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Abstract

Stochastic geometry provides a way of defining and computing macroscopic properties

of large scale wireless networks, by averaging over all possible spatial patterns of the

network nodes. It abstracts the network as realizations of point process models, and

analyzes the network performance in a probabilistic way. While stochastic geometry

has its strength in theoretical analysis, statistical questions are seldom discussed and

measurement-based validation of certain stochastic assumptions used in the literature

is often not given. The aim in most of the related research work in the literature is to

show what results can be obtained with stochastic geometry when assumptions of cer-

tain point process models are made, without necessarily fully justifying those assum-

ptions. It is critical to find an accurate point process model that best reflects the spatial

distribution of the network nodes before any attempts on the theoretical analysis of the

underlying point process model. In addition, extensions of the analytical methodology

used in Poisson models to more general point process models are often hindered due

to the lack of closed-form empty space function and the probability generating func-

tional (PGFL). In view of these problems, the thesis presents and describes a practical

technique of statistical validation by fitting stationary and nonstationary point process

models to real-life cellular networks using maximum likelihood/pseudolikelihood and

minimum contrast methods. We also have studied the distributional properties of the

empty space distances in the Matérn hard core point process of Type II, and proposed a

piecewise probability density function for the empty space distance, including an exact

expression and a heuristic formula, which can be fitted by a Weibull-like function. Fur-
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thermore, we have examined the properties of the PGFL for Poisson cluster processes,

and studied the downlink coverage performance for a two-tier cellular network.
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Chapter 1

Introduction

1.1 Background

Wireless communication services have experienced dramatic growth over the past 25

years. It was in the 1970s and early 1980s that the first generation cellular systems

based on frequency division multiple access and analog FM technology were devel-

oped and deployed [1]. Today, digital cellular telephone services are available through-

out the world, and have well surpassed fixed-line services both in terms of availability

and number of users. While mobile voice telephony drove the past growth of wireless

systems and still remains an important application, it is abundantly clear that wireless

data applications are driving its future growth. In the past three decades, the Inter-

net transformed from being an academic tool to an indispensable global information

network providing a vast array of services and applications – from e-mail to social

networking and e-commerce to entertainment.

Due to the scarcity of the radio resources along with the ever-increasing pressure

of the rapid proliferation of mobile devices with powerful data-consuming capability,

it is not rational in cellular networks to separate concurrent transmissions completely

in frequency. Some transmissions will inevitably be made at the same time over the

same frequency band, separated only in space. The traditional homogeneous network
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expansion techniques via cell splitting cannot cope with the rapid growth of user pop-

ulation and their associated traffic. Moreover, macro base station (BS) deployment

necessitates a huge capital expenditure which would be very difficult to recover with

the decreasing service cost. In response to these major developments, the industry

is driving the standardization bodies to develop new solutions to accommodate the

increased capacity demand, such as universal frequency reuse, massive MIMO, and

heterogeneous networks (HetNets) [2–6].

A universal frequency reuse will increase the spatial spectrum efficiency and net-

work capacity but at the cost of increased interference from undesired transmitters

added to the desired signal at a receiver. There are three main factors that shape the

interference statistics in wireless networks, including the network geometry (layout

of the network transmitters), medium access control (MAC) protocols (e.g., ALOHA

[7–9], carrier-sense multiple access (CSMA) [10–16], time division multiple access

(TDMA) [17–19], etc.), and the random channel behaviour due to small-scale fading

and shadowing. It is often the combined action of the network geometry and MAC that

determines the distribution of concurrently transmitting nodes. For example, even if

the network nodes are very randomly (e.g. uniformly) distributed in space, a CSMA

scheme [13] will ensure a certain separation between concurrent transmitters by trans-

lating the spectrum sensing power threshold into a minimum exclusion distance; hence

the spatial distribution of the active transmitters at any given time slot might exhibit

some regularity.

1.2 Some Relevant Wireless Performance Measures

In wireless communications, the signal power radiated from a transmitting node decays

with Euclidean distance, and hence the geometry of the locations of the transmitting

and receiving nodes plays a key role, since it determines the signal-to-interference-

plus-noise ratio (SINR) at each receiver. The SINR then determines the information-
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theoretic achievable bit rate. Let ` be the distance-dependent area-mean of the channel

power gain function (inversely proportional to path loss), then the signal power from a

given transmitter measured at the location u ∈ R2 is given by

Pr(u) = Pt(x)hx,u`(‖x− u‖) (1.1)

where x ∈ R2 is the spatial location of the transmitter, Pt(x) is the transmit power, hx,u

is a random variable accounting for the random channel (power) gain due to small-scale

fading and shadowing between the two locations x and u, and ‖ · ‖ is the Euclidean

norm. The area-mean channel power gain function can be expressed as [20–22]

`(‖x− u‖) = ‖x− u‖−η (1.2)

where η is the path-loss exponent depending on different environmental conditions,

such as η = 2 for free space and η ranges between 1.6 and 6.5 in different cellular

environments, with 3 to 4 range being more typical for outdoor channels [23]. This

is called the unbounded area-mean power gain function due to its singularity at the

origin. An alternative area-mean power gain function called the bounded path-loss

function [24], is more practical but complicates the theoretical analysis of the system,

given as `(‖x− u‖) = min {1, ‖x− u‖−η}.

While the choice of the area-mean power gain function may significantly affect the

statistics of the received interference power, the impact of the area-mean power gain

function on the SINR is smaller. The SINR at each receiver can be calculated as

SINR(u) =
Pt(x0)hx0,u`(‖x0 − u‖)

Ω +
∑

x∈I Pt(x)hx,u`(‖x− u‖)
(1.3)

where u is the location of the test receiver, x0 is the location of the transmitter that

sends useful data to the receiver located at u (called the “desired” transmitter1), I =

1Note that the subscript “0” (i.e. zero) refers to the desired transmitter, while the subscript “o” (see
Section 1.4.1) refers to the origin of the plane R2.
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{x1, x2, · · · } is the set of the locations of the interfering transmitters, and Ω is the

noise power. The summation term
∑

x∈I · · · is the cumulative (aggregate) interfer-

ence power at the test receiver. At a generic time instant, the interference experienced

by each receiver depends on the location of the desired transmitter, spatial distribu-

tion of the interfering transmitters as well as the instantaneous random channel gains.

Therefore, given the effect of the network geometry on the interference, the SINR is

a random variable that strongly depends on the network geometry and significantly

varies from one receiver to another and from one time instant to another.

The SINR distribution for a network is often derived in the form of the probability

of coverage. For a given fixed modulation and coding scheme and with the interference

treated as noise (by using a simple linear receiver), the user is said to be in coverage

if the experienced SINR exceeds a certain threshold T . Under the assumption of the

desired transmitter being at a distance R from the receiver, the conditional probability

(conditioned on the given distance R) of coverage pRc is defined as follows:

pRc (T ) = P(SINR ≥ T ) (1.4)

Its complement 1 − pRc is the conditional outage probability, which is the same as the

cumulative distribution function (CDF) of the SINR.

The mean achievable data rate (in bits/s/Hz) of this transmission link averaged over

the SINR distribution can be expressed as [25, 26]

E {log2(1 + SINR)} = −
∫ ∞

0

log2(1 + x)dpRc (x) (1.5)

assuming that the interference is treated as Gaussian noise2.

2In general, almost any type of modulation, coding schemes, and receiver structure can be easily
treated by adding a gap factor G ≥ 1 to the rate expression (1.5) [23, 25], i.e., E {log2(1 + SINR/G)}.
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1.3 Stochastic Geometry Modelling and Analysis

For the analysis and design of wireless networks, rigorous yet simple and accurate

models have long been desired. However, the analytical characterization of network

geometry (i.e. the spatial configuration of BSs) has always been a challenging prob-

lem even in simple regular models where the BSs are placed deterministically at the

center of hexagonal grids [27–30]. These models have been used extensively in aca-

demic and industrial communities, but suffer from being both highly idealized and not

analytically tractable, so complex system-level Monte Carlo simulations [27] are often

used to evaluate coverage probabilities and data rate. Moreover, due to the variation

of the capacity demand across different service areas (such as urban and rural areas)

and environmental constraints, the BSs will not exactly follow a grid-based model.

Instead, realistic wireless networks are more likely to have random topologies, which

makes possible the use of stochastic geometry [27, 31–33] as an efficient tool for the

modelling, analysis and design of wireless networks [10–13, 21, 22, 24–26, 34–40].

Stochastic geometry is a rich branch of applied probability adapted to the study of

random phenomena on the plane or in higher dimensions. It is intrinsically related to

the theory of point processes [41, 42]. The theory of point processes was originally

developed for applications to biology, astronomy and material sciences. Nowadays, it

is also used in image analysis and in the context of communication networks.

In stochastic geometry modelling of wireless networks, the locations of the net-

work nodes are usually seen as the realizations of some point process(es). When the

underlying random point process model is assumed to be stationary and ergodic3, the

probabilistic analysis provides a convenient way of estimating spatial averages. Those

averages often capture the key dependencies of the network performance characteris-

tics (connectivity and capacity) as functions of a relatively small number of param-

eters such as the intensities of the underlying point processes and the parameters of

3If the point process is ergodic, the spatial averages (across points) equal the ensemble averages
(across realizations of the point process).
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the MAC protocols involved. In other words, stochastic geometry provides a natural

way of defining and computing large-scale properties of such networks, by averaging

over all potential geometrical patterns for the nodes, in the same way as queuing the-

ory provides response times or congestion, averaged over all potential arrival patterns

within a given parametric class. The spatial average means an empirical average made

over a large collection of locations in the domain considered; depending on the cases,

these locations could simply be certain points of the domain, or nodes located in the

domain, or even nodes on a certain route defined in this domain. Simple examples of

such averages are the fraction of nodes which transmit, the fraction of space which is

covered or connected, the fraction of nodes which transmit their packet successfully,

and the average geographic progress obtained by a node forwarding a packet towards

some destination.

The most popular point process model is homogeneous Poisson point process (PPP),

where the network nodes are uniformly and independently distributed. Due to its ana-

lytical tractability, the homogeneous PPP model has been frequently used in the anal-

ysis of cellular [21, 22, 43–48], ad hoc [49–52], and cognitive radio networks [53–56].

The results and analytical methodologies derived using the PPP model have been wide-

ly addressed and well understood, serving as the guidelines for design of wireless net-

works with random user and node locations. They provide answers to such questions

as how the interference statistics and outage probabilities are affected by the user den-

sity and distribution, the path-loss model, the fading statistics, and power control. In

turn, given the network constraints such as minimum probability of coverage or data

rate requirements, they allow the tuning of the network parameters for optimum perfor-

mance4. At the expense of reduced tractability, other point processes are also used for

4It is well known that considering interference as noise is not the only possible option when ana-
lyzing a wireless network. Other options (collaborative or coordinated schemes, successive cancelation
techniques) can offer better rates, though at the expense of more algorithmic overhead and/or exchange
of more information between network nodes. We believe that the methodology of stochastic geometry
has the potential of analyzing such techniques, but for simplicity of analysis, we have only considered
the case of treating interference as noise.
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modelling of wireless networks, such as the binomial point process [57, 58], Poisson

cluster process (PCP) [24], hard core point process (HCPP) [10, 13, 35], and Ginibre

point process [36, 37].

1.4 Finding Network Measures Using Stochastic

Geometry Approaches

Analytical approaches of stochastic geometry to calculate network measures usually

lie in the availability of the sums, products, and the empty space distance distribu-

tion properties of the underlying point process. Using sums over a point process, the

mean and variance of the interference can be evaluated. Products over a point process

generally are used for the calculation of the Laplace transform of the cumulative inter-

ference, which is the key to the derivation of the probability of coverage conditioned on

a fixed desired link distanceR between the receiver and its desired transmitter. Finally,

the overall probability of coverage averaged over the area of interest can be obtained

by deconditioning the desired link distance using the empty space distance distribution

of the underlying point process. The probability of coverage can then be used to find

mean data rates, as discussed earlier.

1.4.1 Mean interference

Consider an independent collection of mobile users/receivers, located according to

some independent stationary point process. Without any loss of generality, we assume

that the mobile user under consideration is located at the origin o over the plane R2.

The total interference is then characterized by

I =
∑
x∈Φ

hx,o`(‖x− o‖) =
∑
x∈Φ

hx`(‖x‖) (1.6)
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where Φ denotes the point process of interest that captures the spatial locations of all

the interfering BSs with unit transmit power, `(·) is the path-loss function, and hx

denotes the random channel power gain hx,o between x and the origin o. In the case

of a homogeneous PPP, it does not matter where the interference is measured. Due to

Slivnyak’s theorem [41] (see Section 2.1), it could even be measured at a point of the

process as long as its contribution to I from that point is not included. In all other cases,

however, the measurement location does matter, since the interference seen by a typical

point of the point process differs from the interference seen at an arbitrary point of the

plane (see Section 2.1 on Palm distributions [41]). From Campbell’s theorem [41] (see

Section 2.1), the mean interference of a network modelled by a stationary isotropic

point process can be obtained by

IM = EΦ(I) = λE(hx)

∫
R2

`(‖x‖)dx =
2πλ

µh

∫ ∞
0

`(r)rdr (1.7)

where λ is the intensity5 of Φ. The specific fading distribution does not matter, as long

as E(hx) = 1/µh be a constant. For finite-sized networks of radius rw > 1 with a

bounded path-loss model `(r) = min(1, r−η), (1.7) gives [56]

IrwM = λµh

(
π +

2π

η − 2
(1− r2−η

w )

)
(1.8)

This simple expression offers a guideline on how large to choose the network area in a

simulation, where the behaviour of an infinite network is to be explored.

1.4.2 Laplace transform of the cumulative interference

A wireless network modelled by a point process Φ consists of the desired transmitter

x0 and all other interfering transmitters. The cumulative interference measured at the

origin o is the summation of the signal power from all interfering transmitters, given

5λ can be interpreted as the mean number of points of Φ per unit area. (See also Section 2.1.)
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by

Ic =
∑

x∈Φ\x0

hx`(‖x‖) (1.9)

Generally, there is no known closed-form expression for the probability density

function (PDF) (or equivalently, the cumulative distribution function) of the cumulative

interference Ic. The only two exceptions where the PDF of the interference has a

closed-form expression can be found in [59] for deterministic channels, and in [60]

for Rayleigh fading channels. Both the closed-form PDFs were obtained under the

assumptions of an unbounded path-loss function with exponent η = 2 or 4, an infinite-

sized PPP, and through the application of Euler’s product formula [59]. Instead, Ic is

usually characterized by its Laplace transform, given by

LIc(s) = E [exp (−sIc)] = E

 ∏
x∈Φ\x0

exp (−shx`(‖x‖))

 (1.10)

Stochastic geometry provides a systematic way to obtain the Laplace transform for

the cumulative interference associated with the point process of interest. It is called

the probability generating functional (PGFL)6. In the case of a homogeneous PPP ΦP

with intensity λp, for a real valued function f(x) : R2 → [0, 1], the PGFL gives

E

[∏
x∈ΦP

f(x)

]
= exp

(
−λp

∫
R2

(1− f(x))dx
)

(1.11)

According to Slivnyak’s theorem [41], it does not matter if the desired transmitter x0

is included in the calculation or not, i.e. E
[∏

x∈ΦP\x0 f(x)
]

= E
[∏

x∈ΦP
f(x)

]
. Thus,

combining (1.10) and (1.11):

LIc(s) = exp

(
−λp

∫
R2

(1− exp (−shx`(‖x‖)) dx
)

(1.12)

6The PGFL is the random point process analogue to the probability generating function of a discrete
random variable that takes non-negative integer values.
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With the Laplace transform, one is able to generate the moments of the cumulative

interference. Furthermore, it is the Laplace transform of the cumulative interference

that gives the possibility to derive the closed-form network performance metrics such

as the probability of coverage, the transmission capacity, and the average achievable

data rate [21, 22].

1.4.3 Probability of coverage

Let R be the desired link distance between the receiver and its desired transmitter. In

the case of Rayleigh fading, the channel power gain h is exponentially distributed.

Assuming E(h) = 1/µh and a constant transmit power Pt for all network nodes, the

conditional probability of coverage pRc can be expressed as follows:

pRc (T ) = P
(
h ≥ T

Pt`(r)
(Ω + Ic)

)
(i)
= exp

(
−µhTΩ

Pt`(r)

)
EΦ

[
exp

(
−µhTIc

Pt`(r)

)] (1.13)

where the last step (i) is obtained by taking the expectation with respect to both the

random channel power gain h and the underlying point process Φ of interest. Note that

the Rayleigh fading assumption can be relaxed at the expense of the tractability of the

model. As a result, we may be able to get only approximate solutions or tight bound(s)

on the SINR distribution.

Under the assumption of the closest-BS connectivity policy [21, 22], the desired

link distanceR is actually the distance between a generic location (not part of the point

process Φ) and its closest point in the point process Φ. The desired link distance R can

be further relaxed or deconditioned using the empty space function FR(r) (also known

as the closest-point distance distribution or contact distance distribution) [41,42] of the

point process Φ, thus an average probability of coverage pc over the whole plane can
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be obtained as

pc =

∫ ∞
0

pRc (T )dFR(r) (1.14)

In the case of the homogeneous PPP with intensity λp, the empty space function is

FR(r) = 1− exp (−λpπr2) [21].

1.4.4 Challenges of the stochastic geometry approach

By far, more than 95% or perhaps 99% of the analytical work on wireless network

characterization is based on the Poisson model [59]. The complete spatial randomness

(CSR) or independence property makes the PPP comparatively easier and tractable to

analyze. In particular, when talking about its tractability, we are mainly referring to

the closed-form PGFL (for calculating interference) and to the empty space distribu-

tion (for calculating the coverage probability and related metrics) of the underlying

point process. Unfortunately, both of them only exist for homogeneous PPP models.

Therefore, analytical tractability7 is rarely exactly promised by other point processes to

the same extent as for the PPP models. The analysis of the more general point process

models requires the use of the Palm theory [25, 26] (see Section 2.1), in particular the

conditional probability generating functionals, which are quite involved to calculate.

Other techniques such as vulnerability region analysis (i.e. focusing on dominant in-

terferers by region bound or nearest n interferers), approximation of the PDF of the

cumulative interference, and inversion of the Laplace transform are also frequently

used in the literature [8, 9, 15, 48, 61–63] but at great expense of accuracy, tractability,

and practicality tradeoffs.

While stochastic geometry is powerful in theoretical analysis of wireless networks,

the most critical first step is to find an accurate point process model that best reflects the

spatial distribution of the network nodes. Seldom is the rationale behind the choice of

7This is the main advantage of stochastic analysis that leads to simple closed-form equations, and
in turn, helps one to understand the behaviour of the wireless systems in response to variations in the
design variables.
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a particular point process for the model discussed, and rarely is there a measurement-

based validation of certain stochastic assumptions used in the literature. This gives

rise to questions like: When are Poisson models justified? When should one rather use

point processes with some repulsion or attraction between points? When is the station-

arity/isotropy assumption valid? The only aim in nearly all the related research work

in the literature is to show what can be done with stochastic geometry when assum-

ptions of this kind are made. Clearly, it may not be suitable to use exclusively the

PPP as a model, if the network nodes are clustered according to certain social behavior

(human activity and residential habits), or separated by some minimum distance due

to geographical constraints. Stationarity should also be questioned since the distribu-

tional properties of the network nodes may not be the same over space8. Instead, the

deployment of the network nodes is more or less a compromise of many realistic fac-

tors such as the population densities, government regulations, or terrestrial restrictions.

Therefore, it is worthwhile to conduct a more extensive and comprehensive analysis

of statistical modelling and validation for the spatial structure of the wireless network

nodes.

1.5 Motivation and Objectives

Grid-based models are not analytically tractable and also fail to characterize the topo-

logical randomness of realistic networks. Stochastic geometry provides a natural way

of defining and computing macroscopic properties of wireless networks with random

topologies. It is an important tool that can analyze the random wireless networks in

a probabilistic way by taking the uncertainties in the locations of network nodes and

averaging over all possible network realizations, leading to simple expressions for the

network performance metrics as functions of a relatively small number of point process

8However, one can assume that the underlying random point process is ergodic, and hence the sta-
tistical properties can be deduced simply from sufficiently large number of spatial realizations of the
random process.
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parameters. Stochastic geometry is an important branch of applied probability and the

analysis is intrinsically related to the theory of point processes. The richness and ma-

tureness of the mathematical system offers great convenience to the exploration of the

interplay between wireless communications and stochastic geometry. Motivated by the

potential prospects for stochastic geometry analysis, the main objective of the thesis

is to present a comprehensive technique for measurement-based statistical validation

of point process models, examine the general framework of the modelling method that

accounts for the network geometry, find solutions to some of the analytical challenges

discussed in Section 1.4.2, and shed light on the studies of more general point process

models.

