INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMt films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A TooL rFor ENACTING HOOKS ON AN O-O FRAMEWORK

by

Luyuan Liu ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2002

. ional
du

Bel S
R s
Ouwa ON K1 O b ON K1 04
Caneds Canade Yow fip Vove ndidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant & la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-69731-2

University of Alberta

Library Release Form

Name of Author: Luyuan Liu

Title of Thesis: A Tool for Enacting Hooks on an O-O Framework

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private. scholarly

or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-

produced in any material form whatever without the author’s prior written

permission.
Zﬂ-/mn Z,
Luyuan Lil/
85, 4936 Dalton Dr. NW
Calgary, Alberta
Canada, T3A 2E4
Date: Obt" '8 ! ’

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certifv that thev have read, and recommend to the Facultv
of Graduate Studies and Research for acceptance, a thesis entitled A Tool
for Enacting Hooks on an O-O Framework submitted by Luyuan Liu in

partial fulfillment of the requirements for the degree of Master of Science.

(Hper

Dr. Paul G Sorenson (Supervisor)

o=
— —

Dr. Jim Hoover (Internal Examiner)

HQQ(V(’"—\ .

Dr. Marek Reformat (External Examiner)

Date: ﬁt’ % /Aj }00}

Abstract

0-0 frameworks are difficult to understand and use. Hooks [16] focus on how
the framework is intended to be used, and provide guidance in how and where
to perform the changes that will fulfill some requirements within the applica-
tion being developed. This thesis presents a proof of concept for the usefulness
of the hooks model approach. We developed a tool called HookMaster based
on Rational Rose 98 and Visual Basic. HookMaster can understand hook
descriptions and interactively guide the user through the enactment of hooks.
The output of the tool includes class diagrams and collaboration diagrams

which can be used as the base of further application development.

Acknowledgements

First of all, I am deeply indebted to my parents, Shun Liu and Xiulian Qi.
Where [am today is in no small part due to their love and support. Also. |
would like to thank my wife. Guohui Jia, for her love and support.

Second. I would like to express my sincere thanks to Dr. Paul G Sorenson.
my supervisor for his encouragement and assistance throughout the course of
this research. His many suggestions have been invaluable.

Then, I would like to thank all the members of the SERL team at the
University of Alberta.

Finally, to my brother and his wife. Lubo Liu and Xiaorong Jiang, for their

support.

Contents

1 Introduction

1.1

1.2

Motivation o

Rationaleo

1.3 Hook Nodel o

1.4 Need for a Visual Tool

1.5

2.1

2.2

23

2.4

Chapter Map

Background and Literature Review

Concepts and Properties of Frameworks

2.1.1 Users and Developers of Frameworks
2.1.2 Framework Concepts
2.1.3 Framework Categorization
2.14 Hot Spotsand Hooks
2.1.5 Desirable Properties
The Design of Object-Oriented Frameworks
2.2.1 Domain Analysis,
2.2.2 Design and Implementation
2.2.3 Composition and Inheritance
The Use of Object-Oriented Frameworks
2.3.1 Ways to Use a Framework
2.3.2 Learning to Use the Framework
Documentation
2.4.1 Hook Descriptions

(S]] [J\) o (o)

~1

15

242 Design
2.5 Tool Support Object-Oriented Development
2.6 UML and Rational Rose 98
26.1 UMLviews
26.2 Rational Rose98

Requirements for Hooks Tool

3.1 Requirements for Application Developers
31.1 Hook Views
3.1.2 View Consistency
3.1.3 Hook Interference
3.1.4 Hook Books, Examples and Use Cases

3.2 Maintainers

and Developers

Architecture for Realizing HookMaster

41 Analysis
42 Design
4.2.1 Logical System Architecture
4.2.2 Subsystem Descriptions
423 Class Diagram.
43 UseCases e
43.1 UseCases Diagram
43.2 Setup
433 OpenModel
434 Replayo
435 Enmact
43.6 Save
4.3.7 SaveAsNewVersion

4.3.8 Exit
4.4 Summary

37
39
41
44
44
46
48

5 Prototype Implementation of HookMaster 69

5.1 The Scope of Implementation 69
5.1.1 Technological Consideration for Prototvpe 70

5.2 Implementation of the Prototype 71
5.2.1 RationalRose 98 72

5.2.2 UserInterface 76

323 Parsero 79

524 HookTable, 81

5.2.5 Monitor-Controller 82

6 Validation and Improvement of Prototype 85
6.1 Using HookMaster with CSF 86
6.1.1 The CSF Motifs 86

6.1.2 Validation for Hook Enactment 86

6.1.3 Limitations and Possible Improvement 96

7 Conclusions and Future Work 98
Bibliography 101
Appendix 105
A Grammar for Hook Descriptions 105
B Class Diagrams 108

C A simple parser of the new element statement for creating the

new subclass from the hook description grammar 118

List of Figures

2.1 Application Developed from a Framework
3.1 The CSF Main View
3.2 CSF: Handle Message Hook View
3.3 Mutual Exclusion Subsetso
4.1 Component Diagram of Architecture
1.2 Class Diagram for Ul and Parser Subscriptions
4.3 Use Cases Diagram
44 Svstem Setup
4.5 Open Modelo o oo
4.6 Replay
4.7 Enact ... L
4.8 Save L.
49 Save AsANew Version.
410 Exit . .. e
5.1 The Rose Extensibility Interface
5.2 The Diagram Class Hierarchy
53 The UMLElements
5.4 The class diagram for the user interface
5.5 The Implementation for Rose Interface
5.6 Rational Rose Scenario
5.7 The parsingdiagram
5.8 The class diagram of the Hook Table

5.9 The class diagram of the Monitor00 83

6.1 The New CommAwarcObject Hook View 88
6.2 The Handle Message Hook View 89
6.3 The New Outbox Hook View 93
6.4 The New Inbox Hook View 94
6.5 The Send Message Hook View 96
7.1 Entitv-Relation Diagram for Framework Information 100
B.1 The MainUlclass 108
B.2 The FileManagerclass 109
B.3 The NewClass class 109
B.4 The NewProperty elass 109
B.5 The NewOperation class 110
B.6 The Callerclass 110
B.7 The Monitorclass 110
B.8 The Controllerclass 111
B9 ThecParserclass 112
B.10 The cHookTableclass 113
B.11 The cHook class 114
B.12ThecClassclass 115
B.13 The cOperationclass 115
B.14 The cProperty class 115
B.15 The cParameterclass 116
B.16 The cStatement class 116

B.17 The cStack class. o e 117

Chapter 1

Introduction

1.1 Motivation

Software reuse is a potential means of improving software productivity and
quality. Unfortunately. experience and research show that small pieces of soft-
ware often cannot be reused outside of their original context. In contrast.
Object-Oriented frameworks support large-scale software reuse, and provide
the context in which that reuse takes place. Applications are built from frame-
works by extending or customizing parts of the framework, while retaining the
original design. An object-oriented application framework is the reusable de-
sign for a family of applications implemented through a set of abstract classes
and their collaborations [1]. The design provides a means of organizing related
components without placing the classes or components in a generic library.
Each component is reused in the context for which it was created and does
not have to be modified. Frameworks solve larger-grained problems than in-
dividual function-specific components, thus making the effort of finding and
reusing them much more cost effective than for small components. If a family

of similar applications are developed from a single framework, then maintain-

ers will only have to learn one standard design and will be able to maintain
the whole product line more easily.

Although much of the research in this thesis applies to frameworks in gen-
eral. the analysis is on Object-Oriented frameworks. When we use the term
frameworks, we mean Object-Oriented frameworks unless we explicitly state
otherwise.

Frameworks currently exist for graphical editors (HotDraw [20]. UniDraw
[2]). user interfaces (ET++) [3]. manufacturing systems (OSEAFA [23]), client-
server communications [4]. operating svstems (Choices [10]). and network pro-
tocol software [19].

A framework, like any other tvpe of reusable software. should take less time
to understand and use than it would take to build an equivalent application
without the framework. Due to the potentiallv large size and complexity of
frameworks, the ability to quickly understand and apply a framework is a
critical issue.

A hook is introduced as a means of easing the understanding and use of
a framework [16]. Hooks focus on how the framework is intended to be used,
and provide strong guidance in how and where to perform the changes that
will fulfill some requirements within the application being developed. They
provide an alternative, supplementary view to the design of the framework. A
hook may involve something as simple as inheriting from an existing class in
the framework, or as complex as adapting the interaction of a large number of
classes within the framework. The framework builder, who is the most knowl-
edgeable about the framework, defines the hooks and through them passes on
his/her knowledge to the application developer. In this way, the framework
builder can tell the application developer what needs to be completed or ex-
tended in the framework, or what choices need to be considered about parts
of the framework in order to develop an application using the framework. The
hooks help to ensure that changes or extensions integrate smoothly into the

design and implementation of the framework by imposing some constraints

concerning how the framework can be adapted.

[n this thesis, we help to develop a proof of concept for the usefulness of the
hooks model approach to the framework use. and demonstrate that application
developed using hooks for an O-O framework can be well supported with a

visual tool.

1.2 Rationale

A framework can be quite complicated and difficult to understand. Properly
documenting the framework is important in order to case its understanding and
use. The ultimate goal of design for reuse is reusable software. which requires
the design of general, extensible software component [22]. Application design
in an O-O framework should be oriented towards design-level reuse, in order
to make best use of the framework. This poses particular challenges because
their descriptions at different levels of abstraction are required. Furthermore,
such documentation should address the needs of developers with varying levels
of experience with the framework [20].

Much work on framework documentation has focused on the design and
architecture of the framework. Three approaches that have been used are:
providing several views of the design, using design patterns, and using exem-
plars.

Campbell and Islam [10] propose a six part approach to documenting the
framework design. They recommend the use of class hierarchies, interface
protocols, entity-relationship diagrams, control flow diagrams, synchronization
path statements and configuration diagrams to describe the structure and
behavior of the framework. All of these diagrams concentrate on the design of
the framework and not on the purpose of the framework or how to use it.

Design patterns [20] are a popular means of describing frameworks. Beck

and Johnson used them to help show how the architecture of the HotDraw

framework is derived [I]. The OSEAFA framework was also described using
design patterns [25]. Work was done to allow the interactive visualization of
design patterns within a framework [23]. Design patterns can help to show
the decisions that were made regarding the design of the framework. Using
commonly known design patterns can also help developers understand the
framework by serving as a common vocabulary between the framework builder
and the application developer. The application developer can see that a design
pattern was used and immediately understand some of the advantages and
limitations of the design. Although design patterns arc an excellent means of
documenting the design. they are general and do not explicitly describe the
purpose of a framework. nor how it should be used.

Eremplars [18] provide a different means of understanding frameworks.
An exemplar consists of a concrete implementation provided for all of the
abstract classes in the framework, and their interactions. The interactions
between classes can be explored through the exemplar using a special tool to
provide a deeper understanding of the framework. Class hierarchies can also
be browsed by the tool to make choosing the desired classes easier. While this
approach allows for the understanding of the design of a framework, it is not
as well suited for providing either the purpose of the framework or how the
framework is meant to be used.

Less work has focused on the purpose and intended use of frameworks. Two
such approaches are cookbooks and patterns. The cookbook in [21] consists of
a general description of the purpose of the Smalltalk Model-ViewController
(MVC) framework, the major components of the framework and their roles,
and follows with a number of examples to illustrate how the components can
be used. It is presented as a tutorial to learn the framework. A different type of
cookbook found in [24] focuses on specific issues such as how to create an active
view in MVC. Each entry in this cookbook defines a problem to solve and then
gives a set of steps to follow along with some examples for solving the problem.

However, the steps are narrative descriptions and are not well-structured or

uniform.

Johnson’s patterns [20] fall roughly into the same category as a cookbook.
documenting the purpose and use of a framework as well as a little of the
design. Each pattern describes a problem that application developers will face
when using the framework. gives general narrative advice and examples about
ways to solve the problem. summarizes the solution, and refers to related
patterns. The collection of patterns makes up a directed graph indicating the
order in which to read them. starting with the main pattern which describes
the purpose of the framework.

In [22] the idea of design patterns is combined with Johnson's patterns.
which they rename motifs. to provide a more complete description of a frame-
work [22]. [n their strategy, motifs point to design patterns. contracts and
micro-architectures to help provide the developer with an understanding of
the architecture of the framework in the context of the problems it was meant
to solve. Motifs give advice and examples on how to design solutions to prob-
lems using the framework and help to show the purpose of the framework. but
they are no more structured than patterns.

Hooks focus on the intended use of the framework much like cookbooks or
motifs but do not focus on the design like design patterns or exemplars. Hooks
provide an alternative view to design documentation. Rather than presenting
the design or even the reasons why a particular design was chosen, hooks show
how and where a design can be changed. They present knowledge about the

usage of the framework.

1.3 Hook Model

Hooks are more structured and uniform than motifs or cookbooks and help the
framework builder to be more precise about how the framework is intended to

be used [16]. Further, the characterization for hooks introduced in this thesis

shows many of the wavs in which changes can be made to a framework and
how these changes can be supported.

Hooks provide solutions to focused problems. For more complex problems.
groups of hooks can be provided with each focusing upon a smaller problem
within the larger. more complex problem. Each hook details the changes to the
design that are required. the constraints that must be followed and any effects
upon the framework that the hook imposes, such as configuration constraints.
Only the information needed to solve the problem is provided within the hook.
Developers are then able to quickly understand and use the hook.

Hooks are meant to be used for developing applications from a framework.
not developing new frameworks from old ones. Selecting options. filling in
parameters or extending the framework for a particular application are all
hooks. However. modifving or refactoring an existing framework is bevond the
scope of the hook model and are not considered to be valid hooks.

Each valid hook is written in a specific format made up of sections. The
sections detail different aspects of the hook, such as the components that take
part in the hook (participants) or the steps that should be followed to use the
hook (changes). The sections serve as a guide to the application developers by
showing all aspects that should be considered, such as how using a hook affects
the rest of the framework (constraints). The format helps to organize the
information, prompts for the required information and makes the description
more precise and uniform. All these aspects aid in the analysis of hooks and
the provision of tool support for them. Each hook description consists of the

following parts:

e Name: a unique name, within the context of the framework, given to

each hook.
e Requirement: the problem the hook is intended to help solve.

e Type: an ordered pair consisting of the method of adaption used and

the amount of support provided for the problem within the framework.

6

e Area: the parts of the framework that are affected by the hook.

e Uses: the other hooks required to use this hook. The use of a single hook
may not be enough to completely fulfill a requirement that has several
aspects to it. so this section states the other hooks that are needed to

help fulfill the requirement.

e Participants: the components that participate in the hook. These are

both existing and new components.

e Preconditions: limits imposed before enacting the changes specified in

the hook.

e Changes: the main section of the hook which outlines the changes to
the interfaces. associations. control flow and synchronization amongst
the components given in the participants section. All changes, including
those involving the use of other hooks. are intended to be made in the

order they are given within this section.

e Postconditions: limits imposed after applying the changes specified in

the hook, such as configuration constraints.

e Comments: any additional description needed.

Not all sections will be applicable to all hooks, in which case an entry not
required is simply left out. For example, a hook that does not use any others

will have no Uses declaration.

1.4 Need for a Visual Tool

Since hooks are important points of access to the framework, their evaluation
should be among the high priority quality activities.
To study how people learn and use frameworks, and evaluate the hook ncta-

tion, an experiment was introduced in the CN\IPUT 401 course which required

-1

the use of the CSF framework[26] in projects. The students were given the
framework and many of its hooks. The experiment showed that the students
found the notation quite difficult to understand and use. They rated the hooks
as less useful than either the example code given or the introduction tutorial
lessons that were provided. Nevertheless. hooks are targeted at the right prob-
lem (understanding interactions between the framework and application) but
need to be tied more closely to examples and the barriers to their use need
to be lowered by clearer and better explained notation that is enhanced with
tool supports.

In the thesis, we develop a tool to assist the application developer in in-
teracting with a framework using hooks. The tool should provide two primaryv
ways to develop applications. First. developers use the tool to develop applica-
tions from the framework without changing the framework. Second, framework
maintainers will use the tool to evolve or modifv the framework and/or the
hooks. The tool developed in the thesis primarily focuses on the first aspect.

As mentioned earlier, cookbooks can be represented as tutorials that de-
scribe the basis of the framework and examples of its use [21]. Similarly,
framework patterns [20] document common problems and solutions within ex-
amples through a general narrative. The information contained in cookbooks
and framework patterns is valuable but can not be easily interpreted by an
automated tool.

A tool for the exploration and use of framework through ezemplars is de-
scribed in [18]. A concrete instance is provided for all abstract classes in the
framework. These can then be executed through the tool to learn the behavior
of the framework. A tool also exists for examining or discovering the design
patterns [17] used in a framework [23]. These tools allow exploration of the de-
sign of the framework. In {23] class and object-oriented views of the structure
and behavior of frameworks are provided. with information accurate enough
to enable developers to reuse and maintainers to support undocumented parts

of frameworks. But these tools do not explicitly describe how the framework

can be used.

