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ABSTRACT

The purpose of this study was to investigate student learning in introductory,
undergraduate calculus from a constructivist perspective. Students' language use and
sources oi conviction were the focus of analysis. Sources of conviction refer to how one
determines mathematical truth and validity. Three undergraduate calculus classes were
involved, with students tati*: ~*+ one of three instructional approaches: technique-
oriented, concepts-first and infin::c<imal instruction. Interviews with 17 students provided
data cn students' language use and sources of conviction. Instructor interviews, classroom
observations and textbook analyses provided description of each instructional approach.

Student interview data revealed the existence of three groups of studentis who
differed in their sources of conviction. These groups were named Colleciors, Technicians,
and Connectors. Collectors exhibited the highest degree of external sources of conviction,
using teacher or textbook presentations as means by which to determine truth or validity.
Their calculus conceptualizations were constructed as a collect.on of isolated, relatively
unconnected statements, rules and procedures. Technicians based rruth and validity upon
their knowledge of the logical, organized structurc of calculus, and constructed their
conceptualizations as a logical organization of statemsrnis, rules and procedures.
Connectors exhibited the highest degree of inteznal scurces of conviction, displaying a
sense of personal understanding of calculus. Their conceptualizations were constructed as
a network of connections between various aspects of calculus and between calculus and
themselves.

Analysis of students’ langrage use indicated they used pre-calculus and everyday
language, visually and physically oriented language, and procedural language knowledge in
their calculus responses. Except for Connectors, students did not make extensive usc of
symbols to interpret or explain calculus ideas Students who received infinitesimal
instruction used infinitesimal language related to notions of infinitesimal closeness and
infinite magnification of a curve.

The study revealed the exisience and characteristics of three types of calculus
learners, and there was some relationship between these groups and competency in
calculus. The study also revealed that students used language as a source of conviction.
Finally, students' perceptions of their own learning were revealed as an unexpected but
important element in the nature of their sources of conviction and construction of calculus
conceptualizations.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

A. Introduction

Over the past decade consiructivism has emerged as an important influence in
mathematics education research. This is because constructivism has been proving to be a
valuable perspective from which to understand mathematics learning (Ernest, 1989).
Constructivism provides a model of knowledge which views mathematics lcarning as an
individuai, evolutionary process. This is in contrast to a view of lcarning that secs
concepts as transferrable, "ready-made” from teachers to learners. That is, constructivism
views mathematics leaming as an active, constructive process (Schuell, 1985) in which an
individual builds up knowledge for himself or herself.

Emest (1991) discusses the above notions through discussion of mathematics as a
social construction. This philosophy, known as social constructivism, takes the view that
"human language, rules and agreement play a key rolc in establishing and justifying the
truths of mathematics" (p.42). That is, mathematical knowledge is grounded in the
following: (1) "linguistic knowledge, conventions and rules” (p.42), (2) social processes
by which an individual's internal, subjective knowledge is turned into external, objective
knowledge, and {3) objectivity viewed as public, soctal acceptance rather than an inherent
property of the content of knowledge. These featurcs imply that mathematical knowledge
is dependent v -..: social sharing of language and d¢« -: »» pe-tnining to truth and validity.
Further, as a . :asequence for mathematics educatic: resivs "aers, these points imply
language use and ways of determining truth and validity are likcly to be important
components of mathematics leamning.

Constructivist notions are prevalent in the ideas and research of individuals
i"1volved in mathematics education research, even when these individuals do not explicitly
state the psychological bases from which they work. Skemp (1987) clarifies a prime
reason for tkis. He notes that models of learning which sce lcarning as a passive,
reproductive process have been unsuccessful in both explaining and bringing aboui "the
higher forms of learning . . . of which mathematics is a clear examplc" (p.i134). A
constructivist model of learning is being widely accepied by today's mathematics education
researchers because it gives insights into poorly understood learning phenomena such as:
why students learn different things from the same instruction, why many students do not
appear to learn by being given information and explanations, and why students appear to
dev=lop misconceptions of concepts. These reasons indicate rescarch from a constructivist
perspective might be particularly useful in studying student learning in calculus.
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Few studics have been done to examine student learning in calculr's, and many that
have been done have focused on student errors, misconceptions, or in. . ity to perform
certain tasks. For example, Seldon et al. (1989) found that in a sample of 17 students
obtaining C's in an introductory calculus course, no one was able to solve problems for
which they had not been taught a method of solution. Davis and Vinner (1986), in an
investigation of high schoo! students with a full year of calculus study, found students held
numerous misconceptions about both informal and formal ideas related to limits.

In an earlier study based on clinical interviews with 110 calculus students of ages
16 to 22, Orton (1983a, 1983b) investigated students' understandings of limits,
differentiation, and integration. Interview responses were analyzed in terms of siudents'
conceptual, algebraic, and (apparently) arbitrary errors and misconceptions. Orton found
that students made numerous errors in both intuitive and formal aspects of concepts. For
example, some students failed to recognize the connection between the exact area under a
curve and the use of approximating rectangles, some saw roiating secants as disappearing
to a point rather than becoming a tangent line, and others treated <« as an algebraic symbol
which could be manipulated in the same way as numerals.

These investigations have given insight into students' misunderstandings in
calculus. What is needed now is research into how instruction can better guide and support
student learning in calculus. This is particularly important when one considers that the
drop-out and failure rates in calculus are high compared to other undergraduate courses.
Figurcs between 30% and 50% are reported in the literature (Peterson, 1987; Cipra, 1988).
Even students passing a ca'culus course tend to perform at low levels with respect to both
skills and the use of calculus ideas (Peterson, 1987; Cipra, 1988).

This is an unfortunate state of affairs in that many undergraduate students must be
successful in an undergraduate calculus course to either begin or continue enrollment in
various programs. Calculus is a required course for these students if they are aiming for
careers 1n science, engineering, medicine, business, education, and various other fields.
Although reasons for the inclusion of calculus in these curricula wiii not be discussed here,
it can be argued that, beyond the knowledge and skills imparted, calculus acts as a "filter"
for entry into numerous careers.

Some educators across North Ajilerica say the situation as outlined is indicative of a
crisis in the teaching of calculus (Peterson, 1986, 1987; Cipra, 1988). Over the past few
years this has led to much support for change in introductory calculus courses. Educators
in favour of change have been developing and implementing changes. These changes
include the following: (see Douglas, 1986; Peterson, 1986) (1) shifting the focus of
calculus teaching to the fundamental ideas of calculus, rather than emphasizing drill in
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routine skills and techniques, (2) integrating applications into the body of calculus courses
by reinforcing the role of approximations and problem situations with contexts relevant
beyond the field of mathematics, and (3) producing textbooks to support curriculum
changes.

For improved success of student learning in calculus more research is needed into
various instructional emphases and formats and their subsequent effects on learning.
Further, since constructivism shows promise as a useful means by which to study calculus
learning, research from this perspective is indicated. This in turn points to a research focus
on language usc and the ways that truth and validity are determined.

B. Statement of the Problem

The research objective of this study is the investigation of student learning in
calculus from the point of view of constructivism. Students taught by onc of three
approaches to calculus are the focus of the study, and the main question addressed is the
following:

In what ways do calculus students' language use and sources of conviction reflect
the nature of their constructivist learning?

More specifically, the study analvzes: (1) the nature and role of the language
students use to interpret calculus concepts and problems, (2) the nature and role of
students' convictions regarding the validity or truth of calculus interpretations and problem
responses, (3) the ways students construct their calculus conceptualizations, and (4) the
ways different approaches to calculus instruction impact on students' language use, sources
of conviction, and manner of construction . -f conceptualizations. As a subsidiary,
necessary component of addressing this fourth arca of inquiry the following is also
addressed: (5) the ways three different approaches to calculus instruction translate into
classroom, textbook and exercise assignment instructional events. That is, a necessary
component of this study is description of the nature of the three approaches to calculus
instruction as delivered to students.

C. Definition of Terms

Students in this study are college and university undergraduates enrolied in an introductory
calculus course.

Calculus concepts refer io the limit and the derivative.
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Instruction refers to teaching that takes place in the classroom or laboratery, or in
interaction with a textbook or curricular materials.

Calculus problems are mathematical situations (concrete or symbolic in context) that a
learner is required to explain or act upon. This would be through one or more of
interpretation, construction, or symbolic manipulation.

Conceptualizations are mental representations an individual has for concepts. These are,
according to a constructivist perspective, dynamic and individually constructed internal
mental images, properties, and processes (von Glasersfeld, 1987a).

Constructivist learning refers to the building of conceptualizations as a result of
expericnce. More specifically, constructivist learning refers to learning viewed as an
individual process in which a learner constructs knowledge for herself or himself. It is
learning scen as an individual process of making sense of new information by relating it to
and reorganizing conceptual structures and process (Kilpatrick, 1987; von Glasersfeld,
1987a).

Language use includes use of verbal and written words and symbols, and is categorized
as cither fechnical or everyday language use.

Technical language refers to mathematical words and symbols accepted as proper and
correct by the mathematics community at large.

Evervday language includes words and symbols which are not recognized by the
mathematics community for use in unambiguous mathematical discourse. These words and
symbols might or might not be mathematical in nature, and are often found in daily English
language use. Also included in this J2uguage category are pre-calculus language and
visually oriented language. Pre-calculus language refers to words that are part of an
individual's language knowledge prior 10 studying calculus. For example, knowledge of
terminology such as "limit" or "continuous" is pre-calculus language knowledge. Visually
oriented language refers to words whose use is in the context of visual, physical
interpretations or representations of concepts. Examples include "slope", "increase” "flat",
"hole™ and "straight".

Procedural language use refers to use of technical or everyday language as means to
describe mathematical operations or procedures.
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Sources of conviction refer to where an individual sees truth and validity residing in the
context of learning calculus. That is, sources of conviction refer 1o how individuals
determine facts and accordance with accepted mathematical principles and standards, and
how individuals determine legitimacy, consistency and logicality. Responsibility for the
determination of truth or validity could lie within various sources. These include: the
teacher's knowledge, the statements of a textbook or other instruct.onal matcrials, the
inherent physical structure of the world, a student's knowledge of the structure and rules of
mathematics, or a student's own personal beliefs.

D. Significance of the Study

This study is important becausc it focuses upon three important implications arising
from constructivism. Thesc implications arisc from the way constructivism conceplualizes
the tcaching and learning of mathematics (von Glasersfeld, 1987a): (1) communication
does not occur via words which serve as "containers" to transfer mcaning, but rather,
communication involves subjective interpretations of language (p.7), (2) a student's
learning should be viewed as "successful organization of her or his own expericnee”, rather
than "replication of what the teacher does" (p.6), and (3) "making sense" out of instruction
"means finding a way of fitting availabie conceptual elements into a pattern that is
circumscribed by specific constraints" (p.9). Thesc three points arc in agreement with
constructivist notions as discussed by Ernest (1991) and outlined in Scction A of this
chapter.

The first of these three consequences implics that an important feature of
understanding student learning in calculus is understanding how students interpret and use
language related to calculus. Consequence (2) reveals a need to better understand how
calculus students attribute truth and validity in the context of lcarning calculus. That is,
understanding the ways in which students establish "correctness" is important to
understanding student learning because these sources of conviction reflect the nature of
what is leamed. Consequence (3) points to a need to consider the personal and situational
conditions within which an individual's learning occurs. More specifically, since
constructivism sees learning as a process of adaptation to one's experiential world, the
instructional conditions of this world should be considered as important influences upon
learning. Thus, this study examines in a range of environments the usefulness of language
use and sources of conviction as elements of constructivist learning in calculus. These
constructivist related notions are therefore formulated and refined by this study. In
addition, since the research studies three different instructional settings, it tests the
usefulness of a constructivist perspective in studying calculus learning in a range of



6

environments. In this way constructivist notions are refined and clarified, as are techniques
for studying student learning from a constructivist perspective.

As a result, outcomes of this study have theoretical and practical impact in four
arcas: (1) development of methods for studying calculus instruction and student learning,
(2) development of a better understanding of calculus instruction and student learning in
calculus, (3) theory and related methods for facilitating calculus learning as a meaningful
endeavour, and (4) theory and related methods for incorporating constructivism into
mathematics education research.

E. Description of the Study

The following outline is an overview of the study. A more extensive presentation
and discussion appear in Chapter 3.

Clinical and personal interviews with 17 students were the primary method of
inquiry into the nature and role of student's language use, sources of conviction, and
manner of construction of calculus conceptualizations. These were done in the last three
weeks of the school term. Problems used for the clinical portion of the interviews were
selected from pilot study questions on the basis of information gathering capacity.

The research is a naturalistic study involving three undergraduate calculus classes
located at three different post-secondary institutions. These include a large university and
two small private colleges. The course at the university is representative of introductory
calculus courses across North America in its content and an emphasis upon learning
techniques for differentiation, integration, graphing, and problem solving. In comparison,
one of the colleges uses a "concepts-first" approach to instruction in which concepts are
explored intuitively before introduction of their formal definitions and proofs, and before
skill development is emphasized. The second college uses an instructional approach which
develops concepts intuitively while using infinitesimal methods related to nonstandard
analysis. These infinitesimal methods are the tools by which Newton and L.eibniz first
developed calculus. This range of instructional settings allowed examination of the impact
of different approaches to instruction on the nature and role of students' language use,
sources of conviction and manner of construction of conceptualizations.

Classroom observations were done for a 13 week school term and each class was
observed for 25% to 50% of regular classroom time. Along with textbook and exercise
assignment analyses the observations provided a description of each instructional setting in
terms of language use and the ways truth and validity (sources of conviction) were
determined. Additional background information for each of the classes was obtained from
student questionnaires given at the beginning and end of term, and from instructor
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interviews. These activities also served to provide data by which the impact of instruction
on students' language use, sources of conviction and manncr of construction of
conceptualizations could be studied.

F. Delimitations

1. Analysis of the clinical and personal interviews with students focuscd on students’

language use, sources of conviction and manner of construction of conceptualizations.

2. A small number of students, 5 or 6 from cach of the three classes, were interviewed. A
small number allowed opportunity for extensive responscs from students on both the
clinical and personal interview questions.

3. Student interviews were delimited to one main 1 to 2 hour interview and a short 15 to
30 minute follow-up interview. Responses to the calculus problems in the clinical portion
of the interviews were made in the presence of the researcher.

4. Not all main concepts in introductory calculus were focused on. The limit and the
derivative concepts were focused on, while the integral was not. This delimitation was
because in each of the three calculus classes integration was iaught at the end of school
term, after some of the interviews were scheduled to take place.

5. The duration of the classroom observations was one 12 week school term. These
observations, as well as the textbook and exercise assignment analyses focused on the
language uses and sources of conviction that were displayed.

G. Assumptions

1. There is a relationship between students’ language use and sources of conviction, and
her or his calculus conceptualizations.

2. There is a relationship between a student's calculus conceptualizations and his or her
responses to calculus related questions both orally and through writing.



H. Limitations

1. The students interviewed were not randomly selected. They were volunteers, but they
represcnted a range of backgrounds and achievement levels in their respective calculus
courses.

2. Since students were required to respond to problems in the presence of the researcher,
the researcher's presence affected the manner in which students responded. Students might
have responded differently if no one or a different individual had been present, and their
responses would not have been as verbal in nature if they had been required to respond to
problems without another individual present.

3. Since the concept of the integral was not present in the interview problems, not all
aspects of student learning of introductory calculus were examined.

4. Students were required to respond to a small number of calculus problems only, so not
all aspects of their calculus language use, sources of conviction and manner of construction
of conceptualizations could be examined. That is, interviews cannot reveal all aspects of
the construction, nature, and adaptation of an individual's conceptualizations. However,
the calculus problems were selected to provide a range of calculus tasks related to the limit
and derivative concepts.

5. The classes were not randomly chosen. They were selected to provide a range of
instructional settings, and opportunity for examination of the impact of different approaches
to instruction on students' language use, sources of conviction and manner of construction
of conceptualizations.

6. Classroom observations were not conducted in every class taught. Since they were
carried out in 25% to 50% of each instructor's classes, not all instructional events were
observed.

I. Outline of the Report

Chapter 2 contains a review of selected relevant literature. A detailed account of the
design of the study comprises Chapter 3. This includes the pilot study, interview and
questionnaire items and their rationale, and classroom observation, textbook and exercise
assignment, and interview research methods and analysis procedures. In Chapter 4 the
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results of the study arc reported, including background profiles tor cach class, instructor
interview summaries, classroom obscrvation and textbook and excreise assignment
analysis findings, and student interview results. Chapter S contains a summary and
discussion of the findings with reference to the specific questions posed in the statement of
the problem. In addition, a discussion of some of the cducational implications of the
findings and suggestions for further research are given in this final chapter.
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2. REVIEW OF RELATED LITERATURE

(Quotations and examples in this chapter that are not referenced are taken from pilot study
work done in May and June, 1990).

A. Introduction

This study is an investigation of student learning in calculus. It adopts a
construclivist perspective of learning and focuses upon the role language use and sources
of conviction play in learning.

This chapter begins with a presentation of the critical notions underlying
constructivism and discusses their implications for mathematics education and mathematics
education research. In particular, theory related to language use and sources of conviction
is presented. Following this is an overview of research related to student learning in
calculus. Generally these studies have not explicitly adopted a constructivist perspective.
However, implications of the results of these studies in terms of constructivism are
outlined.

Background to the research methodology is then presented. The final section
summarizes key aspects and links between the various theoretical and research areas
discussed previously.

B. Constructivism

Traditionally, school mathematics has been concerned with the transmission of
knowledge from teacher to student. Related to this model of education is Platonism, the
idea that what is learned exists independently of participants in the learning process
(Hoyles, 1985; von Glasersfeld, 1987a). In such a context learning mathematics 1S seen as
a passive, reproductive process. At present many mathematics education researchers
consider learning mathematics to be an active, constructive process (Schuell, 1985).
Skemp (1987) clarifies reasons for this view. He notes that models of learning which see
learning as a passive, reproductive process have been unsuccessful in both explaining and
bringing about "the higher forms of learning . .. of which mathematics is a clear example"
(p.134). The result has been that a theory of knowledge known as constructivism has
emerged as an important influence in mathematics education research. Constructivist
notions are prevalent in the ideas and research of individuals involved in this field, even
whea these individuals do not explicitly state the psychological bases from which they
work.



11

Piaget is considered by many to be a pioncer in the formulation of constructivist
views (Narode, 1987). His analyses of the intellectual development of children resulted
from asking the epistemological questions: "What do we know? How do we know it?" In
particular, two major assumptions underlying constructivism arc in accordance with
Piagetian theory. These assumptions are: (1) learners actively construct knowledge, and
(2) an individual's prior knowledge plays a critical role in Icarning and performance
(Putnam, 1987).

Thus, according to a constructivist perspective, concepts cannot be transferred
"ready-made” from teachers to learners. Rather, conceptual development is secn as an
individual process in which a learner constructs or builds up knowledge for himself or
herself. This is viewed as being done piece-by-piece from available clements in the
individual's physical and mental environment (Schucll, 1985; Skemp, 1987; von
Glasersfeld, 1987a). Mure specifically, through a process of abstraction (bccoming awarc
of similarities betweer cxperiences), an individual gathers together regularities in
experiences to form what is referred to in Piagetian terms as schemata (Thomas, 1979).
Schemata are internal conceptual networks, hierarchies, and proccsses. At a primary level,
constructivism sees these conceptual cntities as derived from scnsory and motor
experiences. Further development occurs when they interact with additional sensory and
motor cxperiences, and with each other (Skemp, 1987).

In a constructivist orientation, the importance of an individual's prior knowledge
emphasizes that not only do learners construct their own knowledge, they do so by relating
new information to what has previously been learned. That is, learners make sense of new
information by connecting it to and reorganizing their conceptual structurces and processcs.
In Piagetian terms this » ''d correspond to the processes of assimilation and
accommodation (Thomas, = . Therefore, constructivism sces an individual's existing
conceptual structures and processes as a major determinant in how she or he interprets and
comprehends experiences.

In particular, constructivism sees learning as an adaptive process which, through
trial and error, the individual constructs a siable model of the world (von Glasersfeld,
1984). This mcect is seen by constructivism as a fit of knowledge to experience, rather
than a match between knowledge and reality. Instead of discovery of an "independent, pre-
existing world" (Kilpatrick, 1987; p.7), learning is viewed as adaptation to what is
experienced within the world. That is, learning is "organizing experience so as to deal with
a real world that cannot itself be known" (Kilpatrick, 1987; p.6). This is a rcjection of
metaphysical realism. The constructivist model of learning which rejects realism is called
radical constructivism (von Glasersfeld, 1984; Kilpatrick, 1987). If the model sees



12

knowledge as an individual construction, but does not accept rejection of realism, then it is
called trivial constructivism.

Rejcction of realism is a controversial aspect of constructivism. It separates
constructivism from the practice of many mathematicians and mathematics teachers. These
people generally accept the existence of external, objective mathematical objects and truths.
That is, mathematical facts are generally seen (o be "what they are, not what we wish them
to be" (Davis & Hersh, 1981; p.362). In comparison, constructivism sees all knowledge
as being subjective and individually created. Thus, it might be said that comstructivism
does not adequately explain common mathematical practice. Its ability o study and
describe classroom practice and student learning might therefore be limited.

However, since this remains to be determined, it might be that constrectivism can
give ncw insights into these descriptions. In particular, if one views objectivity as a social
construction rather than an inherent property of mathematical concepts, then coastructivism
is able to explain mathematical practice. According to constructivism, objectivity resides in
the "public nature of language, of concepts, of theories and hence of knowledge" (Lerman,
1989; p.219). This implies objective knowledge arises from social, public negotiation and
construction. This is not contradictory to either mathematics or the learning of
mathematics. For example, the history of mathematics demonstrates that mathematical
knowledge is not a "body of immutable and necessary truths" (Ernest, 1991; p.62). In
fact, the development of non-Euclidean geometries, the work of Godel, and marse recently,
the rise of chaos theory, fractals, and alternative logics all provide evidence that
mathematics is not immutable. These areas of mathematics also demonstrate that objective
mathematical knowledge lies in the "shared rules, conventions, understandings, and
meanings of the individual members of society, and in their interactions" (Exnest, 1991;
p-82). An individual's learning of mathematics can therefore be seen as a process of
subjective construction of publiciy shared knowledge of words, symbols, rules and
conventions. Thus, by attributing the term nunderstanding" to public practice and use of
concepls, constructivism can explain mathematical practice.

This is one way language plays a key role in learning viewed from a constructivist
perspective. Other aspects of the importance of language to learning will now be
discussed. Although many of these ideas were formulated before the emergence of

constructivism, they are relevant to understanding language use from a constructivist
perspective.
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C. Language Use
Historically, the relationship of language to leaming has been a focus of much
literature in psychology, linguistics and cducation (Gatherer, 1977). Vygotsky (1962)

sug - ~ts language and thought are related in that language is inextricably linked to the
acquisition of concepts. He says:

. . . the birth of a new concept is invariably foreshadowed by a more or less
strained use of old linguistic material; the concept does not attain to individual and
independent life until it has found a distinctive linguistic embodiment (p.74).

Bruner (1975) also views language as an instrument of thought. He cmphasizes the
importance of "using" language, and argues that language and thought come together
through "regulation of action". Learning the meanings of words involves mastering "a set
of component procedures relating to their use” (p.65). Constructivist notions are in
accordance with the views of Vygotsky and Bruner in that constructivism highlights
mastery of publicly shared language use, and the processcs of assimilation and
accommodation.

Johnson (1987) also discusses the important role language plays in learning. He
explains linguistic meaning in terms of what he refers to as "Image ¢chemata”. Image
schemata are structures of meaning arising from "perceptual intcractions and bodily
movements within our environment" (p.159). Johnson's notions of image schemata go
beyond the concept of schemata as mental images or pictures. According to Johnson,
image schemata function on a more general and abstract level than the formation of
particular images. Particular images do not fully portray a concept, whercas an image
schemata is "an organized, unified whole within our experience and understanding that
manifests a repeatable pattern or structure" (p.44). For example, specific images of a right-
angled triangle, an obtuse-angled triangle or an acute-angled triangle do not fully portray
the concept of triangle. In eacth individual instance the underlying triangle schemata is
manifested in a different way, while a recognizable form is retained.

Examples Johnson uses to elaborate his claim that image schemata arisc from bodily
experiences are those of physical containment or boundedness, physical forces and
physical balance. Only the example of balance will be outlined here because it is sufficient
for explicating Johnson's ideas. Johnson describes how meanings of the term "balance”
are connected to physical experiences of balance. For example, notions of physical, bodily
experiences of balance are found in understandings of such things as: "balanced
personalities, balanced views, balanced systems, balanced equations, the balance of power,
the balance of justice, and so on" (p.87). The word "balance" is used in a wide variety of
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domains because the domains "are structurally related by the same set of underlying
schemata metaphorically elaborated” (p.96). In the case of "balance" the underlying
schemata is the bodily experience of cquilibrium. Equilibrium therefore serves as an
underlying metaphor 1o interpret "balance” in other domains.

Metaphor is also a focus of Pimm's discussions of the role language plays in
lcarmning (Pimm, 1987). His discussions are specifically in the context of mathematics
learning. He explains how metaphors can guide the creation of meanings by an association
of the less familiar with the more familiar. Two types of metaphors often found in
mathematical language use are identified by Pimm: extra-mathematical and structural
metaphors. Extra-mathcmatical metaphors are used to interpret mathematics in terms of
objects or events in the physical world. Examples include: a graph is a picture, a function
is a machine, and an equation is a balance. Structural metaphors involve an extension of
idecas from within mathematics itself. Examples include: the notion of slope of a line
extended to slope of a curve, multipirication of numbers extended 1o multiplication of
maitrices, and the notion of number extended to complex nuinbers.

Pimm notes that although mathematical metaphors serve as tools for thought, they
have limitations. They are frequently associated with physical world interpretations that
might not be corsistent with the corresponding mathematical concept. Examples of these
associations include. "talking of expressions vanishing, functions obeying a rule or being
weli-befuaved, the inkeritance of mathematical properues or discovernng mathematcal laws”
(p-95). Subjective interpretations of these words are likely to vary greatly. For exampie,
"vanishing" could be interpeted as disappearing, being hidden, or no longer existing.
Mathematical "laws" might be interpreted as statements that have exceptions and can be
broken. These notions related to "laws” or "vanishing" are not necessarily congruent with
cach other or with the corresponding mathematical ideas.

Kaput (1972) also emphasizes that the use of mathematical terms and symbols is
filled with physical notions, and he notes that although the origin of mathematicai language
is frequently neglected by mathematicians and educators, it remains important in learning
mathematics. Kaput cites calculus as exemplary of this claim in that primary calculus
concepts have been given meaning through a collection of motion ideas. These ideas are
reflected in both notation and terminology. For example, the symbol for the concept of
limit is given a metion connection using an arrow:

lim N
. f(x)=L
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This is read: "as x ar.proaches a, f(X) approaches L. Additionally, calculus is full of
image-laden motion words such as converge, diverge, increasing, constant, and
transformation.

Kaput notes that formalization in calculus tends to neglect the underlying idecas.
The iceas are replaced by such things as rigorous €-8 definitions and proofs. Kaput
views this replacement as disastrous in the teaching of calculus because it neglects the
process of creating connections between the formal, accepted mathematics knowlcdge
universe and the human knowing universe. That is, it fails to acknowledge the physica!
world context within which calculus was constructed and is currently learmned and used.

The role that symbol systems play in learning is trcated by Skemp also (Skemp
(1987). Skemp includes both the English language and mathematics language as symbol
systems. According to Skemp, the functions of symbol systems include: communication,
recording of knowledge. explanation, classification, helping 1o show structure, making
reflective activity possibic, making routine manipulations automatic, recoveri ng information
and understanding, and promoting creative mental activity. Through these functions,
symbols (and therefore language) act as a "combined label and handle for identif ying and
manipulating concepts” (p.62). Language can therefore be said to be essential in
mathemaitics learning. This is because language is the predominant form of human
communication (Skemp, 1987), and more importantly, because it is "the means of actively
cenierning attenuon, of abstracting certamn traits, synthesizing them, and symbolizing them
by a sign" (Vygotsky, 1962; p.81). Pimm (1987) notes that "we name things for
reference, and hopefully for case of reference, to draw attention to the thing named"
(p-127). He also remarks that, since naming causes us to look at the thing named in
particular wa s, certain attributes are stressed while others are neglected.

Another aspect of language and learning that is important to constructivism is the
role of natural, everyday language. A prime reason for this is that a term for a mathematical
concept that also exists in natural, everyday language carries with it a whole set of natural
language meanings (Halliday, 1578) Marural language meanings are therefore important
factors in learning. Constructivisn < - h-:hlights the importance of natural, cveryday

language meanings by stressing pr xp::riences and understandings as important 1o
construction of conceptualizatiot.s

The role that everyday [ - ¢ plays in mathematics learminig is dealt with
extensively by Pimm (1987). Pi. - fat,1lay's notions of a register. A register is "a

set of meanings appropriate to a L.« i.ui. "up. tion of language, together with the words
and structures which express these mean:ugs" (Halliday, 1975; p.65). A register is
therefc-e "not just use of technical terms" (Pimm, 1987; p.76). It also involves certain
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phrasing and characteristic modes of arguing. Pimm notes t}at the mathematics register
contains a mixture of specialist mathematics teyms and terms "borrowed” from everyday
English. Difficulties in learning can result from this because "borrowed” terms can be
associated with non-mathematical meanings. Examples include: *face, degree, relation,
power, radical, complete, integrate, legs, produci, moment, mean, real, imaginary, rational
and natural® (p.78). Pimm states that non-mathematical meanings can cause confusion and
misunderstanding because they are not always in agreement with the precise mathematical
concept. Halliday (1978) also supports this conclusion and observes that everyday
language is not clear-cut and precise. "It is a human creation and therefore inherently
messy" (p.201).

Emest (1991) outlines how the use of a natural language such as English implicitly
involves mathematical meanings, rules and conventions. He states:

Natural language includes the basis of mathematics through its register ~f
clementary mathematical terms, through everyday knowledge and the uszs 2w,
interconnections of these terms, and through the rules and conventions which
provide the foundation for logic and logical truth (p.75).

For example, terms such as "circle”, "one", "two", "add", "less", and "greater" can
be directly related to individuals' shared worlds of experiences. Ernest argues that
language use underlics mathematics learning because it is through shared language use that
"individuals construct subjective theories or personal representations” (p.72) of the
concepts encountered in language interactions. On a more general level, an individual's
"acquisition of language involves the exchange of utterances with other individuals in
shared social and physical contexts” (p.71).

As with the ideas of Pimm and Halliday, Emest's arguments indicate that an
individual's use and interpretation of everyday language are likely to figure prominently in
that indi vidual's mathematics learning. The use of everyday language terms, as well as
non-matheniatical meanings ascribed to specialized mathematical language, should therefore
be seen by mathematics educators as important aspects of the teaching and leaming of
mathematics.

To summarize, the literature on language discusses how language serves as an
intermediary between sensory-motor and internalized, mental experiences. In this way
language is seen as an essential component of the building of meaning from experiences. It
is "the means of actively centering attention, of abstracting certain traits, synthesizing them,
and symbolizing them by a sign" (Vygotsky, 1962; p.81). Thus, the literature suggests
that it is to a large extent through language that an individual constructs conceptualizations.
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D. Sources of Conviction

Constructivism implies an individual's learning should be viewed as "successful
organization of his or her own experiences” (von Glascrsfeld, 1987a: p.6), rather than
"replication of what the teacher does” (p.6). How students attribute truth and validity 1s
therefore important to understanding their learning. The nature and origin of what is
iearned will be reflected in the sources of conviction a student uses to establish
"correctness"”.

West and Pines (1985) discuss a constructivist view of learning while focusing
upon knowledge sources. According to West and Pines learning is a process of making
sense of inputs. It involves interaction between a learner's present understandings and
whatever the new inputs are. West and Pines identify two sources of an individual's
knowledge. Following Vygotsky (1962), they call onc source intuitive knowledge. This
is knowledge resulting from interaction with the environment. It is acquired over time and
without a particular direction. One of its main characteristics is that it constitutes an
individual's personal reality. An example used by West and Pincs is that of learning the
nature of the Earth: "We know that the ecarth is flat to our eye, yet round from photographs
of space. We know about satellites, the shuttle, and a whole gamut of other things" (p.3).
That is, knowledge of the nature of the Earth results from an individual's encounters over
time with his or her physical and social worlds. The other source of knowledge West and
Pines outline they refer to as formal or school knowledge. They describe it as follows:

It is someone else's interpretation of the world, someonc else's reality. Its primary
characteristic is authority. It is 'correct'; it is what the book says; what the teacher
says. Itis approved by a whole bunch of other people who are usually older and
more highly regarded than the student. Our learning of this knowledge is goal-
directed. That is, we set out to learn, usually through instruction, a particular body
of knowledge. We are usually expected to learn it in a certain time period. We are
usually expected to demonstrate, most often through tests, what we have learnt
about it (p.3).

West and Pines view learning as being comprised of the integration of intuitive and
school knowledge. To explicate the learning process they introduce a vine metaphor. This
metaphor uses one vine to represent intuitive knowledge of the world and another vine to
represent formal or school knowledge. The extent that these two vines intertwine is seen o
correspond to a variety of learning states. Four states identified by West and Pirics are: (1)
a conflict situation in which both vines are well established but are not in agreement, (2) a
congruent situation in which intuitive and school knowledge can be integrated without
problems, (3) a symbolic knowledge situation where there is little to the intuitive
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knowledge to interact with the school knowledge, and (4) an unrestricted situation where
there is little or no school knowledge, but there is intuitive knowledge.

The vine meiaphor might be adapted to serve as an indicator of a student's sources
of conviction by classification of a source of conviction into one of two categories: (1)
authoritative, external sources that correspond to truth and validity claims arising from
formal or school knowledge, and (2) personal, internal sources that correspond to truth
and validity claims arising from intuitive knowledge. However, it is not clear that formal
or school knowledge sources are necessarily seen by an individual to be external to herself
or himself, and intuitive knowledge sources are not necessarily viewed as internal. It might
be that how a student perceives a particular knowledge source affects whether the
knowledge source is external or internal in nature for that student. That is, it might be that
the degree to which an individual personalizes knowledge that determines whether the
knowledge source is internal or =xternal. However, the validity or practicality for
mathematics educators of this viewpoint remains to be determined.

To further explicate the role of school knowledge West and Pines note that
schooling often forces students to ignore their own reality. This 1s because school settings
tend to rely heavily on symbolic knowledge (formal use of words and symbols). A student
who wants to genuinely make sense out of instruction, "as opposed to rote learning
numerous isolated knowledge bits" (p.5), must therefore concentrate on constructing
mecaning {rom symbolic knowledge. Since calculus is highly symbolic and inter-related in
nature, this viewpoint of the nature of schooling might give insights into students' calculus
conceptualizations. However, as with the adaptation of their dichotomy to sources of
conviciion, this remains to be determined.

A similar view to the intuitive-school classification of sources of knowledge is that
of private and public understandings (West et al., 1985). Private understandings are
individual and arise from an individual's interpretations and internalization of public
knowledge. Public knowledge is knowledge found in books, scientific papers, and other
written or spoken documents. It is derived from individuals' private understandings and
exists "because there is substantial overlap between the private understandings of different
individuals” (p.30). From the standpoint of viewing knowledge as either private or public,
learning is seen as a process of giving personal meaning to public knowledge.

In terms reminiscent of private and public understandings, Ernest (1991) discusses
what he refers to as subjective and objective knowledge. According to Emest, subjective
knowledge arises from an individual's world of conscious experiences, while objective
knowledge centres on products of the human mind such as formal and informal theories,
proofs, and related discussions. Objective knowledge also includes any implicit
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knowledge contained in publicly shared, intersubjective knowledge. An example of such
implicit knowledge is the shared rules and conventions of language usc discussed in the
previous section of this chapter.

As with the vine metaphor, the notions of subjective versus objective, or private
versus public knowledge show promise as means to clarify and refine the concept of
sources of conviction as it is conceived in this study. However, a simple dichotomy
cannot adequately explain sources of conviction unless it acknowledges that an individual's
determination of truth or validity can lie within various sources, including: the teacher's
knowledge, the statements of a textbook or cther instructional materials, the inherent
structure of the world, a student's knowledge of the structure and rules of mathematics, or
a student's own beliefs. For example, a student might give cne or morc of the following
statements as justification for why the graph of a function is or is not continuous:

Cause that's the way I've been taught.

But we have to look at the whole picture, so you could say that the whole thing is
discontinuous because of the break .

By the table of values, yes.

And then if it's infinitesimally close on either side, so that it all rounds off to the
same number, then the function must be continuous.

All polvnomials are continuous.

Because it's continuous if ah, if there are no jumps in it. You do not have to lift
your pencil.

These examples from the pilot study demonstrate that any classification of sources of
conviction must include a range of possibilities.

The internal and external classification of sources of conviction as initially
conceived in this study addressed this issue of a need for a range of possibilitics (sec
Chapter 3). In addition, sources of conviction were initially conccived in the following
way as an implication of constructivism. Constructivism implies that student lcarning
depends upon "recognition and re-construction of problems as being their {one's] own"
(Balacheff, 1990; p.259). That is, the nature of an individual's calculus conceptualizations
will be influenced by how the individual attributes truth and validity. For example, a
student who finds limits of indeterminate forms by following a set of "rules" becausc "they
work" or "that is what the teacher taught”, is using an external source of conviction. In
contrast, a student who uses the same rules but tries to make sense of them in terms of why
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they are used and why they work sees himself or herself as a source of tize determination of
truth. The student's source of knowledge arises internally, from within herself or himself.
A student might also combine sources of conviction, making use of his or her own ideas
alongside those of some other source. This can be seen in the following words of a student
explaining why no derivative exists at a point of discontinuity on a graph:

It just comes down to a single point as opposed to a point, say here at B, which
does have a derivative. It doesn't come to a single point, . . . it flattens off at the
top. So you can take the slope there, but you can't take it there. Or as he {the
teacher] would say, you can scratch your back there. . .. I didn't totally get that
scratch your back part. That's sort of a weak explanation 1 guess.

This student began his explanation with a description of how he saw the situation.
Only afterwards did he bring in justification in terms of what the teacher might say. What
is also of interest here is that this student is aware that both his and the teacher's
explanations are "weak" rather than precise or conclusive.

It must be noted that students are not necessarily aware of their sources of
conviction. In particular, if truth and validity are seen by a student to reside in such things
as teacher or textbook statements, or the student's own beliefs, then the student might not
be aware of either a need for or means of more formal justification. That is, students might
be willing to make mathematical statements without regard for their truth or validity. If
questioned on thesc statcments they might or might not see a need for, or be able to give
justification. This is reflected in the foilowing portion of an interview with a student:

Student: The:e's no tangent line to this point here, so you can't take the slope of it.
Interviewer: And why is there no tangent line?

Student: Um. 1 don't think it would be defined right at that point.

Interviewer: Do you know why you think that?

Student: Intuition?

Interviewer: Can you put words to your intuition?

Student: Words to my intuition? Not really. No. Just that I don't think you can

draw a tangent line at that point. And if you can't take the slope of it, then it's
undefined there [referring to the derivative].

Another important point to be noted is that a student's sources of conviction and
resulting conceptualizations will be influenced by the conditions surrcunding her or his efforts
:0 learn. For example, if a student is motivated by "getting correct answers" his or her
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convictions are likely to originate from the teacher, textbook, or other external sourcc.
However, it must be noted that this could be the reality for many students. The conditions

within which students make sense out of calculus instruction will therefore play an important
role in what they learn.

E. The Teaching and Learning of Calculus

Research into the teaching and learning of calculus has not been extensive. There
have been studies related to student achievement in calculus, but they have been limited in
number (for example, see Hirsch et al., 1983; Edge & Friedberg, 1984, Scldon et al.,
1989). Further, although there have been reports and discussions of the general state of
calculus instruction, related areas are in need of study (Douglas, 1986 Pecterson, 1986,
1987; Cipra, 1988). The situation for research into students' conceptual learning in
calculus is similar. The studies done have most frequently centred on student
understandings of limits (for example, see Tall & Vinner, 1981; Davis & Vinner, 1986;
Sierpinska, 1987; Williams, 1991). Student understandings of differentiation or
integration have been investigated to a lesser extent. In addition, studics of student lecarning
that have been done have focused largely on student errors, misconceptions, or inability to
perform certain tasks (for example, see Seldon et al., 1989; Davis & Vinner, 1986; Orton,
1983a, 1983b; Williams, 1991).

Thus, there remain many unanswered questions regarding the tcaching and lecarning
of calculus. A number of these questions will be highlighted in this section. Scveral
reports related to general aspects of calculus instruction will first be presented and will then
be followed with outlines and discussion of research literature related to student
understandings of calculus. Interpretations in terms of constructivism will be included to
demonstrate the validity of this perspective for studying student learning in calculus.

A primary reason for a need to research undergraduate calculus instruction is that
calculus is a critical course for many undergraduate students. It is critical because it "holds
a commanding position in the early undergraduate experience of students hoping to go on
in science, engineering, business, and other fields" (Cipra, 1988; p.1491). Calculus isa
required course for many students, yet as many as 30% to 50% of them drop-out or fail
(Peterson, 1987; Cipra, 1988). In addition, Peterson and Cipra reported that students that
do pass calculus tend to perform poorly with respect to calculus skills and the usc of
calculus ideas.

Reasons cited for this lack of success of calculus instruction include: (Cipra, 1988)
(1) many students have a weak background in algebra, geometry and trigonomcltry
(knowledge areas prerequisite to calculus), (2) standard textbooks emphasize rote and
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repeulion in leaming, (3) large class sizes are not conducive to effective instruction ia that
they allow only minimal interaction between students and an instructor, and (4) many
instructors have littlec or no training in the teaching of mathematics, or are uninterested in
teaching calculus. Woods (1929) noted similar problems with calculus instruction,
including weak student backgrounds, lack of teacher preparation, an emphasis in calculus
on computation rather than content and purposes, and students’ general lack of interest or
motivation to devote time to studying. Thus, problems associated with calculus instruction
are not a phenomenon of the last decade only. The fact that similar problems to today were
perceived over a half century ago highlights a need for research into undergraduate calculus
instruction.

Unfortunately, although there is some agreement on what problems exist 1n calculus
instruction, therc are numerous disagreements and difficulties associated with solutiogs to
the problems. Changes that have been suggested include: (see Douglas, 1986; Peterson,
1986) (1) shift the focus of calculus to the fundamental ideas of calculus, rather than
emphasizing drill in routine skills and technique, (2) integrate applications into the body of
calculus courses by reinforcing the role of approximations and problem situations with
contexts relevant beyond the field of mathematics, and (3) produce textbooks to support
curriculum changes.

A major reason for requiring so many students to study calculus is for its use in
other disciplines. Since calculus applications in other disciplines are often nonroutine and a
perceived problem with many calculus courses is their emphasis on solving roetine
problems, it is important to assess if calculus students are able to apply calculus ideas and
skills. In response to this issue Seldon et al. (1989) investigated whether students who
had attained a C in an introductory calculus course were able to solve problems for which
they had not been taught a solution. They gave five nonroutine problems to each of 17
students who had attained a C grade in introductory calculus. The problems required
students to use a combination of techniques and concepts taught in introductory calculus,
including differentiation rules, tangent lines, roots, limits, and the concept of
differentiability. Seldon etal. found that none of the students solved an entire problem
correctly, and many of the solution attempts did not make any use of calculus.

These findings imply calculus instruction for these students did not meet the goal of
preparing students to apply calculus. It is also noteworthy that the students in this study
were not constrained by large class sizes, inexperienced teachers, poor backgrounds,
improper placement tests, or other difficulties often associated with calculus instruction.
Thus, Seldon et al. conciuded the absence of such handicaps does not automatically lead to
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improvement of calculus students' problem solving skills. This conclusion implics
students' problem solving skKills are related to other factors.

Since studies similar to that of Seldon et al. have not been done it is clear that more
research is needed into how instruction can better facilitate student learning in calculus. In
particular, studies of student perceptions of the mature and goals of calculus instruction arc
needed. Students themselves might see the learning of routine skills and procedures as a
prime goal of calculus. If so, attempts to teach broader knowledge and problem solving
skills are likely to meet with difficulties because students do not perceive them to be
important.

Hirsch et al. (1983) examined homework as an aspcct of instruction that might
impact on student achievement. They investigated the cffectiveness on calculus
achievement of two methods for assigning homework. Two classes of a first semester
calculus course were involved. One class (N = 24) was assigned homework
"distributively" so that review of past topics was incorporated into daily homework
assignments. The other class {N = 28) followed a "conventional” maodel of homework
assignment in which daily exercise assignments were related exclusively to the topic taught
that day. By the end of each unit the students had all becn assigned identical sets of
homework questions. To control other instructional variables as much as possible the
classes were taught by the same instructor and both were moming classes.

Regression analysis results from three out of four unit tests with pretest results as a
predictor showed significant interaciion between homework assignment type and calculus
achievement. In these three cases the regression line for the conventional homework group
was steeper than the line for the distributive homework group. This indicated a distributive
homework assignment schedule benefitted students of below average or average pre-
calculus background.

Although the results of this single study do not automatically gencralize to all
introductory calculus students, in conjunction with similar or related research they might be
significant. One such study is that of Edge and Friedberg (1984). Edge and Friedberg
examined several student background variables and their effects on achicvement in
introductory calculus. The background (independent) variables were: American College
Test (ACT) scores, high school rank, high school GPA, high school algebra grades, scorcs
from an algebra pre-test, sex, birth order, family size, and high school size. A student's
grade in a first semester calculus course served as the dependent variable. For replication
purposes the analysis was done on three groups of students of sizes N = 235, 157, and
397.
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Edge and Friedberg reported that regression procedures indicated the algebra pre-

test and high school rank variables were the best predictors of calculus achievement. They
concluded that

.. the combination of algebraic skills, as represented by the score on the algebra
pre-test, and the long-term perseverance and competitiveness, as measured by high
school rank, play a significant role in the prediction of achievement in the first
semester of calculus (p.136).

Caution must be exercised in the interpretation of Edge and Friedberg's
conclusions. It would not be valid to conclude that achievement in calculus is determined
solely by algebraic skills and high school rank. Edge and Friedberg did not give details of
the nature of grading for the calculus classes used in the research. The findings of Seldos
ct al. (1989) already discussed indicate that final grades might be highly dependent on the
extent that routine techniques or nonroutine problem solving are assessed on assignments
and tests. Further, the interaction of homework distribution and final achievement as
reported by Hirsch et al. (1983) indicates that students of low to average pre-calculus
background can benefit from a distributive model of homework assignment. That is, there
appear to be aspects of calculus instruction itself which can impact on student background
variables and thereby improve calculus achievement.

These points show a need for research into calculus instruction and its impact oa
students. In particular, how instructional structure and emphasis hoth within the classroom
and in use of textbook materials can influence student learning. Not only must achievemest
of skills and routine procedures be studied, the learning of calculus concepts needs to be
assessed. This is because understandings of concepts are important for developing abilities
to transfer and apply mathematical knowledge (Skemp, 1987).

However, research into student understandings of calculus concepts has beea
limited. One of the most extensive studies done is that of Orton (1983a, 1983b) in which
clinical interviews were conducted with 110 calculus students aged 16 to 22. The students
represented a range of achievement levels in mathematics and were representative of ail
stages of education in Britain in the 16 to 22 age range. The study investigated students”
understandings of limits, differentiation, and integration. Two separate one hour
interviews were conducted with each student, during which time each student was givena
total of 38 calculus tasks. The tasks were presented on written cards and discussed orally.

Interview responses were graded on a five point scale to enabig statistical analysis,
and were also categorized in terms of student errors and misconceptions. The statistical
analysis revealed that students in the age group 16 to 18 experienced similar successes and
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failures to students 18 to 22 years of age. Students had the most success with items that
dealt with standard applications, and the least success with items that dealt with
understanding ideas. These findings imply some students possessed knowledge of
calculus skills without knowledge of the underlying principles of those skills. Findings
from a categorization of errors and misconceptions also supported this conclusion.

Orton followed a categorization scheme attributed to Donaldson (1963). This
categorization classifies errors and misconceptions as structural, arbitrary, or executive.
First, structural errors are based on a lack of understanding or misunderstanding of the
structure of a concept and its connections to related concepts. For example, Orton
obscrved a inability to interpret negative or zero rates of change, and failure to distinguish
between instantaneous and average rates of change. He interpreted these findings as a
reflection of incomplete knowledge of the derivative concept. Sccond, exccutive errors
centre around failing to carry out symbolic manipulations although the underlying
principles may be understood. An example that Orton observed was differcntiation of

2 . -4 -4 . .
y=33 to obtain < rather than = Finally, arbitrary errors arc responses that arc

either given arbitrarily or fail to take into account constraints given in a question.

This categorization scheme (structural, executive and arbitrary errors) had been
developed for use with younger mathematics students, but proved uscful to Orton in
revealing aspects of students' calculus understandings. For example, Orton found frequent
occurrence of structural and executive errors. These included: failure to distinguish
between average and instantaneous rate of change, believing a rotating secant disappears to
a point rather than a tangent line, treating < as an algebraic symbol that can be
manipulated in the same way as numerals, and failing to recognize the connection between
the exact area under a curve and the use of the limit of areas of approximating rectanglces.
Orton concluded students had a number of fundamental difficulties with limit,
differentiation, and integration concepts. These findings can be said to be supportive of
constructivist notions in that they imply calculus instruction is interpreted by calculus
students in a variety of ways, and the related meanings are often different than thosc the
instructor intended.

Orton pointed out several additional implications for the teaching and learning of
calculus. These were: (1) laying a stronger foundation for calculus by exploring limit
concepts earlier and across several years of mathematics instruction, (2) use of calculators
to numerically introduce and develop concepts such as slopes of secant lines approaching
the slope of a tangent and sums of areas of rectangles approaching the area under a curve,
(3) more emphasis on graphical interpretations, (4) inclusion of more of the foundations of



26

calculus so that calculus ideas arc introduced informally and then followed by more formal
study, and (5) increased awarencss by teachers of the importance of stressing concept
development while also anticipating and correcting algebraic difficulties. All of these
aspects of calculus instruction are worthy of research studies.

A more recent study by Heid (1988) of student learning in calculus partially
addressed these issues. This study involved 39 college students enrolled in an
experimental calculus course that stressed concepts over technical skills. The course used
graphing and symbol manipulation computer software to emphasize concepts, applications,
and problem solving. This approach allowed instruction to include a large variety of
concept representations, and it encouraged students to discuss and analyze calculus ideas.

Heid collected data from audio tapes of student interviews, observer field notes,
questionnaire responses, and copies of student assignments, quizzes, examinations and
class notes. She found students in the experimental course showed better understanding of
calculus concepts than 100 students in the control group. Specifically, they were better
able to express ideas in their own words, and their conceptualizations were broader,
clearer, more flexible, and more detailed than those of students in a control group. They
also frequently reconstructed facts from basic principles, a feature students in the control
group did not display. In addition, the data reported in the article indicated that between the
experimental and control students there were no significant mean differences on a final
exam of routine skills. Heid interpreted these results as evidence that students can
adequately understand calculus concepts without prior mastery of basic calculus skills.

Heid's findings indicate that the nature and role of the conceptualizations students
build as a result of instruction can be influenced by the nature of instruction. For example,
the learning environment of the experimental group emphasized discussing ideas. This
approach required that students attempt to make sense of calculus related language. It also
put emphasis on students seeing themselves as a source of truth or validity. Since students
in the experimental group built conceptualizations different than those of the control group,
language use and sources of conviction appear to be an important factor of the nature of
what is learned. Thus, Heid's study shows constructivism can be useful in interpretation
of student learning in calculus.

Heid's findings also support Orton's ideas that students' understandings of calculus
concepts might be facilitated by use of numerical procedures, graphical interpretations, and
informal followed by more formal instruction. The work of Tall (see Tall, 1989) further
supports an emphasis on developing calculus conceptualizations through graphical
manipulation and interpretation. Tall reported on previous research of students learning
calculus with the assistance of computer software. A key aspect of the design of these
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programs was that they allowed students to construct and manipulate a large variety of
graphs. This feature allowed students to develop what Tall referred to as "cognitive roots"
or "anchoring concepts". For example, a program designed to allow the user to magnily
any part of a graph can help develop the cognitive root of local straightness as follows:

Tiny parts of certain graphs under high magnification eventually look virtually
straight and this provides as (sic) anchoring concept for thce notion of
differentiability. Non-examples in the program are furnished by graphs which have
corners, or arc so wrinkled that they never look straight, providing anchoring
concepts for non-differentiability (p.39).

The work of both Heid and Tall points to the impact concrete visual images can
have on student learning. The anchoring concepts Tall referred to are reminiscent of
Johnson's image schemata (Johnson, 1987) in that perceptual interactions within one's
environment are seen to provide meaning structures. Since Johnson's idcas deal with the
origin of linguistic meaning, the potential usefulness of language use, and hence
constructivism, in understanding student learning is once more demonstrated.

Some other studies that have focused on calculus students' conccptual
understandings are those of Tall and Vinner (1981), Davis and Vinner (1986) and Williams
(1991). These studies differ from those already discussed in that they investigated
conceptualizations of the limit, but not of the derivative or integral. Although these studies
are not inclusive of all the research literature on student understandings of limil, they do
portray congruent findings (for example, see Sierpinska, 1987).

Tall and Vinner (1981) conducted two investigations with students obtaining an A
or B in A-level mathematics in Britain. A questionnaire that asked students to explain and
define limits was given to 71 students. Another questionnaire on continuity was given to a
group of 41 students. Students responded in writing. Tall and Vinner found that students'
written responses to questions displayed both intuitive and formal ideas related to thesc
concepis. For example, they found that intuitive ideas about concepts were gencrally
explained in reference to dynamic, sensory-motor processes. The references included
phrases such as: "as x gets nearer and nearer to a", "as x tends towards a", and "there is
a jump at the origin". More formal ideas were generally expressed in terms of mathematical
symbols, and included statements such as the following:

| f) - f(n+1)| <€ forall n > Np
Further, students' intuitive and more formal ideas tended to be incomplete or inaccuratc.

In a later study Davis and Vinner (1986) found similar results. They studied the

curriculum and calculus students of a high school program that culminated in a 2-year
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calculus course. This program emphasized the understanding of ideas before specific
rclated skills, techniques, and definitions were developed. The investigation focused upon
the presence and relative strength of students’ informal and formal ideas about limits. An
unannounced written test asking for an informal description and a precise definition of limit
was given to a class of students at the beginning of their second year of calculus.
Responses were then analyzed for coirect and incorrect ideas.

Davis and Vinner found several misconceptions present in scme student responses.
These included: assumptions that a sequence must be monotonic, must have a "last" term,
cannot reach its limit, and must exhibit an obvious, consistent pattern. In addition, some
responses  indicated confusion with the following: limits versus bounds, f(Xxg) versus
xll_r:;u f(x), and the important temporal order of € and N in the formal definition of a
limit. Davis and Vinner interpreted these findings in terms of possible sources of
misconceptions. These sources included: (1) the influence of language, particularly when
words such as limit, bound, and variable have associations outside of mathematics, (2) an
inappropriate assemblage of mental representations of mathematics from previous intuitive,
pre-mathematical fragments, and (3) incomplete mental representations for concepts. All
three of these interprctations reflect constructivist notions of learning, though Davis and
Vinner did not state them in relation to this perspective.

Davis and Vinner concluded that, in spite of an instructional emphasis upon
understanding. the students displaved the same misconceptions as those revealed in other
studics of beginning calculus students (Tall & Vinner, 1981; Orton, 1983a, 1983b). They
also concluded that, since the students had not been thinking about mathematics for over
two months, they were more likely to retrieve from memory naive or imprecise notions.
This would result in responses that displaved misconceptions. However, Davis and Vinner
did not ask questions to attempt to determine if the students had understandings of limits
beyond what was revealed in their initial responses.

More recently, Williams (1991) examined 10 college students' understandings of
the limit concept and the factors affecting change in those understandings. The students
were selected from a group of 341 students from two second semester calculus classes.
The entire group was given a short one page questionnaire to ascertain their beliefs about
limits. The 10 interview students were chosen on the basis that their questionnaires clearly
and unambiguously supported a particular informal viewpoint of limit. The 10 students
each met with the researcher for five sessions varying in length from 30 to 60 minutes.
During the sessions the students were presented with problems designed to make them
confront anomalous limit situations and alternative models of limit. This design was to
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encourage them to change their models of limit so as to exhibit more accurate and formal
conceptualizations.

Williams found students held a procedural, dynamic view of limit that saw limits in
terms of evaluation of a function at points successively closer to a particular point. In
addition, he found their models extremely resistant to change. Apparent reasons for
resistance were that "students often considered the ease and practicality of a model of limit
more important than mathematical formality” (p.233). In particular, they uscd models of
limit that allowed them to deal with "the realities of limits in the classroom" (p-233). In
other words students saw as sufficient models of limit that allowed them to deal with the
kinds of limits they encountered on tests. From a constructivist perspective these findings
reveal that the condition of wanting to do well on tests had significant impact on what
conceptualizations students built. A consequence of this condition was that scveral
students’ "procedural knowledge (eg. substituting values into continuous functions,
factoring and cancelling, using conjugates, employing 'Hopital's rule}" (p.233) was
largely separated from their conceptual knowledge.

Other factors Williams found that appeared to support resistance to conceptual
change were: (1) students viewed mathematical truth as dependent upon the situation, (2)
students saw mathematical truth as open to exception and a varicty of diiverent and
sometimes conflicting simultaneous statements, (3) students valued a mode! that was
simple and practical rather than mathematically precise, and (4) students' had fasth in the
appearance of graphs once only a few points had been plotted. Williams concluded that
changing students’ attitudes about mathcmatical knowledge is a complex te<k in need of
more research. Also, from factors (1) and (2; specifically, one can conclude b calculus
students' sources of convictic.» are likely to depend upon their personal interpretations of
situations.

In summary, research into the teaching and leaming of calculus has not been
extensive. Of the studies that have been done, few have focused on students’ conceptual
understandings. ~dditionally, although constructivism has not been a theoretical basis of
the research done, it appears to be a valid and useful perspective from which to study and
understand students' calculus conceptualizations. It also appears that language use and
sources of conviction are valid and useful in interpreting student learning in calculus.



30

F. Background to the Research Methodology

Background to the research methodology of the study is presented in this section.
The naturc and purpose of qualitative research methodology are discussed, along with
related reliability and validity issues. The discussions are largely within a general research
context. However, some specifics of the methodology used in this study are included.
Further details are given at appropriate places in Chapters 3 and 4.

Selected Qualitative Research Issues

In the last 20 years educational research has been changing so that it is no longer
dominated by quantitative methodologies. The shift has been towards increased emphasis
on "inductive analysis description, and the study of people's perceptions” (Bogdan &
Biklen, 1982; p.xiii). According to Bogdan and Biklen, a reason for this shift was that
many educational researchers felt quantitative research had not proven itself adequate in
solving educational problems. These researchers therefore began to adapt to educational
research a variety of the qualitative research methods that had already developed rich
traditions in other fields. These methods included observation and interview methods
derived from case study, ethnographic, phenomenological and critical social theory
resecarch. Corresponding to this shift, notions characteristic of quantitative research,
including mcasurement, operationalized definitions, and variables, were extended to use in
qualitative educational research.

Bogdan and Biklen (1982) outlined several main characteristics of qualitative
research, all of which are incorporated into this study to some extent. First, qualitative
research is concerned with context, and uses natural settings as direct sources of data. This
feature is in contrast to experimental studies in which "variables are manipulated and their
effects upon other variables observed" (Campbell & Stanley, 1966; p.1). Second,
qualitative research is descriptive, making use of words rather than numbers. Written
results therefore use quotations from the data for illustration and substantiation of findings.
Third, instead of focusing solely on outcomes or products, qualitative research concerns
itself with process. Finally, qualitative research tends to analyze data inductively as
opposed to deductively. More explicitly, qualitative researchers build hypotheses and
abstractions from the data gathered, instead of collecting data to accept or reject hypotheses
generated before a study begins.

Powney and Watts (1987) mentioned a number of features of qualitative research
approaches that correspond with the . discussed by Bogdan and Biklen. According to
Powney and Watts, recent educationai research emphasizes the following:
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. .. analyzing an individual's reactions within the normal context in which they
might occur. This avoids reducing the complex responscs or behaviour of an
individual to a single number in a maze of statistical computations (p.21).

Further, Powney and Watts noted that research in education has becn adopting an inductive
reasoning approach in which propositions and hypotheses emerge from rescarch data.

This method of constructing hypotheses leads to theory that emerges from the
specific data collected. Theory generated in this way is referred to by Glaser and Strauss
(1967) as grounded theory. Grounded theory is theory discovered from data. Through the
use of original categories and relationships arising from data, hypotheses and concepts are
derived in the process of doing research. According to Glaser and Strauss, grounded
theory fulfills qualities desired of theory because its mode of generation guaranices it is
useful for prediction, explanation, interpretation and application. Also, it serves to gurde
subsequent rescarch and contributes to theoretical advancement. Furthermore, grounded
theory is useful for engendering an active role between thcory and rescarch. In
comparison, research that merely tests or verifies hypothescs assigns a morc passive role to
theory (Merton, 1968).

Burgess (1982) described the relationship betwecen theory and rescarch similarly to
Glaser and Strauss. He viewed the relationship as one of ongoing interaction in which
theory is "involved in constant interplay with the selection of rescarch problems, methods
of investigation, and with data collection and data analysis" (p.209). Theory can thercfore
be used in research in the following ways: (1) to provide an ideca tor investigation and a
means to focus a study, (2) to assist in consideration of alternative perspectives and
interpretations, and (3) to give guidance for formulation, reconstruction, or identification
of new dimensions of research questions. Burgess also outlined two major logical
relationships between theory and research. These are hypothetico-deduction and analytic
induction. Hypothetico-deductive methods use research results to verify or falsify a
theory. In analytic induction generalizations are derived by refincment and abstractuon.

This research study uses both these forms of a relationship between theory and
research. It is hypothetico-deductive in that results are used as a test of the usefulness of
constructivism for studying mathematics learning. However, this study docs more than aid
verification or falsification of constructivism. It serves to refine and develop constructivist
notions. Through analytic induction, concepts arising from constructivist notions arc
defined, clarified and refined (for example, notions related to language use and sources of
conviction). Associated analysis methods are also developed. Thus, constructivist theory

plays a central role in all aspects of this study. It "influences the problem poscd, the
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mcthods used, the data collected, the analysis made, and the final report" (Burgess, 1982;
p-211). In all these areas analytic induction figures prominently.

Inductive analysis is composed of a variety of analytic procedures {Goetz &
LeCompte, 1984). Goetz and LeCompte (1984) outlined a number of these procedures in
the context of ethnographic and qualitative research designs in education. The procedures
they discussed are: analytic induction, constant con:parison, typological analysis,
enumeration, and standardized observational protocols. All these procedures are used to a
certain extent in this study, and {requently used in conjunction with each other. Each
procedure is described here, and additional details are incorporated into relevant places in
subscquent chapters.

Analytic induction, as already mentioned, centres on developing generalizations
from categories and patterns found in research data. The process begins with working
typologies and hypotheses developed from initial investigations of data. These typologies
and hypotheses are modified and refined through subsequent data examination (Goetz &
LeCompte, 1984). In this study analytic induction is used in some way with all forms of
the research data, including classroom observation, textbook and exercise assignment,
instructor and student interview analyses.

Constant comparison (a procedure credited to Glaser & Strauss, 1967) is a
supplement to analytic induction in that it compares emerging generalizations across all
research events (Glaser & Strauss, 1967; Goetz & LeCompte, 1984). That is, it involves
all modes of the data collected. In this study the various forms of data arise from
questionnaires, classroom observations, textbook and exercise assignment analyses,
instructor interviews and student interviews. Some partial comparisons are drawn between
these contexts in this study's conclusions.

Typological analysis is a process of division of a phenomenon into groups or
categories. It can be used for both descriptive and generative purposes (Goetz &
LeCompte, 1984). In this study itis used in conjunction with enumerative methods in the
data collection and analysis procedures associated with the classroom observations,
textbook and assignment exercise documents, and to a certain extent the student interviews.
Enumeration procedures count occurrences of specified phenomena. The phenomena or
categories of phenomena must be precisely defined so that "what is countable is cleztly
designated” (Goetz & LeCompte, 1984; p.186). Enumeration can serve descriplive
purposes, and can also supplement analytic procedures aimed at generating, refining or
verifying hypotheses. Further, once categories and hypotheses have been developed for a
study, enumeration can provide evidence to support the existence and validity of categones.
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Standardized observational protocols combine data collection and analvsis
techniques. The strategics require that (Goetz & LeCompte, 1984)

. . . initial constructive stages of ficldwork be used to develop cnumecrative
instruments in which units of analysis are precisely specified. Phenomena are then

coded during observation into previously designated categories of behavior
(p.188).

Croll (1986) referred to this method as systemic classroom observation. According
to Croll, "the purpose of systemic classroom observation is to providc an accurate
description of selected features of activities and interactions in classrooms" (p.9). To

outline fundamental aspects of systemic observation as a research procedure Croll stated the
following:

(i) Itis explicit in its purpose or purposes and the purposes have to be worked out
before data collection is conducted.

(it) Itis explicit and rigorous in its definition of categories and in its criteria for
classifying phenomena into these categories.

(iii) It produces data which can be presented in quantitative form and which can be
summarized and related to other data using statistical techniques.

(iv)Once the procedures for recording and criteria for using categorics have been
arrived at the role of the observer is essentially one of following instructions to the
letter and any observer should record a particular event in an identical fashion to any
other (p.5).

To develop systemic observation techniques a researcher first spends time in
classrooms "to get a feel for the aspects that he or she wishes to investigate” (Croll, 1986,
p.173). Appropriate observational variables and their definitions can then be defined and
incorporated into later classroom observations. Systemic classroom observation techniques
were developed in this study from pilot study observations and classroom obscrvations
conducted in the first three weeks of the main study.

Since a major feature of systemic classroom observations is that results are reported
in quantitative terms, systemic classroom observations can be said to combinc qualitative
and quantitative research methods. Used in conjunction in this way and similar ways,
quantitative and qualitative research methodologies can be used to supplement and mutually
verify each other (Glaser & Strauss, 1967). In this study quantitative and qualitative
research methods are used in conjunction in the classroom observation and textbook and
exercise analysis methods, and in the student interview analyses. Strengihs of cach
approach are therefore incorporated into the study. The precision, clarity and conciseness
of quantitative methods are combined with the more holistic, flexible, interpretive features
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of qualitative methods. The research conclusions are therefore constrained by the
quantitative findings, but are not determined by them. This feature avoids the invalidity of
a belicf that measures of quantity derived from educational situations "are the same thing as
mecasures of importance” (Croll, 1986; p.184).

Since reliability and validity issues are of central importance in both quantitative and
qualitative research, they will now be discussed.

Reliability and Validity in Qualitative Research

In the context of quantitative research the concepts of reliability and validity have
been precisely defined and thoroughly discussed (for example, see Campbell & Stanley,
1966; Payne & McMoiris, 1967; Thorndike, 1971; Thorndike & Hagen, 1977; Ebel &
Frisbie, 1986). Different techniques than those of quantitative research are used in
qualitative research to assess the threats to credibility that reliability and validity issues
raise. Since this study is primarily qualitative in nature, with quantitative measures arising
from qualitative methodology, the discussion in this section focuses on reliability znd
validity in qualitative research contexts.

Reliability in quantitative research refers to the extent to which research can be
replicated. More explicitly, it is the extent of consistency between measurements applied to
pcople in a situation at a point in time and measurements repeated at a different point in time
or in a similar situation (Cronbach & Gleser, 1965). Two forms of reliability found in
quantitative research are also addressed in qualitative research. The two {forms are external
and internal reliability.

Internal reliability focuses on the issue of whether, within a single study, multiple
observers would agrec. More specifically, internal reliability refers to whether multiple
observers would agree in the ways they match the research data to previously generated and
defined constructs (Goetz & LeCompte, 1984). Three of the five common strategies
outlined by Goetz and LeCompte for use in reducing threats to internal reliability are a
feature of this study. These features are: low-inference descriptors, peer examination and
mechanically recorded data. Two other strategies recommended by Goetz and LeCompte,
multiple researchers and participant research assistants were not used, the first for financial
reasons and the second because it was not appropriate to the study.

Low-inference descriptors such as verbatim accounts of interviews, concretely and
precisely phrased descriptions from observation notes, direct quotations from documents,
and other raw data contribute to a study's reliability. They also contribute to its validity.
When used in research reports they facilitate a reader's ability to accept, reject, or modify a
rescarcher's analysis and conclusions. Croll (1986) discussed the value of using low-
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inference variables in systemic classroom observations. According to Croll, low-inference
variables are categories into which observations can be unambiguously coded. These
categories are clearly defined so that criteria for classification into categories do not rely on
an observer's affective, evaluative or other personal responses. Since observer judgement
is therefore reduced to a minimum, reliability is increased.

Goetz and LeCompte (1984) noted that mechanically recorded data enhance
reliability by preserving data in its nonabstracted form. Any coding or classifying that
follows can be checked for consistency, and constructs generated can easily be revised. In
addition, peer examination that arises from making results public enhances reliability in that
it encourages researchers to "provide sufficient information in their reports for them to be
reviewed adequately” (p.220).

External reliability in qualitative rescarch "addresses the issue of whether
independent researchers would discover the same phenomena or gencrate the same
constructs in the same or sintlar ways" (Goetz & LeCompte, 1984; p-210). Goetz and
LeCompte outlined five major factors which qualitative rescarchers should address to
enhance the external reliability of their data. All of these factors are addressed in this
research report. The factors are: researcher status position, informant choices, social
situations and conditions, analytic constructs and premises, and methods of data collection
and analysis.

A researcher must report his or her role and status position within the rescarch
setting investigated because other rescarchers will be inhibited in drawing comparisons to
their own studies unless they hold similar positions within the research environment (Goeiz.
& LeCompte, 1984). This point is particularly important in studics where access to
information and the type of information gathered is highly influenced by the social
relationships a researcher has with individuals in the resecarch study. For example, in this
study student interviews conduc:ed by an instructor for a course would likely have yielded
different responses than the interviews conducted by the researcher. The reason is that,
unlike an instructor, the researcher's relationship with students did not involve the
determination of course grades. Similarly, a qualitative researcher must also explicitly
describe the social situations and conditions of research settings. Some reasons for this
point, according to Goetz and LeCompte, are that under different contexts individuals will
see different things as appropriate to reveal, and what individuals say and do might depend
on who is present at the time or who the recipients of the information are perceived to be.
Which individuals serve as informants or suppliers of information, and the dccision
process for their choice is also important to establishing external reliability. That is, the
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individuals who provide data must be identified. Any biases in the subsequent data cau
then be identified and handled appropriately.

Of particular importance to enhancing the external reliability of this study is
delineation of analytic constructs and premises. Outlining theoretical premises and defining
constructs developed in the research facilitates replication. Goetz and LeCompte noted that
"definitions for concepts should be clear and sufficiently lacking in idiosyncrasy so asto be
to be intelligible to other researchers . . ." (p.216). In addition, the researcher should
report "which concepts and definitions remained constant throughout the research process
and which were generated, developed or refined through data collection, analysis, and
interpretation” (p.216). Fulfillment of these guidelines aids comparability between studies.
Hence, these guidelines have been followed in Chapters 3 and 4 of this research report.

Also of prime importance to the external reliability of this study is sufficient
reporting of the methods of data collection and analysis. The reason is that reliability
depends upon whether other researchers would be able to reconstruct data collection and
analysis methods. Goetz and 1.2Compte stated the following in relation to data collection:

. . . descriptions should specify how observations were recorded, mechanically or
by fieldnotes, how field notes were composed, in situ or post hoc, the
circumstances under which interviews were conducted, and how material from
various sources were integrated into the study (p.217).

These guidelines have been followed in the research design presented in Chapter 3.
As well, reliability has been addressed by identification of the analytic procedures. The
importance of this aspect was explained by Goeiz and LeCompite as follows:

Simply asserting that analysis has been carefully done is insufficient for
establishing the credibility, reliability, and validity of ethnographic efforts. The
resecarcher must clearly identify and fully discuss data analysis processes and
provide retrospective accounts of how data were examined and synthesized
(p.217).

Validity in quantitative research is concemmed with accuracy. It addresses the
questions of whether the research measures "what we want it to measure, all of what we
want it to measure, and nothing but what we want it to measure" (Thorndike & Hagen,
1977; p.56). Internal validity refers to correct attribution of causality, while external
validity is concerned with generalizability. Both of these concepts have been extended to
qualitative research contexts.

Internal validity is concerned with the extent to which "observations and
measurements are authentic representations of some reality” (Goetz & LeCompte, 1984;
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p-210). That is, are rescarchers observing and measuring what they think they arc
observing and measuring? Threats to internal validity that must be addressed in both
quantitative and qualitative rescarch include: history and maturation, observer effects,
selection and regression, mortality, and spurious conclusions (Campbell & Stanley, 1966;
Cook & Campbell, 1979; Goetz & LeCompte, 1984). The following explanations of eich
of these factors are based on presentations found in Goetz and LeCompte (1984).

History refers to change in the overall social setting of a study, while maturation
involves the development of individuals (Goetz & LeCompte, 1984). The first of these
factors is not a difficulty in this study because the research settings remained relatively
constant over the course of the research. The second factor, maturation, does occur in this
study. Students necessarily developed academically, socially, and emotionally throughout
their term in introductory calculus. However, since this study dcals with students’
conceptual understandings at a particular point in their development, internal validity is not
threatened.

Observer effects come into play as a threat to validity through the role a rescarcher
assumes in a research setting. A researcher's position affects the data in that rescarch
participants might act differently than normal while in the prescnce of the rescarcher. To
reduce such artificial responses it is necessary for the researcher to establish "sufficient
residence in the field" (Goetz & LeCompte; p.224). Residence in the ficld was achicved in
this study by the researcher's attendance of classes for at least two wecks before the
related, coded classroom observations were made use of in the final analyses. In addition,
since instructor interviews were done in October and student interviews were done at the
end of the term, the researcher was not a stranger to the interviewees at the time of the
interviews.

Selection effects were dealt with in this study in that student interview volunteers
were sought so that they represented a range calculus achicvement levels. The sclection
also included a balance of males and females, and students representative of a range of
mathematics backgrounds and present academic programs. The rescarch scttings were
selected to provide a variety of instructional settings and approaches to instruction.
Mortality was a difficulty in this study only in that no interviews were done with students
who dropped out of calculus before the end of the term. However, some of the interviews
were conducted with students who might have dropped out, but had decided otherwise in
the hopes they might pass the course.

Spurious conclusions occur when it is concluded that associations among
phenomena exist when in fact they do not, or vice versa (Goctz & LeCompte, 1984).
Difficulties associated with spurious conclusions are dealt with in this study in morc than
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one way. Data is examined for a variety of plausible causes of observed phenomena,
evidence supporting all conclusions is explicitly reported, and the evidence supplied makes
extensive use of primary data from classroom observatiors, textbook and exercise
assignments, instructor interviews and student interviews.

The other main type of validity, external validity, refers to the degree to which a
researcher's representations of some reality "can be compared legitimately across groups"
(Goetz & LeCompte; p.210). That is, "to what extent are the abstract constructs and
postulates generated, refined, or tested" (p.221) by researchers applicable across groups?
Threats to a study's external validity are effects that block or reduce a study's comparability
and translatability. Comparability refers to the extent to which a study adequately defines
and describes its components, including research setting characteristics, analysis units, and
the gencration of concepts. Investigations of related issues cannot be compared to a
particular study unless that study supplies sufficient explication of its components.
Translatability refers to how accessible and understandable to other researchers are the
definitions, research techniques, and underlying theories of a study. Thus, "external
validity depends on the identification and description of those characteristics of
phenomenon salient for comparison with other, similar types" (p.229). Efforts are made
throughout this report to fulfill all these external validity specifications.

G. Suminary

Constructivism has been emerging as a prominent theoretical research basis in
mathematics education. It is a theory of knowledge that sees mathematics learning as an
active, constructive process in which an individual builds knowledge for himself or herself.
According to constructivism, an individual constructs internal schemata from interaction
with her or his physical and mental environment. In this way constructivism views
learning as an adaptive process in which an individual constructs a viable model of the
world.

Constructivism sees learning as an individual, constructive process, but
constructivist literature does not discuss the variety of ways an individual might go about
this construction. In particular, constructivist literature does not adequately disuss how the
nature of an individual's schemata are likely to differ according to differences in personal
and situational conditions. Although constructivism highlights interactions with one's
environment and the building of viable internal conceptualizations, constructivist literature
does so from a single all encompassing perspective. Constructivism speaks of learning as
personally meaningful and relevant. However, it is not clear that all individuals necessarily
view all their learning as personally understandable or meaningful. For example, an
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individual who learns particular information by rote memorization is likely to build different
conceptualizations of the material than does an individual who icarns the same information
by actively trying to make sense of it. Both individuals will have "built" some sort of
conceptualization, but the nature and role of these conceptualizations are likely quite
different. At present, constructivist literature does not discuss the nature of such individual
distinctions in learning. Thus, more research and subsequent refinement of constructivist
ideas are needed.

More research is also needed in the adequacy and compleicness of the use of
constructivist theory to describe and give insights into mathematics lcarning. In particular,
radical constructivism might be limited in its use as a perspective from which to view
mathematics classrooms and related learning. It is not clear that radical constructivism's
rejection of realism gives a valid or practical description of mathematics students’ and
mathematics teachers' views of mathematics. For example, constructivism secs objective
mathematical knowledge as lying in the "shared rules, conventions, understandings, and
meanings of the individual members of society, and in their interactions" (Ernest, 1991;
p.82). If mathematics students and teachers do not share this perspective of negotiation of
knowledge, then it might be that constructivism is an inappropriate thcory on which to base
mathematics education research. However, more research is needed before this aspect can
be determined.

Two other aspects of mathematics lecarning that arise from constructivist thcory that
are in need of research are language use and sources of conviction. Language use is of
importance because a constructivist perspective sees mathematics as grounded in "linguistic
knowledge, conventions and rules (Emest, 1991; p.42). The literaturc on the relationship
of language to learning highlights the role of metaphor (Johnson, 1987; Pimm, 1987). In
particular, natural everyday language is important to mathematics learning from a
constructivist perspective because constructivism sees previous experience, and hence
language experience, as a key component of an individual's construction of
conceptualizations (Halliday, 1985; Pimm, 1987). Language is therefore a valuable
component of the building of meaning from experiences. Further, it is largely through
language that an individual constructs mathematics conceptualizations.

Sources of conviction are important to mathematics learning viewcd from a
constructivist perspective because constructivism sees mathematics knowledge as
dependent upon a social sharing of decisions pertaining to truth and validity. The nature of
what an individual learns will therefore be reflected in the ways he or she attributes truth
and validity. Research into the nature and role of notions related to sources of conviction is
needed. Some theoretical discussions of similar concepts have been done, including
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discussion of intuitive and school knowledge (West & Pines, 1985), private and public
understandings (West ¢ al., 1985), and subjective and objective knowledge (Emest, 1991).
However, there has not been research into the ways mathematics students attribute truth or
validity, and how these features influence conceptualizations.

There have been a few studies of student achievement in calculus (Hirsch et al.,
1983; Edge & Friedberg, 1984; Seldon et al., 1989). As well, although there has been
some rescarch into students' conceptual learning of calculus, research into the teaching and
learning of calculus has not been extensive. However, previous research into student
learning in calculus can be re-interpreted from a constructivist perspective. This fact
indicates research from a constructivist perspective would be both valid and insightful for
studics of student learning in calculus.
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3. RESEARCH PROCEDURES

A. Introduction

In this chapter the design of the study and the research procedures are described.
The pilot study and its purpose are also described.

To address the first three rescarch arcas related to students' language use, sources
of conviction and marner of construction of conceptualizations, clinical and personal
interviews were done with 5 or 6 students from each of the three post-secondary
institutions. The in depth clinical interviews involved students in oral and written
responses to a number of calculus problems focusing on calculus skills and concept
interpretations. The personal interviews were aimed at investigation of students'
mathematics backgrounds, perceptions of calculus, perceptions about the role of language
and mathematical notation in their learning, and ways of determining mathematical
correctness or validity.

The fourth research area, the impact of different instructional approaches upon
students' language use, sources of conviction and manner of construction of
conceptualizations was addressed through analysis of student interviews, as well as
examination of classroom and textbook instructional events at the three institutions.
Students' problem responses illustrating various interpretations and solutions were
interpreted for possible relationships to the three instructional approaches. The small
number of students interviewed at each institution did not permit statistical analvsis or
definitive answers to the question of the effect of instruction upon students' calculus
learning. However, the examination of student's problem responses gives insight into the
potential impact of each of the instructional approaches on students' lcamning.

