o)z | S(t
n(z,t) = — ;(m (H)z) (5.17)

where the total mass M;(t) = Q’(t) is defined in Example 4.16. Our numerical and
analytical results are represented for kK = m = m =+3,0=2 09 =1,
Xmaz = 50 and two different cases of sources g(z,t). In Figure 5.12 we represent the
time evolution of the numerical and exact solutions in the case g = 0 (no sources),
which corresponds to Hy = 0, and a = 1/2. In this case the gelation time is given by
the formula Ty, = gom/((¢ — 09) k) = 1. In Figure 5.13, we sketch the solutions in
the presence of source terms, we choose Hy = k/m = 1, so a = 1. Here, the gelation
time is given by the formula T,y = (m/k) (v/(¢ + 00)/(c — 09) — 1) = V3 — 1.
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Figure 5.12: Time evolution of the numerical and exact distribution (5.17) using (a)
for £ = X,,.. = 50 and g(zx,t) = 0.
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Figure 5.13: Time evolution of the numerical and exact distribution (5.17) using (a)
for * = X,nee = 50 and g(z,t) > 0 as in (5.16).

Our method in (a) can be applied to the pure coagulation equation (g = 0) and

a larger class of collision kernels K(z,y) = (a + Bz) (e + By), (a > 0, § > 0). One
needs only to couple (5.15) with the general formula for N(t) obtained by Shirvani
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and van Roessel [89]. The authors derived a general formula for the total mass M;(t):

£o(t) o
Mi(t) = Mi(0) + % / R'(p)e #° dp, for all time t >0,
0

where £,(0) =0, for 0 <t < Ty and

£t) = B2 (&) (t) 300
B (&(t)) — ah'(6(t))/2

subject to the initial condition £y(T,e) = 0, where T,y = —1/(B1/(0)) and h(z)

represents the Laplace transform of the initial distribution n(z, 0). An explicit formula

for N(t) that is valid up to the gel-time T}, is given by N'(t) = —a N%(t)/2. To

obtain a general formula for N(t) for all time ¢ > 0, one can use the approach in
Example 4.10. Use M(t) = —§ N(t), for all t > 0.

The numerical computations suggested in (a) are performed in combination with

for t2> T,

analytical solutions for N(t). Future work extends the proposed improvement (a)
to the general case o > 0 and 3 > 0, where N(t) cannot be solved analytically. In
these cases we intend to solve the coupled system of equations (5.15) to obtain the
numerical solution to 7i* (5.15) by successive approximations as follows

1. Choose a uniform partition z; of the computational domain Q = [0, Xpaq|-
2. Calculate i°(;, t) = 70(t) = n(z;,0) (intial condition) at the grid nodes.
3. Fork=1,..., Ny

[v,]
Approximate N¥(t) = / Ak=1(y,t) dy by quadrature rules
0

T @+ 0@ 0N =22 "5 07100, 0dy +0) 00,1
0
4. if max|a*(z,t) — A Y(x,t)] > Tol

update the time step ¢t = ¢ + At until you have reached T4, (5.18)

where for simplicity we denote the approximation n® of the solution n to (5.15) as

nh

:= fi and N represents a numerical approximation of N(t). In the scheme pre-
sented above, Npq, is the maximum number of iterations, and Tol is some prescribed
tolerance.

The technique suggested above has been successfully used in the literature to
numerically solve certain Volterra integral equations. In fact, Melzak [74] proved

theoretical results for coagulation equations using the Picard method of successive
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approximations, which can be used for initial stages of the evolving spectrum. How-
ever, a similar technique as in Section 5.2 can be used to provide good numerical
results (or qualitative behaviour of solutions for large sizes). If one is interested in
defining the entire history of an evolving spectrum then numerical solutions have to
be combined with asymptotic solutions as suggested by Drake {25]. Our second sug-
gestion in (b) is based on the use of combined numerical methods and asymptotic
solutions and thus it is more general.

(b) Use of the asymptotic solution c(z,t) at large sizes =

The method that we propose in this subsection is also intended to improve the accu-
racy of the numerical results in 5.3.1. This method is based on taking advantage of
the asymptotic behaviour of solutions in Chapter 4 at large sizes into the numerical
scheme. This second method is provided as a means of lowering the numerical error
that we obtained in 5.3.1 due to the underestimation of the second integral. More
precisely, this method takes into account the asymptotic behaviour of the solution
¢(z, t) for large = which in turn allows us to split the improper integral in (5.13) into

two integrals:
o0 Xmaz B
/ n(z,t)dr = / n(z,t)dz + / n(z,t) dz.
0 0 mazx

For the discretization of the first integral we use quadrature rules (as in 5.3.1). How-
ever, for the second integral we make use of the asymptotic behaviour of the solution
for large x and either calculate it analytically (if possible) or approximate it.

The selection of the truncation parameter X, plays an important role as it
affects the computational time. Between the two methods presented in part (a) for
selecting the upper bound X,,,,,; we have chosen the one based on A{%. Alternatively,
one can also make use of the method suggested by Drake [25], and determine the lower
bound z,, on the particle sizes x for which the ratio between the exact solution of
(5.15) written in the form of an infinite series (using the approach suggested by Scott
[94]) and the asymptotic solution (obtained by the saddle point method) remains
within 1% of unity. Drake [25] showed that if the coagulation kernel is K (z,y) = z v,
and for a family of initial gamma distributions of the form

v+1
CQ(.’E) — (V+ 1) ¥ e—{l}(V+1)

v +1)
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If £ > z,, then the asymptotic solutions represent the exact solution to within less

than 1% error. Here z,, is defined by

Zm (2T)_(%+3) v+ 2\ s
Tm = v+3 (1/ + 1)
where T = 1 — My(t). For example, if v = 1 then it was found that z,, = 7 and as v
increases, r,, increases. Future work will investigate more general ways of choosing
Xmae that are based on moving mesh techniques. In this case the upper limit X,.,,
moves with time and does not rely on analytical results.

