
 

 

 

 

 

 

 

 

Hand and Eye Gaze Analysis for the Objective Assessment of Open Surgical Dexterity 

 

by 

 

Simon Charles Byrns 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

in 

 

Experimental Surgery 

 

 

 

 

 

Department of Surgery 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Simon Charles Byrns, 2016 

 

 

 



ii 

Abstract 

Objective assessment of technical skill remains a challenging task.  Paper based 

evaluations completed by expert assessors have been criticized for not accurately or 

consistently describing a surgeons’ technical proficiency due to inter-observer variability 

and subjective bias. In the laparoscopic or minimally invasive surgical domain, technology 

assisted evaluation has been shown to provide a reliable and objective measure of 

performance based on motion analysis, focusing on instrument movement and gestures.  

Aided by the miniaturization of motion tracking technology, this thesis focuses on the 

development of novel techniques for acquiring synchronized hand motion and eye tracking 

data in open surgical procedures.   

An overview of motor learning theory is provided as a basis for segmenting or 

decomposing surgical movements into constituent gestures. An empirical study investigating 

the learning effects of a visuospatial intensive video game as a substitute for traditional 

practice was performed, and showed that video gaming, can in some conditions, enhance or 

reinforce traditional simulator based practice. 

Existing motion capture techniques are reviewed along with an analysis of 

computational models used in high level motion analysis. A second empirical study was 

completed to investigate the application of one of these computer models to hand motion 

captured via an optical marker-less tracking device. Hidden Markov Models applied to the 

motion data was able to discriminate between participants emulating different levels of 

dexterity. 

Finally, the development of a technology-assisted assessment system for evaluating 

a surgeons’ performance based on synchronized hand motion, eye gaze and force application 
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in open surgical techniques is presented.  Several empirical studies designed to validate this 

system are described. The novel aspects of this system include the ability to capture eye gaze 

in a 3-dimensional environment as well as highly detailed hand motion based on a surgical 

glove system where 6D electromagnetic sensors are embedded.  The design and assembly of 

this apparatus is described including an overview of the software required for achieving 

spatial and temporal coherence.  

The thesis concludes with a summary of findings and a brief discussion of planned 

experiments necessary to validate the clinical utility of a surgical motion and eye tracking 

system for both objective assessment and training purposes. 
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Chapter 1 – Introduction 

1.1 Modern Surgical Training 

Surgical training has been steeped in tradition for more than a century.  The original 

Halstedian model introduced by Sir William Halsted at Johns Hopkins Hospital and School 

of Medicine in 1889 replaced the inconsistent and unstructured apprenticeship model of the 

time.  Halsted’s model (1) involved an integration of basic sciences into the training 

curriculum, along with intense and repetitive exposure to the care of surgical patients. 

Trainees continued to work under the tutelage of a senior staff surgeon, but were granted 

increasing responsibility depending on their skill level. More than a century later, our 

current resident training programs continue to adopt this approach. The often repeated 

mantra ‘see one, do one, teach one’ aptly describes our contemporary model, where 

residents participate in a large volume of cases and through repeated exposure develop 

competency in performing surgical procedures.  However, this approach (2) is extremely 

time consuming and inconsistent between residents, especially for less frequently 

performed procedures. In addition, this particular teaching method has long been criticized 

for not providing a standardized means of assessing skill between trainees, making any 

assessment of competency difficult.  These challenges have prompted surgical educators 

(3) to question whether this training style is sustainable given the increasing technical 

nature of surgery and the growing time and legal pressures on surgical trainees.  

Adding to the complexity of modern surgical training, the use of laparoscopy has 

dramatically increased in the last two decades.  Minimally Invasive Surgery (MIS) 

procedures (4) demand an exceptional level of coordinated psychomotor activity. 

Dissecting the components of even the simplest maneuvers reveals a complex path 

involving hand-eye coordination, hand-instrument coordination and extrapolation of a 2-

dimensional video image into a 3-dimensional working environment.  This has motivated 

surgical educators (5) to look for additional teaching strategies that address these specific 

challenges that are unique to laparoscopy. Consequently, the curriculum for surgical 

trainees is expanding as graduates are expected to demonstrate competency in both open 

and certain laparoscopic techniques.  
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Less time in the operating room, the desire to improve operating room throughput, 

and increasing emphasis on mitigating medical error have all contributed to less operating 

experience (6) for current surgical trainees.  In the United States, new labour laws have 

been introduced in many medical centres that limit the resident work week to 80 hours.  

These pressures (7,8) have led to more emphasis on simulated surgical training in current 

curricula in order to supplement and prepare surgical trainees for experience in the 

operating room.  Luckily, surgical simulation has been around for some time. In the 1990s 

when MIS became more widespread, the challenge of retraining surgeons already in 

practice was solved in part by surgical simulation.  By shifting the learning curve outside 

of the OR (9), simulation allowed for a safe and standardized environment in which to 

teach and assess new technical skills. Evidence began to show that practicing surgical 

skills in a virtual or simulated environment resulted in improved performance in the 

operating room.(10,11)   

Let us now review some of the literature describing the application of a specific 

training technique, video gaming, for improving dexterity and performance in laparoscopic 

techniques. There is a paucity of studies evaluating the use of video gaming as a training 

technique for laparoscopic novices. We hypothesized that video gaming could substitute 

traditional simulated laparoscopic practice, resulting in similar performance improvements 

in fundamental laparoscopic tasks. We designed a randomized control trial to explore the 

effect of a standardized training program on two simulated laparoscopic tasks. 

While MIS simulators improved the efficiency of learning laparoscopic techniques, 

few simulators have been developed to improve surgical skill in traditional open 

techniques. Even with an increasing prevalence of MIS procedures, many surgical 

educators acknowledge the fact that current trainees should be competent in the equivalent 

traditional open procedure prior to learning MIS. 

Simulation allows for more deliberate practice, where a task can be repeated in a 

controlled environment with the aid of an instructor to provide feedback (12).  However, 

simply making new simulation technology available is unlikely to improve surgical skill 

alone. Objective assessment comprises the second and perhaps the more crucial part of the 

equation necessary for success. Improved methods to evaluate and measure performance 

will give educators an ability to target specific deficiencies in each trainee and perhaps 
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provide guidance as when selecting remedial tasks. Fortunately, existing technology 

available in some laparoscopic simulators permit the recording of instrument motion and 

forces that can be analysed to compute a quantitative measure of performance. For 

example, computer generated virtual reality simulators such as the LAP Mentor system 

generates performance data based on accuracy of dissection, time to complete each step of 

a procedure, and critical errors that might result in injury to a patient (2).  

While progress has been made in generating more reliable measures for 

performance in MIS procedures, few open surgical simulation models have been validated. 

A review of the current use of open surgery simulation reveals that there is a need for 

simulation based studies on less frequently performed open procedures (13).  In addition, 

further research is required to evaluate the transferability of skills honed on open surgical 

simulators to the operating room in order to determine how open simulators should be 

designed.  

Current evaluation methods in surgical specialist training involve the use of paper 

based assessments that guide expert evaluators when scrutinizing trainees. Examples of 

these include the Objective Structured Assessment of Technical Skills (OSATS) (14), the 

Global Rating Index for Technical Skills (GRITS) (15), Direct Observation of Procedural 

Skills (DOPS) (16), and the Ottawa Surgical Competency Operating Room Evaluation (O-

SCORE) (17). Despite attempts to improve the objectivity of these assessments, these tools 

are subject to a number of biases including inter-observer variability, central tendency bias, 

and lack of blinding of the assessors to a candidate’s level of training (18). In addition, 

many of these evaluations are procedure specific, limiting their generalizability to other 

procedures.  

While there is still a significant disparity between current simulation models in MIS 

and open surgery, some of the techniques and technology developed for acquiring and 

analysing instrument motion data in the MIS domain are transferrable. An additional aim 

of this thesis is to demonstrate that motion analysis, a method for capturing and analysing 

human motor movement, can be applied to the development of novel assessment methods 

for open surgical techniques.  

We hypothesized that a technology-assisted evaluation system could be as good or 

better than current expert or paper based evaluations of surgical trainees for assessing open 
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surgical dexterity. We sought to show that decomposition of surgical tasks using this 

technology could be used to compare gestures between individuals and that this could be 

the basis of a new objective assessment strategy. In addition, we hypothesized that this 

granular level of analysis could be used to provide useful feedback to trainees.  In order to 

accomplish this, we required the development of a novel motion capture system with a 

spatial resolution high enough, on the order of a few mm, to reliably detect hand gestures 

during complex bimanual tasks such as open surgical maneuvers used for hand tying or 

suturing. Similar technology has been applied to analyse instrument movement in MIS, but 

the complexity of hand and eye movement has limited the extension of this approach to 

open surgery. We sought to develop a system capable of collecting highly precise hand and 

finger position and combine this with eye tracking to be able to provide enough detail to a 

computer model capable of generating a set of performance metrics.  

 

1.2 Contributions and Thesis Organization 

This thesis is divided into three major parts. The first part provides an overview of 

motor skill acquisition and the theories describing the development of technical expertise 

(Chapter 2). The use of and current evidence for simulation to enhance surgical dexterity is 

also discussed. To support this theoretical framework with experimental evidence, a 

control laboratory study investigated whether video gaming could be used to substitute 

traditional simulated laparoscopic practice in novices (Chapter 3). This study represents a 

significant contribution to the field of surgical education, as it is the largest study of its 

kind to date, and consisted of a randomized control trial designed to investigate the effect 

of a video gaming training program on simulated laparoscopic skill. The results would be 

of interest to surgical program directors considering the integration of video gaming into 

modern training curricula. 

The second major part of this thesis involves a review of current technology and 

analytical methods used in surgical motion analysis (Chapter 4). Language models, a 

method for decomposing movements into a series of characteristic gestures are introduced. 

It has been more than a decade since the introduction of an electromagnetic tracking 

system for analysing movement during rudimentary surgical tasks. An empirical study 

(Chapter 5) was completed to investigate whether the same data could be acquired with the 
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use of a marker-less optical tracking system while participants completed a surgical hand 

tie. This study also demonstrated the application of language models to the hand motion 

data for differentiating between individuals with different levels of expertise. While the 

optical capture technique had some limitations mainly due to occlusions, the analysis was 

independent of the acquisition technique.   

The third and final section of this thesis (Chapters 6-9) describe the development of 

a novel system capable of capturing and recording spatially and temporally synchronized 

three-dimensional eye tracking, hand kinematics, and instrument forces.  This system 

represents a novel technology, capable of recording extremely precise and accurate human-

instrument-task interactions.  While our intended purpose for this technology is surgical 

skill assessment and training, the highly detailed recording of human interaction with the 

3D environment has tremendous implications for improving our understanding of motor 

skill acquisition, execution and impairment.  Following a discussion of the design and 

implementation of this system, two validation experiments were completed (Chapters 7 

and 8) to demonstrate the accuracy of the system. Chapter 9 summarizes the conclusions 

drawn from the studies presented and provides an overview of future research applications 

and planned experiments utilizing this new system.  
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Chapter 2 – Learning Technical Skills 

2.1 Motor Skill Acquisition 

The process of human motor skill acquisition has been studied extensively, and 

these theories can be directly applied to modern surgical skills training. Adams introduced 

a summation of several theories in experimental psychology in the early 1970s regarding 

learning skilled movement that gave rise to a ‘closed loop theory of motor learning’ (19). 

This described feedback derived from proprioceptive, auditory, memory and verbal queues 

that allows individuals to refine their movement. Adams described having a knowledge of 

results (KR) based on dichotomous feedback from multiple queues such as ‘right’ or 

‘wrong’ or ‘too long’ or ‘too short’ that provided feedback to refine motor movement. 

Previous open loop theories had postulated that motor movement was learned as a result of 

trial and error or evolution of multiple attempts at skilled movement until expertise was 

obtained. An open loop system has no feedback or compensatory mechanisms. The closed 

loop theory in contrast is analogous to a physiologic feedback loop with various external 

queues that provide either positive or negative feedback to refine motor movements. There 

was a strong view at that time that motor movement and verbal processing were 

intrinsically related and that our internal voices provide a significant amount of feedback 

while learning and refining motor movement. Each individual has a perceptual and 

memory outline or ‘trace’ of a motor movement. As they work to refine their motor skill, 

the closed loop feedback provides insight into how accurate one’s movements mimic their 

previous and an ideal perceptual or memory trace.  

Adams identified several limitations that the closed loop theory could not 

rationalise. One was a need for peripheral feedback in error processing, and he suggested 

that a portion of error processing might be completed centrally i.e. in the brain without the 

need for peripheral feedback. In addition, anecdotal evidence pointed to examples where 

feedback obtained from some sensory queues actually impaired or worsened performance. 

His example was with experienced musicians such as a pianist or violinist whose 

movement proficiency declines when they watch their fingers performing highly skilled 

movement.  

Another prevalent theory was introduced by Schmidt in the mid 1970’s who 

described the schema theory for discrete motor learning. A schema is a concept that groups 
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similar events into a particular class that subsequently defines what additional events 

should be included in the defined class (20).  Schmidt defined four sources of information 

necessary when performing a discrete motor task. The first is knowledge of the initial 

conditions of the performer in relation to the environment prior to executing a movement. 

The second are the response specifications needed to execute the task. The third is 

knowledge of the desired outcome of the movement, and the final component is the 

sensory consequences that result from performing a movement. Two additional ‘schemata’ 

are employed in this theory. The first one, recall schemata, describes the relationship 

between response specifications and the outcome that develops from experience. A novel 

response is generated by matching recall schemata with appropriate initial conditions and a 

desired outcome to generate response specifications which can be executed by a motor 

program.  

The second scheme called the ‘recognition schema’ is the relationship between 

sensory consequences and outcomes that develops from experience. An individual will 

choose a desired outcome and using a recognition schema will be able to predict the 

expected sensory consequences of a given response, then without using knowledge of the 

outcome compare the actual sensory response with the expected and use this information to 

further refine the recall schemata. The strength of the recall and recognition schema is 

dependent on the volume and variability of experience or practice producing a given motor 

response. Schmidt also theorised that individuals with stronger schema would produce less 

errors in motor movement when performing novel movements and also demonstrate a 

more rapid learning curve. Margolis and Christina were able to validate the theory of 

improved initial performance of a motor task in subjects that experienced greater 

variability in previous practice or training sessions (20).  

A third theory of motor skill acquisition has survived Adams and Schmidt’s 

theories to become the most prevalent contemporary theory for learning a skilled motor 

movement. The three stage theory of motor skill acquisition first described by Fitts and 

Posner in the 1960s demonstrates the necessary steps required to obtain proficiency and 

eventually expertise for a specific task (21).  The first stage, the cognitive stage, involves 

intellectualization of the task. This requires a trainee to break down a task into discrete 

steps in order to understand the mechanics of the skill. Reznick provides an example of 
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tying a surgical knot where a learner in the cognitive stage must first understand the 

mechanics of how to hold the tie, throw the suture and move each hand to complete a knot 

(6).  Performance is unpredictable and an observer is more likely to identify each discrete 

step of a task. With additional practice, the integrative stage describes translation of 

knowledge into learned motor behaviour. This involves stringing together small portions of 

motor movements and assembling them to create the desired overall movement. In this 

stage the steps of the task are no longer distinct and movements are more fluid. Returning 

to the suturing analogy, the optimal position of a suture on finger, the degree to which the 

hand is supinated or pronated and the amount of force used to tie each throw of the suture 

are refined in this stage.  Finally, in the third and final stage, the autonomous stage, 

movements are smooth and efficient and the trainee no longer has to think about the 

individual components of the task. This learning process is not exclusively linear, but 

rather recursive, requiring trainees to revisit the cognitive and integrative stages when 

exposed to additional layers of complexity. For example, introducing the additional step of 

using an index finger to apply more precise counter tension when hand tying requires 

trainees to revisit the previous learning stages in order to properly integrate this maneuver 

into a previously learned skill. 

Expertise can eventually be obtained through gradual improvement in performance 

with enough practice in a particular motor skill, representing the highest level of skill 

acquisition (6).  However, not all surgeons are equal. Ericsson defines experts as surgeons 

with consistently better outcomes than non-experts, but argues that most surgeons probably 

do not attain true expertise (12).  Instead, surgeons likely reach an average level of 

performance and remain at this level for the remainder of their careers. 