The fifth, underlying research area, description of the ways the three instructional
approaches translate into instructional events was addressed through five rescarch
activities. Specifically, to obtain a comprehensive description of the three instructional
settings and approaches to instruction the following activities were undertaken:

(1) A Background Questionnaire at the start of the school term was administered to
determine class characteristics. Any relationships between class characteristics and the
impact of instruction on student learning might therefore be determined.

(2) An End of Term Questionnaire was administered to gain insight into how students'
views of calculus and experiences in calculus might be related to the three instructional
approaches.
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(3) Instructors werc interviewed to obtain articulation of the philosophy of each
instructional approach, as well as each instructor's interpretation of the instructional
approach.

(4) Classroom observations were conducted to determine how instruction was delivered to
students.

(5) Analysis of textbooks and exercise assignments was undertaken to determine in what
mannecr the materials reflected the instructional approaches, and to what extent ihe materials
were similar across the three approaches.

B. Research Setting and Pilot Study

The study was undertaken with three undergraduate introductory calculus classes.
One class at cach of the following post-secondary institutions was involved: (1) a large
urban university (approximately 25,000 full-time students), (2) a small college (about 800
students) in a town (population 13,000) about 100 kilometres from the city where the
university is located, and (3) a small urban college (about 2000 students) in the same city
as the university. Henceforth, the university will be referred to as Alpha University, and
the colleges will be referred to as Beta College and Gamma College, respectively. These
are pscudonyms adopted for ease of referral to these institutions.

The introductory calculus course at Alpha University is representative of such
courses across North America. A standard textbook is used, Single Varniable Calculus (J.

Stewart, Brooks/Cole Publishing Company, 1987). In comparison, the introductory
calculus courses at the colleges make use of unpublished textbooks written by instructors at
cach of these institutions. The general content topics in these textbooks are similar to those
of the university textbook, but units are not necessarily covered in the same order or by the
same approach. Howevecr, the courses at the colleges are similar enough to the course at
the university to have been granted credits transferrable to the university. More details on
these courses, as well as (the course at the university are given in Chapter 4.

A pilot study that had the following objectives was conducted: (1) to gain
expericnce observing calculus classes, while developing methods for recording
observations, (2) to ficld-test the Background Questionnaire and a variety of written
responsc problems, (3) to gain experience in conducting student interviews, while field-
testing a variety of clinical interview problems, and (4) to refine the research questions and
establish their empirical feasibility.

The pilot study was carried out with two introductory calculus classes. One class
was at Alpha University and the other was at Gamma College (urban college). The pilot
study took place in May and June 1990, during Spring Session courses at these
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institutions. Due to the intense time scheduling of these courses (2 to 4 hours per day) it
was not possible to also conduct pilot work at Beta College at this time. The classes
observed during the pilot study were taught by different instructors than the rescarch
classes of the main study. Each class was observed 2 1o 3 hours per day fora 3 week
period. Written response problems were given to all students in the college class on four
occasions, and to the university class on one occasion. Each problem sct required 20 to 30
minuter for all students to complete. Clinical interviews were done with 3 students at the
college. Each student was interviewed on 3 occasions with each interview lasting 45 to 60
minutes. Clinical interviews were done with 4 students at the university. Each was
interviewed once and the interviews lasted 60 to 90 minutes.

The pilot study was conducted from a constructivist perspective. That is, the
researcher approached interpretation of classroom observations and student interview
responses from the perspective that students construct individual understandings of
instructional events. The feasibility of studying student learning in calculus from this
perspective was therefore tested. Findings from the clinical interviews led the rescarcher to
develop the concept of sources of conviction, and to subsequently focus the rescarch
questions upon language use and sources of conviction. This focus was taken because
students' language use and sources of conviction as displayed in the interviews appeared to
be revealing of students' conceptualizations and reasoning patterns.

No textbook analyses were done in the pilot study because the wextbook used for the
Sprirg Session university class was different from the text to be used during the main
study, and changes were to be made to sections of the text for the college textbook. The
End of Term Questionnaire was not fieldtested because a need for this questionnaire was
not determined until later. The final st of clinical interview problems was determined from
findings of the pilot study. Additionally, the decided format of a single interview followed
by a short follow-up interview was so as to compromise between the originally intended
format of several interviews with each student and the difficultics inherent in having
students commit to and be able to schedule interview times. Finally, since the writien
problems given to all students during the pilot study infringed upon instructional time and
did not produce informative results, this portion of the rescarch was dropped from the main
study.

C. Research Instruments and Data Collection
In this section the rationale for and development of the Background and End of

Term Questionnaires, ¢'.sroom observation and textbook and excrcise assignment



44

analysis mecthods, and instructor and student interview methods and questions are
described.

Background and End of Term Questionnaires

The Back ground Questionnaire can be found in Appendix A. The purpose of this
questionnaire was to determine class charactenistics, and any relationships between ciass
characteristics and the impact of instruction on students' learning. The questicanaire
gathered information on a student's mathematics background and grades, size and location
of high school attended, language background, career plans, major field of study, reasons
for taking an introductory calculus course, reasons for choosing the post-secondary
institution prescntly attended, and attitudes towards and impressions about mathematics.
From this information a background profile of each class as a whole could be formed. The
characteristics and degree of similarity of the three classes at the start of the school term
could then be ascertained. The questionnaire was created by the researcher and was field-
tested during the pilot study for clarity and ease of completion.

During the first week of classes the questionnaire was given to all students in the
three classces, except those students absent from class the day the questionnaire was given
to their class. During the following week the researcher attempted to have students who
had been absent complete a form on their own time to be returned later. Not al! these
students returned the forms. However, the exact number missing for each class is not
Known because enrollment in each class varied throughout the term as students withdrew
from the course. Additionally, during the first weck it was also possible for students to
join the class.

Before administration of the questionnaire the researcher explained verbally to the
students the purpose and nature of her work. Students were told the researcher was a
mathematics teacher doing research towards a doctoral degree. They were told their class
was part of a study intc student learning in calculus in terms of how certain factors play a
role in learning calculus. They were also told that regular classroom instruction would not
be disrupted, no special knowledge or skills were needed for participation in the study, and
parucipation 1in the study would not figure in the determination of grades. It was aiso
explained to the students that the researcher would be attending classes regularly, and
duning thesc times would make notes on things occurring during instruction. Students
were also informed that the researcher would at a later date ask for interview volunteers,
and that details about the interviews would be given at that time. Finally, it was
emphasized to students that participation in interviews or completing the questionnaires was
voluntary, and that confidentiality would be maintained at all times. These points were
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further noted to students in the written explanation on the consent form and background
questionnaire instructions attached to the front of the Background Questionnaire (Appendix
A).

The End of Term Questionnairc can be found in Appendix B. It was designed to
gain insight into how students' views of calculus and expericnces in calculus might be
related to the three instructional approaches. It gathered information on students' study
habits, attitudes towards caiculus and impressions about their calculus course. Many of the
questions were chosen to overlap the personal interview questions asked of the
interviewees (see Appendix J). These questions included those that related to apprehension
about calculus, perceived usefulness of calculus, ideas of what calculus is about, present
achievement level in calculus, time spent studying, and indication of specific study
practices. A main reason for the End of Term Questionnaire was to determinc any
differences between the three classes on the various items. In conjunction with data
collected from class observations, textbook analyses and interviews, any significant
differences found might then be ascribed to the impact of the different instructional
approaches and settings. Another purpose of the End of Term Qucstionnaire was to
ascertain if the related information obtained from the interviewees was representative of
their respective classes.

Classroom Observations

The classroom observations were aimed at providing a description of instruction as
delivered to each of the three classes. Classroom observations thercfore provided
description of the ways the three instructional approaches translate into instructional
events. They also were used in addressing the issue of the impact of differcnt approaches
to instruction on students' language use, sources of conviction and manncr of construction
of conceptualizations. In particular, data was gathered to provide information on: (1)
conditions of the instructional setting, (2) relative time spent on concept development and
use of examples, (3) language use, and (4) sources of conviction. The classroom
observation methods were a combination of systemic classroom observation techitiques
(Croll, 1986) and qualitative fieldnote procedures (Goctz & LeCompte, 1984) (also sec
Chapter 2). Systemic observation methods were used to concisely describe and summarize
aspects of classroom instruction related to language use and sources of conviction.
Fieldnote procedures were uscd to capture as complete a picture as possible of what
occurred in each class. They also provided numerous examples of specific instructional
events in terms of the sequencing of ideas and what was said or written to explain or justify
ideas. In this way the fieldnotes enabled description and comparison of instruction in the
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threc classes. Thus, the classroom observation procedures allowed the researcher to
describe specific cvents of instruction, while simultaneously quantifying instructional
features related to the research questions.

Classroom observations were done for a 13 week school term from September to
December 1990. Each of the three classes had four 50 minute periods scheduled per week.
For the class at Alpha University three of these hours were classes with the instructor,
while the remaining hour was a lab supervised by graduate students in mathematics.
Classroom observations of the regular class hours at Alpha University were done once or
twice per week. Lab hours were visited on six occasions. For the courses at the colleges
all four weekly mectings were with the instructor. Classes at Beta College were observed
once per week, and classes at Gamma College were observed twice per week. The fewer
number of visits to Beta College was duc to the distance that had to be travelled to reach
Beta College. Within a Monday to Friday schedule the general sequence of classroom
observations was: Gamma College, Alpha University, Beta College, Gamma College,
Alpha University.

The rescarcher attended classes as an observer, rather than a participant observer
(Goetz & LeCompte, 1984). She made lecture notes alongside other students, but did not
actually participate as a student in that she did not ask questions or respond to instructor
questions and did not complete assignments or exams. The only exception to this was
during group problem solving sessions at Gamma College (further d=tails on these problem
solving sessions arc in Chapter 4). The researcher would join with a group in these
sessions and participate by occasionally asking questions or asking for explanations.

The way fieldnotes were made is now described (also see Appendix D). While
attending a class the researcher would write down all information the instructor wrote on
the board, and would also write down as much as possible of the phrases, sentences or
questions spoken by the instructor. The researcher kept these features properly identified
by using printing for recording blackboard notes and writing for recording spoken words.
Words spoken by students were recorded in writing with a hyphen in front of them.
Additional notes and comments were also recorded with a hyphen in front of them. These
additional notes included general impressions of some instructional incidents or specific
student behaviours. Examples included the following: "teacher asks lots of questions
though he generally answers them himself", "teacher talks almost nonstop, constantly
explaining what he is doing”, "teacher explains by using the metaphor of a light switch”,
"ideas presented in general form first”, "many students write notes right in text, on left side
of the page" and "scveral students remain after class to ask questions".
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Following a classroom observation (within onc or two hours, and always before
attending any other class) the classroom observation notes were summarized on Classroom
Observation Summary Sheets (see Appendix C). The Classroom Observation Summary
Shcet was developed from a systemic classroom observation perspective (Croll, 1986) to
reduce the observation data and focus it on factors related to the study's rescarch questions
(language use and sources of conviction). For each of the three classes a sample of notes
taken during an observation and the corresponding summary sheets can bc found in
Appendix D.

The variables represented by each column of the Classroom Observation Summary
Sheet were generated from pilot study work and classroom observations of the first three
weeks of the main study. These variables were developed as much as possible as low-
inference variables so that observer judgement would be minimal and coding would be
unambiguous (Croll, 1986). This feature was also to enhance the reliability of the rescarch
methods.

The information recorded for each variable (column) of the Classroom Observation
Summary Sheet will now be defined. One or more possible category codes was entered i1n

each column. One entry was made under cach of the Time and Event columns, but more

than one entry was possible under the Language and Sources of Conviction columns.

These are described below, and the codes used for each category are given in brackets after
the name of the category. A summary of the descriptions can be found in Appendix E.

Time

Observations were analyzed in two minute intervals. This structure was decided
upon because it allowed segments of instruction to be coded as wholes, rather than isolated
pieces of written or spoken events. That is, the two minutc time intervals provided
opportunity for instructional events to be coded as meaningful, coherent units. Shorter
time intervals did not allow this meaningful segmentatios, but rather, split instructional
events into seemingly unconnected pieces. However, occasionally a two minute time
interval was split into two one minute intervals, and coding was done for cuch onc minute
interval. This split occurred when instruction changed within a two minutc interval
between presentation of a concept and presentation of an example. The time at the start of
an interval was recorded in the Time column. All classes were approximately 50 minutes in
length, yielding about 25 samples of instructional events per classroom obscrvation.



Event

One of three category codes was entered in this column, along with mention of the
content of the particular event. The three categories are described below. They emerged
from the pilot study as suitable categories for describing events within a lecture format for
calculus instruction. Within the first three weeks of classroom observations of the main
study they continued to be suitable, and were therefore retained in their original form.

(1) (CP) Concept Presentation: The instructor develops or further explains
concepts. This presentation might be in a general form, or might also be in
conjunction with a specific example. Presentation of proofs is included in this
category.

(2) (EX) Example: The instructor works through an example exercise problem to
exemplify an idea, demonstrate a calculation, or solve a multistep problem.

(3) (O) Other: This includes administrative details such as collecting or handing
back assignments, determination of test dates, or other events that are not explicitly
instructional. Also included here are times when a class begins late or finishes
carly.

Language (Written or Spoken)

Codes were entered in the Spoken Language column only if the spoken language of
instruction diffcred from the written language. That is, if the spoken language was mostly
reading of what was written, then the spoken language was not coded. Two types of
categories werc recorded under the language columns. One category was Language Type,
while the other related to the Context of the material presented.

A. Language Type

(1) (TL) Technical Language: The language used is language generally accepted as
proper and correct by the mathematics community at large.

(2) (EL) Everyday Language: The language used is not generally recognized by
the mathematics community for use in unambiguous mathematical discourse. These
words and symbols might or might not be mathematical in nature and are often
words found in daily English language use.

The two language type categories emerged from the pilot study, and their
description continued to be suitable for classroom observations in the main study.

Examples from the pilot study of technical language use include: "as X increases without
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bound", "translate the function along the positive x axis", and "let L be a noavertical
straight line in the plane". Corresponding examples of everyday language arc: "as x gets
very, very big", "shift the function to the right", and "let's look at a line L that doesn't go
straight up and down".

B. Context

(1) (MC) Mathematical Context: The circumstances of the instruction arc
mathematical in nature and this is made explicit through the language used.

(2) (PC) Physical Context: The circumstances of the instruction refer to or usc
sensory-motor experiences of the world. Included here are graphs or diagrams,
and mention of physical objects such as cars or hills.

(3) (CF) Context Free: The instruction is rule-governed, without reference to the
origin of the rules.

The Context category was included under the language column because itis through
association with preceding and following language (words and symbols) that the meaning
of an instructional incident is constructed. Reliability on the part of the researcher for
designation of an event as displaying Physical Context (PC) was necessarily high. This is
because reference to or use of sensory-motor experiences was necessarily explicit. In
terms of designation of an event as either Mathematical Context (MC) or Context Free
(CF), reliability was established by the researcher designating an event as displaying a
Mathematical Context (MC) only if the instruction explicitly stated what mathematics
concept or concepts were involved. Otherwise, the Context Free (CF) code was entered on
the summary sheet.

On a more general level, reliability of the researcher's categorization of classroom
observations was established in threec ways. First, the sequence of classroom observations
(Gumma College, Alpha University, Beta College, Gamma College, Alpha University) was
such that the researcher constantly compared observation categorizations with previous
ones from a different institution. Second, for the first eight weeks of obscrvations, beside
a code entered on a summary sheet, the researcher entered a short reason for the choice of
that code. Third, whenever the researcher encountered difficulty in the determination of the
appropriate category she examined previous observation notes and corresponding summary
sheets for similar circumstances. The decision made was therefore consistent with
previous decisions.

At this point it must be noted that according to constructivism it cannot be assumed
that students were constructing tn- same contexts as those the researcher interpreted as
being explicit in the instructional event. The researcher recorded if the instruction explicitly
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displayed circumstances of a particular context. What cc.. ext individual students inferred
1s not known.

Conviclions (Written or Spoken)

Four categories were used here, dependent upon how the instruction validated its
statements and decisions. As with the Language columns, entries were made under the
spoken column only when what was spoken was more than a reading of what was written.

(1) (IM) Internal/Mathematics: Truth and validity claims are made in reference to
previously established mathematics, or thrcugh logical necessity.

(2) (IE) Internal/Experience: Truth and validity claims are made in veference to
sensory-motor expericnces. These references include use of graphs or diagrams,
and referencc to physical objects.

(3) (ER) External/Rules: A rule or rules are followed that either have not been
previously justified or are not nsed with justification as to the choice of particular
rules.

(4) (EO) External/Other: Truth and validity claims are made without any source
being given, or the source acknowledged is the textbook, lab manual, or other
document.

As with the context category, it must be noted here that the researcher recorded if
the instruction explicitly displayed circumstances from which a particular source of
conviction could be claimed. What sense students actually made out of the events is not
known. For example, although instruction might have justified particular _.ocedures
through reference to previously taught mathematics, an individual student might easily have
interpreied the entire occurrence as "rules" to be followed to get "correct” answers. The
internal-external designation was used to distinguish between sources of conviction which
might guide a student towards seeing himself or herself as a source of the determination of
truth, versus sources of conviction which emphasize rules or external authority.

Other Observations
Additional notes from the classroom observation fieldnotes (those preceded by a
hyphen) were recorded in this column if they were indicative of frequently occurring events

in that classroom. A primary item entered was a note of when a student either asked or
answered a question.
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After the school term was completed the data on the Classroom Observation
Summary Sheets was used for further instructional analysis. These analyzes ar aneir
results will be discussed in Chapter 4.

Textbook and Exercise Assignment Analysis

For each of the three courses, textbook and exercise assignment analysis involved
exercise assignments, and sections of the textbook covered in the course. At Alpha
University sections of the lab manual covered in the coursc werce also analyzed. Thus,
whenever the "textbooks" are referred to, the Alpha University lab manual is implicitly
included in the reference.

The textbook and excrcise assignments were examined to further complete the
descripions of the instructional events obtained from the classroom obscrvations. Thus,
relative time spent on concept development and use of examples, language use and sources
of conviction were variables focused on in the generation of textbook and exercise
assignment analysis typologies.

The textbook and exercise analysis procedures werc an adaptation o written
documents of systemic classroom observation techniques (Croll, 1986). Thus, the
textbook and exercise assignment analyses involved gencration of wcll-defined
categorization variables appropriate to textbook content. According to Borg (1963),
"content analysis is a research technique for the objective, systemic, and quanttative
description of the manifest content of communication" (p.256). It must involve specific
and well-defined categories so that "different researchers of comparable skill could usc the
procedures independently and obtain very similar results" (p.257).

To allow as much uniformity as possible between the textbook, exercisc assignment
and classroom observation analysis categories, the Textbook Analysis Summary Sheet was
designed (see Appendix N). Textbook analysis could not however be divided into two
minute time intervals. Instead, the material within a section of the text was divided
according to Events (as outlined below), regardless of the written length of the event The
Language and Convictions variables (columns) on the Textbook Analysis Summary Shect
are defined similarly to the same variables on the Classroom Observation Summary Sheet.
However, since all material presented in the textbooks was written, the "spoken" columns
were eliminated. The Event and Type variables (columns) are explained below. A
summary of descriptions of the variables associated with the Textbook Analysis Summary
Sheet can be found in Appendix F.
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Event
Onc of three categories was recorded in this column, two of which are the same
categorics as found in the corresponding column of the Classroom Observation Summary
Sheet. The three categories are:
(1) (CP) Concept Presentation: The text material develops or further explains
concepts. This might be in a general form, or in conjunction with a specific
example. Presentation of proofs is included in this category.
(2) (EX) Example: The text material is an example exercise problem.
(3) (EXC) Exercise: The text material is an exercise for the student to work
through on her or his own.

If certain exercises were explicitly assigned to students in the course syllabus or by
the instructor, then only those exercises were analyzed. Otherwise, all exercises in that
section of the textbook were considered. Exercises assigned to the students that were not
in the textbook were also examined. Exercise events were not analyzed for language use
and sources of conviclion because language context and sources of conviction could not be
determined independently of a solution to an exercise.

Language
These definitions are direct translations from the corresponding definitions for the
Classroom Observation Summary Sheet.
A. Language Type
(1) (TL) Technical Language : The language used is language generally accepted
as proper and correct by the mathematics community at large.
(2) (EL) Everyday Language : The language used is not generally recognized by
the mathematics community for use in unambiguous mathematical discourse. These
words and symbols might or might not be mathematical in nature and are often
words found in daily English language use.
B. Context
(1) (MC) Mathematical Context: The language of the textbook event is explicitly
mathematical in nature.
(2) (PC) Physical Coniext: The textbook event refers to or uses sensory-motor
experiences of the world. Included here are graphs or diagrams, or mention of
physical objects.
(3) (CF) Context Free: The textbook event states rules, ideas, or procedures
without reference to their origin.



Sources of Conviction
The sources of conviction catecgories arc translaitons from those of the Classoom
Observation Summary Sheet. However, the Externai-Cther (EO) category was dropped
because it did not apply to the textbook presentations.
(1) (IM) Internal-Mathematics: Truth and validity claims are made in refereace to
previously established mathematics, or through logical necessity.
(2) (IE) Internal-Experience: Truth and validity claims are made in refereme to
sensory-motor experiences. This includes usc of graphs or diagrams, and reference
to physical objects.
(3) (ER) External-Rules: A rule or rules are followed that cither have notbeen

previously justified, or are not used with justification as to thc choice of the
particular rule or rules.

Type

Entries were made in this column only when cither the Example (EX) o the
Exercise (EXC) category was entered in the Event column. Analysis of the examples and
exercises was approached from a constructivist perspective in terms of examining how the
examples and exercises might affect students' construction of conceptualizations. An
analysis of mathematical tasks as being either routine or nonroutine was initially chosen as
a possible categorization scheme for examples and exercises (Christianscn & Walher,
1986). This scheme places tasks within the following two-column catcgorization:

Routine tasks (exercises) Nonroutine tasks (probicms)
Recognition cxercises Process problems
Algorithmic exercises Open search problems
Application exercises Problem situations

(word problems)

Christiansen and Walther define routine tasks as tasks foi which a procedure
leading to a solution is known. Nonroutine tasks are tasks for which a procedure leading
to a solution is not known. A necessary component of a nonroutine task is therefcre a
degree of uncertainty or undecidedness as to a procedure for its solution. According to
Christiansen and Walther, both routine and nonroutine tasks arc important for mathcmatics
instruction. Performance of routine tasks is a means of consolidating knowledge and
skills, while nonroutine tasks provide for the following:



- optimal conditions for a cognitive development in

which:

- new subjective knowledge is constructed by the individual;

- items of earlier acquired knowledge (information like awareness) are recognized
and evaluated by the individual - in new perspectives, with new potentials, in new
mutual relationships - and are reorganized and restructured into an enlarged and
consolidated body of knowledge (p.275).

Although these notions reflect constructivist views in their emphasis on individual
construction of knowledge, the researcher did not initially know if Christiansen and
Walther's two-column categorization scheme could be directly applied to the textbook and
excrcise analyses of this study. However, to attempt to apply this scheme to textbook
examples, the following question was asked of each example: "Could students use this
example to learn by imitation?" That is, could students duplicate the steps followed in the
example to work through a variety of exercise questions similar to the example? Asking
thesc questions proved useful for designating an example as either routine or nonroutine.
However, to reflect the nature of the question the researcher asked of each example, it was
decided to name the categories "Imitation" and "Non-imitation”.

Difficulties arose in further attempts to use Christiansen and Walther's two-column
scheme. The subcategories of the two columns were not appropriate for the calculus
textbooks examined. Thus, through examination of the examples in these textbooks the
researcher developed a new sct of subcategories. These will be presented and discussed in
Chapter 4.

Attempts to use Christiansen and Walther's scheme for exercise examination also
encountered difficulties. Initially, the following question was asked of each exercise:
"Could students do this ¢xercise by recall, or by simply following rules or procedures?"
The researcher found this quistion could not be answered for ali exercises. Thus,
Christiansen and Walther's scheme was not adequate for an analysis of calculus exercises.
The adapted scheme that emerged in its place as the researcher continued examination of the
exercises is given in Chapter 4. This scheme involves three main categories and a number
of subcategories. Some of the subcategories correspond to those of Christiansen and
Walther's scheme, while others emerged during the analysis process. Thus, the textbook
analyses combined inductive, typological procedures (Goetz & LeCompte, 1984) with
systemic techniques (Croll, 1986).
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Instructor Interviews

An interview was conducted with each instructor to obtain articulation of the
philosophy of each instructional approach, as well as each instructor's interpretation of the
instructional approach. These were respondent interviews in that interview topics were
~tablished by the researcher before the interviews took placc (Powncy & Watts, 1987).
The "locus of control" for what happened throughout the interview was therefore the
rescarcher's responsibility. The instructor interviews were dene to provide data on
instructors' views of factors behind what occurred in each instructional sctting. The
interviews focused on an instructor's past and present teaching expericnces, time made
available outside class for interactions with students, beliefs about tcaching and Icarning,
perceptions of calculus students' abilities and what motivates them, impressions about the
calculus course and textbook, and bases for decision making on instructional cmphascs and
strategies. The specific questions asked in the interviews can be found in Appendix G.
These questions served as a guideline for the interviews. Supplementary qucstions asking
for expansion and clarification then arose from an instructor's responscs.

The interviews were done during the first three weeks of October. This time period
was chosen because it gave the researcher exposure to the three calculus courscs before the
interviews occurred. The researcher was therefore enabled in asking questions within an
appropriate context. For example, by being familiar with an instructor's tcaching style the
researcher was able to ask specific questions about why the instructor chose to reguladty
proceed in particular ways. The October time period was also chosen because it gave the
instructor opportunity to become comfortable with the researcher attendin g and observing
classes. At the time of the interview the researcher was thercfore not a stranger to the
1nstructor.

The interviews were conducted in the instructor's office at a time convenient to the
instructor. The instructors were asked all the questions on the Instructor Interview
Question sheet, generally in the order they appear on this shect (see Appendix G). An
exception to this order was that the instructor at the university was not asked question 5
under the Teaching Calculus section. Question 5 did not pertain 1o his situation. The
interviews were 60 to 90 minutes in length. They were recorded on audio cassette anpd
transcribed after the interview.

After the interviews were transcribed, transcriptions were given to the
corresponding instructor in order that he might clarify or correct anything said he felt was
inappropriate or inaccurate. The researcher then used the transcriptions in writing
descriptions of each instructional setting. These descriptions can be found in Chapter 4.
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Student Interviews

Clinical interviews were done with 5 or 6 students 1n each class. Four complete
interview transcripts are in Appendix T as samples of the format of the interviews and the
nature of students' responses. The interviews were done to address the first three research
arcas related to students' language use, sources of conviction and manner of construction
of conceptualizations. As well, the student interviews aided examination of the fourth
rescarch area, the impact of instruction upon student learming. As outlined by Ginsburg
(1981), clinical task-based interviews are appropriate for psychological research on
mathematical thinking because they allow discovery and identification of cognitive
structures and thought patterns, along with evaluation of competence. To accomplish this,
Ginsburg outlines the use of open-ended as well as relatively focussed tasks. These tasks
include written or verbal mathematical questions to be worked through, and might also
include concrete materniuls to be manipulated. Both types of tasks were included in the
problem set for this study. Students were therefore asked to identify, describe, interpret,
explain, or apply limit and derivative concepts. The initial written calculus problems (see
Appendix H) given to students in the interviews were standardized (i.e. the same for all
students), and subsequent written and oral questions were contingent upon previous
responses.

The interview interaction was therefore characterized by the researcher using
flexability in the quesuoning process. This methodology aliowed the researcher 1o probe a
student’s responses for insights into the student's conceptualizations, language use and
sources of conviction. The probing was done through active listening, encouraging
vocalization, asking for clarification, and requesting reflection (Clement & Konold, 1989;
also see Appendix I). Silence or repetition of a student's words were also used 10 probe
students' responses. Therefore, a feature of the probing techniques was that they did not
harass interviewees, but gave them sufficient time and opportunity to fully answer
problems and related questions (Powney & Watts, 1987).

The interviews were primarily focused on students' responses to calculus
problems, but also incorporated relevant personal interview questions. The personal
information requested included: mathematics background and grades, perceived difficulty
of mathematics ir: high school and in calculus, amount of time spent daily outside class
studying calculus, reasons for taking a calculus course, career plans, attitudes towards
calculus, perceptions about the ease and difficulty of particular calculus topics, perceptions
about the use of language and mathematical notation in learning calculus, ways of
determining "comectness”, and exposure to calculus in other courses. The set of questions
asked of the students can be found in Appendix J. Thus, the interviews provided extensive
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performance examples and detailed accounts of students working with calculus problems.
They formed the data base ror analysis of students' language use and sources of
conviclion.

The calculus problems of the interviews can be found in Appendix H. This
problem set was selected to provide a range of mathematical representations Within which
students could work, including words, symbols, graphs, and applications. The problem
sct was also designed to provide opportunities for translation between these various forms
of mathematical representation. For example, Problem 12 required students to interpret and
translate marhematical language (words and symbols) into a graphical representation.

The interview problems were also selected to include both "skill” and "concept”
questions. The primary aim of skill questions (Problems 3a, 7 and 10) was the assessment
of a student's basic skills for limit evaluation and differentiation. The remaining problems
(concept problems) were aimed at examining students' conceptualizatieas related to the
limit and derivative. Thesc problems required the student to recognize, describe, explain or
translale to another representation situations related to limit and derivative concepts. A
range of situations within which to examine students' language use and sources of
conviclion was therefore provi-ied.

The problem set was ordered so that problems were interspersed with respect 1o
their emphasis on concepts and skills, and emphasis on mathematical representations using
words, symbols, graphs or applications. Problems 2, 34, 3b, und 8 euch have two
versions because the infinitesimal approach to instruction used at Garma College uses
nonstandard terminology and nowation for the limit concept. The second version of these
problems was the question given to students at this institution.

Except for Problems 1 and 12, the problem sct was sclected from a larger sct of
clinical interview problems that had been field-tested in the pilot study. Problems were
eliminated from the larger set for the following reasons: (1) their solutions were 100
lengthy to incorporate into a one hour interview, (2) they were too difficult for any of the
pilot study interview students 10 begin 1o answer or to answer completely, (3) their
wording or format caused confusion, and (4) they were not found to be useful for probing
students' calculus ideas. The rationale for each problem chosen for the final problem set
will now be discussed.

Problem 1: .
1. A fnend of yours who knows nothing about calculus is wondering what it is all
about. What would you say to your friend to explain what calculus is all about?
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Problem 1 was aimed at examining students’ general ideas about what calculus is all
about. Their responses to this question were of interest because what students see as the
general nature of calculus is likely to reflect their sources of conviction related to calculus.
For example, a student who secs calculus as a collection of rules and procedures is likely to
sce rules and authority as a main source of truth. In comparison, a student who grasps
underlying principles and purposes is likely to see himself or herself as a source of
conviction.

Problem 2:
2. For cach of the following sequences of numbers, decide whether the sequence has a
Iimit. If so, what is this number?

1 1 1 1 1

L. 16 100 1000 10000 100000 °

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999, . ..

(Gamma College)
2. For each of the following sequences of numbers, decide whether the sequence
rounds off to a particular number. If so, what is this number?

A 1 1 1
* TO* T00* TOOO0 * T0000 T0G00O0 °

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999, . ..

Problem 2 was designed so that students could work with the limit concept in a
situation (sequences) that was familiar to them from pre-calculus (high school)
mathcematics. The two sequences of this problem were chosen so that their patterns could
be casily recognized. The interview was therefore enabled in a focus on the limit concept,
rather than determination of a number pattern. Since this latter situation was a diff iculty

.+ ~ome of the scquences that had been used in the pilot study, precautions were taken to
.} it in the main study.

One sequence vvas given in decimal form because unending decimal representations
constitute a key componcent of the infinitesimal approach to instruction used at Gamma
College. Students at this institution are introduced to the hyperreal number system, and
infinite decimal representations are used as a means of becoming familiar with this system.
Both the language and notation used in the hyperreal number system differ from that used
in the real number system. For example, the terms "infinitesimal” and "infinite" numbers
in the hyperreal number system are used and given representations, respectively, as:



b= 0.00...01,000...
I=1.00...0
The comma in this notation is used as a marker of N, deamal places, where Ny is an
infinite even integer (the validity of this definition has previously been established at this
point in instruction).

The two sequences were also chosen because they differed from cach other in that
onc approached its limit from below, while the other approached its limit from above. It
was revealed in the interview responses that a potentially more informative choice in terms
of students' conceptualizations of the limit would have been a sequence that actually

attained its limit. An example of such a sequenceis: 1,2,3.4,4,4,4, ... .

Probicm 3:
3.  (a) Evaluate the foliowing:

lim x4 + 4
5x—0 X3 -x+ 5

(b) What does "limit" mean to you?

(Gamma College)
3. (a) Round off the following:
M4 + 4
M3-M+ 5

(b) What does "round off" mecan to you?

Problem 3a was designed primarily as a skill question on fimit evaluanon, a skill
emphasized in introductory calculus. The particular limit used was chosen because the
value of its limit is not finite. This feature made it different from the previous two limits of
Problem 2. It also gave opportunity for the interview to focus on ideas related to infinity
and relative size, prevalent notions in calculus.

Problem 3b was aimed at investigation of students' conceptualizations of the limit
concept. It was included on the same page as Problem 2a to provide students with a
context within which they might choose to answer the question. Problem 2 and a students
written response to it were also made available to the student while he or she responded to
Problem 3b. If students did not say anything in relation to limits beyond the context of
Problems 2 and 3a, then the rescarcher probed by asking such questions as: Can you draw

a graph or picture of a limit/rounding off situation? Do you have any other cxamples of
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limits/rounding off? What is the purposc of taking a limivrounding off? What else can you

say to explain limits/rounding of{?

Problem 4:
x2-5x+6
X - 2

at x=27

4.  What can you say about the function y =

Problem 4 was designed 1o give students opportunity to apply limitsin a situation
that did not explicitly ask for limit evaluation. The function of Problem 4 was chosen for
its interesting features, including: evaluating its limit as X approaches 2 yields an
indeterminate form, its equation might lead one to think the corresponding graph is
parabolic or has a vertical asymptote, the limit as X approaches 2 is ecasily evaluated by

factoring the numecrator, and the graph is a straight line witha "hole" at x=2.
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Problem 5:
5. For each function given below, determine if it 1$ continuous or discontinuous.
Give reasons for your answer.
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Figure 1. Problem Statement for Clinical Interview Problem §
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Problem 5 was adapted from one of the clinical interview questions used by Orton
(1983b). Orton found this question revealed a variety of student ideas related to continuity.
The range of responses given by students in the pilot study revealed similar findings.
However, the third and fourth functions of the question were altered slightly from the pilot
study. The change was made to avoid confusions that arose in distinguishing between the
graphs and the axes. Thus, the third and fourth functions were translated away from the
origin, and the two segments of the fourth function were translated away from the axes.
Another reason for the choice of Problem 5 was that it provided opportunity for
students to work with a limit related concept (continuity) in a visual (graphical) as well as
svmbolic environment. This also gave the interviewer opportunity to probe aspects of a
student's continuity conceptualizations related to physical (visual), verbal, and symbolic

representations.

Problem 6:

6. A friend of yours who recently completed high school mathematics is wondering
what calculus is all about because he/st.c has heard you frequently usc the word
nderivative”. What short explanations, sentences, or examples would you use ©
explain to your friend what the "derivative" is all about?

Problem 6 was similar to Problem 3b in that its purpose was the investigation of
students' conceptualizations on a broad level. In this instance the concept was the
derivative. The question was intentionally worded to leave it open-ended. Students were
therefore able to respond in any context (symbolic, graphical, verbal, or physical). Aftera
student's initial response the researcher asked for examples or explanations of the
derivative in contexts the student had not yet given. Thus, each student was specifically
asked to explain the derivative verbally, svmbolically, graphically and physically (i.e.
using a real world application or cxample).

Problem 7:
7. Find the derivative of each of the following:
x3 + L
y = >
T T X +3x24+7

F() = (22 +31-2)10(3¢ 14 - 9)7

Problem 7 was primarily a skill question and was aimed at determining if a student
had mastered the range of derivative rules taught in introductory calculus. The two
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functions were chosen to require use of all the standard derivative rules (derivative of a
constant, derivative of a function multiplied by a constant, power rule, sum rule, product
rule, quotient rule and chain rule). The two functions were intentionally technically
complex in that taking the derivative of each involved the use of several rules. Students
who experienced difficulties handling so many rules simultancously were given
opportunity to work with just a portion of a function. For example, a student was given
Just the numerator of the first function to differentiate, or just the first parentheses and its
exponent of the second function. A student's ideas related to the derivative were not
probed in this question, except in relation to the chain rule. Students who spoke of their
use of the chain rule were asked to explain why the rule functions as it does.

Problem 8:
8.  What interpretations do vou have for the expression below?
lim _ f(x+h) - {(x)
h—0 — h
(Gamma College)

8.  Whatinterpretations do you have for the expression below?

dy _ F(x+dx) - -
dx ~ dx

P
A

Problem 8 was aimed at the investigation of students' interpretations of the formal,
symbolic definition of the derivative. It was only asked of students whose response o
Problem 6 did not include explanation of the derivative in terms of its symbolic definition.



Problem 9:
9. The graph of y = F(x) is given below. At which points docs the function not have a

derivative? Why?

y= Fx) Y
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Figure 2. Problem Statement for Clinical Interview Problem 9

Problem 9 was designed to explore students' graphical interpretations of the
derivative. Of particular interest were their reasons for determination of points where a
derivative does not exist. Students who were able to give valid reasons for the derivative
not to exist at particular points were then asked to justify their claims algebraically or

symbolically.

Problem 10:
10. Find the slope of the tangent line to the curve X2y +y2-3x=4
at the point  (0,-2).
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Problem 10 was a skill question to assess a student's ability to both recognize a
need for and carry out implicit differentiation. A student's conceptualizations of the
derivative were not probed in this question, except to determince if he or she connected the
notions of slope and derivative.

Problem 11:

11. The number of elk in a national park at the beginning of cach vear is represented by
the function y = E(t) as shown on the graph below. The number of wolves is
represented by the function y = W(t), also graphed below.

N
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o
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n
o
=
e
o

e r
7 8
19680 1961 19082 1983 1984 19835 19806 19067 19008 1909

(a) At what exact point in time was the number of ¢lk increasing most rapidly?

(b) During what time period was the rate of change of the number of elk decreasing?

(c) If you are told that for O <t <4 (ie. from 1980 to 1984) the equation for
y=g(t) is W(1) = -10013+ 1600t + 500 (t mecasured in years), how would you
determine all critical points of W?

(d) How would you use the critical points found in part (¢) to determine the local and
global extrema of W?

(e) At what point or points in time is the number of wolves not changing?

Figure 3. Problem Statement for Clinical Interview Problem 11
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Problem 11 was designed to have students work with the derivative concept in a
rcal world context. Parts (a), (b) and (¢) involved concurrent interpretation of words and
graphs, while parts (¢) and (d) relied on use of mathematical symbols. Parts (c) and (d)
were not included as part of the question set after the first three interviews because it was
found that the interviews were longer than had been intended and communicated to the
student volunteers. Thus, parts (c¢) and (d) are not included in the results discussed in
Chapter 4.

Problem 12:
12.  On the axes given below, sketch the graph of a function with the following
propertics:

(a) y coordinatc of -3 when X = -8
(b) derivative of 2 when x=-§

(¢) local maximum when x =-1

(d) derivative of O when x=2

(e) slopcof 1 when x=4

() when x =7, a point where the function is continuous but not differentiable

(g) f(x) <0 and {"(x) >0 when x>8

Problem 12 was designed to investigate students' abilities to interpret and translate
into graphical representations mathematical words and symbols related to the derivative.
Some students were asked tc do part (g) separately on the reverse side of the page without
the condition x > 8. This alteration was due to insufficient space on the axes provided.

The interviews were done with S or 6 students from each class. They were
conducted in the last 3 weeks of the school term, after all units on the limit and derivative
were completed. The interviewer asked the personal interview questions orally, although
students were simultaneously given a typed version of the question set (see Appendix J).
The clinical interview probleins were given to students typed on separate sheets of paper.
The exception to this format was with Problems 3a and 3b. These problems were
presented on the same page as explained under the rationale for Problem 3b. Students were
asked to respond in writing and orally to the problems. After their initial responses they
were asked probing questions (see Appendix I).

Interviews lasted between one and two hours. They were conducted at a time
convenicnt to the student, and were done in a classroom at the student's university or
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college. They werc audio recorded and later transcribed. Students' related written
calculations and responses were retained by the researcher as part of the data basc. One to
two weeks after the initial interview a short follow-up interview was conducted with most
of the interview students. Follow-up interviews lasted between 15 and 30 minutes. Their
main purpose was to have a student clarify or expand upon responscs from the first
interview. Frequently during these follow-up interviews the rescarcher also asked
additional clinical or personal interview questions to confirm or sicny hypotheses generated
from the first interview.

In relation to interviews Powney & Watts (1987) note the following:

... aninterview is a contrived social situation with an asymmetrical relationship
between the interviewer and interviewee, . . . to some extent all interviews are secn
as threcatening by those being interviewed (p.44).

It is therefore important that an interviewer establish a good relationship between herself or
himself and the interviewer. If the interviewer does not gain the interviewee's confidence,
both the validity and reliability of an interviewee's responses will be thrcatened.
Establishment of a good relationship between the researcher and the student interviewees of
this study was aided by the fact the students interviewed were all volunicers, and the
interviewer was not involved in determination of students' grades. As wecll, the rescarcher
explained verbally to each class the nature and purpose of the intervicws.

Students were told the interviews would involve working through about 12 calculus
problems, some similar to exercises they had done in their course, and others aimed at
explanation of basic calculus ideas. They were told that the researcher's main interest was
to study students leaming calculus, and how various factors influence lcarning. It was
emphasized to them that the focus of the interview analysis would not be upon what a
student did right or wrong. Rather, the focus would be on what a student did and what his
or her reasonings were. Students were reminded that participation in the rescarch would
not figure in the determination of grades. They were also told the questions were aimed at
gathering information on students' experiences in their calculus courses in terms of their
mathematics background, study practices, attitudes towards calculus, and impressions
about what either helped or hindered their leaming.

It was also explained to students that interviews would be tape recorded and later
transcribed, and that their written work would be retained by the researcher. It was
emphasized to them that confidentiality would be maintained and their names would be
changed in any research reports. The researcher also made clear to students that since she
wished to interview a range of students, students achieving at all levels were desired. The
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rescarcher repeated her request for volunteers until a sufficient number and range were
obtained from each class. However, five of the six interview students at one of the
colleges were from a different section of the course than that the researcher observed. This
other scction was taught by the same instructor, using the same syllabus, textbook and
lecture notes.

In order to build rapport with student interviewees before the clinical problem set,
the rescarcher decided to begin the interviews with the personal interview questions.
However, this order was reversed after the first interview (with Leanne) because the
rescarcher found it difficult to turn the focus of the interview away from discussion and
onto working through problems. The difficulty did not occur once the order was switched.
Since the switch encouraged students io already be thinking about calculus when asked the
personal interview questions, the change in order gave them opportunity to relate
experiences in their course to experiences doing the clinical interview problems.

Consecquently, as more interviews were done, the researcher frequently ir.tegrated
personal interview problems into discussions of the clinical interview exercises. An
example of this occurrence is given below. It is taken from the interview with Betty, and
integrates the personal interview question related to language into the clinical portion of the
interview.

Betty: Yeah. If it was like ah, some way it would be related to the math. Like

they make some words that are totally awkward. ... It makes it harder. Like this

is an endpoint. You understand that. ... Or this would be like a local maximum,
or this one would be a local minimum. Words that make sense.

Interviewer: Well what can you say in general about math, either the terminology
or the symbols, or the way things are described? How do you find the language
either helps or hinders you? You've just mentioned one thing.

Betty: Another thing is the symbols. For instance, like symbols like this [an
integral symbol].

Interviewer: The integral one.

Betty: Yeah. And then symbols like this confuse me [summation notation].
Interviewer: Why do they confuse you?

Betty: Causc like when we have an equation and we have to go like this, like we

have to put it in this. I don't understand it.

The increasing integration of personal interview questions and clinical problems
does not significantly affect reliability of the interview process because students were asked
the same set of questions. Although it allowed the researcher to delve more fully into a
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student's ideas and expericnces, the difference in order was compensated for by the usc of
follow-up interviews. Components of any interview that had not been pursucd adequately
by the rescar-cher were given additional time in the follow-up interview.

The onl, other switch in order from that initially intended was with Problem 1 of
the clinical interview problems. The first two students interviewed (Leanne and Sally)
found this question difficult to answer. They had very littlc to say, and this lack of words
appeared 1¢ make them uneasy. Conscquently, to allow students to begin the interviews
with what thiey would perceive as success, Problem 1 was moved to follow Problem 12.
When this order was followed for subsequent interviews students appeared to be more
comfortable during the initial few minutes of the interview. To allow Leanne and Sally fair
opportunity to answer this question they were asked it again in the follow-up intervicws.

Before beginning the clinical interview problems the rescarcher outlined the format
that would be foliowed. Students were asked to respond to the writicn problems in
whatever form they were comfortable with, whether that be writing, talking, writing and
talking simuitaneously, writing followed by talking or vice versa, or writing and talking
interchangeabiy. They were encouraged to explain what they were doing, and were told
the interviewer would interject along the way with questions asking them i - jorify or
exiend what they were doing. The interviewees were also told the interview ¢t would
occasionally give them short problem tasks related to the initial written problci:. In
addition, it was emphasized to the students that it was both acceptable and worthwhile for
them to identify when they were contused by problems, or uncertain as to how to proceed.
As well, they were reminded that confidentiality would be maintained.

Analysis of the student interviews was in terms of their language use and sources of
conviction. The researcher initially intended the analysis to proceed according to the
dimensions of language use and sources o/ conviction outlined below. These dimensions
were developed from the pilot study research.

Language Use
1. Context (referring to the circumstances within which language is uscd)
A. Context Related
Words or symbols used to orient thought or action to features of an
environment.
(a) Physical Environment: the referents of the words or symbols are
objects or processes of sensory-motor experiences.
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(b) Mathematical Environment: the referenis of the words or symbols are
objects or processes of a system of definitions, axioms, theorems and rules

of inference.

B. Context Free
Words or symbols used as rules, independent of features of a physical or

mathematical environment.

2. Type (refermring to the nature of the language used)
A. Technical
Usc of "correct” mathematical terminology or symbols in terms of what is
accepted by the mathematicai community at large
B. Fveryday
Usc of words or symt 's not recognized by the mathematics community for

asc in unambigucus nathematical discourse.

The following chart outlines possible categories of langiiage use according 1o the

above dimensions. Examples of possible language use in cach category are given after it.

Context Free 1 i
Context Related Mathematical 1 v
Physical v vi
Technical Everyday

Figure 4. Language Use Categories
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Catecgony:

Im f(x+h) - f(x)

(1) A student savs a derivative is h—0 — K but 15 unable to relate this toa

physical or mathematical context. That is. the student sees this cxpression as a rule for
finding denvatives.

(11) A student says a derivative is "raie of change”, but is unable 1o explain what a rate of
change is.

(i) A student explains the definition of dernivative in terms of measurement of
instantancous rate of change of the values of a function. This 1s done while using words

and symbols such as: f(x+h), average rate of chuange. or imitas h approaches zero.

(1v) A student explains the definition of the derivative in terms of a rate of change, using
words and symbols such as: when vou plug in x values right near this value, or how fast
the v value changes.

(v) A student draws a graph of a function, marks points, and draw s vanous secant hines 1o
explain how the derivative 1s the limit of the stopes of a series of secant hines. This 1s done
in relation to words, phrases and symbolic expressions such as as v approaches v,

£%;) - £(x) )

point Q; approaches point P, - x  Or the slope of the secant be the ratio
Bl I

of height 1o base in a nght-angled triangle.

(vi) The student draws a graph asin (v), but the words and symbols used are such as: as
this point gets closer and closer to here, the secant will moye down and 1ts slope will get
closer to the slope of the tangent line.



Sources of Conviclion

A. External
Textbook, teacher or other individuals, memorized mathematical definitions, rules

or algonthms, or no convictions.

B. Internal

Experience of the world, personal knowledge of mathematics, or personal beliefs.

Examples of what a student might say for ecach of these categories are:

A. External

Textbook: The book did an example almost like this so ! £ Howed the format, but |
don't know why 1t works.

Teacher or Other Individual:  We learned in the lab to follow this sequence of
steps. 1'm not sure why, but [ know it works.

Definitions, Rules or Algorithms: Because I know that whenever you have a v
vou have to muluply by dy by dx.

No convictions: 1 don't know why. | just do it that way.

B. Internal

Experience of the World: As you reach the top of a hill you'll quit climbing up and
things will {Tatten out, so the slope must be zero.

Mathematical Knowledge: If a funcuien is continuous and has a negative valuc at 2
and a positive value at 3, then it must cross the X-uxis between 2 and 3.
Beliefs: 1 think it has something to do with th > way the curve changes the way it

bends. I'm not sure of the details, but 1 know that's the way it goes.

During extensive examination of the interview transcripts of the main study
difficulties arose with the reliability of the context category for language use, and also with
the distinction between external and intemal sources of conviction. These difficulties are
discussed in Chapter 4, alone with the analysis scheme that emerged in its place and results
of the final analysis.



4. RESULTS OF THE STUDY

A. Introduction

The purpose of this study was to investigate the nature and role of undergraduate
calculus students' language use. sources of conviction and manner of construction of
calculus conceptualizations. The investigations were undertaken with students from three
different post-secondary institutions. The institutions used threc different approaches to
calculus instruction: technique-oricnted, concepts-first and infinitesimal instruction.

In the first section of this chapter data from the classroom observations, textbooks
and cxercise assignments, instructor interviews and student questionnaires are used to
describe each of the three calculus classes in terms of course formats and content, the
nature of the three approaches 1o instruction, and student backgrounds. The descripuions
are aimed at addressing the fourth and fifth arcas of inquiry of this study, the nature of
instructional events as delivered to students and the potential impact of instruction on
student learning. In the next section results from the systeraic classroom observation and
textbook and exercise assignments analyses are presented. These activities are also aimed
at addressing the fourth and fifth arcas of inquiry. In the last sectuon findings from the
studen: interviews are presented and discussed. These findings address the first tour of the
rescarch chiectives, the nature and role of students' language usce and sources of
conviction, students’ manner of construction of conceptualizations. and the potential impact
of instruction on students' learning. Included in all sections are reports of analysis
categories that emerged as data was analyzed.

B. Research Setting Descriptions

In this section the calculus courses, instructional settings and student backgrounds
at the three post-secondary institutions are described. Descriptions are provided for cach of
the three instructional scttings in terms of the content and format of cach course, the nature
of cach instructor's teaching style and practices, and each instructor's impressions about,
and perceptions of introductory calculus and introductory calculus students. In the final
section, Class Backgrounds, student backgrounds in each class arc reported. Students'
mathematics and language backgrounds, major subject area, career plans, and attitudes
towards mathematics and calculus are reported. This information provides description of
the characteristics and similarities of the threc calculus classes. The descriptions are based
on data collected from observations, curriculum analyses, instructor intervizws, and
student questionnaires. The data used from the classroom observations are take 2 from the
Other Observations column of the Classroom Observation Sheet {sec Appendices C and D),
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and from specific instructional events recorded during classroom observations. The date of
oecurrence is indicated whenever specific instructional events are given. Data related to the
curriculum arc taken from the course outlines, textbook tables of contents, and specific
textbook prescentations.

The names of the institutions, Alpha University, Beta College and Gamma College,
are fictitious. The names of the instructors, Professors Alpha, Beta and Gamma, are also
pscudonyms. However, the people, places and situations are real, and care was taken to
describe them accurately. For reasons of confidentiality, the textbooks at the colleges and

the lab manual at the university are not specifically named.

’ntroductory Calculus Instruction at Alpha University

Alpha University is a large erban university enrolling approximately 25,000 full-
time students. The introductory calculus course at this university 1s representative of such
courses across North America. The instructor of the rescarch class studied at the
university, Professor Alpka, said this about his course:

The sorts of things that are t:ught and the order which they are taught is pretty well

set and has been for vears. And that's not jusi here. That's essenuially all across

North America. That this course is pretty much identical to calculus courses offered
to the general audience, science students say, in universitics all across Canada.

A standard textbook is used for this course, Single Variable Calculu: ! Stewart,

Brooks/Cole Publishing Company, 1987). The content in this text covered 1n inc course
includes: limits, introduction to the derivative, derivative rules, applications of the
derivative, the definite integral, techniques of integration, and applications of the integral.
The exact sections of the textbook that are covered in the course are in Appendix K. The
approach used at the university for introductory calculus inctruction is "traditional” in that
emphasis 1s put on learning techniques for differentiation, integration, graphing, and the
solution of problems. Much class time and textbook space is devoted to methodically
providing examples of such techniques. Concepts in the textbook arc genecrally briefly
introduced intuitively or informally, then tollowed by precise definitions, related theorems
and proofs, and numerous example problem solutions. More details on the textbook can be
found in a later section of this chapter. The approach to instruction used at Alpha
University will be referred to as "technique-oriented” instruction.

The calculus course at Alpha University is structured so that students meet with
their instructor for three 50 minute lecture hours per week. Professor Alpha's class was in
the mid-afternoon, and had an enroliment at the beginning of the school term of about 100
students. Students also have a fourth 50 minute lab session conducted by a graduate
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student in mathematics. Students arc enrolled in one of several lab sections, cach lab
section containing students from more than one lecture section. Enrollment in lab sections
is restricted to 25 to allow opportunity for students to ask questions of the lab instructor.

Labs were observed by the rescarcher on five occasions. Each lab observed was
conducted by a different individual. and for each of these labs the native language of the lab
instructor was not English. The lab instructors' verbal proficiency in English varied,
ranging from fluent and clearly spoken English, to communication that was hesitant and
spoken with an accent the rescarcher found difficult to understand. Labs were conducted in
regular classrooms, while lectures weic taught in a large, ticred lecture theater with a
seating capacity of about 200.

The format of cach lab observed was identical. Duning the first 20 1o 30 minutes
the lab instructor worked through several lab manual exercises on tiie board. These were
usually questions for which students requested solutions, but also included questions
chosen by the lab instructor. Fuiluwing the sample exercise solutions, the fast 20 10 30
minutes was spent completing a weekIv lab quiz that tested competence with culculus skills.
The quizzes were created by the individual lab tnstructors. Students also completed a one
hour lab exam in the last lab period of the term.

On a weekly basis students in the course were also given assignments to be
completed. These were graded by a marker (a graduate student in this case) and returned o
the students. Students completed 2 one hour midterm exam in late October. and a two hour

final exam in December. Final grades were determined as follows:

Final Exam YR
Midterm Exam 25
Excrcise Assignments 10%
Lab 157

The goals of introductory calculus at Alpha University, as interpreted by Professor
Alpha, focus on students' development of problem solving capacities. Professor Alpha
says the course aims at students learning to "use the central ideas of calculus to solve
problems.” He said the following with respect to the course:

Problem solving is the most important thing. That they can takc information
presented in the form of a few essential ideas and apply it to a problem that is
presented to them that they have not seen before. Using perhaps techniques that are
similar to ores they have seen beicre. Ah, but if they can solve new problems
using the ideas, then I would be ecstatic.
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Professor Alpha also noted that an aim of introductory calculus is that students learn
some of the essential ideas of calculus. In the following extract from the intervicew with
him, Professor Alpha outlines what he considers are these essential ideas:

I would hope that they would remember the definition of the derivative, what goes

into it in terms of graphing, perhaps using the derivative and tangent line. 1 hope

they'd remember something like the Fundamental Theorem of Calculus. And its

central role in connecting integration and differentiation. And the way it is used to
solve integration pr: ems.

In rclation to the introductory calculus course, Professor Alpha also said he has
always been "bothered” by the high failure rate. He sees "basic techniques in algebra and
trigonometry, and 1o somc cxient geometry”, as essential to mastering caiculus, vet finds
nio sicdepis entering umiversity are weak in these areas. He also sces calculus as a
" 21mg course”, and "quite different from . . . anything encountered in previous
expuisence in the cducational setting.” However, Professor Alpha is also of the viewpoint
that students can succeed in caleulus if they recognize they face a challenge that requires
them (¢ "buckic down® and "avail themselves of the various resources that are offered".
He stated this to the class at the start of the term, and also told them he belicves "most
deeply” that "anybody who s talented enough to get into university is talented enough to
pass that course [calculus]." Thus, the fact that so many people find calculus so difficuit is
a concern to Professor Alpha.

Professor Alpha has had over ZC years teaching experience at the post-secondary
level. During that time he has taught a variety of undergraduate calculus and algebra
courses, as well as a vanety of graduate mathematics courses. Professor Alpha says he
very much enjoys teaching and completed a doctoral degrce in mathematics because he
wanted to teach at a university. Although he doesn't always enjoy the "inevitable"
"administrative paper shuffling” "2quired in teaching, he cnjoys interactions with young
people. In relation to this interaction he commented: "Yeah, it's fun. It's fun." Professor
Alpha also commented thai teaching is rewarding. He finds "delight" in experiences such
as the one he described as follows:

I just enjoy finding out every once in awhile that somebody that you're teaching

likes what he sees and is excited by the ideas he's confronted. Is actually learning

something new and relevant to his or her life. And is excited by it. Those are very

special times and you don't run across them every time a student walks into your
office

Profess.st Alpha's lectures were very organized, with: pre-determined content and
ori: iwp. “i- halkboard notes were neat, written in a logical order, included titles for
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topics, definitions, examples, thcorems and proofs, and included underlining of key terms
in definitions. Professor Alpha's presentations were mathematically "clegant” in that they
presented i1deas concisely, using correct mathematical terminology and notation. He
gencerally presented ideas in a genceral form and followed this with spectfic examples. For
example, the concepts of maxima and minima were introduced with a statement of a
definition and followed by specific examples, as seen in the following rescarcher
observation notes:

(October 22
~ooaand Mimma
Defn. We say the funce 1+ - - 5solute maximum at ¢ if 1(¢) > () for all

* in the domain of .
Likewise absolute minin: |

- amples
(a) (x) = x2 has an absolute minimum at .

It takes its smmallest value ar zero.
. . . B 4
(b) f(x) = sin X has an absolute maximum at 5

Note the point at whicl it 1akes its absolute maximum does not have 1o be unique.
... lots of points . . . just has 10 1ake its greatest value.

Defn. We say f has a local maximum at ¢ if there is some open interval I about
c¢ such that f(¢c) > f(x) forail x in I

In some interval about ¢, [ ar ¢ is largest.
What we do for maximums we can do for minimums.

Likewisc local minimum.

Let me draw a function.
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Figure 5. Graph 1 Drawn by Professor Alpha on October 22

Various points on the graph are of interest in this discussion. Here's one. Here's
another. Where is the absolute maximum for 1his function?

Professor Alpha regularly proved theorems and often did so by proceeding logically
and algebraically to verify the conditions and conclusions of a theorem. For example,
proofs of derivative rules werc done this way. At other times Professor Alpha
demonstrated graphically or algebraically the plausibility of a thcorem. An cxample of this
is scen in the following excerpt from researcher obscrvation notes:

(Octaber 22

Theorem If { takes a local maximum at ¢ and f'(¢) exists, then
Can you tell me anything?

- §1 wiil equet its value at . At that point it's a line right across.

You mean horizontal.

- If ir's concave up or down al the place where it changes that could be a max or
min.

If the derivative is positive then the tangent looks like . . .
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Figure 6. Graph 2 Drawn by Professor Alpha on October 22

. .. then the graph has positive sluje.
... then there are going 10 be poix's ..: the right that have larger values.
If the tangent has negative slope then . . .

Figure 7. Graph 3 Drawn by Professor Alpha on October 22

Our intuitive idea that the tangent line has to be horizontal is correct.
then f'(¢c) = O.

Professor Alpha frequently did not speak while writing on the chalkboard, writing
definitions or statements of theorems, or working through the calculations of an cxample.
In addition, although he generally used precise ier:.  ology for both his written and oral
presentations, he also sometimes gave alternative verbal descriptions. This can be secn in
the above excerpt from observation notes, as well as in the following excerpt:

(October 29)

Rolle's Theorem

Suppose

(a) { is continuous on [a,b].
(b) f is differentiable in (a,b)
(o) f(a) = f(b)
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let's see if we can arrive at the result intuitively. . . . without lifting the chalk.
tangent line everywlhere.

The graph is smooth. No sharp corners or cusps.

Figure 8. Graph Drawn by Professor Alpha on September 29

Can yvou see any common features?
- There's a value in between.

I start out by going up. Can't do that indefinitely. There has 1o be a turnaround
point. What is true there?

- Tangent line is horizontal.

Or 10 say it another way, the derivative is zero. Let's check. I1's flat here.

Then for some ¢ on (a,b), f'(c) = O.

In addition to demonstrating how Professor Alpha did not exclusively use precise
mathematical terminology, this excerpt also demonstrates how at some point in his lectures
Professor Alpha gencrally incorporated student responses. Other examples of the
occurrence of students' responses arose from the following questions being asked of

students during lectures. Each example is taken from a different iecture, with the date
given in bruckets:

(September 12)
Any thoughis, say geometrically, on what sort of condition we can impose?

(September 17)
The -4 is a shifting operation and the -2 is a shifting operation. So what's left?
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(October 2)
We know we have to manipulate or in some way work on the situation to make it

simpler, or 1o see it in another way. Any suggestions?

(November 2)
What do we know about f?

When working through several examples consecutively Professor Alpha gencrally
began with a simple example, then procecded with examples requiring more algebraic
manipulation, use of more than onc concept or rule, or use of a different type of function.
For example, the sequence of examples used in demonstrating the chain rule was the
following:

(October 10)

(a) y=(x +1)3

(b) v =[f(x)»

© y= VX T3

(d) v X2+ (34 1) s
(e) v = sind X

H v = sin (x4)

(8) y = sin [f(X)]

The interview with Professor Alpha revealed the motivations behind many of the
instructional approaches the researcher had observed in his lectures. To begin with,
Professor Alpha explained his strategies for teaching large classes, and his impressions of
this teaching. He said he does not object to teaching large classes, but says onc must
recognize a distinct differencc :rom teaching smaller classes of less than 40. Major
differences he noted related to the extent of interaction between the instructor and students,
and how this constrains the form of the lecture. In large classes "it's sort of like theater”.
"Y ou react to and respond to the audience as a whole, rather than to particular individuals.
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And there's less class discussion, and less give and take.” In comparison, Professor Alpha
saw the situation in smaller classes to be the following:
Well there's no question about the fact that the smaller class is the more ideal
vehicle for student lcarning becausc it's part and parcel of what you're trying to
tcach. And you're teaching to get the student involved with the material and to get
him to confront the material. And in a large class you can't do that, or you can't be
sure you're doing that in class. You can sort of present the material and hope that

you arc good in the sort of technical aspects of presenting the material. You write
clearly, speak clearly, and you write the points as clearly and concisely as you can.

Thus, in smaller classes "you have more opportunity to push them {students] into
confronting the material right there in class." To compensatc for limitations inherent in
tcaching a large class Professor Alpha said he trics to incorporate a bit of "give and take"
into cach lecturc. He said: "I throw something open. Like what do we do next, or how do
we handie the situation?"

In discussing his approach to teaching calculus, Professor Alpha mentioned several
aspects of his teaching that have already been outlined from the researcher observation
notes. He said he tries to be as precisc as he can with his language usc during lectures.
However, he said he feels students do not need to be that precise. Rather, they have to be
"good uscers of the English language, to write mathematics effecuively and communicate
what they're doing." He also said he feels it is not necessary for general calculus students
to be proficient with mathematical proofs. Professor Alpha noted that mathematical proofs
were not emphasized on his examinations for general calculus students. Rather, he said he
emphasizes that students "have a fecling for the connection between different ideas." He
was of the viewpoint thai, for students for whom it would be important, there would be
plenty of opportunities in later mathematics courses to develop skills in precise, logical
mathematical writing and proof couustruction. The amount of material covered in an
introductory calculus course does not make it possible to emphasize these skills. As a
consequence, Professor Alpha believes the primary emphasis of introductory calculus "has
to be upon getting them [students] to confroat the basic problem solving techniques."

Professor Alpha finds that although he has regular office hours, most students do
not come to his office. He finds, as had been observed by the researcher, a few students
"will stay after class and ask some questions.” Professor Alpha stated he deals in the
following way with problems students bring to him:

And my usual reaction is to do a part of it, or to partly lead them part way into a

solution. And then tell them to go see if they can do it that way. See if they can
work it out for themselves.



83

Professor Alpha believes students in his calculus course are primarily motivated by

"the grade they get at the end of the course." However, he said he "can't argue with that”

because to a certain extent the grade once receives is important. He finds that a "typical sort

of mindset" students have is "they want you to tell them how to do it so they can do the

exercises and get a good grade for the course." "They don't want to talk about the great

ideas in the history of civilization [calculus]." Professor Alpha noted a possible reason for
this:

That's maybe partly because there isn't time to do that and get them to confront all
the actual problem solving things that they have to master.

Professor Alpha described leamning as a process of "confronting problems". His
related notions are clarified in the following:

[Students] are learning to solve problems logically with the aid of what they know,

by confronting problems. And ! don't think there's any way of learning anything

except by doing. I think that the primary learning that happens in this course

happens when they sit down to do an exercise set, or when they start preparing

themselves for an exam. And then they sit down and actually take time to confront
a situation which they have not confronted before.

In relation to these notions, Professor Alpha said he perceives introductory calculus
students as self-reliant in their learning because large classes require that they learn to be
so. Students "learn to be self-reliant in the process of getting through the course.” "They
learn to do things for themselves with the help of whatever they can pick up in the lectures,
the book, the lab." In this way Professor Alpha sees learning as a process that ariscs when
students "take what they have seen . . . and try to apply it to a situation that isn't laid out.”
He said they thern learn the following:

. .. to assign priorities to the i “mation they are given. They learn o organize

their thinking so that they can =i... “ith the first things and arrive at conclusions.
So I think that they learn, hop:-. »i*- to think more efficiently.

In summary, introductory cale>'is at Alpha University is represcentative of the
technique-oriented format of insti:»uin of many introductory calculus courses across
North America. Students attend 3 {cciure period: per week and 1 laboratory period. They
are required to complete weekls = -crcise assignments and lab quizzes, and arc also graded
on a midterm and a final exam. Professor Alpha's lectures were organized, and clcarly and
logically presented. Definitions, concepts, examples, theorems and proofs werc clearly
identified and presented in a mathematically elegant and logical format. Professor Alpha
feels students learn calculus "by doing” and by "confronting problems" and situations "they
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have not confronted before.” He therefore sces problem solving skills as a key goal of
introductory calcui us.

introductory Calculus Instruction at Beta College

Beta College is a small college enrolling about 800 students. It is located in an
agricultural region in a town of approximately 13.000 people. Beta College uses what will
be called a "concepts-first" approach to introductory calculus instruction. This is
instruction in which concepts are explored intuitively before introduction of their formal
definitions and proofs, and before skill development is emphasized. This intuitive
exploration uses the following approach: (1) experimentation with subcases of a concept,
(2) examination of numerical, geometrical. or graphical representations of simple examples
of a concept, and (3) formation of analogies to concepts students have already been taught.
Rules for specific skills are then presented, including demonstration of their plausibility.
Lastly, concepts are revisited and developed in their precise, logically derived forms. For
example, the derivative concept is developed as follows: (1) secant and tangent lines on
simple funciions are examined numerically and graphically, (2) analogics are made
between slopes of lines and functions and rates of change, (3) derivative rules are
mtroduced, jusiified by demonstraion of the dilferenuauon process with a speciic
function, and practiced with simple exampies, and (4) the precise definition of the
derivative is given and related theorems proved rigorously.

The concepts-first approach to instruction used at Beta College was designed by
instructors at Beta College as a response to a high withdrawal and {ailurc rate in standard
approaches 1 teaching introductorv calculus. They believed, as noted by Professor Beta,
"there might be students who could handle the course and do well if they got the right
start.” Thus, it was decided to "revamp" the curriculum "to start out with dealing with the
topics informally." According to Professor Beta, the belief was that dealing with calculus
notions in an informal way first would give students an intuitive feei for concepts before
going onto "the precise approach where you use definitions and proofs, thcorems and all
the rest." Thus, Professcr Beta perceives a strength in a concepts-first approach to
instruction is that it provides students with a "basis for giving meaning to concepts." That
is, he perceives that beginning calculus with an informal, non-rigorous approach allows
students to develop the "conceptual basis” for understandingz more rigorous approaches.

The document used as a textbook at Beta College is unpublished. It was conceived
of and written by the calculus instructors at Beta College so that it would match the
concepts-first approach to instruction they wished to use. Thus, it differs from the texts at
both Alpha University and Gamma College in the ordering of units. A spiral approach is
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uscd, with topics returiied (o morc than once to be developed in further or different ways.
The topics covered and the order in whi:h they are covered can be found in the extracts
from the text's table of contents (see A;pendix K). However, the topics covered are the
same as those in standard calculus courses in that they focus on limits, derivatives and
integrals, and related skills and applications. At the time this research study was conducted
Beta College was beginning a second school year of use of the new textbook.

The calculus course at Beta College is structured so that students meet with the
instructor for four S0 minute lecture hours per week. Professor Beta's class had about 40
students at the start of the school term, and was held in the early afternoon in a regular
classroom. A fifth optional tutorial hour was also held each week. On a weekly basis
students are given exercise assignments additional to exercises available to them in the
textbook. Assignment solutions are posted and then assignments are handed in to be
checked as to whether or not they have been completed. Professor Beta said that although
students are encouraged not to just copy assignment solutions, the instructors realize there
will always be students who do just that. However, since assignments form only 10% of a
student's final grade, the situation is not deemed by Professor Beta to be unfair to students
who do put the effort in for themselves. That is because students who make such efforts
will benefit in learning concepts and skills important for success on exams. Professor Beta
stated the following with respect to this point: "But they won't get anything out of it if they
don't try and do the problems, and expend a lot of effort thinking about them. They won't
get much out of them.”

In addition to weekly assignments, a student's final grade was formed from four
term exams and a two hour final exam. Final grades were determined as foilows:

Assignments 10%
Term Exams (four in total) 48%
Final =xam 42%

Professor Beta perceives the format of several term exams rather than one midterm
exam to be a strength of the course. This gives students early feedback as to how well they
are handling calculus, and thereby gives them a chance to adjust psychologically and make
the "transition from high school” to college. In addition, Professor Beta believes the
format of several tests helps students "learn how to handle something like calculus.” "The
rigor and all the work" expected in introductory calculus is something students must leamn
to manage in order to be successful in the course.
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Professor Beta views the workload in 1introductory calculus, and in parucular in a
concepts-first approach to instruction, as a weakness in the course. It demands much of
both students and instructors. Since "it's hard to get through all the course material”, an
instructor can become frustrated. It becomes difficult to teach everything cffecuively.
According to Professor Beta:

But there's a frustration because it seems like it's hard to teach it all and get them to
be able to handle all that within a three and a ha!f month period. . .. Butitisa
frustration trying to getit all in and get them to learn all of the concepts.

As a consequence of the time constraints, Professor Beta believes it is important for
calculus students to learn to take respons:bility for their own learning. He finds many
students "would like to have the teacher telling them how to do things", but feels that
"students who cannot take some responsibility for their own learning just do not make it.
They end up dropping cut or failing." He has had many calculus students who have not
"been able to develop that self-reliance, so they haven't been successful in the course.”
However, he has also had many students whose self-reliance has built and "become
stronger and stronger” as the term goes on. In relation to this point he said:

That's a rewarding thing to sec too because I see that as accomplishing one of our

major general objectives which is beyond mathematics, and is to develop self-
reliance in pursuing something.

‘Within the mathematical realm, the concepts Professor Beta wants students to learn
from introductory calculus are "the kinds of things that arc usually expected in an
introductory calculus course.”" According to Professor Beta, these things include: a basic
understanding of the derivative, antiderivative, indefinite and definite integral; an ability to
use differentiation on various types of functions; an ability to determinc arcas through the
use of antiderivatives; and an ability to do a variety of related rates, maximum and
minimum, and other applied problems.

Professor Beta has had over 25 years teaching expericnce, including expericnce
tcaching mathematics at both the junior and senior high school levels, and at the college
level. He said that although teaching involves "a fair bit of keeping of records and things”
that has to be done, he enjoys teaching. He expanded upon his enjoyment of tcaching in
the following excerpts from the interview with him:

Well, I've been here for 25 years. That says something about what I think of

teaching here 1 guess. ! wouldn't stay 1 I didn't enjoy it. .. . | enjoy teaching here

because of the relationship with the students I guess. ... And I enjoy that because
I do get to know all my students, and | enjoy doing that.
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[ enjoy the subject matter, mathematics. And mathematics problems. .. . But
there's also a challenge in seeing how students think about these problems and
whether they can um, and then there is maybe a shift. It shifts from being
interested in mathematical problems in themselves to being interested in how
students understand mathematical problems. And that's intriguing even when you
know all about the problem yourself. So I encounter lots of new problems. Then I
also enjoyv sceing how students think about these problems.

Professor Beta's lectures followed a pre-determined plan as to content and
scquence. His chalkboard notes were organized by titles for topics, definitions, examples,
theorems and proofs. Throughout the term his lectures varied in terms of the format
followed and the level of rigor used to present ideas. In some instances ideas were
presented informally, through use of graphical interpretations or specific symbolic
examples. At other times thcorems or general forms for rules were given, verilied by
logical rigorous proofs, and exemplificed through specific algebraic or graphical examples.
The level of rigor increased throughout the term, as the nature of the corresponding
chapters in the textbook also changed. As already outlined, the textbook, and hence
instruction, followed a spiral approach. Topics were presented more than once, with later
presentations displaying more formal logic and mathematical rigor.

One aspect of the concepts-first approach to instruction that struck the researcher
was the number of calculus concepts students were exposed to within the first month of the
term. Within the first week students were "doing"” calculus. By the end of September,
they had worked with the definition of the derivative, all the derivative rules, maximum and
minimum problems, and related rates problems. The other two research classes did not
begin units related to the derivative until October. The course at Alpha University
(technique-oriented instruction) began with review of some high school algebra and
trigonometry, and then proceeded to a unit on limits. At Gamma College (infinitesimal
instruction) the course began with review and then included a unit 10 develop and apply the
hyperreal number system.

As Professor Beta introduced formal proofs into lectures he continued to
incorporate informal interpretations of concepts. This was often through graphical
interpretations of ideas. The following three excerpts from researcher observation notes
display the increasing level of formality used in lectures, as wetl as the continued use of
informal interpretations (in the iird excerpt). All three extracts deal with the concept of
continuity.



(Sepiember 11)

not smooth

o~/ P g
/ v

smooth and continuous conlinuous
Figure 9. Graphs Drawn by Professor Beta on September 11

No gaps. You could draw it without lifting your pencil off the paper.
There's a jump. It's got what we call a discontinuiry.

Basically it's got a discontinuity if you have to lift your pencil off the page.
(October 23)

Theorem: If f(x) and g(x) are continuous at x = a, then so are the ollowing:
(@) f(x) = g(x)

To translate that into English, . . .

(b) cf(x) where ¢ is a constant

(o) f(x)g(x)

That is, the product of two continuous functions is continuous.

(d) f(x)/g(x) if g(a)=0

. .. have 10 add someihing there.

. .. going to prove the last one only.

(October 30)

From the left

lim .
- f(x)= f(a)

Couple of things implied . . . f defined . .. lefi-hand limit exists . . . and are the
same thing.
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I

Figure 10. Graph 1 Drawn by Professor Beta ¢n October 30

Doesn't matter what happens to the right of a here.
... as approaches from the left . . .

From the rnight
lim N
ot f(x) = f(a)

R

Figure 11. Graph 2 Drawn by Professor Beta on October 30

Has 1o be defined right at «a . .. has to have a value as you corne at it from the right
... has to reach that heighi.

All three of the above excerpts demonstrate a common feature of spoken aspects of
Professor Beta's lectures. Professor Beta spoke as he proceeded through presentations of
concepts, definitions, examples, theorems or proofs. He continually explained orally what
he was writing or drawing and why he was proceeding in certain ways. In this way,
Professor Beta's lectures explicitly made connections amongst symbolic, verbal and
graphical mathematical representations. This feature is further demonstrated in the
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following excerpt from a lecture on horizontal asymptotes. In this excerpt Professor Beta
combines graphical, symbolic and verbal interpretations of horizontal asymptotes.

{October 9)
Horizontal Asymptotes {H-Asymptote)

- . . should be familiar froue i school and hyperbolas . .
lines that a graph approache.. .. x gets large or x approaches some number.

Figure 12. Graph Drawn by Professor Beta on October 9

Concerned about behaviour at extremes way out 1o the left and way out to the right.
. .. as x approaches negative infinity, y approaches . ..
. as x approaches positive infinity y approaches . . .

v = f(x) hasa H-asymptote y = ¢, on the left

Now you could tell by looking at the grapit.

Sometimes it will be the other way round . . . find the horicontal asymptote.
Way we would find that out is . . .

lim

X—>-00 f(x) = ¢
as x approaches a large negative number . . .

y =f{(X) hasa H-asymptote y =c, on the right

lim )
x—>tac [(X) =G
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Can see by looking at the graph.

Again, you need o find them 1o visualize what g will look like.

(instructor drew a graph at this point, but observer did not have time to record it)
Does it have an H-asympltote on the left or on the right?

Whai are they? Does it come from below or above? Like that or like that?

Tell by analyzing the limit.

Continuing on in the same lesson, Professor Beta worked through the following
examples to discuss and determine horizontal asympiotes:
(October 9)

lim N
X—> 00 g(x) =4

Iim )
Koo K(¥) = 0

f(x) = %+3

g2(x) =2x?-8x + 11

(o 43x - 1000
500 + %

2X2 + 3x - 1
X2 -5x + 2

k(x) =

These examples demonstrate how Professor Beta generally sequenced exampies relatcd :c a
particular concept so as to increase the level of algebraic manipulation reguired to reach a
solution.

The extracts from Professor Beta's lectures display a mixture of technical and
everyday language. When asked of his impressions of the role of language in leaming
calculus Professor Beta said he sees language as an important influence on learning. He
said that he teaches by trying to put things into language students can understand. He
explained his reasons for this approach as follows:

And then of course math is like other subjects. You have your own terms and

definitions, and that's essential. But one has to start by using the kind of language

students can understand. And the same with notation 1 guess. Notation's . . . very

powerful, but one needs to try to introduce it in a way that they will understand.
.. . Yeah, language is very important.
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Professor Beta also said he finds many students do not use language well, and
therefore do not communicate clearly. He sees this situation as unfortunate in that he
suspects an inability to communicate well might be a reason for experiencing difficulty in
learning mathematics, or vice versa. Professor Belta also wondered if cultural entities such

as relevision might influence the way an individual approaches his or her learning.
Specifically, he said:

I wonder if they're getting used to waltching television where the thinking is done
for you. You can't do mathematics that way. You have to get at it and do the stuff
yourself. And be prepared to do some hard thinking.

In addition to learning by "doing" Professor Beta belicves students leamn in a variety
of ways, and that it's important to keep this in mind when teaching. When asked "How do
you think students learn?" his response included:

How do they learn? That's a big question. How do they learn? 1 guess I've
probably had some assumptions as a teacher about how they lcarn. I've always
thought in the past that if you present things in a very logical manner and show all
the steps in the logic then most students can understand. And it's from those gaps
in the logic that they don't understand. 1 rcalize that, from studying how students
learn mathematics, that there are a varicty of ways that they learn new concepts. . . .
So I think there are jots of ways that they think about problems. And 1 guess I'm
now more sensitive than I was a few years ago in trying to stop and understand
how students are thinking about a problem. Instcad of just providing the method
that I like best. Some students think spatially. They like 1o have pictures and
diagrams, and things like that. Other students don't need that. They think in other
ways. Butl do still think that in mathematics, basic to all that is it is logical and
you need to somehow present the logical stepping stones in the argument for them
to understand it. Along with other kinds of things. Diagrams and so on.

In relation to these views Professor Beta views proofs as an important aspect of
mathematics learning. He believes it is important that calculus students are exposed to both
informal and formal means of justifying mathematical statements. He said: "If students are
really going to appreciate what mathematics is all about then they have to have exposure to
proof." The reason for this need is the following:

And | think sometimes the reason of a proof escapes students. . . . Then they
wonder why they're doing this proof when it looks like the thing is truc without a
proof, Ard«nl guess we need to do some work in showing students why proof is
necEesAy, vy showing them that our intuition can lead us astray in some cascs.
And { ¥y 10+ do that on occasion. 2t to show them that what seems obvious may
not be true. To show them y¢u %+ %t wareful about proving things carefully
and logically.