Graphical user interface builders represent one of the most successful appli-
cations of framework technology. GUI builders are built on the top of specific
toolkits and provide an interactive editor for GUI development. They allow
the developer to rapidly prototype the presentation laver and experiment with
alternative designs. GUI builders allow users to visually position components
on a screen and to adjust a list of parameters provided with the component.
Tvpically. the user can also define or fill in methods that can respond to events
within the system. However, GUI builders just focus on a single visual frame-
work.

Using the same basic ideas that exist in GUI builders. the hook tool is based
on the notation of hooks. which describes how the framework is intended to
be used and shows where changes can be made. The requirements for the
tool are discussed in Chapter 3. The tool creates hook views to represent hook
notation by extending UML language to include hooks [6]. Also, the change
and constraint specifications of hooks are defined by a context-free grammar
(see Appendix A). The hook tool aids users by semi-automatically enacting the
changes within hooks. The tool handles propagation of changes between hook
views. In addition, the tool is flexible enough to provide support for many

different frameworks, which is not currently done in existing tools.

1.5 Chapter Map

In the thesis, we outline the key requirements and design of the tool. Chapter
2 describes an overview of the design and use of frameworks, followed by a
more detailed discussion of the hook model. Chapter 3 describes the require-
ments for the tool. Chapter 4 discusses the design rationale, and describes
the architecture and use cases of the tool. Chapter 5 focuses on issues related

to the prototype implementation of the tool. Then, we will demonstrate an

example through using this tool, and describe the experiment in Chapter 6.

Finally. contributions and future directions are given in Chapter 7.

10

Chapter 2

Background and Literature

Review

An object-oriented framework is the reusable design of a system or subsystem
implemented through a collection of concrete and abstract classes and their
collaborations [1]. The concrete classes provide the reusable components. while
the design provides the context in which they are used. A framework is more
than a collection of reusable components. However, it must provide a generic
solution to a set of similar problems within an application domain. The frame-
work itself is incomplete with respect to a particular application but provides
places at which users can add their own components specific to a particular
application. The following sections will discuss the design of use of object-

oriented frameworks.

11

2.1 Concepts and Properties of Frameworks

We begin our discussion of framework design, by examining some concepts
and terms associated with frameworks. starting with the roles involved in

framework technology and a more in depth look at the parts of a framework.

2.1.1 Users and Developers of Frameworks

Three different roles can be associated with the development and use of frame-

works:

e Framework Designer (or Framework Developer), develops the original
framework and is tvpically an expert in software architecture and the

application domain.

e Framework User (also called Application Developer or Framework Client).

uses the framework to develop application.

¢ Framework Maintainer. refines and redevelops the framework to fit evolv-

ing requirements.

The different roles are not necessarily filled by different people. Often a
framework designer is also one of the framework users and framework main-

tainers.

2.1.2 Framework Concepts

Several different parts can be identified within an application developed from
a framework as shown graphically in Figure 2.1. Applications are developed
from frameworks by filling in missing pieces and customizing the framework
in the appropriate areas.

The parts of a framework are:

Framework Core: The core of the framework generally consists of ab-
stract classes that define the generic structure and behavior of the frame-
work. It forms the basis for the application developed from the frame-
work. However. the framework can also contain concrete classes that are

meant to be used in all applications built from the framework.

Framework Library: Extensions to the framework core organized in the
form of a component library contain concrete components that can be
used with little or no modification in the development of applications

developed from the framework.

Application Extensions: Application specific extensions made to the
framework (also called an ensemble) are additional software created by

the framework user in order to produce an application.

Application: The application consists of the framework core. the used
framework library extensions. and any application specific extensions

needed.

Unused Library classes: Tvpically. not all of the classes within a frame-
work library are needed in an application that can be developed from

the framework. Those not needed are called the unused library classes.

Unused Framework Framework
Library Library Core
Classes
Application Extensions
Framework Application

Figure 2.1: Application Developed from a Framework

13

2.1.3 Framework Categorization

Several different means of classifving frameworks have been proposed. Here
we present three relatively orthogonal views of frameworks. A framework can
be categorized by its scope. its primary mechanisim for adaptation and the

mechanism by which it is used.

Scope

The scope of the framework describes how broad of a domain the framework

is applicable too. Adair defines three framework scopes [25].

e Application frameworks contain horizontal functionality that can be ap-
plied across domains. They incorporate expertise common to a wide
variety of problems. These frameworks are usable in more than one do-
main. Graphical user interface frameworks are a typical example of an

application framework and are included in most development packages.

e Domain frameworks contain vertical functionality for a particular do-
main. They capture expertise that is useful for a particular problem
domain. Examples exist in the domains of operating systems [10], man-

ufacturing systems {25, client-server communications [4].

e Support frameworks provide basic system-level functionality upon which
other frameworks or applications can be built. A support framework

might provide services for file access or basic drawing primitives.

Customization

The means of customizing is another way in which frameworks can be catego-
rized. The reference [11] defines two types of frameworks, white box and black

box.

14

e White box frameworks. also called architecture driven frameworks. rely
upon inheritance for extending or customizing the framework. New func-
tionality is added by creating a subclass of a class that already exists
within the framework. White box frameworks typicallv require a more

in-depth framework knowledge to use.

e Black box frameworks. also called data-driven frameworks. use composi-
tion and existing components rather than inheritance for customization
of the framework. Configuring a framework by selecting components
tends to be much simpler than inheriting from existing classes and so
black box frameworks tend to be casier to use. Johnson [11] argues that

frameworks tend to mature black box frameworks.

We are interested in supporting both forms of customization.

Interaction

In {12]. frameworks are differentiated based on how they interact with the

application extensions, rather than their scope or how thev are customized.

e Called frameworks correspond to code libraries (such as the Booch’s
libraries [13]). Applications use the framework by calling functions or

methods within the library.

e Calling frameworks incorporate the control loop within the framework it-
self. Applications provide the customized methods or components which
are called by the framework. Here we will be primarily focusing on calling

frameworks.

2.1.4 Hot Spots and Hooks

In the hook model(16], application extensions are connected to a framework

through hooks. Hooks are ways of extending or adapting a framework at par-

15

ticular points in the framework to provide application specific functionality.
Thev are the means by which frameworks provide the flexibility to build many
different applications within a domain. We will discuss hooks details in Section
2.4.

Hot spots [15] also called hinges, are the general areas of variability within a
framework where placing hooks is beneficial. A hot spot may have many hooks
within it. The area of Tools within HotDraw is a hot spot because different
application will use different tools. A Data Flow Diagram application will
have tools for creating and manipulating the DFD that are standard for iconic
interfaces. whereas a PERT chart application, because of its strict temporal
ordering constraints, will likely have different creation and manipulation tools.
There are a number of hooks within the Tool hot spot which define the various
wavs in which new tool can be defined.

In contrast. frozen spots within the framework capture the commonalities
across applications. They are fully implemented within the framework and
typically have no hooks associated with them. In HotDraw. DrawingCon-
troller is an example of a frozen class. The Tools used may vary. but the

DrawingController remains a constant underlying mechanism for interaction.

2.1.5 Desirable Properties

Frameworks are meant to be reused to develop applications. and so reusability
is very important. Software reusability means that ideas and code are devel-
oped once, and then used to solve several software problems. thus enhancing
productivity, reliability and quality. A good framework has several properties
such as ease of use, extensibility, flexibility, and completeness which can help

to make it more reusable.

16

Ease of Use

Ease of use refers to an application developer’s ability to use the framework.
The framework should be both easy to understand and facilitate the develop-
ment of applications. and therefore ease of use is one of the most important
properties a framework can have. Frameworks are meant to be rensed. but
even the most elegantly designed framework will not be used if it is hard to
understand. In order to improve the user’s understanding of the framework.
the interaction (both the interfaces and the paths of control) hetween the ap-
plication extensions and the framework should be simple and consistent. In
other words. the hooks should be simple, small and easy to understand and
use. Additionally. the framework should be well-documented with descriptions
of hooks. sample applications and examples that the application developer can

use.

Extensibility

If new components or properties can be added to a framework easily. then it
is extensible. Even if a framework is easy to use, it must be extensible to be
truly useful. For example. simple parameterized linked list component may be
completely closed and casy to use, but its reusability is enhanced if it can be

easily extended to include new operations.

Flexibility

Flexibility is the ability to use the framework in more than one context. In
general, this applies to the domain coverage of the framework. Frameworks
that can be used in multiple domains, such as graphical user interface frame-
works, are especially flexible. If a framework is applicable to a wide domain,
or across domains, then it will be reused more often by more developers. How-

ever, flexibility must be balanced with ease of use. In general, a framework

17

with many abstract hooks will be Hexible, but may also be either difficult to
understand, require too much work on the part of the application developer.

or both.

Completeness

Although frameworks typically have some degree of incompleteness. because
they can not cover all possible variations within a domain, relative complete-
ness is a desirable property. Defauit implementations can be provided for the
abstractions within the framework and thereby avoiding reimplemention for
every application. In addition. application developers can run the framework
to gain a better understanding of how it works. The framework library can
provide the implementations of common operations. which the developer can

choose, making the framework casier to use as well as more complete.

Consistency

Consistency among interface conventions, or class structures is also desirable.
Names should be used consistently within the framework. Ultimately, consis-
tency should speed the developers understanding of the framework and help

to reduce errors in its use.

2.2 The Design of Object-Oriented Frameworks

Designing a framework differs from designing a single application in at least
two respects. First, the level of abstraction is different. Frameworks are meant
to provide a generic solution for a set of similar or related problems for an
entire domain, while applications provide a concrete solution for a particular
problem.

Second, frameworks are by their nature incomplete. Whereas an applica-

18

tion design has all of the components it needs to execute and perform its task.
a framework design will have places Hot Spots. that need to be instantiated by
adding concrete solutions to a specific application problem. A framework does
not cover all of the functionality required by a particular domain. but instead
abstracts the common functionality required by many applications. incorpo-
rating it into the common design. and leaving the variable functionality to be
filled in by the framework user.

Object-oriented technology is a natural fit for frameworks. Just as a sub-
class is a specialization of a parent class, an application can be thought of as
a specialization of a more general framework. One of the ways to use a frame-
work is to specialize the generic classes that are provided in the framework

into application specific concrete classes.

2.2.1 Domain Analysis

As with any type of software development, the first stage in framework design
is the analysis of the problem domain.

One of the key decisions that needs to be made when building a framework
is domain coverage. Does the framework apply to a large domain, a narrow
part of a domain, or even several domains? There are benefits and drawbacks
to frameworks that cover a large domain or a large part of a domain versus
small frameworks which cover a narrow part of a domain. A framework with
broader coverage will be reusable in more situations, and thus be flexible,
but may be unwieldly and difficult to maintain because of its size. Building
a widely applicable framework is significant undertaking, requiring a lot of
resources are experience in developing several specific applications from that
domain.

After the domain of the framework is determined, analyzing the domain
of the framework helps to determine the key abstractions that form the core

of the framework. Examining existing applications within the domain of the

19

framework is a useful means of identifving the abstractions. In order to gain
domain expertise, a framework designer may also want to build an application
within the domain if the designer is not already an expert in the domain.

Another analysis approach involves the development of scenarios for the
operation of the framework and reviewing them with potential users of the
framework [12]. Scenarios help to define the requirements of the framework
without committing developers to any design decisions [7]. The scenarios
can be abstracted into use cases [7] to help identifv the key abstractions and
interaction patterns the framework needs to provide.

The hot spots, the places of variation within the framework, also need to
be identified. Again, examining existing applications helps to identify which

aspects change from application to application and which remain constant.

2.2.2 Design and Implementation

The design determines the structures for the abstractions. frozen spots and hot
spots. The design and implementation of the framework are often intertwined.
Abstractions can be difficult to design properly the first time and parts of a
framework may have to be redesigned and reimplemented as the abstractions
become better understood.

However, some general guidelines have been identified. The reference [14]

suggests:

reduce the number of classes and methods users have to override.

simplify the interaction between the framework and the application ex-

tensions.

isolate platform dependent code.

do as much as possible within the framework.

factor code so that users can override limiting assumptions.

20

e provide notification hooks so that users can react to important state

changes within the framework.
Some additional general design advice proposed is to:
e consolidate similar functionality into a single abstraction.
e break down larger abstractions into smaller ones with greater flexibility.

implement each key variation of an abstraction as a class (and include

it in a framework library).
e use composition rather than inheritance.

At this stage, the specific hooks for each hot spot must also be designed
and specified. The hooks show specific ways in which the framework can be
adapted to an application, and so are an important part of the framework.
Hooks can be described in a formal manner using a context-free grammar(see
Appendix A).

Often, trade-offs must be considered when identifving the hot spots and
designing the hooks in general. Frameworks can not be arbitrarily flexible in
all directions. Some of the required flexibility can be determined by examining
existing applications. Often the framework designer has to rely on experience
and intuition to make these trade-offs. Subsequent testing may require changes
in the structure of the hot spots. Further trade-offs occur between flexibility
and ease of use. The most flexible framework has very little actually defined
and so requires a great deal of work on the part of the framework user.

After testing, the abstractions of the framework will often need to be ex-
tended or refined. Building a framework is a highly iterative process, so many
cycles through these steps will be performed before the final framework is

produced.

21

2.2.3 Composition and Inheritance

[nheritance and composition are the two main wavs for providing hooks into
the framework. Composition is often recommanded over inheritance as it
tends to be easier for the framework user to use but each has strengths and
weaknesses. The type of customization used in each case depends upon the
requirements of the framework [13].

Composition involves the use of callbacks or parameterized tvpes. The
class of the framework to be adapted will have a parameter to be filled in by
the application developer which provides some required functionality. Since
the customization is done by filling in parameters. the framework user does
not need an in-depth knowledge of how the particular component operates.

Inheritance involves specializing methods from an abstract class. or adding
functionality to an abstract class. Inheriting from a class requires a consider-
able understanding of the abstract class and its interactions with other classes,
thus it can be more error prone and more difficult to use than composition. The
advantage of inheritance is extensibility. An application developer can easily
add completely new functionality to a subclass of an existing class, which is
not as easily accommodated with composition.

Composition is generally used when the interfaces and uses of the frame-
work are fairly well defined, whereas inheritance provides flexibility in cases
where the full range of functionality can not be anticipated. Composition
forces conformance to a specific interface and functionality which can not be
easily added to or changed. It has been proposed that frameworks start out as
white box frameworks that rely on inheritance. As the domain becomes better
understood and more concrete support classes are developed, the framework

evolves to use more composition and becomes a black box framework.

22

2.3 The Use of Object-Oriented Frameworks

In this section we discuss techniques and concepts related to using frameworks.
Many users will use a framework as it was meant to be used. but others will
want to use the framework in new, non-standard ways. Still others will want

to evolve the framework to incorporate new capabilities.

2.3.1 Ways to Use a Framework

There are a number of different ways in which to use a framework. Each
of them require a different amount of knowledge about the framework and a
different level of skill in using it. In [14], three main ways in which frameworks

can be used are defined:

o As Is: the framework is used without modifying or adding to it in any
ways. The framework is treated as a black box, or mavbe as a collection

of optional components that are plugged together to form an application.

e Complete: the framework user adds to the framework by filling in parts
left open by the framework developers. Completing the framework is

necessary if it does not come with a full set of library components.

e Customize: the framework user replaces part of the framework with
custom code. Modifying the framework in such a way requires a detailed

knowledge of how the framework operates.

Most of the work involving hooks focuses on the second type of framework.
It is very rare that vou can use the framework As-Is. Customizing frameworks

is a tricky and risky task that makes hooks identification difficult to achieve.

23

2.3.2 Learning to Use the Framework

One of the first stages involved in developing applications from frameworks
is analyzing the requirements of the application. A framework can be chosen
by viewing the documentation. or through other user’s experiences. If the
users are already familiar with the framework, the requirements can be cast
immediately in a form that is compatible with the framework.

One of the first difficulties faced by users of any framework is learning how
to use it. Learning how to use a framework given only the code and inter-
face descriptions is a daunting task that makes framework use unattractive.
A framework should be easier to extend as the basis for application develop-
ment than building a new application without the framework. Some means of

lowering the learning curve are needed. Some approaches are:

e Framework developers as users: when the framework developers are also
the ones developing applications and maintaining the framework. they
are already experts on the framework and require little, if any, time to

learn it.

e Tutorial sessions: framework developers can hold tutorials in which theyv

show potential users what the framework can be used for and how it can

be used.

e Tool support: a good tool can make a framework much easier to use.
With it, regular users generally do not have to learn all the details about
the framework since the tool will dictate how and where adaptions can
take place. Unfortunately, very few such tools exist and the development

of such a tool is a primary focus of this thesis.

e Documentation: good documentation can aid users in learning the frame-
work. It can be used to not only capture the design details and design

rationale of the framework, but also to help users to learn the framework.

24

2.4 Documentation

Framework documentation can aid in all aspects of framework use. Since the
framework developers will not alwavs be available. documentation becomes
the means through which users can learn about the framework and refer to
information concerning the framework. A framework will typically have few
developers and many users. so it is important that the documentation be made
understandable and up to date.