1.6 Contributions of the Thesis

In this thesis, we will explore fitting of point process models to the observed real-life

point patterns9, study the empty space distance distribution in the Matérn hard core

point process of Type II, and derive the downlink probability of coverage in two-tier

heterogeneous cellular network using clustered point processes. The contributions of

the work presented in this thesis include:

• Development of a practical technique that finds the most appropriate point process

models for spatial nodes of wireless networks, from the perspective of statisti-

cal measurement and justification. Various point processes such as clustered and

regular (or repulsive) models are examined and studied in terms of their own gen-

eration mechanisms and statistical properties. Covariate effects are introduced,

and spatial inhomogeneity is studied.

• Fitting the empirical probability density function of the closest-point distance

in the Matérn hard core point process of Type II to various existing distribu-

tions and finding that the Weibull distribution has the best goodness-of-fit. We
9A point pattern is a set of points, which can be regarded as a realization of a specific point process.
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also propose a better piecewise probability density function for the closest-point

distance, including an exact expression and a heuristic formula, which can be

approximated by a Weibull-like function.

• Assuming a connected base station exists at the point of reference (or origin)

in the tier of interest, we derive an expression for the downlink probability of

coverage over a heterogeneous network, wherein the base station locations re-

sult from different point processes, such as Poisson point processes and Poisson

cluster processes. We also derive lower and upper bounds for the coverage prob-

ability in a two-tier heterogeneous network modelled with Poisson point and

cluster processes, and evaluate the effect on those bounds when changing vari-

ous parameter values.

1.7 Organization of the Thesis

In Chapter 2, we present a compact overview on the fundamentals of point process

theory, which will be used and extended through the whole thesis. In Chapter 3, we

focus on the techniques of statistical modelling and validation for both stationary and

nonstationary point process models. Chapter 4 focuses on the study of the empty space

distribution for the Matérn hard core point process of Type II, and the formulation of an

empirical equation for that distribution. Chapter 5 presents the derivation and analysis

of the probability of coverage in heterogeneous networks modelled based on Poisson

cluster processes. Finally, we conclude the work done in this thesis with a summary

and discussion of future research directions in Chapter 6.
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Chapter 2

Fundamentals of Point Processes

Point processes are mathematical models for random point patterns. Informally, a

spatial point process Φ on the plane R2 is a random variable taking values in the mea-

surable space (N,N ) [41]. N is the family of all sequences φ = {x1, x2, · · · , xn} of

points on R2 satisfying the local finiteness condition, which says that each bounded

subset B of R2 contains only a finite number of points. A point process is considered

to be simple if there are no duplicated points, i.e. xi 6= xj if i 6= j. The order of the

points xn is of no interest, only the content of the set {xn} matters. Thus the symbols

xn are dummy variables and have no particular interpretation. For example, the point

x1 need not be the point closest to the origin o of the plane. The σ-algebra N is de-

fined as the smallest σ-algebra on N to make all measurable mappings φ → φ(B), for

B running through the bounded Borel sets. A point process Φ is said to be stationary if

its characteristics are invariant under translation. That is, the processes Φ = {xn} and

Φx = {xn+x} have the same distribution for all x in R2. Furthermore, Φ is isotropic if

its characteristics are invariant under rotation. Stationarity and isotropy together yield

motion-invariance [42].
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2.1 Moment Measures

In the classical theory of random variables, the moments (particularly mean and vari-

ance) are important statistical measures. Point process theory has analogues to these.

However, numerical mean and variance must be replaced by more complicated mo-

ment measures. Similar to the mean of a real-valued random variable, the intensity

measure ς of a point process Φ is defined as

ς(B) = E{Φ(B)} (2.1)

where Φ(B) = Φ∩B. So ς(B) is the mean number of points in Borel set B. In practice,

the intensity measure is expressed in terms of a non-negative intensity function λ(x),

i.e.

ς(B) =

∫
B
λ(x)dx (2.2)

One may interpret λ(x)dx as the probability that precisely one point falls in an in-

finitesimally small region containing x and of area dx. If Φ is stationary then the inten-

sity measure simplifies to be a multiple of the Lebesgue measure |B|, i.e. ς(B) = λ|B|

for some non-negative constant λ, which is called the intensity1 of Φ.

The second-order factorial moment measure of the point process Φ is defined by

[31, 33]

ς(2)(A) = E


6=∑

(u,v)∈Φ

1{(u,v)∈A}

 (2.3)

where A ⊂ R2 × R2, 6= means that the sum runs over all pairwise different points

(u, v) in Φ, and 1{·} is the indicator function. For many important point process models

[31,33], ς(2) is given in terms of an explicitly known second-order product density %(2)

as

ς(2)(A) =

∫
A

1{(u,v)∈A}%
(2)(u, v)dudv (2.4)

1λ can be interpreted as the mean number of points of Φ per unit area of B.
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The term %(2)(u, v)dudv can be interpreted as the probability of observing a point in

each of two infinitesimally small areas du and dv and respectively containing u and v.

If Φ is stationary then %(2) depends only on the difference of its arguments, and if

furthermore Φ is motion-invariant then %(2) depends only on the distance r between u

and v and it is simply written as %(2)(r) [42].

Without using the second-order product density %(2), the second-order factorial mo-

ment measure can be expressed in terms of the second-order reduced moment measure

K, given by [31, 33]

ς(2)(B1 × B2) = λ2

∫
B1
K(B2 − x)dx

= λ2

∫
R2

∫
R2

1{x∈B1}1{(x+v)∈B2}K(dv)dx
(2.5)

The product λK can be interpreted as the mean number of points in B \ o under the

condition that there is a point of Φ at o, but not counting it. The exact definition of

K uses the theory of Palm distributions [33], and K plays some role in point process

statistics in the context of directional analysis [31].

If a second-order product density %(2) exists, then there is the following relationship

between %(2) and K:

λ2K(B) =

∫
B
%(2)(x)dx (2.6)

The description of the second-order moment measure simplifies even further in the

motion-invariant case. It then suffices to consider the second reduced moment function

or K function defined as [42]

K(r) = K(B(o, r)) (2.7)

where B(o, r) is the circle centered at o with radius r. The quantity λK(r) is the mean

number of points of Φ within a circle of radius r centered at the typical point at o,

which is itself not counted.
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Theoretical analysis of stationary point processes typically is carried out by taking

advantage of some useful mathematical tools such as Campbell’s theorem [31,33], the

Palm distribution [31, 33] and so on.

Campbell’s theorem. Let f(x) : R2 → R+ be a measurable integrable function,

then the expectation of the sum f(x) over the point process Φ is given by the following

equation:

E

[∑
x⊂Φ

f(x)

]
=

∫
R2

f(x)ς(dx) (2.8)

Palm distribution. Simply speaking, a Palm distribution is the conditional distri-

bution of a point process under the assumption that there are points of the point process

known at a given set of locations. Moreover, in many cases of practical interest we as-

sume a given point at the origin o of the plane; this motivates the interpretation of the

Palm distribution Po as the corresponding conditional distribution. Another important

definition is the reduced Palm distribution P!
o, which means that the given point is at

the origin but is not counted in the distribution. A very popular result of the Poisson

point process is the Theorem of Slivnyak [31, 33].

Theorem of Slivnyak: The reduced Palm distribution of a Poisson point process

is equivalent to the original distribution, that is

P!
o = P (2.9)

Hence, a point can be added into or deleted from a Poisson point process while not

disturbing the distribution of the original Poisson point process.

2.2 Statistics for Point Processes

The K function is often used in point process statistics and it has many interesting

applications. The K function is also closely related to the pair correlation function
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[42]. For a motion-invariant point process, the pair correlation function g(r) satisfies

g(r) =
1

2πr

dK(r)

dr
(2.10)

It also results from normalization

g(r) = %(2)(r)/λ2 (2.11)

The forms of these functions correspond to different spatial properties of the underly-

ing point process. Maxima of g(r), or values of K(r) larger than πr2 for r in specific

intervals, indicate frequent occurrences of attraction at such r; minima of g(r) or low

values of K(r) indicate inhibition at these distances r.

Other statistics than K(r) and g(r) for investigating interpoint interaction are dis-

tance methods, including the empty space function F (r), nearest neighbour distance

distribution function G(r), and the second-order characteristics L(r) and J(r). These

functional summary statistics are based on distances such as: (1) pairwise distances

sij = ‖xi − xj‖ between all distinct pairs of points xi and xj (i 6= j) in the point pat-

tern φ; (2) nearest neighbour distances ti = minj 6=i sij , the distance from each point xi

to its nearest neighbour; (3) empty space distances d(u) = mini ‖u− xi‖, the distance

from a fixed reference location u in the study region to the nearest point in φ.

Assuming Φ is stationary (statistically invariant under translations), we can define

the cumulative distribution function of the empty space distance (empty space func-

tion) as follows

F (r) = P {d(u,Φ) ≤ r} (2.12)

where u ∈ R2 is an arbitrary reference location. If the point process is stationary then

this definition does not depend on u.

Assuming the point process Φ is stationary, we can define the cumulative distribu-

tion function of the nearest-neighbour distance (nearest neighbour distance distribution
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function) for a typical point x in the point process as

G(r) = P {d(x,Φ \ x) ≤ r|x ∈ Φ} (2.13)

where d(x,Φ \ x) is the shortest distance from the point x to the point pattern Φ ex-

cluding x itself. If the point process is stationary then this definition does not depend

on x.

The function L(r) is defined as

L(r) =
√
K(r)/π (2.14)

and the function J(r) is defined as

J(r) =
1−G(r)

1− F (r)
(2.15)

All the above summary statistics are powerful in the characterization of a point

process. Which one is to be used depends mainly on convenience, but also on the

statistical considerations of a certain scenario. Model identification (or justification)

and validation may be suggested by parameter estimation through the comparison of

empirical summary statistics with model-related theoretical counterparts, which may

help one in statistical applications to find a good model for the observed point pattern

data. Note that the functional summary statistics above are defined and estimated under

the assumption that the point process is stationary (homogeneous), as implied by their

use of the distance variable r between points [64, 65].

For nonstationary point processes, a generalized analogue to the K function is

called the inhomogeneous K function Kin(r) [66]. Suppose Φ is a point process with

nonconstant intensity function λ(u) at each arbitrary location u ∈ R2. The inhomoge-

neous K function Kin(r) is defined to be the expected value of the sum of all terms

1/λ(xj) over all points xj in the process separated from u by a distance less than r,
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given that a point of Φ is at the location u. This reduces to the ordinary K function if

λ(·) is constant.

Given an observed point pattern φ in the study region W , Kin(r) can be estimated

by summing the values 1
λ(xi)λ(xj)

for all pairs of points xi, xj separated by a distance

less than r [66]

Kin(r) =
1

|W |
∑

xi,xj∈φ
xi 6=xj

e(xi, xj, r) · 1{d[xi,xj ]≤r}

λ(xi)λ(xj)
(2.16)

where |W | is a constant denominator, 1{·} is the indicator function, d[xi, xj] is the

distance between points xi and xj , and e(xi, xj, r) is an edge correction factor such

as border correction, modified border correction, translation correction or isotropic

correction [66, 67]. For isotropic correction, the edge correction factor e(xi, xj, r) can

be expressed as [66]

e−1(xi, xj, r) = |W | · h(xi, xj) (2.17)

where h(xi, xj) is fraction of the circumference of the circle with center xi and radius

d[xi, xj] which lies inside the region W .

One use of the K function (both normal and inhomogeneous versions) is for deter-

mining if a point process exhibits clustering and/or repulsion among points. In partic-

ular, application of the inhomogeneous K function allows one to inspect an observed

point pattern for evidence of interpoint interactions, after allowing for spatial inhomo-

geneity of such point pattern data. Values of K(r) or Kin(r) greater than πr2 suggest

a spatial trend of clustering, whereas values less than πr2 suggest a spatial trend of

repulsion.
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Figure 2.1. (a) Realization from a homogeneous PPP with intensity 100 in the unit area;
(b) Realization from an inhomogeneous PPP with intensity function 100 · exp(−3x) in the

unit area.

2.3 Point Process Models

There is a huge collection of point processes described in [41,42]. Generally, the point

processes can be categorized into three main different kinds: Poisson, clustered, and

regular. Each specific point process model can be either stationary (with a constant

intensity λ) or nonstationary (with a variable intensity λ(·)). In this section, we will

introduce some of the most common point process models in terms of their generation

mechanisms and statistical properties.

2.3.1 Poisson point processes

The Poisson point process is the simplest and most important model for random point

patterns. It plays a central role as a null model, being the starting point for the construc-

tion of many other stochastic models. It is the model for complete spatial randomness

(CSR). The location of any point of a PPP is independent of the location of any other

point of the process. A stationary (homogeneous) Poisson point process ΦP is charac-
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terized by two fundamental properties: (a) the number of points of ΦP in a bounded

Borel set B has a Poisson distribution with mean λ|B| for some constant intensity λp;

(b) the numbers of points of ΦP in k disjoint Borel sets form k independent random

variables, for an arbitrary k. The points of ΦP are uniformly randomly distributed over

the area of B.

The nonstationary (or inhomogeneous) Poisson point process Φin
P with intensity

function λ(·) is however defined by: (a) the number of points of Φin
P in any bounded

Borel set B, denoted by N
(
Φin

P (B)
)
, is Poisson distributed with mean

∫
B λ(u)du, u ∈

R2; (b) conditional on N
(
Φin

P (B)
)

= n, the n points are independent and identically

distributed in B with density proportional to λ(·). The numbers of points in disjoint

Borel sets are still independent.

The K function for both stationary and nonstationary PPPs is the same: K(r) =

Kin(r) = πr2. Realizations of a stationary and nonstationary Poisson point process

are depicted in Fig. 2.1.

2.3.2 Clustered point processes

Clustering means that some form of attraction exists between points, leading to point

patterns aggregated in space. Typical models include the Matérn cluster process (MCP)

and the Thomas cluster process (TCP) [41, 42].

A stationary Matérn cluster process is formed by taking a pattern of parent lo-

cations, generated according to a Poisson process with intensity κ, and around each

parent location, generating a random number of offspring points. (Parent locations are

not themselves points.) The number of offspring points of each parent location is a

Poisson random variable with mean µ, and the offspring points are independently and

uniformly distributed inside a circle with radiusRMC centered on the associated parent

location. The K function of the Matérn cluster process is given by [42]

K(r) = πr2 + `1

(
r

2RMC

)
/κ (2.18)
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Figure 2.2. Realizations of clustered point processes with parent intensity κ = 10 and
offspring intensity µ = 10 in the unit area (red plus symbols denote the parent locations

which are themselves not included). (a) Stationary Matérn cluster process with
RMC = 0.05; (b) Stationary Thomas cluster process with σ = 0.05.

where

`1(z) = 2 +
1

π

((
8z2 − 4

)
arccos(z)− 2 arcsin(z)

+ 4z

√
(1− z2)3 − 6z

√
1− z2

) (2.19)

for z ≤ 1, and `1(z) = 1 for z > 1. The intensity of the Matérn cluster process is

λ = κ · µ.

A stationary Thomas cluster process is similar to a Matérn cluster process. The key

difference is that the offspring points, rather than being uniformly distributed within

a circle, are instead independently and isotropically normally distributed around the

parent location with some standard deviation σ. The K function of the Thomas cluster

process is given by [42]

K(r) = πr2 +
1

κ

(
1− exp

(
− r2

4σ2

))
(2.20)
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The theoretical intensity of the Thomas cluster process is λ = κ · µ. Realizations of a

stationary Matérn and Thomas cluster process are depicted in Fig. 2.2.

For nonstationary Matérn and Thomas cluster processes, the intensity function is

no longer a constant, but depends on the location of interest. A generalized non- and

semi-parametric estimation is still available for inhomogeneous point patterns using

the inhomogeneous K function described earlier at the end of Section 2.2.

2.3.3 Regular point processes

Regularity stands for some form of repulsion between points in a point process. Among

regular point processes, Gibbs point processes make up a large share of them [31,

33]. Gibbs processes are a family of pairwise interaction models, which are generally

constructed by specifying their probability densities. Pairwise interaction models have

probability densities of the form [68]

f(φ) = w

n(φ)∏
i=1

b(xi)

[∏
i<j

c(xi, xj)

]
(2.21)

where φ = {x1, x2, · · · , xn} represent the points of the point pattern, n(φ) denotes

the number of points in φ, w is a normalizing constant with regard to point process Φ,

b(xi) is the first-order term, and c(xi, xj) is the second-order or pairwise interaction

term, which must be symmetric, i.e. c(xi, xj) = c(xj, xi). In principle, b(·) and

c(·, ·) may be arbitrary functions provided the resulting probability density is integrable

with respect to the unit rate Poisson process, which has intensity λp = 1. Generally,

fitting and simulation of Gibbs point processes are implemented using the Monte Carlo

method [67]. Depending on different assignments for the first- and second-order terms,

there are many different kinds of pairwise interaction models, leading to special cases

of Gibbs point processes such as the Strauss point process and the hard core point

process.
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The stationary Strauss point process with interaction radius RS and parameters βS

and γS is the pairwise interaction point process, in which each point contributes a factor

βS to the probability density of the point pattern, and each pair of points closer than RS

apart contributes a factor γS to the density. The probability density is given by [68]

f(φ) = wSβ
n(φ)
S γ

s(φ,RS)
S (2.22)

where wS is a normalizing constant, βS > 0 is the intensity (or abundance) parameter,

n(φ) is the number of points in the pattern, γS ∈ [0, 1] is the second-order or interaction

term and s(φ,RS) is the number of distinct unordered pairs of points that are closer than

the interaction radius RS apart. The parameter γS controls the strength of interaction

between points. If γS = 1, the model reduces to a Poisson point process with intensity

βS. For values 0 < γS < 1, the process is regarded as a soft core process, also

exhibiting inhibition (or repulsion) between points. If γS = 0, the model is a hard core

point process. An exact tractable analytical form for the K function of the stationary

Strauss point process is not available. However, an approximate expression for K(r)

is [31, 33]:

K(r) =

γSπr
2, 0 < r ≤ RS,

πr2 − (1− γS)πR2
S, r > RS.

(2.23)

A stationary hard core point process with the hard core distance RH and intensity

parameter βH is a pairwise interaction point process, in which distinct points are not

allowed to come closer than a distance RH apart. The probability density is zero, if any

pair of points is closer than RH units apart, and otherwise equals [68]

f(φ) = wH · βn(φ)
H (2.24)

Realizations of the stationary Strauss and hard core point processes are depicted in Fig.

2.3.
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Figure 2.3. (a) Realization from a stationary Strauss point process with βS = 100,
γS = 0.7, and RS = 0.05 in the unit area; (b) Realization from a stationary hard core point

process with βH = 100 and RH = 0.05 in the unit area.

For nonstationary Strauss and hard core point processes, the intensity parameter

βS or βH is no longer a constant, but depends on the location of interest, which hence

results in locally different intensities of points.

There are other types of regular or repulsive point processes, such as Matérn hard

core point process of Type II [32] (which we shall call MHCPP for shorthand)2. It is

constructed by applying dependent thinning to a parent PPP. That is, starting from a

parent PPP ΦP, the MHCPP ΦMH is obtained by assigning a random mark uniformly

distributed in [0, 1] to each parent point of ΦP, then deleting all the points that coexist

within a distance less than the hard-core parameter δ from another point with a lower

mark. Hence, only the parent points that have the lowest mark within their neighbour-

hood distance δ are retained. The MHCPP intensity can be expressed as [32]

λMH =
1− exp{−λpπδ2}

πδ2
(2.25)

2There also exist Matérn hard core point processes of Type I and Type III [32], which differ in how
the points are thinned from the parent PPP. We do not consider the Type I and Type III processes in this
thesis.
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Figure 2.4. Realization from a stationary Matérn hard core point process of Type II with
λMH = 20 and δ = 0.05 in the unit area.

where λp is the parent PPP intensity and δ is the hard-core parameter3. A realization

of a stationary MHCPP is depicted in Fig. 2.4.

3δ may be in any arbitrary unit of distance, while λp and λMH would be in the same units of
distance−2.
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Chapter 3

Modelling of Cellular Networks Using

Stationary and Nonstationary Point

Processes

While stochastic geometry has its strength in theoretical analysis, a measurement-

based validation of certain stochastic assumptions is often not given. The aim in most

research work is only to show what results can be obtained with stochastic geometry

when assumptions of certain point process models are made, without necessarily fully

justifying those assumptions. This invites questions like when are Poisson models

justified, when should one rather use clustered or repulsive models, and when is the

stationary/isotropic assumption valid.

In order to fully characterize the spatial topology of the base stations in cellular

networks and identify the most proper and accurate point process model for a given

BS point pattern, in this chapter, we present and describe a network-data-supported

technique for fitting stationary and nonstationary point process models to real-life

cellular networks using maximum likelihood/pseudolikelihood and minimum contrast

methods. Nonstationary processes are of particular interest, since real-life wireless net-

works most often do not have a homogeneous spatial distribution. When fitting with
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nonstationary models, both spatial inhomogeneity and covariate effects are considered.