Professor Beta believes calculus students are motivated in a varicty of ways. Some

of them have "extrinsic motivation” in that they "need it {calculus] for a particular program
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they're going into, . . . so they're desperately trying to get whatever mark they need."
Others are more "intrinsically interesied in the subject matter” and are prepared to "struggle
with the concepts and work at developing their problem solving skills." This notios of
struggling was seen by Professor Beta to relate to learning calculus in the following way:
So if a student 1s not prepared to work in the sense of actually thinking. If thev're
just thinking that things can be, they can be spoon-fed, the ideas can be given,

presented to them in a way that they don't have to struggle with, they're never
going to manage. . .. Cause that's the nature of problem solving. Struggle.

Professor Beta believes students begin calculus with a good "mathematical
repertoire” from high school, but they haven't previously learned how to solve problems.
In addition, he said that although they've been given a good background in algebra,
trigonometry and gcometry, they tend to either forget many things or do not have any
conceptual learning behind the skills they have learned. However, he noted that calculus
requires students to learn skills such as algebraic manipulation, even if they have not
adequately leamed them before.

In summary, introductory calculus at Beta College uses a concepts-first approach to
instruction in which concepts are examined intuitively before formal definitions and proofs
arc introduced, and before skill development is emphasized. The course uses a textbook
that was written by the instructors at this institution to support a concepts-first instructional
approach. That is, the textbook first presents ideas informally, following later with
sections emphasizing skill development and formal, precise definitions and proofs.
Students in introductory calculus at Beta College attend 4 lecture periods per week. They
complete weekly cxercise assignments for which solutions have previously been posted,
and are also graded on 4 term tests and a final exam.

Professor Beta's lectures varied in format and the level of rigor incorporated, with
an incrcased presence of formal and rigorous presentations as the term progressed.
Throughout the term he incorporated informal and graphical interpretations of concepts.
Further, Professor Beta explicitly made connections between various aspects of his
presentation, orally explaining what he was writing on the board and why he proceeded in
certain ways. Professor Beta sees language as important to mathematics learning becanse
mathematics learning requires an ability to think and communicate. He therefore sees "bard
thinking", "sirugglc” and doing the work for "yourself" as essential aspects of calculus
learning.
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Introductory Calculus Instruction at Gamma College

Gamma College is a small urban college enroliing about 2000 students. The
introductory calculus course at this college uses what will be called an "infinitesimal"”
approach to calculus instruction. This approach develops concepts intuitively while using
methods related w nonstandard analysis as analytic and computational tools. Infinitesimal
methods are the tools by which Newton and Leibniz first developed calculus in the late
1600's. Newton and Leibniz did not preciscly define infinitesimal numbers, demonstrate
their algebraic propertics, nor logically validate computations made with them. As a result,
many mathematicians saw infinitesimal methods as a source of unsoundness in the
foundations of calculus. This was resolved in the late 1800's when Weierstrass ri gorously
re-developed calculus using real number concepts. Since then, real analysis methods have
dominated the tcaching of calculus.

In the 1960's Abraham Robinson used a logically rigorous approach and re-
developed calculus in terms of infinitesimal number concepts (Robinson, 1966). Based
upon mathematical logic, Robinson's treatise (called nonstandard analysis) is bevond the
capabilities of most undergraduate students. However, his discoveries can be translated to
a level suitable for introductory calculus instruction. This is done by introducing students
to infinitesimals intuitively, then using these numbers to develop calculus concepts in both
intuitive and formal ways.

The best way to demonstrate how this approack differs from the use of methods in
real analysis, and in particular, from technique-oriented and concepts-first approaches to
instruction is to provide some specific examples of its use. Two appropriate examples arc
the following:

(1) Limits and their precisc €-6 definition are replaced by the more intuitive notion of

"rounding off" (an idea students have used since elementary school). In other words,

Im x2 + 2x

x—0 3 =0
is replaced by
f(e) =—‘°’—z-—;—3§ ~> 0
where if € is infinitesimal then e ; 2¢ isyery small in size. It is therefore

infinitesimal in size, and will round off to zcro.

(2) The derivative is not introduced via rotating secants which in the limit become a tangent
line at a point on a graph. Rather, the value of the derivative at a point is the slope of the
tangent line at that point (if the tangent line exists). This concept of derivative is introduced
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after tangent lines (and where they do and do not exist) have been introduced via the
intuitive notion of magnitication. This is a process whereby a curve is magnified infinitely
around a point. If the outcome of magnification looks like a straight line, this line is the
tangent line. Both of these examples are based upon the intuitive notion of "close to". In
infinitesimal instruction, infinitesimal numbers are used for a more formal, mathematical
justification of "close to". Hence, use of the tcrminology "infinitesimal” in naming this
approach to instruction.

The textbook used for this infinitesimal approach to instruction was written
specifically for usc in calculus courses at Gamma College. According to the author's
preface 10 the text, the text was written with the following aims: to introduce infinitesimals
in an intuitive way; to derive the results of calculus using infinitesimal methods with a
degrec of rigor suitable for a beginning student; and to develop concise, powcrful methods
of tackling purc and applied problems in analysis. This text is like the text at Alpha
University in that the ordering of topics is similar and practice exercises are included at the
end of each section. It does however differ substantially in the approach taken for
introduction and justification of concepts. This is done exclusively by infinitesimal
mcthods. The topics covered in the course can be found in the extract from the textbook's
tablc of contents found in Appendix K.

The calculus course at Gamma College is structured so that students meet with their
instructor for four 50 minute lectures per week. The class was held in a regular classroom
at 8:00 a.m. three times per week and 9:00 a.m. for the fourth period. At the beginning of
the school term there were about 40 students in Professor Gamma's class.

The researcher noticed that students tended to make lecture notes right in their
textbooks, in margins and on the backsides of pages (the text was printed using one side of
the page only). Professor Gamma encouraged them to do this because it was conducive to
having students not write down notes that were available to them in the text. Instead, they
could devote time to involvement in the lecture. The researcher also noticed that students
did not stay in the classroom at the end of the lecture to ask Professor Gamma questions.
In fact, since other students were waiting outside to come im immediately, Professor
Gamma's students were frequently observed following Professor Gamma back to his
office after class.

Students in Professor Gamma's class were given lists of textbook exercises to
work through in each section of the text. These exercises were not collected for grading for
the reason that instructors at Gamma College are responsible for all their own marking.

Timewise, along with the fact that introductory calculus students write five term tests, this
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makes weckly grading of assignments a virtual impossibility. Students at Gamma College
write a two hour final exam. Their final grades were determined as follows:

Class participation 5%
Best 4 of 5 Chapter Exams 60%
Final Exam 35%

Professor Gamma regularly included group problem solving sessions into his
lectures. These sessions occurred in 7 of the 23 classes the rescarcher observed, and
varied in length from 10 to 40 minutes. For the problem solving sessions students were
divided into groups of 4 to 8. These groups were formed from students sitting near cach
other that day. Each group was assigned 2 or 3 exercises from the textbook to complete
cooperatively. Professor Gamma would collect and read through the solutions, and write
comments and suggestions on them.

Professor Gamma incorporated group problem solving sessions into his classes for
several reasons. The reasons he outlined at various points during the interview with him
included: (1) to encourage self-reliance in learning, (2) to exposc students to the ideas of
students who are either succeeding in calculus or experiencing similar difficultics, (3) to
give students opportunity to talk about difficulties they are experiencing, (4) to provide for
mutual support in sorting out difficulties, since "two heads are better than one . . . and they
can spur each other on a bit in that regard", and (5) to give students written feedback on
their work.

Professor Gamma generally concducted his teaching in a cuestioning mode. He
presented ideas and worked through examples by questioning what was happcning and
why, what it meant, how one might draw conclusions or proceed to the next step, and why
statements or procedures were valid. As a consequence, his instruction explicilly made
connections between various aspects of the mathematics, and explicitly justified procedures
and conclusions. This is evident in the following extracts from the rescarcher observation
notes:

(September 17)

Ex Rewrite the following spliced function in one line form.
X+3 x<l1

y = 1 lsx<?2

“(x-2)2 X222

Off and then on . . . light swilch . . . you can think of it as a very physical thing.
. turn it off until you get to the y-axis, then turn it on.



= (x+3)(1 - U(x-1)) - (X-2)2U(x-2) + 1(U(x-1) - U(x-2))
(picces of this equation were added throughout the discussion)

What do Iwant to do when I'm way over here in the positive region?
What do 1 fill in? What do 1 leave empry?

(October 10)
Ex

<

- o e e ome e et fue Ww e wm e S
o0}

Figure 13. Graph Drawn by Professor Gammma on October 10

As vou gel close 10 a what's happening 1o the values of y?
- Increasing

- Getting bigger

How do we designate getting close to a on the x-axis?
- a plus dx

How do you look at corresponduig y values?

- (student mumbles a response)

y at a plus dx. Functional notation.

How do we say becomes infinite, mathematically?

if y(a+dx) ~> X (+or-)
for dx>0 or dx <O.

Doesn't have 1o happen on both sides.

then X =a iscalled a vertical asymptote.



OR
(November 19)

X — a is 'similar' to X =a +dx (for any infinitesimal dx#= Q)

Next is 1o look at the fix), the v values
How do we look nearby the y-values?
- fat a plus dx

Xlina f(x) is 'similar' to f(a+dx)

To look in practical tenns, what do we have 1o do with this?

So rounc! off f(a+dx) is equivalent to the evaluation of the limit.
- Xlina f(x)= ___ isequiv. to f(a+dx)~>___

What would it normally round ¢ff10?
-fara

As long as?

- il exisls

What's that really the same thing as?
- continuous

~> {/a) (provided f(X) is cont. atx =a)

If it's suppose:! ‘0 be equivalent, then what will this vi:l?

- far a

Again, provi-< il's continwous. ... SO essenliaii: i fiz: e Of coriinuily using
the limit approach.

lim . .. . .
X_ﬂf(x):f(a) isdefn. of continuity at X =a n limit potation.

Fairly easy 1o convert just about anything over.

These threc observation extracts demonstrate how Professor Garmma did not write
much on the board when presenting ideas. Rather, he focused on talking about the
concepts and developing connections amongst symbols, words and graphs. The extracts
also show students responding toa number of Professor Gamma's questions.  In this class
it was generally only a small group of 4 or S students who would answer questions.
Professor Gamma expressed frustration with this small number becausc he made cffort to
structure his presentations to give students opportunity to get involved in and to think about
the matenial. He said:
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.. . typi:ally in class contact with the students you get a lot of them that really don't
have the motivation. You get alot of, like the comment I've mentioned to you
before a couple of times. . .. "Why don't you just tell us the answer?" And so I
find that kind of frustrating.

In fact, Professor Gamma expliciily stated to his students that a major part of what
he wished them to achieve in the course was learning how to think. The course outline
given to students at the beginning of the term and discussed in class with them made his
intentions clear. It included the following:

.. . you will be asked many times to think your way through problems you have

never seen before. You will even be required to attempt problems which are natural

extensions of the material. The purpose of such questions is to see if you are
understanding and thinking rather than simply memorizing or falling into a mind
set. To be able to attack such problems you need to be fiuent with the basics and,
more than that, you need to understand the concepts and be able to think logically
with them. All of this means you will have to spend timc gdoing calculus. ...

While there is a component of memory work to calculus, it is primarily a course in
thinking not memorizing!

In addition to th 2 statements in the above extract, through comments made during
lectures, Professor Gamma made clear to students that learning how to think was an
objective of the course. Some of his comments were:

(September 17)

I want you 1o recognize forms. . .. purpose is to make you think about why.
Rather than blindly doing things.

(September 19)
Liry 1o teach this course as a how and why. Not just getting the right answers.

In the interview with Professor Gamma he expanded upon what he saw as the goals
of introductory calculus. He saw skills in differentiation and integration, and
understandings of the derivative and the integral concepts as goals of the course.
However, he emphasized problem solving and learning how to think as the most important
aspect. In regards to this he said the following:

. . . | think the important part of a course like this for students like we have in front

of us is their ability to think their way through problems. Their ability to deal with

complex issucs, and their whole thought process. And that's what's really
valuable.

Although Professor Gamma placed value on problem solving skills, he also
recognized that many students did not share this perspective. He felt many students' goals
were different than what he wished them to achieve in that students wasted pre-determined
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methods for achieving solutions. Professor Gamma explained this Incongruence as
follows:

If they can come out with a better ability to handlc a really compicx problem. You
know, see their way through something without actually’ knowing how to solve it
before they start. That's one of the things I find a real struggle for the students.
They want to know how to go about getting 2n answer before they start solving the
problem. They want to know a method that will guarantee them the answer before
they start the problem. And what I want them to do is let go of that notion and
realize that if they investigate, they can go about investigating a problem and arrive
at a solution without knowing some specific method. They can use their basic
information and their thought processes to get them through a question to get an
answer without having been told the steps they should take to get there. if | could
get them to do that I'd be more than happy.

Professor Gamma believed a majority of calculus students arc motivated by the fact
"they need a good mark so that they can get into this, that, or something clse." He also felt
there was a broad range of attitudes towards learning amongst his students, and a broad
range of willingness to be self-reliant in their own learning. There were those who felt they
were "being forced to try to understand something that they don't wart to understand”.
Others enjoyed "the challenge and ability to finally understand a subjcct 1nstead of just
memorizing something.” Similarly, there were students whe were "reluctant to do things
for themselves". Others were at the other extreme in that they were "willing to put in
effort” to understand the material. Professor Gamma noted that socicty puis ecnormous
social and economic. pressures on students to achieve good grades. This causes him
frustration because it encourages students to concentrate on gettin g answers. Since he
wants them to seck meaningful learning as a goal he .ies to foster meaningful lcarning in
the approach he takes to teaching. He explanation of this approach was:
I find it difficuit to know what to say, or how to treat them so they will stop trying
to say how do I get an answer? And start trying to say why do 1 do it this way?
What does this really mean? How come? And what does 1t relate to? And how
does it relate to this and that and not something else? I want them to be that way but
I find it difficult to know how to do that. And all I'm basically doing at the moment
is approaching the course that way myself. 1 try to teach in such a way where I put

those questions in their mind as I teach. And I tend to ask questions on tests that
reflect that notion too.

Professor Gamma was in his seventh year of teaching and during that time had
taught a variety of undergraduate mathematics courses. What he particularly likes about
teaching is the interaction with students, "particularly the one-on-one contact.” He finds it
"extremely rewarding" when you can help a student "actually understapd something."
Professor Gamma finds he spends much time outside of class in interactions with students.
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Hec has "an open door policy" which in his words means: "Often I spend the buik of my
day with students in my office.”

Professor Gamma was interested in how it is that students actually learn. "The only
thing I can put my finger on" he said "is you've got to get down and do the work." He
wondered if "the only thing that really gets it together is doing it", "actually doing it and
working with the material." He saw these ideas in relation to teaching in the following way:

But I mean if you teach so that material is clear and reasonably well presented, once
you get beyond that I'm not sure there's a lot more you can do. I'm not sure the
onus doesn't transfer over to the student, and you say, okay, I'm giving it to you as
best I can. Now you've got to take the ball and run with it. And if you don't pick
up the ball and start doing something, you're not really going to getit.

Professor Gamma spoke of both visual imagery and language as important aspects
of teaching because they make ideas accessible to students. He said he tries to use graphs a
lot in his teaching because visual imaging can be extremely important in "latching” onto
abstract symbollic representations. According to Professor Gamma this "latching” can
occur as follows:

All you've got is this whole mass of symbols. That you can't put a concrete

meaning to easily. You can't put a picture with it that easily. So it's hard to

assimilate the information. Where if it's more visual, which calculus tends to be.

At least you can do it graphically. There's something else you can latch onto
besides the symbols.

With regard to language, Professor Gamma acknowledged that although he
generally tries "to put things in terms that are not strictly mathematical”, he will "tend to
stick closer to the precise terminology” for concepts that are easily misinterpreted. He feels
he would be doing students an injustice if he ignored the type of students he had in front of
him and adopted the attitude that "to be true to the subject we must develop mathematics in
this precise and logical way that has traditionally been done." Thus, Professor Gamma
said he tries to say things in a "less sophisticated" way. Although this appears to make
students "less afraid of it", it can give rise to difficulties in the following way:

. . . they also often get misconceptions about what you're saying. Because it's like

a parable rather than the actual truth. .. . they draw conclusions that aren't
appropriate because of your lack of preciseness.

With regard tc using an infinitesimal approach to instruction Professor Gamma felt
there were both strengths and weaknesses. He perceived the main strength of the approach
to be that "it's a very intuitive way to do things." Even though the notion of hyperreal
numbers is secn by some people to be "philosophically objectionable", it can aid in making
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sense of calculus because it corresponds with calculus notation. The dx's and dy's of
calculus notation are a product of the initial way calculus was conceived, with dx and dy
corresponding to infinitesimal numbers. Using a limit approach to calculus students arc

dv . . .
told Jx 1S asymbol, yet the dy and dx are often manipulated as if they were numbers.

In comparison, in infinitesimal instruction, dx and dy actually do represent numbers.

According to Professor Gamma, a weakness of an infinitesimal approach to
instruction is "the fact that it is different." Students are awarc from their friends and
previous mathematics courses that other places teach calculus with limits. Some of them
therefore "rebel” and ask: "Why are we doing it this way when nobody else does it this
way?" Professor Gamma said "anytime you go against the perceived norm there's
repercussions from the student level." Another weakness of the course perceived by
Professor Gamma ic the amount of material that must be covered in onc term. It constrains
teaching in that "you can't give a concept, and then spend the rest of the weck doing
examples, and looking at it from different points of view, problem solving with 1t, and
doing all kinds of things with it." If you did that "you'd never get through anythirg like
the amount of material" supposed to be covered.

In terms of their mathematical backgrounds Professor Gamma felt students had "far
below what they need as far as preparation in mechanical, al gebraic manipulation." He saw
this as unfortunate because to do "anything reasonably sophisticated in calculus you've got
usually a lot of algebra to deal with." For example, te make use of the definition of the
derivative you've usually got to use algebra. Some difficulties might be avoided by
"sticking to simple things that don't require a lot of algebra”, but if you do that you don't
get the entirety and "the meat of the concept”. An example Professor Gamma cited was that
of continuity. He said many students have the notion that as long as a function is defined it
is continuous. He feels this misconcepticn develops from looking at simple functions like
polynomials. Only by exposing students to something likc a sphit functior, an algebraically
more complex entity, can you confront students with their misconceptions.

Professor Gamma believes that for the vast majority of people "math is doable.”
However, in addition to an incomplete algebraic background, he feels many students arc
weak in "their ability to use abstract symbols." "They just use them without really having a
grasp on them", and since "they're not sure how to put them together" they make up rules.
Professor Gamma finds this a problem because having "that much trouble with symbols" is
a difficult thing to correct at this stage of a student's mathematics learnin g

In summary, introductory calculus at Gamma College uses an infinitesimal
approach to instruction. This approach uses language and methods adapted from
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nonstandard analysis. In particular, an infinitesimal approach to instruction uses rounding
off in piace of limits, and infinite magnification of a curve around a point in place of a
limiting sequence of secant lines at that point. The textbook used at Gamma College was
written at the college to support an infinitesimal approach to instruction.

Students at Gamma College are assigned practice exercises that are not collected for
grading. Their final grades are determined from five chapter tests and a final exam.
Professor Gamma structures his classes so that students are regularly involved in group
problem solving sessions. His lectures were generally conducted in a questioning mode,
explicitly examining reasons for and connections between various segments of his
prescntations and various aspects of the related mathematics. In addition, Professor
Gamma explicitly emphasized to students that learning to think is a primary objective of
introductory calculus. He stated that the development of problem solving abilities is an
important aspect of introductory calculus, and sees calculus learning as a matter of doing
the work and "doing it" for oneself.

Class Backgrounds

Data for this section were taken from the Background and End of Term
Questionnaires (Appendices A and B). Since the data indicated that characteristics of the
three classes were similar, and differed in only a few ways, not all data from the
questionnaires is reported. Rather, the data that demonstrates the most relevant similarities
or differences with regard to the relationship between class characteristics and potential
impacts upon of instruction is reported. The Background Questionnaire provided data on
each class at the beginning of the school term. Data from this questionnaire pertaining to
students' ages, mathematics and language backgrounds, major subject areas, reasons for
attending the post-secondary institution attended, and whether calculus was a required
course are reported. The End of Term Questionnaire provided data on each class at the end
of the school term. Data from this questionnaire pertaining to students' grades, perceptions
of the usefulness of calculus, and exposure to calculus in other courses are reported. The
data rcported from these two questionnaires is the data that demonstrates the similarities and
differences amongst the three calculus classes. Most of the information is reported in
percentages, and the remainder is reported as class averages. At Alpha University 88
students completed the Background Questionnaire, and 63 students completed the Erd of
Term Questionnaire. At Beta College 37 students completed the Background
Questionnaire, and 25 students completed the End of Term Questionnaire. At Gamma
College 43 students completed the Background Questionnaire, and 28 students completed
the End of Term Questionnaire.



Table i. Selected Portions of the Background Questionnaire Results

Average Age:

Females:
Males:

Students who had studied
calculus previously:

Students who had studied
mathematics within the
previous 12 months:

Students for whom
calculus was a required
course:

Native Language:
English
Chinese
Other

Alpha University
N =88

19.5

50%
50%

26%

60%

85%

3%
2%

S%

Bceta College
N =37

19.9

30%:
70%

42%

T76%

81%

76%
24%
0%

1044

Gamma College

N =43

19.0

447
56%

29%

T2%

T7%:

0%
5%
5%,
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Major Subject Arca:
Biology 7% 5% T%
Business 27% 32% 14%
Chemistry 6% 3% 7%
Computer Science 3% 22% 0%
Education 2% 14% 9%
Mathematics 2% 5% 2%
Science 23% 0% 47%
Physics 6% 0% 5%
Psychology 7% 3% 5%
Other 17% 16% 4%

Reasons for attending
the post-secondary
institution attended:*

Location 56% 35% 7%
Good reputation 33% 5% 16%
Institute Size 0% 24% 44%
Friends 0% 22% 5%
Low grades 0% 11% 9%
Christian environment 0% 5% 5%
Other 6% 16% 26%
No responsec 23% 22% 19%

* Column totals are more than 100% because some students gave more than one response
to this item.

The data from the Background Questionnaire indicates the three calculus classes
similar with respect to students' ages. The average age was between 19 and 20. The data
also shows that enrollment in the Alpha University class was more than twice that of the
Beta College and Gamma College classes. Data also indicates the Alpha University and
Gamma College classes each had about equal numbers of males and females, while the
Beta College class had more males than females (70% males). As well, the Beta College
class had the highest percentage of students who had previously studied calculus (42%
versus 26% and 29%). These differences were not considered meaningful in terms of this
study's research questions. However, since language use is a focus of this study, it must
be noted that the Beta College class had the highest percentage of students who spoke
English as a second language. At Beta College 24% of the students (9 in number) had
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Chinese as a native language. One of these 9 students was one of the interview students at
Beta College.

More than 60% of the students in cach class had studied mathematics in the 12
months previous to the start of this study. For at least 77% of students in each class
calculus was a required course. In terms of students' major subject arcas, and recasons for
attending the post-secondary institution attended, there were some diffcrences between the
three classes. Most students at Alpha University were majoring in either a ficld of science
or business (69% in total). A large proportion of students in the Gamma Collcge class also
had either business or a science field as a major subject arca (81%). In comparison, only
37% of students in the Beta College class had business or science, in particular biology, as
a major subject area.  Another difference between the three classes were students' reasons
for attending the related post-secondary institution. Most Alpha University students named
the location of the university as a prime rcason for attending the university. In comparison,
students at Beta College named location, institute size, or friends as rcasons for attending
Beta College. At Gamma College, students named location or a good reputation as reasons
for attending Gamma College.

Table 2. Selected Portions of the End of Term Questionnaire Results

Alpha University Beta College Gamma College
N=63 N=25 N=43
Average course grade
before the final exam (as
reported by the students): 68% 63% 0%
Students receiving a
lower grade than they
had been expecting: 38% 72% 71%
Students who saw
calculus as useful to their
future career: 44% 44% 39%

Students who saw
calculus as useful 1o
society: 63% 48% 61%



107

Data from the End of Term Questionnaire indicates students from the three classes
wecre similar with regards to their calculus grades and views of the usefulness of calculus.
In addition, the data indicates class grades at the end of the school term were similar
amongst students at the three institutions. The three class averages for these grades were
between 60% and 68%. However, a higher percentage of students at Beta College and
Gamma College as compared to Alpha University were receiving lower calculus grades
than they had expected (72% and 71% respectively). Only 38% of the Alpha University
students were receiving lower calculus grades than they had expected.

In summary, the three calculus classes were different in size, with enrollment at
Alpha University more than double that of Beta College and Gamma College. The other
main difference between the classes was a higher percentage of students in the Beta College
class for whom English was a second language. Nonc of the differences at either the
beginning or end of the school term between the three classes were considered significant
to this study's rescarch questions.

Classroom Observations

Classroom observations were done to provide a description of instruction in each of
the three calculus classes. These descriptions addressed the fourth and fifth research
objectives related to the nature of the three approaches to instruction as delivered to students
and the potential impact of each instructional approach on student learning. The
information gathered was used to qualitatively describe each instrucuonal setting {Section A
of this chapter). The information was also used to describe the following for each class:
(1) relative time spent on concept development and use of examples, (2) language use, and
(3) sources of conviction. In this section results of the systemic classroom observations
are first reported. The similarities and differences between instruction in the three classes
are then discussed.

At each institution 25% to 50% of regular class periods were observed. Not all
classroom observation sessions were coded on Classroom Observation Summary Sheets
because several classes at each institution were observed at the start of the school term to
practice note-taking procedures and refine observation coding categories (see Appendices C
and D). Classes at Aipha University were observed on 20 occasions and notes from these
observations were coded on 16 occasions. As weli, labs at Alpha University were
observed a (otal of 6 1imes, with 5 observations coded. Classes at Beta College were
observed 14 times and 11 of these observations were coded. At Gamma College, classes
were observed a total of 22 times. Observation notes were coded on 1S5 of these occasions.
Group problem solving sessions occurred in 6 of the 7 remaining observations. Coding
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was not done for classroom observations when group problem solving sessions occurred
because these sessions generally used 40% to 80% of class time.

After the school term was completed data from the Classroom Observation
Summary Sheets were used for further instructional analysis. Information from one
classroom observation session (25 two minute intervals) was summarized on a Classroom
Data Analysis Sheet. This sheet can be found in Appendix L and a samplc of a completed
sheet is in Appendix M. The rows of the Classroom Data Analysis Sheet correspond to the
variable categories of the Classroom Observation Summary Sheet. As with the Classroom
Observation Summary Sheet, a distinction between written and spoken language is madce
on the Classroom Data Analysis Sheet. However, the samc distinction for sources of
conviction was not maintained, ard no distinction was madc between Context codes
entered in the Written Language c.1umn and those entered in the Spoken Language column
(see Appendices C and D). The main reason for these modifications was that the
distinctions did not appropriately describe features of instruction, because these features
were usually integrated. For example, the spoken sources of conviction displayed in
instruction were generally straightforward verbalization or reading of what was written on
the board.

Each column of the Classroom Data Analysis Sheet was completed by cnlering
circles in the rows whose codes appeared in the corresponding two minute time interval
(row) of the Classroom Obscrvation Summary Shect. Thus, cach classroom observation
was summarized on a single sheet. The last column of the sheet was used for recording the
total number of entries (circles) in each row. When the total of each row was summed
across all sheets for an institution, : . _mbers were obtained for each institution. These
values are found in Table 3. The tolals represent the total number of two minute time
intervals observed that displayed the observation code variable of that row. The pereentage
of two minute time intervals observed that displayed the observation code variable of the
related row are given in parentheses in Table 3. The values of N for the columns of this
table are the total number of two minute intervals coded for the related set of observations.
Explanations of the category ~odes of the first column are found in Chapter 3 and also in
Appendix E.
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Table 3 - Total Numbers for Each Institution for Each Classroom
Observation Analysis Code

Institution
Row Alpha Beta College | Gamma College Alpha
University N=275 N=350 University Labs
N=400 N=75
cP 148.5 (37%) 112 (41%) 132.5 (38%) 2 (%)
EX 190  (48%) 150 (55%) 211 (60%) 64.5 (86%
O 63 (16%) 23 (8%) 33  (9%) 58.5 (78%)
MC 254 (64%) 170.5 (62%) 286  (B2%) 45  {60%)
PC 86.5 (22%) 112 (41%) 107.5 (31%) 10 (13%)
CF 45.5 (11%) 16.5 (6%) 6  {(2%) 21 (28%)
TL(w) 284.5 (71%) 206.5 (75% 257 (73%) 60.5 (81%)
TL(S) 4 (11%) 25  (9%) 17 (5%) 3.5 (5%)
EL({w) 14.5 (4%) 13.5 (5%) 7 {(2%) 4  (5%)
EL(s) 133 (33%) 132.5 (48%) 216 (62%) 9 (12%)
M 186.5 (47%) 155.5 (57%) 273.5 (78%) 21.5 (29%)
IE 65  (16%) 89  (32%! 96.5 (28%) 2 (3%)
ER 94.5 (23%) 37.5 (14%) 16 (5%) 18 (24%)
EO 33 {8%) 15.5 (6%) 16 (5%) 28.5 (38%)

Values in Table 3 indicate instruction at the three institutions was similar in the
percentage of two minute intervals in which the following occurred: (1) concept
presentation (CP), (2) presentation of examples (EX), (3) a context free presentation
(CF), (4) use of written or spoken technical language (TL(w) or TL(s)), (5) use of
written everyday language (EL(W)), and (6) use of rules and other external sources of
conviction (ER and EO combined).

Values in Table 3 indicate differences in instruction occurred at the three institutions
in the following ways with respect to the percentage of two minute intervals in which
particular events occurred:

(1) Gamma College instruction displayed a higher percentage of mathematical contexts
(MC) than Alpha University or Beta College instruction (82% versus 64% and 62%,
respectively). This fact means that infinitesimal instruction as implemented by Professor
Gamma more frequently developed mathzmatical contexts within which ideas and examples
were presented.

(2) Beta College instruction displayed a slightly higher percentage of physical contexts
(PC) than Alpha University or Gamma College instruction (41% versus 22% and 31%,
respectiveiy). This fact means concepts-first instruction 2z implemented by Professor Beta
more frequently incorporated graphs and other physically oriented calculus interpretations
and justifications.
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(3) Gamma College instruction displayed a higher percentage of use of spoken cveryday
language (" (s)) than Alpha University or Beta College instruction (63% versus 33% and
48%, respectively). That is, infinitesimal instruction as implemented by Professor Gamma
incorporated more extensive use of everyday language interpretations of calculus ideas and
procedures.

(4) Gamma College instruction displayed a higher percentage of use of mathematics as a
source of conviction (IM) than did Alpha University or Beta College instruction (78%
versus 47% and 57%). This fact means infinitesimal instruction as implemented by
Professor Gamma more frequently explicitly justified statements or procedures by reference
to previously established mathematics statements or procedures.

The implications of these findings in relation to the research issues of this study arc
that if instruction influences students' language use and sources of conviction, then
students at Gamma College would be expected to use more everyday language than other
students. They would also be expected to display more use of mathematics as a source of
conviction. Further, since classroom instruction at Beta College displaycd more use of
physical contexts (usually graphs), it would be expected that Beta College stud~nts would
display more usc of physical contexts in their problem responses. These potential impacts
upon student learning are important in that if they occur they indicate instruction can affect
students' language use and sources of conviction.

Textbook and Exercise Assignment Analysis

Textbook and exercise assignment analysis was done to provide descriptions of the
written instructional materials of the three calculus courses. These descriptions provide
information on the ways each instructional approach as reflected in the related textbook and
exercise assignment was translated into structional events. The analysis was structurcd
to provide descriptions in terms of relative time spent on concept development and use of
examples, language use, and sources of conviction. As already outlined in Chapter 3,
analysis categories for the textbooks and exercise assignments were designed to allow as
much correspondence as possible to the classroom observation analysis categories. The
Textbook Analysis Summary Sheet was developed for this purpose {Appendix N). Entrics
were made in the Type column on this sheet only when an Example (EX) or Exercisc
(EXC) code was entered in the Event column. Thus, entries made in the Type column
naturally fell into two disjoint classifications: Examples or Exercises. The distinctions in
these classes between imitation and Non-Imitation Examples, and between Routine and
Non-Routine Exercises were developed as explained in Chapter 3. The various

subcategories, as well as the "Transitory" category emerged from inductive analysis of the
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lextbook examples and exercise assignments. Details of the categories and subcategories

are discussed below. Summary descriptions and codes are 1n Appendix O.

Examples

The following question was asked of each textbook example: "Could students use
this example to learn by imitation?" That is, could students duplicate the steps followed in
the example to work through a variety of exercise questions similar to the example? The
answer to this question determined the classification of an example as Imitation (1) or Non-
imitation (N). Placement in one of the subcategories was made subsequently. In addition,
if a visual component such as a graph or diagram was included in the example, then a (v)
was included at the end of the category code entered under the Tyvpe column. The Example
categorics and subcategories arc defined below. The code for cach is given in brackets next
to the namc for that category or subcategory.

A. (D lImitation

Students could duplicate the steps in the example with a variety of exercise
questions similar to the exampic.

(1) (d) demonstration: demonstration of a type of calculation or procedure, or

application of a rule.

(2) (p) property: a specified property is displayed through a graph, equation, or
numecrical or algebraic expression.

(3) (w) word problem: a onc or two step application of a concept or
procedure. This application is te a physical context, as opposed to application to
another area of mathematics.

B. (N) Non:Imitation

Students are not likely to be able to duplicate the steps in the example with a vanety
of exercises similar to the example.

(1) (m) multistep: an application (within either a mathematical or physical
context) of concepts or procedures that involve one or more of the following in
reaching a solution: analysis of a situation, synthesis of several concepts, or
construction of a graph, equatior. or expression.
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(2) (i) interpretation: interpretation or explanation of a graph or mathematical
or physical situation.

(v) Visual Component : a graph or diagram is present in the example.

Textbook example codes were entered under the Type column with the category
code (capital letter) followed by the subcategory code (lower case letter). As well, (v) was
included at the end if the example included a visual component. The possible cntries were
therefore: Id, Id(v), Ip, Ip(v), Iw, Iw(v), Nm, Nm(v), Ni, and Ni(v). Examples of
textbook examples for each of the five subcategories are given below. The code assigned
to each example is given in brackets at the start of the example, as is the textbook 1t was
taken from. For confidentiality reasons the textbooks at Beta and Gamma Colleges are not
explicitly named (see Appendix V).

A. (I) Imitation

(1) Subcategory: (d) demonstration

(Stewart, 1987; p.62) (Code: 1d)

: lim vt -2
Example Find —2 -4

(Beta College textbook) (Code: 1d)
Example Demonstrate the validity of the quotient rule for
x5 + 2x3

\Y)
x?.

-

(Gamma College textbook) (Code: Id(v))
Example Find the tangent line to y = X2 - x at (0,0) {a graph is drawn].

(2) Subcategorv: (p) property

(Stewart, 1987; p.30) (Code: Ip(v))
Example Sketch the graph of f(x) = x2 [a graph is drawn].

(Gamma College textbook) (Code: Ip(v))

Example

DNE (does not exist) This is the case if the curve on the infinitely magnified
diagram is not a straight line. From the definition of the derivative we can idenufy
cases where the derivative does not exist [five different graphs which have points
where a derivative does not exist are then given].
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Subcategory: (w) word problem

(Stewart, 1987; p.143) (Code: Iw)

Example The equation of motion of a particle is s = 283 - 512 + 3t + 4, where s
is measured in centimeters and t in seconds. Find the acceleration as a function of
time. What is the acceleration after 2 s?

2. (Beta College textbook) ({Code: (Code: Iw(v))

Example As a spherical weather balloon rises its radius increases at 0.5
cm/minute. How fast is its volume changing when its radius is 20 cm? [ a diagram
is included]

(Gamma College textbook) (Code: 1d(v))

Example The number of rabbits in a hutch is given by R =4t +2, t in months.
Find the rate of change of R with respect to t? [a figure of rabbits in a hutch is
included]

(N) Non-Imitation

(1) Subcategory: (m) multistep

(Stewart, 1987; p.39) (Code: Nm)

Example Find fegeh if f(x)=x/(x+1), g(x)=x!9, and h(x) = x+3
(Beta College textbook) (Code: Nm)

Example If f(x)= 1; determine f®@)(x) and evaluate f&)(x).

(Gamma College textbook) (Code: Nm(v))

Example Find the right circular cylinder of maximum volume that can be
inscribed in a sphere of radius R [a diagram is included].
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(2) Subcategory: (i) interpretation

(Stewart, 1987; p.66) (Code: Ni(v))

Example .
al
T =
b+ .
0 1 23 X

State the values (if they exist) of
lim . lim . lim )
Xx—2- g(x) x—2+ g(x) Xx—2 g(x)
Figure 14. Alpha University Textbook Example for the Interpretation
Example Subcategory

(Beta College textbook) (Code: Ni(v))

Example Consider f(x) = 2x3 + 3. Wec ask: Is there a number that f(x) gets
arbitrarily close to when we let x get as close to 1 as we like, subject to the
condition x = 1? [a graph of f(x) is included]

(Gamma College textbook) (Code: Ni(v))

Example

F'(-») = 0*

F'(-1) = DNE v

Fi(-1) =-1 4+ ,

F(-1*) = -1 '

F(0) = -1 : y = F(x)
F'(1) = DNE \ ;

F(]) =+ AN : ,
F.(l)=-15 — f Y > X
F'(3) = DNE ;

F.(3) = DNE .

F|(3-) = _C00 L 1

F'(3+) =+ '

F(5 =0

F'(+%0) =0

Figure 15. Gamma College Textbook Example for the Interpretation
Example Subcategory

In relation to the example categorization scheme it should be noted that, according
to constructivism, what a student does with a particular example is an individual matter.
One student might make use of a particular example by trying to imitate its steps with other
exercises, while another student might make use of the example in terms of trying to
understand its overall structure, reasons for specific steps, and connections to related
con- pts. Further, any example might at some point be used to learn by imitation. This
imitation could occur if a student is given an exercise to complete which is almost identical
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to the example. For example, the solution to a multistep problem such as the second

multistep example given above {nth derivative of )—1(-) could be imitated if a student were

asked to find the nth derivative of the functiony = -\l—z- . However, the designation of an

example as Imitation or Non-Imitation was made according to whether steps could be
imitated with a large variety of exercise questions, rather than a particular exercise.

Total numbers for each example category and subcategory for each textbook are in
Table 4. The percentage of examples in each textbook within each category and
subcategory are also in Table 4 in parentheses.

Table 4 - Total Numbers and Percentages of Textbook Example Categories
and Subcategories

Category Code

Textbook Id id(v) ip ip(v)| w |iw(v) | Totaii|] Nm | Nm(v){ N! | Ni(v) | Total | Totai | Total
N (v)

Alpha 89 58 7 8 4 1 165 27 18 1 11 57 96 | 222
Aleha
Gronan, K40%2)[(26%) (32)](4%) | (22)](. 53] (74%)](12%) (8%) | (.5%) (5% (26%) (43%)
1887)
Alpha 64 33 4] 0 0 0 97 4 12 (1] 0 16 45 | 113
Aleha
La Mamat K57%)](29% (863)|(4%) (112 (14%) (409)
Beta 82 34 0 1 5 0 122 18 6 1 13 38 51 | 160
Coll
TR swlir) |ex)3n) (762)](112) (53) [ .62)|(8%) | (28%) (329)
Gamma 39 | 145| 32 5 11 4 236 5 4 0 13 22 | 171§ 258
Colle
°e%% Kasw)|(sex) (124) (23) (4)|(22) {tor2) (22) f2%) (5%) | (9%)|(66%)

The values in Table 4 show that all three textbooks and the Alpha University lab
manual were similar in the distribution between Imiiation (I) and Non-Imitation (N)
examples. Atleast 74% of the examples in each book were classified as Imitation, while at
most 26% were classified as Non-Imitation (N). Within the example subcategories the
textbooks were also similar. Most examples classified as Imitation (I) fell into the
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demonstration (d) subcategory. Few examples fell into the property (p) and word problem
(w) subcategories. The one difference that stands out in the Imitation (1) subcategories is
the distribution in the demonstration (d) subcategory between examples that include a visual
component (v) and those that do not. In the Gamma College textbook over 50% of the
demonstration examples (d) contained a visual component, while only 15% did not include
a visual component. The use of a visual component within a demonstration example was
lower for the other textbooks. That is, they contained a higher percentage of demonstration
examples which did not include a visual component. The higher percentage of examples in
the Gamma College textbook containing a visual component (v) is also reflected in the
values in the Total (v) column of Table 4.

It 1s noteworthy that the textbooks for the three different approaches to instruction
are similar in the nature of their examples. Although the Alpha University and Gamma
College textbooks contained more examples, the type of examples they used were similar in
nature to the examples in the Beta College textbook. Thus, it can be stated that the
examples used in written instructional materials for cach of the three institutions did not
reflect different instructional events amongst the threc classes.

Exercises

To attempt to classif'y exercises as Routine or Non-Routine the following question
was asked of each exercisc: "Could students do this exercisc by recall, or by simply
following rules or procedures?” As explained in Chapter 3, this question could not be
answered for all exercises. In addition, not all the subcategories of Christiansen &
Walther's (1986) two-column categorization were appropriate for the calculus texibooks
being examined. First of all, from examination of these textbooks therc emerged a sct of
exercises which could not be classified as Routine because they involved more than
predetermined application of rules. Furthermore, these exercises could not be classified as
Non-Routine because procedures leading to a solution had been presented in previous
sections of the textbook. Thus, a middle category for "Transitory" exercises emerged.

Further examination of exercises revealed Christiansen & Walther's subcategories
for Routine Exercises (recognition, algorithm, and word problem excrcises) to be
appropriate for classifying Routine Exercises. However, the subcategorics they outlined
for Non-Routine Exercises (process, open search, and problem situation exercises) were
not appropriate for classifying exercises in the calculus textbooks. From examination of
the features of the textbook exercises there emerged a different set of Non-Routine Exercise
subcategories, which were named "Problem" Exercise subcategories. Similarly, there
emerged two subcategories for exercises classified as Transitory.
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Examination to develop the subcategories was done b rotating through sections of

the textbooks. That is, examination proceeded in the following order: a section from the

Alpha University textbook or lab manual, a section from the Beta College textbook, then a

scction from the Gamma College textbook. For each exercise, a short phrase describing

the naturc of a solution to the exercise was written down. The descriptions were then

grouped intc the subcategories described in the outline given bellaw. Category and

subcategory codes in this outline are given in brackets next to their names.

A.

(R) Routine

Tasks for which a procedure leading to a solution has been presented in the
textbook.

(1) (i) identification: identification or recognition of a property or concept.

(2) (a) algorithm: use of a rule or algorithm.

(3) (w) word problem: a one or two step application of a concept or
procedure. This application is to a physical context, as opposed to application to
another area of mathematics.

(T) Transitor:

Tasks for which procedures leading to a solution have been presented in the
textbook, but the solution procedures involve several steps, or interpretation of
notation or graphs.

(1) (g) graphing: application of rules along with graphing of the results.

(2) (a+) application: use of several rules or algorithms, or use of a rule or
algorithm that involves interpretation of notation or interpretation of a graph.
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C. Problem (P)

Tasks for which a procedure leading to a solution is not known.

(1) (m) multistep: a task involving morc than one of the following:
identification of a property or concept, analysis of a situation, synthesis of concepts
or calculation results, application of rules or algorithms, derivation of an equation
or formula, or sketching of a graph.

(2) (c) create: create an example of a situation, function or equation that
possesses specified properties (graphs are not included here).

(3) (cg) construct a graph: construct a graph which possesses specificed
properties.

(4) (p) prove: provc a gencral result.

(5) (e) explain: explain, describe or interpret @ mathematcal situation (graphs
are not included here).

(6) (ig) interpret a graph: interpretation of a graph.

Exercise codes were entered under the Type column of the Textbook Analysis
Summary Sheet, with the category code (capitol letter) followed by the subcategory code
(lower case letter). The possible entries were therefore: Ri, Ra, Rw, Tg, Ta+, Pm,
Pc, Pcg, Pp, Pe, and Pig. Examples of exercises for cach of these eleven subcategories
are given below. The code assigned to each example is given in brackets at the start of the
example, as is the textbook it was taken from. As with the textbook examples, for reasons
of confidentiality the textbooks at Beta and Gamma Colleges are not explicitly named (sce
Appendix V).
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A. Routine (R)

(1) Subcategory: (i) identification
(Gamma College textbook) (Code: Ri)

State whether the given equation is a polynomial, rational, algebraic, or
transcendental function.

a. y=x3+Vx+1 d. y=35%
b y=s+5 c. 2 x= 0
y:
X, x=0
c. y=3x5 f. y=17

(2) Subcategory: (a) algorithm

(Stewart, 1987; p.139) (Codc: Ra)
Find dy/dx by implicit differentiation.

yS 4+ 3x2y2 + 5x4 =12
(Beta College textbook) (Code: Ra)
Determine s'(8) if s(t) = 3t3+ 6

Wt

(Gamma College textbook) (Code: Ra)
Use the definition of the derivative to find the derivative.

y:

x2 + 3

(3) Subcategory: (w) word problem

(Beta College textbook) (Code: Rw)

The distance, in meters, that an object falls in t seconds when dropped from the
edge of a cliff is given by h(t) = 4912, Determine the average velocity of the object
in each of the following intervals and make a conjecture about the instantaneous
velocity when t=2.

(@) t=2 secondsto t=2.1 seconds.

(b) t=2 secondsto t=2.01 seconds.

(c) t=2 seconds to t=2.001 seconds.

(Gamma College textbook) (Code: Rw)
Big Al's weight at a distance r miles from the earth's center is given by
w=2X 109
._———2———'-
r
Find his weight at the earth's surface, r = 4000 miles. What is his rate of change
of weight with respect to height there? Interpret.
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B. Transitory (T)

(1) Subcategory: graphing (g)

(Stewart, 1987; p.199) (Code: Tg)

Find (a) the intervals of increase or decrease, (b) the local maximum and minimum
values, (¢) the intervals of concavity, and (d) the x-coordinates of the points of
inflection. Then use this information to sketch the graph.

y =x4 - 6x2

(Beta College textbook) (Code: Tg)
Use the first derivative test to determine the local maxima and minima and to skctch
the graphs of the following functions.

(@) y=x2-6x+20
(b) f(x)=x%-4x3-8x2+3

(Gamma College textbook) (Code: Tg)

Find the tangentline to y = 7 at x=2. Graph.

5
+ x2

(2) Subcategory: (a+) application

(Stewart, 1987; p.164) (Code: Ta+)
Use differentials to find an approximate value for the given number.

(a) V99 (b) (1.97)6
(Beta College textbook) (Code: Ta+)

2«
Determine % if 16x2 + 25y2 = 400.
(Gamma College textbook) (Code: Ta+)

Use the intermediate Value Theorem to prove that y = 5x7 + 3x - 7 has a zero on
theinterval Osx s 1.

C. Problem (P)
(1) Subcategory: (m) multistep

(Stewart, 1987; p.187) (Code: Pm)
Suppose F is continuous on [2,5] and 1 sf(x) =4 forall x in (2,5). Show
that 3 s f(5) - f(2) s 12.

(Beta College textbook) (Code: Pm)

A mass of 100 kg is to be raised by a lever with the fulcrum at one end and the
applied force at the other. If the 10 kg mass is to be 1 m from the fulcrum and
the lever has a mass of 4 kg/m what length of lever is required so that the applied
force can be as small as possible?
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(Gamma College textbook) (Code: Pm)
Find the points P on the curve y =x2 where the tangent line at P has x-intercept
4.

(2) Subcategory: (c) create

(Beta College textbook) (Code: Pc)
Find a third degree polynomial P(x) such that P(1) = 1, P'(1) =3, P"(1) =6,
and P3)X1) = 12. Hint: Let P(x) =ax3 + bx2+cx +d.

(Gamma College textbook) (Code: Pc)
Show that in gencral

d2y d
@ T5=(gh)?

(b) Find a function for which d2y/dx2 = (dy/dx)2
3 y

(3) Subcategory: (cg) construct a graph

(Beta College textbook) (Code: Pcg)

Show by exhibiting the graph of an example that if y ={(X) 1s increasing for every
X in aninterval (a,b) then y'=f'(x) may be a decreasing function in the interval
(a,b).

(Gamma College textbook) (Code: Pcg)
For the curve y = x2 + x, find and graph the foliowing magnifications about (0,0).

a m=1
b. m=10
c. m=100
d m=1

(4) Subcategory: (p) prove

(Stewart, 1987; p.140) (Code: Pp)
Show by implicit differentiation that the tangent to the ellipse
x2  y?
= +
a b2
at the point (XqYo) 1S
XoX oY _
PRl

(Beta College textbook) (Code: Pp)
Use the product rule twice to demonstrate that if f, g, and k are differentiable
functions, then

(fgk)' = f'gk + fg'k + fgk'

(Gamma College textbook) (Code: Pp)
Prove that if € isa positive infinitesimal, then 1/€ is a positive infinite number.
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(5) Subcategory: (e) explain

(Beta College textbnok) (Code: Pc)

What do the following limits imply about H-asymptotes?
lim f(x) =0
x—0 (x) =
lim ,
x—»oo 8(X) =0

(Gamma Coliege textbook) (Code: Pe)

Can you determine the velocity of an object
a. from a single high speed photograph?

b. from two single high speed photographs?
c. from a single slow speed photograph?
Explain.

(6) Subcategory: (ig) interpret

(Beta College textbook) (Code: Pig)

Identify each point on the graph below where the derivative does not exist and
explain why.

]

]

]

]

4 )
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£
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j..
-
<~
>

Figure 16. Beta College Exercise Example for the Interpret Exercise

Subcategory
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(Gamma College textbook) (Code: Pig)
Use graphical differentiation (slope interpretation of derivative) to sketch the graph
of dy/dx for each of the following.

Ya Ya
— y = F(x)
14 QP mar———— 113
y = G(x)
, > X ‘ > X
a, D.
Ya
' = H{x)
, > X
C.

Figure 17. Gamma College Exercise Example for the Interpret Exercise
Subcategory

Total numbers for each exercise category and subcategory for the various textbooks
and exercise assignments are in Table 5. The exercises included in analysis of the Alpha
University textbook (Stewart, 1987) are those assigned to students in their weekly graded
assignments. For the lab manual at Alpha University, all exercises were analyzed because
no specific subset of these exercises was assigned to students. Exercises for the Beta
College course were analyzed as three distinct sets: (1) exercises found within the body of
a textbook section, (2) exercises found at the end of a textbook section, and (3) weekly
assignment exercises given to students on separate sheets. As with the Alpha University
lab manual, all exercises at the end of a section of the Beta College textbook were analyzed
because no specific subset oi these exercises was assigned to students. The exercises
analyzed from the Gamma College textbook were those on a "recommendation” list given
to students.
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Limited conclusions only can be made with the values in Table 5 because of the
naturce of the excrcise scts. For example, all exercises at the end of sections of the Alpha
University lab manual and Beta College textbook were examined, but it is not known
which of thesc exercises students actually attempted. It is also not known which exercises
cmbedded in the body of a section of the Beta College textbook students were likely to have
attempted. In addition, although specific exercises were assigned to students from the
Alpha University and Gamma College textbooks, it is not known which additicnal
exerciscs students might have attempted. It is likely that students at Gamma College
attempted additional exercises because exercises assigned in group problem solving
sessions frequently included questions additional to those on the "recommendation" list.
As well, students at all three institutions had available to them test and exam questions from
previeus school terms.

The conclusions that can be made from Table 5 are that the Gamma College
textbook contained certain types of exercises that were not present to the same extent in the
other two textbooks. In particular, the following differences can be seen:

(1) The Gamma College textbook contained a higher number of Routine (R), Transitory
(T), and Problem (P) exercises. This finding means students at Gamma College were
required to completc more exercises than students at the other two institutions (although
whether they did or not is not actually known).

(2) The Gamma College textbook contained exercises classified as Routine-identification
(R1) excrcises, but the other books did not contain such exercises. This fact means that, in
addition to Routine exercises requiring use of an algorithm (Ra) or solution of a one or two
step word problem (Rw), Gamma College students were asked to do exercises involving
identification or recognition of a property or concept (Ri).

(3) The Gamma College textbook contained exercises classified as Probl :m-create (Pc),
Probiem-prove (Pp). and Problem-explain (Pe). This finding means students at Gamma
College, more so than the other two groups of students, were required to create an
example of a situation, function or equation possessing specific properties, to prove a
gencral result, or to explain, describe or interpret a mathematical situation.

In relation to the research objectives of this study these findings indicate the
excercises of the instructional materials for the three approaches to instruction did not always
contain similar instructional exercise events. More specifically, the infinitesimal approach
to instruction as reflected in the instructional materials for Gamma College differed from the
other two approaches to instruction in the nature of the exercises given to students.

To complete the instructional materials analysis all the data on the Textbook
Analysis Summary Sheets (Appendix N), including the example (EX) and exercise (EXC)
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events, were used. A completed sample of a Textbook Analysis Summary Sheet is in
Appendix P. For copyright and confidentiality reasons the corresponding scction of the
textbook is not given. Once the Textbook Analysis Summary Sheets were completed.
further analysis of the information on these sheets was carried out in a similar way to
analysis of the corresponding information on the Classroom Observation Summary Sheets.
The analysis used information entered in the Event, Language and Convictions columns of
the Textbook Summary Sheets. Information from the Tvpe column was analyzed
separately, as aiready described.

The Textbook Data Analysis Sheet (Appendix Q) was developed to complete
analysis of the information on the Textbook Analysis Summary Sheets. [t is almost
identical to the Classroom Data Analysis Sheet. The differences are: (1) addition of a row
corresponding to the Event category "Exercise" (EXC), (2) removal of the rows for
spoken technical or everyday language, and (3) removal of the row for an External-Other
(EO) source of conviction. Another difference is that the 25 columns are not "equal” in that
they do not correspond to equal amounts of textbook matcrial. Rather, cach column
corresponds to an Event (concept presentation, example, or exercise). Depending on the
number of events in a particular textbook section or exercise assignment, part of @ sheet or

two sheets were required to record information from the Textbook Analysis Summary
Sheet for that section.

The Textbook Data Analysis Sheets were completed in the same way as weie the
Classroom Data Analysis Sheets. For each column (Event), circles were entered in the
rows whose codes appeared in the corresponding row of the Textbook Analysis Summars
Sheet. The final column was used for recording the total number of entrics (circles) in cach
row. When the total of each row was sununed across all shects for a textbook or exercise
assignment, total numbers and related percentages for cach code were obtained. These
values are in Table 6.
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Table 6 - Total Textbook Numbers and Percentages for Each Institution for

Each Textbook Analysis Code

Textbook
Alpha Beta Gamma Alpha
Row University College College University
N = 341 N = 275 N =426 Lab Manual
N =161
CP
129 (38%) 117 (43%) 168 (39%) 48 (30%)
EX
214 (62%) 160 (58%) 258 (61%) 113 (70%)
EXC 78 (inbody of text)
118 235 (atsection ends) 678 177
150 (assignments)
MC
293 (86%) 249 (91%) 394 (92%) 161 (100%)
PC
156 (46%) 118 (43%) 159 (37%) 55 (34%)
CF
30 (9%) 8 (3%) 10 (2%) 0 (0%)
TL
338 (99%) 252 (92%) 417 (98%) 161 (100%)
EL
37 (11%) 39 (14%) 48 (11%) 18 (11%)
T IM
246 (72%) 222 (81%) 285 (67%) 36 (22%)
IE
136 (40%) 92 (33%) 134 (31%) 18 (11%)
ER

109 (32%)

134 (49%)

152 (36%)

139 (86%)

N s the total number of events analyzed for each document, excluding Exercises (EXC).
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The values in Table 6 indicate that the three textbooks had similarities. For each
book the percentage of events corresponding to the category codes CP, EX, MC, PC, CF,
TL, EL, IM, IE, and ER were similar. The three textbooks had approximately a 60% to
40% breakdown between concept presentation (CP) and examples (EX). Over 85% of
events used a mathematical context (MC), approximately 405 of events used a physical
context (PC), and less than 10% of events were context free (CF). In addition, for each
textbook, language use was at least 90% technical language and approximately 10%
everyday language. Mathematical knowledge as a source of conviction (IM) occurred in
approximately 70% to 80% of events, while physical experience as a source of conviction
(IE) occurred in approximately 30% to 40% of events.
The one difference that is apparent in Table 6 occurs in comparing the Alpha
University lab manual to the textbooks. The lab manual generally used rules as a source of
conviction (ER.), rather than mathematics or experience (IM or IE). In the lab manual, 8%

of events used rules as a source of conviction, whereas for the textbooks the corresponding
figures are less than 50%.

Summary

The philosophies of the three approaches to instruction as articulated by the
instructors indicated similarities between the three approaches. Professor Alpha identified
the development of problem solving skills as a key objective of the technique-cricnted
approach to instruction. Professor Beta described concepts-first instruction as a process of
dealing with concepts in an informal way first o give students a basis from which to
develop concept meanings and problem solving skills. Professor Gamma interpreted the
infinitesimal approach to instruction as a means by which students learn how to think.

Technique-oriented instruction as delivered by Professor Alpha was organized and
clearly and logically presented. Definitions, concepts, examples, theorems, and proofs
were clearly identified and presented in a mathematically elegant and logical format.
Concepts-first instruction as delivered by Professor Beta varied in format and the level of
rigor incorporated into presentations. Throughout the term he incorporated informal and
graphical interpretations of concepts, although there was an increased level of formal and
rigorous presentations as the term progressed. Infinitesimal instruction as delivered by
Professor Gamma was generally conducted in a questioning mode. Professor Gamma's
jastruction explicitly examined reasons for zi:d connections between various aspects of the
related mathematics. In addition, classroom observations indicated Beta College classroom
instruction included more use of graphs and Gamma College classroom instruction
included more use of everyday language and mathematics as a source of conviction.
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The instructional materials for the three approaches to calculus instruction reflected
few differences between the three approaches. The major distinction occurred with the
Gamma College textbook. It contained more varniety of exercise types, including exercises
that require identification, creation, proof and explanation of mathematical events. These
types of exercise were not present to the same extent in the exercise assignments for the
other two approaches to instruction. Thus, it can be stated that the natures of the three
approaches to instruction as reflected in the related instructional materials are sirailar, but

the infinitesimal materials contain a different variety of exercises.
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C. Student Interviews

In this portion of the report the first three rescarch objectives related to students'
language use, sources of conviction and manner of construction of conceptualizations are
addressed. Throughout the section examples of students' interview responses arc given (o
illustrate a number of features and researcher interpretations of the responses. Seventeen
students were interviewed. The seventeen students and the post-secondary institution cach

attended are given in Table 7. For reasons of confidentiality the names used for these
students are pseudonyms.

Table 7 - Interview Students and the Post-Secondary Institutior. Each
Attended

Alpha University

Beta College

Gamma Coliege

Annabel Cindy Betty
Ellen Daniel Gordon
Jennifer Doug Mike
Ned Leanne Nadine
Richard Sally Neil
Tim Tanya

Completion Scores for the Clinical Interview Problems

Each student was assigned a "completion score" for the clinical interview problems.
This score was determined by assigning a score of 0, 1, 2, or 3 to a student's problem
responses according to the following criteria:

O - The student was basically unable to begin to explain or solve the problem.

1 - The student gave a minimal response to the problem, either by giving a relatively
short explanation, or proceeding through only the initial steps of a solution.

2 - The student gave a partial response to the problem and the response could be
considered to be at least 50% complete. That is, the student's solution or
explanation was at least halfway to completion. If it was not completed to this
extent then a score of 1 was assigned.
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3 - The student's response to the problem could be considered complete in that it
included correct solutions or appropriate, self-contained explanations. For concept
oricnted problems a response did not have to include all possible explanations of a
concept. Rather, the explanation had to include appropriate or varied explanations.

Students' scores on Problems 2, 3a, 3b, and 4 through 12 were totalled to obtain a
student's completion score. Thus, each student received a score out of 36. These scores
were used to determine an average completion score for each institution (see Table 8).
Problem 1 (asking what calculus is all about) was not included in this scoring because it
was more appropriately included with data from the personal interview questions. The
average completion scores for the three institutions were similar, with the slightly lower
score at Beta College likely due to the fact that students at Beta College were generally
unsuccessful with Problem 10 (the skill problem requiring implicit differentiation). If the
completion scores for all students are ranked, then students from each of the three
institutions are found in the high-, mid- and low-ranges of the ranking. This contributes to
the generalizability of the research results by demonstrating that students representative of a
range of levels of calculus knowledge were interviewed at each institution.

It must be noted that a student's completion score should not be viewed as a
measure of the student's achievement level in his or her calculus course. This precaution is
because the calculus knowledge and skills examined by the clinical interview problems
were limited in number and contained several problems unlike those generally found on
calculus achievement tests. In addition, the clinical interview problems were not
administered with the intent of being an achievement test, and students were aware of this
fact. As well, since students were required to respond to the problems in an interview
rather than purely written format, it would not be reasonable to interpret completion scores
as standard achievement scores.
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Sources of Conviction

As mentioned in Chapter 3, the distinction between internal and extemal sources of
conviction proved problematic during extensive examination of the student interview
transcripts. Examples of these difficulties will now be described, along with reasons for
the need to refine the related construct.

The original intention to classify stuaents' statements as indicative of a particular
source of conviction encountered difficulties when transcript excerpts such as the following
were analyzed. The first excerp? is from Sally's response to Problem 3a, and the second is
taken from Richard's response to Problem 9. Sally is from Beta College (concepts-first
instruction) and she ranked fifth out of seventeen according to her Completion Score (see
Table 8). Richard is from Alpha University (technique-oriented instruction) and he ranked
second according to his Completion Score.

(Sally)
(Problem 3a)
[3. (a) Evaluate the following:

lim x+ 4+ 4
X—>® x3 . x + 5

]

(o3 +4
(= - 04 g

Figure 18. Sally's Written Response to Problem 3a
I: You said you take the highest power. Can you say more about that?
S: Well in a polynomial like that. Like this is to the fourth degree. And this is to
the third degree. But if this was to the fourth degree, then you could just take the
fraction one to one. But it's not. It's to the third degree.
I: What if it was to the third on the top and the fourth on the bottom?
S: Then this one would always be bigger. So then the limit would be zero.

I: What else was it you were going to say?
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S: Just because when you divide a small number by a larger number it will always
get slowly closer to zero as the larger number gets larger.

I: Now you said back at some point that this was a rule you were taught. To you is
it a rule or do you have a way of justifying it?

S: Well to me it's a rule, but I guess it always works. Like he proved it does
work. So it's not just a saying, but something you can use to solve a problem.

(Richard)

(Problem 9)

[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?]

y= F(x)

=5

Figure 19. Richard's Written Response to Problem 9

R: Well, there's no way to measure the slope of the tangent for these lines [at

X =-5]. Like how can you do the slope of this line. How can you? And then on
the five. There's no way. There's no line there. It breaks. In these two lines it
breaks, so there's no way you can measure the slope of the function at that point.
And then this point, because it comes to a cusp. Tlere's no way to measurc the
derivative. It's not a smooth curve. You can't measure the derivative of that.

I: And why not?
R: Well I mean this is the way a cusp is drawn. But if you could get a cusp it

could go like that [draws a cusp]. And you don't know what, can you draw like
that? How do you draw, you can draw it a lot of different ways.
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I. If I asked you to prove to me algebraically there isn't a derivative there, what
would you put? You are able to explain, but could you write it down symbolically?

R: 1 wouldn't even know where to start.
I: Could you do it here where it jumps?

R: Well you know it's not continuous. It's not continuous, so there's no
derivative.

I: But do you know why that is?

R: No. I know the rules. I just don't know why.

Both these interview extracts display a variety of sources of conviction. Sally and
Richard both refer to "following rules", yet they also give valid explanations for their
decisions. They appear to hold rules as a source of conviction, yet they simultaneously
display use of mathematical or experiential (visual) knowledge as a source of conviction.
The difficulty in categorizing sources of conviction arose not from a display of more than
one source of conviction in a particular problem response, but in what that multiplicity
indicated for other responses. For example, throughout their problem responses Sally and
Richard displayed mathematical and experiential sources of conviction. In analysis of
specific problem responses this fact initially led the researcher to conclude Sally and
Richard each used a high degree of internal sources of conviction. However, this
conclusion had to be questioned when one considers that, alongside use of correct
procedures and explanations, Sally and Richard often mentioned "following rules". This
mention of "following rules" implies that although their responses demonstrated valid,
correct use of mathematics, Sally and Richard did not perceive their responses as
originating from themselves. Rather, they saw them as arising from knowledge of
externally generated rules.

As in the two interview extracts already given, a display of mathematical or
experiential knowledge often coincided in Sally and Richard's interviews with "following
rules”. This fact seemed to indicate that sources of conviction arising from mathematical or
experiential knowledge were not necessarily perceived by Sally and Richard as internal,
personal knowledge. Thus, the assumption that mathematical or experiential sources of
conviction are necessarily internal had to be revised. The need for this revision was further
demonstrated in the personal interviews with Sally and Richard, where they gave responses
such as:
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(Sally)

In psychology you see things for yourseif. But in science you just follow rules.
And there's not, well there is proof, definitely. But you know, there's all rules
about how things work and why things work. And ! tend to sce things in a more
scientific way. And then in math I work with rules. And how things work and
what he says I just take as how you do it, you know..

(Richard)

Well I mean just that in calculus when I say I understand something it muans I can
doit. AndI can get the right answer. Whereas if I'm usually talking about another
subject, well I understand the theory or I understand the principles behind it. 1
know what is happening and I could, if somebody asked me to explain it to them |
could explain it to them in terms they could understand. Whereas I couldn't do that
at all, I could never explain calculus to somebody in terms that they could
understand. Because I don't understand. I just know how to do it.

Sally and Richard's words reveal that although they were able to explain the
mathematics of many of the clinical problems, they had not actually "internalized" the
corresponding mathematical or experiential sources of conviction. That is, they did not
speak of mathematical knowledge as residing within themselves. They appeared to have
fairly coherent calculus conceptualizations, but did not necessarily view these structures as
internal, personal constructions. Instead, these structures were viewed as reproductions of
externally generated knowledge.

Although Sally and Richard's interview responses have been used to demonstrate a
need to refine the initial formulation of the concept of sources of conviction, the nature of
their responses was not unique. Similar apparent inconsistencies occurred in most of the
interview transcripts. Comparison of a student's explanations of calculus idcas and what
he or she said about his or her calculus learning revealed the original sources of conviction
categories could not be consistently applied to student interview data. In particular,
mathematical and experiential knowledge could not necessarily be interpreted as internal
sources of conviction.

It therefore became apparent that the sources of conviction a student displayed on
the surface of a specific problem response did not necessarily reflect the overall picture of
her or his sources of conviction. As a result, the nature and role of a student's sources of
conviction had to be determined from the overall picture of his or her sources of conviction
as displayed in both the clinical and personal interviews. Results of the overall analyses
revealed three main groups of students, with students in one group similar in the ways they
perceived and justified mathematics. Before these groups are described fully, the
emergence of distinctions between various students' sources of conviction will be
discussed.
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Sources of conviction, as conceived of in this study, refer to where an individual
sces truth and validity residing within the context of learning or using calculus. More
specifically, sources of conviction refer to how students determine what are legitimate or
correct mathematical ideas and procedures. According to constructivism, if learning is an
adaptive process through which an individual constructs a viable model of the world, then
the sources of conviction by which this construction occurs are influential components of
what is learned. That is, the nature of what a student learns will be influenced by both the
naturc and role of the individual's sources of conviction. For example, a student whose
primary source of conviction is a collection of disjointed, memorized rules or procedures is
likely to perceive his or her mathematics learning differently than a student who sees a
coherence or structure to calculus concepts, rules and procedures. The two students mi ght
Justify their problem responses by reference to similar mathematical rules or interpretations,
but the nature and role of their sources of conviction could be quite different. The nature of
their calculus conceptualizations would therefore also be different. This situation is
exemplified in the following three sets of extracts from the interviews with Doug, Jennifer
and Tanya. Doug is from Beta College, Jennifer is from Alpha University, and Tanya is
from Gamma College. In terms of Completion Scores, these three students ranked
sixtecnth, eighth and first, respectively (see Table 8).

(Doug)
(Problem 3a)
[3. (a) Evaluate the following:

lim x4 + 4 |
X—=>® x3 . x4+ 5

I remember hc said something about this. If there are different powers. If the top
one is a different power. If I was just to say what I think it would be, I think it
would be infinity. But I don't know.



(Problem 5)
[5. For each function given below, determine if it is continuous or
discontinuous. Give reasons for your answer. ]
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Figure 20. Doug's Written Response to Problem &

I just remember in class, you know, that if it breaks like that it's not continuous.
. . . I guess cause it changes direction. It goes this way and then it breaks that way.

(Problem 9)
[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?]

Well I suppose 1'd rather know why. I'm not sure I do though. Like I could say 1
remember in class that if you have this situation there's no derivative, but I don't
know why there's no derivative. ... It's okay if I getit right on the test.

(Personal Interview)

I just doit. 1 just do it because I don't understand it. 1 justdo it and 1 do good. 1
got 76 on the last test but I don't understand anything I did. I just memorized how
to do things.

Cause it's more, all I'm doing is memorizing his examples. [I'm not recally
understanding what's going on.

In the above extracts Doug's response to Problem 3a is mathematically incorrect in
that association of the word "continuous" with the word "break" has led him to construct a
mathematically incorrect conceptualization of continuity. These extracts also show that
Doug's sources of conviction are external in nature, governed by what he remembers of
what was said in class by the teacher. The next extracts, from the interview with Jennifer,
will show Jennifer's sources of conviction are similar to Doug's in that they arc based on
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knowledge of rules and procedures. However, the extracts will also show her sources of

conviction are differnt than Doug's in that Jennifer perceives rules and procedures to be
processes that "make sense”.

(Jennifer)
(Problem 3a)
{3. (a) Evaluate the following:

Iim x*+ 4

W(/

L O

Vo

O + O

Figure 21. Jennifer's Written Response to Problem 3a

I: And why is it you did this very first step? You took this and vou divided it by
X to the fourth. Why did you do that?

J: Just ah. [pause] ! don't know. It's just something I've been taught. ... It's
just, well for certain things. There's just, like there's certain rules which are just

rules. And you can just build from there. But I wouldn't know how to get those
basic rules.

(Problem 5)

[5. For each function given below, determine if it is continuous or
discontinuous. Give reasons for your answer.]

Continuous would be meaning that the graph, well we were always taught that if

it's continuous you don't have to lift the pencil from the paper. That there would be
no breaks in the graph.
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(Problem 9)

[9. The graph of v =F(x) is given below. At which points does the function not
have a derivative? Why?]

Well at that point it's got, it's just a single solitary point [at x=-6]. It's not really a
function. It's not like an entire expression. So it's like v equal to one or

whatever. It's not a point. Or, it's just a point. It wouldn't have like a slope or
anything like that.

(Personal Interview)
I think calculus, if you get into a method of thinking, it's just a process. It seems to

be the same sort of process, and you just get into that method of thinking and it's all
very logical.

There's certain ones, you know, these are rules and okay that’s great, I'll just
follow these rules.

This will sound Kind of weird, but I find calculus, it's just sort of a wav of
thinking. Then if you can establish that sort of process, then things just scem to
make sense.

In the above extracts Jennifer's perceptions of her calculus knowledge reflect
sources of conviction that are more internal in nature than Doug's. They are more internal
in that Jennifer perceives her calculus knowledge as a "method of thinking" thatis "logical®
and therefore personally understandable. The next extracts will show how a third student,
Tanya, uses sources of conviction that have both similarities and differences to Doug and

Jennifer's sources of conviction.
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(Tanya)
(Problem 3a)
[3. (a) Round off the following:

M4 4+ 4

"
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Figure 22. Tanya's Written Response to Problem 3a

Because this would be an indeterminate amount. You can't really see what's
happcning bcecause this is infinity over infinity. And that really doesn't say
anything. ... SoItook afactor of M to the fourth. I could have taken a factor of
M to the third, but I probably would have had to simplify cne more time. 1 did M
to the fourth because it's the largest factor in there, to just simplify it. I simplified it
and then just rounded off. Once again dx stands for an infinitesimal. Any finite
over an infinite is an infinitesimal.
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(Problem 5)

[5. For each function given below, determine if it is continuous or
discontinuous. Give recasons for your answer. ]

Ot1 J
A0+ ) x41 34
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Figure 23. Tanya's Written Response to Problem §

T: Well it joins up everywhere. It, the normal English definition of continuous is
you don't have to lift your pen off the paper. And you can sce here you don't.
And once again this definition applies to this too.

I: How would you deal with this definition right here where it docs join? |at x=0)]
In other words, if I asked you to prove it's continuous at zero, could you do that
algebraically?

T: Well, um. I would have to look at the point left, and a point to the right of zero.
Right at zero there's a point and it's one. Right at x cqual zero there's a point.
. . . This is a function by itself. Even though it is a split function it's still a
function. Because it connects right at zero. You can see by the signs. This is less
than and equal to. This is a less than. Here it connects with the same idca I was
saying right here. Take an infinitesimal point right to the left. It will round off to
the function itself at x.
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(Problem 9)
{9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?}

-3 1
Figure 24. Tanya's Written Response to Problem 9

Ah. The derivative. The derivative again is an infinitesimal change in x. If I take
the point right here [at x ==l,-]. And a point just to the right of it. Going from here

right up 1o here. And thatis positive infinity. It's a straight line. The derivative of
a straight vertical line.

(Personal Interview)

So to me to understand calculus is very important. I enjoy it. And I think it's
fascinating. You need an imagination for it. ... This rate of change ~{ certain
things. And all this whole business, You need an imagination. You need an
imagination, not only on paper, but you have to kind of see what happens. What's
happening at a certain ime. You need to see that. And yet alot of what is going on
in calculus, with infinity and infinitesimals, and adding them and subtracting them.
Sure you can do that on paper, but you kind of have to see what goes on. You kind
of have to imagine that these sequences keep on going. They just don't stop. So
you need an imagination for it.

Because you can't learn by memorizing everything. Because you have to interpret
it. And you have to understand the theory behind a certain form. The theory
behind a certain something, and then apply it to something else.

Well from unit to unit you fit together everything that you learned before. Like
limits apply to hyperreals, and derivatives apply to hyperreals. Everything you
learn applics to infinitesimals and infinites. It all fits together.
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These interview excerpts show Tanya's sources of conviction are similar to Doug
and Jennifer's in their inclusion of knowledge of rules and procedures. However, they
differ as to how Tanya perceives and uses them. Tanya perceives of calculus as a body of
knowledge that "all fits together". She sees herself as an important factor in this liting
together in that she can use of her own imagination to "sec what happens" when she works
with calculus concepts, rules and procedures. Tanya's sources of conviction can thercfore
be said to be highly internal in nature in comparison to either Doug's or Jennifer's. They
are more internal in that Tanya acknowledges and makes use of what she pereeives to be
her own, personal understandings of calculus. She expresses a belief that for her to learn
and apply calculus concepts she must "interpret” and "understand the thcory behind a
certain form". That is, Tanya sees herself as an important componcent of learning calculus.
In comparison, Doug and Jennifer do not explicitly acknowledge their own understandings
as essential factors of calculus learning. Doug speaks of his calculus learning as separate
from his understandings, and for him calculus learning is being able to "just do it".
Finally, although Jennifer speaks of her learning as a "method of thinking", she does not
state she sees herself as a contributing component of this "method of thinking". Rather,
she sees the knowledge of "certain rules" as a "very logical” process one employs to do
calculus tasks.

Thus, in terms of the role of a student's sources of conviction in the construction
of calculus conceptualizations, it can be said that the internal nature of Tanya's sources of
vonviction guide her 10 construct knowledge over which she fecls she has personal
understanding and control. At the other extreme, Doug's sources of conviction arc hi ghly
external in nature and they play a rolc in his calculus learning by leading him to construct
knowledge he feels he can use but cannot understand. There is a sense that Doug feels he
can control his calculus knowledge to "do good” on tests, but there is no sense Doug feels
his calculus knowledge is due 1o his own personal constructions. Rather, Doug's calculus
knowledge appears as a reproduction of what he remembers the tcacher said. Jennifer's
sources of conviction are in between Doug's and Tanya's in the extent to which they are
external or internal in nature. Her sources of conviction are external in their inclusion of
knowledge of externally generated "basic rules". They arc concurrently internal in that
Jennifer can use "basic rules” to "build” her problem respoiises. The role of her sources of
conviction can therefore be said to be as tools from which she can "establish” a "sort of
process" or "method of thinking" as a technology by which one does calculys tasks. Then,
Jennifer can be viewed as a technician of the application of calculus ideas and rules.
Lastly, Tanya's appreciation of calculus and desire to understand it reflect sources of
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conviction that arc internal in nature and internal in the role they play in guiding Tanya to
feel personal understanding of the calculus conceptualizations she constructs.

Doug, Jennifer and Tanya are representative of the three main groups of students
that emerged from examination of the clinical and personal intervicw responses. Each of
these three groups are discussed in detail in the upcoming sections of this chapter. The
three groups are referred to as Collectors, Technicians, and Connectors. The groups differ
from cach other in the degree to which their source:- of conviction are external or internal in
naturc. The nature of their sources of conviction creates differences between the three
groups of students in the role their sources of conviction play in construction of calculus
conceptualizations. Collectors exhibit the highest degree of externalized sources of
conviction, while Connectors exhibit the highest degree of internalized sources of
conviction. Technicians fall somewhere in between these two other groups, exhibiting a
mixture of external and internal sources of conviction (see Figure 25)

I Collectors Technicians Connectors I

External o internal
Sources of Conviction Sources of Conviction

Figure 25. The Nature of Collector, Technician and Connector Sources of
Conviction :

The names for the three groups of students reflect the nature and role of the groups'
sources of conviction. Collectors assemble a set of memorized statements, rules and
procedures. Technicians organize a set of statements, rules and procedures that can then be
logically employed as a technique for thinking about and applying calculus concepts.
Connectors also organize statements, rules and procedures, but their related
conceptualizations are inter-connected, personally understandable structures and processes.
The characteristics of the three groups are such that they can be viewed as embedded one
inside the other. More specifically, Technicians exhibit sources of conviction similar to
Collectors' sources of conviction, but they also exhibit sources of conviction distinctly
different from those of Collectors. Similarly, Connectors exhibit sources of conviction
similar to those of Collectors and Technicians, but they also display sources of conviction
that differ from those of Collectors and Technicians. Connectors' sources of conviction

can therefore be said to envelop Technicians' sources of conviction, which in turn envelop
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Collectors' sources of conviction. Table 9 indicates the classification of cach of the 17

interview students in terms of his or her sources of conviction.

Table 9 . Classification of Collectors, Technicians and Connectors

Collectors

Technicians

Connectors

Ellen (Alpha)
Ned (Alpha)
Cindy (Beta)
Daniel (Beta)
Doug (Beta)

Jennifer (Alpha)
Richard (Alpha)
Sally (Beta)
Nadine (Gamma)

Annabel (Alpha)
Tim (Beta)
Mike (Gamma)
Neil (Gamma)
Tanya (Gamma)

Leanne (Beta)
Betty (Gamma)
Gordon (Gamma)

Collectors

The students classified as Collectors are Ellen, Ned, Cindy, Danicl, Doug, Lcannc,
Betty and Gordon (see Table 9). Ellen and Ned arc from Alpha University, Cindy, Danicl,
Doug and Danicl are from Beta College, and Betty and Gordon are from Gamma Collcge.
These 8 students ranked fourteenth, tenth, eleventh, seventeenth, sixteenth, ninth,
fourteenth and twelfth according to Completion Scores (Table 8). A student who from his
or her sources of conviction is classified as a Collector displays sources of conviction that
are generally external in nature. These sources of conviction are external in that they reside
in statements. rules and procedures presented by the teacher or textbook. They do not
generally reside in what the student has construed for herself or himsclf. The student
constructs his or her mathematical knowledge by assembling isolated, rclatively
unconnected mathematical statements, rules and procedures. Thus, the student's calculus
conceptualizations can be said to be a "collection" of statements, rules and procedures.
More specifically, the external nature of a Collector student's sources of conviction guidces
the student to approach calculus learning as recall or rote memorization of statements, rules
and procedures. In this way the role of a Collector student's sources of conviction is as a
validation to the student that he or she makes statements and performs procedures that will
be recognized as valid or correct by other ind‘~iduals. Although the student might validly
apply calculus knowledge, the student does not claim to know personaily whcther
particular pieces of mathematics are valid or correct. Rather, the student relies on others to
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determine validity or correctness. These other individuals are perceived by the student to
be people for whom calculus is understandable and meaningful.

A distinctive featurc of Collector students' sources of conviction was their external
naturc. Collector students frequently referred to statements, rules and procedures that had
been given by the teacher or textbook. They said such things as:

(Doug)
Like I could say I remember in class that if you have this situation there's no
derivative, but I don't know why there's no derivative.

