
University of Alberta

C l o c k L o g ic D o m in o C ir c u it s f o r H ig h -S p e e d a n d E n e r g y E f f ic ie n t

M ic r o p r o c e s s o r P ip e l in e s

by

Raymond Jit-Hung Sung

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95894-9
Our file Notre reference
ISBN: 0-612-95894-9

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I think and think for months and years.
Ninety-nine times, the conclusion is false.

The hundredth time I am right.
Albert Einstein

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Praise be to our Lord Jesus Christ who sustained me throughout
the preparation of this dissertation and whose wisdom made possible all the

pages contained within. This thesis is also dedicated to my parents, who
have loved and provided for me throughout the countless late nights.

Thanks also to my brother who I had the privilege to work with in my graduate
classes and thanks to my sister who always made me laugh even after a long

day at school.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

This work was sponsored by the National Sciences and Engineering Research Council of
Canada (NSERC), the Alberta Informatics Circle of Research Excellence (iCORE), the
Canadian Microelectronics Corporation (CMC), and by Micronet R & D. Special thanks
goes out to Steve Dillen for introducing me to the spectreVerilog simulation environment
and for comments concerning some of the ideas contained in this dissertation. Thanks
also to John Koob who helped me with Latex and the VIM editor. Thanks to Raewadee
Pammukh for the completing the CL-domino ALU layout for future extracted layout with
capacitance simulations. Last, a special word of thanks to my supervisor Duncan Elliott
for the initial idea behind Clock Logic domino and for all of the comments, changes to the
equations and edits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1

2 Dynamic Logic Circuits 3
2.1 Dynamic C ircu its ... 4

2.1.1 Dynamic Circuit Operation.. 4
2.1.2 Non-inverting and Monoticity R u le s ... 5
2.1.3 Domino Logic ... 6
2.1.4 Dual-Rail Domino L o g ic .. 6
2.1.5 Footed Versus Unfooted Domino G a te s ... 8

2.2 Dynamic Circuit Performance ... 9
2.2.1 Delay Performance... 9
2.2.2 Power Performance... 12

2.3 Dynamic Circuit Design C hallenges... 14
2.3.1 Charge Leakage .. 14
2.3.2 Charge Sharing.. 17
2.3.3 Other Design Considerations.. 19

2.4 Clock Uncertainty... 20
2.4.1 Circuit Pipelining... 20
2.4.2 S k e w ... 21

2.5 Skew-Tolerant Domino Logic... 23
2.5.1 Skew-tolerant Pipelines... 23
2.5.2 D efin itions.. 24
2.5.3 Precharge and Evaluate... 26
2.5.4 Skew Tolerance.. 28
2.5.5 Exactly One Dynamic and Static Gate Per P h a s e 28
2.5.6 Global and Local Skew .. 29
2.5.7 Time B o rrow ing ... 29
2.5.8 Racethrough or M in-Delay... 31

2.6 S u m m ary .. 34

3 Method for Single-Rail All-Domino Pipelines 35
3.1 Introduction... 35
3.2 Clock Logic (CL)-Domino T im ing.. 37

3.2.1 Precharge Problem for Inverting and Non-Monotonic Domino Logic 37
3.2.2 OR-Precharge/Domino-Evaluate... 38
3.2.3 Domino-Precharge/AND-Evaluate... 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.4 OR-Precharge/AND-Evaluate... 44
3.2.5 OR-Precharge/OR-Evaluate.. 45
3.2.6 Dynamic Cascaded OR-Precharge/Domino-Evaluate........................ 47
3.2.7 Dynamic Cascaded Domino-Precharge/AND-Evaluate.................... 49

3.3 Local Clock Generation at the Dynamic G ates ... 50
3.3.1 Clock Logic F o rm ulas... 50

3.4 Transistor Level Design Considerations .. 53
3.4.1 Design Considerations for Series and Parallel Connections of Clock

T ransisto rs... 53
3.4.2 Clock Input Ordering... 55
3.4.3 Charge Sharing .. 58

3.5 Optimized Placement for OR-Precharge/AND-Evaluate............................... 61
3.5.1 CL-Domino and Skew-Tolerant Domino.. 61
3.5.2 Input Complemented or Non-Monotonic Gates in Two or More

Consecutive Phases.. 62
3.5.3 Unfooted G ates.. 63
3.5.4 Generalized CL-Domino P ip e lin e .. 66

3.6 Local Clock Generators.. 67
3.6.1 Clock Logic Generation Using Delay L in e s 68
3.6.2 Clock Logic Generation Using Delay Locked L o o p s 68

3.7 S u m m ary .. 70

4 Example High-Speed Microprocessor Datapath: 64-bit ALU 71
4.1 Introduction... 71
4.2 ALU Design... 72

4.2.1 ALU Architecture .. 72
4.2.2 Adder C o re .. 76
4.2.3 Adder Core C e lls ... 81
4.2.4 Multiplexers ... 85
4.2.5 Variable Shifter with 5:1 multiplexer.. 88
4.2.6 3:1 Output M ultiplexer.. 89
4.2.7 Bus D r iv e r .. 93
4.2.8 Other Circuit Design Considerations.. 94

4.3 Simulation Study of 64-Bit A L U s ... 95
4.3.1 ALU and Adder Core Functional Verification.................................... 95
4.3.2 ALU Functional Delay and Power Measurements.............................. 96
4.3.3 D iscussion ..105

4.4 S u m m ary ...108

5 Future Work 109
5.1 Mask Layout and Extracted Capacitance Sim ulations...................................... 109
5.2 CL-domino Interfaces..109
5.3 Testability...110
5.4 Leakage E nergy... 110
5.5 Clocking Is su e s ..I l l

6 Conclusion 112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography 114

A Process Characterization 119
A.l Process Param eters...119
A.2 Inverter and F04 Inverter D elays.. 119
A. 3 Wire and Transistor Parasitics ..121

B Single-Rail Domino Design Alternative 122
B.l CSG-Dom ino..122
B.2 CSG-Domino Versus C L -D om ino... 123

C Verilog Code 125
C.l Functional Verilog Code for ALU (Synthesizable).. 125
C.2 Behavioral Verilog Transistor M o d e ls ... 133
C.3 Behavioral Verilog Multi-phase Clock G en e ra to r.. 134
C.4 Behavioral Verilog ALU S tim u lu s ..137

D Test Vectors 141
D.l C Program for generating random input vectors for Adder and ALU 141
D.2 Input Vectors for Adder and ALU ..141
D.3 Expected Results of ALU operations...144
D.4 C Program that models ALU operations.. 144