For illustrating the results using the method (b), we consider the asymptotic
solution (4.58) obtained in Example 4.3 for A large (in our case we denote z = )
and t > 0. Figure 5.14 shows an excellent agreement between the numerical and
analytical solution for a truncation parameter as small as X,... = 50 and a relative
large interval of time ¢ € [0,5]. In the attempt to validate our combined numerical
and asymptotic method in (b) we have also considered the linear kernels and obtained
that the numerical solution is in perfect agreement with the exact solution.

Analytical
— — ~Numeric & Asymptotic

0.81 q

Figure 5.14: Time evolution of the approximated and exact distributions (5.13) using
(b) at z = Xpax = 50, for g(z,t) = 0.

Conclusions

In this chapter we have suggested a few numerical methods for solving the coagu-
lation equations in the absence/presence of particle source terms. We have divided
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our presentation of the methods in three sections. In Section 5.1 we have reviewed
some of the deterministic methods that have been developed so far in the literature
of coagulation. On the basis of the conclusions of these studies, the discretized pop-
ulation balance equations method of Litster et al [67], the pivot method of Kumar
and Ramkrishna [59, 60], and the Galerkin and orthogonal collocation on finite ele-
ment methods were found to be the most accurate and stable numerical techniques.
Despite their predicted accuracy there are some common problems associated to the
numerical solution of these equations. These include: the inaccurate calculation of
the particle size distributions for highly aggregating processes, numerical instabilities,
domain errors for high-order coagulation kernels (specially those related to gelation
phenomenon). Due to the numerical difficulties of these methods and their limita-
tions, improved methods are of interest.

Our main purpose, in Section 5.2 is to provide some improved methods that
deal with general, though bounded coagulation kernels. For these types of kernels,
we focus on two numerical methods: weighted residual methods (collocation) and
adapted power series methods. The adapted power series turns out to be quite a
reliable method for obtaining qualitative information about the numerical solution
when compared to the exact known solution and the collocation method (even when
we use only terms up to ¢? in the series). One main advantage of using adapted power
series over collocation methods is related to the computational time. Even though
the collocation method requires integration only at the nodal points and seems to
have good accuracy even with linear elements, it is computationally expensive.

In Section 5.3 we provide some numerical results for kernels that increase suffi-
ciently fast, taking into account the presence of particle source terms. The method
that we provide in this section is based on a direct discretization of the coagulation
equation; followed by quadrature methods for the integral terms (based on Trape-
zoidal, Simpson’s and Gauss-Laguerre quadrature) and time-integration of the system
of ODEs. The method becomes more accurate when we combine the numerical scheme
with the knowledge of the total mass (directly or through ODEs) or the asymptotic
behaviour of solutions at large sizes. As pointed out in Chapter 4, for the coagulation
kernels K (z,y) = (a+Bz) (a+[y), one can derive a new family of similarity (group
invariant) solutions for the coagulation equations. These solutions depend on the
function Q(t) and thus on N(t), which in turn satisfies an ODE. For some special
cases, one can solve the ODE and deduce N(t) or some general formulas and thus de-

rive explicit or asymptotic solutions n(x, t) for (5.6) at large sizes and all time £ > 0.
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In general, one needs to solve the ODE for N(¢) (or Q(t) in the notation of Chap-
ter 4) using numerical methods. Therefore, the methods in the subsections (a) and
(b) prove to be quite useful in deriving a class of accurate numerical solutions to (5.6).
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Chapter 6

Summary and Future directions

6.1 New and old solutions to the coagulation equa-
tion

In this section we provide a brief summary of the similarity solutions we derived in
Sections 4.2, 4.3. Our summary is divided into a few subsections that include ex-
plicit, asymptotic and power series solutions for a few types of coagulation kernels
K(\u,t) = 1,0%(t), Ap, BE)Ap, (a+ BX)(a+ Bu). We summarize the solu-
tions we obtained in Chapter 4 in the form of tables. Almost all the solutions are
new/general family of solutions in the literature of coagulation or they are more gen-
eral family of solutions. All these solutions have been derived by using our direct and
indirect methods in Chapter 4. For more details and derivation of the examples we
present in the tables below see Section 4.2, 4.3.
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6.1.1 K(\u,t)=1 and g(\t) >0

Parameters | NEW solution (Example 4.15) Smoluchowski’s solution
co(A) e? e
R(t) non-decreasing, R(t) >0, and R(0)=0 |0
2
T() s 7
g(\t) RI(t) T?(t) RO-ATE) 0
(A, £) T?(t) eFO-2TO) e e TF
M, (¢) e 1
Tyel oo (no gelation) oo (no gelation)

6.1.2 K(\ut)=a%*t) and g(\t)>0

Table 6.1: Explicit solutions for the kernel K (A, u,t) =1

Parameters | NEW solution (Example 4.12 (i))
Conditions | r,m,q>0, r#1, a(r—-1)>0
Khut) |[Q+r t)gi*iw;u, a b are arbitrary constants.
co(A) me=9*
rab 1) (o 7GE)
g(At) am(r—~1)(1+rt)g"ﬂb_:&‘ae“q(l+”) A
(at+2b) (r—1) (=D
(M t) m (1 +rt) =B gy T
a(r-1)
M, (t) F(l+ri)
Tgel oo (no gelation)
1 — —
r=3,49=m, :O,K:].
Remarks [Ifa=0,b=1 = 2,1 ™ 9 o 2m
Solution: ¢(A,t) = i € T
Table 6.2:

Explicit solutions for the time-dependent kernel K (), i, t) = a?(t)
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Parameters | NEW solution (Example 4.12 (ii))
Conditions | m, ¢ >0, a<0
K(\ u,t) 4 e(“%)‘, a an arbitrary constant.
co(A) me=9%
g(\t) —ame(@tDtg-gre™”
c(\ ) me(@t)t g=qre™7?
Ml (t) -3% e"”
Tiel oo (no gelation)
Table 6.3: Explicit solutions for the time-dependent kernel K (\, u,t) = o?(t)

6.1.3 K(\u,t)=Ap and g(\t)>0

Parameters

NEW solution (Example 4.1)