 

2.2 Kinesthetic Learning Theory 

Kinesthetic motor learning describes learning by methods where instruction focuses 

on how to achieve a particular spatial configuration of one’s body or in the case of surgery, 

one’s hands, by paying special attention to sensory input and control of motor output. This 

is similar to the concept of deliberate practice or being mindful of the subtleties of each 

movement necessary to attain expert performance (22).  The kinesthetic approach was 

further explored in a recent randomized control trial that compared the traditional method 



9 

of teaching surgical knot tying with a kinesthetic teaching method (23).  Students who 

were trained to tie sutures using a kinesthetic approach performed significantly better as 

assessed on a global rating scale by blinded expert reviewers.  Decomposition of the knot 

tying task into discrete kinesthetic elements is analogous to the segmentation of kinematic 

data afforded by computational modeling techniques. These will be described in detail in 

Chapter 3. Comparison between individuals at this level has the potential for generating a 

reliable performance metric and provides a foundation for providing pertinent feedback to 

trainees by identifying deficiencies in specific surgical gestures. 

Previous studies have established the utility of gesture-based analysis for 

identifying the portions of a particular task responsible for a performance deficit. For 

example, following segmentation of a laparoscopic instrument motion during a ring 

transfer task into a number of discrete gestures using affine velocity, Cifuentes et. al. 

compared the relative potential energy of each gesture to reliably discriminate between 

novices and participants with previous experience in laparoscopic surgery (24,25).  Two of 

the gestures analysed had a significantly lower potential energy when performed by expert 

surgeons and compared to novices. This granular level of analysis was able to identify the 

particular portions of a task that require additional practice and serves as means for 

objectively monitoring the performance improvement over time. 

 

2.2 Role of Simulation 

Simulation addresses two critical concerns in current healthcare education. The first 

is the need to provide an ethical opportunity for novice healthcare providers to learn new 

skills. This prevents clinicians in training from ‘learning on’ patients (26).  Second, it 

provides a controlled environment in which to offer repeated practice in a particular 

technique until proficiency is obtained. Kneebone describes an important distinction 

between simulations which recreate an entire clinical event and simulators which focus on 

a particular task and are typically physical models (26).  Traditionally, technical skills were 

introduced to novice surgeons in the operating room, exposing patients to more harm. The 

last decade has seen an explosion of simulator based surgical training. A variety of devices 

have been used to simulate procedures from low fidelity bench top models used to teach 

suturing to computer based laparoscopy simulators that provide haptic feedback. The 



10 

complexity or fidelity of a simulator, as will be described later, does not need to be 

enormously intricate in order to provide and effective construct on which to learn a 

particular technical skill. However, Kneebone does emphasize the need for a simulator to 

be engaging or challenging enough in order to relay relevance to a trainee and provide 

motivation for its continued use. 

An extension to the concept of fidelity in simulation is the specificity of practice 

hypothesis first introduced by Henry in the late 1960s (27) and later expanded upon by 

Proteau and collegues in the late 1980s (28,29). This hypothesis describes how motor skills 

are best learnt when the practiced movement and environmental conditions closely mimic 

those of the target context. A movement plan or motor program is developed that is 

specific to the afferent sensory information available during practice. Consequently, if the 

environment and/or afferent sensory information changes, the learned motor program is no 

longer applicable to the new conditions, resulting in a reduction in performance. For 

example, an individual may practice a specific motor skill on a surgical simulator, but 

given the significant change in context, may not be able to execute this same skill in the 

operating room at the same level of proficiency.  This emphasizes an important 

consideration in the design of any simulators or simulation environments. Simulators 

intended to teach technical skills should provide a trainee with afferent sensory feedback 

similar to what one would obtain when completing the procedure on a real patient. Hybrid 

simulation may be the answer to providing more accurate contextual information and 

improving the realism of a simulator (26).  Kneebone describes combining inanimate 

models with standardized patients in order to provide an integrated simulation that allows 

practice in both technical and non-technical skills. Not only does this increase the realism 

of the practice exercise but improves engagement, and likely improves the transferability 

of the skills to work with real patients. Other simulators combine ex-vivo organs harvested 

from animals that can be embedded in a plastic torso to simulate a human abdomen. A 

porcine liver was utilized in this fashion in a recent study simulating an open 

cholecystectomy procedure (30). 

Surgical simulation appears, at first glance, to be ideal in providing a setting for 

practicing surgical motor skills until automaticity is obtained. Unfortunately, volume alone 

does not account for differences in skill. Achieving expertise in performing a surgical 
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procedure is also highly dependent on ‘deliberate practice (31),’ which consists of focusing 

on a specific task to improve performance while being scrutinized by an instructor.  This 

suggests that decomposition of a task, and perhaps revisiting the cognitive or 

intellectualization phases of learning a motor skill are crucial to improving performance 

and obtaining expertise. While there is evidence for improved clinical outcomes for 

surgeons with higher operative volume (32), there is still a significant amount of variation 

in performance amongst surgeons with high and very high volumes (6).  This may be due 

to surgeons that are more cognizant of deliberate practice and work to continually hone 

their skills (31).  This also suggests that improved performance metrics that are able to 

measure performance of the individual components of a given surgical task may provide 

further insight into improving current simulation-based training strategies. With respect to 

providing useful feedback to surgical trainees, understanding the critical components of an 

expert movement could identify additional targets for improving surgical dexterity. 

A review of the current state of surgical simulation reveals significant evidence for 

simulation improving basic skills of trainees and transferability of these skills to the 

operating room (33-35).  There is growing evidence for the ideal components of 

curriculum design that improve skill transfer to the clinical environment, some of which 

include training to expert-derived performance criteria (proficiency based training), 

deliberate practice, multiple training episodes and training to automaticity. However, there 

are still significant challenges related to optimal implementation of currently available 

simulation technology into surgical training programs. In addition, there are several flaws 

in current research related to demonstrating the validity of simulators that make 

comparisons of different technology difficult (33). 

With respect to open surgical simulation, some promising new advanced haptic 

models have been developed that can be used to teach suturing, liver biopsies and lumbar 

punctures (36).  Davies and colleagues go on to describe how these exercises are a step 

towards the development of more refined haptic simulations of open surgical procedures, 

and that a reproducible simulation with instant device-generated feedback is a reasonable 

expectation for the future of this training modality. While improved 3D technology and 

fidelity are possible, we are reminded of the Grober el al. study (37), which tested the 

impact of fidelity of simulator effectiveness and showed that low fidelity bench top models 
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are just as effective as expensive high fidelity systems in teaching basic skills to novice 

surgical trainees. Going back to the specificity of practice hypothesis, a greater 

understanding of the components of a simulator that are most valuable in mimicking the 

movements and context of a particular skill will allow us to design smarter, more relevant 

teaching tools in surgery. 
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Chapter 3 – Evaluation Methods for Assessing Surgical Dexterity 

Evaluation methods comprise an essential component of any education system. In 

order to develop and design appropriate curricula for teaching surgical skills, a reliable 

evaluation method is necessary to discriminate between trainees and identify areas for 

improvement. Prior to implementing any new training strategies or refine current 

simulation based surgical training tools, an assessment tool must be selected in order to 

identify who simulation would benefit most and if a current simulation curriculum is 

delivering its objectives effectively.  

 

3.1 Paper based evaluation 

Paper based grading is the principle evaluation technique currently employed in 

surgical training.  The prototypical evaluation involves direct observation where a senior 

surgeon will scrutinize a trainee and provide feedback (38). As would be expected, these 

evaluation methods can be highly subjective. Some attending surgeons rely on a ‘gut 

feeling’ for in-training assessments that are usually made at the end of a trainee’s rotation 

and are based on recollection of their observations (39).  While these surgeons feel they are 

capable of judging surgical dexterity, these evaluations are made without any specific 

criteria. Shah and Darzi (39) also suggest that a significant bias could be introduced into 

these assessments by personal differences or a ‘clash of personalities.’  This method also 

has poor inter-observer agreement, as evidenced by studies demonstrating markedly 

different evaluations of the same trainee by two surgeons (40). 

Standardization of the direct observation method is accomplished via the used of 

checklists and global rating measures. Examples of these methods include The Objective 

Structured Assessment of Technical Skills (OSATS), The Global Rating System (GRS) 

and error score card analysis.  OSATS, developed by Martin et al. was introduced in 1995 

(41).  This assessment is comprised of an itemized checklist for each procedure with binary 

outcomes for correct execution of each step in the task, combined with a global rating 

score (42). The itemized checklist lists specific maneuvers deemed crucial to successful 

completion of the procedure, for example, Figure 3.1 lists the steps required for a small 

bowel anastomosis. The second portion of the OSATS assessment is the global rating form 

as seen in Figure 3.2.  This scale is more generalizable to a variety of procedures and asks 
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evaluators to rate trainees on a 5 point Likert scale in several categories including efficient 

movement, appropriate respect for tissue, and effective use of assistants, etc. Explicit 

descriptions of performance are provided for scores of 1, 3 and 5 in order to provide a 

reference for evaluation. Both components have been evaluated for construct validity and 

show increasing levels of competence as years of surgical experience or training increase 

(43).  However, the simultaneous use of a checklist and global rating scale demonstrated 

that checklists were less reliable in gauging differences in performance. Consequently, the 

more objective component of this assessment method failed to provide a reliable 

performance metric. 

 

Figure 3.1 Itemized checklist from OSATS for a small bowel anastomosis from (42). Used 

with permission. 
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Figure 3.2 Global rating form (OSATS) from (42). Used with permission. 

More recently, Doyle et al. (44) developed a GRS designed for evaluation of 

trainees in the operating room. Their Global Rating Index for Technical Skills (GRITS) 

was based on OSATS and the Global Operative Assessment of Laparoscopic Skills 

(GOALS). It was specifically designed to be generalizable to a variety of procedures 

without modification as it did not include a checklist with binary outcomes for procedure 

specific steps.  Again, this tool showed excellent reliability and construct validity with 

scores that increased with year of training.  However, in addition to providing little insight 

into procedure specific deficiencies, the authors commented on difficulties controlling for 

bias introduced by a lack of blinding within the training program. In addition, junior 



16 

surgical trainees, despite their lack of experience, were assigned scores of 3 or greater in 

most categories. The reluctance of evaluators to assign low scores on the GRS was thought 

to be due to an error of central tendency. A central tendency bias is the failure of an 

evaluator to differentiate performance between individuals by scoring everyone around the 

midpoint of the scale and avoiding the extremes, i.e. 1 or 5 (45).  

Other global evaluation methods, those that do not evaluate surgical dexterity 

directly, such as outcome measures can be misleading. Post-operative complications, 

mortality and morbidity following surgery have been shown to correlate with a surgeon’s 

skills, but this data can be significantly skewed by higher risk patients as demonstrated by 

Bridgewater et al. (46).  For example, a less skillful surgeon could limit their practice to 

low risk cases resulting in lower mortality or morbidity compared to a more experienced 

colleague. Bridgewater and colleagues performed their analysis on patients in northwest 

England undergoing bypass graft surgery for the first time and observed an overall 

mortality rate of 1.7%. Given the low rate of mortality, it was likely that a small proportion 

of high risk patients were responsible for most of the differences in mortality. They 

recommended against using a crude comparison of mortality and posited that this would 

likely result in surgeons avoiding high risk patients or encourage risk averse behaviour. 

Additionally, audits of crude morbidity and mortality data that attribute the outcome of the 

patient to the operation or technical skill of a surgeon fail to account for other factors such 

as local facilities and availability of other specialized services or differences in the disease 

process between patients (39).  Operative outcomes are also attributed to the attending 

surgeon and not the trainee, making this a difficult tool to apply to surgeons in training. 

All of the aforementioned human-based assessment systems rely on the availability 

and willingness of an expert surgeon to score or grade trainees. In addition to bias 

introduced by varying requirements for subjectivity in each evaluation, this process is 

expensive and time consuming. These assessments are usually completed at the end or 

between procedures, limiting real time feedback and lacks specificity in identifying 

particular components of a technical skill that need improvement. For example, a low score 

on “respect for tissue” or comments that suggest that a trainee may be performing 

dissection too aggressively fail to provide timely suggestions for improvement or alternate 

strategies that might be employed. While some level of oversight will likely be required in 
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more objective assessments, limiting the amount of human-based assessment will likely 

improve the efficiency as well as the reliability of these tools. The following section 

discusses the use of motion analysis which is substantially more objective than any human 

based observation method in providing a metric for performance.  

 

3.2 Motion analysis based assessment 

Motion analysis applied to the assessment of surgical dexterity is based on the 

dynamic system theory of motor skill development (47,48).  This theory describes how 

movements made by novices become progressively and measurably more efficient as these 

individuals gain experience. With higher levels of experience, or more autonomous 

movement, results in more timely completion of a task and decreased complexity of 

movement. Motion analysis has been used in other fields for some time, particularly in 

physiotherapy and rehabilitation for gait analysis (49).  Kinetic and kinematic data from 

these experiments can be used to optimize gait characteristics, improve prosthetic comfort 

and ambulation efficiency.   

Capturing motion data can be challenging, especially in the operating room where 

equipment should not impede the performance of the operating team or surgeon. Motion 

data can be captured with a variety of technologies including optical, electromagnetic and 

force or mechanical systems.  Chmarra and Dankelman (50) provide a good overview of 

the essential components that make up a tracking system. The first piece of hardware 

required is a source that generates a signal, which is in turn detected by a sensor. Active 

tracking systems describe those where the sensor is attached to the object that is being 

tracked. An example of this would be an electromagnetic sensor placed on the dorsum of 

each hand in the Imperial College Surgical Assessment Device (ICSAD) (51).  

Alternatively, passive tracking systems localise sources that have been placed on an object 

and are tracked in a given field. This can be advantageous as it does not require cables or 

wiring attached directly to an instrument. However, most MIS tracking systems are active 

in order to accommodate the need for line-of-sight, as hands or the operators body can 

obscure the sources for tracking. The next chapter includes a discussion of some of these 

techniques applied to both open and minimally invasive procedures, along with their 

advantages and pitfalls. 
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3.3 Methods for motion capture in open surgery 

As mentioned previously, in addition to learning new MIS approaches to a given 

procedure, current surgical trainees are expected to develop proficiency in the traditional 

open approach. For many procedures in surgery, open procedures remain the standard of 

care (52).  Open surgery presents arguably the most complex environment in which to 

analyze motion, as surgeons are able to freely manipulate a variety of tools in both hands, 

resulting in many degrees of freedom (DOF) for each hand or hand-instrument interaction. 

Gloves with embedded sensors can be worn by a surgeon in order to generate hand and 

joint position data as well as velocity data. Several commercially available gloves are 

available for this purpose including Cyberglove (Cyberglove Systems, San Jose, 

California), ShapeWrap II (Measurand, Fredericton, New Brunswick) and the 5DT Data 

Glove (Fifth Dimension Technologies, Irvine, California) (38).  While some of these 

gloves can also be fitted with wireless data systems in order to minimize cables that might 

hinder natural movements, the gloves themselves are bulky and impair the user’s sense of 

touch or haptic feedback. 

Optical tracking systems have also been used to capture surgical movements. 

Besides the camera used to determine object or hand position, this system is completely 

unobtrusive and does not impede nature hand movement. In open surgery, Glarner et al. 

(53) conducted a feasibility study in the Department of Surgery at the University of 

Wisconsin, Madison, where they applied a digital video analysis system to video recorded 

in the operating room.  The major advantage of this system was the utilization of 

conventional digital video to capture raw data. This technique does not require any 

additional equipment in the operative field such as electromagnetic trackers or wires 

connected to sensors. Following recording of the procedure, an analyst selects a region of 

interest (ROI) in the video. The template matching tracking algorithm developed by 

Radwin (54) then follows the specified ROI and can generate kinematic data including 

displacement, velocity, and acceleration. In the laboratory, this system produced similar 

results compared to manual frame-by-frame analysis of video data as well as infrared 

optical tracking systems (53)  . The Wisconsin group applied this technology to reduction 

mammoplasties where a junior and more experienced surgeon operated simultaneously on 

both breasts. The video data was manually segmented using Multimedia Video Task 
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Analysis (MVTA) software developed by Dr. Radwin during representative surgical tasks 

such as cutting tissue with electro-cautery, cutting with a scalpel, suturing, and instrument 

tying. The hand(s) of a surgeon were then marked as a ROI. The raw hand position data 

obtained from analysis of the video were filtered using a low-pass filter to reduced noise. 

