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Abstract

The dynamic control of heat exchanger network is important for developing energy
efficient and safe industrial processes. In Chapter 3 of this work, the uncertainty is
considered in inlet temperature of hot stream. The cold stream is bypassed around
the heat exchanger. This work aims to track the setpoint temperature of the mixed
stream by manipulating the bypass fraction of the cold stream around the heat ex-
changer. The implemented control is in Nonlinear Model Predictive Control (NMPC)
framework. The uncertain optimal control problem (OCP) is dealt by using scenario
tree based approximation along with an affine policy based method. The first prin-
ciples model of shell and tube heat exchanger is used. The orthogonal collocation
technique is applied to discretize the first principles model into the system of al-
gebraic equations. The results show that for possible scenarios of uncertainty, the
controlled variable efficiently tracks setpoint. In comparison, considering the same
scenarios of uncertainty used, the deterministic optimization approach shows signifi-
cant deviation of the controlled variable from the setpoint as time passes.

Fouling is a concerning problem for heat exchange in industries. It is the deposi-
tion of unwanted materials on heat exchanger surfaces which offers extra resistance
for heat transfer. Generally, chemical cleaning and flowrate distribution are used to
mitigate fouling. In Chapter 4 of this work, the optimal cleaning scheduling and by-
pass control problems are formulated simultaneously considering disturbances in inlet
temperature of cold stream. This integrated problem is formulated as a MINLP prob-

lem. The cleaning scheduling variables are binary decision variables, and the bypass
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fractions are continuous decision variables. A axially lumped and radially distributed
model of HEN is considered in this chapter. The uncertain OCP is made tractable
using an affine policy based methods and scenario tree based approximations. The
performance of the proposed uncertain optimization problem is demonstrated using
various case studies which include PHT of crude. This is because fouling is a relevant
and most evident in PHT due to presence of impurities in crude. In this uncertain
optimization, the value of objective function which represents the additional cost oc-
curred because of fouling as compared to ideal clean conditions is reduced by 44% as

compared to deterministic optimization.
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Chapter 1

Introduction

1.1 Motivation

In industries, nearly 80% of the total energy consumption is related to heat transfer
[1]. For energy intensified processes, dynamic control of the HEN plays an important
role [3]. Generally, the outlet temperatures are controlled by manipulating flow rates.
However, when the flow rates are determined by process requirements in HEN, bypass
control is adopted widely [6]. Bypass control provides tight temperature control since
the dynamics of blending a hot stream (stream through the heat exchanger) and a
cold stream (bypassed stream) is fast.

But, the control problem of heat exchanger is considerably difficult because of the

reasons like following [1]:
1. Nonlinear dynamics
2. Disturbances in inlet temperatures of streams and uncertainties like leakages
3. Temperature dependent flow properties and contact resistance.
4. Time varying properties like fouling resistance.

So in this work, using bypass control, an attempt is made to track the temperature
setpoint considering disturbances in inlet temperature of hot stream as described in

chapter 3.



Fouling is the deposition of unwanted material over the surface of process equip-
ment, which reduces the performance of heat transfer operations. It is a phenomenon
that is not yet fully understood, but it is known that fouling can be caused by the
presence of impurities in the process streams, the crystallization of salts, biological
reactions, deposition of suspended particles, thermal decomposition of certain compo-
nents, and corrosion [9]. The causes of fouling vary among different processes. Some
are process-specific, such as the biological fouling caused by the thermal degradation
of proteins in milk pasteurization processes [10] and the crystallization of salts in wa-
ter treatment applications [11]. In other areas, such as refining applications, fouling
can be caused by more than one mechanism at the same time [9]. Its consequences

on the operation of chemical processes are of major concern.

In heat exchanger units, fouling reduces both thermal and hydraulic performance.
The deposited material generates an additional thermal resistance that reduces the
heat-transfer rate and the potential to recover high amounts of energy in heat ex-
changers. Figure 1.1 is taken from [1]. For example, the fouling resistance with
respect to time is given by Figure 1.1. Generally, these are the curves used to repre-

sent fouling resistance with respect to time time [1].

Fouling resistance

Time
Figure 1.1: Fouling resistance vs time [1]

In addition, the deposit reduces the hydraulic radius, which increases the pressure
drop, and in extreme cases, it causes a complete blockage of the unit [12]. These
factors increase the operational cost, the risk of operation during cleanings, and the
environmental impact. The consequences of fouling are of major concern in refinery
operations where large HENs are used in the energy integration of the process. This
is most evident in the PHT of the CDU, which processes all the crude oil that comes

into the refinery under extreme conditions, such as high temperature, varying range



of composition, and high amounts of contaminants [9]. In this case, the extra thermal
resistance in the heat exchangers reduces the CIT to the furnace, more furnace fuel
is burned, increasing the amount of carbon emissions and the operational cost.

So, in chapter 4, considering fouling, the integrated optimal cleaning scheduling and

control problem of HEN is described.

1.2 Literature survey on control of HEN

Temperatures and/or flow rates of incoming streams may introduce disturbances to
a HEN owing to uncontrolled upsets in upstream process units and affect target
streams, and hence, the operations in downstream process units. Thus, temperatures
of target streams of a HEN should be tightly controlled for the safety of downstream
operations. In practice, it is necessary to place bypasses for satisfying the degrees of
freedom required to achieve control objectives [14]. Few researchers have looked at
the controllability or bypass selection for control of HENs. Nisenfeld introduced the
use of then relative gain array (at steady-state) to evaluate control of a HEN [15], but
in this case the control scheme for the HEN had already been designed. Beautyman
and Cornish [16] observed that the proper placement of bypass lines around heat
exchangers affects the dimensions of the operability region, but they did not offer any
systematic suggestions as to where to put the bypass lines such that certain design
objectives are achieved. Calandranis and Stephanopoulos [17] addressed flexibility
and controllability and discussed the dynamics of HEN briefly.

McMillam and Toarmina [18] and Riggs and Karim [19] discuss a number of piping
and control configurations, including bypassing, and point out some of the advantages

of manipulating the bypass configuration.

1.3 Literature survey on integrated optimal clean-

ing and control of HEN

[20] presents an efficient and general formulation for solving a optimal cleaning schedul-
ing problem and the optimal control problem of HENs under fouling. A model and a
formulation are presented that are versatile, in the sense that some variables can be

fixed to examine only one or both of the scheduling or control problems, or include



just some aspects of both. Some fouling mitigation alternatives are cleaning in place
(chemical cleaning), mechanical cleaning, the use of antifouling agents, and chang-
ing the operation conditions [21], [9]. The cleaning options have been proven to be
an effective way to recover the thermal and hydraulic efficiency [23]. However, it is
not easy to decide which heat exchanger to clean and when the operational cost is
minimum. These decisions are often made using heuristic criteria but quantitative,
model-based mathematical programming approaches have also been used. Even with
highly simplified models,the large size of the problems and their combinatorial nature
make it hard to solve [20]. Furthermore, in the case of MINLP formulations, only
a local minimum can be guaranteed. Solution approaches have been proposed, such
as simulated annealing [24] or greedy algorithms [25] that produce a rapid solution,
but give no guarantee that this solution is optimal, and they have problems with
constraints.

Operationally, a practical alternative for fouling mitigation is to manipulate the flow
rate distribution in the network over time, through use of bypasses of individual units
and control of flow splits between parallel branches in the HEN. Optimizing such
flow distribution profiles has also been formulated as a mathematical programming
problem with the objective of minimizing the operational cost [26].

These are two mitigation alternatives. The first one is to tackle the problem as an
optimal scheduling problem, in which the main decision variables are binary vari-
ables associated with the operating states of the units (cleaning or operating) and
the timing and sequencing of the task. The optimal cleaning scheduling problem
is combinatorial in nature, and it is typically addressed using steady-state models.
The second one involves the optimization of the HEN flow rate distribution over
time. This is a dynamic, optimal control problem that involves differential-algebraic
equations. Most of the literature on the fouling mitigation of HENs addresses the
two alternatives individually, and most of it only focuses on the scheduling problem
[21].0n the other hand, some works tackle the second problem only from a dynamic

optimization perspective, ignoring the cleaning scheduling [27].

1.4 Optimization under uncertainty

Optimization under uncertainty refers to the branch of optimization where uncertain-

ties are associated with parameters or states used in the model. This uncertainty in



parameters or states makes the mathematical model uncertain, presenting us with
a class of optimization problems commonly called Stochastic Programming (SP).
Stochastic programming requires the knowledge of probability distribution of uncer-
tain parameters or states. The probability distribution of uncertainty is considered to
be known or can be estimated [13]. Another method to deal with uncertainty involves
finding an optimal solution that is optimal at the worst-case of uncertainty realized
for the considered set. Robust optimization requires the programmer to assume or
have the knowledge of the uncertainty set for the considered problem. Figure 1.2
represents the summary of methods used for optimization under uncertainty, the lit-
erature survey for optimization under uncertainty with the formulations and tutorials

are given in chapter 2.

Optimization
under uncertainity

Stochasti_c Robust
programming optimization

Chance
constrained

Recourse based

‘ Adaptive ‘ Static ‘

Figure 1.2: General uncertain optimization methods

1.5 Thesis structure

In this thesis, the scenario tree based method and affine policy based method will
be applied to solve the uncertain optimization problem. In Chapter 2, these meth-
ods are explained using a simple example of the optimization problem. Chapter 3
shows the problem statement, formulation and results of MPC of HEN. At first,
the control problem is formulated in the deterministic sense, and the uncertainty is
later introduced. The continuous system of ODEs which describe the first princi-
ples model of HEN is discretized using orthogonal collocation technique. Chapter 3
also describes this discretization technique. Chapter 4 shows the integrated optimal
cleaning scheduling and control of HEN. In this chapter, the decision variables also

include the binary variables which describe the optimal cleaning scheduling. Chapter



5 gives the summary of the work done along with possible future work along similar

lines to the work presented in the thesis.



Chapter 2

Optimization under uncertainty

This chapter explains various uncertain optimization techniques using an illustration
example. The formulation of the problem and solutions are taken from [40] and [39].
It is presented here to give basic knowledge of uncertain optimization techniques,

which are needed to understand the subsequent chapters of this thesis.

2.1 Illustration Problem

The simple case of supply chain management has been considered to implement
stochastic optimization techniques. The problem considers the supply-chain compo-
nents that involve ordering costs, inventory handling costs and external order costs.
The problem is solved over a finite time horizon, given as T. The objective of the
problem is to minimize the costs of operation while satisfying demand. To derive an
analogy between supply chain management problem and linear MPC, we can look at

the following highlights of the analogy:

e The stock level of a certain product is analogous to the measured state in MPC.

It is represented by the variable x(k), stock level of product at time k

e The product bought at a certain time k is analogous to the control input given
to a system at time k, in the case of MPC. The input is represented by wu(k) for

time k

e The demand for a product is analogous to the demand of a certain product



produced from the system under MPC control. The demand at time k is rep-
resented by w(k)

The mathematical representation for a supply chain model with one good and time
period T is given below :

The stock level of the good at time &k + 1 is given as:
x(k+1)=z(k)+uk) —w(k), k=0,1,...,T —1

Here, 2(0) = zo is the initial stock of the goods in the inventory. The current level of
stock is, thus the sum of level at the previous time instant and the products ordered
in, while removing the stock that is sold to meet the demand w(k). The holding cost
for inventory is denoted by h, and the costs of meeting demand from external buying,
and of buying the good are denoted by p and ¢, respectively. The cost objective to

be minimized is given as:
cu(k) + max(hx(k + 1), —pz(k + 1))

When the stock is positive, the holding cost haz(k + 1) is incurred. When the stock
is negative, the stock has to be bought from an external supplier thus incurring an
external cost of —pz(k + 1). Considering an upper bound M on size of order, the

T-stage optimization problem can be written as:

mln cu(k) + max (hx(k + 1 z(k + 1
o Z (v + 1), —pa( + 1)

st. 0<wu(k)<M, k=0,1,...T—-1

where, z(k) = x¢ + Zfz_ol(u(z) —w(i)), k=1,...,T. Introducing slack variables, the
max operator in the objective function can be removed. The formulation now can be

represented as:

min k 2.1
u(0),..,u(T—1),y(0),...,y(T—1) y( ) ( )



0<uk)<M, k=0,.,T—1 (2.4)

Solving the above deterministic problem, we get the ordering schedule and stock levels

as shown below:

| = ; ; ; : -
=
- - = 80
100~ = A 1
= 60 |
80 1

40

0 i L = =) L L =1 ES ES J 20 L | L -

Order u(k), and Demand w(k)
Stock level x(k)

Timek Time,k

Figure 2.1: The plot on the left shows the plot for inputs of products over time, while
the plot on the right shows the stock of the product over time [39]

Figure 2.1 is taken from [39]. Since the demand of a given product is not certain,
we assume there is a deviation of 15% on the upper and lower bounds of nominal

demand. The lower and upper limit on the demand can be written as:

w = (1= p)i(k)
Wy = (14 p)i(k)

where, p can be defined as the assumed degree of deviation from the nominal case.