(Cindy)

And the way to do that one was he drew a line like this, a secant line. ... And sc
he's making this point here closer and closer to this. And then hc takes. [pause]
Oh, I can't remember now.

(Ellen)
I don't know if this is right, but I think | remember something like that from the
textbook.

(Gordon)
I don't know why. I just remembered something about there's not a derivative.

(Betty)

I think one time he said in class just to, like um, he said something about letting
infinitesimals and infinites because, um. What was it? [pause] Like I don't
understand why we have to round off.

(Ned)
Well 1 was just taught that in this course this year. What I would have done before
1s | would have used trial and error. Before this class.

(Leannc)
I: Can you show me on the diagram what it involves?

L: Um. Frobably not. Like if I have an example beside me to follow, then I can
doit.

(Daniel)

I remember reading in my calculus textbook something about continuous functions
are smooth with no breaks. And I was trying to remember if it also included, what
do you call it, ah, sharp turns in a graph. Because I believe that might make it
discontinuous at this point right here.
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In all the above interview extracts the students make reference to what they
remember from their class or textbook, using the teacher or the textbook as a source of
conviction. These sources of conviction arc external in naturc :: that the students employ
them to reproduce what they remember from class or the textbook. More explicitly, the
students use the teacher or textbook as a means of validation, while they concurrently state
they either "don't know" or "can't remember" why a particular picce of mathematics is as it
is. That is, the students do not claim any ownership of the calculus concepts, rules or
procedures they usc. By the external nature of their sources of conviction they have built
calculus conceptualizations that are an assemblage or collection of cexternally generated
statements, rules and procedures.

The fact that the students each give some sort of response to the calculus probliems
indicates they have constructed some sort of calculus conceptualizations, even if they do
not feel a personal sense of comprehension of these conceptualizations. At times however,
as with Daniel's misconception that "sharp turns in a graph" constitute discontinuitics, it is
clear that Collector students construct conceptualizations that are viable in terms of their
understandings of calculus language. That is, language knowledge serves as a source of
conviction upon which to build calculus conceptualizations. For Collector students this
language knowledge often leads to construction of mathematically incorrect
conceptualizations, as it did with Daniel's association of the words "smoothly" and "no
breaks". Doug displayed a similar misconception (sec page 138). Thus, whilc
constructing calculus conceptualizations as a collection of externally gencrated statcments,
rules and procedures Collector students are also engaged in personal calculus
interpretations. These interpretations are constructions that are generally internal in nature,
arising from language knowledge as a source of conviction. Additional examples of
Collector students' lasniguage use as an internal source of conviction upon which to build
calculus conceptualizations are the following:

(Ned)

(Problem 3b)
[(b) What does "limit" mean to you?]

But um, so you have to really assume all limits. Say if you're drinking you should
know your limit. Well, it's so uncertain, but you should get an idea of what your
drinking limit is. It's very independent.
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(Danicl)

(Problem 6)

[6. A friend of yours who recently completed high school mathematics is
wondering what calculus is all about because he/she fias heard you frequently use
the word "derivative”. What short explanations, sentences, or examples would you
usc to explain to your friend what the "derivative" is all about?]

(Y"%ﬁ:oﬁ -

Figure 26. Daniel's Written Response to Problem 6

I'd say that a derivative may be along the lines of a root of something like this. . .
Like a derivative to me is like smaller, it's like somehow made into this. Like it's
like a factor of this, but it is not this whole expression. It's more like a root, a root
of this expression. ... Butitis to me like ah, I guess root is a word I'd ascribe to
this, other than derivative.
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(Ellen)
(Problem 2; second sequcnce)

[2. For each of the following sequences of numbers, decide whether the sequence
has a limit. If so, what is this number?

1 1 1 1 1
10’ TOO’ 1000 T0000® 100000 °

1,

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999 . N
No. No limit. ... Itjust scems to gct bigger.

(Cindy)

(Problem 5)

(for the graph for Problem 5 refer to page 61)

[5. For each function given below, determinc if it is continuous or
discontinuous. Give reasons for your answer. |

Well, it does because that's what continuous means. [t means continuing on and
not having a break. That's what continuous means. That you don't make a break
in something. And so here you're not making a break [first graph]. And here
you're not [second graph]. And here you're making a break, jumping [fourth
graph]. And actually this one here has two different definitions for the graph [third
graph]. And so obviously your graph isn't continuous if you have two different
definitions.

In the above excerpts Ned and Ellen construct conceptualizations of limits in terms
of their previous knowledge, respectively, of the words "limit" and "bigger". Their
language knowledge has served as a sowrce of conviction upon which they have
constructed their problem responses. Similarly, Daniel uses the word "root" to describe the
derivative. He thereby has associated with the derivative a number of his notions of the
word "root", including the notion that roots are "smaller" than the whole and are "somchow
made into something else". Cindy uses her understandings of "two picces” o construct a
misconception that the third function of Problem 5, y = H(x), is discontinuous. In all
cases the students use previous everyday language knowledge as a source of conviction
upon which to build calculus conceptualizations. This use of everyday language as a
source of conviction reflects Halliday (1978), Pimm (1987) and Ernest's (1991) notions of
the importance of language in mathematics learning. They argued that an individual's usc
and interpretations of everyday language are likely to figure prominently in the individual's
mathematics learning. This prominence is beca:se it is through language use that
"individuals construct subjective theories or perscnal representations” (Ernest, 1991 p.72).
Johnson (1987) also argued that an individual's previous language meanings are important
to construction of conceptualizations. He discussed how through development of image
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schemata individuals use bodily experiences and related language understandings as
mctaphors by which to develop language meanings. The role of language as a source of
conviction is a key finding of this research study, and is discussed more thoroughly in a
later section of this chapter.

Another feature of Collector students' interviews is that Collector students were
often unsuccessful in completing the clinical interview problems. Forty of the 108 problem
responses made by Collectors receiveda 0 or 1 Completion Score, which corresponds to
no response or a minimal response (Table 8). In comparison, the other eight students
reccived Completion Scores of 0 or 1 on only 7 of 95 problem responses. Collectors
frequently made errors, displayed misconceptions, were unable to remember particular
rules or procedures, or were unable to explain concepts. This lack of success is evidenced
by the Collector students' Completion Scores for the clinical interview problems (see Table
8). Students classified as Collectors received Completion Scores in the range of 14 to 25.
All other interview students, except Nadine, received completion scores higher than 25.
Examples of Collector students' errors, misconceptions, failure to remember procedures,
or failure to explain concepts arc the following:

(Cindy)
(Problem 4)
-2 .
[4. What can you sav about the function y = _7:;;\;_6 at x=27]
Well, it's undefined. Because there's a zero on the bottom.
(Doug)
(Problem 4)
It's undefined. ... Because you can't divide somnthing by zero.

(Problem 7b)
[F() = (22 + 31-2)10(3114.9)7 ]

[0 ( L243-2) L ES‘(%I _q)ﬂ 4 @z 2t-2) 10 b (3¢5 (Dé

Figure 27. Doug's Written Response to Problem 7b
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(Ellen)
(Problem 6)
[6. A friend of yours who recently completed high school mathematics is
wondering what calculus is all about because he/she has heard you requently usc
the «vord "derivative". What short explanations, sentences, or cxamples would you
usc v explain to your friend what the "derivative" is all about?]

E: Well I could show her how to find one, but I can't, I don't, like I know how to
find a first or second derivative, but I don't know why you do it.

I: Do you have any way of picturing them, or graphing them? What derivatives are
about.

E: [long pause] No.

(Gordon)
(Problem 6)

/ F (o + O— F (=)

V= e

Figure 28. Gordon's Written Response to Problem 6

I: Can you show me where it comes from? Is therc any way it relates to this
picture you've drawn with the tangent line?

G: I haven't got a clue. [pause] Basically it's just saying f at x plus dx minus
f at x. Itjust gives you a dx. That's the way I look at it anyway. If you had
something which was [ at x and youadd dx to it, that's just so small that all you
have left is the dx.

(Betty)

(Prcblem 6)

I don't even know what a derivative is all about. ... Somcthing about a graph.
Um. This is the unit I was just robotic in. This one, like the slope. To figurc out
what the slope of a graph was, you just use the double derivative.

(Ned)
(Problem 3b)
[(b) What does "limit" mean to you?]

It's yet to be determined. Like ah, if you find a pattern for & for example. It
might come out as a definite humber. So I don't think a limit can be, like by
definition you can't find a limit.
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{Problem 4}

-
: X<-5x+6
[4. What can you say about the function y = 3 = at x =27
\
\\
\ /
AN
\ /
\\
\\
- —
X

Figure 29. Ned's Written Response to Problem 4

I would take something of a narabola form as x squared. Idraw itin.

(Lecannc)
(Probicm 5)
[S. For cach function given below, determine if it is continuous or

discontinuous. Give reasons for your answer. }

I: Suppose I gave you just this. v equals X squared. And said, is that continuous
or not? What would yvou say?
L: Yes. For whatever v value you give me 11 give you an X squared value.

(Problem 7a)
3, 1
X+ =
X

\/.—\7+3x3+7]

[y =

3=t I

, Zﬁ‘+ex%
34z +(cx7) fx’-e-x""
XY= + X Vi tbx

Figure 30. Leanne's Written Response to Problem 7a

I\

Thesc interview extracts demonstrate that Collector students frequently did not

complctely or correctly remember such things as the product rule, the quotient rule, or the
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chain rule. The students also displayed u lack of ability to explain derivative or limit
concepts. Finaliy, as has already been discussed, Collector students displayed a number of
misconceptions. These included the notion that any rational expression whose denomimtor
is zero is undefined (Cindy and Doug;s a non-rational number might have a repcaung
decimal expansion (Ned), the graph of a function that contains an X~ is a parabola (Ned).
and a function is continuous if it is defined everywhere (Leannc).

Another prominent aspect of Collector students was a belict that mathematicsis a
collection of definite, or:rect tormulas, rules and procedures. Some examples of what the
studenis said in relation 1o this aspect are:

(Daniel)
(Problem 3a)
[3.(a) Evaiuate the following:

lim x* + 4
X—>* x3_ x+ 5

]

Plus four. Which just equals a large infinite number. And here, infinity to the third
minus an infinite number is stili 4 large infintte number. The other way this
problem can be done. Well not the other way, the correct way. ... I know there's
another way that's the correct way to do the problem. | know there's a correct way
to do it, but I'm not remembering.

(Doug)

Well math kind of is black and white. .. .1 just get to the end and I don't know i
it's right or wrong. And in English, you know, if I read something and hc asks a
question on it, vou just know it. You Know it's got to be right.

(Ned)
We've already had hundreds of formulas tossed on us. An it's just an introductory
course. There's got to be an infinite amount of formulas.

(Ellen)
Well I think that you're told to do this and this, you know. You just have todoitl
guess. I don't know.

(Gordon)

Yeah, I got the steps. Here, here and here. What I do is write down the steps for
every one.

(Leanne)
Just step by step on how to do a problem is what | understand best.
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(Cindy)
That makes me think I'm wrong. But ] think because there was some ruic he gave
us about aking the largest power over the largest power and using that.

(Betty)
But there's a definite answer to everything in math. That's why I took math.

Included in the above excerpts are views that mathemaltics consists of "steps" or
rules to do "this and this", mathematics is "black and white", and mathematics has definite
answers and "correct” way's that problems are to be solved. These views further reveal the
external nawure of Collector students' sources of conviction in that they show how
Collector students perceive truth and vahidity decisions in mathematics as pre-determined,
external entities. Collector students do not generally see it possible that these decisions
might be influenced by onc's own perceptions or interpretations. Rather, they must be
remembered or memorized. In fact, Collector students explicitly state they approach their
calculus learning by memorization of what they believe will be needed to pass an exam.
The following interview extracts provide evidence of how Collector students view their
calculus learning as memorization:

(Gordon)

Yecah. I didn't fully understand it. 1 was just memorizing. Like memorizing what

to do with the formuias, but not understanding why you have 1o do 1. Like it you

get the slope, like the chain law, I know what to do to find the derivative. But ]
don't understand how that works out.

But if I don't understand what he's done and why he's done it then I just
mecmonzce.

I'm relying on being told that this is how everything works. . . . But this is just
somcthing 1 need so 1 just doit. Accept it and leave it.

It's probably because I just memorized it to get me through that part.

Like I know how to find a first or second derivative, but I don't know why you do
i

I don't know why. I just remember learning it.
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{(Ned)
Just memorizing the formulas and stuft ically helps me out a bit.

Like you know, I can memorize all sorts of stuft, doing algebra and simple tng
functions and stuff like that.

{(Doug)
Well 1 just plain don't understand calculus. Like I get the questions, but 1t's not
because | understand them. It's because I just memorized them. . . . But in other

subjects, like anything, vou read and you understand it. Like 1f you get an
economics concept, you just understand it.

I just doit. [ just do it because I don't understand it . | just doitand I do good. |

got 76 «n the last test, but I don't understand anything 1 did. 1 just memornized how
to do things.

Like | could sayv | remember in class that if you have this situation there's no
derivative. ... That's okay if 1 get it right on the test.

Because | don't really understand that. The basis of why I'm doing 1t. T just do it

-Daniel)
cike in math because I {ind it difficult I try to memorize different ways of doing it

I have just memorized it and | use it. 1 don't partictilarly understand 1t

That's what I'm going 1o do tor this test coming up on Thursday. I'm going 10 go
through my theorems and everything that's been given us. And I'm going to go
through the practice exam and I'm going to do all the types of questions he could
ask.

And right now it's just a matter of being able to produce 1t on a test.

In ine above excerpts Gordon, Ellen, Ned, Doug and Danicl explicitly state they use
memorization as a learning technique in calculus. They speak of "just memorizing”
formulas and examples, and they make it clear they do not feel they personally understand
calculus in terms of why one uses particular procedures, or how procedures function
reaching a solution. For example, Gordon speaks of not urderstanding "why you have w0°
use particular formulas, Ellen speaks of not knowing why one finds a first or seccond
derivative, Ned comments that he is "just memorizing the formulas”, Doug says he docsa't
understand "the basis of why" he proceeds in certain ways while solving calculus
problems, and Daniel says he doesn't "particularly understand” calculus. The other three
Collector students, Cindy, Leanne and Betty, did not as explicitly use the word "memonize”
in speaking about their calculus learning, but they spoke of their calcuius learning in ways
similar to the other Collector students. They said such things as the following:
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(Cindy)
I can kind of work out formulas and work: out a way, kind of memorize almost a
way that he tells us 1o do it. But I don't really understand it. . . .1 can understand,

like I can memorize like derivatives. But I can't actually, there's a lot actually I
don't understand. That [ know for sure in my mind. Like I can memorize the
problems he gives us. The types of problems. But if he goes and gives us a
different type of problem on the exam, then I have a tough time with it.

Oh | would like to be able to understand. But it would take time. A lot more time
than I have to put into 1t.

I tend to want to have everything in black and white where | can see exactly, like
almost have a picture, a visual picture of what's going on. And sometimes | have
1o accept that I can't totally grasp it. There's a lot of things that we're doing now
that | feel I can't totally grasp like that.

(Lcannc)
Kind of from repetition I know what to do with it.

But it's remembering which step and remembering the process o go through to get
a thing. . .. Perhaps in calculus class I'm following that righ o3, But usually |
like knowing. So I'm knowing I'm getting the right answer.

I can do it but I don't know why. Just do it because he say's so.

(Betty)
Well when 1 learn in class it's just, it's like a carbon copy. It's like, okay 1 know
that. It's just because it's said so.

And then you have to look back, and then you know it's all carbon copy from
there. You just have to say, okay they did it like this, so I'll do itlike this. But you
don't know anything.

When you understand something, like understand the whole, the basis of what
we're doing in class. Like why do you need a derivative? Where does denivative
come from? What, like what's the most important thing about a derivative? And
basically I don't know what the most important thing is about a derivative. I know
where it comes from, but it has no relation, like it has no meaning to me. And |

have to have the meaning. ... Because it will stay with you all your life if you
understand it. For robotics it's just like memonzation type thing, and I'm not very
good at that.

In the above excerpts Cindy speaks of "kind of" memorizing ways to do calculus
problems, Leanne talks about "repetition” or "remembering"” of steps, and Betty speaks of a
"carbon copy™" or "robotic" approach to her calculus learning. However, although these
students speak of their calculus learning in terms similar to the other five Cellector
students, they also speak of a desire to have a better understanding of calculus. Cindy says



158

she "would like to be able to understand”, Leanne says she "usually likes knowing", and
Betty says she has "to have meaning” if she is to understand something and have it with her
for "life". This desire for what Cindy, Leanne and Betty perceive as an understanding of
calculus distinguishes them from the other Collector students. This distinction will be
discussed at a later point in this section, in conjunction with the other features that
distinguish Cindy, Leanne and Betty from the other Collector students.

However, from the discussion thus far it can be concluded that Coliector students
externally oriented sources of conviction do not promote a sensc of personal understanding
or ownership of calculus skills and conceptualizations. In responding to calculus
problems, particulariy visually oriented mathematical representations such as graphs,
Collector students often use their language knowledge. However, they do not necessarily
acknowledge the role their language knowledge plays in the construction of calculus
conceptualizations. Although Collector students exhibit sources of conviction that are due
to personal language knowledge, they do not neccessarily credit personally gencrated
calculus interpretations. In fact, four of the Collector students explicitly devalued what
they they perceived to be personal ways of interpreting or solving calculus problems. The
four students, Cindy, Doug, Ned and Danicl said such things as:

(Cindy)

... because I'm not perfect at interpreting it in the correct mathematica! language.

Well 1 might be able to write it down, but it probably wouldn't be right. 1 probably

wouldn't do it the correct way. But I would, if I was to go back and rcad 1t 1 would

understand what I meant. But it wouldn't be the right way so anybody clse would
understand it.

(Doug)
It just doesn't come to me easily. So I have to really work at it. Whercas
something like English I can just do i1t. Political science. . . . There I can actually

use, like I can just do it with my own mind. I can give my own interpretations of
something. But in math it's either right or wrong.

(Ned)

. . . like with me I have to look through somcone clse's eyes. Like a foreign Kind
of viewpoini. That's very hard for me to do.
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(Danicl)
I don't know if root is the right word because probably mathematically speaking
that's probably wrong.

Well he's a math professor. And I'm a political science major, university student.
And I think the reason he's in math and I'm not, like that in itself is the fact that wc
both understand things differently. ... and the way I describe things is more along
a different line. You know, than mathematical notation. So if 1 told him an
example about apples or pencils, he'd just kind of go X. You know. It'sjust, like
to him it's not what he wants you to know. And | have a hard time grasping.
That's probably why I'm failing. ... Oh, it's definitely different. Butit's not, it's
not, it's not mathematical. I mean it's just not. . .. So that's not acceptable.

These excerpts demonstrate that Cindy, Doug, Ned and Daniel view mathematics as
a "forcign kind of viewpoint” that must be interpreted in "correct mathematical language”.
They do not see as valid their personal ways of interpreting or expressing mathematics.
Thus, Cindy, Doug, Ned and Daniel do not allow internal sorrces of conviction to play a
prominent role in the building of their calculus conceptualizations. The other Collector
students did not as explicitly devalue what they saw as personal ways of construing
calculus. However, all the Collector students, except Leanne, spoke of calculus as being
separated from their reality. They saw calculus as useless, or they perceived calculus to
be different from other subjects or previously learned mathematics. For example,
Collector studenis spoke of their impressions of calculus as follows:

(Danicl)

So to me | don't think calculus is incredibly useful. But I'm not the one to judge
whether it 1s.

Understanding. Welt it means two things I guess. In math it means being able to
produce it on the test. And understanding to me in the broader sense, English or
whatever, means kind of capiching (sic) what they're saying about something. And
being able to apply this knowledge. But I've never been abie to ¢o that in math.
. . . Because it's above and beyond what it seems like I can cornprehend.

(Ned)
But calculus seemed a little mystenous.

Well calculus I would figure would be, he says to get lot of uz:common things.
And some things are so uncommon they are never actually defined.
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(Doug)

Like I've done good in math all along. Like on my departmental for Math 30 1 got
88, 89. I come here and do math and it's not even like math.

Understanding in calculus is being able to do it. .. . Well, 1 just plain don"t
understand calculus. Like I get the questions, but it's not because I understand
them. It's because I just memorized them. 1don't know how to doit. But in other
subjects, like anything, you read and you understand it. Like if you gct an
=conomics concept, you just understand it.

(Gordon)
In calculus. Same in physics. If you get the right answer you understand it.

If I read something once in history it's there forever. But in calculus it just scems
to be there for about thirty seconds and then it's gone. . .. I think because 1 don't

find it interesting. I don't sce the point. Like history happened. [t was real people.
But this is just numbers on a page.

(Ellen)
It's just stuff. And you go like why am 1 doing this. Like if I majored in calculus,
like what would I do with it?

Well what i1s calculus about? [t's sort of weird. 1 don't know. 1 don"t rcally
understand it. [ don't understand why ;_a do those things. Like I don't know:.
. . . But calculus is a lot of letters and stuff, and I don't understand why you arc
doing certain things. Like it doesn't seem like there is a reason. Like if you were

out in the world and you had to us¢ your math that you learned in calculus, 1 don't
know what you'd use it for.

(Cindy)
Calculus. That it's difficult. . . . Well it's different from a lot of other maths
though, isn't it?

I mean normally in other math, like in the story of my math I have been. I've
wanted to take the time to do things and figurc out different things on my own. But
I just found in this class | just got so frustrated. ... Maybe I can't understand it
the way 1 want to understand it. Like maybe, you know, like maybe because so

much of it is abstract things, that you just have to be satisfied with not. i don't
know.

(Betty) .
It's a new type of math. From what we've learned ull our lives.

The above set of excerpts indicate Betty, Cindy and Leanne do not as strongly as
the other Collector students see calculus as separated from their reality. Leanne's words
are not present in the excerpts because she did not speak of calculus as uscless or different
from other mathematics. Cindy expresses frustration with calculus because she has not
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been able "to do things and figure out different things” on her own. She is frustrated
because she recognizes she has not been able to understand calculus in a way she would
like. Finally, although Betty says calculus is a "new type of math from what" she has
learned previously, she makes it clear in later comments that she sees calculus as a subject
that can be understandable and meaningful to her. Examples of what Leanne, Cindy and
Betty said that set them apart from other Collector students are the following:

(Cindy)

And I try to figure out the answers. I try to understand it from what he's written

out. I mean just giving me a blank answer isn't the only thing I need. I need the

whole solution to a probiem to help me out. Like so I can know whether or not |
did it, you know, whether or not I did it right.

I'm learning by rules way more than [ like to. Like I don't like to learn that way.

(Leannc)

I've been doing it like if the teacher says so I'll believe it. But if I had more time |
would have to be, I have (o, to feel comfortable in a course I want to know how |
get the answer. Why 1 get it this way, and I want it proven to me.

(Betty)

Because, like if the learning is there you'll know it the rest of your life type thing.
But if you do it robotic, like the last two chapters I did, I know I'm not going to do
that well on the test on those two chapters. Because I don't know what's behind
the derivative.

And that's how it connects to, like behind the derivative, it's like the rate of change
of a function. And I know that, and it's connected to the derivative. Now |
remember the denivative. 1 know what it really means. And I can be more at ease
in getting the answers. If you have an answer, you know what it means. If you
just try and do 1t, what's a derivative, you're just sort of unsure of what itis. And
the answer doesn't mean anything to you. When you do have the understanding
behind it then it means a lot more. And then you understand it more. And that's
how it connects.

Leanne, Cindy and Betty's words reveal how they each differ from the other Collector
students as to what they perceive might be possible in their calculus learning. Each of them
perceives the possibility that calculus can be personaily understood. That is, they are able
to perceive of calculus as a body of knowledge in which things "connect" and in which one
knows how to "get the answer” without blindly following what the teacher said. Thus,
although Leanne, Cindy and Betty are functioning as Collectors and have sources of
conviction similar in nature and role to the other Collector students, they would choose to
function differently if circumstances were different. In other comments they make it clear

their adoption of a "memorization" approach to calculus learning is due to external
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constraints related to time and the amount of material covered in calculus. For example,
they said the following about the limitations they found themselves under: (Leanne and

Cindy are from Beta College (concepts-first instruction), while Beuty is from Gamma
College (infinitesimal instruction)).

(Leanne)

Like he'll ask are there any questions. And therce's so many that you just can't get it
into one question.

In my high school classes 1 had a chance 1o, he gave the students a time where they
could work out a problem. And then he'd do it, after a chance to figurcit out. And
then you could check whether you did it right or wrong. Whereas here its just, he
docs it for you and it may or may not be what you would originally have donc.

(Cindy)
Oh, I would like to be able 10 understand it. But it would take time. A lot more
time than I have to put into it.

But now he teaches it all in one lesson and we go home and we do the assignment,
we find out there's problems there that he didn't either emphasize or not, or that we
didn't realize there's problems. Cause when he explains 1t, of coursc we basically
understand it. Until you go home and do it yoursclf. But then he's already taught
it and he's on to something else. And you don't want to intrude and get him to do
that problem the next class.

I think it would be really beneficial if 1 had the ume to sit down. It I had two or
three hours everyvday after class to go home and read through it and study it. 1
know that I could be way better at understanding it.

(Betty)
Because | stopped working at the understanding. 1 did the homework and
everything, but I didn't ook at it decper.

Some of it was time constraints. It was easy for me at first because there was rarely
anything else to do. And I knew calculus was a hard course, so I thought maybc |
should spend more time on it. Then | started getting behind in my other courses.
So that was when it was harder to keep up.

But when I am pressed for time robotic comes in and just starts going. Cause |
can't waste any time on trying to learn it.

In these extracts Cindy and Betty talk of external time constraints as an important
factor in their calculus learmning. Betty comments that her "robotic” mode of functioning
"comes in and just starts going" whenever she is pressed for time. She makes a
distinction between this mode of functioning and a mode where onc looks at material

"deeper" and works at understanding. Cindy's comments are similar to Beuty's. Cindy
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speaks of a desire to understand calculus, but finds this is inhibited by a lack of study
timc. She also expresses a frustration that her calculus course does not allow time in class
to resolve difficulties before going "on to something else”. Leannc also expresses a sense
of frustration that the amount of material presented in one calculus class does not allow her
time to work and practice with calculus ideas and problems. Thus, it is clear that under
fewer time constraints Leanne, Cindy and Betty feel they would be able to learn calculus
differently than they are at present.

In comparison, the other five Collector students did not explicitly express an
awarcness or desire that it be possible or important for them to acquire personal
understanding of calculus. Their comments on their calculus learning included the
following:

(Doug)
I'm kind of a pacifist about not understanding. If I don't understand it 1 don't
understand it. As long as| get the marks. ... It's not like I'm a math major where

! have to understand.

Like I said, if I know it good enough to get it right on the test, that's all I worry
about.

(Daniel)
And right now it is a matier of being able to producc it on a test. And whether or

not my interpretation is correct doesn't matter. Because my interpretation isn't
going to be counted on the test.

Well in most anything else I could feel confident my views are um maybe not
necessarily correct, but that they're feasible, or that I can show how my views and
somebody else's views correlate or something. Like you know. In math I don't
fcel that | have got any basis to say that I'm right and I'm wrong. Because if they,
they referring to math people, come up with all this stuff, or how do I say it. I'm
just not confident that my way of viewing it, like I could so easily be wrong. Like |
just don't feel I have it.

(Ned)
I know I'm going to be paying an engineer to be doing all the difficult math. Like
reconfirming like the techniques and structures that I would design. . .. So that's

the extent of what I feel I need to know.
(Ellen)
I: Is it okay with you that you feel you memorize a lot?

E: Well it is because if | just want to get through this course 1 don't really care.
I'm not taking math again, that's for sure. Unless I really have to.
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(Gordon)

For something like English or history, when you understand something you have to
understand why someone did somcthing, or the situation, or the events. But when
yon do calculus it's just numbers and you have to reason out those numbers. |
don't think it's as relevant to life as something like English is. To me the interest
isn't there, so if I get the right answers it's fine.

But this is sort of just my course that if I pass it, great. If I don't, I've always got
next year.

G: I'm relying on being told that this is how cverything works.
I: Is that okay with you?

G: Itis in this course. If I was going on it wouldn't be. But this 15 just somcething
I need, sol justdo it. Acceptit and lcave it.

The words of these Collector students, Doug, Danicl, Ned, Ellen and Gordon,

reveal they have virtually abandoncd any cfforts to personally understand calculus.
Instead, they have accepted getting problems "ri ght on the test” as a prime objective of

their calculus learning. They are satisfied if they "get the right answers" and get "the
marks".

At this point it must be noted that Danicl's feeling of a lauck of confidence in his

calculus abilities was not an isolated feeling amongst Collector students. All the Collector
students except Betty and Ned explicitly expressed a lack of confidence in their abilities 1o
personally understand calculus. Their comments in relation o a lack of confidence
included the following:

(Daniel)
I don't have a lot of confidence in my own work because 1 know I'm not good at it
And so I doubt my abilities to get it right.

I'm just not confident that my way of viewinr it, like it could so casily be wrong.
Like I just don't feel I have it.

(Gordon)

I'm not very confident. ! go into every test thinking I'm going to fail.

I just get intimidated before I start doing it.

(Ellen)
No. I'm not confident. . .. Because I don't really understand it.
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(Doug)
I'm still apprehensive. I don't want to take it. I'm unsure about it and it's just not
somcthing | like todo a lot.

Causce it's more, all I'm doing is memorizing his examples. I'm not really
understanding what's going on. I just don't feel confident. I feel confident in
memonzing it.

(Leanne)
I've been doing it like if the teacher says so I'll believe it. Butif I had more time it
would have to be, I have to, to feel comfortable in a course I want to know how 1
get the answer, why I get it this way, and I want it proven to me. But so far it's not
that way.

(Cindy)

But at the same time I think, well even as confident as I can be that I have it right ii
could still cnd up being wrong. Cause it's happened to me so many times beforc.
And so 1 just begin to have no confidence in what I'm doing. ... And so you jusi
begin to lose confidence in your own confidence after awhile.

Because I don't even understand what's he's trving to teach me. Why would 1
want to go and figure out something on my own? Like [ just have no confidence in
mysclf.

Thesc Collector students speak of not being confident with calculus. Cindy says
she has "no confidence" in what she does in calculus, Daniel doubts his abilities to "get it
right", Gordon says he feels "intimidated" by calculus, Ellen states she is not confident
because she feels she does not understand calculus, and Leanne makes it clear she is not
comfortable with learning calculus without personal understanding. Doug also comments
he does not understand "what's going on", and he concurrently says he does not feel
confident. What is not clear in these students' comments is whether the predominantly
external nature of their sources of conviction is related to a lack of confidence in calculus.
However; it will be seen in the upcoming sections of this chapter that Technician and
Connector studests do not display the lack of confidence reflected in Collector students'
comments. This fact would therefore seem to indicate a relaticaship between external
sources of conviction and a lack of confidence in doing calculus.

In summary, Collector students generally display sources of conviction that are
externai in nature. Their sources of conviction reside predominantly in statements, rules
and procedures presented by a teacher or textbook. The role of these sources of
conviction is as a validation to the student that his or her calculus statements and problem
solutions will be recognized as valid or correct by mathematicians or mathematics teachers.

By way of this role Collector students' calculus conceptualizations are constructed as an
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assemblage or collect:on «f relatively unconnected mathematical statements, rules and
procedures. The unconneited nature of this collection is evidenced by low Completion
Scores relative to other inicrview students.

Collector students generally believe mathematics has definite rules and procedures,
and is a dichotomy of right and wrong problem solutions. They zlso view calculus as
different in nature to other mathematics or other subject areas. In relation to this point,
Collector students gencrally speak of mathematics as scparate from their own reality, and
they sometimes explicitly devalue their personal interpretations of calculus. In addition,
most of the Collector students explicitly expressed a lack of confidence in their calculus
abilities.

Three of thc Collector students, although the nature and role of their sources of
conviction were similar 10 the others, expressed more of a desire that their calculus feamning
be personally undersicod. The other five Collector students stated that, becausc they saw
calculus as neither useful nor meaningful to them, they were satisfied with getting correct
answers. Collector students make use of everyday language as a source of convictior.
They use everyday language knowledge as a source of conviction, but do not display a
sense of personal understanding or ownership of their calculus conceptualizations.
Instead, Collector students speak of their calculus learning as "memorization" of calculus
statements, rules and procedures.

Technicians

The students classified as Technicians are Jennifer, Richard, Sally and Nadine (sce
Table 9). Jennifer and Richard are from Alpha Univessity, Sally is from Beta College, and
Nadine is from Gamma College. These four students ranked eighth, second, fifth and
thirteenth according to their Completion Scores (Table 8). These students display a mixture
of internal and external sources of conviction. Their external sources of conviction arc
similar to Colleciors' in that they are based on knowledge of calculus statements, rules and
procedures. However, Technician students differ from Collectors in their perception and
use of these statements, rules and procedures. Technicians sec calculus as a logical
organization of statements, rules and procedures and they employ this organization as a
technique for thinking about and applying calculus concepts. What therefore most
distinguishes Technicians from Collectors is that Technician students display personal
knowledge of how calculus statements, rules and procedures fit together into a logical
whole. This logical whole thereby becomes a calculus "technology" in that it is a scdence or
method for thinking about and applying calculus. Technician students can thereforc be
viewed as skilled users of the application of calculus techniques. Thus, the role of a
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Technician's sources of conviction 1s as a set of tools that the technician employs to apply
calculus concepts.

As aiready menuoned, Technicians dispiay sources of conviction that are similar to
Collectors' in their ongins as knowledge of statements, rules and procedures. For
cxample, Technicians sard such things as:

(Richard)

Cause tha.'s the way I was told todoit. ... That's what I do. | learned that rule.
I don't know why. I don't understand what a imit is. 1 just know how to find it

But ] don't understand what I'm doing. 1 just know how to doit.
I'm just trying, I'm just using the examples that he uses in his notes to make sure

I'm doing :t properly.

(Sally)
Well using the rules that we did it w Luld be like subbing in that. But then you just
take the hig =t power.

I don't know. In class he told us when tt's zero over zero it meens more work.
But then in math I work with rules. And how things work and what he says | just

take as how vou do1t, vou know.

(Nadine)
Because we always learned vou take the denvative of the first imes the second,
plus the derivative of the second times the first

When you, the way we were raught is you take the point and you blow it up an
infinite amount. And if you sec a straight line then there's a derivative.
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(Problem 5)

[5. For cach function given below. determinc if it is continuous or
discontinuous. Give reasons [or vour answer. |
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Figure 31. Nadine's Written Response to Problem 5

I: T've asked for continuity.

N: Yeah, but we were always told that using this shows any change in  x.
Just know this, if I'm not mistaken that's the way we were taught to show it
exist at any point.

(Jennifer)

It's just, well for certain things. There's just. like there's certain rules which are
Just rules. And you can just build from there. But I wouldn't know how to get
those basic rules.

Well we were always taught that if it's continuous vou don't have to lift the pencil
from the page.

The statements of the above interview extracts are reminiscent of Collectors'
external sources of conviction in that they are based on what the teacher or textbook
presented. For example, Richard says he "was told to do it" {a calculus problem} by use of
a certain rule, Sally refers to what the teacher told the ‘students "in class™ about what a
particular expression means, and Nadine and Jennifer refer to what they "were always
taught” about interpretation of particular mathematical situations.
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However, although Technician students make use of calculus statements, rules and
procedures as external sources of conviction, a complete examination of their inteiviews
reveals their calculus conceptualizations are more organized than Collectors'. Their
knowledge of calculus statements, rules and procedures is more than the "collections”
displayed by Collector students. More specifically, instead of a collection of relatively
unconnccted mathematical statements, rules and procedures, Technicians' sources of
conviction arc basced upon statements, rules and procedures organized into a coherent,
structured set. This set 1s then emploved as a logical technique to think about and apply
calculus concepts. The existence of structured calculus conceptualizations and related
svurces of conviction rather than an unorganized "collecticn" is partially evidenced by
Technician students' Comipletion Scores (see Table 8). Their Completion Scores ranged
from 22 10 31. Thus, three of the four Technicians had Completion Scores higher than
seven of the cight Collectors. This fact indicates Technician students generally displaved
more extensive calculus knowledge and skills. In addition, the organizc s structure of their
calculus conceptualizauons and related sources of conviction are displayed in the following
mtervicw extracts:

(Jennifer)

(Problem 6)

[6. A friend of vours who recently completed high school mathematics is

wondering what calculus is all about because he/she has heard you frequently use

the word "denivative™. What short cxplanations, sentences, or examples would you
usc to explain to your friend what the "denvative" is all about?]

The denivative. 1 don't know. It seems like it is a base that vou can work from.
And cverything seems torely on it. Like plugging values back into it. The points
of inflection and critical points and stuff like that.

(Personal interview)

Understand something? To wke that tiny basis of logic and be able 1o build on it.
Like using that mayvbe as a comerstone. But if you understand that, then you can
understand things ore. ... Then vou can continue onto a higher level. . .. By
applying to anothey concept. How can I say it? Through practical application. 1
would understand derivatives by mayvbe drawing the graph or something like that.
And knowing it would be night.

1 think calculus, if you get into a method of thinking it's just a process. It seems to
be the same sort of process and you just get into that method of thinking and it's all
very logical.
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(Nadine)
Itclicks. ... When I did the derivative there, it clicked. You can do it, you can do
it almost without thinking. You just know. You Just know how to doit. You
know a way to doit. You just do it. And you know your answer is going to be
right or almost right. ... Well, to be able 10 do that you have to understand it.

Well, if you know, if you know how to go. Like you know how to do the
problem, but you don't understand how you did it. If vou get a problem that isn't
so clear-cut and you can't do it that definite way, and vou have to understand how
the probiem works. Then, you know, the question can't be done. 1 relate this to
chemistry because it's kind of the same thing. If you know how to find a
concentration, okay. You just know how to do it but you don't know why you're
doing it. You get to a question that asks vou, it's just a little bit different, and youo
have to understand why your concentration is what it is. Y ou can't do that clear-cut
path anymore and you can't answer the question.

(Sally)

I'm trying to get the ideas into my head, and how 1o use those ideas. Like the
examples especially. 1 follow them closely, siep by step, what he's doing, how
he's applying the ideas to a problem. And then | tnv 10 do them mysclf. And the
exercises from the book.

I see what you're asking me as I do it. Like more, just the ideas of caleulus. Like
contunuity.  But then in class, then you have the equations and mcthods of
calculation, and all that. . .. It's putting the idcas to usc.

(Richard)
(Problem 4)
X2-5v+6

[4. What can you say about the function y = -5

at x =27

Because it was approaching zero in the denominator. . .. That told me it's going to
have to be factored. Just from what I've done. All the exercises in the past. It
means that it's going to have to be factored. If it approaches zero on the botiom.
On no exam and during no assignment do they just have a real number on topover
zero. Which would just be undefined. They never have exercises like that. The
only exercises are, I just look at the denominator. If it's approaching zcro then I'm
going to have to do something with the top. It depends on the denominator.

(Personal interview)
I can see what's happening. Yes. I can sec the pattern. But that's just because
I've done it so many umes that | can just sec the paticrn every time I just look at it.

Well, I have to visualize each step, before I do it. Otherwise I don‘t know what
I'm doing. ... I knew there was a connection, but then | just couldn't visualize it.
And that's what I need to be able to do.

In these four sets of interview extracts Jennifer, Nadinc, Sally and Richard speak of
calcuius as a building and application of a structure of statements, rules and procedures.
Each student speaks of knowing how "to do" problems, or knowing how to "apply"
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calculus ideas to solve a problem. It is this sense of knowledge of how calculus is
structured as an applicable technology that most distinguishes Technicians from Collectors.
For example, Jennifer is a Technician rather than a Collector in that she sees calculus ideas
and procedures as "a base that you can work from", "build from", and employ as a
"process” or "method of thinking" to "work through" and solve problems. For Nadine,
alcuius "clicks™ as a technique by which one can "understand how" and "know how to
do" problems that don't have a "definite” or "clear-cut path" to an answer. Thus, one can
say Nadine and Jennifer are Technicians in that they employ calculus as a set of tools by
which to solve problems. Similariy, since Sally and Richard apply calculus as a technique
for problern solving, they can also be said to be Technicians. Sally speaks of calculus
"cquations” and "methods of calculation" as "step by step” means of "putting the [calculus]
1decas to use". Richard also speaks of calculus as a connected progression of steps. He
refers 1o calculus as application of a "pattern” of steps that he must visualize in order 16 "be
able to do" problems. These percepticns of calculus as a "method of thinking", 4 "pattern”,
or a logical "step by step” problem sclving process were not present in Collector student
Intervicws.

Thus, a prominent aspect of Technician students' sources of conviction is they are
based upon knowledge of calculus as an applicable process or technoiogy for solving
problems. What is not clear in the analysis thus far is whether or not sources of convictios:
that reside in the technology of calculus are internal or external in nature. They would
appear to a certain extent to be internal in that Technician students display a sense of
personal contro! of how to apply calculus ideas and techniques. The students are more
successful than Toliectors inexplaining and applying calculus, and they frequently outline
what onc does 16 solve calculus problems. In comparison, Collector students could not
generally jusufy their work, except by reference to rules they stated they did not personally
understand. The sense of personal control of calculus ideas that Technicians displaved was
not present in Collector students' interviews. However, this fact does not necessarily
itmply Technician students' sources of conmviction are internal in nature. When one
cexamines comments on Technician students' own calculus knowledge, a mixture of
external and internal sources of conviction appear. In this mixture it was often difficult to
determine whether or not the students perceived their calculus knowledge as personally
understandable. For each of the four Technician students this aspect of their sources of
conviction will now be discussed. Their impressions of and experiences in calculus will be
cxamined. First, Jennifer said such things as:
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(Jennifer)
I: How do you decide when things are right or wrong?
J: Through logic, 1 guess. . .. But I would say that I know what I'm doing

because the steps you take to achieve this answer ar> Just so straightforward.

Usually it's like I use an example as Just like a supplernentary thing. Like what do |
do next. Well okay, well let's see. So I can 20 from there if 1 get stuck.

This will sound kind of weird, but I find calculus it's Just sort of a way of thinking.
Then if you can establish that sort of process, then things just seem to make sensc.

J: T think if you start understanding the theorems and how they derive these
theorems, then that's understanding.

I: Do you feel you've achicved that?

J: To some extent. There's certain ones, you know, these are rules and okay,
that's great, I'll follow these rules. ... Well it would be nice 1o know what's
going on. But sure, like it doesn't bother me 00 much.

The first three of the above interview catracts show Jennifer both sces and applics
calculus knowledge that she views as personally understandable. 11 is personally
understandable to her in that "through logic" she can perform "the steps vou take 10
achicve" an answer 10 a problem. Jennifer also refers to using examples as a
"supplementary” guide for her thinking, and she speaks of calculus as "things" that "make
sense". However, the fourth extract reveals that concurrently with seeing calculus as a
"way of thinking" that makes sense, Jennifer nses rules of which she docs not nccessarily
feel a sense of personal understanding. She will "follow these rules” even though she
doesn't necessarily "know what's going on" when they are followed. That is, Jennifer's
scurces of conviction are a mixture of internal, logical processes and external, rule-
governed procedurcs.

Nadine's sources of conviction are similar to Jennifer's in their nature as a miXture
of personally understood thought processes, and externally oriented rules and procedures.
For example, Nadine said such things as:

(Nadine)

(Problem 5)

(see page 168 for Nadine's written responsc to Problem 5)

I just know this. If I'm not mistaken that's the way we were taught to show it will
exist at any point.

(Problem 7)
It's not, it's just the way I do it. Cause I've done, this is one part I'm very good at,
so " :istdo it

If I can finish the problem to an answer thai jouks decent and looks somewhai to
what I'm supposed to have, then I feel confident in it. . . . If it looks reasonable to
what it should be.
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N: I try to understand it the best | can because my memory is not always that great.
... Butl try to understand it the best | can.

I: Do you feel you are able to do that or not?

N: Mostof it, yeah. A basic grasp of it.

Similarly to Jennifer, Nadinc¢ s interview excerpts display more than one type of
source of conviction. Nadine speaks of i ,:ag "to understand it [calculus] the best” she
can, and she states she fecls she has "a basic grasp” of an understanding of calculus. She
speaks of a personal sense of confidence in her calculus work, and refers to when an

answer "looks reasonable". Thus, Nadine's words reflect sources of conviction that are

siternal in nater - o et they are perceived by Nadine to be personally understandable.
However, Nac. - ..xs of her problem responses in terms of "I just know this" and
"jusi the way 1 .. .. . In particuler, she is not able to justify her responses to Problems 5

and 7, ecxcept as procedures that she has been taught. Since she is able to "just do" these
procedures, but has no way to explain them, it appears she relies on these procedures as an
external source of conviction. The overali picture of Nadine's sources of conviction 1s
therefore as a mixture of external and internal sources. Her internal sources of conviction
reside in personal confidence of an ability to know what to do in calculus to obtain
rcasonabie problem responses, while her external sources of conviction are based on
knowledge of what she was taught "to do" to emplor particular procedures.

A promirent feature of Richard's interview was his proficiency with calculus. A
Completion Score of 31 ranked him second amongst the seventeen interview students. His
interview responses revealed he had knowledge of calculus concepts, and skill at applying
these concepis. That is, Richard was highly skilled as a Technician of calculus technology.
He was able to successfully complete the clinical problems, while simultancously
explaining what he was doing and why he was doing it. This feature is seen in the
following extracts from Richard's responses to Problems 3a, 4, and 6:
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(Richard)
(Problem 3a)
[3. (a) Evaluate the following:

lim x4 + 4 |
X—=® x3 . x +5

— i K+§3 X

~ = o
eI
Figure 32. Richard's Writici: 2 ..:0use to Problem 3a

X to the third down to here. And as you do that, then of course going back to the
previous ques.on, as X goes Lo infinity of any number over x, that number will
approach zero. And so it's just x plus Zero, over one minus zcro plus zero. So
it's just X over one, or just X. And as X approaches infinity it's just infinity,

(Problem 4)
. , XN2-58+ 6 ,
[4. What can you say about the function y = —~ - at =27

See, if it approaches a number on top then it's just an undefined. Because, say this
approached, if you plug in negative (wo and 1t reached negative one on top. over
£€ro.  You know that the funcuon's just going to be undetined. And you're
finished. And you can go away. Orif it approaches zero on the top but there's a
number on the bottom. Say if it was negative one on the bottom and it approached
zero on the top, then I know it would just be zero. But I know immediately by
looking at the denominator that this fraction is going to have o be factored.
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(Problem 6)

[6. A friend of yours who recently completed high school mathematics is
wondcring what calculus is all about because he/she bas heard you frequently usc
the word "denvative”. What short explanations, sentences, or examples would you
usc to explain to your friend what the "derivative" is all about?]

- .Eéx*(> - "{:(K)

!
foo = >0

A

l |

AX

Figure 33. Richard's Written Response to Problem 6
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It's the slope of the tangent line nght here at any given point. This is, well let's
say, let me get another graph going there. So you're going to go. Thisis X, This
is X. And then the rate of change. So here's your function.  Let's just draw the
function. And this is, ah, you want this point. And this point. That's x. And this
would be x plus h That's the point and that's X plus h. And that's the
difference. So the diitzrence here is delta X. And so what you can just plug inis
you just, what vou're rrving to find is just the rate of change between this point and
this point. The raic of change. What's huppening on the function. You're just
trving to discover what's happening on the function.

In these problem responses it is clear Richard has a grasp of calculus concepts and
techniques. He displuys consistent knowledge of concepts and techniques, and is able to
explain his thought processes. These aspects of his interview, along with the fact he
speaks of "visualizing" calculus steps or patterns (see page 170) indicate Richard's sources
of conviction are 1o a certain extent internal. However, the extent to which they are internal
is not clear. Richard's comments on his learning reveal that he does not always attribute
his calculus knowledge and skills to his own abilities to make sense of and apply calculus

ideas. His comments on his calculus lcaming included the following:

(Richard)
I can't prove it. I can't prove most theorems. 1 just memorize how to do them. |
don't know how to prove them. . .. I memorize how to actually do, go about, you

know, taking the thcorem and applying it. That's what I memonzc.

I'm just trving, I'm just using the examples that he uses 1n his notes to make sure
that I'm doing it properly.

Well on the midterm 1 enjoyed that fecling of sitting down and knowing what | was
doing was right. Not having any qualms. Not having any problems. Not having
any doubts. Causc I knew what I was doing was right.

Well I try not to make it just copying. You could do it that way. You could just
open the book and just plug in the numbers for the different things. 1 try not to do
that. So try to sit there and close the book, and then ¢ thic problem myself.

It's just experience. . .. The exposure has everythiig to do with it. If you're
having trouble with graphing then you've just got to go home and do some morc
graphing.

You get used to doing something. How does practice get you to any point? How
do you becomce a better swimmer? You build on the expertise that you alrcady
have.

Richard speaks of memorizing how 1o apply theorems. Hc also speaks of using the
teacher's examples as a guide for the proper way to do things. Thus, his words reflect
external sources of conviction. Al thc same time Richard says his calculus studying is

more than "just copying". He speaks of "doing the problem myself”, and cxplains how
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personal "experience”, "exposure”, and "practice" help him build calculus "expertisc”.
Thesc latter comments indicate Richard's calculus learning is partially constructed from
internal sources of conviction. Thus, as with Jennifer and Nadine, Richard displays a
mixture of internal and external sources of conviction. His external sources of conviction
arc memorized thcorems and application procedures, while his internal sources of
conviction reside in making sensc of his personal experience and practice with calculus.
Hec actively involves himself in practicing and gaining experience with calculus skills.

Sally is similar to Richard in that she speaks both of memorizing rules and working
through calculus problems for herself. For exampie, her interview included the following
comments on her own learning:

(Sally)

Understanding is applying the ideas to get a right answer. . .. And you need to
know the idcas in order to apply them. And know what ideas apply in what
circumstances.

When I do a question and I look at the book and the answers match. I guess that
the whole way of understanding calculus for me is getting it right. But] guess fora
lot of people, you know, it shouldn't be that. It should be just knowing the ideas.
But for me it isn'L.

I'm trying to get the ideas into my head and how to use those ideas. Like the
cxamples especially. 1 follow them closely, step by step, what he's doir+ .ow
he's applying the ideas to a problem. And then I try to do them mysclf. /.:d the
exercises from the book. And then also, I guess it's just memorizing rules.
Though that's not what math should be. But it is a bit because you have to
remember the rules in order to use them.

I'm very stubborn, so I'll keep atit. T'll keep at the same problem for an hour.

I: Do you feel a need to convince yourself?
S: Ycah. Which is why I study. Why I do questions and assignments. To make
sure.

Sally speaks of her calculus learning in terms that reflect both external and internal
sources of conviction. The external nature of her sources of conviction are seen in her
references to "just memorizing rules" and getting answers that "match" the textbook
answers. Her internal sources of conviction are seen in the fact she tries to do problems
and excrcises for herself, keeping at "the same problem for an hour" and trying to learn
"how to usc" the ideas. Sally speaks of calculus as learning "ideas in order to apply them".
To her, calculus is a technology of knowing "what ideas apply in what circumstances”.
Although she does problems for herself to "make sure" she is convinced of the validity or
correctness of her work, she sces calculus understanding as getting the right answers. In

other words, Sally's sources of conviction simultaneously reside in externally oriented
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statements of the textbook and personal, internal knowledge of the application of idecas.
Thus, as with Jennifer, Nadine, and Richard, Sally exhibits a mixture of external and
internal sources of conviction.

The external and internal mix of the nature of Technician's sources of conviction
reveals their sources of conviction play a role in their icarning by serving as a technology
by which to apply calculus. Technician's calculus conceptualizations are thereby built and
organized as a logical structure of appropriate application of calculus ideas and techniques.
The external component of the related sources of conviction resides in externally gencrated
statements, rules and procedures, while a personal sense of mastery of the rules and logical
procedures of calculus gives risc to internal sources of conviction,

Technicians' personal sense of mastery of the technology of calculus indicates they
see knowledge of the logical usc of calculus language as a source of conviction. Through a
coming to Kknow how to use calculus symbols and terminology they organtze their calculus
experiences and structure their related conceptualizations. This language knowledge as a
source of conviction was also cvident in Collector students' interviews, but for Collector
students it was primarily based in pre-calculus language knowledge. Technicians also
displayed pre-calculus language knowledge as a source of conviction upon which to build
calculus conceptualizations and this feature of Technician students is one way Technician
students' charactenistics can be viewed to encompass those of Collectors. Some examples
ol Technicians' use of pre-calculus language knowledge as a source of conviction arc the
following:

(Sally)

{Prokiem 3b)
fib) What does "limit" mcan to you?]

Something that a number approaches, but will never reach. Or something 1t can't
cross like a border. Like you can't ever quite get to it

(Nadine)
{Problem 3b)
[(b) What does "round off" mean to you?]

You don't have so many numbers to deal with. Causc, like wi:h that onc, il: you
have nine nine nine nine, you can Cuutinuously go on. If you have four, it's finite.
It stops. And that is much easier to work with than three point nine repeating.
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(Jennifer)

(Problem 9)

(scc page 64 for the graph for Problem 9)

Well the function has, 1t's changing there [at x = -5]. Um. It really can't continue
there, so it has to change there. So there can't be, it has to change, the function has
to change at that point there cause it can't continue with the way the function was.
So it has to make a drastic change. . .. If the function is unable to continue like
that then I'd say the derivative wouldn't be able to.

In the first extract above Sally constructs a conceptualization of limit as a "border”
that you "can't cross". Her previous knowledge of the word "border" and her association
of the word "border" with the word "limit" have served as sources of conviction upon
which to build her conceptualization of limit. Similarly, Nadine's previous knowledge of
the term "round of " and her association of the term with the phrases "it stops” and it is
"much casicr to work with" have served as a base from which to build her calculus
conceptualizations related to rounding off. Jennifer also maKes usc of previous language
knowledge as a source of conviction. Her nctions of "continuing" as not changing are
carried over to her calculus conceptualizations of the behaviour of a funciion. A more
complete discussion of language as a source of conviction is given in a later section ¢f this
chapter.

Another similarity between Technician and Collector students' interviews was that
Technicians gencrally spoke of calculus as useless and different from other mathematics or
other subjects. For example, Technicians spoke of their impressions of calculus as
follows:

(Richard)

Well I just mecan that in calculus when 1 ..y’ I understand something it means [ can

doit. And 1 can get the right answer. Whereas if I'm usually talking about another

subject, well I understand the theory, cr I understand the principles behind it. 1

know what is happening and | could, if somebody asked me to explain it to them, I

could explain it to them in terms they could understand. Whereas 1 couldn't do that

at all. 1 could never explain calculus to somebody in terms that they could
understand. Because | don't understand. 1 just know how to do.

I'm saying that the principles of calculus are useful to business, but coming in here
and taking this calculus course is not useful to somebody who is in business.

(Jennifer)

There's like calculus mode and there's a math mode type thing. And calculus is
different from other math.
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(Sally)
Not only more difficult, but totally different. . . . It's a totally different kind of
math. It's not, yeah, again, it's not dcaling with numbers. And his examples,
they're not examples. 1 don't know, they're not from life. You can't find

problems that relate to life. They're just questions with a few numbers and somce
letters and words.

That's another thing about calculus that's different from high school. In high
school you do usc it. But in calculus I just can't think of any real world
illustrations of calculus.

Just the fact that you can't sec it in real life. It docsn't seems rcal. It's just talk.
Y ou can prove it, but that's just talk too.

In these interview extracts Jennifer and Sally speak of calculus as "different” from
other mathematics. Sally also comments on how she sces calculus as "just talk” that is "not
from life" and does not have "real world illustrations". Richard docs not say calculus
lacks real world application, but he docs state he sees his calculus course as irrelevant and
of no use to his future business carecr. It is noteworthy that, in spite of the fact they
display mastery of calculus as a technology, Sally and Richard do not see calculus as
personally relevant. This point further portrays the nawurc of Technician students'
convictions as a combination of external and internal sourccs.

In summary, Technician students gencrally display a combination of external and
internal sources of conviction. Their external sources of conviction reside in knowledge of
calculus statements, rules and procedures, while their internal sources of conviction arise
from knowledge of how to use these rules and procedures. Thus, the role of a Technician
student's sources of conviciion is as a means to orgitmze and structure calculus statements,
rules and procedures. The resultant structures the: ~by become a calculus technology that
guides and informs the students in the applicat:<i +» <.ilculus ideas and techmiques. It is
through a sense of mastery of the technolog: -.alus that Technicians' sources of
conviction are more internal in nature than C-slle..cr.. Their mastery of the technology of
calculus is seen both in their relatively high C ", ..ction Scores (between 22 and 31 out of
36; see Table 8), and their comments on thei+ ¢+.+n learning in calculus.

As with Collector students, Technic it use pre-calculus language knowledge as an
internal source of conviction. However, 1< _hnician students do not display the lack of a
sense of personal understanding of calculus conceptualizations that is present in Collector
students' interviews. Instead, they use both their pre-calculus language knowledge and
their newly acquired knowledge of calculus statements, rules and procedures to construct
problem responses. Technicians expressed views that calculus is different from other
mathematics or other subject areas, but they also spoke of an ability to solve calculuy
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problems for themseclives. Finally, although Technician students displayed some sense o

personal mastery of calculus, they did not necessarily see caleulus as personally useful or
relevant.

Connectors

The students classified as Connectors are Annabel, Tim, Mike, Neil and Tanya (sce
Table 9). Annabel is from Aipha University, Tim is fiom Beta College, and Mike, Neil
and Tanya are from Gamma College. These five students ranked fifth, fourth, second,
fifth and first according to their Complction Scores (Table 8). A student who from his or
her sources of conviction is classified as a Conncctor dispiays sources of conviction that
are generally internal in nature. They arc internal 1n that a Conncctor student displayvs a
sense of being able to interpret calculus for herself or himself. Similarly to Technicians,
Connectors display knowledge of calculus as a technology. They organize their calculus
experiences so as to be able to logically and and consistently apply calculus idcas and
techniques. However, Connectors differ from Technicians in that they display a stronger
sensc of personal understanding of their calculus conceptualizations. They also display a
higher degree of competence in both explanation and application of calculus. Their
conceptualizations are displaved as a network of "connections" between various aspects of
calculus, and between calculus and the student himself or herself. In this way the role of a
Connector student's sources of conviction as a validation to the student that she or he
makes statements, performs procedures or creates problem responses that arc valid, correct
and meaningful to the student as well as other individuals. Thus, Conncctor students are
able to both apply calculus knowledge and make personal sense of this knowledge.

Connector students trequentiy spoke of understanding as important in their calcuius
leamming. They also spoke of approaching their learning as trying o conncct together ideas,
statements, rules and procedures. Exampies of what they said in relation to these two
features are:

(Annabel)
I feel fairly confident. ... Cause ] make sure. I try to make sure | understand
everything as [ go through it.

I'm following along in class. Lots of times when he does a problem I don't copy 1t

down until after he completely finishes. And then I understand it. Then I copy it
down.

Practice helps you gain confidence I think. And you learn more about them
[symbols]. And also in this course lots of things build on what you did before.

I'm trying to fit it all together. Not memorizing.
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(Mike)
I like to know why somcthing works. . .. But ah, I do like to be told how things
work and if it doesn't make sense I'm not really afraid to say hey, hold it type
thing.

I like, like ] said, I like to know how it works for myself. And figure things out for
myscl{. You have more control that way.

The background betind it. If | can look at a question and do it that doesn't
necessarily mean I vnierstand it. Like taking derivatives. Ah. A lot of people, like
1 said, I was explaiming to my friends. Some people can take the denvative of any
function using the rules, and not even understand it. It's knowing the process
behind it and how the whole thing is going to go. If you can do that, explain how
that works, then you can say you've fully understood 1t.

(Tim)
Try to understand. And difficult, and the questions is, arc quite difficult. ... and
dcvelop a skill for the students to try to think.

Try to understand the theory. Try to understand how it works.

Knowing why is important. Yeah. Because knowing why and how it work, ah,
how it works and you can just develop your skill to do any kind of question which
is similar to the theorem.

(Neil)

Quite confident. . .. I'd say almost more confident than my other courses. Ah, ]
understand I guess. For the most part I understand it. Where it comes from and
why it is.

I don't think I would understand half the amount I understand unless 1 knew where
it came from 10 begin with.

I definitely try to recreate things and think it through.

I've had it both ways. [ had it just here's this formula and this is how you use it.
... And 1 did lousy. Because then comes the exam, and they're going to throw
these really strange things at you to see if you understand it. And [ didn't know
where it came from. [ didn't know how to utilize it. How to alter it te suit my, to
suit the problem in order to solve the problem. But when you know where it comes
from then you can, it's just not this formula all set in stone. And then it's useful
that way.

And here, the way he's teaching it you can see the connection, and I guess that's
important. Seeing how everything is linked together. And not just this idea, and
this idea over here. And if they are connected then one should know it. Evenif it's
a little more complex. But, I think the connections are important.



(Tanya)
That it makes sense. That it makes sense. Yeah, okay, it makes scnsc.

Becausce you can't learn from memorizing cverything. Because you have to
interpret it. Y ou have to understand the theory behind a certain form. The theory
behind a certain something, and then apply it to something clsc.

Cause you need to, you necd to imagine it in your head. What goes on. You can't,
you can't see infinity. You have to imagine infinity. You can't scc infinitely, or
infinitesimally small. You have to imagine it.

Well from unit to unit you fit together everything that you lcarned before. Like
limits applies to hyperreals, and derivatives applies to hyperrcals. Everything yvou
learn applies to infinitesimals and infinites. 1t all fits together.

In these excerpts the students make it clear they feel they understand calculus.
Annabel says she fecls "fairly confident” with calculus becausc she makes sure she
understands everything as she goces through it. Mike says he understands things in terms
of knowing the "process behind it" and how things arc "going to go". Similarly, Tim says
he tries to understand "how it works", because he can then develop "skill to do any Kind of
question”. Finally, Neil says he knows where things "came from to begin with”, and
Tanya says ca:culus "makes sensc” to her. In comparison, nonc of the Collector students
said calculus made sense to them. Technician students expressed some scnsc of personal
understanding of calculus, but they did not speak of their learning of calculus in the same
way as did Connectors. Conncctors spoke morc of calculus as something onc fcarns
through personal involvement with and subsequent flexible application of idcas. This
aspect of their learning is particularly ciear in Tanya's comments on her lcarning. She
speaks of her "imagination” as an essential component of her calculus learning, and notes
how she must "interpret" rather than memorize in order to lcarn how to apply calculus
theory. Through these words Tanva expresses a sense of personal undcerstanding or
ownership of her calculus knowledge. That is, as sources of conviction she uses
knowledge and thought processes that she conceives of as her own.

This sense of oneself and one's own thought processes and inicraction with
material as sources of conviction by which to learn and use calculus is also scen in the other
Connector students' words. Neil speaks of trying to "recreate things” for himsell” and he
emphasizes he sees it important to know how things are connected together and how onc
can "utilize" them. Tim speaks of understanding as development of a skill "to try and
think". He also says "knowing why" is an important goal of his calculus learning because
it allows him to apply calculus to "any kind of question”. Mike also specaks of personal
understanding as a goal of his calculus learning. He says he has "more control that way™.
Finally, Annabel says she approaches her calculus lcaming by "trying to fit it all together”.
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She says she doesn't just "copy" down whatever the tcacher does, but rather, follows
along and tries to understand 1t

The sensc of personal control and involvement of one's own thought processes that
is demonstrated by Connector students reveals the internal nature of their sources of
conviction. More specifically, Connector students' sources of conviction are internal in
nature in that they reside in a sense of personal comprehension and control of calculus ideas
and applications. In this way, the role of Connector students' sources of conviction is as
both a guide and a confirmation for the student that she or he states and uses calculus ideas
and applications in ways meaningful to herseif or himself as well as others knowledgeable
in calcuius.

{1 must be noted at this point that Connector students' sources of conviction are not
exclusively internal in nature. As alrcady mentioned, the naturc of Collectors',
Technicians' and Conneclors' sources of conviction can be viewed as lying nested one
inside the other. Similar to Collectors and Technicians, components of Connectors'
calculus conceptualizations appear to have been built from externally generated statements,
rules and procedures. For example, Connector students spoke of some aspects of their
calculus learning in the following ways:

(Neil)

Well when you have X and y terms together you have to diff erentiate in terms of

x in order to find y prime. And so you have to treat this as a separate function

and do the chain rule on it. You do the derivative of the outside and the derivative

of the inside function. And I'm not exactly clear on how that relates. ... Butin
terms of the time constraint I just, like I knew, I could see right away how it was

arithmetically. But in terms of conceptually I didn't have it as clear as 1 wanted to
have it. But I nceded it learned for the exam. I needced it learned.

(Mike)

But if we need to be sure on how something works, then yes, I want tc know how
it works. And, but then I also look at it that it is, it is, almost anything, any course.
Math specifically, like memory work. You don't really have to think when you're
doing something like the multiplication table. You have to memorize that and be
familiar. So it's not an application where you're throwing in some numbers. It's
memory work. You know. Six times seven is forty-two.
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(Tanya)
But sometimes it's going through it that bothers me. Itexists. Ah. Tt wouldn't be

right if it wasn't right. So let's just work with it. We don't nced to know how
some blowjoc came up with it.

I'm satisfied with just knowing where they got the basics from. Um. The
definition of the power rulc I found most fascinating. . .. But now when you get
to the higher, higher steps like this with the chain rule, 1 think okay, well, I've seen
all the other proofs. 1 know it works. I'll just know this.

(Tim)
So most of the time, if T don't understand 1 just try to memorize.

I don't have time. If 1 have time I will practice more and get much understanding.

(Annabcl)

{ think that if vou sit there and question why vou're doing cverything in calculus
you won't ever get anything done. S« you just say ah well, they're tcaching it tous
for a reason. And don't worry about why. Just try and understand what they're
doing, not why they're doing it.

The above interview extracts show that aspects of Conncctor students' sources of
conviction are similar to Collectors' and Technicians' in that they reside in externally
generated statements, rules and procedures. Further, these statements, rules and
procedures are knowledge of which Connecior students do not claim 1o have a complete or
personal understanding. The students speak instead of portions of their calculus learning
as "memory work" of things that need to be "learned for the exam". Ncil comments on
how the time constraints sometimes affect his learning by requiring he know certain things
for an exam before he has time to be "exactly clear" on how things relate. Similarly, Tim
notes how he will "just try to memorize" when he doesn't have time to work on
understunding something. Tanya and Annabel also refer to constraints. They speak of
how the amount of material that is covered and the need to use matcrial requires they not
always worry about "going through" where something came from, or question "wRy
they're doing it". They the-efore focus on "the basics”, and understanding "what” is being
done. That is, their learning is influenced by the fact they must get things donc and must
be able to "work with things".

Thus, it can be said that Connectors have external sources of convictin that reside
in memorized, "just learned” calculus statements, rules and procedures. However, the role
of these external sources of conviction is somewhat different than the role of Collector and
Technician students' external sources of conviction. For Collectors and Technicians,

exiernal sources of conviction served as a validation to the student that he or she makes
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statements or performs procedures that are in accordance with what either the technology of
calculus or mathematics teachers or textbooks dictate. Collectors do not claim 0 have the
ability to personally understand these statements, rule and procedures, and Techaicians see
them as internal only in that they fecl they have mastered the thinking processes that
comprisc calculus technology. In comparison, it appears that the role of Connector
students’ external sources of conviction are as "fillers” between the calculus ideas and
techniques they have connccted and construed for themselves. They are fillers in that
Connector siudents do not necessarily speak of the knowledge tiiey have built from external
sources of conviction as knowledge of which they would not be able to make personal
sensc. Rather, it is knowledge they have built from external sources of conviction because
the constraints of their world necessitate they know particular things within a specific time
frame.

Another feature of Conneclor students' interviews that was both similar and
different to Coliectors' and Technicians' was their views of mathematics. Their views
were similar in that Connectors spoke of mathematics as being definite and setin its ways,
but they differcd in that Connectors spoke more of mathematics as a practical or human
endcavour. In relation to these features they said the foilowing:

(Mike)

Sort of like most math things. That you, ah, that you're taught all along and told
1o, this is how God made things and it's what you do. A lot of it is, I think like
anybody can get like really high marks in math if they just realize that it was more
memory than applications. Because math is so set in its ways. Like I said before,
you can do math one way. Like there may a number of different ways of getting
around certain problems just by different ah theorems and stuff !like that. But
you're morc or less doing the same thing.

It's, it can't be interpreted differently by a number of people. Like say a poem can.
Because you know the guy that came up with the first little bit of calculus wasn't
just writing it to please himself or anything like that. Like a poet could be writing a
poem because he, you know, liked the sight of a bird flying across the sky or
something like that. It was done because it worked, and then it was expanded
upon, and it was just very logical.
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(Tanya)
The best way | can say it is you will write an essay and cvery time, no matter how
perfect the essay is, somebody will find something wrong, or a different way to do
it, or a different way to interpret it. Sentences can be infinitely, and paragraphs can
be infinitely juggled around. And math can only be done one way. One or two
ways. There's certain ways, you know. You take a step here, step two. Math can
only be done onc way, and that's the only way I'll have to worry about knowing it.

Like just the power rule, simple power rule. Um. Product rule, quotient rule 1 find
are great because | find that somebody didn't just wake up and write this down and
I have to study it now. They actually did think it through. They actually did come

up with it

(Neil)

I think onc important thing about calculus is it's taking things that aie infinite in
value and making them finite. .. . It's taking things that arc almost impossible to

manage to cor21!ialize and giving more concrete ideas to them.

Jt's not just barfi«» up formulas and seeing how much vou can remember. It's
taxing your mental abilities 10 sce do you know, can you understand where it comes
from.

(Annabel)

Most of the examples we take are practical cxampics. But as to whether somebody
would actually do them, I don't know. But ! think they are, there are times when
calculus is uscful.

Another prominent fcaturc of Connector students” interviews was they displayved a
higher level of competence with calcalas concepis and shails than the other interview
students. The Completion Scores {or the Connccior students, Annabel, Tim, Mike, Neil
and Tanya, were 29, 30, 31, 29 and 32, respectively {zce Table 8). These scores were
amongst the five highest for ali the interview students and this higher degree of competence
with calculus concepts and skills was reflected in the nature of Conncctor students'
problem responses. However, although there is evidence of a relationship between high
competency in calculus and approaching calculus learning as a Conncctor, it is not clear if
one causes the cther. Their problem responses were often more detailed, using morce
symbolic representations and more complete explanations of ideas or procedures. For
example, their problem responses included:
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(Mike)
(Problem 6)
[6. A friend of yours who recently completed high school mathemaltics is
wondering what calculus is all about because he/she has heard you frequent!y usc
the word "derivative". What short explanations, sentences, or examples would you
use to explain to your friend what the "derivative” is all about?]
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Figure 34. Mike's Written Response to Problem 6

Your volume filling. Like that would actually be given to you. In number of litres
per hour or whatever. It's filling up. And then the question would ask you actually
how fast is the height rising? So you need dh by dt. And ah, and then you have
to figure out using the volume at this point. 7t r squarcd h or something.
Something like that. Um. So using this, ah, if you could find a relationship
somewhere in there with your r and h or whatever, and try to make them all
cqual. Then you could find your dh dv. You know. And multiply basically this
times this. ... And then you have your answer, how fast vour height is rising.
And when they ask me like where would that come in handy? . .. I told them open
the bowl of the back of the toilet. ... But you know that little switch? 1 don't
know, maybe I've fixed our toilet at home too many times. And I'm startin; to go
funny or whatever. But you've got to, the chain comes down and hooks onto this
little lever, right. And you zet vour plug. And on the back of it you've got this
little tube with a hole in the back. Cf course when your water's 1n therc and you
pull up. Like this thing 1s up now. And this thing starts draining all the water.
Well vou want to know really how fast it's going to go to give enough time for the
bowl to drain. .. .I just thought that was kind of ncat when I thought about it.
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(Ncil)
(Probiem &)
[8. What interpretations do you have tor the expression below?

dy F(x+dx) - F(xX)
dx 7 dx ]

dy
Ry
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Figure 35. Neil's Written Response to Problem 8

When you're looking at a function magnified an infinite amount you have the value
X and vou want to know how 1it's changing. So if you go any amount over, well
you go an infinitesimal amount over and you look at how the v valuce has changed
with respect to how the x value has chan;:cd And that will 1_1\c you how the
whole function is changing at that point. Because you're looking at it
infinitesimally.
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(Tim)
(Problem 9)

[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?]
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Figure 36. Tim's Written Response to Problem 9

This point 1 consider does not have derivative [at x=-5]. Because derivative is the
slope, right. The slope. They do not have the same slope I think in this graph. . ..
From the left, from the left, from the right side this point we choose another point
just close beside and we get the slope positive, right. And from the left side we
choose another point close to this one. We get a negative slopc.
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(Annabcl)
(Problem 3a)

[3. (a) Evaluate the following:
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\"“\3-\+S]
3 @ 4,

2 X — + .
v X ‘&X - <
*+4
o<+ . SO

/_-—-\

e X

Figure 37. Annabel's Written Response to Problem 3a

I just divided top and bottom by the highest power of X on the bottom, x cubed.
.. . Because then you can simplify the equation.  You divide it by the highest
power of X on the bottom because if you divided by the highest power of X on
the top you'd have an undefined equation. Because it would end up being zero in
the bottom if the, well because the top power is higher than the bottom power. And
vou do it to <implify it. To get rid of ah some of the things. Because you know it's
the definiuon that something. one, any number divided by infinity will equal zcro.
Approaci zcro. As the limit approaches infinity. . .. Like you could go infinity to
the fourth plus four. But] can't really secc what you're accomplishing. That would
be the simplest way. [ gucss you know that it's still going to be infinity becausc
infinity to the fourth is obviously larger to infinity to the third minus infinity.
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(Tanya)
(Problem 5) . o
[5. For cach function given below, determine if 1t 1§ continuous or
diccontinuous. Give reasons [Or your answer. |
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Figure 38. Tanya's Written Response to Problem §

This is a function by itself. Even though it is a split function it's still a function.
Okay. You can consider it as the same function. Because it conncects right at zero.
You can sec by the signs. This is a less than and equal to. This is a less than.
Here it connects with the same idea 1 was saying right here. Take an infinitesimal
point right to the left. It will round off to the function itself at x. Or, ycah, okay.
And the point right left of zero to the point, to the function, which is one.

In comparison to the problem responses given by Collector and Technician
students, the above problem responses show more facility with calculus ideas and
techniques. These problem responses also show how Connector students uscd language in
the form of symbols as a source of conviction. That is, it is through symbolic language use
that Connectors have constructed some of their calculus conceptualizations and related
problem responses. Thus, as with Collectors and Technicians, language use serves as a
source of conviction. Some of the Connector students, similarly to Collectors and
Technicians, displaved everyday language use as a source of conviction. This aspect of
sources of conviction is discussed in a later section of this chapter, as is students' use of
symbols as a source of conviction. However, it must be noted that there is insufficient
evidence at this point to determine whether symbolic language use as a source of conviction
is internal or external in nature. Connector students demonstrate a familiarity and facility

with symbols, but it is not presently clear whether symbolic language use as a source of
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conviclinn is perceived by them to be personally meaningful.  Since this point relates
directly to symbolic language usc it is discussed further in a later section of this chapter.

In summary, Conncctor students gencrally display sources of conviction that are
internal in nature. Their sources of conviction reside largely in idcas and techniques they
perceive to make sense. That is, Connecctor students view calculus knowledge as
somecthing of which they can gain personal understanding and use. They specak of
approaching their calculus learning in terms of aiming to understand, make scnsc of, and
flexibly think through and apply ideas and techniques. In this way Connector students use
their internal sources of conviction to construct calculus conceptualizations of which they
feel personal understanding. The role of a Connector's sources of conviction is therefore
as a guide and a confirmation to the student that he or she makes statements and performs
procedures that are meaningful and uscful to the student as well as other individuals.
Connector students sece their own interpretations and thought processes as components of
their calculus learning. Their calculus conceptualizations are thereby constructed as a
network of personally meaningful, interconnected statements, rules and procedurces.

Language Use

As with sources of conviction, during extensive cxamination of the student
interview transcripts the context category for language use proved to be in need of change.
This examination revealed that language use and sources of conviction arc highly
intertwined. In fact, it became clear that language use is a source of conviction. It will be
demonstrated it is a source of conviction in that language knowledge serves as a foundation
from which students construct their problem responscs. The nature and role of students'
language use and its relationship to seurces of conviction will be discussed in upcoming
sections. First, it must be pointed out that as sources of conviction catcgorics were thrown
into question, so too were language context categories. For example, in Sally's response
to Problem 3a (see page 133) Sally apparently speaks both within mathcmatical and rule-
oriented contexts. This feature in itself indicates that classification of the context of
particular language statements cannot be uniquely determined.

To more appropriately and reliably analyze the context of a student's language use
it was decided not to examine specific language statements. Instead, the context of
language use was examined on the broader level of an entire probiem response. This
examination was done by noting if a student made use in a problem responsc of technical
language, everyday language, visual mathematical representations or physical objects, nonc
of which were supplied in the problem statement. These features, though not nccessarily a
reflection of a student's perceived context of his or her response, aided description of a
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student's language use. The details of the revised analysis procedures for language use
will now be described, along with results of the analysis.

A student's language use for each clinical interview problem was determined by
cxamining the related interview transcript and written responses. A Language List was
made for cach student for each problem. Samples of these Language Lists are in Appendix
R. The lists are comprised of rechnical and everyday language words, phrases or
expressions used by a student in a particular problem. Items are included in this list only 1f
they were not already present in the statement of the problem. For example, a student's use
of the word "derivative" would not be included on the student's Language List for Problem
6 because the technical language word "derivative” is present in the statement of that
problem. Similarly, manipulations or operations with symbols present in the statement of a
problem did not constitute inclusion of those symbols on a student's Language List. Thus,
symbolic expressions were included on the Language List only if they constituted a
symbolic representation not present in the staterient of the problem.

Along with the Language Lists, a Language Chart was made for each student.
Thesce Language Charts are in Appendix S. The rows of each Language Chart correspond
to the clinical interview problems. However. as has already been mentioned, Problem 1
responses were included with data related to a student's general comments on their calculus
cxperiences. The columns of the Language Charts correspond to:

(1) symbolic technical langiage (TL-S),

(2) technical language words and phrases (nonsymbolic technical language) (TL-W),

(3) evervday language (EL),

(4) figures (F), and

(5) objects (O).
The columns labelled either "number" or "count" will be explained shortly. Figures include
graphs, diagrams, or other visually oriented mathematical representations. Objects include
reference to or use of physicai entities such as a car, fencing around a field, or a swimming
paol.

Although technical language has previously been defined to include mathematical
symbols, the technical language category was divided into two subcategories at this point.
Reasons for this division are: (1) the researcher became aware while conducting the
interviews that many students made use of zechnical language words and phrases, but made
relatively little use of symbols, and (2) students' use of symbols differed from their use of
technical language words and phrases in that words and phrases were generally used
orally, while symbols were written. Thus, for most students, use of symbols was

distinctly different from use of nonsymbolic technical language. In fact, spoken technical
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and evervday language words and phrases were gencerally used as a main mcthod of
communication, while symbols were generally used for performing operations. Use of
symbols to represent ideas occurred infrequently in comparison to use of nonsymbolic
representations of ideas.

For each clinical problem, cormresponding to a row of a Language Chart, a
checkmark was made under each "number" column category present in the student's
responses to the problem. The filled circles of the Outline Chart in Appendix S indicate
which column categories were prasent in the written statement of each problem. For
example, filled circles are under columns TL-S, TL-W and F for Problem 5 in the
Qutline Chart because the statement of Problem 5 includes equations for functions (TL-S),
the word "continuous" (TL-W), and graphs (F). The circles provide casy reference to the
explicit context of the problem statement. As with the Language Lists, checkmarks were
made under a "number” column category variable only if the student made use of that
category bevond what was already given in the statement of the problem. For example, a
checkmark was made under the figure column (F) for Problem S only if the student
introduced and made use of a figure (graph or diagram) not given in the statement of
Problem 5. An example of this occurrence is the following graph Danicl drew and referred
to it in his explanations for Problem S:
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{Deznicl)
(Problem 5)

[5. For cach function given below, determine if it is continuous or
discontinuous. Give recasons for your answer. ]
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Figure 39. Daniel's Written Response to Problem §

Similarly, a checkmark was made under the "number" column for symbolic
technical language (TL-S) for Problem 7 only if the student's response to Problem 7 used
symbols not already given in the statement of Problem 7. Use of symbols to label points,
axes, or functions on a graph or diagram did not constitute use of new symbols unless the
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symbols themselves constituted a mathematical representation. For example, Tanya's

written response to Problem 6 includes:

(Tanya)

(Problem 6)

[6. A friend of yours who recently complcted high school mathematics is
wondering what calculus is all about because he/she has heard you frequently usc
the word "denvative". What short explanations, sentences, or examples would vou
use to explain to your friend what the "derivative” is all about?]