Beyond a description of the general purpose of the framework, regular users
are interested in how to use the framework. Documentation describing the in-
tended uses of the framework helps users to learn the framework. and develop
applications. Documentation of intended use should identify the problems
that the framework solves or that users face when using the framework, how
to think about the problem in order to understand how to solve it, and the
actual solution. The documentation should capture the framework developer’s
experience and knowledge of how the framework can be used. Several meth-
ods have been proposed for describing the intended use: motifs/patterns 23],
cookbooks [21] and hooks {16]. These were outlined in Chapter 1. We focus on

hooks in this chapter.

2.4.1 Hook Descriptions

The approach described in this section is primary due to the work of Garry
Froehlich. More details of this work can be found in [16].

Hook descriptions provide a semiformal template for describing the in-
tended use at a detailed level. The template helps to prompt the developer
for all the required information and the semi-formal language makes the de-
scriptions more precise.

The sections of the template detail different aspects of the hook, such as the

components that take part in the hook(participants) or the steps that should

be followed to use the hook(changes). The sections serve as a guide to the peo-
ple writing the hooks by showing the aspects that should be considered about
the hook, such as how using it affects the rest of the framework(constraints).
The format helps to organize the information and make the description more
precise and uniform. This aids in the analyvsis of hooks and the provision of

tool support. An example of a hook taken from CSF[26] is shown below:

Name: New FileManager

Requirement: An application needs a mechanism to write data to a file.

Type: Enabling, Pattern

Area: Data, Persistence

Uses: Register FileManager

Participants: FileManager(provided). NewF\

PreConditions: None

Changes:
new subclass NewFM of FileManager
NewFM.write(String classname. Criteria kev, Data dataObject) overrides
FileManager.write(String classname. Criteria key, Data dataObject)
NewFM.read(String classname, Criteria key) overrides
FileManager.read(String classname. Criteria key) return Data
Register FileManager[FM = NewF |

PostConditions: None

Comments: None

The New FileManager hook describes how to create new file manager which
are responsible for read/write data within CSF. This hook uses functionality
provided by the framework by filling in parameters so its type is an enabling
pattern. NewFM is defined as a subclass of the existing class FileManager.

In this class, the operations of read and write override the corresponding op-

26

erations of superclass FileManger, and send it class name of the Data object
and a key under which to wrtie/read it along with the actual Data object.
Each FileManager can handle any number of classes. and must be registered.
Registering involves which classes a particular FileManager is responsible for.
In order to register it, the Register FileManager hook is invoked by the New
FileManager hook. Finally, the postcondidtion method is provided to return
constraints defined so that they can be evaluated when needed. In this case,
the postcondition is none.

Hooks are characterized along two axes: the method of adaption used and
the level of support provided. The method of adaption describes the basic
mechanism used to extend or adapt the framework. The level of support
indicates how the change is supported within the framework. such as using
provided components or requiring developers to produce their own compo-

nents.

Method of Adaption

There are several ways that a developer can adapt a framework and each hook
uses at least one of these methods. These include enabling, disabling, replacing
and augmenting.

Enabling a feature that exists within the framework but is not part of the
default implementation is one common means of adapting a framework. Hooks
of this type often involve using pre-built concrete components that come with
the framework which may be further parameterized. The hook needs to detail
how to enable the feature, such as which components to select for inclusion
in the application, which parameters to fill in, or how to configure a set of
components. The constraints imposed by using the feature, such as excluding
the use of another feature, are also contained in the hook.

Disabling a feature may be required if the default implementation of the

framework has some unwanted properties. This is different than simply not

27

choosing to enable a feature. Disabling a feature may be done through con-
figuration parameters. or by actual modification of framework code. The hook
description shows how to do the removal and it also shows the effects of the
removal.

Replacing or overriding an existing feature is related to disabling a feature.
with the addition that new or predefined components are provided in place
of the old. [If the replacement requires the application developer to provide
new classes or components then it is important to describe the interface and
behavioral obligations that any replacement must fulfill. The replacement may
also be a pre-defined component that the developer simply puts in place of the
original component.

Augmenting a feature involves intercepting the existing How of control.
performing some needed actions, and returning control back to the framework.
Unlike replacing behavior, augmenting simply adds to the behavior without
redefining it. The framework builder can point to places in the control flow
where a change to fulfill a particular requirement might be made. perhaps but
not always by providing stub methods that can be overridden by developers.
The hook describes any state that needs to be maintained. where to intercept
the flow of control and where to return it.

Adding a new feature or service to the framework is another common adap-
tation and probably the most difficult to support. Unlike enabling a feature,
where the developer is using existing services, possibly in new wayvs. adding a
feature involves adding something that the framework wasn’t capable of be-
fore. These additions are often done by extending existing classes with new
services or adding new classes, and adding new paths of control with the new
services. The hook shows what new classes or operations are needed, and indi-
cates where to integrate them into the framework and how thev interact with
old classes and services. The framework builder may also provide constraints
that must be met by the new class or service and which may limit the interfaces

that the new class can use to interact with the framework.

28

Level of Support

Another important aspect of hooks is the level of support provided for the
adaption within the framework. There are three main levels of support tyvpes
for hooks.

The option level provides the most support, and is generally the easiest
for the application developer to use. A number of pre-built components are
provided within the framework and the developer simply chooses one without
requiring extensive knowledge about the framework. This is the black-box
approach to frameworks [11]. Most often, components are chosen to enable
features within the framework or to replace default components. If the solu-
tions are alternatives. the hook is a single option hook. If several alternatives
can be used at once. the hook is a multi-option hook.

At the pattern level. the developer supplies parameters to components
and/or follows a well-supported pattern of behavior. Unlike option hooks.
there are no complete pre-defined components to choose from. but support is
generally provided for the feature through parameters to components. The
simplest patterns occur when the developer needs to provide parameters to
a single class within the framework. The parameters themselves mayv be as
simple as base variables, or as complex as methods or component classes. Some
common tasks may require the collaboration of multiple classes. and may also
have application specific details. For these, a collaboration pattern is provided
which the developer follows to realize the task. Both pattern and option hooks
are well-suited for normal users of the framework because they do not require
a complete understanding of the design of the framework.

At the open-ended level hooks are provided to fulfill requirements without
being well-supported within the framework. Open-ended hooks involve adding
new properties to classes, new components to the framework, new interactions
among components or sometimes the modification of existing code. These
modification are often, but not always, for more advanced users that have a

greater knowledge of the design of the framework so that they are aware of

29

potential problems the modification may cause. Since they are open-ended.
the developer has to be more careful about the effects changes will have on

the framework.

2.4.2 Design

Documentation of the design is most useful to advanced users. maintainers and
framework developers. since they need to know the details of the framework.
Regular users may also need to understand some of the design of a frame-
work. There are some normal approaches for documenting the design of the
framework. such as Booch’s method[3] and the Object Modeling Technique[3].
however. thev are often not sufficient for a full description. The problem with
traditional notations is that the collaborative relationships between the core
classes of the framework are not made explicit. UML [7] is the unified effort of
Booch’s method and OMT. It provides a set of standard diagram notations to
present the design of the framework. in particular, it proposes dynamic design

to help understanding behaviors of the framework.

2.5 Tool Support Object-Oriented Development

In order to aid application developers, support should be provided for exploring
the documentation of the design and use of the framework. A good tool can
make a framework much easier to use. The tool will perform the tedious
tasks of integrating components into the framework, leaving users free to focus
on design. A simple example of this is the ToolBuilder tool which comes
with HotDraw[20]. It allows users to build new tools simply by filling in the
appropriate parameters and then automatically integrates the new tool into
an application. More complex tools such as the one provided for OSEFA [25]
help users to develop complete applications by allowing them to select from

existing components or sometimes to add their own components. However, the

30

tool also constrains how the framework can be used. so it is not as valuable to
advanced users that want to use the framework in new ways. Existing tools
also tend to be tied to individual frameworks and cannot be used with other
frameworks. or be used to integrate more than one framework together. Users
must learn multiple tools and do integration between frameworks by hand.
but a tool based on hooks can be flexible enough to support many different
frameworks.

The notation of hooks helps to form the basis of the tool by describing how
the framework is intended to be used and showing where changes can be made.
The hook tool can aid users by extending the UML language to include hooks.
Also, the structured description of those changes within hooks can be enacted
interactively with the user of the tool. We will discuss the requirements of the

tool in next chapter.

2.6 UML and Rational Rose 98

The Unified Modeling Language (UML) is a general-purpose visual modeling
language that is designed to specifv. visualize, construct and document the ar-
tifacts of a software system [5][6]. It fuses the concepts of Booch[5], OMT[3],
and OOSE[7]. The result is a single. common, and widely used modeling
language. It captures decisions and understanding about systems that must
be constructed. It is used to understand, design, browser, configure, main-
tain, and control information about such systems. It is intended for use with
all development methods, lifecvcle stages. application domains, and media.
The modeling language is intended to unify past experience about modeling
techniques and to incorporate current software best practices into a standard
approach. UML includes semantic concepts, notation and guidelines and has
static, dynamic, environmental, and organizational parts. It is intended to be

supported by interactive visual modeling tools that have code generators and

31

report writers. The UML specification does not define a standard process but
is intended to be useful with an iterative development process. It is intended
to be used with most existing object-oriented development processes.

The UML captures information about the static structure and dvnamic be-
havior of a svstem. A system is modeled as a collection of discrete objects that
interact to perform work that benefits an outside user. The static structure
defines the kinds of objects important to a system and its implementation, as
well as the relationships among the objects. The dvnamic behavior defines the
history of objects over time and the communications among objects to accom-
plish goals. Modeling a system from several separate but related viewpoints

permits it to be understood for different purposes.

2.6.1 UML views

UML divides the various concepts and constructs into several views [7]. A view
is simply a subset of UML modeling constructs that represents one aspect of
a system. One or two kinds of diagrams provide a visual notation for the

concepts in each view.

Static View

The static view models concepts in the application domain, as well as internal
concepts invented as part of the implementation of an application. This view is
static because it does not describe the time-dependent behavior of the system,
which is described in other views. The main constituents of the static view are
classes and their relationships: association, generalization, and various kinds
of dependency, such as realization and usage. A class is the description of a
concept from the application domain or the application solution. Classes are
the center around which the class view is organized; other elements are owned

by or attached to classes. The static view is displayed in class diagrams, so

32

called because their main focus is the description of classes. Classes can be

described at various levels of precision and concreteness.

Use Case View

The use case view models the functionality of the svstem as perceived by
outside users. called actors. A use case is a coherent unit of functionality
expressed as a transaction among actors and the svstem. The purpose of
the use case view is to list the actors and use cases and show which actors
participate in each use case. Use cases can also be described at various levels
of detail. They can be factored and described in terms of other. simpler use

cases. A use case is implemented as a collaboration in the interaction view.

Interaction View

The interaction view describes sequences of message exchanges among roles
that implement the behavior of a system. A classifier role is the distinguished
from other objects of the same class. This view provides a holistic view of
behavior in a system, that is, it shows the flow of control across many objects.
The interaction view is displayed in two diagrams focused on different aspects:
sequence diagrams and collaboration diagrams.

A sequence diagram shows a set of messages arranged in time sequence.
Each classifier role is shown as a lifeline. A sequence diagram can show a
scenario, that is , an individual history of a transaction. One use of sequence
diagram is to show the behavior sequence of a use case.

A collaboration diagram models the objects and links that show their in-
teraction. The objects and links are meaningful only in the context provided
by the interaction. A classifier role describes an object and an association role
describes a link within a collaboration. A collaboration diagram shows the
roles in the interaction as a geometric arrangement. One use of a collaboration

diagram is to show the implementation of an operation. The collaboration

33

shows the parameters and local variables of the operation. as well as more
permanent associations.

Both sequence diagrams and collaboration diagrams show interactions. but
they emphasize different aspects. A sequence diagrams shows time sequence
as a geometric dimension, but the relationships among roles are implicit. A
collaboration diagram shows the relationships among roles geometrically and
relates messages to the relationships, but time sequence is less clear because

it is described by the sequence numbers.

Extensibility Constructs

UML provides three main extensibility constructs: constraints. stereotvpes.
and tagged values [6]. A constraint is a textual statement of a semantic rela-
tionship expressed in some formal language or in natural language. A stereo-
tvpe is a new kind of model element devised by the modeler and based on an
existing kind of model element. A tagged value is a named piece of information
attached to any model element. These constructs permit many kinds of exten-
sions to UML without requiring changes to the basic UML metamodel itself.
They may be used to create tailored versions of the UML for an application

area.

2.6.2 Rational Rose 98

Rational Rose 98 is a graphical software modeling tool which supports UML
modeling [8]. It provides complete component development capabilities through
integration with integrated development environments such as Visual Basic,
Java, and C++. Rose 98 adds features to enable and simplify the assembling
of components into complex applications or larger components. With Rose 98,
developers can see all aspects of the component model. Rational Rose 98 has

several features as follows:

34

Multi-Language Development and Other Add-Ins

Rose can host multiple. independent, active add-in in a single session. allowing
developers to build components in mixed languages. such as Java. Visual Basic.
C++. and Ada. Also developers can manage add-ins through Rose’s Add-In
manager. This feature allows developers to quickly and accuratelv customize

their Rose environment depending on the development needs.

Round-trip Engineering

Rational Rose 98 supports true round-trip engineering. which is the capability
of forward engineering Rose model components into source. allowing the gen-
erated source to be modified. and then reverse engineering the modified code
back into the Rose model. It allows developers to move easily from analvsis
to design to implementation and back to analysis again. and thus supports
all phases of a project’s lifecycle. Rose’s support for round-trip engineering

ensures that the iterative development cycle is controlled and productive.

Stereotypes

Rational Rose 98 provides a way for developers to extend the graphical no-
tation of UML to support special cases as notations in their model. Rose 98
supports stereotypes. thereby allowing developers to create custom icons that
represent functions and components not currently supported in UML notation
or special cases required to fully define a set of applications. Using stereo-
types, it is possible to accomplish all these, yet maintain UML guidelines and

checking.

Rose Extensibility Interface(REI)

REI enables Rose 98 to better integrate with tools and programs from third-

party vendors and provides extensive capabilities that allow developers to eas-

35

ilv access and extend Rose’s capabilities. It provides three mechanisms to
exchange information with other tools: Custom RoseScripts that are Visual
Basic compatible. OLE and ODBC drivers for database access. The REI en-
ables direct access to Rose model information, enabling other tools to read.
write, and modify Rose models. extend Rose capabilities. and customize icons
using stereotypes. OLE is a core capability of the REIL. The OLE integration
simplifies the information interchange between Rose and other OLE-enabled
applications. By exposing the entire Rose model in Rose 98 via OLE. Rose

can easily share information with other OLE-enabled applications.

36

Chapter 3

Requirements for Hooks Tool

An O-O framework is the reusable design of a system or subsystem imple-
mented through a collection of concrete and abstract classes and their col-
laborations. The concrete classes provide the reusable components, while the
design provides the context in which thev are used. A framework is more
than a collection of reusable components. It provides a generic solution to a
set of similar problems within an application domain. The framework itself is
incomplete and provides places at which users can add their own components
specific to a particular application.

Because frameworks are reusable designs, not just code, they are more
abstract than most software, and consequently documenting them can be more
difficult. Frameworks are designed by experts in a particular domain and then
used by non-experts. The principal audience of framework documentation
is someone who wants to use the framework to solve a given problem, not
someone building a software catheral. Consequently, the documentation for a

framework must meet several requirements. It must describe [20]
e the purpose of the framework

e how to use the framework

37

e the detailed design of the framework.

A set of hooks can satisfv the first two purposes and can assist in the third.
Hooks focus on how the framework is intended to be used. and provide an
alternative and supplementary view to the design of the framework. Hooks are
provided to guide the application developer in how to use a framework. Each
hook captures the relevant knowledge of some potential use of a framework
in a form that provides guidance to application developers. By describing the
hooks. implicit knowledge about how to use the framework is made explicit
and open to study, refinement or reuse.

A good tool that supports the expression and enactment of hooks can make
a framework much easier to use. With it. regular users generaliy do not have to
learn all the details about the framework since the tool will assist in directing
how and where adaptions can take place. The tool performs the tedious tasks
of integrating components into the framework. leaving users to focus on the
specific requirements and design issues for an application.

A main goal of this thesis is to develop the prototype of a visual tool for
developing applications from frameworks using hooks. There are two primary
ways in which we envision such a tool being used. First, application develop-
ers use the tool to quickly develop applications from the framework without
changing the framework core. Second, framework maintainers will use the tool
to evolve or modify the framework itself.

In order to aid application developers. support for exploring the docu-
mentation of the design and use of the framework should be provided, along
with support for actually adding application specific elements (e.g. classes,
methods, variables). Hooks provide the basis for documenting the changes the
framework builder intended to be made to the framework. The structured
description of those changes within hooks can be enacted interactively by the
user of the tool. Aid to framework maintainers is provided by allowing exten-
sions to the framework and the hooks themselves to be made and incorporated

back into the framework. This tool must be flexible enough to support many

38

different frameworks. thereby enabling framework builders to adapt the tool
to their framework instead of going through the expense of developing a cus-
tom tool for each framework. The flexibility to add new components. add
new hooks. modifv hooks or modify parts of the framework is required by the

framework maintainer.