We introduce covariates into the point process models as a potential (or secondary)

effect that further influences the distribution of wireless nodes, in order to bridge the

gaps between the results and measures of stationary models and simulations of real-life

cellular networks. The covariates considered account for population densities in urban

areas and distance from the base stations to their closest main roads in rural areas. Sim-

ulated envelope tests are used for the evaluation of goodness-of-fit. However, such en-

velope tests are insufficient to conclusively distinguish between the fitted models. Thus

we apply other metrics such as the Akaike information criterion and root mean square

deviation to differentiate among different fitted models. Additionally, the probability

of coverage is also considered as the supplementary criterion for the goodness-of-fit

and model selection.

3.1 Introduction

The spatial configuration of base stations (BSs) has a great impact on the performance

analysis of cellular networks since received signals and interference mostly depend on

the distances between transmitters and receivers. A regular hexagonal grid has long

been used as an idealized model for the cellular network layout [27–30]. However,

due to the variation of the capacity demand across different service areas (such as

urban and rural areas) and environmental constraints, the BSs will not exactly follow a

grid-based model. Instead, realistic wireless networks are more likely to have random

topologies, which makes possible the use of stochastic geometry as an efficient tool for

the modelling, analysis and design of wireless networks [21, 22, 25, 26].

Stochastic geometry [31, 33] is a mathematical study of random spatial patterns

that leads to averaging over all network spatial realizations seen from a generic node,

weighted by their probabilities of occurrence, for the quantities of interest such as

interference, the coverage probability, and average data rate. In stochastic geometry
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analysis, the nodes in a wireless network are usually modelled by a convenient point

process [41, 42], which reflects their spatial locations. The most popular models are

Poisson point processes, which have been frequently used for the analysis of cellu-

lar, ad hoc, and cognitive radio networks [34]. The complete spatial randomness or

independence property of the points makes the networks modelled by a PPP easy to

analyze. However, it may not be suitable to use exclusively the PPP as a model, if

the BSs are clustered according to certain social behavior (human activity and residen-

tial habits), or separated by some minimum distance due to geographical constraints.

Therefore, it is worthwhile to conduct a more extensive and comprehensive analysis

by taking more realistic point process models into consideration.

In [24], Poisson cluster processes are used to model wireless ad hoc networks.

Distributional properties of the interference and a numerically integrable expression

for the outage probability are derived. In [35], Matérn hard core point processes of

Type I and Type II are used to model concurrent transmitters in carrier sensing multiple

access (CSMA) networks. The mean interference is determined and compared with a

PPP model of the same intensity. In [13], a modified Matérn hard core point process

model is proposed for the analysis of random CSMA wireless networks in general

fading environments. In [36] and [37], Ginibre point processes and determinantal point

processes have been investigated as suitable models for wireless networks with spatial

regularity. The α-stable distribution [38] has been shown to be an accurate model for

characterizing the statistical nature of BS density in cellular networks. In [39] and [40],

various repulsive and clustered point processes, such as Strauss and Cox processes, are

used for model-fitting of realistic BS deployments.

The BS locations can be interpreted as points, with the set of points forming a

spatial point pattern. That pattern can be regarded as a realization of a specific point

process. Finding an accurate point process model that is the most likely to yield such

a point pattern realization is usually a two-step undertaking. The first step involves

determining how the candidate point process models should be selected to be fitted to
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the point pattern from some real-life data. The second step is selection and calculation

of the statistical metrics used for goodness-of-fit testing, including classic functionary

summary statistics (such as the empty space distribution function F and theK function

[31, 33]) and performance metrics more relevant to applications such as the coverage

probability or average data rate [39]. If a point process model can be found that fits

the observed data pattern well, the estimated values of its parameters provide summary

statistics that can be used to compare ostensibly similar data sets. More ambitiously, a

fitted model can provide an explanation of the underlying physical processes [21, 22].

In this chapter, we aim to describe a network-data-supported statistical technique

that finds the most appropriate point process models for the observed BS point patterns

obtained from some real-life cellular networks. This technique is based on the standard

statistical R package spatstat [67], which is designed for analyzing realistic spatial

point pattern data. The fitting methods implemented are generally divided into two

categories: maximum likelihood/pseudolikelihood and minimum contrast. Both can

be applied to stationary and nonstationary point process models. When the observed

(BS) point pattern is judged to be spatially homogeneous, stationary point process

models can be used for the statistical analysis using classical methods similar to [39,40,

67, 68]. However, real cellular networks are spatially inhomogeneous, with, e.g., very

different densities in rural and urban areas, driven by geographic differences in demand

and deployment constraints. Standard stochastic geometry methods do not model this

inhomogeneity, so must be applied only in homogeneous regions of a network, and

tuned separately for each one.

As the main contribution of this chapter, we generalize stochastic geometry methods

to inhomogeneous real networks by introducing additional input variables – which are

referred to as covariates1 – to our stochastic geometry models. The covariates help ac-

count for how the base station distribution changes over the region of interest. In this

chapter, we consider two different kinds of covariate, which respectively account for

1Informally, the covariate in statistics is a possible predictive or explanatory variable of the dependent
variable in a statistical experiment.
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the population densities and for the distance from the BS to its closest main road (mod-

elled as a line segment), and fit the nonstationary point process models to the BS point

pattern observed in different areas (urban and rural). To the best of our knowledge,

this is the first time that nonstationary point processes with dependence on a covariate

have been used for model-fitting of cellular networks.

A simulated envelope test is used to identify point process models that fit the ob-

served data. The selection of the best model out of these candidates is based on other

statistics such as the Akaike information criterion (AIC) [69,70] and root mean square

deviation (RMSD) [70], or more relevant wireless metrics such as the probability of

coverage. This validation aspect is essential. Some works in the literature provide

results assuming a certain point process model for the wireless network, without also

doing a quantitative evaluation of whether the model is a match to an actual network

layout.

3.2 Methodology

Based on the types of candidate point process models, there are two common methods

for model-fitting that are implemented in the R package spatstat. When the candi-

date model is either a Poisson point process or a regular point process (such as Gibbs

point processes), the maximum likelihood/pseudolikelihood method based on the con-

ditional intensity can be applied for fitting the model to the observed point pattern data.

When the candidate model is a clustered point process, the minimum contrast method

based on functional summary statistics is better for model-fitting. Both methods can

be applied to either stationary or nonstationary point process models.

To evaluate the goodness-of-fit of a fitted model, a simulated envelope test [67]

based on various functional summary statistics (such as the K function) can be used.

If more than one candidate model satisfies the requirement of an envelope test, then

other criteria or metrics should be used to determine the best fitted model out of all
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the candidate models, such as the Akaike information criterion (AIC) [69] and the root

mean square deviation (RMSD) [70].

3.2.1 Conditional intensity of point processes

The (Papangelou) conditional intensity [67], denoted by λ(u, φ), is a function of both

an arbitrary spatial location u and the observed point pattern φ, within the study region

W . Informally, the conditional probability of finding a point of the point process inside

an infinitesimal neighbourhood of the location u, given the locations of all other points

outside this infinitesimal region, is λ(u, φ)du. Given an observed configuration φ in

a bounded region, the conditional intensity at a location u /∈ φ for a point process is

related to the probability density by

λ(u, φ) =

f (φ ∪ {u}) /f (φ) , if f (φ)>0

0, if f (φ)=0

(3.1)

In other words, it is the ratio of the probability densities for the configuration φwith

and without the point u added. A point process is attractive if λ(u, φ1) ≤ λ(u, φ2),

and repulsive if λ(u, φ1) ≥ λ(u, φ2), whenever φ1 ⊂ φ2. For the general pairwise

interaction process, the conditional intensity is given by [67]

λ(u, φ) = b(u)

n(φ)∏
i=1

c(u, xi) (3.2)

where b(u) is the first-order term and c(u, xi) is the second-order term that describes

the interaction between a point at u and xi. For example, the stationary Strauss process

has conditional intensity λ(u, φ) = βSγ
t(u,φ)
S , where t(u, φ) is the number of points of

the given point pattern φ that lie within a distance RS from the location u. The Poisson

process with intensity function λ(u) has conditional intensity λ(u, φ) = λ(u), because

the points of a Poisson process are mutually independent.
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In spatstat, in order to implement the algorithms for the calculation of Poisson

regression models, the conditional intensity is split into first-order and second-order

terms and must be loglinear2 in the parameters ϑ [67]. This gives

log λϑ(u, φ) = ψ · S(u) + ξ · V (u, φ) (3.3)

where ϑ = (ψ, ξ) are often called regular parameters. S(u) is the first-order term

that specifies the spatial trend of the underlying model. If S(u) is a constant, then

the point process model is stationary. If S(u) is a function of the spatial coordinates

of u, or an observed covariate, or a mixture of both, then the model is nonstationary.

V (u, φ) is the second-order term that describes the interpoint interaction. If V (u, φ)

is absent (or set to be zero), then the model is a Poisson point process. For example,

the conditional intensity of a stationary Strauss process can be recast as log λ(u, φ) =

log βS + (log γS) t(u, φ), so that ϑ = (log βS, log γS).

3.2.2 Specification for the spatial trend

In the inhomogeneous case, it is important to specify an intensity function for the

fitted model in the first place. Generally, the intensity function of a nonstationary

point process can be formulated in terms of spatial coordinates and/or an observed

covariate. The relation between the intensity function λ(u) and the spatial coordinates

is predicted non-parametrically through a so-called kernel-smoothed estimate for the

observed point pattern φ. The usual kernel estimator of the intensity λ(u) is [68]

λ̂(u) = ê(u)

n(φ)∑
i=1

k(u− xi) (3.4)

2This constraint on the form of the conditional intensity is imposed by the spatstat package for its
calculations; the conditional intensity need not be restricted to this form in general.
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where k(u) is the kernel (an arbitrary probability density function), xi is the point of

φ, and

ê−1(u) =

∫
W

k(u− v)dv (3.5)

is an edge effect bias correction. By Campbell’s theorem [25], one can find that λ̂(u) is

an unbiased estimator of λ̃(u) = ê(u)
∫
W

k(u−v)λ(v)dv, which is a smoothed version

of the true intensity function λ(u). By investigating and understanding the distribution-

al variations of the intensities at different locations, a wide variety of models (forms)

for the intensity function λ(·) can be constructed in the Cartesian coordinates. Since

the true form of the intensity is generally not known, the selection of which intensity

function to use is more of an art than a direct scientific derivation, and this often leads

to inappropriate assumptions being made for a proper intensity function form.

A point pattern data set may also include covariate information. Similar to the

Cartesian coordinates (independent variables) of the intensity function (dependent vari-

able), a covariate is another kind of variable that is measurable and considered to have

a statistical relationship with the dependent variable. Covariates may not be of primary

interest compared to the independent variables when evaluating the intensity function

or intensity measure of a point process model. They arise because the observed point

pattern is heterogeneous. One common type of covariate information is a spatial func-

tion Z(u) defined at all spatial locations u ∈ W (i.e. the entire study region and not

only at the observed data points). A second common type is another spatial point pat-

tern, or a line segment pattern, e.g. the locations of some fixed objects of interest in the

study region. This covariate pattern would be used to define a surrogate spatial func-

tion Z as in the first type above. For example, Z(u) may be the distance from u to the

fixed covariate locations. In spatstat, a covariate can be applied to improve the accura-

cy of the schemes implemented for model-fitting because the covariate provides more

information for “dummy points” (some other locations than the observed points in the

study region). For example, given a data set containing a targeted point pattern φX , and

another covariate point pattern φY which may account for some control factors, if one
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wants to model φX as a point process with an intensity proportional to the local intensi-

ty of φY , then one may formulate the intensity of φX as λX(u) = exp (α0 + α1Z(u)),

where (α0, α1) are linear coefficients and Z(u) is the local intensity value of the point

pattern φY at the location u. Note that one can use both the Cartesian coordinates and

covariate function Z(u) to specify a fitted intensity function of an arbitrary expres-

sion, like λ(xu, yu) = exp
{
α0x

2
u + α1

√
Z(xu, yu)

}
, where (xu, yu) are the spatial

coordinates of the point at location u.

3.2.3 Maximum likelihood/pseudolikelihood method

The likelihood function plays a fundamental role in classical approaches to statistical

inference [71]. In particular, the homogeneous Poisson point process with intensity λp

has density

f(φ) = exp {(1− λp) |W |}λn(φ)
p (3.6)

where φ is the observed point pattern, and n(φ) is the number of points in the bounded

study region W with an area of |W |. A maximum likelihood estimator of λp can be

easily derived as λ̂p = n(φ)/|W |.

Maximum likelihood estimation is in general very difficult and notoriously in-

tractable for most spatial point process models. An alternative method is to maximize

the pseudolikelihood, which is specified in terms of the conditional intensity of an

underlying point process model. Consider a point process model governed by the pa-

rameter set ϑ and having conditional intensity λϑ(u, φ), u ∈ W . The pseudolikelihood

of the point process model can be expressed as [67]

PL(ϑ, φ) =

n(φ)∏
i=1

λϑ(xi, φ) exp

{
−
∫
W

λϑ(u, φ)du
}

(3.7)

The maximum pseudolikelihood estimation of the parameters in ϑ yields the values
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that maximize PL(ϑ, φ). By performing a proper quadrature scheme3, the definite

integral on the right hand side of (3.7) can be approximated as

∫
W

λϑ(u, φ)du ≈
m∑
j=1

λϑ(uj, φ)wj (3.8)

where uj ∈ W are quadrature points and wj ≥ 0 are the associated quadrature weights

for j = 1, · · · ,m. Assume the selection of a set of quadrature points {uj} that includes

all the observed data points xi and some other dummy points. Let zj be a variable that

equals 1 if uj is an observed data point, and 0 if it is a dummy point. Then, the

logarithm of the pseudolikelihood can be approximated by

log PL(ϑ, φ) ≈
m∑
j=1

[zj log λϑ(uj, φ)− wjλϑ(uj, φ)]

=
m∑
j=1

wj(yj log λj − λj)
(3.9)

where yj = zj/wj and λj = λϑ(uj, φ). Given the observed point pattern φ and a can-

didate model of a specified conditional intensity with the form of (3.3), the algorithm

implemented in spatstat first chooses a suitable quadrature rule {(uj, wj)}. It then

computes the vector-valued statistic sj = (S(uj), V (uj, φ)), and builds the two-value

variable zj and yj = zj/wj . Finally, the algorithm calls generalized linear models to

fit the Poisson loglinear regression model Yj ∼ Poisson(λj) where log λj = ϑ · sj ,

and where here “·” denotes the dot product. The fitted coefficient vector ϑ̂ is returned

as the maximum pseudolikelihood estimate of ϑ. For further explanation see [67]. In

spatstat, the command ppm is used for fitting Poisson and Gibbs point processes to

observed point pattern data.

Irregular parameters, such as the interaction radius RS for the Strauss point process

3In numerical analysis, a quadrature scheme is an approximation of the definite integral of a function,
which is usually expressed as a weighted sum of function values at specified points within the domain
of integration.
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and the hard core distance RH for the hard core point process, cannot be estimated di-

rectly using the aforementioned algorithm. They must be given a priori before model-

fitting. The statistical theory for estimating such irregular parameters is unclear. For

some special cases, a maximum likelihood estimator of the irregular parameter is avail-

able. For example, when fitting a hard core point process, the maximum likelihood

estimator of parameter RH is just the minimum nearest-neighbour distance in the ob-

served point pattern [67]. For the Strauss process, the pair correlation function has

a jump at RS. This leads to a useful procedure for estimating RS called the “cusp

method” [71].

One general strategy available in spatstat for estimating irregular parameters is

to maximize the profile pseudolikelihood [67], which means for different values of

the irregular parameter, their corresponding fitted models are obtained by the max-

imum pseudolikelihood method and the irregular parameter value that leads to the

largest maximum pseudolikelihood is selected. This can be done by the command

profilepl in spatstat. The profile pseudolikelihood can be plotted and the best

value of the irregular parameter is then indicated.

3.2.4 Minimum contrast method

When the pseudolikelihood is intractable or the conditional intensity is difficult to eva-

luate, which is typically the case for clustered point processes, an alternative method

called the minimum contrast method can be used for model-fitting. The method of

minimum contrast [67] is a general technique for fitting a point process model to the

observed point pattern data. First, an empirical functional summary statistic4 is com-

puted from the observed point pattern. Second, the theoretical expected value of this

functional summary statistic is derived as an algebraic expression involving the pa-

rameters of the candidate model. If the analytical expression does not exist, an av-

4In spatstat, theK function and pair correlation function are implemented for the minimum contrast
method.
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erage estimated version from the simulations of the candidate model could also be

used. Then the model is fitted by finding the optimal parameter values that give the

closest match between the theoretical and empirical curves. For example, consider a

stationary Thomas cluster process and letKϑ(r) denote theK function given in (2.20),

where ϑ = (κ, µ, σ). By using the minimum contrast method, the model can be fitted

by minimizing

D(ϑ) =

∫ r1

r0

∣∣∣K̂(r)q −Kϑ(r)q
∣∣∣p dr (3.10)

where 0 ≤ r0 < r1, the strictly positive variables p and q are exponents, K̂(r) is

the empirical K function computed from the observed data pattern and Kϑ(r) is the

theoretical value as a function of the parameters κ and σ. Finally, the parameter µ is

inferred from the estimated intensity λ̂, i.e. µ = λ̂/κ. The application of the minimum

contrast to the candidate point process model is natural as long as an analytical (or

even a simulated estimate) version for the functional summary statistic of interest is

available. In spatstat, the command kppm is used for fitting clustered point processes

to observed point pattern data. The default values are q = 1/4 and p = 2 so that the

contrast criterion is the integral of the squared difference between the fourth roots of

the two functions.

3.2.5 Simulated envelope test

Even simple point process models for spatial point patterns lead to intractable distri-

butional analysis, and in order to test a fitted model against observed data, we shall

make extensive use of Monte Carlo simulations. The most common method is called

the simulated envelope test [67], which is based on functional summary statistics of the

observed point pattern data together with simulation envelopes to indicate the range of

statistical variation. Suppose M independent simulated realizations of the fitted model

inside the study region W are run. First, one may compute the estimated summary

statistic Ĉ for each of these realizations, say Ĉ(j)(r) for j = 1, · · · ,M , then obtain the
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pointwise lower and upper envelopes of these simulated curves, CL(r) = minj Ĉ
(j)(r)

and CU(r) = maxj Ĉ
(j)(r). For any fixed value of r, consider the probability that the

empirical curve Ĉ(r) lies outside the envelope [CL(r), CU(r)] for the simulated curves.

Since Ĉ(r) and Ĉ(1)(r), · · · , Ĉ(M)(r) are statistically equivalent and independent, this

probability is equal to 2/(M + 1) by symmetry. In other words, if the fitted model is

a good assumption for the observed point pattern data, then the empirical curve Ĉ(r)

should lie within the envelope with increasing probability as M increases. Otherwise,

the fitted model is rejected. Generally, the simulated envelope test is applied in a hypo-

thetical two-step order for the model-fitting. The first step is the exploratory analysis

using the simulated envelope from a Poisson null model, since the Poisson model is

usually the dividing line for clustered and regular models. If the empirical curve (from

the observed point pattern) is within the simulated Poisson envelope, then the fitted

Poisson model will be accepted. If not, the location of the empirical curve will help

to indicate a more specific model (either clustered or regular) for fitting, and again,

the goodness-of-fit for such a fitted model is evaluated by the simulated envelope test.

Values of the empirical curve falling above the envelope indicate a clustered process,

while values below the envelope indicate repulsion.

If the observed point pattern is judged to be spatially homogeneous, then a wide

choice of functional summary statistics can be used for the simulated envelope test.

Popular examples include estimates for the K function K(r), the empty space func-

tion F (r) (also known as the contact distribution function), the nearest neighbour dis-

tance distribution function G(r), the pair correlation function g(r), the L function

L(r) =
√
K(r)/π, and the J function J(r) = (1 − G(r))/(1 − F (r)). Among these

functional summary statistics, the F , G and J functions pertain to the distance charac-

teristics, whereas the K and L functions pertain to second-order characteristics. When

testing models using minimum contrast of second-order statistics, it is natural to use

distance-related statistics for complementarity, although it is known that the differ-

ences of distance characteristics for different patterns are often small [67, 71]. There
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are no explicit guidelines to the selection of summary statistics within the same cat-

egory (either distance or second-order); much of the time, which statistic to be used

depends on the problem at hand and on the inclination of the researcher. However, an

analytical expression (or approximation) for the K function tends to be available more

often than for the other statistics, which may instead rely on empirical data.