Conditions | A, p, ¢, a >0
— AT
Definitions | ap := (;)
o) given by the inverse Laplace transform of h(z)
h(zx) satisfies the algebraic eq. A [R(z)]"*? + qh(z) — (z+a) =0
g\ t) 0
e\, 1) R GO R
h(0)t, for t € [0, T,e)
Qt) _2
—a+a0(P+ 1) (t+(I) w1, for t > Tgel
f 6
Ml(t) h’(O)’ or E_EIL[O, TJEl)
ag (t +q)7 71, for t > Ty
223
Tgel ";l [h(O)] F—q
Notes We recover asymptotic Eq. [3.13] in Ernst et al. [34];

Our asymptotic solution is more general than Eq. [3.13]

Table 6.4: Asymptotic large size (A — o0) solutions for K(\, y,t) = A p
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Parameters

NEW solution (Example 4.3)

NEW solution (Example 4.4)

Conditions | A, p, ¢, a >0 Yo, p >0
» T a)?
Definitions | ¢ := > , By = (;)
—2,-aA
) | E 230~ )
g\ t) 0
1/(p+1 _5/2 _ _ 1+In( )
N ‘/21r 574 Se \-5/2e— (@ taman(pr ) A [ sl (Q()- 20020 )
Q(t) Bot, fort € [0, Tyet) Yot, fort € [0, Tyer)
—a+ay(p+1)t~ 5%, for t > Ty ﬂ%’-"ﬂ, for t > T
My(1) Bo, fort € [0, Tyer) Yo, for t € [0, Tyet)
! agt” Fi_l, for t > Tye #, for t > Ty
Tt 4 (60) " T
A— =p>0= Eq. [3.13] in [34
Remarks a=P o [313] N 134 We recover [3.8a] in [34]
A=p=a=1= Sol [3.5a] in [34]
Notes We recover [3.13] in Ernst et al. [34] Our sols. are more general

Table 6.5: Asymptotic large size (A — 00) solutions for K(\, p,t)

Parameters | NEW solution (Example 4.16 (1)) NEW solution (Example 4.14 (ii))
Conditions | o, k, m, p, Hy > 0, a > % k,p>0, Hy=0, a= %, c>m>0
Definitions oo = Vo2 —m2
S(t) +E@-2a)t]7 14 2y
CO()\) ke"\”/\glgm/\! k,“’\")\élfwu\z
e MQOT) [ (m A58
g(/\, t) o k + Agl( A S(t)) S(t)2a_5/2 O
Q) iven by the LV.P. (4.204) m (0= o)t for ¢ €[0,Teu)
iven e LV.P. (4.
& Y mﬁl—l—%’“—a, for t > Tye
3\t k=M @W+a) Iy (m A \/S(1)) ke 2 QW+a) i (mA (/142K ¢)
(A1) XSO A2 /1425
ool for t € [0, Tyu)
M, (t) given by an IVP obt. from (4.294) for ¢t >
ﬁ ort Tyel
Thel use numerical methods (future work) 79—(%1&:5
Table 6.6: Explicit solutions for K'(A, p,t) = A p
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6.1.4 K(\p) =

Ap and

g(A\t) >0

Parameters

NEW solution (Example 4.16 (ii))

Conditions | k,m, o0 >0, c >m >0
Definitions = /02 —m2
co(A) ke~to Almd)
o) | P
Q) {-"% (o — a9) (% t2+m t), for ¢ [0, Tger)
kt+m —o, for t2> Ty
c(\ 1) ke 1 (Rt +m) N)
M, (8) A (o — o) (kt +m), for t€(0,Tge)
for t2> Ty
Ty (\/ oy

Table 6.7: Explicit solution for K(\, p,t)

Parameters

NEW solution (Example 4.7)

p,q>0,m<—1,|ln(

- Kﬁffm'))‘ > (1 —m)/q, where

Conditions _ oxp (25 \/5)
- l1-m T-m
() " we(s) T+
given by the inverse Laplace transform of h(z) defined as
Aco(A) (m-1)
he) =2 (o4 o (ot 0+ Bopy (o 4+ a)tom)
A—m=2 (2 —%— _ a
g(M b (F(p_i:)q) (A(Q(t)+ ) )
A? exp { —(1~m)y/2pt+q 2/(1-m)
V2pt + ( ) —a, for
Q(t) p 9 2Apexp( LTA/)W-F‘)
1/(1—-m
V2pt +q ( - ﬁm) — a, for
~(Q(t)+a) A 2%-2)!  [2(@pt+q) 7> \* -
A t) S g kel PR 1>'( P ) g A
2
1
Tgel 2p(1-m)2 [ln ( T AT (1+m))] - EqE

Table 6.8: Formal series solution for K(\, y,t)
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Parameters | NEW solution (Example 4.8)
Conditions %’; > /2
w(s) >0, Vs
Definitions w'(s) completely monotonic ins,V's
lim,_o w'(s)e™™®) =0 and lim, ., w(s) = 0o
Examples (a) w(s) = s°, where a € (0, 1] .
(b) w(s) = In( 1 +(s+a)?),  where g € (0,1}, a > 0 arbitrary
— — —w(z)
h(z) @ ( \/1 2 eﬂ )
G(z,t) w/(x _ %21 t) e v
Flz,t) a(1-1-2% e““@-%%‘))
Notes We consider example (a) in Table 6.9 and leave case (b) for future work
Remarks | Future work investigates asymptotic and explicit solutions c(, t)
Table 6.9: General similarity solution for Burgers' eq. with sources: F;+ FF, =
G(z,t)
Parameters | NEW solution (Example 4.9)
Conditions | £ >0, ¢ <2c;
Definitions | ¢ = 2_;% and B=1+ \/1 -
o) glven by an inverse Laplace transform of h(z ) defined as
C
’ =1-/1-25e=
/\g()\,t) 5(/\ —(Q(t)'\ ‘a't)
32 ex ex
Q(t) P 262 2)B+q P(2c2 )) + _2_ t, fOI‘ te [01r gel)
1nq+—1t for ¢t> Ty
Asymptotic solution as A— 00, and Vt >0
c(At) & A 52 g2 @QW)~% t-ng)
2¢c2 f
Tgel 2 In

