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Abstract

This dissertation integrates geographic information systems (GIS), 

optimization modeling, aggregation, and heuristic methodologies to study facility 

location planning on a network with different types of consumers.

Traditional flow-interception location models (FILM) locate facilities to 

intercept as much traffic as possible, without considering where. Chapter Two 

develops a model that accounts for consumer desires to receive services at or near 

specific locations along their trips.

Location researchers tend to introduce changes in objective functions or 

assumptions by developing new models, hampering the development of standardized 

software that would encourage widespread use o f flow interception models. Chapter 

Three formulates a generalized model encapsulating all known and many proposed 

FILM problems through simple data, or occasionally, constraint changes.

Traditional location theory views consumers as travelling from fixed points; 

their convenience is measured by distance from these points to the nearest facility. 

FILM theory views consumers as flows traveling on predetermined paths; their 

convenience is measured by distance from these paths to a facility. Chapter Four 

accommodates a more realistic view of consumers, that they choose a facility based on 

its greater convenience to either their home or their travel path, substantially 

improving the location modeling outcome. Location researchers have traditionally 

developed different models for different consumer types. Chapter Four further 

develops a strategy for unifying consumer types and location models. A generalized
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model encompasses at least sixty existing models, including the /^-median model, the 

maximal covering location model, and FILM.

Flow databases are often too large for location models to handle. Chapter Five 

integrates GIS, optimization, and heuristics to develop a system of efficiently 

aggregating flow data for location models. We apply this system to the classic FILM 

model using 2001 Edmonton afternoon peak traffic data and find it to be effective and 

free o f aggregation error.
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Chapter 1 

Introduction

Almost every enterprise in the private and public sectors faces the problem of 
strategically locating facilities to provide services to consumers on a transportation 
network. Industrial firms must identify locations for plants and warehouses that 
minimize total fixed costs and transportation costs. Retail outlets must locate stores 
that have geographical advantages. Government agencies must build public service 
facilities such as schools, hospitals, public libraries, post offices, bus stops, fire 
stations, vehicle inspection stations, and landfills in locations convenient to users. 
Location theory provides decision makers with strategic, analytical, and quantitative 
tools for seeking locations where fixed and operating costs can be kept low and 
accessibility to markets can be kept high. Due to the complexity, strategic importance, 
and widespread application of these tools, this field has attracted many researchers 
from the disciplines of operations research/management science, geography, 
economics, marketing, urban and regional planning, transportation planning, and 
engineering, among others.

Location theory has been of interest for a long time. The tradition of 
determining optimal location patterns for specific facilities goes back as far as Fermat 
(1601-1665), who put the problem on a mathematical basis, and continued through 
Weber (1909) who located industrial firms to minimize transportation costs. Other 
seminal location publications include: Von Thtinen (1826), Hotelling (1929), 
Christaller (1933), Weiszfeld (1937), Cooper (1963), Hakimi (1964, 1965), Balinski 
(1965), ReVelle and Swain (1970), Toregas et al. (1971), and Church and ReVelle 
(1974). It is generally acknowledged that the roots o f agricultural location theory can 
be traced back to 1826 when Von Thunen published his classic work The Isolated 
State (O’Kelly and Bryan 1996). His research uncovered laws that govern the 
interaction of agricultural prices, land uses and distance, as farmers seek to maximize 
profit. Hotelling (1929), a renowned economist, considered the problem of locating 
competing facilities through the simple example of two ice-cream vendors along a 
beach strip. Christaller (1933), a Germany geographer, introduced central place theory 
to explain how location influences the evolution of systems of cities and towns. 
Weiszfeld (1937) provided the simplest and most common used technique (called 
“Weiszfeld procedure”) to solve the Weber problem. Cooper (1963) introduced a 
simple location-allocation problem, which optimally locates service facilities and 
allocates demand to them. Hakimi (1964), an operations researcher, introduced and 
brought invaluable insight to the /3-median problem on a network -  minimizing the 
total (therefore average) distance that is traveled by those who utilize the facilities. 
Hakimi (1964, 1965) addressed the /3-center problem which minimizes the maximal 
distance that is traveled by those who utilize the facilities. Balinski (1965) introduced 
the plant location problem which seeks the location of an unknown number of 
facilities so that the sum of manufacturing costs and delivery costs is a minimum. 
ReVelle and Swain (1970) first formulated the /3-median problem as an integer linear
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program. Toregas et al. (1971) introduced the set covering location problem which 
seeks the minimum number o f facilities in a manner that all demand points are 
covered by at least one facility within a distance standard. Church and ReVelle (1974) 
introduced the maximal covering location problem which aims to locate p  facilities in 
a manner that maximizes the number of covered consumers.

A network location problem may be characterized as the problem of 
identifying the placement o fp  facilities on a network to serve a spatially distributed 
set of demands in a manner that optimizes a designated objective function. Since the 
early 1960s, hundreds of network location models have been proposed in thousands of 
academic publications due to the ubiquity of locational decision-making, as well as the 
general availability of high-speed computers and efficient optimization methods. 
Brandeau and Chiu (1989) identified over 50 problem types in location theory 
appearing in over 40 different scholarly journals. Hale (2006) listed over 3400 
location theory references. Several representative books edited by Ghosh and Rushton 
(1987), Mirchandani and Francis (1990), Dicken and Lloyd (1990), Daskin (1995), 
Drezner (1995) and Drezner and Hamacher (2002), provide a rich collection of papers 
on location theory. Scholarly journals that historically have played an important role 
in the area of facility location include Annals o f  Operations Research, Computers and 
Operations Research, Environment and Planning, European Journal o f  Operational 
Research, Geographical Analysis, HE Transactions, INFOR, Journal o f  Retailing, 
Journal o f  Retailing and Consumer Services, Journal o f  the Operational Research 
Society, Location Science, Management Science, Naval Research Logistics,
Operations Research, Papers o f  the Regional Science Association, Socio-economic 
Planning Sciences, The Professional Geographer, The Annals o f  Regional Science, 
Transportation Research, and Transportation Science.

Traditional location theory views consumers as travelling from static and fixed 
points (e.g., homes); their convenience is measured by distance from these points to 
the nearest facility (point-based demand). Since the early 1990s, there has been 
considerable research interest, represented by about 40 academic publications, in 
flow-interception location theory (e.g., Hodgson 1990; Berman, Larson, and Fouska 
1992; Berman, Bertsimas, and Larson 1995), which views consumers as flows 
travelling on predetermined origin-destination (OD) paths (e.g., daily commute 
between home and workplace); their convenience is measured by distance from these 
paths to a facility (flow-based demand). Flow-interception theory has been applied to 
the strategic location of automatic teller machines and convenience stores (Berman, 
Hodgson, and Krass 1995; Hodgson, Rosing, and Storrier 1996; Wang, Batta, and 
Rump 2002; Turner 2006), advertising billboards (Averbakh and Berman 1996; 
Hodgson and Berman 1997), vehicle inspection stations (Hodgson, Rosing, and Zhang 
1996; Gendreau, Laporte, and Parent 2000; Miller and Shaw 2001), park-and-ride 
facilities (Horner and Grove 2006), gasoline stations and refuelling facilities (Kuby 
and Lim 2005, 2007; Kuby 2006; Upchurch, Kuby, and Lim 2006), and cellular base 
stations (Erdemir et al. 2006). In addition, Berman, Bertsimas, and Larson (1995) 
developed several models to address generalizations of flow-interception problems 
where flows are allowed to deviate from predetermined origin-destination paths. The
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reader is referred to Berman, Hodgson, and Krass (1995) and Hodgson (1998) for 
more detailed reviews of these models.

Facility location planning is a key decision in the long-term efficiency of 
operations. This dissertation integrates geographic information systems (GIS) such as 
ArcGIS, optimization modeling techniques such as AMPL/CPLEX, aggregation, and 
heuristic methodologies to study facility location planning on a network with different 
types of consumers. A brief description of each chapter is as follows.

Chapter 1: This chapter introduces the background o f location theory and the 
objective of each chapter.

Chapter 2: The standard FILM problems implicitly assume that there is no 
indication o f where in the journey the flows are intercepted, nor is there any impetus 
to prefer one location over another. However, for most real-world facilities (e.g., 
convenience stores, fast food outlets, gasoline and refueling stations), this assumption 
is tenuous because consumers often desire to obtain a product or service at or near a 
specific location along their trip, frequently at their trip origin or destination. I note 
that the classic flow-interception location model (FILM) (Hodgson 1990; Berman, 
Larson, and Fouska 1992) seeks to optimally locate service facilities, but does not 
explicitly consider the allocation of flow-based demand to facilities. That is to say that 
FILM does not consider where a consumer is served. Thus, in location theory, FILM 
is considered to be a location model rather than a location-allocation model. The 
implication o f this observation is that FILM cannot directly take into account 
consumers’ locational preferences. The objective of chapter 2 is to formulate a flow- 
interception location-allocation model for considering consumers’ locational 
preferences. In other word, it focuses on shaping our understanding of geographical 
advantages and consumers’ behaviours.

Chapter 3: Location researchers tend to introduce changes in objective 
function and/or assumptions by developing new models. Over 30 different flow- 
interception models spanning about 40 academic publications have been proposed 
during the past 17 years. This has created numerous disparate models, each viewed as 
requiring its own solution method, challenging the development of standardized 
software that would encourage widespread use of location models in real-world, 
strategic, decision-making processes. I note that the structure o f most flow- 
interception models is similar. The objective of chapter 3 is to formulate a generalized 
flow-interception location-allocation model for solving different kinds of flow- 
interception problems using a single framework. I expect that this single, generalized 
framework will also ease the burden on flow-interception decision makers.

Chapter 4: Traditional network location theory assumes that consumers 
patronize facilities near demand points (Type A consumer). Flow-interception location 
theory assumes that consumers patronize facilities near predetermined paths (Type B 
consumer). In the real world, however, consumers often choose a facility based on its 
greater convenience to either their homes or their travel path. Chapter 4 calls these 
consumers Type C consumers. Most people in the real world are Type C consumers -  
they are not as selective of the actual location as Type A and Type B consumers. The 
literature has neglected Type C consumers. The major objective of chapter 4 is to
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study the importance of Type C consumers in location analysis. Location researchers 
have traditionally proposed models for different types o f consumers in isolation. This 
research progression has split flow-interception theory and traditional network 
location theory. Another major objective of this chapter is to develop a generalized 
and efficient strategy for unifying consumer types and associated models. In other 
words, chapter 4 focuses on satisfying consumers’ diverse desires and needs while 
simultaneously easing the burden on location decision makers.

Chapter 5: Large-scale location problems often cannot be solved optimally.
The volume of flow-based demand data grows very quickly as the number of origins 
and destinations increases, and even with the most efficient and specialized heuristics, 
good solutions to large flow-interception problems will be beyond the capability of the 
personal computer. The objective o f chapter 5 is to solve large real-world flow- 
interception problems by aggregating flow-based demands using GIS. In other words, 
it aims to overcome the difficulties of applying flow-interception problems to real- 
world situations and reducing the burden on flow-interception decision makers.

Chapter 6: The most important contributions of each chapter and future 
directions are reviewed.

The body of this dissertation (chapters 2 through 5) is written with the intent to 
enable readers to read selected chapters without having to read the entire dissertation. 
A concise and factual summary (maximum length 300 words) at the beginning of each 
chapter is also able to stand alone. The chapters are presented in order o f increasing 
complexity. Readers without a background in location theory are encouraged to go 
through them in numerical order.
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Chapter 2 * 

The Pickup Problem: Consumers’ Locational Preferences in Flow Interception

Summary: In this chapter, I address what I call the pickup problem  wherein patrons 
briefly interrupt a predetermined journey to obtain a simple good or service, such as 
fast food or a video, and then resume their journey. This is a problem of the class 
known as flow-interception location problems. Traditional flow-interception models 
are used to select service locations such that the flows that are intercepted are 
maximized. I note that in these traditional models only flow quantities are considered 
and where in the journey the pickup is made is not considered. However, in the real 
world, consumers often wish to obtain a product or service at or near a specific 
location along their trip. In this chapter, I propose a pickup model (PUP) that 
considers consumers’ locational preferences, providing a much broader, more realistic 
approach than FILM (a special case o f PUP) to problems in the private and public 
sectors. By considering which patrons are served where, PUP transforms the flow- 
interception location model to a flow-interception location-allocation model, 
providing a fruitful garden for further research. I demonstrate and apply the PUP 
model to morning and afternoon peak traffic flows in Edmonton, Alberta, Canada. I 
integrate geographic information systems (GIS) and optimization engines to 
investigate the PUP model in real-world transportation systems. My numerical 
experimentation demonstrates that the optimal locations identified by traditional 
models arise solely from network flow structure, whereas the optimal locations 
identified by PUP result from the tradeoffs between the network flow structure and the 
importance o f proximity to preferred locations. I discover that solutions of PUP are 
superior to those of traditional FILM if consumers have locational preferences. The 
up-to-date, real world transportation networks provide a realistic test-bed for this and 
other models of the flow-interception type.

* A version of this chapter has been accepted for publication.
Zeng, Weiping, M. John Hodgson, Ignacio Castillo. 2007. The pickup problem: 
consumers’ locational preferences in flow interception. Accepted on February 10, 
2007 for publication in the special issue of Geographical Analysis, edited by John R. 
Current, Richard L. Church, and Mark S. Daskin (in memory of Charles S. ReVelle, a 
leader in location science)
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2.1. Introduction
One o f the most important ways an industrial firm, retail outlet, or government agency 
can enhance its chances of success is to identify a good location. One approach is to 
use location-allocation models that optimally locate service facilities and allocate 
demand to them according to a specific objective. Traditional location models such as 
the /^-median model (ReVelle and Swain 1970) and the maximal covering location 
model (Church and ReVelle 1974) deal with demands expressed at fixed locations in 
the network (point-based demand). Demands for many services are, however, 
expressed by flows in a network. Since the early 90’s, there has been considerable 
research interest, represented by over 30 published academic articles, in the flow- 
interception location model (FILM), in which demand is represented as flows 
traveling on origin-destination (OD) paths o f a network (flow-based demand). The 
applications of flow-interception theory have covered the strategic location of 
automatic teller machines and convenience stores, advertising billboards, vehicle 
inspection stations, park-and-ride facilities, gasoline stations and refuelling facilities, 
and cellular base stations.

Standard flow-interception models involve the placement o fp  service facilities 
aimed at maximizing the gross amount of intercepted flow: flows are intercepted or 
not, there is no indication of where in the journey they are intercepted. Nor is there 
any impetus to prefer any location over another. In the real world, however, 
consumers often wish to obtain a service at or close to a specific location along their 
OD path. In this chapter, I address the optimal location o f facilities at which products 
are picked up, or services received, along a pre-determined trip, such as the daily 
commute between home and workplace. Unlike in the traditional approach, however, 
patrons often express locational and proximity preferences (referred to hereafter 
simply as locational) for their visits. Fundamental to the modelling of locational 
decisions is some measure of proximity. I envision four types of consumer locational 
preference scenarios representing a wide spectrum of consumer choice.

(i) The “Video” scenario: patrons have no locational preferences -  they 
simply wish to pick up a video on their journey home to or from work.

(ii) The “Coffee” scenario: patrons wish to pick up their cup of coffee as 
early in their trip as possible so that they may enjoy it while driving from 
home to work.

(iii) The “Pizza” scenario: patrons want to pick up their pizza as late in their 
trip as possible so that it will be as warm as possible when they get home.

(iv) The “Hamburger” scenario: patrons want to pick up their hamburger as 
close to where they will be at lunchtime during their journey.

I use the term “Where” scenario to generalize these scenarios in which the consumers 
have preferences as to where in the journey the pickup is made, e.g., scenario (ii), (iii) 
and (iv).

In this chapter, I introduce a common principle that embraces any “Where” 
scenario: the benefit arising from locational preferences as to where the potential 
service is received. Based on this principle, I proposed a benefit-maximizing pickup 
location-allocation model. This model, like FILM, is context free; it is potentially
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applicable to any flow-based facility location system where consumers have locational 
preferences. I believe the pickup concept expressed through the four scenarios to be an 
excellent way of introducing this principle and model to the literature, thus I refer to 
my model simply as PUP.

Commercial optimization engines (e.g., CPLEX 9.1) are reliable and easy-to- 
use engines for solving linear and integer optimization models such as the PUP model. 
A geographic information system (GIS) is a system for management, analysis, and 
display o f geographic knowledge, which is represented using a series of information 
sets such as maps and globes, geographic data sets, processing and work flow models, 
data models, and metadata (ESRI 2007). GIS engines (e.g., ArcGIS 9.1) provide 
powerful tools for users to visualize and examine spatial relationships among entities, 
and to represent data in a way that may reveal patterns and relationships that are hard 
to detect using nonvisual approaches. In this chapter, I integrate ArcGIS 9.1 and 
CPLEX 9.1 to examine the PUP model with two traffic networks for Edmonton, 
Alberta, Canada. A smaller network is trimmed to a suitable size for demonstrating the 
workings of PUP; the other network tests the model’s capabilities in a middle-size, 
realistic network setting.

2.2. Background
2.2.1 The Flow-interception Location Model
Hodgson (1990) and Berman, Larson, and Fouska (1992) independently developed the 
flow-interception location model aimed at demand represented as flow traveling on 
various paths of the network. FILM is designed to locate p  facilities so as to maximize 
the number o f consumers who encounter at least one facility along their trips. The 
problem is formulated as (Hodgson 1990):

In this formulation, the input data is:
Q = the set of nonzero flow paths indexed by q 
J  = the set of potential facility sites indexed by j  
j  e q  = the set of potential facility sites along path q 
f  = the flow volume on the path q

p  = the number o f facilities to be located 
and the objective function and decision variables are:

Z F = the objective function, total flows intercepted at least once

Maximize: Z F = Y , f qx <1 (1)
960

s.t.
X'Z'ZYJ,VqeQ (2)

(3)

X q G{0, 1 } , \ fq&Q  
Y j E { 0 , \ } , V j e J

(4)
(5)
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fl if  the flow on path q is intercepted by a facility along the path q 
q [O otherwise

fl if  there is a facility located at potential facity site j  
J [0 otherwise

The objective function (1) is aimed at intercepting as much flow as possible, 
subject to the constraints that flow on path q cannot be intercepted unless there is at 
least one facility along path q (2), and that exactly p  facilities are located (3). 
Constraints (4) and (5) are the standard integrality conditions.

The FILM model is mathematically equivalent to the classic maximal covering 
location model (Church and ReVelle 1974). FILM is a fruitful garden for research. 
About 40 academic articles based on FILM have been published during the last 17 
years. Yet, FILM itself is under-defined as a location-allocation model, which should 
consider where facilities should be located and which demands should be allocated to 
which facilities. FILM seeks to optimally locate service facilities, but does not 
explicitly consider allocation of demand to the open facilities. For this reason, I call 
Hodgson’s model a flow-interception location model, although it is often incorrectly 
called a location-allocation model in the literature (Hodgson et a l 1990,1993, 1996, 
1998, ReVelle and Eiselt 2005).

2.2.2 The Pickup Problem
In this section, I introduce the pickup problem. Within simple network situations, I 
begin by considering the four pickup scenarios which illustrate how I use a benefit 
function to represent the locational preferences of patrons. In the “Video” scenario, 
patrons have no locational preferences -  they do not care where in the journey the 
pickup is made. The benefit of intercepting a unit of flow is constant at each node 
along the trip (Figure 2-1-A). I can directly apply the traditional FILM to this situation. 
In any “Where” scenario, the benefit o f intercepting a unit of flow is different at each 
potential facility site on a path: the traditional FILM is thus not appropriate. I 
introduce a subscript j  to indicate location at potential facility site j  in path q, and a 
term by to indicate the benefit of intercepting one unit of flow on path q at potential 
facility site j .  I introduce a new decision variable: X qj = 1 if the flow on path q is
intercepted by a facility at site j  and 0 otherwise. The objective function then becomes:

Maximize: Z F = I I / A * ®  (6)

The goal becomes to maximize the total benefit of intercepting flows in a network 
considering where in the journey they are intercepted.

I use simple contrived examples to illustrate the relationship between benefits 
to preferred locations. In any scenario, benefit is greatest (a value o f 1.0) at the most 
preferred location and decreases by 0.2 (or any other predefined factor) with each 
increment of distance from it. For instance, the benefit of “Coffee” pickup decreases 
from origin to destination (Figure 2-1-B, bqi = 1.0, bq2 = 0.8, etc.); the benefit of 
“Pizza” pickup increases from origin to destination (Figure 2-1-C, bqi = 0.2, bq2 = 0.4, 
etc.). If patrons wish to pick up a hamburger at a particular time, the node nearest to
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where they will be at that time (I assume node 4) is the preferred location and the 
benefit o f “Hamburger” pickup decreases with distance away from that node (Figure 
2-1-D).

Simple two-origin, one-destination trees (Figure 2-2) better demonstrate the 
flow interception characteristics of this problem. Suppose there is one unit of flow on 
each OD path. At any node, the benefits of intercepting both flows may be aggregated. 
In the “Video” scenario (Figure 2-2-A), nodes 1 and 3, and nodes 2 and 4 intercept 
only flows from one origin, while nodes 5, 6 and 7, intercept both flows: benefits are 
aggregated to 1.0 + 1.0 = 2.0, any of these three nodes (nodes 5, 6 and 7) is optimal. In 
the “Coffee” scenario (Figure 2-2-B), benefits decrease with distance away from the 
origin. The optimal location for the system is at node 5, which provides a benefit of 
0.6 from each path; neither is served optimally but the total benefit for the system is 
maximized. In the “Pizza” scenario (Figure 2-2-C), the destination gets 1.0 unit from 
each OD path and is optimal for the system. In the “Hamburger” scenario, benefits are 
calculated as illustrated in Figure 2-2-D. I consider much more complex networks in 
the numerical experimentation section.

2.2.3 The Benefit Function
The value that a customer obtains from a service is, in many cases, a function of how 
close the service facility is to the preferred location. The benefit of locating a service 
facility for pickup arises from the various consumer locational preferences. As I have 
defined it, bqj is the benefit of intercepting one unit of flow along path q at node j .
From origin to destination, b^  is constant for “Video;” decreasing for “Coffee”; 
increasing for “Pizza;” and variable for “Hamburger.” The common thread is that in 
each scenario bqj decreases with distance away from the preferred node(s) on path q. I 
define dqj as the distance from node j  to the preferred location for patrons of trip q\ 
thus b^  is, in general, a decreasing function o f dqj.

In real life, the actual benefit function will depend on the specifics of the 
particular study area, product, consumer, and so on. An appropriate function might be 
obtained from a variety of sources such as marketing and expert surveys. Regardless 
of how complex the benefit function might be, however, bqj is expressed in the 
objective function of my model exogenously as a parameter: the structure of the model

—ad ■
is not changed. Here, I define b^■ = e * , a > 0. The exponential decay is appropriate
for loss of heat from coffee (or pizza) although utility may not decline at the same rate 
That is, I follow the suggestion proposed by Berman (1995) in the context of a model 
entertaining deviation from predetermined flow paths. I note that a, the scaling 
constant of the benefit function, is used to measure the importance of proximity to the 
preferred location for consumers. I emphasize that when a = 0, the value o f bqj is 1.0 
despite the value of d  ., in which case (e.g., the “Video” scenario) the objective of my

model reduces to that of FILM.

2.3. Model Formulation
The traditional FILM model is aimed at maximizing the number of consumers who
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encounter at least one facility on their trips. The traditional ^ v a ria b le s  in FILM
identify whether there is at least one facility along path q. My PUP model is aimed at 
maximizing the benefits arising from the location where consumers encounter 
facilities, determined by their locational preferences. The new X  . variables in PUP

identify at which facility flow along path q is intercepted: X  . = 1 if the flow on path q
is intercepted by a facility at node j  and 0 otherwise. The mathematical formulation of 
PUP is:

Maximize: Zp (7)
ye?

s.t.
2X<1 , V q s Q
j e q

(8)

x qi^ Yj y < i e Q’j eci (9)

j e j
(10)

X q j  G {0, 1}, V<7 e Q , j  e q (11)
Yj  ^ {0, 1}, Vy e J (12)
The objective function (7) aims at maximizing the benefit that arises from the

different consumer locational preferences. Constraint (8) ensures that flow on path q is 
intercepted by at most one facility located in the path. Constraint (9) ensures that flow 
on path q may be intercepted at a node only if there is a facility located there. 
Constraint (10) ensures that exactly p  facilities are located. Constraints (11) and (12) 
are the standard integrality conditions. Like the traditional FILM model, the PUP 
model is not particularly “integer friendly.” My real-world examples below show that 
relaxing v a r ia b le s ^  of PUP (0 <Xqj < 1) obtains, in general, integer values and better 
solution speed due to a reduction in the number of branching iterations needed.

Before getting to the numerical experimentation, I discuss the node-optimality 
of PUP. For the “Video” scenario, the objective function aims at intercepting as much 
flow as possible. This scenario has node-optimality -  location at a node is always at 
least as good as location on a link because either endpoint o f a link can intercept all its 
flow. For the “Where” scenarios, the objective function aims at intercepting as much 
flow at or close to preferred locations as possible. When all preferred locations are at 
network nodes, PUP has node-optimality -  at least one endpoint of a link is better than 
location on the link because at least one endpoint of a link intercepts all its flow and is 
closer to the preferred location for its flow. When some preferred locations are on 
links, PUP does not have node-optimality -  a preferred location on a link may 
intercept the same flows as either endpoint of a link, and, obviously, be closer to the 
preferred location than are the endpoints. Here, I can simply add each preferred 
location on links as a network node to guarantee at least one network node that is 
better than location on a link. In a word, the “Video” scenario always has node- 
optimality, while the other three “Where” scenarios have node-optimality only if all 
preferred locations are at original or added network nodes. I note that with large real- 
world data, the “Hamburger” scenario may have more preferred locations on links
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than there are original network nodes because the number of OD flow pairs may be 
much larger than the number of network nodes. For advanced ways of adding network 
intersection points in other related models, readers are referred to Kuby, Lim and 
Upchurch (2005).