The nominal case of demand can be defined by a sinusoidal function given as:

w(k) = 100 + 20sin <2w ) k=0,.,T—1

T7-1

The uncertainty in the model is solved using the methods discussed as follows:

2.2 Static robust optimization

The static robust method utilizes the worst-case limits on the uncertain parameters in
order to convert the uncertainty problem into a deterministic problem that is solved

at the extreme limits of the uncertain parameter.



Two new variables z; and x5 are defined in order to get the correct stock for the
case of extreme lower bound and extreme upper bound respectively. The formulation

of the static robust problem is shown below:

O (T D01 ;y(k) (25)
s.t.xq(k) = x1(0) + 4_ (u(@) —wp(i)) Vek=1,.T—-1 (2.6)

xo(k) = 22(0) + ._ (u(@) —ww(i)) VE=1,.T—1 (2.7

cu(k) + hxy(k+1) <ylk) k=0,.,T—1 (2.8)

cu(k) —pro(k+1) <yk) k=0,..T—1 (2.9)

0<ulk) <M, k=0,..T—1 (2.10)

Since each element of w belongs to an interval, Equation 2.2, cu(k) + hx(k) <y will
only be satisfied iff,

T
I

cu(k) +h(z1(0) + p_ (u(i) —wn(i))) <y

7

Il
o

Equation 2.3, cu(k) — pz(k) < y is satisfied iff,

N

-1

cu(k) = p(2(0) + ) (u(i) — wu(7))) < y(k),

3

Il
=)

thus giving rise to the equations 2.6 to 2.9. The solution thus obtained will be based
on the extreme limits of the demand, thus making the solution very conservative.

The results obtained by static robust method is given below.
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Figure 2.2: The plot on the left shows the plot for inputs of products over time while
the plot on the right shows the stock of the product over time

Figure 2.2 is taken from [41].

2.3 Scenario-based method

The scenario-method was used to solve the uncertain model problem using robust
horizon of 1 i.e. to make the problem simple, only one control interval is considered.
These scenarios represent the possible values that primitive uncertainty can take. It is
assumed that these finite number of scenarios are sufficient to formulate the problem.

The scenario trees used to describe the demand parameter are shown below.
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1.15
+—>
Np =1
F=I132

Figure 2.3: Scenario tree describing the deviation from nominal values in each one
of the scenarios. Each scenario has the same probability of occurrence and hence a
probability of 0.25 is assigned to each of the scenarios

The formulation for the scenario based method can be derived from the determin-
istic formulation such that a new index s is added in order to provide an input and

a stock level for each occurrence of a scenario. The formulation is given below:

s T—
min k,s 2.11
u(0,8),..,u(T—1,s),y(0,s),....y(T—1,s) sz:; s y( ) ( )
sit.x(k) =x(0,s) + Uu— Uw
cu(k) + hxy(k+1) <y(k) k=0,.,T-1

(2.12)
(2.13)
cu(k) — pra(k+1) < y(k) k=0,...,T—1 (2.14)
(2.15)
(2.16)

—_

0<u(k)<M, k=0,.,T-1

u(0,1) = u(0,2) = u(0,3) = u(0,4)

12



The U matrix here is defined as:

11 1 - 1

The solution to the scenario tree problem can be given as:

a
=
a
=
S

Order u(k), and Demand w(k)
et -
© =] -
8 S 5
o T
I— L i
L Il
[
zi= =
1
1
1
1
1
-
1
1
® n
S o 8

-
@
1)

-
N
°

Stock level x(k)

5 6 7 8 9 10 " 12
Time,k

@
S
N
©
IS

Time,k

Figure 2.4: The plot on the left shows the plot for inputs of products over time while
the plot on the right shows the stock of the product over time

Figure 2.4 is taken from [39]. The profit obtained using the scenario tree in terms
of the expectation values of the objective function is $7959.8. The above figure shows
only one scenario, and the performance of the methods can be compared only when
they are being tested for a statistically significant number of generated scenarios.
There were 1200 scenarios generated such that they have a mean that is the same
as nominal demand, while the variance of the scenarios is increased with increase in

time, and is given as:
or=(1+k)3a*, k=0,..T-1

where, 32 = 1 Figure 2.5 summarizes the results obtained from utilizing scenario tree

method for 1200 scenarios.
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(c) Stock level for 1200 scenarios o )
(d) Cost distribution for 1200 scenarios

Figure 2.5: Results obtained from simulating 1200 scenarios and applying scenario
tree based method [39]

2.4 Affine policy based method

Affine policy based method utilizes a closed-loop approach to address uncertainty.
The input is parametrized with respect to uncertainty. The first stage decision is taken
with no knowledge of uncertainty, while at consequent stages over the realization of
uncertainty, the function output with respect to uncertainty gives the input at the
current stage of optimization. Writing input as a function of uncertainty in demand,
we have u = @ + A(w — W), where @ represents the decision taken at current time,

A represents the coefficients to be optimized, and the term w — w represents the

14



deviation of actual demand from the nominal case.

0 0
Q1.0 0
A= 2.0 a9
| ¥T-10 - Qr-1T-2 0_

Representing the demand deviation by w, we have w = w — w, which lies in the

interval:
P o>0

— 0 <0< W; W= ——
w<w<w, w 100w_

Substituting the parametrized input in place of u, we have the formulation as given

below:

5%12 1Ty (2.17)
st (cu+ cAw) + h(zg + U(u+ Aw) — Uw) <y, Vw e W (2.18)
(cu+ cAw) — p(xo + U(u + Aw) — Uw) <y, Yw e W (2.19)
0<a+Aw <M YweW (2.20)

Observe that, if v is a vector, and w > 0, the robust limits can be explained by:

max v'w = |v|'®
BB

min v 0= —|v|"®
—<B <1

Applying the robust limits to Equations 2.18 and 2.19, we can reformulate the affine

formulation as:

min 1Ty (2.21)
st cu+ hUt+ hzg — hUw + |cA+ hUA — hU|w < y, (2.22)
cu —pUu — pxro + hUw + |cA — pUA + pU|w <y (2.23)
u+ Ao < M, (2.24)
u—|Alw >0 (2.25)

15



The above formulation is no longer defined on the deviation w which is the uncertainty
considered in our problem. The robust counterpart, thus, lets us consider the extreme
limits of the uncertainty set w, removing the uncertain parameter w. The above

problem is now simplified using slack variables, Z;, Z, and Zj.

min 1"y (2.26)

u,y,A

st cti+ hUt + hxg — hUw + Zyw < y, (2.27)
cu — pUt — pxo + hUw + Zyw < y (2.28)
i+ Zsw < M, (2.29)
S (2.30)
|cA+ hUA — hU| < Zy, (2.31)
|cA — pUA + pU| < Zs, (2.32)
|A| < Zs (2.33)

The results obtained for 15% uncertainty is shown in Figure 2.6.

Order u(k), and Demand w(k)

Figure 2.6: The plot on the left shows the plot for inputs of products over time, while
the plot on the right shows the stock of the product over time

The ordering policy and stock can be derived as:

u=1u-+ Aw

r=z0+U(a—w)+ (UA-U)w

The above formulations give the right ordering policy as uncertainty is realized. The

value of w can be calculated at each stage to find the appropriate policy. The upper

16



and lower limits for the orders and stock are derived as:

up = U — |Alw,

Uyp = U+ |A]w,

l’lb:1’0+U
l’lb:1’0+U

@) — |[UA - Ulw,

(@—
(w—w)+|UA-Ulw

The limits are plotted in Figure 2.6. The above figure shows only one scenario,

and the performance of the methods can be compared only when it is being tested

for a statistically significant number of generated scenarios. Applying the method

to the same 1200 scenarios generated for scenario tree method, we have the results

summarized in Figure 2.7.
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(a) Input for 1200 scenarios

= ]
- =

Stock level x(k)

Time,k

(c) Stock level for 1200 scenarios

Demand w(k)

6 7
Time k
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Cost

(d) Cost distribution for 1200 scenarios

Figure 2.7: The figure summarizes the results obtained from simulating 1200 scenarios
and applying affine policy based method [41]

The profiles were generated for the case where uncertainty was assumed to be

0.15w.
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2.5 Conclusion

In this chapter a simple uncertain optimization problem is considered as a back-
ground for the following chapters. Various techniques like static robust optimization,
scenario-based method, and affine policy based method are demonstrated using this

example.
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Chapter 3

MPC of HEN under uncertainty

In this chapter, the MPC problem of HEN is formulated and implemented. Initially
the deterministic problem is presented, and later, uncertainty is introduced. The

formulated control problem is demonstrated using several case studies.

3.1 Problem statement

Bypass control is used for efficient heat integration. For instance, in many oil reser-
voirs, steam is used to extract oil. Along with hot utility, the high temperature of
extracted oil can be used to generate this steam from water.

Consider Figure 3.1, the red color represents is hot stream consisting of oil and steam.
Blue represents cold stream, namely water, which is bypassed around the heat ex-
changer. u is fraction that is bypassed. my(1 —u) is the mass flowrate of cold stream

through heat exchanger.

The steady state equations for the process are given by,

Q = KAAT,, (3.1)
Q = (1= wmaCly (T3 — T3") (3.2)
1 ) )
AT = S((I7" = T3 + (1" = T)) (3.3)

where, Eq. 3.1 denotes Fourier’s law. Eq. 3.2 denotes energy conservation of cold

stream. K is heat transfer coefficient, () is heat transfer rate, AT, is the mean
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Figure 3.1: Bypass control of heat exchanger

temperature difference, and A is heat transfer area. In this work, the dynamic control
problem of heat exchamger is formulated under the MPC framework. So, the objective

function is given by,

obj = Z(Tst(t) — T3 (1) + a i(u(n —1) —u(n))? (3.4)

where, o is a weighing term, ¢, is prediction horizon, and N is control horizon. The
first term in the objective function indicates setpoint tracking, and the second term

indicates controller effort.

3.2 Deterministic MPC for single HE
The Optimal Control Problem (OCP) of MPC is given by,

t=tp n=N

(OCP) mlnz w(t) = T (1) + a > (w7 (n) — u(n))? (3.5)
s.t. T(t) = f(T(t),u(n),o) (3.6)

T(0) =Ty (3.7)

Tin(t) < T5"(t) (3.8)

TP (t) < T3 (1) (3.9)

T3 (1) = u(n)Ty" () + (1 — u(n)) T,""(t) (3.10)

20



Here, T(t) is the column vector and its elements are states at time t. Eq.3.8 and
Eq.3.9 denotes Thermodynamics second law, this constraint ensures the flow of heat
from hot fluid to cold fluid. Eq.3.6 denotes the heat exchanger model. Eq.3.10 denotes

temperature of the mixed stream.

3.2.1 Dynamic model

The dynamic model of shell and tube heat exchanger used in the algorithm is given
by following system of PDEs, and these PDEs denote energy conservation in a unit

element represented by red rectangle of Figure 3.2.