E Spectre Verilog Environment 146
E.l Example SpectreVerilog Run script..146

F Mask Layouts 147
F. 1 Mask Layout Plot of CL-Domino A LU ..147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Simple N-type dynamic gates... 4
2.2 No direct cascading of dynamic gates with a single clock............................... 5
2.3 Two consecutive domino OR gates.. 7
2.4 Compound domino 6-input AND gate... 7
2.5 Two versions of dual-rail domino AND/NAND gates...................................... 8
2.6 Unfooted domino gate... 9
2.7 Delayed precharge of unfooted domino gate... 10
2.8 Three input NOR gates (a) static CMOS (b) dynamic logic............................ 11
2.9 Sources of leakage current in a dynamic gate... 15
2.10 Dynamic gate keepers (a) feedback PMOS (b) isolated feedback PMOS (c)

feedback PMOS/NMOS full k eep e r.. 16
2.11 Dynamic gate keepers on (a) compound domino gate (b) dual-rail domino

gate... 16
2.12 Charge sharing in dynamic gates.. 18
2.13 Precharging internal nodes... 19
2.14 Definition of skew... 22
2.15 Skew-tolerant domino with same clocks for precharge and evaluate.............. 24
2.16 Positive skew in the context of multiple overlapping clocks............................ 25
2.17 Negative skew in the context of multiple overlapping clocks.......................... 26
2.18 Precharge time constraint.. 26
2.19 Evaluation time constraint.. 27
2.20 Time borrowing and skew tolerance windows for overlapping clocks 30
2.21 Min-delay failure for overlapping clocks... 32
2.22 OTB domino logic min-delay risk and solution through extended clock delay. 33

3.1 Inverting domino logic failure for overlapping clocks...................................... 38
3.2 Example of inverting domino logic failure for overlapping clocks.................. 38
3.3 Clock-logic OR-precharge.. 39
3.4 Clock-logic AND-evaluate... 42
3.5 Clock-logic OR-precharge/AND-evaluate... 44
3.6 Clock-logic OR-precharge/OR-evaluate.. 46
3.7 Clock-logic dynamic cascaded OR-precharge/normal-evaluate....................... 48
3.8 Clock-logic dynamic cascaded normal-precharge/AND-evaluate................... 49
3.9 N-type dynamic gate... 51
3.10 Example N-type dynamic gate... 51
3.11 OR-precharge... 52
3.12 AND-evaluate.. 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.13 OR-precharge / AND-evaluate... 52
3.14 First gate of phase in OR-precharge / OR-evaluate.. 53
3.15 Remaining gates of phase in OR-precharge / OR-evaluate............................. 53
3.16 Placing current phase precharge clock nearest to the output...................... 56
3.17 Placing current phase precharge clock nearest to the supply rail................ 56
3.18 Placing current phase precharge clock nearest to the PDN........................ 57
3.19 Placing current phase precharge clock nearest to the ground rail.............. 57
3.20 Clock-logic Output Floating... 59
3.21 OR-precharge of internal nodes... 60
3.22 AND-precharge of internal nodes.. 60
3.23 AND-precharge of internal nodes for charge sharing suppression.................... 60
3.24 OR-precharge in consecutive phases of non-monotonic logic........................ 62
3.25 AND-evaluate in consecutive phases of non-monotonic logic........................ 64
3.26 OR-Precharge followed by AND-evaluate in consecutive phases of non­

monotonic logic... 64
3.27 AND-evaluate followed by OR-precharge in consecutive phases of non­

monotonic logic... 65
3.28 Unfooted dynamic gates in a CL-domino pipeline... 65
3.29 Unfooted dynamic gates in a CL-domino pipeline with more gates per phase. 66
3.30 Alternating footed and unfooted gates in a CL-domino pipeline..................... 66
3.31 Generalized CL-domino pipeline... 67
3.32 Three phase clock generator with inverting buffers... 68
3.33 Three phase clock generator with non-inverting buffers.................................. 68
3.34 Three-phase DLL CL-domino clock generator.. 69

4.1 CL-domino ALU odd bitslice... 74
4.2 Dual-rail skew-tolerant ALU odd bitslice... 75
4.3 Static CMOS ALU bitslice... 75
4.4 64-bit Han-Carlson adder core architecture... 82
4.5 Unfooted CL-domino: propagate/generate cells... 83
4.6 Dual-rail skew-tolerant domino: propagate/generate cells............................... 83
4.7 CL-domino: static carry-merge cells... 84
4.8 CL-domino: dynamic footed and unfooted carry-merge cells......................... 85
4.9 CL-domino: dynamic OR-precharge carry-merge cell..................................... 86
4.10 Dual-rail skew-tolerant domino: static carry-merge cells................................ 87
4.11 Dual-rail skew-tolerant domino: dynamic footed carry-merge cells............... 88
4.12 Dual-rail skew-tolerant domino: dynamic unfooted carry-merge cells. . . . 89
4.13 CL-domino: PSUM cell.. 90
4.14 CL-domino: SUM cell.. 90
4.15 Dual-rail skew-tolerant domino: PSUM and SUM cell.................................... 91
4.16 9:1 input multiplexer... 91
4.17 9:1 input multiplexer with OR-precharge.. 91
4.18 2:1 m ultiplexer.. 92
4.19 5:1 unfooted variable shifter/multiplexer... 92
4.20 5:1 footed variable shifter/multiplexer... 92
4.21 3:1 output multiplexer. ... 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.22 Clock-logic domino ALU critical path operation at 1-GHz operation and no
clock-skew...102

4.23 Clock-logic domino ALU at 1 GHz operation and worst-case 1 F04 skew. . 102
4.24 Clock-logic domino ALU transistor power dissipation at 1 GHz operation

and no skew...104
4.25 Power dissipation of ALUs at 1 GHz operation...106

A.l Ring oscillator for inverter delay measurement.. 120
A.2 Ring oscillator for F04 delay measurement..121

B.l CSG genera to r.. 122
B.2 CSG generator with folded input and output logic...123

F.l Layout plot of CL-domino ALU.. 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Examples of CL-domino and skew-tolerant domino in the same pipeline. . . 63