Note that the functional summary statistics above are defined and estimated un-

der the assumption that the point process is stationary (homogeneous), as implied by

their use of the distance variable r between points. Therefore if the fitted model is

nonstationary, deviation between the empirical and theoretical function values are not

necessarily evidence of interpoint interaction of the point pattern data, since they may

also be attributable to variations in the intensity functions. If the observed point pattern

is judged to be spatially inhomogeneous, then at present only the inhomogeneous K

function and inhomogeneous pair correlation function5 are available in spatstat for

model testing.

3.2.6 Model selection

When comparing point process models fitted by the likelihood-based method to the

same data, the Akaike information criterion (AIC) is a measure of the relative quality

of these fitted models. Suppose Φ is the model of some given point pattern φ. Let k be

the number of estimated parameters in the model Φ and L be the maximum value of

the likelihood function for the model, i.e. L = P (φ| {ϑ,Φ}), where ϑ consists of the

parameters that maximize the likelihood function. The basic AIC formula is defined

as [69]

AIC = 2k − 2 log (L) (3.11)

Given a set of candidate models for the given observed point pattern, the preferred

5In [66], the authors briefly discuss how to define the empty space and nearest neighbour distance
distribution functions for inhomogeneous point processes. In [72], an alternative definition of the J
function for inhomogeneous point processes is proposed based on the representation in terms of product
densities.
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model is the one with the minimum AIC value. Note that the AIC does not provide

a quality test of a model in the absolute sense. If all the candidate models fit poorly,

the AIC will not give any indication of that. The AIC just provides a means for model

selection.

A more general measure for comparing different fitted models is the root mean

square deviation (RMSD) between the empirical and theoretical functional summary

statistic C. The RMSD can be defined as [70]

RMSD =

√√√√ n∑
i=1

{
Ĉ(ri)− C(ri)

}2

/n (3.12)

where Ĉ(ri) and C(ri) are the empirical and theoretical values at some distance ri,

respectively. If a theoretical value does not exist, then C(ri) can be replaced by a

simulated average value C̄(ri). Thus the smaller the RMSD value, the better the fit.

3.3 Model-fitting of Real-life Cellular Networks

In this section, we fit both stationary and nonstationary point process models to the ob-

served point patterns, which describe the distributions of BSs from a real-life macro-

cellular network, although the same methodology can still be applied to micro-cellular

and heterogeneous cellular networks. When fitting with stationary point process models,

we assume that the observed point pattern is spatially homogeneous. When fitting with

nonstationary point process models, the observed point pattern, however, is assumed

to be spatially inhomogeneous.

3.3.1 Observed BS point patterns

Our work makes use of real-life data including all BS-related information from TELUS

Communications, which is one of the main wireless operators in Canada. The data set
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Table 3.1
Details of the Observed BS Point Patterns

Reference location Area
(
km2

)
# of BSs Intensity Nearest neighbour(

km−2
)

distance (m)

Urban A 53.53◦ N, 113.51◦ W 20× 20 110 0.275 189

Urban B 49.24◦ N, 123.09◦ W 6× 6 39 1.083 331

Rural 53.76◦ N, 111.21◦ W 150× 150 49 0.002 1500

Figure 3.1. The observed BS point patterns: (a) Urban A; (b) Urban B; (c) Rural.

includes all on-air macro BSs of LTE cellular networks, and each record of the BS

contains the corresponding location information (i.e. longitude and latitude). The pla-

nar coordinates of these real-life BSs are generated by using the Matlab command

distance (from the Mapping toolbox), which calculates the radius angle θe of two

site locations on earth. Consider a sphere surface, then the distance between the two

site locations is the length of the arc D = Re · θe, where Re is the earth radius (an

approximate value of 6371 km is used in this thesis). If we consider a flat plane sur-

face, then the distance between the two site locations should be the length of the chord

D′ = 2Re sin(θe/2). In this thesis, we use the arc length D as the distance between

any two locations. Given a reference location on the plane (i.e. the origin), the ordinate

of each BS is obtained on the assumption that the two locations have the same longi-

tude, whereas the abscissa is obtained assuming that the two locations have the same
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latitude6.

In this thesis, we mainly consider three typical observed BS point patterns ac-

counting for complete spatial randomness, repulsion and clustering, respectively. The

detailed information of the selected BS point patterns are summarized in Table 3.1,

including the number of points, the area of the study region, the intensity, and the near-

est neighbour distance in each data set. From Table 3.1, one can observe that the BSs

deployed in urban areas are much more densely spaced than those in the rural area.

The high intensity of the BSs in urban areas reflects the great demand for capacity en-

hancement, whereas the low intensity in rural area shows relatively high requirement

for network coverage. BS locations in these areas are depicted in Fig. 3.1. Only square

study regions are considered in this thesis, although rectangular or even irregular study

regions can also be studied and handled by R package spatstat.

3.3.2 Fitting with stationary point process models

Most analyses of observed point patterns begin with a test of complete spatial random-

ness (CSR). Although CSR represents an idealized model, which may be untenable

in practice, a test of CSR is used as a means of exploring the observed data sets and

indicating a more suitable model for fitting, since CSR acts as a dividing hypothesis

to distinguish between observed point patterns that are broadly classified as regular or

clustered. A simple test of CSR is called quadrat counting, in which the study region

W is divided into congruent rectangular subregions (“quadrats”) of equal area. Under

the null hypothesis of CSR, the number of points in each quadrat is a Poisson random

variable with the same expected value, so the Pearson χ2 goodness-of-fit test can be

used [67]. However, this testing method depends critically on the size of the partition

chosen. If there is no natural choice of partition size, then the results can be sensitive
6This is largely equivalent to finding the distance parallel to the x-axis between two points in Carte-

sian coordinates through projection by assuming their y values are the same, and finding the y distance
by assuming their x values are the same. The main difference in our case is due to the curvature of the
Earth making the exact east-west and north-south distances dependent on the geolocation of the points;
however, the small differences that result are negligible on the scale of the areas being considered.
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to the chosen partitions.

A more powerful test is the Kolmogorov-Smirnov (KS) test [67], in which a com-

parison is made between the observed (or empirical) and theoretical (or predicted)

cumulative distribution functions of the values of some variables under CSR, such as

the empty space function F (r) and K function K(r). If the theoretical distribution is

unknown, a KS test can still be carried out, if the theoretical distribution is replaced

by an empirical average curve obtained from a number of CSR realizations within the

same study region. An envelope test can also be combined with the KS test to assess

the significance of departures from CSR for an observed point pattern.

Given the observed point pattern with n points in the study region W , we consider

a CSR test based on the K function. Under CSR, the theoretical K function is K(r) =

πr2. A maximum likelihood estimator of the intensity λ under CSR is λ̂ = n/|W |.

The test is performed by comparing the empirical K(r) with its theoretical version. If

the observed point pattern is compatible with CSR, the two curves should be roughly

overlapped. In this thesis, an envelope test with 99 simulated realizations is used to

evaluate the significance of departures from CSR. This means, if the observed point

pattern is a sample of a stationary Poisson point process with intensity λ̂, the empirical

K function will be outside the envelope only with the probability 2/(99 + 1) = 2%.

In Fig. 3.2(a), inspection of the CSR test shows that the empirical K(r), for the

observed rural point pattern, lies close to the curve K(r) = πr2 and within the lower

and upper envelopes throughout its range, which suggests acceptance of the test for C-

SR. In Fig. 3.2(b), an assessment of the goodness-of-fit based on the nearest neighbour

distance distribution function G(r) also demonstrates that a stationary Poisson point

process with intensity λ = 0.002 km−2 is a good fit to the observed point pattern. In

Fig. 3.3(a), a CSR test shows that the spatial features of the observed urban A point

pattern are compatible with the existence of an underlying clustering mechanism be-

cause the empirical K(r) lies above the upper envelope. Finally, in Fig. 3.3(b), for

urban B, the empirical K(r) is below the lower envelope of CSR. This provides an
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Figure 3.2. Envelope tests of the observed rural BS point pattern and the envelope of 99 realizations
of the fitted stationary PPP model. (a) CSR test with K function; (b) Goodness-of-fit test with G

function.
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Figure 3.3. CSR test based on K function of the observed BS point patterns and the envelope of 99
realizations of the fitted stationary PPP model. (a) Urban A; (b) Urban B.

explanation for the regularity or repulsive appearance of the observed point pattern.

Based on the CSR test, the observed urban A point pattern is more likely to be a

sample of some clustered point process model. We therefore fit Matérn and Thomas

cluster processes to the observed point pattern by means of minimum contrast of the
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Figure 3.4. Goodness-of-fit test based on G function of the observed BS urban A point pattern and
the envelope of 99 realizations of the fitted stationary models. (a) Matérn cluster process; (b)

Thomas cluster process.

K function7. Other candidate models could also be used for model-fitting, such as a

Neyman-Scott cluster process with Cauchy and variance Gamma kernels, as well as a

log-Gaussian Cox process [67], [71]. By using the command kppm in spatstat, the

values of the parameters can be easily obtained. Referring back to (2.18), when fitting

with a Matérn cluster process, we get estimated parameter values of κ̂M = 4.09×10−4

km−2 and R̂MC = 60.6 km. Since the overall intensity λM = κM · µM , with λ̂M =

110/(400 km2) = 0.275 km−2, we get µ̂M = λ̂M/κ̂M ≈ 672.3. This means that there

is an average of 672.3 points in each representative Matérn cluster. When fitting with

a Thomas cluster process, referring back to (2.20), we get estimated parameter values

of κ̂T = 1.60 × 10−3 km−2 and σ̂ = 15.5 km, and hence µ̂T = λ̂T/κ̂T ≈ 172.1.

Thus, there is an average of 172.1 points in each representative Thomas cluster. In

Fig. 3.4, an assessment of the goodness-of-fit based on the nearest neighbour distance

distribution function G(r) shows that either the fitted stationary Matérn or Thomas

7One appealing feature of an analysis using the K function is that the mathematical form of K(r)
is known, either explicitly or as an integral, for a number of potentially useful classes of spatial point
processes. Besides, the K function is also preferred over the pair correlation function, when there is a
limited sample of points [71].
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Figure 3.5. Goodness-of-fit test based on K function of the observed urban B BS point pattern and
the envelope of 99 realizations of the fitted stationary models. (a) Hard core point process; (b)

Strauss point process.

cluster process is a good fit to the observed urban A BS point pattern. According

to the RMSD criterion, however, the Thomas cluster process is a better fit than the

Matérn cluster process; the fitted Thomas cluster process has an RMSD value of 0.071,

whereas the value is 0.098 for the fitted Matérn cluster process.

For the observed urban B BS point pattern, since the CSR test indicates a repulsive

interaction between the points, we fit hard core and Strauss point processes to the

observed BS point pattern. For the hard core point process, the maximum likelihood

estimate of the irregular parameter RH is the minimum nearest neighbour distance

in the observed point pattern, thus R̂H = 330 m. The fitted value of βH is β̂H =

1.491× 10−6. For the Strauss point process, by using the method of maximum profile

pseudolikelihood (with the step size equal to 1 m), we obtain the estimated irregular

parameter R̂S = 650 m. The corresponding fitted parameter values are γ̂S = 0.22, and

β̂S = 4.043 × 10−6. In Fig. 3.5, an assessment of the goodness-of-fit based on the

K function shows that the Strauss point process is a good fit, whereas the hard core

point process is not a proper model for the observed point pattern since its K function
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values for the observed data fall outside of the lower simulated envelope. According to

the Akaike information criterion (AIC), the fitted Strauss point process has a value of

about 719 whereas for the fitted hard core point process the value is about 809, which

corroborates that the Strauss point process is a better fit.

3.3.3 Fitting with nonstationary point process models

Although homogeneity is a convenient assumption for the observed point pattern, es-

pecially if, as is often the case, only a single sample (or map) is available, in many

cases inhomogeneity is present. As for the deployment of BSs, there are many key

issues that need to be considered or factored into the decision of a BS (or cell-site)

location, such as terrestrial characteristics (which may relate to the propagation condi-

tions), human activities, or even government restrictions. The deployments of different

tiers in a multi-tier cellular network are not mutually independent, but rather are of a

coordinated nature. More often than not, if the macrocell BSs are deterministically

planned to begin with, then small cell BSs are more likely to be deployed away from

the macrocells (usually at the macrocell edges), e.g. in order to compensate for cov-

erage gaps. This means the distribution of macrocell BSs will, to some extent, affect

the distribution of small cell BSs. Even for an observed macrocell BS point pattern, a

large-scale spatial feature of human residential and working environments would also

be a potential covariate for determining the distribution of macrocell BSs. In [40],

the BS layouts from different wireless operators in a shared cellular network are also

shown to be correlated. Therefore the distribution of real-life BS locations simply

cannot be described as spatially homogeneous. The use of stationary point process

models could be invalid when fitting to an observed BS point pattern, because the de-

viations between the empirical and theoretical functions are not necessarily evidence

of interpoint interaction, since they may also be attributable to variations in intensity.

When fitting with a nonstationary model, it is essential to specify an intensity func-

tion λ(·) ahead of any fitting methods. The intensity function can be formulated in

50



0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Figure 3.6. Kernel-smoothed intensity estimates (km−2) of the observed urban A point pattern
(grey circles).

terms of spatial coordinates, or an observed covariate, or a mixture of both. Given

the specified intensity function form of interest, a further examination of the observed

point pattern can be carried out through the simulated envelope test based on some

functional summary statistics such as the inhomogeneous K function and the inho-

mogeneous pair correlation function. Similar to the homogeneous case, this is done

by assuming that the null model is an inhomogeneous Poisson point process with the

specified nonconstant intensity function. If the empirical functional summary statistic

of the observed point pattern is within the simulated envelope, then the hypothesis of

the observed pattern being a sample from a nonstationary Poisson model is accepted.

If the empirical functional summary statistic is not within the simulated envelope, then

there are two possibilities. First, it might be due to an inappropriate choice of the in-

tensity function for the nonstationary Poisson model, hence other forms of intensity

function could be proposed for verification. Second, a more specific clustered or re-

pulsive model can be used, according to on which side of the simulated envelope the

test has failed.

For the observed urban A point pattern, Fig. 3.6 shows a kernel-smoothed esti-
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Figure 3.7. Goodness-of-fit test based on inhomogeneous K function of the observed urban A point
pattern and the envelope of 99 realizations of the fitted models with intensity function

log λ(xu, yu) = α0 + α1

√
x2u + y2u. (a) Poisson point process; (b) Thomas cluster process.

mate of the intensity function. According to the BS distribution, one can see a large

abundance of BSs located in the center, which results in the lightest color in the im-

age, whereas blue colors correspond to locations with fewer base stations. The darker

the blue, the less densely the BSs are spaced. The graphical result indicates a spatial

trend of the BS intensity that decays with the distance from the study region center.

In order to explore and predict a proper intensity form, one can use various regression

models to characterize the variation of the local intensity (the response variable) with

respect to the distance r (the predictor variable). In this thesis, we will consider a

loglinear regression model, that is, log λ(xu, yu) = α0 + α1

√
x2
u + y2

u, because it has

the best goodness-of-fit in terms of the square of the correlation between the observed

intensity values and the predicted intensity values. Note that the regression analysis

is only used for predicting a suitable intensity form. The regular parameters (α0, α1)

will be re-estimated by inserting the intensity form into the ppm or kppm commands

in spatstat.

In Fig. 3.7(a), a fitted Poisson model with an intensity log λ(xu, yu) = α0 +

α1

√
x2
u + y2

u is considered, where α0 and α1 are the regular parameters to be esti-
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Figure 3.8. Covariate Z(u) for normalized population densities in the urban A area (20 by 20 grid).

mated. By inserting the intensity function into the ppm command (which is based

on the maximum likelihood method (3.7)–(3.9)), we obtain α0 = −14.001 and α1 =

−1.582× 10−4 m−1. The negative values suggest a decrease of the intensity exponen-

tially with the distance from the location to the origin. Although the empirical curve

is very close to the simulated mean, the fitted model is still statistically rejected be-

cause the empirical curve is above the simulated envelope, which indicates attraction

between the points. Therefore, in Fig. 3.7(b), we fit a Thomas cluster process with

the same intensity form to the observed urban A point pattern. By using the kppm

command (which is based on the minimum contrast method), we obtain the same esti-

mates for first-order regular parameters α0 = −14.001 and α1 = −1.582× 10−4 m−1,

whereas for the fitted cluster parameters we have κ̂ = 2.17 km−2 and σ̂ = 2.44 km.

The envelope test is satisfied and hence the nonstationary Thomas model is accepted

as a fit to the observed urban A point pattern.

For the observed urban A point pattern, in Fig. 3.8 we also consider the dependence

of the spatial trend on a practical covariate that accounts for the population densities

(per square km) based on the 2016 census data collected by Statistics Canada [73,74].

Intuitively, the more people there are in an area, the more BSs are likely to be in that
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Figure 3.9. Goodness-of-fit test based on inhomogeneous K function of the observed urban A point
pattern and the envelope of 99 realizations of the fitted models with intensity

log λ(u) = α
′

0 + α
′

1Z(u). (a) Poisson point process; (b) Thomas cluster process.

area. The collection areas for the census data (i.e. “census tracts”) have various sizes

and are irregularly shaped, with boundaries defined by streets, neighbourhoods, wa-

terways, etc. As an approximation that is more easily manageable for a covariate, we

divide the study region into a 20 by 20 grid of 1 km× 1 km squares. Each square is as-

signed the population density value (normalized to the maximum 4454 per square km)

of the census tract corresponding to the geographic location of the geometric center of

that square. We assume that any location within the square has the same covariate val-

ue. The intensity form as a function of the covariate is not easy to be specified. Usually,

the intensity function is assumed to be loglinear or proportional to the covariate [67].

In this thesis, we will only use an intensity form that is loglinear with the covariate. In

Fig. 3.9(a), we fit a Poisson model with an intensity function log λ(u) = α
′
0 +α

′
1Z(u)

to the observed urban A point pattern. By calling the fitting command ppm, we ob-

tain α′0 = −16.263 and α′1 = 3.747; these values suggest an increase of the intensity

exponentially with the population density. The envelope test is not satisfied due to the

curve being outside the upper envelope, and hence the Poisson model with the intensi-

ty loglinear to the covariate is rejected. In Fig. 3.9(b), we fit a Thomas model with an

intensity function log λ(u) = α
′
0 + α

′
1Z(u) to the observed urban A point pattern. By
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Figure 3.10. Covariate Z(u) for normalized population densities in the urban B area (6 by 6 grid).
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Figure 3.11. Goodness-of-fit test based on inhomogeneous K function of the observed urban B
point pattern and the envelope of 99 realizations of the fitted models with an intensity that is

loglinear with the population covariate. (a) Nonstationary Poisson process; (b) Nonstationary
Strauss process.

calling the fitting command kppm, we obtain the same estimates of α′0 = −16.263 and

α
′
1 = 3.747. For the fitted cluster parameters, we have κ̂ = 2.17 km−2 and σ̂ = 2.44

km. The fitted Thomas model is statistically accepted because the empirical curve is

within the simulated envelope.

For the observed urban B point pattern, we consider a similar covariate accounting
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Figure 3.12. Covariate Z(u) for closest distances in the rural area.

for the local population densities (normalized to the maximum 9098 per square km)

using a 6 by 6 grid of 1 km× 1 km squares, shown in Fig. 3.10. The intensity function

λ(u) of the fitted model is assumed to be log λ(u) = α0 + α1Z(u), where α0 and α1

are the regular parameters to be estimated. Fitting the nonstationary PPP and Strauss

models to the observed urban B point pattern, using the maximum likelihood method,

we obtain αPPP
0 = −14.959 and αPPP

1 = 2.127, and αSP
0 = −14.980 and αSP

1 = 4.852,

respectively. In Fig. 3.11(a), an envelope test based on Kin(r) indicates that with

this specified intensity form, although the empirical curve is close to being within the

inhomogeneous Poisson envelope, the observed point pattern still has some repulsive

interactions among the points. In Fig. 3.11(b), an envelope test for the goodness-of-fit

shows that the nonstationary Strauss process is a good fit to the observed point pattern

because the empirical Kin(r) curve is within the simulated envelope. According to the

AIC, the nonstationary Strauss model has a value of about 690, whereas for the fitted

stationary Strauss model the value is 719, which shows that the nonstationary Strauss

model is a slightly better fit.

For the observed rural point pattern, we consider a different kind of covariate that
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Figure 3.13. Goodness-of-fit test based on inhomogeneous K function of the observed rural point
pattern and the envelope of 99 realizations of the fitted Poisson model.

accounts for the distances from the BSs to the main roads across the rural area, because

the population and BSs would most likely be located along the lines of travel. These

roads are modelled as line segments in the study region. The covariate Z(u) at any

location u is calculated to be the distance (in km) from u to its closest line segment,

as shown in Fig. 3.12. We fit a Poisson model with an intensity that is loglinear with

the covariate Z(u), i.e. λθ(u) = exp
(
αR

0 + αR
1Z(u)

)
. By inserting the intensity form

into fitting command ppm, we obtain αR
0 = −19.124 and αR

1 = −0.129 (km−1), which

indicates an exponential increase of the intensity with proximity to the roads. In Fig.