Shell-side
l fluid

—
Tube-side
fluid

Figure 3.2: Shell and tube heat exchanger with unit element

t denotes time and x denotes position of the unit element. Hot stream flows through
shell side, and cold through tube side. m; is the flow rate of hot fluid. If F; is the

total flow rate of cold fluid, its flow rate through heat exchanger is given by,

M, and M are the flow rates per unit area in heat exchanger of hot fluid and cold

fluid respectively. The energy balance for the shell side can be modeled as,

OTh(x,t) _ mqy 0Th(,1) N Tdot Ko
at N M1 81‘ Mlel

[TY°(x,t) — Ty (z,t)] (3.12)

The first term in right hand side indicates energy accumulation in the unit element
as stream passes through it. The second term in right hand side indicates convective

heat transfer from outer wall to stream. The energy balance for the tube outer wall
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can be modeled as,

oTv°(x,t) B 2\ ;i . p——
ot MGy, hl(r_g)[T (1) =T (:c,t)]+m

1

[Ty (x,t) — T (z,t)]

(3.13)

The first term in right hand side indicates conductive heat transfer from inner wall
to outer wall. The second term indicates the convective heat transfer from shell side

fluid to outer wall. The energy balance for the tube inner wall can be modeled as,

OTY (x,t) 2T , Td" K™
TU]O t _ T’w’l t
(@) = TG t) + T

o M,C,, 1n(’”—2)[

T1

[Ty (2, t) — TV (z,1)]

w

(3.14)

The first term in right hand side indicates conductive heat transfer from outer wall
to inner wall. The second term indicates the convective heat transfer from tube side

fluid to inner wall. The energy balance for the tube side wall can be modeled as,

Ty (z,t) — my OTh(w,t) N Td" K™
ot N M2 ox M20p2

[T (z,t) — Ty(z,t)] (3.15)

The first term in right hand side indicates energy accumulation in unit element as
stream passes through it. The second term in right hand side indicates convective

heat transfer from inner wall to stream.

1 1
= R (¢ 3.16
oo = e HRMO) (3.16)

K, represents heat transfer coefficient due flow of shell side fluid. R°“* includes fouling

resistance of outer wall which increases with time, and is given by,

R (t) = 4.35 x 107%(1 — (73767x1079)t) (3.17)
1 1 |

_ — R™(t 3.18

Tn = T, T® (3.18)
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K, represents heat transfer coefficient due flow of tube side fluid. R includes fouling

resistance of inner wall which increases with time, and is given by,
R™(t) = 0.0238 x 1074(1 — e(~5256x107°)1) (3.19)

The values of parameters used in above equations are specific to the case studies

considered in this chapter.

3.2.2 Spatial Discretization

To model the heat exchanger, we convert these PDEs to ODEs by applying Finite
difference method. Spatial discretization is done at points given by,

Tiengtn, = [0,0.005,0.01,0.05,0.1,0.2,0.5,0.7,0.9,0.95,0.99, 0.995, 1]

Assuming 0 indicates left end and 1 indicates right end of heat exchanger. At these
discretization points, the partial derivatives are approximated as finite differences.
The discretization points are closely spaced at both ends of heat exchanger, because
the temperatures do not change significantly at centre of heat exchanger as compared
to both ends. Let 2y, denotes len'” element(discretization point) of Tiength- The rate
of change of temperature of Shell side fluid with respect to time at len'® discretization
point is approximated as,

dTi(len,t) — mu [Ti(len,t) — Ti(len — 1,¢)] N e

dt M1 [xlen - xlen—l] Ml Cpl

[T%°(len,t) — Ty (len, t)]
len =2,3,...,13, Vt
(3.20)

The rate of change of temperature of outer wall with respect to time at len'™ dis-

cretization point is approximated as,

T dout Kout
M, C,,

dT"°(len,t) 2\ ,
— T'LUZ _ T'LUO
yr TR (2)[ (len,t) (len,t)] +

1

[T1(len,t) — T"°(len,t)]

len=1,2,3,...,13, WVt
(3.21)
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The rate of change of temperature of inner wall with respect to time at len'" dis-

cretization point is approximated as,

dT"(len,t) 2\ , Td™ K™
~ T (len, t) — T (len, t
dt chpw In (r_g) [ ( en, ) ( en, )] + Mpr

1

[Ty(len, t) — T (len, t)]

len=1,2,3,...,13, Vit
(3.22)

The rate of change of temperature of tube side fluid with respect to time at len!”

discretization point is approximated as,

dTy(len,t) — my [Ty(len,t) — Ty(len + 1, 1)]  wd™K™

= + T (len,t) — Ty(len,t
dt M2 [xlen-H - xlen] MZCpg [ ( ) 2( )]

len=1,2,3,...,12, Vit
(3.23)

These ODEs with boundary conditions completely represents the model used in the

algorithm.

3.2.3 Objective function

The objective function is given by,

mmz w(t) — T3 (1) + E_:(u‘)pt’p“t(n) —u(n))? (3.24)

Here, the prediction horizon ¢, is divided in N (control horizon) intervals. In each

interval, u is constant.

Figure 3.3: prediction horizon divided into n equal intervals
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3.2.4 Results of single heat exchanger case

optimum Bypass fraction (input)

simulated temperature and setpoint
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0.15 350 ———
////,//
014 3498 - T
. 349.6
3 013 w [$) / simulated temperature
o -~ / setpoint
[~ o 3494 /
% 012 2 7
& o /
= 03492 |/
£ s g /
g0 | £ /
71 = 349 /’
01 Hj_ [
o 348.8 |
e - /
.99 o 3486
|
0.08 348.4 ! . ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000

time Time

Figure 3.4: The plot on the left shows the plot for input over time, while the plot on
the right shows the controlled variable(7¢“*) over time

Setpoint tracking:
The setpoint of out temperature of mixed stream is given as a step change at time

step of 4,500. The setpoint is changed from 350°c to 349°¢, and the graph trajectories

of controlled variable and input are obtained as follows,

optimum Bypass fraction (input)

351 simulated temperature and setpoint 014
simulated temperature

350.8 setpoint & 013

350.6 0.12

350.4 011
g 350.2 '5
5 =
£ 350 R @
o © 0.09
£ 349.8 &
g 5
= 0.08

349.6

0.07
349.4 -
3492+ 0.06
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time

Time

Figure 3.5: The plot on the left shows the plot for controlled variable (T¥“!) in step
change in setpoint, while the plot on the right shows optimized input (u) step change
in setpoint case

Disturbance rejection:
The step disturbance is introduced to the system at time step of 4000. The graphs
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of output and input are as follows
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Figure 3.6: The plot on the left shows the plot optimized input (u) disturbance
rejection case, while the plot on the right shows controlled variable (75“') in case of
disturbance rejection

3.3 Deterministic MPC For HEN

Until now, the MPC has been formulated for only the single HE case. The objective
of this section is to extend the formulation to a HEN.

Consider the following HEN example as shown in Figure 3.7,

uy G

363K
H2 /3\

Th1.0

Th2,0

Tero 293K

O——©

O

c1
Te20 /\ /R us 298 K
§ Cc2

/ O

Figure 3.7: heat exchanger network

There are two hot streams H1 and H2, as well as two cold streams C1 and C2.

There are also five heat exchangers. u; is the bypass fraction of stream H1 around
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heat exchanger 1. wusy is the bypass fraction of stream H1 around heat exchanger 5.
ug is the bypass fraction of stream C2 around heat exchanger 4. w; is " element of
vector u. The objective function includes setpoint tracking of out temperatures of
streams H1 and C2, as well as controller effort terms. Let T}, 1 be the setpoint of
out temperature of H1 stream, and T, 2 be the setpoint of out temperature of C2
stream. The constraints in below OCP represent the heat exchanger model equations
and energy balance equations. The Optimal Control Problem (OCP) of MPC is given
by,

(OCP)  min D (T (t) = T (1) + (Tuca(t) — TS (1))
=0 (3.25)

i=3  t=tp

+ Zai Z (ui,opt,past(t) _ uz(t))z

st. T(t) = f(T(t),u(n),d), T(0)=T, (3.26)

Frri(1 = u1(t))Cyppy (423 = T (1)) — mer Gy (TET (1) — T4 () =0 (3.27)
Frroun ()Cppyy (423 = Ti'5(1)) — FoaCoeo (TEY' (1) — T8 5(8)) = 0 (3.28)
Frra(1 = ugr2(t)) Cpyy (363 — T 5(1)) — men Coe, (TE1'5(8) — T2 (1) (3.29)
Frrzura(t)Cppy (363 — Tirs 4 (1)) — Foa(1 — us(t)) Gy (T034(t) — 298 (3.30)
Frra(1 = ua(t)Cppry (Ti 5(t) = Tis(t) — menCoe, (TEN5 (1) —293) =0 (3.31)

=0
0

)
)

3.3.1 Results

In this section, the performance of the proposed control method is demonstrated by
setpoint tracking, step change, and disturbance rejection cases. For this network, to
make controlled variables converge to corresponding setpoints, the weights on per-
centage change of inputs (controller effort) have to be adjusted to an order of 10~%.
Even at such smaller weights, we can see from the below graphs that the optimal
inputs do not vary much. The prediction horizon of 400 is divided into 4 control
intervals. The controlled variables graphs show that setpoint is tracked efficiently,
and inputs graphs show that the controller is sensitive to change in setpoint, and also

disturbances.
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Setpoint tracking:
The graphs of optimal input are given by figure 3.8, figure 3.9, and figure 3.10
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Figure 3.8: Optimized input (u;)
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Figure 3.9: Optimized input (us)
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4000

The responses of controlled variables are given in Figure 3.11. These figures show

that there is deviation of controlled variable from setpoint initially, and converges to

) is tracked better than (T%4).

setpoint as time passes. Figure 3.11 shows that (724
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Figure 3.11: The plot on the left shows the plot controlled variable (T'%4), while the

H1
plot on the right shows controlled variable (724)

Step change:

The setpoint of out temperature of H1 stream has a step change at time step 7, 200.
It is changed from 409°c to 410°c. The setpoint of out temperature of C2 stream is

given a step change at time step 7,200, and it is changed from 302°c to 301°c. The
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graphs of optimal input in case of step change in setpoint are given in Figure 3.12,
Figure 3.13,and Figure 3.14.
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Figure 3.12: Optimized input (u;) setpoint tracking case
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Figure 3.13: Optimized input (us) setpoint tracking case
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optimum Bypass fraction (input3)
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Figure 3.14: Optimized input (u3) setpoint tracking case

The responses of controlled variables are given by figure 3.15. The same figure
also shows the setpoint, from figure it is understood that controlled variable Tg4 is

tracked more closely than T24.
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Figure 3.15: The plot on the left shows the plot controlled variable((Tf}"), while the
plot on the right shows controlled variable ((724") with step change in setpoint

Disturbance rejection:
The step disturbance is introduced to system at time step of 800. The trajectories

of optimal inputs uy, us, and usz in the presence of disturbance rejection are given by
Figure 3.16, Figure 3.17,and Figure 3.18.
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Figure 3.17: Optimized input (u2) disturbance rejection case
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Figure 3.18: Optimized input (u3) disturbance rejection case

Figures 3.16, 3.17,and 3.18 show that the input is constant after some time. This
is because the effect of disturbance is mitigated gradually. The responses of controlled

variables are given by Figure 3.19.
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Figure 3.19: The plot on the left shows the plot controlled variable((T}"), while the
plot on the right shows controlled variable ((724") in disturbance rejection case

33



3.4 MPC of single heat exchanger and HEN under

uncertainty

From now, we will consider the uncertainty related to inlet temperature of hot
streams. The state variables will be uncertainty dependent. The overall uncertain

optimization problem is formulated as following:

(OCP) muln/t (To(t) — T (£, O))* +a Y (uPP*'(n) —u(n))*  (3.32)

=0

(3.33)

T(0) =Ty (3.34)

T3 (t, Q) = u(n)T"(t) + (1 — u(n)) T3 (¢, ) (3.35)
Ty (t.¢) < T3 (t,€) (3.36)

T (t,¢) < T3'(t,C) (3.37)

Umin < U(C) < Umaz (3.38)

where, ( represents the uncertainty. The above uncertain OCP is intractable because
we assume that ¢ belongs to a continuous compact set. So, the constraints in above
OCP are infinite. This intractable OCP is made tractable by following the steps

shown in Figure 3.20.

[ Uncertain OCP with Continuous model ] INTRACTABLE

constraints

!