4.1 64-bit microprocessors... 97
4.2 Worst case skew parameters for ALU simulation... 99
4.3 D/A simulation interface element parameters..100
4.4 A/D simulation interface element parameters..100
4.5 Confirmed functional performance of different ALUs with no wiring para-

sitics except for output load...101
4.6 Power dissipation of different ALUs with no wiring parasitics except for

output load.. 104

A.l Process technology characteristics..119
A.2 Single inverter and F04 inverter delay times for different environmental

conditions and process comers..120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Nomenclature

Acronyms

A /D Analog-to-Digital Converter

ALU Arithmetic Logic Unit

CD — Domino Clock-Delayed domino logic

C L — Domino Clock Logic domino

C LA Carry Lookahead Adder

C N S A Conditional Sum Adder

C SG Single-ended to domino-compatible Complementary Signal Generator

C SG — D omino Single-rail domino logic with CSG generators

C S L A Carry Select Adder

D /A Digital-to-Analog Converter

D D C V S L Domino Dynamic Cascode Voltage Switch Logic

D F T Design-For-Testability

D LC Dynamic Latch Converter

D LC — Domino OTB domino with bolt-on DLC

D LL Delay-Locked-Loop

F IF O First-In-First-Out memory

L I Level-1 Cache

L S B Least Significant Bit

M C C Manchester Carry Chain adder

m ux Multiplexer

N F E T N-Type Field Effect Transistor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N M O S N-Type Metal Oxide Semiconductor transistor

O T B Opportunistic Time-Borrowing domino logic

P D N Pull-Down-Network. Logic function computed by NMOS transistors

P F E T P-Type Field Effect Transistor

P G K Propagate-Generate-Kill addition algorithm

P L A Programmable Logic Array

P L L Phase Lock Loop

P L L Phase-Locked-Loop

P M O S P-Type Metal Oxide Semiconductor transistor

R A W Read-After-Write data hazard for microprocessor pipelines. Occurs when an in­
struction j tries to read a register before instruction i has written to it; where in­
struction i occurs before instruction j

S IM D Single instruction, multiple data

S O I Silicon-On-Insulator

T L B Translation Lookaside Buffer

T S M C Taiwan Semiconductor Manufacturing Company Ltd.

V C D L Voltage-Controlled-Delay-Line

Abbreviations

wrt With respect to

Description

Behavioral Verilog Verilog code that was not meant to be synthesized into actual logic
gates but provide stimulus to or analyze results from a circuit under test

clock skew The absolute difference between the nominal and actual interarrival times of
a pair of physical clock edges

Functional Verilog Verilog code that can be mapped directly to logic gates from a stan­
dard ce ll library

Figure Labels

D ynam ic A regular monotonic dynamic stage

Dynamic* An input complemented, non-monotonic or regular dynamic stage

D ynam ic^ An input complemented, non-monotonic or regular dynamic stage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variables

ao-^i The transition probability or the probability that a logic gate will make an energy
consuming transition in a given clock cycle

,3 The effective transistor width of the PMOS transistor network divided by the effec­
tive width of the NMOS transistor network

a The first input operand

b The second input operand

f osc Oscillation frequency of a ring oscillator

FOA Fanout-of-four inverter delay. The delay of an inverter driving four identical copies
of itself while neglecting any wiring parasitics

g Generate term in binary addition

i(t) Instantaneous current

iave-ciock Average current sourced by a clock D/A interface element modeled by a boolean-
controlled voltage source with zero output impedance

I Leakage The leakage current from the output node of a dynamic gate

k A k-bit adder

N Number of overlapping clock phases

n Number of stages in a ring oscillator

V Propagate term in binary addition

p{t) Instantaneous power

P : N Ratio of the widths of the PMOS transistors to the NMOS transistors in a static
CMOS logic gate. Also referred to as Beta ratio

PaveMock Average power dissipation for a single clock

Pave .transistors Average power dissipated in the transistors during the period of interest

psum Partial sum or sum computed without taking into account the carry-in

T The period of interest during a transient analysis

tAND„evai-cycie AND Evaluate nominal logic evaluation window

harrow-max-ORjpre JO R^evai Time borrowing for OR-precharge/OR-evaluate

t borrow-max The maximum time that one phase can borrow from an adjacent phase, assum­
ing all the clock overlap is used for time-borrowing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tborrow The actual overlap that is used for time borrowing while considering global and
local clock domains

The contamination delay time for dynamic logic

Tc Cycle time as measured from the rising edge of the first phase clock until the next
rising edge of the first phase clock

tdelay The time that the overlapping clocks are delayed from the extra non-overlapping
clocks in OTB domino logic

teval-prev Logic evaluation window for the phase of logic preceding an input complemented
or non-monotonic logic function

te Period that the clock is high per cycle or clock duty-cycle (evaluate in the case of
skew-tolerant domino clocks)

t-hoid The required overlap between two adjacent clock phases

tmin-overlap Nominal overlap between a first phase rising and a second phase falling

tpHL Propagation delay time for a high-to-low transition on the output of a logic gate

tpLii Propagation delay time for a low-to-high transition on the output of a logic gate

tprech The nominal time required for precharging a phase of dynamic logic when not ac­
counting for clock skew

tp Overall propagation delay time for both high-to-low and low-to-high transitions on
the output of a logic gate

tp Period that the clock is low per cycle (precharge in the case of skew-tolerant domino
clocks)

tskeru-max-global-OTB The maximum tolerable skew for OTB domino

t skew-global The skew between two directly coupled domino gates from different local clock
domains

tskew Jocal The skew between two directly coupled domino gates in a local clock domain

t skew-max-global The maximum global skew tolerable when global and local skews differ,
assuming all clock overlap is used for skew tolerance

tskew-max The m axim um skew tolerable betw een tw o adjacent clock phases i f all the avail­
able overlap between the clock phases is used for skew tolerance

tskew The skew between adjacent clock phases

tim ex Transit time through an A/D converter

Vm The positive supply rail

Vfid The power supply voltage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vdyn The final value on the output of a dynamic gate after charge sharing

Vss The ground supply voltage

Vss The negative supply rail

Vtn The threshold voltage of an NMOS transistor in a given process

Vt The transistor threshold voltage

V IH The accepted “high” voltage level where values above this level are interpreted as a
logic ‘1’

V IL The accepted “low” voltage level where values below this level are interpreted as a
logic ‘O’

V O H The “high” output voltage level

V OL The “low” output voltage level

toverlap Nominal overlap between adjacent clocks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

During the past three decades, the power consumption of integrated circuits, including mi­

croprocessors, has been increasing at an exponential rate with each new product generation

[39]. This steady increase in power dissipation comes despite the use of advanced tech­

nologies and scaled power supply voltages. This is the result of several factors [40]: First,

the number of transistors and the transistor density has doubled every 24 months [57]. This

increase in the number of transistors on a die, commonly known as ’’Moore’s Law”, has

enabled more complex architectural features to be incorporated into each new microproces­

sor generation. However, it is noteworthy that the power efficiency of microarchitectures,

measured by MIPS/Watt, is considerably worse as more superscalar features are built into a

design. Second, the use of more complex circuit techniques has allowed clock frequencies

to increase faster than pure process scaling would suggest; often at the expense of increased

power. Third, aggressive transistor technologies with higher current carrying capabilities

(Idsat) and lower threshold voltages have increased switching speeds at the expense of sig­

nificant subthreshold leakage current. Last, improvements in compilers and software appli­

cations have also increased the switching activity within a microprocessor.