3.13, an envelope test shows that the nonstationary Poisson model is also a good fit

to the observed rural point pattern. According to the AIC, the nonstationary Poisson

model has a value of about 2037 whereas for the fitted stationary Poisson model the

value is 2055, which shows that the nonstationary Poisson model is a better fit.
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3.4 Wireless Performance Metrics for Fitness

Assessment

Since we aim to use point process models to describe wireless networks, it is sensible to

use some more relevant metrics that characterize the network performance to evaluate

the goodness-of-fit for different fitted point process models, such as the probability of

coverage.

In wireless communications, the signal power decays with the distance between

the transmitter and the receiver according to the power law

Pr(u) = Pt(x)hxu‖x− u‖−η, (3.13)

where x ∈ R2 is the spatial location of a test transmitter, Pt(x) is the transmit power

of the transmitter located at x, u ∈ R2 is the spatial location of the receiver, hxu is

a random variable accounting for the random channel (power) gain due to multi-path

fading and shadowing between the two locations x and u, ‖ · ‖ is the Euclidean norm,

and η is the path-loss exponent. The signal-to-interference-plus-noise ratio (SINR) at

the test receiver therefore can be calculated as

SINR(u) =
Pt(x0)hx0u‖x0 − u‖−η

Ω +
∑

x∈I Pt(x)hxu‖x− u‖−η
, (3.14)

where u is the location of the test receiver, x0 is the location of the desired transmitter,

I = {x1, x2, · · · } is the set of the locations of the interfering BSs, and Ω is the noise

power. The summation term
∑

x∈I · · · is the aggregate interference power at the test

receiver. Considering a nearest-BS connectivity policy, the coverage probability Pc is

defined as the probability that a randomly located user achieves a given SINR threshold

T when being served by the closest BS, while the rest of the BSs act as interferers. That

is,

Pc(T ) = P(SINR(u) ≥ T ). (3.15)
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A common assumption in the literature (that we also use in our simulations) is

for hxu to be exponentially distributed (with a mean of 1), which corresponds to a

Rayleigh fading scenario. Furthermore, the interference-limited scenario is typically

assumed, in which Ω may be considered negligible. Under these assumptions, when

all the BSs transmit at the same power level and the path-loss exponent η = 4, the

theoretical average probability of coverage achieved in a homogeneous PPP cellular

network is [21]

Pc(T ) =
1

1 +
√
T (π/2− arctan(1/

√
T ))

. (3.16)

In the PPP case, the coverage probability becomes independent of the specific val-

ues of the transmit power Pt and the PPP intensity λ, though this is not the case in

general. Note that except for the homogeneous PPP model, there are no analytically

tractable expressions for the coverage probability. In order to compare different fitted

models, we therefore estimate the probability of coverage through Monte Carlo sim-

ulations, from which Pc(T ) is determined by the average fraction of the whole area

where SINR > T . For simplicity, we assume all BSs transmit with unit power, η = 4,

and an interference-limited scenario, i.e. Ω = 0. (The SINR values therefore reduce

to signal-to-interference ratio (SIR) values.) The network performance is evaluated

considering some various-sized central areas of the study region, with the intention of

mitigating edge effects. For the observed point pattern, 100000 SIR values are com-

puted at locations distributed uniformly randomly over the central area of the study

region. For each fitted model, 1000 realizations are generated and for each realization,

the SIR values are evaluated at the same 100000 locations chosen for the observed

point pattern.

For the observed urban A point pattern, we have found four fitted models that sat-

isfy the envelope test. In Fig. 3.14, we compare these fitted models in terms of the

probability of coverage over two different sized central areas of the study region, i.e.

12 km× 12 km and 16 km× 16 km. The graphical results show that both the fitted sta-

tionary Matérn and Thomas models have the largest deviation from the probability of
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Figure 3.14. Probability of coverage for different fitted point process models for urban A, where the
user is uniformly distributed in the central area with the following sizes: (a) 12 km × 12 km; (b) 16

km × 16 km.

coverage of the observed point pattern. Although the Thomas model with population

covariate has the closest performance to that of the observed point pattern, both the

nonstationary models, i.e. Thomas model with population density covariate and dis-

tance covariate, are better than the stationary models. When comparing RMSD values

with respect to the empirical curve from the observed data, in Fig. 3.14(a), the fitted

Thomas model with population covariate has a value of 0.043 whereas the Thomas

model with distance has a value of 0.046. Both are smaller than those of the fitted

stationary Thomas and Matérn models which are 0.052 and 0.051, respectively. In Fig.

3.14(b), the fitted Thomas model with population covariate has a value of 0.045 and

the Thomas model with distance has a value of 0.048, whereas both the fitted stationary

Matérn and Thomas models have the same RMSD value of 0.055.

For the observed urban B point pattern, we have found two fitted models that sat-

isfy the envelope test. In Fig. 3.15, we compare these fitted models in terms of the

probability of coverage over two different sized central areas (3 km × 3 km and 5 km

× 5 km) of the study region. Although the two fitted models both satisfy the envelope

test, the graphical results show that the fitted nonstationary Strauss model is a better fit

than the fitted stationary Strauss model because the coverage curve of the fitted non-
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Figure 3.15. Probability of coverage for different fitted point process models for urban B, where the
user is uniformly distributed in the central area with the following sizes: (a) 3 km × 3 km; (b) 5 km

× 5 km.

stationary Strauss model is closer to the curve of the observed data. This agrees with

the results seen earlier when comparing the fitness of the two models using their AIC

values. When comparing the RMSD values with respect to the empirical curve from

the observed data, in Fig. 3.15(a), the fitted nonstationary Strauss model has a value of

0.026, whereas the stationary Strauss model has a value of 0.029. In Fig. 3.15(b), the

fitted nonstationary Strauss model has a value of 0.019, whereas the stationary Strauss

model has a value of 0.026.

For the observed rural point pattern, we have found two fitted models that satis-

fy the envelope test. In Fig. 3.16, we compare these fitted models in terms of the

probability of coverage evaluated over 90 km × 90 km and 120 km × 120 km sized

central areas of the study region. The graphical results show that the coverage curve

of the fitted nonstationary Poisson model is closer to the empirical coverage curve of

the observed pattern than that of the fitted stationary Poisson model. This reflects the

earlier fitness comparison of the two models using their AIC values. When comparing

the RMSD values with respect to the empirical curve from the observed data, in Fig.

3.16(a), the fitted nonstationary Poisson model has a value of 0.048, whereas the sta-
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Figure 3.16. Probability of coverage for different fitted point process models for the rural network,
where the user is uniformly distributed in the central area with the following sizes: (a) 90 km × 90

km; (b) 120 km × 120 km.

tionary Poisson model has a value of 0.055. In Fig. 3.16(b), the fitted nonstationary

Poisson model has a value of 0.047, whereas the stationary Poisson model has a value

of 0.056.

As one can observe, there remain differences in the probability of coverage between

the fitted nonstationary models and the observed point pattern. This might be due to

the incompleteness of the covariate information. For example, the population density

covariate is based on residences and does not account for industrial areas, shopping

centers, parks, sports complexes, etc., which would also require cellular coverage.

Other covariates, such as the land zoning/usage or terrain features, may also play an

important role in determining the distribution of BSs.

3.5 Summary

In this chapter, we have presented a comprehensive analysis of the spatial modelling of

real-life Canadian cellular networks. Part of the analysis uses stationary point process

models, similarly to [39], but we have also considered inhomogeneous models. Here,
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secondary covariate information, accounting for population densities and distance from

the BSs to their closest main roads, has for the first time been introduced as a con-

trolling factor for the intensity function of a fitted spatially inhomogeneous model.

The first step of the analysis of the model-fitting is a simulated envelope test using

functional summary statistics of the point process, such as the K function (or its in-

homogeneous analogue, Kin(r)); this test examines for deviations from a baseline

Poisson point process exhibiting independence between points. Such deviations can

be the result of inhomogeneous variations in intensity rather than interactions between

points. Therefore, if covariate information is available or inhomogeneity is thought to

be present, it should be incorporated into the model to account for this. If the empirical

curve of the observed data is within the simulated envelopes, then a fitted stationary

PPP model is accepted; otherwise, the PPP model is rejected. When empirical curve

is above the envelopes, clustered point process models are instead considered; when

below, regular point process models are used. For each examined real-life network

scenario, multiple different fitted models have been found to satisfy the conditions of

an envelope test. Statistics such as the AIC and RMSD values, and more relevant wire-

less metrics such as the probability of coverage, have then been used for the selection

of the best model among the candidates.

The stochastic geometry modelling offers an alternative way to visualize, quanti-

fy, and simulate the network. Numerical evaluations of the performance expressions

derived from the stochastic geometry models can usually be calculated faster than run-

ning a full Monte Carlo simulation on the network. When it comes to a green field

(from scratch) design with a predefined QoS requirement, stochastic geometry mod-

elling has more profound effects on decisions related to, for example, how many BSs

should be deployed, where to put them, and how far or how close a distance should be

between the BSs. In addition, the coverage requirement is also associated with traffic-

loading requirements, which in turn rely on the stochastic model chosen to determine

the traffic distribution or off-loading from an existing cell site to new cell sites. More-
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over, if additional covariate information on a green field is available, then the network

could be designed and deployed more thoughtfully and efficiently.

We have seen that going from the lack of a covariate to the inclusion of one has

improved the accuracy of the model. However, there still remain gaps, e.g. between

the results of the model and the simulations of the real-life cellular network. Future

research work can be foreseen such that more appropriate intensity functions can be

specified for nonstationary models with the use of other covariate information, such as

the propagation characteristics or traffic models derived from technical reports. For the

population covariate, a finer grid could be used, or other irregular shapes more closely

resembling the census areas could be adopted. Furthermore, several of these covari-

ates could be used simultaneously. Marked point processes and multi-variate point

processes [31, 33] can also be used to model other networks such as multi-tier or cog-

nitive radio networks. The covariates themselves could also potentially be modelled as

random point or line processes instead of being deterministic.
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Chapter 4

Empirical Distribution of

Nearest-Transmitter Distance in

Wireless Networks Modelled by

Matérn Hard Core Point Processes

The availability of the distribution of the distance between a generic location and the

closest point to it from a point process (also called the empty space function) is crucial

for a tractable performance analysis of wireless networks modelled by such a point

process. This distribution is key to the methodology used with the homogeneous Pois-

son point process models [21, 22] or more general vulnerability region analysis [13].

As a step toward applying these methodologies to more general point process

models, in this chapter, we fit the empirical probability density function of the closest-

point distance in the Matérn hard core point process of Type II to various existing dis-

tributions, and find that the Weibull distribution has the best goodness-of-fit among all

other distributions examined (e.g. the gamma, log-normal and Rayleigh distributions).

We also propose a better piecewise probability density function for the closest-point

distance, including an exact expression and a heuristic formula, which can be fitted by
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a Weibull-like function. Simulation results show that the proposed piecewise model

has a very close goodness-of-fit to the empirical data.

4.1 Introduction

Stochastic geometry [31, 41] has been widely used for the modelling and evaluation

of wireless networks [25, 26, 34, 75], providing spatial averages over a large number

of points at different locations for the quantities of interest, such as average coverage

probability and average data rate. Most of the analysis in the literature is based on the

assumption that the locations of base stations are stationary and distributed according

to a Poisson point process [21, 22]. The complete spatial randomness and indepen-

dence between points makes the PPP less difficult to deal with. In particular, when

talking about its tractability, we are mainly referring to the closed-form probability

generating functional (PGFL) [41] and to the distribution of the distance between a

generic location (not part of the point process) and its closest point in a PPP model.

This distance can be interpreted as the length of the desired link between the so-called

“typical user” and its associated BS in a wireless network, under the assumption of

the closest-BS connectivity model. From the PGFL, the SINR distribution can be de-

rived conditioned on a fixed desired link length (again, if the closest-BS connectivity

model is assumed). By de-conditioning the fixed desired link length with the distance

distribution, an average performance metric can be obtained. Unfortunately, both the

PGFL and closest-point distance distribution in analytical closed form only exist for

PPP models1. Therefore, theoretical analysis is rarely performed using other spatial

point processes, such as a hard core point process (HCPP) [25, 26, 34, 75]. An HCPP

is a repulsive point process where no two points of the process can coexist within

a distance less than a hard-core parameter; i.e., an HCPP correlates the locations of

the points by conditioning on a minimum distance separating them. In the literature,

1Although an analytical PGFL is available for Poisson cluster processes in [24], it is very involved
to perform a numerical calculation using it.
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PPP-based analysis of networks has been widely addressed and is well understood.

However, due to the increased complexity and reduced tractability, only a few works

on repulsive network models exist [10,12,13,35,76]. Almost all the analysis for HCPP

models is based on the assumption that an HCPP model behaves asymptotically like a

PPP model, either because of small parent PPP intensities or small hard-core parameter

values (or both).

In this chapter, we focus on the empirical distribution of the distance between a

generic location (distributed uniformly over the area of the network) and its closest

point in an HCPP model (specifically, involving a Matérn hard core point process of

Type II [32], which we shall refer to as “MHCPP” for short). We compare the empirical

distribution with various known distributions, including gamma, log-normal, Rayleigh

and Weibull distributions. Among the examined distributions, the Weibull distribution

most closely fits the closest-point distance distribution. We also propose a piecewise

probability density function (PDF) model, which fits even better than the Weibull dis-

tribution. These findings not only help us further understand the specific hard core

point process, but also provide a step toward the numerical analysis of HCPP-based

wireless networks.

Independently and in parallel with our work on this topic, the authors of [77] de-

rived an analytical expression for the contact distance between an MHCPP point and a

point from an independent homogeneous PPP, which is an equivalent scenario to ours.

However, that derivation uses a PPP approximation for the void ball around the loca-

tion (point) of interest, i.e. assuming the parent PPP of the MHCPP is devoid of points

in the ball rather than the MHCPP itself. We shall show that our empirical expression

not only fits better to the empirical data, but is also both simpler and tractable in terms

of the distance variable. Our derivation of the expression also provides an alternative

yet complementary way of approaching and analyzing the problem, compared to the

one in [77].
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4.2 Background

The most popular point processes in stochastic geometry are PPPs. In general, a point

process ΦP is regarded as a PPP if and only if the number of points in any compact

region B ⊂ R2 is a Poisson random variable, and the numbers of points in disjoint

regions are mutually independent. The points are independently and uniformly dis-

tributed over the area of B. The probability distribution for the number N (ΦP(B)) of

PPP points falling into any region B is given by

P {N (ΦP(B)) = n} =
(λp|B|)n

n!
exp(−λp|B|) (4.1)

where λp denotes the intensity of ΦP, |B| is the area of the region B, and λp|B| is the

average number of points in the region B.

We are interested in the distribution of the distance R between a generic location

(not part of the point process) and its closest point in the point process of interest. For

the PPP case, the probability that R > r simply equals the null probability of a 2-D

Poisson process (i.e. that no points exist in a circular area of πr2), given by [21]

P[R > r] = exp{−λpπr2} (4.2)

Therefore, the cumulative distribution function of the distance R is FR(r) = 1 −

exp{−λpπr2}, and the probability density function can be obtained as

fR(r) =
dFR(r)

dr
= 2πλpr exp{−λpπr2} (4.3)

As an example of the application of fR(r), in [21], given the conditional probability

of coverage pRc (T ) (which is derived from the PGFL of a PPP), where R is the desired

link distance and T is the SINR threshold (i.e. the minimum SINR to be in coverage),
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the average probability of coverage pc can be obtained as

pc =

∫ ∞
0

pRc (T )fR(r)dr (4.4)

The above equation can actually be applied to whatever arbitrary kind of point process

that is being considered, if the closest-point distance distribution fR(r) and the PGFL

of that point process are known (again using the latter to derive pRc (T )). Unfortunately,

a tractable expression for the PGFL of an MHCPP is presently unknown.

In this thesis, we investigate a specific model of HCPPs, that is, the Matérn hard

core point process of Type II [32]. It is constructed by applying dependent thinning to

a parent PPP, as described in Section 2.3.3. The MHCPP intensity can be expressed

as [32]

λMH =
1− exp{−λpπδ2}

πδ2
(4.5)

where λp is the parent PPP intensity and δ is the hard-core parameter2.

For ease of reference, we here provide the analytical expression for the CDF of the

MHCPP contact distance R as found in [77]:

F PPP→MHC
R (r0|δ) =

1− exp

(
−
∫ r0

0

2πr
1− exp [λp(`2(r, δ)− πδ2)]

πδ2 − `2(r, δ)
dr
) (4.6)

where `2(r, δ) is

`2(r, δ) =



πr2, 0 < r < δ/2

r2 cos−1

(
1− δ2

2r2

)
+ r ≥ δ/2

δ2 cos−1

(
δ

2r

)
− 1

2
δ
√

4r2 − δ2,

(4.7)

2δ may be in any arbitrary unit of distance, while λp and λMH would be in the same units of
distance−2.
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4.3 Single-function model

Because of the correlations among the MHCPP points, it is exceedingly difficult to an-

alytically derive a complete exact expression for the distribution of distance R like the

PPP model has. (Even the analytical expression in [77], which is the closest-to-exact

expression we are aware of, uses a PPP approximation during its derivation.) There-

fore, we instead begin by using various existing distributions to fit the set of empirical

samples of R generated from Monte Carlo simulations in order to find an appropriate

fitted model for fR(r). Since the distance R cannot be negative, we only consider dis-

tributions that are supported on semi-infinite intervals, usually [0,∞). When a data

set is said to satisfy a specific distribution, it means the data set is consistent with this

hypothetical distribution and follows its corresponding properties.

4.3.1 Distributions

In the following, we list the existing distributions that will be examined as the fitting

models in this thesis.

Gamma distribution: A gamma random variable X with finite shape parameter

ε > 0 and finite scale parameter n > 0 has a probability distribution function

fX(r) = rε−1 e−
x
n

nεΓ(ε)
(4.8)

for r ≥ 0, where Γ(·) is the gamma function. The CDF is

FX(r) =
γ(ε, r/n)

Γ(ε)
(4.9)

where γ(r1, r2) =
∫ r2

0
rr1−1e−rdr is the lower incomplete gamma function.

Log-normal distribution: Given a log-normal distributed random variable X and

two parameters µ and σ that are, respectively, the mean and standard deviation of X’s
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natural logarithm, the PDF of X is defined as

fX(r) =
1

rσ
√

2π
exp

{
−(ln r − µ)2

2σ2

}
(4.10)

Rayleigh distribution: The PDF of the Rayleigh distribution is

fX(r; k) =
r

k2
exp

{
− r2

2k2

}
(4.11)

where k is the scale parameter of the distribution. Note especially that if we relate

equation (4.11) with (4.3), it can be seen that the distance distribution in a PPP model

is actually Rayleigh distributed with k2 = 1/ (2πλp).

Weibull distribution: The PDF of the Weibull distribution is defined as

fX(r; τ, k) =
k

τ

( r
τ

)k−1

exp

{
−
( r
τ

)k}
(4.12)

for r ≥ 0, where k > 0 is the shape parameter and τ > 0 is the scale parameter. The

CDF is

FX(r; τ, k) = 1− exp

{
−
( r
τ

)k}
(4.13)

for r ≥ 0. The Weibull distribution is related to a number of other probability distri-

butions. In particular, it interpolates between the exponential distribution (k = 1) and

Rayleigh distribution (k = 2).

4.3.2 Simulation results

In this section, we present the fitting results to the empirical data set. The simulation

methodology is as follows. To begin, there is a square sampling window with a side

length of LW, centered at the origin. In order to mitigate edge effects, the inner sam-

pling window is then enlarged to a bigger simulation window, with sides multiplied

by a factor of ν. Thus, if ν =
√

2, the whole simulation area will be twice as large,
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with on average half the total points falling inside the inner window, and half outside.

PPP points are generated within the larger area and thinned to an MHCPP. LW is cho-

sen as max(20, 20δ, 15/
√
λMH) to obtain a reasonably large sampling window with, on

average, a minimum of 225 MHCPP points within. Then, we generate 100 locations

uniformly over the area of the inner window, and measure the distance to the nearest

BS. That sample is kept if the nearest BS is also located within the inner window; oth-

erwise, a new random location is generated until 100 samples are kept. This is repeated

for 10000 realizations of the MHCPP, for every pair of (λp, δ).

There are various approaches to estimating the parameters of a distribution, such

as maximum likelihood estimation (MLE) and linear regression. In this thesis, MLE is

used to estimate the parameters for different distributions and the confidence interval

is set to be 0.95. The best fitted curve is chosen based on the method of least squares,

i.e. choosing the parameters for the curve that yield the least sum of squared deviations

between the curve and data.