Discretization of model

v

Scenario tree based approximation

v

Robust counterpart Derivation

1

Solvable OCP with discrete model ) TRACTABLE
constraints

\ J

Figure 3.20: Steps to convert intractable problem to tractable
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3.4.1 Discretization of ODEs

The orthogonal collocation technique is used to discretize the system of ODEs given
in Section 3.2.2 into system of nonlinear equations. The model of the HEN is repre-
sented by these nonlinear equations. At each time instant, the prediction horizon ¢,
is divided into N (control horizon) intervals. The input is assumed to be constant in
nth(n = 1,2,..., N) interval, and it is denoted by u(n). Each n'* interval is divided
into K +1 intervals using K collocation points. The state vector at k" (k = 1,2, ..., K)
collocation point, len(len = 1,2, ..., 13) spatial discretization point, and n'* interval

is denoted by Tien pn k-

u(1) u(2)

Figure 3.21: Polynomial approximation of state profile across finite element with 3
collocation points

The states in each finite element are approximated using Lagrange interpolation

polynomials. They are given by,

t= tz’—l —+ hz‘T T € [0, 1] (339)
k=K

T}en(t) - T’len,n,klk(T) (340)
k=0

()= 11 L (3.41)

The approximated derivative of states at these collocation points is equated with
original ODEs, and the HEN model is thus given by,
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e
Il
=

dis() _p, oma [Tillen,n,) = Tilen —1,n,j)] | wdK

Tenn—:hn wo —Tl ”.
> Tuienns =g 57 R 31c Tiewng = Tallen, n, )]
len:1;2>3>-.-,13 n:].,Q,?),...,N j:1’2’3"”’<]
(3.42)
k=K
wo dl(Tk> 2\ wi wo Td° K° -
Tzen,n,k JdT = n[MwC In (7‘_2) [T}en,n,j - T’lenm,,j] + W[TlJen,n,j — T’len,n,j]]
h=0 P 1 Pw
len=1,2.3,..,13 n=1,23,.N j=123,.J
(3.43)
k:K . .
wi dl-(Tk> 2T wo i Td K .
Z T}en,n,k ]dT = hn[MwC In (7‘_2) [Tlen,n,j - Tlen,n,j] + W[Tllen,n,j — Tlen,n,j]]
h=0 P &l Pw
len=1,2,3,..,13 n=1,23,..,N j=123..J
(3.44)
k:K . . . .
dl(Tk) mo [Tg(len n ]) — Tg(len +1.n ])] 1d' K? 4 .
Dotenni—g— = Mlyp - — T — Ty(len,n,
kz::o 2den.nk ™ [M2 [Ziom — Ttonta] + M2Cp2[ len.n.j »(len,n, 7)]]

len=1,2,3,..,13 n=1,2,3,..N j=1,2,3,...J
(3.45)

3.4.2 Affine policy based method

In the Affine policy based method, the decision variable taken at the first instant
is independent of the uncertainty. The decisions taken at the further stages are
dependent of the uncertainty realized at the previous time instant. The decision
variable or input (bypass fraction) is formulated as linear function of uncertainty.

The temperature of hot stream at inlet of heat exchanger is assumed as the linear

function of uncertainty (disturbance). We further assume that uncertainty is constant
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in a finite element and is denoted by (,.

" = A+ B(1—¢,) n=123,..,N (3.46)
¢ el0,1] n=1,2,3,..,N (3.47)
Ce=={¢:W-¢(>h} (3.48)

¢ =[CisGos s O (3.49)

All states of the system and input are dependent on the primitive uncertainty.
Robust counterpart derivation
In Affine control policy, the decision variable or input (bypass fraction) is formulated

as linear function of uncertainty.

Uy =u’ - [1,¢1, Con oy Gut] (3.50)
Consider the constraint,
U (8) < Unaa (3.51)
Apply linear decision rule,
w16, Gy Gomt] < Uian (3.52)

where u” contains the affine rule parameters.

uT ’ [17 gl? €27 ceey Cn—l], S Umaz (353>

To avoid change in dimension of [1, (1, (s, ..., (,—1]" as n changes, the truncate operator

is introduced:

U'T'Pn' [17417427-“7CN—1], S Umazx (354)
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P" is a matrix and is function of n.

For example, if N = 3,n = 2,

100
P"=10 1 0 (3.55)
0 0O
Derive the robust counterpart, and use the uncertainty set definition,
{ max u’ P" ¢} < Upas (3.56)

¢—W-¢<h

Here, W and h are a matrix and a vector of known coefficients respectively. Using

duality,

min —hA""Y < U, n=1,2,..N (3.57)

A AR 20, =W AR < (uf - P
Drop minimization operator,

(AL >0, -WTABL = (uT - P"), =A% < Upee}, n=1,2,..N (3.58)

Thus, the constraint has become independent of uncertainty.

Similarly, the constraint w,,;, < u,(s) is replaced with,
(A2 >0, -WTAB? = (—ul - P"), —h"AY? < —upin}, n=1,2,..N  (3.59)

Optimization problem

The optimization problem is represented as:

n=N k=K n=N

(0CP)  miny Y (T5(E(G) = Tunn)® +a Y (P (n, B(G,)) — uln, B(G)))?

n=1 k=1 n=1

(3.60)
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s.t.

o

=K

dl; my [T1(len,n, j,s) — Ti(len — 1,n,j,s
Thtonnis ]d(Tk) _ h’n[ﬁl[ 1 J,s) = Ti( J )]_|_
k=0 T 1 [xlen - Ilen—l]
Td°K° .o .
MlC [Een n,G,8 T1<l€n, n, 7, S)H
p1
len=1,2,3,..,13 n=1,2,3,..N j=1,2,3,...J Vs
) 2\ ,
Two = h, Twi - wo
Z lennks [chpw 1n<r_2)[ len,n,j,s lennjs]+
Td’K° wo
W[Tl len,n,j,s — T}enn]s”
Pw
len=1,2,3,..,13 n=1,2,3,.. N 7=1,2,3,....,J Vs
) 2T
Twi _ hn Two  _ pwi
Z lennks [chpw 1n<r_2)[ len,n,j,s lennjs]_l—
Td' K* wi
MwC [T2 len,n,j,s T}en n,7, s”
Pw
len=1,2,3,..,13 n=1,2,3,.. N 7=1,2,3,....,J Vs
S dis(r) _, maz [Ty(len,n,j,s) = Ty(len+1,n,j, s)]
TZ,len,n,ks d - hn[ﬁ —+
k=0 T 2 [xlen - xlen—}—l]
nd' K*

I —T5(l ]
MQCpQ[ len,n,j,s 2( en,n,j,s)]]

len =1,2,3,..,13 n=1,2,3,..N j=1,2.3,...J Vs

mo = Fg(l — U)
T(0) =T,

Tizt,k,s = u(n, S)TZZT:L,k,s + (]' - U(?’L S))TQ n,k sout
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(3.62)

(3.63)

(3.64)

(3.65)
(3.66)
(3.67)



L (3.68)

Ty < T (369

{Aet >0, -WIAB = (ul - P"), —hTAY! < e}, n=1,2,..N (3.70)
{AL? >0, -WIA2 = (—uTl - P"), —hTAY? < —tin}, n=1,2,.N (3.71)

3.4.3 Results

The performance of the proposed control method is demonstrated using two case stud-
ies. First study is a simple heat exchanger, and second is a HEN. The optimization is
done in GAMS 25.1.1, and overall MPC is implemented using MATLAB 2020a. The
solvers used for optimization are DICOPT(MINLP) and CPLEX(MILP). The best
solver for the specific case study is determined based on trial and error method.
Single HE:

The decision variable (bypass fraction of cold stream) is obtained by optimizing the
uncertain OCP. Four scenarios of possible uncertainty are used in optimization to
obtain the value of decision variable. The prediction horizon of 20 is divided into 2
finite elements. The scenarios used in optimization are four constant inlet tempera-
ture profiles of hot stream. The bypass fraction (the decision variable) obtained by
optimization has constant value within each control interval.

Figure 3.22 gives the inlet temperature profiles of hot stream considered at different
scenarios considered in the optimization. The four constant inlet temperatures of the
hot stream are considered. These finite number of scenarios are assumed to model
the uncertainty in inlet temperature of the hot stream. The probability of occurence

of each of scenarios is assumed to be same.
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Figure 3.22: T{" considering 4 scenariors used in optimization

Figure 3.23 shows out temperature of mixed stream (controlled variable) 75w,
considering the scenarios used in optimization. The figure shows that for the con-
sidered scenarios, the simulated controlled variable converges to setpoint for all the
scenarios. To demonstrate the practicality of the proposed control method, four ran-
dom scenarios of inlet temperature of hot stream are considered. The response of the
corresponding controlled variable will be given later. To generate this plot, the values
of decision variable i.e. affine rule parameters are used. These decision variables and
the corresponding primitive uncertainty value of each scenario are used to calculate
the input. They are calculated using affine rule, and these input values are used to

calculate the values of all states under each scenario.
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Figure 3.23: Ty*, considering 4 scenarios used in optimization

Figure 3.24 gives the trajectory of the optimal bypass fraction (manipulated vari-
able) u,. These profiles are obtained by using optimised affine rule parameter values

and uncertainty values in each scenario.
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Figure 3.24: u, for 4 scenarios used in optimization

To test the performance of the optimization, the average value of optimal input
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is given to the system. Four random scenarios of inlet temperature of hot stream
are considered. The controlled variable is simulated using average optimal input and
these random scenarios of inlet temperature of hot stream. Figure 3.25 gives the inlet

temperature profiles of hot stream under the random scenarios.
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Figure 3.25: T{" considering 4 random scenariors

Figure 3.26 shows out temperature of mixed stream (controlled variable) T3, .
This is the plot generated using random scenarios. As expected, the controlled vari-
able does not converge to the setpoint efficiently. The figure shows that the controlled
variable fluctuates around the setpoint. This is because there is always a random dis-
turbance in the inlet temperature. For all the scenarios the controlled variable is
generated using corresponding random inlet temperature of hot stream and the aver-
age value of the decision variable. The results demonstrate that the proposed control
method is effective in the presence of uncertainty as the deviation of controlled vari-

able from setpoint is constant or not increasing as time passes.
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simulated temperature and setpoint with random scenarios
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Figure 3.26: T9“, considering 4 random scenariors

The controlled variable profiles are generated using deterministic inputs for the
testing scenarios. The corresponding response is given by figure 3.27, which shows
the controlled variable deviates from the setpoint as time passes if using deterministic

inputs.

deterministic case for comparison temperature and setpoint
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Figure 3.27: Tg%, using the deterministic input considering 4 scenariors
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The following table gives the values of objective function, MSE between the con-
trolled variable and setpoint using bypass fraction from deterministic optimization,

and MSE using bypass fraction from uncertain optimization.

objective function 7.49 x 10°
MSE using uncertain input 2.85 x 10°
MSE using deterministic input | 4.52 x 10°

Table 3.1: Results of uncertain MPC for single HE

HEN:

The HEN considered for second case study is given by Figure 3.7. This HEN is
adopted from [1]. For the considered HEN, four constant scenarios of possible uncer-
tainty are used in the optimization to obtain the value of the decision variable. The
prediction horizon of 40 is divided into 2 finite elements. For this case study, we con-
sider disturbances in H1 stream, and the controlled variable is out temperature of C2
stream. In deterministic MPC, the out temperature of H1 stream is also considered
as the controlled variable. Here, only out temperature of C2 is taken as controlled
variable to reduce the computational load of the optimization. The objective function
is also modified accordingly. The decision variables include all the three bypass frac-
tions as that of deterministic case. The OCP with uncertainty is solved in receding
horizon approach to implement the MPC. The single HE dynamic model is extended
i.e. considering all the five heat exchangers as given in figure 3.7. The constraints for
the connection between the heat exchangers i.e. series and parallel arrangements of
heat exchangers are also included in the formulation.

Figure 3.28 shows the inlet temperature profiles of hot stream considered at different
scenarios used in the optimization. The scenarios used in optimization are different
constant inlet temperatures of hot stream with respect to time. These four scenarios

are assumed to be sufficient to model uncertainty in inlet temperature of hot stream.
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Figure 3.28: T}p, considering 4 scenariors used in optimization
Figure 3.29 gives the out temperature of mixed stream (controlled variable) T4,
considering step change in setpoint and under the scenarios used in optimization. Fig-

ure 3.29 shows that for the considered scenarios, the controlled variable effectively

tracks the setpoint using the average value optimal input.
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Figure 3.29: T24 , considering 4 scenarios used in optimization

Figures 3.30, 3.31, and 3.32 show the optimal bypass fraction (manipulated vari-

ables) wuy, ug, ug, with a step change in the setpoint.
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Figure 3.30: u; for four scenarios used in optimization
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Figure 3.31: wusy considering four random scenariors
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Figure 3.32: us considering four scenarios used in optimization

To test the performance of the optimization, the average value of optimal input

is given to the system. Four random scenarios of inlet temperature of hot stream are
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considered. The controlled variable is simulated using average optimal input under
the random scenarios of inlet temperature of hot stream.