2.4. Numerical Experimentation
My study uses traffic data for Edmonton, Alberta, Canada, a prairie city of about 
700,000 population in an area of around 700 km2 (Census of Edmonton, 2005). My 
data were provided by the City of Edmonton Transportation and Streets Department 
(TSD), who aggregated the data into traffic zones represented as centroids. Zone 
centroids are connected to the transportation network by one or more feeder links and 
interzonal traffic. Travel times and distances are estimated for each traffic zone’s 
centroid. Flows are vehicle flows for all pairs of traffic zones in the full Edmonton 
area. TSD states that their data have been produced according to industry standards 
and that their forecasting model is highly recognized throughout North America. My 
CPLEX implementation simply reads flow paths as data and maximizes the benefit of 
intercepting flows along the paths however they are defined. Sophisticated methods of 
traffic assignment (of OD flows to paths) exist, but in this study I use the most 
commonly used methodology in the transportation literature and simply assign all OD 
flows to the network over the least-time paths using a network simplex model in 
AMPL CPLEX 9.1.

First, I use a very simple subset of the Edmonton network’s morning peak 
traffic for 1989; here my goal is to demonstrate how the model works by relating the 
solutions to simple flow patterns. Second, I use the full afternoon peak traffic data sets 
for 2001; here my goal is to produce a middle-size, realistic flow system and to 
explore how the PUP model performs in this system. I solve all examples optimally 
using AMPL CPLEX 9.1, and spatially analyze and map the results with ArcGIS 9 .1 .1 
note that in my numerical experimentation, I use driving time (seconds) as my 
“distance” measure.

2.4.1. Morning Peak Traffic Flows for Edmonton, 1989
I first demonstrate the workings of PUP with the 1989 morning peak network, 
comprising 703 nodes and 2198 links and described by Hodgson, Rosing and Storrier 
(1996). The entire database is too detailed to map clearly enough for a visual 
demonstration, so I highly simplified the network by designating only the top 10 
destination traffic zones, quite central to the city, as destinations. As origins, I use all 
other traffic zones with nonzero flow to these 10 destinations, 148 in all. This subset 
of the network comprises 1458 OD pairs, representing 20% of all total traffic. Each of 
the 10 destination nodes arbitrarily serves only as a destination and each of the 148 
origin nodes arbitrarily serves only as an origin, allowing origin and destination nodes 
to be clearly mapped. In this simplified structure, the reader can relate to the structure 
of benefits arising from tradeoffs between flow bundling at well-placed intersections 
and proximity to preferred locations.

The input data for PUP are the 1458 OD flow pairs, the 703 potential facility
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—a d  ■
sites, the set of nodes along each OD path q, and bq/. Recall that bqj=e  * is the
benefit o f intercepting one unit of flow along path q at node j .  It is important to grasp 
the characteristics of the function and the nature of dqj, which activates the solution 
properties under each scenario. Each node along each path is a satisfactory location 
for “Video” consumers, I ignore the value of a and set b^ -  1.0. For each node, I
calculate the driving time from the origin for the “Coffee” scenario and the driving 
time from the destination for the “Pizza” scenario. I assume that the preferred location 
under the “Hamburger” scenario is exactly at the center of each path, from which I 
calculate driving time.

Considering the tradeoffs between flow structure and the importance of 
proximity to preferred locations, I would expect to observe the following spatial 
distribution patterns: “Coffee” facilities will be oriented to origins; “Hamburger” 
facilities to the centers of trips; “Pizza” facilities to destinations; and “Video” facilities 
will be located at nodes that intercept maximum flow.

As an example of how the model performs, I consider the optimal locations 
identified by each scenario w ithp  = 3 and a = 0.002. Circles with areas proportional 
to the total out-flows at origins illustrate the underlying flow structure of this problem 
(Figure 2-3). The three “Coffee” facilities are located somewhat centrally to the 
origins in the north, west, and south of the city. The three “Hamburger” facilities are 
located toward the centers of trips, on the major network routes between origins and 
destinations. None of these optimal facilities occurs at a trip origin or destination but 
at intermediate nodes, a characteristic of traditional FILM solutions. This analysis is 
conducted in an artificial situation with only a few destinations which are clustered 
centrally: the three “Pizza” facilities are located at the top three destinations. The three 
“Video” facilities are also concentrated near the destinations: two are located at the 
top two destinations, and the other is located at a node between the top 3 and 4 
destinations. The small difference between the “Video” and “Pizza” solutions helps us 
to grasp the different effects of flow interception and benefit maximization.

I consider the flow patterns in the area encompassing the top four destinations 
(Figure 2-4). Link widths are proportional to the flow on them and circle areas are 
proportional to the flows passing through nodes. Because the destination nodes serve 
only as destinations, the links connected to them can be considered to be one-way.
The objective o f the “Video” scenario is the same as in the traditional FILM objective, 
to maximize flow interception by avoiding flow cannibalization, wasteful redundant 
flow-interception. Node 11 is a better location for a “Video” facility than is 
destination 3 because with it the model intercepts more flows (12902 - 12657 = 245) 
than with destination 3 (Table 2-1). Most of the flows intercepted by nodes 11 and 
destination 3 are not intercepted by destinations 1 or 2: intercepting flow at 
destinations 1 and 2 greatly improves the objective. The objective of the “Pizza” 
scenario is to reap benefits by intercepting as many consumers at or close to 
destinations as possible. Destination 3, where all “Pizza” consumers are served at the 
preferred location, is a better location for a “Pizza” facility than is node 11 because 
with it, the model achieves more benefits (12657 - 11593 = 1064) than with node 11
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(Table 2-1). The importance of proximity to trip destinations pulls the “Pizza” facility 
from node 11 to destination 3. Table 2-1 illustrates the obvious result that each 
optimal scenario provides the greatest benefits for its particular consumers, and the 
inappropriateness of the other “Where” solutions to particular scenarios.

Table 2-1: Flow and benefit obtained in each scenario (p = 3, a = 0.002)

Video Pizza Coffee Hamburger
Flow Interception 12902 12657 9571 6535
Pizza Benefit 11593 12657 3901 690
Hamburger Benefit 3617 3030 7264 3064
Coffee Benefit 1124 929 2226 2923

Table 2-2: Benefit % (p = 1 ... 10, a  = 0.002)

P Video Pizza Coffee Hamburger
1 15.8 15.2 3.6 8.1
2 30.3 29.7 6.7 15.9
3 41.8 41.3 9.5 23.5
4 52.7 52.6 11.8 29.8
5 63.6 63.6 14.0 35.4
6 73.0 73.0 16.1 38.7
7 81.3 81.3 18.1 42.0
8 88.0 88.0 20.0 45.0
9 94.1 94.1 22.0 47.8
10 100.0 100.0 23.9 50.5

To further demonstrate the tradeoffs between network flow structure and the 
importance of proximity to preferred locations (a), I explore how solutions are 
affected by increasing the value of a from 0.0 to a large factor. As a increases, the 
optimal locations identified by each “Where” scenario move from the traditional 
FILM locations toward the preferred locations; when a is large enough, the optimal 
locations are at the nodes most exemplifying the ideal preferences. I demonstrate this 
by observing the migration of three “Coffee” facilities from a flow orientation to a 
source orientation as the value of a increases (Figure 2-5). At a = 0.0 the three 
“Coffee” facilities are located as in the traditional FILM; however, at higher values of 
a, flow volumes at intersections and distance to the preferred location trade off. At a = 
0.025, locations are very close to the origins; at a = 0.035, they are at the major 
origins. These patterns are observed because the network flow structure is fixed but 
the power o f the importance of proximity to preferred location increases with a.

I now consider the relationship between benefits and the number of facilities 
under each scenario. Cost-effectiveness diagrams plot the benefit achieved for each
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value o fp  ~ 1... 148 under each scenario (Figure 2-6). The “Video” and “Pizza” 
scenarios produce similar relationships regardless of the value of a because of the 
strong concentration of flow near the destinations. Up to p  = 4, the “Video” scenario 
provides a little more benefit than the “Pizza” scenario (Table 2-2) because of the 
difficulty o f finding locations that combine flow interception and proximity to 
preferred location with small p. A t p  > 5, they have the same results; at p  >10, all 
possible benefit is obtained. The curves for the “Coffee” and “Hamburger” scenarios 
demonstrate the diminishing returns expected of FILM-type problems, and are smooth 
with no sharp breakpoints to suggest ideal tradeoffs between facility numbers and 
performance. The “Coffee” curve rises smoothly to become asymptotic to full benefit. 
The “Hamburger” curves do not approach full benefit, because the preferred locations 
are usually not nodal -  facilities cannot be located exactly at the path centers.

2.4.2. Afternoon Peak Traffic Flows for Edmonton, 2001
TSD provided vehicle flows for a traffic network of 395 traffic zones, 2211 nodes,
6211 links, and (395*395- 395) = 155,630 OD flow pair for the afternoon peak period 
in 2001. The full OD flows require too much CPU memory for CPLEX to solve the 
FILM or PUP model. The number of OD flow pairs grows very quickly with the 
number of traffic zones, and even with the most efficient and specialized heuristics, 
good solutions to large flow-interception problems will be beyond the capability of a 
personal computer. I am currently working on the use of heuristics, standard 
optimization engines and geographical information techniques together for solving 
large flow-interception problems. Here my goal is to produce a mid-size, realistic flow 
system and to explore how the PUP model performs in this system. Thus, I used 
ArcGIS 9.1 and C++ to reduce the network size - 1 discarded OD flow pairs with less 
than 1 unit of flow, reducing the number of zones to 290 and the number of OD flow 
pairs to 16,488 representing 75% of the total traffic flow. I pared the network down to 
1746 nodes and 4606 links by removing all nodes and links which do not fall on these 
least-time paths (Colour Figure 2-7). These afternoon flows are dominated by 
movement from the central to the peripheral areas, but each of the 290 zone centroids 
serves both as an origin and a destination, producing what I view as a realistic test-bed 
for PUP.

My major interest in this section is to see whether the types of solution 
characteristics observed in the early example are borne out in this large realistic 
database. I optimally solve all scenarios w ithp  = 1 ... 14.1 solve for the “Pizza” and 
“Coffee” Scenarios with a increasing from zero to a value at which all facilities are 
located at the top p  preferred nodes. For the “Hamburger” scenario, I increase a until 
the facilities no longer shift -  they are as close to, but not at, the preferred centers of 
major flow paths. (These centers are not usually at nodes, and to add nodes would 
greatly complicate the network, so the “Hamburger” scenario has no node-optimality 
to compare with “origin” or “destination” for the other two “Where” scenarios.)

My findings are exemplified by the results for/? = 5, for which I present maps 
and tabulate particular solution characteristics. To relate to solution characteristics 
under each scenario, it is important that the readers grasp the important elements of
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the network flow structure, especially the locations o f major origins and destinations. I 
have therefore identified what I consider to be the most important 2.7 nodes in the 
network (Table 2-3).

Table 2-3: 27 important nodes

Node F O D TNF (%) Node F O D TNF (%)
1 1 24 23 6.73 15 15 — - 3.59
2 2 — — 5.27 16 16 — - 3.50
3 3 — — 4.90 17 17 — — 3.49
4 4 — — 4.43 18 18 — — 3.45
5 5 — — 4.27 19 19 — — 3.43
6 6 — — 4.23 20 20 — - 3.35
7 7 — — 3.93 21 51 2 181 2.72
8 8 — — 3.78 22 27 4 4 3.03
9 9 — — 3.75 23 36 5 6 2.84
10 10 1 16 3.74 24 25 6 17 3.14
11 11 — — 3.69 25 39 10 2 2.83
12 12 — — 3.67 26 74 11 5 2.54
13 13 3 1 3.65 27 58 15 3 2.66
14 14 — — 3.60

F— Rank offlow  at node; O—Rank o f  outflow  from  Origin;
D—Rank o f  in-flow to destination; TNF—the percent o f  total network flow

I indicate the rank of node in respect to flows through it, the total numbers o f trip 
origins out of it, or the total number of trip destinations into it. Node 1, for instance, is 
also known as FI (highest flow, 6.73% of total flow), 024 (24th highest origin, 0.94% 
of total outflow), and D23 (23rd highest destination, 0.73% of total inflow). I map 
these 27 important nodes which include the top 20 flows nodes, the top 6 origins, and 
the top 6 destinations (Colour Figure 2-7). A major cluster comprises 19 of the 27 
nodes, concentrated near the city center (inset, Colour Figure 2-7) representing the 
downtown, university and government center areas. A second cluster is near node 13 
which represents West Edmonton Mall (until recently, the world’s largest shopping 
centre). The third cluster is along two major arteries in the south (nodes 22, 15, and 
23). Because the afternoon peak is the rush-hour journey from work, trip destinations 
are more dispersed than trip origins. I may roughly imagine that most flows come 
from the three clustered areas to disperse throughout the entire map, yet recognize that 
many major destinations are near or at the three cluster areas.

I compare the spatial distribution patterns under each scenario for the solution 
withp  = 5 and a = 0.0005 (Colour Figure 2-8). “Video” facilities are located at nodes 
with high flow (FI, F5, F12, F13, and F14), but not simply at the five nodes with the 
highest flow: clearly the optimal solution to PUP avoids flow cannibalization. Traffic
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tends to be bundled into a few major arteries and nodes. The “Video” facilities are 
dispersed to intercept flows throughout the network: FI intercepts flow to the North, 
F14 to the West, F5 to the South, F I2 to the Southeast; and F I3 to and from the West 
Edmonton Mall. In contrast, “Coffee” facilities are located at origins with very high 
out-flow (O l, 02 , 03 , 05 , and 06) and “Pizza” facilities are located at destinations 
with very high in-flow (D l, D2, D3, D4, and D23). Flow interception maintains its 
traditional role however. A “Coffee” facility chooses 06 , which is central to many 
major origins, but intercepting more flow than 04. A “Pizza” facility chooses D23 
rather than D5 because D23 (also FI) can intercept much more flow than D5 (also 
F74).

The fact that all the optimal “Coffee” and “Pizza” facilities are located at 
major preferred nodes indicates that the importance of proximity to preferred locations 
exerts more influence on location than does flow structure for high values of a. 
Because most preferred locations for the “Hamburger” scenario have no node­
optimality, I cannot make the same sort of assessment, but I observe in the map that 
“Hamburger” facilities are located toward the center of trips, on major arteries 
between origins and destinations.

To further demonstrate the tradeoffs between network flow structure and the 
importance of proximity to preferred locations (a), I explored how “Coffee” and 
“Pizza” locations move by augmenting a from 0.0 by increments of 0.00005 and 
noting solution changes. At a = 0.0, the “Pizza” and “Coffee” solutions are, of course, 
identical to the “Video,” or FILM solution. As the value of a increasingly jumps from 
one step to another step, one “Pizza” facility always moves to a node with less flow. 
For instance, node F I4 jumps to node FI 5 when the value of a jumps from step 1 to 
step 2 (Table 2-4). At steps 5 through 8, one “Pizza” facility always moves to a more 
preferred node (a node with higher in-flow). For instance, Node D23 jumps to node 
D5 when the value o f a  jumps from step 7 to step 8. Similar movement patterns of 
“Coffee” facilities are observed (Table 2-4). I thus observe that the optimal solutions 
of PUP conform to my intuition about the tradeoffs between intercepting flows in 
general and doing so in preferable locations. This is the first time that such intuition 
about spatial distribution patterns has been experimentally verified.

Finally, I investigate the importance o f the PUP model, by determining how 
much better it serves the locational preferences of consumers than FILM. I do this 
with a simple index:

Z p - Z p
PU P  Solution FILM  Solution x l Q Q %  f l 3 1

ryP  V /
FILM  Solution

The numerator indicates how much more benefit PUP solution provides to 
consumers than FILM solution does. The denominator indicates the benefit obtained 
by FILM solutions. I term the scale index Superiority o f  PUP. The index evaluates the 
importance of the PUP model in terms of how much more preference-based benefit 
the model provides than would the simple FILM. For p  -  5, and varying values of a  
(Figure 2-9), I observe that the superiority o f PUP solutions for “Coffee” and “Pizza” 
rises quickly to over 100 per cent for values of a  approaching those where the most 
highly preferred locations host facilities.
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Table 2-4: Facility location movement, benefit, and flow as a increases (p = 5)

Scenario
Step

Facility Location Movement with an Increasing a 
a Facility Location Movement

Video 0 -oo< a <+oo FI F13 F5 F12 F14

1 0.00000< a <0.00002 D23/F1 D1/F13 F5 F12 F14
u

F152 0.00003< a <0.00004 D23/F1 D1/F13 F5 F12
u

F143 0.000045< a <0.000055 D23/F1 D1/F13 F5
u
F6

F15

4 0.00006< a <0.0001 D23/F1 D1/F13 F14 F15
Pizza

5 0.00015< a <0.0002 D23/F1 D1/F13
u

D3/F58 F14
u

D2/F39

F15

6 0.0003< a <0.0004 D23/F1 D1/F13 D3/F58 F15
u

D4/F277 0.0005< a <0.0008 D23/F1
u

D5/F74

D1/F13 D3/F58 D2/F39

8 a >0.0009 D1/F13 D3/F58 D2/F39 D4/F27
1 0.00000< a <0.00002 024/FI 03/F13 F5 F12 F14

11
F152 0.00003< ot <0.00005 024/FI 03/F13 F5 F12

3 0.00006< a <0.0001 024/FI 03/F13
U

O1/F10 F12 F15
11

05/F364 0.00015< a <0.0002 024/FI 03/F13 O1/F10 F12
Coffee

5 0.0003< a <0.000 4 024/FI 03/F13 O1/F10 04/F27 05/F36

6 0.0005< a <0.0012
U

06/F25 03/F13 O1/F10
11

02/F51 05/F36

04/F277 0.0013< a <0.0014 06/F25
U

05/F36

03/F13 O1/F10 02/F51

8 a >0.0015 03/F13 O1/F10 02/F51 04/F27
F—Rank o f  Flow at node; O—Rank o f  O utflow from  Origins; 

D—Rank o f  In-flow to Destinations
2.5. Conclusions
A basic underlying assumption of conventional flow-interception location models is 
that consumers do not care where service facilities are located along their trip. In the 
real world, however, consumers often wish to obtain a product or service at or near a
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specific location along their trip, often at their trip origins or destinations. The 
particular preferences depend on the nature of the products or services demanded. In 
this chapter, I propose the PUP model, which transforms the traditional flow- 
interception location model to a flow-interception location-allocation model. The PUP 
considers various locational preferences, providing a much broader, realistic approach 
to enterprise in private and public sectors. I note that the traditional flow-interception 
models are special cases of my proposed model. Moreover, the PUP introduces a 
common principle that considers a wide range of preferential scenarios with a model 
driven by an exogenously calculated proximity preference function.

I applied PUP to morning (1989) and afternoon (2001) peak traffic flows in 
Edmonton, Alberta, Canada. My observations of the spatial distribution and cost- 
effectiveness characteristics o f four scenarios, indicating varying consumer preference 
structures, demonstrate that the optimal locations identified by the “Video” scenario 
arise solely from network flow structure (as in the traditional models), whereas 
optimal locations identified by “Where” scenarios result from a trade-off between the 
network flow structure and the importance of proximity to preferred locations. I note 
that this is the first time that my intuition about spatial distribution patterns has been 
experimentally verified. In short, my proposed model enhances spatial decisions by 
incorporating consumer locational and proximity preferences, providing a fruitful 
garden for further research. I note, in closing, that ignoring consumer preferences can 
greatly impair the benefits of flow interception modelling.
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Figure 2-1: The four pickup scenarios
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Figure 2-2: Sample two-origin, one-destination trees
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Figure 2-3: Optimal locations (p = 3 , constant = 0.002)
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Figure 2-4: Zoomed in optimal locations (p = 3, constant = 0.002)
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Figure 2-5. "Coffee" optimal locations with increasing constant (p = 3)
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Figure 2-6: Cost-effectiveness of the optimal solutions (1<p<148)
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Figure 2-7 (colour): Network flow structure (2001)
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Figure 2-8 (colour): Optimal locations (p = 5, constant = 0.0005)
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Figure 2-9: Superiority of PUP
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Chapter 3 * 

A Generalized Model for Locating Facilities on a Network with Flow-Based 
Demand

Summary: Flow-interception location problems can be characterized as identifying 
good or optimal facility locations on a network with flow-based demand. Since the 
early 1990s, about 30 different flow-interception location models have appeared in 
about 40 academic publications. Location researchers tend to introduce changes in 
objective functions and/or assumptions by developing new models. This has led to 
many disparate models, each requiring a somewhat different solution method, 
challenging the development of standardized software that would encourage 
widespread use in real-world, strategic decision making processes. In this chapter, I 
formulate a generalized flow-interception location-allocation model (GFIM) which, 
with few exceptions, requires only simple modifications to its input data to effectively 
solve all current deterministic flow-interception problems. Additional flow- 
interception problems can be solved by simple model manipulation or addition of 
constraints. Moreover, several critical considerations in flow-interception models -  
such as deviation from predetermined journeys, locational and proximity preferences, 
and capacity issues -  can be handled within the single framework. Two real-world 
examples reported in the literature (morning and afternoon peak traffic for the city of 
Edmonton in Canada) show that CPLEX optimally solves GFIM much more 
efficiently than it does the classic flow-interception location model.

* A version of this chapter has been submitted for publication.
Zeng, Weiping, Ignacio Castillo, M. John Hodgson. 2007. A generalized model for 
locating facilities on a network with flow-based demand. Submitted to Transportation 
Science on May 4, 2007, submission No:TS-2007-0105, under review.
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3.1. Introduction
Facility location is a central problem in real-world, strategic decision making 
processes. In traditional location theory, demand for service is assumed to occur at 
fixed locations on a traffic network. This process is generally termed point-based 
demand. The main purpose of travel for point-based demand is to obtain or provide 
service. That is, consumers residing at nodes on the network travel to facility locations 
to obtain service (e.g., going to school or workplace), or, alternatively, service 
providers located at network nodes travel to consumer locations to provide service as 
requested (e.g., ambulance, police, and repair services).

This chapter focuses on demand for service that is expressed by flows 
traveling on origin-destination paths of a traffic network, flow-based demand. In 
contrast to traditional point-based demand, the main purpose of travel for flow-based 
demand is not necessarily to obtain service, but if  there is a facility on the 
predetermined journey, consumers may choose to obtain service. Fast food outlets, 
automatic teller machines, and gasoline stations are examples of services that 
experience flow-based demand. Flow-interception location problems can be 
characterized as identifying good or optimal facility locations on a network with flow- 
based demand. The most basic location model that incorporates flow-based demand is 
the flow-interception location model (FILM) developed by Hodgson (1990) and 
Berman, Larson, and Fouska (1992).

Over the past 17 years, in order to formally characterize a wide spectrum of 
consumer desires and needs, about 30 flow-interception location models have 
appeared in about 40 academic publications. Location researchers tend to introduce 
changes in objective functions or assumptions by developing new models. This has 
created numerous disparate models, each viewed as requiring its own solution method, 
challenging the development of standardized software that would encourage 
widespread use o f location models in real-world, strategic, decision-making processes.

This chapter introduces a generalized flow-interception location-allocation 
model (GFIM), into which most current deterministic flow-interception models can be 
transformed. Several critical considerations in flow-interception models -  such as 
deviation from a predetermined journey, locational and proximity preferences, and 
capacity issues -  are handled within GFIM’s single modeling framework. Interestingly, 
real-world examples, using 1989 morning (Hodgson, Rosing, and Storrier 1996) and 
2001 afternoon (Zeng, Hodgson, and Castillo 2007) peak traffic data for the city of 
Edmonton, Canada, show that a standard optimization engine such as ILOG-CPLEX 
optimally solves GFIM much more efficiently than the classic flow-interception 
location model in at least two instances of large real-world data. GFIM provides a new 
way of looking at location problems relative to flow-based demand and a new way of 
identifying similarities and differences among flow-interception location problems. 
GFIM also provides a fruitful garden for future research; thus, making a substantial 
contribution to the flow-interception problem literature.

The remainder of article is organized as follows. Section 3.2 considers FILM, 
the basic flow-interception location model. Section 3.3 introduces GFIM, the proposed 
generalized model. Section 3.4 demonstrates a variety of current and future models to
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be special cases of GFIM. Section 3.5 examines the performance of GFIM using 1989 
morning and 2001 afternoon peak traffic data for the city of Edmonton, Canada. The 
final section offers our conclusion.

3.2. The Flow-interception Location Model
Hodgson (1990) and Berman, Larson, and Fouska (1992) developed the basic classic 
flow-interception location model. This basic model is aimed at maximizing the 
number of consumers who encounter at least one facility along their predetermined 
journeys. FILM is formulated as:

Maximize: Z F f qX q (1)

s.t.
X q < Y JYJ,V q e Q  (2)

jeq

1 3W  (3)

X g e { 0 , l } ,V q e Q  (4)
Yj £  {0, 1}, V/ e J  (5)

In this formulation, the parameters are:
Q = the set of nonzero flow paths indexed by q\
J=  the set of potential facility sites indexed by j; 
j  e q = the set of all nodes on path q\ 
f q = the flow volume along path q\ 
p  = the number of facilities to be located.

The objective function and the decision variables are denoted by:
Z F = the objective function, total flows intercepted at least once;

fl i f /  is intercepted by a facility along path q 
X q = I 5[0 otherwise

fl if  there is a facility located at node j  
J [O otherwise

Note that it is possible to relax the binary requirement on the X g variable as 
0 < X  < 1 because the 100% of total flows along path q could be intercepted by a set
of facilities (rather than one facility) on the path q. The objective function (1) is aimed 
at intercepting as much flow as possible, subject to the constraints that flow along path 
q cannot be intercepted unless there is at least one facility on path q, (2); and that 
exactly p  facilities be located, (3). Constraints (4) and (5) are the standard integrality 
conditions.

I note that FILM seeks to optimally locate service facilities, but does not 
explicitly consider the allocation of flow-based demand to the open facilities. That is 
to say that FILM does not consider where a flow-based demand is served. Thus, in 
location theory, FILM is considered a location model rather than a location-allocation 
model. The implication of this observation is that FILM cannot directly take into
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account many critical considerations in location analysis (for example, deviation from 
a predetermined journey, locational and proximity preferences, and capacity issues). 
Furthermore, FILM is aimed at maximizing the number of consumers who encounter 
at least one facility on their trips. In real-world settings, there are often more complex 
objectives such as maximizing the amount of network protection against risks 
(hazardous cargos and drunk drivers for example), maximizing benefits arising from 
different consumer locational or proximity preferences, and maximizing benefits of 
multiple exposures to billboards.

3.3. The Generalized Flow-interception Location-AUocation Model
The generalized flow-interception location-allocation model is formulated as:

Maximize: Z r; = X  X  G<ux <u (6)

s.t.
(7)

j*Nq
X q j< Y j,\ f  q e Q ,j  e Nq (8A)

M II (9)
j£j

Xqj E {0, 1 } ,V q e Q ,j< zq (10)
Yj E {0, 1}, Y/ e J (11)

Parameters Q, J, p  and decision variable Yj in GFIM are the same as in FILM. In 
comparison with FILM, GFIM uses two new parameters and one new decision 
variable as follows.