The kinematic data was then analyzed for each task and descriptive statistics were 

generated for both the experienced surgeon and trainee. Their analysis suggested that the 

experienced surgeon used their non-dominant hand more while cutting with a scalpel and 

when suturing when compared to residents. In addition, the attending surgeons had greater 

economy of movement as shown by decreased hand displacement during instrument tying. 

The authors posited that their data suggests that experienced surgeons were more adept at 

assisting themselves with their non-dominant hand. The limitations mentioned in this 

feasibility study include parallax error introduced into the two-dimensional video data due 

to the varying angles between the camera and each surgeons hand or each surgeon. In 

addition, no formal statistical analysis was performed to test if the differences observed 

between the residents and attending surgeons were significantly different. 

One of the most widely recognised systems for obtaining motion data in surgery is 

the ICSAD (51).  This system is comprised of two electromagnetic 10 mm sensors 

(Isotrack II, Polhemus Inc, Colchester, Vermont) placed on the dorsum of each hand and a 

Bespoke computer software program.  These sensors, placed at the midshaft point of the 

third metacarpal, can record hand position in six degrees of freedom at a high rate (20Hz) 

which can be used to generate metrics such as number of movements, speed and velocity 

of movements and total distance traveled. The ICSAD was appraised using two standard 

simulated tasks including a small bowel anastomosis and a vein patch insertion at depth 

with restricted access. Both of these procedures are taught to surgical novices during the 

Royal College of Surgeons Basic Surgical Skills course, ensuring that all participants had 

previous experience.  Each subject was given a single attempt at completing both tasks. 

Computer software translates the raw movement data obtained from the trackers into three 

scores of dexterity including number of movements of each hand, distance traveled by each 

hand and the time taken to complete the task. The number of movements were determined 

by counting each change in velocity. Final analysis combined the number of movements 

and path length of each hand. To account for a large skew in the data that could not be 
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corrected with a logarithmic transformation, nonparametric statistics were used in all 

subsequent analysis. As anticipated, increasing level of experience correlated well with a 

decreasing number of movements and time during the small bowel anastomosis task 

(Spearman’s coefficient of correlation 0.839, unadjusted p <0.001). While this was shown 

to be statistically significant, when compared individually the time taken to complete the 

task only became significantly different between basic surgical trainees (BST) and senior 

trainees (SSpR) (unadjusted p<0.001). However, when the analysis was adjusted for 

number of movements, the correlation between time taken and surgical experience was no 

longer significant. Interestingly, when controlling for time, there was still a significant 

correlation between number of movements and experience level (Spearman’s coefficient of 

correlation -0.449, unadjusted p=0.002).  In the second task, vein patch insertion, a 

decreasing trend was observed for both number of movements and time with increasing 

experience level. Statistical analysis revealed a significant difference in both number of 

movements and time taken between extremes of experience (BST vs SSpR, unadjusted p 

<0.001). Correlation coefficients computed for time and movement data with experience 

was identical to the small bowel anastomosis task, revealing a significant relationship that 

did not persist when controlling for number of movements, but was significant when 

controlling for time. None of the path length data could be used to discriminate between 

experience levels as it was not statistically different (overall p=0.657). 

The ICSAD was further validated to show that it had good concordance with OSAT 

scores (52).  While the ICSAD is certainly more objective, it provides limited information 

beyond overall performance to discriminate between different experience levels. In 

addition, it lacks any ability to identify which components or subtasks of a certain task 

require additional refinement or practice. 

Path length efficiency has been used reliably to discriminate between surgeons of 

different skill levels in studies that apply motion analysis to laparoscopic procedures. Data 

obtained from the ICSAD however did not demonstrate a significant difference in this 

metric with experience level. Datta et al. suggest that this may be a consequence of 

impaired depth perception in laparoscopy and novices are thus forced to make more 

movements or adjustments to correctly position their instruments during a procedure (51).  

In addition, they observed a variety of techniques employed during knot tying that would 
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have resulted in variable path lengths while completing the same task amongst surgeons of 

a similar skill level. 

 

3.4 Methods for motion capture in MIS 

Laparoscopic or MIS is touted as the future of surgery. With the advent of Natural 

Orifice Transluminal Endoscopic Surgery (NOTES) (55), many believe MIS will become 

the standard of care and supplant open surgical techniques. There is significant evidence 

for decreased morbidity and shortened recovery time following MIS procedures when 

compared to their open counterparts for a variety of procedures (56).  The practicality of 

measuring motion data in MIS is made less challenging by the limitations imposed by the 

technique (57). The small incisions and ports through which instruments are inserted into a 

body cavity restrict the range of movement to 4 degrees of freedom. In comparison, the 

human hand has roughly 30 degrees of freedom when wrist and digit motion are 

combined.(47)  For example, the wrist can move linearly along the three directions defined 

by a 3 axis Cartesian coordinate system in addition to combinations that can be described 

by yaw, pitch and roll, totalling 6 DOF. Tracking systems and motion analysis technology 

for MIS based surgery is consequently more advanced and developing more rapidly than 

technology used in open techniques, likely due to the reduced complexity and relative ease 

of obtaining motion data for MIS based techniques.  

A variety of commercial and research based tracking systems have been developed 

or applied to laparoscopic procedures. Many of these systems are based on a gimbal 

mechanism, a set of two or three rings mounted on axes orthogonal to each other (50). The 

rings provide a stable reference point for movements in three dimensions which is usually 

taken as the pivot point for active tracking systems. The precision and accuracy of motion 

data is crucial in MIS as small movements close to the pivot point can result in large 

movements of the instrument tip, requiring some systems to be recalibrated frequently 

(50).  Chmarra emphasises that there are no established standards for the precision or 

accuracy of MIS tracking systems, so it is difficult to determine if current methods are 

accurate enough. Unfortunately, given the bulkiness and active tracking design of these 

systems, none are appropriate for use in the operating room. Simulation is therefore used 

with ex-vivo tissue, models or computer generated images to provide tasks in which 
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motion analysis can be applied. Real surgical instruments can be used in some of the 

systems which accurately reproduce instrument and tissue feel or haptic feedback during a 

procedure. For virtual reality based simulation some instruments allow for acquisition of 

the forces applied to an instrument and provide force feedback. Chmarra and colleagues 

again point out that at the time of their review, feedback systems for virtual reality based 

simulators needs considerable more work to mimic real word feedback, and that this 

should be further investigated. 

  

3.5 Motion Analysis Using Descriptive Statistics 

Dexterity analysis using descriptive statistics uses motion or force data obtained 

from tracking systems, such as those described above. Performance metrics can then be 

generated based on a number of factors. Some of these include economy of motion, 

repeated motion, velocity of movement, instrument path following, peak forces and tissue 

damage. The majority of these systems also record temporal metrics such as task 

completion time and time spent performing each task. With more practice, task completion 

time decreases as expected but economy of motion decreases much more gradually (58).  

An inherent weakness of any temporal based metric, however, is that they require the 

trainee to successfully complete each task. Feedback is therefore only provided at the end 

of a given procedure, limiting any online or real-time feedback.  

An example of a current assessment tool in laparoscopy that utilizes descriptive 

statistics is the McGill Inanimate System for Training and Evaluation of Laparoscopic 

Skills (MISTELS) (59). This simulation-based system consists of 5 exercises that all 

completed in an laparoscopic box trainer and includes a peg transfer, precision cutting, 

ligation and intra-corporeal suturing task. Each task is scored based on task completion 

time and precision incurring a time penalty. Reference scores were obtained by taking an 

average of the performance by a group of chief residents and fellows. The MISTELS 

system was shown to have both construct and external validity (59).  This system was so 

popular as a new metric of performance that it was integrated into the Fundamentals of 

Laparoscopic Surgery (FLS) training course administered by the Society of 

Gastrointestinal and Endoscopic Surgeons (SAGES) (60).  However, the FLS assessment 

process is proctored by an experienced surgeon and requires participants to travel to a 
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limited number of assessment sites in North America for testing. This has consequently 

limited its widespread use. 

Descriptive statistics have also been applied to simulators that utilize computer 

generated images. Tracking systems are already integrated into these simulators in order to 

capture user or trainee input. They can also provide real-time feedback more easily by 

displaying ideal instrument positioning or maneuvers in order to complete a task such as 

suturing (61).  These systems are also more flexible in providing a higher fidelity 

simulation in order to increase realism. Despite their potential, this technology has yet to 

mature. Reiley et al. reviewed currently available simulators and concluded that they lack 

overall effectiveness and realism (38). They also reported that these high-fidelity 

simulators generate inconsistent performance metrics and are unable to differentiate novice 

trainees from experts. In addition, performance on these simulators showed equivocal 

correlation with operating room performance based on conflicting studies (62,63).  

Overall, given the validity of some of the systems using descriptive statistics to 

generate performance metrics, this motion analysis method shows promise for the 

development of more objective global measures of performance. However, these methods 

have limited feasibility for real-time feedback, especially if temporal metrics are used. A 

more advanced model is necessary in order to provide more useful and real-time feedback 

to the trainee.  

 

3.6 Motion Analysis Using Language Models 

Arguably the most sophisticated method currently employed for analysing motion 

data are language models. This method allows for the decomposition of each task into 

discrete movements that can then be compared between individuals. In order to understand 

how language models can be applied to surgical movement, it is useful to establish a 

hierarchy of movements specific to a specific task and procedure. Reiley et al. delineated 

this in Figure 3.3.  Each procedure can be subdivided into a series of sequential tasks. For 

example, during a cholecystectomy, or removal of the gallbladder, two sequential tasks 

would include dissection of the cystic duct and applying clips to the duct. These tasks can 

be divided further into well-defined surgical motion units or surgemes.  An example of a 
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surgeme is the insertion and spreading of a dissecting instrument or the individual hand 

maneuvers during suture tying.  

 

Figure 3.3 Hierarchical decomposition of surgical tasks into three levels from (38). Used 

with permission. 

Surgical dexterity can be assessed at each of these levels using language models. In 

the first level, the procedure level, Ahmadi et al. (38,64) developed an automated analysis 

of workflow in the operating room using input from 17 sensors.  This group was able to 

successfully model the workflow for a cholecystectomy and used instrument changes to 

help segment motion data to reliably predict the timing of the next component of the 

procedure to within 5 seconds. Their method was able to identify, with 92% accuracy, the 

14 phases of the operation that their algorithm identified. Analysis of motion data at this 

level can be used to identify areas for improvement in the workflow for a given surgical 

team. However, this method lacks the ability to discriminate between surgeons of different 

skills levels.  

Prior to discussing the further decomposition of a surgical procedure into tasks and 

sub-tasks or surgemes, the concept of statistical modelling using Markov Models (MM) 

and Hidden Markov Models (HMM) must be introduced. These have been used in a variety 

of fields including DNA sequence modelling, speech recognition, analysis of facial 

expression, and human operator modeling for the purpose of transferring human skill to 

robots (65). An analogy between spoken language and surgery can be used to describe how 

MM can be used to objectively assess skill level (66).  Language and surgery movements 

share a similar taxonomy and internal etymological structure that allows for the application 

of mathematical and quantitative models. Skill can thus be assessed by revealing the 

internal structure of language or movements. The extension of this analogy is that in 

surgery and language, a procedure can be performed and an idea can be expressed using 
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language in several different ways while retaining the same outcome and meaning 

respectively (64).  In contrast to deterministic models which can exploit a known property 

of a data source (e.g. a sine wave can be described by amplitude, frequency and phase), 

these models are based on statistical properties of the data. This requires the assumption 

that data can be characterised as a parametric random process and that certain parameters 

for this stochastic process can be computed in a precise manner (67).  Rabiner uses the 

example of a system with 5 distinct states, S1, S2, …, S5 (67).  

 

Figure 3.4 A Markov Model (MM) with 5 states with selected state transitions from (67). 

© 1989 IEEE. 

At regular discrete time intervals, the system can change state according to a set of 

probabilities associated with a given state. The possible state transitions for these 5 

example states is depicted in Figure 3.4. A full probabilistic description of each state would 

require knowledge of all predecessor states, but for a first order MM, this can be simplified 

to a single predecessor state. These elements compose an observable MM since each state, 

occurring a specific instant in time corresponds to an observable event. Hidden Markov 

Models (HMM) are an extension of MM in which the sates are assumed to be hidden or not 

observable, but observations can be made that depend on the state. This in turn can be used 

to determine the sequence of states. The advantage of HMM applied to surgical motion 
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data is the ability to automatically segment the data in order to decompose procedures into 

tasks and surgemes as opposed to manually segmenting and labeling this data. 

At the task level, a labour intensive method for analysing a procedure involves 

manually segmenting and annotating video of a given procedure. The components of the 

procedure can then be manually compared in order to determine the frequency of each task. 

For example, MacKenzie et al. (68) used this approach to analyse laparoscopic procedures.  

Video of the procedure as well as the operating room were captured and analysed over 2 

years in order to describe the precise timing and location of operating room events, surgical 

events and eye-hand-tool-tissue interactions. Decomposition of each procedure was 

accomplished by iterative top-down analyses of surgical procedures and bottom-up 

analyses of tool motions. The components of each procedure were either serial or parallel. 

Serial components occurred in a repeatable sequence e.g. isolate gall bladder then remove 

gall bladder, while parallel components included tasks such as poke and tease tissue. The 

authors chose 4 tasks that were regularly performed during the procedure including 

dissection, suturing, anchoring sutures and knotting and cutting sutures. Analysis revealed 

that knotting a suture had the longest duration of any task, followed by anchor suturing, 

normal suturing and cutting the suture. This revealed the portion of the procedure that 

could be targeted to improve efficiency. This form of analysis suggests that trainees should 

emphasize practice tying intracorporeal sutures in order to improve their overall 

performance in this procedure. The hierarchical decomposition method, while time 

consuming and laborious can be applied to measurement or assessment at various levels 

within the hierarchy. The introduction of a new technique or technology or experience 

level of a surgeon will manifest in a measurable change in the dynamics of the system. 

An extension of the task level approach is to study the human machine interface (HMI) 

which may be further subdivided to model hand and tool interactions as well as tool and 

tissue interactions. Rosen et al. (69) used a force and torque sensor mounted on a 

laparoscopic grasper as well as video of the tip interacting with the tissue in order to 

construct a collection of states representing a specific maneuver in the procedure. They 

recorded five novice surgeons and five expert surgeons performing a laparoscopic 

cholecystectomy and Nissen fundoplication on a porcine model. Manual frame by frame 

video analysis was combined with a vector quantization algorithm to define the force and 
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torque signatures associated with 14 different tool/tissue interactions. They found that 

novices had higher magnitudes of force in tissue manipulation tasks and less in tissue 

dissection compared to experts. Novices also took more time to complete the procedure 

and spent more time in an idle state. MM were created for novices and experts and a 

statistical comparison was used to compare an observed surgeon’s MM to the MM for each 

group. A performance index was created by taking the ratio of statistical similarity of a 

given surgeon’s performance compared to the reference MM. This technique was able to 

correctly classify 87.5% of surgeons as novices or experts. While this method was able to 

model the complexity of laparoscopic movements using MM and make comparisons, 

analysis of the raw data still required the researchers to manually segment transitions 

between different hand-tool interactions using video of the procedures. This again is very 

laborious and prevents this technique from providing real-time feedback to trainees.  

The final level in which to analyse surgical motion is the subtask or surgeme level. 

Breaking down surgical motion into modular and reusable motion segments should allow 

for a method to differentiate novices from experts and provide some insight into how to 

correct or improve performance. As an extension to their decomposition analysis 

MacKenzie and colleagues were able to further break down each task into 5 basic motions 

including reach and orient, grasp and hold/cut, push, pull and release (68).  All of these 

were described by their motion along or about Euclidean space. While these motions were 

not timed, the frequency of each motion were recorded and when compared in context of 

their subtask or task provided a quantitative measure for the complexity of a given subtask 

or task. Greater task complexity resulted in a greater number of tool motions. The authors 

of this study included a discussion of the many applications this technology could have in 

improving workflow and the ability to test how a new technology or technique could 

influence the overall performance of a procedure. At this level of analysis however, they 

emphasize that this analysis is limited to detecting differences in the functional level of a 

task and therefore cannot make inferences about the cognitive ability of the surgical team. 