For the network, a step change in setpoint is considered. The response of controlled
variable is also generated under these random scenarios. The graph is given by Figure
3.34. It shows that proposed control method under uncertainty is effective as the
controlled variable does not deviate significantly in comparison with that of using
deterministic input. The response of controlled variable using deterministic input
is given by Figure 3.35. The MSE between controlled variable and setpoint is also
calulated for both uncertain optimization and deterministic optimizaion, and the
values are given in Table 3.2. These values show that there is significant reduction in
MSE using uncertain optimization. In Figure 3.34, the fluctuation of the controlled
variable around the setpoint is expected as there is always a random disturbance in
inlet temperature of hot stream as the random scenarios are considered.

Figure 3.33 gives the inlet temperature profiles of hot stream considered in random
scenarios in step change in setpoint case.
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Figure 3.33: Tj7y considering 4 random scenariors

Figure 3.34 gives the plot for out temperature of mixed stream (controlled variable)

Teu . considering step change in setpoint and under the four random scenarios,
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simulated temperature and setpoint with random scenarios
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Figure 3.34: Tg4 , considering 4 random scenariors

For the step change in setpoint, the controlled variable profiles are generated using
deterministic inputs. The corresponding graph is given by Figure 3.35, which shows
the controlled variable deviates from the setpoint as time passes if using deterministic

inputs.
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Figure 3.35: Tgy', ;. using the deterministic input considering 4 scenariors
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Objective function 8.44 x 10°
MSE using uncertain input 9.50 x 10°
MSE using deterministic input | 5.82 x 107

Table 3.2: Results of uncertain MPC for HEN

3.5 Conclusion

In this work, the MPC of HEN is implemented considering disturbances in inlet
temperature of hot stream. The uncertain OCP is intractable initially, and is made
tractable first by discretizing heat exchanger model. Then, some of the constraints
are approximated by scenario tree based approximation and rest of the constraints
are modified by deriving their robust counterparts. Finally we arrive at solvable or
tractable OCP with discrete model constraints.

Orthogonal collocation technique is used for discretization of the model. The tractable
OCP is solved in receding horizon manner. At each sampling time, the decision vara-
iables i.e. affine rule coefficients are obtained for entire prediction horizon. Only the
values of decision variables at n = 1 (first control interval) are used, and then we up-
date the initial values of all states. Thus the initial values of all states are updated at
each sampling instant. Using uncertain MPC, the MSE between controlled variable

and setpoint is reduced by order of 1 from deterministic MPC.
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Chapter 4

Integrated optimal cleaning and

control problem

4.1 Introduction

Fouling is the accumulation or deposition of unwanted solid material on a surface.
Fouling on heat exchanger surface offers extra resistance to heat transfer, and it in-
creases the pressure drop, operational costs and the environmental impact on the
process. Fouling is the most evident in the preheat train (PHT) of the crude distilla-
tion unit (CDU), which processes all the crude oil that comes into the refinery under
extreme conditions, such as high temperature, varying range of composition and high
amounts of contaminants.

Generally, periodical cleaning and control of the flowrate distribution in the HEN
are used to mitigate the effects of fouling and restore the performance of the units.
In the literature, the optimal cleaning schedule problem is formulated as MILP or
MINLP problem, and the optimalm control problem is formulated as NLP problem.
These two problems have been solved independently or sequentially. As in principle
both problems affect each other, in the present work, these two problems are formu-
lated and solved simultaneously. The objective function to be minimized here is the
extra cost that is incurred because of fouling.

The decision variables are:

1. Binary variables which indicate whether a heat exchanger in HEN is being

cleaned or not within a time period.
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2.

The mass flowrate distribution.

The constraints considered here are:

1.

6.

The heat transfer dynamics

Fouling resistance dynamics

Pressure drop model

Network constraints

Scheduling and operational constraints

Disjunctions

In this chapter, first, the deterministic problem is formulated. Later, the uncertainty

in inlet temperature of cold stream is introduced, and uncertain optimization problem

is formulated.

4.2 Heat exhanger model, fouling dynamics, and

additional constraints

The heat exchanger considered here is a shell and tube type, which is a concentric

double pipe (outer is shell, inner is tube). The shell-side fluid is hot stream, and

tube-side fluid is cold stream. The cross-section of the heat exchanger is shown in

Figure 4.1(a), and the temperatures used in modelling heat transfer and resistance

dynamics is shown in Figure 4.1(b).

a) b)
Shell side gel coke ‘qull
) —— T
Tew| 277
e
The
o
' 0 N 7
0 Raw Ra Ri Ro 0 Riow  Ra Ri  Ro r

Figure 4.1: Multiple layer representation for the heat transfer between the shell-side
fluid and the tube-side fluid [20]
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Heat transfer dynamics
The following constraints are used to model the heat transfer dynamics. The model
of heat exchanger considered here is axially lumped and radially distribured model.

Counter-current flow is assumed.

my = F(1 —u) (4.1)

UA
NTU = 4.2
U= (4.2)

Cptmt

= 4.
R Crom, (4.3)
1+ exp(—NTU(1+ R?)°5)1 '
_ 2\0.5 c

P_2{1+RC+(1+RC) = exp(CNTU(1 £ R2)) (4.4)
Q = P(Cpm,)(T," = T}") (4.5)
T =T} + P(T — T") (4.6)
T =T" = PR(T" — T;") (4.7)
(4.8)

Fouling resistance dynamics

The following constraints give fouling resistance and mass fraction of fresh gel dy-

namics.
Try =T + h% { R};Zw] (4.9)
Ty =T, +0.55(Ty, — T)) (4.10)
Tye = Ty, + Ag[/JRO In (R}f{f;f") (T, —T,) (4.11)
% = aPr_0'33Re_0'666xp{ — RE_Y{f] — VTw (4.12)
% = —kgexp{ — RETZJ Ty (4.13)
= o 4 T+ BT )
Ry, = % In [ RIR_I 50] (4.15)
Ry, = % In {%1 (4.16)
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Lol o
where, U, is the Overall heat transfer coeflicient when there is no fouling. Eq. 4.12 is
Ebert Panchal model [20]. The Ebert Panchal model is used to describe the fouling
deposition rate in terms of rate of change in the thermal fouling resistance. The
first term of the model gives deposition as a product of chemical reaction interms
of activation energy. The second term indicates that the rate of deposit removal is
proportional to wall shear stress. To solve the optimization problem, the differential
equations given by 4.12 and 4.13 are discretized using finite difference method. The

corresponding algebraic equations are given by,

Ry(t) — Ry(t —1)
Time(t) — Time(t — 1)

E
— qPr 033 Re066 _ f Ty
arr e exp —RTf(t gy YT

t =2,3,...,length(Time)

(4.18)

ze(t) —zy(t—1) a
Time(t) = Time(t —1) _ "acP [ " RT,(t— 1)} Zolt = 1) (4.19)

t =2,3,...,length(Time)

Pressure drop model:
The pressure drop constraint is needed to make sure that the branch pairs have same

pressure drop. This ensures a safe industrial operation.

AP

g, g

= — 4| N, 4.20
2/% Np N 2Rflow * :| P ( )

Network constraints:

These constraints represent mass balance and energy balance.

Z (mt,z',j,k - mt,jﬂ'Jc) =0

it€Nodes|(i,j,k)EArcs (421)

Vt € Time,j € {MxUSpUHEX}, k € Fluids
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Z (Cpkﬂﬂﬂ,kmt,l,‘],k - Cpkﬂ,j,l,kmt,],l,k> = O
i€Nodes|(i,j,k)€Arcs (422)

Vit € Time,j € {MxUSpUHEX}, k € Fluids

Scheduling and operational constraints:

These constraints represent that consecutive cleaning that should not be done. max-
imum number of simultaneous cleaning actions, maximum number of cleaning per
exchanger, minimum number of operating exchangers, minimum CIT so that the fur-
nace can be ignited, maximum furnace duty, and same pressure drop for the branch

pairs

Yi+1,i S 1— Yt i Vt € Tlme\{nt},z e HEX (423)
3" i < NJT, Vit e Time (4.24)
i€EHEX
Z Y < Ng'**, Vie HEX (4.25)
teTime
> (1—wa) = NG V€ Time (4.26)
IEHEX gy CHEX

The following constraints represent operational or safety constraints,

CIT;, =Ty jp > CIT™",

(4.27)
Vt € Time, (i, 7, k) € Arcs|(i, j, k) = "tofurnace”
Qe = FC, (COT =Ty k) < Q7
fit pk( t Jk) f (4.28)
Vt € Time, (i, 7, k) € Arcs|(i, j, k) = "tofurnace”
> AR,= ). AR,
i€Branch) ; CHEX i€Branchy , CHEX (429)

vVt € Time,b € Branchpairs

Disjunctions:
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These constraints represent that flowrates, NTU, and resistance and massfraction of

fresh gel are zero during the cleaning.

0<misprmeri <M1 —y;), VteTime,ic HEX, k € {tubeside, shellside}

(4.30)

0<spi0 <My, VteTime,i€ HEX,l € {NTU, R;,,x,} (4.31)
0< NTU,; < M(1—vy.),  VteTime,ic HEX (4.32)
0< Ryg, < (1—wi), vVt € Time,i € HEX (4.33)

i <y, <1, VteTimeic HEX (4.34)

4.3 Objective function

The objective function is the additional cost compared to the cost of operating the
HEN for the entire horizon under cleaned conditions. The objective function is given

as,

ty
clean
F(m> y) = Pkg/ (mproduction - mproduction,t) dt
0

ty _ ()clean
+Pfuel/ (Qf an ) dt
0 (4.35)
ty (Qf o Q;lean)
+P002 mco2 _— dt

0 n
+ Z Z Py

1IEHEX teTIME

4.4 Results

Single HE

The optimization problem is solved in GAMS. As an initial step, a single heat ex-
changer is considered, and the time span of one year is divided into 13 intervals.
All the temperatures, bypass fraction, cleaning decision variable are assumed to be
constant within each interval. The NLP solver used is IPOPT and MILP solver used
is CPLEX. The patterns in the graphs of input and furnace duty represent cleaning
actions. After each cleaning all the conditions are assumed to be ideal, and hence

the variables take values in repeated patterns. The optimization problem formulated
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is a MINLP problem. The bypass fraction decision variables are continuous and the
cleaning scheduling variables are binary decision variables. The MINLP problem is
solved in several steps. First, we fix the values of binary decision variables, and obtain
the optimal values of bypass fraction. Next, these bypass fraction values are given
as initial values to the solver, and the entire optimization problem is solved. Both
binary cleaning scheduling variables and bypass fraction optimal values are obtained.

The optimal cleaning schedule is given by Figure 4.2. The green color indicates that

the cleaning action is performed in that interval.

Period 1

Period 2

Period 3

HE 1

Period 4

Period 5

Period 6

Period 7

Period 8

Period 9

Period
10

Period
11

Figure 4.2: Optimal cleaning schedule for single HE

The optimal bypass fraction is given by Figure 4.3,

The engergy consumed in furnace (Q)f) is given by Figure 4.4. The figure also

shows that minimum furnace duty required to meet the target out temperatures of
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Figure 4.3: The optimal bypass fraction
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cold stream. This minimum furnace duty is seen in the ideal conditions.The value of
objective function is 18.88 x 10°$.

35 T T T T T T X
Q fuel
Q clean fuel
30 b
=
=
2 25+ b
=
g
20 - b
15 . | L L | L |
0 50 100 150 200 250 300 350 400

time(days)

Figure 4.4: Furnace duty

The mixed stream temperature (C'IT) is given by Figure 4.5 |
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simulated
setpoint
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500
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mixed stream temperature
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480 . . . . | . .
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time(days)

Figure 4.5: Mixed stream temperature

2 Parallel HE
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For the second case study, two heat exchangers in parallel are considered. The decision

variables are bypass fraction of both hot stream and cold stream, and cleaning sched-

ule. For the network, the heat exchanger model is updated to include the connections

between the exchangers. The optimal value of objective function is 20.85. x 10°8.