If this trend continues, it is expected that the power consumption of microprocessors

will be several thousand Watts by 2008 [39]. This presents an enormous challenge in the

design of the power distribution networks needed to carry the large currents [40] and also

in the verification of digital noise immunity. Furthermore, these predicted power numbers

are prohibitively large from a reliability and system cost perspective. Last, from a system

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performance standpoint, high power dissipation limits the scalability in the number of pro­

cessors that can be incorporated in a system [51] and the number of cores on a single die

[16, 25], From this discussion, it becomes clear that total power consumption will eventu­

ally become a limiting factor to increased chip integration.

Despite the power dilemma, designers are still most concerned about speed performance

because, in most cases, that is what determines whether a system is successful. For most

microprocessors incorporating advanced superscalar microarchitectures, this meant using

dynamic domino logic. While, many of the design difficulties concerning noise and delay

performance of dynamic logic have been addressed [8, 42, 43, 60, 61], practical power

considerations have often been ignored.

This dissertation is concerned with developing domino logic circuits which minimize

power consumption while maintaining equal delay performance when compared to exist­

ing techniques. The developed logic family, called Clock Logic (CL)-Domino, attains low

power because it is a single-ended logic style that is functionally complete, unlike skew-

tolerant domino or other domino logic styles that employ dual-ended gates for logic com­

pleteness. Second, CL-domino attains similar delay performance compared to dual-ended

logic styles because it hides most of the clock skew overhead much like skew-tolerant

domino while reducing wire delays. This is in contrast to Clock-Delayed (CD)-domino

[72] which is another single-ended dynamic logic style that pays enormous skew penalties.

This thesis is organized as follows: Chapter 2 introduces the reader to domino circuits

and how skew-tolerant domino circuits offer significant performance improvements in mi­

croprocessors. Chapter 3 introduces Clock-Logic domino and develops timing constraints

and circuit design considerations related to the proposed logic style. Chapter 4 compares a

representative microprocessor datapath in CL-domino versus one in dual-rail skew-tolerant

domino and shows that CL-domino consumes less power while maintaining equal delay

performance. Chapter 5 presents future work that could be taken to make CL-domino an

even more viable design alternative. Finally, Chapter 6 summarizes the main results of the

dissertation.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Dynamic Logic Circuits

Dynamic logic is a digital circuit style used in high-performance integrated circuits, in­

cluding microprocessors. In contrast to the more popular logic family of static CMOS,

dynamic circuits are faster because they present much lower input capacitance for the same

output current and have a lower switching threshold. Unfortunately, dynamic circuits are

more susceptible to noise than static CMOS. While noise in static gates will lead to re­

duced performance, noise in dynamic circuits can cause functional failures which have to

be addressed through significant analysis and verification. They also dissipate more power

than their static counterparts because of their higher activity factors and significant clock

loading. However, in many circumstances, they have proven to be the only circuit family

able to meet the demands of reduced cycle times. Since domino circuits are synchronized

by clocks, clock skew can have a significant impact on domino circuit performance. Skew-

tolerant domino circuits have been shown to alleviate the effects of skew on the performance

of traditional domino circuits.

This chapter is organized as follows: Section 2.1 discusses the basics of dynamic cir­

cuits and what general dynamic circuit families are preferred by many microprocessor man­

ufacturers. Section 2.2 describes why dynamic circuit are faster than static circuits and

explains their sources of power dissipation. Section 2.3 describes why dynamic circuits

are often difficult to design because of their sensitivity to noise. Section 2.4 explains why

circuits are pipelined and why skew can negatively affect pipelined circuits. Section 2.5 de­

scribes a method to pipeline dynamic domino logic circuits, called “skew-tolerant domino”,

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to minimize the effects of skew while maximizing performance.

2.1 Dynamic Circuits

2.1.1 Dynamic Circuit Operation

In static logic, the output nodes of a logic gate are always actively driven to the power

supply rails, V,id or Fss, through a network of transistors which provides at least one low

resistance path. In dynamic logic, the output node is either driven to one of these rails,

usually Vss, or is left floating. When the output is in this floating/high impedance state,

the logic value is stored as charge on the parasitic and load capacitors of the output node.

Examples of simple NMOS dynamic gates are shown in Fig. 2.1.

A dynamic logic gate operates in two phases: precharge and evaluate. The gate is

preconditioned during the precharge phase. During this period, the clock is low and the

PMOS clock transistor is on while the NMOS clock transistor is off. Node Out is thus

precharged to V^d and the logic gate maintains an output high value. During the evaluation

period, the clock transitions from low to high and the PMOS clock transistor turns off while

the NMOS clock transistor turns on. Thus, the output node can either remain at a logic high

value or be conditionally discharged low to depending on the values of the inputs to the

NMOS logic network. Dynamic gates are normally clocked by 50% duty cycle clocks so

there is a half period for each of the precharge and evaluate operations [61].

N -lo g ic
N etw o rk

Figure 2.1: Simple N-type dynamic gates.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.2 Non-inverting and Monoticity Rules

Dynamic gates cannot be directly cascaded with a single clock. This is because the precharge

level would cause the next stage to erroneously discharge. The inputs to an NMOS-logic

network must be stable during the evaluation period or monotonically transition from a 0

—> 1. If the inputs switch from a 1 —*• 0, there is no direct path from Vdd to the output node

during evaluation and any lost charge cannot be replenished [68]. An example of a false

evaluation for two directly coupled dynamic gates is shown in Fig. 2.2.

jm \sa_

■de­

vout
Should Stay HIGH

Actually Rises LOW

Vout

1’

Figure 2.2: No direct cascading of dynamic gates with a single clock.