Table 6.10: Asymptotic solution for K (A, p,t) = A p
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6.1.5 K\ ut)=(a+0N)(a+8p)

and g(\t) >0

Parameters

NEW solution (Example 4.11)

Conditions

as > 0, aE(O,z),ﬂ>0,pe(0,2—%—1

t) = “O‘Q(T)d
Definitions S(t) = a5 + f 0° T
A=1-/1-2a(p+1) >0
e Q1) eQQH e eQQB ° 2 2
G(z,t) 222 g(t)zl S@EFT T & (p+1) - \/[W —a(p+ 1)] - [a (p+ 1)] }
g(\t) given by s e (@HANQW L7HG(s, 1)} (N, 1) (numerical)
_P_
Q) 2e120 /(1) = 4 (4)77 {1 - s - a0}
—(a+AN) Q1) 2k~2) k k-
(A1) (%ﬁ;-m)a 50) Zk =2 ?’ém [26‘(1"“ 1)S(t )p+1] 5(’\ - ﬂ2;5_12)
Remarks If a5 =0 then ¢y(A\) =0 (no particles at t = 0).
Table 6.11: Formal series solution for K(\, i, t) = (a+ B A) (e + B u)
6.1.6 K(\pu) general and g(A\t)=0
Parameters | NEW solution
Conditions | ¢, ¢y arbitrary constants
g\ t) 0
c(A t) P(A) (¢ —2)7
B satisfies the IDE
A
(A =3 Jo KO = p, ) (X — ) () dpe +0(X) 77 KO, ) $(p) dps
Remarks In general, the IDE cannot be solved analytically

Numerical methods need to be employed (future work)

Table 6.13: Similarity solutions (A, t) for a general kernel K (\, 4) and g(\, t) =
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6.2 Future directions

My research in the coagulation theory extends with several other new exciting devel-
opments. As part of my future research, I would like to branch out along some of the
following lines:

Theoretical work

o Group symmetry methods for coagulation equations. I plan to extend the family
of source terms proposed in Sections 4.2, 4.3 and obtain more explicit or asymp-
totic solutions to the coagulation equation. More specifically, I am interested
in extending the symmetry method in Section 4.3 such that we include a more
general, non-negative function ¢(s), not necessarily depending on the similarity
profile ¥(s), and thus extend the family of source functions g(A, t).

e Inverse Laplace transforms. Contour integration. In Section 4.2, we expressed
the explicit solutions as formal series. My plan is to make use of the contour
integration in order to obtain the inverse Laplace Transform and if possible to
derive explicit solutions to the coagulation equation.

e Group symmetry methods for coagulation-fragmentation equations with diffu-
sion. Elhanbaly [9] investigated the existence of similarity solutions for frag-
mentation equations with mass loss. In my future research, I plan to extend
the symmetry group analysis I proposed for the coagulation equations in order
to derive new similarity solutions to the coagulation-fragmentation equation.
Then, I intend to apply this study for the case when both coagulation, frag-
mentation, and diffusion processes are present in the system.

e Gelation phenomena: gel-time. I intend to investigate the gelation phenomena
in the case when both coagulation, fragmentation and diffusion occur. I want
to compare the gel-times in these systems with the corresponding times in the
case when only coagulation is present. It is also interesting to provide (whenever

possible) some explicit formulas for the gel-time, or some estimates (lower/upper
bounds).

o Total mass of particles. Shirvani and van Roessel [89] have provided an explicit
formula for the total mass M;(¢t) for all time for a coagulation kernel K'(\, ) =
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(a4 BA) (+ B p). Iplan to pursue a similar analysis to obtain a general post-
gelation formula for the first moment in the case when particle sources/sinks are
present in the system for a bilinear, separable time-dependent kernel K(A, p, t).

Numerical work

o Stability and error analysis. - Kumar et al [60] were the first to develop numeri-
cal algorithms based on moving mesh techniques and refining the grid based on
preservation of two properties of the distribution. In my future work, I plan to
extend these methods to the case of coagulation or coagulation-fragmentation
equations with particle sources and sinks without imposing such restrictions.
I also intend to investigate some ways of choosing the maximum particle size
Xmaz and other approximations for the convolution integral, such as Fast Fourier
Transforms.

- Sandu et al [90] suggest the use of spectral methods. I plan to apply these
methods to the unbounded kernels in Section 5.2.

- Another direct approach to solve the coagulation equation (5.2) is to discretize
the system first in time and then in size. In this way, the time integration
leads to a linear Fredholm integral equation of second kind for the distribution
function c(z, t¥*1) (see e.g. [90]).

- Develop new numerical methods for time-dependent kernels K(\, , t) as pre-
sented in Section 4.3.

o New classes of efficient stochastic algorithms. Wagner [14] proposed some
classes of stochastic algorithms for coagulation equations (without sources and
sinks). As another long-term goal, I would like to investigate some new classes of
efficient stochastic algorithms for the numerical treatment of these coagulation-
fragmentation equations with diffusion. This stochastic approach seems to
evolve as a possible avenue for new research in the future. I also plan to extend

the mass-flow algorithms to these general equations.

o Gelation phenomena: gel-time. I intend to investigate better ways of determin-
ing the numerical onset of gelation phenomena in the case when both coagula-
tion, fragmentation and diffusion occur.

e Numerical inversion of Laplace transforms. I propose a numerical method that
determines the numerical solution by first solving the quasilinear associated
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PDE (4.10) combined with a numerical inversion of the vector of discrete solu-

tions.
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Chapter 7

Appendix

7.1 Proofs of some theorems in Chapter 4.2

Optimal system of one-dimensional subalgebras of (4.34).

Proof of Theorem 4.1:
Indeed, consider the following vector field from the Lie algebra Lg

V=agVet+arVot+agVeg+asVs+asVi+az Vs +ay Vo +ay 17,

where ay, a9, ,ag are arbitrary constants. Our task is to simplify V', and so its
coefficients as much as possible. This can be done by judiciously applying adjoint
maps to it (see [80] for details).