The optimal cleaning schedule is given by Figure 4.6,

Period 1 Period 2

Period 3 | Period 4 | Period 5 | Period 6

HE 1

HE2

I

Period 7

I

Period 8 | Period 9 Period
10

Period
11

Period
12

I

Figure 4.6: optimal cleaning schedule for 2HE

The optimal bypass fraction of cold stream through HE 2 is given by Figure 4.7,

0.7
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Figure 4.7: The optimal bypass fraction of cold stream through HE 2

The optimal bypass fraction of hot stream through HE 2 is given by Figure 4.8,
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Figure 4.8: The optimal bypass fraction of hot stream through HE 2

The energy consumed in furnace (Q)y) is given by Figure 4.9,
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Figure 4.9: Furnace duty

The mixed stream temperature (CIT) is given by Figure 4.10 ,
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Figure 4.10: mixed stream temperature

4.5 Integrated problem under uncertainty

So far, we have not considered disturbances in inlet temperatures of streams. How-
ever, it is common that the inlet temperatures of cold stream (crude oil) is uncertain
in the preheat train (PHT) of the crude distillation unit (CDU). So, from now on,
we assume that inlet temperatures of cold stream are uncertain, and then formulate
and solve the problem of Integration of Optimal cleaning scheduling and control of
HENs undergoing fouling. Let the uncertainty in inlet temperature of cold stream
be denoted by (. The overall uncertain optimization model shows the variables that

depend on uncertainty, and it is given as,

ly
(0CP) rmnqumcw=Rm/’owﬁmmM—4mmmmMAo>m
0

u(¢)y
ty _ Nclean
s [0,
0

n
[ e0-a, 0

0 n
+ Z Z Py

iICEHEX teTIME

+Pco,mco,

62



st. mu(¢) = F(1 —wu(Q)) (4.37)
UA

NTU(Q) = s (4.38)
R.(¢) = Cgf;fg) (4.39)

Lt e NTUOU RO}

P(C) = 2{1 RO+ (L4 RO | T N 70 () (5 B0

(4.40)
Q(¢) = P(O)(Cpmu ()T = T7™(C)) (4.41)
TP (¢) = T™(¢) + P(¢ )(TZ”( ) =T (4.42)
T3¢0 =T, = P(ORAO(T = T"(C)) (4.43)
U
Ty(¢ )+ T { B low} (4.44)
Ty(¢) = Ti(C) + 0.55( ng(C T:(<)) (4.45)
U
Tye(C) = Tye(C) + Wi In (Rﬂow NTL(Q) = Ti(C)) (4.46)
Rf(tv C) — Rf(t_ 1»0 — aPr 93 Re066,,0 | _ Ef T
Time(t) = Time(t — 1) _ L7 1 b [ RTf(t—l,C)} T gam
t=2,3,...,length(Time)
g(t, ¢) — xg(t —1,¢) —kVex kB o —
Time(t) — Time(t — 1) g p{ RT,.(t — 1,()] ot =10 (4.48)
t=2,3,...,length(Time)
_ 2R — (07(€) + 0c(€))]dgpg
“9l) = BR; = (52(0) + 0(0) oty + 21 — 500 (4.49)
R, R;
Ryo(C) = 3 [RI — 50(0] (4.50)
o Ro RI — 0, (C)
Ry4(C) = A—gln [RI — MCC) > 59] (4.51)
G = o (152



AP=t|22 4

G?[1.5 fL
= 4| N 4.53
204 le 2R f10w + P (4.53)

Z (M jk(C) = majik(C)) =0

i€Nodes|(i,j,k)€Arcs (454)

Vit € Time,j € {MxUSpUHEX}, k € Fluids

Z (Cpkﬁ,i,j,k(omt,i,g’,k(C) - Cpkﬂ,j,z‘,k(()mt,j,z‘,k«)) =0

1€Nodes|(i,j,k)EArcs (455)

Vt € Time,j € {MxUSpU HEX}, k € Fluids

Yer1i < 1 —ypi, YVt € Time\{n:},i € HEX (4.56)
Z yrs < NPVt € Time (4.57)

i€HEX
S g < Ng, Vie HEX (4.58)

teTime
> (1 —ys) > Noum, Yt € Time (4.59)

i€HEX 1, CHEX
CITy(C) = Ty jx(¢) = CIT™", Vt € Time, (i,j,k) = "tofurnace” (4.60)
Qri(C) = FC, (COT — Ty, 51(C)) < QF*", Vt € Time, (i, j, k) = "tofurnace”
(4.61)
Z AP,; = Z AP,;, Vte Time, b€ Branchpairs (4.62)
i€Branchy y CHEX i€ Branchy , CHEX

0 <misprnpri(() <M1 —y,), VteTime,ic HEX, k € {tubeside, shellside}
(4.63)
0<sp0 < Myy;, VteTime,i € HEX,l € {NTU, Ry 4, x4} (4.64)
0< NTU,, < M(1—y.),  Vt€ Time,ic HEX (4.65)
0< Ry, <M(1—y,),  VteTimeicHEX (4.66)
Yri < 2g,,(0) <1, Vt € Time,i € HEX (4.67)
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4.5.1 Tractable problem formulation

We consider that the primitive uncerainty belongs to a compact set i.e. ¢ € [0, 1].
The inlet temperature of cold stream is given as, T;" = A( + B(1 — (). Here, A
and B are upper and lower bounds of T{™. So, as ( is continuous variable, the above
uncertain optimization problem is not tractable.

To convert it to a tractable problem, we assume that the bypass fraction is affine
function of unceratinty i.e. u((,t,4) = u® + w'((t,i),i € HEX,t € Time. In the
integrated problem, the time of one year is divided into N intervals, indexed by ¢,
and denoted by set Time.

The equality constraints in the above uncertain optimization problem are functions
of primitive uncertainty, so in the tractable problem formulation, they are modelled
using scenarios of possible primitive uncertainty. The possible scenarios of primitive
uncertainty are given by the set S and indexed by s.

Let any inequality constraint in the above uncertain optimization problem be denoted
by G(¢,y,u(¢), z(¢)) < 0. Here, y,u(¢), and z(¢) denote scheduling variable, input or
manipulated variable, and state variable respectively. Each constraint in the original
set of inequality constraints under uncertainty, G((,y, u(¢),z(¢)) < 0, is formulated
by first linearizing it with respect to uncertainty using first-order Taylor series, fol-
lowed by applying the duality technique to obtain the finite tractable counterpart.

The formulation is given as,
GG+ ((— ()G (4.68)

Here, G- is implicit derivative of G at ¢*, and G* = G((*, y, u(¢*), z(C¥)).
Robust counterpart of G* 4 ({ — (*)G¢+ > 0 is given as,

[~G" +¢"Ger] = min¢(Ge:) < 0. (4.69a)

=[2G+ CGe] +max(=((Ge-)) <0, (4.69b)

By including the initial assumption that uncertainty belongs to a compact set i.e.

A( < b, we apply duality as follows,

(=G + (*G¢-] + min bI'A >0 (4.70a)
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st. AT\ = -G (4.70b)

A>0 (4.70c)
Drop the min operator,
[~G* + ("G ] + "X >0 (4.71a)
st. ATA= -G (4.71b)
A>0 (4.71c)

For example, consider the constraint represented by the Eq.4.60, we derive the

formulation as follows,
CIT(C*) + (¢ — ¢)ALCIT(CY) — CIT™™ > 0 (4.72a)
[—CIT(C*) + C*ACIT(CY)] — mcin C(ALCIT(CH) + CIT™™ <0 (4.72b)

= [~CIT(C*) + C*ACIT(¢Y) + CIT™™] + mcaxC(—ACC’IT(C*)) <0 (4.72¢)

= [~CIT(C*) + C*ACIT(¢Y) + CIT™™] + min b'A >0 (4.72d)
st. AN = —ACIT(¢Y) (4.72¢)

A>0 (4.72f)

= [~CIT(C*) + (*ACIT(C*) + CIT™] + 5"\ > 0 (4.72¢g)

st. ATA=—ACIT(¢*) (4.72h)

A>0 (4.72i)

Now consider A:CIT(¢*). As an example, we show how to simplify this for a

single HE as follows,

CIT = (1 — )T +uT(™, u=1u’+u'C. (4.73a)
= ACIT(() = (1 —u® —u! ()T + (—u) TP + (A= B)((1 = u’ = u'(¢") + T;"(—u')
(4.73b)

The objective function is evaluated at a nominal uncertainty denoted by (*).
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The overall optimization problem formulation is given as,

tr

(OCP> nl}i;lF(uv y) = Pkg Z(mzlreoachtion - mp?"oduction,t(c*»
’ 0

chean)

+Pfuel Z
(4.74)
(Q(¢*) — QC’“")
+Pco,mco, Z 4 ”

+ Z Z Py

1IEHEX teTIME

st. m(s,t,i k) = F(k)(1 —u(s,t,i,k)) se€S,i€ HEX,t € Time, k € Fluids

(4.75)
m_t(s,t,i) = m(s,t,i,cold) s€S,i€ HEX,t € Time (4.76)
m_s(s,t,i) =m(s,t,i,hot) seSiec HEX,t € Time (4.77)
U(s,t,i)A : :
NT t —_— HEX teT 4.
Ul(s,t,i) = Crmt(s.1.1) s€eS,ie ,t € Time (4.78)
R.(s,t,i) = Crm-Ms,Li) seS,ie HEX,t € Time (4.79)

Cp,m_s(s,t,1)

P(s,t,i) = 2{1 + Re(s,t,1) + (14 R%(s,t,1))"? 1+ exp(—NTU(s,t,i)(1+ RZES t,4))%"

1 —exp(—NTU (s, t,i)(1 + R2(s,t,4))%5
(4.80)
Q(s,t,i) = P(s,t,9)(Cpm_t(s, t,9))(T" —T/"(s)) s€S,i€ HEX,t € Time
(4.81)
TP (s, t,1) = T/™(s) + P(s,t,i)(T"™ — T/"(s)) s€S,i€ HEX,t € Time (4.82)
T (s,t,4) = T — P(s,t,9)Re(s,t,i)(T)" — T;"(s)) s€S,i€ HEX,t € Time
(4.83)

Try(s,t i) =Ty(s,t,i) +

Ul R,
hy

I } se S,ie HEX,t € Time (4.84)
flow

Ty(s,t,i) = Ti(s,t,1) + 0.55(Tre(s,t,1) — Ti(s, t,9)) seS,ie HEX,t € Time
(4.85)
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U R; — 0.
In

Tc 7t7 ) =T 7t7 '
g (S Z) fg<8 Z>+ )\g/Ro Rflou)

J(T(s, t,i) — Ty(s, t,1))  s€S,i€ HEX,t € Time

(4.86)

Rf(S, t,’i) - Rf(s,t - 1, Z)
Time(t) — Time(t — 1)

E; }
A - VTw
RTy(s,t —1,i) (4.87)
seSie HEX,t € Time

— aPr033 Re0664y, [ _

xy(s,t,7) —x4((s,t —1,1) E,

= —k:gexp[ —

]%«&t—L@

Time(t) — Time(t — 1) RT,.((s,t —1,9) (4.88)
seSie HEX,t € Time
. 2R1 — (Br(s,t,1) + 0.(5,, )3,
t,1) = - 4.
oS ) = R T (s 1)+ (s, )09+ By — ol D)
Rfyc(S, t,'l) = % In [‘RI%ESM] S € S,Z € HEX,t € Time (490)
. Ro RI - 50(57 t7 7’) . .
t,i) =—1 HEX teT 4.91
Ry 4(s,t,17) " n|:RI_5(:(S,t77;>_6g se S, e ,t€Time  (4.91)
1 1
= — ) € HEX T4 4.92
0(s.6.7) UC—I—Rf(S,t,z) seSie ,t € Time (4.92)
G215  fL
AP =L |— 4| N, 4.93
2py le i 2R fiow i ] g 493)

Z (Myk(8) —myjin(s)) =0

i€Nodes|(i,j,k)€Arcs (494)

Vit € Time,j € {MxUSpUHEX}, k € Fluids,s € S.