The application of MM and HMM to surgical surgemes provides a method for 

objectively assessing performance as well as providing real-time feedback on the 

constituent elements responsible for generating a given performance metric. Rosen et al. 

(66) applied MM to modeling MIS procedures using their own Blue DRAGON system, a 
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proprietary system used to acquire kinematic (rotation, translation) and dynamic (force, 

torque) data from two endoscopic instruments. They recorded motion analysis data for 30 

surgeons of varying skill levels, 5 in each year of residency training (R1, R2, …, R5) and 5 

expert surgeons who had performed more than 800 laparoscopic procedures. Each 

participant was required to complete and intra-corporeal knot in a porcine simulation 

model in addition to 15 predefined tool/tissue and tool/needle-suture interactions. A MM 

was generated for each surgeon and a learning curve was constructed based on measuring 

the statistical similarity between trainee and expert MM at each level of training. This was 

subsequently compared to a subjective assessment similar to the previously described 

global rating scale, which revealed a significant correlation of 0.86 (p<0.05). The MM 

generated for each participant also provided information regarding the appropriate use of 

states and state transitions representing different tool/tissue interactions. Time domain 

analysis could then be used to determine how much time was spent in each state and 

transition, revealing a similar result found in previous studies regarding the additional time 

more novice surgeons spend in the idle state. Additional information regarding a 

quantitative measure of the level of collaboration between the tools provided an additional 

estimate of skill level, where an experienced surgeon’s non-dominant hand will be more 

active. These models could be run in real-time in order to provide constructive feedback as 

the procedure was performed, but this was not tested in this study (66). 
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Chapter 4 – Can Video Gaming Substitute Traditional Simulated 

Practice for Laparoscopic Novices? 

Previous chapters highlighted several theories describing complex motor skill 

acquisition and recognition. We also discuss the role of simulation for improving surgical 

skill. This chapter describes a randomized control study that was conducted to investigate 

the use of video gaming as a training modality for improving spatial perception and ability 

in simulated laparoscopic procedures. 

Introduction 

Minimally Invasive Surgery (MIS) procedures demand an exceptional level of 

coordinated psychomotor activity (70,71). Decomposing the components of even the 

simplest maneuvers reveals a complex path involving hand-eye coordination, hand-

instrument coordination and extrapolation of a 2-dimensional video image into a 3-

dimensional working environment. Consequently, hand-eye coordination in MIS 

procedures is inherently more complicated than that in open procedures (72,73). This 

makes skill translation from open procedures difficult, and has given rise to an entire 

industry devoted to simulation based laparoscopic training.  

A variety of laparoscopic simulators are currently available ranging from bench-top 

laparoscopic box trainers to Virtual Reality (VR) simulators that provide haptic feedback 

(74).  However, despite the increasing availability of laparoscopic simulators, their 

integration into a surgical training curriculum is highly variable among different programs 

(75). Without protected time, surgical residents in some programs report low utilization 

due to limited availability or access to simulators outside of regular work hours (76). 

In comparison, video gaming is becoming more prevalent and accessible. Current 

industry data indicates that four out of five American households own a video game device 

(77). In addition to inducing structural brain plasticity (78) and improving psychomotor 

ability (79), training based on video gaming is purported to have a greater motivation and 

acceptance rates among individuals compared to other training modalities. Video gaming 

mimics much of the constant integration of video images and character or object position 

with instrument and controller movement. The relationship between video game playing 

experience and laparoscopic surgical performance was first demonstrated by MIS 

educators as early as 2007 (80). 
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More recent studies have attempted to answer how video gaming can improve 

visuospatial and psychomotor ability in MIS novices. A best evidence topic concluded that 

there is a positive correlation between video game experience and laparoscopic 

performance in terms of fewer errors and decreased time to complete a simulated task (81).  

Further, Schlikum et. al. (82) demonstrated in a randomized control trial that systematic 

exposure to visuospatial intensive gaming can improve performance in simulated 

laparoscopic tasks. However, there are no previous randomized control trials evaluating the 

combination of video gaming with traditional practice utilizing a laparoscopic box trainer. 

In addition, many of the previous studies in this field have been limited by a small sample 

size. 

This study was designed to investigate the combination of visuospatial intensive 

video gaming with traditional lap box training based on previous evidence of a positive 

effect of systematic training with the Nintendo Wii (83). We hypothesized that replacing a 

portion of lap box training with video gaming would result in a similar learning effect and 

similar performance on a laparoscopic surgical simulator. Undergraduate students were 

selected as participants to limit any bias introduced by previous surgical or laparoscopic 

experience and allow for a larger sample size. We chose FLS task performance as our 

primary outcome measure after exposing four randomized cohorts to a variable amount of 

video gaming, laparoscopic box training, or a combination of both over a course of six 

training sessions. In addition, we recorded the best performance of a laparoscopic practice 

task in each training session to evaluate the cumulative effect of the training program using 

learning curves. 

 

Methods 

Ethics approval was obtained from the University of Alberta Health Research 

Ethics Board. All participants were recruited from the University of Alberta.  Recruitment 

targets were 20 for each intervention group and 10 for the control group. Blinded block 

randomization was performed using a randomization scheme generated online using a 

randomly permuted block method and random block sizes (84). Labels generated for each 

training group were placed in sealed opaque envelopes based on the randomized list by an 

individual not involved in recruitment or participant allocation. An overview of the study 
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design and group allocation is delineated in Figure 1. Sixty-four participants completed the 

training program and final assessment. 

 

Figure 4.1 Study design consisting of four study arms and the sequence of pre-test, training 

and post-test evaluation. 

 

Prior to randomization, each participant completed a demographic summary 

consisting of sex, age, and handedness. Subjects also confirmed whether they met any 

exclusion criteria, including any prior experience with laparoscopic practice or the video 

game used in this study. All subjects were required to have normal or corrected to normal 

vision. Participants reported their previous video game experience by completing a 

summary of their video game activity during five different age ranges on a seven-point 
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Likert scale in a similar fashion as Schlickum et al. (82). However, we did not match or 

allocate participants based on previous video gaming experience.  

A narrated video was then used to provide standardized instructions regarding the 

requirements of the two FLS tasks (Figure 4.2a,b). These were adapted from portions of 

the official FLS course instructional videos for the peg transfer and precision cutting tasks 

(85). After 5 minutes of practice, each participant completed a single trial of both of these 

tasks. Both FLS tasks were completed using a Stryker Endoscopy Tower (Stryker 

Instruments, Kalamazoo, MI) equipped with a High Definition camera and display. We 

used a 10 mm 30 º laparoscope inserted into a modified lap box to create our assessment 

simulator. Each participant’s total performance time was recorded using a stopwatch as 

well as number of penalties (e.g. dropping a sleeve).  

 

Figure 4.2 FLS tasks displayed on high definition monitor including (a) Peg transfer and 

(b) Precision cutting. Training tasks including (c) Super Monkey Ball 2 video game and (d) 

Pea on Peg laparoscopic box exercise. 
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Each participant was then asked to view a second standardized narrated video 

outlining the procedures and tasks required for each of the training arms. The first thirty-

minute training session was then completed and an additional five sessions were booked 

using an online scheduling service. All training sessions had to be completed within 2 

weeks and each session had to be at least one day apart. 

In the control group, no additional practice or training was permitted. These 

participants were asked to return to complete a second FLS assessment within 2 weeks.  

In the lap box training group, subjects were given 30 minutes to practice with a selection of 

(3-Dmed, Franklin, OH) laparoscopic skill building tasks including ‘Pea on a Peg’, ‘Loop 

and Wire,’ and ‘Wire Chaser.’ These practice tasks have previously been validated and are 

commercially available (86). Each participant was asked to complete at least two ‘Pea on a 

Peg’ tasks each session in order to monitor performance improvement (Figure 4.2d). The 

best ‘Pea on a Peg’ score from each thirty-minute session was recorded along with any 

penalties (e.g. dropped peas).   

The video gaming cohort was exposed to thirty minutes of Super Monkey Ball 2 for 

Nintendo Wii (Nintendo Co Ltd, Tokyo, Japan). Participants were asked to complete at 

least two attempts of the ‘Asteroid Crash’ and ‘Dangerous Route’ mini-games each session 

(Figure 4.2c). They were also free to complete the ‘adventure mode’ or additional attempts 

of the same mini-games.  

The fourth randomized cohort was exposed to a training program consisting of both 

video gaming and laparoscopic box training for fifteen minutes each. The best mini-game 

and ‘Pea on Peg’ score for each session were recorded. 

A mixed repeated measures analysis of variance (ANOVA) was conducted to 

determine if there were statistically significant differences in FLS task performance prior 

to and following the standardized training program. Post hoc analysis with a Bonferroni 

adjustment was used to compare performance outcomes in the two FLS tasks utilized in 

this study across the four training groups. A second two way repeated measures ANOVA 

was performed to analyze the learning curves or performance improvement over time of 

the laparoscopic training tasks. 
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Results 

Demographic Comparison 

Sixty-four University students were recruited. Six students only attended the initial 

session and were not included in subsequent analysis. Statistical comparison of each of the 

training and control groups showed that our sample was homogenous with respect to all of 

the characteristics that we compared including previous gaming experience (Table 4.1). 

Gaming experience was generated from the self-reported gaming frequency of participants 

obtained during enrollment. For example, each of the different gaming frequencies on the 

Likert-type scale were assigned a score from 0 to 6 and the cumulative sum of gaming 

frequency in each age segment was totaled. For example, a participant who reported 

playing video games every day from childhood to present day would have the maximum 

gaming experience score of 24. 

Table 4.1: Demographic information for randomized participants in each training cohort. 
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FLS Task Performance 

There were no outliers in the data, as assessed by inspection of a boxplot for values 

greater than 1.5 box-lengths from the edge of the box and no studentized residuals greater 

than 3.  

Peg transfer and precision cutting task performance time was normally distributed 

for all interventions at all time points, as assessed by Shapiro-Wilk’s test (p > 0.05). There 

was homogeneity of variances and covariances, as assessed by Levene’s test of 

homogeneity of varience (p > 0.05) and Box’s test of equality of covariance matrices (p =  

0.67), respectively. 

There was a statistically significant interaction between the training groups and time on 

performance of the peg transfer FLS task, F= 14.29, p < 0.001, and the precision cutting 

task performance, F = 14.91, p < 0.001.  

Pre- and post-training performance are depicted in Figure 4.3 and Figure 4.4. The 

mean task time and confidence intervals are reported in Table 4.2 along with p values for 

comparison of each cohort to the control group. 

Performance of the initial peg transfer task was not statistically different between 

any of the randomized groups prior to starting the training program, F= 0.063, p = 0.98. 

Comparison of peg transfer performance following training showed a statistically 

significant improvement in task time in the lap box (M = -135 s, SE = 15 s, p < 0.001) and 

combined training group (M = -76 s, SE = 15 s, p < 0.001) compared to the control group. 

However, there was no difference in the final peg transfer performance in the video gaming 

cohort compared to the control group (M = -15 s, SE 15 s, p = 0.75). 
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Figure 4.3 Peg transfer task performance pre- and post-training by training group.  

* denotes statistical significance (p < 0.05). 

 

Performance of the initial precision cutting task was statistically different between 

the randomized groups prior to starting the training program, F = 3.306, p = 0.03. 

Comparison of precision cutting performance following training showed a statistically 

significant improvement in task time in the lap box (M = -172 s, SE = 26 s, p < 0.001), 

combined training group (M = -144 s, SE = 19 s, p < 0.001), and video gaming cohort (M 

= -103 s, SE 18.8 s, p = 0.003). compared to the control group. 
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Figure 4.4 Precision cutting task performance pre- and post-training by training group. 

* denotes statistical significance (p < 0.05). 

 

Table 4.2: Post-Training FLS Task Performance  

 

 

Pea on Peg (POP) Performance 

We compared the best POP time achieved for each subject at each training session 

in both the lab box exclusive and combined training groups.   
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There was one extreme outlier in the data which had a studentized residual value of 

>3 in several instances. This participant’s performance actually worsened over the first 3 

training sessions. As a result, this participant’s data was removed from subsequent 

analysis. 

Inspection of the pea on peg performance data showed moderate positive skewness 

for each time point. A square root transformation was thus applied to normalize the data 

prior to subsequent analysis. The learning curves for POP performance are delineated in 

Figure 4.5. 

Mauchly's test of sphericity indicated that the assumption of sphericity was violated 

for the two-way interaction, so the Greenhouse-Geisser correction was used, χ2(2) = 0.035, 

p < 0.001. There was no statistically significant two-way interaction between treatment and 

time, F = 2.357, p = 0.736. This was also apparent in the plot of POP time over training 

session for both the lap box exclusive and combination cohorts (Figure 5). 

The main effect of laparoscopy practice time per session, that is 30 minutes versus 

15 minutes, showed a statistically significant difference in the best pea on peg time 

between both cohorts, F= 4.739, p = 0.045, with a mean difference of -2.44 (95% CI, -4.82 

to -0.64) s1/2. 

The main effect of practice over multiple sessions showed that there was also a statistically 

significant difference in task time between each practice session, F= 65.641, p < 0.001. 

Multiple pairwise comparisons demonstrated a mean difference in time between each 

session ranging from -5.1 to -11.2 s1/2. The improvement was statistically significant 

between each training session (p < 0.05) except for performance between session 2 and 3 

(p = 0.078) as well as session 3 and 4 (p = 0.084).  
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Figure 4.5 Pea on Peg learning curves for laparoscopic exclusive and combined training 

groups. 

By the sixth training session participants in the combination group (M = 14.36 s1/2, 

SE = 0.9 s1/2) required 28.8% more time compared to individuals in the laparoscopic 

exclusive group (M = 11.15 s1/2, SE = 0.4 s1/2). However, the parallel nature of these 

learning curves, lack of an interaction and marginal statistical difference (p = 0.045) 

suggest a similar rate of skill acquisition.  

 

Discussion 

This controlled laboratory study demonstrated that lap box training was superior to 

video gaming for improving simulated laparoscopic performance when both were 

integrated into a structured training program. As in previous studies, we were able to show 

a positive correlation between video game practice and performance on a laparoscopic 

simulator (81,82). However, an equivalent amount of time spent video gaming did not 

result in the same performance improvement as practicing exclusively with a lap box 

trainer. If both were made available to trainees, our data suggests that practice with a lap 

box should be prioritized. 

Interestingly, in the combined cohort where subjects spent 50% of their time 

practicing with the lab box and 50% gaming, the learning curves (Figure 5) suggested a 
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similar rate of skill improvement. By the sixth training session, individuals in the lap box 

exclusive group had double the amount of practice (3 hours vs 1.5 hours) but only 

outperformed the combined training group by 28.8%.  This suggests that video gaming 

may have contributed to the performance improvement in these individuals. Alternatively, 

individuals in the lap box group might have been approaching a plateau in performance, 

where more practice would only result in modest performance improvement. Given that the 

subjects we recruited in this study were complete novices, as well as significant higher 

POP scores for some individuals, we do not feel that performance had plateaued over the 

course of the training program. A lengthier training program would have to be completed 

in order to confirm this. 

Comparison of the magnitude of improvement in the two outcome measures, Peg 

Transfer and Precision Cutting, suggests that lap box practice and video gaming are more 

effective for improving the performance of tasks that test spatial perception and bimanual 

coordination.  Despite participants in the control and video gaming cohort demonstrating 

better initial precision cutting performance, both the lap box and combined cohorts were 

able to overcome this advantage. While we cannot explain why the control and video 

gaming cohort exhibited superior initial performance, the effectiveness of lap box practice 

is certainly demonstrated here. 

The video game we selected, Super Monkey Ball 2, is visuospatial intensive and 

has previously been tested for its effect on laparoscopic performance (83).  In addition, the 

controller for the Wii platform is unique and requires the subject to move their whole hand 

and controller over a range of six degrees of freedom. This more closely approximates the 

range of movement in laparoscopy compared to other video game controllers that employ a 

joystick. Some investigators have further modified the Wii controller to more closely 

resemble a laparoscopic grasper and combined these with serious games that mimic 

reaching, grasping and bimanual maneuvers (87). Devices such as these begin to blur the 

lines between video gaming and virtual reality laparoscopic simulators. The purpose of this 

study however was to evaluate the effectiveness of training with traditional video gaming 

we could expect to find in a trainee’s home.  