Ytdx -t
—Q/Kﬂ-c/x.) - ﬁ'x)
i

yayrys

Figure 40. Tanya's Written Response to Problem 6

. f(x+dx) - f(x ok .
Here, the expression ( di (x) was considered use of symbols becausc it

constitutes a mathematical representation not given in the problcm statement. However,
labelling of the sides of the trianglc with Ay and Ax was not considered symbol usc
because the diagram was the main mathematical representation and the symbols were uscd
as labels on the representation. Also, manipulations or operations with symbols alrcady
present in the problem did not constitute --se of new symbols. For example, a checkmark
was entered for Tim's response to Problem 7, but not for Annabel's response. Tim
introduced operator notation as a representation of the differentiation process, while
Annabel just perfcrmed operations with symbols. The relevant portions of Tim and
Annabel's responses to Problem 7 are:



198

(Annabcl)
{Problem 7b)

[F(1) = (22 +31-2)10(3114.9)7]

F'CO = /6(aL2+ 3¢ ..‘;.1)3(4/64»3)(3'6”—7)4 +

EXy 3t-a)le () (3t %9~ (4 %)
Figure 41. Annabel's Written Response to Problem 7b
(Tim)

(Problem 7b)
[F(1) = (224 3t-2)10(3113.09)7]
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Figure 42. Tim's Written Response to Problem 7b

In addition to checkmarks, numeric entries were made in the "count" language
columns of the Language Charts (TL-S(count), TL-W(count), and EL(count) columns).
The entrics are the number of new language expressions, words or phrases the student
made use of in each problem for each language column variable. For example, the number
"2" was entcred on Betty's Language Chart under the TL-W column alongside the
checkmark for Problem 4 because Betty's response to Problem 4 included the fechnical
language words "undefined" and "indeterminant” (see Appendices R and S for Betty's
Language List and Language Chart).

The final row of each student's Language Chart gives the number of checkmarks in
cach "number” column and the sum of the numeric entries in each "count” column. They
arc referred to, respectively, as the total "number" and the total "count". Thus,
EL(number) refers to the number of problems in which everyday language was used.
EL(count) refers to the total number of everyday language words or phrases used in all the
problems. Totals for each column were averaged across all students at each institution (see
Table 10). For each student, Table 10 also contains the ratio EL(count) to TL-W(count).
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That is, the ratio of the total number of evervday language words or phrases used to the
total number of technical language words or phrascs used. An average ratio for cach
institution is also given.

The choice of the column catcgories for the Language Chart was made so as to
provide indication of the environment within which the student constructed his or her
response to a problem. Totals for each column could then be used as indicators of the
nature of a student's language use. Determination of the role language use played in
interpretation of calculus problems came from examination of what students said or wrote
and what this language reflected of their calculus conceptualizations.

Figures in Table 10 show both similarities and differences between the groups of
students at the threc post-secondary institutions. These similarities and differences will
now be discussed, proceeding across the columns of the table. Values from the table are
used as initial bases for the discussions. The discussions arc then expanded to include
findings from examination of what students said or wrotc in the interviews, and what role
these responses played in their interpretations of calculus problems. Throughout these
discussions, unless stated otherwise, the term rechnical language will not include
mathematical symbols. That is, symbols and purely verbal technical language will be
discussed separately. The role of students’ langnage use as a source of conviction will be
discussed throughout the upcoming sections.
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Table 10. Column Totals and Institution Averages for Students' Language

Charts

TL-S TL-S TL-W TL-W EL EL F o) EL (count)
Student/ (number) | (count) | (number)| (count) | (number)| (count) | (number) | (number) | /TL-W (count)
institution
Annabel / 1 6 7 11 23 9 14 3 1 0.61
Ellen / O 2 2 7 8 7 24 1 1 3.0
Jennifer / 2 2 11 22 8 30 4 1 1.4
Ned / O 1 3 8 24 9 37 3 2 1.5
Richard / & 4 5 12 29 9 22 6 1 0.76
Alpha 30 38 98 | 212 | 84 | 254 | 34 12 1.5
Averages (25%) (82%) (70%) (28%) | (10%)
Cindy / B 3 4 11 26 10 25 7 2 0.96
Daniel / 3 3 10 24 9 31 5 3 1.3
Doug / P 3 3 10 23 9 36 2 1 1.6
Leanne / 2 4 12 30 10 25 8 0 0.83
Sally / 5 5 10 30 11 32 6 3 1.1
Tim/ § 7 7 10 30 9 16 7 0 0.53
Beta 38 43 | 105 | 272 | 97 | 272 | 58 15 1.1
Averages (32%) 88%) (81%;} 48%) | (13%)
Betty / Y 5 8 9 16 11 43 4 1 2.7
Gordon /7 Y 1 1 9 18 8 29 5 1 1.6
Mike / 6 7 12 23 9 41 4 2 1.8
*Nadine / Y 6 6 8 18 10 41 2 1 2.3
Neil / y 3 5 10 32 12 35 4 1 1.1
Tanya/ Y 7 7 12 42 11 45 4 3 1.1
Gamma 47 57 | 100 | 248 | 102 39 38 15 1.8
Averages (39%) (83%) (85%) 32%) | (13%)

*The figures for Nadine are incomplete because there was insufficient time in her interview to do Problem
4. These figures are therefore lower than they would have been if she had done Problem 4.
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Symbols
At all three institutions students made refatively little usc of symbols in comparison
to their use of rechnical or evervday language. Considering the highly symbolic nature of
calculus, this fact might be said to be surprising. Furthermore, since 76% of the
Completion Scores (sec Table 8) on the skill problems (Problems 3a, 7, 10) were 2 or 3
(partial or complete responses), it can be concluded that although students were able to
perform standard symbolic operations, they did not gencrally usc symbols to convey ideas.
The ease with which students often carried out symbolic operations but struggled
with or were unable to provide symbolic mathematical representations can be seen in the
following two excerpts from the interview with Jennifer:
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(Jennifer)
(Problem 10)
[10. Find the slope of the tangent linc to the curve X2y +32-3x=4

at the point  (0,-2).}

atlj + )(23‘ + 23«1’—- % =0
Xlljt_ka?ylj': Sfaly
%'(yuaj)_—. 3 -2y
[~ 3- MY
9(9+2y

(ﬂ’:; 5"3(0){'3)
(0 + Al-3)

Figure 43. Jennifer's Written Response to Problem 10

I did implicit differentiation. So using the product rule for the first term found the
derivative of x times y. Plus the derivative of y times x. And then for the
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seccond term, implicit differentiation of X, v squarced. Just differentiate that.
Differentiation of a constant is zero. And then isolating 'y prime. Take all the
terms which don't have a y prime to the other side of the equation. Take out the y
prime. And divide the facmrcd what's Ieft of the factored form through to the
other side. Youisolate y prime. Then just substitute the pointsin for x and vy.

(Problem 8)
[8. What interpretations do you have for the expression below?

im _ f(x+h) - f(x)
h—0= = h

Figure 44. Jennifer's Written Response to Problem 8

J: That's the definition of the derivative using limits, isn't it? What interpretation
would I have?

I: Do you have any way of saying more about it? Or showing where it comes
from?

J: Ui, Well, there's that graph. As well. Whatever. And this would be x. And
then X, and x plus h. [long pause] Hm. h approaches zcro. {long pausc]

I: What are you thinking?

J: I'm not really sure. It would have to, I'm trying to think of, as x approaches,
as h approaches zero. [pause] So is this, the distance between here. h
approaches zero. The limit of that would just be the slope of that tangential line
there. This would be getting closer to that. These lines would be there at that point
f prime cause that's the definition of the derivative. It would be the tangential siopc
at that point.

In the first extract Jennifer procecds quickly and accurately through implicit
differentiation, demonstrating she has knowledge of how to work appropriately with
symbols to differentiate implicitly. That is, leanguage use in the form of symbolic
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procedures serves as a means by which Jennifer constructs her problem response. In the
sccond extract Jennifer struggles with a graphical interpretation of the symbolic definition
of the derivative. She knows the symbols are the definition of the derivative and that they
relate to the slope of a tangent line. However, she is unable to provide an adequate
explanation of the relationship between the symbols and the graph. She labels the points x
and x-+h on the x-axis, but docs not identify the role of f(x) and f(x+h). She also docs
not explain how the symbols in the definition correspond to the slope of a line. Jennifer's
Problem 8 response therefore shows how she has knowledge of the graphical location of x
and x+h, but she does not have complete knowledge of how these symbols relate to use
of the technical language terminology "derivative" and "slope of a tangent line".

Thus, it is seen that Jennifer has knowledge of appropriate symbolic procedures,
but lacks knowledge of symbolic representations or interpretations. She clearly knows
how to usc a symbolic procedure as a technology for finding a derivative and the
corresponding slope of a tangent line, and this procedure serves Jennifer as a source of
conviction by which to construct her problem response. Whether it is an external or
internal source of conviction is not however clear at this point. It must also be noted that
symbolic language use in the form of symbolic representations does not appear to be a
featurc of Jennifer's language use. Thus, it appears symbolic language use in the form of
symbolic representations does not serve Jennifer as a source of conviction by which to
construct problem responses and related conceptualizations.

Jennifer was not alone in her display of skilled use of symbolic procedures and
concurrent lack of ability in use of symbolic representations. From Table 10 it can be seen
that 10 of the 17 interview students used symbolic representations in at most tour (one third
or less) of the calculus problems. Nine of these 10 students were Collectors or
Technicians, while 4 of the remaining 7 students were Connectors. This fact indicates
Collectors' and Technicians' language use, more so than Connectors', includes use of
symbolic procedures but not use of symbolic representations. Another feature of the use of
symbolic procedures was that Collectors often made errors in these procedures, but
Technicians and Connectors generally performed them accurately. Examples of these
features are the following (for further examples of Collector students' procedural errors see
pages 151, 152 and 153):
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(ILcannc)
(Problem 7b)

[F() = QE+31-2)10(3114.9)7
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Figure 45. Leanne's Written Response to Problem 7b

(Richard)

(Problem 10)

[10. Find the slope of the tangent line to the curve X2y +32-3x =4
at the point  (0,-2).]

Pyt 25320 4 go= mli-x,)
—;x}- = x° %“" 'Zf% é%.}l>=&:r()(‘0)

Figure 46. Richard's Written Response to Problem 10
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(Mikce)
(Problem 10)

[{10. Find the slope of the tangent line to the curve X2y +3y2-3x=4
at the point  (0,-2).]

ey + x‘aélé‘« *Qjézl?z -3=0
f.{g _ —:Qx«;u-?)
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Figure 47. Mike's Written Response to Problem 10

In the first of the above three extracts Leanne (a Collector) uses the chain rule for
differcntiation, but uses it incorrectly in conjunction with the product rule. The sccornid and
third extracts show how Richard and Mike (a Technician and a Connector, respectively) are
able to accurately proceed through an implicit differentiation. In all three extracts the
students use knowledge of symbolic procedures, even if remembered inaccurately, to
construct their problem responses. Thus, language use is the foundation upon which they
build their problem responses.

Another feature of symbol use was that a nuinber of students spoke of symbols as
not having meaning for them. They said such things as:

(Daniel)

Because to me it looks like Greek on the board when he works through all that
stuff. Well usually the notation doesn't make a whole lot of sense sometimes. To
say that a represents a constant. .. . like derivative is equal to f at a minus, or f
at'b minus { at a, all over b minus a. To me, what does that represent? It's a
little too ah, like to me it's easier if you just say that. Instead of writing it out with
a's and b's. Like why don't they just say what they mean, you know?
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(Doug)
Causc it's not black and white. It's not. Like stuff about a very small number and

stuff. Epsilon, or whatever. It just makes it all the harder cause, 1 don't know
why. It's not written right out, I gucss.

(Ellen)
You have a variable x and y. Why do you have a d in front of it? Or why do
you have a little slas'i thing on it having the derivative? Like what does that mean?

(Cindy)

I guess you have to have them but 1 just get really, really confused. There's so
much. And I don't think there's cnough attention given to making us understand all
the symbols.

(Leanne)

It's mind boggling. With like epsilon, delta, and whatever clse. Or epsilon onc
and epsilon two. It can get confusing to me becausce they're both litie numbers.
Like you sec all those symbols and stuff, it kind of gets, you want him to just sfow
down and say what does this mcan.

(Richard)

They're just symbols I move around according to a rule. They don't really mcan
anything.

It doesn't have a meaning. It seems like it's stupid notatiosi. Why don't they have
notation that says what it is?

These extracts display how these students see symbols as scparate from any
personally understood calculus conceptualizations. They refer to symbols as things that do
not "make a whole lot of sense" (Danicl), are "not black and white" (Doug), arec "mind
boggling" (Leanne), and make one "really confused" (Cindy). Doug, Daniel and Richard
also comment on how they wish notation were more "written right out" so that it "says
what it is". For these students, symbolic language use in the form of symbolic
representations is not a source of conviction for the construction of calculus
conceptualizations. Further, the fact that all these students except Richard arc Collectors
indicates there is likely a relaionship between a lack of use of symbolic representations and
external sources of conviction.

A relationship between symbolic language use and sources of conviction can also
be seen in the problem responses of the 5 students who used symbols the most. These
students are Annabel, Tim, Nadine, Mike and Tanya, who used symbols in 6 or 7 of their
problem responses (see Table 10). Four of these five studenis are Connectors, with the
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additonal student, Nadine, a Technician from Gamma College. What is noteworthy about
the three students from Gamma College is that they, unlike most of the other students, gave
svmbolic justifications or explanations of continuity or differentiability in Problems S and
9. Furthermorc, the symbols these students used and their corresponding verbal language
weie purticular to the infinitesimal approach to instruction used at Gamma College. For
cxample, Tanya, Mike and Nadine's responses to Problems 5 and 9 included the following:

(Tanya)

(Problem S)

[5. For cach funcuon given below, determine if it is continuous or
discontinuous. Give reasons for your answer. ]

S
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Figure 48. Tanya's Written Response to Problem 5

That any, I'l kind of do it this way. y at x. And these two x's are the same.
Ah. If you take any x point and go a little bit to the left or a little bit to the right an
infinitesimal amoun, it rounds off to y at that X on the y-axis.
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(Mike)
(Problem S)

[S5. For each function given below. determine 1t 1t 1s continuous or
discontinuous. Give reasons for vour answer. ]

\]
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Figure 49. Mike's Written Response to Problem 5

M: So your dx could be positive or negative. Either side of it. But that would
have to round off to the function at one. To be continuous. Now if vou get a
negative then it will. But if you get positive, all of a sudden you're going to . . .

I If what's negative or positive?
M: Your dx. Youknow if you have negative dx you're going to be just to the

left. And it's, well that rounds off to the correct thing.  But just to the right of 1t,
hey, I've got a two here, not a minus one.
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(Nadinc)
(Problem 9) ) _
[9. The graph of y = F(x) is given below. At which points does the function not

have a derivative? Why?j
r,g\ N /?

Fax )0 s~ O
d T dx SO
xX dx ~~ o
Figure 50. Nadine's Written Response to Problem 9

N: Well if you want to find the derivative at a point, see I don't know what the
function is. Okay, so I'm just going by { at x. And at your point you're looking
at negative six. It's just a point. So you look at negative six and have negative six
plus dx. And if there's any other point beyond there, that's what dx is. It's any
infinitesimal x or change in X.

I: So where would negative six plus dx be on this graph?

N: To the left and right. Cause you have negative, cause you have the dx alitlle
bit to the left, and dx a little bit to the right. The dx to the left does not exist.

In all threc of these extracts the students use infinitesimal language (words and
symbols both) to explain the relationship between the behaviour of a graph and the
coiresponding notions of continuity or differentiability. In doing so, the infinitesimal
notation serves as a tool for construction of an explanation. It is a tool in that interpretation
of dx as an infinitesimal rumber provides the students with something fairly concrete to
work with. They easily visually locate on a graph what dx corresponds to, and how the
position of dx relates to the behaviour of the graph. The students use infinitesimal
notation as language by which to both build and justify their responses, and in this way
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infinitesimal language use serves these students as a source of conviction. However, it is
not clear at this point whether this usc of infinitesimal notation as a source of conviction is
extemai or internal in nature.

Traditional limit notation can be used to explain and justify continuity and
differentiability in wavs similar to those of the previous threc interview extracts. However,
of the 11 students whe. received calculus instruction using the limit concept, only Annabel
and Tim successfully justified continuity or differentiability by the use of limit notation. A
third student, Jennifer, displayed a sense she knew limits were needed to prove
discontinuity, but was unable to connect her idecas with the limit notation she wrote down.
These findings suggest limit notation is not gencrally uscd by students as a source of
conviction for construction of calculus conceptualizations. Annabel and Tim, the two
students who were able to use limit notation to justify or explain concepts, were also the
two students at their respective institutions who used symbols most frequently (sec Table
10). They were also unique amongst students at Alpha University and Beta College in that
they are the only Connector students from these institutions and the only individuals 10
display in their work and express in responses 1o personal interview questions that they
appreciated, felt comfortable with, or had meaning for mathematical symbols. In relation to
symbols they said such things as:

(Annabel)

They're just a good compact way of expressing it. It's more basic. [t puts it all

down in point form and it gets rid of the extra words. With the extra words, a lot

of times it seems confusing. Kind of when you read Hamlet and you want to get
nd of a few.

I think they are important to my learning becausc it just makes it more basic and it
makes it a lot less writing.

(Tim)
It means something to me. For instance, this thing is a small value [writes 6 and

€]. I know this, I know take a denvative [writes g—t}'

Math is international style. I think by the symbols.

In these extracts Annabel and Tim express how they see symbols as a mcans by
which to express and think about mathematical ideas. Annabel sees symbols as important
to her calculus learmning because she can use them as a "compact”, "more basic” means of
communication. They do not have the "confusing”, "extra words" that she sees as a part -
verbal communication. Tim also speaks of how his calculus learning uses symbols ti.
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"mecan something” and that are a means by which to "think". Thus, since Annabel and Tim
perceive symbols to be personally understood, it can be said that symbol use serves
Annabcl and Tim as an intemal source of conviction.

For the other three Conncctor students, Neil, Mike and Tanya, it has not been
cstablished whether symbol use as a source of conviction is external or internal in nature.
Since they are Conncctors it scems likely that their symbol use as a source of conviction is
internal in nature. However, Nadine, a Technician, was also one of the students who used
symbols most frequently. Whether or not these students' use of symbols as a source of
conviction is external or internal in nature will be considered in the next section of this
chapter, in conjunction with analysis of technical and everyday language use. 1t will be
secn that Neil, Mike and Tanya's use of symbols differs from that of Annabel and Tim in
that it is more highly intertwined with everyday language use. 1t will also be seen, in
conjunction with other types of language use, that there is not enough evidence to
determine if symbol use by Neil, Mike and Tanya (Connectors) is external or internal in
nature.

In summary, symbols do not gencrally form a large component of students'
language use in calculus. Although some students are able to manipulate or perform
operations with symbols and thereby use symbolic procedures as sources of conviction,
they do not usc symbols to represent concepts. However, Connector students displayed
more extensive use of symbols as sources of conviction by which to explain or justify
idcas. The students from Gamma College did so by use of symbols and words particular
to infinitesimal calculus. Infinitesimal symbols served them as objects that could be
concretely represented on a graph and referred to in the construction of an explanation or
Justification.

Technical and Everyday Language

Technical and everyday language will be discussed in conjunction because it would
be inappropriate to discuss one without reference to the other. This inappropriateness is
because students generally used a combination of technical and everyday language in their
responses to problems. Interview excerpts used to demonstrate the nature and role of
students' technical language therefore often simultaneously display everyday language use,
and vice versa. In addition, since everyday language is often given by students as an
explanation of a concept denoted by a technical language term, it would be a
misreprescentation of the students’ language use to completely separate the two language
types.
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Students at all three institutions were similar in the extent to which they used
technical language. The average usc of technical language (TL-W(number)) at each
institution for the set of interview problems ranged from 82% to 88% (sce Tablc 10). The
average total of technical language terms used (TL-W(count)) was also similar at all three
institutions, ranging between 21 and 27. However, figures in Table 10 also show' that, on
average, students at Gamma College used evervday language in a higher percentage of
problems (85% versus 81% and 70%). Though these figures are not in themselves
significant, they are meaningful in conjunction with the figures for the totals for everyday
language terms used (EL(count)), and the ratio EL(ccunt) to TL-W(count). The average of
the total EL(count) values at Gamma College was 29, whereas the corresponding averages
at Alpha University and Beta College were 25 and 27, respectively. These fi gures show
that, relative to the average total EL(count) values for Alpha University and Beta College,
the average total EL(count) value for students at Gamma College represents use of at least
44% more everyday language terms.

Students at Gamma College also differed from the other two groups of students in
that all students at Gamma College had EL(count) to TL-W(count) ratios that were greater
than one. In comparison, the same ratio for students at Alpha University and Beta Cdllege
exhibited a greater variety of values. For some students the EL(count) to TL-W(count)
ratio was greater than one, and for other students it was less than one. The two £roups,
students whose EL(count) to TL(count) was greater than one and students for whom this
ratio was less than one, contained fairly equal numbers from each of these two institutions.
Three students at Alpha University and three students at Beta College had El (count) o TL-
W(count) ratios greater than one, while two students at Alpha Univarsity and three students
at Beta College had ratios less than onc.

The TL-W(count), EL(count) and EL(count)/TL-W(count) values indicate that
although students at Gamma College uscd Zechnical language to about the same degree as
students at the other two institutions, they used everyday language more. This finding
distinguishes them from the other students. However, what distinguishes them more is the
content of their fechnical and everyday language use and the ways they used related terms
to describe, explain or justify calculus ideas. These features will now be discussed.
Examples of what students at all three institutions said and wrolc are given. The nature and
role of language in interpretation of calculus problems are discussed, and in particular,
technical and everyday language use as a source of conviction is discussed.

Students' problem responses revealed some important fcatures of their language
use, including: (1) conceptualizations built using infinitesimal language displayed fcatures
different from conceptualizations built using traditional calculus language, and (2) whether
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spcaking with traditional or infinitesimal language, students used terminology as a source
of conviction by which to construct conceptualizations, and in these constructions pre-
calculus language knowledge was prominent.

To begin with, when asked what "round of{" meant to then,, students at Gamma
College gave explanations not completely congruent with the cormsponding responses
given by students at Alpha University and Beia Colicge to explain "himit". Gamma College
students gencrally spoke of rounding off in terms of making numbers or calculations "less
messy" or "casicr to work with”. They said such things as:

(Mike)
[(b) What docs "round off" mean to you?]

_L/n —~> 0-0 / =
| — 7= =

Figure 5§1. Mike's Written Response to Problem 3a

It's less messy. Ah. Like I'd really rather look at ah something like an answer here
{his answer in Problem 3a). If it's infinity. Than this whole mess [the original
cxpression].

(Tanya)
It's better to work with it. It's better to work with that number, and for all practical
purposes it is kind of really that number.

(Betty)
When you take like um, not a whole number, but like decimal numbers. And you
try to get them to round off to whole numbers.

(Gordon)

It just makes it easier to work with numbers. If you have sixteen divided by three
point nine nine nine, or sixteen divided by four. This [4] is a whole lot easier to
work with than that is [3.999 . . .].

{Nadine)

It's making a problem a little bit simpler. ... You don't have so many numbers to
dcal with. Cause like with that one, if you have nine rine nine nine, you can
continuously go on. If you have four, it's finite. It stops. And this is much easier
to work with than three point nine repeating.
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An important feature of these excerpts is they reflect notions related to the round off
process that students are taught in elementary school. That is, students appcar to havebuilt
their conceptualizations of rounding off from pre-calculus mathematical experiences o the
term "round off". They refer to making numbers simpler or casier to work with, andalso
speak of numerals after a decimal place as an important aspect of rounding off. The pre-
calculus term "round of " and its related pre-calculus interpretations can therefore be sad to
serve students as a foundation for building conceptualizations related to the rechsical
language term "round off". Further, since it is from this foundation that the students butld
their calculus conceptualizations, language use is seen 1o be a source of conviction.

However, previous familiarity with the term "round of1" also appears to kave
prompted some students to retain round off notions that are not always congruent with the
role rounding off plays in calculus. For example, Betty's belief that the result of rousding
off must be a whole number is a misconception of rounding off in both a pre-calculus and
calculus context. In addition, in the last two extracts above, the way Gordon and Nadine
used the everyday language phrases "makes it easier” and "little bit simpler” does not
necessarily reflect accurate notions of the role rounding off plays in calculus. Rounding off
is a process that is generally done at the final step of a calculation. Thus, although it might
make the resulting answer "a little bit simpler” or "easier to work with", it does not
necessarily ease previous calculations or symbolic operations. It might be that Gamma
College students' conceptualizations of the role of rounding off includes the notion that
rounding off makes it "easy" or "simple" to work with calculus ideas, as wdl as
simplifying answers. However, this possibility is not clear from the above excerpls.

A carryover of previous conceptualizations associated with terminology was also
evident in the interview responses of students at Alpha University and Beta College In
these students' explanations of the term "limit" it was clear that students' interpretations of
the calculus term "limit" contained a mixture of everyday and mathematical interpretations.
Furthermore, it was clear that this mixture arose from students' conceptualizations of
"limit" as an everyday language term. Examples from the interviews included:

(Ellen)

Well if it has a limit then, yeah, it's going to approach a number and then when it
gets to that number it's going to stop. It's not going to get any bigger or smaller.

- . . but it will always come back. Like it won't really go anywherc. Do you know
what | mean?

(Richard) _ .
It can't ever reach it. In other words it's just getting closer to it.
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(Ned)

Well, limits just don't seem to be clear. But um, so you have to really assume all
limits. Say if you're drinking you should know your limit. Well it's so uncertain,
but you should, you should get a general idca of what your drinking limit is.

(Doug)
I usually take limits as X towards something. | just put itin there.

(Daniel)

The limit for mysclf represents a barrier or endpoint at which something is possible.
For cxample, a swimmer would only be able to swim one mile because that is the
limit of his or her endurance. Similarly in math, though more complex, a limit
represents a maximum or minimum possibility.

(Sally)
Something that a number approaches, but it will never reach. Or something it can't
cross, like a border. Like you can't ever quite get 1O it.

(Lecannc)
You have a limit or a number that a certain equation Or a certain curve is
approaching, and it will never actually get there. But it won't go beyond there.

(Cindy)

C: A scrics of numbers that approach one number. That approach the same
number.

I: Can you actually reach a limit?

C: No. You can only get close to it.

Before discussing these excerpts it must be noted that the two Conncctor students at
Alpha Universily and Beta College, Annabel and Tim, did not display the misconceptions
of limit that were displayed by Collector and Technician students at these institutions. The
Collector and Technician students, by ascribing meanings to limits in terms of drinking,
swimming endurance, stopping, getting closer but never reaching, going towards
something, being a barrier or being something you can't cross over, revealed the powerful
role previous language knowledge played in their construction of calculus
conceptualizations of "limit". The excerpts reveal the everyday language term "limit" and
the conceptualizations students relate to it served as a source of conviction for the students’
constructions of conceptualizations related to the technical language term "limit". These
everyday conceptualizations appear to have led students to construct narrow notions of
limits.
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However, since the limit concept is used in calculus 0 derive other calculus
conceplts, it is important to also examine how students made use of their limit-related
language in problems requiring application or interpretation of limits. The same
examination of language use must also be done for students at Gamma College and their
usc of infinitesimal language. It will be scen as these discussions proceed that everyday
language use was both a help and hindrance for students' interpretations of calculus
problems. Whether it was a help or a hindrance depended on the extent to which students
integrated everyday language with technical language (including symbols) in ways
congruent with the corresponding concepts.

For example, students' Problem 2 responscs gencrally appropriately integrated
symbols and everyday language, explaining the behaviour of the two sequences with
everyday language phrases such as: "getting closer and closer", "getting smaller and
smaller”, "really really really really small", "very very close to", "so close", "gets closc®,
"goes to", and "bigger and bigger and bigger". This usc of everyday language aided
students' interpretations in that, because the phrases were consistent with concepts
underlying the technical language terms "limit" and "round off", it allowed them to reach
correct conclusions. For example, "really small" and "very close to", though not
necessarily complete interpretations, are correct interpretations of particular limit situations.
In comparison, evervday énnguage use in responding to Problem 2 hindered onc student,
Doug. He interpreted the symbolic language of the sequences in terms of the everyday
language phrases "continuing on" and going "forever". These phrases are valid everyday
language interprelations of the situation, but they led Doug to the mathematically incorreet
conclusion that the sequences did not have limits. Thus, for Doug, inappropriate
integration of symbols and everyday language resulted in construction of a mathematically
incorrect calculus conceptualization.

Examples of appropriate language integration for Problem 2 between symbols and
technical and everyday language was displayed by two students at Gamma Collcge, Tanya
and Nadine. Tanya and Nadine used technical language alongside everyday language in
their response for the second sequence (3.9, 3.99, 3.999, . . .). They uscd technical
language particular to infinitesimal calculus, and Tanya even gave her words a symbolic
representation. Tanya and Nadine's responses to Problem 2 included:
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(Tanya)
(Problem 2)

[2. For cach of the following sequences of numbers, decide whether the sequence
rounds off to a particular number. If so, what is this number?

11 1 1 1

L. 15 700 1000 10000 TOO000 " -

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999, ...]

4- ¢, Co ¥ Sl aaany
e i positin inSinidesica]

Figure 52. Tanya's Written Response to Problem 2

And it's going to get closer and closer to four. ... Four minus an infinitesimal
amount. Which isn't four, but it's as close to four as you get.

(Nadinc)

(Problem 2)

[2. For cach of the following sequences of numbers, decide whether the sequence
rounds off to a particular number. If so, what is this number?

11 1 1 1

1. 70 100 7000 10000 TOO000 * -

3.0, 3.99, 3.999, 3.9999, 3.99999, 3.999999, .. .]

Well this one, this one is gradually increasing towards four because you keep
adding on another nine. ... Well it's just when you keep adding on another nine
you're increasing the value. And eventually vou'll be adding an infinitesimal, an
infinitesimal amount.

In these two excerpts Tanya and Nadine used the technical language term
minfinitesimal” and the corresponding notion of an infinitesimal number to justify their
previous explanations using the everyday language phrases "get closer and closer to four”
and "gradually increasing towards four”. For Tanya and Nadine, technical language
arising from an infinitesimal approach to calculus was connected to symbolic and everyday
language use. In addition, Tanya and Nadine's appropriate integration of technical
infinitesimal language and everyday language use was not an isolated incident amongst
students at Gamma College. As the interview transcripts were analyzed it became clear that
Gamma College students' language use, in addition to inclusion of more everyday
language, differed in its integration of Zechnical and everyday language.
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Students at Alpha University and Beta College did not display much integration of
symbols, rechnical and evervday language. The two exceptions were Annabel and Tim,
who were both Connectors, and were the two students at Alpha University and Betw
College, respectively, who used symbols most. Annabel and Tim also stood out as distinet
in that their EL(count) values were the lowvest of these values amongst students at their
institutions. The values were 14 and 16, respectively, whereas the corresponding
institution averages were 25 and 27. Thus, the nature of Annabel and Tim's language use
was different from their peers. They did not usc as much evervday language and symbols
were used more, although rechnical language was used to about the same extent. The other
students often gave valid explanations of situations using everyday language, but did not as
frequently use technical language or symbols for further, more detailed or precise
justifications. In particular, unless specifically asked to do so, they did not makce extensive
use of language and ideas rclated to limits. There were occasions when they used rechnical
language or symbols but were unable 10 explain the connections to everyday language
explanations. Examples of these occurrences arc given below. The students in the first
two excerpts use a mixture of everyday and technical language 1o explain their ideas, but
everyday language is more prominent and they do not connect the related ideas to technical

language. In the last two excerpts the students arc unable to explain their symbolic and
technical language use.

(Ellen)

(Problem 5)

[5. For each function given below, determine if it is continuous or discontinuous.
Give reasons for your answer.] (Scc page 61 for the graphs for Problem 5)

Well this one is for sure continuous because it doesn't have any breaks in the graph
[graph 1]. And ] think this onc is continuous 0o because it just, it doesn't have
any breaks in this [graph 2]. Butitdocs because it's in two different sections. But
I just think it's continuous. I don't know why. And this is for sure discontinuous
because it has breaks [graph 4]. And this, the little circle is the point at which it
discontinues. And then this one, ah, it's continuous because it's just onc straight
line [graph 3].
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(Sally)

(Problem 5)

[5. For cach function given below, determine if it is continuous or discontinuous.
Give reasons for your answer.] (Sce page 61 for the graphs for Problem 5)

S: This one is continuous because it never stops [first graph]. There's no gaps.
And there's no, like you could just keep drawing it forever.

I: If I asked you to prove it in some way could you? Algebraically?

S: Um. Algebraically, no. Butl could draw you a picture of a parabola.

(Lecannc)

(Problem 6)

[6. A friend of yours who recently completed high school mathematics is
wondcring what calculus is all about because he/she has heard you frequently use
the word "derivative". What short explanations, sentences, or exumples would you
usc to explain to your fricnd what the "derivative" is all about?]

&

A X

Figure 53. Leanne's Written Response to Problem 6

Like if you had a graph of a curve and you had a change in your x value and a
change in your y value. It would be a change along the curve. And that change is
represcnted by the derivative. And this is like the slope. It has something to do
with that too. Butl can't remember how it all relates.
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(Jennifer)

(Problem 6)

[6. A friend of yours who recently completed high school mathematies is
wondering what calculus is all about because he/she has heard you frequently use
the word "derivative". What short explanations, sentences, or examples would you
use to explain to your friend what the "derivative" is all about?]

= T a4x? S
7%05 20 + 30"

Figure 54. Jennifer's Written Response to Problem 6

J: Ok. f x whatever, x plus, I don't know, x cubed plus five or whatever. f
prime would be just 2 x plus x squared. Now that would just be the slope of a
graph, and you just plot the graph or whatever. I've always scen derivatives as a
way of expressing an algebraic expression in a graphical sense.

I: Could you do that? The graphical part?
J: Probably not.

The first two of the above excerpts reveal a feature common to interview responscs
at all three institutions. This feature is that students were often able to give valid
explanations for problems when the problems were visually oriented by graphs. The
problems in which this generally occurred were Problems 5, 6,9, 11 and 12. In particular,
students used a range of rechnical and everyday language related to the visual appearance of
a graph, or the concepts of slope and tangent line. This language was used to describe
features of graphs, serving as a source of conviction to construct cxplanations. The
technical language frequently used included: "constant”, "not smooth", "not increasing or
decreasing", "slope of the graph", "slope of a function", "negative slope”, "tangent line",
"slope of the tangent”, "slope of the tangential line", "tangent horizontal", "no tangent
line", "curvature”, "always decreasing" and "der1vative is the slope". Everyday language
used included: "doesn't go smoothly", "steepest”, "gets higher", "kind of straight", "turns
sharply", "plateau”, "flat", "changes direction", "levels off", "tangents going in different
directions", "evens out", "coming down", "slope largest", "like top of a curve”, "not a
straight line anywhere", "slope most severe", "slope up and to the right", "it stops”, "gets
higher" and "rise over run". Examples of students' use of some of thesc technical and
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everyday lunguage phrascs arc given below. In all these examples the students construct
their responses from visually oriented language and this langurage use serves as a source of

conviction by which to consiruct problem responses.

(Cindy)

(Problem 6)

[6. A friend of vours who recently completed high school mathematics 1s
wondering what calculus is all about because he/she has heard you f requently use
the word "derivative”. What short explanations, sentences, or examples would you
usc to explain to your friend what the "derivative" is all about?]

f /
Vs 0(1/13 S/opz

S
a

OLW £ (% -

Figure 5§5. Cindy's Written Response to Problem 6

Ok. Anyways, if you want the derivative at this point, what you're going to be
doing is taking the slope of the tangent line. And the tangent line is the line that
only touches the graph at exactly this point. And so ycu're taking the slope of this
line. Um. Denvative, ok, derivative equals slope. And slope is the change in y
value over the change in the x value.
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(Leannc)
(Problem 9)

{9. The graph of v = F(x) is given below. At which points doces the function not
have a derivative? Why?]

Figure 56. Leanne's Written Response to Problem 9

If vou had a tangent on this side it would be going this way [draws 2 linc]. And as
it approaches the point from this side it would be going like this [draws another
line]. And this would differ. Like you couldn't find a slope.

(Sally)

(Problem 11a)

f(a) Atwhat exact point in time was the number of elk increasing mest iapidly?§
(See pagc 65 for the graph for Problem 11)

The derivative is the slope of the graph. and so um, it says right here that tha: graph
shows the number of elks in the park. So um, when the number is increasinng over
the shortest amount of time, then the slope is going to be the most vevtical. And
when it's the most vertical it's going to be the highest. And there ' the most
vertical so it will be the highest there.

(Richard)

(Problecm lle)

[(e)  Atwhat point or points in time is the number of wolves not changing?}
(See page 65 for the graph for Problem 11)

I: Why where the derivative is zero?
R: Slope is, well the slope of the tangent line is zero. It's horizontal. So slope is

zero. Well nothing is increasing or decreasing. There's no more wolves and no
less wolves at either point. It just stops.



(Jennifer)

(Problem 1l1c¢)

[(¢) At what point or points in time is the number of wolves not changing?]
(Scc page 65 for the graph for Problem 11)

Well the line isn't increasing or decreasing. It's just maintaining a steady slope.
It's flat.

In all these excerpts the students give explanations that rely on visual, spatially
oriented language, including: "touches the graph at exactly this point", "going this way",
"from this side", "most vertical", "highest", "horizontal", "just stops", and "flat". Through
usc of these everyday language phrases to describe the graphs under consideration the
students integrate evervday language with the technical language tcrms tangent, slope, and
derivative. Their explanations are thereby constructed from everyday and technical
language as sources of conviction.

Before continuing with analysis of students' language use, consideration of
whether language use as a source «:f conviction is external or inicmal in nature is in order.
First, students' use of pre-calculus mathematical language and everyday language as
sources of conviction has been demonstrated. It would be logical to consider this form of
language use as an internal source of conviction because it seems logical that everyday
language knowledge is personally meaningful to students. Second, use of visually oriented
language as a source of conviction has been demonstrated. It would be logical to consider
this language use an an internal source of conviction because students use it in conjunction
with perceptual experiences to construct problem responses. However, there is not enough
evidence at this point to claim that everyday language use within a mathematical
environment is perceived by students to have personal meaning. Whether or not it has
personal meaning would depend on the extent to which they perceive related mathematics
conceptualizations to be personally understood. This issue of whether or not everyday and
visually oriented language use as sources of conviction are external or internal in nature will
be examined again in Chapter 5.

In ways similar to students at Alpha University and Beta College, students at
Gamma College gave visually oriented descriptions and explanations. However, in
addition to similar visually oriented language, they constructed a number of descriptions
from the visually oriented notion of magnifying a curve. Atsome point in the interviewsall
students at Gamma College spoke of infinitely "magnifying" or "blowing up" the graph of
a function. In an infinitesimal approach to calculus this is a means by which a function can

be examined "up close". The following interview extracts exemplify how this process
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works. They also display related techuical and evervday language and how 1t plays a role
in the students' constructions of problem responscs.

(Neil)
(Problcm 6)

[6. A friend of yours who recently completed high school mathematics s
wondering what calculus is all about because he/she has heard you frequently use
the word "derivative". What short explanations, sentences, or examples would you
use to explain to your friend what the "derivative” 1s all about?]

-
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Figure 587. Neil's Written Response to Problem 6
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If you were to magnify that function infinitely it would look like a straight line with
the same point. And vou could still have a rise and a run. Except the rise and the
run would be infinitesimal as compared to a finite risc and run.
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(Gordon)
(Problem 9)

[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?|

y= F(x)

Figure §8. Gordon’s Written Response to Problem 9

The line has to be continuous. So vou wouldn't have one [a tangent] at the
endpoint. [pause] If you blow that up, infinitesimally you still have that. You
can't draw a tangent to that. Then vou can't have a derivative.

(Betty)

(Problem 1le)

(e) At what point or points in time is the number of wolves not changing?]
(Sce page 65 for the graph for Problem 11)

B: Just like here it's flat. But that's going from, when you would ah like increase
it. Like increase the graph and focus on that it would be like more of a flat line as
you get closer. And then flatter and flatter.

I: What do you mean by increase and focus on it?

B: When you magnify it.
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(Tanya)
(Problem 9)
[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?]
(Sec page 64 for the graph for Problem 9)

Right at this point if you magnify it. You're magnifying the point and you still have
a straight line. In order to have a derivative you need a line. You don't need a
point and a line to the left or right of it. You need a line where you can draw a
tangent line and a slope to it. Heigc, like 1 said, a derivative just to the right of it
exists [at X = 1/2]. Left, sorry. Just to the left it exists. Infinitesimally. Right at
that point it doesn't exist.

(Nadine)

(Problem 9)

[S. The graph of vy = F(x) is given below. At which points does the function not
have a derivative? Why?]

(See page 64 for the graph for Problem 9)

. . you take the point and you blow it up an infinitec amount. And if you scc a
straight line there's a derivative. ... You'll still scc this. You blow it up and
voull still seea V [at x =-5]. And at this point there is no derivative.

(Mike)
(Problem 5)

[S. For each function given below, dctermine if it is continuous or
discontinuous. Give reasons for your answer.]

3
z--
“
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Figure §9. Mike's Written Response to Problem 5

When you're looking that close and like on any point whatever it would be casy to
blow it up then and then se2 your dx. Like a little point almost on top of it. You
can see it. It's going to blow up almost like u straight line. And it's going to be
almost, it's going to be, it will round off. Like just to the right here. Just to the
right. Like I said, infinitesimally close.
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In the above extracts the students use both rtechnical and everyday language.
Technical language terms such as “infinitely”, "infinitesimally”, "continuous", "endpoint",
"tangent”, "derivative", "slope", and "straight line" are generally integrated with use of
everyday language. This everyday language includes: "a rise and a run”, "more like a flat
line as you get closer”, "a point and a line to the left or right of it", "sec a V" and "blow it
up". The language plays a role in students' interpretations by orienting the students to
construct descriptions of a magnified curve. Thus, it can be said that infinitesimal language
usc related to magnifying a curve serves as a source of conviction by which students can
construct graphical interpretations and justifications for these interpretations. Whether this
source of conviction is external or internal in nature is not however clear at this point.

Non-infinitesimal language related to the slope of a tangent line also served to orient
students to descriptions of a curve. However, these descriptions, justifications and
conclusions seldom made use of limit-related language or processes. In comparison, the
notion of infinite magnification has limiting processes built into its use. This feature
distinguishcs 1t from traditional slope and tangent line notions in more than one way. First,
it is a dynamic rather than static method for interpretation of graphs. Second, magnification
makes the fimit concept of "close to" accessible. That is, the visual mechanism of blowing
up or infinitely magnifying a curve serves as a visual, physieally accessible means or
source of conviction by which to examine limiting notions. The traditional limit concept
also has visual inierpretations, but these were not regularly used by students at Alpha
University or Beta College. In fact, the general absence of use of limit notation or
terminology by students at these two institutions, unless it was specifically requested,
indicates the students did not integrate their limit conceptualizations into other calculus
conceptualizations. For example, their responses to Problem 6 frequently included
cxplanation of the derivative as the limit of the slopes of a sequence of secant lines, but the
relationship of limits and derivatives was then not applied in other problem responses. Use
of the notion of magnification was more regularly applied by students as a source of
conviclion by which to construct calculus conceptualizations.

A final feature of the Gamma College students' use of magnification was that when
students used related terminology they did not construct the same misconceptions present in
problem responses of students who did not use infinitesimal terminology (including
incidents from Gamma College interviews when the students did not use infinitesimal
terminology). For example, there were students at all three institutions who interpreted
continuity in terms of the word "continuing". In conjunction with the technical language
term "continuous" students used everyday language phrases such as: "no breaks", "no
jumps", "existing", "being defined" and "not changing”. Many of the students' notions
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associated with these everyday language phrases were valid interpretations of situations,
although they were not necessarily valid mathematical interpretations. The interpretations
therefore sometimes guided students to construct mathematically incorreet justifications, or
Justifications that were used inconsistently. For example, students' problem responses at
all three institutions included:

(Doug)

(Problem 5)

[5. For each function given below, determince if it is continuous or
discontinuous. Give reasons for yvour answer. ]

(Sce page 61 for the graph for Problem 5)

Well, cause there's no breaks [first graph]. It just continues. And all the points
are, all the points exist on it. And they keep going. .. . 1 guess causc it changes
direction [third graph]. It goes this way and then it just breaks. It doesn’t have a, it
doesn't smoothly go into it. It's like two different lines that just happen to start at
that point. . . . No, it's discontinuous [fourth graph]. [t cxists but it's
discontinuous.

(Jennifer)

(Problem 5)

[5. For each function given below, determinc if it is continuous or
discontinuous. Give yeasons for your answer.]

(See page 61 for the yzruph for Problem 5)

I just imagine you can just, using values in there [first graph], there'd be no values
of X where the function wouldn't exist. . . . I'd just say any, it would be
continuous because any number that X, the function would exist at any number x.

(Gordon)

(Problem 5)

[5. For each function given below, determinc if it is continuous or
discontinuous. Give reasons for your answcr. ]

(See page 61 for the graph for Problem 5)

G: This one is [first graph]. Cause the arrows indicate that it's going on forcver.
There's no ah, no empty spaces between it. Then you could say it is continuous.
Um. [pause] This one is too [fourth graph]. Because everything to the left of that
point is on the fine. And everything on this linc to the right is there. There's no
empty spaces. Except for that little open circle which is there. If you just looked at
it, as like a straight line, it's still going to be, everything is still going to be there.
There's not going to be, no emply spaces.

I: That's in this part here? [the discontinuity at x = 1]
G: Cause like if you brought this linc {the right half of the fourth graph] down

there, the open circle and the closed circle would just cancel each other out.  And
yvou'd just have a straight line.
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I: So arc you saying it's continuous?

G: Yecah,itis.

In these threc extracts the students' interpretations of the rechnical language ierm
"continuous” in terms of "existing" leads the students to construct mathematically incorreet
justifications. Further, although interpretation of "continuous" as "no breaks” usually
oriented students to mathematically correct notions related to continuity, it did not do so for
Doug. Doug belicved that a "break" in the way a function is defined constitutes a
discontinuity.

Another misconception displayed by students who did not use the notion of
magnification was that non-usdqueness rather than non-existence of a tangent line implies
non-differentiability. For example, students said such things as the following:

(Cindy)

(Problem 9)

[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?] (See page 64 for the graph for Problem 9)

Because this is undefined [at x = -5]. Because a derivative means you're taking
the slope of a tangent. But the tangent, it could be here, it could be here, it could be
here. It could be anywhere. And we don't know where it is.

(Annabcl)

(Problem 9)

[9. The graph of v = F(x) is given below. At which points does the function not
have a derivative? Why?] (See page 64 for the graph for Problem 9)

Derivative is suppose to ah, on a graph the derivative is supposed to be a tangent
line that touches the graph at only one spot. And at a sharp point or an endpoint
there it touches it, it can do that in many different places. So you cannot define any
one denvative.

(Richard)

(Problem 9)

[9. The graph of y = F(x) is given below. At which points does the function not
have a derivative? Why?] (See page 64 for the gimph for Problem 9)

Well 1 mean a cusp, this is the way a cusp is drawn [at X = -5]. But if you get a
cusp it could go like that. And you don't know what, can you draw like that? How
do you draw, you can draw it a lot of different ways.
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(Sally)
(Problem 9)

[9. The graph of y = F(X) is given below. At which points does the function not
have a derivative? Why?] (Sce page 64 for the graph for Problem 9)

Like the tangent to this line. There's not really a place where vou could put a

tangent [at x = -5]. [t could be here, or here. So there's no tangent for the
derivative to be equal to.

The students to whom the above interview excerpts belong were guided by their
responses to the correct conclusion that no derivative existed at a particular point. In
comparison, magnification of a curve gencrally served to focus students' pereeptions and
subsequent justifications upon non-existence rather than non-uniquencss of a tangent linc.
Examples of this have already been given (sec Gordon, Tanya and Nadine's interview
excerpts on pages 226 and 227).

Amongst the problems that have not featured promincntly in these discussions thus
far, Problems 3a, 4, 7, 10 and 12, Problems 3a, 4 and 7 were most useful in revealing
students' language use. Problems 10 and 12 were not as uscful in revealing language use
because students did noi as extensively vocalize their written responscs o these problems.
In addition, due to time constraints in conducting the interviews, responscs to these
problems were not generally probed as extensively as other problem responses.

Since solutions to Problems 3a, 4 and 7 requirc symbolic opcrations, these
problems provided opportunity for examination of students' language use while performing
symbolic procedures. To begin with, 14 of the 17 interview students spoke of the limit or
round off situation in Problem 3a in terms of the relative size of numbers. They said such
things as:

(Doug)

(Problem 3a)
[3. (a) Evaluate the following:

lim x4 + 4 !
X—=>® x3.x+5

It's just a really really big number over a really really big number that's not so big.
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(Cindy)

(Problem 3a)

C: Ok. Well, these two are, they're not really worthy of being noted because four
and five aren't really going to make much of a difference tacked onto an infinity.
So if you put infinity in here [where there is an x]. Let's see. [pause]

I: What are you thinking?

C. I'm thinking that, my immediate reaction is to go like this. And that makes a
large number over a large number. But this number up here is going to be larger
than this number is. And so you're going to end up with a large number. Like it's
going 1o cqual infinity.,

(Annabel)

(Problem 3a)

I guess you know that it's still going to equal infinity because infinity to the fourth
is obviously larger than infinity to the third minus infinity.

(Gordon)
(Problem 3a)
(3. (a) Round off the following:

M+ 4+ 4
M3-M+5

]

Because these ones are so much higher than that one you can just forget them.
[pause] So you just get M. [pause] And finite divided by an infinitesimal, or |
mcan divided by an infinite is just infinitesimal. . .. This one here is a finite
number. Y ou can just forget about that again. A finite number divided by that is so
small you can just forget about it. So it rounds off to M.

(Tanya)

(Problem 3a)

Because this would be an indeterminate amount. You can't really sec what's
happening because this is infinity over infinity. And that reaily doesn't say
anything. ... Once again dx stands for an infinitesimal. Any finite over an
infinite is an infinitesimal.

(Neil)
(Problem 3a)
That term is an infinitesimal, and so are these two. So it's infinity over one.

In all these responses the studerts base their arguments on the numerical magnitude
of numbers. What is distinctive is that the Gamma College students' language use is more
fechnical in nature, using the term "infinitesimal" to denote a very small number. Further,
three of the six interview students at Gamma College referred to the symbolic expression in
Problem 3a as an indeterminate form. In comparison, none of the other 11 students spoke



233

—r

of the corresponding limit notation expression as an indeterminate form. This fact is
especially noteworthy in conjunction with the fact that all six students at Gamma College
used the term "indeterminate” to describe the function in Problem 4 at the point x = 2.
Only one of the other 11 interview students made a similar statement (Ned), saying it was
"undetermined". Seven of these eleven students substituted x = 2 into the denominator
only, or sometimes the whole expression for the function. They then concluded that
because "you can't divide by zero" the function is undefined at x = 2.

The reasons f{or this difference amongst students as to their recognition of an
indeterminate form are not clear. It might be that instruction using rounding off
interpretations guides students to focus on the form of an expression, rather than immediate
focus upon performance of symbolic operations. When students at Gamma College are
taught the rounding off process the notion of the relative size of a -ymbolic expression is
emphasized. First, symbolic expressions are examined as to whether their component parts
are infinite, finite or infinitesimal in size. The overall size of the cxpression is then
determined. Although algebraic operations might be necded before a final decision is
made, the emphasis is still upon size. The limit concept has similar interpretations, yet it
appears that students at Alpha University and Beta College conceptualized limits in ways
that are not as applicable as arc Gamma College students' conceptualizations of rounding
off.

Students' language use in Problem 7 was almost strictly in terms of verbalizing the
steps they were going through to determine the derivative. Examples of this language use
are:

(Doug)
(Problem 7a)
[7. Find the derivative of each of the following:

You take the derivative of the numerator times the denominator, and you minus the
numerator times the derivative of the denominator. And you put it, but you have to
get the derivatives of these.
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(Sally)
(Problem 7b)

[F() = (212 +31-2)10(3111.9)7)

So first you have the inncr function. And the outer function. So you get 10
[mumbling] times 41 plus 3. And then 3t. And then you use the multiplication
rule for derivatives. Which is the derivative of the first one times the second term.
Plus the first term times the derivative of the second term. So then we took the
derivative of the first term. And then there's the second term. And then plus, and
then this normal term. Times the derivative of the first term. So we first take the
outer function. Times, and then the inner function.

(Tanya)
(Problem 7b)
[F() = (22 +3t-2)10(3114.9)7)

This is the product rule. We're doing the derivative of this times this. Plus the
derivative of this times this. Derivative of this is ah derivative of outside the
function. Which brings the ten down and like a power rule with the brackets.
Times. This is the chain rule. Times the derivative of what's inside. So that takes
carc of the derivative of this. And times this part. Plus, as I said, the derivative of
this is once again doing the product rule with brackets. Times the chain rule in
here.

(Richard)
(Problem 7b)

[F() = 22 +31-2)10(3114.9)7 ]

I used the product rule. The first, I did the derivative of the first times the second.
So the derivative of the entire function. And then multiplied by the derivative of
what's inside the function.

(Fliend
(Probicm 7b)
[F(1) = (22 +31-2)10(3114.9)7

But then you have to find the derivative of the first using the chain rule. ... Took
the derivative of the second one and then found what the derivative of the inside
was again. And then timesed it by just this normal equation.

In the above excerpts, whether using technical language such as "derivative of the
numerator” or everyvday language such as "outer" or "inner", students' language usein
determining a derivative served as a recipe. Following the directions of the recipe achieved
an answer. In other words, students' everyday or technical language use that verbalized
symbolic procedures served the students as sources of conviction by which to construct
problem responses. The same procedural use of language was evident in responses to
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Problem 10 for those students who verbalized their implicit differentiation steps (for
example, see Richard and Mike's Problem 10 responses on pages 205 and 206). As with
everyday language use it is not presently clear if this procedural use of language is external
or internal in nature. More specifically, although it is clear students' procedural use of
language is a source of conviction by which to construct calculus responscs, whether or not
students perceive this use to be personally understood is not clear.

In summary, students at all three institutions were similar in the extent to which
they used technical language, but Gamma College students used more everyday language.
In addition, the content of Gamma College students' technical and everyday language use
was different from the other students'. They used rechnical and everyday language related
to infinitesimals, as well as related visual notions such as the location of two infinitesimally
close points and infinite magnification. Their language usc thereby served them as a sonrce
of conviction from which to build calculus conceptualizations.  Students from Alpha
University and Beta College did not generally display as much integration of rechnical and
everyday language related to calculus. All students did however display usc of pre-calculus
language knowledge as a source of conviction. Gamma College students carried previous
knowledge of the term "round off" into the formation of their calculus conceptualizations.
Alpha University and Beta College students used knowledge of the tenm "limit",

Many of the students displayed misconceptions of calculus concepts when they did
not appropriately integrate everyday and technical language. However, when students
used infinitesimal language they did not display the misconceptions present in other
students' responses. They more frequently appropriately used rechnical and everyday
language in conjunction with one another. Finally, all students were often able to give
valid explanations for visually oriented notions and notions related to relative sive. They
used these notions and related language as sources of conviction from which to construct
problem responses. In addition, for students from all threc institutions, language
knowledge arising from symbolic procedures served as a source of conviction. However,
whether it be previous or everyday language use, visually oriented language use, or
procedural language use, it is not clear if language use as a source of conviclion is cxternal
or internal in nature. More research is needed before this decision can be more definitively
determined, an issue that will be discussed in Chapter 5.

Figures and Objects

The values in Table 10 under the figures (F) and objects (O) columns indicate that
students at all three institutions made little use of physical objects in their calculus
responses. They also indicate that, on average, students at Beta College used more fi gures
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in their problem responscs. This fact means that students at Beta College introduced their
own graphs or diagrams into problem responses. The actual numbers indicate that on
average they incorporated 2 or 3 more figures into responses than did the other students.
However, more prominent distinctions from the other students are evident in examination
of when they introduced figures and what they said in relation to these figures.

To begin with all Beta College students except Doug introduced figures in at least
one of their explanations for Problems 2 and 3b, problems involving limits. These were
the problems that explicitly asked students to explain or justify limits. In comparison, nonc
of the other 11 students used figures in their explanations for Problem 2, and only 3 of the
11 used figures in their interpretations for himits in Probiem 3b. Somne examples of Beta
College students' usc of figures in Problems 2 and 3b are:

(Tim)

(Problem 3b)
[(b) What docs "limit" mean to you?]

Figure 60. Tim's Written Response to Problem 3b

I think 1 wili say, um I will explain this by drawing. If there is a valuc of X, um,
we define another point just close, close to it. Approach the value. Approach the
point X. And then we try to, ah, we try to put, we try to shift the point which
approach to x closer and closer. Closer and closer, and we get the value, ah. This
is x there. Thisis v. We try to find this value which closer and closer to get the
value, ah, to see whether this move to ah x to find the answer. A certain number.
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(Problem 3b)
[(b) What does "limit" mean to vou?]
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Figure 61. Cindy's Written Response to Problem 3b

Okay. For a right-hand Limit is ah is, I'm going to draw a picture for this. The
limit, okay, say this was two and this was one. That's the graph approaching two
from the night-hand side here. And the left-hand himit is two again. The graph
approaching two from the left-hand side.
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{Leanng)
(Probiem 2)
[2. For cach of the following scquences of numbers, decide whether the sequence

has alimit. If so, whatis this number?

N ] ] i
+ 70 TO0" 1000 ° T0000 * TOO000

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999, ...]

=9 3.9999999

Hyny
— 1 L —_—

|
|

Figure 62. Leanne's Written Response to Problem 2

If vou had a line graph mayvbe. And say this was three. But ah, you'd be
continually getting closer but never reach four I guess. I guess you could draw it
like that. . .. Like if acurve were approaching a number four, that will never, like
if. if you had likc a graph it could be either a horizontal or vertical curve. And um 1t
wi:l always be approaching the number four. And it's X value would be three
point nine, but it will never actually reach there.



(Daniel)
(Problem 3b)
[(b) What does "limit” mean to vou?]

Figure 63. Daniel's Written Response to Problem 3b

I said here it represents a barrier or endpoint. But ah, | guess 1l you're thinking in
terms of something rising, yeah, it could go beyond that and comé back.

In all these excerpts students use figures to interpret limits. This fact, along with
the fact that Beta College students tended to give lengthier descriptions and explanations of
figures than most of the other students indicates Beta College students language use related
to figures was different in content to most of the other students' figure descriptions.

Examples of their descriptions of figures included:

(Daniel)

(Problem 5)

[S.For each function given below, dctermine if it is continuous or
discontinuous. Give reasons for your answer. |

(See page 61 for the graph for Problem S)

Well there's no break in the graph and it appears to go to inf inity like this forever
[first graph]. And that is further demonstrated by the function  x squared because,
what do you call it, exponential growth? Like it will cause this thing to go on
forever. And also from looking at the graph I see its smooth. There's no breaks or
spaces where the graph doesn't exist. . . . I find this onc tricky [second graph].
The one with the two hyperbolas. Because ah, um, on one hand I think the graph
is smooth. Both the hyperbolas are smooth and approaching infinity. But thercis
ah, but x can't equal zero. Which seems to me to provide a discontinuity. But 1
don't think that provides a very strong argument so I'll say that is continuous.

I remember reading in my calculus textbook something about continuous functions
are smooth with no breaks. And I was trying to remember if it also included, what
do you call it, ah, sharp turns in a graph. Because | belicve that makes it
discontinuous at this part right here [third graph]. Because it's stopping und taking
another dircction. ... To me what really is a blatant discontinuity is a hole, a cusp.
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Which I belicve a cusp is. .. . It seems to me, | don't sce why this wouldn't be
conunuous [third graph)] because itU's going off in one, like it's just taking onc
dirccuon and going off in another. It's not a hele in the graph. But I believe that
when [ look at it, maybe the whole fact that it is taking another completely new
dircction shows the end of one function, or the end of one set of requirements and
the beginning of another. Without flowing together. Like there's a disjoint. For
this one I would call it discontinuous because there's a hole in the graph at one here
ifourth graph]. And here, ah, at negative one, this is both on the x-axis. It exists
at onc. Like that's where it starts. Like it doesn't look continuous. I suppose
down herce [for x<1] it does become continuous as ah it starts and goes forever.
Therc's no place on this it doesn't exist. And here it does not exist at the
coordinates one comma two. There's a hole in the graph and therefore it's a
discontinuous function.

(Sally)

(Problem 5)

[5.For cach function given below, determine if it is continuous or
discontinuous. Give reasons for your answer.]

(See page 61 for the graph for Problem 5)

This one is continuous because it never stops [first graph]. There's no gaps. And
there's no, like you could just keep drawing it forever. . . . This one's not
continuous because you're herc and then here you have to lift vour pencil [second
graph]. And then you can go again. . .. Then this one's continuous [third graph)].
It's just not smooth. And it's continuous for the same reasons . Cause you could
Just draw it and draw it forever and ever. ... Well, you can keep going and like
therc's no brecaks. No t:caks in the graph. No breaks on the function. The
function kecps going. And this one's discontinuous again [fourth graph]. Becausc
here's the graph down here. And you can draw it here and then you have to jump
again to here. And then as soon as you reach here you have to jump again to here.

(Leannc)

(Problem 9)

[9.The gruph of y = F(x) 1is given below. At which points does the function not
have a derivative? Why?} (Sce page 64 for the graph for Problem 9)

At negative 6 it doesn't have a derivative. .. . Because it's an endpoint. And the
derivative can't be on a closed interval. Um. I can't think of why. And here
because, um it's not smooth and continuous. If you were to draw a tangent to this

part of it. ... And if you had a derivative here it would be going a different
direction. Whereas if it were smooth and continuous you could find two points to,
um. ... If you had tangent on this side it would be going this way. And as it

approaches the point from this side it would be going like this. And this would
differ. Like you couldn' find a slope. There's no real, well you could find a
horizontal slope. I'm not sure exactly. Here, a straight line, the derivative is zero.
- .. I don't think there's one here. It's a sharp point in the graph. And there isn't
one at five. Cause the graph is undefined at five. And that's it.

These three interview extracts demonstrate the length of many of Beta College
students' responses to problems that gave graphs in the problem statement. They also
demonstrate the physical nature of these responses. This physical nature is seen in the
students' descriptions of the graphs using such phrases as: "go on forever", "no breaks",
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"smooth”, "sharp turns”, "stopping”, "tuking onc direction”, "hole”, " Hlowing together”,
‘no gaps", "lift your pencil", "draw it forever and cver", "you have 1o jump", "different
direction”, "going this way” and "sharp point". Although this usc of language related to
bodily, physical experiences is demonstrated here with Beta College students' problem
responses, it was also evident in other students' problem responscs.  For example, sec
Doug, Jennifer and Gordon's problem responses on page 229.

It is therefore seen that visual or physical interpretations of calculus are means by
which students can build probiem responses and related conceptualizations.  Since these
interpretations are a foundation upon which to construct descriptions and explanations they
serve students as sources of conviction. Whether students perceive of these physically
oriented descriptions as personally meaningful within a mathematical context is not clear. It
is therefore not clear if use of figures and related language as sources of conviction are
external or internal in nature. Constructivism is evident is these descriptions and
explanations in that through use of everyday and technical language students construct
individual responses. However, the extent to which students have personal understanding
of their related conceptualizations is not evident. It would seem logical to conclude
physical interpretations are internal in nature, because physical experiences are inherently

personal, but there is insufficient evidence at this point to support this claim.
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8. SUMMARY, DISCUSSION, IMPLICATIONS AND
RECOMMENDATIONS

This study was designed to investigate student learning in calculus from a
constructivist perspective. The nature of students' constructivist learning was examined
through students' langunage use and sources of conviction. Data collection and analysis
were guided by the following arcas of inquiry: (1) the nature and role of the language
students use to interpret calculus concepts and problems, (2) the nature and role of
students' convictions regarding the validity or truth of calculus interpretations and problem
responses, (3) the ways students construct their calculus conceptualizations, (4) the ways
different approaches to calculus instruction appear to impact on students' language use,
sources of conviction and manner of construction of conceptualizations, and (5) the ways
techniquc-oriented, concepts-first and infinitesimal approaches to calculus instruction

translate into classroom, and textbook and exercise assignment instructional events.

A. Summary

This research was a naturalistic study involving three undergraduate calculus
classes, each being taught from one of three instructional approaches: technique-oriented,
concepts-first and infinitesimal instruction. Clinical and personal interviews at the end of
the term with 17 students were the primary method of inquiry into students' language use,
sources of conviction, and manner of construction of conceptualizations (research areas
(1), (2), (3) and (4)). Instructor interviews, classroom observations done over a 13 week
school term, and instructional materials analysis provided description of each instructional
sctting in terms of language use and sources of conviction. These activities allowed
rescarch arcas (4) and (5) to be addressed. The following points summarize the findings of
the student interview analyses. These points summarize the findings of the first threc areas
of inquiry, students language use, sources of conviction and manner of construction of
conceptualizations. The fourth and fifth areas are summarized in Section D of this chapter,
Implications for Instruction.

The Nature and Role of Students' Language Use

Symbols do not form a large component of student's language use in calculus.
Although students are often able to manipulate or perform operations with symbols, they
do not gencrally use symbols to interpret concepts. However, Connector students
displayed more extensive use of symbols, using them to explain or justify calculus ideas
and problem responses.
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Students from all threc institutions were similar in the extent to which they used
technical language, but the content of Gamma College students' rechnical language differed
from the other students, and it was integrated more with evervday language. Gamma
College students used infinitesimal language and related visual notions such as infinitesimal
closeness and infinite magnification.

All students displayed use of pre-calculus mathematics language knowledge as a
source of conviction, and many students displayed misconceptions when they did not
appropriately integrate evervday and technical language (including symbols). ..tudents
who used infinitesimal language, more frequently than the other students, appropriately
integrated technical and everyday language. All students often gave vahid physical
interpretations for visually oricnted notions such as continuity, slope or size. They used
visually oriented language as sources of conviction. In addition, many students displayed
procedural usc of language as a technology or source of conviction by which to construct
problem responses.

The Nature and Role of Students' Sources of Conviction

From analysis of students' sources of conviction as revealed in their problem
responses and comments on their own learning three main groups of students cmerged.
These three groups, Collectors, Technicians, and Connectors, differ from cach other in the
degree to which their sources of conviction are external or internal in nature. The role of
their sources of conviction in the construction of calculus conceptuahizations also differs.

Collectors exhibit the highest degree of external sources of conviciion, with their
sources of conviction originating from teacher or textbook prescntations of statements,
rules and procedures. The role of a Collector's sources of conviction is as a validation to
the student that she or he makes statements and performs procedures that individuals
believed to be knowledgeable in mathematics will sec as valid or correct.

Technicians display a mixture of external and internal sources of conviction. Their
external sources of conviction are based on knowledge of calculus statements, rules and
procedures, while their internal sources of conviction reside in a personal sense of mastery
of calculus as a technology by which to think about and apply concepts and procedures.
The role of their sources of conviction is as a set of 100ls that can be em ployed to think
about and apply calculus statements, rules and procedures.

Connectors display the highest degree of internal sources of conviction. They
exhibit knowledge of statements, rules and procedures, and the technology of calculus as
sources of conviction, but they also display a sensc of personal understanding or
ownership of their calculus conceptualizations. The role of a Connector's sources of
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conviction 1s as a validation to the student that he or she makes statements or performs
procedures that are meaningful to himself or herself as well as other individuals.

In rclation to sources of conviction, additional major findings of this study are: (1)
valid examination and determination of students' sources of conviction must include

students' perceptions of their learning and (2) language use is a source of conviction.
pe

The Ways Students Construct Calculus Conceptualizations

Colleclors use language and external sources of convicticn to construct their
calculus conceptualizations as a collection or assemblage of isolated, relatively unconnected
mathcmatical statements, rules and procedures. Although they use language knowledge as
a source of conviction, particularly in relation to visually oriented mathematical
representations, they do not necessarily acknowledge the place of these personal
interpretations in the construction of their conceptualizations.

Technicians usc language knowledge and a mixture of external and intemnal sources
of conviction to construct their calculus conceptualizations as a logical organization of
statements, rules and procedures. That is, their calculus conceptualizations are built as a
technology or method for thinking about and applying calculus. Through knowledge of
how to solve problems by the use of calculus symbols and terminology Technicians
structure and organize their calculus conceptualizations. These students thereby become
skilled users of crlculus language.

Connectors construct their calculus conceptualizations as a network of connections
between various aspects of calculus and between calculus and themselves. They display
some sources of conviction similar in nature to Collectors' or Technicians' in that they arise
from icacher or textbook presentations or knowledge of calculus as a technology.
However, they integrate these sources of conviction and related conceptualizations into
conceptualizatuons they develop through their own thought processes and interactions with
calculus material. Thus, Connectors' conceptualizations are built as entities of which they
display a sense of personal understanding.

B. Reflections on the Study's Evolution

This study began with an aim to study student learning in introductory calculus
from a constructivist perspective. The adoption of a constructivist perspective pointed to
language use and sources of conviction as means by which to examine student learning,
while simultaneously testing and refining constructivist notions. Language use was seen as
important to learning viewed from a constructivist perspective because constructivism sees
mathematics knowledge as being grounded in subjective interpretations of language (von
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Glasersfeld, 1987a; p.7) and "linguistic knowledge, conventions and rules" (Ernest, 1991:
p-42). Sources of conviction were dcemed as important to Icarning viewed from a
constructivist perspective in that constructivism sces knowledge objectivity as residing in a
social sharing of decisions pertaining to truth and validity. Thus, language use and sources
of conviction were adopted as a focus for this study. Since this study was undertaken in
three different instructional scttings it was able in a range of environments to  samine and
develop constructivist notions through the related notions of language use and sources of
conviction.

The complex nature of students' sources of conviction i terms of the necessity of
integrating personal interview responses into analysis of clinical problem responses was
not evident at the outset of this study. The inter-conncctedness of language use and
sources of conviction was also not apparent at that time. These factors became apparent
only once students' interview transcripts were extensively and critically examined. Pilot
study work had indicated students used a variety of rechnical and evervday language. It
had also demonstrated the range and interspersion of students' sources of conviction,
including reference to the teacher, the textbook, the physical structure of the world, the
structure and rules of mathematics, or a student's personal perceptions and beliefs. In the
initial development of language use and sources of conviction (sec Chapters 2 and 3) it was
conceived to be both practical and valid to classify students' individual staicments as
indicative of a particular language context, or external or internal source of conviction.
Although these classifications were applied to description and analyvsis of classroom
instruction and textbook and exercise materials, and proved to be uscful and informative
within these contexts, they encountered difficulties when applied to analvsis of student
interviews. The overall picture of a student's sources of conviction as revealed by the
student's comments on her or his calculus learning showed the source of conviction used
by a student in a specific statement was not independent of the student's views of her or his
learning. In particular, the classification of mathematical or experiential (physical)
knowledge as necessarily internal in nature conflicted with students' views of their own
learning. For example, many students justified their problem responses through reference
to their mathematics or experiential knowledge, while concurrently declaring they
memorized or did not understand particular statements, rules or procedures.

This last fact is an important finding of this research study. It isimportant in that it
reveals the necessity and importance in mathematics cducation rescarch of consideration of
students' own perceptions of their learning. In addition, it was only through examination
of students' comments on how they viewed calculus and how they approached their
calculus learning that the three groups of students, Collectors, Technicians and Connectors
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cmerged. The emergence of these three groups is another key finding of this study. The
fact that language use scrves students as a source of conviction was also apparent only after
cxamination of what students said in problem responses, and what they said about their
perceptions of their calculus Icarning. Thus, the fact that langunage use is a source of
conviction is another key finding of this study.

The ultimate merging of language use and sources of conviction, along with the
emergence of the importance to learning of students' perceptions of their learning must be
viewed as morc than supplementary findings to the main research questions of this study.
Both these findings add new dimensions to constructivist theory as applied to mathematics
learning. They clarify and refine the notions of language use and sources of conviction as
interpreted by constructivism. Further, since the study was conducted with students from
three different instructional settings, they demonstrate the validity and usefulness of
employing language use and sources of conviction as reflectors of learning viewed from a
constructivist perspective. Hence, the validity and usefulness of constructivism for
research into student learning in calculus is also demonstrated. End results of these
developments are new methods for studying mathematics instruction and student learning
in mathematics, and theory and related methods for incorporating constructivism into
mathematics education research. Implications of this research study for constructivist
theory and the use of constructivist theory in mathematics education research will now be
discussed.

C. Constructivism and the Research Literature Revisited

Over the past decade constructivism has emerged as an important influence in
mathcmatics education research. Constructivism is a theory of knowledge that views
mathematics learning as an active, constructive process in which an individual builds up
knowledge tfor himself or herself. In particular, constructivism sees learning as an adaptive
process in which an individual constructs a viable model of the world (von Glasersfeld,
1987a). Constructivism conceives of these models as a fit of knowledge to experience,
rather than a match between knowledge and reality. In other words, constructivism views
learning as "organizing experience so as to deal with a real world that cannot itself be
known" (Kilpatrick, 1987; p.7). From this perspective, concepts are not viewed as entities
which can be transferred "ready-made” from teachers to learners. Instead, constructivism
sces learning as an individual process of making sense of new information by relating it to
and reorganizing conceptual structures and processes.

This research study viewed student learning from a constructivist perspective. In
adopting this perspective it was assumed that students construct their own, individual
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calculus conceptualizations. The central ideas of constructivism as outlined above proved
to be a valid perspective by which to interpret students' calculus problem responses. That
is, students' problem responses could be interpreted from a constructivist perspective in
ways that make sense. They make sensc in that they provide descriptions of siudents’
responscs that inform an observer of features that appear to be important components of the
nature of students' calculus conceptualizations. Feor example, there were numerous cvents
in each student interview' that could be described as the student's individual construction of’
a viable model of his or her experiential world. For example, sce Daniel's response to
Problem 6 (page 149), Cindy's response to Problem S (page 150), or Jennifer's response
to Problem 9 (page 140). There were also instances for which student responses could be
interpreted as involving making sensc of new information by connecting it to previous
knowledge. For example, sce Mike's response to Problem 6 (page 188), Gordon's
response to Problem 3b (page 232), or Danicl's response to Problem 3b (page 239). In
particular, students were seen to use pre-calculus and other evervday language knowledge
as sources of conviction by which to make sense of information in their cxpericntial
worlds.

However, although the central ideas of constructivism could be used to interpret
students' calculus responses, they did not immediately inform as to means by which to
describe similarities and differences amongst students. The importance of identifying
similarities and differences amongst students is that they can guide future instruction and
research. It was only through the evolution of the constructivist reluted concepts of
language use and sources of conviction that patterns emerged from student interview data.
Evolution of the concept of sources of conviction led to emergence of three groups of
students that differ from each other in the nature and role of their sources of conviciion,
while evolution of the concept of language use led to distinctions between students in the
nature of their technical and everyday language use. In other words, the outcomes of this
study, through development of methods for studying calculus instruction and lcarning,
have led to further development of constructivist thecory and mecans by which
constructivism can be incorporated into mathematics education research.

This study also enhances constructivist theory in that it reveals an oversight in
constructivist literature. Constructivist literature speaks of an individual's construction of
viable models of her or his experiential world. Since it generally speaks of these
constructions as personally meaningful to the constructor, it is incomplete in the ways it
speaks of knowledge. It is incomplete in that individuals do not necessarily perceive their
conceptualizations to be personally understood. More specifically, throu gh the emergence
of groups of students, in particular Collectors, this study reveals that students’
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conceptualizations are not necessarily the personally meaningful constructions of which
constructivist literature in mathematics education of ten speaks. Of particular note in relation
to this point is the fact that over half the interview students were classified as Collectors.
These Collector students, although engaged in conceptual constructions, did not claim any
personal understanding of their calculus conceptualizations. Thus, this study informs as to
the nature of students' construction of their calculus conceptualizations. It thereby leads to
a fuller understanding of student learning in calculus. This outcome in turn has
implications for theory and related methods for facilitating calcutus learning as a meaningful
cndeavour. Thesc implications are discussed in the next section of this chapter.

An aspcct of constructivism that must be addressed at this point is radical
constructivism's rejection of realism. This study demonstrates that the central notion of
constructivism, that individuals construct conceptualizations that are viable models of their
expericential world, is a practical, appropriate means by which to describe students' calculus
responscs. However, this study's findings show radical constructivism's rejection of
rcalism is not necessarily in accordance with the ways students view calculus and their
calculus lcarning. Students do not generally see mathematical knowledge as lying in the
"shared rules conventions, understanding, and meanings of the individual members of
socicty, and in their interactions” (Ernest, 1991; p,82). For example, Collectors perceive
calculus to be separate from their own reality and own understandings. From a Collector's
perspective there is no negotiation of calculus knowledge through interaction with other
individuals. Instead, calculus learning through a Collector's eyes is a matter of replication
of externally generated and independently existing statements, rules and procedures.

Even for Technicians and Connectors it is not clear if radical constructivism
appropriately describes the ways students perceive of their mathematics knowledge.
Technicians' use of the technology of calculus as a source of conviction, zlong with the
mixed nature of their external and internal sources of conviction indicates that to a certain
degree they see calculus as a body of knowledge that exists independently of their
interactions with it. Even for Connectors, since Connectors also display some external
sources of conrviction, it is not clear if radical constructivism adequately describes
mathematical knowledge. Since Connect. s display a sense of personal understanding of
calculus conceptualizations, their calculus knowledge can be interpreted as subjective
knowledge of objective or public knowledge (Emnest, 1991). In spite of this interpretation
it must be recognized that most of the students were not Connectors. Therefore, the
findings of this research study imply there are aspects of constructivism that are not
appropriate for description of students' views of their calculus knowledge. These findings
do not however imply radical constructivism has no practical value for mathematics
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education research. In fact, radical constructivism points to a means by which to develop
theory and mcthods for facilitating calculus Icarning as a mcaningful endeavour. These
implications and others are discussed in the next section of this chapter.

A number of findings from this study also both support and develop previous
theories related to mathematics learning. In particular, the role of language in mathematics
learning is highlighted by this study's findings. First of ali, Johnson's notions of "image
schemata" are evidenced in this rescarch study (Johnson, 1987). Image schemata are
structures of meaning that arise from "perceptual interactions and bod;ly movements within
our environment” (p.19). The image schemata that were evident in his study arc those of
continuity, slope, size and magnification. Students from all three institutions made use of
physical experiences of continuity, slope, size or magnification. For example, in relation to
continuity, students used the bodily experiences of existence, gaps, holes, jumps, and
changes. In conjunction with the term slope they used the terms and visual notions related
to increase, decrease, horizontal, vertical, steep, flat, and level. Size as an image schemata
appeared when students referred to numbers or other entitics. They gave descriptions
involving such terms and notions as smaller, bigger, really rcally small, infinitesimally
close, approaches infinity, or approaches a finitc number. Finally, magnification and its
related notions of shape and closcness were used as image schemata by which to describe
and explain continuity and differentiability.

Another aspect of language and learning discussed in the literature that this study
supports is the role of natural, everyday language (Halliday, 1978; Pimm, 1987).
Students' previous language experiences influenced their calculus conceptualizations. For
example, students' pre-calculus knowledge of the terms limit, round off, continuous, and
undefined were evident in their calculus conceptualizations. This rescarch study therefore
further demonstrates that an individual's use and interpretation of evervday language is
likely to figure in that individual's mathematics learning. In addition, students’ use of the
technology of calculus can be interpreted as use of the calculus "register” (Halliday, 1975;
Pimm, 1987). Itis use of a register in that it involves the technical language of calculus, as
well as characteristic modes of arguing.

‘The role symbol systems play in learning is also evidenced in this study. Students’
use of infinitesimal notation and related terminology was distinctly different from students'
use of limit notation and related traditional terminology. Students who incorporated usc of
infinitesimal notation into their calculus problem responses used symbols as a "combined
label and handle for identifying and manipulating concepts" (Skemp, 1987; p.62). They
used infinitesimal language (words and symbols both) as tools by which to describe,
explain and justify particular mathematical situations. In these instances their language use
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was a vital component of the construction of problem responses and related calculus
conceptualizations. It was vital in that it oriented students to mathematically valid and
uscful descriptions, explanations and procedures.