Z (Cpkﬂ,i,j,k(omt,i,g’,k(C) - CpkTt,j,i,k(C)”%,j,i,k(C)) =0

1€Nodes|(i,j,k)EArcs (495)

Vt € Time,j € {MxzUSpUHEX}, k € Fluids,s € S
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Ytt1,i <1- Yt iy YVt € Tlme\{nt},z e HEX
Z Yri < N Vit € Time

i€HEX
ST oy < N, Vie HEX
teTime
Z (1—wy) > Ng;;'”, vVt € Time
{€HEX 0, CHEX

[—CIT(C*) + C*ACIT(CY) + CIT™™] +b" A > 0
st. ATX = —ACIT(¢Y)
A>0

[—CIT(C") + C"ACIT(CT) + CIT™] + b Acrr > 0
s.t. ATAC]T = —ACCIT(C*)

Aerr > 0

[Qre(C7) + CAL=Qpa(C7) + (=QF*")] + 1" Ag, 2 0
s.t. AT/\Qf = ACQf,t(C*>
Ao, >0

(4.100a)
(4.100D)
(4.100c)

(4.101a)
(4.101b)
(4.101c)

(4.102a)
(4.102b)
(4.102c)

(Me.spkemEri (C) + CA(—=musp i meri(CF) + (=M1 — yii))] + b" A\ > 0

st. AT\, = Ad(—musprrpri(CY))
A >0
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[INTU,;(¢*) + CA(—=NTU;(¢*) + (=M1 — yp.:))] + 0" Ay >0 (4.104a)

st. AT"Anru = A((=NTU,(¢H)) (4.104b)

>\NTU Z 0 (4104(3)

[R1g0s(C7) + C ARy g, (CF) + (= M(1 = i) + 0" Ag, 2 0 (4.105a)
st. ATAr, = Ad(—Ryy, . (C7)) (4.105b)

Ar, >0 (4.105c¢)

[24,,.(C") + ¢ A=, (C7) + 1] + b7 Az, 2 0 (4.106a)
st ATA;, = Ac(—zg, () (4.106b)

Azy >0 (4.106¢)

[~ 24, (C7) + A (g, (C7)) = Yl + 0N, >0 (4.107a)
st ATX, = Ac(zg,,(C7)) (4.107b)

X, >0 (4.107¢)

4.5.2 Results

Single heat exchanger

The following are the results for uncertain case of single HE. Here the decision vari-
ables include optimal cleaning schedule and bypass fraction of cold stream. Three
scenarios of possible uncertainty are considered i.e. ( = 0,( = 0.5 and ¢ = 1. The

graph of bypass fraction of cold stream is given by Figure 4.11,
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Figure 4.11: The optimal bypass fraction of cold stream

The input for each scenario is calculated by using affine rule decision variables and
the corresponding value of uncertainty. Affine rule is used to calculate these input
values. For each scenario, the values of all states are obtained by using corresponding
input values. Furnace duty is the energy consumed in the furnace. This indicates the
extra energy needed to bring the out temperatures of cold stream to the set targets.
This variable indicates the efficiency of heat transfer. So the minimum furnace duty
is achieved in ideal conditions i.e. no fouling resistance and having maximum heat

transfer. The energy consumed in furnace (Q¢) is given by Figure 4.12,
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Figure 4.12: Furnace duty

The mixed stream temperature (CIT) is given by Figure 4.13. The figure shows
CIT or controlled variable for all scenarios. It shows that the controlled variable

tracks the setpoint effectively.
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Figure 4.13: Mixed stream temperature

The optimal cleaning schedule is given by Figure 4.14.
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Period 1

Period 2

Period 3

HE 1

Figure 4.15 demonstrates the advantage of proposed uncertain optimization over
deterministic optimization. Considering the same scenarios of disturbances in inlet
temperature of cold stream, the controlled variable or CIT is simulated using de-

terministic optimal input. The plot shows that using deterministic optimal bypass

Period 4

Period 5 | Period 6

Period 7 | Period 8

Period 9

Period
10

Period
11

Figure 4.14: Optimal cleaning schedule for 1HE

fraction, the controlled variable does not converge to the setpoint.

Table 4.1 gives the mean and the variance of objective function, and these values
are calculated using 100 random scenarios of possible uncertainty. The table also
gives MSE between the controlled variable and setpoint using bypass fraction from

deterministic optimization, and it gives MSE using bypass fraction from uncertain

optimization.

mixed stream temperature using deterministic input

510'

505

]
o
o

mixed stream temperature

scenario 1
scenario 2

scenario 3 | 7

S

7

2 Parallel HEN

2 Parallel HEN is considered for the second case study. The HEN is described using
following Figure 4.16.
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mean 12.52 x 10°$

variance 0.18 x 10%$

MSE using uncertain input 8.85 x 103
MSE using deterministic input | 9.25 x 10*

Table 4.1: Results of uncertain integrated problem for single HE

Si2

HEX-1

sp1
Sol " HEX-2 Mx1 si1

So2

Figure 4.16: 2 parallel HEN

The decision variables include byapss fraction of both hot stream and cold stream,
as well as the cleaning scheduling variable. The following are results for uncertain
problem of the 2 parallel HEN cases. The optimal cleaning schedule is given by Figure
4.17,

Period 1 Period 2 | Period 3 | Period 4 | Period 5 | Period 6 | Period 7 | Period 8 | Period 9 Period Period

Period
12

10 11
HE 1 -

Figure 4.17: Optimal cleaning schedule for 2HE

The optimal bypass fraction of cold stream through heat exchanger - 2 is given
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by Figure 4.18,
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Figure 4.18: The optimal bypass fraction of cold stream through HE 2

For this case study, two bypass fractions are considered as decision variables, the
hot stream bypass fraction and cold stream bypass fraction. Both values are given
according to heat exchanger 2. Subtracting these values from 1 gives the bypass
fractionn values through heat exchanger-1. The optimal bypass fraction of hot stream

through heat exchanger - 2 is given by Figure 4.19,
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Figure 4.19: The optimal bypass fraction of hot stream through HE 2
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The energy consumed in furnace (@) is given by Figure 4.20,

35 T T T T T T
scenario 1
scenario 2
scenario 3
30 1

Y |

Q fuel(MW)
N
[6)]

15 . . . . . . .
0 50 100 150 200 250 300 350 400

time(days)

Figure 4.20: Furnace duty

The graph of mixed stream (controlled variable) is given by Figure 4.21,
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Figure 4.21: Mixed stream temperature (controlled variable )

For a comparison, the mixed stream temperature is simulated for the same sce-

narios using the deterministic input. Figure 4.22 shows that using the deterministic
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input the controlled variable (mixed stream temperature) is not converging to the

setpoint.

10 mixed stream temperature using deterministic input
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Figure 4.22: Mixed stream temperature (controlled variable) using deterministic input
for different scenarios of uncertainty

The following table gives the mean and the variance of objective function, which
are calculated using 100 random scenarios of possible uncertainty. The table also
gives MSE between the controlled variable and setpoint using bypass fraction from
deterministic optimization, and it also gives MSE using bypass fraction from uncer-

tain optimization.

mean 14.2881 x 10°%
variance 0.07 x 10%$
MSE using uncertain input 7.66 x 10°
MSE using deterministic input 8.52 x 10*

Table 4.2: Results of uncertain integrated problem for 2HE parallel

The mean value of the objective function (additional operational and cleaning cost
as compared to no fouling case) is calculated as 14.2881 x 10°$ and has the variance
of 0.07 x 10%$. These values are calculated using 100 random scenarios of possible

uncertainty.
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4.5.3 Industrial preheat train for a crude oil distillation col-

um

=

To demonstrate a more practical application of the proposed optimization, the indus-
trial preheat train for a crude oil distillation column in a refinery plant is considered
as the third case study. The following HEN is a grid diagram of the preheat train

considered.
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Figure 4.23: Grid diagram of the preheat train for a crude oil distillation column

The decision variables include four bypass fractions, two split fractions and the
optimal cleaning schedule. The bypass fraction is considered an affine function of
uncertainty, and split fraction and optimal cleaning schedule are considered as inde-
pendent of uncertainty.

The optimization problem is solved in pyomo. The time period of one year is divided
into 12 intervals. The overall optimization problem has 5276 constraints and 3663
variables in which 195 are binary variables.

The mean value of objective function (additional operational and cleaning cost as
compared to no fouling case) is 18.81 x 10® and has the variance of 0.28 x 10%. These
values are calculated using 100 random scenarios of possible uncertainty.

The industrial PHT is relevant to this integrated problem. The crude heated in PHT
is contaminated by a variety of minerals and salts. These contaminants are formed as
unwanted deposits on heat exchanger surfaces. They offer extra resistance against the
heat transfer. The considered PHT has 15 heat exchangers and 9 streams including

the crude. So, for such an complex system, to decrease the computational load on the
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solver, the optimization problem is solved in a few steps. First, the cleaning schedul-
ing variables values are fixed, and the bypass fraction optimal values are obtained.
Using these as initial values, the overall optimization problem is solved. Figure 4.24

gives the optimal cleaning schedule

Period | Period 2 | Period 3 | Period4 | Period 5 | Period 6 | Period 7 | Period 8 | Period 9 Period Period Period
10 1 12

HE 1

HE 2

HE 3

HE 4

HE 5

HE 6

HE 8

HE 9

HE 10

HE 11 -

m

HE 14
HE 15
Figure 4.24: optimal cleaning schedule for PHT

The optimal bypass fraction of u; is shown by Figure 4.25, the optimal bypass
fraction of uy by Figure 4.26, the optimal bypass fraction of ug by Figure 4.27, and
the optimal bypass fraction of uy by Figure 4.28.
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Figure 4.25: Bypass fraction 1
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Figure 4.26: Bypass fraction 2

80



u3
06 T T T T
scenario 1
scenario 2
scenario 3

0.55

0.45 i

u3

02r i

0.15 . . . . . . .
0 50 100 150 200 250 300 350 400

time(days)

Figure 4.27: Bypass fraction 3
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Figure 4.28: Bypass fraction 4

For each scenario, these bypass fraction values are calculated using optimized
affine rule parameters and values of uncertainty of the corresponding scenario. The
affine rule parameters are obtained for all four bypass fractions. The graph of mixed

stream(controlled variable) is given by Figure 4.29 |
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Figure 4.29: Mixed stream temperature (controlled variable )

For comparison, the mixed stream temperature is simulated for the same scenar-
ios using deterministic input. Figure 4.30 shows that using deterministic input the

controlled variable (mixed stream temperature) is not converging to setpoint.

mixed stream temperature using deterministic input
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Figure 4.30: Mixed stream temperature (controlled variable) using deterministic input

for different scenarios of uncertainty

The energy consumed in furnace (Q)) is given by Figure 4.31,
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Figure 4.31: Furnace duty

The following table gives the mean and the variance of objective function, which
are calculated using 100 random scenarios of possible uncertainty. The table also
gives MSE between the controlled variable and setpoint using bypass fraction from
deterministic optimization, and it also provides MSE using bypass fraction from un-

certain optimization.

mean 16.21 x 10°$

variance 0.31 x 10%$

MSE using uncertain input 8.76 x 103
MSE using deterministic input | 9.65 x 10*

Table 4.3: Results of uncertain integrated problem for PHT

4.6 Conclusion

In this work, to mitigate the negative effects of fouling resistance on heat transfer,
the integrated problem of optimal cleaning and bypass control is considered. The
objective function represents additional cost occurred because of fouling as compared

to ideal cleaned case.The disturbances in inlet temperature of cold stream are also
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considered. The uncertain OCP is made tractable by using affine rule policy and
scenario based approximations. The OCP is solved for an time horizon of one year
and the values of decision variables are obtained for the entire year.

As both the optimization variables i.e. optimal cleaning and bypass control are solved
simultaneously, the considered timescale is in days. If treated independently, gener-
ally, the values of cleaning variables are obtained in a time scale of months, and
values of bypass fraction are obtained in a time scale of minutes. As the cleaning
scheduling variables are not sensitive to disturbances in the inlet temperature of cold
stream, they are formulated as independent of uncertainty whereas bypass fraction is
formulated as affine function of uncertainty.