This study has several limitations. First, non-surgical trainees were used as 

participants. We felt it was more important to compare the training effects on complete 
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laparoscopic novices than compare learning effects on residents. Previous research has also 

suggested that simulated laparoscopy is most beneficial to MIS novices (88). While this 

allowed us to recruit many more participants, we cannot guarantee that our sample is 

representative of the baseline ability and technical aptitude of surgical trainees.  This 

represents a selection bias. 

As in all studies utilizing FLS performance as an outcome measure, some may 

question the transferability to operating room performance. There is growing evidence that 

improved simulator performance does correlate with improved intraoperative performance 

(89,90). While we acknowledge that FLS task performance might not be a perfect 

predictor, we were more interested in demonstrating the effect of our training program on 

learning effects. We believe that the FLS tasks are a reasonable surrogate measure of 

laparoscopic performance in this context. 

Finally, the laparoscopic and video gaming practice completed by each subject was 

largely self directed. Any individuals involved in data collection were encouraged not to 

coach or provide feedback to the students during practice. Consequently, we did not test 

more complex FLS tasks such as suturing. Due to anticipated differences in the quality and 

quantity of teaching between individuals, we felt it was reasonable to allow self-directed 

practice. This was also the reason for providing instruction for the FLS tasks in the form of 

a standardized video. 
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Chapter 5 – Development of a Marker-less Motion Detection System for 

Hand Movement in Open Surgical Tasks 

This chapter describes a complete study focused on comparing technical ability 

between surgeons with different levels of experience with the aid of a relatively new 

optical tracking technique. 

Introduction 

As a result of technological advances in optical tracking, hand motion data can be 

acquired with high precision, which has potential benefits for many applications including 

surgical training.  Surgical procedures require a mastery of both technical and judgment 

skills. The evaluation of technical skill is often carried out informally by senior or board 

certified surgeons. However, despite attempts to develop standardized evaluation rubrics, 

such as the Objective Structured Assessment of Technical Skill (OSATS) examination 

(91), using other surgeons as human evaluators often results in a significant amount of 

inherent bias and subjectivity.  

We propose using computer-assisted motion analysis, which is able to measure and 

decipher patterns in an individual's motor movement, and provide a more objective and 

reproducible method for evaluating dexterity.  While computer-assisted motion analysis for 

surgical training has been developed over a number of years, its application to open 

surgical movement analysis is still in its infancy due to the high number of degrees of 

freedom associated with hand and finger motion. In recent years, smart sensors have been 

increasingly utilized to capture motion data for analysis, e.g. accelerometers used to 

analyze motion state (92) and smartphone acceleration sensors is used to classify physical 

activities (93).  However, these systems have yet to be applied to the evaluation of hand 

motion performance in open surgery.  

This chapter describes a smart sensor setup utilizing a Leap Motion Controller 

(Leap Motion, San Francisco, CA), for acquiring surgical hand motion without using 

markers or other devices placed on the hand. Despite the complexity of the human 

movement, motion analysis can identify patterns in motor movements specific to a 

particular stage of learning and provides insight into strategies for improving performance. 

Although this study focuses on surgical tasks, our motion acquisition and analysis 
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technique can be applied to other applications which require comparison of hand motions 

or gestures. 

 

Objective Analysis of Hand Movements in Surgical Tasks 

Evaluating surgical hand movements is challenging given the operating room 

environment and multidimensional motion data. Our analysis involves determining a 

quantitative statistical distance (similarity) between experts and novices. Rosen et al. (94) 

addressed this problem in laparoscopic surgery by using a discrete Markov Model (MM). 

They decomposed a complex surgical task in order to select low-level elements that can be 

associated with quantifiable and measurable parameters. Murphy and colleagues further 

demonstrated the utility of the MM language model for this purpose (95). These results 

indicate that a stochastic approach might describe the surgical process better than a 

deterministic approach based on validation via comparison with traditional expert 

performance (96).  Previous studies applied on laparoscopic surgery have had the 

advantage of a decreased complexity of movement due to more restricted DOF (97). In 

contrast, open surgery involves greater DOF and more bimanual (two-handed) maneuvers. 

As a result, additional parameters such as orientation and position of individual hand 

components, i.e. finger segments, are necessary to determine the current state of a Markov 

Model. To address this parameter complexity issue in open surgery, we explore the Hidden 

Markov Model (HMM) and introduce a cluster based analysis method to detect discrete 

sets of highly concentrated or clustered information in the sample data for each 

predetermined Markov state, leading to a significant reduction in the data complexity. We 

achieve data reduction in three steps: 

 

1. Creating a subset of the data associated with each state common to all subjects; 

2. Using K-means vector quantization algorithm (98) to identify a number of centers 

associated with each state; 

3. Encoding the raw motion data of the surgical tasks based on these clusters in order to 

convert the multidimensional data into 1-dimensional vectors with finite symbols. 
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Processing the data in this fashion effectively generates a discrete HMM for each 

individual. Once the HMMs are defined to characterize subjects with specific skill levels, it 

is possible to compute the statistical difference between individual's performance based on 

their hand motion. By comparing trainees to expert level performance, objective criterion 

can be generated for evaluating user dexterity. 

 

In a Markov Model (MM), each state has an associated physical meaning, but in 

Hidden Markov Model (HMM) some of the states are abstract and not related to a specific 

physical interaction (96). HMM supports a more compact model topology that allows the 

system to model surgical motion in a group of subjects with mixed abilities. By applying 

an objective evaluation approach making use of the HMM topology, we anticipate an 

alternative method that eliminates the inherent bias in subjective evaluation. HMM has 

been used in a similar fashion for activity recognition for personal health applications (99). 

Here, we apply HMM to differentiate expert and novice performance in open surgery 

training. Readers interested in more detail can refer to Rabiners' review of HMMs (100).  

 

To define a HMM model, we use the notation 𝜆 = (𝐴, 𝐵, 𝜋), where A is the state transition 

probability matrix, which contains the probability of transition from state Si to Sj. 

Assuming we have N states, the elements in matrix A are denoted by Eqn. 5.1. 

 

𝑎𝑖𝑗 = 𝑃 [𝑞𝑡 =  𝑆𝑗  |𝑞𝑡−1 = 𝑆𝑖] 

1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑎𝑖𝑗  ≥ 0, ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 = 1  (5.1) 

 

B is the observation probability matrix, which describes the probability of one state Sj , 

generating one observation 𝑣𝑘 at time t and has elements 𝑏𝑗(𝑘) defined by the following 

Eqn. 5.2. 

 

𝑏𝑗(𝑘) = 𝑃[𝑣𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡|𝑞𝑡 =  𝑆𝑗] 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀   (5.2) 

 

Finally, 𝜋 is the initial state probability distribution as defined by Eqn. 5.3. 
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𝜋𝑡 = 𝑃[𝑞1 =  𝑆𝑡 ]1 ≤ 𝑡 ≤ 𝑁   (5.3) 

 

Based on the above computational model, we hypothesized that: 

1. Descriptive statistics applied to hand motion data captured by smart sensor devices 

would be able to differentiate between novice and expert performance.  

2.  Based on the previous application of HMM to laparoscopy (101), a HMM applied to 

our tracked data would have at least 80% discriminatory ability to differentiate between 

expert and novice performance based on normalized statistical distance to an expert model 

in open surgery. 

 

Methods 

We constructed an open surgery simulator for capturing hand motion data with the 

Leap Motion controller. This consisted of an acrylic box with an adjustable system for 

suspending a monofilament at a consistent position (15 cm) above the Leap sensor. The 

experimental apparatus is shown in Figure 5.1. Surgical suture (2-0 Silk or 2-0 

polygalactin) was then tied to the nylon monofilament by each participant. Real time video 

of the tying task was captured using a Canon 40D Camera in “Liveview” mode. The Leap 

sensor was placed cross to the middle bottom, as shown; with the nylon monofilament 

towards the rear part of the box to ensure that the participant's hands were centered over 

the Leap device during the suture tying task. The Leap controller communicated with a 

Personal Computer (PC) via a Universal Serial Bus (USB). Data was captured using 

custom software developed in C++.  

Figure 5.2 depicts our Graphical User Interface (GUI), which illustrates a 3D hand 

model on the left panel. The right panel displays the corresponding raw video image 

captured by the camera. An overview of the motion acquisition pipeline is shown in Figure 

5.3. In our system, two streams of motion data are captured. The first is recorded at a fixed 

frequency simultaneously with video from the camera at 60Hz. The second stream contains 

all the possible motion data captured by the Leap Controller during the recording period 

(typically greater than 100Hz). Both data streams are saved with timestamp information to 

ensure temporal coherence. 
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Figure 5.1: Experimental setup. Open surgery simulator with Leap Controller and Canon 

DSLR for real-time motion and video capture respectively. 

 

Figure 5.2: Screenshot of the GUI for our motion capture application: (Left) 3D hand 

model with Cartesian position data, and (Right) video image captured by the digital 

camera. 
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Figure 5.3: An overview of our motion data acquisition pipeline. 

 

We implemented an interpolation function to ensure that the captured data was 

recorded at a constant frequency of 60 Hz. After interpolation, we applied a two-pass 

Butterworth filter algorithm to smooth the data and eliminate high frequency noise in the 

motion tracking data. Two experiments were carried out based on motion data obtained 

with the Leap Controller. In the first, participants were asked to perform a sequence of one- 

and two-handed surgical ties to place a total of five square knots in the training box. 

Motion data was captured from both procedures and analyzed using traditional metrics: 

path length, number of movements and total time. 

In the second experiment, which was designed to test our objective evaluation 

algorithm, we chose a simple non-surgical procedure involving an object transfer task 

using a single hand. This required a participant to lift an object, transfer it from Point A to 

Point B, and release the object prior to transferring the object back to Point A and again to 

point B (3 transfers total). A total of nine participants were asked to perform the transfer 

task. The first six participants were asked to perform the task as efficiently and smoothly as 

possible, emulating expert movement. An additional three participants (controls) were 

asked to perform the task with more hesitation, including idling between movements to 

emulate novice behavior.  
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Results 

Descriptive Statistics from Tangential Velocity Analysis 

Following interpolation and filtering of pilot motion data obtained from two 

subjects, tangential velocity analysis was applied to calculate the number of hand 

movements based on changes in velocity.  In addition, the cumulative distance travelled by 

each hand was calculated to determine the path length. Total time to complete each task 

was also compared. The number of movements was calculated by using a peak finding 

algorithm with a threshold set to the mean tangential velocity of all movements. The results 

are shown in Table 1. As expected, and similar to the metrics obtained with the 

ICSAD(102) novices required more movements and time to complete each task. Figure 4 

depicts the tangential velocity curves and mean velocity threshold (right hand) of novices 

and experts in the two-hand tying task. Here, novices demonstrate slower hand movement 

and have decreased peak velocities compared to experts. This pilot experiment 

demonstrates that the marker-less sensor-based system is comparable to the ICSAD 

system. 

 

Table 5.1: Surgical knot tying tasks: ICSAD metrics obtained using Leap sensor. 

Task Experience 

Level 

Path Length 

(m) 

Number of 

Movements 

Task time (s) 

One hand tie Novice (n = 1) 2.23 43 49 

 Expert (n = 1) 1.11 24 22 

Two hand tie Novice (n = 1) 3.08 40 65 

 Expert (n = 1) 3.05 26 36 
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Figure 5.4 Tangential velocity curves and mean velocity threshold of the right hand motion 

when performing the two-hand tying task (Expert – Left; Novice – Right). 

 

Hidden Markov Model Analysis 

Motion capture of the entire hand of each participant during the hand tying tasks 

produced inconsistent data due to significant optical occlusion by the fingers during 

complex movement. Consequently, participants completed a non-surgical transfer task 

where six gestures (states) could be defined including: Idle, Dropping, Grasping, 

Evaluating, Translating and Releasing.  These states were each described using palm 

velocity (vx; vy) along the x-axis and y-axis, and the velocity (vs) of the change in the 

distance between the thumb tip and middle finger as depicted in Figure 5. These observable 

parameters were selected because they undergo significant changes during the predefined 

gestures. 

Following hand motion and video capture, we applied the interpolation function 

and Butterworth filter to reduce noise in the raw data (Figure 5.6a) and generated a new 

data set (Figure 5.6b) with a frequency of 60 Hz.  
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Figure 5.5 Raw velocity data over time (vx-Blue,vy-Yellow,vs-Orange) (a) and 

filtered/interpolated data (b). 

 

The synchronized video and motion data were reviewed, and an evaluator identified 

the Frame IDs corresponding to the start and end of each gesture. This manual 

segmentation of the motion data served as the ground truth for movement classification, 

permitting the generation of the observation distribution matrix B, the basis for the HMM 

representative of expert performance. We then used the training function to train the model 

and initialize all the elements in each row of the state transition probability matrix A. 

 

Initially, the classification was done using frame-by-frame video analysis by an 

expert; but once initialized, the HMM was able to update matrix A through training 

algorithms. After initializing Matrix A, we generated Matrix B which stores the 

observation probabilities. Each one of the six states was associated with a unique set of 

velocities (vx; vy; vs). To simplify the theoretical and computational load of the modeling 

process, we applied a data reduction process to translate the multidimensional data to a 

one-dimensional observation vector sequence. As part of this process, we applied a K-

means vector quantization algorithm (98).This allowed us to transform the continuous 

three-dimensional vectors into one-dimensional vectors of 60 observation symbols (10 

symbols for each of the 6 states). After applying the K-means algorithms to the motion 

data representing expert performance, we were able to identify 60 clusters of associated 

motion data (velocities). The cluster centers were used as the observation symbols for 
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encoding all the multi-dimensional motion data to one-dimensional sequences 

corresponding to the 60 clusters. To achieve this, we calculated each frame's Euclidean 

Distance from each of the cluster centers and chose the minimum as the observation 

symbol for the current frame. We were then able to initialize the observation distribution 

matrix B corresponding to our expert-encoded observation symbol sequence and the video 

analysis table using Eqn. 5.4. The initial state probability distribution can be defined based 

on the assumption that all tasks start in the idle state.  

 

𝐵𝑗𝑘 =  
# 𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑆𝑗 & 𝑢𝑠𝑖𝑛𝑔 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑚𝑏𝑜𝑙 𝑣𝑘

# 𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑆𝑗
 

1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀       (5.4) 

 

The above process describes the initialization of all the parameters necessary to 

define the HMM, 𝜆 = (𝐴, 𝐵, 𝜋) for our expert reference model. Next, we used additional 

sets of motion data captured from the expert(s) to train the model using a Baum-Welch 

algorithm.(103) This step further optimized the parameters in the model, making it more 

reliable and accurate to describe expert performance. Figure 5.6 and 5.7 show the color-

coded results of the optimized matrix A and B following training. 

 

Figure 5.6 Graphical representation of optimized state transition probability matrix A for 

an expert. 
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Figure 5.7 Graphical representation of optimized observation distribution matrix B for an 

expert. 

 

HMM comparison for performance evaluation 

After obtaining the trained models corresponding to the expert performance 𝜆𝐸 we 

applied an evaluation function to compare test behaviors to our expert performance. This 

function provides the probability that a performance described by a given observation 

symbol sequences is generated by the expert group model 𝜆𝐸. The values generated by the 

evaluation function were normalized as previously demonstrated(104) in order to compare 

motion data of different durations. Eqn. 5.5 can be used to determine the probability of an 

observation sequence matching the expert model, where Ô𝑖
𝐸is the observation sequence 

generated by 𝜆𝐸 and composed of 𝑖 observations. Finally, in Eqn. 5.6, S is the normalized 

distance of a given observation sequence from the normalized set of observations 

generated by the expert model. This value can be used to objectively assess performance 

based on different observation sequences obtained from hand motion data. Lower S scores 

(E4, E5 and E6) imply that the performance closely approximates the expert model. 

Novices (N1, N2 and N3) have a larger normalized distance. 