In Fig. 4.1, we compare the empirically measured PDF with various existing dis-

tributions. The gamma, log-normal, Weibull and Rayleigh distributions are plotted

with their parameter values chosen to fit as closely as possible to the distribution of

the empirical data. As is apparent, among all the examined distributions, the Weibull

distribution has the best fit to the empirical PDF fR(r). Similar results were found for

other values of λp and δ. A numerical comparison is provided in Table 4.1, in terms

of the root mean square error (RMSE). Indeed, the Weibull distribution has the min-

imum RMSE values while the log-normal has the maximum ones, which strengthens

the conclusion of choosing the Weibull distribution.

4.4 Piecewise model

Although the Weibull distribution fits the best to the empirical data out of the distribu-

tions examined thus far, there is still a visible deviation between the Weibull function
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Figure 4.1. The fitting results for the PDF fR(r) with λp = 1 and δ = 3.

Table 4.1
RMSE Comparison for Different Values of δ, λp = 1

δ 0.2 0.4 0.6 0.8 1 2 3

Weibull 6.8×10−3 9.0×10−3 0.012 0.016 0.016 0.010 7.1×10−3

Rayleigh 7.4×10−3 0.026 0.059 0.077 0.072 0.044 0.029

Gamma 0.057 0.054 0.060 0.067 0.059 0.035 0.023

Log-normal 0.120 0.113 0.111 0.111 0.094 0.054 0.036

and the empirical PDF. However, it turns out we can do even better than simply using

the Weibull distribution.

4.4.1 Derivation

Due to the repulsive distance δ, the analytical expression for fR(r) should be piece-

wise, i.e. have at least two parts to it3. Let us consider a general BS of interest. When

3This is bolstered by the fact that the CDF (4.6) from [77] was also found to be piecewise, in the
expression for `2 in (4.7).

73



Figure 4.2. Interpretation of the closest distance R between the users and BSs for a typical
cell in the MHCPP model.

a user is located at a distance 0 ≤ r ≤ δ/2 from the BS, because of the repulsion of

the point process, it is certain that the BS in question is the closest one to the user, as

shown by user 1 being closest to BS 1 in Fig. 4.2. Thus, the cumulative distance distri-

bution FR(r) should be directly related to the probability that the user is located within

that distance. With a uniform distribution over the region for the user, that probability

should be directly proportional to the area πr2 of a circle of radius r. Alternatively

speaking, the PDF of the user being specifically at the distance r from the BS, where

0 ≤ r ≤ δ/2, is related to the probability of being located within the area of an in-

finitesimally thin ring of inner radius r and outer radius r+ dr. The area of that ring is

2πrdr, and so fR(r) ∝ 2πr.

When r > δ/2, things become more complicated. Consider the Voronoi cells
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formed by using the points of the MHCPP as generators, and more specifically the

cell containing the BS of interest. It is no longer the case that the infinitesimal ring of

radius r will be completely located within that cell; segments of the ring can be located

in other cells, meaning that for those segments, the closest BS to the user is actually

a BS in another cell. This is illustrated in Fig. 4.2 in which user 2 is closest to BS 1

while user 3 is closest to BS 2. The PDF fR(r) therefore must now become a function

of what portion of the ring still remains closest to the BS of interest. Let θ(r) ∈ [0, 1]

denote the fraction of the infinitesimally thin ring of radius r centered at the BS of the

typical cell, wherein a user located in the ring is still the closest to the BS of interest.

Note that this fraction may be split across multiple ring segments, as pictured in Fig.

4.2. θ(r) can be interpreted in several ways: a) the fraction of the infinitesimally thin

ring of radius r that is located within the typical cell of interest; b) the probability

that the distance from the BS to the border of the typical cell in a random direction is

greater than r; c) the probability that, if a user is located at distance r from the BS,

then it is located inside the typical cell of interest; d) the probability that, for a given

BS of interest, a user at distance r would be associated with that BS in a closest-BS

association scheme. The total area of the ring inside the cell is 2πrθ(r)dr, and we thus

in general have fR(r) ∝ 2πrθ(r). We may define θ(r) = 1 for 0 ≤ r ≤ δ/2. Since

θ(r) is a measure of the typical cell, it can be interpreted as the average fraction of

the infinitesimally thin ring of radius r that is located inside the cell, averaged over all

possible cells and all possible realizations of the MHCPP.

For one particular realization of an MHCPP and considering one Voronoi cell from

that realization, we can sum up all the areas of the infinitesimal ring segments. This is

a Riemann sum, and since the ring widths are infinitesimal, in the limit as the widths

go to zero and the number of rings goes to infinity, the sum converges to a Riemann

integral as follows: ∫ ∞
0

2πrθ̂(r)dr = Â (4.14)

θ̂(r) is the fraction of the ring of radius r that lies inside this particular cell, and Â is
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the total area of this Voronoi cell. Averaging over all possible realizations and cells of

those realizations to obtain an expression for the typical cell, we get

E
{∫ ∞

0

2πrθ̂(r)dr
}

=

∫ ∞
0

2πrE{θ̂(r)}dr

=

∫ ∞
0

2πrθ(r)dr = E{Â} = Ā

(4.15)

where Ā is the mean area of the typical cell. We do not know the exact distribution of

the MHCPP cell area, but fortunately, we do know its average value. For any stationary

point process of positive intensity λ, the Voronoi tessellation formed from that point

process is also stationary, and λ is also the mean number of cells per unit area; hence

the mean area per cell is λ−1 [31, Ch. 9]. Thus, for the MHCPP, Ā = λ−1
MH.

As stated above, we have in general fR(r) ∝ 2πrθ(r), or fR(r) = 2πcrθ(r) for

some c that is not dependent on r. Furthermore, from the properties of a PDF, we must

have
∫∞

0
fR(r)dr =

∫∞
0

2πcrθ(r)dr = 1. Comparing this with (4.15), and knowing

that Ā = λ−1
MH, it is clear that c = λMH. We can therefore conclude that:

fR(r) =

2πλMHr, 0 ≤ r ≤ δ/2

2πλMHrθ(r), r > δ/2

(4.16)

The probability of two MHCPP points being separated by a distance of exactly δ is

0 almost surely. Similarly, the probability of two points being separated by a distance

between δ and δ + 2ε (so the border between the cells is located between δ/2 and

δ/2 + ε) goes to zero as ε→ 0. Thus, fR(r) and θ(r) should be continuous at r = δ/2,

meaning lim
r→( δ2)

− θ(r) = lim
r→( δ2)

+ θ(r) = θ
(
δ
2

)
= 1, and lim

r→( δ2)
− fR(r) =

lim
r→( δ2)

+ fR(r) = fR
(
δ
2

)
= πλMHδ.

We strongly suspect, though have not completely formally proven it, that the func-

tion in (4.16) is in fact the exact analytical expression for fR(r) in the range of 0 ≤

r ≤ δ/2. For r > δ/2 though, we must still resort to an empirical approximation for
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fR(r) and θ(r).

When fR(r) is considered piecewise, we have a (presumably) exact PDF of R over

the range [0, δ/2]. However, there is no exact expression for fR(r) when r > δ/2.

Yet, interestingly, from simulations we have found the latter piece can be very closely

described by a generalized Weibull-like function with the form of αrβ−1 exp {−ϕrβ}

with positive real parameters α, β, and ϕ. Compared to (4.16), θ(r) therefore can be

approximated as a function with the form θ(r) = α/(2πλMH)rβ−2 exp {−ϕrβ}.

Proposition 4.1: The PDF fR(r) for the closest distance R, when r > δ/2, can

be fitted to the function αrβ−1 exp
(
−ϕrβ

)
. The PDF also has the requirements of

continuity of value at r = δ/2 and that
∫∞

0
fR(r)dr = 1. Given these factors, the PDF

fR(r) can be approximated using only the parameter β and the MHCPP parameters

λMH and δ as:

fR(r) =



2πλMHr, 0 ≤ r ≤ δ/2

2πλMHr

(
2r

δ

)β−2

× r > δ/2

exp

{
2πλMHδ

2

β(4− πλMHδ2)

(
1−

(
2r

δ

)β)}
,

(4.17)

and therefore

θ(r) =



1, 0 ≤ r ≤ δ/2(
2r

δ

)β−2

× r > δ/2

exp

{
2πλMHδ

2

β(4− πλMHδ2)

(
1−

(
2r

δ

)β)}
,

(4.18)

Proof : See Appendix A.1.
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Corollary 4.1: The CDF FR(r) of the distance R can be approximated as:

FR(r) =



πλMHr
2, 0 ≤ r ≤ δ/2

1−
(

4− πλMHδ
2

4

)
× r > δ/2

exp

{
2πλMHδ

2

β(4− πλMHδ2)

[
1−

(
2r

δ

)β]}
,

(4.19)

Proof : For 0 ≤ r ≤ δ/2, FR(r) =
∫ r

0
2πλMHrdr = πλMHr

2. Let C = 2πλMHδ
2

β(4−πλMHδ2)

and t = 2r
δ

. For r > δ/2, we have

FR(r) =

∫ δ/2

0

fR(r)dr +

∫ r

δ/2

fR(r)dr

=
πλMHδ

2

4
+

∫ 2r
δ

1

πλMHδ exp {C} tβ−1 exp
{
−Ctβ

}
(δ/2)dt

=
πλMHδ

2

4
− πλMHδ

2

2Cβ
exp

{
C
(
1− tβ

)}∣∣2r/δ
1

(i)
= 1−

(
4− πλMHδ

2

4

)
exp

{
2πλMHδ

2

β(4− πλMHδ2)

[
1−

(
2r

δ

)β]}
(4.20)

where the last step (i) is simply obtained from the substitution of C and the rearrange-

ment of terms.

4.4.2 Simulation results

When simulating θ(r), for every realization, we first choose 100 BSs at random that

are located within the inner window, each with equal probability of being chosen.

For each one, we then find the distance d in 360 directions, in evenly-spaced degree

increments, from the BS to the cell border. After all samples are taken, the function

θ(r) is equivalent to the probability those distances are greater than the value of r. An

alternative method is to take a ring of 360 points around the BS, evenly-spaced in angle,

with radius r, then counting the number of points located within the cell. The fraction
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Figure 4.3. Comparison between empirical PDFs found from measuring distances and
from measuring θ(r), λp = 1 and δ = 3.

of ring points that are inside the cell is θ(r). Both methods give identical results.4 In

Fig. 4.3, we compare the empirical PDF as found directly by distance measurements,

and as found by measurements of θ(r) and plotting 2πλhrθ(r). It can be seen that the

empirical PDF essentially coincides for both methods. The same holds true for other

values of λp and δ, which demonstrates the validity of the formulation for fR(r) using

θ(r).

In Fig. 4.4, we compare the PDF curves between the empirical data and the piece-

wise model (4.17) given the best-fit values of β. It shows that the differences between

the empirical PDFs (where fR(r) is now based on the measured data for θ(r)) and the

corresponding piecewise models are very small. There still remains a small deviation

4For both fR(r) and θ(r), taking multiple samples per realization is also important to avoid the
“zero-cell” biasing effect [31, Ch. 9.3.3]. Taking just a single cell per realization, e.g. one containing
the origin or some random location, means that cell on average will be larger than the typical cell, since
it is more likely for the location to be within a larger cell than a smaller one.
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Table 4.2
RMSE Values

(
×10−4

)
Comparison for Different Values of λp and δ

(λp, δ)
(
10−4, 0.2

)
(0.2, 0.2) (0.2, 0.6) (0.2, 3) (0.6, 0.2) (0.6, 0.6) (0.6, 3) (3, 0.2) (3, 0.6) (3, 3)

(
103, 1

)
Single Weibull 0.11 2.2 14 55 8.2 53 55 84 250 55 170

Piecewise model 0.12 2.6 16 4.1 9.1 48 4.6 95 14 3.8 13

between the empirical curve and the piecewise model around the peak of the curve, but

the overall deviation is not as large as for a single-function Weibull distribution, es-

pecially at the leftmost part of the curve. Therefore, given the values of the parameter

β, the PDF fR(r) can be very conveniently and reasonably accurately calculated using

the proposed piecewise model (4.17). For a numerical comparison, in Table 4.2, we

compare the goodness-of-fit between the single Weibull-fit PDF and piecewise model

PDF in terms of RMSE for different values of λp and δ. As expected, the proposed

piecewise model is generally even more closely fitted to the empirical data than the

single Weibull distribution. However, for small parameter values (especially for δ), the

single Weibull function can still have a slightly smaller RMSE, since under these con-

ditions, the Weibull distribution (and the MHCPP itself) reduce closely to the parent

PPP. The leftmost and rightmost columns respectively represent the cases of extreme-

ly sparse and extremely dense parent processes, and demonstrate that the piecewise

model still works well under those extreme settings.

In Fig. 4.5, we show the estimated values of the parameter β fitted from the em-

pirical data for different MHCPP parameter values. With a fixed λp, the value of β

increases as the hard-core parameter δ grows, eventually reaching an asymptotic val-

ue5 around 2.467. The larger the value of λp, the sooner β approaches its asymptotic

value. With a fixed δ, the value of β increases as the value of λp grows. When λp

is sufficiently large, β remains almost unchanged even if λp continues to grow, which

means the MHCPP model becomes a somewhat more regularly-spaced model6 and the

5Interestingly, this is very close to the value π2/4, though this likely may simply be coincidental.
6Although there are always variations in the distances between BSs even when λp is sufficiently

large, the distribution of distance R between a generic location and its closest MHCPP point remains
almost unchanged with changing λp.
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Figure 4.4. Comparison between the empirical data and the piecewise model given the
values of β.

MHCPP intensity λMH becomes asymptotically constant at 1/πδ2 as the numerator of

λMH goes to 1. When δ and λp tend towards 0, the value of β approaches 2.

Remark 4.1: As β approaches 2 for small values of λp and δ, the piecewise distri-

bution reduces to a Rayleigh distribution, with approximately the same scale parameter

value as for a PPP distribution. That is, λMH ≈ λp, and fR(r) in (4.17) reduces to (4.3)

for all values of r.

Proof : See Appendix A.2. For small values of λp and δ (or more specifically, the

product λpπδ2), almost all the parent points of the MHCPP are retained since they are,

for the most part, separated by distances of at least δ to begin with. Thus, the MHCPP

asymptotically acts very much like its parent PPP. This result is consistent with that

found in previous work, e.g. [10]. However, based on the RMSE values in Table 4.2,

the piecewise function may converge to the Rayleigh distribution slightly weaker than
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Figure 4.5. Estimated values of the parameter β for the piecewise function in (4.17).

a single Weibull function does.

In Fig. 4.6(a), we plot the best-fit values of β vs. λMHπδ
2. Interestingly, we find that

the curve can be reasonably closely described by the following quadratic polynomial

model:

β ≈ 0.3686χ2 + 0.0985χ+ 2, where χ = λMHπδ
2 (4.21)

The RMSE between the β values and the quadratic polynomial model is calculated

to be 1.7 × 10−3. With this approximation, the variable β can be replaced, and the

distribution fR(r) in (4.17) can be expressed using solely the MHCPP parameters λMH

and δ.

In Fig. 4.6(b), we plot the best-fit values of β vs. log10(λpπδ
2). This graph simply

graphically demonstrates and confirms the asymptotic conditions for the β values that

we have numerically described earlier. The lower asymptote of 2 occurs for values
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Figure 4.6. Best-fit β vs. λMHπδ
2 and log10(λpπδ

2), respectively.
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Figure 4.7. Comparison of empirical CDF with piecewise (PW) model CDF in (4.19) and
analytical CDF from [77], λp = 1.

of λpπδ2 � 1 (e.g. starting around 2 orders of magnitude smaller than 1), which is

reflected in the graph for log10(λpπδ
2) around -2 (or slightly larger). Meanwhile, the

upper asymptote occurs when the numerator of λMH approaches 1, or exp {−λpπδ2} �

1. This is equivalently roughly around λpπδ2 > − ln(0.01), or log10(λpπδ
2) > 0.6632,

as seen in the graph. As an aside, Fig. 4.6(b) could also be fit reasonably well using

a generalized logistic function, although we have declined to do so here, due to the

simpler fitting vs. λMHπδ
2 in Fig. 4.6(a).

In Fig. 4.7 and Table 4.3, we compare our piecewise CDF in (4.19) and the ana-

lytical CDF from [77] in (4.6)-(4.7) with the empirical CDF from simulations. It can

be seen that our piecewise equation fits the empirical data closer than the analytically-
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Table 4.3
RMSE Comparison for PW Model CDF and Analytical CDF, λp = 1

δ 0.2 1 1.5 2 3

Piecewise CDF 3.3×10−3 2.5×10−3 1.8×10−3 1.2×10−3 6.9×10−4

Analytical CDF 7.1×10−3 0.019 0.010 8.5×10−3 8.3×10−3

derived expression, especially as λp and δ increase. The PPP approximation in the

conditional thinning probability [77, eq. (14)] neglects the effect of the points thinned

from the parent PPP to form the MHCPP. (The thinned points are referred to as the

complementary Matérn hard core (CMHC) process.) This results in an underestima-

tion of the thinning probability and thus the overestimation of the distances in the dis-

tribution (or, equivalently, an underestimation of the distribution at a given distance).

The conditional thinning of an MHCPP point given a CMHC point is indeed weak,

as stated in [77], which is reflected in the analytical CDF being close to the empirical

CDF. However, the effect of CMHC points in total is still sufficient to, for instance, add

up to about a 5-10% overestimation of the distance at the 90th percentile of the CDF in

some cases7. Note also that the MHCPP retention probability (given by λMH/λp [31],

[77, eq. (12)]) goes to zero as λp and δ increase, meaning that points that are thinned

from the parent PPP (i.e. the CMHC points) make up by far the vast majority of the

parent PPP points.

We also note that, along with fitting better to the empirical CDF, our piecewise

CDF of (4.19) is both tractable and simpler than the analytical expressions of (4.6)-

(4.7). Recall that the second part of our piecewise PDF in (4.17) is based on, and thus

reduces to, an equation of the form αrβ−1 exp
{
−ϕrβ

}
, with α and ϕ being positive

constants involving the parameters λMH, δ, and β. Similarly, the second part of (4.19),

7Interestingly, for the main result of [77], i.e. the distribution of the contact distance between an
MHCPP point and its nearest neighbouring point from the same process, the tightness of the fit between
the derived analytical expression and the empirical CDF appears much better. We speculate that this is
because the conditional thinning probability in this case [77, eq. (10)] is a fraction, with the PPP ap-
proximation performed in both the numerator and denominator. Hence, the effect of the approximation
might be close to proportional in the numerator and denominator, and thus mostly cancel itself out.
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although appearing complex, also simply reduces to an expression of the form 1 −

c1 exp
{
−c2r

β
}

, with c1 and c2 again being positive constants involving λMH, δ, and

β. (In both cases, β can be further approximated by (4.21).)

4.5 Summary

In this chapter, based on empirical data from simulations, we have found that the

Weibull distribution is the best fit (among the other existing distributions examined,

namely gamma, log-normal and Rayleigh) to the distribution of the distance between

a generic location and its closest point in an MHCPP of Type II, if a single function

is used for the fitting. We have also proposed a better piecewise model for the PDF,

including an analytically derived formula for r ∈ [0, δ/2] and an approximate Weibull-

like function for r ∈ (δ/2,∞). It is highly likely that the piecewise equation for

r ∈ [0, δ/2] is the exact analytical expression for the PDF in that range of r, though we

have not completely formally proved this. The piecewise model expresses the distance

distribution in terms of the MHCPP parameters λMH and δ, along with a third param-

eter β. Simulation results show that the proposed piecewise model has a very close

goodness-of-fit to the empirical PDF. We have also plotted the best-fit values of the

parameter β against different values and combinations of the variables λMH, λp and δ.

It turns out the value of β can be closely fitted to a quadratic polynomial model. There-

fore, a more general expression for the distance distribution and/or all the parameters

of the piecewise model PDF can be expressed in terms of any arbitrary values of only

the parameters δ and λMH (or λp). Both the piecewise PDF and its CDF version are

tractable and reduce to relatively simple functions of the distance variable. The CDF

version of the model also fits better to the empirical data than the analytical expression

derived in [77].

86



Chapter 5

Downlink Coverage Analysis of N-Tier

Heterogeneous Cellular Networks

Using Clustered Stochastic Geometry

In the analysis of cellular networks, the underlying BS distribution is almost ubiq-

uitously assumed to be the homogeneous Poisson point process. However, in more

practical scenarios, especially for small cell BSs, the distributions are more likely to

be based on clustered processes. For example, the urban A point pattern in Chapter 3

was found to be best modelled using a Thomas cluster process. The clustering of nodes

may be due to geographical restrictions or artificially induced by MAC protocols. This

motivates the need to extend the abundant work assuming homogenous PPPs to other

point process models.