Gqj = the contribution to the objective function when flow along path q is 
intercepted by a facility at node j ,  (G denotes the matrix fy ) ;

Nq = the set of nodes capable of intercepting the flow along path q (e.g., the set 
of all nodes on path q);

Xqj = the proportion of the total objective function contribution where flow 
along path q is intercepted by the facility at node j  (0 <Xqj < 1).

The objective function (6) is aimed at intercepting as much total objective 
contribution as possible. Constraint (7) ensures that at most, 100% of total flows along 
path q can be intercepted by the set of facilities in Nq Constraint (8A) ensures that 
flow along q can only be intercepted by the facility located at node j .  Variants of this 
constraint, denoted with the letters “B” and “C,” will be introduced below. Constraint 
(9) ensures that exactly p  facilities are located. Constraints (10) and (11) are the 
standard integrality conditions.

The three new generalized terms are the major innovations of this formulation. 
The value f q in FILM represents only the number of consumers along path q. The 
value o f in GFIM represents the available objective function contribution on path 
q at specific node j .  Thus, Gqj can represent the number of consumers in the FILM 
case, the total benefit of intercepting these consumers, or even persons at risk along a 
path where flows are hazardous cargos or drunk drivers. The decision variable X q in 
FILM represents only whether all the consumers along path q are intercepted. The
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new decision variable Xw in GFIM identifies the proportion of the contribution along 
path q obtained by the facility at node j .  FILM considers only the set of nodes on a 
path ( j  e q), while GFIM considers the set o f nodes (Nq) capable of intercepting flow 
along path q. This is important in situations where consumers are allowed to deviate 
from predetermined OD flow paths. In short, the three new generalized terms address 
an individual consumer’s consideration of any specific facility in the network, 
providing the great potential of GFIM to effectively consider all kinds o f consumers’ 
desires and needs in real-world situations.

3.4. Special Cases of GFIM
Most flow-interception location models are structurally identical to GFIM: the key 
difference hinges on the interpretation o f G. In this section I show that a variety of 
flow-interception location models are indeed special cases of GFIM. My findings are 
demonstrated with a 7-node test example, for which I present a map (Figure 3-1), flow 
paths (Table 3-1), input data G and output results (Table 3-2). In the implementation, I 
coded GFIM in the AMPL language (Fourer, Gay, and Kernighan 2002) using the 
well-known ILOG-CPLEX optimizer (Figure 3-2). Note that Nq is the set of nodes 
capable of intercepting the flow along path q. The set of Nq is { j \ j  e q)  for FILM and 
may be {j \ j  e J} for other problems. Figure 3-2 obtains Nq directly from input data 
Gqj because the set of nodes capable of intercepting the flow along path q can always 
be simply represented as all Gq/> 0. In the large real-world examples (see section 5 
below), I coded GFIM in a more memory efficient way. However, the model file 
(Figure 3-2) and the data file (Figure 3-3) make it easy for readers to grasp the nature 
o f G, which activates GFIM. The results in Table 3-2 are all solved by modifying 
input data (Figure 3-3). Readers are encouraged to compare the results (the objective 
function value, the least number of facilities required to capture all objective value in 
the network, and other solution results) for these special cases.

Table 3-1; OD flow paths
Path q Flow Num Path by Nodes Path by Links

1 2 4 1 3  5 7 1 2 3
2 1 3 2 3 6 4 5
3 1 3 4 5 6 6 7
4 2 2 4 7 8
Num: The total number o f  nodes on each path

3.4.1. The Basic Flow-interception Case
The original basic flow-interception location problem can, of course, be solved in 
GFIM by calculating the value of Gqj as:

fqyjtq
G« =

0 yjeq
The value of Gqj indicates that each facility on path q provides the same objective 
contribution (fq) for consumers along path q; only a facility on path q can intercept the
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flow along path q. In my example, nodes 1, 3, 5, and 7 are on path 1 so the facility at 
each node can intercept 2 units of flow from path 1; nodes 2, 4, and 6 are not on path 1 
so they cannot intercept flow along path 1 (Figure 3-1, Table 3-2). The optimal 
location for a single facility (p = 1) is at node 7 which intercepts the two largest flows. 
The optimal locations for two facilities i p - 2 )  are at nodes 6 and 7 which intercept all 
flows in the network.

Table 3-2: Input matrix of G and output results for each case of GFIM

Cases of GFIM Input Matrix of G at each node 
path 1 2 3 4 5 6 7

Output Results 
p Z Solution

Basic
F lo w-Interception

1 2 . 2 . 2 . 2  
2 . 1 1 . . 1
3 . . .  1 1 1
4 . . .  2 . .  2

1 4 {7}
2 6 {6,7}

Protection

1 12 . 8 2 0
2 3 2 .  . 0
3 . . 3 2 0 .
4 . . .  4 . .  0

1 12 {1}
2 19 {1,4}
3 22 {1,2,4}

Preference
1 0.10 . 0.28 . 1.22 . 2.00
2 . 0.22 0.37 . . 1.00 .
3 0.22 0.37 1.00 .
4 0.67 . . 2.00

1 4 {7}
2 6 {6, 7}

Deviation Case 1

1 2 2 2 2 2 2 2 
2 1 1 .  1 1 .
3 . .  1 1 1 1 1
4 . . .  2 2 . 2

1 6 {5}

Deviation Case 2

1 2.00 0.74 2.00 0.74 2.00 1.22 2.00
2 0.14 1.00 1.00 0.08 0.22 1.00 0.08
3 0.03 0.08 0.22 1.00 1.00 1.00 0.37
4 0.02 0.04 0.10 2.00 2.00 0.28 2.00

1 5.22 {5}
2 6.00 {6,7}

Deviation Case 3

1 0 4 0 4 0 1 0
2 4 0 0 5 3 0 5
3 7 5 3 0 0 0 2
4 20 16 12 0 0 8 0

1 3
2 0

{5}
{3,4}

Deviation Case 2 
(Preference)

1 0.10 0.02 0.27 0.10 1.21 0.16 2.00
2 0.00 0.22 0.37 0.00 0.02 1.00 0.00
3 0.00 0.00 0.02 0.22 0.37 1.00 0.03
4 0.00 0.00 0.00 0.74 1.21 0.00 2.00

1 4.03 {7}
2 6.00 {6, 7}

Deviation Case 2 
(Capacity < 2.6)

1 2.00 0.74 2.00 0.74 2.00 1.22 2.00
2 0.14 1.00 1.00 0.08 0.22 1.00 0.08
3 0.03 0.08 0.22 1.00 1.00 1.00 0.37
4 0.02 0.04 0.10 2.00 2.00 0.28 2.00

1 2.5 {6}
2 4.59 {5, 7}
3 6.00 {5,6,7}

Entries with ” represent not available or zero; p  is the number o f  facilities; Z  is the 
objective value
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3.4.2. Protection Cases
Vehicle inspection models are designed to protect networks against risks (hazardous 
cargos and drunk drivers for example). These types o f risks are clearly flow-based and 
FILM could be used to optimally intercept offenders. FILM enacts a punitive approach 
aimed at catching as many violators as possible, regardless of where they are in their 
journeys. In contrast, vehicle inspection programs use a preventive approach aimed at 
inspecting and removing violators from networks as early in their trips as possible, 
thus reducing risk o f network hazards as quickly as possible. Mirchandani, Rebello, 
and Agnetis (1995) suggested the principle of preventive inspection in some heuristic 
experiments but did not formalize it in a model. Hodgson, Rosing, and Zhang (1996) 
formulated the protection model for locating inspection stations. Gendreau, Laporte, 
and Parent (2000) developed several solution methods for the protection model.
Horner and Groves (2007) applied the protection model to identify the optimal 
location of park-and-ride facilities, which is aimed at effectively reducing roadway 
congestion by intercepting the maximum amount of vehicle flow as early as possible 
in its OD journey.

The protection model can be transformed into GFIM by making Gqj the 
protection available to path q at node j .  It is calculated as the product of the flow along 
path q and the number of persons at risk along path q between node j  and the 
destination. On any link there is a risk density: the number of persons per unit distance 
who are exposed to the hazard on the link. Risk density is a function of the number of 
persons occupying (traveling, living, working, shopping, and visiting on or within a 
critical distance of) the link. For assessment of risk density, readers are referred to 
Zhang, Hodgson, and Erkut (2000). Recall that assessed risk density enters Gqj 
exogenously as a parameter. In this protection case,

( f x R ( d  ) ,V je q  
G ■=<m

[0 ,V j£ q
where

djq is the distance from node j  to the destination of path q;

R{djq ) is the risk density along path q between node j  and the destination.
Hodgson, Rosing, and Zhang (1996) assume a risk density o f 1.0 throughout 

the network: the number of persons at risk is proportional to link length. In this case, 
R(djqs) = dj ,\fj  e q . For my example, node 1 provides 2x (1+2+3) =12 units of
protection from flow 1 and node 7 does not provide any protection because it is 
obviously too late for node 7 to capture flows 1 and 4 (Figure 3-1, Table 3-2). Node 2 
provides 3 units of protection from flow 2 but it does not provide any protection from 
flow 1 because node 2 is not on path 1. The optimal location for a single facility is at 
node 1 which protects the longest and largest volume of flow along path 1. The 
optimal locations for two facilities are at nodes 1 and 4 which provide 19 units of 
protection. It takes at least three facilities to protect the whole network.
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3.4.3. Generalized Preference Cases
FILM implicitly assumes that there is no indication o f where in the journey the flows 
are intercepted, nor is there any preference for one location over another. This is not 
an unrealistic assumption for some facilities such as advertising billboards. However, 
for most facilities (e.g., gasoline and refuelling stations, automatic teller machines, 
convenience stores, and fast food outlets), this assumption is tenuous because 
consumers often desire to obtain a product or service at or near a specific location on 
their trip. Zeng, Hodgson, and Castillo (2007) outline several “pickup” problems that 
involve various consumers locational and proximity preferences.

Consumer locational and proximity preferences are common issues for all 
flow-interception location problems. GFIM considers these issues by treating the 
value of as the benefit available to path q at node j .  It is calculated as the product 
o f the flow along path q and the benefit of intercepting one unit of flow on path q at 
node j .  Regardless of how complex the benefit function might be, it is expressed as Gqj 
exogenously, as a parameter. In the Zeng, Hodgson, and Castillo (2007) model:

-ad
= ' f qe W j t q

<v
0,Vj £ q

where a is a scaling constant reflecting the importance of distance from a preferred 
location and djq is the distance from node j  to the preferred location for patrons of

path q.
In my example, when the preferred location is at the destination and the value 

o f a is 0.5, node 1 provides 2e~°5x6 =0.10 units of objective contribution from flow 1; 
node 7 provides 2e~°'5x0 = 2.00 units (Figure 3-1, Table 3-2). The optimal location for 
a single facility is at node 7, the destination for the two largest flow volumes. It takes 
at least two facilities to obtain all the benefit available in the network.

3.4.4. Generalized Deviation Cases
FILM assumes that consumers will make no deviations, no matter how small, from the 
predetermined trip to visit a service facility. In reality, consumers may deviate from 
their predetermined trip to obtain services if  there are no facilities on their paths. 
Berman, Bertsimas, and Larson (1995) discussed three generalizations of the problem 
where deviations from predetermined trips are considered.

3.4.4.1 Deviation Case 1
In the first generalization, flow along any path q is regarded as being intercepted only 
if  there is a facility within a maximum distance A of q (measured from the closest 
node on q to the facility). The second assumes that as the deviation distance increases, 
less and less flow will be intercepted. The third generalization assumes that all 
potential consumers will deviate if  necessary to the closest facility regardless of the 
actual deviation distance. Deviation distance is defined as the extra distance incurred 
when customers deviate from their predetermined paths. The term d. denotes the
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deviation distance between node j  and path q. Consumers wishing to visit a facility are 
assumed to first take the shortest path to the facility, and then from the facility to take 
the shortest path to the destination. The sum of these two shortest distances minus the 
shortest origin-destination distance is the deviation distance. For instance, in my 
example, the deviation distance between node 6 and path 1 is (2 + 2) + (2 + 1) -  (2 + 3 
+ 1) = 1 (Figure 3-1, Table 3-1).

Berman, Bertsimas, and Larson (1995) developed three separate models to 
deal with the three generalizations. GFIM, however, directly deals with them via the 
modification o f Gy data, here defined as the expected number o f customers along path 
q who become actual users of the facility at node j .  The three generalizations simply 
represent three different ways o f calculating the value of Gqj based on the deviation 
distance. For FILM, protection, and preference problems without deviation, Nq is the 
set of nodes on path q. For the first generalization, Nq is the set of nodes on path q and 
the set o f nodes within distance A of path q. The value of Gqi is calculated as: 

f /* ,V y e { y K  <A}

0, V/ 6 { j  | d  > A}I JHd
Recall that d. denotes the deviation distance between node j  and path q. In my

example, with A = 3, consumers along path 1 travel less than 3 units of deviation 
distance to any node in the network; thus, any node can intercept 2 units of flow along 
path 1. On the other hand, the deviation distance between node 1 and path 2 is 4 units; 
thus, node 1 intercepts no flows from path 2 (Figure 3-1, Table 3-2).

3.4.4.2 Deviation Case 2
For the second generalization, Gy is the fraction of consumers along path q who 
would deviate to use the closest facility at node j .  In this case, Nq is the set o f potential 
facility sites in the network (Nq = J). Berman, Bertsimas, and Larson (1995) suggest a 
popular negative exponential function of deviation distance to calculate the probability

~Ctdjq

that a random path-# consumer will deviate to use that facility, thus, Gy = f  e d ,

Vf  e J  . In my example (with a = 0.5), nodes 1, 3, 5, or 7 intecept 2.e~°5x0 = 2 units of
flow along path 1; node 2 intecepts 2e“°5x2 = 0.74 units of flow from path 1 (Figure 3- 
1, Table 3-2).

3.4.4.3 Deviation Case 3
The third generalization is to minimize the total deviation distance traveled. In this 
case, Nq is the set of potential facility sites in the network (Nq -  J). To address the 
equivalence of GFIM to this case, I redefine GFIM as a minimization problem, select 
“=” in constraint (5), and define G y= f  x d f , V/ e J  . In my example, node 2

<i JH d

provides 2 x 2  = 4 units of weight deviation from consumers along path 1 (Figure 3-1, 
Table 3-2).

The optimal location of a single facility for the first generalization is at node 5 
which intecepts all four paths. The optimal location for the second generalization is at
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node 5 which intercepts the full flow along paths 1,3, and 4, and 0.22 units o f flow 
along path 2. For the third, the optimal location is at node 5 where only consumers 
along path 2 make 3 units of weight deviation and the other three trips do not need to 
make deviations. The first generalization needs at least one facility to intercept all 
flows in the network, while the other two generalizations need at least 2 facilities to 
capture all flows in the network.

3.4.5. Generalized Capacity Cases
A critical characteristic of facilities is their capacity. But, all deterministic flow- 
interception location models formulated to date implicitly assume that the facilities 
being sited have infinite capacity. In many applications, however, this is unrealistic.
As mentioned before, as a simple location model, FILM cannot consider how much 
flow is intercepted by each facility. Constraint (8A) of GFIM can be reformulated 
more generally to consider capacity issues as follows.

(8B)

Where C} is the capacity of the facility at node j .  Constraint (8A) is a special case of 
constraint (8B) with Q  = qo. No new models are required; constraint (8B) of GFIM 
can capture the capacity issues in any problem by inputting facility capacities as data 
if  needed.

The 7-node example under deviation case 2 illustrates the characteristics of the 
capacity issue. Suppose that the capacity of each open facility is no more than 2.6 
units of flow. For expository purposes, I consider all decision variables to be binary in 
this simple test problem. The optimal location for a single facility is at node 6 which 
intercepts 1.22 + 1.00 + 0.28 = 2.5 units of flow (Table 3-2). The optimal locations for 
two facilities are at nodes 5 and 7 which intercept 4.59 units o f total flow: node 5 
intercepts 2.00 units of flow along path 1 and 0.22 units of flow along path 2; node 7 
intercepts 0.37 units of flow from path 2 and 2.00 units of flow along path 4. It takes 
at least 3 facilities to intercept all flows in the network. In contrast, in the 
uncapacitated problem under deviation case 2, the optimal location for a single facility 
is at node 5 which intercepts 2.00 + 0.22 + 1.00 + 2.00 = 5.22 units of flow; the 
optimal locations for two facilities are at nodes 6 and 7 which intercept all flow in the 
network.

3.4.6. Combinations of Cases
I have shown that GFIM effectively solves five different types of flow-interception 
problem. A real-world problem may simultaneously involve several considerations 
such as preference, deviation, and capacity cases. The number of combinations of five

5

elements i s ^  5Ce = 31. A special case of GFIM may contain several subcases (e.g.,
e=\

three deviation cases) and there are many other potential cases of GFIM discussed 
below. Therefore, the number of combinations of cases could be very large. 
Fortunately, by modifying the input data rather than by creating numerous new 
mathematical models, GFIM can effectively solve any combination o f these cases.
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A simple example is a flow-interception problem considering both the 
preference and deviation situations: consumers wish to patronize a facility at or near a 
specific location on their trip; if  there is not a facility at their desired location they 
may consider a facility on their path or a facility at an acceptable deviation distance 
from their predetermined trip. For a facility at node j ,  consumers along path q consider 
the preferred distance ( d , ) between node j  and the preferred location, and theJ(* p
deviation distance ( djq ) between node j  and the predetermined path. The value of G

is calculated based on the two types o f distances. Following the suggestion of Berman, 
Bertsimas, and Larson (1995) and Zeng, Hodgson, and Castillo (2007), I set Gqj -

- a ( d Jq +/3djq )
f  e '' d , where a and p  are scaling constants, fi the trade-off between the

relative importance of the two types of distance. The value of [i may be greater than 1 
because the deviation distance cost may include extra fees such as gasoline purchase.

Suppose the preferred location is at the destination, I consider the generalized 
deviation case 2 (preference) with a = 0.5 and /? = 2.0. Using my example, node 1 
provides 2ef0 5x(6+0) = 0.10 units of objective contribution from path 1 and e~°-5x(4+2'J)
= 0.00 units of objective contribution from path 3. Node 2 provides 2e“°5x(5+2x2) = 0.02 
units o f objective contribution to path 1. The optimal location for a single facility (p = 
1) is at node 7 which provides 4.00 units of objective contribution on paths 1 and 4, 
0.03 units of objective contribution on path 3, and 0.00 units o f objective contribution 
on path 2.

3.4.7. Multi-Counting Cases
FILM avoids flow cannibalization; that is, wasteful redundant flow-interception. In 
some situations, however, redundant flow intercepting may be advantageous. For 
example, multiple exposures to the same advertising billboard can increase its impact. 
In this situation, the benefit of exposure to the message depends not only on the 
existence of a facility located on the path but also on the number o f facilities located 
on the path. Averbakh and Berman (1996) developed a nonlinear integer model to 
locate advertising billboards on the links of a network with multi-counting and 
diminishing returns to scale. Hodgson and Berman (1997) formulated a linear integer 
model to locate advertising billboards aimed at maximizing the benefit of exposure to 
the message. I have modified their formulation to make the relationship to GFIM more 
apparent.

Maximize: ZG = £  £  f qbj X m (12)

(13)

JXqj -  ^ Y k,\/q  e Q, j  £ M (8C)

( 14)
k eK
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Xqj G {0, l } , V q e Q , j  e q  (15)

Yj £  {0, 1}, V/ e J  (16)

In comparison with GFIM, the new terms are:
M =  {1 where m is the maximum number of effective exposures; m+1
will not increase total effectiveness
bj = the benefit of they'th exposure on a path

fl if  f q is exposed exactly/tim es

* [0  otherwise
K  = the set of all links that are potential billboard locations indexed by k 

fl if  there is a facility located at link k 
k [0  otherwise

The objective function (12) maximizes the benefit of exposure to advertising 
billboards. Constraint (13) ensures that at most one value X q/ is chosen. Constraint (8C) 
ensures the correct value of bj is chosen. Constraint (14) ensures that the desired 
number of billboards is located. We note that this formulation is structurally identical 
to GFIM with input data Gqj = fq x bj, Nq = M ,J=  K, and with constraint (8C) 
replacing (8A). Constraints (15) and (16) are the standard integrality conditions.

In my 7-node example, with b\ = 1, 62 = 1-6, and 63 = 2 the optimal location 
for a single facility is on link 1 which intercepts only the flow along path 1; the 
optimal locations for three facilities are on links 1, 2, and 8 , which provide 3.2 units of 
benefit from path 1 and 2.0  units of benefit from path 2 .

3.4.8. Group-Counting Cases
In some situations, a group o f facilities must be open to serve a consumer. For 
instance, the limited range of vehicles implies that certain paths may only be refuelled 
by a group of adequately spaced facilities. Kuby and Lim (2005, 2007) developed a 
flow refuelling location model (FRLM) to locate p  refuelling stations on a network 
aimed at maximizing the number of vehicles that can be successfully refuelled. FRLM 
departs from FILM by specifying eligible groups of facilities, able to cover or refuel a 
path, rather than a single facility. GFIM can solve group-counting flow-interception 
problems by adding constraints (17) and (18) to the GFIM model as follows.

0 7 )
j e q  heq

Vh < Y j , \ / h e H , j e h  (18)
Where,

H =  set of all potential facility groups indexed by h 
fl if  all facilities in group h are open

h (0  otherwise
Constraint (17) ensures that at least one eligible group must be open for path q
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to be refuelled. Constraint (18) holds Vh to zero unless all the facilities in group h are 
open. I note that the original FRLM is a location, not a location-allocation model; it 
cannot consider at which facilities the flow is intercepted. Therefore, FRLM cannot 
further consider capacity, locational and proximity preference or deviation: critical 
issues in location analysis. GFIM, can, however account for these critical issues.

In my 7-node example, following the suggestions of Kuby and Lim (2005), I 
set the vehicle range as 3 units and the remaining fuel range at the origin as 2 units.
The algorithm for determining the groups of nodes that can refuel a path is found in 
Kuby and Lim (2005). The groups required for round-trip paths 1 through 4 are {(3, 
5)}, {(2, 6), (3, 6)}, {(4, 6), (5, 6)}, and {(7)}, respectively. The total flow refuelled 
for one facility is 2 units of flow: only path 4 is refuelled at node 7. The optimal 
locations for three facilities are at nodes 3, 5, and 6 where only path 4 cannot be 
refuelled. The optimal locations for four facilities are at nodes 3, 5, 6, and 7 where all 
4 paths are refuelled.

3.4.9. Other Potential Cases
Recall that the value of G# represents an individual consumer’s consideration of a 
specific facility; it enables GFIM to consider consumers’ many specific desires and 
needs, including locational and proximity preferences, deviation from predetermined 
journeys, and capacity issues. In my example of the generalized deviation case 2, 
suppose that an individual path 1 consumer wishes to drop by his/her grandparents’ 
house at node 6 and that this will add 0.5 units of objective contribution to his/her trip.

This individual consumer’s specific desire can be satisfied by setting Gi6 
= 2 x e “05xl + 0.5 = 1.72. By simply setting new values of Gq/ for individual consumers’ 
specific desires, GFIM might be applied to other potentially useful location problems 
such as competitive flow-interception problems. Berman and Krass (1998, 2002), and 
Wu and Lin (2003) studied competitive, probabilistic flow-interception problems, but 
there is no competitive, deterministic flow-interception study reported in the literature.

3.5. Computational Experimentation and Comparison
GFIM is a location-allocation model designed to solve many different kinds of flow- 
interception problems, so we might expect it to be much more complex and 
computationally demanding than a simple location model. In this section, I compare 
and analyze the solution times of FILM and special cases (represented by the 
protection case) of GFIM with real-world examples. There are two real-word 
examples reported in the flow-interception literature. A recent one is the 2001 
afternoon peak traffic network for the city of Edmonton in Canada, comprising 16,488 
flow paths, 290zones, 1,746 nodes and 4,606 links described by Zeng, Hodgson, 
Castillo (2007). An earlier one is the 1989 morning peak traffic network for the city of 
Edmonton in Canada, comprising 23,958 flow paths, 703 nodes, and 2,198 links 
(Hodgson, Rosing, and Storrier 1996; Hodgson and Berman 1997; Hodgson, Rosing, 
and Storrier 1997). The original data for these two networks were provided by the City 
o f Edmonton Transportation and Streets Department, who state that their data have 
been produced according to industry standards and that their forecasting model is
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highly recognized throughout North America. Flows in these two data sets are vehicle 
flows among traffic zones in the full Edmonton area. Figure 3-4 illustrates the percent 
of flows along 4,606 inks and the percent of total flows through 290 zones in the 2001 
afternoon peak traffic network. Figure 3-5 illustrates the 2198 links and the percent of 
total flows though 177 zones in the 1989 morning peak traffic network.

Both FILM and GFIM were coded in the AMPL language and solved with 
version 9.1.0 o f the ILOG-CPLEX optimizer on a 2.80 GHz Intel Pentium processor 
with 1024 MB of RAM in Microsoft Windows 2000.1 specified that FILM and GFIM 
be solved using the default primal algorithm and the dual simplex algorithm, 
respectively; our experience verified that these choices provided the most efficient 
solutions. Tables 3-3 and 3-4 provides the CPU minutes, branch-and-bound nodes, 
mixed-integer programming (MIP) simplex iterations of FILM and GFIM at Yj = 
binary (FILM and GFIM), 0 < X q < \  (FILM), and 0 < A> < 1 (GFIM) for these two 
examples. Table 3-3, 3-4, Figures 3-6, and Figure 3-7 reveal drastic contrasts between 
the solution characteristics o f the two models. At small size problem (p <13 for 
afternoon data,/? <11 for morning data), CPLEX optimally solve FILM more 
efficiently than the protection case o f GFIM. However, at large size problem (p >14 
for afternoon data,/? >10 for morning data), CPLEX optimally solve the protection 
case of GFIM more efficiently than FILM. In both examples, FILM’s computation 
times rise sharply as p  increases, GFIM’s rise much more slowly, approximately 
linearly (Figures 3-6 and 3-7). In the 2001 afternoon traffic network, CPLEX 
optimally solves the protection case of GFIM more efficiently than FILM for p  >14, 
with a much lower increase in the numbers o f branch-and-bound nodes and MIP 
simplex iterations. In the 1989 morning traffic network, CPLEX optimally solves the 
protection case of GFIM much more efficiently than FILM for p  >10, with a much 
lower increase in the numbers of branch-and-bound nodes and MIP simplex iterations. 
This runs counter to our intuition that as a generalized, location-allocation model, 
GFIM would be less efficient than FILM.