 

𝑃𝑁 = (𝑂, 𝜆𝐸) =  
1

𝑛
 ∑ [𝑙𝑜𝑔𝑃(Ô𝑡

𝐸|𝜆𝐸] = 1𝑛
𝑡=1    (5.5) 
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𝑆 (𝑂, 𝜆𝐸) =  
|𝑙𝑜𝑔𝑃(𝑂|𝜆𝐸)−𝑃𝑁(𝑂|𝜆𝐸)|

1

𝑛
∑ |𝑙𝑜𝑔𝑃(Ô𝑡

𝐸
|𝜆𝐸)− 𝑃𝑁(𝑂|𝜆𝐸)|𝑛

𝑡=1

   (5.6) 

 

In order to evaluate the effectiveness of HMM for hand motion data classification, 

we collected motion data from the object transfer task described previously. From a total of 

nine participants, six experts were in Group E1: (E1;E2;E3) and Group E2: (E4;E5;E6). 

Three novices were included in Group N: (N1;N2;N3). Training of the expert reference 

model utilized motion data from Group E1. The evaluation function was then applied to the 

remaining subjects in Group E2 and Group N. Visual inspection of the velocity profiles in 

Figure 5.8 already suggested a difference in the motion data between experts and novices. 

The novice velocities were more discreet when compared to the amount of overlap in the 

expert trials. Next, we applied the HMM decoding function to identify the hidden states 

and compared the decoded gestures. We then calculated the normalized distance (SE4; 

SE5; SE6; SN1; SN2; SN3) for each novice and expert performance. The comparison of 

normalized distance is shown in Figure 5.9. We performed a statistical comparison 

between the three replicates using Students t-test and found that the distance S between the 

expert and novice groups was statistically significant as supported by the p-value of 0:007 

in Table 5.2.  

 

Table 5.2: Normalized distance for novice and expert participants  

Experience Level Statistical Distance p value 

Novice (n=3) 7.1±0.80 0.007 

Expert (n=3) 2.01±0.06 
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Figure 5.8 Velocity profiles for novices (Ni) and experts (Ei) performing the transfer task. 
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.  

Figure 5.9 Normalized statistical distance between novice (Ni) and expert (Ei) test 

participants. 

 

Discussion 

This study demonstrated that hand motion data obtained from smart sensors can be 

used to evaluate individual performance at different dexterity levels. Our computer assisted 

system can measure performance differences between experts and novices using both low 

level descriptive statistics and a Hidden Markov Model. To the best of our knowledge, this 

is the first application of a marker-less tracking system for objectively measuring surgical 

dexterity. While some video based methods have been demonstrated in the past, our 

method provides much richer information including hand position in 3D space and 

supports much higher degrees of freedom. In addition, our algorithm is sensor-platform 

independent. 

Surgical movement can be enormously complex and variable based on procedure 

and patient specific factors. With a large enough library of gestures or states, we may 

eventually be able to fully classify all of the maneuvers in a particular operation. 

Additional work is required to improve the accuracy and reliability of the acquisition 
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systems obtaining the motion data on which to apply the analysis presented here. We 

believe the feedback based on a granular analysis at the subtask or surgeme(105) level 

holds the key to improving the objectivity and usefulness of this technique as both an 

assessment and training tool.  

Another limitation of a HMM system is that unique maneuvers may be classified as 

deviating from expert behaviour and thus misclassified. However, we believe that surgery 

is still comprised of enough rudimentary surgemes on which to base a comparison. This 

has yet to be investigated.   

From a training perspective, while the normalized statistical distance between 

models presented here does little to improve upon the utility of a rating generated by an 

expert evaluator, a more in depth evaluation of each particular gesture can provide insight 

into particular maneuvers that might need additional practice. For example, a potential 

energy comparison of segmented laparoscopic gestures has been used to differentiate 

between novice and expert behaviour (25). The ability to generate these comparisons in 

real time may pave the way to surgical simulators that can identify and provide valuable 

feedback to surgical trainees. 

Finally, improving the redundancy of information in optical-based motion capture 

systems is known to improve accuracy and accommodate for occlusion. Future work is 

planned to explore the use of a multi-leap system for acquiring hand motion data. 
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Chapter 6 – Development of a Surgical Hand Kinematic and 3D Eye 

Tracking System 

6.1 System Overview 

In order to capture a detailed kinematic data set for subsequent motion and 

language model analysis, we designed and constructed a prototype open surgery hand 

motion and eye tracking capture system. This involved the integration of multiple systems 

including a novel 3D gaze tracking platform, a glove mounted electromagnetic finger and 

hand tracking system, force instrumented forceps to measure force application, optical 

tracking of work surfaces, as well as high definition video and audio. A flow diagram of 

the system and its components is provided in Figure 6.1.  Figure 6.2 shows the 

arrangement of the eye and hand tracking systems. 

 

 

Figure 6.1: Schematic overview of the multi-channel kinematic capture system. 
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Figure 6.2: Arrangement of optical tracking (OptiTrack), eye tracking (Dikablis) and hand 

tracking (TrakSTAR) systems. 

 

Each component of the apparatus is described in the following subsections, 

including design requirements and assembly of the initial prototype. Chapters 7 and 8 

describe the validation experiments that were carried out in order to demonstrate the 

accuracy of the system.  

 

6.2 3D Gaze Tracking 

While eye tracking can easily be applied to the 2-dimensional images displayed on 

a monitor, tracking eye gaze in a 3-dimensional environment is significantly more 

challenging.  This section details the development of a technique for tracking eye gaze in 

3-dimensions by combining head and pupil tracking.  

Previous studies have demonstrated a similar technology, utilizing optical tracking 

head tracking with a monocular eye tracker (106).  However, by combining a more robust 

calibration algorithm, it is likely that the system presented here is more accurate.  Data 

acquired from two commercially available technologies including an OptiTrack 



59 

(NaturalPoint, Inc., Corvallis, OR) passive infrared motion capture system and Dikablis 

(Ergoneers GmbH, Manching, Germany) eye tracker were used to generate the 3D gaze 

vector. In order to track head position and direction, three infrared makers were placed in 

an asymmetric triangular configuration on the edges of the head mounted eye tracker 

(Figure 6.2).  Following calibration of both the Optitrack system using the proprietary 

Motive version 1.6 (Figure 6.3) and Dikablis Recorder version 2.5 software, both data 

streams were streamed to custom developed recording software using NAT-Net and 

TCP/IP network protocols. The raw motion and eye tracking data was saved using a system 

generated timestamp. This ensures temporal coherence for subsequent analysis. Additional 

details regarding the algorithm used to generate the 3D gaze vector are provided in Chapter 

7.  

 

 

Figure 6.3: Motive software following “wanding” calibration procedure.  
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Figure 6.4 Schematic showing positioning of eye tracker and OptiTrack IR markers on 

Dikablis eye tracker and measurement of the pupil offset with respect to the reference 

marker. 

 

Initially the pupil position mapped onto the field camera was used to generate the gaze 

vector. This required either automatic or manual calibration of the Dikablis using four 

points arranged in a rectangle as described in the Dikablis manual.  Manual calibration 

using this method was used in the empirical study described in Chapter 7.  However, the 

raw pupil position as obtained from the Dikablis eye camera can also be used. This is the 

basis for subsequent improvements to the eye tracking system and eliminates the 2D 

calibration step using a rectangle.  The intensity of the infrared LED, position of the IR eye 

camera and threshold brightness for pupil detection must still be optimized for each 

subject.  
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6.3 Electromagnetic Hand and Finger Tracking 

As described previously in Chapter 4, the ICSAD was the first validated instrument 

for analysing hand motion during traditional open surgical procedures. However, it only 

consisted of two electromagnetic trackers positioned on the dorsum of each hand. To 

perform a more sophisticated analysis utilizing computer modeling, a more detailed 

description of hand and finger motion is desired. This would permit the analysis of the 

kinesthetic elements of hand motion during a complex bimanual task such as suturing or 

hand-tying in surgery.  The optical capture technique described in Chapter 5 utilizing a 

Leap Motion Controller suffered from significant occlusion during complex surgical tasks.  

While the technology will continue to improve, a more robust technique for the reliable 

determination of hand and finger position and orientation was desired. We selected 

electromagnetic tracking as the best alternative.  The design requirements for the 

electromagnetic glove system included the following: 

 Accurate determination of hand and finger position and orientation 

 Minimal impediment to natural hand and finger movement 

 Minimal reduction in tactile feedback 

The TrakSTAR electromagnetic system was selected for the glove system. This 

system allows for the multiplexing of multiple EM sensors with a single transmitter. Small 

1.5 mm outer diameter sensors minimize the bulkiness of the final glove system. In order 

to protect and maintain the orientation of each sensor, encapsulation in a rubber or silicone 

material was desirable.  A schematic of the encapsulated sensor design is shown in Figure 

6.5.   
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Figure 6.5 Encapsulated sensor design and positioning for each finger.  

 

TinkerCAD (Autodesk, San Rafael, CA), a web-based HTML5/WebGL computer 

aided design tool was used to design the encapsulation mold for the EM sensors.  Each 

well was designed to be 2.8 mm deep and 12 mm wide to minimize the amount of material 

necessary for encapsulation and allow fixation on small and large fingernails. The mold 

was 3D printed on a 3D printer at high resolution (0.02 mm) and sealed with XTC-3D 

(Smooth-On Inc., Macungie, PA).  Two encapsulation materials were tested including 

Encapso-K and Clearflex-30 (Smooth-On Inc., Macungie, PA). Both are pliable with a 

Shore A hardness of 30.  Encapsulation with Encapso-K was successful but the material 

was too friable in repeated testing. Clear-flex 30 was subsequently used, but required 

additional preparation including vacuum degassing which was accomplished with a 

commercially available Foodsaver V2040 vacuum sealer and canister (Sunbeam, Boca 

Raton, FL).   

Following encapsulation and approximately 72-96 h hardening time, the 

encapsulated sensors were removed from the 3D mold and excess material was trimmed 
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from the edges. A total of twelve Model 130 EM sensors (NDI, Waterloo, ON) were 

encapsulated in order to instrument each finger and the dorsum of each hand. After 

donning a pair of Encore surgical gloves (Ansell, Iselin, NJ), 5 sensors were fixed to dorsal 

aspect of each finger over the nailbed using a small amount of cyanoacrylate. A second 

pair of Encore gloves were then placed over the first pair of gloves and sensors. The cables 

for each sensor were positioned to run along the medial or lateral aspect of each finger in 

order to facilitate normal finger flexion.  The sixth sensor on each hand was placed over 

the dorsal aspect of the midpoint of the third metacarpal. 

 

 

Figure 6.6 Design and fabrication of the EM sensor encapsulation material including 3D 

design in TinkerCAD software (a), 3D printed mould (b), Clear-Flex-30 urethane rubber 

used for encapsulation (c) and final encapsulated EM sensors (d).  
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Figure 6.7 Sketch of EM sensor placement on each hand. Encapsulated sensors are placed 

on dorsal aspect of each finger (fingernail) and a sixth at the midpoint of the third 

metacarpal. 

 

All twelve sensors were connected to an NDI 3D Guidance TrakSTAR system 

consisting of 3 units operating in multi-unit sync (MUS) mode with a single transmitter 

magnet. This system connected to the main recording/synchronization computer via a USB 

interface.  The synchronization and recording software utilized the application program 

interface (API) to initialize and capture each sensors position and orientation at a frequency 

of 60 Hz.  While the TrakSTAR system permits the polling of sensor position at much 

higher frequencies (>100 Hz), testing showed that reducing the frequency resulted in less 

noise and interference.  

 Spatial coherence was achieved by calibrating the EM sensors using an L-Frame of 

optical IR markers registered to the OptiTrack MoCap system.  This ensured that the EM 

data and OptiTrack data shared the same coordinate system. A diagram of the different 

orientations of the coordinate systems for each instrument and software are shown in figure 
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6.8. All the systems were right handed, necessitating rotational transformations to achieve 

spatial coherence.  

 

Figure 6.8 Comparison of coordinate systems used by each instrument (OptiTrak, 

TrakSTAR) and MATLAB visualization. 

In order to both visualize and analyse the recorded hand and eye tracking data, we 

implemented a parsing script in MatLab to reorient all of the data into a shared coordinate 

system. For example, the position of a tracked object or surface in Optitrack was rotated 90 

degrees clockwise about the X axis according to Eqn. 6.1. 

 

𝑃 = (𝑥𝑀𝑎𝑡𝐿𝑎𝑏 , 𝑦𝑀𝑎𝑡𝐿𝑎𝑏 , 𝑧𝑀𝑎𝑡𝐿𝑎𝑏) = (𝑥𝑂𝑝𝑡𝑖𝑇𝑟𝑎𝑐𝑘 , −𝑧𝑂𝑝𝑡𝑖𝑇𝑟𝑎𝑐𝑘 , 𝑦𝑂𝑝𝑡𝑖𝑇𝑟𝑎𝑐𝑘) (6.1) 

 

6.4 Instrument Force Measurement 

Similar to the force and torque measurements measured in analogous laparoscopic 

studies, a method for measuring the amount of force applied to various surgical 

instruments was desired. A variety of electronic sensors were reviewed for this purpose. 

However, as with the EM glove system, minimizing the bulkiness of the sensor and 

approximating the normal tactile feedback while using the instrument was desired. Force 

sensitive resistors (FSRs) were selected for instrumenting our surgical instruments. These 

are inexpensive piezoelectric sensors that can be used to determine forces applied to the 

active area of the sensor by measuring resistance across the sensor, where larger forces 

result in decreased resistance.  Two sensors were fixed to a pair of Adson forceps at the 

typical position for the thumb and forefinger.  Figure 6.9 shows a cartoon of the sensor 

design. A 1.5 mm thick silicon dielectric/interface layer was positioned over the active area 

of the FSR and a thin layer of transparent 0.5 mm PVC plastic was placed over this to 
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create the final sensor sandwich.  An Arduino microcontroller was used to interface with 

the FSRs and provide a means for recording the resistance measurements and translate 

these into force in Newtons following a polynomial calibration procedure.  A schematic of 

the Arduino circuit and final circuit are delineated in Figure 6.10.  A set of standard 

weights were used to calibrate the sensor over a range of 150 g to 500 g, with 6 replicate 

recordings for each weight. The second degree polynomial calibration curve for two of the 

sensors is shown in Figure 6.11.   

 

Figure 6.9 Schematic diagram of force sensitive resistor mounted on surgical forceps (a) 

and photo of prototype FSR mounted on forceps (b). 
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Figure 6.10 Schematic diagram of Arduino circuit (a) and final assembled circuit (b).  

 

 

Figure 6.11 Second degree polynomial calibration curve for FSR 1 and 2. 
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6.5 Suture Traction Force Measurement 

Many surgical procedures require the delicate application of tension to a suture 

while performing hand ties, e.g. ligation of small vessels. Measurement of the magnitude 

of this tension force or forces applied to the tissue being ligated has been shown to vary 

between surgeons with varying levels of experience (107). Additionally, providing 

feedback of forces the forces applied to a simulated model can also improve the speed of 

attaining proficiency in surgical knot tying (108). A surgical knot tying simulator was 

constructed based on the apparatus previously employed in Chapter 5.  In a similar fashion 

as demonstrated by Hsu et al. (107), a dual range force sensor was attached to a nylon 

monofilament under tension.  However, an additional ‘pulley’ in the form of a non-

ferromagnetic aluminum rod was introduced to translate any forces applied to the 

monofilament into the vertical axis, ensuring alignment with the axis of the force sensor. 

This approach is likely more robust than that presented by Hsu et al., as forces applied 

orthogonally to the force sensor without this pulley would not be detected.  Figure 6.12 

shows a labelled picture of the knot tying simulator.  

 

 

Figure 6.12 Knot tying simulator box with integrated dual range force sensor. 

 



69 

6.6 Validation Studies 

To assess the accuracy of each individual component and combined components, 

we completed two studies to demonstrate the accuracy of 3D gaze tracking and combined 

3D gaze and hand tracking. The methodology and results of these experiments are 

described in Chapters 7 and 8.  With respect to 3D gaze tracking, other researchers have 

described a similar technology, the VICON-Eye Tracking Visualizer, but the accuracy and 

precision of this technology has yet to be reported (106).  
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Chapter 7 – Real-time Generation and Recording of a 3-Dimensional 

Gaze Vector from Synchronized Eye and Head Tracking 

Introduction 

Traditional eye tracking platforms utilize a camera or cameras directed towards the 

user’s eyes in order to capture pupil position. Video is simultaneously obtained in a point-

of-view fashion to acquire an image of the environment (109). Following calibration to 

align gaze position with an array of points typically at the same focal distance then allows 

the experimenter to monitor gaze position by tracking pupil position relative to the point of 

view video. Recently, new techniques (110-112) have been developed for assessing the 

focal point of an individual’s vision with data obtained from a binocular eye tracker. This 

allows for a determination of gaze fixation in three dimensions by estimating gaze depth. 