3.1 Requirements for Application Developers

When application developers start development using a framework. the tool
first must create an instance of the framework as a basis for their application
development. The tool incorporates the assumption that the original design
or implementation of the framework should not be modified. This assumption
preserves the benefits of maintaining a common code base between a family
of applications: otherwise, the application is no longer an extension of the
framework. but an evolution of its code base.

The tool distinguishes between two types of classes:

e Framework classes are classes provided with the framework and these

should only be modified in prescribed manner.

o Application classes are classes added to the framework by application
developers in order to implement specific functionality. They can be

modified freely.

As the application is developed, it is important to distinguish between
these two tvpes of classes using graphical properties such as color or shading.
Figure 3.1 shows a simplified view of a client-server framework (CSF [26]) in
UML. The ability to see the overall design of the framework is one of the main
requirements for the tool. UML provides a standard diagramming notation for
both the structure and behavior of the framework through class and interaction
diagrams. What must be added is explicit support of the notion of hooks that

works in conjunction with the UML.

39

Agdress

Data —_— MessageHandler
S-S — Handle Message
Persistence M 9 i . -
— - " CommAwareQbject New CommAwareQbrect
_MailServer
 Fie Manager — g New Inbox
o T Maibox s
atbox _ SimServer
P o Send Message
e New Outbox 5549
. - Submit
_ Inbox__ Outbox SimEngine o

Figure 3.1: The CSF Main View

The overall view of the application. as shown in Figure 3.1. is called the
main view. It contains all of the classes of the framework. along with any
additional classes that are added by application developers. For example,
Data is a framework class while SimServer is an application class. Hooks such
as Handle Message are shown as ovals which connect to the primary class
participant for the hook. Whenever a user tries to modify or delete one of
the framework classes such as CommaAwareObject, a warning is given with
an explanation of the potential danger of changing the framework. There
are cases when the framework must be modified to complete the development
of an application because of some limitation of the framework or because
the application developers are scavenging parts of the framework. Modifving
application classes such as SimServer do not cause any warnings.

Option hooks are a special case, since they include optional components
to the application. that are typically provided as part of a framework library.
Attempting to modify the components themselves produces a warning. but
modifyving the choice of components does not.

Users of the tool can develop applications in two main ways. In the first,

40

application developers use the editing tool to add or modify application classes
as desired. The second. preferred. method is choosing and enacting hooks

within hook iews.

3.1.1 Hook Views

When a user clicks on one of the hooks within the main view. a hook riew opens.
A hook view contains a subset of the overall view of the framework that applies
to the given hook. Both class and collaboration diagrams are contained within
the view. The view forms the context in which the hook applies. in particular.
the participants of the hook and related classes. Since determining the com-
plete context of a hook is difficult. hook views are defined by the framework
builders rather than generated automatically and dvnamically. Two or more
hooks may share the same context and thus the same view. As an example.
the hook view shown in Figure 3.2 provides the context of the Handle Message
Hook. It contains not only the diagrams but also an additional window. the
enacting window. which lists the pre and post conditions of the hook that was

requested by the user along with the changes that can be made using the hook.

Within a hook view. application developers can enact the changes for the
hook. semi-automatically with the tool’s help. The allowable conditions and
change statements are defined by a grammar that is interpreted by the tool.
The tool interactively guides the user through the conditions and changes
contained in the hook. It performs as much as it can automatically and requests
user input as required any required. At the first stage in the process of enacting
the hook. any preconditions of the hook must be satisfied. Next each of the
changes within the hook are enacted, or ignored if the user deems they are
not needed. Finally, all the postconditions of the hooks should be satisfied.
Checking a single precondition or postcondition, or enacting a single change

statement is called a step.

41

L Handle Message Hook r I

Preconditions
[NewCOA subclass of Comm_Aware_Object

Changes

(] new subclass NewMH of MessageHandler

(O NewMH.handleMessage(Message m. CommAwareObject coa) extends
MessageHandler.handleMessage(Message m. CommA wareObject coa)

[new operation NewCOA .register

[J NewCOA .register -> NewCOA .registerHandler(message.type. NewMH)

Postconditions

D none

Figure 3.2: CSF: Handle Message Hook View

42

The application developer has the following actions that can be performed

within a hook vieur

Start enactmnent.

Do a step. (Check one precondition. one postcondition or perform one

of the changes within the hook.)
Undo a step.
Undo all steps and start over.

Suspend enactment. (This action is required in order to perform some

other tasks or leave the work for a later time.)

Invoke another hook. (Hooks which use other hooks place the current

hook view in a suspended state and open up a new hook view.)

Resume with playback. (If modifications to the application have been
made within the context of the hook view, then preconditions must be
checked again to ensure that none of the modifications have violated
preconditions. After the preconditions are checked, changes that were
previously made by the developer can be 'played back’ meaning they are

automatically invoked by the tool.)

Resume without playback. (If no modifications have been made since a
hook was last enacted, then the application developer can resume step-

ping through the hook from where he last left off.)

Commit with all conditions met. (Changes made within the hook view

are propagated to the main framework view.)

Commit without all conditions met. (Changes should only be propagated

when all the postconditions of the hook are satisfied.)

Throw away changes. (Any changes within the hook view are simply

discarded and the view is closed.)

43

3.1.2 View Consistency

\When changes are committed. consistency must be maintained between the
hook views and the main framework view. Consistency is maintained by prop-
agating the changes from the hook view to the main view. All of the changes
are logged by the tool and can be playved back in both the main view and the
hook view. The framework classes that participate within the hook serve as the
anchors that exist in both the framework and the hook view. In general, prop-
agating an arbitrary set of changes from one view to another is a very difficult
problem. Due to the nature of the changes that can be made within a hook,
the problem becomes much simpler. Only application classes are modified, so
two views will always have a set of framework classes in common. Further-
more. the changes involve some modification. but these are mostly additions
of classes, methods or properties that can be easily propagated to the main
view. However, in some cases. there will be interference between hooks that

must be detected.

3.1.3 Hook Interference

Interference occurs when two hooks enact changes which conflict with each
other, or when general changes are made to an application that may conflict

with an active or suspended hook view. Interference can occur when:
e A participant of a hook is deleted.
e A participant of a hook is modified.

e A namespace conflicts arises, such as two classes being given the same

name.

In the general case, whenever arbitrary changes are made to a class in any
view, all hook views currently open with that class as a participant must have

their preconditions checked and potentially undergo a resume with playback

44

C D

Figure 3.3: Mutual Exclusion Subsets

operation.

If the changes only involve the enactment of hooks. then the tool can help
to prevent interference by defining sets of mutually exclusive hooks. Hooks
with the same application class participants have the potential to interfere
with one another. Such hooks are said to belong to the same participant set.
Two hooks within the same participant set cannot be enacted at the same
time. For example, suppose hooks A, B and D have some common participant
application classes. Suppose C does not share any common participant classes
with A. B or D. Then, as shown in Figure 3.3, hooks A, B and D cannot be
enacted at the same time, but hooks A and C can. In this manner, the set of
hooks for a framework can be grouped into mutual exclusion subsets as shown
in Figure 3.3. Since hooks do not allow the deletion of participants, only hooks
which modify the potential participants of hook A need to be considered for
belonging to a common participant set for hook A.

Currently, the framework builder defines the sets of mutual exclusion in

HookMaster. The default is that all hooks are considered to be in the same

set and therefore hooks can only be enacted serially. Namespace conflicts can

45

oceur for example when two new subclasses of a single class have the same
name. This potential conflict can be checked prior to committing the changes
to the hook view.

Hooks are automatically considered to interfere with themsclves. but this
is not alwavs the case. A hook may not conflict with itself if it only adds
things. unless the hook is meant to be used only once. Two separate views
(two different windows) of the same hook may not have the same application
classes as participants, and therefore shouldn’t be in conflict. However. one
view update may be overwritten by the second view update. The general
problem of merging view updates is very complicated. Currently. Rational
Rose 98 insures that such updates are serialized.

Two hooks can also invoke incompatible options within option hooks. The
options should be specified in pre or post conditions to ensure that this doesn’t
happen.

The tool does not consider implicit conflicts such as those created by a
method or class which calls a participant during normal framework operations.
A distinction can be made between interference during the enactment of hooks
and ad hoc changes to the code done outside the hook enactment process.
Such ad hoc changes can cause some subtle conflict within the application and

should be avoided.

3.1.4 Hook Books, Examples and Use Cases

Design diagrams and hook views should not be the only means of present-
ing the framework. Other information such as use cases, examples and class
descriptions give additional information to the user to aid in application de-
velopment. Use cases provide a means of describing typical scenarios, often
involving sets of actions associated with framework classes. They are valuable
to people first learning to use the framework, or learning to use the framework

in a different way.

46

Example applications are equally valuable to show how the framework can
be used. Users typically grasp concrete examples more quickly than abstract
descriptions. The examples illustrate both of the framework in general (sample
applications) and of individual hooks and use cases.

Descriptions of classes and methods are also necessary. These help appli-
cation developers to understand the purpose of a class or method as these
descriptions are not contained within the hook descriptions.

The hook book is a listing of all hooks within the framework. The book
lists the name and the requirement sections of the hook. The hook book can be
used to browse the list of hooks. or it can be searched for particular kevwords
or matching requirements. Additionally, the hook book can be used to monitor
which hooks have been used. how many times they have been used. and which
hook views are currently open among all of the multiple users of the tool on a
given framework.

All of these things. the use cases, the examples, the class and method de-
scriptions, and the hook book. are linked together to form a web of information
about the framework which can be easily browsed. Use cases link to a series of
hooks that are used within the use case. They and hooks also point to exam-
ples of the use of the framework, and conversely, examples point to the hooks
that have been used in constructing the examples. Hooks also point to the
descriptions of the methods and classes that participate in thermn.

Finally, a log of all of the changes made through the hooks is kept which
can then be reviewed as parts of a technical review or when errors are detected.
The log is also an invaluable tool when changes to the framework itself are
made (ie. a new version is released). If hooks have changed in the framework,
the log will show which parts of the application have to be modified to work

with the new version of the framework.

47

3.2 Maintainers and Developers

One of the kev advantages of the tool is its ability to be used for any frame-
work. Once the initial development of a framework is completed. the frame-
work builders import their design and codes into the tool and then define the
hooks for the framework. However. the tool as currently designed and proto-
tvped is not appropriate for the initial development phases of a framework.
Development typically happens using a tight spiral model, rapid development
approach. Constantly updating the framework model for the tool would re-
quire too much unnecessary overhead. Once the code base has become stable.
it can be imported into the tool to aid in the use and future evolution of the
framework.

During evolution. changes are typically made to the main view and then
the hook views are updated accordingly. Maintaining consistency is usually
not a major concern. since modifications should be made by few maintainers.
Evolution of the framework involves two main areas: modifications to the
hooks and modifications to the design of the framework itself.

Hooks can also be modified by framework maintainers, either to correct er-
rors, to improve the hook or to evolve the underlying framework has evolved in
some way. The main difference hetween modifying an existing hook and adding
a new hook is that the hook description and view already exists, otherwise the
same process is followed.

The framework itself will evolve over time to add new functionality or to
recast existing functionality in a new way. Changes to the existing framework
can be accomplished within the tool (after turning off the warnings). Any
changes to the participants of a hook will require changes to the hook and will

likely require changes to existing applications as well.

48

Chapter 4

Architecture for Realizing

HookMaster

Existing tools, such as graphical user interface builders [27], only support one
framework and are not easily customized. Hooks. which describe the intended
use of a framework, can form the basis of a general, flexible tool that supports

application development for any O-O frameworks.

4.1 Analysis

A general tool will enable framework builders to specialize the tool to their
framework instead of going through the expense of developing a custom tool
for each framework, or not providing tool support at all. Users of the tool
can develop applications in two main ways. Firstly, application developers
use its editing capabilities to add or modify application classes as desired.
The second, preferred, method is enacting hooks within hook views because

the hook description is a formalized description for application development as

49

prescribed by the framework developers.

A hook is defined by a grammar made up of several sections. The tool
provides a parser to interprete hook statements. The tool processes the ac-
tivities contained in the hook description. performing as many actions as it
can automatically and requesting information when the user interaction is re-
quired. Aid to framework maintainers is provided by allowing extensions to
the framework and the hooks themselves to be made and incorporated back
into the framework. The tool allows maintainers to add new framework com-
ponents, add new hooks, modify hooks or modify parts of the framework. The
tool incorporates the assumption that the framework view and hook views are
based on UML as support by the Rational Rose tool [5][8]. UML provides
a standard diagramming notation for both the structure and behavior of the
framework through class and interaction diagrams [7]. and Rational Rose is
one of the few tools at present that implements UNML notation. A key feature
of the hook tool is its explicit support on extended notation for hooks in UML.
Also, the tool includes support for interpreting each statement of the change

section within hooks. The user can semi-automatically enact with hooks.

4.2 Design

The following section describes the architecture of the tool. Each subsystem
is described in detail, and can be mapped to an actual design description in

the Subsystem Description section.

4.2.1 Logical System Architecture

The tool is partitioned based on common attributes into an object-oriented
architecture with the following five components as shown in the component

diagram in Figure 4.1. The Monitor is a system module, and according to the

definition of a module in UML. it can be represented as a component. Rose

is treated as a package that has separate specification and realization parts.

j User Intertace
T Rose
_f ’ = Monitor

ya
o4 A9

—— Parser T HookTable

- .T__J < 7777777777777777777 . .- -

—]

i

Figure 4.1: Component Diagram of Architecture

4.2.2 Subsystem Descriptions

User Interface

Two of the tool requirements are to support the application developer in
selecting a hook and then enacting that hook.

Hooks are currently text-based, yet it is relatively difficult to understand
them independent of examples and other framework documentation [16]. Hooks
are targeted at the problem of understanding interactions between the frame-
work and applications. A more graphical definition representation for hooks
has been developed for incorporation into the tool, thereby allowing the user
to locate the variation points corresponding to the hooks easily and quickly.

Consequently, an intuitive easy to use interface is a key requirements of the

51

tool.

[n order to adequately represent the hook mews. the user interface has two
parts. Firstlv. a main window displays the hook. and provides a menu that
the user can easily use to select the functions supported by the tool. The hook
description is shown when the user selects a hook from a list of the current hook
names. The user can enact the hook by simply clicking the enactment button.
The preconditions. change statements, and postconditions of the hook are semi-
automatically executed step by step. For new element change statements. the
corresponding dialogs are popped up, and the user inputs the application name
within the dialog. All new applications are shown on the hook view. The other
tvpes of statements can be automatically examined through the user interface.
Each statement is clearly highlighted after it has been enacted.

The second part of the user interface contains windows for Rational Rose
98 to represent the hook view. What part of the application representation
is presented automatically to the user in the Rational Rose 98 windows
depends on the nature of the interactions that take place during enactment.

The user interface works closely with the monitor. [t is the main program
that initializes the svstem when the tool starts. The user interface also handles
the input from users, and receives updated state information from the Moni-
tor. The User Interface component includes the following classes: MainUI,
FileManager, NewClass, NewProperty, NewOperation, Caller and
the Rational Rose 98 API. Their inter-relationship are shown in the class

diagram in Figure 4.2.

Monitor-Controller

The Monitor-Controller controls the exchange of state information and
operations among the User Interface, the Parser, and Rational Rose 98.
Specifically, it monitors the user interface state and notifies the corresponding
subsystems when the state changes, as shown Figure 4.2.

A critical part of the design rationale for the Monitor-Controller is the

92

provision of strong support for reuse and evolution of the svstem by imple-
menting a general broadcast mechanism for system events. Other subsystems
in the tool can register an interest in an event by associating a function with an
event. When the event is announced. the tool itself invokes all of the functions
that are registered for the event. New subsystems may be added to the existing
system by registering their interest in events in the Monitor-Controller. For
example. in the future. when the Java development environment is integrated
with the tool. this can be accomplished by simply registering the development

environment interface to receive the events of the system.

Parser

A hook description is written in a specific format made up of several sec-
tions. The sections detail different aspects of the hook. The change section
is the section of the hook that prescribes the changes to the interfaces. associ-
ations, control flow and svnchronization among the components listed in the
participants section. When the user enacts the hook. all change statements
that can be handled are executed. All statements that require user assistance
are enacted in cooperation with the user. All allowable condition and change
statements are defined by a context-free grammar, that helps to make the
description precise and uniform, and aids in the analysis of hooks.

The Parser works closely with Monitor-Controller and Hook Table.
The Monitor-Controller takes as input the text description of hooks. and
sends it to the Parser. The Parser interpretes the changes statement of the
hook according to the change statement grammar, and stores the identifier and
other kev information in the Hook Table. The cHookParser class belongs

to the Parser component as shown in Figure 4.2.

Hook Table
As a hook is enacted, a log is kept of all the activities associated with the

change statements. This log can later be reviewed when errors are detected.

33

or for hook enactment plavback. The log is also invaluable in determining the
effects of changes to the framework itself (ie. a new version is released).