Case A. Let’ s assume first that ag # 0. One can scale V| if necessary and
assume that ag = 1. By acting on the vector V by the adjoint operation V' =
Ad(exp(e V,))V we obtain the following relation

V'=Ve+ (a7 - €) Vi + agVs + asVs + (as — € ag) Vi + (as — 2c ag) Va
+(ag —eag) Va+ (a1 —eas) V1 (7.1)

From (7.1), we can eliminate the coefficient of V; by taking the value of the group
parameter € = a7. Then we have

V=V +agVe + asVs +ay Vi + ay Va + ay Va + af V4,
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where a}, a}, a}, o] are new arbitrary constants (depending on a4, as, a2, a1). Next, we
act on V' by Ad(exp((ay/2) V1)) to cancel the coeflicient of V4, leading to

V"=V +agVg +asVs + a3 V3 +ay Vo + a} V).

Finally, if we act on V" by Ad(exp(ag V5)) we can make the coefficient of Vg vanish
and obtain

V=Ve+aVs+asVa+a,Va+a Vi
We have a few cases to consider here:

Al.  Ifaf=0andaj #0or ay =0 and af # 0 then the vector form V cannot be
simplified further, and we obtain the vector fields V = V3 + V5 + a) Vo + @} V),
and Vg + V5 +ay Vo + o] Vi, where af,a € R.

A2. If gl = a} = 0 then we can act on V by Ad(exp(e V7)) which gives
V=Ve+a Vi + (a) +ea)) Vs

For V, if a} # 0 then we can eliminate the coefficient of V, by choosing the
parameter € = —aj/a} and obtain V = Vg +a} Vi, ) € R\ {0}. On the other
hand, if a] = 0 then we have V=V+ ay Vo, where aj € R.

Thus, we obtain that every one-dimensional subalgebra generated by a vector field
V with ag # 0 is equivalent to a subalgebra spanned by the vector fields Vg + V5 +
aVot+a Vi, i+ Va+aVo+a1 Vi, o+ Wy, Ve—Vi, Vg+ay Vs, where a1,a0 € R.

Case B. The remaining one-dimensional subalgebras are spanned by vectors of
the form above with ag = 0, a7 # 0. Take the following vector field

V=VetagVs+asVs+asVy+azVag+asVo+a V) (7.2)
In (7.2), acting on V by Ad(exp(az V1)) and Ad(exp(as V5)) we obtain
V'=Vi+asVs+asVstasVa+a Vi
We need to consider the following subcases:

B1. If ag = 0 then acting on V" = V7 4+ a5 Vs + ag Va+ a1 Vi by Ad(exp(eVa)) we
get V ="V;+ a5 Vs + (a; —cas) Vi + aq Vy. We have two subcases to consider:
(a) If as # 0 then we can choose € = a,/as and make the coefficient of V;
disappear. Then V = Vs + V; + a4 Vi, where a4 € R.
(b) If as =0 then we get V =V;+a4Vy+a;V;, where a;,aq4 € R.
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B2. If as = 0 and ag # 0 then we get V/ = Vo + Vg + a4 Vy + a1 V4, where
ai, a4 € R.

Therefore, every one-dimensional subalgebra generated by a vector field V' with
ag = 0 and ay # 0 is equivalent to a subalgebra spanned by either V7 4 V5 + a4 V4,
Ve+asVa+a, Vi, or Vo+ Vg + a4 Vy+ a1 Vy, where a;,a4 € R.

Case C. The remaining one-dimensional subalgebras are spanned by vectors of
the form above with ag = a; = 0, ag # 0. In this case, we first rescale V to get ag =1
and acting on V above by Ad(exp(as V1)), Ad(exp(aq V2)), we obtain

Vi=Ve+azVs+aVa+a Vi
A few subcases are included below:

C1l. Ifas = 0 then acting on the new V' by Ad(exp(eVs)) we get V = Vs +a; Vo +
(a1 + €ag) V;. We have two subcases to consider
(a) If ag # 0 then we can choose € = —a;/ay and make the coefficient of
Vi disappear and thus we get the new vector form V" = V5 -+ ayV,, where
a; € R.
(b) If ap = 0 then we obtain V" = V5 +a; V}, where a; € R.

C2. If a3 # 0 then we get V" = V5 + V3 + ag Vo + a3 Vi, where ay,ay € R.

Thus, every one-dimensional subalgebra generated by a vector field V with ag =
ar = 0 and ag # 0 is equivalent to a subalgebra spanned by either Vg+V3+4-a3 Vo+a1 Vi,
Vs +a V1, or Vg + ag Vs, where a;, a3 € R.

Case D. The remaining one-dimensional subalgebras are spanned by vectors of
the form above with ag = a7 = ag == 0, a5 # 0. In this case, by acting on V' above by
Ad(exp(ay V1)) we obtain

Vi=VetaVi+asVa+ax Vo

If a4 = 0 then we have V = Vi + a3 Va + ag Vs, with ag, a3 € R. On the other hand,
if a4 # 0 then the new vector form becomes V" = V; 4+ V, + a3 V3 + ay V3, where
aq,a3 € R. Hence, every one-dimensional subalgebra generated by a vector field V'
with ag = a7 = ag = 0 and as # 0 is equivalent to a subalgebra spanned by either
Ve +az3Va+as Vo or Vs + Vi + a3 Vs + ax Vs, with ag,a3 € R.
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Case E. The remaining one-dimensional subalgebras are spanned by vectors of
the form above with ag = a7 = ag = a5 = 0,a4 # 0. In this case, by acting on V
above by Ad(exp(e V,)) we obtain

Vi=Vi+azVa+(az—eas) Vata Vi

If a3 # 0 then we can choose € = ay/a3 to make the coeflicient of V;, disappear and
we get V = V3 + V3 + a1 V4, with a; € R. On the other hand, if a3 = 0 then the
new vector form becomes V" =V, + ay V3 + a; Vi, where ay,a; € R. So, every one-
dimensional subalgebra generated by a vector field V' with ag = a7 = ag = a5 = 0 and
a4 # 0 is equivalent to a subalgebra spanned by either Vy + ag V3 + a2 Vo, Vi+ag V3,
or Vy + az V3, with ag, a3 € R.