Despite reasonable accuracy, these systems require a reliable determination of pupil 

position for both eyes in order to determine convergence. In addition, these techniques are 

sensitive to changes in head position. More recently, investigators were able to combine 

optical head position data and eye tracking data to determine a 3D gaze vector. This system 

allows the individual wearing the device to move freely and interact with objects in a 

complex 3D environment (106).  

 The Schack group (106) provided an excellent summary of previous systems that 

combined head and eye tracking technologies, along with their limitations.  Many of these 

systems require the users’ head to remain stationary or require a bulky binocular camera 

system that occludes a significant portion of an individual’s field of view. Alternatively, 

desktop eye trackers or those integrated in monitors limit the area of tracking and can also 

be sensitive to head movement (113). The VICON-Eye Tracking Visualizer overcame 

these limitations by integrating monocular eye tracking with head tracking (114). This 

allows the subject wearing the device more freedom to interact with their environment 

compared to traditional 2D eye trackers that overlay gaze position on a 2D video frame. 

While the ability to measure fixations using this system was demonstrated, the accuracy 

and precision of the system was not reported.  

Using a similar strategy, a method for determining gaze position in three 

dimensions from data obtained using a monocular eye tracker was developed. Two 

dimensional gaze data was combined with head tracking data to compute a 3D gaze vector. 
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Similar to the VICON-Eye Tracking Visualizer, this system allows an individual to move 

their head freely. The intended application for this system is the acquisition of 3D gaze 

information during open surgical tasks.  

To validate the 3D gaze system described in Chapter 6 and determine the accuracy 

of 3D gaze determination, two experiments were conducted to measure gaze position when 

interacting with both a physical and virtual marker. An OptiTrack MoCap system 

(NaturalPoint, Inc., Corvallis, OR) was used to determine both head position and the 

position of both the physical markers and monitor for displaying the virtual markers.  

Two measures of gaze accuracy were compared across a group of volunteer 

subjects – Euclidean distance from the marker to the gaze vector and gaze angle. We 

selected a viewing distance that approximates the average distance an individual will 

experience when interacting with a bimanual task while standing with their forearms 

parallel to the ground. This is the usual case for complex bimanual tasks such as surgery. 

 

Methods 

2D Eye tracking  

Eye pupil position was captured using the Dikablis Essential Monocular Eye 

Tracker (Ergoneers GmbH, Manching, Germany). This consists of a head mounted eye 

tracker with a single infrared camera positioned just below the left eye (eye cam) and a 

camera mounted near the centre of the eye tracker positioned just above the subject’s nose 

(field cam). A dedicated computer system was used to run the Dikablis Recording software 

provided with this eye tracker. This software automatically provides functionality for 

streaming all gaze data over a local area network using TCP/IP. Prior to streaming the 2D 

gaze tracking data to our recording software the Dikablis system is calibration at a 

particular distance. We performed manual calibration of the eye tracker at three distances 

corresponding to the three virtual array distances of 55 cm, 70 cm and 85 cm. This 

calibration involves having a subject fixate on the four corners of a rectangle. We used the 

corners of the monitor used to display the virtual array to accomplish this. 

Head and Object Tracking 

Optical tracking was accomplished using an array of six Flex-13 OptiTrack 

cameras.  Motive version 1.6 software was used to calibrate the OptiTrack camera array 
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and stream tracking data to our recording software using a TCP/IP protocol on the same 

computer (local loopback). Following calibration with a 250mm OptiTrack wand, we 

selected and tracked the position and orientation of the subject’s head, the monitor used to 

display the virtual array and a gaze calibration triangle we refer to as the tracking object.  

In order to accurately measure head position and movement, we placed three IR makers on 

the rigid portion of the Dikablis eye tracker in an asymmetric triangular configuration. 

Similarly, three IR markers were placed on the corners of a widescreen monitor to form an 

asymmetric triangle. These markers were selected in the Motive software and labeled as 

rigid bodies in order to track their position in real-time. 

 

3D Gaze vector generation 

We implemented a custom software solution in C++ for synchronizing the 2D eye 

tracking data with the OptiTrack rigid body position data. Here we provide a description of 

the algorithm we employed for determining a 3D gaze vector via interpolation of a library 

of known calibration gaze vectors. The algorithm is broken up into two parts. Once the 3D 

gaze vector is determined it is saved, along with the synchronized and timestamped 

OptiTrack position data into a compressed XML file for offline analysis. Each 3D gaze 

vector is saved as a pair of two coordinates representing the origin and a second point on 

the gaze vector.  

 

Algorithm Part 1 

Here we obtain a sample of know gaze vectors. This is done during the calibration 

process when the subject is asked to fixate on the centroid of the tracking object in a 

variety of positions. During this step we are able to determine the gaze vector by 

calculating the vector between the subject’s head and the tracking object. This vector is 

normalized so that the distance between the head and the tracking object is not a factor. We 

then apply the inverse transformation of the head to the vector. This ensures that the 

position and orientation of the head do not affect the calibration. Finally, we save the 

vector and the associated 2D coordinates of the current FOV position streamed from the 

Dikablis recording software. For demonstrating the accuracy of our system, at least 10 

calibration positions spanning the subjects FOV were obtained. 
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Algorithm Part 2 

Following acquisition of the calibration vectors interpolation can be used to find the 

three-dimensional gaze vector for all possible x and y coordinates of the FOV streamed 

from the Dikablis. This process is delineated in Figure 7.1. First we solve for the convex 

hull surrounding the known FOV coordinates. Next, we triangulate the points while 

maintaining the outer convex hull. Finally, we perform a linear interpolation between the 

three points of each triangle. Here, each point represents an x and y coordinate of a known 

FOV with a known three dimensional gaze vector associated with it. During the 

interpolation step we calculate the corresponding gaze vector for each position in the FOV. 

This allows us to quickly look up the gaze vector when given the FOV coordinates from 

the eye tracking software. 

 

Figure 7.1 The calibration process for 3D gaze tracking. The surrounding rectangle 

represents the field of view (FOV). Each point represents a given position in the FOV with 

a known calculated three-dimension gaze vector. 

 

Physical and Virtual Test Arrays 

To determine the accuracy of our generated 3D gaze vector we compared the 

position of this vector to an array of known points. A physical array was constructed by 

elevating nine 12 mm passive IR reflective markers above a board with wooden dowels 

arranged in a 3x3 array (Figure 7.2). The height of each marker was randomized and 

spanned a range of zero to 30 cm above the surface of the board. This back edge of this 

platform was positioned 70 cm from the subject and the OptiTrack system was used to 

accurately determine the position of each marker as a point in 3D space.  
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Figure 7.2 Physical array comprised of 9 passive IR markers position at various heights. 

To display our virtual array, a MATLAB script was used to display a sequence of 

15 circles on a 24” widescreen monitor. These virtual markers were evenly distributed in a 

3x5 array. In order to determine the physical position of each virtual marker we used the 

dot pitch of our monitor (0.38mm) to translate the pixel address of each marker into a 

physical position measured from pixel (0,0) at the upper left corner of the monitor. The 

position of pixel (0,0) relative to the three IR markers placed on the bezel of the monitor 

was also measured. Figure 7.3 shows the positioning of the IR markers with respect to the 

screen edge. 

 

Figure 7.3 Placement of OptiTrack IR marker at corner of LCD monitor and three 

dimensional translations from centre of marker to pixel (0,0). 
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Validation Experiments 

Institutional approval from the University of Alberta Research Ethics Board was 

obtained prior to enrolling any subjects. We recruited individuals with normal or corrected 

normal vision and ability to wear a head mounted eye tracker over the left eye. We 

excluded any individuals with any health condition affecting vision or eye movement e.g. 

strabismus, nystagmus, previous globe injury, etc. 

Subjects performed all testing from a seated position. We completed the 2D 

calibration of the Dikablis using the corners of the monitor at an initial distance of 55 cm. 

Next, the IR markers on the monitor, eye tracker and calibration triangle were selected and 

registered as rigid bodies in the Motive software. A set of known calibration vectors were 

then recorded by moving the calibration triangle throughout the subject’s field of view. 

Subjects were instructed to focus their fixation on the centroid of the calibration triangle as 

it moved to each calibration position. 

Each virtual marker was displayed individually for 3000 ms and plotted in a linear 

sequence from left to right along each row starting at the upper left of the screen. An audio 

file was used to provide a standardized cue for each subject to fixate on the next marker in 

the physical array.  

Analysis 

Prior to determining the gaze distance and angle error from our validation 

experiments we executed a MATLAB script in order to obtain spatial coherence between 

the different coordinate systems. The origin of the eye vector was translated to the 

approximate back of the subject’s retina from the centroid of the tracked triangle 

representing head position. We used the average reported diameter of an adult eye globe in 

this calculation.(115)  The data was visualized using MATLAB 3D graph functions in 

order to confirm that spatial coherence had been obtained (Figure 7.4 and 7.5). Euclidean 

distance was determined by solving for the minimal distance between the line represented 

by the 3D gaze vector and a point in 3D space represented by a given IR marker or point 

on the virtual array (116). The gaze angle error was determined by comparing the ideal 

gaze angle represented by a vector originating from the eye to the tracked marker position.  
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Figure 7.4 MATLAB visualization of the physical IR marker array and gaze vector in line 

with marker 3, each axis represents distance in meters. 

 

 

Figure 7.5 MATLAB visualization of the virtual marker positions displayed on the LCD 

monitor and gaze vector in line with marker 2, each axis represents distance in meters. 
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Results 

MATLAB visualizations of the physical array and virtual arrays are depicted in Figures 7.4 

and 7.5. In both, the origin of the gaze vector represented by ∗. The 3D gaze vector is 

represented as a 1 m long line extending towards the gaze targets represented by ∘. 

Distance and gaze angle error were determined at three distances for each subject using the 

virtual array and at a single distance for the physical array. Figure 7.6 delineates the 

Euclidian distance and visual angle error for a single subject.  The pooled mean distances 

and angle error for each physical and virtual marker are summarized in Table 7.1 and 

Table 7.2 respectively.  The overall accuracy for 3D gaze from data pooled for all three 

viewing distances was 2.78 ± 1.6 cm for the physical array and 2.49 ± 0.95 cm for the 

virtual array. 

 

 

Figure 7.6 Euclidian distance from each of the physical markers for a single subject. 
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Table 7.1: Mean gaze distance and angle error from the OptiTrack IR marker position in 

the physical array 

Physical Array 

Marker 

Mean Euclidian 

Distance (cm) 

Gaze Angle 

Error (º) 

1 3.5 ± 2.0 3.0 ± 1.7 

2 2.3 ± 1.0 2.1 ± 0.9 

3 1.8 ± 1.0 1.5 ± 0.8 

4 2.7 ± 1.5 2.4 ± 1.3 

5 2.9 ± 1.5 2.4 ± 1.4 

6 2.3 ± 1.4 2.0 ± 1.2 

7 3.9 ± 2.4 3.6 ± 2.3 

8 3.1 ± 1.3 2.4 ± 1.0 

9 2.5 ± 1.6 2.1 ± 1.4 

 

Table 7.2: Mean gaze and angle error from virtual marker position plotted on LCD monitor 

Virtual Array 

Marker 

Mean Euclidian 

Distance (cm) 

Gaze Angle 

Error (º) 

1 1.5 ± 0.2 1.3 ± 0.2 

2 1.3 ± 0.4 1.0 ± 0.3 

3 2.4 ± 0.7 1.9 ± 0.5 

4 3.8 ± 1.8 3.1 ± 1.6 

5 2.8 ± 0.2 2.2 ± 0.1 

6 2.7 ± 0.7 2.2 ± 0.5 

7 1.6 ± 0.5 1.4 ± 0.5 

8 1.6 ± 0.3 1.3 ± 0.3 

9 2.7 ± 1.3 2.1 ± 0.7 

10 2.4 ± 0.1 1.9 ± 0.1 

11 3.0 ± 0.5 2.4 ± 0.4 

12 3.9 ± 1.4 3.0 ± 1.0 

13 2.5 ± 0.8 2.0 ± 0.6 

14 2.7 ± 0.7 2.2 ± 0.4 

15 2.5 ± 1.9 1.9 ± 0.6 
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Figure 7.8 Dikablis Recorder software showing pupil detection overlay and reflection of IR 

LED at the inferior aspect of the subject’s pupil. 

 

Discussion 

We have successfully demonstrated the development of a 3D gaze tracking system 

by integrating traditional 2D eye tracking technology with optical head tracking. Our 

results demonstrate the accuracy of this system for viewing objects at a focal distance of 

55-85 cm. Our synchronization and recording software allows us to retain all of the 

information streamed from the Dikablis recorder regarding 2D fixation, pupil size, and 

timestamp information. While we did no demonstrate it here, this information could be 

used to determine fixation duration and other traditional eye tracking metrics.  

Inspection of the gaze accuracy data revealed decreased accuracy for both physical 

and virtual markers near the periphery of the subject’s vision. The Dikablis eye tracker we 

employed utilizes a linear calibration method for both X and Y gaze coordinates. At more 

extreme gaze angles, where the eye is focused on objects to the extreme left or right for 

example, there are some torsional movements of the eye (115).  Based on the calibration 

method it is likely that these movements resulted in a less accurate determination of gaze 

direction. While our method of generating multiple gaze vectors likely compensated for 

some of this error, we also performed a linear calibration based on a convex hull for both x 

and y coordinates. Future optimization of this method might involve measuring and 

correcting for torsional or non-linear gaze deviation at more extreme gaze angles.  

A decrease in gaze accuracy for markers below the horizon of some subject’s gaze 

was also measured. This was likely due to an inaccurate determination of the pupils centre 
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by the proprietary Dikablis Recorder software. Despite numerous attempts to optimize the 

position of the eye tracking camera on the Dikablis, we were sometimes forced to position 

the camera closer to the individual’s gaze horizon. This resulted in a reflection of the IR 

emitter just below the eye camera in the image of the subject’s eye and pupil as in Figure 

5.7. Following the initial manual 2D calibration of the eye tracker, there was a discrepancy 

in the plotted gaze position for targets towards the lower portion of a subject’s field of 

view when this reflection in the pupil was significant. Despite attempts to reduce the 

intensity of the IR LED intensity, this appeared to reduce the accuracy of the system for 

some subjects.  

Visual inspection of the IR spectrum in the Dikablis Recorder software during pupil 

detection calibration demonstrated a significant amount of noise. There appeared to be an 

oscillation in the overall amplitude of the spectrum on the order of 1-2 Hz.  The use of an 

AC power conditioner or DC power source appeared to reduce the intensity of this noise. 

For all of the accuracy testing in this study we chose to use a DC power source from a 

lithium polymer battery.  

The synchronization and recording system previously described in Chapter 6 allows 

for the eye tracking acquisition system to be independently developed and optimized as the 

data is generated on a separate system. This will facilitate future improvements to pupil 

detection and overall accuracy.  
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Chapter 8 Validation of a Combined Eye and Hand Tracking System 

Introduction 

Investigators have previously used eye tracking technology to investigate the 

relationship between vision and motor movement or planning (117).  However, to our 

knowledge, no previous studies have combined eye and hand tracking in a 3-dimensional 

environment. By utilizing the kinematic system described in Chapter 6, we sought to 

demonstrate how gaze overlap with hand position in 3D space could be used to measure 

eye hand interaction during a complex bimanual task. We chose a rudimentary surgical 

task, the placement of three simple interrupted sutures in simulated tissue, to measure eye-

hand interaction objectively, and investigate the use of these metrics for determining 

surgical dexterity or experience. We recruited novice medical students with limited 

previous suturing experience as well as senior surgical resident trainees to determine if 

portions of the simulated task could be used to predict experience or ability. Once 

acquired, manual and computer assisted automatic segmentation of the task can be 

performed to compare the time required for each particular portion of the task, a measure 

of movement economy.  These metrics may form the basis for new objective measures of 

performance and the generation of procedure specific feedback for surgical trainees. As 

discussed in previous chapters, examples of segmentation strategies for decomposing 

surgical maneuvers include Hidden Markov Models (HMM) (96,118) and affine speed 

(24).  This chapter describes the successful collection of synchronized 3D gaze, hand 

motion and instrument forces during a simulated surgical task. Once a more complete data 

set is obtained, other measurements including proactive eye gaze – eye movements that 

precede motor movement (119), will be compared to determine if this is substantially 

different between novice and experienced trainees.  The current results report the accuracy 

of both the 3D gaze and hand tracking technologies and achievement of both temporally 

and spatially coherent data. 