The reasons why FILM’S computation times, branch-and-bound nodes and 
MIP simplex iterations rise sharply asp  increases and why GFIM’s rise much more 
slowly, approximately linearly are very interesting and complex. I will work on a 
formal mathematical proof in the future. Here, I provide some simple explanations of 
the computational behaviour of FILM and GFIM.

The formulations of FILM and GFIM can be modified with the following new 
terms to make their relationships to the classic formulation of the /?-median model 
(ReVelle and Swain 1970) more apparent: Q = I ; fq = Nq -  N,; Gqj -  w,x dy, X q = X,; 
Xqj — Xjf, Yj = Xjf, and j  e q -> /  e N,. The constraints (2) and (8A) are, respectively, 
transformed to constraints (2D) and (8D) as follows.

(2D)

X i j  - X j j  < 0, V i 6  /,/ ' e N h  i f j  (8D)

Constraint (8D) at A) = J  is exactly the Balinski constraint described by Morris 
(1978), whereas (2D) is structurally very similar to the Efroymson Ray type constraint.
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Several researchers (e.g., Divas and Ray 1969; Williams 1974; Morris 1978; Rosing, 
ReVelle, and Rosing-Vogelaar 1979; ReVelle 1993; Church 2003) determined that the 
Balinski type constraint is “integer-friendly,” meaning that the relaxed formulation 
produces a high proportion of integer solution variables. There are many fewer 
Efroymson Ray constraints in FILM, but this formulation is not “integer-friendly,” 
and requires time-consuming branch and bound iterations.

Williams (1974) concluded, “Obviously the second formulation (a Balinski 
type constraint) is far superior to the first (an Efroymson Ray type constraint) because 
of the unimodularity property.” He explained, “the second formulation (a Balinski 
type constraint) has the property that each restraint now contains exactly one 
coefficient equal to +1 and exactly one coefficient equal to -1. The dual problem will 
therefore have exactly one +1 and exactly one -1 in each column. [...] The matrix of 
both this problem and its dual are therefore unimodular.” ReVelle (1993) indicated 
that integer or mixed-integer programs which have unimodular constraint matrices are 
“integer-friendly.” Based on practical experience, Rosing, ReVelle, and Rosing- 
Vogelaar (1979) and Church (2003) concluded that not all constraints need be of the 
Balinski type to make a model “integer-friendly.” Our research is the first to 
experimentally verify these “integer-friendly” properties in flow-interception location 
models (Tables 3-3 and 3-4; Figures 3-6 and 3-7).

Now suppose we consider GFIM to be a re-formulation of FILM. To facilitate 
comparison between the two formulations, we will only use the X q/ variables. That way,
both formulations use the same decision variables. The two formulations are:

GFIM FILM
Maximize: X ^ / X x « Maximize: X/?  X  x <n (19)

<i*Q j e N q geQ j s N q

S.t. S.t.
X ^ l ,  V q z Q X ^ - 1’ (20)
J*N, j s N q

Xy  ^ Yj, \fq e Q ,j e Nq 2 X S E 1'/.
j e N q j e N q

(21)

I  r , = p 2 T = P (22)
jf=J

0 < x 9/<l, Vq e Q , j  e Nq 0 ^ X y  < 1, \ / q c Q , j e N q (23)

Yj £{0,1}, j e J Yje{  0,1}, j e J (24)

From a side-by-side comparison, we see that FILM is obtained from GFIM by 
summing the second set o f constraints over j ,  seen in constraint (21). Considering the 
linear programming relaxations of both formulations, we see that any solution that is 
feasible to GFIM will also be feasible to FILM, but the reverse is not true. Therefore, 
the feasible set for the linear programming relaxation of GFIM is contained in the 
feasible set for the relaxation of FILM. In other words, the GFIM formulation is 
tighter than the FILM formulation. A simple example illustrates why the GFIM 
constraints are tighter than the FILM constraints. Consider the constraints 0 < X  < 1,
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and 0 < Y < 1 which specify the unit square. Moving from GFIM to FILM is like 
replacing these constraints with >0,Y >0,X  + Y <2, which specifies a triangle that 
contains the unit square and has twice the area of the unit square.

T able 3-3: Computational comparison (afternoon peak traffic, Edmonton)
The classic FILM model Protection case, GFIM

P Minute Branch MIP iterations Minute Branch MIP iterations
1 0.1 0 17185 2.8 0 323080
2 0.3 0 22913 5.6 0 331198
3 0.2 0 18928 6.9 0 336505
4 0.4 0 24582 6.7 0 328942
5 0.3 0 24687 7.5 0 326573
6 0.4 0 25261 10.9 0 336977
7 0.4 0 25583 9.7 0 332557
8 0.5 0 26027 11.4 0 336150
9 0.6 10 26589 14.2 2 339775

10 0.9 111 32082 16.0 0 350686
11 1.0 64 33439 18.6 0 356895
12 4.0 1028 94947 18.3 0 342589
13 16.8 3073 356459 22.1 0 346294
14 3.6 420 79278 27.0 0 350418
15 69.9 15435 1451224 27.4 0 346564
16 64.2 5657 1285721 33.2 2 346953
17 77.8 7896 1615058 38.3 2 355691
18 69.7 8237 1372720 36.9 0 344834
19 105.3 12240 2073856 42.6 0 351875
20 364.1 28172 7333811 56.7 4 362394
21 1008.4 192555 18647468 64.5 4 368355
22 60.2 4 362409
23 64.7 2 362197
24 79.2 4 372695
25 92.1 8 386159
26 96.9 4 377892
27 104.7 2 386704
28 143.2 24 422796
29 169.4 20 446673
30 194.5 18 463703

Minute: CPU Minutes; Branch: Branch-and-bound nodes;
MIP: MIP simplex iterations
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Table 3-4: Computational comparison (morning peak traffic, Edmonton)

The classic FILM model Protection case, GFIM
P Minute Branch MIP iterations Minute Branch MIP iterations
1 0.3 0 25728 4.9 0 445691
2 0.5 0 27328 9.8 0 437754
3 0.2 0 22412 8.8 0 413171
4 0.3 0 22918 11.4 0 409773
5 0.3 0 22297 9.8 0 387256
6 0.4 0 22827 14.0 0 391095
7 0.5 0 25023 15.4 0 380291
8 1.6 48 40740 20.2 0 395562
9 2.7 54 53139 18.6 0 381923

10 3.0 209 58863 24.8 0 391419
11 216.7 13253 3426214 39.3 2 425254
12 1043.5 123291 15331821 46.8 2 42.5289
13 47.0 2 425765
14 53.4 2 433251
15 48.1 0 414934
16 56.1 0 416713
17 46.3 0 406230
18 61.6 2 425265
19 78.1 2 442567
20 93.6 10 441506
21 106.7 14 461006
22 120.8 13 466902
23 108.3 4 448141
24 116.0 6 452277
25 125.2 4 451776
26 122.3 11 447947
27 133.7 6 446673
28 154.4 14 454800
29 195.0 14 468113
30 194.8 13 471270

Minute: CPU Minutes; Branch: Branch-and-bound nodes; 
MIP: MIP simplex iterations

3.6. Conclusion
In this chapter I introduce GFIM, a generalized and efficient model for locating 
facilities on a network with flow-based demand. First, GFIM is a generalized model 
for effectively solving most current and future flow-interception location problems. 
Most current flow-interception location problems can be solved by simple parameter 
manipulations in GFIM’s input. Additional flow-interception problems can be solved 
by manipulating or adding constraints to GFIM.
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Furthermore, several critical considerations in flow-interception models -  such 
as deviation from predetermined journeys, locational and proximity preferences, and 
capacity issues -  can be handled within the single framework. Secondly, GFIM is an 
effective and efficient model for locating facilities on a network with flow-based 
demand. In comparison with FILM, which is a location model without having 
“integer-friendly” properties, GFIM is a location-allocation model having “integer- 
friendly” properties. These “integer-friendly” properties enable a standard 
optimization engine such as ILOG-CPLEX to optimally solve GFIM more efficiently 
than the classic FILM. The “location-allocation” property, together with the “integer- 
friendly” properties, enables GFIM to provide a much broader, realistic approach to 
problems in the private and public sectors than do other current flow-interception 
models. In short, in comparison with current flow-interception location models 
reported in the literature, the use of GFIM significantly reduces the solution burden on 
decision makers, without degrading solution quality. GFIM clearly provides a 
standardized benchmark for current and future models in the academic literature.
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Figure 3-1: A test 7-node network

1 Distance on link 
1 Link ID

Figure 3-2: The GFIM model (GFIM.mod)

par am Q >=0; 
param J >=0; 
param p >=0; 
param C >=0;
param G {q in 1..QJ in 1..J}; 
var Y {1..J} binary;
var X {q in 1..Q, j in 1. J : G[q,j]>0} binary; 
maximize Z:

sum {q in 1..Q} sum {j in 1..J: G[qj]>0} G[qj]*X[qj]; 
subject to constraint_7 {q in 1..Q} :

sum {j in 1..J: G[q,j]>0} X[q,j] <=1.0; 
subject to constraint_8B {j in 1..J}:

sum {q in 1..Q: G[q,j]>0} G[q,j]*X[q,j] <=C*Y[j]; 
subject to constraint_9: 

sum{j in 1..J} YO] <= p;

Figure 3-3: Data for the GFIM model (GFIM.dat)

param Q = 4; 
param J = 7; 
param C = 2.6;
param p := 2;
param G default 0: # matrix of G

1 2 3 4 5 6 7:=
1 2.00 0.74 2.00 0.74 2.00 1.22 2.00
2 0.14 1.00 1.00 0.08 0.22 1.00 0.08
3 0.03 0.08 0.22 1.00 1.00 1.00 0.37
4 0.02 0.04 0.10 2.00 2.00 0.28 2.00;
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Figure 3-4: 2001 aftenoon peak traffic network 
(Edmonton, Alberta, Canada)

This network, originally from Zeng, Hodgson, and Castillo (2007), 
has been redrawn for greater spatial accuracy.

N

7
Flow % through zones Flows % on links

• 0.00-0.15 --------0.00-0.19

• 0.16-0.34 --------0.20 - 0.46

• 0.35 - 0.54 -------- 0.47- 0.84

• 0.55 - 0.99 -------- 0.85-1.48

• 0.10-1.87 -------- 1.49- 3.60
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Flows % through 177 zones 

•  0.00 - 0.21 

0.22 - 0.61 

0.62- 1.01 

1.02-1.91 

1.92-3.20 

703 nodes

Flows % on 2198 links

Figure 3-5: 1989 morning peak traffic network 
(Edmonton, Alberta, Canada)

4 KM 
I

This network, originally from  Hodgson, Rosing, and Storrier (1996), 
has been redrawn fo r greater spatial accuracy.
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Figure 3-6: CPU minutes of FILM and GFIM 
(Edmonton afternoon peak traffic)
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Figure 3-7: CPU minutes of FILM and GFIM 
(Edmonton morning peak traffic)
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Chapter 4 * 

A New Type of Consumer and an Efficient Strategy for Unifying Network 
Location Models

Summary: Traditional network location theory assumes that consumers patronize 
facilities as close as possible to demand points (Type A consumer), Flow-interception 
location theory assumes that consumers patronize facilities near or on these 
predetermined paths (Type B consumer). In the real world, however, if  a facility is 
close to their homes, consumers may patronize it; if  a facility is close to their 
predetermined trips consumers may also patronize it. I call these consumers Type C 
consumers. Most people in the real-world are Type C consumers -  they choose a 
facility based on its greater convenience to either their home or their travel path. The 
literature has neglected Type C consumers. My examples, using afternoon peak traffic 
data for the city of Edmonton in Canada, show that the solutions identified by Type C 
consumers are more sensible than solutions identified by Type A and Type B 
consumers.

Location researchers have traditionally proposed models for different types of 
consumers in isolation and tend to introduce changes in objective functions and/or 
assumptions by developing new models. This article introduces a generalized and 
efficient strategy for unifying consumer types and location models (GSUM). Using 
GSUM principle, numerous location models can be unified. For instance, a 
generalized location-allocation model is formulated to effectively and efficiently 
encompass at least 60 existing models, including the /^-median, maximal covering 
location model, flow-interception location model, and numerous variants of these 
models.

* A version of this chapter has been submitted for publication.
Zeng, Weiping. 2007. A new type of consumer and an efficient strategy for unifying 
network location models. Submitted to the European Journal o f  Operational 
Research on April 28, 2007, submission No:EJOR-D-07-00630, under review.
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4.1. Introduction
Almost every enterprise in the private and public sectors faces the problem of 
strategically locating facilities to provide services to consumers on a transportation 
network. Traditional network location theory (e.g., the /^-median model formulated by 
ReVelle and Swain in 1970) assumes that demand for service occurs at fixed points 
(e.g., home) and that consumers patronize facilities only near demand points (Type A 
consumer). Flow-interception location theory assumes that demand for services is 
expressed by flows travelling on predetermined origin-destination (OD) paths (e.g., 
daily commute between home and workplace) and that consumers patronize facilities 
near or on predetermined OD paths (Type B consumer). In the real-world, however, if 
a facility is close to their home consumers may patronize it; if  a facility is close to 
their predetermined trips consumers may also patronize it. I call these consumers Type 
C consumers. Most people in the real-world are Type C consumers -  they choose a 
facility based on its greater convenience to either their home or their travel path.
Except for a brief mention by Berman (1997), the literature has neglected Type C 
consumers. My examples, using afternoon peak traffic data for the city of Edmonton 
in Canada, show that solutions identified by Type C consumers are more expedient 
than solutions identified by Type A and Type B consumers.

The number of combinations of three types o f consumers is seven consumer 
scenarios: {A}, {B}, {A, B}, {C}, {A, C}, {B, C} and {A, B, C}. Conventional 
network location models have been proposed exclusively for solving problems in 
scenario {A} where all demands for service are from Type A consumers. Flow- 
interception Location Models (FILM) are used exclusively for solving problems in 
scenario {B} where all demand for service are from Type B consumers. The Type B 
consumer was first identified by Hodgson (1990) and Berman, Larson, and Fouska 
(1992) and has received considerable research interest, represented by about 30 
location models spanning about 40 academic publications. Their applications have 
covered the strategic location of automatic teller machines and convenience stores 
(Berman, Hodgson, and Krass 1995; Hodgson, Rosing, and Storrier 1996; Wang,
Batta, and Rump 2002; Turner 2006), advertising billboards (Averbakh and Berman 
1996; Hodgson and Berman 1997), vehicle inspection stations (Hodgson, Rosing, and 
Zhang 1996; Gendreau, Laporte, and Parent 2000; Miller and Shaw 2001), park-and- 
ride facilities (Homer and Grove 2007), gasoline stations and refuelling facilities 
(Kuby and Lim 2005, 2007; Kuby 2006; Zeng, Castillo, and Hodgson 2007; Upchurch, 
Kuby, and Lim 2006), pickup and fast food outlets (Zeng, Hodgson, and Castillo 
2007), and cellular base stations (Erdemir et al. 2006). In addition, Berman, Bertsimas, 
and Larson (1995) developed several models to address generalizations o f FILM 
where flows are allowed to deviate from predetermined origin-destination paths. The 
reader is referred to Berman, Hodgson, and Krass (1995) for more detailed reviews of 
these models. Several researchers (Hodgson and Rosing 1992; Hodgson, Rosing, and 
Storrier 1997; Berman 1997; Erdemir et al. 2006) have developed several disparate 
models exclusively for solving problems in scenario {A, B}. Known location models 
consider scenario {A}, {B}, or {A, B}.

Location researchers have traditionally proposed models for the three scenarios
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in isolation and tend to introduce changes in objective functions and/or assumptions 
by developing new models. This has created numerous disparate models, each viewed 
as requiring a somewhat different solution method, thus impeding the development of 
standardized software that would encourage widespread use of location models in 
real-world, strategic decision-making processes.

Another fundamental contribution of this chapter is the introduction of GSUM, 
a generalized and efficient strategy for unifying consumer types and network location 
models. First, GSUM transforms Type A and Type C consumers into Type B 
consumers. Thus, many location models and theories based on a particular consumer 
type can be unified, for example, the two divergent flow-interception and conventional 
network location theories can be unified. Second, GSUM enables current and future 
location models to handle consumer types and many objective functions through 
exogenous parameters. Using GSUM principle, I formulate a Generalized Location- 
Allocation Model (GLAM) that allows us to effectively encompass at least 60 existing 
models, including the maximal covering location model (MCLM) (Church and 
ReVelle 1974),/?-median, FILM, and numerous variants of these models. Third,
GSUM reduces the location problem size in terms of the number of variables and 
constraints needed through the use of a sorted strings data structure (e.g., Densham 
and Rushton 1992; Sorensen and Church 1996) that offers great benefits in memory 
savings and solution times. Actually, GSUM becomes more effective as the number of 
located facilities to be located increases.

In short, this chapter aims to show that the Type C consumer and GSUM have 
the potential to substantially improve the merits and applicability of location modeling, 
while simultaneously significantly reducing the solution burden on decision makers. 
GLAM is an excellent example to showcase the effectiveness o f GSUM and the Type 
C consumer on many location problems. The GLAM model itself is an interesting, but 
not necessarily the primary, contribution of this chapter.

The remainder of the chapter is organized as follows. Section 2 introduces 
GSUM. Section 3 describes the formulation of GLAM. Section 4 shows that GSUM 
enables GLAM and other location models to unify a wide variety o f current and future 
location models. Section 5 shows the importance of Type C consumers in location 
modeling with real-world examples. The final section offers major conclusions.

4.2. A Generalized and Efficient Strategy for Unifying Consumer Types
A network location problem may be characterized as identifying the placement o fp  
facilities on a network to serve a spatially distributed set of demand nodes in a manner 
that optimizes a designated objective function. In general, the objective function 
consists of terms involving distances or transportation costs (referred to hereafter 
simply as distances) between consumers and facilities. Type A consumers consider 
distance from demand points to facility points. Type B consumers consider “distance” 
of facilities to the predetermined origin-destination paths. The different ways in which 
consumers understand distance is the major reason that location researchers have 
proposed isolated models for different types of consumers in isolation.

Essentially, a facility is to serve a spatially distributed set o f demand nodes. In
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other words, each potential facility site (candidate) provides a potential objective 
function value (POV) (e.g., demand-weighted distance) to each demand node. A 
demand node may represent all Type A consumers residing in a node or all Type B 
consumers along an OD path. Although objective functions have a variety of real- 
world interpretations with respect to consumers’ types and needs, a POV often enters 
deterministic location models exogenously as a parameter. Accordingly, deterministic 
models themselves need not distinguish among consumer types. The Generalized and 
Efficient Strategy (GSUM) for unifying different consumer types and many objective 
functions is as follows. A dummy path is built for each demand node. In each dummy 
path, all candidates on the network that can serve a given demand node are listed in 
descending order of POV for a maximization problem or in ascending order of POV 
for a minimization problem. All candidates that cannot serve a given demand node are 
removed from that dummy path. The total number of candidates in each dummy path 
is specified. A POV string is also compiled to record each candidate’s POV along the 
dummy path. Recall that a dummy path is not actually a path in physical space but 
rather a list of candidates in decreasing order o f preference. A “list” perhaps would be 
a more descriptive term. However, I believe that the dummy path concept is an 
excellent way of understanding how Type A and Type C consumers are transformed 
into Type B consumers. GSUM is applied to many examples in section 4 below.

The most obvious advantage of GSUM is that it makes use of dummy paths 
and POV strings (rather than models themselves) to deal with various consumer types 
and objective functions. Another advantage o f GSUM pertains to the use of a sorted 
strings data structure to save memory and decrease solution time. Many solution 
techniques (e.g., linear/integer programming, interchange heuristics, the algorithms in 
the ARC/INFO GIS system) use a sorted distance strings data structure to replace a 
standard distance matrix in order to speed processing time. Here I describe three 
simple approaches for reducing the volume of dummy paths and POV strings without 
affecting the properties o f the optimal solutions.

First, in multiple-facility location problems, candidates near the end of a 
dummy path often do not affect the properties of the optimal solution. These 
candidates can thus be removed. In a maximization problem, the removed candidates 
have zero or very low POVs. In a minimization problem, the removed candidates have 
high POVs. An example is given by the classic /^-median problem (ReVelle and Swain 
1970), which locates p  facilities in a manner that minimizes the total distance which is 
traveled by those who utilize the facilities. In this problem, the lastp  - 1 candidates 
along each dummy path can always be removed because the farthest p  - 1 candidates 
from demand node i will never serve demand node i. In large problem instances, I can 
apply advanced strategies for cutting distance strings (Densham and Rushton 1992; 
Sorensen and Church 1996) to further remove candidates.

Second, some demand nodes (even those residing in different network nodes 
or along different OD paths) may have the same dummy path and POV string. These 
demand nodes can be combined and given a greater demand weight. This approach 
can reduce the total number of dummy paths. The following is an example. The 
MCLM problem aims to maximize the total number of consumers that are covered.
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Here I consider the simultaneous existence of Type A and Type B consumers: Type A 
consumers can be covered by a facility within 4 units of distance; Type B consumers 
can be covered by the facilities along OD paths (See Figure 4-1 and Table 4-1). In 
Figure 4-1, Type A consumers at nodes 5 and 7 both have four visited candidates (4, 5, 
6, and 7) and each candidate provides 1.0 POV. Although the two consumers reside in 
different nodes, they can be combined. If a Type B consumer has an OD path (e.g., 4,
5, 6, and 7), the three consumers can be combined. By removing candidates and 
combining paths, the problem size (the volume of data, decision variables, and 
constraints) is reduced. The two above approaches are analogous to assigning 
consumers who have the same travel plan into a large bus, and removing all 
unnecessary bus stops. Note that the associated POV strings are also reduced with 
dummy paths.

Third, POV strings can further drastically reduce data requirements in specific 
problems. For instance, in the classic MCLM and FILM models, candidates along a 
dummy path always provide the same value of POV (e.g., demand weight). In these 
situations, a POV string can be reduced to a single value.

Table 4-1: Consumers, paths and distances
Node {A} {B} {C} # Flow Paths dqi 1 2 3 4 5 6 7 V«i 1 2 3 4 5 6 7

1 1 1 1 4 1 3 5 7 1 0 4 3 8 8 9 10 1 0 1 0 1 0 3 0
2 1 1 1 3 2 3 6 2 4 0 2 4 6 8 7 2 5 0 0 1 1 0 3
3 1 1 1 3 3 5 7 3 3 2 0 6 5 6 7 3 6 2 0 2 0 3 0
4 1 1 1 3 4 5 6 4 8 4 6 0 2 5 3 4 12 7 7 0 0 0 2
5 1 1 1 2 5 6 5 8 6 5 2 0 3 2 5 14 11 8 4 0 0 3
6 1 1 1 2 6 7 6 9 8 6 5 3 0 4 6 15 11 9 5 1 0 0
7 1 1 1 3 7 4 2 7 10 7 7 3 2 4 0 7 7 0 2 0 2 5 0

Each node has a different type o f  consumer; #: The total number o f  candidates along 
each real flow  path; d^: Distance matrix; V^: Deviation distance matrix.

4.3. A Generalized Location-Allocation Model
Using the GSUM principle, I formulate a generalized location-allocation model 
(GLAM) that locates p  facilities in a manner that optimizes the total objective function 
values that arise from intercepting consumers traveling on flow paths. The formulation 
o f GLAM is:

Maximize (or minimize): Z = S  E  G«x « «
q e Q je N q

S.t.
2 X < 1  y q e Q  (2)

J * N q

X q j  < Y j,V  q e Q ,j  e N q  (3)

j^ J

^ e { 0 , l } , V / - e J  (5)
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Q < X q j< \,\ fq e Q ,j  E N q (6)
In this formulation, the parameters are:

Q = the set of real and dummy paths indexed by q 
J=  the set of candidates indexed by j  
p  = the number of facilities to be located
Gy = the POV (e.g., demand weight distance) where flow along dummy path q 

is assigned to a facility at node j  
G = denotes the matrix of data Gqj 
Nq = the set of all nodes along dummy path q 

and the decision variables are:
fl if  there is a facility located at node j

1 (0 otherwise
Xqj = the proportion of the POV along dummy path q which is assigned to the 

facility at node j  (0 < X ^  < 1)
The objective function (1) aims to maximize or minimize total objective values. In a 
maximization problem, constraint (2) ensures that all POV along path q is intercepted 
at most once by the set of nodes in Nq. There is only a very small distinction between 
the maximization version of GLAM and its minimization version. In a minimization 
problem, constraint (2) must select “=” rather than “<”, which ensures that all POV 
along path q must be intercepted by the set of nodes in Nq. Constraint (3) ensures that 
flow along the dummy path q can only be assigned to the node that is located at a 
facility. Constraint (4) ensures that exactly p  facilities are located. Constraint (5) 
represents the standard integrality conditions.

Two previous generalized models and their variants are special cases of 
GLAM. Hillsman (1984) developed the unified linear model (ULM) which can 
encompass about 20 models, spanning 28 academic articles. ULM is structurally 
identical to the minimization version of GLAM. The primary drawback to ULM is 
that its solution times are often considerably greater than the times of more specific 
models because of the distance and objective function coefficient matrices. The size of 
each matrix is the number of demand nodes multiplied by the number of candidates. A 
secondary drawback is that the efficiency of ULM is drastically degraded when it has 
to give an arbitrarily large number to the distance matrix to prevent the assignment of 
a demand node to an unreasonable candidate (e.g., a candidate beyond a maximum 
distance from a demand point in the MCLM problem). However, the two drawbacks 
are eliminated by GLAM because it uses a structure of dummy paths and POV strings 
(see Section 4.1 Scenario {A} below). Zeng, Castillo and Hodgson (2007) proposed 
the generalized flow-interception location-allocation model (GFIM) which is 
exclusively for solving problems in scenario {B}. With few exceptions, GFIM 
effectively and efficiently solves all deterministic flow-interception location problems 
reported in the literature -  about 20 different models spanning about 40 academic 
publications. GFIM is structurally identical to the maximization version of GLAM.

4.4. The Efficiency of GSUM in Unifying Current and Future Location Models
This section aims to demonstrate that GSUM is able to significantly reduce the
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solution burden on decision makers by unifying numerous current and future location 
models. The first part shows that GSUM enable GLAM to effectively and efficiently 
encompass many current and future models, including the maximal covering location 
model, flow-interception location model, p-median, and numerous variants of these 
models. The second part shows that GSUM can be directly applied to many classic 
known location models.