West and Pines' notons of intuitive and school knowledge were also features
displayed in this research study (West & Pines, 1985). Their description of intuitive
knowledge as arising from interaction with the environment was scer: in students’ use of
everyday language and their use of visually oriented language. In particular, students used
continuity, slope, size and magnification as image schemata (Johnson, 1987). West and
Pines’ description of school knowledge as "someone else's interpretation of the world" or
"somcone clse’s realityv” (p.3) was also seen in this study, 1n Collector students’ views of
their own learning. Further, West and Pines' usc of a vine metaphor to represent states of
the extent of intertwining of intuitive and school knowledge can also be applied to
interpretation of students' calculus knowledge. Collectors and Technicians displayed
intuitive knowledge that was not integrated with school knowledge. For example.
concepiualizations built from evervday language knowledge as a source of conviction were
not necessarily used in conjunction with conceptualizations built from knowledge of
statements, rules and procedures. In comparison, Connectors displayed congruence
between intuitive an | school knowledge in that their school based knowledge was
displayed as personally meaningful knowledge.

Connectors' integration of these two forms of knowledge can also be described as
private interpretation and internalization of public knowledge (West et al., 1985). Asa
conscequence Connectors' fearning can be viewed as a process of giving personal, private
mcaning to public knowledge. In addition, since Ernest's (1991) notions of subjective and
objective knowledge are similar to those of private and public knowledge, Connectors'
leamning can also be described as subjective interpretations of objective knowiedge.

Some of the findings of this swdy in relation to students' calculus
conceptualizations are congruent with previous research.  First, students exhibited
structural and executive errors similar to those of the interview students of Orton's studies
(Orton, 1983a; Orton, 1983b). Structural errors displayed by students included
misconceptions of himits, rounding off and continuity. Executive errors included a failure
to correctly execute differentiation rules. Second, the findings of this study agree with
those of Heid (1988) in how the nature and role of students' conceptualizations can be
influenced by the nature of instruction. In particular, Gamma College students exhibited
more usc of evervday language than the other students. This feature, more evervday
language use, was also evident in Gamma College instruction. As well, Beta College

students exhibited more use of figures and more extensive description of figures than the
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other students. a feature that was evident in Beta College instruction. Lastly, Tall's (1989)
report of students' use of the "cognitive root” or "anchoring concept” of local straighitness
was evident in Gamma College students' use of the features of an inhnitely magnified
portion of a graph.

Finally, this research study's findings aiso support previous rescarch studies of
student understandings of limits (Tall & Vinner, 1981; Davis & Vinner. 1986; Williams.,
1991). Tall & Vinner (1981} found students' limit notions held both intuitive and formal
ideas, with intuitive ideas explained in reference to sensorv-motor processes. Davis and
Vinner (1986) and Williams (1991) found students held a varicty of himit misconceptions,
in particular, that a limii cannot be reacked. These findings were also findings of this
rescarch study.

D. Implications for Instruction

I= this secuion the three instructional approaches that formed the setting of this study
are first reviewed and summarized. They were: technique-oriented, concepts-first, and
infinitesimal instruction. Thus, the following points summarize the fifth arca of inquiry of
this s.udy.

The Three Instructional Approaches as Delivered to Students

The technique-oriented approach 1o instruction used at Alpha Universiy s
traditional in i1ts emphasis on learning techniques for differentiation, integration, graphing
and problem solving. Pro‘essor Alpha's presentations were organized, ogical and
mathematically elegant. He often presented ideas in a general form first, using concise,
correct mathematical terminology. He then generally followed with specific exumples.
Profe<<or Alpha spoke of student Jearning 1o calcutus in wayvs that could be aseribed to
constructivist oricntation. He said the way to learn calculus is "by doing”, and he
described students’ calculus learning as a process of "confronting problems” so as to “lcarn
to organize" one's thinking. In addition, he stated that a primary goual ol introductory
calculus is development of students' problem solving skills.

Concepts-first instruction, the instructional approach used at Beta College, explores
concepts intuitively before introduction of formal definitions and proofs, and before skill
development is emphasized. This ianstruction involves a spiral approach to topics 1n that
concepts are revisited and developed at a more detailed and rigorous level as the school
term progresses. Professor Beta's presentations varied in terms of the format followed and
the level of rigor used to present ideas. with the level of rigor increasing throughout the

term. However, as he introduced more formal presentations he continued to incorporate
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informal, graphical interpretations of concepts. Similarly to Professor Alpha, Professor
Beta spoke of students' calculus learning in ways reminiscent of constructivism. He
described calculus Iearning as involving "struggle”, "hard thinking" and doing the work for
oneself, and he remarked that he believes there are a variety of ways students learn
concepls.

The infinitesimal approach to instruction used at Gamma College aims to develop
concepts intuitively through the use of methods from nonstandard analysis. Key to this
approach is the replucement of limits by rounding off, and the development of the
derivauve through the process of infinite magnification. Professor Gamma regularly
incorporated group problem solving sessions into his classes. and his presentations were
generally conducted in a questioning mode. He focused on walking about concepts and
developing connections amongst symbols, words and gruphs. Similarly (o Professors
Alpha and Beta, Professor Gamma spoke of calculus leaming as a matter of doing the work
for oncsclf. In addition, he saw learning how to think and solve problems as key
objccuves of introductory calculus.

The findings of the systematic classroom observations indicate that concepts-first
instruction at Beta College as implemented by Professor Beta involved a higher percentage
of physical context events (usually a graph) (PC) and physical experience as a source of
conviction (1E) than did instruction at the other two institutions. In relation to this finding,
interview students from Beta College exhibited more use of figures (usually graphs) and
gave lengthier explanations of graphs in their problem responses than did the other
students.  Thus, 1t appears thai Beta College students' more extensive use of figures
(usually graphs) is likely due to the higher exposure to figures in classroom instruction at
Beta Collcge.  Similarly, findii.. s of the systemic classroom observations indicate
infinitesimal instruction as implemented by Professor Gamma involved a higher percentage
of use of spoken evervday language (EL(S)), as well as use of mathematical contexts (MC)
or mathematics as a source of conviction (IM). In correspondence to these features is the
fact that students at Gamma College displayed more use of everyday language than the
other students and they exhibited a higher degree of appropriate integration of evervday and
technical language (including symbols).

#=. impact of Instruction on Student Learning

The points outlined above under the summary of rescarch objective (5) indicate that
few definite conclusions can be made at this time as to the impact of instruction on
students' language use, sources of conviction, and manner of construction of
conceptualizations.  First, it can be stated that infinitesimal instruction as implemented by
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Professor Gamma encouraged students' use of evervday lany .+ .. .5 well as appropriate
integration ol technical and evervday language. On a qualitaii. ¢ ievel these differences
were manifested in some Gamma College studenis’ concurrent use of infinitesimal fechinical
language and everyday language. When students used infinitesimal language and the
related notions of infinitesimal closeness and infinite magnification they were as tools by
which to construct explanations and problem responses. The second conclusion that can be
made at this time is that concepts-first instruction as implemenicd by Protessor Beta
crhanced students' abilitics to examine and use graphical interpretations of calcutus ideas.

The implications for instruction of these findings arc twolold. First, when students
used infinitesimal language and used it in conjunction with evervday language they
gencrally did so as a foundation or source of con-iction by which to construct problem
responses.  This finding indicates instruction that emphasizes connections between
everyday and technical language is likely to guide students to build inter-connected
conceptualizations. 1t is also likely to help students develop a sense of personal
understanding of their calculus conceptualizations. Second. Gamma College students' use
oi" infinite magnification in a variety of problem situations and Beta College students' use of
graphs (figures) demonstrates that instruction emphasizing visual interpretations can inipuct
upon students' conceptualizations. It can impact in that it can guide students to use bodily
experiences as sources of conviction. The importance of these sources of conviction as
revealed in this study is that they are means by which students construct and access
caiculus conceptualizations.

Since few of the students in this study were Conncctors it is apparent that the scarch
for effective ways to guide students to personal understandings of calculus must continue.
Regardless of whether or not students apply calculus or study calculus beyond an
introductory level, it is desirable that they pursue their calculus learning as a meaningful
endeavour. What is noteworthy here is that students who saw their calculus Icarning as
personally understandable displayed more competence, confidence and satisfaction in their
abilities to do calculus.

On the basis of this study it appears that image schemata (Johnson, 1987) might
serve as effective theory by which to develop and implement calculus instruction that
guides students to meaningful calculus leaming. Students' use of bodily experiences of
continuity, slope, size or magnification support this claim. Their use of these bodily
experiences as sources of conviction indicates students arc able 1o construct calculus
meanings from bodily experiences of the world. This featurc in turn implies that

instruction which emphasizes use of visual and physical calculus representations is likely to
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cnhance students' sense of personal understanding of calculus. It therefore migkt also
cncourage students to construct their conceptualizations from ir‘ernal sources of
conviction. A point of the potential importance of internal sources of conviction as
revealed in this study is that students who exhibited internal sources of conviction
(Connectors) also generally had higher Completion Scores than other students, and
displayed more competence, contidence and satisfaction in their abilities to do calculus.

Another implication for insiruction that this study reveals is the important roie that
language use as a source of corviction plays in calculus learning. All stdents
demonstrated their knowledge of calculus language was a factor in the nature of their
calculus conceptualizations. Future efforts to make calculus instruction more successsi for
students must not neglect the role of language use. For example, Collector students used
everyday language as a source of conviction, but often did not recognize related
conceptualizations as valid mathematical interpretations. Increased instructional emphasis
on the usc of everyday language o construct conceptualizations and the integration of these
conceptualizations with mathematically appropriate and precise conceptualizations might
better guide these students to personal understandings of calculus. In a similar way,
although Technicians used knowledge of calculus language as a technology by which to
apply calculus, their related conceptualizations are not necessarily perceived by them to be
personally meaningful. In other words, mastery of the use of calculus language can help
students attain competence with calculus skills and basic ideas, but it does not necessarily
guide them to personal understandings of their calcy’ s conceptualizations.  Thas, it
appears that language use is an important vehicle by which .siculus students might be better
guided to calculus learning as a meaningful endeavour.

Related to a use of constructivist notions to guide instruction it must be noted that
from this study it is clear many introductory calculus students do not percein ¢ of ibeir
learning as personal, meaningful constructions. The fact that about half the interview
students werce classified as Collectors, who conceived of calculus learning as replication of
teacher or textbook presentations, implies calculus instruction might be more successful for
students if’ methods were developed that encourage students to take more personal
involvement in the construction of their calculus conceptualizations.

At this point the possible use of radical constructivism in calculus instruction must
be addressed. Radical constructivism sees learning as "organizing experience so as to deal
with a real world that cannot itself be known" (Kilpatrick, 1987; p.6). Since this
perspective is not in accordance with student's views of mathematics it is not immedsately
clear how radical constructivism might inform as to potentially beneficial avenues for fature
calculus instruction. Where radical constructivism might be a guide for future instructon is
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in the notion that mathematical objectivity is a social construction (Ernest, 1991). It
instruction were desivned o promote calculus learning as a process of subjecthive
construction of publiciy shared knowledge, then students might naturally be guided 1o build
conceptualizations from internal sources of conviction. In particular, this sharing should
include @ mutual sharing and negotiation between teachers and students of usc of svmbols
and fechnical and evervday language phrascs, along with personal calculus Interpretations
of figures, statements and procedures.

E. Emergent Themes and Recommendations for Further Research

This study investigated student learning in calculus from a constructivist
perspective, using language use and sources of conviction as reflectors of the nature of
student’s calculus conceptualizations. A number of themes emerged during data analysis 1in
this study, particularly in relation to the student interviews. Each theme is worthy of
further investigation aimed at clarification, refinement and gencralizabthity of notions.

These themes will now be discussed.

(1) This study used language use and sources of conviction as 1ols by which to study
students' calculus learning. Studies should be undertaken 1o improve and refine these
ideas. For example, the notion of language use as a source of conviction, and the use of
visually oriented language, image schemata, and procedural language need to be
incorporated into research into students' calculus learning. As well, usc of the systemic
classroom observations and textbook analysis methods in rescarch in other levels of
mathematics learning would further determine the practicality and appropriatencss of these
methods for mathematics education rescarch.

(2) A primary arca of examination in this study was students' sources of conviction. This
concept raises a number of issues in need of further research.  First, studies should be
undertaken to investigate whether the three groups of students, Collectors, Technicians and
Connectors, arc present in other groups of calculus students. Whether these groups arc
present in students studying mathematics at other levels or studying other subjects also
neecds to be determined. Such studies would contribute to the generalizability of this study,
and would aid further application of constructivism to mathematics education and other
areas of education.

(3) This study indicated a relationship between students' perceptions of learning calculus,
and use of external or internal sources of conviction. Collectors displayed a lack of



256

confidence in calculus, perceived calculus as separate from their own reality, and
approached their calculus lcarning by use of external sources of conviction. Technicians
displayed a mastery of calculus as a technology, and they used a mixture of cxternal and
internal sources of conviction. Finally, Conncctors exhibited the highest degree of
internalization of calculus knowledge, and they generally displayed a higher level of
proficiency with calculus ideas and skills. For these three groups what is not clear at this
point is the nature of the relationship between various characteristics they exbibit. For
example, 1t is not clear if Collector students' lack of confidence anses from a lack of
personal understanding of calculus, or if lack of confidence causes one to use external
sources of conviction. In a similar way, it is not clear if Technician students' use of
calculus as a technology is inherent in the nature of their sources of conviction, or if the
mixcd external and internal nature of their sources of conviction encourages the use of
calculus technology as a viable mode of functioning. It is also not clear 1if Connectors'
rciatively high level of compctency in calculus arises from use of internal sources of
conviction, or if competency leads to usc of internal sources of conviction. Finally,
rescarch needs to be done to determine if the nature of Collectors', Technicians' and
Conncctors' approach to calculus learning forms a series of transitional learning phases.
For example, it 1s not known if being a Technician might be a transitional phase between
being a Collector and being a Conncctor.

(4) Another finding of this study, that language use is a source of conviction, is also in
nced of further examination. It is not presently clear if use of image schemata, visually
oriented language or procedurally oriented language is external or internal in nature. In
particular, points that are not clear at this point in relation to language use are the following:

(a) Students who arc Connectors gencrally use symbols more extensively than Collectors
or Technicians. Does this more extensive use of symbols give rise to approaching learning
as a Connector, or docs a student's approach to learning as a Connector foster facility with
symbol use and conricctions between symbols, technical language, and everyday language.

(b) How might usc of everyday language as a source of conviction be employed to guide
students to construction of personally meaningful calcuius conceptualizations? In
particular, since Gamma College students displayed marc appropriate integration of
technical and evervday language, the influence of infinitesimal language on students'
calculus conceptualizations needs further examination.

(¢) The notion of language use as a source of conviction nceds to be studied with students
studying mathematics other than calculus. Not only would the “seneralizability of this study
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be enhanced, it would extend the use of constructivist theory to mathematics education
rescarch at all levels of mathematics.

(d) Further rescarch is also needed into how instruction can aftect students' language use
and sources of conviction. In particular, implementation studies of instruction designed to
encourage students to construct conceptualizations of which they fecl owncrship are
nceded. Means by which this ownership might be brought about have alrcady been
discussed, in the previous section on educational implications.  What also needs to be
determined is how change in students' perceptions of mathematics, pcrecptions of

mathematics learning, and approach to mathematics learning can be brought about.
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Appendix A - Consent Form and Background Questionnaire

Department of Secondary Education
University of Alberta

Edmonton, Alberta

T6G 2G5

September 1990
Decar Student:

Y our calculus class is part of a study into student learning in calculus. This study will be
looking at what students learn in their calculus courses, and how their learning is rclated to
various factors. No special knowledge or skills are needed as a prerequisile for being a
participant in this study. Regular classroom instruction will not be disrupted, and
participation in the study will not have anything to do with the determination of grades in
this course. Confidentiality of results will be maintained at all times.

The results of this study will be valuable for the planning and implementation of instruction
in undergraduate calculus courses. If you have any questions about this study, please
contact me at the University of Alberta (telephone 492-3760), or speak to me after class one
day.

Y ours sincerely,
Sandra D. Fry

If you agree to be a participant in this study please sign below, then complete the
questionnaire on the following pages.

Name (plecase print) Signature

Background Questionnaire for Calculus Students

The purpose of the following questionnaire is to obtain information on the
educational background and interests of students enrolled in an introductory calculus
course. All responses you put on the questionnaire will be confidential. Please answer all
questions (o the best of your ability. Some questions require a one or two word written
response, but most require you to select from amongst a choice of answers. Mark your
choice with an X.
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If you did not atiend high schoo! in the provirce of Alberta. po io the next page.

Did you take Math 3C? (if not, go to the nex: page)

Yes
No

How long age did you complete Math 30?
within the last 12 months
bctween 1 and 3 years ago
between 3 and S years ago
more then S years ago,

What mark dig you receive on the Math 30 Diploma exam?
under S0
50 - 595
60 - 6O
70 - 79%
80 - 100%

What mark did you receive on your Math 30 term work?
under S0%
50 - 59%
60 - 69%:___
70 - 79%.
8G - 100

Did you ever repeai Math 30 or upgrade your mark?

Yes )
No__

Did you take Math 317

Yes
No__

Please go now to page 4.
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If yvou did not attend high school in Alberta, in wiat provinee/state/country did you attend
high school?

It vou did not at* : d high schooi in Alberta, or if you did not complete Math 30 in Alberta,
what is the highest ievel mathematics course you ook :n high
school? -

How long ago did you complete this course?
within the last 12 months
between 1 and 3 vears ago
between 3 and 5 years ago
morc than 5 years ago,

What mark (or equivalent) did yvou receive in this course?

under 50%

50 - 59%

60 - 69%

70 - 79%

80 - 100%

Did the course indicated above include the study of calculus?

Yes

No

Please proceed now to the next page.
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The following questions are to be completed by all individuals.

Age:

Sex: malc___ female -
Is English your first language?
Yes
No

If not, what is your native language?

If English is not your first language, indicate what English language training and
experience you have:

English language training Numbecer of

vears living in an English spcaking environment

In what type of community did vou attend high schoot?
small rural community (under 3,000 people)
small town (3,000 - 10,000 people)
smali city (10,000 - 50.(XX) people)_
large ity (over 30000 people)

What grade levels were at this high school?
kindergarten - grade 12
grades 7 - 12
grades 10 - 12
other (plcase speaifyy__

Approximately how many students were at this school?
tewer than S00_

500 - 994
IRy
maor XN
When did yvou lust study any mathematics? (either at high school or col. crsity level)
within the last .+ onths

between 1 and 3 yeurs ago
between 3 and 5 yveurs ago
more thun S yeurs ago



What is your major ficld of study

What 1s your minor ficld of study? (if applicable)

By course namec, not number (cg. Canadian Politics), list all courses you will be taking this
school term (Fall 1990).

If applicable, by course name (not number) list all university level math, science, or
business courses You have taken in the past 2 years.

Is an undergraduate mathematics course required in your program of study?

Yes
No
I's calculus required in vour program of study?
Yes
No
What is your career goal? {(if known)
Why did vou choose to attend this college/university?
Do you have any previous coilege or university diplomas or degrees?
Yes
No

If so, what diploma(s)/degree(s) do you have?

On average, how many hours per day outside of class do you expect you will study
calculus while you are enrolled in this course?

lessthan 1 hour.

between 1 ané 2 hours

between 2 and 3 hours

r~ore than 3 hours



What final percentage grade do you expect to receive in this calculus course?
under 507
50 - 59
&0 - 69
70 - 79%
80 - 100%

How many umes have you previously been cnrolled in a college or university calculus
course? (if you have never been enrolled before, proceed to the next page)
never enrolled belore
once betore
twice betore
more thun twice before
When did vou last enroll in such a course?
within the last 12 months__
between 1 and 3 years ago
between 3 and 5 years ago
greater than 5 vears ago____

Did yvou complete this course?
Yes
No
If se, what mark did you receive?
under S0%

S0 - 59%
6O - 6L
70 - 790

SO - 10077

If you did not complete this course, indicate why:
I withedrew dunng the first 2 weeks of the course. o
I withdrew during the first half of the course because | wasn't doing well.
I withdrew during the second half of the course because I wasn't doing well. |

I withdrew for other reasons (if possible, please indicate the reasons
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For cach of the following statements, usc an X to indicate whether you Strongly Agree
(SA), Agree (A), arc Uncertain (U), Disagree (D), or Strongly Disagree (SD):

SA A U D SD

I enjoy studying mathematics.

I often get confused by
mathematical terminology and
symbaols.

Mathematics will be useful
my future carecr.

To do well in mathematcs | have
to work very hard. e

I study mathematics becausc it is
a requircd course in my program.

Generally, mathematics 1s
a sct of rules, formulas, and
algonithms.

The thought of studying calculus
makes me anxious.

Learning mathematics is mostly
memonzation and practice of
certain problem types.

It 1 can get a math problem
correct I don't worry aboat
how or why things worked.

Mathematics is useful 1o society

I expect to do well in this
calculus course.

It is tngortant to me to
understand raathematics, not just
to get right answers.

I find it easy to learn math
if the tcacher explains things
in everyday language.

There is usually only one way to
solve most mathematics problems.
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Appendix B - End of Term Questionnaire

End ¢’ Term Quesuonnaire {for Caleulus Students

Dear Student:

The purpose of this questionnaire is to obtain information on the experiences of students
enrolled in an introductory calculus course.  All responses will be kept confidenual. Please
answer all questions to the best of your ability.

Name:

Sex: Male Female

Was this course the first time you have taken a calculus course?
Yes No

Before beginning this course were you apprehensive about studying calculus?
Yeces No

Reasons (for cither ves or no)

Has your attitude towards calculus changed since September?

Yes No

If ves, in what way?

Are you exposed to calculus in any of your other courses”?

Yes No

Do vou see caiculus as uscful 1o vou in vour future carcer?

Yes No

Do you sec calculus as uscful to society?

Yes No

Suppose someone were (o ask vou to briefly summarize what calculus is all about. What
would you say to this individual?




How well are you doing in the course at this point?
(please give an approximale pereentage gradc)

How well are you doing in the course compared to what vou had expected to achieve?

Higher Lower About the same

In an average week how much time do you spend on calculus outside of class?
(plcasc give an estimate in hours)

How much time do vou spend preparing for a major test or exam?
(please give an estimate in hours)

How is your workload in calculus compared with most of your other courses?
More work Le- o work About the same_

Do vou have sufficient time available to study and understand calculus?

Yes No
Do -+ ~enerally approach vour calculus feaming by reco nition and memorization of
. V approach § : £ D)
pie- oreovpes and solution methods?
Yes No

Indicate which of the foilowing you do at least once a week:
(check as many items as arc applicable 1o you)

Read a section of the textbook before that secuon
is covered in class.

Read a section of the textbook after that section
1s covered in class.

Use lecture notes to go over defiritions and main
ideas in order o understand them.

Work through on your own examples from the lecture
notes or textbook.

Try to understand proofs or the derivation of concepts
by reconstructing them for yourself.

Copy out or read through proofs or examples in order
10 try to memorize them.

Work on exercise questions that are additional
to those assigned.

Work with other students on exercise questions.

Bring questions or difficulties to a lab/tutorial,
or the instructor.
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For each of the following statements, use an X to indicate whether you Strongly Agree
(SA), Agree (A), arc Uncertain (U) Disagree (D), or Strongly Disagree (SDY
SA A U D SD

I e::joy studying calculus.

I often get confused by calculus
terminology and symbols.

I don't usually need the book
or the teacher to tell me when
I have done a question coirectly.

Understanding main ideas and proof’s is

an important part of doing well in calculus. o
I often have problems with the algebraic
manipulation thatis nceded in calculus.

Generally, calculus 1s a set of
rules, formulas, ai.d algorithine -
I find it easy to learn calculus <. = ¢
idcas are presented by p'um\.\ cnaphia _
Learrn. calculus is mosuy
memonzation and practice of
certain problen: types.

It 1 can get a calculus
problem correct 1 don't worry
about how or why things worked.

Cuiculus symbols and terminology
arc useful in learning calculus.

I can usually determune tor
myself the correctness of a
calculus solution or proof.

Itis important tc me to
understand calculus, not just
to get nght answers.

I find it easy to learn calculus
if the teacher explaws things
in everyday language.

There is usually only one way 1
solve most calculus problems.

If you have any additional comments about v:ur calculus course plcasc record them on
the back of this page.
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Summary Sheet

Appendix C - Classroom Observation

(uanods) (venpm) (uenods) (uonpm)
SUO(\RALRSQQ (940 SUO{I3[AUOY _ sua|lo(AU0) ebenBuey eBenbuwy JUGAZ ewjl
:abed -aul) -a1eQ NS




273

Appendix D - Sample Classroom Observation Notes and Corresponding
Classroom Observation Summary Sheets

A. Alpha University
(Monday, September 23)

Time
32
Example:  Find lim f(x) 1f
x—>0 "
2x+1, x<0
f(x) =
3x2+2, x=20
It is jist one function defined in different ways on different parts of its domain.
Soluticn
34
As X gets close o zero trom the night,
That is, for positive numbers.
f(x) = 3x3+ 2 getsclose to 2
As x gels close 10 zero from: the left.
f(x) = 2x+1
36
Now 1o make a limit statement . . .
Our allernative is 1o sav the limit does not exist.
I's behaving pretty well on each side of zero.
We could say this function has a right-hand limit of 2 and a left-hand limii of one.
38
Defn.  We say the dght hand limitof f at a is L and
. lim :
write . f(x) =L provided that as x > a approaches a,
x—>07
f(x) approaches L.
. : . Iim
Likewise, left hand limit, f(x)=L.
Xx—>0-
40
Examplc In the last example,
lim
<) =
x> f(x) 2
lim
0 f(x) =1

The fact that these two limits differ mearn. che limit does not exisi.
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' Classroom Observation Summary Shect for September 23
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B. Beta College

(Tuesday, October 16)
Time

23

Few places where there's some sharp changes . . . gap in the graph.
Coming down here, then a gap.
Litle circle with hole 10 indicate a point not on g.

25
Drew a little hole 10 indicate it's not defined there.
Gapin g.
Going to use this notion to examine il.
, Iim (X)) - f(a)
P@) = oa “xa
And you appreciate that thar corresponds 1o slope.
27
Well the derivative is a limir,
m  f(x) - f(-4)
T xXx—-4 X - (-4)
Does that exist?
You're shaking your head no. Why?
- (student responds)
Does have a left-hand limit, but not right.
does not exist since RHL does not exist
... if I approach from the right . . .
. ..like [ atminus 3 point nine nine.
29
(2) f'(-1)
Will that exist?

You have to think. We're not just taking the limit of a function, bur an expression
involving f. Looking at the slope.
Let's do it intuitively first.
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Is there one tangent line you could draw at a?
Visualize taking the slope from the left and from the right.

= xlﬂl_l L(;?—)_—u(—%_-)]—) docs not exist since LHL = RHL

Let's analvze a little more carefully.

lim f(x) - {(-1) _ small negative

LHL = x—-1- x-(-1) ~ small negative

= +1ive

Take value of the function just to the lefi of minus one and subtract the value ar
negative 1.

Going 10 be positive or negative?

- (student responds)

Srnall negative . . . and what's going on in the denominator?

Think of it as minus one decimal zero one or something like thal.
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B. Beta College Classroom Observation Summary Sheet for October 16
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C. Gamma College

(Wednesday, October 3)

Time

~
20
=z

(a graph of zan arbitrary function has alrcady been drawn and is referred 10)
. . . provided we agree on what we mean by close.
We can be more definite about close. . . . have hvperreals.

Can say infinitesimally close.
Really close.

If we are infinitesimally close to some x =a then the corresp. v-values must be
infinitesimally clos: 0 y(a).

Lot more concise than drawing continuity . .. but still wordy.

How can I write a math expression that says . .. ?

Think aboutr how we describe a change in x.

Consider a +dx

This is infinitesimally close to a ... because dx isan infinitesimal.
Note: dx canbe + or-

Can you see how you would describe this notion now?

What are the y-values that correspond 1o those?

y's corresp. to X =a + dx arc v(a + dx)

If notation makes sense we can now use it.

y at a+dx

Are y-values corresponding 1o these x's.

What's y-value corresponding to x equal a?

What we need to have happen is what? y-values have 1o be close .. . this has 1o be
close.

How can I write that down symbolically?

What's the connection of this to rounding off?

If y(a+dx) ~> y(a)
forany + or - infinitesimal dx
then y iscont at x = a.

Alt for y={(x) if f(a+dx) ~> {(a) forany + or- infinitesimal
then f iscont. at x=2a

-Isthat d for delia?

How does dx relate 10 delta x?
Delia x is unspecified finite change in x versus. . .
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Gamma College Classroom Observation Summary Sheet for October 3
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Appendix E - Summary Description of the Classroom Observation
Summary Sheet Categories and Codes

(1) (CP) Concept Presentation: The instructor develops or further cexplains
concepts. This presentation might be in a general form. or might also be in
conjunction with a specific example. Presentation of proofs is included in this
category.

(2) (EX) Example: The instructor works through an examp e exercise problem to
exemplify an idea, demonstrate a calculation, or solve a multistep problem.

(3) (O) Other: This includes administrative details such as collecting or handing
back assignments, determination of test dates, or other events that are not explicitly

instructional. Also included here arc times when a class begins late or finishes
early.

Language (Written or Spoken)

A. Language Type

(1) (TL) Technical Language: The language used is language generally accepted as
proper and correct by the mathematics community at large.

(2) (EL) Everyday Language: The language used is not gencrally recognized by
the mathematics community for use in unambiguous mathematical discourse. These
words and symbols might or might not be mathematical in naturc and arc oficn
words found in daily English language use.

B. Context

(1) (MC) Mathematical Context: The circumstances of the instruction are
mathematical in nature and this is made explicit through the language used.

(2) (PC) Physical Context: The circumstances of the instruction refer to or use
sensory-motor experiences ¢f the world. Included here are graphs or diagrams,
and mention of physical objects such as cars or hills.

(3) (CF) Context Free: The instruction is rule-governed, without reference to the
origin of the rules.

Convictions (Written or Spoken)

(1) (IM) Internal/Mathematics: Truth and validity claims are made in reference to
previously established mathematics, or through logical necessity.
(2) (IE) Internal/Experience: Truth and validity claims are made in reference 10

sensory-motor experiences. These references include use of graphs or diagrams,
and reference to physical objects.

(3) (ER) External/Rules: A rule or rules are followed that either have not been
previously justified or are not used with justification as to the choice of particular
rules.

(4) (EO) External/Other: Truth and validity claims are made without any source

being given, or the source acknowledged is the textbook, lab manual, or other
document.
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Appendix F - Summary Description of the Textbook Analysis
Summary Sheet Categories and Codes

(1) (CP) Concept Presentation: The text material develops or further explains
concepts. This might be in a general form, or in conjunction with a specific
example. Presentation of proofs is included in this category.

(2) (EX) Example: The text material is an example exercise problem.

(3) (EXC) Exercise: The text material is an exercise for the student to work
through on her or his own.

Language

A. Language Type

(1) (TL) Technicc. Language: The language used is language generally accepted
as proper and correct by the mathematics community at large.

(2) (EL) Everyday Language: The language used is not generally recognized by
the mathematics community for use in unambiguous mathematical discourse. Thesc
words and symbols might or might not be mathematical in nature and are often
words found in daily English language use.

B. Context

(1) (MC) Mathematical Context: The language of the textbook event is explicitly
mathematical in nature.

(2) (PC) Physical Contcxt: The textbook event refers to or uses sensory-motor
experiences of the world. Included here are graphs or diagrams, or mention of
physical objects.

(3) (CF) Cortext Free: The textbook event states rules, ideas, or procedures
without reference to their origin.

Sources of Conviciton

(1) (IM) Internal-Mathematics: Truth and validity claims are made in reference to
previously established mathematics, or through logical necessity.

(2) (IE) Internal-Experience: Truth and validity claims are made in reference to
sensory-motor expericnces. This includes use of graphs or diagrams, and reference
to physical obiects.

(3) (ER) External-Rules: A rule or rules are followed that either have not been
previously justified, or are not used with justification as to the choice of the
particular rule or rules.

{Sce Appendix O)
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Appendix G - Instructor Interview Question Sheet

Teaching Background

1. How many years have you been teaching at this university/college”

2.  What courses have you taught in that time? (type, level, size)

3. Did you have any teaching expernience before this? If so, what?

Current Teaching

1.  Whatisit like to teach in thic depanment/college? What are the things you like and
disiike about teaching?

2.  What is your prcsent teaching load? (courses, number of students, amount of
preparation/grading time, etc.)

3. How much time do you make available for students wutside class?

4.

Do you find students com¢ during your office hours? What types of questions do
they bring?

Teaching Calculus

1.

19

What factors does this department/college consider in planning the calculus program
as it presently is? (content, nature and format of assignments, tests, exams) Who
makes these decisions?

What do you see as the strengths ‘weaknesses of the Alberta high school math
curriculum in terms of how it prepares students for iearning calculus?

What do you see as the major strengths/weaknesses of the Math xxXxxxX course as it
presently 1s? (content, structure, teaching approach)

What do vou sec as the strengths/weaknesses of the textbook used in Math xxxxxxx?

Have you changed the way you teach since using this approach to calculus? Have
these changes been effective? In what way?

If you could change the Math xxxxxxx course, what would you do? (additions,
deletions, format)

What are the things that help/hinder teaching this Math xxxxxxx class? (class size,
the curriculum, time, location, interaction with other instructors)

This question was not asked of the instructor at Alpha University because it did not
pertain to his situation.



Impressions about Teaching and Leamning

I.

t9

How would you describe Math xxxxxxx students? What sorts of abilities do they
have? What seems to motivate their learning? Do these aspects influence how you
tcach? In what ways?

How able and/or willing to be self-reliant in directing their own learning do Math
xXXxxxx students seem to be? How do you see this as influencing their learning?
What could an instructor do to enhance self-reliance in learning?

What are your ideas on how students learn? On effective ways to teach? (ideas on
usc of graphs, algebra, informal and formal presentations, language, reasoning
processes or proofs, determination of validity or truth)

Do you teach differently to different groups of students? In what ways?

Students scem to have difficulty learning calculus. What are your thoughts on this?

What aspects of calculus do you see as easy/difficult for students to learn? Why?
How do you handle teaching these things?

What do you see as the essential ideas and sKills that student in your calculus class
should take away with them at the end of thc course?

What factors do you take into account when planning and carrying out your teaching?
(emphases, strategics, changing plans)



Appendix H - Clinical Interview Calculus Problems

1. A friend of yours who knows nothing about calculus is wondering what it is all

about. What would you say to your friend to explain what calculus is all about?
2. For each of the following sequences of numbers, decide whether the sequence has a

himit. If so, what is this number?

1 1 1 1 1 1

> 107 100 1000 10000 100000 - -

3.9, 3.99, 3799, 3.9999, 3.99999, 3.999999, . ..
(Gamma College)
2. For each of the following sequences of numbers, decide whether the sequence

rounds off to a particular number. If so, what is this number?

N 1 1 1

* 107 100 1000 10000 100000 °

3.9, 3.99, 3.999, 3.9999, 3.99999, 3.999999, .. .

3. (a) Evaluate the following:
lim _x++4
X—=>* x3_x+ 5

(b) What does "limit" mean to you?
(Gamma College)
3.  (a) Round off the following:

M3 4+ 4
M3-M+5
(b) What does "round off" mean to you?
‘2 , ol

4. What can you say about the function y = AToX+6 at x =27

X -2



For cach function given below, determine if it is continuous or discontinuous.
Give reasons for your answecr.

N
9
Y 1
2
3'* . ’ 3 —
2 1 i
£(x)= x*
[ -24
Yy Ft —d e 1_7
X#0 Y
N
.34
2-
< 1
[ o2 v 2 37
-\
\ | % <
I I NCA P ©
X+, X% 0
y
33
2 9 o— %
.
4 - — + s me : —>
y -3 -2 -\ P ! 2 a3 g’
Z - —l
« .
=7 k(x)z {"' y  %X&
~3«. 1) X.?!
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A friend of yours who recently completed high school mathematics is wondering
what calculus is all about because he/she has heard you frequently use the word
"derivative”. What short explanations, sentences, or examples would you use to
explain to your {riend what the "derivative” is all about”?

7.  Find the derivative of cach of the following:

F(1) = (212 +3t-2)10(3¢14.9)7

8.  What interpretations do you have for the expression below?

Iim f(x+h) - f(X)
h

X—>00

(Gamma College)
8.  What interpretations do you have for the expression below?

dv _ F(x+dx) - F(x)
dx dx
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9.  The graph of y = F(x) is given below. At which points does the function not have a
derivative? Why?

|
y= F(x) ,])\' . .
¢t !
I
3 {
|
2 {
{
i
{
— < —
Ky L 7
1
|
!
|
{
§
i
|
i
]
i
14

10. Find the slope of the tangent line 1o the curve  x2y +3y2-3x=4
at the point  (0,-2).
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11. The number of elk in a national part: 2t the beginning of cach year is represented by
the function y = E(t) as shown on the graph below. The number of wolves is
represented by the function v = W(1), also graphed belov:.

-

4000
3500
3000
2500
2000
1500
1000

500

g -
-
o
vref
oned
~
=
0

2 1983 19684 19863 190846 1967 1968 1009

(a) At what exact point in time was the number of elk increasing most rapidly?
(b) During what time period was the rate of change of the number of ¢lk decreasing?
(¢) If youare told that for 0 <t <4 (ie. from 1980 to 1984) thc cquation for
y = g(t) is W(1) =-10083+ 1600t + 500 (t measured in ycars), how would you
determine all critical points of W?

(d) How would you use the critical points found in part (¢) to determinc the local and
global extrema of W?

(e) At what point or points in time is the number of wolves not changing?
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12.  On the axes given below, sketch the graph of a function with the following
propcrucs:

(a) y coordinatc of -3 when X = -8

(b) denvative of 2 when x = -5

(¢) local maximum when x =-1

(d) denvative of O when x=2

(c) slopcof 1 when x=4

(f) when x =7, a point where the function is continuous but not diffcerentiable

(g) '(x) <0 and "(x) >0 when x>8
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Appendix 1 - Sample Interview Probing Questions
(adapted from Clement and Konaold, 1989)
1.  Being an active listener:

Could you please repeat what you just said?
Slow down. I'm not following that quickly.

2.  Encouraging vocalization:

What are you thinking?

Could you please explain what you arc writing.
3.  Asking for clarification/ex pansion:

What do you mean?
What more can you say about that?
What other ways might you do/explain that?

4.  Requesting reflection:
How do you know that?

How would you justify your answer to a fellow student who didn't believe you?
Does that scem like a reasonable answer? Why?
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Appendix J - Student Personal Interview Questions

Student Interview Questions

]

Ui

10.
11.

13.

14.

What are vour reasons for taking a calculus course?
Do you see calculus as useful to you? As useful to society?

Were you anxious or apprehensive about taking calculus before beginning this course
in September? Why or why not?

Have your feelings about studying calculus changed since September? If so, in what
way?

How well are you doing in the course at this point?

What are your thoughts on each f the following in terms of how they either help or
hinder your calculus learning?

(a) the textbook

(b) assignment excreises

(¢) tests/quizzes

{d) lectures

(e) labs (if applicable;
How much time do you spend studying calculus? What do you do during that time?
What do you do when you encounter a difficulty while studying?

When you work with calculus ideas or solve calculus problems do you fecl confident
in what you arc doing? Why or why not?

What does it mean 1o you 1o say you "understand” calculus?

Docs the language (ic. symbols, terminology, descriptions) used in your calculus
class or textbook help vou to understand calculus? Why or why not?

What aspects of calculus do you find easy and what do you find difficult?

What things do you find help your learning in calculus? What things do vou find
hinder vour learning?

Have you been exposed to calculus in any of your other courses?



Appendix K - Selected Portions of the Textbook Tables of Contents

A. Alpha University (Stewart, J. Single Variable Calculus)

Chapter 1:

Numbers, Inequalities, and Absolute Values
The Cartesian Plane

Lines

Second-Degree Equations

Functions and Their Graphs

Combinations of Functions

Types of Functions and Transformed Functions

Appendix B: Review of Trigonometry

Chapter 2:

Tangents and Velocities
The Limit of a Function
Properties of Limits
Continuity

Chapiter 3:

Dernivatives

Differentiation Formulas

Derivatives of Trigonometric Functions

The Chain Rule

Implicit Differentiation; Angles Between Curves
Higher Dernvatives

Rates of Change in the Natural and Social Scicences
Related Rates

Differcnuals

Charv:i 4

Ma- ::::im and Minimum Values

The ~ izan Value Theorem

Mor:otonic Functions and the First Denvative Test
Concavity and Points of Inflection

Limits at Infinity: Horizontal Asymptotes

Infinite Limits: Vertical Asymptotes

Curve Sketching

Applied Maximum and Minimum Problems
Antiderivatives

Chapter 5:

Sigma Notation

Area

The Definite Integral

Properties of the Definite Integral

The Fundamental Theorem of Calculus
The Substitution Rule

Areas Between Curves

202



B. Beta College

Chapter 1:

The Derivative as Slope or Rate of Change
Differentiation Formulas

Elementary Maxima and Minima Problems
The Chain Rule; Implicit Differentiation
Denivatives of Trigonometric Functions
Related Rates

Chapter 2:

Introduction to the Limit

The Limit Notation

Some Rules for Evaluating Limits

Right and Left-hand Limits

Limits Yiclding Infinity of 0.0

Limits where the Independent Vanable goes to Infinity
Horizontal and Vertical Asymptotes

Two Trigonometric Limits

Chapter 3:

The Definition of the Denivative
Calculating Derivatives from the Definitton
The Existence of the Derivative

Proof of Dufferentiation Rules

Chapter 4:

Introduction to Continuity

Cu atinuity at a Point
Continuity on an Interval
Differentiability and Continuity

Chapter 5:
Absolute Value and inequalities
Precise Definition of the Limit

Chapter 6:

Absolutc maxima, minima

Local maxima, minima

Critical Points

Mean Value Theorem

First Denvative Test

The Second Dernvative Test
Graphing

Applications of Maxima, Minima

Chapter 7:
Applications of differentials

293
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Chapter 8:
Antdernivatives and indefinite intcgrals
A few areas using antiderivatives
Three problems involving sums
Application of the definite integral to area problems
Substitution, an aid in solving integrals
More general areas by integraiion

Chapter 9:

Summation Notation

Finding an area using summation

The Definite Integral

The Fundamental Theorem of Calculus
Prologue

C. Gamma College

Chapter 1:

The Real Numbers
Analytic Geometry

The Line

Functions

Special Functions

The Inverse of a Function

Chapter 2:

The Hyperreal Number System
Rounding Off a Hyperreal Number
Functions of a Hyperrcal Variable
Continuous Functions
Applications to Graphing

The Tangent Line

Chapter 3:

The Dernivative

The Rate of Change of a Function
Derivative Formulas 1

Dernvative Formulas II

The Chain Rule

Implicit Differentiation

Higher Order Derivatives

Chapter 4:

The First Derivative and Graphing
The Second Derivative and Graphing
Maximum/Minimum Problems
Limits

Antiderivatives



Chapter 5:

The Sigma Notation

The Definite Integral

The Fundamental Theorem of Calculus
Change of Variable in Integrals
Propertics of Definite Integrals
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Appendix M - Sample Completed Classroom Data Analysis Sheet
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Appendix N - Textbook Analysis Summary Sheet

Type

Sources of Conviction

Language

Event

208
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Appendix O - Summary Description of the Textbook Example and Exercise
Codes

Examples (EX)

A. (I) Imitation

Students could duplicate the steps in the example with a variety of exercise
questions similar to the example.

(1) (d) demonstration: demonstration of a type of calculation or procedure, or
application of a rule.

(2) (p) property: a spccified property is displayed through a graph, equation, or
numericzl or algebraic expression.

(3) (w) word problem: a one or two siep application of a concept or procegure.
This application is to a physical context, as opposed to application to another area of
mathemaltics.

B. (N) Non-Imitation

Students are not likely to be able to duplicate the steps in the example with a variety
of excrcises similar to the example.

(1) (m) multistep: an application (within either a mathematical or physical context)
of concepts or procedures that involve one or more of the following in reaching a
solution: analysis of a situation, synthesis of several concepts, or construction of a
graph, equation or expression.

(2) (i) interpretion: interpretation or explanation of a graph or mathematical or
physical situation.

(v) Visual Component : a graph or diagram is present in the example.

Exercises (EXC):
A. (R) Routine

Tasks for which a procedure leading to a solution has been presented in the
textbook.

(1) (i) identification: identification or recognition of a property or concepl.
(2) (a) algorithm: use of a rule or algorithm.
(3) (w) word problem: a one or two step application of a concept or procedure.

This application is to a physical context, as opposed to application to another area of
mathematics.
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B. (T) Transitory

Tasks for which procedures leading to a solution have been presented in the tent,

but the solution procedures involve several steps, or interpretion of notation or
graphs.

(1) (g) graphing: application of rules along with graphing of the results.

(2) (a+) applicaton: usec of several rules or algorithms, or usc of a rule or
algorithm that involves interpretation of notation or interpretation of a graph.

C. (P) Problem (P)

Tasks for which a procedure leading to a solution is not known.

(1) (m) muliistep: a task involving more than onc of the following: identification
of a property or concept, analysis of a situation, synthesis of concepts or calculation
results, application of rules or algorithms, derivation of an cquation or formula, or
sketching of a graph.

(2) (c) create: create an examplc of a situation, function or cquation that possesscs
specified properties (graphs arc not included here).

(3) (cg) construct a graph: construct a graph which possesses specified
properties.

(4) (p) prove: prove a general result.

(5) (e) explain: explain, describe or interpret a mathematical situation.  Graphs
are not included here.

(6) (ig) interpret a graph: interpretation of a graph.
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Appendix P - Sample Completed Textbook Analysis Summary Sheet
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Appendix Q - Textbook Data Analysis Sheet

Total

 —

Event Number

25

24

23

22

21

19§ 20

18

’

15 |

17

14

14
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Code

cp

EX
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Appendix R - Sample Language List

Language List: Betty
Everyday Language

Problem 2:

- getting smaller and smaller

- going forever

- bigger and bigger

- getting closer and closer to four; but not reaching four

Problem 3a:

- have to work it out so it's not in the indeterminate form

- can just drop these because they're infinitesimal and that would be the rounded off form
- can just drop it

- it's big

Problem 3b:

- start off with different things

- make calculations ecasier

- try to get them to look like whole numbers

Problem 4:
- curved line
- have to work it out and round off

Problem 5:

- two lines separated

- should be an open type interval, open point

- there's an open space and it doesn't say equal down here
- can draw without taking your pencil off the graph

- have to lift your pencil from one place to get to another place
- no breaks

- like a flow

- dots would be going up consecutively

- check the points

- so it will come down and go up continuously

- nol connecting

Problem 6:
- sec how it behaves, looks

Problem 7:
- first times derivative of second. ... first times the second.
- the inside

Problem 8:
- just put it down at the beginning



Problem 10:
- change over change

Problem 11:

- fastest it increases

- highest amount of increase; higher increase within a shorter amount of time
- pretty good drop going down

- increase the graph and focus on that flat line as you get closer, and then flatter and flatter
- slowly and slowly curve up

- almost the straightest line on the graph

- just varies a little bit

- there's a drastic change and then there's sort of a slight but not too much

- staying at that level

- sort of gets flat

- reaches a plateau

- sort of a sto; . not really low or high

Problem 12:
- has to be big
- has to be going up

Technical Language (symbols used are on a separatc list)

Problem 3a:

- indeterminate form
- infinitesimal dx

- zero on the bottom

Problem 4:
- undefined
- indeterminant

Problem 5:
- split function

Problem 6:
- the slope of the graph
- asymptote

Problem 7:
- quotient rule and power rule

Problem 9:
- endpoint
- no slope
- tangent line

Problem 10:
- yintercept

Problem 11:
- decreases



Problem 12:
- v less than zero
- slope greater thun zero

Svmbols

Problem 2:
1

- AT

s

Problem 3a:
o

oC
- dx

Probiem 3b:

dx + 1
Tdx + 2
Problem 10:

Ay
T AX
-y=mx+b
Problem 12:

e Yy _
-y=mXx+Db, = 1
- F(xy=2
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Appendix S - Outline Language Chart and Individual Student Languuge
Charts

Outline Ckrart:

Context Category
Problem | TL-S | TL-W EL F o Completion Score
2
& L
3a
&
3b
&
4
&
5
L E ®
6
&
7
& ®
8
&
2 ® ®
10
@ ®
11
® & &
12
® ®




Student: Annabel

307

Context Category
Problem | TL-S | TL-S | TL-W | TL-W | EL EL F o | Completion
{number) | (count) (number) {count) | (number) (count) | (number) ! {rumber) S core
2 3
v 1
3a 3
v 2 v 2
3b 2
v 1 v 1 v 3 v
4 2
v 2 v
5 2
v 1 v 4 v 3
6 2
v 1 v 6 v 1 v
7 3
v 1 v 1
8" 3
v v v v
S 3
v 1 4 5 v 1 v
10 3
v 1 v
11 2
v 2 v 6 v 4
12 2
v 3 v
30
Total 7 7 10 30 9 16 7 0




Student: Ellen

308

_ Context Category
Problem ! TL-8 | TL-S | TL-W | TL-W | EL EL F o Completion
{number) (count) (number) {count) (number) (count) (number) { (number) Score
2 2
v 1 v 4
3a 2
v 1
3b 1
v 4
4 1
v 1 4 1 "4
5 2
v 1 v 6
6 1
v
7 2
v 1 v 2 v 2
8 1
v 1
9 1
v 1
10 2
v 1
11 1
v 4
12 1
v 3
17
Total 2 2 7 8 7 24 1 1




Student: Jennifer

Context Category

Problem | TL-S | TL-S | TL-W | TL-W ] EL EL F o | Completion
(rumber) | (counny | (numben) | (count) | (umber) | (count) | (number) | (numbes) Score
2 3
v 1 v 5 v
3a 2
3b 2
v 2 v 1
4 2
v 2
5 2
v 1 v 2 v 7 v
6 2
v 1 4 2 v 2 "4
7 2
v 3 v 1
8 2
v 2 v 1 v
9 2
v 3 v 7
10 3
v 1
11 2
v 1 v 6
12 2
v 3 v
26

Total 2 2 11 22 8 30 4 1
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Student: Ned

Context Category

Problem | TL-S| TL-S | TL-W | TL-W| EL EL F o Completion
(number) (count) (number) {count) (number) (count) (number) | (number) Sco re
2 3
v 6
3a 3
v 2
3b 1
v 3 v
4 1
v 2 "4 3 v
5 2
v 12
6 2
v 3 4 5 v 3 v v
7 2
' 1 v 1
8 0
v 2
9 2
v 7 4 7
70 3
v 1
11 2
v 1
12 2

25
Total 1 3 8 24 9 37 3 2




Student: Richard

311

Context éé‘!egew
Problem | TL-S | TL-S | TL-W | TL-Ww | EL EL F o) Compiletion
(number) | (count) | (number) | (count) | (rumberj | (count) | (number) | (number) Score
2 3
v 1 v 1 v 2
3a 3
v 2
3b 3
v 2 v 5 4
4 2
4 4 v 2 v
S 2
v 1 v 2 v 4
6 3
v 2 v 5 v 2 v 4
7 3
v 1 v 2
8" 3
v v v v v
o 3
v 4 v 2
10 2
v 2 v
11 5
v 4 4 3
12 5
v 2 v
31
Total 4 4 12 29 9 22 6 2




Student: Cindy

Context Category

W

19

Problem | TL-s | TL-S | TL-Ww | TL-Ww]| EL EL F o Completion
(number) (count) (number) (count) | (number) (count) { (number) | (number) Score
2 3
v 2 v 6 v
3a 3
v 6
3b 2
v 1 v 2 v
4 1
v 2 v 1 v
5 2
v 2 v 2 v
6 2
v 1 v 1 v 2 v
7 2
v 2 v 1
8 2
4 1 v 1 v
9 2
v 2 v 2
10 0
v 2 v 2 v
11 2
v 5 v 2 v
12 2
v 6 v 1 4
23
Total 3 4 11 26 10 25 7 2
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Student: Daniel

Context Category

Problem | TL-5 | TL-S | TL-W | TL-W | EL EL F o Completion
{number) (count) (number) {count) (number) (count) {number) | (number) seo re
2 1
v 3 v 5
3a 3
v 1 v 3 v
3b 2
v 1 v 1 v 3 v 4
4 3
v 4 v 2 v
5 2
4 3 v 9
6 1
v 1 v 1 v 3 v
7 0
v 1
8 o)
v 1 v 1 v
9 0
v 4 v 6
10 0]
v 2 v
11 2

12

14
Total 3 3 | 10| 24| 9 | 31 5 3




Student: Doug

Context Category

Problem | TL-s | TL-S | TL-W| TL-Ww| EL EL F o Completion
(number) {count) (number) (count) {(numbar) (count) (number) | (number) Sco re
2 0
v 1 v 3
3a 2
v 1 4 2 v 5 v
3b 1
v 2
4 1
v 2 v 2 v
5 2
v 2 v g
6 1
v 1 v 2
7 B 2
v 1 v 1 v 3
8 1
v 1
9 2
v 8 v 5
10 0
v 1 v 1
9 e
v 4 v 5
12 1
v
15
Total 3 3 10 23 9 36 2 1
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Student: Leanne

Context Category

Problem | TL-s | TL-S | TL-W| TL-W | EL EL F o | Completion
(number) (count) {number) (count) {number) (count) (number) | (number) Sco re
2 3

v 1 v 4 v

3a 3
v 2 4 2 v 1

3b 2

o
w

9 3
v 10 v 5 v
10 1
v 1 v
" 2
v 2 v 3
12 1
v 1 v
25

Total 2 4 12 30 10 25 8 o




Student: Sally

Context Category

Problem | TL-s | te-s | Teew | Tw | EL EL F o Completion
(number) (count) (nurriier) (count) (humber) (count) (number) | (number) Score
2 3
v 5 14
3a 3
4 1 v 1 4 2
3b 2
v 4 4 v
4 2
v 5 4 2 v
5 3
v 2 v 6 v
6 2
4 2 4 3 v 1 v
7 3
4 1 v 2 14 3
8* 3
a4 %4 v v
9 3
v 6 v 6
70 0
4 1 v 1 v
11 pAL
4 6 v 2
15 3
v 4 v 1 v
29
Total 5 5 10 30 11 32 6 3




Student: Tim
Context Category
Problem | TL-S | TL-S | TL-W | TL-W} EL EL F o] Completion
(number) | (count) (number) | (county | (number) (count) (number) | (number) Score
2 3
v 1
3a 3
4 - v 2
3b 2
v 1 v 1 v 3 v
p. 2
v 2 v
5 2
v 1 v 4 v 3
6 2
v 1 v 6 v 1 v
7 3
v 1 4 1
o 3
v v v v
9 3
v 1 v 5 v 1 "4
10 3
v 1 v
11 2
1’4 2 v 6 v 4
12 2
4 3 4
30

Total 7 7 10 30 9 16 7 o
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Student: Betty

Context Category

Problem | TL-s | TL-S | TL-Ww | TL-w | EL EL F o Completion
(number) | (count) | (number) | (count) | (number) | (count) | (number) | (number) Score
2 3
v 1 v 4
3a 2
v 2 v 3 v 4
3b 1
v 1 v 3
4 1
v 2 v 2 v
5 2
v 1 v 11 v
6 1
v 2 v 1 v
7 2
v 1 v 2
8 1
v 1
S 1
v 3
10 0
v 2 v 1 v 1 v
11 2
v 1 v 12
12 1

17
Total 5 8 9 16 11 43 4 1
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Student: Gordon

Context Category

Problem | TL-S | TL-S | TL-W | TL-W | EL EL F o Completion
(number) | (county | (number) } (count) {number) (count) (number) | (number) SCore
2 3
v 5
3a 3
v 2 v z
3b 3
v 4 v
4 2
v 2 v 2 v
5 2
v 1 v 6
6 2
v 1 v 3 v v
7 1
v 1
8 1
v 2 v 1 v
9 2
v 1 v 6
10 0
v 1
11 2
v 5 v 2
12 2
v 1 v
21

Total 1 1 o {18 | 8 | 29 | 5 1




Student: Mike

Context Category

220

" Problem TL-S | TL-S | TL-W | TL-W | EL EL F 0 | Completion
(number) {count) (number) (count) (number) (count) (number) | (number) scol'e
2 3
v 1 v 1 v 5
3a 3
v 1 v 3 v 4
3b 2
v 1 v 4
4 1
v 4 v 3 v
5 3
v 1 v 2 v 5 v
6 3
v 3 v 3 v 4 v v
7 3
4 1
8 3
v v v v L
9 3
v 1 v 1 v 13
10 o S
v 1
E 2
v 5 4 3
12 2
v 1 v
31
Total 6 7 12 23 9 41 4 2
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Student: Nadine

Context Category
Problem | TL-S | TL-S | TL-W | TL-W | EL EL F (o) Completion
(number) | (count) | (number) | (count) | (number) | (count) | (number) | (number) Score

2 v 1 v 4 3
3a v 3 L 4 1 2
3b v 2 v 6 1

4 X X X X X X X X

5 v 1 v 1 v 12 2

6 v 1 v 2 v 5 v v 2

7 v 1 v 2 3

8* v v v v v 2

9 v 1 v 8 v 6 3
10 v 2 0

11 v 1 v 4 2
12 v 1 0
Total 6 6 8 18 10 41 2 2 20

* Nadine's interview did not include Problem 4
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Student: Neil

Context Category
Problem | TL-S | TL-S | TL-Ww | TL-W | EL EL F o} Completion
(number) | (count) (number) (count) | (number) | (count) (number) | (number) Sco re
2 3
v 1 v 3
3a 3
v 4 v 2
3b 2
v 1 v 3
4 1
v 3 v 1 v
5 2
4 4 4 3
6 3
v 3 v 2 v 3 v v
7 3
v 2 v 3
8 3
v 1 v 3 d 5 v
9 3
4 g v 4
70 2
v 1 v 1
11 2
4 1 v 5
12 2
v 2 v 2 v
29
Total 3 5 11 32 12 35 4 1




Student: Tanya

Context Category

Problem | TL-S | TL-S | TL-W | TL-W | EL EL F o Completion
(number) (count) | (number) | (count) | (pnumber) (count) | (number) | (number) SCOfe
2 3
4 2 v 2 v 7
3a 3
v 1 v 3 v 1
3b 2
v 1 v 2 v 5
4 2
v 4 v 4 v
5 3
v 2 v 4 v 1 v
6 3
4 1 v 5 v 5 v v
7 3
v 1 v 1
8 3
v v v v v
S 3
v i v 10 v 6
10 3
v 3
11 2
4 4 v 4 v
12 2
v 4 v 1 v
32
Total 7 8 12 42 11 45 4 4
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APPENDIX T - Four Cempleted Student Written Responses and Transcripts

Daniel's Written Responses

3.

—

Evaluate the following:

11 x*+a - A
=T x? - x + ' oa;ﬁf < 'f'EE
a0
'G?.*;>(k1 X

P ErT

What does "limit" mean to you?
hmf\ ' (a( Myu{( {cr/(f‘ sen-{}
& barier or Qn()pa,w’ At \’M'CA

ﬁw\lu?ij < ?O%le(.’ . qo( @’«W\f(o,

2 §w¥;)“wf (hey aﬁfy be able e

%,umrw

o Do Tt oo W e Jof

ordvone Gmlkey o malh Hhough
Mot e LQ/h(’/tr’ A I'"“'l {e?Ieﬁen"}g

a4 froxmeen 20 M iMUN, 2%9-\0'\:\(‘? .

g e be euye ot



4.

what can you say abozt the functlion \"\y
at x = 2?2

325
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5. For each function given below, determine 1f 1t is continuous
or discontinuous. Glve reasons for your answer.
3 f Aty

23
Paad§

T X

A\Q

[we)

-y -3 ~«32 =y © N a2 3

AN




6. A friend of yours who recently completed hlgh school
mathematlics is wondering what calculus is all about because
he/she has heard you frequently use the word "derivative®™.

what short explanations, sentences, or examples would you use
to explain to your friend what the "derivative" 1s all about?

B A bade s B

"F&)‘é *5)(1‘\
- \M |
(- 257 o

F'ey= o
F 8= £ b

/’) © QAL b
N
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7. Find the derivative of each of the following:
1

X

Yo /x_x 2 % fYls  foqarlivg S“"(,vu"""é‘

x"l

:Q\ ./“/‘

2
F(t) = (th + 3t - 2] [3t”‘ - 9]



8. What interpretation do you have for the following?

£(x+h) ~ £(x)
hlim° -

V4
aY)

g(xﬁ\\\ ——Q(\;B ] Jgﬁf

,../fg" >

9. The graph of y = F(x) 1s given below. At which points does
the functlion not have a derivative? Wwhy? .

y= F(x)

<
“y o e - —

— e mn wn G e e = ew e aB e




10. Find the slope of the tangent line to the curve
_xzy + yz ~ 3x = 4 at the point (0,-2).

-

Xl\j 1—37’ -4 =2
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11. The number of elk in a national wildlife park at the
beginning of each year is represented by the function
y = E(t) as shown on the graph below. The number of
wolves is represented by the function y = W(t), also
graphed below.
N
4000 ﬁ
3500 A
3000 -
2500 4
2000 4
1500
1000
500
0 . & . g — t
0 1 3 3 1 5 e 7 8 9
1990 1901 10682 49083 10684 1905 1980 1087 19688 19069
— (a) At what exact point in time was the number of elk increasing
most rapidly? ' <6;}
— (b) During what time period was the rate of change of the number
of elk decreasing? ‘( %5/
(c) 1If you are told that for 0 =t < 4 (ile. from 1980 to 1984)
the equation for y = W(t) is W(t) = -100t® + 1600t + 500
(t measured in years), how would you determine all critical
points of W?
(d) How would you use the critical peints found in part (c) to
determine the local #xtrema of
— (e) At what point or points in time is the number of wolves not

changing?

TR AR L



93]
W
tJ

12. On the axes drawn belcw, sketch the graph of a function with
the following properties:
(a) y coordinate of -3 when x = -8
2 (b) derivative of 2 when x = =5

. (¢c) local maximum when x = -1
’Tb (d) derivative of 0 when x = 2
(e} slope of 1 when x = 4

(f) when x = 7, a point where the function is continuous
but not differentiable

(3) wien %>8  §€a) <40 and £701>0

'S'

-l &

R4



Sally's Written Responses

3. (a) Evaluate the following:

Y,
1im xT + 4

K —t O xﬂ_x+5

(oO\g +y
(o= - oo+

(b) Wwhat does "limit" mean to you?

N

333

i\
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Y=
7 1t
7
=1 TH-10+6 &
L2 O
Y= X -3
Q=) x5 ) G (r-3)
(_,L—% /’2\\ \
>)



6.
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A friend of yours who recently completed high school
mathematics is wondering what calculus is all about because
he/she has heard you frequently use the word "derivative™.

what short explanations, sentences, or examples would you use
to explain to your friend what the "derivative" is all about?
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The graph of y = F(x) 1is glven below.
the functlion not have a derivative? Why?

AN
>
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At which points does

s

— el
i
x
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1o0.

-y “x £ 24-370
o) +2E2) -3 20

: O+ ~1-2 0O
‘ - 270
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11. The number of elk in a national wildlife park at the

beginning of each year s represented by the functlon

y = E(t) as shown on the graph below. The number of

wolves is represented by the function Yy =« w(t), also
graphed below.

N

40C0 A

3500 -
y= ER)

3000 <

2500 -«

2000 -

1500 -
1000 A y= (WICA
500 |
0

T T T 1 ¥ T ¥ 1°°

19890 1901 210692 1983 19P84e 1983 1984 1997 19068 1999

(a) At what exact point in time was the number of elk increasing
most raplidly?

T, | Q8 -

(b) During what time period was the rate of change of the number
of elk decreasing?

1983 —\98 Y

\Eﬂi I1f you are tcld that for 0 = t < 4 (le. from 1980 to 1984)
~

the eqguation for y = W(t) s W(t) = -100t® + 1600t + 500
(t measured in years), how would you determine all critical
points of W?

(&} How would you use the critical points found in part (c) to
determine the local and global extrema of W2

(e) At what point or points in time is the number of wolves not
changing?

Aon. WZ2  Jine (787 14‘,3‘ 786



12. On the axes drawn below,

the following properties:

(a)
(b)
@)
()
(e)

«)

y coordinate of -3 when

derivative of 2 when

local maximum when x =

derivative of 0 when
slope of 1 when x =

sketch the graph of a function with

when x = 7, a point where the function is continuous

but not differentiable

0)
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Jennifer's Written Responses

uences of numbers, decide whether

2. For each of the followling seq
the sequence has a limit.

1f so, what is this numbexr?

1 1 1 1 1
. 15+ 7106+ Tooo 10000 ' 106000 ‘

3.999,  3.9999,  3.99999, 3.999999, . . -

by —

1.9, 3.99,

—

3. (a) Evaluate the following:

(b) Wwhat does "limit" mean to yo

Uw T 2P
17
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5. For each function given below,
or discontinuous.

w
>t

Y
e
31
21 o —>
I
o re 1 : ‘\z
"y -3 -2 -\ 0 ' 47
pa i —
N ~
-2 St o—
2

~3~

343

determine 1£f it 1s continuous
Glve reasons for your answei.

EN

2¢

(% 3

T ——b
1 £(x)= x*

)
-

Y
34
2 3-‘ )
~\L ‘_____’-\
:§ 2 - o 1 2 T>x
-‘c
-l o h(’(\)= I’ X(O
X+1, x%0
o
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6. A friend of yours who recently completed high school

mathematics {s wonderino what calculus is all about because
he/she has heard you frequently use the word *derivative",

What short explanations, sentences, or examples would You use
to explaln to your fulend what the "derivative" is all about?

£y = xr 43’4 S y

R T
|

< 7
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7. Find the derivative of each of t

T ,/(" . tlv
x + 3x° + 7 , 2
(- (oo X[ iy e T )

Y (v 4T -

2 10 174 ?
(t) = [2t + 3t - 2] [3t - 9]

£'(# - /d@tﬁgf—z)"{%+3)(6t*"«?y
2,24 M0 Yt é/z 4»3,;,)
 [aernse) 7o h-7) (2
é”(qgﬁt 43&(;&"43{'9)(/5{ 4 -5 )7

o34/t gb 1T
/0 J(ff%/of’“r #%-8 (3% 7’



8. What interpretation do you have for the following?

1im f(x+h) - £(x)

h——0 h

s

e

Y Xk



The graph of
the function

y:.F1X)

y = F(x)
not have a derivative?

13 given below.

Why?

347

At which points does

ot

v




10. Find the slope of the tangent line to the curve
x®y + y* - 3x = 4 at the point (0,-2).

a4 + Xy 4 ?’37" 3 =0
11gl+3331:—‘ 3"'%-9
H¢(12+Zj>= 3—-9\7“1
I 3¢
»xa+a’j

f'j i 3- 8(0)@_>
(o) + Al-2)

348



11.

(a)

(b)

e

(e)

349

The number of elk in a national wildlife park at the
beginning of each year 1is represented by the function
y = E(t) as shown on the graph below. The number cf
wolves is represented by the function y = Ww(t), also
graphed below.
W
4000 A
3500 <
3000 A
2500
2000 <
1500 <
1000 <
/
500 T
0 A o ' —y t
0 1 kS T 4 2 1 1 8 3
L2680 1983 1082 1083 L0894 1985 1960 1907 L1988 2080
At what exact point in time was the number of elk increasing
most raplidly? 6\ g%
puring what time period was the rate of change of the number
of elk decreasing? 85 SS
1£ ycu are told that for 0 =t < 4 (ie. from 1980 to 1984)
the equation for y = W(t) 1is W(t) = -100t® + 1600t + 500

(t measured in years). how would you determine all critical
points of W?

How would you use the critical points found in part (c) to
determine the local éxtrema of w?

At what point or points in time is the number of wolves not
changing?

B0 - &



12. ©n the axes drawn below,
the following properties:

sketch the graph of a function with

(a) y coordinate of -3 when x = -8 (-! B
(b) derivative of 2 when x = -5 Q\kg}: 2 Ye =S
(c) 1local maximum when x = -1 S g
(d) derivative of 0 when x = 2
(e) s8lope of 1 when x = 4 3 2
(f) when x = 7, a point where the function is continuous
but not differentiable
A . (7 —
e xS 7 = OYLC end FLATO Yy \S
e 7 @ §
2
;A
% 3
s )
O |
£
A11b "
— k
3 S
1‘ ——
/ |
-8 -; _b

1
W
Lg

“4 &

- ¢

R
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Tanya's Written Responses

2. For each of the followlng sequences of numbers, decide whether

the sequence rounds off to a particular number.
1f so, what is this number?

1 1 1 1 1 1 0
. 0’ 106 © 1000 © T0006C ‘ 106660 ¢ - ° -

3.9, 3.99, 3.999, 3.9999,  3.99993,  3.999399,
¢ lo © ¥ s any 4
Goof 3 PoSItim. mBnifesi~ra [

3. (2} Round off the following:

e 4 4 ?‘wﬁ‘(y . /+F% = ftse
M® - M + 5 ek p S w/ <
_B'v 3
Wi"— ’_-’-‘f'“;(n' ff H H?

(b) What does "round off" mean to you?
4@ cnscuer /s e numbe cdpsesé <o
Hla Ques<Eion.



"2
N
19

What can you say about the function vy X - E"z‘ 6

at x = 2?2

1]

” (x- 5)()(/:1/))
I r&@

=/

—

~—

\,:Z_3
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For each function glven below, determine 1f it 1s continuous

S.
or discontinuous. Glve reasons for your answeg
RS
TR R
1 £ = x*
1?& ~ 4 ',V-J-a‘,{() ;"R’X/ -24 Xé/’Q
2 y(x)"? (x-l—dz)
‘ N
: — ~=y X
‘l—-~.q\-’ 0 1 1
N -
R 3(1\7— xX#0 O+ Yy
2
Al0rdse) ™> x4/ 31
€ t
3 S S f“}#z
-\a
4t D
2l R)= {’( N
-31
Y
3]
29 or —>
1
-y -3 ~1L ': ° »' 2 ; Ti>l
& =1
i k(x)z {" X<
_3-




A friend cf yours who recently completed high school
mathematics is wondering what calculus is all about because
he/she has heard you frequently use the word "derivative".

what short explanations, Sentences, or examples would you use
to explain to your friend what the "derivative" 1is all about?
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7. Find the derivative of each of the followlng:

x* + %
y =
Yx 4+ 3xT + 1
2 10 ?
Flt) = [Zt + 3t - 2] [3t"‘ - 9]

Fo=0(ae se-2)7 Gex3) [e'5-9)] T+

7 (e ‘?)G' (2% ) }}6;24,% ;z_j /0.



8. The graph of y = F(x) 1s given below. At which
the function not have a derivative? why?

y:F&) Y

S
>

polints does

. I S

-

-«

v



10. Find the slope of the tangent line to the curve
x%y + y> - 3x = 4 at the point (0,-2).

2xy- S, +2y ! -2 =5

c‘zx‘{’yl){g-f‘ﬂc/‘y': 3
v/ (Rxpr® +24)= 3

357



On the axes drawn below, sketch the graph of a function with
the following properties:

(a) y coordinate of -3 when x = -8
(b) derivative of 2 when x = -5

(c) 1local maximum whep x = ~1

(d) derivative of 0 when x = 2

(e) slope of 1 when x = 4

(f) when x = 7, a polnt where the function is continuous
but not differentiable

-k ¢

-3 9
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Daniel's Transcripts

Interview |

Problem 1

What would you say to this person? Calculus is um the study of functions and how
they can be broken down and applied and graphed, and that's about it 1'd say. Broken
down and applied. Derivatives, intercepts, graphing, um (pause).

Those are some of the parts of calculus?

Y eah.

Do you have any way of summarizing in 10 words or less, calculus is about this, such
and such?

No.

Problem 2

(pause) Well. (pause) I don't believe this one does have a limit. Infinite.

Why do you think that?

Um. Because the progression here. Three point nine, three point nine nine, all the way
through is um is not it's not narrowing to a certain number. [t's what do you call it? It's
getting larger. And this one um is getting smaller so I think it's approaching zero.

Can you say more about that? This first one.

Um. The first number in the first one is one, and then the second one is one tenth. One

one hundredth. These numbers are getting progressively smaller. And while the
numerator is constant the denominator gets larger which leads to a smaller number.

Which would seem to me it means it would eventually somewhere way way down it

would approach to zero.

Would it ever actually wzach zero?

No. Because it would never, well the way I see it probably would never ever equal

zero. That would make it an infinite number. I'd say it approaches zero, but it would

never actually reach zero.

Okay. And can you say any more about the second one? Or even repeat what you said

to me.

Well, um this number is obviously approaching a number close to four. Um. But |

don't think it will reach four because the question is three point nine and each number

after that has an additional nine after it right. And that sequence just continues forever.

It doesn't really make the number, it makes the number larger by a fraction which

would eventually lead to a, coming close to four.

'fl‘hcn, but previously you said it was infinite. Now you're saying it comes close to
our.

Yeah. Well I believe this one, the second one is infinite. Like I mean it's because it's
three point nine it's close to four. Maybe | expressed it wrong when I said it comes to
four. I believe it's an infinite expression because it goes, just by looking at the numbers
here. Three point nine nine. I can't base it on any theorem because I don't know, but

just by looking at the sequence of numbers I can't see how that would have a limit
because all it is is an addition of a number.

So am I right in saying it's an infinite expression, but you see it as getting near four?
Well in saying that I'm saying it has a limit, right, if I say that it gets near four. See.
(pause). It does get nearer to four but I don't, I guess I'm hazy on what the definition,
what the difference is between this. This one 1'd say definitely approaches zero. No
wait. 1 don't know. Now I'm all confused. But anyways, um, [ guess it's either
infinite or it approaches four. It's not both right.

But do you know which? If you're unsure you can say so.

Okay. Well then I'm unsure because it looks to me like it is approaching, well it
obviously is getting closer to four. Because three point nine nine is smaller than three



Pro

Pro

360
point nine ninc mine, right. So it's obviously getting larger and as it gets larger it goces
towards four. However, um, that sequence doesn't neeessarily stop there so 1 don't
think it has, that's how come | doun't thnk 1t has a limit,

Okay.

It's still petting bigger even if it did, well, no. It's going to be three point ninc nine
forever though. Because even thongh that's getting closer to four why would that ever
£0 up G four. It goes on forever,

bler 3a

Okay. x approaches infinity. (pausc) (writing) (pausc) (crasing hcard)

Can [ ask you what you've been doing?

Just, there.

What is it you're trying to do?

Ah, T was just going to evaluate the following limit. I evaluate the limit by first of all
getting itin terms I can understand and evaluating it as x approaches infinity.

S0 what is it you're doing here? Trying to put it in terms you understand?

Yeah. By reducing these. (pause) Let's see. (erasing) I know there's a formula here,
well not a formula but a rule to evaluating limits here that we ah, just, quotient. (pausc)
Well, I'll try this. Because x herc um what I want to do is I'm just going to um, [ don'
know if that's right.

Can you tell me what you were going to say? Whether it's right or not.

Okay. Ah, as I see it there's two possible ways. Therc's one or another way to do it,
and I'm not sure which is right. I have a feeling that the way I am about to show you is
wrong, but what I was going to do is say as X goes to infinity, and you can represent
that by essentially something like that.

Okay. Infinity to the fourth.

Plus 4. Which just equals a large infinite number. And here, infinity to the third minus
an infinite number is still a large infinite number. So you have an expression that is
somewhat undefined or is it is large infinite. But that's not the way I think this problem
is done. Tnat's just the only way that is coming to mind. The other way this problem
could be done is, well not the other way, the correct way, hus ssmething to do with the
fact that this is a quotient. And wait a second. Okay. (paus.: {'w: just thinking, Um,
(pause) Froin the left or from the right. (pause).

Can you tcil me what you're thinking? You're thinking plus and minus infinity, I know
that.

Yeah, I'm just, I know that's there's, 1 know that there's another way that's the correct
way to do the problem. | know there's a correct way to do it, but I'm not remembering
it.

blem 3b

Alright. What does limit mean to me? (pause) (writing for along timc)

Okay. Can you tell me what you've put there?

This is what I have written here. The limit for myself represents a barrier or end point at
which something is possible. For example, a swimmer would only be able to swim one
mile because that is the "lim:t" of his or her endurance. Similarly in math, though more
complex, a limit represents a maximum or minimum possibility. Ah, for example one
half, one quarter, one eighth, one twelfth. This progression is near the limit of zcro.
And could it ever reach zero?

And once again I draw reference to the first question I did in which the same problem
boggled my mind. So as you can see | think [ have an idea of what the English
definition of limit means, but in mathematical terms I think it's probably pretty hazy.
Alright. Let me just ask you, you say it's a barrier and an end point.
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Well maybe that wasn't quite correct. I was thinking like ah, like if you have a
progression of numbers it can only rcach this number. That's as high as 1t can reach, or
as Ienv as it can reach. A maximum or minimum.

Cun 1t go beyond that and come back?

Um. | suppose in certain instances it cou'd. Um. I said here it represents a barrier or
cnd point, but ah | guess if you're thinking in terms of something nising. Y eah, it could
go beyond that and come back. I would have no idea about how to go about doing that.
So it could go beyond it and come back. And could it ever actually get exactly to that
limit? This one you're not surc about, but is there cases where it would maybe
definitely reach the limit?

Y ¢s. There are definitely cases. I don't have any off the top of my head straight off, but
I think there are definitely some cases where 1t could reach it's limit. Like, in fact |
could almost be sure of that because I remember it from class. But maybe I'm wrong.

Problem 4

Alrighty. (pausc) (writing) Um. Doesn't exist.

Why?

Because at x cquals 2 the number in the denom, sorry the bottom, the denominator,
whatever. equals zero. Which ah cannot occur for a fraction. 'Cause that makes it
undefined. Undefined. Oh, hang on. Or let me take this a step farther. Um. (long
pausc) Okay. Um. Yeah. (pause) Ycah. (pause) (mumbling) (writing)

Can I ask what you've done at this point?

Okay. Well, the first thing 1 did was | just straight across substituted in at x equals 2
and I found that the denominator went to zero. And then I ah took it here and I, what do
yvou call it, I br e it down, I didn't , I described this function in terms of two ah, I
took it down to its factors that's what I did. So I had X minus 3 times x minus 2, all
over X minius 2. And ah, so then | substituted 2 in and I got, I took out as an ordered
pair, so if y equals, if X equals 2, v will equal negative one. And now um I'm just
looking for a way to see if 1 can maybe get a slope or something from that so I can
graph it. Um. (pause) Or actually, (mumbling). (pausc)

What are you thinking?

Um. I just, I'm just not sure how to go about from this stage now to graph it. I'm not
sure what would be the best, so.

Are vou trying to graph it, is that nght?

Y up.

And what is it you're trying to graph? What expression?

Ah. just the function at x equals 2. See one thing I don't undersiand is how come at the
beginning when I substituted everything in it came to zero. Because that shouldn't
come 0 zero. [t doesn't matter if it's been reduced or not. Which I think means that the
graph doesn't exist at this point. Like there's a hole in the graph.

What would it look like then, maybe?

Um. (pausc) Well actually I think 1t might be a straight line, but I'm not sure. Um. Say
something like this. (writing) I've got to erase this one point. There'd be a hole right
there, or somcething like that. I don't know. Something along that line.

Problem 5

Continuous or discontinuous. Okay. (pause) Continuous. Cc atinuous because there's
no break in the graph.

Alright. Can you say anything elsc?

Um. Ah, well there's no break in the graph and it appears to go to infinity like this
forever. And that is further demonstrated by the function x squared because what do
you call it, exponential growth? Like 1t will cause this thing to go on forever, and also
from looking at the graph | sec it's smooth. There's no breaks or spaces where the
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graph doesn't exist. So that's why I'd say it's continuous. Um. (pause) (mumbling) \
not equal 10 zero.

(pausc) I'll just come back to that one.

Okay.

Hm. (pause) Okay, this one is discontinuous. (pause) I'll just write down what | think
and then I'll come back.

Okay. Do it in any order you want.

Actually, (long pause) I find this one tricky here. The one with the two hyperbolas.
Because ah um, on one hand I think the graph is smooth, both the hyperbolas arc
smooth and approaching infinity. But there is a, but X can't equal zero, which seems to
me to provide a discontinuity. But I don't think that provides a very strong argument so
I'll say that is continuous. Because I'm going to go with my usual hunch because these
seem continucus and therefore.

For this third one you wrote discontinuous and erased it. Then rewrote it again. Can
you tell me what thought process went on?

Alright, Um. I remember reading in my calculus textbook something about continuous
functions are smooth ah, with no breaks. And | was trying to remember if it also
included what do you call it, ah, sharp turns in a graph. Because 1 believe that makes it
discontinuous at this part right here. Because it's stopping and taking another direction.
Um.

Is that what you mean by smooth?

Pardon?

Well, what do you mean by smooth?