In this case the output of the two NOR gates in series should have produced a high

result but instead produced a low result. This was because the second NOR gate could not

pull the output node back high when the correct value of its C input arrived. Moreover,

the first NOR gate could have discharged faster than the second NOR gate thus leaving that

output at an indeterminate value between Vdd and Vss. Thus the first NOR gate violated

the monotonicity rule by making a 1 —> 0 transition while the second NOR gate was in

evaluation.

In the rare case of PMOS logic networks, as was popular in the early days of dynamic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logic [38], the opposite condition holds true and the inputs can only make a monotonic 1

—► 0 transition during evaluation as the gate cannot discharge a false charging of its output.

2.1.3 Domino Logic

Domino logic gates are a popular dynamic logic family that solves the monotonicity prob­

lem through inserting an inverting static gate between the dynamic gates [61]. Standard

domino logic inserts an inverter between the dynamic gates while compound domino logic

inserts multiple input complementary gates [8, 45], The dynamic/static gate pair is known

as a domino gate, although it is in fact constructed from two gates. A series of connected

domino gates precharge simultaneously as if setting up a set of dominos. During evalua­

tion, the first dynamic gate falls causing the static gate to rise which then causes the next

dynamic gate to fall and its static gate to rise, much like a chain of toppling dominos. Ex­

amples of domino logic as applied to the previous example of two consecutive NOR gates is

shown in Fig. 2.3. Unfortunately, to satisfy the monotonicity property we have constructed

a pair of OR gates rather than a pair of NOR gates. In general, single-rail domino logic

can only implement non-inverting logic functions. Furthermore, since non-monotonic logic

functions do not have monotonic truth tables, non-monotonic XOR and XNOR functions

cannot normally be implemented in single-rail domino logic either. An example of a com­

pound domino gate is shown in Fig. 2.4. As is demonstrated by this figure, wide AND

functions are usually well suited for compound domino since they would result in pro­

hibitively high stack heights if a normal inverter is used. In fact compound domino gates

often lead to reduced stack heights and enables increased logic complexity although they

still cannot implement inverting or non-monotonic functions.

2.1.4 Dual-Rail Domino Logic

When true and complementary outputs are required or the function to be evaluated is non­

monotonic, as in the case of XOR and XNOR functions, dual-rail differential output domino

gates are often employed [43]. A dual-rail domino gate accepts true and complement ver­

sions of the inputs, usually from other differential domino gates, and produce true and

complementary versions of its outputs. Both outputs of the dynamic gate are low during

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk

m 5 m 7

x1 o u t = a + b + d

M L M L
m 1 0 ' m 9

ML ML
m l 1 m 1 2

m6 m 1 3

Figure 2.3: Two consecutive domino OR gates.

ilk
m 5

out=abcdef

m8

ML
m15m10

m6 m14

Figure 2.4: Compound domino 6-input AND gate.

the precharge phase and one of the pair makes a conditional 0 —> 1 transition during eval­

uation. Because of its differential nature, one of the internal output nodes will always be

discharged per cycle and bring the output of its static gate high. In order to implement a

dual-rail gate, two separate pulldown stacks are required for the true and complementary

versions of the function. However, the two pulldown stacks can often be shared to reduce

the number of transistors. Thus a dual-rail domino gate is able to implement any arbitrary

logic function since the monoticity rule is guaranteed for pulldown stacks that are com­

plements. Two examples of dual-rail domino AND/NAND gates are shown in Fig. 2.5.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dual-rail domino gates require dual-rail inputs. The gates producing these inputs must in

turn receive dual-rail inputs. This means that entire blocks of logic must be implemented

in dual-rail fashion [43]. This comes at a cost of twice as many wires to carry the dual

rail signals, twice as many transistors (increased area), greater clock load, higher switch­

ing activity factors (higher power), and lower performance (when considering wire delays)

compared to single-rail domino logic. Some designers have begun employing single-rail

to dual-rail generators (Complementary Signal Generators (CSGs)) to convert single-rail

domino to dual-rail domino whenever dual-rail gates to minimize the penalties inherent in

dual-rail logic as described in Appendix B.

dk.
m 5 m9out:

m6

dk.

out:

M il
m 23

m21 m 20

m19

Figure 2.5: Two versions of dual-rail domino AND/NAND gates.

2.1.5 Footed Versus Unfooted Domino Gates

Since the inputs to domino gates are low during precharge, and evaluation of the gate cannot

proceed until its inputs have evaluated, it is possible to eliminate the clocked evaluation

transistor in order to decrease series resistance and increase circuit performance [8], An

example of an unfooted domino gate, interspersed with footed domino gates is shown in

Fig. 2.6.

Unfooted domino gates are faster than footed domino gates as the stack height is re­

duced and the corresponding logic transistors can be made smaller to achieve the same

output current [68]. However, unfooted domino circuits dissipate more power than footed

domino gates since precharge cannot begin immediately after evaluate but instead has to

ripple. Consider again the domino gates of Fig. 2.6. With the evaluation device removed,

the unfooted gate (2), will not have its pull-down path disabled until all of its inputs go

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk.

m3 m6 m7

io l
iQ2.
in3

iol
iQ2.
in3

m4

N -lo g ic
N etw ork

N -lo g ic
N etw ork

F ooted D ynam ic U nFooted D ynam ic Foo ted D ynam ic

Figure 2.6: Unfooted domino gate.

low. This requires that all of the stage (1) dynamic gates complete their precharge and

propagated the result through their static gates driving 0 to the input of gate (2). Before this

happens, the PMOS and NMOS transistors of gate (2) are both on and form a voltage di­

vider between Vdd and Vss thus causing short circuit power dissipation. A method to reduce

the short circuit current would be to add delay chains to delay the precharge of gate (2) by

the estimated evaluate delay of gate (1) and its subsequent static gate as shown in Fig. 2.7

[8]. The precharge delay to (2) should not exceed the estimated evaluate delay to gate (1)

since the unfooted gate would unnecessarily wait for the clock during the evaluate phase.

This approach reduces short circuit current to some extent although not as much as it would

seem initially since the logic gates are often favored to respond to the evaluation edge at the

expense of the precharge edge for performance reasons. On the other hand, the removal of

the evaluation transistor reduces clock load and the hence clock power of the system. Since

the precharge must ripple through the unfooted domino gates, the precharge delay must also

be carefully characterized. Some designs have been known to require a footed gate before

every unfooted gate to reduce short circuit currents and meet precharge constraints [29].