4.4.1. GSUM Enables GLAM to Solve Many Maximization Problems
With GSUM unifying consumer types, GLAM can solve many maximization 
problems that involve the placement of p  facilities on a network. The MCLM and 
FILM problem are two classic maximization problems reported in the literature. 
Schilling, Jayaraman, and Barkhi (1993) identified 65 articles on MCLM appearing in 
25 different journals, and many more contributions have appeared since then. Zeng, 
Hodgson, and Castillo (2007) identified about 40 articles on FILM problems. Many 
MCLM and FILM problems reported in the literature can be classified as four types.

(i) Maximum potential service user problems (MaxPl): consumers are 
either fully covered (by a facility within a specified distance from 
demand node or a facility along predetermined OD paths), or not 
covered at all.

(ii) Maximum actual service user problems (MaxP2): the number of actual 
service users travelling to a facility is typically viewed as a decreasing 
step function of the distance to the facility.

(iii) Capacity M axPl: incorporate facility capacity issues into the M axPl.
(iv) Capacity MaxP2: incorporate facility capacity issues into the MaxP2. 
MCLM and FILM studies have grown apart and researchers tend to propose

isolated models for each different consumer scenario. Note that each type of problem 
has seven consumer scenarios based on considerations of three types o f consumers. 
Considering the four types of problems, there are at least 7*4 = 28 different problems. 
GSUM enables GLAM to effectively solve all of these problems. In selecting existing 
problems, I have not attempted to describe all possible problems and their variants that 
can be solved by GLAM; rather, I have attempted to cite a few early articles 
addressing problems in scenarios {A}, {B} and {A, B} and to propose similar 
problems in scenarios {C}, {A, C}, {B, C}, and {A, B, C}.

To illustrate the effectiveness GLAM on different kinds of problems, I present 
a simple 7-node example (Figure 4-1 and Table 4-1) for each scenario. Large real- 
world problems are presented in section 5. All models in this chapter are coded in the 
AMPL language (Fourer, Gay, and Kernighan 2002) and solved with ILOG-CPLEX 
optimizer version 9.1.0 on a 2.80 GHz Pentium processor with 1024 MB of RAM in 
Microsoft Windows 2000. Figures 4-2, 4-3, and 4-4 are the code, data, and non scripts, 
respectively. As mentioned above, GLAM is able to solve the problems by simply 
modifying the data file (Figure 4-3).

4.4.1.1. Maximum Potential Service User Problems
In scenario {A}, only Type A consumers exist, thus MaxPl reduces to the classic
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MCLM problem (Church and ReVelle 1974) which is to locate p  facilities in a manner 
that maximizes the number of Type A consumers that are covered by at least one 
facility within a specified critical distance (A). GLAM solves this kind of problem 
when G is characterized as:

w9, if dq/ < A

0, otherwise
where dqj = the distance between consumer q and node j ,  and wq -  demand weight.
That is, every candidate within a maximum distance from a consumer provides the 
POV for that consumer by wq. In my example A = 4, only nodes 1,3, and 2 are within 
4 units from node 1, thus Gu = Gn = G n  = w\ = 1 (Figure 4-1 and Table 4-2). The 
dummy path for the consumer residing in node 1 is l->3->2. (When candidates 
provide the same value, it does not matter which candidate is visited first.) Table 4-2 
and Figure 4-3 provide the dummy paths and POV strings for all consumers. The 
optimal solutions for two facilities provided by GLAM are at nodes 2 and 6 which can 
cover all nodes in the network (Table 4-3).

As discussed earlier, when candidates along a dummy path provide the same 
value of POV, each POV string can be reduced to a single value (= wq in this example). 
Pentium processor floating points require 4 bytes and integers require 2 bytes. POV 
and demand weight require floating points and the other data require integers. The 
data size of GLAM is 3 x 2 + ( ^ ]  V, +1) x 2 + «x4,  where n, m, and N\ are the total

ien

number of demand nodes, candidates, and candidates within A distance from node i, 
respectively. This 7-node example requires 3x2 + 32x2 + 7x4  = 98 bytes (see the 
first 8 lines in Figure 4-3). The ULM model (Hillsman 1984) can also solve this 
problem, but has to use two n xm  matrixes to store distances and objective function 
coefficients. In this example, the data size for ULM i s 3x 2  + n x m x 2  + « x m x 4  =
3x2 + 7 x 7 x 2  + 7 x 7 x 4  = 300 bytes. Recall that the data size of ULM grows very 
quickly with the number of demand nodes and candidates.

In scenario {B}, only Type B consumers exist, thus MaxPl reduces to the 
classic FILM model (Flodgson 1990; Berman, Larson, and Fouska 1992) which is to 
locate p  facilities in a manner that maximizes the number of Type B consumers who 
encounter at least one facility along their OD paths. GLAM solves this problem when 
G is characterized as:

(wq, if  j e N g
G = <*

0, otherwise
That is, every candidate along the predetermined path q provides POVs for that 
consumer by wq. Accordingly, the dummy paths for Type B consumers are the same 
as their actual OD paths (Tables 4-1 and 4-2). Essentially, the only distinction between 
scenarios {A} and {B} is the concept of satisfactory distance: scenario {A} is based 
on whether a facility is within a critical distance from a consumer’s fixed location, and 
scenario {B} is based on whether a facility is along the consumer’s OD path. This 
distinction is reflected in dummy paths and POV strings, rather than in the GLAM
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model. In my example, optimal solutions provided by GLAM for two facilities are at 
nodes 6 and 7, which can intercept all Type B consumers in the network (Table 4-3).

Table 4-2: Q and G in section 4.4.1
Scenario Dummy Path Q POV Strings

q # 1 2 3 4 5 1 2 3 4 5
1 3 1 3 2 1 1 1
2 4 2 3 1 4 1 1 1 1
3 3 3 2 1 1 1 1

( A) 4 4 4 5 7 2 1 1 1 1
5 4 5 4 7 6 1 1 1 1
6 3 6 5 7 1 1 1
7 4 7 5 4 6 1 1 1 1
1 4 1 3 5 7 1 1 1 1
2 3 2 3 6 1 1 1
3 3 3 5 7 1 1 1

{B} 4 3 4 5 6 1 1 1
5 2 5 6 1 1
6 2 6 7 1 1
7 3 7 4 2 1 1 1
1 5 1 3 5 7 2 1 1 1 1 1
2 5 2 3 6 1 4 1 1 1 1 1
3 5 3 5 7 2 1 1 1 1 1 1

{C} 4 5 4 5 6 7 2 1 1 1 1 1
5 4 5 6 4 7 1 1 1 1
6 3 6 7 5 1 1 1
7 5 7 4 2 5 6 1 1 1 1 1

Table 4-3: Optimal solutions in section 4.4.1.1
Scenario {A} {B} {C} {A, B} {A, C} {B,C} {A, B, C}

P 1 2 1 2 1 2 1 2 3 1 2 1 2 1 2 3
Z 4 7 4 7 6 7 8 13 14 10 14 10 14 14 20 21

Location 2 2,6 6 6,7 5 1,6 7 2,5 2,4,6 7 2,6 7 6,7 7 2,5 3,4,6

Perhaps Berman (1997) was the first researcher to notice the existence of Type 
C consumers. In scenario {C}, only Type C consumers exist. GLAM solves the 
problem when G is characterized as:

(wq, if dw < A or j e N q

G* I0, otherwise
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That is, every candidate within a maximum “distance” of the demand point or of the 
OD path provides the POV for that consumer by wq. In this example, for the consumer 
residing in node 1, nodes 3, 5, and 7 are along the OD path, and nodes 1, 2, and 3 are 
near node 1 (A < 4). Therefore, the nodes along the dummy path are the union of the 
two set of nodes (1, 3, 5, 7, and 2; Table 4-2). The optimal location for a single facility 
is at node 5 which covers 6 demand nodes (Table 4-3). In contrast, the optimal 
locations for a single facility in scenario {A} covers only 4 demand nodes.

Berman (1997) tried to consider the MaxPl problem in scenario {A, B, C}. 
However, he artificially split Type C consumers into Type A and Type B consumers 
by adding some assumptions. Indeed, he was concerned with the problem in scenario 
{A, B}. His article formulated a new model that considers MaxPl in scenario {A, B}. 
In comparison with MCLM and FILM, his model is more complex and 
computationally demanding. Rather than developing new models, GLAM can 
effectively solve MaxPl for any scenario by simple pre-processing the input data: 
compile the dummy paths for various consumers and then enter all dummy paths into 
GLAM. Table 4-3 summarizes the results of the seven scenarios in my example.

4.4.I.2. Maximum Actual Service User Problems
In scenario {A}, only Type A consumers exist, MaxP2 reduces to generalized 
maximal covering problems (e.g., Church and Roberts 1983; Berman and Krass 2002; 
Berman, Krass, and Drezner 2003; Karasakal and Karasakal 2004). In scenario {B}, 
only Type B consumers exist, MaxP2 reduces to generalized flow-interception 
problems (e.g., Berman, Bertsimas, and Larson 1995; Zeng, Castillo, and Hodgson 
2007). Several researchers (Hodgson and Rosing 1992; Hodgson, Rosing, and Storrier 
1997; Berman 1997; Erdemir et al. 2006) formulated several models for MaxP2 in 
scenario {A, B}. Their models are more complex and computationally demanding 
than GLAM. A wide variety o f coverage functions in the real-world, together with 
seven consumer scenarios, have provided a rich collection of model s but conceptually 
similar mathematical representations o f the MaxP2 problems. GLAM effectively 
solves those problems simply by characterizing G in different ways. Note that G can 
be any function of the distance to facilities. A typical coverage function described by 
Karasakal and Karasakal 2004 is: consumers are fully covered within a minimum 
critical distance, decreasingly covered (partially covered) with distance beyond the 
minimum critical distance until the maximum critical distance, and not covered 
beyond this range. In this case, G is characterized as follows: 

wq, if  dv <R

wqe~ad\  if R K d y  < T

0, otherwise

where: R = the maximum full coverage distance;
7’= the maximum partial coverage distance; 
a = a scaling constant; and
dqj = the distance between node q and j ,  or the deviation distance between path
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q and node j.
Note that when R = T  the problem reduces to the classic MCLM or FILM.

Table 4-4: Q and G in section 4.4.1.2
Scenario Dummy Path Q POV Strings

q # 1 2 3 4 5 6 7 1 2 3 4 5 6 7
l 3 1 3 2 1 0.22 0.14
2 4 2 3 1 4 1 1 0.14 0.14
3 4 3 2 1 5 1 1 0.22 0.08

{A} 4 5 4 5 7 2 6 1 1 0.22 0.14 0.08
5 5 5 4 7 6 3 1 1 1 0.22 0.08
6 4 6 5 7 4 1 0.22 0.14 0.08
7 4 7 5 4 6 1 1 0.22 0.14
1 7 1 3 5 7 2 4 6 1 1 1 1 1 1 0.22
2 7 2 3 6 4 5 7 1 1 1 1 1 1 0.22 0.08
3 6 3 5 7 2 4 6 1 1 1 1 1 0.22

{B} 4 4 4 5 6 7 1 1 1 1
5 4 5 6 7 4 1 1 0.22 0.14
6 4 6 7 5 4 1 1 1 0.14
7 6 7 4 2 3 5 6 1 1 1 1 1 0.08

Table 4-5: Optimal solutions in section 4.4.1.2
Scenario {A} {B} {A, B}

P 1 2  3 4 1 1 2  3 4
Z 3.30 5.44 6.22 7.00 7.00 10.30 12.44 13.22 14.00

Location 5 3,5 1,2,5 1,2,5,6 5 5 3,5 1,2,5 1,2,5,6

In my example, Table 4-4 summarizes Q and G with a = 0.5, R = 2, and T = 5 
in scenarios {A} and {B}. In scenario {A}, consumers measure distance from a fixed 
location: for example, the distance between node 2 and the consumer residing in node 
1 is 4 units. Thus, G\2 = e_0 5x4 = 0.14. In scenario {B}, the consumers wishing to visit 
a facility are assumed to first take the shortest path to the facility, and then from the 
facility to take the shortest path to the destination. The sum of these two shortest 
distances minus the shortest origin-destination distance is the deviation distance. For 
instance, the deviation distance between node 2 and the consumer coming from node 1 
is 4 + (4 + 3) - (3 + 5 + 2) = 1 (Figure 4-1 and Table 4-1). Thus, G12 = 1. GLAM can 
effectively solve any scenario. Table 4-5 summarizes the solutions provided by 
GLAM in scenarios {A}, {B}, and {A, B}.

4.4.I.3. Capacitated Maximization Problems
The capacitated maximization problem is a very important class of problem arising in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

many contexts. Service facilities often have workloads which push them to the limit of 
their ability to provide effective service. The maximum capacity problems incorporate 
facility capacity issues into MaxPl and MaxP2. In scenario {A}, only Type A 
consumers exist, this is the capacitated maximal covering problem (e.g., Chung 1986; 
Current and Storbeck 1988; Pirkul and Schilling 1991). In scenario {B}, only Type B 
consumers exist, this is the capacitated flow-interception problem (e.g., Zeng 2004; 
Zeng, Castillo and Hodgson 2007). GLAM effectively solves these problems in any 
scenario by replacing constraint (3) with the following constraint:

o )
q*Q

where Q  is the capacity of the facility at node j .  Constraint (7) ensures that the total 
objective values assigned to a facility do not exceed the capacity o f that facility.

4.4.2. GSUM Enables GLAM to Solve Many Minimization Problems
GSUM also enables GLAM to solve many minimization problems. Perhaps the most 
commonly studied and used minimization problem is the /^-median problem. Hundreds 
of articles on the p -median problem have been published since its debut in the 1960s. 
The j9-median problem arises naturally in locating plants, warehouses, postal offices, 
schools, hospitals, and public buildings.

The classic ̂ -median model (ReVelle and Swain 1970) is designed for solving 
problems in scenario {A}. GLAM effectively solves thep -median problem by 
defining the value of Gqj = \vq x d^. Tables 4-6 and 4-7 provide dummy paths, POV 
strings, and results for the 7-node example.

Hodgson (1981) and Berman, Bertsimas, and Larson (1995) addressed the p- 
median problem in scenario {B}. They assumed that all consumers will travel from 
their predetermined trips to a service facility which is the closest in terms o f the 
deviation distance. The goal of their models is to minimize the total deviation distance 
that is traveled by those who utilize the facilities. GLAM effectively solves these 
problems by defining the value of Gqj = wqx Vqj, where V# = the deviation distance 
between path q and node j  (Table 4-6 and 4-7). Note that when the location of two 
facilities is involved, Z =  12 in scenario {A}, but Z -  0 in scenario {B}.

Berman (1997) addressed /^-median problems in scenario {A, B}. The goal of 
his model is to minimize the total distances and deviation distances that are traveled 
by those who utilize the facilities. GLAM solves this problem by simply 
characterizing consumers using Q and G.

The use of Q and G to characterize the types of consumer rather than the 
model, simplifies the solutions to these problems. Table 4-7 summarizes the optimal 
solutions provided by GLAM.

A number of articles (e.g., Lorena and Senne 2003, 2004; Diaz and Fernandez 
2006) have addressed the capacitated /^-median problem where facilities have finite 
capacity. Zeng (2004) and Zeng, Castillo, and Hodgson (2007) considered capacitated 
flow-interception location-allocation problems. GLAM can effectively solve the two 
types o f capacitated problems by replacing constraint (3) with the above constraint (7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Table 4-6; Q and G in section 4.4.2

Scenario
q

Dummy Path Q 
# 1 2 3 4 5 6 7 1

POV Strings 
2 3 4 5 6 7

l 7 1 3 2 4 5 6 7 0 3 4 8 8 9 10
2 7 2 3 1 4 5 7 6 0 2 4 4 6 7 8
3 7 3 2 1 5 4 6 7 0 2 3 5 6 6 7

{A} 4 7 4 5 7 2 6 3 1 0 2 3 4 5 6 8
5 7 5 4 7 6 3 2 1 0 2 2 3 5 6 8
6 7 6 5 7 4 3 2 1 0 3 4 5 6 8 9
7 7 7 5 4 6 2 3 1 0 2 3 4 7 7 10
1 7 1 3 5 7 2 4 6 0 0 0 0 1 1 3
2 7 2 3 6 4 5 7 1 0 0 0 1 1 3 5
3 7 3 5 7 2 4 6 1 0 0 0 2 2 3 6

{B} 4 7 4 5 6 7 2 3 1 0 0 0 2 7 7 12
5 7 5 6 7 4 3 2 1 0 0 3 4 8 11 14
6 7 6 7 5 4 3 2 1 0 0 1 5 9 11 15
7 7 7 4 2 3 5 6 1 0 0 0 2 2 5 7

Table 4-7: Optimal solutions in section 4.4.2
Scenario {A} {B} {A, B}

P 1 2 3 4 5 6 7 1 2 1 2 3 4 5 6 7
Z 26 12 9 6 4 2 0 4 0 30 14 10 6 4 2 0

Location 5 3, 3,5, 1,3, 1,2,5, 1,3,4, 1. . . 5 6, 5 2, 3,6, 1,2, 1,2,5, 1,3,4, 1. . .

5 6 5,6 6,7 5,6,7 7 7 5 7 5,6 6 ,7 5,6,7 7
*All optimal solutions are identified by Figure 4-2 replacing “maximize ” with 

“minimize", “< = ’’ with in constraint 2

4.4.3. Application of GSUM to Other Location Models
We have seen that GSUM unifies consumer types and many objective functions by 
creating dummy paths and POV strings. GSUM enables GLAM to effectively solve a 
broad variety of location problems. GSUM can be applied to many current location 
models. An example is the set covering location model (SCLM) (Toregas et al. 1971), 
which seeks the minimum number of facilities so that all demands are covered by at 
least one facility within a specified distance. SCLM has received considerable 
attention in the location literature. Schilling, Jayaraman, and Barkhi (1993) identified 
40 articles on SCLM appearing in 25 different journals, and many more contributions 
have appeared since then. Holmes, Williams, and Brown (1972) and Hodgson and 
Doyle (1978) extended SCLM to locate day-care centers. Although the latter article 
indicated that a high proportion of automobile users and public transit users rely on 
day-care centers along the daily commute between home and workplace, the literature
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on location o f day-care centers assumes that all service users are Type A consumers. 
With GSUM, this assumption can be easily relaxed.

Here I consider the 7-node example, where Type A consumers can be covered 
by facilities within 4 units of distance; Type B consumers can be covered by facilities 
within 4 units of deviation distance; and Type C consumers can be covered by 
facilities within 4 units o f distance or deviation distance. (Note that the distance 
threshold need not be the same for the different consumers.) Table 4-8 summarizes the 
dummy paths for the three types of consumer. For instance, in scenario {A}, for the 
consumer at node 1, nodes {1, 3, 2} are within 4 units of distance, thus the dummy 
path is {1, 3, 2}. In scenario {B}, for the consumer coming from node 1, all 7 nodes 
are within 4 units of deviation distance, thus the dummy path is 1, 3, 5, 7, 2, 4, 6. For 
the consumer at node 4 in scenario {C}, nodes {4, 5, 7, 2} are within 4 units of 
distance, and nodes {4, 5, 6, 7} are within 4 units of deviation distance, thus the 
dummy path is {2, 4, 5, 6, 7}. In this simple problem, all POV strings can be removed 
because they are all equal to one. Table 4-9 summarizes the results identified by 
SCLM in the seven scenarios.

4.5. The Importance of Type C Consumers in Location Modeling
It is assumed to locate service facilities such as public libraries, postal offices, day­
care centers, video rental stores, or automatic teller machines in the city of Edmonton, 
Alberta, Canada. The goal is to maximize the total number o f potential service users. 
Some people (e.g., senior citizens or children) use facilities only from home, Type A 
consumers; some people patronize facilities only from their daily commute, Type B 
consumers; and some people patronize facilities either from home or along their 
predetermined trips, Type C consumers. In this section, I compare the importance of 
the three types of consumer in location modeling.

My real-world example is the 2001 afternoon peak traffic network for the city 
of Edmonton in Canada, comprising 16,488 OD flow paths, 290zones, 1,746 nodes 
and 4,606 links (Figure 5) described by Zeng, Hodgson, Castillo (2007). The original 
data were provided by the City of Edmonton Transportation and Streets Department, 
who state that their data have been produced according to industry standards and that 
their forecasting model is highly recognized throughout North America. Flows in 
these two data sets are vehicle flows among traffic zones in the full Edmonton area. 
These afternoon flows are dominated by movement from the central to the peripheral 
areas, but each o f the 290 zone centroids serves both as an origin and a destination, 
producing what I view as a realistic test-bed for the flow-interception location 
problem. Because the afternoon peak is the rush-hour journey from work, each trip 
destination can be viewed as a home.

The consumers in each scenario are described as follows. In scenario {A}, the 
51375 inflows to 290 destinations are viewed as Type A consumers, who are either 
fully covered by the facility within one kilometre Euclidean distance from their homes 
or not covered at all. In scenario {B}, the 51375 flows along 16488 OD paths are 
viewed as Type B consumers, who are either fully intercepted by the facility along 
their OD paths or not intercepted at all. Figure 4-5 illustrates the Type A and Type B
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consumer patterns. Circles with areas are proportional to the percent of Type A 
consumers. Link widths are proportional to the percent of Type B consumers. In 
scenario {C}, I add an extension path to each o f the 16,488 OD paths. For each OD 
path, the extension path is to visit the nodes which are within one kilometre of the 
destination excluding the nodes along that OD path. Therefore the 51,375 flows along 
the 16,488 OD and extension paths can be viewed as Type C consumers, who are 
either fully covered by the facility along their OD and extension paths, or not covered 
at all. Intuitively, the high flow nodes near large circles are highly preferred locations 
for Type C consumers (Figure 4-5). I assume that each type of consumer in scenarios 
{A, B}, {A, C}, and {B, C} are half of that in each scenario {A}, {B}, or {C}. For 
instance, the number of Type A consumers at each destination in scenario {A, B} is 
half o f that in scenario {A}, and the number of Type B consumers along each OD path 
in scenario {A, B} is half of that in scenario {B}. Each type of consumer in scenario 
{A, B, C} is one third of that in each scenario {A}, {B}, or {C}. Note that each 
scenario has the same total number of consumers. My findings are exemplified by the 
results identified by GLAM at/? = 4 .1 select a small number of facilities because it is 
easier for readers to visualize several solution patterns in a figure.

Table 4-8: O in section 4.4.3
Scenario q # 1 2 3 4 5 6 7

i 3 1 3 2
2 4 2 3 1 4
3 3 3 2 1

{A} 4 4 4 5 7 2
5 4 5 4 7 6
6 3 6 5 7
7 4 7 5 4 6
1 7 1 3 5 7 2 4 6
2 6 2 3 6 4 5 7
3 6 3 5 7 2 4 6

{B} 4 4 4 5 6 7
5 4 5 6 4 7
6 3 6 7 5
7 5 7 4 2 3 5
1 7 1 2 3 4 5 6 7
2 7 1 2 3 4 5 6 7
3 7 1 2 3 4 5 6 7

{C} 4 5 2 4 5 6 7
5 4 4 5 6 7
6 3 5 6 7
7 6 2 3 4 5 6 7
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Table 4-9; Optimal solutions in section 4.4.3
Scenario {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}

Z 2 1 1 2 2 1 2
location 2,6 5 5 2,6 2,6 5 2,6

First, I analyze solution patterns in scenarios {A}, {B}, and{C}. Figure 4-6 
illustrates the optimal locations in the seven scenarios. The small, black points 
illustrate the covered destinations in scenario {A}. In scenario {A}, there is no facility 
at a high flow node but each facility is central to several major destinations, a 
characteristic o f the classic MCLM solution. In scenario {B}, four facilities are 
located in the north, west, south, and southeast o f the city; clearly optimal FILM 
solutions avoid flow cannibalization. In scenario {C}, all facilities are located at high 
flow nodes near several major destinations, clearly incorporating benefits of the two 
solutions in scenarios {A} and {B}. Table 4-10 illustrates the obvious result that each 
optimal solution covers the largest number of consumers in that particular scenario. 
SA, SB, SC, SAB, SAC, SBC, and SABC are the seven optimal solutions for 
scenarios {A}, {B}, {C}, {A, B}, {A, C}, {B, C} and {A, B, C}, respectively.

Table 4-10: Consumers covered by each solution
Scenario {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C}

SA 7017 3026 8404 5022 7710 5715 7550
SB 3203 9307 10772 6255 6988 10040 9556
SC 5189 8226 11766 6708 8478 9996 10354

SAB 5216 8704 11456 6960 8336 10080 10368
SAC 5951 7630 11354 6790 8652 9492 10204

SBC or SABC 4986 8668 11652 6867 8319 10160 10377
* SBC and SABC are the same by coincidence.

Second, I compare the influence o f the three types o f consumer on real-world 
location modeling, by considering two simple indices:

ICA = h c ~ ZsA x J oo°/0, and ICB = ~ sc~ ZsB x 100% (8)
Z SA Z SB

I c a  equals the proportion of additional consumers covered by SC compared to SA; I c b  

is the proportion of additional consumers covered by SC compared to SB. I term the 
index Superiority of SC. These indices (Table 4-11) indicate the influence of solutions 
{A}, {B} and {C} in each of the seven scenarios. SC always covers more consumers 
than SA except for scenario {A}. In scenarios {B}, SC covers 171.8% more 
consumers than SA. Considering the seven scenarios, SC covers an average of 48.8% 
more consumers than SA. SC always covers more consumers than SB except for 
scenarios {B} and {B, C}, where SC covers 11.6% and 0.4% fewer consumers than 
SB. Considering the seven scenarios, SC covers on average 13.7% more consumers 
than SB. When there is more than one type o f consumers, SC nearly always covers
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more consumers than SA or SB: SB covers a few more consumers than SC in scenario 
{B, C}. Note that SC covers more consumers than SA or SB even in scenario {A, B}. 
Figure 4-6 also illustrates that SC outperforms SA or SB: for instance, SA chooses 
node 4 which is not a good location for Type B and Type C consumers; SB chooses 
node 5 which is not a good location for Type A and Type C consumers; SC chooses 
node 11 which is a good location for Type A, Type B, and Type C consumers. 
Moreover, the fact that three of four facilities in each scenario {A, C}, {B, C} or {A, 
B, C} are the same as those in scenario {C} (Figure 4-6), also indicates that Type C 
consumers exert the most influence on location in this particular example. In short, 
these findings show that Type C consumers have much greater impact than Type A 
and Type B consumers and that ignoring Type C consumers greatly impairs the 
benefits of location modeling.