The Hook Table stores all identifiers. other key information from the
Parser. and anv inquiry information from the user. All informations in the
Hook Table is persistent and is therefore retained when the application de-
veloper quits the svstem.

The Hook Table contains cHookTable, cHook, cClass, cProperty,

cOperation, cParameter and cStatement classes. as shown Figure {.2.

Rational Rose 98

A key requirement of the tool is that it works in conjunction with Rational
Rose 98. Using the UML notation. we can create and refine hook rmeus
within an overall design model representing the framework domain. A overall
model in Rational Rose 98 can contain many different kinds of elements.
such as classes. objects. use cases. and their inter-relationships. A model
contains diagrams and specifications. that provide a means of visualizing and
manipulating the model elements and their properties. We can control which
elements. relationships. and property icons appear on each diagram. using
facilities provided by the application window of Rational Rose 98. Within
its application window. each diagram is displayed in a diagram window. and
each specification is displaved in a specification window.

When the code base of an object-oriented framework is finished, Rational
Rose 98 can reverse the source code into UML diagrams. From this represen-
tation it is possible to create the framework view and hook views. In order to
capture the design of the framework to which the hooks can be attached. each
view contains two kinds of diagrams. The class diagram is used to represent
the static relationship between classes of the framework, and the collaboration
diagram is used to present the dvnamic behaviors. Each hook view is a subset
of the framework view, which forms the context for the hook description.

Rational Rose 98 only works closely with the Monitor-Controller sub-

34

systemn. It is invoked by the Monitor-Controller when the developer starts
the tool. The Monitor-Controller accesses to the hook documentation and
the participants from Rational Rose 98 when the developer chooses a hook
view from the user interface. Also. when the developer enacts a hook. the
Monitor-Controller notifies. modifies or creates the elements within hoth

the framework and the hook view in Rational Rose 98.

4.2.3 Class Diagram

The static relationships among classes of the hook tool are represented as
Figure 4.2. The detail description of cach class will be discussed as part of

the implementation description in the next chapter.

4.3 Use Cases

When the initial development of a framework has been completed, the frame-
work builders only have to import their design into the tool and then define
the hooks for it. That is, once the code base has become stable. it can be
imported into the Rational Rose 98 to create the framework view and hooks
views which are nested in the logical view of Rational Rose 98.

The following use cases describe high-level interactions between the tool
user and the tool. Interactions are mainly defined in terms of actions users

take through the user interface of the tool.

4.3.1 Use Cases Diagram

The use cases diagram (Figure 4.3) represents external behavior of the entire

system as visible to framework users.

19)8Weledo

<<3|NPON SSE|Y>>

1313weledo- uonesedQd Ayadorgd
<<BINPOIA| SSEID>> | | <<BINPON SSEI)>>
N\ it
uonessdQa- Auadoida-
N
v sse)nd

-—————— <<3|NPOA] SS€|)>>

<<3|NPO $SB[J>>|_ SSEIDI-
wawsieigy.] s ey
r -
! JuauIaielS " <<8|NPOIA SSE|)>>
| <<8INPOjN 5S€ID>> OO $EIS0 8198140010+
T | <<8inpoj Sse|Q>> s
./ Teieigos . ’ INutew
ooy . HIEISI+ <<W04>>
18)j00U0D) | T \
ddyasoi+ <<IINPON>> flf.t/
aso |, | 10O
86850y | <<@Inpon>>
<<abexoeds>> Tk iebeuee 4
o e \ <<WIo4>>
18SI1B4)400H2 = 19|18
<<a|npopy sse|>>| | uonessdomeN | | cunogss| [Apadoigmen SSE|IMBN
<<wio4>> <<Wio{>> <<ulo 4>>

Figure 4.2: Class Diagram for UI and Parser Subscriptions

Setup

Open Modei

Reptay

User

Enact

Save

SaveAsNewVersion

Figure 4.3: Use Cases Diagram

4.3.2 Setup

e The user starts up the tool to work on a new application for the first

time.

o The user interface displays the main window and the application interface

of Rational Rose 98.

Figure 4.4 shows the scenario.

4.3.3 Open Model

The tool initially assumes that a model file exists. If it does not. the framework
builder has to reverse the source codes of the framework into UML diagrams
within Rational Rose 98, and create the framework and hook views, then, save

these as a model file of Rational Rose 98.

37

e e m .- -

()peo wio)

< -

Figure 4.4: System Setup

58

e The user opens a model file by selecting the open menu from the main
window. A dialog box is presented that contains the list of directories

and files. The user selects one directory and one model file to open.

e The application interface of Rational Rose 98 opens the model file. and

displayvs the framework view and the hook views in the browser window.

e The main window receives from Rational Rose 98 the names of the frame-
work and all the hooks within the model file. and displays them in a list

on the main window.

e The user can view the framework view and the hook view in two ways:
1. selecting one name from the list of the main window. in which case
the view will be displaved on the diagram window of Rational Rose 98
interface. or 2. clicking one icon that represents the view within the

browser window of Rational Rose 98 d:.ectly.

Figure 1.5 shows scenario for Open Model use case.

4.3.4 Replay

In this use case. changes that were previously made can be played back without
modification. A scenario diagram for the replay activities is given in Figure
4.6 (The read_from file function uses two different data types as paramter. It
gets the string of the file name at the first time, then, use the file index handler

which is an integer.).

e The user selects the replay item from the main window. A dialog displays
a version tree including all versions that were previously made. The

model file of this version is opened when the user chooses one.

e A list of the main window displays the hooks that have been completed.

The application information can be played back to the user within the

59

<

<
M 18810 >

(BuSHOOHPPYIY

: .xoquv:o_.me&:oonooIwﬂmah

m _" : !
; m o< weiBeigiogpeey B
: < Em.am_omwm_on.mo_ !
< :
(Jweibeigasoyiad
()eurBumgpuy >
>
sauoBaie)|yvisb
Bapoywuado
19POWu >.
< : .
ajyi3popuado i <
_oﬂmmxda. Ry V YOOHO™ SAEINOOHT DL Ji(02)1H o , - 1101 I . _3':32. .
, R . _. ; ‘8__., ﬁl et
8|qe] %00 .
. :hwm_mn.! ‘) _n“: H \) o1u0D-10NuON ,w°m:o.=_ 1980

(Buins 'BULIS)UBWNIOANOOHPPYIU

¥I1D " uadonuw

Figure 4.5: Open Model

60

main window and the application interface of Rational Rose 98 by choos-
ing a hook name within the list. or clicking one icon from the browser

window within Rational Rose 98.

4.3.5 Enact

The user can enact with the hook. The scenario is shown as Figure 4.7.

e The user chooses a hook name from the hook list on the main window.
The text description will be displaved on a text field of the main window.
Meanwhile. the corresponding hook view is shown on the diagram window
of Rational Rose 98. which includes a class diagram and a collaboration

diagram.

e The user starts enact the hook by selecting the enactment element from
the main window (Note: checking a single precondition or postcondition.

or enacting a single change statement is called a step.).

e All preconditions are checked first. If thev are satisfied, each of the
changes within the hook can be made. When the input is required in a
step, a dialog box for this statement is popped up to ask for user input.
The change the user requests is reflected in graphical UML notation on
the hook view within the diagram window of Rational Rose 98. The next

step is enacted.
o If the user undoes steps, the changes within the hook view are discarded.

e When a hook uses another hook, the current hook view is placed in a

suspended state, and the new hook view is opened up.

61

c&m.c:o_; Eo:. peel

H <
cQwEo_ (186e1u)8y) Woy pees
(1e6eju))ay} woi) pess

, mME:o___. woij ‘u.aa_
(vo_.uo_u <

'
i
'
v
'
l
‘

| eiqeL xooH ‘

 Jen101u0g-10HU0W A
+l ;

a:_zwvo,_::Eo:uuac.

|1epowusdo

s
R g

|

(JeBusud~LuQ

1
'
'
'
'

c,_o,_ol-ucasson_v

(Iwon0~uedonuw |

adepe|u| 18S()

N

Figure 4.6: Replay

62

Yoo

di “uewesou . V_
()moys
>
()ejea1d
-
()di"1e6 ,
. . | '
(1aBaiupiuswaieis 166 > |
(uesjooghiuswaieis~aibuis~eynoexe < . |
: , (ueejoog)un, .ﬁ__,u....;o_\,z.:e)
i - i< upIS)eweNyHYSNd
: B ST e e bom e e —
: : (Buns)4o0HPuUIdY L ,
: ' |
_ : I
m “ U e
‘< ﬂEm‘am_m__ooumo_
m (NereB >
: “ < weiBeigssejppeo) ;
T Jengpuy e .
" CoojonoTIsn
. ey s
e|qe] YOOH lejtonu , _ aoepelU| 185N ,4.

0))-I0}UOW

:

Figure 4.7: Enact

63

4.3.6 Save

All user activities can be saved in the current model file. The scenario is
given in Figure 4.8 (The write_to file function uses two different data types as
paramter. It gets the string of the file name at the first time. then. use the file

index handler which is an integer.).

o The user selects the save element from the main window.

e The changes that were done by the user can be saved into the current
model file as graphical UML notations within Rational Rose 98. Also.

the tool automatically creates a text file to log all of the changes.

4.3.7 SaveAsNewVersion

[n this use case, the changes that were completed can be saved as a new
version. The scenario is shown as Figure 4.9 (The write_to_file function uses
two different data types as paramter. It gets the string of the file name at the

first time. then, use the file index handler which is an integer.).

e The user selects the saveas element for the main window.

e The changes that were done by the user can be saved as a new version

within the version tree.

4.3.8 Exit

The user quits the tool. The scenario is shown as Figure 4.10.

e The user selects the exit element for the main window. The main window

is closed.

o The application interface of Rational Rose 98 is notified to exit.

¢ The tool is shut down.

64

| | 3 |
, m : : m m ones m
m m m " m m |
H " ! ! ! “ | !
! m [” " _
. < ' H
. ! : (1eBajup)ap— 01 glum ;
e m | m M
(19B3)u))e)1 01 BIIM= (1eBayur)aiy~01"aweuxooy~elum ! | ,
: : _ | ' i |
< IS ;
(1eBaur)aiy ™01 aluM ™ (Buyig)ayy o alum /< ghe Snow
| m m TSI
UswBIeISy ™ YOOHS ™ SIqeTHOOHI ™ WovIgD JOTUOW ™~ a%0I T MureN ™

T
a|ge] %ooH - J8jjonu aJeyelu| 18sN _
] ! " | 0D-JONUOW o |

~

Save

65

Figure 4.8

m m ,“ m m | ! 1
m m | N m < |
! __ : " ‘ { ()seenes _
! ! ! ! ! “ !
m m e b | |
5 . (1eBoiu)ayy 01 alm : _
- ,ﬂ | | |
N . ‘ ! " |
(i8Belun)al 01 BWM | (;0B0uf)epy~0)"euseUNOOY"BIIM " r
: m A < r "_ L
! ' (ieBaupeny o em < - -t : ,
! , ¢ {Bums)aly o1 alum
! _ |
e .
m (Onawn < M
” ; (211D~ uoiIs1IoAMBNBABSNUW

| | | o

Sttt b SR Y A .

o o s

_v. 8|qe | YOOH . _o__ozcooio._,cos_b_ aoeps|u| Jesn h

66

Figure 4.9: Save As A New Version

exit

0

mnuExit_Click

Figure 4.10: Exit

67

4.4 Summary

In this chapter we have presented several aspects related to the design of
the HookMaster tool according to the tool functionalities. First. we have
described the architecture of the tool. We partitioned the system into five
components. The dependency relationship between two components represents
a change in which one component may affect or supply information needed by
the other component. We have added implicit invocation to the system instead
of tightly coupling the user interface and Rational Rose 98 through direct
procedure calls. One important benefit is that it provides strong support
for reuse. We have designed a module Monitor-Controller to monitor and
control events between the user interface. Rational Rose 98. the hook parser
and enactment engine. We register a component (inodule) to receive announced
events by associating one of its procedures with each event of interest. In this
manner. the system can be easilyv integrated with other tools.

Secondly, we introduced the use cases that define the coherent behaviors.

All use cases describe external behavior of the syvstem as it appears to users.

68

Chapter 5

Prototype Implementation of

HookMaster

5.1 The Scope of Implementation

To demonstrate that applications using hooks can be well-supported with a
visual tool on UML, we implemented a prototype called HookMaster for the
hook tool. The focus of the work is on representing knowledge about the use
of object-oriented frameworks to application developers. The prototype fol-
lowed the design of the framework as identified in the previous chapter. The
hook model serves as a basis for building HookMaster. This chapter also
describes the process that application developer uses to develop applications
from a framework, and how reuse information can be extracted from the archi-
tecture of a framework. Through the tool, we validate that the hooks can be
graphically presented in a way that allows the framework user to easily build
applications.

The prototype handles all types of change statements except these involv-

69

ing the explicit removal. fill-in and modification of code. Our prototype suc-
cessfully provides support for the selection of hooks and the enactment and
replay of individual hooks. It also provides some support for the evolution of
frameworks. although additional work needs to be done in this area in the fu-
ture. The prototype demonstrates how hooks can be connected to UML design

notations.

5.1.1 Technological Consideration for Prototype

The prototype implementation is based on the assumption that the hook views
are nested in Rational Rose 98. Rational Rose 98 supports a relatively com-
plete implementation of UML, and offers the Rose Extensibility Interface (REI)
to enable the integration of Rational Rose 98 with the other tools and pro-
grams. REI provides extensive capabilities that allow users to easily access and
extend Rose’s capabilities [8]. Figure 5.1 shows the core Rose components.

the REIL and the relationships between them.

% F‘A%s;ica(ion L Rose Script

Diagrams Ny REI
<
< :5 Rose OLE
Model ! Automation
Elements [;E

Figure 5.1: The Rose Extensibility Interface

Communication with the REI is through Rose Scripts that are Visual Basic
compatible or through Rose OLE Automation. In both cases, the REI calls

used in the prototype development are defined in the Rose Extensibility In-

70

terface Reference[8]. A main design consideration was the clear separation of
the user interface from Rational Rose 98. To accomplish this. the Rose OLE
Automation was deploved to share information with Visual Basic which is also
an OLE-enabled application.

By loading a type library for Rose OLE Automation. we were able to use
Rose class names to access the REI from the Visual Basic environment. That
is, when working in Visual Basic, instead of using the Visual Basic object tvpe
Object. we used the name of the actual Rose class. Also. we were able to
check the syntax of the properties and methods at compile time (early binding)
instead of when the code is executed (late binding).

For Rose OLE Automation, the Rose Application object must be created in
order to control the Rose application. There exists a global Rose Application
object for Rose OLE Automation. To accomplish this, an instance of a Rose
Application object is initialized when using Rose OLE Automation by calling
CreateObject from within the application in Visual Basic. This call returns
the object which implements Rose API's application object. We use the Rose
Application object to get the current model by using a property called Cur-
rentModel. This property is also used subsequently to open, control. save.
or close a Rose model.

Visual Basic is a good visual development tool for rapidly implementing
the prototype, and provides support for OLE. Visual Basic was used as an
automation controller to call REI, and extract the relevant information that

we need from a complex framework model.

5.2 Implementation of the Prototype

Following the previous the design of the prototype in Chapter 4, this section

describes the implementation of the prototype.

71

5.2.1 Rational Rose 98

To comprehend the quality of the design of an object-oriented framework. a
distilled presentation of design information and rationale is better than the
mere presentation of source code. If the right information is extracted from
the source code and presented in a more abstract, vet understandable form.
source code access should not be necessary to understand the overall framework
design. Generally. the framework unifies data structure and behavioral features
into a single generic view for a family of applications. Data and behavior are
closely related. The UML provides the static view using claess diagrams and
the interaction view using collaboration diagrams to capture information about
the dvnamic behavior of a system.

In order to improve the understandability and usability of the framework.
the source code of the framework is reversed into UML diagrams. and hook
views are then created using Rational Rose 98. Class diagrams are generated to
represent the object structure of the framework, and collaboration diagrams are
created to represent the dynamic behaviors between objects. The framework
diagram is treated as the main view. To create the hook views on the framework
view, we deployed UML'’s stereotyping feature.

UML provides three extension mechanisms to allow modelers to make some
common extensions for modeling without having to modify the underlying
modeling language. The extensions can be defined, stored as part of a model,
and passed to other tools. The extensibility mechanisms are constraints, tagged
values, and stereotypes.

A constraint is a semantic restriction represented as a text expression.
Constraints can express restrictions and relationships that can not be expressed
using UML notation. They are particularly useful for stating global conditions
or conditions that affect a large number of model elements. For example, the
constraint xor between two associations that share a common class means that
a single object of the shared class may belong to only one of the associations

at one time.

72

A tagged value is a pair of strings. a tag string and a value string that stores
a piece of information about a element. The tag is a name of some property
the modeler wants to record. and the value is the value of that property for the
given element. For example. the tag might be author. and the value might
be the name of the person responsible for the element. Tagged values can
be used to store arbitrary information about elements. They are particularly
useful for storing project management information, such as the creation date
of an element. its development status. Tagged values can also be used to store
information about stereotyped model elements as discussed below.