2.2 Dynamic Circuit Performance

2.2.1 Delay Performance

Dynamic circuits are faster than equivalent static circuits for several reasons. First, the load

capacitance is substantially lower since there is only a single NMOS transistor load per

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D elayed P re c h a rg e

elk.

m3 m6 m7

m4

N -lo g ic
N etw ork

N -lo g ic
N etw ork

N -lo g ic
N etw ork

x5

F ooted D ynam ic U nFooted D ynam ic F oo ted D ynam ic

Figure 2.7: Delayed precharge of unfooted domino gate.

fan-in [61]. In contrast, inputs to static CMOS circuits must drive both NMOS and PMOS

transistors. Since only one of the two transistors is on at any one time, the other transistor

loads the input without contributing to the current drive of the gate [43]. It is the current

drive of the gate that charges or discharges the output parasitic and transistor load capacitors

that determine the state of a logic gate. Moreover, the PMOS transistors in a logic gate are

often larger than the NMOS transistors because of their reduced carrier mobility and thus

add much load capacitance. Figure. 2.8 compares typically sized static CMOS and dynamic

3-input NOR gates. The static CMOS NOR gate is sized for equal rise and fall delay while

the dynamic NOR gate is sized to have the same fall delay as the static CMOS version.

Note that the NMOS clocked evaluation and PMOS clocked evaluation transistors for the

dynamic gate do not load the input. However, they do present load capacitance to the clock

drivers which may affect their slew rates which then in turn directly affect the performance

of a dynamic gate. The static CMOS NOR gate has seven units of gate capacitance per

input while the dynamic NOR gate has only two units of gate capacitance. Thus dynamic

gates present much lower input capacitance for the same output current. While NOR/OR

functions are particularly poor in static CMOS, comparable NAND functions also present

more input load for static gates. This analysis does not account for the increased internal

parasitic capacitances that must be charged and discharged when more transistors are used

to implement a logic function. Thus dynamic logic switches less total capacitance than does

static logic.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c ll%

1 , 1 , 1

a^H L M L

out

m 1 4 m 1 2

(°)

m5

out

2 2 2

M C M U
m7 m10 m 11

m6i
(b)

Figure 2.8: Three input NOR gates (a) static CMOS (b) dynamic logic.

Another reason that dynamic gates are faster than static gates is the reduced switching

threshold. Whereas the outputs of static gates switch roughly when the input passes Vdd/2,

for equal rise and fall times, the outputs of dynamic gates begin to switch when the input

passes the NMOS transistor threshold voltage, Vtn [43].

The domino logic family uses intervening static gates after every dynamic gate to sat­

isfy the monotonicity rule. The use of static gates somewhat slows down dynamic circuit

performance. With the inclusion of clocked evaluation devices in footed gates, all the gates

precharge in parallel and the precharge operation only requires two gate delays from charg­

ing the dynamic gate through bringing the output of its associated static gate low. Thus the

critical path through the domino network is through the pull-down path of the dynamic gates

and the PMOS transistors of the static gates. Therefore, to speed the critical rising output

during evaluation, the static gates use wider than normal PMOS transistors and possibly

smaller NMOS transistors in order to raise its switching threshold closer to Vdd• These high

skew gates are often referred to as static gates with high beta ratios, where the beta ratio,

/3, is the effective transistor width of the PMOS transistor network divided by the effective

width of the NMOS transistor network. The larger beta ratios affect the noise margin of the

domino gate in that it is more susceptible to false switching if noise couples to its dynamic

node. Therefore, in many designs j3 is kept within reasonable bounds such as 4:1 [43] or

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5:1 [29].

The assumption of parallel precharging is slightly modified for unfooted gates, since

those gates precharge in series. Thus, the high beta ratios would put a delay constraint

on the precharge edge as well. However, most designs have a limitation on the length of

unfooted domino paths so guaranteeing adequate precharging is usually not as much of an

issue.

Finally, static circuits can exhibit spurious transitions or glitching due to finite propaga­

tion delays from one logic gate to the next which could lead to critical races and dynamic

hazards [9]. In other words, an output node can have multiple transitions during the same

clock cycle since inputs to a static logic gate can arrive at different times, thus reducing

performance. Since the dynamic logic can only make a monotonic transitions during the

same clock cycle, spurious transitions do not exist.

2.2.2 Power Performance

Dynamic logic dissipates more power than static logic mainly due to its increased switching

activity resulting from periodic precharge and discharge operations [9, 61]. The switching

activity of dynamic gates does not depend on the history of the inputs during the previous

clock cycle. That is if a combination of inputs resulted in the discharging of the output

node during the evaluate phase, then the output node will always be precharged during the

precharge phase. Then the output node might be discharged again during the next cycle

if the same or a different combination of inputs activates a pull-down path. In contrast,

static CMOS logic would not have had its output pulled high if the same or a different

combination of inputs in successive cycles resulted in activation of a pull-down path. The

static output would have instead remained low between the clock cycles. Thus a dynamic

gate would make a power consuming precharge transition from 0 —► 1 if the output was

discharged in the preceding evaluation phase. In other words, power is consumed every

time the output equals 0 , independent of the preceding or following values of the outputs

[60, 61]. This signal transition probability can be expressed as:

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ^ O —>1 single-rail-dynamic — P0- (2.1)

On the other hand, the probability of an energy consuming 0 —> 1 transition at the output

of a static CMOS gate is equal to the probability that the gate is initially at the zero state

multiplied by the probability that the next set of inputs will result in an output of 1. The

product of two signal transition probabilities, which is defined as the transition probability,

is therefore equal to:

This probability will always be lower than the signal transition probability of dynamic

logic. This analysis is straightforward for single gates but becomes significantly more com­

plex for logic gate networks. However, the same conclusion that dynamic gates have higher

switching activity still holds true. The situation is worse for dual-rail domino logic since

either the true or complementary output nodes are guaranteed to make a transition each

cycle. Therefore, the switching probability is equal to:

Furthermore, the clock node for all dynamic logic gates has an activity factor of 1 and

therefore significant power is consumed by the clock buffers in driving the clock transistors.

In many cases, however, the clock is stopped when the functional unit containing the gate

is not required [43], thus saving power to some extent.