Um. Well. See this, a continuous graph, or um that constitutes a smooth. To me what
really is a blatant discontinuity is a hole, a cusp. Which | believe a cusp is. Which that's
how come I was thinking this. See I'm not sure about this one. Whether it's
discontinuous or continuous because it's not, it seems to me 1 don't sec why this
wouldn't be continuous because it's just going off like one, like it's just wking one
direction and going off in another. It's not a hole in the graph. But 1 believe that when |
look at it maybe the whole fact that it is taking another completely new direction shows
the end of one function, or the end of one set of requirements and the beginning of
another. Without flowing together. Like there's a disjoint. Um. For this onc | would
call it discontinuous because there's a hole in the graph at one here. And here ah, at
negative one, this is both on the x-axis. It exists at one, like that's where it stairts. Like
it doesn't look continuous. 1 suppose down here it does*  mc continuous because it
ah it starts and goes forever. There's no place on this - " exist. But here it doces
not exist at the coordinates one, comma two. There's . he graph and thercfore
it's a discontinuous function.

Okay. But this part is continuous. So what would you say ior the whole graph?

Okay. Yeah, what am | sayving? Another thought just occurred to me 100, That if it's
discontinuous here at one it's discontinuous on the, like I just said right here that it's
discontinuous here because there's a hole there. And the one one right bencath it, at the
same coordinate on the x-axis, | said was continuous. Well that's correct because
there's a hole here and also this one just starts to exist here. It doesn't, oh there's onc
other thing. Now | remember. It just came to me. Left-hand has to equal right-hand.
Um. I'm thinking of limits but still I know in some respect that this theory is
transferred onto continuity. Because when you're looking at a function to graph it you
ah, see that's how come this one is discontinuous because the left side doesn't cqual the
right side. Now not that this does. Now let's see. That's a continuous function. It's
something like that. I doesn't equal. Oh 1 know, it has to exist on the left-hand side and
right-hand side for it to be continuous. See here it doesn't exist on the left-hand side
and here it doesn't exist on the right-hand side. That's my logic anyway.
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Problem 6

(pausc) Hm. (pause) (writing) (long wait) I've never had to define derivative before.
Well, I havc in certain terms. Like we've defined derivative as ah f of a minus [ of
b all over a minus b. That's onc of our definitions of derivative, mathematically.

Can you say more about this?

About this definition?

Yecah, the f of a minus { of b all over a minus b.

Not really. I just have it memorized and I use it. I don't particularly understand it. Um.
Ah. No. 1 don't understand it well enough. I just know when to use it. Say, using a
definition of derivative. That's what they refer to there. However, a fnend of mine who
wants 1o know about high school calculus, I'd tell him not to take it. I took it because |
thought it would be easier than French. Um. A derivative is basically, i'm going to try
to explain this rather than write it. A derivative is basically to me um a simpler
expression than this one. What I've got written down there. 6 X squared pius 5 x plus
1. Um. Like um. See I know the rules for deriving a derivative, and there's a variety of
them depending on whether you're dealing with like, depending on what you're dealing
with. I'd say that a derivative may be along the lines of a root of something like this.
And vou can take a first derivative test which is the first denivative. And a second
derivative which is the derivative of the first denivauve.

Can you say more about this notion of a root?

Okay. Um. Um. I don't know if a root is the right word because probably
mathematically speaking that's probably wrong.

But it means something to You, right?

Like a derivative to me is like smaller, it's like somehow made into this. Like it's like a
factor of this but it is not this whole expression. Um. ‘Cause you can't look at that and
say well if I square that back up I get this back : zain. it doesn't work that way becausc
the process for coming to here is not anything that you'd associate with the word root.
But it is to me like ah ah | guess a root is the word I'd describe 1o this, other than
derivative. I mean derivative is a perfect word for it because that's what | consider it as.
This is a derivative of this. 1 don't really know the words to explain it but um the notion
of it is I guess something like. OKay, if you take ah say pencils and you have a whole
pencil and you take off um you take off, you cut the pencil in half. You sull have the
whole pencil. You can still use it and you can still um get information, or use the pencil
to write and things like that. And ah, it's smaller so maybe it's more uscful too. You
can carry il in your pocket or someihing. And that's how I 1ook at derivative. It's Kind
of like another way of expressing this function um to find important information.

Can vou think of any examples of where derivatives are used? In explaining to your
fricnd what they're about, sort of a real world thing that they're about?

Ah.

Or a picturc even of some kind?

Ycah. Okay. Okay. Just wait a second here. Um. (pause) Okay. We did onc example
with distance travelled. Well I have no mathematical examples off the top of my head,
just they as they always tell you in math, although it has applications in later life, um,
which is believable I suppose. And they give us problems that could be applied to
evervday life. And there's lots of those. Like derivatives can be applied to problem
solving in math, um.

Can you think of anything right now?

Um. (psuse) Well, T know that later on in economics, like part of the reason math,
calculus is an important course is because of the concept of derivative. And I know that
in cconomics some zpplication of derivative is nccessary. So maybe there's some
examples that could be used in investment, or banking or something. 1 don't know.
Mortgages or loans, the derivative .s used to help calculate.
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Problem 7

1 don't remember all this. 1 just kind o/ forgot once | studied 1t. Oh well. Let's see. Oh.
Well. That isn't going to help me out. | was going 10 say because there's a root here it
can't be that. But I was thinking of a totally different. I was thinking about limits or
something. Can you take a derivative of a root? (pausc) Onc thing 1 was going to say
about using these. 1 realize um for ah solving derivatives there's rules that you use if
vou're doing sums, and if you're doing divisions, and if you'rc doing polynomials.
And if you're doing like multiplication of derivatives. 1 understand there's rules.

Do yvou remember the rules?

Theyv're very very hazy in my mind. Um. But. (unclcary Okay if 1 say there's rules.
Okay, but do what you can with 1t.

Um. (pause)

If it's too much because you don't remember all the rules. could you do for instance
what's inside this second bracket? Forget the rest of it there. Just do what's inside the
bracket.

Yeah. Because | know there's semething to do with the fact that there's an inner and
outer function. You want me to writc that?

Sure.

(writing) Um. Let's see. | think. We'll do inner first. What's three times one quarter?
(pause) (writing) One minus onc quartcr. (pause) (writing) (long pausc) (unclear for a
few words)

Alright. Could you do just the top part of this onc?

Um. (pause)

What's confusing you?

I'm just trying to remember what the rule is for what. Um. That's equivalent of one to a
certain extent. Um.

It's one over x that's the problem right?

I don't believe it exists. I think the derivative of that is zero so maybe this would be the
answer for the top part.

Problem 8

Um. (pause) What interpretation do 1 have for the following? Then you give me a
{unciear) that supposedly does not exist. Okay. Well. Since h is zero and thisis all over
h that means that it's, oh my god. Over 7ero. Which does not exist. The reason that
does not exist is because a problem can't be divided by zcro.

Dc you know why that is?

Can't be divided by zcro?

Y eah.

Um.

It's a tough question.

Well, I have no mathematical explanation. Do you want me 1o try o say it in words?

If you have any ideas.

Um. (pause)

It is a tough question. I'm curious if you had any idcas.

Okay. Well, I believe that you can't divide something by something that doesn't exist.
Something like, it's like me saying that ah, I'm going 1o buy, I'm going to buy somc
apples at the store but I have no money. Sort of in a sense I can't take this function and
divide it by something that isn't there. And yet that's exactly what this question calls
for.

Okay. So you do have any interpretation of it? You've said that it docsn't cxist.

The reason it doesn't exist is because you can't take somcthing that is noncxisient of a
quantity that doesn't exist and divide it by a quantity that does exist. And say get a
number out of that. Get a quantity of that. Because essentially it's not going to be there.
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Problem 9

Um. At what point does the function nnt have a derivative? As 1 said earlier the
derivative | thought was a smaller form of a function. Um, like a root of a function but
not exactly in the classicai terms of the word. And ah I'm just trying to figure it out here
on the graph where a particular function of the graph would not have any smailer. |
supposc it wouldn't have a derivative if it was ata maximum or a minimum. Maybe
that's just too (unclear).

Why 1s that?

Um. Well because as [ said though the derivative 1s a smaller form of the function, but
if it's a: an absolute minimum it's as constant as it gets. Sec like here, night here,
negative 6, 1 do not believe that has a derivative at that noint because this is a constant.
It's a ah ...

What's a constani?

A number with no variable. I guess all these are constant. (pausc) At which points does
the function not have a derivative? (pause) Maybe. (pause) Well, I'l] tell you what I'm
thinking. Um. I'm just trying to decide where they wouid not have a denvative and I'm
looking at possibilities. 1t could either be where there's a hole, where it's solid, nol
having a derivative. And I was thinking maybe that's the case. But I don't think it has a
derivative ai the hole because at that point it does not exist. But as for these places
where the graph starts, [ don't see why a derivative wouldn't exist. Then the other
place I was locking at was ah where they go infinity. So a derivative at infinity here at
that point on the graph. Even as the graph approaches here, is there a derivative? At you
know 5 or whatever. Or something. And ah, | think I'm opening a fresh can of worms.
I wasn't sure how to describe that. That is beyond my realm of understanding right
now. And the final case I was considering, that's why I circled and erased this first.
This sort of cusp 1 guess, I don't know. That vertical hite point there, and this one
right here. 1 thought maybe those um derivatives. They might not have derivatives. And
then 1 tried to figure out why I thought that and [ couldn't come up with an answer. So
probably there is a derivative there. 'Cause 1t turns sharply doesn't necessarily mean
there's no derivative. So the main one where § think 1 can concretely say it doesn't have
a derivative is at the Bole at one, ah onc half comma one. And if that's the case then it
probably, then I don‘t know what to expect about this onc because this onc's at the
same point. Or actually it's not. Anyway.

Problem iU

Find the slope of the tangent line to the curve. (pausc) Um. Okay. (very long pausc)
What are you thinking?

Oh, I'm just trying to figurc a way to get thisin a form where 1 can figure out the
curve.

That's why you're doing this?

Y cah. But I just figured out what I was doing wrong. I was rereading the question. It
says find the slope of the tangent line to the curve and I got looking at this probably
going to be something there. Like some sort of circle. And if 1 could figure out the
equation for the circle 1 could draw the circle. And I could maybe figure out the tangent
and the slope. Um. (erasing) Let's see. X squared y squared.

What made you think it was an ellipse or circle?

Well the x squared and the y squared. Ah. X squared plus y squared equals one is
common for a circle. But this has got other components in it, so maybe it's perhaps it's
an ellipse. 1 don't quite remember my formula for an ellipse but ah, let's just see here. x
squared y. 1 want to put it in a form that. (pause)

I don't want you to get too off track. If you try to do that you're going to get really . ..
Screwed up.
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Yeah. It won't be easy to do. So 1 don't want to sce you struggle through somcthing
for awhile and find out you don't get anywhere. Do you know ol any thing ¢ls¢ you
might do?

Find the slop. of the tangent linc. Um. Nu. I know that somchow. (pausc) (lape runs
out) (mumbling) Oh. Maybec I could put itin a general equation. | don't know if this is
right either, but the general equation for, what is it, what's the general cquation for,
something. Anyway. (pause) m X (mumbling).

Y ou're trying to put it into some kind of familiar form, is that rght?

Y es. That's exactly what I am trying to do. I'm trying to . . .

Y ou said something about m x.

Y eah. Like I'm trying to look at this thing here, this blob of variables and stuff and I'm
trying to say ah what can 1 do to this to make it something I can understand so 1 can get
the graph and one point on it so 1 can figure out the tangent. ButI'mso fuar ...

It's not going easily, right?

I'm not figuring out what familiar form to putitin.

Problem 11

(mumbling while rcading question) (long pausc) What exact point in time was the
number of elk increasing most rapidiy? And I put 1980 to 81. But | guessit's not the
exact point in time. Or is that satisfactory?

Can you tell me why you've put that?

Oh. Well. It might help if I'm not reading the wolves wouldn't it. I'm sorry, 1 screwed
up. Elk increasing most rapidly. That would be (pausc) between 82 and 82, That year
in there. That one year span because the clks went from roughly just over a thousand to
just over 35 hundr2¢ And there's no other point on the graph that we sec that increased
that rapidly in that exact period, in that cxact point in time. Sce now it's increasing very
rapidly come 1985 through 1989. It's gone from 2 thousand to 4 thousand. But that's
in less period of time. And it's still you know like you can't sce. But right here, this
space night here, that's when it increased most rapidly.

Okay. What about part b?

(long pause) 84 to 85.

Why is that?

Because the graph indicates that the number of elk decreascs in this ume {rame from
roughly 35 hundred to 2 thousand. Little over 2 thousand. Which indicates that the rate
of change of the number of elk decreased. And there's no other point on the elk curve,
(pause)

What are you thinking?

Oh, wait a minute. Ah, I was just looking for ~ raight decrease. It savs here the rate of
change of the number of elk decreasing? (pausc) (mumbling) (long pausc) Hm. It's
hard to say. I'd maintain the answer.

Okay. Let's look at the bottom onc.

At what point in time is the number of wolves not changing? (pause) Numbcr of
wolves not changing. (pause) In the middle of 84 1o 85. There's like this platcau, like
where it evens out there where it doesn't change for a little bit. So that would be
between numbers (pause ) Oh, and I see what you're doing here. You've got one, two,
three, so maybe you wanted an exact point. So I'd say.

That different time scale was for these different questions that I didn't ask.

Oh, Okay. (pause) Um. I'd szy right there. Between 84 and 85.

Okay. Anywhere elsc?

(pause) Maybe up here a bit. It didn't change between 86, it did, but minimally, little
after 87. It's relatively constant.
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Problem 12

Differentiable. (long pause) Um. I don't know how' to draw a derivative of 2 when x
cquals ncgative S, but I'm going to takc a guess. (long pause) Zero. (long pause)
(mumbling)

Can you tell me what you're thinking as you're going along?

Alright. Um. I'm just graphing points and [ was just, the two that are really providing
problems is b and d. b is a derivative of 2 when x equals negative 5, and a derivative
of zero when x equals 2. And I have no idea.

Okay. Can you do any of the others though?

Well, um. Local max is like is shown by just going up 1o that. So :'m not sure that I'm
drawing this right in the first place. Derivative of 2 for ncgative 5. Local max is when it
goes up like that, and then it says, and then I'm not sure what to do with this. So I'll
just go like this. Then it says here slope of one when x equals 4. Um. (pause) You'd
neced it to go one over (long pause). I have no idea.

Personal Interview

What are vour rcasons for taking calculus? Y ou said something about you thought it
would be casier than French.

Well, yes. And also, zh, for any course that you need nowadays you have to take
calculus. Like I know definitely in the sciences. And in the arts, for a lot of them, for
cconomics and stuff you have to have calculus. So it's a good course to have if you can
get through.

If you didn't have to take it would you take it?

Not a chance. I wouldn't go near it. 'Cause 1 know that it's not me, like after doing
those quastions 1 feel really stupid because 1 didn't get onc of them right, you know.
And I don't feel smart, and [ don't know if that's because I'm dumb or because I'm not
really good at calculus. Like [ don't know, calculus.

Alrighi. Do vou sce it as useful for vou in particular then? You've basically already said
that it must have certain uses by difterent people in society. But what about for you and
your carcer?

To be honest with you I really don't think, if I get my credits in calculus at university,
and I eventually have 10 take other math courses, I can't see myself using my calculus
knowledge later on in life because I don't understand it well enough to get any real use
out of it. So to me : Jon't think calculus is incredibly uscful. But I'm not the people
that yudge whether it 1s.

Before vou started taking the course were you apprehensive about it at all?

Um, | never took Math 31 in high school and he had said that that was a prerequisite,
or that it helps out a lot. And I hadn't wken it, so I was nervous about the fact that |
was behind the other people. But for most people in the class it doesn't seem to matier.
But yeah I was apprehensive because 1 really want to get my credits in it and not fail.
Has that changed? Do you still feel apprehensive about it?

More so. Bec .isc now I've, like I failed the first two tests of the year. And on the
second one of the year I thought I did actually quite well on it and I did very poorly.
And um, um, if I fail it I'm going to evaluate whether I'm going to repcat it or
whatever.

So you're not doing very well if you didn't pass either test, right? Um. Do you find it
more difficult than your high school? Did you do well in high school or what?

I'll just give you a brief history of my math.

Okay.

- Up to grade 91 doubt I ever had a mark less than 9 in math. I was very good at it.
Grade 10 I got a 68 or so, 69. In 11 [ fooled around a bit and I got a 51. In math 20.
And 1 didn't take any make-up. I felt like I didn't know graphs, like the concepss, but 1
4idn't go into 23, or a 33 program. [ went into Math 30 and I got a 70. So I pulled it
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up. 70. And I think the class average was like 50 something. So 1 did. well I was quite
happy with that grade. But it wasn't reatty, T didn't find Math 30 difficult. 1 just found
it a lot of information. But I felt that if 1 concentrated 1 could grasp it. Does that make
sense? Like ah | thought I could understand it and with calculus, there's likc a lot of

information and 1 don't understand it. So I just try to memorize important stuff that 1
need on the test.

And is that working for you?

Well, um, I can do, weli like the last couple of tests I tried to understand it. Like that's
what I'm doing for this test coming up. on Thursday. I'm going to go through all my
theorems and cverything that's been given us. And I'm going to go through the practice
cxam and I'm going to do all the types of questions he could ask. And I'm going to
fearn how to do those types of questions. And if, because last ime | tried to understand
it I just confused mysell more because 1 don't have, like somewhere along the way |
lost some kind of basis in math that other people seem to have. Because to me it looks
like Greek on the board when he works through the stuft. You know, 1 got 8's and 9's

in my other course and I'm failing calculus so I don't think it's the fact that I'm just
stupid.

Could you say mor< - what arc the things then that arc really confusing you? You
have the general =¢  ~ - .. nol understanding. Do you have a sensc of what's
causing that? Is it ti.- = =t 7 information, oris it the kind of language they're using
and all the formaiit: o 7o -0

Um. Pari of it ] 5 - : ~be they use, ah, what do you call it? They have a way of
showing theorems iz a and b and What's it calicd again? Ah, um.

Y ou mean the general aigebraic form?

Yes. Yeah. 1 tind that Kind of difficult. Especially when they do proofs in algebraic
form. It 1ooks like a whole bunch of b's and a's mushed up together. And another
thing that didn't help was | didn't have my glasses. What do 1 feel is basically going
wrong?

For you.

Um. Well I think somewhere back along the way somebody didn't explam it to me or |
didn't pick it up. Some fundamental concepts. One thing that [ re::ember is grade 10,
the first test I ever failed was my graphing test in math and 1 got a 40 something on il
And I never bothered going back over. I did my corrections and cverything but | lost
something because I never did good on the graphing test again in grade 11. 1 did beuer
on it in grade 12. And now this s like an important part.

How much time would vou say you're putting in studying per week? You have your
hours in class, but outside of class in an average week how much tme would you be
putting in?

Ah, usually when 1 study for an exam 1 study all at once becausc, this may sound like a
typical answer, but if 1 study in blocks all at once it doesn't scem 1o me to ah, unless |
do it by repetition, I'd say I put in about, in all honesty, about an hour a week to two
hours. When a test comes i put in anywhere from 12 to 15. 1 work through the night
sometimes. Like the last test I worked, the last test | acwally started carly, and I worked
about! 6 days before. Up until the night of the test I'd put in about 5 hours. And the

night of the test I worked until about 2 or 3 in the morning from about 3 in the
afternoon.

And what do you do with your time?

Well, I first of .l start by going through the textbook and my notes and making up
another set of notes and like figuring out all the diffcrent things we've taken. The
theories, the, oh what do you call it, the theorics. Like see, I bet1 would do a lot better
on those questions you asked me if I'd gone through and like studied my limits notes.
Do you understand what I'm saying? Like ah, like a test I do that. I am ~cpared for
that. So | go through all my hzories. But thicn Knowing them isn't enough. You have

k)
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to know how to apply them. So then I spend the other half of my time going through
cxamples and practice exams and my assignments, and that's how I study.

Okay. When you run into a problem, what do you do?

Um. Well 1 work on it il I get it, usually. Or one thing that 1 do and 1 don't think that
it's very good, like a lot I try 1o find somebody that can help me. Usually that's kind of
hard 10 do, especially if you're studying. I don't know. Seems (0 me that I'm not the
only one that's in the dark about calculus. There's a few people that get it, but a lot of
people arc floating around in the middle range and they don't really understand it. But
ah, if I don't get it sometimes what 1 do is, if I'm working on the practice exam and |
come 10 a question | just can't get, I look at how he has done it in the answer book, and
I look and I'm like hm what did he do here. And I can't figure that out, you kncw. So
I've got the theory right beside me and I'm trying to figure out what he's done here in
this equation. And then once | think 1 understand it I putit away and like I've seen it all
so I know exactly what to do. It's just a matter of writing it out again. But that seems
to help.

When you're working with calculus problems or idcas how confident do you fcel in
what you're doing?

I don't. I don't. I could study for, like every time [ think I did well. Like on both those
last, like on the first test I didn't study very much. Like I think 1 studied four hours.
And I didn't feel confident at all and I got like a 47. 1 came very close to passing and
then the mark got scaled a bit so I did. And ah on the second test I'm like confident. |
studied hard for this, I'll do good.

And it was a long test too, wasn't it?

Yeuh it was. And he scaled it. My nct score was a 37. 37 percent. And 1 was like "Oh
man." That was on limits. And as you can tell I didn't do very good on your questions
there. But then I went to a, then he scaled and I got a 46, or a 45.

Well, in what ways do you decide when something is a right way to go about it? Or is
the right answer?

1 don't understand.

Um. Well, | guess what | really want to get at is are you willing to accept the things
vou do, or do you want soracthing external telling you it's right?

1 likc something external telling me it's right. In math I like multiple choice tests a lot
better because at least, sometimes if you're working through it and you look up and see
vour answer there it instills confidence in the fact that you've got the right line or
something. Or if worse comes 10 worst you can sometimes lake the answers and work
through using thc answers backwards. Even though it akes a lot longer. But you
know. That instills a little more confidence in you than it does having a page say,
"Explain this function.” Well what the hell do they mean by explain this function? Like
to me that's so vague. So what, I don't know. It seems to me that obviously there's a
variety of steps he wants you to go through, but where to begin and in what format to
take confuses me. And | guess then yeah ! don't have a lot of confidence in my own
work because I know that I'm not go~d at it. And so I doubt my abilities to get it right.
Weil the language that's used in calculus, in your class or in your book, um and by
language | mean terminology, the way things are described, the symbolic stuff. Do vou
find that helps or hinders you in learning calculus?

Well, I don't particularly like reading the mathematical notaticn. 1 prefer to read the
words that arc printed out. And in the textbook and in my notes, well actually in my
notes there's more mathematical notation. But he does explain a bit of it by words. But
his notes are word for word from the textbook. So I just use the textbook. Um. And in
class what I started doing the last week is following along in the textbook instead of
writing. Because like um 1'd always be trying to figure out what he was doing so I'd
fall behind in my notes. And ah so now I follow in the textbooks and I understand what
hc's saying as he goes along. And I make notes in the margins as | go. And that seems
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to be working better. I'm understanding it beticr. But yeah, | like the words better. The
description.

What does it mean to you to say you understand something?

When 1 can a question sct down in {ront of mc, like identify this function and explain 1t
and | can do it. When I can take any problem he throws at mc on the test and 1 can
come to a conclusive ciid with it. Or | can describe it in the way he wants me (o, Ah,
my level of understanding on it and his would be totally different even when | can do
that. 'Cause all I'm doing is I'm doing is memorization.

Is that to you understanding?

Memorizing?

Y eah.

Well understanding, I get what vou're driving at. Understanding is not . . .

Well svhat does i1t mean to you is what I want to know.

Weil. it means two things I guess. In math it means being able to preduce it on the test
And understanding to me though in the broader sense, English or whatever, mcans
kind of "capiching” what they're saying about something and being ablc to apply this
knowledge. But I've never been able to do that in math, and I, ‘cause it's above and
bevond what it seems like 1 can comprchend without, sce like 1 got 5 other subjects
right. And if I tnied to go into that depth in math I'd lose my marks.

What are the things you find easiest and what are the things you {ind hardest in this
calculus course?

Um. The abstract concepts like limits I didn't like. I find that hard. Um. Well right now
getting into graphing with the a to h method or whatever. | find that that very
involved to keep evervthing in linc. I didn't mind stuff like derivauves.

Do you find the textbook of use? Does 1t help or hinder your lcarning?

I love it. It's great. It's saving me.

Why?

Well, 'cause it's ah very well laid out. It's a good textbook. It's simple to understand.
They speak in laymen's terms. They speak so 1 can understand it. And sh that's good.
And they provide lots and lots of examples and excrcises which arc usctul.

What about the lectures?

The lectures. Um. I don't know. (pause) They're important in the sensc that he goes
through it, but I guess I would find the textbook more useful.

Okay. Do you find the assignment exercises cvery week helpful to you?

Um. Yeah. Yeah, ] do. Um.

In what way? Do they give you opportunities to (unclear).

Y eah they give me opportunities 1o work with what we've covered that week.

Okay. Did you find the tests gave you good feedback on where you were standing at
that point?

No. No, because 1 thought I was better at limits than that and [ kind of blanked out on
the test.

What are other things outside that are influcncing, I know you're in drama, but are
there other things that influence your learning calculus?

Y eah. Well, calculus to me ah, I put importance on it because it's my hardest subject,
but in terms of my big picture I'll be very happy when it's over. So maybe somctimcs it
influences the way I think about calcul:;: And ah the fact is | guess, I have drama. And
right now for example this month I'm « drama every single night. I had two tests last
week and a term paper. | had an essay due this week and a bio report duc today. An
essay due at the end of the week and a test on Thursday. Plus drama every .~ sht. I've
got dress rehearsal tonight and the show starts tomorrow. And I'm there ever. = ohv 'l
one or midnight.

Are you getting exposed to calculus in any of your other courses? Science -«
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No. I'm in economics. Well I'm a polysci major, economics and I'm going to be
majoring in political science, and then cconomics as a concentration. And English
concentration.

That's all.

Follow-Up Interview

First of all you said something along this line. 1 don't particularly like reading the
mathematical notation. I prefer to read the words in the book. Um. Or in class. And
also that you like the book because they speak in laymen's terms. So I'm wondering if
you can say more about that. What is it about the notation you don't like and why do
you prefer the words over the notation?

Well usually the notation doesn't really make a whole lot of sense sometimes. To say
that a represcnts a constant, where 1 would say, well for example, like derivatives um
like derivative is equal to f at a, minus, or { at b minus f at a all over b minus a.
Um. To me, what docs that represent? It's a little too ah, like it's supposed to represent
that. To me it's easicr if you just say that. Instead of writing it out with a's and b's.
Like why don't they just say what they mean. you know? And ah | find that when they,
like I always find myself looking at the formula in the big box, and then going "Well
what does that say?" Like to me [ at x equals this little slash mark times this little ditto
mark or whatever. Well that doesn't tell me a whole lot. Thanks guys. And the I look at
the explanation and the examples dow * below and that's where 1 get the true meaning
of that. And then I can look at it. And then I can see it. But not, I can't work from the
(unclear).

Okay. So would you say that you don't particularly find that the equation helps you
then?

I find it helps after | understand the concepts.

Alright. Butit's not help for initially getting the concepts?

Oh, not in the least. Not in the least. No.

Alright.

It just confuscs.

Okay. Well when you say that the book speaks in laymen's' terms what exactly do you
mean? I got the sense that means you understand it.

Well. Um. Yeah. Like. When T was little (tape runs out) And that was easy to
understand. The reason they teach little kids like that is ¥ cause 1118 something they can
understand. And, 1 don't Know, 1 guess I maybe nec .. w ook or someihing. '‘Causc |
still like being taught that way you know.

Y ou like the real world . . .7

Well like, exactly.

Kind of concrete examples?

Y cah.

Okay. Um. Go on.

Y eah. Concrete examples. Um. The abstract, I like dealing with the abstract in English
or political science or something like that. But the abstract in math is like (unclear)
numbers all (unclear). That doesn't make sense to me. Math has got to be bang, bang,
bang, you know. Logical.

Weli T did find that more than once you brought up examples like the apple. You
brought up a swimmer and something with pencils at one point. You yourself brought
into what we were doing last week. Um. I'm wondering why is it you do that? Is it
because it does have more meaning for you?

Well sure. If I'm sitting there with a pencil I'm trying to figure out like describe
derivative. That's never been asked on a test. Like to me if I was to describe derivative
I wouldn't explain it in mathematical notation. 'Cause mathematical notation to me
means nothing. Because, to describe it in mathematical notation is just simply a



372

statement. That's all it is. I'd want to describe it in something else so that you'd have a
relationship there so you could understand 1t

Alnght.

That's what I'd look for I gucess.

Okay. Um. This goes back to the textbook again. You said that you like the fact that the
book has a lot of examples in it, and exercises. And they're useful. In what way do yvou
find them useful?

Well ah sometimes (unclear because of coughing) and even afier the written explanation
a concept is still unclear in like my mind or somcthing. Like concepts hike epstlon and
delta is not easily understood. If I look at examples | can relate them to other problems.
The formula is their way of expressing it. The explanation i1s my way of understanding
it. The example 1s my way of applving it. Or at least, the textbook is sct up that way so
I can do that.

Okay.

Does that make sense?

Yup, yup. That does. Um. When you're working through excrcises what would you
do if there weren't answers? Either in the back of the book or for your assignments?

I don't think that would be practical. Because if there isn't answers how do 1 know if it
is right or wrong? Unless they werc in the back of the book. Well, okay each example
is different. I find in math that I may know how to do a concept. I think I know. Then |
get it on a test and there'll be a different, it will be the same Kind of question, just a
different way of doing it. And I will boggle it because this isn't the way I learned it
Y ou know. And so I try to do as many examples as possible but I still think in terms of
what I've done before. I can't in math I find it very hard to ah apply. Like in math
because 1 find it difficult I try to memorize different ways of doing it. And if I come up
against something that stretches my imagination and I have to apply myself in math |
find it difficult. So if therc wasn't like answers to go along with the exercises |
wouldn't know how to do it right because I don't have a lot of confidence in my abihity
to get it right.

Okay. So do you feel that you don't really judge it for yourselt? You take that external
thing that says yes you're right?

Well if 1 do an equation and I come out and | go well this is my answer. Then | go and
I look at the back and I've got it nght. You have a good fecling when you get it right.
Very very good.

But vou don't have that feeling before you look at the back?

No.

Okay. Um. Along that same line I asked you about how vou know or what to you
understanding is. Um. And one of the things you said was that when you get a test on
the test you can do it and describe whatever he wants in the way he wants you to doit.
Um. Do you see any difference between sort of the way vou sce things and the way say
the tezcher does?

Y eah. Well yeah. I do because well he's a math professor. And I'm a political science
major, university student. And I think the rezson he's in math and the reason ['m not,
like that in itself is the simple fact that we both understand things diffcrently. He enjoys
it. I don't particularly get off on it. You know. And also, what he wants and what I, the
way I perceive it. I think you said it yourself. I think in our last interview. Something
like, that was very, (unclear), like and the way I describe things is more along a
different line. Y ou know, than mathematical notation. So if I told him an example about
apples or pencils, he'd just kind of go X. You know. it's just, like to him it's not what
he wants you to know. And I have a hard time grasping. That's probably why I'm
failing.

Do you then see that your way of looking at if that way is somehow not as good?

Well it's not.

It's different, rigm?7
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Oh, it's definitely different. But it's not, it's not, it's not mathematical. I mean it's just
not.

Alright

So that's not acceptable.

What exactly do you mean by not mathematical?

Not notation. Not ah, not described in terms of numbers and signs. It's described in
terms of the examplces that I relate to. That isn't mathematical. Math isn't, math is the
study of number essentially.

Alright. Um. When you study and you go through your notes and your tests, and um,
and the cxamples and practice exams etc., what exactly does that entail? Like do you
aim at trying to understand things or do aim more at memorization? Y ou've sort of
ziven me a sense you do both and I'm wondering what al! that entails.

Well, the last exam 1 was, trying, really trying to do good on this one because all I've
got is the final. And if [ don't do good on that I'm up the creek. But anyway, um, in
that exam, I ah, what ] did to study was 1 started off by looking at, I bought a book of
practice exams from the bookstore. Where there's a practice exam and there's all the
answers. I started by going straight to the answers and looking at the question and
sceing what he did. Because | really felt that I had really no basis to start from because |
didn't understand anything. So I looked through all the examples, exam questions, ah,
find the critical points. All that sort of thing. And I started going through them, I
learned how to do some questions. Then I started doing some of my own examples
with the textbook at my side. And 1 worked through a few using what I had just read
over. How to do questions. And then I did some more examples until 1 knew I was
doing them right. Because I had just looked through it. Then I just flipped through my
book (unclear) things I didn't understand. Then I read them again and again untij I got
the idea of what it was entailing. And then I did more examples of that kind of thing.
And I got to the test and one thing that blew my test average away was that the one
concept that I had in my book that was very difficult, probably not very much emphasis
in the chapter, half the test was on it. And so I looked through it, a cursory glance, and
I looked at it, and two pages, not even three pages. There was just this much
cxplanation, couple of examples and that was it. You know. And I didn't understand it
even after doing the examples. So 1 didn't spend a lot of time on it. And when it came
to the test I didn't krow how to apply it.

Okay. Do you ever try to go through and when you're reading the book, and try to
recreate it all for yourself, versus just reading it through?

Yeah. I do but I try to remember practically. I don't seally care if I sh can come up with
my own ah idcas about what this concept means or something. I just want to be able to
put it onto usc. In ali honesty, I'm not putting down calculus, it's not my ball of wax.
If I can just get through the course I'm happy.

Okay. Um. Wecll are you satisfied with the way of learning? You have said you do
memorize it a lot.

Ycah. In math I do.

In math, yeah. I'm clear on that. Um. Are you satisfied with that? Is that okay with
you?

Well if it will vield beiter marks obviously, so I guess what I need to do is try to
understand it more. But anytime | do that I just get so frustrated because it just doesn't
make sensc.

Do ‘)you feel that if you had more time that might be something you could accomplish or
not’

Well time is a factor and if | had time, I don't know, it seems to me that if I had more
time to look at it I'd get tired and lazy. I just don't want to do it. And I find myself
coming up closer to the exam and I haven't put in the time I should be before the exam.
Then a couple of days before all of a sudden something kicks in inside me, I can't
describe it, and I do. And then two days before the exam I'll spend twenty hours. You
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know. And I'll really give it my best shot. It's not really a question of time because 1
could make the time. It's just I don't.
Y ou're not that interested in it?
Y ou've got to have the interest in it to spend that much time in it. And unless it's out of
sheer necessity I don't have any drive to do it. But before the exam 1 do get, like well
okay (unclear).
The motivation of having to write the exam, right?
Y eah.
Ur’m. Well you did say you didn't sec it terribly useful. Um. Do you think that relates to
it?
Ah. Like my, you know what my goals are. I don't sec using it, like I sec therc may be
business applications. Interest rates, maximization, whatever. (unclcar) I don't sec it as
integral, you know graphing. Maybe if I was going into the sciences or somcthing.
Yeah. Okay. Well here's somcthing else you said to me that you found doing these
problems, not only were some of them different, that you felt that this um you couldn't
remember things because you hadn't just done them. Um.
Like some of these you asked me I remember secing questions like that and I know if
vou asked me I can look it up and get the answer.
But becausc, a lot of what you did was memorize, then you forget it casily?
Well (unclear) the test. On the test I just kind of like, [ usually on a math test 1 usually
go to sleep after. Because I'm tired after it. And [ don't know, maybe, maybe 1 just
Kind of let it, it dissipates or somcthing similar.
Alright. Um. On one of these (pausc). You were working around with it and you were
trying to put it in the equation of a circle or cllipse or somecthing like that. And you said
you were trying to put it in to a familiar form. Y ou did that on a couple of the other
questions | had equations written down for. I'm wondering if you could say more
about that? Is that a way you try to approach many of thesc questions?
Yeah.
Like manipulate the rules so it looks familiar?
When I was in physics. 1 don't know if this is going to be any help to you. But in
physics it's all formulas. Physics 10 and 20 were, right. A lot of it was formulas. And
that, [ found that if I went in there and I just memorized it, on a sheet every which way
1 could twist round those equations, 1 did not bad. I think, I was fairly, Physics 10
report card and I figured out this way of studying. And I came out with a seventy-four
in the course. 1 got, like T doubled my mark almost. And then in Physics 20, vou
know, I ended up with a 70 or 69. And I didn't like it enough to take Physics 30. But |
always never found it really that difficult. Like it was actually relatively easy. 1 just
didn't have an interest to put the time into it. And then you know Math 20, I almost
failed Math 20. And | would say in Math 301 just got my butt in gear and I got a 70 in
that. And ah and um so when I say I put in a familiar form, it secms like that I've
always done that. Like if i'm dealing with a graph and they say, say for example they
don't ask for a graph, tYicy just say what do these two points have to do, describe these
two potints. My first r-. . "tion would be to draw a graph, like plot thcm on a graph or
something like thaf. {37 cause I can understand that. That's a visual picture. And then
like now I've got tw -~ 7= to go by. It's one more clue you know. And ah, if it'sin a
familiar form I can - .~ . with it bccause, this is rather simplistic, but I understand
things like X squi reu ius y squared equals one. Okay I can deal with that.
Because it's famil. .:
Yeah. Well it's like =% if ] could take that equation and put it, objects in front of me and
they said manip:liie these ah so that you end up with, show how, say that was all in
terms of food or something. Show how it all equals ah a banana and a pear. Well then |
could work w:ti: :¢ you know. So if I do the same thing with that I can ah, you know,
work with it a liuiie easier.
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Okay'. Is that sort of the saume idea when vou're doing these examples? Like the pencils
or a swimmer? Um. Because there was times it came up. You said you had your way
of doing it and you'd say something like but that's not the correct way. Um. Something
along that line anyway. Um. And I'm wondering how do you make usc of your own
interpretations and your own judgements versus other sources?

Well in most anything else I could feel confident my vicws arc um mayvbe not
neccessarily correct, but that they're feasible, or that I can show how my vicws and
somebody else's views correlate or something. Like you know. In math I don't feel
that I have got any basis to say that I'm right and I'm wrong. Because if they, they
referring to math people, come up with all this stuff, or how do I say it. I'm just not
confident that my way of viewing it, like it could so easily be wrong. Like I just don't
feel T have it. A lot of (unclear) you know. (unclear) And it goes real fast. And I don't,
even once for a minute, want to hold my ideas up next to somebody that has a grasp of
it. Because 1 don't.

OkKay.

So, I guess that's the way I can putit.

Well then do you see calculus for you as being just a collection of these methads vou
do? Or does it have any personal interpretation? Or do you sce that as somchow not
imporiant?

I see calculus as a course I'm taking that will help me out among other things. And 1
don't see the ideas at all. I'm sure it will. And I um and right now it is just a matter of
being able to produce it on a test. And whether or not my interpr. ion is correct
doesn't matter. Because my interpretation isn't going to be counted (?) on the test. But
if 1t helps me to understand it I supposc then it's valid. But it doesn't really help me to
understand the notation. When I describe it this way. Because to me this is different
from this. Even though maybe it's the same way. Do you understand what 1 mcan?
Okay. Anything else you want to say?

No.
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Sally's Transcripts

Interview 1

Problein 1

Okay. If I were to tell someone what «.alculus is all about, I would say 1 don't really
know even though I've taken half a s:ar of it. And it's a very difficult math, and it
doesn't deal with numbers as much. But it deals with ideas more 'cause 1t's all, you're
always using, you know like functions and letters to represent things. Like in high
school it was always using numbers.

So it's not as much that way? It's more ideas?

Y cah, more.

Do you know what those ideas are? Can you sum those up in any way?

So far. No. | don't know. That's a very tough question. What calculus is. Very tough.
Did I answer it well cnough?

Do you have anything clse you want to say?

No.

Okay. Wc'll move on.

Problein 2

(pausc) This limit, it wili get closer and closer to four but it will never reach four. So
the limit would be four. (pause) Um. That gets closer and closer to zero. No. Yeah. Se
um I guess the limit would be zero. But it would never reach zero.

Okay, for both of these you said it gets closer and closer. Can you say more about that?
Um. It gets closer and closer but it will never reach it. Because there's always lower
numbers.

Can you say more about either one? What happens as it goes along here.

Well, here you kecp adding one nine for each one. And . . .

And what does that do?

Makes it a larger number. This onc becomes a smaller number.

Will it ever actually reach zero?

No it won't. If i, can I tell vou this?

Sure. Y ou can tell me anything.

I had this explained to me by my grade 12 teacher and it always stuck in my head. It's
like when in the NHL, if a goalie has a perfect record, no goals he's let in. But then he
lets in one goal. His record will never be clean. It will never reach zero again. That's
how I'd explain it.

Okay. Do you find it helpful as a way of thinking about it?

Y cah, because when we were talking about (unclear), how it will never reach zero. But
I could never understand how if it keeps getting closer it would never reach it. But that
kind of explains it.

Problem 3a

Okay, well using the rules that did, it would be like subbing in that. (writing heard) But
then you just take the highest power, although, this is why I'm not doing too well this
year | guess. Then probably the limit would be infinity. 'Cause this one would always
be bigger than that one.

Y ou said you'd take the highest powzrs. Can you say more about that?

Well in a (unclear) like in a polynomial like that. Like this is to the fourth degree. 1
think that's the term. And this 1s to the third degree. But if this was to the fourth
degree, then you could just take the fraction of one to one. But it's not. It's to the third
degree.

What if it was to the third on the top and fourth on the bottom?

Thei this one would always be bigger, so then the limit would be zero.
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Now, what were you going to say?
Just because when you divide a small number by a larger number it will always get
slowly closer to zero as the larger number gets larger.
Um. Now you said back at some point that this was a rule you were told. To you isit a
rule or do you have a way of justifyving it?
Um. Well to me it's a rule but I guess it always works. Like he proved it does work so
it's not just a saying, but something you can use to solve a problem.
Do you remember how he proved it?

If I'thought about it and doodied around for a bit I could probably get sort of the
(unclear).

Problem 3b

(mumbling) (pause) Something that a number approaches, but it will never reach. Or
something it can't cross like a border. Like you can't quite ever get toit.

Can you draw a picture, or give me a hockey example? A picturc or other examples?
Well, I think of parabolas. Well you know how, you know how it goes like that. Well,
not a parabola, but it would go. There.

And where's the limit on this?

Right here. Where it keeps getting closer and closer and | guess at the asymptote.

Um.

Is that what a limit is? You're not allowed to tell me. 'Cause now that I'm thinking
about it, a limit, well he was saying (unclear) like this would be the limit because it
approaches there.

So where would the limit be in that example?

x equals (unclear).

Okay. Um. Do you have any other examples or ways of sayving what a limit is all
about?

Um. No. Just something that something approaches.

Problem 4

(mumbling) (writing heard) Well, I'd substitute 2 in for x 'causc 1t says that X cquals 2.
And then it will probably end up (writing) yeah, because this would be undefined. Or
it's nonexistent because um zero over zero. So what can you say about the function? It
either doesn't exist or it's undefined.

What makes you decide that?

Because it's divided by zero, but then I wasn't thinking, and I could factor that. So you
have x minus 2 over (mumbling). These scratch out so x equals 3. No. At um when v
equals zero, x equals 3. So y equals x minus 3. When x equals 2, y cquals minus onc.
Does that make sense? So when x equals 2, y equals minus onc.

Can you explain to me what you've done?

Okay. I factored it, and then um X minus two can eliminate because it's a common
factor on the top and the bottom. And then so you're left with x minus three. So then
substituted in 2 for x because that's what x equals to. And 2 minus 3 is ncgative onc.
So then y would equal negative one when x equals 2.

Okay, how do you resolve that, y equals negative one, with this zcro over zcro?

I guess. I don't know. In class he told us when it's zero over zero it means morc work.
So I did more work because that just doesn't work.

Do you have any way of interpreting this zero over zero? What docs it mean to you?
Other than the teacher says you need more work?

Um. It means that the function (pause). Zero over zcro, actually no. It doesn't mcan
that much to me except that it isn't, from first glance it doesn't look like it exists.

Okay. But then this is what you get as your answer?

Yeah, so it does exist after all.
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Okay. If I asked you to draw this, would you be able to either draw it or tell me what it
might look like?

Um. (pause) x. Aty equal ncgalive onc, X equal 2. Something like that. I couldn't
draw it just from that, but from using this. Then if v equals X minus 3 then I would
interpret that to be a straight line. Then here's the v intarcept at minus 3. The (unclear).

Problem 5

Continuous or discontinuous. Okay, I like this kind of question. No calculations 1
think.

Y ou don't like calculations?

Well, actually I I« c it. In high school I loved it. Butin calculus .. . .

Calculations don't go so well?

No.

We'll talk about that more after.

Okay. Um. This one is continuous becausc it ncver slops. There's no gaps. And
there's no, like you could just keep drawing it forever.

What about the others?

This one's not cortinuous because you're here and then here you have to lirt your
pencil. And then you can go again. But it's discontinuous there. And this one, is that
connected here?

Okay.

Then it's continuous. It's just not smooth. And it's continuous again for the same
reasons. 'Cause you could just draw it and draw it forever and ever.

What do you mean by draw forever and ever? Can you be more specific?

Well, you can keep going and like there's no breaks. No breaks in the graph. No
breaks in the function. The function keeps going. And this one's discontinuous again.
Because herce's the graph down here. And you can draw it here and then you have to
jump again to here. And then as soon as you reach here you have to jump.

If I hadn't given you the graphs. Say I'd just given you this one. Here's a function y
equals X squared. Is that continuous?

Yes it is because it's a parabola.

Okay. If I asked you to prove it in some way could you? Algebraically?

(laughter) Um. Algebraically, no. But I could draw you a picture of parabola. Oh.
Algebraically.

To do continuity formally, algebraically, could you do that?

Like we do in class?

Yes.

Yecah, I could try, yes. Let me think now for continuous. How do you do that? (pause)
Um. This is a bad day for math. (puuse)

Maybe if you turn it over so you're not looking at the pictures. y equals x squared.

So what was that? Oh, 1 totally forget this. This f at x minus L. It wasn't that way was
it? You can't tell me this can you?

No.

Okay. I gue-.; I'll just say no I couldn't.

Y ou can't remember?

No, I can't remember. If I had my notes I could.

You said something about "as we do in class". Do you see that formal way of doing it
as something you do in class and what I ask you here is somehow different?

Um. | sec what you're asking me as I do it. Like more, just the ideas of calculus. Like

continuity. But then class, then you have the equations and method of calculations, and
all that.

Itisn't just the ideas, or . . .
1t's putting the ideas 1o use. And here I guess it's stressing them:.
Do you find that putting them to use a stumbling block?
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Actually veah. Because in class [ (unclear) to question anything. But 1 understand
evervthing, and I can learn it for the exam. 1 can even work on calculations and work
through them on my own studying. But when 1 get to the exam | know what to do, but
just the calculations justah . ..

it's what throws you?

Y eah.

Okay. So is it fair to say you find the idecas casicr to get at, and get a sensc of them
getting the calculations all in order?

Yeah. Yeah. But, the calculus calculations. This is just different 'cause there's no
numbers that's why. Numbers are more concrete than calculating ideas.

Problem 6

(mumbling while reading question). Um. A derivative is a slope of a graph. And when
you have a function the derivative would be the slope which would be right here. And
that's the way I would best explain it 10 anybody.

Can you think of examples of derivatives?

As in f at x being the function x squared. And then the derivative would be 2 x.

Can vou think of any sort of real world examples of what the derivative is about?

No. No. I've thought about that actually.

And you haven't come up with an answer?

That's another thing about calculus that's so different from high school. In high school
you do use it. But in calculus I just can't think of any real world illustrations of
calculus.

Alright. If I asked you to give the definition of a derivative precisely writien down in
algebraic or verbal form what would you put?

(writing heard) f prime at x equals { at X plus h minus [ at X over X plus h minus x
which will equal f at x plus h minus f at X over h. And on a graph i you have a
function and this is { at x. That's point P with X, { at X. And here you have Q which isx
plus h and the function of x plus h. And then the sicne is just the general formula y two
minus y one over X two minus X onc.

Can vou show me where that is on the graph?

Where?

How does this reiate to the graph?

Well, okay the derivative is the slope right. So the gencral form for the derivative
would be the general form for the slope. So this cquals this as in, well actually when
you have a graph (unclear).

Y ou're marking them on the axcs.

Yeah. There's y two and there's y one. There's x two and there's x one. And then
here's just the like here that would be x one y onc. So x two y two. And you plug that
in and you come up with that.

Okay. Could you repeat that last bit?

Okay. Here's the poirit rectangular coordinates of the points P and Q. And the points of
P becauss it's the first point would be x one and y one. So X one equals X and y onc
equals f at x. And the point Q since it's the second point, x two equals X plus h,and ¥
two equals f at x plus k. And then if you plug your point into the slope formula you
come up with the definition of the derivative because the derivative is the slope.

Can you mark where the slope is on that?

Um. That would be the, and then oh 1 forgot. The limit as h goes to zcro, because then
what you're trying to do is um this is the h that you're adding every time here. Then um
you want to shorten it so that this point stowly gets here. So that the function gets more
and more closer to the actual slope.

And where would the derivative actually be?

The derivative then would actually be tangent to the first point. If you're trying to find
the slope of the first point then it would be the tangent to the first point.
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Problern 7

Find the derivative of cach of the following. Okay. These are long ones. Okay. 3 Xx.
Okay, first of all I'll just, that's another one of my problems. I'll just skip steps and
then I'H get off. I'm very messy.

So where do you start on this onc?

Okay. First of all you put the derivative of y equals. Can I use f at x?

Use whatever you want.

(wnting heard)

Why do you prefer the f to the y? Do you have a reason?

I guess just because I work with that more. And it's, vhen I see f at x I think y and
function. Okay. So um. So now we want the derivative of X cubed plus one over x
times the not derivative of the denominator. This is just the quotient rule. And then
minus x cubed plus cne over x times the derivative of the denominator. X squared plus
7. And that's over tnc denominator squarcd. Three x squared plus 7. And then you
simplify that all out. So then the derivative of that would be 3 x squared plus, and then
that 1s (pause) the derivative of x is one. So that should be just one. And the times x
plus 3 x squared plus 7 minus x cubed plus X. And the derivative of that is okay um
cquals X to the half. So you get one half X negative one half. Plus X and the derivative
of a constant is zero. Over that squared.

I won't make you simplify it.

Okay. So can leave it like this?

Do you find simplifying a difficult part of this?

Actually yes I do. Very much.

'Cause you scem to go through this fairly easily.

Ycah. This again is the ideas. It's know the ideas quickly jot down how to use them,
simplifying is difficult.

Do you find a lot of mistakes coming up when you're deing all that simplifying and
algcbra?

Um. I think so. Maybe. Yeah.

How about trying the second one?

Okay. That's um (writing). So first you have the inner function. And then the outer
function. So you get 10 (mumbling) times 4 t plus 3. And then 3 t, and then you use
the multiplication rule for derivatives. Which is the derivative of the first one times the
second term. Plus the first term times the derivative of the second term. So then we
took the derivative of the first term. And then there's the second term. And then plus
and then this normal term. Times the derivative of the first term. So we first take the
outer function. (writing) times and then the inner function. Cne quarter times t is
(writing) (mumbling) minus one and that would be (unclear). Okay. Do I have to
simplify it?

No.

Problem 9

(mumbling) Okay. I like these. I like pointing things cut on graphs.

Do you find this much easier?

Yeah I really do. It's much easier. Okay. It doesn't have a derivative there because it's
an endpoint and the derivative has to have the function (tape runs out). And the
derivative if it's going to change shape, I mean change direction, it has to be smooth. A
point at which the derivative equals zero. And then the derivative is, the slope is moie
than zero here. The derivative is less then zero, negative.

But it's not doing that here, right?

Well it is but, what's the reasor now? This is too, but there's a point at which, I
suppose right here it would equal zero, but it's not. I don't know. No. It doesn't equal
zero. Like the tangent to this line. There's not really a place where you could put a
tangent. It could be here, or here. So there's no tangent for the derivative to be equal to.
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And then here there's no derivative because the function has to approach the point of
the derivative. Um. The point has to be the same. The function has to approach from
every possible way. I guess that's the same as the limit. And so there's no derivative
there because here it approaches negative one and here it approaches onc half. (unclcar)
negative one and here it approaches one half. And therc's no derivative here cither 1
don't think. 'Cause it's not smooth cither. It has a point. Neither here. Because it's not
smooth. It goes on to negative infinity and that goes on 1o positive infinity. And they
don't meet up. So again it's not approaching the same point. And, that's 1t.
Can I ask vou how you see this different from this? Here you argucd how it's not
approaching the same point. So there's no derivative. What about down here because 1t
actually does approach the same point? How are they different in that they both don't
have a derivative you said. By *:a're giving different reasons? Ycah. Um. Here it's
not continuous, but here it's no. ~¢. .. oth. Here it's not really smooth cither because it
doesn't connect. But here it is conifvaus. It's just not smooth.
Anything else you want to say about this graph?
No. It's beautiful.

Problem 10

Tangent line to the curve. At the point zero, two. So. (pausc} (smumbling) When X
equals zero that will be zero and so that. So you'd have X squarcd vquals four which
makes sense because negative 2 squared equals 4. But I don't know if that's talking
about the tangent line. I'm trying to find out how to do this. (fong pausc) Um. Is there
a time limit on this? (laughter)

What are you thinking?

I'm thinking that | should know how to do this. But it has escuped me. The tangent
line. The derivative. The slope of the curve.

Can you say that again?

The derivative is just the, well the tangent is just the curve at this point. So here's the
point on the graph and the graph would be x squared. Ch, i'm ant even sure what 1t
would be. So I'd want the slope at this point.

And how would you get that?

That's what I'm thinking. I just. Um. f of x, well, the derivauve is the limitas h goes
to zero of f at x plus h minus f at x over h.

Okay. I won't let you get way off. If you, can you do it in an casier way? Yes, that's
the definition of derivative and you can go through all that, but I don't want you to get
bogged down.

Um. (pause)

Is it the derivative you want to find?

Y eah. (pause) Okay. Yeah. It would be 2 x plus 2 y minus 3 equal zcro. So then 2
minus (mumbling). So then what am [ trying to find?

What's this you've written here?

Okay. Well. I wrote down what the derivwive would be here. 2 x. I just took the
derivative of all this but I don't know if that's right. And then the derivative of that, and
that, and that term. And then I sub in x and y. But then I get zero plus negative four
minus 3 equal zero. Which doesn't make sense becausc negative four, this would be
negative seven, equals zero. So that's not right. So now I can't find the slope of the
tangent line.

Do you know what's going wrong? Do you have any sense of that?

Um. Just, okay, | took the derivative of this. Like this function. But then when I plug
in the point, the point coordinates, I'm left with no unknowns. And also it doesn't
work.

You get the negative 7 equals zero, but you know that doesn't equal, right?

Yeah
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Problem 11

FPro

(mumbling while reading question). Um. At what exact pointin time. Right. It would
be when the derivative of the graph was, is the highest.

Okay. So where would it be?

Right along here. Oh, do you want an exact number? (pausc)

Where would it be?

15 hundred to 3 thousand. Is that close enough or do I need to be more exact?

And what was your reason for deciding that?

Oh, point in time. Okay, sorry. I'd say in 1982. 1982. Because that's when the
derivative of the function 1s the highest.
And what has the derivative got to do with it?
The derivative is the slope of the graph, and so um it says right here that the graph
shows the number of elks in the park. So um when the number is increasing over the
shortest amount of time then the slope is going to be the most vertical. And when it's
the most vertical it's going to be the highest. And there it's the most vertical so it will be
the highest there.

What about part b?

(mumbling) Right herc. 1983. Right in this area here it's decreasing. Because the
derivative, the slope of the graph is negative. So during what time period would be
(pausc) from 1983 the early 1983 to late 1984. (writing).
And what about part ¢? At the bottom.

Wolves are not changing. Thai would be when the derivauve equals zcro. So then that
would be right here which would be at 1982 oh about April. And here the derivative
cquals zero. So that would be well, June 1984. And right around here which would be
about August 1984. And that's just because the derivative equals zero. Or the tangent
linc.
And what does it mean when the derivative equals zero?
That mcans that um that the function isn't changing. The slope is level. So if it's level
that means that the number which is on the y axis isn't changing at all.

blem 12

(mumbling) A derivative of two when X equals ncgative 5. So then, the derivative is
like a slope of two. So then (mumbling).

So you went up two and over one.

Ycah. And here I'll go down two and . . . And actualiy though that's just when X
cquals negative five, so (erasing heard). That's just the tangent line. That's not the
function. So 1'll make it smaller so it doesn't look so much like the function. Local
maximum when x equals negative one. This is all supposedly one function’”

Y eah, but you can de with it what you watit as long as it has all those things.

Okay. So then 1 can just kind of connect them all later?

Surc.

Okay. Then (wriling heard).

So you're going to make the tangent be part of it now, is that it?

Y cah. (mumbling}. (writing) So then here's the local maximum. Okay. The derivative
is zero when x equals 2. So when X is 2 this has to be a straight line. So (unclear) and
then, that doesw't ook straight. There. And a slope of one when X equals four. (long
pause) (writing and erasing heard) I'm using up a lot of your eraser.

That's okay. I've got more pencils.

Okay. So then this would be e, and then when X equals 7, a point where the function is
continuous but not differentiable. Differentiable. Okay. It doesn't have a derivative.
Um. Then if it's cortinucus it can't be an endpoint and it can't have a jump in the
graph. And okay then it can have a point. Okay. (mumbling). Like that. Okay. So
here's the slope of one. Here's f. That's Kind of a maximum except . . .
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Y ou don't have to draw it perfectly. It's not Like my graphs are perfect.
Okay. Well then here you are.

Personal Intervicw

What are your reasons for taking calculus?

Well, for one, in high school, 1 loved math. I just really enjoyed it. So you know, 1 go
to college, I'm going to take math. And calculus scemed like, you know cveryone takes
calculus first year. And also when I came here | had intentions of going into pharmacy
and for that you nced Math XXX and XXX. So that's the major reason 1 took it. But
now that I've changed that I'd have dropped it, but I'm in it becausc yeah, I do stil}
enjoy it. I still enjoy math. It's justalot. . .

So your official reason for taking it is beccause you were going to need it for a course
later on or whatever.

Y eah, but I've changed that now. Ycah, I changed my plans, like | never dropped it
Do you see it as useful to you in any way?

Not right now. No. Because I'm here, and as uscful to society, I don't sce calculus.
It's not something I use at all. In all my other courses 1 can scc it's more casy to apply
them (unclear). You can apply it in chemistry, yvou can apply it (unclcar). But calculus,
I don't sec 1t.

Even by other pcople if not by you?

Um. By other pcople I suppose. Um. Calculus tcachers. (laughter)

Other than math teachers?

Yeah. And (pause). That's about it.

What about number 3. When you started it, were getting ready to start calculus, did you
have any apprehenston about 1t?

No. None. In high school math it always secmed casy to me. I never did a thing and |
got really good grades. So I expected this t: be the same.

Has it changed?

Oh, ves! Oh, veah. I work rcally hard and my marks arc pretty bad. So now is when
I'm really anxtous. Not before.

And what's causing that?

I guess, I'm not mecting my own expectations. And in math that's a big thing for me.
So vou're not doing as well as you'd like?

Yeah, 1 had hoped to. I didn't realize like what calculus actually was.

How well are you doing?

Um. I've got a 7 point 5. 1 don't know.

How were the two tests for you?

Um. Very difficult. See, that's frustrating. I came to that and | had studicd, and I knew
what I was doing. But then once I got the test I didn't seem to be able to apply what |
knew to the question.

Y ou had hoped to do better? Or, you felt you knew more than that, is that right?

Yeah, yeah, I felt | knew more than that.

Okay. So, I am right in saying you find it a lot more difficult than you cxpected and a
lot more difficult than high school?

Y eah. Definitely. Not only more difficult, but totally different.

In what way is it different?

Um. It's a totally different kind of math. It's not, yeah again, it's not dcaling with
numbers. And his examples, they're not examples, I don't know, they're not from hife.
You can't find problems that relate to life. They'rc just questions with a few numbers
and some letters 57 words.

S0 you Firsd fier oy ~f making it real to you?

Yeah! Y eah.

Do you think. 1if i1s1as done that way, 4 o7 ¢ wcrgnsible or real itwould be . . .

Y eah it would be easicr.
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Alright, take a look at number 6 there. And I want your ideas on each of these things in
terms of how they help and hinder your learning. Part ¢ will not apply for this class.
The textbook first of all. Do you use the textbook and in what way?

Um. Actually yeah, I do usc the textbook. 1 underline it and I do all the exercises in it.
Well this is of course usually right before exams because | have no time to other than
that. But the textbook it um, it just explains about what he docs. They seem to be very
identical. Like he reads the textbook, he comes to class, he tells us what he read. 1
don't find them much different.

Is it helpful, the book?

Um. I guess | wish it was more explanatory.

In what way do you see it's not that way?

Maybe it's not that. Maybe it's explanatory, but he's just very explanatory all the time.
I think that might be it. So then when I listen to him in class and then 1 read the
textbook it just does the same thing over again. It reinforces it, but it doesn't I guess
makc it more real. It doesn't apply to any life situation.

What about the assignments? Either the exercises in the book, or the ones you're given
weekly?

The ones in the book 1 like a lot. Because they have the answers. And so you can just
sit there and work it out until you get the right answer. And the assignments that he
hands out, I find them very difficult. And I'll do them, and then I'll come to the help
session and ask questions, and he'll go over the ones we have trouble with. And that's
nice because then he explains it to us. But it's still, when he explains it to you and you
write it all down it looks so easy. But then when you get the same question on the test
and you have to do it for yourself, even if you've done it for yourself already, it's still
so difficult to do it for yourself.

Do you have any idea why that is?

No, I don't. That's why I came here. | was hoping you'd tell me.

I have idcas. When we're done we can talk about it.

But other than that, I'm glad, I'm very glad he gives us those assignments. Because
otherwise I just know I wouldn't do much in the course. 'Cause it's so hard 1o motivate
yourself when it's frustrating already. And it is frustraung when you try to do
something and you just can't. Especially, yeah, I don't know. And so this kind of lets
us know, oncc a week, we have one due once a week. So once a week you have to sit
down, you have to do the assignment. And then, I try not to look at the answers he
posts, 'cause then it's just copying them. So I go to the help sessions, and then he
cxplains them. And that helps.

Okay. What about the tests? Did you find that they were good feedback to you in terms
of what you were learning, or not?

Um. I don't know. They were very difficult and the second one was really long.

Right. He mentioned that. He realizes it was far too long.

Y eah. So. But yeah they were very difficuit. They didn't seem to be, it seemed to be
that he took what we had learned a step farther almost. So it seemed a lot more difficult
than what we learned in class. I guess, I don't know, maybe 1 just should have studied
more and I would have done better.

What about the lectures? Do you find them useful?

Ycah. He's very (unclear). He does a lot of examples. And, they're kind of boring,
ycah they are very, like 1 do like, they are explanatory and they do help.

Well, how much time do you find you're spending outside of class actually doing
calculus on a weekly basts?

Oh, about, it really varies. It really varies. Um. For one, I'll admit if I have an exam the
next week then | study quite a few hours. At least an average of two a night. But if
therc isn't, maybe 3 hours a week, 4 hours a week.

Okay. What do you do duning that time that you study?
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Um. Usually I rewrite my notes. That is how | study for most of my courses, 1've
always done that. To write all my notes so that I can get it into my head. And [ read the
book. I underline really important idecas and 1 do the exercises. And 1 do the
assignments he hands out.

So when you go through and rewrite your notes and underline things, um, arc there
specific things you're thinking or doing as you go through that?

Um. I'm trying to get the ideas and the idcas into my hcad and how o use those idcas.
And then I try to do them by myself. And the exercises from the book. And wher also, |
guess it's just memorizing rules. Though that's not what math should be, but it is a bit
because you have to remember rulcs in order to use them.

Um. What are your impressions of the workload in this course? Compared to your
other courses?

Um. Compared to other courses the workload here is fairly light. Very light. Because
there's just the assignment once a week. And that only takes about an hour to work
through. And then there's the help session for extra help. And other than that it's just
yvour own studying which isn't much. Unless of course you have an exam, but every
course has that. So veah, the workload is very light.

Okay. When you run into a problem or you have a difficulty when you are studying,
what do you do? I know you come to the help sessions, but if you're working through
an exercise, say tonight, and you run into a problem, what w ould vou de?

Okay, for one, I'm very stubborn so I'll keep at it for, I'll keep at the same problem for
an hour and I'll just get more and morce frustrated. And then I'll finally get very upsct
because it's not working. And then I have this really handy thing that my cousin 1s an
r.a. and she's a math major. So I'll ask her to explain it for me, if she can. Sometimes
she remembers how from last year and she'll explain it to me.

When you say you're stubborn and you work at 1t for this hour, what do you do in that
hour? What do you try to do?

I'll just keep trying to figure it out with the methods that he showed us. And it that
doesn't work I'll just use the rules and I'll try and apply them and I'll just keep trying
to usc a different method to get the right answer. And if there is not the right answer,
then you don't know if it's right or wrong. Then I'll just, I'll just lcave it.

So, what sort of helps you decide when it's right or wrong?

Well for one, in the book they have answers. So then that's nice because then you
know when you have it ricnt. And then you say "Oh, that's how I did it, that's how |
was supposed to doit."

And if it's not, suppose there isn't an answer? How do you decide?

I guess you just use common scnse. Um. Although for calculus I guess you can't reaily
use common scnse. 1 don't find that anyways. So then, 1 guess | say 1t's got to be
right.

So do you have a certain amount of confidence in your results then?

Actually, no. Not in calculus. No.

And why not?

Um. Because. It's really hard to simplify. And there's so much room for crror.
Because if they get really long like that one you had me do. To simplify that there's so
much room for one error. But, it would be so easy to get a wrong answer. And ycah,
and I've always throughout math, throughout high school, I've always done really silly
mistakes in things like that. Simpiifying.

Okay. Well, what are the things in calculus, actually I missed one. Let's go back to
number 11. When I talk about language I mean the terminology, I mecan the language
that's used in the book, and how thz teacher talks, as well as all the symbols. How do
you find those things either helping or hindering your lcarning?

Well I find them helpfil simply because he uses them and then you know what the
book is talking about. And vice versa. When you read them in the book you know what
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he's talking about, i« supports each other. But um | don't use that terminology much
you might have noticed when I worked through those problems.

And why not?

Because, | don't know. It's just, it seems like silly things to memorize. Just terms,
when I don't know. 1 just refer to them as, as what I think of them as. Instead of
memorizing terms.,

So when you sce the terms it's somehow, am [ right in saying, maybe could you just
say more about that? {'m not sure.

Oh. Um. No. Um. I don't know. I just sec the terms as they're just names you know.
If you don't call them by the right name they're still what they arc and a lot of times |
just forget what they are called. And sometimes it's nice to know the terminology so
you sound like you know what you're doing.

But you don't find it actually helps you learn it?

No, I don't. No, I think it's not the terminology that helps. It's the idcas behind it.
Okay. What are the things in calculus you find easy and what are the more difficult
things?

Um. Well, there's not so much that's casy to, well, okay graphs, you know. When
you have me point out on the graph. That's casy.

So do you like working with the ideas?

Y cah. That's really simplc because you have it right there before you. 1 mean you
(unclear) if it's right there before you.

If you know the ideas. Of course sometimes you don't. And you're not sure of
somcthing. But I find that a lot easier than the other question, you asked ine. Um. What
was it. The tangent to that one thing, and I just couldn't think of how to do it. So
actually I don't find too many aspects of -alculus very easy.

What is it that makes it difficult?

Um. I don't know. Just, the whole fact that it's not concrete, it's not something there.
Y ou know. It's just ideas.

And do you find that makes it harder to learn?

Y cah. Yeah, 1 think so. Just that fact that vou can't see it in life. It doesn't seem real.
It's just talk. You can prove it, but that's just talking you know.

In number 13 here I'm asking what things do you find help or hinder your leaming.
What I'm asking there is not just the things in class directly related to calculus, but
other things. You know, the fact that you may have a heavy workload, or working
part-time. In other works in your whole environment within which calculus is one
small part. What are the things that are either adding to or taking away from your
learning.

What helps me learn it for surc is just doing exercises. Just lots of examples and
keeping on trying. And 1 guess also I am taking a lot of sciences, and I see a lot of
calculus in Physics. And stuff like that. And what hinders is all that, like I mentioned
before, calculus is one of my weakest workloads. So I spend most of my time doing
my other courses and then I remember, oh yeah, I have to study for calculus too. And
calculus always secms to be on the bottom of my list of things to do. Because it's never
rcally due. Or nothing ever has to be done except studying. 1 wish, like the assignments
he gives out, I'm very grateful for those. But I also wish he had like more quizzes. He
doesn't have any.

So you'd find it helpful to have more regular feedback that way?

Y eah. Or maybe even more assignments. Like two a week.

Any other sort of outside pressures? Or the way the class is set up or anything like that.
No. I like the class. Another hindrance I guess, it's just I don"t know. The book is the
same as him you know. It just seems to say all the same things, so it's repetitive. |
suppose that's good too. It reinforces, but it also makes you go, "Oh yeah, I've heard
that before." Then you close the book and try to work on something and you realize
vou don't know it after all.
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I think I missed a question here. Number 10. What does it mean to you to say that you
understand something?

To understand something I necd to know exactly what I am doing. and I nced to be able
to do it. And um, on a test I need to know (unclear). I need to be able to show that |
undersiand it by applying what 1 understand to a question.

So how do you decide when you understand calculus?

When you can give me a question and I can say, "Oh yeah." And then I can figure it out
and show you the answer and you say it's right. That's when I understand.

When | say? But how do you decide when you understand it?

Okay. When 1 do a question and I look at the book and the answers match. Then [ say,
I guess that's the whole way of understanding calculus for me is getting it right. But I
guess for a lot of people you know it shouldn't be that. It should be just knowing the
ideas, but for me it isn't.

Is knowing the ideas part of it or not?

Oh yeah, I'd say you nced to know the ideas in order to get it.

Follow-Usyp Interview

First of all you said you liked the exercises in the book because they have the answers.
I'm wondering what would you do if you didn't have answers? Either in the book or
for your weekly assignments? How would you handle it?

Um. Okay. I might do all the exercises and then ones in the book I guess | would just
assume I did them right. And be an optimist. Or the assignments, then I'd go to him
and 1'd ask him to correct them because you need some (unclcar) of what's right and
what's wrong. Like if you know what you're doing or not.

Okay. S0 do you, are you able to judge then for yourself or not do you fecl?

Um. Sometimes. You can tell if it works out or if you have to graph something you can
tell if it looks right. Usually.

Okay. Well you said something, you said often things aren't confusing when the
teacher explains it, but then you can't see it on the test. Do you have any thoughts on
why that is?

Well because when he's explaining that stuff and I don't krow. t's just scems, no,
actually I don't know why. I've often puzzled. Because even if you ask questions he'll
explain things, and I'll know exactly how to do them. And um, but then I'll do it
myself, exactly how he did it and it just won't work. Well actually maybe it just doesn't
work for some equations. Maybe I'm just not distinguishing them. Distinguishing what
equations are different and what ] can apply what he said to what one. Does that make
sense?

Mmhm. In other words you'rc not, you don't always see the differences between some
of the things?

Yeah. Like sonte of the equations here will be different.

And you don't spot that?

Yeah.

Alright. Um. You said that you find both the examples in the book and cven the teacher
very explanatory. I'm wondering what do you mean by explanatory?

Um. I don't know. Very thorough. He says everything and you're not left questioning
things. You know. And yeah, he just goes over things very well. (unclear sentence)
And so most people ask questions (unclear). And I'm sure if you (unclear) if you went
to his office and asked questions. And so, yeah, there's never any reason for you to not
know.

Alright. You said that when you're working with your homework and you have a
problem you're stubborn and you just keep working on it. Um. And you keep working
with the method, and sometimes you finally get it. I'm wondering what sort of thing
happens? How come you finally get it? Is it just luck because you've tried cverything,
or?



388

Y cah. Sometimes it is luck, and sometimes vou go back over things and then you find
that you have been doing it alright all along. All the times and then you, or sometimes
you don't (unclear) you have one little mistake. (unclear) get that right and then you can
pick up how to get it nght.

Well then what does "getting it" mean?

Getting the right answer. Getting the right answer.

Alight You said that for certain things you can prove it but that's just talking too.
How do you sce the derivations or justifications as they relate to the math and your
leaiming of 11?

Um. I don't know. I see them as (unclear) and I know that it works. But yeah, I don't
(unclear) because well vou understand it but I guess understanding it helps.

Do you ever try o recreate it for yourself?

That's what I'd like to ry but usually it doesn't work. (unclear) just try to prove
somcthing. It usually doesn't work for me because I get all muddled up.

Alright. You also said that understanding for math - > getting it right. But you also
added in that to get it right you also have to know the ideas. Well what is understanding
then? I just re-ask the question.

Um. Understanding is applying the ideas to get a right answer.

Okay.

Is that better?

Well, it's what it is to you. There is no right or wrong. It's what it is to you.

Um. Yeah. I guess, yeah. (unclear) And you need to know the ideas in order to apply
them. And know what ideas apply in what circumstances.

Okay. I'm going to give you a couple of things you said while working on the
problems. You caid ihings like "He said in class this,” "We learned in class there's a
rule that means this," um, or "There’s a rule and it works and you just need it to solve a
problem." I'm wondering do you see these things as rules, or do you see these things
as um, what am | asking? Well maybe if you could say more about that?

I think I know what you're getting at. What comes to mind is, yeah, but it's more, I
don't know. I guess it depends if you see it as more psychological or more scientific.
Yov know scientific, science has rules. Whereas psychological 1s all ideas and
understanding and all thar. And I, and I don't know, in psychology you sce things for
voursclf. But in science you just follow the rules. And there's not, well there is proof,
derinitely, but you know, there's all rules about how things work and why things
work. And I tend to sce things in a more scientific way. But then in math I work with
rules. And how things work and what he says 1 just take as how to do it you knew.
OKkay. Are vou satisfied with this, or do you feel there should be more of your own
Judgements in it?

Um. In a way I'm satisfied with it becausc my own judgment like I'll just agree with
him that i1t's right.

Okay. So do vou feel a need to convince yourself that it works?

Um. Ycah. Which is why | study. Why I do questions and assignments. Why 1do
questions. To make sure.

Okay. To make sure it works. But do you feel any need to convince yourself of all the
background details of why it works?- Actually no.

Alright. Um. (pause) More than once you said to me "Can't you tell me," or "If [ had
my notes | could do this.” I'm wondering how do vou make use of these other things?
Either me, or the teacher, confirming it for you? Or the answers at the back of the
book? Or um, what do you mean when you say if 1 had my notes?

Um. 1 look at them 10 confirm it. To confirm that I'm doing it right and that I'm not
dotng it wrong. And [ know that it's the nght answer.

Okay. Um. More than once you referred to calculus as being diffcrent from other math
because it dealt more with ideas. Do you have anything more you might say on that?
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Um. Mm. Not really actually. It's just not too evident in everyday life I don't find.
(unclear for a couple of sentences)

Okay. Um. (pause) At one point you said to me you prefer having { at X equals rather
than y equals. I'm wondering why.

Oh that's (unclear) because [ is, T always use that. It's no different, { and y. 1t's just
well f at x is just more (unclear).

Well then how do you see the notation and the language fitting into your lcarning?

Ah.

Does it have meaning for you?

Um. The notation of the derivative? Like that?

Any of the math notation.

Well you just pick up on what you like and you're comfortable with all the time.

Okay. Um. This limit here. What would you put for that onc”

Um. That it would be four.

Alnght. Could it ever reach four?

(pause) Mm. No. Oh yeah it could actually.

Why do you say no and then ves?

Because (unclear). I don't know. I never really actually understood that. If a limit, it
can . ..

If you want to write something go right ahead and write it on here.

Sometimes if you have a graph and therc's a (unclear) here. And it goes like that and
you (unclear) limit from both sides. But then sometimes also (unclear) then it went out.
A parabola. It gets closcr and closer to the line but never reaches it.

So can something reach its limit?

Oh yeah. It can

Alright. But in some cases, is this the case where it does?

Y up.

And what about this other orc?

(unclear) never quitc understood.

Alright. Um. I think that's about it.
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Jennifer's Transcripts

Interview 1

Problem 1

I think calculus just secms to be breaking things down. Breaking like (pause). Breaking
things into sections and then analyzing these individual slices or whatever.

What do you mean be breaking into sections?

Like um. (pause) Like a graph. You take each individual point on any sort of granh and
vou're like slicing up a function type thing. Analyzing each thing and getting a
constant, I wouldn't reaily know how to explain it really. Um. (pause} Could it maybe
be finding like an average? Like with these slices or whatever. You're taking the
derivative but in calculus it's finding what that average between them is.

Alright. Is there anything else you can say about it?

Probably. Ah. Calculus.

In ten words can you tell what it's about?

Ten words. Calculus. (long pause) Mm. (long pause). Taking functions, algebraic
functions. (long pause) Can't really. Dkay. (pause) Hm. Let's see, what calculus is
about. What's calculus about? Ah. (long pause)

Maybe that's what it is to you, right? Is that what it is?

No. Calculus always seems to be, to me anyways, graphical =xplanation of things that
happened around.

Okay.

Like using an algebraic expression and finding a graph of that. And then being able to
explain just what's going on, through the original function.

Problem 2

Hm. (pause) (mumbling) Well 1 would say zero for the first one. And four for the

second onc.

Okay. Can you tell me why you decided this?

Just 'cause it seems 10 be getting smaller with bounds. That scems to be getting closer

to four.

Okay. Is there anything else you can say?

Ah. (pause) Not really. Just that that would be how it strikes me.

Would it ever reach zero in this one?

Probably not. I'd say it maybe comes to a close point.

But it wouldn't get there?

Y eah.

What about in terms of getting to four? Will it ever get to four?

I'd say the same. It wouid probably get to a point very very close to four.

Okay. Do you have any other way of representing this? Either algebraically

or with a graph?

Hm.

Or can vou just explain 1t? Is that all?

(pause) With a graph? Ah. Just like for this one it would probably be like four there.

Just like that or something like that.

Okay. And what would happen?

Ah.

Can you explain how the graph relates to uus sequence?

Well if this was like a four it'd get closer to four, well.

Okay. And what about in the first one? Anything?

In the first one? Ah. (pause) Going from one to zero. So (pause) they all seem to be

:;'ilh Ot;lél‘ decimal place. Is that how (unclear), maybe. I don't know how I would really
escnbe it
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Okay.
It just seems logical. I don't know.

Problem 3a

Pro

(wrniting) I'd say it was undefined.

Can you explain to me what you've done?

Um. I've taken the highest power. And I've used it, oh, sorry. 1 didn't, I think 1 did
this wrong. I didn't take the highest power there. Oh, I'd say it's one. Taking the
highest power in each. In the numerator and denominator. Highest power of the
variable and dividing it through.

Okay. That's what you've done here.

Yup.

And then what did you get?

I got one plus zero there. And then one. (mumbling) And then it would be one Gver X
squared and five over x cubed. So those are two zeroes. So it would be one over one.
Okay. And why is it you did this very first step? You took this and you divided it by x
to the fourth. Why did you do that?

Just ah. (pause) 1 don't know. It's just something I've been taught.

Okay. You don't know why?

Where I would derive that from, no.

blem 3b

What does the limit mean to you? As the numbers get larger without bound it would
approach one.

Okay. In general? Like eithcr with this one or the others I gave you?

What does a limit mean? Um. (pause) Gee. Let's sec. As a number, the variable
approaches a number, (pause). Ah. A function could equal a number, maybe.

Can you write that down?

So, okay. The limit of x is going to one of a function of X. It would be equal to two as
the x in that function is equal to one. Or getting close to one, the function will be equal
to two.

Okay. Could it ever equal two?

No. It can only get so close to one.

And not actually ...

Yeah not actually reach it.

It can get so close to one?

Yeah.

What about two?

What about two?

Can it reach two or can it only get so close to two?

Oh, it can get to two.

Alright. You're not sure?

This can't get to one. No I guess you couldn't get to two because 1t wouldn't actually

be an exact approximation. This is just getting so close to one that you'd get so closc to
two.

Okay. But you wouldn't get . . .
You wouldn't get to two. You wouldn't get there. The fimit is equal to two.
Is that always true in all limits? Can it ever actually reach whatever the limit valuc 1s?
Yeah.
Okay. Let's go on. Unless you have something else you want to say.
I was just thinking infinity, I don't know what that would be. But. Like if you have a
limit as x approaches infinity. I don't know how that works.
Then what? What were you thinking about that one?
Well. You can't really approach infinity. Or, I don't know.
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Y ou sense there's something different with that one, right?
Ycah. I sce it should be different.

Problem 4

Pro

Al x cqual to two. You just eguate it. (writing) So it's undefined. Or. (writing) It's
negative onc.

So what could you say about the function?

The function. When X is equal to two the function is equal to, ¥ is equal to negative
one.

Okay. First of ail you said it was undefined and then you decided (unclear). What went
on in between?