The most powerful mechanism is the stereotype which is a special model
element defined in the model itself. The information content and form of a
stereotype are the same as those of an existing base model element, but its
meaning and usage is different. A tool can store and manipulate the new ele-
ment the same way it does an existing element. The general notation for the
use of a stereotype is to use the svmbol for the base element but to place a kev-
word string above the name of the element. For example, the kevword string
communication can be placed above or in front of the name of the model
element that is used to support the communication aspect of a framework.
We use the stereotype to tailor UML to create a graphical representation for a
hook.

The main view of the framework is treated as a package, we define each hook
as a category which inherits from the package, and each category is stereotyped
by the hook name. Each hook view is a subset of the main framework view,
which contains the participants within the hook, including a class diagram, a
collaboration diagram, and the external documentation of the hook description.

The two basic elements of UML class diagrams are classes, packages and
their relationships (e.g. generalization, aggregation, association, and depen-
dency) [29]. Packages allow collections of classes and class hierarchies to be
formed as a means of abstraction. The framework is considered as a package,

and each hook is a category which is a subset of the package. In UML class

73

diagrams, a class definition has three parts: the class name. attributes and op-
erations. Connectors depict relatiouships. or links. between components and
may be constrained to a subset of classes or packages.

A collaboration diagram models the objects and links involved in the imple-
mentation of an interaction. It can be constructed by taking the union of all
the collaborations needed to describe all the operations of the object. Usually,
a collaboration diagram contains objects of the classes. their links and mes-
sages. Each message has a sequence number. and is shown as labeled arrows
attached to links.

Rational Rose 98 allows users to use a set of library functionalities to access
each of elements automatically. Figure 5.2 is a class diagram showing the class
hierachy of UML elements in Rational Rose 98. An element is the abstract
base class for most constituents in the UML. [t acts as an anchor to which a
number of mechanisms may be attached. An element is specialized to model
elements and view elements. A model element is an abstraction drawn from
the system being modeled, such as a class. a message. and so on as shown
in Figure 5.3. A view element is a projection of a single model element or a
collection of model elements. The view elements are graphical symbols used
to build the models (diagrams). The view elements can also be specialized to
diagrams. All elements have names. A package is a grouping mechanism that
can own or refer to elements (or to other packages) as shown in Figure 5.2. In
the prototype, we treated the framework view as a package, and all hook views
as categories stereotyped as subsets of package. The elements within a package
can be of various kinds, such as model elements, view elements, models.

Most model elements have corresponding view elements that define their
representation. The class diagram in Figure 5.3 shows how the model elements
are specialized to the modeling concepts used in the UML by Rational Rose

98.

74

 Package |

0.1 .
owns ’ references

,element .

Ve

- ,____:'__1

Mode! Element | projection

_ View Element

Class Diagram;

1. 0.7

Diagram Collaboration Diagram _

Figure 5.2: The Diagram Class Hierarchy

Mode! Element <] Type

;P Primitive Type |

: :
;rlnstance Message | Parameter ;| Collaboration ! Relaﬁonshib . Stereo Value
| . . . [-

[A D .
Generalization Dependency | Association : Link
: B

Figure 5.3: The UML Elements

75

5.2.2 User Interface

The user interface of HookMaster contains a main window. a Rational Rose
APL and a set of dialogs. The main window and dialogs are implemented using
Visual Basic 3.0. and interact with the Rose interface by OLE automation as

shown in Figure 5.1

’-VB_F;——me RoseDocuménqur'\dbv}

. VBMenu _ T -] I

— e T \::,} <<Farms> RoseBrowerWindow

: - T2 MainUl R

VBToobar -~ T ' " RoseDiagramWindow
VBTedFem - RoseAm, osetonter.
T {————‘f\' ! Rose “ —

U ‘The a iation o RoseMenu

. VBList is created by ‘ e

[| the Controller T

- * RoseAP|

Figure 5.4: The class diagram for the user interface

The MainUI class is the class by which the tool is entered. When the user
starts, this class sets up the system, and invokes Rational Rose 98 through
the Controller class (see Figure B.8 in Appendix B). To use Rose as an OLE
Automation server, we initialize an instance of a Rose Application object. We
do this by calling CreateObject from within the MainUl class (see Appendix
B Figure B.1). The following Visual Basic code shows how to instantiate the
Rose application object:

Set roseApp = CreateObject(“Rose.Application”)

roseApp.Visible = True

The visibility of the interface of Rational Rose 98 is controlled by the Visible
property within the MainUI class. After creating the Rose Application object,

76

we may get all the application elements in the Rational Rose 98 specification by
accessing the Rose library using the REIL Figure 5.5 shows the interface classes

used to interact with Rationl Rose 98. After the user opens a model from the

<<intertace>>
IRoseApplication
_ : ~.CurrentMode! [RoseModel

RoseAppiiééﬁo?

- —- newModel()
exit()
 <<intertace>>
!RoseModel
. RoseModel ~...Name

getDiagram()
getSelectedClass()

<<Interface>>
— _____._'RoseClass
'Model: IRoseModel
jAttribute: IRoseAtributeCollection
. .Operation IRoseOperationCollection

RoseClass :
oo /

-

! addAttribute()
‘addOperation()
‘getAttribute()
'getOperation()
|getConnector()

Figure 5.5: The Implementation for Rose Interface

user interface. the rose App which has a property called CurrentModel will set
up the model opened as the current model. Subsequently, we can retrieve all
the elements from within the model as depicted in the scenario diagram Figure
5.6.

In the HookMaster prototype, one of the first activities involves opening
the model which contains the main and hook views (Figure B.2 in Appendix B
shows the FileManager class which supports the user’s selection of the directory
and the version of the model files). All the hook names in this model can be
retrieved using GetAllCategories function of the REI in the MainUI class,
and displayed on the Listl.

When the user selects one hook name from the List of the main window, the

corresponding hook view can be opened in Rational Rose 98, and it contains a

77

-Rose AP} _IRoseAgglication _iRoseModel . IRoseClass

stantWinzard
‘ I ()> "GWqu_elf,); getDiagramy)

getSelecledClass(L_

L getClassName()

: getAttribute{)

! getOperation()
. r getConnector()

Yvvy

exit()

Figure 5.6: Rational Rose Scenario

class diagram and a collaboration diagram. Within the hook view, all elements
of the class diagram and collaboration diagram can be accessed by using the
functions of the REIL. According to the discussion in last subsection, we extract
components, connectors. objects. messages and links. Also, the REI provides
the property of documentation which can be used to access the text descrip-
tion of the hook within the hook view. A text field in the MainUI class displays
the hook description.

The prototype has the capability to replay the previous application devel-
opment activities. A version tree is established to manage the various version
of the model. When the user finishes enacting the hook, all the information
concerning the enactment is saved in the current model version. Otherwise,
the prototype allows the user to save the model as a new version by creating a
subdirectory in the current directory. The version name consists of the model
name and the system time, that is, the name of the model file plus the current
system time (year+month+day-+hour+minute). Each version also has a log

file called display text file which stores the entire state of Rose model and the

78

breakpoints.

The FileManager class managers the versions of the model file as shown in
Figure B.2 in Appendix B. After choosing one version. all the hooks completed
so far in an enactment of that version are displayed in the List2 of the main
window. Those that remain to be completed are shown in the Listl.

Most importantly, the user can enact with hook views through the user
interface. Several different tvpes of dialogs are popped up based on the kind
of statement in the change section of the hook. The results of an enacted step
are shown in the Rose interface automatically. In Appendix B, Figure B.3
shows the class implemented for creating a new class. Figure B.4 and Figure
B.5 show the classes for adding new attributes and operations. The Caller
class, shown in Figure B.6G allows the user to select an existing class of the

framework.

5.2.3 Parser

The prototype contains a parser that analyzes all the hook descriptions, which
are defined by a context-free grammar [32]. The Appendix A lists the hook
description grammar. The parser has been implemented by the parser class as
shown in Figure B.9 in Appendix B.

Lexical analysis is the first stage in processing the hook description. The
input to the lexical phase is a sequence of characters. The analyzer groups
them into lexemes, which are word-like elements, such as keywords, identifiers,
and punctuation. These elements are indivisible units of the hook description
grammar. The purpose of lexical analysis is to identify the lexemes in the input
string and replace them with tokens. The tokens identify what the lexeme was
in sufficient detail for parsing. The output of the lexical phase is a sequence of
tokens. This sequence is an abstraction of the source. For example, the hook
change statement:

New subclass NewCOA of CommAwareObject

79

has five meaningful entities: three kevwords New, subclass and of, and two
identifiers NewCOA and CommAwareObject. The tokens for keywords
will always be the same. The tokens for identifiers are pointers to a particular
string. which is the identifier name recorded in the hook table.

The next stage is the syntactic analvsis in which the parser processes the
stream of tokens and determines whether the svntactic structure of the input
string matches the hook description grammar. Specifically, the input is the
sequence of tokens arising from the lexical analvsis and the parser is to organize
these into a correct parse tree that is based on the hook description grammar. A
parse tree is a hierarchical representation of a statement. starting at the root
and working down toward the leaves. The general data flow of the parsing

phase is illustrated by the Figure 5.7

token o
text | Lexical N o Parsing |_parse
Analysis | tree
3 get next token i

4\

————= | Hook Table

Figure 5.7: The parsing diagram

In the prototype, we deployed a common method for writing parsers called
recursive descent. In this method, the parser proceeds by a straightforward
inductive analysis of the hook description grammar. The basic idea is that
a procedure is defined for each nonterminal of the grammar. The tokens are
scanned from the left to right, and each time a nonterminal is encountered,
the corresponding procedure is called, possibly recursively.

The hook description grammar is suitable for recursive descent parsing be-
cause the language is small, and parser efficency is of little concern. The
grammar starts with the root non-terminal((statement)) and works down to-

ward the terminals, i.e., the leaves of the grammar parse tree. The expected

80

terminals in the grammar are matched by the parser against the actual token
tvpes returned by the lexical analyzer.

The parser is built directly from the productions in the grammar. Non-
terminals become function calls. terminals are matched directly against tokens
by the token tyvpe returned by the scanner. To simplify coding. the returned
token type is kept in a global variable. The lexical analvzer is called after
a match of a terminal token. to keep the global token tvpe alwayvs pointing
to the next token (the look ahead token). The very first look ahead tokens is
read by an initial call to lexicalAnalvzer() before any of the grammar’s parsing
functions are called.

Appendix C shows a simple parser of the new elements statements for
creating the new subclass from the hook description granunar.

During parsing, we add information to the Hook Table to record the roles
of the various identifiers for use in future phases (ie. identifier names. types

and scope information).

5.2.4 Hook Table

The parser deals with tokens in different ways depending on their type. All
token types represent terminal symbols defined in the grammar. The terminal
svmbol represents a class of syntactically equivalent tokens. and a nonterminal
svinbol stands for a class of syntactical alternatives for that phrase of the
grammar. The Hook Table is used to store the svmbols and the attributes
associated with them, and in this sense it assumes the standard role of a
svmbol table in most compilers. There are two major interactions between the
Hook Table and the rest of the HookMaster tool. First, symbols and related
information must be added to the table by the parser. Secondly, information
added to the table may need to be retrieved at some later time by the system.

Its complete class diagram is given in Figure 5.8. The Hook Table is made

up of entries consisting of a name and its corresponding type. Entries in the

81

table are built up in several stages. In lexical analvsis. when a hook name
is discovered. it is put into the cHookTable class according to its type. The
cHookTable class will create an object of the cHook class. For an identifier. its
name is discovered in lexical analysis although its tvpe will not be determined

until svntactic analysis.

<<Class Module>> <<Class Module>>
cHookTable -cHook cHook
/ “._-cStatement
-cClass S
/ <<Class Module>>
cStatement
<<Class Module>>

/pCIass <<Class Module>>
Y, \ cParameter
-cProperty -cOperation

rd

cProperty cOperation

Figure 5.8: The class diagram of the Hook Table

5.2.5 Monitor-Controller

The Monitor-Controller modules were designed to support reuse and system
evolution. New modules may be added to the existing tool by registering their
interest in events. Similarly, one module may be replaced by another without
affecting the interfaces of modules that implicitly depend on it. Figure 5.9
shows the class diagram for the Monitor-Controller.

The tool is configured as a collection of components (see Figure 4.2) writ-
ten in Visual Basic 5.0 to interact with Rational Rose 98. To achieve a clear

separation between these components, event broadcast is handled by a sepa-

82

g <<Module>> - <<Module>>
: Monitor i Controller
+stack-
<<Class Module>>

 CStack

Figure 5.9: The class diagram of the Monitor

rate dispatcher process in the Monitor (see Figure B.7 in Appendix B) that
communicates between components through function calls.

All interactions with Rational Rose 98 are grouped into the Controller
module (see Figure B.8 in Appendix B), which interacts with the Monitor
module as events are posted. The Monitor invokes various classes according
to the different tvpes of events. Any new module can be added by defining an
object in the Monitor module, and it will be globally visible. Although this
approach creates a significant amount of implicit coupling, it provides tremen-
dous flexibility and allows the prototype to evolve quite easily. When some
functionalities are not needed, we can simply cancel the related registration of
the module corresponding to the functionalities.

When the user opens a framework along with hooks within the tool. the
Monitor notifies the Controller module to invoke Rational Rose 98, and retrieve
the hook descriptions from the Rational Rose 98 definition of the framework.
Then, it invokes the Parser to parse all statements of the hook description. and
to store the information into the Hook Table. When the user starts enacting a
hook, the Monitor module executes the action according to the statement type
by accessing the information from the Hook Table, and, as necessary. routing
the information from the Hook Table to the Controller. The Controller module

invoke the functionalities of Rational Rose 98. When a statement has been

83

completed. the Monitor notifies the main window to highlight this step.

84

Chapter 6

Validation and Improvement of

Prototype

We are in the fortunate position of being able to validate the prototype of
the tool using the existing CSF (Client-Server framework) which has been de-
veloped by Garry Froehlich of the Software Engineering Research Lab of the
University of Alberta [26]. The CSF is a communications framework that pro-
vides the basic infrastructure for developing small client-server or peer-to-peer
programs and is suitable for student projects. CSF is implemented as a Java
program that handles all of the communication over a TCP/IP connection
and has some persistent storage capabilities as shown in Figure 3.1. The CSF
was given to the students of CMPUT 401 to use, and to evaluate the hook
notation in the spring and fall terms of 1999. The student project groups have

successfully developed several applications using the framework and its hooks.

6.1 Using HookMaster with CSF

6.1.1 The CSF Motifs

The CSF allows any two objects that inherit from CommAwareObject to com-
municate with each other regardless of where they are on the network. These
objects communicate by sending Message objects to each other. This means
that anv object within a client program can communicate with any object
within a server program or even another client program. A Message object
contains the information about its source and destination objects along with a
Data object that can contain an arbitrary number of attributes and methods.
The method of sending messages is very general. but has one restriction: the
class of the Data object being sent must defined in both the client and the
server programs.

The basic paradigm for the communications framework is that of an email
service. CommaAwareObjects create Messages which are placed in Outboxes.
The Outbox sends the message to a MailServer which routes the message to
the appropriate machine. The routing is done according to the address of the
message(corresponding to an email address). A MailServer at the destination
machine receives the message and further routes it to the appropriate Inbox.
The Inbox notifies the receiver, which is also a CommAwareObject, that a
message has arrived and the receiver can take any action necessary based on

the message [26)].

6.1.2 Validation for Hook Enactment

When a user selects the New CommAwareObject hook shown below, the com-
munication hook view is displayed (see Figure 6.1). The changes window of
the main window has been removed for simplicity. In this example, we are

using the client server framework to create a simple internet-based simulation,

86

such as a farming simulator. Users of the simulator enter a turn’'s worth of
information using a client program or web-browser and then submit it to the
server. The server then invokes the simulation engine and returns the results
of the simulation to the user. Here we focus on the creating part of the server
side. In order to create a server class which can communicate with any clients

using C'SF. the New CommaAwareObject hook is used.

Name: New CommAware(Object
Requirement: An object needs to communicate across the network.
Type: Enabling Pattern
Area: Communication
Participants: NewCOA, Comm_Aware_Object (provided), Message
Uses: Handle Message
Preconditions: none
Changes:
// First create a new subclass of Comm_Aware_Object.
new subclass NewCOA of Comm_Aware_Object
repeat as necessary
fill in Message.type // a string name of the message
// (corresponding to the type) that the COA
// should respond to.
// invoke the Handle Message hook.