In this chapter, under the assumption of a connected base station at the point of

reference (or origin) in the tier of interest, we derive an expression for the downlink

probability of coverage over a heterogeneous network, wherein the base station loca-

tions result from different point processes, such as Poisson point and Poisson cluster

processes. Numerical results show increasing the base station density in each tier low-

ers the coverage probability, but not as much as increasing the coverage threshold does.
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We also provide lower and upper bounds for the coverage probability in a two-tier het-

erogeneous network modelled with Poisson point and cluster processes, and evaluate

the effect on those bounds when changing the various parameter values. These results

are of potential use for future cellular heterogeneous network designs.

5.1 Introduction

Cellular networks are approaching an important transition from homogeneity to het-

erogeneity due to the rapid proliferation of lower-power and low-cost radio access

nodes that operate in both licensed and unlicensed spectra, like picocells, femtocells,

microcells, metrocells, and Wi-Fi nodes. A major challenge in deploying cellular het-

erogeneous networks (HetNets) is how to characterize the statistics of cumulative in-

terference, from which performance metrics like coverage probability (or outage prob-

ability), capacity, and throughput can be derived. For the analysis and design of inter-

ference management techniques in HetNets, rigorous yet tractable interference models

are required. However, interference modelling has always been an arduous task even

in simple traditional single-tier networks with base stations (BSs) following a regu-

lar hexagonal grid, not to mention HetNets with more topological randomness and

diverseness in each tier.

A new modelling method has been widely used for interference analysis in het-

erogeneous networks by adopting stochastic geometry and averaging over all network

topologies seen from a generic node weighted by their probability of occurrence. It not

only captures the topological randomness, but also leads to tractable analytical results.

In stochastic geometry, locations of BSs are abstracted to a matching point process

according to the network type as well as MAC layer behavior. The most common

point processes used in modelling and analysis of wireless communication systems

are Poisson point processes (PPPs) [21, 22, 34, 78], hard core point processes [14, 15],

and Poisson cluster processes (PCPs) [24]. Among these point processes, the PPP is
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the most important due to the fact that PPPs not only provide the baseline model for

different point processes, but also this model is the most tractable. One approach of in-

terest for system analysis is presented in [21], where system performance metrics like

coverage probability and ergodic data rate are obtained by averaging all spatial scenar-

ios for a single-tier network. The analysis is extended to multi-tier cellular networks

in [22, 78]. PPPs have been used for modelling co-channel interference in large-scale

ad-hoc networks in [25, 26, 79] as well as other generic settings in [80, 81].

PPP-based models are well studied and understood in the literature of wireless

communication systems. Nevertheless, in reality the locations of BSs are either clus-

tered or not uniformly distributed. For instance, picocells are more likely to be clus-

tered in crowded streets and femtocells are more likely to be deployed in a building.

This motivates us to extend the abundant collection of results available for PPPs to oth-

er node distributions, such as a PCP [31, 41], which provides an important model for

spatially aggregated point patterns. In general, a PCP generation mechanism involves

“parent” and “offspring” points, and it consists of two stages: (a). Parent locations (not

included as actual points) are generated as a PPP with intensity κ in the plane R2; (b).

Offspring points are generated i.i.d. for each parent location and scattered around the

parent locations according to some density function f(x).

In Fig. 5.1, two kinds of distributions for a two-tier HetNet are depicted. In both

cases, macrocell BS locations (denoted by red squares) are modelled according to a

PPP. On the left, picocell BSs (blue dots) are also distributed by an independent PPP

(i.e. a PPP-PPP model); on the right, they are distributed according to a PCP (i.e. a

PPP-PCP model).

5.2 System Model

In this thesis, we modify the downlink model presented in [22]. Locations of BSs are

not only determined by PPP, but also by other spatial point processes. For the ith tier
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Figure 5.1. Two distribution models for a two-tier HetNet. Left: PPP-PPP model. Right:
PPP-PCP model.

Φi of interest we assume a BS at the point of reference (or origin) o in the network

connected with a mobile user at a location z; hence ‖z‖ denotes the distance from

the BS to its connected user. Similarly to [22], the resulting SINR at the mobile user

receiver at the location z in the ith tier can be expressed as:

SINRi(z) =
Pihz`(z)

Ω + Ic
=

Pihz`(z)

Ω +
∑N

j=1

∑
x∈{Φj\o} Pjhx`(x− z)

(5.1)

where hz and hx denote the exponentially distributed power gain with mean 1/µh due

to Rayleigh fading between the BSs and the user at the location z, Pj denotes the

transmit power of each BS in the j th tier, `(x) = (1 + ‖x‖η)−1 models the signal

attenuation due to path loss [24], Ω is the additive noise power, and Ic denotes the

cumulative interference power from all other BSs except the connected BS at the origin

o. Ic is a stochastic process that depends on the locations of the interferers captured by

the point process and random channel gains.

A user can connect to a BS in the ith tier if SINRi(z) > Ti, where Ti denotes

90



the SINR threshold of the ith tier. The user is said to be in coverage, if it is able to

connect to at least one tier out of N available. Hence, the probability of coverage (now

dropping the variable z from SINRi for ease of notation) is:

pc = 1−
N∏
i=1

(1− P (SINRi > Ti)) (5.2)

The probability P (SINRi > Ti) can be expressed as [22]:

P (SINRi > Ti) = LIc

(
µhTi
Pi`(z)

)
· exp

(
−µhTiΩ
Pi`(z)

)
(5.3)

where LIc stands for the Laplace transform of the cumulative interference. Let s =

µhTi/Pi`(z), then similarly to [22]:

LIc = E!
o

 ∏
x∈{Φi\o}

1

1 + sPi`(x)

 · N∏
j=1,j 6=i

EΦj

 ∏
x∈{Φj}

1

1 + sPi`(x)

 (5.4)

where E!
o denotes the expectation with respect to the reduced Palm measure [31,41]. It

is the conditional expectation for point processes given there is a point of the process

at the origin, but without including that point.

5.3 Analysis of Probability of Coverage

For the following work, we consider two-tier HetNets with two specific topologies:

PPP-PPP and PPP-PCP. Both are assumed to be interference-limited (i.e. Ω is negli-

gible in comparison to Ic). The resulting probability of coverage can be expressed

as:

pc = P (SINR1 > T1) + P (SINR2 > T2)− P (SINR1 > T1)P (SINR2 > T2) (5.5)

For the PPP-PPP scenario, macrocell and picocell BS locations are both modelled
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as independent PPPs with different parameter tuples
{
λ

(1)
p , T1, P1

}
and

{
λ

(2)
p , T2, P2

}
,

respectively. According to Slivnyak’s theorem [31, 41], the reduced Palm distribution

of a PPP (not including the point at the origin) is equal to that of the original distribution

(which includes that point). Thus, the probability generating functional (PGFL) [31,

41] G(`) and the conditional PGFL G∗(`) of a PPP with density λp with regard to the

real-valued function f(x): R2 → [0, 1] are given by:

G(f(x)) = G∗(f(x)) = exp

(
−λp

∫
R2

[1− f(x)] dx
)

(5.6)

Let s =
µhTi
Pi`(z)

and ‖z‖ = R, then similarly to [21, 82], the Laplace transform of the

single-tier interference I ic can be expressed as

LIic(s) = E
[
exp

(
−sI ic

)]
= EΦi

[∏
x∈Φi

Ehx {exp (−sPihx`(x− z))}

]
(5.7)

By taking the average over the exponentially fading distribution, we have

LIic(s) = EΦi

[∏
x∈Φ

µh
µh + sPi`(x− z)

]
(5.8)

Since Φ is a Poisson point process, we obtain

LIic(s) = EΦi

[∏
x∈Φ

µh
µh + sPi`(x− z)

]
(i)
= exp

(
−2πλp

∫ ∞
0

{
1− µh

µh + sPi`(r)

}
rdr
)

= exp

(
− csc (2π/η)

2π2λpsPiη
−1

(µh + sPi)
1−2/η

) (5.9)

where the step (i) is obtained from (5.6) and transformation to polar coordinates.
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Hence

P (SINRi > Ti) =
2∏
i=1

LIic

(
µhTi
Pi`(z)

)
(5.10)

For the PPP-PCP scenario, macrocell BS locations are still distributed according to

a PPP denoted by Φp with parameter tuple
{
λ

(1)
p , T1, P1

}
, while picocell BS locations

are distributed as a specific category of PCP, i.e., a Thomas cluster process (TCP) de-

noted by ΦT with parameter tuple
{
λ

(2)
t , T2, P2

}
. For a TCP, the number of offspring

points in each cluster is Poisson-distributed with mean µ, and the points are isotropical-

ly scattered around the parent locations according to a symmetric normal distribution

with standard deviation σ [31, 41]:

f(x) =
1

2πσ2
exp

(
−‖x‖

2

2σ2

)
(5.11)

The PGFL and the conditional PGFL of a PCP are obtained from [24, 31, 41],

respectively, and can be expressed as

G(`) = E

( ∏
x∈ΦPCP

)
= exp

(
−κ
∫
R2

[
1−M

(∫
R2

`(x+ y)f(y)dy
)]

dx
)

(5.12)

G∗(`) = E!
o

( ∏
x∈ΦPCP

)
= exp

(
−κ
∫
R2

[
1−M

(∫
R2

`(x+ y)f(y)dy
)]

dx
)

×
∫
R2

M
(∫

R2

`(x− y)f(x)dx
)
f(y)dy

(5.13)

where κ is the parent intensity, andM is the moment generating function of the number

of points generated in any cluster of a PCP and `(x) is the signal attenuation function.

Due to the complexity of the multiple integrals, it is not easy to calculate an exact value

of P (SINRi > Ti) for a TCP-based distribution of BSs. Consequently, we employ a

lower bound based off of Lemma 5 in [24] and an upper bound from Lemma 6 in [24]
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to facilitate the computation. From the two lemmas, we get:

PPPP(λt)PPPP(µ · f ∗) ≤ PPCP ≤ PPPP(λt/(1 + µ · T )) (5.14)

where PPPP(λt) denotes the probability of coverage when a PPP with the same intensity

of the TCP is applied. In general, we have f ∗ ≤ 1/ (4πσ2) for a TCP [24] and T is

derived through Hölder’s inequality [83].

Hölder’s inequality. Let 1/p + 1/q = 1, with p, q > 1. Then Hölder’s inequality

for integrals states that

∫ b

a

‖f(x)g(x)‖dx ≤
[∫ b

a

‖f(x)‖p
]1/p [∫ b

a

‖g(x)‖q
]1/q

(5.15)

with equality when

‖g(x)‖ = c‖f(x)‖p−1 (5.16)

where c ≥ 0. If p = q = 2, Hölder’s inequality becomes Schwarz’s inequality [83].

Let T = T1 = T2, and

P =

∫
R2

`(x)

T−1`(‖z‖) + `(x)
dx (5.17)

By Hölder’s inequality, the calculation of moment generating functionM can be re-

laxed by [83]

T ≤ min{1, f̂ · P} (5.18)

where f̂ = supx∈R2 f(x).

5.4 Numerical Results

For the numerical evaluation, we consider BS transmitters and receivers each with only

a single antenna. Macro BS transmitters have 50 W transmit power and pico BSs have
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Figure 5.2. Probability of coverage in PPP-PPP HetNet against the intensity of picocells,
with the desired link distance ‖z‖ = 1 (normalized) and λ(1)

p = 2.

2 W. Rayleigh fading with µh = 1 is assumed and the distance between the given user

and its connected BS is ‖z‖. For the TCP, µ is set to be λ(2)
t /λ

(1)
p . Other parameter

values are varied for the results of the various figures.

In Fig. 5.2, numerical results show that the probability of coverage decreases as the

intensity of picocells increases, mainly because of the increased interference. However,

that decrease is not as drastic as when it is caused by the increase of the coverage

thresholds. These results differ from [22], which concludes the intensities of the tiers

are irrelevant to the probability of coverage if each tier has the same threshold. This

is partially because of our different signal attenuation compared to [22], and partially

since we fix ‖z‖ = 1 in our evaluation.

Figure 5.3 shows the lower and upper bounds on coverage probability in a PPP-

PCP case, for several values of thresholds T1 and T2. It can be seen that lower SINR

coverage thresholds and shorter distances both lead to a higher probability of coverage,

much the same as for the PPP-PPP case. In Fig. 5.4, we compare the two cases under
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Figure 5.3. Probability of coverage in PPP-PCP HetNet against the desired link distance
‖z‖, with η = 3, λ(1)

p = 2, λ(2)
t = 6, and σ = 0.25.
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Figure 5.4. Coverage Comparison between PPP-PCP and PPP-PPP HetNet against the
desired link distance ‖z‖, with η = 3, λ(1)

p = 2, λ(2)
t = 6, and σ = 0.25.
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Figure 5.5. Probability of coverage in PPP-PCP HetNet with different macro tier
thresholds, with η = 3, λ(1)

p = 2, λ(2)
t = 8, and σ = 0.25

the same parameter values. Clearly, PPP-PPP outperforms PPP-PCP, especially at

smaller distances between the user and the target transmitter, since nodes clustered

near the connected BS cause the worst interference and are dominant in the SINR.

However, at longer distances the performance difference between the PPP-PCP case

and the PPP-PPP case diminishes gradually, since the effect of clustering is weakened

by the increasing distance between the given user and its connected BS transmitter.

We also show the effects of changing other parameter values on the probability of

coverage for a PPP-PCP HetNet in Figs. 5.5 and 5.6. In Fig. 5.5, for T1 ≥ T2, it can

be seen that the lower SINR threshold dominates the probability of coverage; the plots

overlap as T1 increases. A mobile user receiver is more likely to connect to the tier

with the smaller threshold, eventually effectively ignoring the coverage provided by

the other tier. Figure 5.6 shows the gap between the lower and upper bounds decreases

along with the degree of aggregation of the PCP points (i.e. a decrease in how much

they are clustered together). This is because the bounds are based off of the coverage
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Figure 5.6. Probability of coverage in PPP-PCP HetNet with different standard deviation
σ, η = 3, λ(1)

p = 2, λ(2)
t = 8, T1 = 0.1 and T2 = 0.01.

probability of a PPP, and the more spread out the PCP points are (the higher the value

of σ), the more closely they resemble a PPP.

5.5 Summary

In this chapter, through the use of stochastic geometry, we have modelled N-tier clus-

tered HetNets by different point processes, namely Poisson point processes and Pois-

son cluster processes. In the specific case of two tiers, we have formulated and eva-

luated the probability of coverage for PPP-PPP and PPP-PCP distributions of BSs.

Notably, it appears the coverage probability for a PPP-PCP HetNet is always lower

than that of a PPP-PPP HetNet with the same parameter values. The numerical results

have shown the effects of the distance between the BS and its connected mobile user

transceiver, the path loss, the coverage thresholds, the intensity of picocell clusters, and

the spread of pico BSs within a cluster on the coverage probability. This examination

gives useful insights for the design of future cellular HetNets.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

Stochastic geometry provides a natural way of defining and analyzing macroscopic

properties of large scale wireless networks, by averaging over all possible spatial pat-

terns for the network nodes. It abstracts the network as a realization of a random

model over the whole plane, and allows the network to be analyzed in a probabilistic

way. The key performance metrics of the network are translated and/or characterized

as functions of a relatively small number of stochastic parameters, such as the intensi-

ties of the underlying point processes.

While stochastic geometry has its analytical strengths, the most critical step is to

find an accurate point process model that best reflects the spatial distribution of the

network nodes. “Accurate” in this context also means providing network performance

measures (e.g. coverage probability, SINR distribution, rates, etc.) that most closely

match the measures given by the real-life network. In the literature of stochastic geo-

metry, measurement-based validation of certain stochastic assumptions used in the lit-

erature is often not provided. For example, when are Poisson models justified? When

should one rather use point processes with some repulsion or attraction? When is the

stationarity/isotropy assumption valid? The only aim in nearly all the research work is
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to show what can be done with stochastic geometry when assumptions of certain point

process models are made.

6.1.1 Summary of contributions

In Chapter 3, we present and describe a practical technique for fitting stationary and

nonstationary point process models to realistic cellular networks using maximum likeli-

hood/pseudolikelihood and minimum contrast methods. The use of covariates (ac-

counting for population densities in urban areas and distances from the base stations to

their closest main roads in rural areas) in general opens a door to new possibilities for

stochastic geometry analysis. It allows the analysis to better reflect the realities, and

even more ambitiously, helps bridge the gap between the stochastic model and realistic

simulations.

Although PPP models result in tractable analytical expressions most of the time,

extensions of the same methodology to more general point process models do not yield

the same tractability, mainly due to the lack of closed-form empty space function F (r)

and the probability generating functional (PGFL). Therefore, in Chapter 4, we have

studied the distributional properties of the closest-point distance in the Matérn hard

core point process of Type II, and found that the Weibull distribution has the best fit to

the empirical curve among the other existing distributions such as gamma, log-normal

and Rayleigh. We have also proposed a piecewise probability density function for the

closest-point distance, including a more general expression for the distance distribution

from which all the parameters of the piecewise model PDF can be expressed in terms

of any arbitrary values of only the parameters θ and λMH (or λp).

Finally, in Chapter 5, we have examined the properties of the PGFL for Poisson

cluster processes. We have formulated and evaluated the downlink coverage probabil-

ity for a two-tier heterogeneous cellular network consisting of PPP-PPP and PPP-PCP

distributions of BSs, respectively. Through simulations, we have shown the effects of

the link distance, the path loss, the coverage thresholds, the density of picocell clusters,
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and the spread of pico BSs within a cluster on the coverage probability.

6.2 Future Directions

Emerging from the already completed research work, there are two possible main fu-

ture research directions for stochastic geometry modelling and analysis. The first direc-

tion is to exploit more accurate covariates in the context of nonstationary point process

models. Another possible future direction is to apply the piecewise PDF model in the

analysis of more general performance metrics such as the average probability of cov-

erage in MHCPP-based wireless networks. A detailed discussion of these potential

research directions is provided below.

6.2.1 Covariates

The current covariates are not completely accurate or fully indicative of BS placement.

In order to bridge the gaps between the results and measures of stationary models

and simulations of real-life cellular networks, other covariate information, such as the

propagation characteristics or traffic models derived from technical reports, could also

be considered. For the population covariate, a finer grid could be used. Instead of

regular squares, we could consider covariates in Poisson-Voronoi tessellations, or use

the topography already inherent in the shapes of the census tracts. We are currently

using deterministic covariates, but it is also possible to model the covariates themselves

as random point or line processes. That might aid in the derivation of equations for

the performance measures. Coverage itself could also be a covariate in some multi-

tier or iterative model, much like how the coverage of a macro BS network can be

considered as a covariate for the distribution of small cell BSs. Coverage could not be

used as a covariate as part of a first tier/iteration, since one needs an actual realization

of points to calculate coverage in the first place, and the covariate partially determines

the placement of that realization. However, later iterations or tiers of the model could
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potentially refine the covariate, coverage, and/or the accuracy of the model. There

would almost certainly be sacrifices in the analytical tractability and ease of calculation

of numerical expressions, though. Moreover, several of these covariates could be used

simultaneously and might help further in modelling of networks with nonstationary

models.

6.2.2 Future work with the piecewise model

The findings in Chapter 4 are important for the understanding of repulsive BS deploy-

ments, and also crucial when one wants to numerically calculate average performance

metrics in wireless networks modelled by an MHCPP. Future research work can be

foreseen such that the piecewise PDF model can be applied for the analysis of more

general performance metrics such as the average probability of coverage in MHCPP-

modelled wireless networks. For example, the distribution of the received signal power

can be determined from the distribution of the closest-point distance R. A deriva-

tion of the SINR distribution would also be desired. However, this would require a

tractable form of the PGFL for an MHCPP, which is not yet available. Ideally, if some

closed-form expression or a tight numerical/empirical approximation of the PGFL for

an MHCPP can be found, then a complete and accurate analysis for the probability of

coverage can be conducted, similarly to the analysis in [21].
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Appendix A

A.1 Proof of Proposition 4.1

We begin with

fR(r) =

2πλMHr, 0 ≤ r ≤ δ/2

αrβ−1 exp
(
−ϕrβ

)
, r > δ/2

(A.1)

Being a PDF, the area under fR(r) should equal to 1, i.e. :

∫ ∞
0

fR(r)dr =

∫ δ/2

0

2πλMHrdr +

∫ ∞
δ/2

αrβ−1 exp (−ϕrβ)dr

=
πλMHδ

2

4
+

α

ϕβ
exp

{
−ϕ

(
δ

2

)β}
= 1

(A.2)

After some routine manipulations, we obtain

α =
βϕ

4
(4− πλMHδ

2) exp

{
ϕ

(
δ

2

)β}
(A.3)

We also have the constraint on fR(r) that the function should be continuous at

r = δ/2, which gives

fR

(
δ

2

)
= 2πλMH

δ

2
= α

(
δ

2

)β−1

exp

{
−ϕ

(
δ

2

)β}
(A.4)
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Substituting (A.3) into (A.4), ϕ is therefore given in terms of β as

ϕ =
2πλMHδ

2

β(4− πλMHδ2)

(
2

δ

)β
(A.5)

Substituting (A.5) back into (A.3), α can be expressed in terms of β as

α = 2πλMH

(
δ

2

)2−β

exp

{
2πλMHδ

2

β(4− πλMHδ2)

}
(A.6)

Finally, substituting the expressions for α and ϕ into fR(r), we obtain

fR(r) =



2πλMHr, 0 ≤ r ≤ δ/2

2πλMHr

(
2r

δ

)β−2

× r > δ/2

exp

{
2πλMHδ

2

β(4− πλMHδ2)

(
1−

(
2r

δ

)β)}
,

(A.7)

By direct comparison of (A.7) to (4.16), we obtain the result in (4.18) for θ(r).