Case F. The remaining one-dimensional subalgebras are spanned by vectors of
the form above with ag = a7 = ag = a5 = a4 = 0,a3 # 0. In this case, by acting on
V above by Ad(exp(ag V2)) we obtain V' = V3 + a1 V4, where a; € R. Similarly, we
have two more one-dimensional subalgebras V5 +a, V; and V = V1, with a; € R and

the proof of Theorem 4.1 is now complete. a

Optimal system of one-dimensional subalgebras of (4.101).

Proof of Theorem 4.4:
Indeed, take the following vector field from the Lie algebra Lg

V=cggWt+aVitceVetoesVs+aViteaVa+eaVatal,

where ¢y, ¢3, ..., cg are arbitrary constants. Similar to the previous case, our task is to
simplify V' as much as possible by applying adjoint maps to it (see [80] for a details).

Case A. Let’ s assume first that cg # 0. One can rescale V, if necessary, and
assume that cg = 1. By acting on V' by the adjoint operation V' = Ad(exp(e V5))V
we obtain the following vector field

VI=‘/8+(C7—€-2'('¥B)V7+(CG—E%C5>‘/6+(C5+ECQ)‘/5+(04*5%63)‘/4

+C3‘/3+Cz‘/2+CIVi (73)
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It follows from (7.3), that we can eliminate the coefficient of V7 by choosing the value
of the group parameter € = l%ﬂ Then we have

Vi=Vo+dVe+ Vs + i Vit s Va+ e Va+ 1 Vi,

where cg, cj, ¢y are new arbitrary constants depending on the previous constants.
Next, if we act on V' by Ad(exp(e V3)) we obtain the vector field

V" = Ve+cgVo+(cs—e cg) Vs+cy Vat(cs—e c) Va+ (cz—s c1+e % c’5) Vote Vy. (7.4)

We consider next two separate cases:

Case Al: If ¢g # 0 (we can rescale V” such that ¢ = 1), then we can make
the coefficient of V5 in (7.4) vanish by choosing ¢ = ¢/¢; and obtain V" = Vg +
Ve +cyVa+cyVa+chVy + ¢ Vi. Next, we can make the coefficient of V4 in V"
disappear by acting on V"' by Ad(exp(—g-ﬂa—"‘li V3)) and obtain the vector field V=
Vs + Vs + ¢4 Va + 3 Vo + ¢, Vi, which cannot be simplified further.

Case A2: If ¢ = 0, then we obtain

VIi=Vot+ Vs + Vit (cs—ecy) Va+ (cz—ecl+e%c’s)%+clw (7.5)

(a) Ifin (7.5), we have ¢ # 0, then we can choose £ = ¢3/c); to make the coefficient

of V3 vanish and by rescaling V" we set ¢} = 1, so we get
V" =WV+WVa+cVitaVat+aWs

If we apply on V" the adjoint operation Ad(exp(eVs)) and choose ¢ # 1/(e; —
c50./(2B)), we can rescale V" so that the coefficient of V3 equals to one. Next, set ¢ =
a cg/2 and obtain V* = Vg +Vy+¢; Vi +c; V. Finally, on V* apply Ad(exp(—c; 8) Va)
to obtain Vg + V4 4 ¢} V;, where ¢} € R, with no possible further reduction.

(b) If in (7.5), we have ¢} # 0, then acting on V" by Ad(exp(e V3)) we get

5
B
(b1) Assume that cj # 0 then we can make the coefficient of V; in V disappear if we
—20 By rescaling V s.t. ¢ =1 weobtain V"' = Ve + Vs +ca Vo + ¢ V.

T oy )
050

Next, act on V" by Ad(exp(e V2)) to get

V=V8+cg%+<c3+scg§5>\/;;+(c’2+ )V2+c1V1 (7.6)

choose € =

V**=V8+V5+[cz+s(%—c1>]%+c1\/1
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Two subcases arise here, if ¢; # % then we get V* = Vo + V4V, orif e = %
then we have V** = Vg + V5 + %Vl + ¢o Vo, where ¢y € R.
(b2) If ¢5 = 0 then we can act on V in (7.6) by Ad(exp(—c, 3) Va) to obtain

V" =Ve+eaVa+aVi

whose coefficients can’t be simplified further.

Therefore every one-dimensional subalgebra generated by a vector field V' with
cg # 0 is equivalent to a subalgebra spanned by the following vector fields Vg + V5 +
caVateaVo+taqVy, e+ Vi+a Vi, Ve+ce3Va+c Vi, where e3,c5,c0,¢c1 € R, or
Vg + Vs + c1 Vi, (where ¢1 # §) and Vs + Vs + §Vi+caVa, where c; € R.

Case B. The remaining one-dimensional subalgebras are spanned by vectors
with cg = 0,¢7 # 0 of the form

V=VitceVetesVst+caVi+caVas+caVo+ce Vi (7.7)
In (7.7), acting by Ad(exp(e V4)), we obtain

Vi=Ve+ (CG+E(J1—E%C5) Vo+ (cs +eco) Vs + (04—55%(:3)V;+(:3V3+02V2+01V1
(7.8)

Next, we consider two separate cases:
Case B1: If ¢, # 0 then we can eliminate the coefficient of V5 in (7.8) by setting
£ = —cs/ca, and rescale V' s.t. c; =1 to get

Vi=Ved+ Vot g Ve+ Vit Vat+a Wy

By acting on V' by Ad(exp(e V4)) we have

2
v”=V7+Vz+(cg—sa)%+(cg+sc1)m+(c3+a)vg+c1vl (7.9)

In (7.9), if ¢ # 0, then choosing € = —c}/c;, we can make the coefficient of V}; vanish
and obtain V" = V; + Vo + V] + ¢4 Vs + ¢ V3, which cannot be simplified further
by taking any adjoint operations on V". However, if ¢; = 0 in (7.9) then we obtain
V" = Va4 Vo4 o+ Va+¢5 Vs, and acting on the latter by Ad(exp("‘—;éi V4)) yields
V"=V + Va4 Vi + Vi
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Case B2: Ifin (7.8), c; = 0 then acting on V by Ad(exp(e V4)) we have

2
V//=V7+(cg-—s—)VG—{—%VE,—i-(cfl+scl—s%05)v4+c:3v3+clvl.
o

If ; # S then set £ = — 740 to get V”’=V7+ch6+cs‘25ﬁ+03V3+c1V1.