Handle Message[NewCOA = NewCOA, Message = Message]

87

Address Message MessageHandler

MailServer | Mailbox CommAwareObject
/' i
T T
r)\ :
Inbox Outbox SimServer

Figure 6.1: The New CommAwareObject Hook View

Along with the view. the text field of the main window is displayved. Tt
contains the preconditions and changes sections of the hook. When the user is
ready to start enacting the hook. he or she selects the enactinent element within
the main window. HookMaster checks the preconditions at the beginning of
the cnactment. Qur example hook is an enabling hook, and it has no specific
preconditions. The first step of the change statements is then enacted. This
involves the creation of a new application subclass of the framework class
CommAwareObject. NewCOA is a variable representing the new application
class. The CreateClass dialog box is popped up to allow the user to input a
subclass name in the role of NewCOA. SimServer is the subclass name used
in the example shown in Figure 6.1. The next step is a repeat loop which
simply designates that all of the steps inside of the repeat loop body should
be repeated until the user is finished. The ’fill in’ step brings up a dialog
box that requests a string representing the message type. In our simulator
example. we want to create a message for submitting the information for a turn
to the servers, so the message type is given the name SubmitTurn (not shown)
(Note: CommAwareObjects communicate through messages represented by
the Message class, each of which has a unique type.). The second step within

the loop invokes the Handle Message hook. To enact this hook. the current

88

. Address _Message __ MessageHandier
MailServer P
. i CommAwareObject :
Mailbox _t., —— r’::*
— SimServer
R _ Submet_
Inbox Qutbox - ;reglster()

'registerHandler() <<extend>> handleMessage()

2: registerHandler()
>

1: create()
s SimServer > Z_Submit

Figure 6.2: The Handle Message Hook View

hook view is suspended and a view for the Handle Message hook is opened.

Name: Handle Message
Requirement: When an object receives a message,
it needs to respond to it in some way.
Type: Enabling Pattern
Area: Communication
Participants: Message, NewCOA, MessageHandler, NewMH
Uses: none
Preconditions:
NewCOA subclass of Comm_Aware_Object
Changes:

89

// First, create a new MessageHandler subclass.

new subclass NewMH of MessageHandler

// Specialize the handleMessage method and fill in the

// appropriate code.

// ’extends’ infers that handleMessage must call its superclass

// ie. code ’super.handleMessage(m, coa);’

NewMH.handleMessage (Message m, CommAwareObject coa) extends
MessageHandler.handleMessage (Message m, CommAwareQObject coa)

// The next line is for ’hooking’ up the handler.

// Registering can occur within the initialization method of the

// object.

// (the name ’register’ is just a placeholder).

new operation NewCOA.register

NewCOA.register -> NewCOA.registerHandler(Message.type, NewMH)

Postconditions: none

The Handle Message hook has the same context as the previous hook, al-
though a new window is opened on the screen. Before the hook can be enacted.
the participants are mapped to the parameters given with the hook invocation
from the New CommAwareObject hook. As shown in the hook call, the New-
COA participant(SimServer) is mapped to the NewCOA participant in Handle
Message. The Message participant is similarly mapped to Message in Handle
Message. The first step in the enactment of the hook is to check the precon-

dition. In this case, there is only one, and it checks to see if NewCOA is

90

a subclass of CommAwareObject. This indeed is the case. so enaction can
proceed to the first change step.

The first step creates a new subclass NewMH of MessageHandler. NewMH
is another application participant. In this case we are creating a handler
for the SubmitTurn message. so NewMH corresponds to Submit in Figure
6.2. Next the handleMessage method on NewMH is filled in by the user. A
NewOperation dialog box then asks the user for a new operation. or a link
to an existing method. within NewC'OA (SimServer) from which registration
of the handler can occur. The last step in the changes section then invokes
the callback method registerHandler within NewCOA(see the collaboration
diagram of Figure 6.2).

The changes are then committed to the parent view, which is the New
CommaAwareObject hook view. Once the changes are committed. the New
CommAwareObject hook enactment resumes and the repeat loop is invoked
again, unless the user decides it is finished. To assist in this, a message box is
popped up to ask the user if they wish to continue. For our example, we have
no more messages to add. so the loop is stopped by clicking the “No” button
of the message box and the changes are committed to the main view and the
New CommAwareObject view.

After creating the sending and receiving objects, we send a message using
the CSF. First of all, we set up the communication, that is, the sending object
within the client must know the Address of the receiving object’s Inbox, or
list of addresses if broadcasting to more than one receiver. In order to create
an Outbox, we use the hook New Outbox whose view is shown in Figure 6.3.
After opening the view, HookMaster checks the precondition. It succeeds
because the SimClient has been created. According to the first step of the
changes section, the init operation called initialize is added into the SimClient
class. Then, the tool can create the two invocations (NewCOA.init invokes
addr and Outbox.Outbox(self, Address)) in the collaboration diagram for the

next two steps as shown in Figure 6.3. Finally, the postcondition is checked.

91

Name: New Outbox

Requirement: An object needs to be able to send messages
across the network

Type: Enabling Pattern

Area: Communication

Participants: NewCOA, Outbox (provided)

Uses: none

Preconditions:

NewCOA subclass of Comm_Aware_(Object

Changes:

new operation NewCOA.init

// the Address and the Outbox should be created within

//the initialization method of NewCOA.

NewCOA.init -> addr = new Address(IP, port, name)

NewCOA.init -> Outbox.Outbox(self, Address)

Postconditions: NewCOA.Outbox

For clarity, the sending object is assumed to be in a client and the receiving
object is assumed to be in a server. A CommAwareObject can have multiple
Inboxes (for example, having one Inbox for low priority messages and one for
high priority messages). Each Inbox has its own address which consists of an
IP address of the machine it is on, the port number of the MailServer on that
machine, a name. The receiving object creates an Inbox and assigns it an
Address. The Inbox registers itself with the server’s MailServer and waits for

incoming Messages. To create an Inbox, we use the New Inbox hook whose

92

Address Message MessageHandler

\\ .
MaiiServer Mailbox CommAwareQbject
4
T
[] SimClient
Inbox Outbox
®initialize()
2: outbox(self Address) 1: address(IP port,name)
_Outbox - SimClient| | i
2 Address

Figure 6.3: The New Outbox Hook View

view is shown in Figure 6.4.

Name: New Inbox

Requrement: An object needs to be able to receive messages
across the network

Type: Enabling Pattern

Area: Communication

Participants: NewCOA, Inbox (provided)

Uses: none

Preconditions:

NewCOA subclass of Comm_Aware_Object

Changes:

new operation NewCOA.init

93

Address Message MessageHandler

P \
-

o - g

MailServer Mailbox CommAwareObject
4’-‘ 'l.
k)
!
L L SimServer
Inbox Outbox
Winitialize()

1: Inbox(SimServer name)

R e ; .
- SimServer - Inbox

Figure 6.4: The New Inbox Hook View

fill in name: String
NewCOA.init -> Inbox.Inbox(NewCOA, name)
Postconditions: NewCOA.Inbox

Messages are normally sent asynchronously. That is, the sender does not
block while waiting for a reply. However, in some cases, the sender may re-
quire a reply before continuing, and the message must be sent synchronously.
A message consists of the return address, the to address. the message type,
and a Data object that contains the information of the message. In order to
send messages, the sending object creates a NewCOA (SimClient) and gives it a
Message with the receiving object’s address. SimClient grabs a temporary Ad-
dress for itself and registers itself with client’s MailServer. SimClient contacts
the client’s MailServer and asks it to send the message. Instead of immedi-

ately returning control to the sending object, it blocks as it waits for a return

94

message through it own Address. The server’s MailServer receives a Message
through a socket. The MailServer checks the last part of the Address to which
the Message is to be sent and then searches for an Inbox that matches the
Address. If an Inbox is found. the Message is placed in the Inbox. The Inbox
notifies the receiving object that it received a Message. The receiving object
checks the tyvpe of the Message and then invokes the appropriate handler for
that Message (see the Handle Message hook to see how to set up and use the
handlers). Then, the receiving message sends a message back as in Sending
a Message. SimClient unlocks and passes the returned Message back to the
sending object. If the return Message is not received in a certain amount of
time, SimClient sends a timeout exception back to the sending object instead.

In order to easily send messages using CSF, the CSF builder provides the
Send Message hook to detail how to send message as follows. The Figure 6.5

shows the evolution after the changes section is completed.

Name: Send Message

Requirement: An object needs to send a message to a single
object on a remote machine.

Type: Enabling Pattern

Area: Communication

Participants: NewCOA, Inbox, Outbox, CommAwareObject

Uses: none

Preconditions:

NewCOA subclass of Comm_Aware_Object

Outbox NewCOA.out exists

Inbox NewCOA.in exists

Address Message] | MessageHandler

MadServer

Maitbox CorﬁmAwamObﬂ'
oox Oupex Smoten

[L, LU
rout - Qutbox
1 . Inbox

.

:send()

1 sendMessage(retumAddress, toAddress, type, data)
>

e

_Smeém o

Figure 6.5: The Send Message Hook View
Changes:
new operation NewCOA.send
fill in toAddress: Address, type: String, data: Data
fill in returnAddress = NewCOA.in.getAddress()
NewCOA.send -> NewCOA.sendMessage(returnAddress, toAddress,
type, data)

Postconditions: none

6.1.3 Limitations and Possible Improvement

The HookMaster prototype has some limitations at the current stage.
Currently, all of the hook views must be nested under the logical view of

Rational Rose 98, since Rational Rose 98 does not allow the developer to cre-

ate their own views independently. So, when the user opens a model file from

HookMaster, not only are the hook views loaded, but also all other kinds

96

of views of Rational Rose 98 show up on the browser window. such as the
component view. use case view and so on. ldeally. the interface containing the
model only shows the user the hook views of the model. Meanwhile. the class
diagram and the collaboration diagram within a hook view can be opened up at
the same time when the user selects the hook from the main window. However.
because of a technical limitation of Rational Rose 98, only one of either the
class diagram or the collaboration diagram of the hook view can be opened on
the interface at one time. If the cless diagram is opened, the corresponding
collaboration diagram can be opened manually by the user clicking the collab-
oration diagram icon in the browser window. This. however, is a cumbersome
approach.

A second major limitation of the tool prototvpe is the poor performance
provided by the animation feature when the user starts replaving. The rea-
sons are because we have to store each step of enacting the hook as a new
model file. Usually, the size of the model file is quite big; when the tool plays
each step back, it has to load the corresponding model file. Ideally, the pro-
totype should have the functionality that play back each step of the changes
section step by step. To overcome this limitation, we have tried simulating
the “find” functionality of Rational Rose 98, which is basically the function-
ality of searching by keywords. Initiallv. we expect to attach a distinct tag to
the data generated by each step and retrieve the data by the tag whenever
needed. Unfortunately, the functionality is not provided by REI. Currently,
we use colors to differentiate the data of the final applications when replaying.

Finally, the tool prototype can not reflect all types of change statements
in Rational Rose 98. Specifically, for the add/remove codes statement from
within a framework class, the tool is not able to properly represent the code
body added or removed because the UML class notation only presents the
three aspects: class name, attributes names and operation names, but not the

code body.

Chapter 7

Conclusions and Future Work

By focusing on the intended use of a framework. rather than the design of
the framework, hooks are able to provide a more structured and uniform spec-
ification than textual narrative for affecting the changes needed to develop
an application. Early experience [16] in using hooks strongly suggests that
tool support for their enactment is important to the overall effectiveness in
application software development.

In the thesis, we have demonstrated that a hook tool can be constructed to
aid in the use of object-oriented frameworks using the same basic ideas that
exist in graphical user interface builders. We have connected hooks to the de-
sign of the framework by creating hook views in extended UML notations. We
have added explicit support for the notation of hooks to UML. This hook tool
begins with the main view of the framework. which is evolved into applications
through the tool-supported enactment of hooks. The overall view contains all
of the classes of the framework, along with any additional classes that are
added by application developers. The tool supports the assumption that the
original design or implementation of the framework should not be modified.
This assumption preserves the benefits of maintaining a common code base

among a family of applications.

98

A hook view contains a subset of the overall view of the framework: both
class and collaboration diagrams are contained within the hook view. The view
forms the context for the hook which includes the participants of the hook
and related classes. Hook views are created by the framework builders rather
than generated dvnamically since determining the complete context of a hook
is difficult and requires the knowledge of the framework builder. Hooks that
share the same context are defined with the same view.

Within a hook view, application developers can enact the changes defined
by the hook. semi-automatically with the tool’s help. A key aspect of the
enactment is a parser we have developed that supports the interpretation of
the statements within the change section of a hook. The tool interactively
processes the activities contained in the hook. performing as much as it can
automatically and requesting any information from the developer whenever
necessary.

To accomplish this requires some work on behalf of the framework builders.
Once the framework code base is stable, they must reverse the source code
into UML diagrams, and create the main and hook views. Both hooks and
the HookMaster tool are designed to allow maintainers to easilv add new or
modify existing hooks in the framework.

In the future we would like to increase support for application developers
and framework maintainers. Specifically, there are two aspects involved; one
is support for generating Java code, the other involves augmenting the tool
with more information about the framework.

With respect to the first aspect, we are planning to integrate HookMaster
with another tool called JavaMaster using OLE so that it can manipulate
code directly. When the user enacts the hook with the tool, it will interact with
JavaMaster to generate new Java code according to the changes prescribed
in the change statements of the hook descriptions.

Secondly. design diagrams and hook views should not be the only means of

presenting the framework. Other information such as ezamples and use cases

99

give additional information to users to aid in application development. Theyv
are valuable when first learning to use the framework. or learning to use it
in a different wav. Users typically grasp concrete ezarnples more quickly than
abstract descriptions. Ezamples are applications that illustrate the use of the
framework through hooks. Use cases describe typical scenarios. which link to
the hooks that implement the scenario. Normally. an example can contain

multiple use cases.

Example Use case

Hook

Class Description

Figure 7.1: Entity-Relation Diagram for Framework Information

Our goal is to have a system that maintains a fully linked repositorv of
framework information as shown in Figure 7.1 so that users can easilv find the
relevant information from any point in the repository. For example. given a
certain hook the system can find all the ezamples and the associated use cases

for the hook.

100

Bibliography

(1] K. Beck and R. Johnson. Patterns Generate architectures The Proceedings

of ECOOP94. Bologna. Italy. 1994, 139-149.

[2] M. Vlissides and N . A. Linton. Unidraw: A Framework for Budding
Domain-Specific Graphical Editiors ACM Transactions on Information

Svstems. 8(3). July 1990. 237-268.

[3] A. Weinand. E. Gamma and R. Marty. ET++ An Object-Oriented Ap-
plication Framework in C++ In Proceedings of OOPSLA’88, San Diego.
CA, 1988, 46-57.

[4] K. Brown. L. Kues and M. Lam. HM3270: An Evolving Framework
for Client-Server Commaunications. In Proceedings of the 14th Annual

TOOLS Coference, Santa Barbara, CA, 1995, 463-472.

[5] G. Booch, L. Jacobson and J. Rumbaugh. The Unified Modeling Lan-
guage for Object-Oriented Development. Rational Software Corporation

(http://www.rational.com/uml.html).

[6] H. Eriksson and M. Penker. UML ToolKit John Wiley and Sons, Inc.,
1998, 217-254.

[7] G. Booch, I. Jacobson and J. Rumbaugh. The Unified Modeling Language
Reference Manual Addison-Wesley, 1999, 1-62, 85-92, 101-112.

[8] Rational Rose 98 Extensibility Reference Manual Rational Co., 1998.

101

[9]

[10]

[11]

12]

[13]

[14]

[15]

[16]

[17]

[18]

Borland Delpht for Windows. Borland International. Inc.. Scotts Valley.
CA. 1995. 168-189.

R. H. Campbell. N. Islam. D. Raila and P. Madany. Designing and Imple-
menting Choices: An Object-Oriented System in C++. Communications

of the ACNI. 36(9). Sept. 1993, 117-126.

R. Johnson and B. Foote. Designing Reusable Classes. Journal of Object-

Oriented Programming. 2(1). 1988. 22-35.

S. Sparks, K. Benner and C. Faris. Managing Object-Oriented Framework
Reuse. IEEE Computer. 29(9). 1996. 52-62.

G. Booch. Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Co., CA, 1994, 344-368.

Taligent. The Power of Frameworks. Addison-Wesley Publishing Co..
M4, 1995, 155-180.

W. Pree. Deisn Patterns for Object-Oriented Software Development.
Addison-Wesley Publishing Co.. MA, 1995, 233-261.

G. Froehlich, H.J. Hoover. L. Liu and P. Sorenson. Hooking into Object-
Oriented Application Frameworks. In Proceedings of the 1997 Interna-
tional Conference on Software Engineering (Boston, Mass, 1997), 491-
501.

E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995, 290-326.

D. Gangopadhyay and S. Mitra. Understanding Frameworks by Explo-
ration of Exemplars. In Proceedings of 7th International Workshop on
Computer Aided Software Engineering (CASE-95) (Toronto, Canada,
1995), 90-99.

102

(19] H. Hueni. R. Johnson and R. Engel. 4 Framework for Network Protocol
Software.. In Proceedings of OOPSLA'95. Austin. TX, 1995, 81-96.

[20] R. Johnson. Documenting Frameworks Using Patterns. In Proceedings of

OOPSLA 92 (Vancouver. Canada. 1992). 63-76.

[21] G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming 1.3 (August-September 1988), 26-49.

[22] R. Lajoie and R. K. Keller. Design and Reuse in Object Oriented Frame-
works: Patterns. Contracts. and Motifs in Concert. In Proceedings
of the 62nd Congress of the Association Canadienne Francaise pour

I’Avancement des Sciences. Montreal. Canada. 1994, 44-61.