Table 4-11: Superiority of SC
Scenario {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C} Average

I c a -26.1% 171.8% 40.0% 33.6% 10.0% 74.9% 37.1% 48.8%
IcB 62.0% -11.6% 9.2% 7.2% 21.3% -0.4% 8.4% 13.7%

Table 4-12: The Solution Robustness
loptimal {A} {B} {C} {A,B} {A,C} {B,C} {A,B,C} Mean SD

SA 0.0 -67.5 -28.6 -27.8 -10.9 -43.8 -27.2 -29.4 21.9
SB -54.4 0.0 -8.4 -10.1 -19.2 -1.2 -7.9 -14.5 18.7
SC -26.1 -11.6 0.0 -3.6 -2.0 -1.6 -0.2 -6.4 9.5

SAB -25.7 -6.5 -2.6 0.0 -3.7 -0.8 -0.1 -5.6 9.1
SAC -15.2 -18.0 -3.5 -2.4 0.0 -6.6 -1.7 -6.8 7.1

SBC or SABC -28.9 -6.9 -1.0 -1.3 -3.8 0.0 0.0 -6.0 10.4
SD: Standard Deviation

Finally, once a facility is built, it is expensive to relocate it in the future. 
However, many inputs (and consequently the outputs as well) to real-world location 
problems depend on time and are likely to be uncertain. In other words, while most 
facilities are static, inputs (especially demands) to real-world location problems are 
dynamic and probabilistic. A robust solution should remain a good solution when the 
scenario has changed. Therefore, it is highly important to assess the robustness of each 
solution against the optimal solution in each scenario. I do this evaluation by using a 
simple index:

x lW 0/° (9)
optimal

The numerator indicates the consumers not covered by a solution compared to the 
optimal solution in that scenario. The denominator indicates the number of consumers 
covered by the optimal solution in that scenario. I term the index Solution Robustness. 
Table 4-12 indicates the robustness of the seven solutions in each scenario. SC (an
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average o f -6.4% \ op tm a i) is less negative than SA (an average of -29.4% l op tm a i )  or SB 
(an average o f -14.5% l op tim a i)• The index standard deviation o f SA (21.9) or SB (18.7) 
is much larger than that o f SC (9.5). The solutions identified in the traditional 
scenarios {A} and {B} are not robust, but the solutions in other five scenarios are 
robust. Therefore, it is important to consider the simultaneous existence of different 
types of consumers, particularly Type C consumers, in location modeling.

4.6. Conclusions
In network location theory, it is traditionally assumes that consumers patronize 
facilities as close as possible to demand points (Type A consumer). In flow- 
interception location theory, it is traditionally assumes that consumers patronize 
facilities near or on predetermined trips (Type B consumer). In the real world, 
however, if  a facility is close to demand points (e.g., home), consumers may patronize 
it; if  a facility is close to predetermined trips (e.g., daily commute between home and 
workplace) consumers may also patronize it. The novelty of this article is to consider 
this new type of consumers, termed Type C consumers. Most people in the real-world 
are Type C consumers -  they are not as selective of location as Type A and Type B 
consumers. The literature has either neglected Type C consumers or artificially split 
them into Type A and Type B consumers by adding some assumptions. This article 
considers the influence of incorporation the Type C consumers in location models 
with 2001 afternoon peak traffic data for the city of Edmonton in Canada. My findings 
show that Type C consumers are critical in facility location problems.

Location researchers have traditionally proposed models for different types of 
consumers in isolation and tend to introduce changes in objective functions and/or 
assumptions by developing new models. This article introduces a generalized and 
efficient strategy for unifying consumer types and location models, called GSUM. 
GSUM can transform Type A and Type C consumers into Type B consumers. Thus, 
many location models and theories based on a particular consumer type can be unified. 
An example is that the two divergent flow-interception and conventional network 
location theories can be unified. Moreover, using GSUM principle, numerous location 
models can be unified. For instance, a generalized location-allocation model is 
formulated to effectively and efficiently encompass at least 60 existing models, 
including the p -median, maximal covering location model, flow-interception location 
model, and numerous variants of these models.
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Figure 4-1: A test 7-node network

1 Distance on link 
1 Node ID

Figure 4-2: GLAM.mod

param Q>=0; 
param J>=0; 
param p>=0; 
param N{l..Q};
parampath{q in l..Q,j in l..N[q]}; 
param G{q in l..Q,j in l..N[q]}; 
var Y{1..J} binary; 
var X{q in l . .Qj  in l..N[q]}>=0,<=l;
maximize Z: sum {q in 1..Q} sum {j in l..N[q]} G[q,j] *X[q,j]; 
subject to constraint_2 {q in 1..Q}: sum {j in l..N[q]} X[q,j] <= 1; 
subject to constraint_3 {q in l..Q,j in l..N[q]}: Y[path[q,jj] >= X[q,j]; 
subject to constraint_4: sum{j in 1..J} Y[j] = p;
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Figure 4-3: GLAM.txt (example in section 4.1.1)

7 7 2
3 1 3 2
4 2 3 1 4
3 3 2 1
4 4 5 7 2
4 5 4 7 6
3 6 5 7
4
1

7
1

5 4 6
1
1
1

I
1
1

I
1 1

1
1

1
1

I
1 1

1
1

1
1

1 1
1
1

1
1

I
1 1

* The first line is the total number of dummy paths, nodes and facilities, respectively.
* The last 7 lines are POV strings. The others are dummy paths.

Figure 4-4: GLAM.run

# include GLAM.run;
option solver cplex;
model GLAM.mod;
read Q, J, p < GLAM.txt;# read Q, J, p
read {q in 1..Q} (N[q],{t in l..N[q]}path[q,t]) < GLAM.txt; # read N, path 
read {q in l..Q}({j in l..N[q]}G[q,j]) < GLAM.txt; # read G[q,j] 
option cplex_options 'dual';
option print_separator # separator with in writing file 
printf "p,?Optimal, Second, Z,Solution\n">GLAMresults.txt;

# write title line 
set SetP := 1 ..4; # set the range of p facilities 
for {c in SetP} { 

let p := c; 
solve;
# The follow commands are to print results in two files 
printf

"%u,%u,%.lf,%.2f,",p,solve_result_num,_solve_user_time,Z>GLAMresults.txt; 
print {j in l..J:Y[j]>=l} j>GLAMresults.txt; # location
printf "p= %u solve_result_num= %u \n",p,solve_result_num>GLAMbranchMIP.txt; 
display solve_message>GLAMbranchMIP.txt; }
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Figure 4-5: Consumer patterns in scenarios {A} and {B}
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Figure 4-6: Optimal solution at each scenario (p = 4)
78
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{A}: 1,2, 3,4 
{B}: 5, 6, 7,8 
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{A, B}: 5, 6, 9, 12 
{A, C}: 3, 6, 9, 11 
{B,C}:5, 6, 9, 10 
{A, B, C}: 5, 6, 9, 10
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Chapter 5 * 

An Integrated GIS, Optimization, and Heuristic System for Flow-Based Demand 
Aggregation

Summary: Traditional network location problems seek optimal or good facility 
locations on a network with point-based demand. Flow-interception location problems 
seek optimal or good facility locations on a network with flow-based demand. Flow- 
interception problems have been of considerable recent interest, represented by about 
40 academic publications over the past 17 years. In most real-world location studies, 
spatially aggregated data is used due to its original dimensionality. Point-based 
demand aggregation has received considerable research interest in both industry and 
academia. Systematic studies of flow-based demand aggregation have not, however, 
been reported to date. In this chapter, I integrate geographic information systems 
(GIS), optimization, and heuristic methodologies to examine the special network flow 
structure of real-world transportation systems and to develop an integrated system for 
aggregating flow-based demand data. I apply this integrated system to the standard 
flow-interception model with 2001 afternoon peak traffic data for Edmonton, Alberta 
(the sixth largest Canadian city). I find this application to be extremely efficient and, 
most notably, totally free of aggregation error.

* A version of this chapter has been submitted for publication.
Zeng, Weiping, Ignacio Castillo. 2007. An integrated GIS, optimization, and heuristic 
system for flow-based demand aggregation. Submitted to Computers & Operations 
Research on May 19, 2007, submission No:COR-D-07-00267, under review.
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5.1. Introduction
A business profits from a good location: whether it is a small coffee shop with a local 
clientele or a multinational network of widget factories with distribution centers and a 
worldwide chain of retail outlets. Location theory provides decision makers with 
quantitative tools for seeking locations where fixed and operating costs can be kept 
low and accessibility to markets high. Traditional network location theory (e.g., thep- 
median model formulated by ReVelle and Swain in 1970) assumes that demand for 
service occurs at fixed points and that consumers patronize facilities as close as 
possible to them (this type of demand is also referred to as point-based demand). 
Flow-interception location theory assumes that demand for service is expressed by 
flows travelling on predetermined origin-destination (OD) paths and that consumers 
patronize facilities on or near these predetermined OD paths (this type of demand is 
also referred to as flow-based demand). Since flow-interception theory was identified 
by Hodgson (1990) and Berman, Larson, and Fouska (1992) in the early 1990s, flow- 
based demand has received considerable research interest, represented by about 40 
academic publications.

Most real-world location studies use spatially aggregated data. Data is 
aggregated to reduce computational effort, for ease of collection and analysis, to 
facilitate understanding, or for confidentiality. In many cases, the only data available 
is already aggregated. Point-based demand aggregation has received a considerable 
interest in both industry and academia. Systematic studies of flow-based demand 
aggregation have not, however, been reported in the literature.

Traffic flow data is essential for planning and management of transportation 
systems. Traffic flow data provided by government agencies is usually already highly 
aggregated, presented for entities such as traffic zones represented as centroids. Flow- 
based demand is typically presented for origin-destination (OD) flow paths. The 
simplest and most widely used approximation for estimating flows is to assign all OD 
flow to the shortest path for each OD pair (Doblas and Benitez 2005). If the number of 
traffic zones is n, the total number of OD flow paths is n x (n-1), thus increasing 
rapidly with the number of zones. For example, the 395 traffic zones in the city of 
Edmonton, Alberta (the sixth largest Canadian city) produce 155,630 OD pairs; the 
1790 traffic zones in the Chicago region produces 3,202,310 OD pairs. The average 
number o f nodes on each OD path also grows with the number of network nodes.
Even with the most efficient and specialized heuristics, good solutions to large real- 
world flow-interception location problems are beyond the capability of the personal 
computer. Therefore, large real-world flow-interception modeling and analysis must 
rely on aggregated data.

In traditional facility location, aggregation is performed by identifying sets of 
demand points that are close to one another spatially, and representing these sets by 
single points. Aggregation reduces instances to computationally tractable size, but also 
introduces errors into the value of the objective function and into the selection of 
optimal locations. In this chapter, I show that, in contrast to traditional facility location, 
the special network flow structure of real-world transportation systems allows flow- 
based demand data to be aggregated with few or no errors. This chapter reports on an
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effort towards integrating geographic information systems (GIS), optimization 
modeling, and heuristics to examine the special network flow structure of real-world 
transportation systems and to develop efficient methods of aggregating flow-based 
demand data.

The remainder of this chapter is organized as follows. Section 5.2 introduces 
some background of the standard flow-interception location model, aggregation errors, 
GIS, optimization, and heuristics. Section 5.3 integrates GIS, optimization, and 
heuristics to examine the special network flow structure of 2001 afternoon peak traffic 
data for Edmonton, Alberta, and to aggregate data for the standard flow-interception 
location model. Section 5.4 proposes an integrated system for flow-based demand 
aggregation. The final section offers major conclusions.

5.2. Background
5.2.1. The Standard Flow-interception Location Model
This chapter aims to show the importance of flow-based demand aggregation and to 
develop a framework for aggregating such a demand: representing the first systematic 
study on flow-based demand aggregation.

The standard flow-interception location model (FILM) (Hodgson 1990; 
Berman, Larson, and Fouska 1992) is the perfect model for my goals -  its aggregation 
errors are easy to understand, and its outputs are easy to measure and compare. This 
classic model is aimed at maximizing the number o f consumers who encounter at least 
one facility along their predetermined journeys. The mathematical formulation of 
FILM (Hodgson 1990; Berman, Larson, and Fouska 1992) is:

Maximize: Z = ^  f qx q (1)

s.t.
(2)

' , = p  o )
j t J

x q £  {0, 1}, V# e <2 (4)
Y j E { 0 , l } , V j e J  (5)

In this formulation, the input data is:
Q — the set of nonzero flow paths indexed q 
J  = the set of potential facility sites indexed j  
j  e q  = the set of potential facility sites along path q 
f  = the flow volume on the path q

p  = the number of facilities to be located 
and the objective function and decision variables are:

Z = the objective function, total flows intercepted at least once
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fl if  the flow on path q is intercepted by a facility along the path q 

q [0 otherwise
fl if there is a facility located at potential facity site j  

' [O otherwise
The objective function (1) is aimed at intercepting as much flow as possible, 

subject to the constraints that flow on path q cannot be intercepted unless there is at 
least one facility along path q (2), and that exactly p  facilities are located (3). 
Constraints (4) and (5) are standard integrality conditions.

5.2.2. Aggregation Error
Since the early 1970s, two major issues in aggregation analysis in location modeling 
have received much attention in the literature: the identification and investigation of 
errors introduced by a given aggregation procedure; and the development of 
approaches for doing aggregation well. This literature is the subject o f an excellent 
recent review by Francis et al. (2007). To my knowledge, no article has addressed the 
problem of aggregation in flow intercepting models. In fact, to my knowledge, only 
one large, real-world dataset has been applied to flow intercepting models, which 
described in Hodgson Rosing and Storrier (1996) and applied in several other articles 
by Hodgson.

Unlike point-based demand data, which is readily available at various levels of 
aggregation from census and other sources, authentic network flow data is difficult to 
obtain. Such data is garnered by traffic engineering teams; their collection is far 
beyond the capabilities of individuals or small groups of researchers. Fortunately, such 
data is important to transportation planning agencies and is collected in some form or 
another for most large North American cities. This data is sometimes made available 
to researchers; often the data is regarded by municipalities as “proprietary.”

The complexities of urban street networks results in monumentally large 
numbers o f OD pairs within a city of even modest size; data is highly aggregated in 
the transportation planning process. Standard practice involves the creation of systems 
of traffic zones, aggregations of many origins and destinations into highly generalized 
networks of real traffic arteries and artificial “feeder” arcs. Flow data is usually highly 
aggregated in time as well as in space, and is presented, for instance, for an entire day, 
or the morning or evening peak period. Flow data is complex -  it requires the 
knowledge of the assignment of OD flows to the individual links in the networks. 
Traffic engineers estimate the number of trips originating in, or destined to, each 
traffic zone (trip generation), the number of trips between each origin and each 
destination (trip distribution), and the exact paths that they take between origin and 
destination (trip assignment). The procedures to develop flow databases have been 
developed over the past half century, their inaccuracies are an accepted concomitant of 
their great utility in planning procedures.

As do municipal planners, location analysts must accept municipal traffic data 
as given. 1 term the data received from the municipal data base “unaggregated” - 1 
consider the data to represent “true” flows. Even in its generalized form, municipal
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flow data may be too large for tractable FILM problems. I address this problem in this 
chapter, as in the point-based aggregation literature: how may I reduce problem size, 
and what are the error consequences of doing so?

I take a straightforward approach to measuring the error arising from flow- 
based demand aggregation. For a smaller problem, based on smaller values o fp , I 
assess how well solutions based on aggregated data compare with solutions based on 
unaggregated data. Defining:

Z at = True objective function values intercepted by model using aggregated 
data

Ztt = True objective function values intercepted by model using true data 
I use a simple error measure:

E = ZU Zat 

Zu
'100

that represents the degree to which the model based on aggregated demand data fails 
to intercept true objective function values. The error term measures the effect of 
locational changes induced by using aggregated data.

5.2.3. GIS, Optimization and Heuristics for Location Analysis
A location problem may be characterized as identifying the placement of p  facilities to 
serve a spatially distributed demand in a manner that optimizes a designated objective 
function. Spatial relations (e.g., topological and distance relations such as 
“neighbourhood,” “near,” and “far”) between demand points and facilities play a 
central role in location theory. A GIS is a system for management, analysis, and 
display o f geographic knowledge, which is represented using a series of information 
sets such as maps and globes, geographic data sets, processing and work flow models, 
data models, and metadata (ESRI 2007). Commercial GIS engines (e.g., ArcGIS and 
Maplnfo) provide a powerful tool for users to visualize and examine spatial 
relationships among entities, and to represent data in a way that may reveal patterns 
and relationships that are hard to detect using nonvisual approaches. However, 
location models with thousands of decision variables and constraints can be an 
information overload for commercial GIS engines. Commercial optimization engines 
(e.g., CPLEX) are reliable and easy-to-use engines for solving location models. 
However, optimization engines are not visual tools and are unable to solve large size 
location problems. In many cases, the use of optimization engines is not practical 
because it requires extensive CPU time and memory. Heuristics are approximate 
techniques to arrive at good solutions o f large complex problems. But heuristics (e.g.,
1 -opt interchange) cannot guarantee optimal solutions; furthermore, algorithms for 
heuristics are problem-related, a universal heuristic algorithm is not available.

Location analysis, including aggregation analysis, can benefit tremendously 
from the integration of GIS, optimization, and heuristic technologies. A number of 
researchers (e.g., Hodgson and Neuman 1993; Jong and Eck 1996; Yeh and Chow 
1996; Benoit and Clarke 1997; Vlachopoulou, Silleos and Manthou 2001; Church 
2002; Yao and Thill 2006; Cheng, Li and Yu 2007; Murray et al 2007; Hernandez
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2007) have studied the integration of GIS and optimization technologies to support 
facility location planning. A number of researchers (e.g., Densham and Rushton 1991; 
Li and Yeh 2007) have studied the integration of GIS and heuristic technologies to 
support facility location planning. This chapter reports on an effort toward integrating 
GIS, optimization, and heuristic technologies to study the special network flow 
structure of real-world transportation systems and to develop efficient methods for 
aggregating flow-based demand data. In an integrated system, each technology 
contributes to the system with distinctive features. In my case, ArcGIS 9.1 is the 
central system which is used to collect, organize, and visualize spatial data, to export 
data for models in CPLEX, to aggregate flow paths and networks, to visualize 
solutions, and to analyze how errors are introduced into the aggregated procedure. 
CPLEX 9.1 is used to optimally solve aggregated location problems and unaggregated 
problems with small p  (the number o f facilities). An efficient and robust 1- opt 
interchange heuristic is used to find approximate answers to difficult problems that 
cannot be given exact solutions in a reasonable amount of time.

5.3. A Case Study
My study uses 2001 afternoon peak traffic data for Edmonton, Alberta (the sixth 
largest city in Canada). The original data was provided by the City o f Edmonton 
Transportation and Streets Department (TSD). TSD data has been gathered according 
to industry standards and the TSD forecasting model is respected throughout North 
America. TSD provided vehicle flows for a traffic network o f 395 traffic zones, 2211 
network nodes, 6211 links, and 149644 nonzero OD flow pairs for the afternoon peak 
in 2001. Flows are estimated vehicle flows for all pairs of traffic zones in the 
Edmonton area for 2001. Sophisticated methods of traffic assignment (of OD flow 
pairs to paths) exist, but in this study I use the most simple and commonly used 
methodology in the transportation literature by simply assigning all OD flows to the 
network over the least-time paths. I do this using CPLEX 9.1 and ArcGIS 9.1.

In my experience, the unaggregated network for FILM problems for any p  <
21 could be solved with CPLEX within 1000 minutes and aggregation errors should 
be zero or few. Optimal FILM solutions for the original problem forp  = 1.. .20 are 
documented in Table 5 -1. The solutions for p  = 1... 11 are optimally solved by ILOG- 
CPLEX 9.1 optimizer on a 2.8 GHz Intel Pentium processor with 1024 MB of RAM 
in Microsoft Windows 2000. The solutions forp  = 12.. .20 are the best solutions from 
100 random-start runs of a 1-opt interchange heuristic written in FORTRAN. This 
heuristic is known to perform well on FILM problems (Hodgson, Rosing, and Storrier 
1996). For known optimal solutions in my original and aggregated problems, the 1-opt 
interchange heuristic always finds an optimal solution within 10 runs. Heuristic 
concentration cannot improve these solutions: I use CPLEX to solve the original 
FILM problem where potential facility sites are limited to a concentration set created 
from the union of facility locations for p  = 1.. .20 over 100 times. My aggregation 
methods described below cannot improve these solutions either. Thus, I believe these 
solutions forp  = 12.. .20 are optimal solutions. Recall that even with the most efficient 
and specialized heuristics, good solutions to large flow-interception location
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Table 5-1: Optim al Solutions of the O riginal FILM  Problem

p
Flow

% 1 2 3 4 5 6 7 8 9
Locations

10 11 12 13 14 15 16 17 18 19 20
1 6.7 115
2 12.0 115 1142
3 17.0 115 1140 2113
4 21.9 115 1142 2059 2113
5 25.6 115 542 1142 2059 2113
6 28.8 115 542 683 1142 2059 2113
7 31.9 115 542 683 1140 2059 2113 2168
8 34.7 115 542 683 1140 1236 2059 2113 2168
9 37.2 115 542 683 482 1140 1236 2059 2113 2168
10 39.6 115 542 683 482 695 1140 1236 2059 2113 2168
11 41.8 115 542 683 482 695 999 1140 1236 2059 2113 2168
12 43.7 115 542 683 482 695 999 1140 1236 1306 2059 2113 2168
13 45.5 115 542 683 482 695 999 536 1140 1236 1306 2059 2113 2168
14 47.3 115 542 683 482 695 999 536 1140 1236 1306 1608 2059 2113 2168
15 49.0 115 542 683 482 695 999 536 1140 1236 1306 1608 1669 2059 2113 2168
16 50.8 115 542 683 511 695 999 536 1008 1142 1211 1306 1608 2059 2113 2147 2168
17 52.3 115 542 683 482 695 999 536 1007 1140 1259 1306 1608 1669 2059 2113 2147 2168
18 53.9 115 542 683 482 695 999 536 1007 20 1140 1259 1306 1608 1669 2059 2113 2147 2168
19 55.4 115 542 683 482 695 999 536 1007 20 754 1140 1259 1306 1608 1669 2059 2113 2147 2168
20 56.7 115 542 683 ^11J l l 695 999 536 1007 754 1142 1202 1211 1259 1306 1608 2059 2078 2113 2147 2168

OO
L /l



problems rapidly exceed the capability o f the personal computer. I believe that the 1- 
opt interchange heuristic cannot solve very large real-world FILM problems such as 
the traffic network of the U.S. Chicago region (Boyce and Bar-Gera 2003) which has 
1790 traffic zones, 13,000 network nodes, 3,202,310 flow pairs, and a volume of flow 
data 100 times larger than the one in this chapter.

5.3.1. Flow Paths
Section 5.2.1 indicates that the number of paths is the most important factor in CPU 
times for FILM: the number of decision variables is the number of paths plus the 
number o f network nodes (potential facility sites); the number of constraints is the 
number of paths plus one. Therefore, the first strategy for reducing CPU times for 
FILM is to reduce the total number of flow paths.

In afternoon peak traffic data for Edmonton, a large number of flow paths have 
very small flows and major flows are concentrated into limited number of paths. If 
0.1%, 0.5%, 1%, 2%, 5%, and 10% total flows are removed by taking out smallest 
flow paths from the original network, 32%, 45%, 52%, 60%, 68%, and 77% of OD 
paths are removed, respectively. The implication of this observation is that removing a 
large number of small flow paths could only introduce few aggregation errors. If k% 
total flows are removed, at most, k% aggregation errors will be introduced to the 
original problem. I produce four aggregated networks by removing paths with less 
than 0.1000, 1.0000, 2.0000, and 5.0000 units o f flow. I use ArcGIS 9.1 and C++ to 
reduce the associated OD paths and networks -  removing all nodes and links which do 
not fall on the least-time paths. Table 5-2 describes flows, OD paths, and the structure 
of these networks. Network 1 is the original network. Network 2 removes 58% of 
paths by discarding only 2% of total flows. Network 3 removes 89% of paths by 
discarding only 26% of total flows. Network 4 removes 95% of paths by discarding 
43% of total flows. Network 5 removes 98% of paths by discarding 69% of total flows. 
In these aggregated networks, a large number of paths are removed, while not many 
zones, nodes and links are removed (Table 5-2).

Table 5-2: Five Transportation Networks
Network Total flow OD path Network Structure
Flow G% Flow F% # RP% Avg Max Zones RZ Nodes Links

1 0.0000 0 69886 100 149644 0 35 79 395 0 2211 6211
2 0.1000 2 68261 98 62659 58 27 69 335 60 1922 5089
3 1.0000 26 51375 74 16488 89 19 59 290 45 1746 4606
4 2.0000 43 39688 57 8165 95 16 57 275 15 1692 4338
5 5.0000 69 21903 31 2423 98 11 44 242 33 1489 3403

G%: percent o f  maximum errors; F%: percent o f  total flows; #: number o f  OD 
paths; RP%: percent o f  removed OD paths; Max: number o f  nodes on the longest 
OD path; Avg: average number o f  nodes on a path; RZ: number o f  removed zones.

Table 5-3, Figure 5-1, and Figure 5-2 reveal the CPU time and errors for these 
networks. The CPU times for networks 1 to 3 rise sharply as p  increases. Network 1
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(the original network) is free of errors, but it cannot be solved within 1000 minutes for 
p >  11. The aggregated network 2 reduces the problem size sharply and has very few 
errors (an average of 0.2% errors, see Table 5-3). However, it still cannot be solved 
within 1000 minutes forp >  13. The aggregated network 3 can be solved within 365 
minutes for/? < 21, but it has an average of 10% errors. The aggregated network 4 can 
be solved within 15 minutes for/? < 21, but it has very large errors (an average of 
23.5% errors). The aggregated network 5 can be solved within 0.1 minutes for/? < 21, 
but it has very large errors (an average of 34.5% errors). Although the aggregation 
error generally decreases with an increase in the number of facilities for p  > 4, the 
relationship is not monotonic (Figure 5-2). I discover that if  k% total flows are 
removed, the introduced aggregation error is much less than k%. Networks 2, 3, 4, and 
5 induce an average o f 0.2 %, 10.2%, 23.5%, and 34.5% errors after 2%, 26%, 43%, 
and 69% flows removals, respectively. Network 2 induces zero or few errors although 
it removes 58% paths, 2% flows, and 60 traffic zones.