If not for their high switching activity, the other metrics for power consumption show

advantages for dynamic gates as opposed to static gates. For example the spurious transi­

tions, where input signals arriving at different times can cause internal and output nodes in

static CMOS to inadvertently switch, does not happen for dynamic logic. This is because

dynamic nodes can only, by construction, undergo at most one power-consuming transition

per cycle due to precharge [9]. Furthermore, short-circuit or crowbar current is reduced in

dynamic logic compared to static logic since the pull-up path is never enabled when the

<*0->l static = PoPl = P o (l — Po)- (2.2)

0̂ 0—*1 dual-rail-dynamic — I • (2.3)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gate is evaluating [61]. Therefore, the only causes of short circuit currents result when

the clock switches or if the clock is skewed when between the precharge and evaluate clock

transistors. These short circuit currents are small since the clock usually have very fast edge

rates and the skew within a gate is often insignificant if good layout and clock distribution

schemes are used. Short circuit currents do exist in domino logic since static gates are al­

ternated between dynamic logic stages. However, the static gates are often much smaller in

size and fewer in number than is the case for a static CMOS implementation of the same

logic network. Furthermore, less physical capacitance is switched in dynamic logic which

directly affects the power dissipation. It is worthwhile to note that weak keeper devices

used to control leakage and charge sharing and also to maintain circuit state during clock

power down will exhibit some non-negligible short circuit current. This occurs when the

keepers function to replenish charge lost due to coupling noise and when they provide a

brief period of contention against the pull-down network during evaluation. Furthermore,

these keeper devices, which might have to be used in internal circuit nodes as well as on

the output node, increase the transistor count thus increasing the switched capacitance. The

method and use of keeper devices will be discussed in the following sections.

2.3 Dynamic Circuit Design Challenges

2.3.1 Charge Leakage

Pure dynamic gates have a minimum operating frequency because they rely on charge stored

on the load and parasitic capacitors of the output node [61]. The output floats high (is in

a high impedance state) during evaluation if the pulldown path is not activated and the

dynamic gate evaluates to a 1. If the gate is left floating too long, the charge will eventually

leak away and cause the logic gate to lose its evaluated value. As shown in Fig. 2.9, there

are two main sources of leakage currents for each source/drain connection to the dynamic

node, D yn : (1) the subthreshold leakage current through the transistors and (2) the reverse

biased diode current.

The subthreshold leakage current is the small current that flows through a device even

when it is considered “off” (Vgs < Vt). The reverse-biased diode current is the result

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk ,

c

I le a k a g e

m 1

Figure 2.9: Sources of leakage current in a dynamic gate.

of parasitic p-n diodes formed by the n+ drain diffusion of the NMOS device and the p-

substrate, and by the p+ diffusion of the PMOS device and the n-well. An expression for

the sources of leakage in a dynamic gate is:

From (2.4), it can be seen than the leakage currents from PMOS transistors add charge

to the dynamic node while the leakage currents from the NMOS transistors subtract from it.

If the expression is positive, then the charge on the dynamic node will eventually leak away.

This is almost always the case in dynamic circuits since the effective width of the NMOS

devices connected to the dynamic node is greater than the effective width of the PMOS

devices. This is true in the case of wide NOR gates with many NMOS transistors connected

to the dynamic node and is a serious design problem since designers often reduce critical

path logic functions to wide fan-in dynamic NORs for maximum circuit performance.

A widely applicable method to keep the dynamic node from floating is to introduce

weak feedback keepers [8], A keeper is a weak PMOS transistor coupled back to the dy­

namic node through either an output inverter, as is the case of single-rail domino logic, or

from another complementary dynamic node, as is the case for dual-rail domino logic. Ad-

1Leakage — {.IN subthreshold, ~b iN -d io d e) {JP sub th resho ld "b Ip_d iode)• (2-4)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dition of keeper transistors makes the dynamic circuit pseudo-static or bistable. In other

words, they help to maintain the state of the dynamic node(s) when the clock frequency

is reduced or the clocks are stopped altogether. Examples of typical keeper circuits for

single-rail domino logic are shown in Fig. 2.10 while those for compound domino logic

and dual-rail domino logic are shown in Fig. 2.11.

keeper keeper keeper

■ 11.*!

J x 2 O ut = AB+C

m23
•r k eepertWork tyyork

NMOS
Logic
Network

-HC

to to to

Figure 2.10: Dynamic gate keepers (a) feedback PMOS (b) isolated feedback PMOS (c)
feedback PMOS/NMOS full keeper.

k e e p e rs
k e e p e r

e lk elkfills.
m11m 5

m 27T ru e
L ogicm 17m 7 '

NMOS m20
(w orkmlB

mUm6

(c)

Figure 2.11: Dynamic gate keepers on (a) compound domino gate (b) dual-rail domino gate.

The keepers work by supplying a trickle of current to compensate for leakage on the

dynamic node, thus keeping it high if that is the evaluated value of the logic gate. If the

dynamic node is evaluated low, there is a brief period of contention as the keeper transistor

and the pull-down network are on simultaneously. However, the pull-down network usually

has much more conductance than the keeper and the keeper will eventually shut off when the

trip point of the feedback inverter is reached. Nevertheless, this brief period of contention

dissipates unwanted power and slows down the circuit. Furthermore, the presence of the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keeper contributes capacitive load to the dynamic node. Therefore, keepers should be small

to minimize fighting the dynamic gate when it switches and to minimize loading on the

forward path. However, sizing the keeper just small enough to compensate for the leakage

current, I Leakage* does not take into account the very important use of keepers to alleviate

charge sharing as discussed in the next section.

The keeper configuration of (b) isolates noise on the output from feeding back to the

dynamic node although it also increases capacitive loading due to the extra inverter. The

keeper configuration of (c) is required when the output could float either high or low during

evaluation. This could happen for certain cases where the clock is stopped high.

As process technologies continue to shrink, the transistor subthreshold leakage is be­

coming increasingly high. The keepers must therefore be upsized to compensate for these

leakage currents. One study [3] has shown that leakage currents have become so high in

sub-130-nm technologies that conventional keepers must be too large. They instead pro­

pose a technique of using delay elements and logic gates called the “Conditional Keeper

Technique” for combating the leakage.

2.3.2 Charge Sharing

As dynamic logic relies on charge storage on the output load and parasitic capacitors, this

charge can sometimes be shared between the output node and an internal node when both

capacitors are floating. Consider the domino gate of Fig. 2.12.