[23] D. B. Lange and Y. Nakamura. Interactive Visualization of Design Pat-
terns Can Help in Framework Understanding. In Proceedings of OOP-
SLA95 Austin, TX, 1995, 342-357.

[24] VisualWorks Cookbook. Release 2.5. ParcPlace-Digitalk Inc., Sunnyvale,
CA, 1995.

[25] H. A. Schmid. Creating the Architecture of a Manufacturing Framework
by Design Patterns. In Proceedings of OOPSLA'95 Austin, TX, 1995,
370-384.

[26] G. Froehlich. Using the Communications Framework The Software Engi-
neering Research Lab, Dept. of Computing Science, U of Alberta, 1998,
1-18.

[27] Ben Shneiderman. Designing the User Interface Third Editon, Addison-
Wesley, 1998, 416-466.

[28] M. Shaw, D. Garlan. Software Architecture Alan Apt, 1996, 97-212.

103

(29] A. Egved. P. B. Kruchten. Rose/Architect: a tool to visualize architecture

IEEE. March 1999, 58-72.

(30] T. Pittman, J. Peters. Art of Compiler Design. The: Theory and Practice
Prentice Hall, May 1997, Chapter 4.

[31] J. Rekers. A parser generator for finitely ambiguous contert-free gram-
mars In Proceedings of Computing Science in the Netherlands. CSN'87,

Amsterdam, 1987, 113-1240.

[32]). Rekers and W. Koorn. Substring parsing arbitrary contezt-free gram-

mars SIGPLAN Notices. 26(5). 1991. 59-66.

104

Appendix A

Grammar for Hook Descriptions

(hook) ::= (name)

(requirement)
(tvpe)
(area)
[(uses) |
(participants)
(changes)
[(preconditions}))
[(postconditions)]
{(comments})]
(name) ::= Name: (string)
(requirement) ::= Requirement: (string)
(tvpe) ::= Type: (method), (level)
(method) ::= enabling | adding | replacing | augmenting | disabling
(level) ::= (option) | (pattern) | open
(option) ::= single option | multi-option

(pattern) ::= parameter pattern | collaboration pattern | pattern

105

(area) = Arca: (string) [. ... (string)]

(participants) ::= Particpants: (identifier) [(tvpe)] [(stvle)] [. ...(identifier)
[{type)] [(style)] |

(tvpe) = set of (identifier) [, .., (identifier)] [sequence of (identifier) [. ...
(identifier)]

(stvle) ::= new | exists

(uses) = Uses: (hook name) [. .., (hook name)]

(changes) ::= (statement) [, .., (statement)](statement) ::= (loop statement)

| (hook statement) |[(new clement statement) | (method statement) [(modify

statement) | {participant statement) |(option statement) | (bchavior statement)

(loop statement) ::= {loop id) (statement) [.. (statement)]

(loop id) ::= repeat [as necessary]| | forall (var) in (set)

(hook statement) ::= (identifier) = (hook name) "[" (identifier) | |(hook
name) "[* (identifier) = (rhs) [. .., (identifier) = (rhs)] |”

(new clement statement) ::= [new] subclass (identifier) of (identifier) |[new]

property (qualified identifier) (whereclause) |[new] operation (qualified identifier)
(whereclause) ::= read of (identifier) maps from [set of| (qualified identifier)
|write of (identifier) maps into [set of] (qualified identifier)

(method statement) ::= (qualified identifier) (method operation)(qualified identifier)
[(return expression)| |[(qualified identifier) (return expression)

(method operation) ::= copies | specializes | overrides | extends

(return expression) ::= returns (string) |returns [set of | sequence of] (rhs)
(modify statement) ::= remove code ‘(string)’ [, .., ‘(string)’] |replace ‘(string)’
with *(string)’

(participant statement) ::= fill in (identifier) [, .., (identifier)] |(identifier) add
(set)

(option statement) ::= choose (identifier) from (set)

(behavior statement) ::=synchronization ({(qualified identifier). (qualified identifier)
[.-., (qualified identifier)) [in (qualified identifier)][provided]| [control flow]

(qualified expression) -) [(read/write)]{qualified expression) [provided]

106

(read/write) ::= read | write | read and write

(rhs) ::= (identifier) [(set) linstance of {var) [[of | with] (attribute) (var)| [(loop
id) (rhs)

(set) = (var) | ((identifier). (identifier) [, ... (identifier)])

(var) ::= (identifier) | (qualified identifier)

(attribute) ::= (identifier)

(qualified identifier) ::= (identifier).(identifier)

(preconditions) ::= Constraints: (string) [, ... (string)]
(postconditions) ::= Constraints: (string) [, .., (string)]
(comments) ::= Comments: (string)

107

Appendix B

Class Diagrams

This section lists all classes of the tool prototype.

Form_Load()

List1_Click()

mnuAttr_Click()

mnuCol_Click()

List2_Click()

mnuExit_Click()
mnuMethod_Click()
mnuOpen_Click()
mnuSave_Click()
mnuSubClass_Click()
mnuEnact_Click()
mnuSaveNewVersion_Click()
Optiont_Click()

Option2_Click()
HighlightLine(inNum : Integer)
findline(inNum : Integer) : Integer
FindStringLine(biine : integer, strfind : String) : integer
FindStartLine() : integer

Figure B.1: The MainUI class

108

«Forms>>
FileManager
Command1 _Click()
Command2_Click()
Dir1_Change()

Figure B.2: The FileManager class

<<Form>>
NewClass

Command? _Click()
Command?2_Click()
Form_Resize()

Figure B.3: The NewClass class

<<Form>>

NewProperty

Command1_Click()
Command2_Click()
Form_Resize()

Figure B.4: The NewProperty class

109

<<Form>>
. __NewOperation
Command1 _Click()
Command2 _Chick()
Form_Resize()

Figure B.5: The NewOperation class

T _<<Form>>

o Caller
Command1_Click()
Command2_Click({)

.Form_Resize()

Figure B.6: The Caller class

<<Module>>
e Monitor

xecute_single_statement(Option1 : Boolean)
n(option1 : boolean)

ad_from_file(filename : String)
ite_to_file(filename : String)

Figure B.7: The Monitor class

110

<<Moduie>>
. Controller
subClass : Stnng —
superClass ° String

1 - Integer

roseApp - Object
mdiFileDir . Stnng
mdiFile - Stnng
absoluteMd! - String
absoluteDispiay : String
caiName - Stnng
preCon : Stnng
postCon - String

openRoseModle()

newClass(superClassName : String, subClassName : String) : Vanant
getRoseDiagram()

loadCDClass(list : ListBox)

loadSDClass(list : ListBox)

getClass(className : String) : Object

loadClassDiagram()

loadColDiagram()

add_invocation(caller_class : String, caller_method : String, callee_class : String, callee_method : String)
change ToHook(newHookName : String) : Boolean

doExtends()

dolnvocation()

in_list(list : ListBox, name : String) : Boolean

roseHookFound()

createNewSubClass()

createProperty()

createOperation()

checkPreCondition()

checkPostCondition()

Figure B.8: The Controller class

111

<<Class Module>>
CHookParser

stHookName String
stHookDocument String
inReturnPos Integer
inCurDocPos Integer
nDocLength Integer
stCurrentLine Stnng
piaceholder Stnng
inLineLength Integer
nCurrentPosition : Integer
stCurQuahtiedid . String
stCurrentidentifier . Stnng
stCurrentStnng Stnng
piCailerFound . Boolean
stCurrentCaller String
biNewOperation ' Boolean
stPreconditions : String
inPreconditionNumber : Integer
stPostconditions © String
inPostconditionNumber : integer
stClassNames : String
inClassNumber . Integer
stMethodNames : String
inMethodNumber . Integer
stParaNames : String
inParaNumber - integer
stClassName - String
stMathodName - String
stParameterNames - String
inParameterNumber : Integer
stCurrentClass : String
stCurrentOperation : String
stiserinput String
stFillinvanable : String
stFillinType = String -cFnendParser
stFillinValue - String <--
stSubClass : String
stSuperClass . String

parseHookDocumentation(currentiHook : cHook)
hpParse_Name() : Boolean

hpParse_Uses() : Boolean

hpParse_preconditions() : Boolean
hpParse_postconditions() : Boolean
hpParse_changes() : Boolean

hpParse_statement() : Boolean

hpParse_comment() : Boolean .
‘hpParse_new_element_statement() : Boolean N
‘hpParse_method_statement() : Boolean \,
hpParse_method_operation() : Boolean '
hpParse_behavior_statement() : Boolean
hpParse_participant_statement() : Boolean

{hpParse _values() : Boolean

‘hpParse_vaitype() : Boolean
‘hpParse_whereciause() : Boolean
hpParse_loop_statement() : Boolean
_hpParse_loop_id() : Boolean
‘hpParse_hook_statement() :
'hpParse_qualified_identifier() : Boolean
InpParse_return_expression() : Boolean
ihnParse_rhs() : Boolean

‘hpParse_string() : Booloan

lhpParso identifier() : Boolean

hcht_-donﬁﬁor(sthsm String) : String
mParsoKoywd(sﬂ(oym String) : Boolean

paces()
‘hpSkaoNoxu.lm() Integer
' npStoreNewOperation() : Boolean
IhpSetUsodnptn(sttnput String)
i

Figure B.9: The cParser class

112

(1eBeyu) : Jequinuejt)el) " wos) pees

(1eBe1u) : J0quinusiy)ell 01 BlM

uesjoog : (BuuIS : BWEBNMNOOY)EUOP™ S HO00Y

(Buuis : eweNAuedoidis 'Bunls : eweNssBIDIS ‘Buuts : awenNNooHIS 'Bumis | indupesmis)Auedoidinduyesnppyiu
(Bus : eweNAuadoidis ‘Buns : ewensse|DI8 ‘BuplS | GWENYOOHI8)ALedaIdPPYIY

(Bums : sweNIslewWRIB4IS ‘BuLlS : sweNuoheIedQIs ‘BuliS | BWENSSBIDIS ‘BuS | BWBNXO0OMIS ‘BuwiS : IndupesnishelewsiedindupesnppYiy
(Buuis : sweNieloWRIBHIS ‘BuLlS : eweNuoneiadOIs ‘Bupls @ eWEBNSSEIDIS ‘BULIS ;| SWEBNYOOHIS)IBleWRIR4PPYIY
(Buwig : sweNuonBIBdQIS ‘BuLIS : BWBNSSEIDIS ‘BullS | BWBNYOOMIS ‘Buls : indupesnis)uonviedOindupesnppyiy
(Bumg : eweNuoneIedOls 'BuLIS : GWEBNSSEIDIS ‘BULIS | BWENNOOHIS)UCHBIEdOPPYIY

(Buing : eweNsseIIS ‘Buis : awenxooHIs ‘Bups | iIndupesnis)sseinindupesnppyIy

(Bums : eweNsseDIs ‘Bupls | BWBNYHOOHIS)SSEIDPPYIY

Buws : (BumiS : GWEBNYROOHIS)IUOWNIOANOOHIODIY

{Buig : 20QHOOHIS 'BULIS | BLUBNYOOHISHUSINIOGHOOHPPYIY

1806y : (Buuis : SWENIS)HOOHPPYIY

JaBeju) : (Bupig : aWwBNIS)XepU|NOOHPUIIY

(Jezieu|"sse|d

198100 : (BuiS : BWENISHOOHPUIAIY

$ao_c_;onE:ZxooI:_

81Ge | YOO
<<O|NPOW sSB|D>>

Figure B.10: The cHookTable class

113

<<Class Module$>) T
cHook

stName : String
stDocument : String
inClassNumber : integer
stnumber : Integer
done : Boolean

Class_|Initiaiize()

hkAddClass(stName : String) : Integer

hkFindUserinputOperation(stClassName : String. stOperationName . String) : String
hkAddOperation(stClassName : Stnng. stOperationName - Stang)
hkAddParameter{stClassName : String. stOperationName : String, stiParameterName : String)
hkAddProperty(stClassName : String. stPropertyName - String)
hkFindUserinputClass(stClassName - Stnng) : Strng

hkFindClass(stClassName : String) : Integer

hkAddUserinputClass(stUserinput : String. stClassName : Sting)
hkAddUserinputOperation(stUserinput : String, stClassName : String, stOperationName : String)
hkAddUserinputParameter(stUserinput : String. stClassName : String, stOperationName : String, stParameterName : Stnng)
hkAddUserinputProperty(stUserinput : Stnng, stClassName : String, stPropertyName : String)
fill_newSubclass(super : String, subcls : String)

fili_newProperty(Class : String, prop : String)

fill_newOperation(Class : String, oper : Stnng)

fill_extended(superClass : String, subClass : String, oper : Stning)

fill_behavior(CalCls : String, callerMethod : String, CalleeCls : String, calleeMethod : String)
generate_loop{()

fill_loop(stNum : Integer)

fill_hook(hkName : String)

fill_hookPar{par : String)

fiti_calter()

fill_fillin()

fill_precondition()

fill_postcondition()

get_statement(index : Integer) : cStatemment

more_statement(index : integer) : Boolean

write_to_file{filenumber : Integer)

read_from_file(filenumber : Integer)

write_hookname_to_file(filenumber : Integer)

read_hookname_from_file(filenumber : integer)

Figure B.11: The cHook class

114

i <<Class Module>>
cClass

'stName : String
;stUserinputName : String
'inOperationNumber : Integer
;'inPropenyNumber : Integer

s e ; - JR P

iClass_|Initialize()

'clsAddOperation(stName : String) . Integer
clsFindUserinputOperation(stOperationName : Stnng) . Stnng
cisAddParameter(stOperationName : Stnng. stParameterName : Stnng)
iclsAddProperty(stName : String) : Integer
iclsAddUserinputOperation(stUserinput : Stnng. stName - Stnng)
{cisAddUserinputParameter(stUserinput - Stnng. stOperationName : String, stName : Stnng)
‘cisAddUserinputProperty(stUserinput - Stnng. stName : String)
iwrite_to_file(filenumber : Integer)

iread_from_file{filenumber : integer)

|

e e

Figure B.12: The ¢Class class

<<Class Module>>
cOperation

stName : String

stUserinputName : String
inParameterNumber : Integer
opAddParameter(stName : String) . Integer
opAddUserinputParameter(stUserinput : String, stName : String)
write_to_file(filenumber : integer)

read_from_file(filenumber : integer)

Figure B.13: The cOperation class

<<6Iass Module>>
——— - cProperty
stName : Stnng
-stUserinputName : String

~write_to_file(filenumber : Integer)
read_from_file(filenumber : Integer)

Figure B.14: The cProperty class

115

<<Class Module>>

cParameler

stName - String

stUserinputName - Stnng

wnte_to_file(filenumber - Integer)

read_from_hle(filenumber

- Integer)

Figure B.15: The cParameter class

statementType : Integer
superClass : String
subClass : String
className : String
propertyName : String
operationName : String
callerClass : String
caller : String
calleeClass : String
callee : String
statementNum : Integer
hookName : String
participant : String

size . Integer

<<Class Module>>
cStatement

fili_newSubclass(super : String, subcls : String)
fill_newProperty(Class : String, prop : String)
fill_newOperation(Class : String, oper : String)
fill_extended(super : String, subcis : String, oper : String)
fill_behavior(CallCls : String, callerMethod : String, CalleeCls : String, calleeMethod : String)

fill_toop{stNum : Integer)
fill_hook(hkName : String)
fill_hookPar(par : String)

fill_caller()

fill _fillin()

fill_precondition()
fill_postconditiony()
write_to_file(filenumber : Integer)
read_from_file{filenumber : Integer)

Figure B.16: The cStatement class

116

"7 7 «Class Module>>
cStack

index : Integer
hknamearray : String
linearray : Integer
highlightarray : Integer
rplabelarray : Integer
loopendarray : Integer

Class_Initialize()
PushHkName(stName : String)
Pop() : Integer

ISEmpty() : Integer
Save(stFname : String)
Read(stFname : String)
GetHkName() : String

get_ip() : integer

set_ip(ip : Integer)

get_repeat() : Integer
set_repeat(ip : Integer)
get_loopend() : Integer
set_loopend(ip : Integer)
increment_ip()
increment_highlight()
get_hightight() : Integer
set_highLight(ip : Integer)
write_to_file(filenumber : Integer)
read_from_file(fiilenumber : Integer)

Figure B.17: The cStack class

117

Appendix C

A simple parser of the new
element statement for creating
the new subclass from the hook

description grammar

hpParse-changes:

hpParse-changes = False

if hpParse-statement = True then
hpParse-changes = True
* to get “(statement)”

hpParse-Statement:
hpParse-statement = False
if new-element-statement = True then

hpParse-statement = True

118

x to get “(new element statement)”
Else
* to parse the other statements
new-clement-statement:
new-element-statement = False
if the “subclass™ kevword found then
if hpParse-identifier = True then
* to get “(the subclass identifier)”
if the “of " found then
if hpParse-identifier = True then
new-element-statement = True
* to get “(the superclass identifier)”
hpParse-identifier:
hpParse-identifier = False
+ Skip the character of non-digit and non-letter

getldentifierString()

119