Table 5-3: Com putation time and errors (p -  1...20)
CPU minutes in network 
1 2 3 4 5 #6

1 5.9 1.5 0.1 0.0 0.0 0.1

oo

0.0 0.0 57.1 0
2 4.9 2.6 0.3 0.1 0.0 0.2 1.2 7.0 20.2 51.8 0
3 6.3 2.7 0.2 0.1 0.0 0.2 1.0 12.4 27.2 27.2 0
4 6.7 2.4 0.4 0.1 0.0 0.2 0.0 19.4 32.8 33.4 0
5 10.6 4.1 0.3 0.1 0.0 0.3 0.0 17.0 34.0 34.0 0
6 40.5 81.9 0.4 0.1 0.0 0.4 0.2 15.0 29.2 34.8 0
7 21.8 29.3 0.4 0.1 0.0 0.6 0.0 8.3 29.0 35.2 0
8 38.7 14.5 0.5 0.1 0.0 0.3 0.0 9.9 29.4 35.2 0
9 109.4 7.9 0.6 0.1 0.0 1.0 0.3 11.2 28.6 34.2 0
10 115.0 12.9 0.9 0.1 0.0 0.3 0.1 11.3 27.8 35.2 0
11 191.3 35.3 1.0 0.6 0.0 0.7 0.0 10.8 24.0 34.6 0
12 *1770 35.4 4.0 0.2 0.0 3.9 0.1 10.2 23.8 34.4 0
13 788.7 16.8 0.7 0.0 8.8 0.2 9.7 24.1 33.4 0
14 *1920 3.6 0.5 0.0 4.6 8.9 20.9 32.4 0
15 69.9 0.4 0.0 18.2 10.6 21.3 30.6 0
16 64.2 1.3 0.0 19.5 10.6 21.7 29.8 0
17 77.8 0.4 0.0 54.4 9.1 21.1 30.0 0
18 69.7 0.3 0.1 79.7 8.3 19.9 29.2 0
19 105.3 11.1 0.0 75.3 8.9 17.2 29.2 0
20 364.1 5.4 0.0 239.3 5.1 17.1 28.1 0

Average 00 00 39.0 1.1 0.0 25.4 0.2 10.2 23.5 34.5 0

errors % in network 
2 3 4 5 #6

cannot be solved within these times; #6: an aggregated network in Section 5.3.2

I further investigate the removed network flow structure and how these 
removed flows introduce errors to the FILM problem. First, the average number of 
nodes on a path decreases as removed paths increase (Table 5-2), thus most removed
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flow paths are very long paths. This pattern conforms to gravity spatial interaction 
models (e.g., Fotheringham and O’Kelly 1989) -  OD flows are reversed proportional 
to distances between origins and destinations. Second, these removed zones orient 
toward the central city as the number of removed OD flow paths increases (Colour 
Figure 5-3). Most removed traffic zones are at the periphery of the city and have small 
flows (Figures 5-3 and 5-4). Finally, these 2% total flows from network 1 to network 2 
disperse on (5089/6211)* 100% = 82% links of the city (Figure 5-5). These 2% flows 
do not obviously change the original network flow structure (Figures 5-6 and 5-7).
Thus the 2% flows have negligible effects on facility locations -  only 7 facilities 
moved total 10 times for any p =  1... 13 (Figure 5-7). However, considering network 3, 
these 24%, removing flows (Figure 5-8) from network 2 to network 3 introduces many 
more errors because these removed flows greatly change the original network flow 
structure (Figure 5-7 and Figure 5-9).

In short, a large number of small and long flow paths have negligible effects 
on facility locations and associated objective function values. However, many errors 
will be induced if flow removals obviously change the original network flow structure. 
In this section, I reduce the number of paths by simply removing small flow paths. A 
future work is to reduce the number o f paths as many as possible, changing network 
flow structures as less as possible.

5.3.2. Potential Facility Sites
Section 5.2.1 indicates that network nodes (potential facility sites) are second 
important factor in FILM computation times. The number o f decision variables is the 
number of nodes plus the number of paths. The number of summation operations for 
path q in constraint (2) is equal to the number of nodes on path q. The number of 
summation operations in constraint (3) is equal to the total number of nodes in the 
network. Therefore, the second strategy for reducing FILM computation times is to 
reduce the number of network nodes. At first glance this strategy seems not as 
efficient as the first strategy: the number of constraints is equal to the number o f paths 
plus one; the number o f decision variables is the number of paths plus the number of 
nodes but the number of nodes is generally many fewer than the number o f paths. 
However, many paths may have the same nodes after many nodes are removed and the 
total number of paths may be sharply reduced by aggregating paths. Therefore, this 
strategy may reduce the computation time sharply.

I indicate the rank of node with respect to the percent of total flow through it. 
The highest flow node intercepts 6.7% of total flows of the original network. If a node 
intercepting at least 2.0% of total flows is defined as a high flow node, there are 270 
high flow nodes in network 1 (Figure 5-10). The number of high flow nodes decreases 
sharply as the requirement for high flow nodes increases (Figure 5-10). As an example, 
I select the top 270 high flow nodes as potential facility sites and remove all other low 
flow nodes. I further remove all low flow nodes on each path and aggregate paths 
which have the same nodes. The original 149,644 OD paths are aggregated into 
15,936 OD paths. I termed this aggregated network as network 6. The 270 high flow 
nodes intercept 95% of paths and 87% of flows. Recall that the optimal solution a tp  =
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20 intercepts 56.7% of total flow (Table 5-1). Network 6 with 15,936 paths, 270 nodes 
and 87% of flows is much smaller than network 3 with 16,488 paths, 1746 nodes, and 
74% of flows. This is to say that I can greatly aggregate the original network without 
missing much of total flow by using this method. CPLEX solves network 6 within 240 
minutes forp  = 1.. .20 (Table 5-3) and finds the same solutions as Table 5-1. 
Therefore, the original network is aggregated without error a tp =  1.. .20 by this 
method.

I examine why this method is so efficient in my study area. FILM is aimed at 
maximizing the number of consumers who encounter at least one facility along their 
predetermined journeys. Thus, FILM solutions avoid flow cannibalization. The 270 
high flow nodes are concentrated into a few large arterial roads, not avoiding flow 
cannibalization (Figure 5-11). However, the 270 high flow nodes include the union 
(26 nodes) o f optimal locations o f the original FILM problem at p — 1.. .20 (Figure 5- 
11). This is the reason why network 6 does not induce aggregation errors for the FILM 
problem a tp  = 1...20.

I further examine why all FILM locations are at a limited number o f high flow 
nodes and whether other real-world transportation networks have these characteristics. 
FILM has nodal manifestation— location at a node is always at least as good as 
location on a link because either endpoint of a link can intercept all its flow. In real- 
world transportation systems, travel patterns tend to focus on central business districts 
and movements tend to converge from local streets onto larger arterial roads and 
expressway systems. There is no point in locating FILM facilities on local streets 
since almost all flows intercepted by a node on a local street are intercepted by at least 
one intersection with a larger arterial road. A real-world transportation network has 
many more local streets than arterial roads, thus a large number o f low flow nodes can 
be removed. Therefore, I suspect that in most real-world transportation systems FILM 
may have this high flow nodal manifestation -  a FILM location is always at a network 
node which is good at intercepting many total flows.

5.4. An Integrated System for Flow-Based Demand Aggregation
Here, I propose an integrated GIS, optimization, and heuristic system for flow-based 
demand aggregation (see Figure 5-12). Most of these steps are coded in Microsoft 
Visual C++ 6.0 (see Appendices).
Step 1: Map and examine the original network flow structure. Remove k% total

flows by taking out smallest flow paths from the original network. Note that 
if  k% total flows are removed, at most, k% aggregation errors will be 
introduced to the original problem. The value of k% could be selected 
according to acceptable aggregation errors and the size of network.

Step 2: Map and compare the aggregated network flow structure with the original
network flow structure to roughly guess aggregation errors. The less the 
original network flow structure is changed by flow removals; the less 
aggregation errors could be introduced. Note that if  k% removed flows do 
not obviously change the original network flow structure, the introduced 
aggregation error could be much less than k%; if k% removed flows
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obviously change the original network flow structure, k% aggregation errors 
may be introduced.

Step 3: Rank every potential facility site with respect to the total flow through it.
Map the number o f high flow nodes vs. the least % flow intercepted by a 
high flow node such as Figure 5-5. Analyze the map and designate the top m 
nodes as high flow nodes and others as low flow nodes.

Step 4: Designate the m high flow nodes as potential facility sites. Aggregate paths
by removing low flow nodes on each path and combining paths having the 
same high flow nodes.

Step 5: Output aggregated paths for heuristics.
Step 6: Output high flow nodes for heuristics.
Step 7: Solve the flow-interception model with a heuristic
Step 8: If the problem is too large for heuristics to solve, go back to step 4 and

reduce m. Repeat the process until the heuristic could solve the model.
Step 9: If the problem can be solved, run the heuristic a number of times and create

a concentration set from the union of all locations of these solutions.
Step 10: Designate the concentration set as part of the potential facility sites.
Step 11: Designate the m high flow nodes as part of the potential facility sites.
Step 12: Map and analyze the concentrated set and high flow nodes. Create a full set 

of potential facility sites and further aggregate flow paths.
Step 13: Output aggregated paths for CPLEX.
Step 14: Output the full set of potential facility sites for CPLEX.
Step 15: Solve the flow-interception model with CPLEX.
Step 16: If  the problem is too large for CPLEX to solve, go back to step 8 and reduce 

m. Repeat the process until CPLEX could solve the model.
Step 17: If  CPLEX can solve the problem, map and report results in ArcGIS.

As shown in Figure 5-12, GIS is central to this integrated multi-technologies 
system for flow-based demand aggregation -  most analyses and operations are 
completed in the GIS environment. Heuristics are used to find a solution set for part of 
the potential facility sites. Optimization engines are used to solve small size flow- 
interception problems. Note that this aggregation system can be used to aggregate 
other flow-interception location problems where flows are objective function values 
and network flow structures are network objective function value structures.

5.5. Conclusion
Location analysis as a field can benefit tremendously from the integration of GIS, 
optimization, and heuristic technologies. Flow-based demand aggregation is extremely 
important because large real-world flow-interception modeling and analysis rely 
mostly on aggregated data. In this chapter, I integrate these technologies to examine 
the real-world network flow structure of afternoon peak traffic data for Edmonton, 
Alberta in the year 2001.1 discovered that real-world transportation systems may have 
very special network flow structures: urban residential, workplace, and shopping 
distributions may process considerable order, and the corresponding transportation 
networks and travel patterns result from complex possess that react to that order.
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Travel patterns tend to focus on central business districts, and movement tends to 
converge from local streets onto larger arterial roads and expressway systems. In these 
urban systems, a large number of paths have very small flows and major flows are 
concentrated into a limited number of paths; network flows are highly concentrated 
into several larger arterial roads. Because of these special network flow structures, a 
small number of nodes can intercept most flows in a transportation network. FILM has 
high flow nodal manifestation (every FILM location is a high flow network node).
This chapter further integrates GIS engines, optimization engines, and heuristics to 
develop a system of efficiently aggregating data for large real-world flow-interception 
location problems. Application o f the integrated system to the standard flow- 
interception model with Edmonton, Alberta afternoon peak traffic data is very 
efficient, inducing zero aggregation errors.
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Figure 5-1: CPU Minutes with CPLEX
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Figure 5-2: Aggregation Errors in aggregated networks
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Figure 5-3 (colour): Removed zones at each network
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Figure 5-4: Network flow structure (395 zones)
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Figure 5-5: Removed network flow structure
(network 1->2)
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Figure 5-6: Link flow structure (network 1)
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Figure 5-7: Locations movement and network flow structure 
(network 2)
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Figure 5-8: Removed network flow structure
(Network 2 ->3)
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Figure 5-9: Network flow structure 
(network 3)
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Figure 5-10: High flow network nodes
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Figure 5-11:270 high flow nodes
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Figure 5-12: An integrated system for flow demand aggregation
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Chapter 6 

Conclusions and Future Research

Facility location planning is a key decision in the long-term efficiency of 
operations. Location models provide decision makers with strategic and quantitative 
support in seeking locations where fixed and operating costs can be kept low, while 
accessibility to markets can be kept high. Geographic information systems (GIS) 
provide powerful tools for users to visualize, examine, and analyze spatial location 
patterns and relationships. Heuristics and data aggregations are approximate 
techniques used to arrive at good solutions o f large complex problems. This 
dissertation integrates GIS, optimization modeling, aggregation, and heuristic 
methodologies to study facility location planning on a network with different types of 
consumers. The major contributions of this dissertation are as follows.

Chapter 2: Traditional flow-interception location models (FILM) locate 
facilities such that the gross amount of intercepted flows is maximized; flows are 
intercepted or not, there is no indication of where in the trip flows are intercepted. Nor 
is there any impetus to prefer any location over another. In the real world, however, 
consumers often desire to receive services at or near a specific location along their 
trips, frequently at trip origin or destination. This chapter extends the traditional 
notion of flow interception to propose a pickup model (PUP) for considering 
consumers’ locational and proximity preferences, accommodating our understanding 
of geographical advantages and consumer behaviour. PUP transforms the standard 
flow-interception location model (Hodgson 1990; Berman, Larson, and Fouska 1992) 
to a flow-interception location-allocation model, providing a fruitful garden for 
further research. This chapter integrates GIS and optimization engines to investigate 
PUP in real-world transportation systems. My examples, using morning and afternoon 
peak traffic flows in Edmonton (the sixth largest Canadian city), demonstrate that 
solutions of PUP are superior to solutions of traditional flow-interception models if 
consumers have locational preferences.

Chapter 3: Location researchers tend to introduce changes in objective 
functions and/or assumptions by developing new models. About 30 FILM models 
have been proposed in about 40 academic publications during the past 17 years. This 
has led to many disparate models, each requiring a somewhat different solution 
method, hampering the development of standardized software that would encourage 
widespread use in real-world, strategic decision making processes. This chapter 
formulates a generalized flow-interception location-allocation model (GFIM) to 
effectively solve current and future flow-interception location problems. Most current 
flow-interception location problems can be solved by simple parameter manipulations 
in GFIM’s input. Additional flow-interception problems can be solved by 
manipulating or adding simple constraints to GFIM. Several critical considerations in 
flow-interception models -  such as deviation from predetermined journeys, locational 
and proximity preferences, and capacity issues -  can be handled within the single 
framework. Two real-world examples, morning and afternoon peak traffic for the city
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of Edmonton in Canada, show that CPLEX optimally solves GFIM much more 
efficiently than it does the classic flow-interception location model. GFIM clearly 
provides a standardized benchmark for current and future flow-interception models in 
the academic literature.

Chapter 4: Traditional location theory views consumers as travelling from 
static and fixed points (e.g., homes); their convenience is measured by distance from 
these points to the nearest facility (Type A consumers). FILM theory views consumers 
as flows traveling on predetermined paths (e.g., daily commute between home and 
workplace); their convenience is measured by distance from these paths to a facility 
(Type B consumers). In the real world, the decision to use a facility based on its 
proximity to home or to a work trip is probably not predetermined. More likely, 
consumers choose a facility based on its greater convenience to either their home or 
their travel path. This dissertation identifies this type o f consumer for the first time in 
the literature, calling them Type C consumers. Most people in the real world are Type 
C consumers; they are not as selective of location as point-based consumers (Type A) 
and flow-based consumers (Type B). The literature has neglected Type C consumers. 
My examples, using afternoon peak traffic data for the city of Edmonton in Canada, 
show that solutions identified by Type C consumers are more robust than solutions 
identified by Type A and B consumers. Therefore, considering Type C consumers 
substantially improves the location modeling outcome. Location researchers have 
traditionally developed different models for different consumer types. A generalized 
and efficient strategy is developed to unify numerous network location models by 
unifying various consumer types and objectives. A generalized location-allocation 
model (GLAM) is formulated to effectively and efficiently encompass at least 60 
existing models, including the /7-median (ReVelle and Swain 1970), maximal covering 
location model (Church and ReVelle 1974), FILM, and numerous variants of these 
models.

Chapter 5: Most location studies use spatially aggregated data, and demand 
point aggregation has received considerable interest in both industry and academia. 
Systematic studies of flow demand aggregation have not, however, been reported to 
date. The huge volume of flow demand data is the bottleneck of applying flow- 
interception problems to real-world situations. This chapter integrates GIS, 
optimization, and heuristics to examine the special network flow structure of real- 
world transportation systems and to develop a system of efficiently aggregating flow- 
based demand data for location models. This chapter applies this system to the classic 
FILM model using 2001 Edmonton afternoon peak traffic data and finds it to be 
effective and free of aggregation error.

Aside from the development of these theories and models, my development of 
up-to-date, real-world transportation networks provides a realistic test-bed for flow- 
interception location models.

This dissertation provides a rich background for future research as follows,
i. Chapter 4 accommodates a more realistic view of consumers, Type C

consumers. The literature has neglected Type C consumers. It will be valuable 
to further investigate, by surveys and other means, Type C consumers in real-
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world spatial analysis problems.
ii. GIS supports a wide range of spatial queries that can be used to support 

location research. Church (2002) concluded that GIS will play a significant 
role in future location model development and applications. There are six 
location models available in ARC/INFO. Since at least 60 existing location 
models, including most location models in ARC/INFO, can be transformed 
into GLAM, it will be valuable to implement GLAM in ARC/INFO or ArcGIS. 
Since the generalized and efficient strategy in chapter 4 provides a theory for 
unifying location models and reduces location problem size, it is applicable to 
facility location and planning in geographic information systems.

iii. I note that Kuby’s flow refuelling location model (FRLM) (Kuby and Lim 
2005, 2007) is a location, not a location-allocation model; it cannot consider at 
which facilities flows are intercepted. Therefore, FRLM cannot directly further 
consider capacity, locational and proximity preferences or deviation from 
predetermined journeys: all critical issues in location analysis. Chapter four 
has demonstrated that GFIM effectively solves FRLM problems. Since GFIM 
is a location-allocation model, it can expand the study of refueling to consider 
these critical issues.

iv. Since large real-world flow-interception problems may be aggregated with 
small or no aggregation errors, it is valuable to further study the special 
network flow structure of real-world transportation systems and to develop 
clever integrated systems of efficiently aggregating flow demand data.

v. There is no competitive, deterministic flow-interception study reported in the 
literature. Since GLAM is able to consider an individual consumer’s 
consideration of a specific facility, it could be applied to competitive flow- 
interception problems.
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Appendices: Codes

Appendix 1: Implementing FILM in AMPL CPLEX 
Running Script File: FILMfast.run

# include FILMfast.run; 
option solver cplex; 
model FILMfast.mod; 
read Q,J, p < FILMfast.txt; # read Q, J, P 
read {q in 1..Q} # read flow, N, path from data file FILMfast.txt 

(flow[q],N[q],{t in l..N[q]}path[q,t]) < FILMfast.txt; 
option print_separator # separator with in writing file 
printf "p,?Optimal,Second,Z,Solution\n">FILMresults.txt; # write title line 
set SetP := 1 ..4; # set the range o f p facilities 
for {c in SetP} { 

let p := c;
solve; # The follow commands are to print results in two files
printf "%u,%u,%. 1 f,%.2f,",p,solve_result_num,_solve_user_time,Z>FILMresults.txt;
print {j in l..J:Y[j]>=l} j>FILMresults.txt; # location
printf "p= %u solve_result_num= %u \n",p,solve_result_num>FILMbranchMIP.txt; 
display solve_messagOFILMbranchMIP.txt;

}

Model File: FILMfast.mod

param Q >=0; 
param J >=0; 
param p >=0; 
param flow {l..Q ); 
param N{1..Q};
parampath{q in l..Q j in l..N[q]};
var Y{ 1 ..J} binary;# location decision variable
var X { 1..Q} >=0,<=1 ;# flow interception decision variable
maximize Z: sum {q in 1..Q} flow[q] * X[q];
subject to Location {q in 1..Q} : sum{j in l..N[q]} Y[path[qj]]>=X[q]; 
subject to total_number: sum{j in 1..J} Y[j] = p;

Data File: FILMfast.txt

4 7 2
2 4 1 3  5
1 3 2 3 6
1 3 4 5 6
2 2 4 7

* First line: Q, J, p; Line 4-5: flow, N, path; Data: the 7-node example.
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Appendix 2: Implementing GFIM in AMPL CPLEX 
Running Script File: GFIMfast.run

# include GFIMfast.run; 
option solver cplex; 
model GFIMfast.mod;
read Q, J, p < GFIMfast.txt;# read Q, J, p
read {q in 1 ..Q} (N[q],{t in 1 ,.N[q]}path[q,t]) < GFIMfast.txt; # read N, path 
read {q in l..Q}({j in l..N[q]}G[qj]) < GFIMfast.txt; # read G[qj] 
option cplexoptions 'dual';
option print_separator # separator with in writing file 
printf "p,?Optimal,Second,Z,Solution\n">GFIMresults.txt; # write title line 
set SetP := 1 ..4; # set the range o f p facilities 
for {c in SetP} { 

let p := c; 
solve;
# The follow commands are to print results in two files
printf "%u,%u,%. 1 f,%.2f,",p,solve_result_num,_solve_user_time,Z>GFIMresults.txt; 
print {j in l..J:Y[j]>=l} j>GFIMresults.txt; # location
printf "p= %u solve_result_num= %u \n",p,solve_result_num>GFIMbranchMIP.txt; 
display solve_message>GFIMbranchMIP.txt;

}

Model File: GFIMfast.mod

param Q>=0; 
param J>=0; 
param p>=0; 
param N{1..Q};
param path{q in l..Q j in l..N[q]}; 
param G{q in l..Q j in l..N[q]}; 
var Y{1..J} binary; 
varX{q in l..Q j in l..N[q]}>=0,<=l;
maximize Z: sum {q in 1..Q} sum {j in l..N[q]} G[qj] *X[qj]; 
subject to no_doubleflow {q in 1..Q}: sum {j in l..N[q]} X[q,j] <= 1; 
subject to only_at_facility {q in l..Q j in l..N[q]}: Y[path[qj]] >= X[qj]; 
subject to total_facility: sumjj in 1..J} Y[j] = p;

Data file: GFIMfast.txt

4 7 2
4 1 3  5 7
3 2 3 6
3 4 5 6
2 4 7

12 8 2 0
3 2 0
3 2 0
4 0

* First line: Q, J, p\  lines 2-5: N, path; Lines 6-9: the matrix of G; Data: the 7-node example.
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Appendix 3: Calculate the Shortest Paths in CPLEX 
Appendix 3-A: ShortestPath55.mod
# This is a 55-nodes example for calculating shortest paths by link matrix 
param begin; 
param end>begin;
set NODES := begin .. end; # all intersections 
param Pathln symbolic default 1; 
param PathOut symbolic default 10; 
param maxlink>=0; # the max link on a path 
set LINKS within (NODES cross NODES); 
param cost {LINKS} >= 0; # costs to travel roads 
node Intersection^ in NODES}; 
arc Traff_In>=l,to IntersectionfPathln]; 
arc Traff_Out>=l,from IntersectionfPathOut]; 
arc Shortpath{(ij) in LINKS}>=0, 

from Intersection!)],to Intersection!]]; 
minimize Total_Cost: sum{(i,j) in LINKS} Shortpath[i,j]*cost[i,j];

data;
param begin :=1; 
param end =55;
param maxlink:=268; # the total links in the network
param: LINKS: cost :=
1 2 31623
1 5 20000
1 8 44721
1 13 22361
1 43 100000
1 44 41231
2 1 31623
2 3 44721
2 4 30000
2 8 31623
2 42 28284
3 2 44721
3 7 42426
3 8 31623
3 19 64031
3 30 50000
3 31 60828
3 34 53852
4 2 30000
4 5 30000
4 9 20000
4 42 22361

#Many links are omitted here. 