An axially lumped but radially distributed HEN model is considered as it is suitable
for integrated problem. One of the case studies includes PHT of crude oil. Fouling is
more evident in PHT of crude oil because of the presence of impurities in the crude.
With the uncertain optimization formulation, the MSE between controlled variable
and setpint is reduced by of tenfold as compared with deterministic optimization.

The mean value of objective function is reduced by 44% approximately.

84



Chapter 5

Conclusions and prospective work

5.1 Conclusions

In chapter 3 of the thesis the bypass control of HEN is implemented under the MPC
framework. First, the control problem is formulated and solved in deterministic frame-
work. The performance of deterministic control is demonstrated using various case
studies including setpoint change and disturbance rejection. Later, the uncertainty
in inlet temperature of hot stream is introduced. The initial uncertain problem for-
mulated is not tractable. The steps to convert intractable problem to tractable one
is given in this chapter. These steps include affine rule policy methods and scenario
tree approximations. Then, the tractable OCP is solved in a receding horizon man-
ner. The first principles dynamic HEN model is considered initially, which is later
discretized using orthogonal collocation as given in section 3.4.1.

The uncertain MPC is demonstrated using two case studies. First one is a simple sin-
gle HE and second one is a HEN. The responses of decision variables and controlled
variables are given in section 3.4.3. The performance of uncertain optimization is
demonstrated using testing scenarios of inlet temperature of hot stream. For a com-
parison, the controlled variable is also simulated using deterministic optimization
input values. The results show that MSE between controlled variable and setpoint
is reduced by tenfold using uncertain optimization decision variable as compared to
deterministic optimization decision variables.

In chapter 4, to mitigate the negative effects of fouling the optimal cleaning schedul-

ing problem and bypass control problem are formulated simultaneously. The model
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of HEN considered is different from that of chapter 3. Here, a axially lumped model
and radially distributed model of HEN is considered. A model like this is sufficient
to capture the fouling resistance dynamics without increasing the computational load
significantly. The integrated problem formulated is a MINLP problem. It has binary
optimal cleaning scheduling decision variables, and continuous bypass fraction deci-
sion variable. For the integrated problem, the time scale considered is in days, and
the optimization problem is solved for a time period of one year. The uncertainty in
OCP is dealt by deriving robust counterparts and scenario tree based approximations.
The objective function represents the additional operational costs because of fouling.
For 2HE case study, the value of objective function is reduced by 40% using the
uncertain optimization as compared to deterministic optimization. In section 4.5.2,
the performance of the proposed integrated optimization problem is demonstrated by
using various cases including a PHT case study. This is because fouling is very much

evident in PHT of crude as crude oil is contaminated with variety of impurities.

5.2 Prospective work

The work done in this thesis can be extended by considering more than one source
of primitive uncertainty. The disturbance in flowrates of streams or in inlet tempera-
tures of multiple streams can be considered. The formulation of the problem can be
made more practical by considering these uncertainties. To decrease the computa-
tional load because of multiple uncertainties considered, a simple but effective model
of HEN can be considered.

Another approach for the future work could be formulating a real time optimization.
This could be done by linearizing constraints of the OCP or relaxing some of the
constraints. Liearization of the model can be done around a steady state operating
point of the system. Such a linearized model could be used for practical real time
applications of the proposed control methods as industrial processes do not deviate
much from the steady state operating points. The use of commercial licenses of the

solver could also help for this.

86



References

1. Lin Sun, Xinlang Zha, Xionglin Luo, Coordination between bypass control and
economic optimization for heat exchanger network,Energy.

2. Ehlinger, Victoria Mesbah, Ali. (2017). Model Predictive Control of Chemical
Processes: A Tutorial. 10.1016/B978-0-08-101095-2.00009-6.

3. Luo, Xiong-Lin Xia, Chekui Sun, Lin. (2013). Margin design, online optimiza-
tion, and control approach of a heat exchanger network with bypasses. Computers
Chemical Engineering. 53. 102-121. 10.1016/j.compchemeng.2013.02.002.

4. Mohankumar, Yashas Li, Zukui Huang, Biao. (2019). Steam allocation and pro-
duction optimization in SAGD reservoir under steam-to-oil ratio uncertainty. Journal
of Petroleum Science and Engineering. 183. 106456. 10.1016/j.petrol.2019.106456.
5. Wang, Yi-Fei Chen, Qun. (2015). A direct optimal control strategy of variable
speed pumps in heat exchanger networks and experimental validations.

6. Skorospeshkin MV, Sukhodoev MS, Skorospeshkin VN. An adaptive control sys-
tem for a shell-and-tube heat exchanger. J Phys Conf 2016;803:2¢6.

7. Delatore, Fabio Jaime, José Leonardi, Fabrizio Novazzi, Luis. (2010). Mul-
tivariable Optimal Control of a Heat Exchanger Network (HEN) With Bypasses..
10.2316/P.2010.697-062.

8. Lozano Santamaria, Federico Macchietto, Sandro. (2019). Integration of Optimal
Cleaning Scheduling and Control of Heat Exchanger Networks Under Fouling: MPCC
Solution. Computers Chemical Engineering. 126. 10.1016/j.compchemeng.2019.04.012.
9. Coletti, F.; Joshi, H. M.; Macchietto, S.; Hewitt, G. F. Introduction. In Crude Oil
Fouling; 2015; Chapter 1, pp 122.

10. Georgiadis, M. C.; Rotstein, G. E.; Macchietto, S. Optimal Design and Operation
of Heat Exchangers under Milk Fouling. AIChE J. 1998, 44 (9), 2099.

11. Cho, Y. L; Fridman, A. F.; Lee, S. H.; Kim, W. T. Physical Water Treatment for
Fouling Prevention in Heat Exchangers. Adv. Heat Transfer 2004, 38, 1.

12. Coletti, F.; Macchietto, S. Refinery Pre-Heat Train Network Simulation Undergo-
ing Fouling: Assessment of Energy Efficiency and Carbon Emissions. Heat Transfer
Eng. 2011, 32 (34), 228.

13. Andras Prekopa. Stochastic programming, volume 324. Springer Science Busi-
ness Media, 2013.

14. Boyaci, C., Uztiirk, D., Konukman, A.; Akman, U., “Dynamics and optimal

87



control of flexible heat-exchanger networks”, Computers Chemical Engineering., 20,
775-780 (1996).

15. Nisenfeld, A.E., “Applying control computers to an integrated plant” ,Chem. Eng.
Prog., 69, 45-48 (1973).

16. Beautyman, A.C., Cornish, A.R.H., “The design of flexible heat exchanger net-
works”, In: Proc. of First U.K. National Heat Transfer Conference 1, Leeds, 547-565
(1984).

17. Calandranis, J., Stephanopoulos, G., “A structural approach to the design of
control systems in heat exchanger networks”, Computers and Chemical Engineering,
12 (7), 651-669 (1988).

18. McMillam, G. K.; Toarmina, C. M. AdVanced Temperature Measurement and
Control; Instrument Society for Measurement and Control: Research Triangle Park,
N.C., 1995.

19. Riggs, J. B.; Karim, M. N. Chemical and Bio-Process Control; Ferret Publishing;:
Austin, TX, 2007.

20. Lozano Santamaria, Federico Macchietto, Sandro. (2018). Integration of Op-
timal Cleaning Scheduling and Control of Heat Exchanger Networks Undergoing
Fouling: Model and Formulation. Industrial Engineering Chemistry Research. 57.
10.1021/acs.iecr.8b01701.

21. Diaby, A. L.; Luong, L.; Yousef, A.; Addai Mensah, J. A Review of Optimal
Scheduling Cleaning of Refinery Crude Preheat Trains Subject to Fouling and Age-
ing. Appl. Mech. Mater. 2011, 148149,643.

22. Lanchas-Fuentes, L.; Dias-Bejarano, E.; Coletti, F.; Macchietto,S. Management
of Cleaning Types and Schedules in Refinery Heat Exchangers. Presented at the 12th
International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
(HEFAT2016), Costa del Sol, Spain, 2016.

23. Rodriguez, C.; Smith, R. Optimization of Operating Conditions for Mitigating
Fouling in Heat Exchanger Networks. Chem. Eng. Res.Des. 2007, 85 (6), 839.

24. Smalili, F.; Vassiliadis, V. S.; Wilson, D. I. Mitigation of Fouling in Refinery Heat
Exchanger Networks by OptimalManagement of Cleaning. Energy Fuels 2001, 15 (5),
1038.

25. Assis, B. C. G.; Lemos, J. C.; Liporace, F. S.; Oliveira, S. G.; Queiroz, E. M.;
Pessoa, F. L. P.; Costa, A. L. H. Dynamic Optimization of the Flow Rate Distribution
in Heat Exchanger Networks for Fouling Mitigation. Ind. Eng. Chem. Res. 2015, 54

88



(25), 6497.

26. de Silva, R. L.; Costa, L. H.; Queiroz, E. M. Stream Flow Rate Optimization for
Fouling Mitigation in the Presence of Thermohydraulic Channeling. In Proceedings
of International Conference on Heat Exchanger Fouling and Cleaning; Malayeri, M.,
Muller-Steinhagen, H., Walkinson, A., Eds.; PP Publico Publications: Essen, Ger-
many, 2015; pp 384391.

27. Liu, L.; Fan, J.; Chen, P.; Du, J.; Yang, F. Synthesis of Heat Exchanger Networks
Considering Fouling, Aging, and Cleaning. Ind. Eng. Chem. Res. 2015, 54 (1), 296.
28. Nie, Y.; Biegler, L. T.; Villa, C. M.; Wassick, J. M. Discrete Time Formulation
for the Integration of Scheduling and Dynamic Optimization. Ind. Eng. Chem. Res.
2015, 54 (16), 4303.

29. Zhuge, J.; lerapetritou, M. G. Integration of Scheduling and Control for Batch
Processes Using Multi-Parametric Model Predictive Control. AIChE J. 2014, 60 (9),
3169.

30. Edgar, T. F.; Himmelblau, D. M.; Lasdon, L. S. Integrated Planning, Schedul-
ing, and Control in the Process Industries. In Optimization of Chemical Processes;
McGrawHill: New York, 2001; pp 549582.

31. Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications
to Chemical Processes; Society for Industrial and Applied Mathematics (STAM) and
Mathematical Optimization Society: Philadelphia, PA, 2010.

32. Bassett, M. H.; Pekny, J. F.; Reklaitis, G. V. Decomposition Techniques for the
Solution of Large-Scale Scheduling Problems. AIChE J. 1996, 42 (12), 3373.

33. Floudas, C. A.; Lin, X. Continuous-Time versus Discrete-Time Approaches for
Scheduling of Chemical Processes: A Review. Comput. Chem. Eng. 2004, 28 (11),
2109.

34.Pinto, J. M.; Grossmann, . E. Assignment and Sequencing Models for Theschedul-
ing of Process Systems. Ann. Oper. Res. 1998, 81, 433.

35. Sundaramoorthy, A.; Maravelias, C. T. Computational Study of Network-Based
Mixed-Integer Programming Approaches for Chemical Production Scheduling. Ind.
Eng. Chem. Res. 2011, 50 (9), 5023.

36. Wang CF, Luo XL. Overdesign for control and its application in tube and shell
heat exchanger design. Pertrleum Refin Eng 2004;34(2):21e4.

37. Lee K, Kim M, Ha MY, Min JK. Investigation of heat-exchanger-sizing methods

using genetic, pattern search, and simulated annealing algorithms and the effect of

89



entropy generation. J Mech Sci Technol 2018;32(2):915e28.

38. Andres T, Julian PR, Juan VC. Maximum power point tracking panels by using
improved pattern search methods. Energies 2017;10(9):1316e30.

39. Mohankumar, Y.. “Steam allocation optimization and control for SAGD pro-
cess.” (2020).

40. Giuseppe C Cala ore and Laurent El Ghaoui. Optimization models. Cambridge
university press, 2014.

41. Aharon Ben-Tal, Alexander Goryashko, Elana Guslitzer, and Arkadi Nemirovski.
Adjustable robust solutions of uncertain linear programs. Mathematical Program-
ming, 99(2):351376, 2004.

90