A.2 Proof of Remark 4.1

The second piece of fR(r) in (4.17), as β → 2, becomes

fR(r) =2πλMHr exp

{
2πλMHδ

2

β(4− πλMHδ2)

(
1−

(
2r

δ

)β)}(
2r

δ

)β−2

=2πλMHr exp

(
πλMHδ

2

4− πλMHδ2

)
exp

(
−4πλMHr

2

4− πλMHδ2

) (A.8)

As λp and δ tend to zero, and more specifically when the product πλpδ2 � 1, then

λMH becomes

λMH =
1− exp {−λpπδ2}

πδ2
≈ 1− (1− λpπδ2)

πδ2
=
λpπδ

2

πδ2
= λp (A.9)
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Thus, λMH ≈ λp and πλMHδ
2 ≈ πλpδ

2 � 1 < 4. Hence:

fR(r) =2πλMHr exp

(
πλMHδ

2

4− πλMHδ2

)
exp

(
−4πλMHr

2

4− πλMHδ2

)
≈2πλpr exp

(
πλpδ

2

4

)
exp

(
−4πλpr

2

4

)
≈2πλpr

(
1 +

πλpδ
2

4

)
exp

(
−πλpr2

)
≈2πλpr exp

(
−πλpr2

)
(A.10)

Note that this is the same PDF as for a PPP as seen in (4.3). Moreover, if r ≤ δ/2 as

in the first piece of fR(r) in (4.17), then πλpr2 ≤ πλpδ
2/4� 1, and so

2πλpr exp
{
−πλpr2

}
≈ 2πλpr(1− πλpr2) ≈ 2πλpr (A.11)

Thus, as λp and δ tend to zero and β → 2, the MHCPP distribution in (4.17) reduces

to that of a PPP where λMH ≈ λp, for all values of r.
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[2] D. López-Pórez, İ. Güvenç, G. de la Roche, M. Kountouris, T. Q. S. Quek, and

J. Zhang, “Enhanced intercell interference coordination challenges in heteroge-

neous networks,” IEEE Wireless Commun., vol. 18, no. 3, pp. 22–30, Jun. 2011.

[3] N. Saquib, E. Hossain, L. B. Le, and D. I. Kim, “Interference management in

OFDMA femtocell networks: Issues and approaches,” IEEE Wireless Commun.,

vol. 19, no. 3, pp. 86–95, Jun. 2012.

[4] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells:

Past, present, and future,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 497–

508, Apr. 2012.

[5] S.-M. Cheng, S.-Y. Lien, F.-S. Hu, and K.-C. Chen, “On exploiting cognitive

radio to mitigate interference in macro/femto heterogeneous networks,” IEEE

Wireless Commun., vol. 18, no. 3, pp. 40–47, Jun. 2011.

[6] P. Lin, J. Zhang, Y. Chen, and Q. Zhang, “Macro-femto heterogeneous network

deployment and management: From business models to technical solutions,”

IEEE Wireless Commun., vol. 18, no. 3, pp. 64–70, Jun. 2011.

[7] N. Abramson, “The Alohanet - surfing for wireless data,” IEEE Commun. Mag.,

vol. 47, no. 12, pp. 21–25, Dec. 2009.

106



[8] T.-C. Hou and V. Li, “Transmission range control in multihop packet radio net-

works,” IEEE Trans. Commun., vol. 34, no. 1, pp. 38–44, Jan. 1986.

[9] S. Weber, J. G. Andrews, and N. Jindal, “An overview of the transmission capac-

ity of wireless networks,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3593–3604,

Dec. 2010.

[10] H. Q. Nguyen, F. Baccelli, and D. Kofman, “A stochastic geometry analysis

of dense IEEE 802.11 networks,” in Proc. 26th Int. Conf. Comput. Commun.

(INFOCOM 2007), Anchorage, AK, USA, May 2007, pp. 1199–1207.

[11] G. Alfano, M. Garetto, and E. Leonardi, “New insights into the stochastic geo-

metry analysis of dense CSMA networks,” IEEE Trans. Mobile Comput., vol. 13,

no. 2, pp. 324–336, Feb. 2014.

[12] H. ElSawy, E. Hossain, and S. Camorlinga, “Characterizing random CSMA wire-

less networks: A stochastic geometry approach,” in Proc. IEEE Int. Conf. Com-

munications (ICC 2012), Ottawa, Canada, Jun. 2012, pp. 5000–5004.

[13] H. ElSawy and E. Hossain, “A modified hard core point process for analysis of

random CSMA wireless networks in general fading environments,” IEEE Trans.

Commun., vol. 61, no. 4, pp. 1520–1534, Apr. 2013.

[14] Y. Kim, F. Baccelli, and G. de Veciana, “Spatial reuse and fairness of ad hoc

networks with channel-aware CSMA protocols,” IEEE Trans. Inf. Theory, vol. 60,

no. 7, pp. 4139–4157, Jul. 2014.

[15] A. Hasan and J. G. Andrews, “The guard zone in wireless ad hoc networks,” IEEE

Trans. Wireless Commun., vol. 6, no. 3, pp. 897–906, Mar. 2007.

[16] M. Kaynia, N. Jindal, and G. E. Øien, “Improving the performance of wireless

ad hoc networks through MAC layer design,” IEEE Trans. Wireless Commun.,

vol. 10, no. 1, pp. 240–252, Jan. 2011.

107



[17] H. Sindhwal, M. Dasari, and N. Vattikuti, “Slot conflict resolution in TDMA

based mobile ad hoc networks,” in 2015 Annu. IEEE India Conf. (INDICON),

New Delhi, India, Dec. 2015, pp. 1–6.

[18] Y. Khan, M. Derakhshani, S. Parsaeefard, and T. Le-Ngoc, “Self-organizing

TDMA MAC protocol for effective capacity improvement in IEEE 802.11

WLANs,” in 2015 IEEE Globecom Workshops, San Diego, CA, USA, Dec. 2015,

pp. 1–6.

[19] T. Kawakami and K. Kamakura, “Modified TDMA-based MAC protocol for ve-

hicular ad hoc networks,” in 2015 IEEE Int. Conf. on Pervasive Comput. Com-

mun. Workshops (PerCom Workshops), St. Louis, MO, USA, Mar. 2015, pp. 93–

98.

[20] H. Inaltekin, M. Chiang, H. V. Poor, and S. B. Wicker, “On unbounded path-loss

models: Effects of singularity on wireless network performance,” IEEE J. Sel.

Areas Commun., vol. 27, no. 7, pp. 1078–1092, Sep. 2009.

[21] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage

and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–

3134, Nov. 2011.

[22] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling and anal-

ysis of K-tier downlink heterogeneous cellular networks,” IEEE J. Sel. Areas

Commun., vol. 30, no. 3, pp. 550–560, Apr. 2012.

[23] A. Goldsmith, Wireless Communications. New York, NY: Cambridge University

Press, 2005.

[24] R. K. Ganti and M. Haenggi, “Interference and outage in clustered wireless ad

hoc networks,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4067–4086, Sep. 2009.

108



[25] F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless networks:

Volume I - Theory,” Foundations and Trends in Networking, vol. 3, no. 3-4, pp.

249–449, 2009.

[26] F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless networks:

Volume II - Applications,” Foundations and Trends in Networking, vol. 4, no.

1-2, pp. 1–312, 2009.

[27] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver Jr., and

C. E. Wheatley III, “On the capacity of a cellular CDMA system,” IEEE Trans.

Veh. Technol., vol. 40, no. 2, pp. 303–312, May 1991.

[28] F. G. Nocetti, I. Stojmenovic, and J. Zhang, “Addressing and routing in hexagonal

networks with applications for tracking mobile users and connection rerouting in

cellular networks,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 9, pp. 963–

971, Sep. 2002.

[29] V. P. Mhatre and C. P. Rosenberg, “Impact of network load on forward link

inter-cell interference in cellular data networks,” IEEE Trans. Wireless Commun.,

vol. 5, no. 12, pp. 3651–3661, Dec. 2006.

[30] P. Charoen and T. Ohtsuki, “Codebook based interference mitigation with base

station cooperation in multi-cell cellular network,” in Proc. 74th IEEE Veh. Tech-

nol. Conf. (VTC 2011-Fall), San Francisco, CA, USA, Sep. 2001, pp. 1–5.

[31] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its

Applications, 3rd ed. Chichester, UK: Wiley, 2013.

[32] B. Matérn, Spatial Variation, 2nd ed., ser. Lecture Notes in Statistics,

D. Brillinger et al., Eds. Berlin/Heidelberg, Germany: Springer, 1986, vol. 36.

[33] D. Stoyan and H. Stoyan, Fractals, Random Shapes and Point Fields: Methods

of Geometrical Statistics. Chichester, UK: Wiley, 1994.

109



[34] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling,

analysis, and design of multi-tier and cognitive cellular wireless networks: A sur-

vey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 996–1019, Third Quarter

2013.

[35] M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE Commun.

Lett., vol. 15, no. 8, pp. 792–794, Aug. 2011.

[36] N. Deng, W. Zhou, and M. Haenggi, “The Ginibre point process as a model for

wireless networks with repulsion,” IEEE Trans. Wireless Commun., vol. 14, no. 1,

pp. 107–121, Jan. 2015.

[37] Y. Li, F. Baccelli, H. S. Dhillon, and J. G. Andrews, “Statistical modeling and

probabilistic analysis of cellular networks with determinantal point processes,”

IEEE Trans. Commun., vol. 63, no. 9, pp. 3405–3422, Sep. 2015.

[38] Y. Zhou, R. Li, Z. Zhao, X. Zhou, and H. Zhang, “On the α-stable distribution

of base stations in cellular networks,” IEEE Commun. Lett., vol. 19, no. 10, pp.

1750–1753, Oct. 2015.

[39] A. Guo and M. Haenggi, “Spatial stochastic models and metrics for the structure

of base stations in cellular networks,” IEEE Trans. Wireless Commun., vol. 12,

no. 11, pp. 5800–5812, Nov. 2013.

[40] J. Kibiłda, B. Galkin, and L. A. DaSilva, “Modelling multi-operator base station

deployment patterns in cellular networks,” IEEE Trans. Mobile Comput., vol. 15,

no. 12, pp. 3087–3099, Dec. 2016.

[41] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes,

Volume II, 2nd ed. New York, NY: Springer, 2007.

[42] B. D. Ripley, “The second-order analysis of stationary point processes,” J. Appl.

Probability,, vol. 13, no. 2, pp. 255–266, Jun. 1976.

110



[43] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “Load-aware modeling and analy-

sis of heterogeneous cellular networks,” IEEE Trans. Wireless Commun., vol. 12,

no. 4, pp. 1666–1677, Apr. 2013.

[44] H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular networks

with flexible cell association: A comprehensive downlink SINR analysis,” IEEE

Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, Oct. 2012.

[45] T. D. Novlan, R. K. Ganti, A. Ghosh, and J. G. Andrews, “Analytical evaluation of

fractional frequency reuse for OFDMA cellular networks,” IEEE Trans. Wireless

Commun., vol. 10, no. 12, pp. 4294–4305, Dec. 2011.

[46] ——, “Analytical evaluation of fractional frequency reuse for heterogeneous cel-

lular networks,” IEEE Trans. Commun., vol. 60, no. 7, pp. 2029–2039, Jul. 2012.

[47] S. Mukherjee, “Distribution of downlink SINR in heterogeneous cellular net-

works,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 575–585, Apr. 2012.

[48] V. Chandrasekhar and J. G. Andrews, “Spectrum allocation in tiered cellular net-

works,” IEEE Trans. Commun., vol. 57, no. 10, pp. 3059–3068, Oct. 2009.

[49] X. Zhang and M. Haenggi, “Random power control in Poisson networks,” IEEE

Trans. Commun., vol. 60, no. 9, pp. 2602–2611, Sep. 2012.

[50] M. Haenggi, “On distances in uniformly random networks,” IEEE Trans. Inf.

Theory, vol. 51, no. 10, pp. 3584–3586, Oct. 2005.

[51] A. M. Hunter, J. G. Andrews, and S. Weber, “Transmission capacity of ad hoc

networks with spatial diversity,” IEEE Trans. Wireless Commun., vol. 7, no. 12,

pp. 5058–5071, Dec. 2008.

[52] N. Jindal, S. Weber, and J. G. Andrews, “Fractional power control for decen-

tralized wireless networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp.

5482–5492, Dec. 2008.

111



[53] C. H. M. de Lima, M. Bennis, and M. Latva-aho, “Coordination mechanisms for

self-organizing femtocells in two-tier coexistence scenarios,” IEEE Trans. Wire-

less Commun., vol. 11, no. 6, pp. 2212–2223, Jun. 2012.

[54] M. G. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Outage performance of

the primary service in spectrum sharing networks,” IEEE Trans. Mobile Comput.,

vol. 12, no. 10, pp. 1955–1971, Oct. 2013.

[55] A. Ghasemi and E. S. Sousa, “Interference aggregation in spectrum-sensing cog-

nitive wireless networks,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp.

41–56, Feb. 2008.

[56] A. Rabbachin, T. Q. S. Quek, H. Shin, and M. Z. Win, “Cognitive network inter-

ference,” IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp. 480–493, Feb. 2011.

[57] S. Srinivasa and M. Haenggi, “Modeling interference in finite uniformly random

networks,” in Int. Workshop on Inf. Theory for Sensor Netw. (WITS 2007), Santa

Fe, NM, USA, Jun. 2007, pp. 1–12.

[58] ——, “Distance distributions in finite uniformly random networks: Theory and

applications,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 940–949, Feb. 2010.

[59] M. Haenggi and R. Ganti, “Interference in large wireless networks,” Foundations

and Trends in Networking, vol. 3, no. 2, pp. 127–248, NOW Publishers, 2008.

[60] R. Mathar and J. Mattfeldt, “On the distribution of cumulated interference power

in Rayleigh fading channels,” Wireless Netw., vol. 1, no. 1, pp. 31–36, Mar. 1995.

[61] P. Cardieri, “Modeling interference in wireless ad hoc networks,” IEEE Commun.

Surveys Tuts., vol. 12, no. 4, pp. 551–572, Fourth Quarter 2010.

[62] J. Venkataraman, M. Haenggi, and O. Collins, “Shot noise models for outage

and throughput analyses in wireless ad hoc networks,” in Proc. IEEE Military

Commun. Conf. (MILCOM06), Washington, DC, USA, Oct. 2006, pp. 1–7.

112



[63] E. S. Sousa and J. A. Silvester, “Optimum transmission range in a direct-sequence

spread-spectrum multihop packet radio network,” IEEE J. Sel. Areas Commun.,

vol. 8, no. 5, pp. 762–771, 1990.

[64] N. A. C. Cressie, Statistics for Spatial Data. (Revised Edition) New York, NY:

John Wiley & Sons, 1993.

[65] B. D. Ripley, Spatial Statistics. New York, NY: John Wiley & Sons, 1981.

[66] A. J. Baddeley, J. Møller, and R. Waagepetersen, “Non- and semi-parametric es-

timation of interaction in inhomogeneous point patterns,” Statistica Neerlandica,

vol. 54, no. 3, pp. 329–350, Nov. 2000.

[67] A. Baddeley and R. Turner, “Spatstat: an R package for analyzing spatial point

patterns,” J. Stat. Softw., vol. 12, no. 6, pp. 1–42, Jan. 2005.

[68] A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan, Eds., Case Studies

in Spatial Point Process Modeling. Lecture Notes in Statistics. New York, NY:

Springer, 2006, vol. 185.

[69] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Au-

tom. Control, vol. 19, no. 6, pp. 716–723, Dec. 1974.

[70] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach, 2nd ed. New York, NY: Springer,

2003.

[71] P. J. Diggle, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns,

3rd ed. Boca Raton, FL: CRC Press, 2013.

[72] M. N. M. van Lieshout, “A J-function for inhomogeneous point processes,” Sta-

tistica Neerlandica, vol. 65, no. 2, pp. 183–201, May 2011.

113



[73] MountainMath Software. CensusMapper. [Online]. Available: https:

//censusmapper.ca/

[74] Statistics Canada. Census profile, 2016 census. [Online]. Available: http://

www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E

[75] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge, UK: Cam-

bridge Univ. Press, 2012.

[76] T. V. Nguyen and F. Baccelli, “A probabilistic model of carrier sensing based

cognitive radio,” in Proc. 2010 IEEE Symp. New Frontiers in Dynamic Spectrum

Access Netw. (DySPAN 2010), Singapore, Apr. 2010, pp. 1–12.

[77] A. Al-Hourani, R. J. Evans, and S. Kandeepan, “Nearest neighbor distance dis-

tribution in hard-core point processes,” IEEE Commun. Lett., vol. 20, no. 9, pp.

1872–1875, Sep. 2016.

[78] R. W. Heath, Jr., M. Kountouris, and T. Bai, “Modeling heterogeneous network

interference using Poisson point processes,” IEEE Trans. Signal Process., vol. 61,

no. 16, pp. 4114–4126, Aug. 15, 2013.

[79] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Sto-

chastic geometry and random graphs for the analysis and design of wireless net-

works,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1029–1046, Sep. 2009.

[80] X. Yang and A. P. Petropulu, “Co-channel interference modeling and analysis in

a Poisson field of interferers in wireless communications,” IEEE Trans. Signal

Process., vol. 51, no. 1, pp. 64–76, Jan. 2003.

[81] K. Gulati, B. L. Evans, J. G. Andrews, and K. R. Tinsley, “Statistics of co-channel

interference in a field of Poisson and Poisson-Poisson clustered interferers,” IEEE

Trans. Signal Process., vol. 58, no. 12, pp. 6207–6222, Dec. 2010.

114

https://censusmapper.ca/
https://censusmapper.ca/
http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E
http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E


[82] R. K. Ganti and M. Haenggi, “Interference in ad hoc networks with general

motion-invariant node distributions,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT)

2008, Toronto, ON, Canada, Jul. 2008, pp. 1–5.

[83] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products,

6th ed., A. Jeffrey and D. Zwillinger, Eds. San Diego, CA: Academic Press,

2000.

115


	Abstract
	Preface
	Acknowledgements
	Introduction
	Background
	Some Relevant Wireless Performance Measures
	Stochastic Geometry Modelling and Analysis
	Finding Network Measures Using Stochastic Geometry Approaches
	Mean interference
	Laplace transform of the cumulative interference
	Probability of coverage
	Challenges of the stochastic geometry approach

	Motivation and Objectives
	Contributions of the Thesis
	Organization of the Thesis

	Fundamentals of Point Processes
	Moment Measures
	Statistics for Point Processes
	Point Process Models
	Poisson point processes
	Clustered point processes
	Regular point processes


	Modelling of Cellular Networks Using Stationary and Nonstationary Point Processes
	Introduction
	Methodology
	Conditional intensity of point processes
	Specification for the spatial trend
	Maximum likelihood/pseudolikelihood method
	Minimum contrast method
	Simulated envelope test
	Model selection

	Model-fitting of Real-life Cellular Networks
	Observed BS point patterns
	Fitting with stationary point process models
	Fitting with nonstationary point process models

	Wireless Performance Metrics for Fitness Assessment
	Summary

	Empirical Distribution of Nearest-Transmitter Distance in Wireless Networks Modelled by Matérn Hard Core Point Processes
	Introduction
	Background
	Single-function model
	Distributions
	Simulation results

	Piecewise model
	Derivation
	Simulation results

	Summary

	Downlink Coverage Analysis of N-Tier Heterogeneous Cellular Networks Using Clustered Stochastic Geometry
	Introduction
	System Model
	Analysis of Probability of Coverage
	Numerical Results
	Summary

	Conclusion and Future Directions
	Conclusion
	Summary of contributions

	Future Directions
	Covariates
	Future work with the piecewise model


	Bibliography