 

Methods 

Health ethics board approval was obtained from the University of Alberta Health 

Ethics Board. Senior medical students who had completed their clinical rotation in surgery 

as well as senior general surgical residents in Post-Graduate Year 3 (PGY3) or greater 
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were recruited. Participants requiring vision aids were requested to wear contact lenses in 

order to improve eye tracking performance.  

The system described in Chapter 6 for obtaining synchronized 3D eye gaze and hand 

motion was calibrated and each participant was fitted with the eye tracker and surgical 

gloves with embedded electromagnetic tracking. Adson forceps with integrated force 

sensors were provided for the suturing task. A Canon digital SLR camera was used to 

acquire audio and video of each participant performing the simulated task. In order to assist 

with modeling of each subject’s hands, the positions of each MCP, PIP and DIP joint in 

both hands were marked with a permanent marker and photographed adjacent to a ruler for 

scale.  

Prior to completing the simulated surgical task, each participant was asked to direct their 

gaze to the center of the starting positions for each instrument and place their right index 

finger at the same position. This generated the data necessary for validating the accuracy of 

the synchronized hand and eye tracking system. 

Suturing Task 

each participant was asked to place three interrupted sutures in a marked location of 

3-Dmed (3-Dmed, Franklin, OH) synthetic skin. Instruments including forceps with 

integrated force sensors, a needle driver, and scissors were provided. Each instrument was 

placed on the board in a marked and labeled starting position. Figure 8.1 shows a 

photograph of the suturing simulation work area. Participants were instructed to perform an 

instrument tie for making their surgical knots and to place each instrument back in the 

designated starting position when not in use.  This resulted in a sequence of grasping the 

forceps and driver initially, returning the forceps second, and returning the driver before 

grasping the scissors to complete the task. This forced each participant to decompose the 

major steps of the suturing task into discrete and easy to identify segments.  

Accuracy Validation Task 

To determine the accuracy of the eye tracker when positioned over the surgical 

simulation and of the hand EM tracking system, the center of each of the instrument home 

positions was taken as a physical target. This is similar to the methodology employed in 

Chapter 7 where a physical array of IR markers was employed. Video of the accuracy task 

was used to determine the approximate time corresponding to the mid-point of gaze 
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fixation and finger positioning over a particular target. A 250 ms sample of gaze data was 

taken around each time point, filtered using MATLABS median filter (medfilt1), and the 

average Euclidean distance and standard deviation was determined.  A similar 250 ms 

sample of position data for the EM tracker corresponding to the index finger of the right 

hand (RightD2) was used to determine the accuracy of the EM system. The EM data did 

not require filtering.  

 

 

Figure 8.1 Experimental setup showing position of EM transmitter with respect to the 

simulated surgical task and instrument home positions/targets  

 

Results 

Calibration of the OptiTrack MoCap system typically resulted in a triangulation 

residual mean error of ≤ 0.2 mm as reported by Motive software. Calibration of the 

Dikablis was completed as described in Chapter 6 and 7 with 25 gaze vectors using a 

calibration target composed of 3 IR markers arranged in an asymmetric triangle. The 

TrakSTAR EM tracking system was aligned with the OptiTrack frame of reference by 

inverting a designated finger and placing it over the three IR markers representing the 

ground plane.  Following capture of the accuracy and suturing task, the synchronized data 

was saved to file in XML format. A MATLAB script was then used to parse the raw data 

and load the necessary elements for further analysis into MATLAB arrays. 
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Visualization of the raw data was accomplished by reconstructing both the 3D gaze 

vector and hand model from the eye tracking and EM data respectively. While the finger 

tips were plotted as points in 3D space, the palm was drawn as a six sided polygon and 

rotated according to the quaternion rotation data encoded by the EM tracking system for 

the sixth marker on each hand. This marker corresponds to the dorsal aspect of the 

midpoint of the third metacarpal. 

Figure 8.2 shows the MATLAB 3D visualization of the hands and eye gaze vector 

with respect to the instrument home positions and accuracy targets. Here the corrected 

origin of the 3D gaze vector is represented by ∗ and a 1 m line extending towards the 

fixation point. The intersection of this vector with the ground plane can be used to 

determine the fixation point if the physical location of the surface is known. For testing the 

accuracy of the eye gaze vector, the Euclidean distance between a line (the gaze vector) 

and a point (the marked center of each target) was calculated based on Eqn. 8.1, where 

𝐱1 = (𝑥1, 𝑦1, 𝑧1) and 𝐱2 = (𝑥2, 𝑦2, 𝑧2) are two points on the vector and 𝐱0 = (𝑥0, 𝑦0, 𝑧0) is 

a point in Euclidean space, ℝ3. Both video or inspection of the distance over time curve 

can be inspected to determine when the gaze is fixated on a particular target. Figure 8.3 

shows the distance between the eye vector and each target over the course of the 

experiment for a single subject.  Figure 8.4 is a graph of gaze deviation for all 3 subjects. 

The participants were prompted to move from one target to the next in sequence so the 

distance approaches zero in sequence, as expected. Table 8.1 reports a summary of the 3D 

gaze accuracy for three subjects. 

 

𝐷 =  
|(𝐱0−𝐱1)−(𝐱0−𝐱2)|

|(𝐱2−𝐱1)|
    (8.1) 
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Figure 8.2 MATLAB visualization of the accuracy experiment showing the position of the 

home instrument positions and surgical task (rectangles), reconstructed hand models and 

3D gaze vector.  
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Figure 8.3 Gaze vector distance from three target positions during accuracy test. 

Participants fixated on targets in order from top to bottom. 
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Figure 8.4 3D gaze deviation from target center for 3 subjects. 

 

Table 8.1: Gaze deviation for three test targets (n=3) 

 

Target Euclidean distance – gaze vector to 

target ± SD (cm) 

1 4.6 ± 1.3 

2 2.5 ± 0.8 

3 4.7 ± 0.9 

 

 In a similar fashion, the EM data for the right second digit (index finger) was 

evaluated for accuracy.  The three dimensional coordinates for this sensor were translated 

+1 cm in the MATLAB z axis to correct for the placement of the sensor over the fingernail 

and not the finger pad.  The Euclidean distance, 𝐷, between two points was then 

determined as per Eqn. 8.2, where 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 are the coordinates of a point in Euclidean 

space, ℝ3 (120). Figure 8.5 shows the distance between the right index finger and the 
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three accuracy targets for a single subject. Figure 8.6 delineates the finger position 

accuracy for all three subjects. A summary of the accuracy data is reported in Table 8.2. 

 

𝐷 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2   (8.2) 

 

 

Figure 8.5 Distance from tip of right index finger to three target positions during accuracy 

test. 
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Figure 8.6: Finger position (EM) deviation from target center for 3 subjects. 

 

Table 8.2: Finger position accuracy for three test targets (n=3) 

Target Euclidean distance – Right D2 

tip to target ± SD (cm) 

1 0.76 ± 0.06  

2 0.86 ± 0.04 

3 1.11 ± 0.13 

 

Overall, the pooled gaze and EM finger tip deviations were 4.0 ± 1 cm and 0.91 ± 0.09 cm, 

respectively. 

 

Discussion 

We have successfully demonstrated the acquisition of synchronized 3D gaze and 

hand motion while performing a complex bimanual task.  Validation of the 3D gaze and 

finger position acquisition resulted in an overall accuracy of 4.0 ± 1 cm and 0.91 ± 0.09 

cm, respectively.   
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This system was designed for acquiring kinematic data from individuals performing 

surgical tasks, but this technique will likely be useful to industry or researchers interested 

in studying the acquisition of fundamental motor skills or optimizing training strategies for 

complex bimanual tasks.  We utilized many more sensors on each hand compared to the 

ICSAD in an attempt to record highly detailed motion information necessary for 

characterising specific hand gestures.  We have little doubt that this system will be able to 

discriminate between surgical trainees with different levels of experience using similar 

descriptive statistics. However, our aim is to provide additional information regarding 

specific portions of a maneuver. To analyze the kinesthetic of a surgical procedure, a much 

richer data set is required in order to determine the variable orientation of each hand and 

finger during a specific subtask. In addition, our 3D gaze acquisition system can acquire 

precision visual information regarding gaze behaviour. Previous research (121) has shown 

that optimizing gaze strategies or gaze training can have a demonstrable effect on surgical 

performance.  By far, the most significant advancement presented in this study is the 

ability to record both hand motion and eye gaze together.  Spatially and temporally 

coherent data will permit the future evaluation of eye hand interaction and coordination. 

This has not been achieved with the same precision and accuracy as presented here.  

While this system can provide highly detailed information regarding an individual’s 

motion and eye gaze behaviour, the calibration process is still quite cumbersome and 

consists of three calibration maneuvers for generating a 3D gaze vector and two for 

obtained spatially coherent position and rotation data from the EM system.  This 

calibration process can take upwards of 30 minutes to complete for one subject.  Previous 

studies (106) have criticized similar technologies because of the complexity of the 

calibration procedure. The monocular eye tracker is the least reliable instrument in this 

system. While data was obtained for the surgical task described above, visualization and 

playback revealed significantly aberrant eye tracking.  For this reason, our focus shifted to 

improving the reliability of pupil detection. Chapter 9 provides a description of ongoing 

attempts to develop an in-house technique for more reliable eye tracking.  As previously 

stated, the modular nature of our system allows us to develop and improve each 

technology, e.g. eye tracking, independently. 
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Chapter 9 – Conclusion and Future Research Directions 

This thesis provides an overview of some of the latest techniques for assessing 

technical dexterity in surgery.  A solid understanding of the prevailing theories in motor 

skill acquisition serves as a valuable tool for hypothesis generation and the design of 

experiments for testing these theories. We presented an innovative system designed to 

acquire eye, hand and instrument motion and kinematic data for use with computer aided 

assessment tools we hope to further develop.  Our system solves the challenge of collecting 

this type of data in the open surgical domain.  We are optimistic that computer aided 

analysis previously applied to kinematic data in MIS can be applied to this data set. While 

we have yet to conclusively demonstrate that a kinesthetic approach can be used to 

objectively evaluate surgical trainees, focusing on this technique during training appears to 

have a benefit. Along the same lines, there is strong evidence for the use of laparoscopic 

simulation devices, those that emulate remote manipulation, for improving laparoscopic 

skill. 

The first empirical study in Chapter 4 showed how video gaming can supplement 

the current simulation based training of novice surgical trainees.  This study represents the 

largest randomized control trial to date on the effect of video gaming on laparoscopic skill 

acquisition.  Some interesting findings emerged from the repeated measure analysis and 

learning curves that were constructed for the laparoscopic practice task.  The learning 

effect of even a brief exposure to laparoscopic practice was demonstrated. This is an 

important factor to be cognisant of in all human performance studies that involve repeated 

exposure to a particular task. In conclusion, lap box training remains the superior training 

method for laparoscopic novices. The effect is most pronounced with highly visuospatial 

intensive tasks exercises such as the FLS peg transfer task. However, video gaming 

appears to reinforce laparoscopic skill acquisition when combined with lap box practice, as 

evidenced by parallel learning curves.  

Chapter 3 provided an overview of the current methods available for motion 

analysis in a variety of surgical environments (open, MIS, robotic). Motion analysis can be 

used to collect kinematic and kinesthetic data related to surgical expertise. Laparoscopic 

techniques benefit from restricted DOF and well established instrument tracking 

technology that facilitate the application of computer based analysis methods.  
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Language models are a method for automatic segmentation of hand motion into 

surgemes (surgical gestures) that can be compared with an internal standard. Combining 

data from multiple sources such as hand and finder position, gaze fixation and force data as 

was done in MIS based studies should be able to generate useful relationships (e.g. hand-

tool-tissue interactions) specific to a particular gesture or surgeme. Depending on the 

reliability of the acquired motion data, a HMM developed for a particular individual can be 

augmented with additional motion or force data.  Despite the increased complexity of hand 

and instrument movement in open procedures, we successfully applied a language model to 

a non-surgical transfer task (Chapter 5). Significant occlusion from optical hand motion 

capture motivated us to pursue a EM hand tracking method. 

The surgical hand motion and eye tracking system described in Chapters 6 

represents a novel method for acquiring synchronized hand motion and eye tracking data. 

The combination of head and eye tracking to generate a 3D gaze vector has previously 

been described, but the empirical study in Chapter 7 is the first to demonstrate the accuracy 

of our interpolation technique. The achievement of temporally and spatially coherent data 

acquisition in a single system is significant. This study demonstrated the generation of a 

3D gaze vector with an accuracy of 2.5-2.8 cm using both a virtual and physical array of 

gaze targets. Despite some limitations, this system can be used to acquire eye tracking data 

while users interact with a 3D environment at a variety of depths of field.  Testing of the 

combined eye and hand capture system with the participant in a standing position 

demonstrated gaze accuracies of 4.0 ± 1 cm and fingertip accuracies of 0.9 ± 0.09 cm. 

These figures indicate that the system is able to capture eye gaze and finger position at a 

reasonable accuracy for future analysis of hand gesture and eye gaze behaviour.  These 

experiments also served to identify challenges with the design and calibration of the 

equipment.  The focus of future development of this system is discussed below. 

Future Work 

Based on the results presented in Chapters 7 and 8, our focus will center on 

improving the reliability and robustness of the eye tracker prior to completing data 

collection for more sophisticated simulated surgical procedures. 

As discussed in Chapter 8, the reliability of the monocular eye tracker was highly 

variable between subjects.  Under ideal circumstances, such as those replicated in Chapter 
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7, the eye tracker could produce impressive results. However, when we transitioned to a 

standing position over a surgical task, pupil occlusion became significant.  The Dikablis 

Recorder software used in this system utilizes a threshold algorithm for determining pupil 

position from the IR video positioned just below a subject’s left eye. Unfortunately, harsh 

shadows and the reflection of the IR LED just below the IR camera significantly affected 

the ability of the software to identify the center of the pupil reliably.  However, the 

Dikablis is not a closed system, and the video from the eye camera can be captured by way 

of a video capture device independent of the Dikablis software. This has enabled us to 

record raw video of the eye for multiple subjects, emulating some of the occlusion from 

eyelashes and different lighting conditions that result in inaccurate pupil detection (Figure 

9.1).  With the aid of collaborators from the Department of Computer Science, we are 

implementing a machine learning based method for pupil detection.  A recent study (122) 

has demonstrated the robustness of this technique.  We hope this will significantly improve 

the reliability of the eye tracker and also eliminate some of the calibration steps required in 

order to generate the 3D gaze vector.  

Following the implementation of an improved method for acquiring 3D gaze, the 

system described in Chapters 6-8 will be applied to surgical trainees.  In addition to the 

rudimentary suturing task described in Chapter 8, a small bowel anastomosis and hand 

typing task will be completed.  The year of training of each resident, their self-reported 

surgical experience based on number of cardinal procedures and performance on a Mental 

Rotation Test (MRT-A) (123) will be assessed prior to completion of the simulated tasks.  

To familiarize junior trainees with a small bowel anastomosis on an animal model, a 

standardized video has been prepared which provides and overview of the technique 

(Figure 9.2).  High-definition video will be acquired during the simulated tasks, and a 

blinded expert reviewer will assess each participant based on an adapted OSATS scoring 

checklist as described in Chapter 4. In addition, the hand motion data acquired from the 

EM system can be used to generate the ICSAD (51) metrics (path length, number of 

movements, overall task time) for comparison.  These results can then be used to validate 

any future objective assessment measures derived from the surgical motion and eye 

tracking system.  
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Figure 9.1 Unprocessed video frames captured from the Dikablis eye tracker.  

 

 

Figure 9.2 Video snapshot of standardized video providing instructions for performing a 

small bowel anastomosis. 
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