55 54 101980;
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Appendix 3-B: ShortestPathBest.run
# For calculating the shortest path by link and cost on each shortest path
# include ShortestPathBest.run;

model ShortestPathBest55.mod; 
set CASES := 1..55;

param qnumber integer default 0;
set qlink:=l..maxlink; #total links in the network
printf "path from to cost :title \n" >shortpathcost.txt;# title

for {a in CASES}
{
let Pathln:= a; 

for {bin  CASES diff {a}}
{
let PathOut:= b; 
solve;
#out put link shortpath matrix: column is 1...links, the row is 1...600 path 
print {(i,j) in LINKS}Shortpath[ij]>ShortestPathLinkMatrix.txt; 
let qnumber:=qnumber+l;
printf "%4u %4s %4s %.0f\n",qnumber,a,b,Total_Cost>shortpathcost.txt; 

} # end for b 
} # end for a 
close all;
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Appendix 4: ShortestPath.ccp
/*
Appendix ShortestPath.ccp
This program is to change the shortest paths by links from CPLEX into paths by nodes and for running 
in CPLEX

3 input files:
1. shortpathcost.txt
"path from to cost :title " at the end o f the title must be ":title"
2. ShortestPathLinkMatrix.txt
no title, the column are paths by unsorted links from 1 ...2212 
the rows are path 1...
3. linkid.txt
no title linkid, link_ffom, link_to

4 output files:
1. outshortpathbynode.txt separate by comma
2. outshortpathbynodespace.txt separate by space
3. outshortpathbylink.txt separate by space
4. outlongestpathnode.txt 
*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
//include <math.h>
#include <stdio.h>
#include <stdlib.h> 
using namespace std; 
void readwritefile()
{
int Q, TotalLink; //define Q as the total number o f path
cout«"Input files: shortpathcost.txt, ShortestPathLinkMatrix.txt and linkid.txt"«endl;
cout«"please enter the total number o f paths and link, like 2970 268 "«endl;
c in » Q » T  otalLink;
int i j ;// ij  is for tempary
int k;//k is for each path q
int longestpath=0;
// to store the longest path node in the whole network
vector<string>title;
vector<string>q,source,sink,cost;
//define path number, path ffom, path_to, and path cost 
vector<string>linkid,linkf,linkt;
// to store linkid link from, link to from the linkid.txt 
vector<string>pathlinkid,pathlinkf,pathlinkt;
// to store temp link from , link to in a path 
vector<string>nodes,links;
//store each path nodes and links
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string temps;
// to store temp string data

// start to read shortpathcost.txt
ifstream readfile("shortpathcost.txt",ios: :in);
// there must be a tile,the end o f the title must ":title" 
if(!readfile)
{
cerr«"open error! Check whether the file exist shortpathcost.txt! "«endl; 
exit (1);
}

readfile»temps;// read by title by word 
do 
{
readfile»temps;// read by title by word but not write it 
}while(temps!=":title");

// start to read ShortestPathLinkMatrix.txt
ifstream readlink("ShortestPathLinkMatrix.txt ",ios::in);
// there are the link path by unsorted links from 1...2212 
if(!readlink)
{
cerr«"open error! Check whether the file exist ShortestPathLinkMatrix.txt !"«endl; 
exit (1);
}

//start to read linkid.txt
// there are the big path by unsorted links from 1 ...2212 
ifstream readlinkid("linkid.txt",ios::in); 
if(!readlinkid)
{
cerr«"open error! Check whether the file exist linkid.txt! "«endl; 
exit (1);
}

for(i=0;i<TotalLink;i++)// linkid 1 is in 0 
{
readlinkid»temps;linkid.push_back(temps); 
readlinkid»temps;linkf.push_back(temps); 
readlinkid»temps ;linkt.push_back(temps);
}

// start to write the title
ofstream writefile("outshortpathbynode.txt",ios: :out); 
writefile.precision( 1);
writefile«"q,source,sink,cost,nodemax,pathnode"«endl;// write title

ofstream writefile2("outshortpathbynodespace.txt",ios::out); 
writefile2«"q source sink cost nodemax pathnode "«endl;// write title 
writefile2 ,precision( 1);

ofstream writefile3("outshortpathbylink.txt",ios::out);
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writefile3«"q source sink cost linkmax pathlink "«endl;// write title 
writefile3 .precision( 1);

// start: each k read each path data,
// get the path when linkid =1 and then sort node, then write to file 
cout«"completed sorted path :"«endl;// just to show the process 
for(k=0;k<Q;k++)
{
//start to read each pathlink data
readfile»temps; q.push_back(temps);// read and push path number 
readfile»temps; source.push_back(temps);//read and push from 
readfile»temps; sink.push_back(temps);//read and push to 
readfile»temps; cost.push_back(temps);//read and push cost 
// is 0 because we delete each time.
w ritefile« q [0 ]« " ," « so u rce[0 ]« " ," « sin k [0 ]« " ," « co st[0 ]« " ," ;  
w ritefile2«q [0]«"  " «sou rce[0 ]«"  " « sin k [0 ]« "  " « co st[0 ]« "  
w ritefile3«q [0]«"  " «sou rce[0 ]«"  " « sin k [0 ]« "  " « c o st[0 ]« "

vector<string>:: iterator Iter 1 ,Iter2 ,Iter3;
Iterl =linkid.begin();
Iter2=linkf.begin();//point to link from begin 
Iter3=linkt.begin0;

int linksum=0;//define the number o f links in each path
// read each pathlink get the link is 1 and push the node link_from link_to
for(i=l ;i<=TotalLink;i++)
{
readlink»temps;
// get each link is 1 and push the linkid and link from and link to 
if(temps==" 1")
{
//w ritefile« i«" ,";  
pathlinkid.push_back(*Iter 1); 
pathlinkf.push_back(* Iter2); 
pathlinkt.push_back(*Iter3); 
linksum++;
}//end if  

Iterl++;Iter2++;Iter3++;
}// end for i

w ritefile«linksum +l«","; //pathmaxnode 
writefile2«linksum +1 
writefile3«linksum «","; 
if(linksum>longestpath)longestpath=linksum;

//end read unsorted pathlink and change to unsorted path node

// begin to sort path node
vector<string>:: iterator tempL,tempR;//defme for vector 
tempR=source.begin/);
// tempR is the address point to source begin from 0 not 1 
nodes.push_back(*tempR);//get the first node 
vector<string>:: iterator Iter4,Iter5,Iter6;
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Iter4=pathlinkf.begin();//point to link from begin 
Iter5=pathlinkt.begin();
Iter6=pathlinkid.begin();

do // until find the sink 
{
tempL=Iter4;// begin to find 
if  (*tempL==*tempR)
{

*tempR=*Iter5 ;//give
nodes.push_back(*tempR);// get the sorted node 
links ,push_back(*Iter6);

Iter4=pathlinkf.begin();//point to path link from begin 
Iter5=pathlinkt.begin();//point to path link to begin 
Iter6=pathlinkid.begin();//point to path link id begin 
linksum—; //find one

}
else
{ Iter4++;Iter5++;Iter6++;};//not find then look for the next one 

}while(linksum>0);

for (j=0;j<nodes.size()y++)// write the path node by comma 
{
writefile«nodes[j ]«" ,";

}
writefile«endl;

for (j=0;j<nodes.size();j++)// write the path node by space 
{
w ritefile2«nodes[j]«"

} _
writefile2«endl;

for (j=0;j<links.size();j++)// write the path link by space 
{
w ritefile3«links[j]«"

} .
writefile3«endl;

q.erase(q.begin(),q.end());// from 0
source.erase(source.begin(),source.end());
sink.erase(sink.begin(),sink.end());
cost.erase(cost.begin(),cost.end());
nodes.erase(nodes.begin(),nodes.end());
links.erase(links.begin(),links.end());
pathlinkid.erase(pathlinkid.begin(),pathlinkid.end());
pathlinkf.erase(pathlinkf.beginO,pathlinkf.end());
pathlinkt.erase(pathlinkt.begin(),pathlinkt.end());
//end sort path nodes

co u t« k « " ," ; // completed sorted path
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}// end for k
ofstream writefile4Coutlongestpathnode.txt",ios: :out); 
writefile4«"the longest path has nodes: "«longestpath+l«endl; 
}//end readwritefiles

void main()
{
readwritefile();//read inpathlinks.txt
cout«"congrats, all done! results are in the 4 files!"«endl;

} //end main
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Appendix 5: CalculatelnterceptedFlows.ccp

/*
Appendix CalculatelnterceptedFlows.ccp
This program is to calculate flows at each node or link.
1 Input file
PathFlows.txt-No title, the first line is Q J or Q TotalLinkID, 2970 55 or 2970 268 
From the second line: flow pathmax NodeOrLinkOfEachPath 
Note the First column is flow 
1 output file
OutFLow.txt-total flow o f each node 
*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h> 
using namespace std; 
void main()
{
int ij;
int Q, Totalid;
ifstream readfile("PathFlows.txt",ios::in);// there must be no title 
if(!readfile)
{
cerr«"open error! Check whether the file exist PathFlows.txt! "«endl; 
exit (1);
}

r e a d file » Q » T  otalid; 
double IDFlow[9999]; 
for(i=0;i<Totalid+1 ;i++)
{
IDFlow[i]=0;

}

double flow; 
int IDMax,nodeid;
for(i=0;i<Q;i++) // in read each path data, and write the path by node to file 
{
readfile»flow »ID M ax;
for(j=0;j<I DMax;j++)// begin to calcualte dist from source 
{
readfile»nodeid;
IDFlow[nodeid]=IDFlow[nodeid]+flow;
}
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}// end for i
ofstream writefile("OutFLow.txt",ios: :out); 
writefile.precision( 18); 
writefile«"IDs, flows"«endl;// write title 
for(i=0;i<Totalid+l ;i++)
{
w ritefile« i« " ," « ID F lo w [i]« en d l;
}
cout«"Congrats From Weiping!"«endl;

} //end main
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Appendix 6: UnionLink.ccp

/*
Appendix UnionLinks.ccp
This program is to union links from paths by links

1 Input file
InPathLink.txt--No title, the first line is Q TotalLink, 2970 55 
From the second line: pathmax linkOfEachPath

1 output file
OutLink.txt — linkid, choose 
*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

using namespace std; 
void main()
{
int ij;
int Q, TotalLink;
ifstream readfile("InPathLink.txt",ios::in);// there must be no title 
if(!readfile)
{
cerr«"open error! Check whether the file exist InPathLink.txt! "«endl; 
exit (1);

}
cout«"Union links... "«endl; 
r e a d file » Q » T  otalLink; 
long int linkflow[9999]; 
for(i=0;i<TotalLink+l ;i++)
{
linkflow[i]=0;

}
int linkmax,linkid;
for(i=0;i<Q;i++) //read each path and write path by link to file 
{
readfile»linkmax;
for(j=0;j<linkmax;j++)/7
{
readfile»linkid;
linkflow[linkid]=l;

}
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}// end for i

ofstream writefile("OutLink.txt",ios: :out); 
w ritefile«"linkid, choose"«endl;// write title 
for(i=0;i<TotalLink+l ;i++)
{
w rite file< < i« " ,"« lin k flo w [i]« en d l;
}
cout«"C ongrats From W eiping!"«endl;
} //end main
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Appendix 7: ChangeSolutionlD.ccp
/*
Appendix ChangeSolutionlD.ccp
This program is to soluitons (p=1..2.0) newID to another solution oldID 
2 Input files
SolutionIDBefore.txt- p locationBynewid 
oldID.txt-
only one column, the first line is total link or node
The rest is the old id sorted by the new id from 1 to total id !
1 output file
SolutionIDAfter.txt—p locationByoldid 
*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

using namespace std;

void main()
{

ifstream ReadID("oldID.txt",ios::in);// there must be no title 
if(!ReadID)
{
cerr«"open error! Check whether the file exist oldID.txt! "«endl; 
exit (1);
}

ifstream ReadPathCSolutionIDBefore.txt",ios::in);// there must be no title 
if(!ReadPath)
{
cerr«"open error! Check whether the file exist SolutionIDBefore.txt! "«endl; 
exit (1);
}
ofstream writefile("SolutionIDAfter.txt",ios::out);
int ij, getone;
int Totalid;
int oldid[9999];
for(i=0;i<9999;i++)
{
oldid[i]=0;
}

ReadID»Totalid;
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for(i=l ;i<=Totalid;i++)
{
ReadID»oldid[i];
}

intp;
writefile«"p,location"«endl;
while(ReadPath»p)
{
w ritefile«p«" ,"; 
for (j=1J <=p y++)
{
ReadPath»getone;
writefile«oldid[getone]«",";
}

writefile«endl;
}//end while
cout«"Congrats From Weiping!"«endl; 
} //end main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Appendix 8: CalculateSoIutionFlows.cpp

/*
Appendix Calculates olutionFlows .cpp
This program is to calculte the total flows (395 zones) intercepted by known solutions (p=1..20)

2 Input files: 
location.txt-p location
PathFlows.txt is the same as the data in CPLEX except the first line
The first line is Q total paths
From the second line: flow pathmax Node

1 output file
OuttotalFLow.txt— p, totalflow

// system("pause"); writefile.precision(l);
*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <fimctional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h> 
using namespace std; 
void main()
{
cou t«"  Calculating total FILM flow at p=1..20 when facilities are known"«endl; 
int ij,k;

//start to read location file to a martix 
intp;
int location[21][21]; 
for(i=0;i<21;i++)
{

for (j=0j<21y++){location[i][j]=0;}
}
ifstream readlocation("location.txt",ios::in); 
if(!readlocation)
{
cerr«"open error! Check whether the file exist location.txt! "«endl; 
exit (1);

}
readlocation»p;
do{
for(j=0;j<p;j++) { readlocation»location[p][j];}
}while(readlocation»p);
// End read location file
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//start to read and calculate path flow 
int Q;
double flow; 
double totalflow; 
int flowflag; 
int pathmax,nodeid; 
int nowp;

ofstream writeflow("Outtotalflow.txt",ios::out); 
writeflow.precision( 18); 
writeflow«"p,totalflow"«endl;

for(nowp= 1 ;nowp<=20;nowp++)
{
totalflow=0;
ifstream readfile("PathFlows .txt" ,ios:: in); 
if(!readfile)
{
cerr«"open error! Check whether the file exist PathFlows.txt! "«endl; 
exit (1);
}

readfile»Q ;

for(i=0;i<Q;i++)
{
flowflag=0;
readfile»flow»pathm ax;
for(j=Oy<pathmaxy++)// begin to calcualte dist from source 
{
readfile»nodeid;
if(flowflag==0)

{
for(k=0;k<nowp;k++) {if(location[nowp][k]==nodeid) flowflag=l;} 
}//end if  flowflag=0 

}// end for j=0
if (flowflag==l) totalflow=totalflow+flow;
}// end for i=0

w riteflow «now p«" ,"«tota lflow «en dl; 
cout«"D one p= "«now p«endl;
}//end for nowp 

} //end main
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Appendix 9: 1-opt interchange heuristic

c This is M. John Hodgson’s 1-opt interchange heuristic 
C Last change: Zeng 23 February 2007 4:23 pm 
c file Interchange.FOR Solves T&B Algorithm 

open(25,fIle-Edmonton_greedy.txt') 
open(26,file='Edmonton_T&B.txt') 
open(27,file-problemdata.txt') 
open(28,file-solutions.txt') 

call Solvers 
STOP 
END

subroutine Dataread(nq,n,flow,kovcount,patnodes,nocov,kover) 
integer Patnodes( 160000,085),q,n,nq,kovcount( 160000),qq 
integer nocov(9999),kover(2250,35000) 
real*8 flow(160000) 
read(27,*)n,nq 

WRITE(*,*)n,nq 
do qq=l,nq
read(27,*)q,flow(q),kovcount(q),(patnodes(qj)j=l,kovcount(q)) 

end do
100 format(i7.6,fl 5.0,i5.4,100i6.5)
* create Kover matrix

maxkovr=0 
maxcovr2=0 
do q=l,nq 
do k=l,kovcount(q) 
j=patnodes(q,k) 
if  (j.gt.maxkovr)maxkovr=j 
noco v(j )=nocov(j)+1 
kover(j,nocov(j))=q
if(nocov(j).gt.maxcovr2)maxcovr2=nocov(j) 
end do 
end do

write(*, *)maxkovr,maxco vr2 
return 

end
SUBROUTINE Solvers 

c calculates ASYMMETRIC shortest path distances 
c ie: both directions entered as data

integer*4 node (2250)
real*8 ROW(2250),sumlast,summax,sum,flo,zbest,zopt 
INTEGER*4 NUM(2250) 

real*8 x(2250),y(2250),d 
real*8 pop(2250) 
real*8 flow(160000) 
integer*4 iden( 160000,2),q 
integer Patnodes( 160000,085),kovcount(160000) 

c for T&B
integer* 4 try(2250),randopt,best(2250) 

c for short T&B
integer*4 kover(2250,35000),nocov(9999),set(2250) 
call Dataread(nq,n,flow,kovcount,patnodes,nocov,kover)
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Call GREEDY(flow,n,nq,nocov,kover)
CALL TBSETUP(n,nofac,nq,flow,zbest,nocov,kover,set)
return
end
SUBROUTINE TB SETUP(n,nofac,nq,flow,zbest,nocov,kover,set) 
integer*4 set(2250),best(2250),nocov(9999),kover(2250,35000),randopt 

INTEGER*4 try(2250)
real*8 flow(l 60000),zopt,zbest 

c set up T&B
c set is set o f nodes in a solution 

WRITE(*,1002)
1002 format(/' Range o f p? ') 

read(*,*)nlow,nhigh 
if(nlow<2)nlow=2 ! Don't do it for p= 1 
WRITE(*,1001)

1001 FORMAT(/'How many random starts? ') 
read(*,*)notry 
do nofac=nlow,nhigh 
call timer(iticks) 

zopt=0.0 
randopt=0

do nrand=l,notry ! Random Starts 
WRITE(*, * )no fac,nrand

C INITIALIZE Starting Solution to ZERO
DO 1=1,N  

set(i)=0
try(i)=0 ! Organizer for Repetition avoidance

enddo
C Initialize Set - random with no repetitions

KOUNT=0
j=0

nfac=nofac
do while (kount<nfac)

Call RANDOM NUMBER(r)
IRAND=R* 1,0+(l .0-R)*N 
IF (try (IRAND). eq. 0)then

j=j+l
set(j)=irand

try(IRAND)=l 
KOUNT=KOUNT +1 
else

endif
enddo

call tb(n,nofac,nq,flow,zbest,nocov,kover,set) 
call order(n,nofac,set) 
do maketry=l,n 
try(maketry)=0 
end do
do maketry=l ,nofac 
try(set(maketry))= 1 
end do
WRITE(28,105)nofac,zbest,(try(k),k= 1 ,n)
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105 format(i2.2,fl5.0,lx,2250il)
if(zbest.gt.zopt)then 
zopt=zbest 
randopt=nrand 

do ii=l,nofac ! Use "best" to represent the solution 
best(ii)=set(ii) 
enddo

else
endif

end do ! random starts 
call timer(jticks)

itime=jticks-iticks
write(26,100)NOFAC,notry,itime,zopt,(Best(k),k= 1 ,nofac) 

enddo Inofac 
100 format(i2.2,2i 10,fl 5.0,1 x,2000i5)

RETURN
END

SUBROUTINE TB (n,nofac,nq,flow,zbest,nocov,kover,set)
INTEGER* 4 kounter(160000),nocov(9999)

* ,kover(2250,35000),set(2250),inok(2250)
real*8 FLOW(l60000),sum,summax,zbest,z,sumin,SUMFIX 

c Effect interchange mechanism
itstop=0 
iter=0 

do while (itstop.eq.0) 
z=0.0

c create kounter
c kounter(q) # o f times a flow is covered in a particular solution
c initialize to zero
c inok -  tells what nodes are already in set so can't be inserted

do j= l,n  
inok(j)=l 
end do 
do k=l,nofac 
inok(set(k))=0 
enddo 

do q=l,nq
kounter(q)=0 
enddo 

c count them up
do j=l,nofac 
jj=set(j)

do k=l,nocov(jj) 
idq=kover(jj,k) 
kounter(idq)=kounter(idq)+1 

IF(kounter(idq).eq.l)z=z+flow(idq) 
enddo

enddo
SUM=z

summax=z
iter=iter+l
SUMFIX=SUM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

do kout=l,nofac 
SUM=SUMFIX 

c see impact on sum o f removing each node
jout=set(kout) INode Removed 

c what flows does jout cover? Take out if  only covered once
nj=nocov(jout) Ihow many flows is it covering? 

do i=l,nj
iqq=kover(jout,i) I Rolling thru flows covered
if (kounter(iqq).eq. 1) then ! removal only affects sum if this is the only

coverage
sum=sum-flow(iqq)
kounter(iqq) = 0 ! Or else replacement can't function
else
endif
enddo
sumin=sum Isum before we start putting nodes in 

c systematically see impact of replacing it 
do jtry=l,n

if(inok(jTRY).eq.l)then ! can't go to ones already in the solution 
jin=jtry ! Identify node to try inserting 
nj=nocov(jin) ! how many flows does it cover? 
sum=sumin ! reset the sum for putting nodes in 

do j=l,nj
jqq=kover(jinj)! Rolling thru flows covered
if(kounter(jqq).eq.O)then ladding only effects non-covered
sum=sum+flow(j qq)
else
endif
enddo ! Have adjusted sum for this insertion

c would this replacement improve total flows?

if(sum.gt.summax)then
summax=sum
maxout=kout
maxin=jin
else
endif
else
endif
enddo

c reset kounter if  the node replaced covers it and it is now zero
do k=l,nocov(jout) 
idq=kover(jout,k)
if(kounter(idq).eq.O)kounter(idq)=l
enddo

enddo
if(set(maxout).eq.maxin)itstop=l
set(maxout)=maxin
inok(jout)=l
inok(maxin)=0
z=summax
enddo
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ZBEST=SUMMAX
RETURN
END

SUBROUTINE GREEDY(flow,n,nq,nocov,kover) 
c for greedy

integer*4 insoln(2250),gry_sol(2250) 
integer*4 nocov(9999),kover(2250,35000)
real*8 floadd(l60000),zed(2250),sumlast,summax,sum,flow( 160000) 

do i=l,n
gry_Sol(i)=0 ! Greedy solution
insoln(i)=0
end do

c set floadd -  flow matrix to be adjusted with facilities
do q=l,nq 
floadd(q)=flow(q) 
enddo 

c facility loop
np=n 

sumlast=0.0
do iter= 1 ,min(50,np) 
summax=-1.0

do j= l,n
if(insoln(j).eq.0)then
sum=0.0

do k=I ,nocovQ) 
idq=kover(j,k) 
sum=sum+floadd(idq) 
enddo 

if(sum.gt.summax)then 
summax=sum 
locmax=j 
else 
endif 
else 
endif 
enddo 

insoln(locmax)=iter 
sumlast=sumlast+summax 
zed(locmax)=sumlast 
gry_Sol(iter)=locmax

do k=l,nocov(locmax) 
idq=kover(locmax,k) 
floadd(idq)=0.0 
enddo

call order (n,iter,giy_Sol)
write(25,100)iter,zed(locmax),(Gry_Sol(k),k= 1 ,iter)

100 format(i2.2,fl 5.0, lx,2000i5) 
enddo 
RETURN 
END
SUBROUTINE ORDER(N,NOFAC,IN)
INTEGER IN(2250),INTER(2250)
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c orders a solution vector 
do i= l,N  
INTER(I)=0 
ENDDO 
do i=l,nofac 
inter(in(i))=l 
enddo 
kount=0 
do i=l,n
if(inter(i).eq. l)then
kount=kount+l
in(kount)=i
else
endif
enddo
return
end
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Appendix 10: AggregatePaths.ccp

/*
Appendix AggregatePaths.ccp
This program is to automatically aggregate the original (395 zones) flow paths 
into paths with selected nodelD (e.g. 270 high flow nodes).

Two input files (not title in the first line):
NodelnPath.txt-source sink q flow pathmax path_by_node_or_link no title 
NewIDFroml .txt— 
the first line is Q;
The rest is the new id sorted by the original node id from 1 to totalid!
Remember all the unselected node ID is 0.

Three output files:
OutPathNewID.txt—sourceNew, sinkNew,TripIDNew,PassingMax,pathByNode 
OutFlowNewID.txt-sourceNew, sinkNew,TripIDNew,sumflow;
OutPath395ID.txt~source,sink,TripID395,TripIDNew,flow,PassingMax,pathByNode_NoSourceSink 
The OutPath395ID.txt-- The path node ID has changed to NewNodelD but not combine paths 
In this file we can find how many trips are interceted by the selected nodes.

*/

#pragma waming(disable: 4786)
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <string>
#include <fstream>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h> 
using namespace std; 
void main()
{
ifstream ReadID("NewIDFroml.txt",ios::in);// there must be no title 
if(!ReadID)
{

cerr«"open error! Check whether the file exist NewIDFroml.txt! "«endl; 
exit (1);
}

ifstream ReadPath("NodeInPath.txt",ios::in);// there must be no title 
if(!ReadPath)
{

cerr«"open error! Check whether the file exist NodeInPath.txt! "«endl; 
exit (1);

}

ofstream writefile("OutPath395ID.txt",ios: :out); 
ofstream writePathNewID("OutPathNewID.txt",ios::out); 
ofstream writeFlowNewID("OutFlowNewID.txt",ios: :out);
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cou t«"  Input files: NodeInPath.txt andNewIDFroml.txt"«endl;
cou t«"  Output files: OutPathNewID.txt,OutFlowNewID.txt, and OutPath395ID.txt"«endl; 
int ij,t, getone; 
int Q, Totalid;
int newid[9999]; // the total ID (node or link) in the network must be <= 9999

for(i=0;i<9999;i++)
{

newid[i]=0;
}

R eadID »T  otalid;

for(i=l ;i<=Totalid;i++)
{

ReadID»newid[i];
}

ReadPath»Q;

int source, sink, q,pathmax,PassingMax,qnew;
int NumS;// the nubmer of selected nodes for potential facility sites
NumS=270; //Change here
int sourceNew, sinkNew, Flag[270+1][270+1];//Change here 
double flow, SumFlow[270+l][270+l];//Change here 
for(i=0 ;i<=NumS;i++)
{

for(j=l y<=NumSy++)
{

SumFlow[il[j]=0;
Flag[i][j]=0;

}
}

vector<int>PathNodes;
writefile«"source395,sink395,TripID395,TripIDNew,flow,PassingMax,pathByNode"«endl;
writefile.precision(O);
writePathNewID«"sourceNew,sinkNew,TripID,PassingMax,pathByNode"«endl; 
writePathNewID.precision(O);
writeFlowNewID«"sourceNew,sinkNew,TripIDNew,SumFlow"«endl; 
writeFlowNewID.precision(O);

sourceNew=0;
sinkNew=0;
qnew=0; // the order o f the old trip395 where flow>0 
for(i=l;i<=Q;i++) // in read each path data, and write the path to file 
{
R ead P ath »sou rce»sin k »q »flow »p ath m ax;
PassingMax=0;
for(j = I ;j <=pathmax ;j ++)// for each path not read the source and sink 

{
ReadPath»getone; //getone reads one new node in a path 
if(newid[getone]>= 1) {
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PassingMax=PassingMax+l;
PathNodes.push_back(newid[getone]);// get one node in selected nodes 
}// end for j= l 

}//end for i=l

if  (PassingMax>=l)// If passing node in selected nodes 
{
// begin for OutPath395ID.txt 
qnew=qnew+l;
w r ite f ile « so u r c e« " ," « s in k « " ," « q « " ," « q n ew « " ," « flo w « " ," « P a ss in g M a x « " ,
for(j=0;j<PassingMax;j++){ writefile«PathN odes[j]«",";}
writefile«endl;
// end for OutPath395ID.txt

//Begin OutPathNewID.txt
sourceNew=PathNodes[0];
sinkNew=PathNodes[PassingMax-l];// minus 1
Flag[sourceNew][sinkNew]=Flag[sourceNew][sinkNew]+l;
SumFlow[sourceNew][sinkNew]=SumFlow[sourceNew][sinkNew]+flow;
// calculate sum flow for the new path

if(Flag[sourceNew][sinkNew]==l)// write pathmax and node for the first time 
{
writePathNewID«sourceNew«","«sinkNew<<",";
writePathNewID «Num S*(sourceNew-l)+sinkNew«","<<PassingMax«",";
for(j=0;j<PassingMax;j++){writePathNewID«PathNodes[j]«",";}
writePathNewID«endl;
}//end if  

}// end if  PassingMax

PathNodes.erase(PathNodes.begin(),PathNodes.end());// erase the changed path

}// end for i

t=0;
for(i=l ;i<=NumS;i++)
{

for(j=l;j<=NumS;j++)
{

iffSumFlowfi]!]]^)
{

t=t+l;
w riteF lo w N ew ID « i« " ," « j« " ," « t« " ," « S u m F lo w [i][j]« " ," « en d l;
// write sourceNew,sinkNew,TripIDNew,SumFlow;

}//end if  
}// end for j 

}//end for i 
} //end main
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