Moreover, by acting on V" by Ad(exp(e V7)), where we assume ¢ # Z£-, and rescaling

the new vector s.t. the coefficient of V7 equals to one, we have

/

4 3
V””=V7+ch6+(c'5+Eacg)+CQV3+(C'1+E~BC§)V1- (7.10)

In (7.10), if ¢§ # 0, then we can set € = —g—chf toobtain V* =V, +Vs+cz Vs +ci V.

On the other hand, if in (7.10) we have ¢§ = 0 then we set ¢ = —Eg‘i and obtain
V=Vi+cgVs+ctVs+ci Vi
Furthermore, acting on V by Ad(exp(e Vs)) and assuming ¢} # a—ﬂci one obtains
V=Vi+aV+al,

which cannot be simplified further. Thus, every one-dimensional subalgebra generated
by a vector field V' with ¢g = 0 and ¢; # 0 is equivalent to a subalgebra spanned by
Vit Vot+eaVit+eaVs, Vi+Vo+VitceVs+cesVs, VitesVs+ceVy, and
Vo + Va + cg Vg + ¢5 Vs, where ¢y, ¢3, ¢4, ¢5,c6 € R.

Case C. The remaining one-dimensional subalgebras are spanned by vectors
with ¢g = ¢ = 0, ¢ # 0 of the form

V=VitcesVs+tcaaViteaVat+eaVaota V. (7.11)
In (7.11), acting by Ad(exp(e V})), we obtain
V' = Ve + c5 Vs + (C4+Ecl-—€§%C5) V4+(C3+EC2)V3+C2V2+01V1 (7.12)

Next, we consider two separate cases:

Case C1: Ifcy # 0then choose e = —c3/co in (7.12). Next, apply Ad(exp(—cs Vi)
on V’ to eliminate the coefficients of V3, and Vj, respectively. We obtain

Vi=Ve+Va+cyVi+a W
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20 Vi) we get V"' = Vo +Va+¢1 V), where

o4

Next, by acting on V" by Ad(exp(—
cp €R.

Case C2: If c; =0 in (7.12) then acting on V' by Ad(exp(e V3)) we get

V™ = Vs+cs Vs + (04—}—52,6) Vi + (63+5ﬁc5> s+ Wy
There are two subcases to consider for V-
(i) Ifcs = 0 then we have V" = Vg+c) Va+cs Va+c1 Vi, and applying Ad(exp(e V4))
we obtain

V=Vs+(h+ec)VatesVs+aVi (7.13)

In this case, if ¢; = 0 then acting on V by Ad(exp(—22%)) we get Ve +c3 V3. On
the other hand, if ¢; # 0 then choose € = —c}/c; in (7.13) to obtain Vg + V) +c3 V3,
where for both vectors obtained above we have c3 € R.

(ii) Ifin (7.12), we have c; # 0 then choose € = —ﬁ;c—a— and obtain V* = Vg + V5 +
¢y Vaer V1, and applying on V* the adjoint operation Ad(exp(e Vy)) we obtain

V= Vet Vet [ e (- o) [ Vit Wi

2p
In this case, if ¢; = % then we get V=Vs+Vs + 5% V1 + ¢4 Vs, where ¢4 € R. On
the other hand, if ¢; # 2 35 then choose ¢ = m to get

V=Vs+Vs+c Vi, where ¢; € RR, and (,175%

Thus, we obtain that every one-dimensional subalgebra generated by a vector
field V with cg = ¢7 = 0 and cg # 0 is equivalent to a subalgebra spanned by either
Ve+Vatar Vi, Ve+es Vs, Ve+Vites Vs, Vo+Vs+ 35 ViteaVy, where ¢, c3,c4 €R
and Vg+Vs+c Vi, where ¢ # = 35

Case D. The remaining one-dimensional subalgebras are spanned by vectors
with cs = ¢7 = ¢g = 0, ¢5 # 0 of the form

V=Vi+ces Vit+ecsVatea Vot Vi (7.14)
In (7.14), acting by Ad(exp(e V4)), we obtain

VI=‘/5+<C4+501— ‘/:;+(03+€Cz)‘/3+02‘/2+01‘/1 (715)

2/3)
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Next, we consider two separate cases:
Case D1: If ¢; # 5 then we choose & = -rf‘*—% in (7.15) and obtain
” 2

Vi=Vs+dVe+eaVat+aW
Next, act on V" by Ad(exp(e V3)) to obtain

v”=_—1/5+c§V3+(CZ—861+£%)‘/2+C1V1 (7.16)

Then there are two subcases to consider for (7.16):

(@) If c1 # § thenset & = —5%- in (7.16) to eliminate the coefficient of V; and then
] 1

apply Ad(exp(— ?—Z—Cé V3)) to eliminate the coeficient of V3. We obtain V" = Vs+¢, V3,
where c; any constant s.t. ¢; # %‘, ﬁ

(b) If ci = §, then V" in (7.16) becomes V"' = V5 + 3 Vi + ¢ V3 + ca Va. Acting
on V" by Ad(exp(——ﬂi—c& V3)) then we get the vector field

V=%+9-V1+CQ% where ¢ € R

5
Case D2: If ¢; = 5% then (7.15) becomes
V=v5+%m+cm+cm+cm (7.17)
and applying Ad(exp(—g—ic—2 V2)) to eliminate the coefficient of V5 we get
v* =V5+£EV1+C4V4+C;,V3