Oh, I ah I factored it. I factored it. 'Cause it just, it looks factorablc. And then you just
cancel.

And you get?

Negative onc.

Do you know what the function might look like around there?

At y cqual to negative one? Ah. It'd just be a straight line. Would that be where ah
(pause) I don't know. y equal to negative to one. Then x would be equal to (pause)
(mumbling). Would you equate negative one equal to this? Equal to that function?

You tell me what you think.

Ah. (writing) That would just be. I don't know. I'm running into circles here. Okay. At
y equal to negative onc. The graph of the function. So these would be (pause).
(mumbling) It would be a parabola.

Why do you say that?

Just, to the second degrec.

Okay. You think it might be a parabola, but you also said at one point it might be a
straight line.

I was looking up here. I didn't think. To equate y equal to one. I was just looking at x
equal 1o (unclear) y is equal to x minus three. But if you put y equal to the function
back in there. 1 think it would be a parabola.

blem 5

(pause) 1'd say hm, these two arc continuous. This onec is discontinuous. 'Cause
there's a hole in the graph. This one. Hm. (very long pause) Actually this one is
discontinuous too.

Can you tell me your reasons for these?

Okay.

The first one you said was continuous.

Yeah. Because. (pause) If um. Gosh. I can't seem to back up my things here. (pause)
Because there would be no point where the graph would be interrupted.

Can you say more about that?

Hm. Ah. Maybe I'm not quite sure. Like if it's continuous or discontinuous.
Continuous would be meaning that the graph, well we were always taught that if it's
continuous you don'i have to lift the pencil from the paper. That there would be no
breaks in the graph. And this would just continue up without end. With no breaks. And
same with this one. It would approach the x- and y-axis with no breaks. But this one
it's got a break in the graph. At x equal to one. And this one. Okay. (pause) This is like
an absolute value type thing. It would have to be, it would have to be, not an absolute
value, like it's a condition. (pause) So that one, X is less than zero, it's one at y. And
when X is greater than zero, or x has to be greater than zero beyond (pause). Hm. Wait
a sec. (mumbling) (long pause) Oh. y is equal to one if x is less than zero. So that
would be there. And y is equal to x plus one, X is greater than zero. So whatever this
one is the slope would be increasing that way. Like y is (unclear). This would justbe a
straight slopc up. I'd say it's continucus.
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Okay. Do you have a reason for that?

Like before, there just isn't a break in the graph.

Alright. So that's your way of expressing whether it is or isn't continuous. Do you
have a way of formally writing that down to justify it? If I gave you this one, we won't
take a hard one, v equals x squared. And asked you to prove il was continuous
algebraically, could you do that?

Could you take the limit?

Is that what you'd do?

Y eah.

How would you do it? Could you write something down?

Ah. Take the limit as x, let's say we have a positive or negative infinity. Or any aumber
within the real bounds.

And thes: what?

And then, well. (pausc)

Go on with what you were going to do.

Okay. And as the numbers get larger in X there's nothing that would. This is how I'd
usually do it I guess. So it would be equal to one as the function of X is equal to onc.
So it will just keep on getting closer to one. And there will be no break in the graph to
stop it from getting closer to one as it approaches. That just scems to make sensc.

In what way does it make sensc?

Oh it just means that this graph is exceeding one.

Okay. (pause)

So. I imagine you can just, using valucs in there, there'd be no values of x where the
function wouldn't exist.

Alright

Like for any element.

Do you have anything else you could wnite down?

I'd just say any, it would be continuous because any number that X, the function would
exist at any number X.

Problem 6

(long pause) What the derivative is all about. Hm. (long pause). The derivative would
be the slope of any line (unclear). Can I just say this?

Y ou don't have to write. Can you say more?

That um, when I think of derivative I always think of it in terms of graphical.

Can you show me that then?

It's just, well I'd just say that, I mean like every term that I've ever used derivatives in
or that I think of, I think of { prime being a way to solve the graph of a function or
something like that.

Okay. Can you give me an example or say more?

(writing) Okay. f x whenever x plus, I don't know, x cubed plus 5 or whatever. f
prime would be just 2 x plus x squared, (unclear) x squared. Now that would just be
the slope of a graph and you just plot the graph or whatever. I've always scen
derivatives as a way of expressing an algebraic expression in a graphical scnsc.

Could you do that? The graphical part?

Of this one?

Sure. Probably not. (mumbling) Kind of incoherent writing. I don't even know if this
would work. But ah. It's quadratic. (writing) Then. (pause) I'd do an interval test or
something. But. (writing) So it's increasing all the time. So. Cr according to minec.
(pause)

Does that help you draw it?

Not really because it seems like I'm kind of contradicting myself. I found it to be
increasing for all the time in the intervals.

How does that contradict yoursel{?
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I don't know. It secems that it'd be parabolic. Maybe it's a certain point where it's like
that. And I haven't found it.

Alright. Um. Since you seem to be having a bit of a problem with that one, can you
take, just draw mc any graph, right down here. And tell me how you would see the
derivative. (tape runs out)

Okay. Well we can just take like maybe a normal line.

Sure.

Surc. So ah. y is equal to whatever. x (mumbling). And the y of that function of x
prime would just be one. And the slope would just be, that expression could be
changed into something graphical as being the slope of this (pause) would always be
one.- Okay. Um. Well anything else you'd say to your fricnd?

Well the derivative. Hm. (pause) It also seems to ah (pause). Maybe it expresses
magnitude. It seems to alway: be expressing things, like a rate of increase or a rate of
decreasc.

Okay. Can you think of examples of that?

Well related rates or something like that. It can, it's something that can, you can relate
ah, well you know how velocity is a function of x. Or a function of t. Velocity is f of
t or whatever. It scems that it's able to express things like if they increase. I'm not sure
how I would really say that. It would have a rate (unclear).

Okay. Do you have any formal way of representing a derivative? Algebraically writing
down a definition, or showing me where it comes from?

(pausce) Like what the formula would be?

Yes. You can use the back of the page if you need to.

Like just maybe the general formula x. Plus one, like that?

What's that you've got?

The definition of how to find the derivative.

Can you say more?

Hm. Ah. I don't know really what you'd want me 1o say, but.

Well what would you do that for?

What would vou use that for? To find the slope.

How would you use it? You've written something down there. I guess what I am
asking is what does that mean to you?

What's this mean to me?

N x to the n plus one?

It would be a definition of how to find the derivative of any algebraic function. Like X
to the third, and 3 x squared. Maye I'm not really sure how to explain this, obviously.

blem 7

Can you tell what you've done now? And what rules you've used if you know.

I've used the quotient rule.

And did what? Maybe just outline quickly what yvou've done.

Okay. What you're saying is the denominator itself is an entire variable. Taking, left the
denominator and found the derivative, I mean left the numerator, found the derivative
of the denominator. Minus the derivative of the numerator times the denominator. All
over the denomtinator squared.

Okay. How about the next one?

(writing) For this one I would use the inside outside rule. And the product rule. The
inside outside being the exponent, times the exponent in front of whatever is in the
brackets. Minus the exponent by one, and then find the derivative of what's inside the
brackets. And then using the product rule. The first term, prime of the first term times
the second term. Plus the first term times the prime of the second term.

Okay. If 1 asked you to simplify that could you do that?

Probably.

Could you start? We won't necessarily go all the way?
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(writing) {'d probably just take that ten out front. (writing)
Okay. I just wanted to get you started. What were you going to say?
Nothing.

blemn 8

That's the definition of the derivative using limits, isn't it?

Okay.

What interpretation would I have?

Do you have any way of saying more about it? Or showing me where it comes from?
Um. Well there's that graph. As well, whatever. And this wouid be x. And then, x,
and X plus h. (long pause) Hm. H approaches zero. (long pause).

What are you thinking?

I'm not really sure. It would have to, I'm trying to think of, as x approaches, as h
approached zcro. (pause) So is this. The distance between here. h approaches zero.
The limit of that would just be the slope of that tangential line there. This would be
getting closer tc that. These lines would be there at that point { prime 'causc that's the
definition of the derivative. Would be the tangential slope at that point.

blem 9

(long pause) At ah, (pause) here I would say. And maybe at the asymplotes because
where the function of x, oh I guess not. (pause) The function of x docs not exist where
the vertical asymplotes are. So at five the function wouldn't exist. And at one half it
wouldn't exist. I'm not sure how you would relate that to the derivative. If the function
doesn't exist. (pause) Maybe the function wouldn't exist, the derivative of the function
wouldn't exist where the function wouldn't exist.

Does that make sense to you? Does it scem reasonable?

It seems reasonable 10 me.

Why?

Well if the function weren't to exist there would be, I couldn't see how the derivative of
that function, it would be the derivative of a nonexistent function,

Alright. And that's what's happening at the places you've circied?

Yeah. At the actual vertical asymptotes.

And what about at this one?

It wouldn't exist there because at that point as it approaches it will never actually get to
that point. But it approaches it, so it can't equal it. It wouldn't exist at that point.

What is it again? Can you just say it again?

It would get to a point where it could get close to that point, but it would never be able
to equal it.

The function wouldn't?

No.

Are there other places there wouldn't be a derivative?

Hm. (pause) Somewhere around here maybe. I'm just trying to decide that. At (long
pause). I'd say right there. 'Cause isn't that, I forgot the namc for it. Like ah, (pausc).
I don't know what it is.

How would you describe it? Down at negative five where you've circled?

(pause) Um. (pause) Well the function is has, it's changing there. Um. It really can't
continue there so it has to change there. So there can't be, it has to change, the function
has to change at that point there ‘cause it can't continue with the way the function was.
So it has to make a drastic change.

Alright. And how does that affect the derivative?

If the function is unable to continue like that then I'd say the derivative wouldn't be able
to.

Alright. You also circled on the left here.
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(pausc) Samc thing like well there it's not allowed to continue. That's the point where it
begins. So it's not allowed to continue of f beyond that. This point (unclear)

And how docs that mean there's no derivative?

Okauy. Let's sce. I'll have to think about that one. (long pause) Well at that point it's
gol, il's just a single solitary point. It's not really a function. It's not like an entire
cxpression. So it's like y equal to one or whatever. It's not a point. Or, it's just a point.
It wouldn't have like a slope or anything like that.

Okay. Any other points you want to say anything about?

(long pause). Ah. Maybe that one.

Why?

Um. Well it's like that other graph there, or question or whatever. Five. Or six. That
beyond this point it's permissible to have values beyond that point but the values have
to change after that. So the function, this function on this side wouldn't be equal to the
function on that side. The function wouldn't exist at that point. The derivative . . .

Does that scem reasonable?

Yeah. There seems to be a point wherc this one isn't, the function isn't equal to this
function on the other side then at that point there it would sccm discontinuous.

And what about the derivative?

Again I'd say if the function is discontinuous at a point the derivative (unclear).

Problem 10

(writing)

Okay. That's your slope?

Unhuh.

Can you tell me what you did very quickly?

Very quickly. Yeah. I did implicit differentiation. So using the product rule for the first
term found, the derivative of X times y. Plus the derivative of y times x. And then for
the second term implicit differentiation of x y squared minus three. Just differentiate
that. Differentiation of a constant is zero. And then isolating y prime. Take all the terms
which don't have a y prime to the other side of the equation. Take out the y prime. And
divide the factored, what's left of the factored form through the other side. Y ou isolate
y prime. Then just substitute the points in for x and y.

Problem 11

Okay. (long pause) (mumbling) Would just be looking at it?

What would you say?

For a, I would say between 81 and 82.

Why?

Because the line is steepest at that point. And while it's increasing here it's over a large

period of time with a slower increase.

Okay. What about b?

All:. (pause) Between 3 and 5. 'Cause again the slope is going down.

Okay.

(pause) Number of wolves not changing? (long pause) Between 86 and 87 right there.

It seems to reach a plateau in there.

Right. How would a plateau indicate not changing?

ﬂWell. the line isn't increasing or decreasing. It's just maintaining a steady slope. It's
at.

Okay.

Like this would be a steady slope up but that would just, that would indicate decrease.

(long pause) Or could you take like that, the number of wolves at this time would be the

number of wolves at that time?

What would you say then?
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Just that they have increased to a point but they've also deereased equally in that space
of vears.
Okay.
Is that what?
Does that answer the question?
(pausc) No, I don't think so.
That's a good observation.
Hm. Ycah, | would say 86 or 87.

blem 12

(very long wait) Okay. Let's sce. Okay. I wouldn't really be sure how to do this, but
the derivative would be equal to two. So the derivative being the slope. Theie's a local
maximum at negative one. (pause) Okay. (pause) I'm not sure like how you'd find the
equation of the line, or if you even need to.

Do you think you nced to, or can you draw me a graph that has these properties at these
points and whatever clse you want in between?

But wouldn't you have to know what's going on between these two points?
(mumbling) (very long wait) I don't know if | could draw a graph without knowing it.
(pause)

Can you tell me what you have done here?

Oh. I was just looking at points when X is equal to numbers like the derivative of two
when x is equal to negative five. You'd have a slope of two. So I was just kind of
drawing it through those points. But it could also be like anywhere up there. You don't
know what v would be. And the same thing for a local maximum at onc. You know it
would de like that.

Alright.

And a derivative of zero when x, it could be like there or whatever. You wouldn't
inow what the y value would be. or I wouldn't know what the y value would be. The
slope of one, just slope. Connect the dots I guess. Number f, I don't know about that.
Okay. What about g7

(pause) It's greater than 8. (pausc ) (mumbling) (long wait) At any peint past that
(pause) it would be just like a point of inflection? It decreased to a point and then at f
prime it'd have an inflection point.

What makes you say that?

I don't know. Well if f prime is less than zero, a decreasing slope. But if { prime,
double prime is greater than zero, wouldn't that be. I was thinking intervals here.
Maybe that's not right, but.

What was it you were going to say about { prime?

Oh 1 (pause) If f prime is negative it just means it would have a negative slope. It would
be decreasing. And with the second derivative greater than zero it would be positive. It
would be like concavity or whatever. So it would be up, concavily upwards.

Can you put that together?

It would just a point like maybe that.

Alright. Um. What were you going o say?

Oh if it was going to be the other way, but no.

And it's part { that's really confusing you, right?

Yeah.

Do you have any idea what that's about?

(unclear) those other questions like maybe the point is like this where it could be
continuous or (pause) the function could be continuous but not differentiable. Like um
(pause).

Is that a case of it?

I don't know.

You're not sure?
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- No. I was just kind of floating around. A point where the function is continuous but
not differentiable. (pause) Yecah. I wouldn't really know what to do about that one.

Personal Interview

- First of all what are your reasons for taking calculus?

- Taking a calculus course? It's a requirement for what 1 want to do and also to get a
good mark I think.

- If you didn't have to take it would you take it?

- Yecah. Actually I like math. I took 31 in high school and I like this.

- Do you think having taken 31 helps you here or not?

- Yecah. It does.

- Do you sec calculus as useful for whatever your plans are?

- Oh ycah. Like in physics, in even stats, you use calculus for everything. 1 think it's
uscful.

- And what about in general? Do you think it's useful to society?

- Well I mecan, using physics as an example, say like it makes these seemingly hard
things very easy. Very casy to explain functions and stuff like that. Relationships.

- Before you started the course were you apprehensive about it at all?

- No.

- And why not?

- Becausc | had taken it before.

- Have you changed at all?

- I think. I'm finding it a little harder. Well actually during the first couple of months they
didn't scem familiar to me, the things.

- Did that make you a little unsure?

- Yeah. It did. It made me a littic apprehensive. Y eah.

- But in gencral how are you feeling about it?

- Oh. I like calculus.

- How well arc you doing?

- How well am | doing?

- At this point?

- Good actually.

- How well did you do on your midterm?

- Tgota7s.

- Okay. And what about your weekly assignments and quizzes?

- Yecah. Those are pretty good. Like both, lab quizzes and stuff like that?

-~ Yes. Okay. Are you satisfied with that?

- I'd say I'd be having a little more, if anything the only thing that would really giving
me problems are the assignments.

- Why is that?

- Weil they just, for one thing I don't really like the textbook that much. And they seem
to ask these questions but they have no relation of how you would do them. Like in
lectures the examples are quite equatable to what we do in the tests. Whereas the
textbook would be a little harder, I would say, doing the assignments.

- What else can you say about the text? You don't like itbut .. . .

- It just doesn't scem to really explain using common words and stuff like that. It seems
to be taking like too many theoretical things instead of making it a little more practical.

- So you don't find it particularly helpful?

- Idon'tfind it 2eipful, no. The notes I find help a lot.

- From class?

- Yeah. I would be lost without the notes to tell you the truth.

- What's the differcnice between the text and the lectures that's making one better than the
cthe?
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I think maybe the lectures it's taking a simple example and then expanding. In the
textbook it's just laying it before you and kind of telling you 10 figure it out.

Okay. How do you feel about the assignments? Are they helpful to your learning?

Y eah. They arc.

In what way?

For one thing it just gets you to do it. I mean it's very casy 1o sit back and say oh it's
very easy. But when it come to doing something you have to rethink what you have to
do. Y ou go through a method I think of solving problems.

And what about your labs and lab manual?

I find that helps a lot. It does.

In what way?

It's very simple and it's just straight forward do this do this do this. And giving you
guidelines.

And you find that very helpful?

Yes. Do you find if you don't have that, is it hard to sort things out for yoursel{?

Not really. I find they are very easy. The labs. It doesn't seem to be straining your
intelligence any. You know. Everyone scems 1o be doing well in the lab. I don't know
if it's really necessary, but it docs help.

Alright. Um. Well how much time do you think you're spending on average outside of
class time in one week doing calculus?

Not very much I have to say. Muybe two hours. Outside of assignments?

Including assignments?

Including assignments maybc iour hours.

And, well what do you do with that time? Part of the time you're doing the assignment.
Veah. Mostly just going over examples and that. That would be, doing the assignment
would be a good one, but I always study previous to the assignment. Going over notes
and then trying to do the assignment.

And what do you do when you go over notes?

Do questions actually.

Okay. Um. And if you run into a difficulty what do you do?

Go to another question. No actually I just review again. Look in the textbook. Usually
you can figure it out I think.

Okay. When you're working with calculus problems and ideas how confident do you
feel in what you're doing?

Fairly confident. I think calculus if you get into a method of thinking it's just a process,
it seems to be the same sort of process and you just get into that method of thinking and
it's all very logical.

How do you decide when you © ‘ng it right?

Through logic. I guess.

Okay. Well if you get an answer and a book or somewhere gets a different answer how
do you decide from there?

Well you use, either I review what I've done. Where I could have gone wrong. And it
seems, well I usually probably go wrong in some place. But ah, I would say (unclcar)
what I'm doing because the steps you take to achieve this answer arc just so straight
forward.

Okay. What does it mean to you o understand something?

Understand something? To take that tiny basis of logic and be able to build on it. Like
using that maybc as a corner stone, but like if you understand that then you can
understand things :i:>re. So if I can't understand the concepts then I know I won't be
able to do anything eise. But if I can understand that, I know I've understood, then you
can continue onto a higher level.

Okay. So if you were to say I understand derivatives because . . .

By applying it to, I would understand derivatives because um {pausc).

You said something about apply.
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By applying it to another concept. Like there's. How can I say it? (pause) Througha
practical application. (pausec) 1 would understand derivatives by maybe drawing the
graph or something likc that. And knowing it would be right.

Okay. We'll go onto number 11 now. When I talk about language 1 mean the
terminology, I mcan the descriptions, I mean the notation and symbols. Um. How do
you find, what's used in class or in the book, in terms of helping or hindering you
what are the things that confuse you and what are the things the help?

Hm. I would definitely say the classes. The language is easier to understand. I think in
the book they seem to get too theoretical. The function da da da da docs not exist. Like
it just secems to be like on a higher level. They don't seem to simplify it enougl. sol can
understand it.

And in class you find it simpler?

Yecs.

In what way?

Just in the way the prof would describe things in simple language. It wouldn't be like
doctorate language in calculus. It's something that I can apply or I can relate to.

Can you say more about you mean by simple language? Or give examples?

Um. Let's see. (very long pause) Um. (pause) Hm. (pause) By simple I would say that
it's something that (pause) maybe not ah (pause) it's identifiable. It's something that
you can sec and like right away you can see what he's talking about. And then continue
from there. In the book you're kind of vague about some points, and you continue
being vague. So I think if through simple you can understand the small concept then
you build on that. But in the book it just seems hard. In the textbook it's just kind of,
well, you're not quite surc what he's talking about.

Alright. Um. What are the things in calculus you find easy and what are the hard
things?

Um. (pause) I find definitions of things, like ah (pausc) say the definition of the
derivative like f at x plus h. I find those things more difficult than the actual "give me a
numerical value" type thing. I find the theory is harder than the actual practical
applications.

Okay. Um. Are there things outside the content of calculus, other things you're doing
or um just the way the whole course is set up that either help or hinder your leaming? It
could be the class size, the format, or you're involved in drama, or something like that.
Anything?

(pause) Could it be what 1've taken before?

Does that help you?

I think so. Yeah. It docs.

In what way?

It's just exactly you're familiarized with the type of thinking you should be doing.
More than anything like how to do a problem, and it's how you should do a problem,
or how you should think about a problem. | think that has helped a lot.

Okay.

Physics 1 would say helps a lot in calculus too. It's the same sort of mind frame kind of
logic.

So you ase being exposed to calculus in other courses, right?

Partly, yeah.

A litde bit?

No one has really taken any calculus previously. They mention it. It would be easier if
we had calculus, but they ah.

Okay. Um. You have taken Math 31, right?

Y eah.

How well did you do in Math 31?
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I did okay, but I'm not really surc how, like ncar the end 1 was getting a little vague
about things. I did like 80 percent. Which is good, but it just scemed like I wasn't quite
sure of my abilities to do it, so I (unclear).

Okay. That's all. Unless you have anything clsc you want to say? Any {ecedback to me
about the course.

No. I think we've pretty well covered it.

Follow-up Ir . rview

Problem 2

Um. Alright this one about the two sequences where 1 asked what the limit would bx.
At that point I asked you to explain how you knew and that was somcthing you suid
you just sort of knew. And I'm wondering if you have any more you could say at this
point? On the first one. You knew it was zero. That was definite, but you weren't really
sure how to explain it. That it is that.

Well gee.

If you don't have any more to explain that's okay too.

All I can say is just these numbers. They're just decreasing without bound.

Okay.

And the smallest I assume would be zero.

Problem 3a

Okay. Um. On number three where you went through and divided through um by the
highest power term. And I asked you why you did that and you said it's just somcthing
I've been taught. Um. So do you find you have a lot of that in this course? Or not? You
can go through and you can do it? And you know in this case to do such and such? But
you don't know why? Does that come up a lot or not?

Yeah. It's just, well for certain things. There's just like there's certain rules whi~h arc
just rules. And you can just build from there, but I wouldn't know how to get those
basic rules.

Those basic rules are not clear to you?

No.

So in this case it's not clear why you would divide by the highest power term but you
know you . . .

It just makes sense to get aone and thena. ..

Okay. And it works it?

Yeah.

Problem 4

Okay. Um. The next page. (pause) You went through first and plugged in the value
two into this function. And then you went right away and factored it. And 1 asked you
what prompted you to factor it and you said it just looks factorable. Now I'm
wondering well what, did you see a purpose in f; actoring it even once you had done it
did you see what happened?

Well I didn't factor it. It was an undefined function. And it looks factorable. It just, likc
I, and it was undefined and I was trying to go from there and find if there was any
other way you could make it work out. And that's justit.

Problem 5

Okay. Um. Let's look at the continuity one. Um. (pause)

This one was kind of weird.

Let's ook at. Let's turn it over so you can write. If I gave you, like that one, y equals x
squared. And said prove to me it's continuous at X equals zero. Or if you want to just
do it in general. Or pick a different point, you can do that. What would you do?
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I'd graph the {unction.

Okay. And then what?

And then, well ah. Couldn't you just plug itin? Like plug zero into the equation.

And what would that tell you?

1t would tell you that the equation exists maybe. Like you could define y prime. It
would be like 2 x. Whatever. And then piug in a zero for that. Then v prime would be
the slope or whatever.

Okay. And how would that tell you it was continuous?

Ah. 1 don't know. Back maybe, looking back to the graph. You can tell that there's no
ah hole in the graph. It's a continuous function.

Um. If I asked you to do one that was discontinuous. Something like this one here.
Discontinuous at 2 point. Could you prove 1o me symbolically, we can see it...

That it's discontinuous?

Yeah. Here's the function. In symbolic form. And here's its graph. Could you
symbolically prove that it was discontinuous at one?

Um. Well couldn't vou do like the limits? Try and equate the limits. The function
(unclcar).

Okay. Could you say more about that? Or write down what it is you are saying?

Likc if vou have an equation like f at X is equal to whatever, so and so. And then find
the limit of that equation, you can, this term there. And then find the limit again using
that one. They're equal. Like equal to two.

Say that again. They're equal . . .

If um the function of this one equals to the function of that one. Y ou've got continuity.
Okay. Would that happen there?

Ah. (Jong pause) No.

Okay.

Well (unclear) here. For x being, 1 don't know what the function is. For x being les.
than negative one. It would be justnegative one right. And the seconc< (unclear). For it
being less than one, or greater than one, would be two. And these two don't equate.
Alright. So how does the limit come into it?

Well L. I. Well, I don't know. Wouldn't you need, like I was thinking of this equation.
Like (unclear) k Yisequal to X or something.

Well, if k x is equal to negative one.

Oh. Okay.

In this case, and kK N is €qual to two.

Mm. 1 don't know how at this point.

blem 9

Okay. Let's go on. (pause} (mumbling) Okay. This one here. Number nine. Places like
this where there wasn't a derivative. You were able to identify lots of places. Um.
Could you tcl! me why thereisn'ta derivative at something like down here? Or tha this
endpoint on the Jeft there?

Um. (pause} Maybe here, at that point maybe there would be no slope.

In what way? How do you mean?

Like it goes to a point at that point. It's just an isolated point. No slope.

Well what exactly do you mean by no slope there?

Well if there's a point like that. Like a point there. It's a point which has a slope. Butif
i's just sort of like maybe there, that point there wouldn't have a slope.

Okay. And what's that got to do with the derivative?

Well. Isn't the derivative of a function the slope of a function?

Okay. And that’s how you would decide for something like that?

Sure (laughing).

Are you unsure about it?

Ycah. I am.
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- Yeah. Partof it.

- Alright. Would you be able “.» prove it algebraically or symbolically? That there was no
derivative at say this point here?

- Ah. (long pause) Maybe if you were given a function. Plugging in the values.

- Inwhat way? If I give you an equation, what would you do with that equation?

- Oh. I'd try and find the slope.

. How about if I gave you something like this? (pause) We won't give that particular
one, but um this one. The absolute value. Could you show me that at zero, X equals
zero, there isn't a derivative?

- (pause) Probably not.

- Do you have any idea where you'd start? Using the symbolic form of it?

- Maybe, well at X is less than zero. Or x is greater than zero.

- And what would you do?

- Then ah. Plug in like X is greater than zero, so ore. Plug it back into there.

- And what are you trying to show there?

- Um. And then um. Wel} gee.

- I want vou to prove there's no derivative.

- Yup. Maybe you have to, you probably have tofind the derivative of this equation. So
the derivative of just x. Okay. (unclear) (pausc) Oh okay and then to find the denvative.

- I want you to show there isn't a denvative.

- Yes, but would you find the derivative and then using these values plug them back into
like the just plain function?

Problem 11b

- Let's look at part b here. Just read part b again and tell me how you read that sentence.
How do you interpret it? What does it mean to you? Don't worry about what the
answer is or isn't. Just read part b and tell me what it means to you.

- (pause) Slope is decreasing.

- Okay. And what does that mean? (pause) When the slope is decreasing, what wousld be
going on? That's how you read it, right?

- Yup. Ah. (long pause) Well with the rate like y prime with respect to t. The rate 15
decreasing. Ah. The derivative is decreasing? | think.

- Okay. You said derivative is equal to the rate, right?

- Then when the rate is decreasing, the derivative is getting small.

Problem 12

(pause) Um. I don't know. You might want to take another quick look at this one. You
were struggling with it.
eah

- And ah see if there's anything more you are able to do with it. Maybe you just weren't
thinking clear. 'Cause it was near the end, so it was tiring.

- (long pause) What I find most, I like being given an equation. I don't kuow if | could
figure it out withnut an equation.

- Any idea why thucis? Whatisit that . . .

- I don't know. It just seems like it's a base that you can work from. And everything
seems to rely on it. Like plugging values back into it. The points of inflection and
critical points and stuff like that.

- Okay. So when I don't give you the equation, I give you some sort of description, you
don't know what to do to start it?

- Yeah. Yeah. I wouldn't know how to connect them all together.
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Personal Interview

Okay. Um. The other questions | have, these are all on the more general things. Um.
And I'm just going to in many cases throw back at you words that you gave me. First
of all you said that you didn't like the textbook because you found it too theoretical. 1t
wasn't very practical. It didn't use enough common words. Can you say more about
that? Your sort of impressions of the book, how you make use of it, and how you
make use of it versus using the lecture notes, and that sort of thing.

Well um I found with the textbook that they use like everything is related back into
terms of limits. But they take like very complicated explanations, like lots of times they
don't make it simple again. Like they just keep on a higher level. And I think it's easier
if when they explain something in the higher level, but you have simple example just to
show, like in our lectures. (unclear) for an example.

Okay. Um. Do you make much use of the textbook?

No.

You don't reac through it very often?

No, | just use my notes usually.

And what do you do with your notes in terms of using them?

Um. Like, for the assignment or something I just look at the examples. And just relate
them to what (unclear).

Okay. When you say relate you mean you take the example and you've got your
exercise and you just sort of copy the same pattern? Or do you try to figure out why he
did the steps?

Yeah. Well I think usuaily the examples (unclear) obvious. Usually it's like 2n example
is just like a supplementary thing. Like what do I do next. Well, okay well let's see. So
I can go from there if I get stuck. (unclear)

Okay. Um. What use do you see the labs? You did say you found them very simple.
But what val:.: are they to you?

1 think they give you a lot of confidence. Like working with it. You're not sort of
intimidated by things. So you get confidence working with the type of things, and 1
think with calculus it's sort of a mode of thinking that you kind of have to getinto. And
the labs just help you get into that sort of process. )

Okay. Um. Then. Is it that you find working through the lab manual useful? Or going
to the lab? Do you work through it in advance or what?

Yeah I do. Um.

What do you do? Do you work through it and do the work or what?

Do the problems, ycah.

Do you read through the notes ahead of time or not?

Y eah.

And what's your impression of those?

1 like the notes. They're really pretty well basic sort of thing. And once again they rely
a lot, very heavily on the examples.

Okay. You dig@ say that you found, like one thing was you were given confidence by
doing questions from iic izt because the steps were always laid out for you. So you
could go through it and progress som.ewhere.

Y eah. And if you can do real simple ones, well it's easier to do the hard ones.

Okay. Um. I also asked you how you decided right or wrong. You said that you know
you use logic to do it. What ail does that involve? When you say you use logic what,
can you be more specific?

Um. (pause) How would I know an answer is right? {pause) Well.

What are some of the specific things you do?

Check in the back of the book.

Other than check in the back of the book?
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Um. Well I go through the examples and il it seems like if there were any steps wheze 1

would have gone wrong, 1 usu::’y check back with the derivative. ‘Causc that's where

I make a lot of stupid little mistikes.

Y ou check some of those calculations?

Y up. Yeah.

Okay. (disruption for phone call) What was | saving? About the logic. And decading

what was right or wrong.

Well like again, I'd go back and check my steps. And if I don't sce that there's a place

where I could have went wrong, I just.

Okay. Well do you have any sense that you, you're able to fit it all together yourself?

Or do you rely on sort of, well external checks somchow that somebody elsc gves
ou?

Well like I, like I, this will sound kind of weird but I find calculus it's just a way of

thinking. Then if you can establish that sort of process, then things just secm (0 make

sense.

Okay. Do you feel you're able to achieve that way of thinking?

Y eah. Like, yeah.

Do you know, can you describe that way of thinking?

Yeah, it's reaily, it's kind of weird actually. Um. (pause) 1 wouldn't know. It's a lot

like physics 1 think. Sort of just, just, I wouldn't know how to explain it. Like it's yust

there. Like when I took 31, you just seem to get into, there's like calculus mode and

there's a math mode type thing. And calculus is different from math.

How is it different?

Well 1 find it's, if you can relate it on a lot broader scale. It's broader and can

encompass a lot of things.

Okay. Um. Well when you're doing exercise problems what are the sorts of things you

are focusing on?

(pause) Like. Hm. Well I think it would change with each sort of exercisc.

Can you give some examples then? If you're doing a word problem what do you do?

Or if you're doing a derivative problem what arc the sorts of things you focus on? What

is it you're trying to get out of what you're doing?

Well actually, maybe you try and like establish where you, like establish what you want

to do. Like what you want to find. And how you would go about finding that. Laike

which sort of route you'd take. Like with um graphing or something like that.

Graphing I think is a very sort of step by step sort of procedure. And ah. I don't know.

Hopefully you're right in the end.

Okay. Um. (mumbling) Well another thing I'd asked, and 1 want to get morc of your

ideas on it, is how you see the language, meaning the symbols, the terminology, the

descriptions, and other things. How does that either help or hinder your lcarning? hy

what way is it good for you? What are the things that don't work for you? Anythieg at

all.

If there's like, this will sound really silly, but functions. Function is like a word that

people, that bothers me. Like 1'd rather like, the derivative, I'd rather say y prime. Or

something like that. I don't know why that would hinder me.

Is it just the word? You just call things something and you don't know why it is that

name?

Yeah. yeah. It's just, I don't know. Ah. Like it's, it kind of hinders, but I don't see

how there would be any other way to like explain it. Like I think it's hindering but

necessary.

Okay. Um. Well when you're working with all the symbolic stuff, um, do you feel

confident in what you're doing? Do you have any sense of what it's about? Or is it pst
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Yeah [ do need an example (unclear). Like it's sometimes you can, it seems to get kind
of complicated, and just like using the symbols it gets complicated. But if you just have
an example, it's casicr.

Okay. Well do :he symbols have any meaning to you? Either you can sort of relate them
to something concrete, or you understand how they relate to each other? Or is 10 you
just a bunch of symbols that you do things with?

Yeah I can sec how they can (tape runs out). They give you symbols. Like if they give
you symbols, like an equation or theorem type thing. And then they have an example
and you understand what the theorem is about, then [ think you can apply it to concrete
things.

Okay. You don't see anything really blocking (unclear).

No.

Um. When you work through a lot of exercises what sort of happens as you do more
of them? Do you find that by just doing it you're learning?

Yeah.

And what is it? What is it you're learning by doing it?

Calculus. It's just a learning how to work through things. Learning how, what you
need to do and when type thing. What kind of steps you should be taking to solve
things.

Well how do you decide when you understand calculus?

Ah. Gee. Um. (pause) Well if you understand. think if you start understanding the
theorems and how they derive these theorems then that's understanding.

Okay. Have you achicved that?

To some extent, yes. There's certain one, you know, these are rules and okay then
that's great, I'll follow these rules.

Docs that bother you or not?

Well it would be nice to know what's going on, but sure, like it doesn't bother me too
much.

Would you say you're fairly satisfied with what level of learning you're at, or not?

Y eah. 1 think so.

And the way it has gone about? You don't feel you're doing these things but you don't
see what it's about?

No. I generally, you know (unclear).

Okay. Um. Well what, I don't know how to word this? Um. What's sort of your sense
of the course now that you're almost done? You know, do you feel like it was
worthwhile and good for you?

Y eah.

Or is it thank God it's over and I just want to get through it?

No actually I, I didn't mind this course that much. Um. (pause) I think maybe it could
have been a lot easier if you like, it tends to intimidate people. The course. But I think if
they had not let it, it would have been a lot easier.

Okay. Um. Is there anything you could say about how you see, for your learning, in
particular. Forget about anyone else and what does or doesn't work for them. How,
have there been things that are good for you, and how has it helped you to learn? And
how are there things that you wish were different tha. would have helped you to learn
better?

(long pause) Um. I don't know. Maybe the time factor. The amount of work that you
put into it. It relies heavily on how much work you put into it.

Do you feel you've been able to put suf! ficient time into it?

Yeah. 1 think so. Yeah. I think it demands a lot more time than, like it does demand a
lot of time. (unclear) keep track of it (unclear) others. Which is kind of annoying, but
hey.
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Okay. Um. Do you have any sense that if somebody asked you to sort of explain to
them, or you know, recreate some of the main ideas, are you able to do that? Do you
try to do that ever? Do you understand what I'm saying?

Um. (pause) 1 don't know really.

When you are studying and working on calculus is it more aimed at understanding the
questions and the steps, than why (unclear)?

Y eah, I think it's more the specific things rather than the gencral.

Okay. That's all I have.
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Tanya's Transcripts

Interview 1

Problem 1

(long pause) How something changes in a certain amount of time. Space. (pause) How
something changes in a certain amount of time or space.

That's what calculus is about?

A certain, a certain part of it. You know, 'cause there's different (unclear) for different
things. Um. There's a lot of also regular math, as well as calculus.

What you're saying, is that the calculus part of it?

Y eah. It's just the rate of change of something at a certain point in time . . .

Okay. Anything else you want to say about it?

If it were to this person probably not. No. I would have said that it does do with a lot
of graphing. That's what I would have said. A lot of graphing.

Okay. And how does the graphing relate to it all?

Well if a person doesn't know how to graph they're in trouble.

Problem 2

This would be zero. This one is four.

And how did you dccide these?

Well this keeps going. This is a certain number. This is smaller than that. This is even
smaller. Even smaller. Eventually you'll get one over a bunch of numbers. A bunch of
zeroes. And that's so close to zero, eventually you'll get to pretty well one over
infinity. And that's as close as you ever probably can get. And this keeps going. This,
obviously nine's are just going to keep on increasing. And it's going to get closer and
closer to four.

Will it ever reach four?

No. And this will never reach zero.

Um. If 1 asked you to write algebraically and convince me that it gets very close to
four, could you do that?

Algebraically? (pause) I'd say ah that. Um. (pause)

And what does that represent?

(long pause) (writing heard) Any infinitesimal.

Okay.

See but herc you're striing off with three's, and I've started off with a zero, so I'm not
sure if that would be all that correct.

Um. But you're saying here, what is it you're saying by four minus dx? What does that
represent?

Four minus an infinitesimal amount. Which isn't really four, but it's as close to four as
you get, which is kind of like this there.

What I'm going to do is take a factor of M to the fourth out of every one of them.
(pause) I take it that M is an infinite.

Yes.

(long wait) I can't do simple algebra today. (erasing heard) (writing)

Okay. Now can you tell me what you've done? You took out a factor of four from
every term.

Right.

Can you tell me why you did that?

Because this is, this would be an indeterminate amount. Ah. You can't really see
what's happening because this is infinity ove. infinity. And that really doesn't say
anything. I'm not sure if my process was right. I did that kind of quick. Sol took a
factor of M to the fourth. I could have taken a factor of M to the third, but I probably
would have had to simplify one more time. Uh. I did M to the fourth 'cause it's the
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largest factor in there to just simplify it. Um. I simplified it and then just rounded off.
Once again dx stands for an infinitesimal. Any finite over an infinite is an infinitesimal.

blem 3b

(long pause) I don't know if you want me to write it down or just say it out loud.

Both. Whatever you feel comfortable with. (other instructions)

Okay. I wasn't sure if you would go through this.

I do keep thesc, but I also have the written, the verbal record too.

The answer is the number closest to the question.

Can you say more about that?

Um. The number ah closest in relationship. You have the question number and then the
answer number. Okay. Do you see what I'm saying? You've got the question like this.
That's what this would be, the question number.

One pius dx over dx?

Right.

And this would be the answer number.

Alrnight.

Before you round off these two numbers ah there shouldn't be, these two numbers
should have the smallest difference. Rather than if I said this. Something like that.
Right. Rather than saying infinity plus dx. Okay.

These two have, like these should have the smallest difference between them that can
possibly exist between them. I guess that's the best way I can say it.

So why is it you round off?

It's better to work with it. It's better to work with that number, and for all practical
purposes it is kind of really that number. Like that sequence we had before. We just
said that was four. If you're going to work with it. If you're going to usc it ina
function. If you're going to use it using other numbers you don't want to use three
point fifty nines. You'll just say four 'cause it kind of really is four. Almost.

Um. Is it possible to round off and have the same thing you had before rounding off?
No. You're never going to, rounding off does not mean equal to. It will make a small
difference even though it's a very tiny difference it will make a difference.

Will it always make a small difference? Or is it possible that there is no difference?

No. There will always be a difference or it's not a round off operation.

Okay. If I asked you to take um, not one of these, I'll give you a different onc. Asked
you to round off that. Five plus three divided by two. What docs it round off t0?

It doesn't round off to. It equals to four.

Okay. Could I round it off to anything?

No. It equals to four.

Okay. So you see the round off is different from equals?

Oh yeah. If this was a fraction, if this was like a decimal then you can round off.

Well then what exactly is the difference? Between the round off and the equals?

It's the number most closest to it once again. See with infinitesimals it's differcnt than
decimals. Because it was with decimals ah it can round off to different numbers. It can
round off to different decimals. You can either round off to a rational or a recal number.
So it's a totally different story with decimals.

Alright.

I just said that if that was a decimal you can probably round off.

blem 4

It doesn't exist at x is equal to 2.

How did you decide that?

I found the value just looking at it. If you plug in x right there um you'll have this
function over zero. And anything, anything over zero ah does not exist. 1 never really
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found out why. Ah, but I know it doesn't exist. Ah. In Math 20 my teacher said
anything over zcro is undefined and he never really said why.

D¢es that bother you that you don't know why?

Yes. Yeah, it docs. I know on the graph it would be an asymptote. I know that zero
over something is zero. But [ always thought that something over zero would be zero.
And I never found out why it doesn't exist otner than it's something I know.

Why do you think it would be zero? Something over zero?

Because it works the other way round. If it's zero over any number it's zero. Why
can't a real number over zero also be zero? That's what I at first thought.

Ah. Then you say you don't like the fact you really don't kiiow it. Somebody told you
it was that. Um. How do you feel about that? Do you like to, in this calculus course in
particular, know where things come from, and try to figure it out for your own?

Yes. Yup. I'm not all that interested in proofs. Proofs bug me.

Why do proofs bug you?

Especially this textbook. Um. When he does one on the board. When he does it it kind
of fascinates me and I go wow you know. Somebedy came up with this. But it's going
through it that bothers me. It exists. Ah. It wouldn't be right now if it wasn't right. So
let's just work with it. We don't need to know how some blow-joe came up with it.
Okay. That's fine. I want you to be honest. Um. So do you feel then that when
someone just tells you like this Math 20 teacher um how does that relate to your
learning?

Well um. I'm like um when he, well he was a very good teacher, but this is the only
one thing in math ever that I don't know why that something over zero does not exist.
Or is undefined. Well what does undefined mean? You know. Um. A number over
zero | can see doesn't make all that sense, but why not? You know there's other
weirder things out there that make sense, so.

Okay. Um. What would the graph look like then around that point? You said something
about an asymptote I think.

Um.

You say it's undefined there. What might it look like there?

Well actually I'm seeing right now that you can factor this out and cross out the two.
So I've madé a fool of myself. But ah, um at 2 it would be an asvmptote. And anything
approaching it, if this was too. (unclear) horizontal asymptote. (unclear) Anything
approaching it would never touch it. It would never touch it. It would just come close
to 1t

What were you saying about factoring?

Um. Let's see here. (pause) That's what I meant. So when x is 2 it would be negative
one. But just looking at it right there I would have said it was undefined.

So now are you saying it is negative one?

(pause) See just, I didn't really consider the whole thing. I just said x at 2 well
undefined. But I see now that you could have simplified it.

And so now why, you're saying x. What are you saying?

I'm saying now I didn't look at the fact that you could have simplified the top. I guess
it's because in the lecture yesterday we were doing a whole bunch of these undefined
things.

So you were in already in that frame of mind?

Right. So um now I'm just, in, with limits and with working with decimals I had
always learned to simplify. And I didn't even look at that and 1 thought, "Oh God, 1
could have simplified that.”

So now that you have done this what would you say the graph looks like?

Oh, y is equal to negative one? Um. (pause) As far as I know this would be a point as
such. I wouldn't be able to graph that right now. Um. 'Cause this is a function by
itself. See I'm not sure if this is a function by itself. If this was a function by itself it
would not exist at 2. But having it simplified, it's just a point.
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Okay. Do you have any way of connecting that? What you just said? It's this and when
you simplify it you get that?
Um. (long pause) Actually I can't. Because I'm looking at this and without it being
simplified if someone told me to graph it I'd graph it and it wouldn't exist at 2. And,
but having it simplified it is a point at 2 negative one. It would be a point down here.
To connect the two ideas, no, I haven't the slightest.

blem 5

(pause) This is continuous for all x. (mumbling) And this is not continuous for thal
Obviously. 'Cause it can never touch it. These individual ones are continuous but this
is one whole function. Ah. And it is not continuous in here.

And why is that?

Because the graph never touches it and in order to be continuous um ah any smaill
change in x has to correspond with a small change in y.

And how does that not happen here?

Ah. A small change in x would be maybe right over here. Or right over here. And the
one next to it, well I don't sec a y down here. 1t will never touch, it will never touch the
y axis. So if | have x at zero it doesn't exist. So it will never touch the y axis. This
graph does not connect with this one. If I wanted um a value. If I wanted a valuc here,
I have one here. I have it kind of there. | don't have onc right here. And then these two
will never join up.

The first one you said is continuous. Can you tell me why you decided that?

Well 1 know that from the x's. It's that. I know it, but thesc two will always keep
going. And for every, for every small change in X you will always have y. Always. No
matter what.

Can you write that down in any way? Algebraically, what you're saying about the small
change in X and there being a y? In other words could you take this, we'll use this one
because it's not a difficult equation, and prove to me that y cquals x squared is
continuous?

(writing) That I know from the course. Period.

Okay. What is this you've written down?

That the function x at ah plus a small amount will round off because of the smali
amount it has to round off to the y component of it.

And how does it work for this particular function? For x squared?

If I had. Okay. You want me to write down?

Y eah.

(writing)

What is it you're saying there?

Um. Kind of the same thing I was here. That any, I'll kind of do it this way. y at x.
And these two x's are the same. Ah. If you take any x point and go a liule bit to the left
or a little bit to the right ap infinitesimal amount it will round off to y at that X on the ¥
axis.

That's what you're saying here?

Y up.

Alright. What about this third graph? Is it continuous?

Yes.

Why?

Well, it joins up everywhere. It, the normal English definition of continuous is yow
don't have to lift your pen off the paper. And you can see here you don't. And once
again this definition applies to this too.

Okay. How would you deal with this definition right here where it does join? In other
words if I asked you to prove it's continuous at zero, could you do that al gebraically?
(pause) Well um. I would have to look at the point left, and a point to the right of zero.
Right at zero there is a point and it's one. Right at x equal zero there's a point. Um.
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And sure they're two different functions right in here. Algebraically? (writing)
(mumbling)

And how does that prove to me it's continuous at zero?

This is a function by itself. Even though it is a split function it's still a function. Okay.
Y ou can consider it as the same function. Because it connects right at zero. You can see
by the signs. This is ah a less than and equal to. This is a less than. Here it connects
with the same idea I was saying right here. Take an infinitesimal point right to the left.
It will round off to the function itself at x. Or, yeah, okay. And the point right left of
zero to the point, to the function, which is one. I'm not sure if I'm following it myself.
That's probably the best 1 can do algebraically.

Okay. What about this last graph?

No. It's not continuous.

Why not?

Um. (pause) 'Cause this isn't a point. I don't know. If ah. (pause) Okay. Right at one
it's not continuous. If I take, if I go infinitesimally to the right of one I will go nght up
here. If I go infinitesimally to the left of one I will go right down here. Um. One plus
dx should round off to this one, but it rounds off to this one. And ah, no, that's not
right. (pause) Do you see what I'm saying though?

Could you, well lcave it there.

If you go infinitesimally left, or right to one you'll go right up here. And if you go
infinitesimally to the left of one you'll go right down here. But these two points should
have an infinitesimal distance between one another in order to be continuous. And they
don't. They have a finite distance.

And what is you were writing down here? One plus dx? What is that?

Well one plus dx would have been to the nght.

And what does it round off to then?

Well it should round off to um (pause). Maybe what I want to say is ah these two
points, infinitesimally here and infinitesimally here should round off to the same thing.
Maybe that's what I'm trying to say.

Okay. Are you able to write that down? Or that's where you're getting stuck, right?
That's probably where I'm getting stuck. And probably just because it's been two units
ago. And it's hard to remember it.

blemn 6

Okay. If they've finished high school they know a lot about graphing. They know
about slopes and they know about curves. All I would say to them is how the slope
changes in a particular curve. I can say okay, they know that, by this time they know
that you can take the slope of a straight line very easily. We cannot take the slope of a
curve. So | would tell that the derivative is the slope of a curve at any particular point.
That's all.

And if I were your friend, and asked what does that mean. Can you explain to me what
the slope of a curve is? Or show me in some way?

(pause) Curve. You take the slope of a straight line by going rise over run. Okay. Rise
over run. Change in y over the change in x. Here you can't do that because it keeps
changing. It's not a straight line. The line keeps changing. The curve of it keeps
changing. Slope always changing. So what we want to do is ah keep track of, or want
to find out what the slope is doing at any particular point since you cannot take the
slope over a certain amount. You cannot take the slope between this x and this x.
Because the line changes. It's a curve. It's not straight. So all the derivative is it's just
one particular point and we know what the slope is there. Take one particular point here
we know what the slope is there.

And how do 1 get it at this particular point?

It's, do you want me to explain it?

Yup. If you can quickly explain. How do I get the slope at a particular point?
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This is an upside down parabola. This is a function of this particular (pause). Of this

particular shape. See all that, here 1'd be explaiming the power rule to use. Is that what
you want here?

Well what would that be? Tell me that.

All the power rule is is bring the exponent down and multiplying what's in front.
Negative two. Leave the x and minus-ing one off the top. So for the exponent you
would have one up there. So it's just negative two X. Um. y is slope. ‘Cause it's not
the same as this y. 'Cause this y gives you the slope at any particular point. You know,
whichever x you want, whichever point on this graph you want all ycu have to do is
plug it into here and it will show, it will tell you the slope at that particular point.

Okay. In terms of the graph if you didn't have the equation, how do 1 get the slopc?
What is the slope there?

The slope? By taking a tangent line. A tangent line is a line, a straight line that runs, all
that it does, it runs right through that point. So it's almost the same thing as having a
straight line because it runs through, right through that point that you want. And all you
have to do is know how to take the slope of a straight line. It's just to take the slope of
this line. And it would be the same as the slope right here. You wouldn't have to take
the derivative.

Okay. Um. (pause) If I asked you to write down the formal algebraic definition of the
derivative, can you do that?

Of the derivative, or acquiring it? I know the definition. I know how to acquire 1t. |
know all the proofs. I'm not sure what you want.

What do you mean by acquire it then?

How to get it. How to get the derivative.

Okay. Can you do that, the general form for that?

For this one?

In general. | think we're having a communication problem.

Y eah.

When I say the definition of derivative, what's that mean to you.

The definition of derivative? A small infinitesimal change in x. Over ah um an
infinitesimal change in y over an infinitesimal change in x. That's what the definition of
slope would be. Of, oh sorry. The definition of a derivative is the rate of the change of
a function at a particular point.

Okay. How do you write that down algebraically?

(pause) Well, I would. He writes this. It's not something I could come up with myself.
That's what he writes algebraically.

And what does, how does that rate to the derivative?

This would be the derivative at any point that you pick, of a function.

Okay. And how does that relate to a graph?

Ah. A graph. You can pick a point. Any X point on any graph. It has to be ccntinuous
in order for this to work. Ah. Plug the x in here. Plug the x in here. And work with the
infinitesimals to find out what the derivative was at that x.

Okay. You said the derivative was an infinitesimal change in y over an infinitesimal
change in X.

Umhm.

How does that relate to this?

Ah, dx to me is an infinitesimal change in x. This here shows an infinitesimal change in
y because fat X isy.

Alright.

Okay. So here I'm saying y plus a little bit minus y itself. You're going a litte bit of
change in x over, a little bit of change in y overa little bit of change in x. And this y has
to cancel out with the first one.

Okay. Um. Can you give me examples of where derivatives are uscd?

In real life except here?
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Y up. - N . :
Surc. Ah. Going from distance to velocity in a moving object. Going from velocity to
acceleration or backwards. Or backwards again. If you take the double derivative of

distance you've got acceleration. I'm sure there's a lot more applications in physics
than that. Ah. That's the only one I can think of.

Problem 7

Yes.

Okay. Ah. This is the product rule. We're doing the derivative of this times this. Plus
the derivative of this times this. Derivative of this is ah the derivative outside the
function, which brings the ten down and like doing a power rule with the brackets.
Times. This is the chain rule. Times ah the derivative of what's inside. So that takes
care of the derivative of this. And times this part. Plus, as I said, the derivative of this
is once again doing the product rule with the brackets. Times the chain rule in here. I'm
not quite sure I got the fraction part right. Ah. Times this once agaiin.

Okay. This bit about the outside and the inside, um, can you say more about that? Like
what is it representing in any way? Is it to you just an outside and inside, and you
know to do that? Or where does it come from?

He didn't take up the rule. He didn't take up the ah the ah the proof of it. That's what I
want to say. He didn't take up the proof of it but I can see what I'm doing. Ah. I know
what to do when it comes to the chain rule. But outside of that I'm not sure what to do.
It's a very complicated ah you know like it's graph would be pretty complicated
looking I'm pretty sure. So ah the derivative to it is even more complicated. I don't
want to question it. So. It's just that I do know what to do, but the proof for it, as I
said before I'm not interested in proofs anyways. So 1 couldn't tell you why I do that.
Okay. Um. Well what role do you see, whether it's this or anything else in your
calculus class. What role do you see the proofs playing in learning? Are they important
to your learning?

Some of the simpler proofs, yes, I find them fascinating. Like just the power rule,
simple power rule, um, product rule, quotient rule I find are great because I find that
somebody didn't just ah wake up and write this down and I have to study it now. Ah.
They actually did think it through. They actually did come up with it. But something
like this 1 wouldn't really be interested in, as to how they came up with it. I'm just
going to take their word for it.

Okay. Why is it you wouldn't be interested in it?

Um.

Do you feel it doesn't help to leam it? Or what?

No. Not that, because it's a simple process. Taking the derivative of anything is a
simple process. I'm satisfied with just knowing where they got the basics from. Um.
The definition of the power rule I found most fascinating. Like doing with the binomial
formula. 1 thought that was really interesting. But ah now when you get to the higher,
higher steps like this with the chain rule, I think "Okay, well, I've seen all the other
proofs. I know it works. I'll just know this."

Do you feel, I sense you feel satisfied with that. Having these rules and knowing they
work even if you can't get them for yourself. And that's okay with you?

Yup.

Do you have a feeling you need to convince yourself.

Weil I could if 1 wanted to. I could take, I could ah take this part of it and plugging in,
plug it into the definition I just showed you. F at x plus dx. I'm sure I could do that and
get the same thing 1 did here. You know. If I really wanted to go and waste of a
Saturday I'm sure I could.

Okay. So would it be fair to say because you could if you had to?

Y eah.

But you'd rather not, so you're willing to accept it?



415

Yeah. 'Cause like I know all these other proofs. I know all of them. The chain rule is
all complicated, so why bother if I know the other ones.

Okay. If 1 asked you to simplify this, could you do that?

(pause) It would take a long time. But, yeah, I could do it.

What would you do?

I would do this with the binomial formula. Does that work? Yeah. No. (pause) The
binomial formula only works when there's two numbers to an exponent, 1 believe. No,
it doesn't. I'm confused now.

But you feel you could simplify this?

Y eah. Yeah.

Y ou could do something with these terms?

Yeah.

Could you do that very easily?

Yes, but it would take a long time for sure.

Problem 9

[} 1 1 1

(pause) There's a derivative everywhere. (pause) Here it's zero. Here it's infinity. Um.
Oh, well here's a point that wouldn't. This one wouldn't.

Okay. Let's go back. Along here, between a half and two approximately, you said the
derivative was zero.

Right.

And then the points at one half. What did you say there?

It's infinity.

Why is that? Can you explain that?

Ah. The derivative, the derivative again is an infinitesimal change in x. If I take the
point right here. And a point just to the right of it. Going from here right up to herc.
And that is positive infinity. It's a straight line. The derivative of a straight vertical linc.
What if you went a little to the left?

Then that would be, then that wouldn't exist. Right at these points it wouldn't exist.
Okay. So right at this point it wouldn't exist? And how does the infinity relate to it?

Oh. Right at this point here doing ah a left-hand derivative it wouldn't exist, and a
right-hand derivative it would. And what was your question?

The left-hand derivative you say wouldn't exist.

It wouldn't exist.

Why not?

Because um (pause). I know there's an explanation for this. Right at this point if you
magnify it. You're magnifying the point and you still have a straight line. In order to
have a derivative you need a line. You don't need a point and a line to the left or the
right of it. You need ah a line where you can draw a tangent linc and a slope to it. Here,
like I said, a derivative just to the right of it exists. Left. Sorry. Just to the left it exists.
Infinitesimally. Right at that point it doesn't exist.

Okay. Just to the ieft it exists. And what would it be?

Zero.

Okay. And right at that it wouldn't exist.

It wouldn't exist.

And what about just to the right?

Just to the right it would be infinity.

Okay. That one you did explain. Um. Where else?

Well once again right at this point it wouldn't exist. But right to the right of it it would.
Um. (pause) Right at this point it does not exist. But inf. initesimally to the right and
infinitesimally to the left it's infinity. Because right down here it's pretty close to a
straight line. It will still be a curve because it's approaching the asymptote, but for all
practical purposes it will be infinity. It's almost a straight line.
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Okay. Are there other places there's no denvatne?

(pausc) Right herc. Becausc as I said you need some kind of a straight line or a curve.
And if you magnify this then you're still going to have a V and you can't take the
derivative of just a point. And that's just a point.

Okay. When you go through this magnification and you say you need a straight line.
Can you write that algebraically? In other words, this process you've explained tc me
about magnifying not a V, not a piece of a line, could you algebraically convince me
and say, like you could pick this one or this one down here. It doesn't matter. Pick one
you want. And algebraically show me why there is no derivative.

(pause) It's got to do with continuity. This 1s just a crack. (pause)

You're going to work with one of these?

Yeah. (long pause) I probably couldn't. If I had a little while.

What is it you've put?

This is continuity again. Um.

Do you know how the derivative relates to continuity?

(fong pause) I think so. Again, this is a couple of units ago, so it's hard to remember.
Um. Yes, the derivative has to be, the function has to be continuous wherever the
derivative is taken.

And is that what is prompting you to work with continuity?

Yecah. See what's mixing me up is it's continuous here. (pause) It's not continuocus
there. And the derivative exists there. No. Not right there. Just a little bit to the right.
It's continuous here but | know it doesn't exist theve. And the teacher explained why,
it's just I couldn't give it back to you.

Probiem 10

I took the derivative of this implicitly. Um.

Why did you do that?

'Cause you are taking the derivative with respect to x I'm assuming. Or I could have
taken the derivative in respect to y, but then I would have to do (unclear). All I have to
do...

What prompted you io take the derivative?

Because we're talking about the tangent line to the curve. So here, of course I'm saying
the slope, tangent line, right there, that tells me, 'cause for a curve you cannot take the
derivative as 1 said. It has to be a straight line for it to take a normal slope. If it's a
curve and a tangent line, derivative. Ah, do you know why i did it imphcitly or. . .
Can you tell me why you did it implicitly?

Well as before when you take the derivative you take it in respect to one variable. And
the other one you have to do it implicitly and treat it like a different function. Um.

Can | ask, what's this y prime mean to you then? Is it just a symbol you know to write
down or what is it?

All 1 know is that when I take, when | take the derivative in respect to something, other
than the variable I'm taking it in respect to, it's almost like the chain rule. You take ah,
you take the derivative and you treat it as if it was that variable multiplied by the
derivative of itself, which would be y prime. So here I di¢ um 2 y, which would be like
the derivative of itself if it was with respect to y. Times y prime. Um. I know that, 1
just know that from Math 31. And I know that now. And it's like treating it like inside
the function and outside the function. That's kind of how the professor explained. And
then I just solved, ] just solved for y prime and plugged the numbers.

Probiem 11

(pause) Right here. (pause) The number (mumbling). This is the highest slope on the
graph.

Okay. And how does the highest slope relate to the number of elk increasing most
rapidly?
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Here it goes from one thousand to 35 huidred in oh two and half years or whatever.
Ah. You won't find that anvwhere else on the graph. You won't find that kind of an
increase anywhere cise on the graph. You won't find that it increases three, ah two and
half thousand in a year and a half. You may find it closc here, but that's for sure where
1t's highest.

Ckay. What about part ¢?

(pause) (mumbling)

Why those three points?

'Cause they're stationary. Right in this one year you're still at seven hundred, or
whatever, four hundred. Here, between this one you're still there. Between this one
here you're still there. And right up here, which is probably a month, it doesa', it's not

all that stationary up there either. You're just at two thousand Y ou're not changing in
that time.

What is it that's not changing?

In this year span the amount of wolves isn't changing. You're at a stationary point. A
straight point. Ah. Here, in this onc year, during the wholc year, you're at probably
about a thousand wolves. During the whole year they're not going up or down.

What is it you mean by stationary then? A stationary point?

In reference to wolves or what?

Yeah.

None of them are dying. None of them are being born. There are onc thousand during
the whole year. If during the whole year they went from one thousand to five thousand,
they increased.

Okay. (tape runs out)

(waiting)

Why did you mark those two points?

That is where the rate of change increased. Was decreasing. Actually I'm thinking
number-wise here. This is where they decreased in number also. Um. (pausej Sce
when 1 hear rate of change I think slope. So think this is probably thc most negative

slope you'll get on this graph. I'm not sure if it has any link with this. Just number-
wise or the rate of change of numbers.

mber 12
You didn't talk about minimum. This is a Incal not a global, else I'd be worried about
that.
Okay. I'm not worried about that. If I gave you this. (writing) Asked you to interpre?
that and give me a shape, a piecc of a graph that has that property, those two, could you
do that?
(long pause)
And why have you done that?
Slope here is decreasing. Slope here is decreasing. But the rate of change of the slopc 1>
increasing because it's going upwards into a curve. It's going upwards because it's
changing from a negative slope to a positive slope. So the rate of change of the slope is
positive. Going from negative 1o positive.
Where did you get that from? From what part here?
Where do I get what?
What toid you to do the rate of change of the slope increasing? I've given you these two
things. How is it you're interpreting this?
Well I have to. ..
Y ou told me that's the graph.
Right. Well I have to connect them. I have to get a graph that has the same properties
for both of them.
So what's this property you're interpreting here?
Slope is the derivative.
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And what about this? o
The second derivative is pesitive means, second derivative is the rate of change of the
first derivative.

Personal Iniervicw

Turn on the radio. Because math, and sometimes this is the only course that I can do ah
turning on the radio I find it helps me concentrate more. And I enjoy the work that way
a little bit more too. Like (unclear). It's not important to you. I don't even have to look
at my notes from class. Because I follow everything he does in class and I understood
it in class. All I I have to do is go home and open up the book to where the questions
are. Hope 1 understand the guy who wrote the book, what he's trying to ask. I have a
hard time with that sometimes. And then just to do the work. Um. If I don't understand
the question, or if I'm a little stuck I'il look at the answer and I'll try to learn that way if
I'm sure what to do. Sometimes he'll show us what to do in the back.

What if you didn't have the answers? What would you do if you ran into a problem?

I would think well why do I have this problem if I understood everything in class? And
one conclusion would be that I don't understand the question. Or he didn't cover itin
class and maybe it's a question I don't, I won't have to worry about.

How do you decide when things are right and wrong?

About my answer? I look in the back. There. And ah if there isn't an answer in the back
I look at okay did I follow the steps correctly. And if I did I know it's going to be right.
Maybe if 1 didn't add something right somewhere or something. The answer itseif is
not important to me. It's following the steps, making sure 1 did everything correctly.
That's what's important to me.

Okay. Do you go through your notes and read the textbook regularly?

Um. I don't touch the textbook because he makes me angry.

Why?

Ah. You know the girl before me was saying aimost the same thing. I gave up on him a
long timec age. He uses words and illustrations which make it even harder to
understand. It's almost as on purpose he tries to make it simple but at the same time he
uses words and illustrations and ah subscripts that just looking at it you get scared. And
that's not what you want to do. Usually when you write a textbook the author goes
okay this is what you do here. Make sure you understand this. And ah, a good author,
and writes like that, instead of just okay this is what it is. Boom. And here you've got a
graph. Here's an example, and all these subscripts, and X's and little things that you
don't understand. And it makes me feel like I don't want to read it. I understand Dr. X
perfectly. He will cover what I have to know so why do I have to go here and just get
mixed up.

1t seems to me as you go through these you have a fairly good grasp of all this notation.
I asked many times for you to do it algebraically. And you could do it where people
usually can't when [ ask them.

Well that's because Dr. X does it in class, and | understand him perfectly.

Well what is it he does that helps you get that language aspect, the notation and words?

Well, ke talks while he does it. He talks. The author just writes it down. I'm just
looking at it. That's all I'm doing. Just looking at it. There as he's talking about 1t I'm
listening, I'm seeing, I'm hearing, and I'm interpreting. All at the same time. Looking
at it, all dx will be negative. Well, big deal. You know. I don't like the author at all.

Y ou don't know what that is? Is that what you're saying?

Well, I'm sure like in the book if um, in the book without having a lesson first of all, 1
would be scrambling, going "What is this?" Like the author might just mention in a
little note what this means. But it v ~uldn't mean anything. He'd say it, but it wouldn't
mean anything to me. That's what . -/>n't like about the author. He will say things. He
will tell you things, teach you things. And once again, the jargon and the symbols and
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everything, they just get me upset. So I just wait for the lesson. And with reference to
my own notes, | go through them like before a test.

What do you do when you go through them?

Actually, when I study for an exam is the only time I go back into my notcs pretty well.
And I don't even think I go through my own written notes. I do the sample exam in the
book, in his book. And I do the sample exam in the library that Dr. X has. And that's
pretty well all I need to do.

So you do a lot of practice exercises?

Yes. Oh yeah.

Do you, either after class, well you said you don't really ever go through notes. Do you
ever try to recreate the ideas for yourself to try to understand it?

No, because I do that in class. I follow him in class. I know what lic's doing. He kind
of got me lost yesterday on this really bizarre, well he kind of says this is the denivative
of the integral, but does it work backwards? Wait a minute. I can't even do it
frontwards. So that's the kind of thing I walk out of class and start thinking about.
Okay, okay, you know. He probably just did that. That rarely happens that I have to
walk out of class and think about what he said.

Alnght. What does it mean to you to understand calculus?

Not only calculus, but I have to understand everything. Right off the start. If I don't 1
panic. Anyone in the class can tell you that I get on their nerves because I'm always
talking. I've always got my hand up. I'm always chattering. Well why is this? Why's
that? Where did you get that from? And I ask right away. It's because I find that if T sit
there he'll write something on the board. I'll just sit there and I'll stare at it. While
fifteen minutes later he's covering something else, and I've lost it. And I don't hear
what he's saying. So I'd rather ask something now, right away, and then okay, sure,
that makes sense. So um to me to understand calculus is very important. I enjoy it. And
I think it's fascinating. You need an imagination of it. And soum . . .

In what way do you need an imagination for 1t?

This rate of the change of certain things and all this whole business you necd an
imagination. You need an imagination not only on paper but you have to kind of sec
what happens, what's happening at a certain time. You need to sce that. And yet a lot of
what is going on in calculus with infinity, and infinitesimals, and adding them, and
subtracting them. Sure you can do that on paper, but you kind of have to see what goes
on. You kind of have to imagine that these sequences kecp on going. They just don't
stop. So you need an imagination for it. ‘Cause you can't pick it up and go. Hm.

How do you know when you understand it? What tells you that you understand it?
That it makes sense. That it makes sense. Yeah, okay. It makes sensc.

Okay. Um. What, let me just, (mumbling). What are the things you find casy about
calculus and what are the things you find hard?

(pause) Things that I find hard are um hidden, hidden notations. The onc thing. Can |
give you an example?

Sure.

Ah. Summation notation. When you're not starting off with one right away. It's hidden
notation. It interpreted. You've got a sign up here above the sigma. Y ou've got two
signs down there, and you've got a function. You really have to, I don't find it hard,
but you have to think about it until you're used to it. Sigma notation and certain other
things have Kind of always been my weakness. But other than that everything is easy.
So it's related to the notation and interpreting it?

Yup. Yeah.

And are there things you find fairly easy?

Everything.

Okay. Um. What are the things you find help and hinder your learning that are outside
of calculus. The content. Other things in school, and other things that take away from
time or give you opportunities to learn calculus? Am I making sensc?
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Oh. What hinders my learning in calculus? Outside of calculus?

Y eah.

Nothing.

Do you feel you have sufficient time?

Oh yeah.

Are you exposed to calculus in any of your other courses?

Very little, maybe in some of my physics labs. To take time, €rrors, things like that. To
take errors. Nothing much.

Do you fecl confident in what you're doing?

In calculus?

Y es.

Oh yeah.

And why is that?

‘Cause I do it right. So when I do it right the second time I'll be right too, or should be.
Alright. Um. How much time do you spend studying calculus in an average week?
Um. (pause) Four to five hours.

And what do you do during that time? Is it just the exercises?

Just the homework, yup.

Okay. Um.

When there is an exam I study about four or five hours for the exam itself.

And how well are you doing in the course?

About a nine.

Before you started the course were you apprehensive at all?

No, because 1 had Math 31. I wasn't sure what to expect, and when I looked in the
book before I had a lesson 1 panicked. Of course, right. But um um no, 1 had math 31,
so.

Do you sec calculus as useful for your future career?

If I want to be a math professor, yes.

Is that what you want to do?

Y eah.

Do you see it as useful to society?

Y eah. For physics and everything else. And like we were doing with the elks and the
wolves. That's very important. For sure.

Um. So 1 guess you're taking calculus because you want to be a math professor, so it's
required, right?

Yes.

Why do you want to be 2 math professor?

1 like math. It's my strongest point. I'm not an English person. Um.

What is it you like about math?

Good question. Because I can, there's not a jot of reading involved. There's not a lot of
expression. 1 have a hard time expressing, not in language, but on paper. So writing
and art would be something so awful for me. I'm, I've got a good mark in English,
which is surprising, but that's something I have to learn. Something 1 have to leamn.
Math's just, just comes to me and it doesn't, um, it's comprehension, spitting it out on
paper. Or comprehension and working with the question. It's not as much of
expressing myself.

Okay.

I'm not all that well with that. I can't put ideas on paper, but I can put knowledge and
thoughts on paper. And that comes right through math.

Do you see then a difference between English and math being the way it is written !
Math being much more concise and precise?

Yes. Yes.

Do you think that's more (unclear) than more open expression?
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Yeah, I guess. The best way I can say it is it, you will write an essay and every time,
no matter how perfect the essay is, somebody will find something wrong, or a different
way to do it, or a different way to interpret it. Sentences can be infinitely, and
paragraphs can be infinitely juggled around. And math can only be done one way. One
or two ways. There's certain ways, you know. You take a step here, step two. Math

can only be done one way, and that's the only one way I'll have to worry about
knowing.

Follow-up Interview

You're a person who seems very confident in doing calculus. Why is that?

Because it stems from Math 31. I walked in not knowing anything and 1 found it
fascinating, and I guess, I guess why I found it fascinating was because the textbook
itself. When you look at it you're scared of it. It looks so complicated. But I calmed
down. I went step by step. It gives you a really good feel of it to follow something that
looks so complicated. And then I liked that feeling and I wanted to go on with it. And 1
found it fascinating because you need an imagination for the course. And then this
course here is just kind of a follow-up. A review of Math 31. So that's why I like it
Okay. What do you mean by you need an imagination?

Um. 'Cause you need to, you need to imagine it in your head. What goes on. You
can't, you can't see infinity. You have to imagine infinity. You can't see infinitely or
infinitesimally small. You have to imagine it. And on a test you don't, sometimes you
don't have time to draw all the little graphs and all that's happening. Y ou have to see in
your head what's happening. With the graphing.

Okay. And that you find very rewarding and fascinating?

Fascinating. Yes.

Okay. Um. Well when you had this book in Math 31 that at first looked overwhelming.
Why is it that it looked so overwhelming?

Because it's something I've never seen before. And even when you pick up um, I don't
know about you but if I pick up let's say a 400 level physics book or something and
looked in it it would look scary. Right. And that's how this book looked. It looked like
something that wasn't, it looked like Chinese. Something I could never understand.
Okay. But when you sat down and went carefully through it ...

Step by step. And that's when I actually could understand.

Okay. So this sense of achievement is a good thing for you?

Right.

Okay. Well then when you see that kind of thing with all this math language um that's
kind of scary at first, how is it that you make it accessible to you? Like this step by step
part. What's it all about? What do you do when you go step by step?

Um. They'll say a fact and I make sure I understand it. This thing that I'm talking about
in the book was derivatives from first principles. And they're complicated for
somebody who doesn't have a clue what's going on. So um | would look at what
they're saying. Look at their diagram. That makes sense. Go onto the next one. That
makes sense. Go onto the next one. Okay, I understand. And just kecp on going like
that.

Okay. So you'd take it, you'd take each part and try to make sense out of each part as
you went along.

Yes.

Okay. Um. Well what would you say really motivates your way of learning? You seem
to be aiming at understanding, wanting to understand things? Why is that? What has
brought you to that point? Approaching your learning that way?

Because if it comes to you, a question that doesn't deal with exactly what you took in
class. If it's an application of it, then I'll be able to answer it. Do you sce what I'm
saying?

Can you explain more?
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If we take up something in class and I understand it, but it's a totally different question
on the exam, but it uses the theory behind what I learned in class. If ] understand the
theory and I understand the application of the theory I'll be able to answer this question
on the exam. If I just memorize what we're doing in class and 1 just use photographic
memory or something, that's not going to work for answering this question.

Why not?

Because you you can't ah ah learn by memorizing everything. Because you have to
interpret it. You have to (unclear) with it and you have to understand the theory behind
a certain form. The theory behind a certain something and then apply it to something
else.

Okay. Well when you're doing calculus and you're using your notes or working a
problem, do you try to recreate the ideas for yourself or do you just (tape runs out).
Together versus well I know for this I just do this? Or is a mixture of both, or?

Well when it comes to the product rule or the power rule or the quotient rule, I know
how to prove them, but I don't know why somebody came up. Well I guess in the
proof you see how they came up with that. But um that's about it.

Are you saying then ceriain things you don't worry about where it came from because
it's not important to what you're doing at the moment?

Yes. Mmhm. Mmhm.

Okay. But then are there other times that um you feel you're trying to fit it together
more?

Mmhm. Mmhm. Mmhm.

Can you think of any examples?

Well from unit to unit you fit together everything that you learned before. Like limits
applies to hyperreals and derivatives applies o hyperreals. Everything you learn applies
to infinitesimals and infinites. It all fits together.

How do you decide when you understand things?

If it makes sense.

In what way? How does it make sense?

Ah. Because I can go home and do it on my own. Because I can ah, just by listening to
him I can go home and apply it on my own.

Okay. When you work through problems, your exercise questions, um, what happens
as you work through more of them? What, as you get the experience doing more, what
sorts of things go on?

That ah I know this. And I feel that I know this and I den't have to go on and do any
more of it.

Okay. Do you ever find that you start doing exercises and you really don't know what
you're doing but by doing exercises you get an understanding of it?

Y es. Maybe not in this course but in past math courses.

Okay. But in this course it's not so much that way?

No. Because | don't let myself slip. If I don't understand something in class, I'll ask
right away. I don't want to think "Well I'll understand it later.” 'Cause I won't.
Especially with his textbook I won't understand it later. Definitely not. And um if I
don't understand something in the exercises which is usually common. If I don't
understand his answer I'll go through the notes and ask what am I doing here? What
am | doing?

Okay. Um. Let's take a look here. This is the one.

Straight line. I realized it afterwards.

(talk about what was done in the tutorial that morning)

But it's still undefined at two though.

Right. It's undefined. But it’s not an asymptote.

It's zero.

It's just a straight line and it's got a hole in it. (etc.)

But the equation of ail this graph, is it this? Or is it y equals x minus three?
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(answer) When people in general talk about "Oh I know. 1 just can't remember."
What's that all about for you?
Well here I was really concentrating on the ah on the interview itself. If this wason a
test or something I would give it a second shot. And I realized when I had walked out
that I'd made a complete fool of myself. And ah usually on a test I'm not the type of
person to ah to "Oh God, (unclear)." Before the test I put in about four or five hours.
Here I was (unclear) on you and what I could give you, rather than what (unclear). So
on an exam I don't usually blank out unless, in a mathematical situation I don't
(unclear).
You're one of the few that when I asked them to do it symbolically could do
something. Do you have any idea why that is? Why, do you find the symbols have
meaning for you that way?
Well once again, when he writes a symbol on the board I understand it. And 1 know
when he says the definition of a derivative, even though it looks funny it's an
infinitesirnal change in y over an infinitesimal change in x. Even though therc are x's
and dx's and y's all over the place. I can see that it's a change over a change.
Okay. How do you make use of those symbols in calculus, in the learning of calculus?
Do you find they actually help you? Do you see a use for them or do you think that it's
the way it's written down so you have to learn it?
Well, continuity, it makes sense. It makes sense that in order for somcthing to be
continuous, if you look infinitesimally left of the point it should still round off to the
point of that function. And if it doesn't that means that that point is somewhere else.
Okay. Do you find that what you say there in the English you can relate it to the
symbols? You have a way of translating it back and forth.
Umhm. Some of them I couldn't. (unclear)
But in general do you think that you are able to do that?
I'm only able to do that with something that I have already lcarned. I would have had a
hard time to put something symbolically or algebraically that I didn't Icarn how to do.
Like this is stuff we took in class.
Okay. But something that you didn't understand you would then not be able to translate
it?
No.
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Appendix U - Summary of the Analysis of the Interviews for Students’
Sources of Conviction

Each interview transcript was read several times. Initially, particular attention was
paid to a student's statements and comments while responding to the calculus problems in
the clinical portion of the the interview. Whenever the student made reference to things
learned or remembered from class, the teacher or the textbook, mathematics rules,
mathematics concepts, visually or physically oriented descriptions or interpretations, or
personal beliefs about mathematics concepts or procedures, the margin of the
corresponding text was marked with one of the initial sources of conviction codes: 1M,
IE, ER, EO (see Chapter 3). Nexl, the entire interview transcript, and in particular the
text from the personal interview, was read again. Whenever the student made reference to
her or his strategics for learning calculus, personal sense of understanding of calculus,
perceptions of calculus, or particular experiences in calculus, the corresponding text was
underlined.

With the aid of a word processor the underlined portions of each transcript were
then copied verbatim to a separate file. Through this process of re-copying a student's
words, re-reading the words, and remembering the sound of the student's voice when the
interview was conducted, the researcher was able to begin to identify similarities and
differences in various students' sources of conviction. It was at this point that the potential
of three possible types of learners was conceived. Preliminary descriptions of these three
types were then formulated. Next, the individual files with interview excerpts were read
several times. The original texts were often referred during these readings so as to hear
students' words in the context in which they had been stated. The purpose of these
intensive readings was to allow a student's own perceptions of his or her calculus learning
to emerge. This cverall manner of proceeding was similar to that used by Belenky et al.
(1986) to analyze interviews conducted "to explore with women their experience and
problems as lcarners and knowers" (p.11).

Finally, salicnt features and quotes form each interview transcript were recorded on
cards, one card for each student. These cards were then studied and sorted intc one of the
three initially identified and described learner types. Not all students could initially be
classified as members of one of thiese three groups. In particular, the unabridged text from
the interviews with Betty, Cindy, Leanne and Nadine had to be re-examined before the
researcher could confidently classify these students. The final descriptions of the three
groups who differed as to the nature of their sources of conviction, as well as the names for
the three groups (Collectors, Technicians and Connectors) were then developed.
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Appendix V - Reader Access to Instructional Materials for the Three
Calculus Courses

For reasons of confidentiality the post-sccondary institutions which formed the
research settings for this study cannot be named. However, readers who arc interested in
learning more about the instructional materials at any of these three institutions should
contact the author through one of the addresses listed below. Please state in writing your
intentions in having access to these instructional materials. I will contact the appropnate
individuals and forward your letter on your behalf. At the time of writing this note 1 am no

longer residing in Canada, so please be patient if correspondence seems to be long in
coming.

Dr. Sandra D. Frid

c/o Karen Simmons

1 Idlewood Drive

R.R. 3

Barrie, Ontario, Canada
L4AM 4S5

Alternatively:

Dr. Sandra D. Frid

Department of Secondary Education
University of Alberta

Edmonton, Alberta, Canada

T6G 2G5