Finally, acting on V* by Ad(exp(—-z——’ii'i V3)) we can eliminate the coefficient of V3 and
obtain the vector field

V=V5+-2'%V1+C4V4 where ¢4 € R

which can’t be simplified further. Hence, every one-dimensional subalgebra generated
by a vector field V' with ¢g = ¢; = ¢g = 0 and ¢5 # 0 is equivalent to a subalgebra
spanned by V5 + ¢; V], where ¢, is any arbitrary constant and ¢; # 5 750 and
V5+%‘V1+62V2 where c; € R.
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Case E. The remaining one-dimensional subalgebras are spanned by vectors

with cg = ¢y = cg = c5 = 0, ¢4 # 0 of the form

V=V4"|‘C3V3+02V2+01V1. (718)
In (7.18), acting by Ad(exp(e V2)), we obtain
Vi=Vi+(a—e)Vz+(—ca)Va+aV; (7.19)

Next, we consider two separate cases:

Case E1:  If ¢; # 0 then we choose ¢ = 2 in (7.19) and obtain V" =
Vi+ Vi + 3 Vs + ¢y V. By acting on V” by Ad(exp(ch V2)), we get the vector field
V*=Vy+Vi+c3 Vo, where c¢j€R.

Case E2: Ifc; = 0in (7.19) then we obtain V = Vj + ¢ V3 + ca V2, and acting
on V by Ad(exp(e V4)) we obtain

V" =Vi+(h+eca)Va+ eV (7.20)
In this case, if ¢y # 0 then set € = 4—%’3 to make the coeflicient of V3 vanish and thus

we have V = V, + cp Vo, where ¢; € R \ {0}. On the other hand, if in (7.20) we
have c; = 0 then we can apply Ad(exp(cs V2)) and thus obtain V,. Therefore, every
one-dimensional subalgebra generated by a vector field V with ¢g =c¢; =cg =c¢5 =0
and ¢4 # 0 is equivalent to a subalgebra spanned by either Vy + Vi + 3 V3, and
Vi+ e Vo where ¢ € R.

Case F. The remaining one-dimensional subalgebras are spanned by vectors of
the form V = Va3 +co Vo +c; Vi, with cg = ¢7 = ¢ = ¢c5 = ¢4 = 0, c3 # 0. In this case,
by acting on V above by Ad(exp(e V2)) we obtain

Vi=Vat(ea—ca)Vat+a Wy

In this case, if ¢; # 0 then we can make the coefficient of V5 disappear by choosing
e=2 and thus obtain the vector field V = V3 + ¢V, where ¢; € R\ {0}.
Moreover, if ¢; = 0 then we get V3 + co Vo, where ¢; € R. Hence, every one-
dimensional subalgebra generated by a vector field V withecg =cy =cs =cs =c4 =0
and c3 # 0 is equivalent to a subalgebra spanned by either V3 + ¢, Vo, and V3£V
where ¢y € R. Similarly, we obtain two more one-dimensional subalgebras spanned
by the vector fields V2 + ¢y Vi and V = V;, where ¢; € R. Thus the proof of Theo-

rem 4.4 is now complete. m]
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Optimal system of one-dimensional subalgebras of (4.136)

Proof of Theorem 4.5:
Indeed, let’s consider the following vector field from the Lie algebra £,

v=aVitaVotaVatasVy,

where ay,ag, a4, a5 are arbitrary constants. Our task again is to simplify v, and its
coeflicients as much as possble by judiciously applying adjoint maps to v.

Let’s assume first that a; # 0. One can scale v, if necessary and assume that
a; = 1. By acting on the vector v = V) +as Vo + a4 V3 + a5 V; by the adjoint operation
v' = Ad(exp(e V4)) we obtain the following new vector field

2
v'=V1+a2V2+a4V3+[as——s(l—-—g—‘i)]w

If ag # % then we can set £ = 1—_“23 to eliminate the coefficient of V; and thus we
obtain the new vector field v’ = [\3/1 + ag Vo + a4 Vi, where ay is arbitrary, whose
coefficients cannot be reduced further. On the other hand, if a4 = —g then we obtain
7=V + ‘ng, + as Vo + a5V, which cannot be simplified further. Therefore (i) is
proved.

The remaining one-dimensional subalgebras are spanned by vectors with a; = 0
and aq # 0. Take the following vector field v = V3 + a4 V5 + a5 V; and acting on v by
Ad(exp(e V4)) we obtain 7 = Vo +a4 Va+ (as + 2—;* €) V4. If a4 # 0 then we can choose
the group parameter £ = —5;575 and thus obtain ¢ = V, + a4 V3. Moreover, if a4 = 0
then we obtain V, + a5 V; with a5 arbitrary. Thus, (ii) holds.

The rest of the one-dimensional subalgebras are spanned by vectors with a; =
as = 0 and a3 # 0. Consider the vector field v = V3 + a5V, and acting on v
by Ad(exp(e Vy)) we obtain v" = Vs + (a5 + %5) V4. Choose the group parameter
€= —g—%{f Then we obtain v* = V3. Similarly, we obtain that every one-dimensional
subalgebra spanned by the vector fields v with a1 = a3 = a4 = 0 and with a5 # 0
is equivalent to a subalgebra spanned by V,. Thus the proof of Theorem 4.5 is now

complete. O
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7.2 Absolutely and completely monotonic functions
In this subsection we provide a few definitions of absolutely and completely monotonic
functions that we used in this thesis (see e.g. [117]).
Definition 8 A function f : (a,b) — R is said to be:

(i) absolutely monotonic if f*)(z) >0, for z € (a,b), k=0,1,2,...

(i5) completely monotonic if (—1)* f*)(z) >0, for x € (a,b), k=0,1,2,...

Remark 7.1 From the definition above it follows that the sum and the product of

any completely monotonic functions is also a completely monotonic function.

Lemma 7.1 If (i) fi is absolutely monotonic in the interval (a,b), and (i) fo is
completely monotonic in the interval (c,d) with a < fo((c,d)) < b, then fi(f2(x)) is
completely monotonic in the interval (¢, d).
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