During the precharge phase, the inputs to the domino gate are all low and the output

capacitor C oyn precharges high. If, during evaluation, the only input that makes a transition

from a 0 —* 1 is a, then there is no direct path to either supply rail and charge is shared

between the floating capacitors Coyn and Cint, assuming that capacitor C /nt has been

discharged in a previous cycle. The magnitude of the charge sharing depends on the size of

the internal capacitor Cint compared with the output capacitor Coyn- If the value of C jnt is

small enough, the voltage drop on D yn will be less than the threshold voltage of an NMOS

transistor. The final voltage on D yn after charge sharing will then be equal to [8]:

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e lk

Dyn x 0 o u t = a b + c

c D yn

m7 iill1 0 = 0 ^
c in t - H L ,b -

NMOS
Logic
N e tw o rk

m 8

m 6

Figure 2.12: Charge sharing in dynamic gates.

V d yn = V dd ~ - V t n) . (2.5)
'- 'D yn

If the value of Cint was large enough, then the amount of charge sharing will be greater

than a threshold voltage. The final voltage on D yn after charge sharing would then be equal

to:

V d yn = V dd CDl n . (2 .6)
D yn ~v W n t

Since D yn is a dynamic node, the voltage drop cannot be recovered and might lead to

logic failures if it drops past the switch point of the output static gate. Decreasing the (3

ratio of the output static gate would give the gate more noise tolerance although it will slow

down the critical rising transition. Examining the timing of the input signals and reordering

or duplicating the input transistors of the pull-down stack can sometimes be effective in

reducing charge sharing [8 , 32], The solution of inserting keeper transistors as described

in Section 2.3.1 to combat leakage is effective at reducing the effects of charge sharing as

well. Here larger keeper transistors are more effective at preventing charge sharing at the

cost of increasing the dynamic output load and the amount of contention during switching.

Each noise event that activates the keepers will also dissipate power as well. In complex

domino gates where many internal nodes can charge share with the output node, it may

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be required to precharge the internal nodes with secondary precharge transistors as shown

in Fig. 2.13 [8]. Charge sharing is eliminated in this case since both nodes D yn and In t

have no potential difference when the input transistor a begins to conduct. Adding internal

precharge transistors in this manner increases the clock load, circuit area and diffusion

capacitance that slows the gate. Therefore, enough internal precharge transistors should

only be added to meet prescribed noise budgets. Usually precharging every other node

is sufficient [43], One must also be careful when precharging internal nodes in unfooted

domino gates since some of the input transistors might turn off slower and thus cause short

circuit currents.

£lk
m 2 4 m 5

Dyn o u t = a b + c

- — 'O —1

m 9b =

NMOS
Logic
N e tw o rk

m

m6

Figure 2.13: Precharging internal nodes.

2.3.3 Other Design Considerations

Other dynamic circuit design challenges will be discussed briefly since this dissertation

does not improve upon previous work concerning these issues. For a more detailed discus­

sion, the interested reader can consult available literature [8, 43, 61], Dynamic nodes are

more susceptible to failures caused by interconnect capacitive coupling or crosstalk. Fur­

thermore, the inputs to dynamic gates also need special attention, since the noise margin is

only an NMOS threshold voltage. However, these inputs are actively driven by static gates,

thus reducing their risk. Crosstalk occurs when an unrelated signal wire running adjacent

to the short dynamic node or dynamic input switches. The mutual capacitance between the

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“aggressor” and “victim” signal wires causes an addition or removal of charge from victim

dynamic nodes or from the dynamic inputs. Methods to reduce interconnect coupling in­

clude: spacing the aggressor and victim signals further apart in the horizontal and vertical

directions, shielding a victim laterally on one or both sides by supply rails [28], routing a

victim node between two complementary aggressor nodes (effective for dual-rail domino

logic) or through twisting and swapping routing tracks at regular intervals. Another form

of coupling is the back-gate coupling that occurs for compound domino gates. When a

dynamic gate drives a NAND structure, there is the possibility that the inputs further up in

the NAND stack could switch while the lower inputs remain idle, causing a simultaneous

voltage change on both sides of an input transistor. This will increase the capacitance of

the dynamic node which in turn causes a voltage drop. Reordering the static gate input

stack is sometimes helpful in resolving back-gate coupling. When a dynamic gate drives

a NOR structure, output charge glitches can occur if the internal capacitance of the PMOS

network is charged in a previous cycle and then the charge shared between the internal

node and the static output. This glitch is problematic since the static output is immediately

coupled to another dynamic input with a low noise threshold. A method that is effective at

reducing this effect is gating the internal node with a transistor to ground where the tran­

sistor’s discharge operation is controlled by the dynamic node [66]. Other dynamic circuit

design challenges include the effects of power supply noise variation and IR drop, Miller

coupling/clock feedthrough, residual noise, minority carrier charge injection and alpha par­

ticles. Because of all these noise sources, designers of dynamic circuits must adhere to

strict noise budgets and put much effort into electrically verifying the circuits.

2.4 Clock Uncertainty

2.4.1 Circuit Pipelining

A synchronous digital system consists of cascaded banks of sequential memory elements

with combinational logic between each set of memory elements. The functional require­

ments of the digital system are satisfied by the combinational logic. The performance of the

system is determined by inserting clocked memory elements to segment the combinational

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

logic so that the longest delays through each logic stage are constrained within the desired

cycle time [37]. Furthermore, the shortest delays through the combinational logic must be

considered since the inputs to memory elements should not change until a hold time after

the sampling edge to avoid race conditions. Separating logic into stages with memory el­

ements is called pipelining. The clock signal synchronizes the events in the synchronous

system since the movement of data through various stages of the pipeline take place con­

currently in response to the clock stimulus [8], New sets of inputs are sampled by storage

elements and new computations ensue in response to the clock thus changing the state of

the sequential network. Once the computations are complete, the results must await the next

clock transition in order to advance to the next pipeline stage. In other words, the next cycle

of an operation cannot begin unless all the computations have completed. An alternative

view to pipelining, that is useful in understanding latch-based and domino logic designs, is

that memory elements between the logic stages enforce sequencing, distinguishing between

current from previous and next, rather than remembering state [43]. If memory elements

were not used, fast signals might race ahead and catch up with slow signals from a differ­

ent operation resulting in meaningless results. Thus, an ideal memory element would slow

down early signals while adding no delay to the signals that are already late. However, real

memory elements generally delay the late signals as well, which is considered the sequenc­

ing overhead. It is desired that systems with the smallest possible sequencing overhead be

built for maximum performance. Domino logic circuits can function as inherent memory

elements when divided into pipeline stages and hence will enforce sequencing.

2.4.2 Skew

In a ideal synchronous system, all the clocks would arrive at all the memory elements or

clocked logic gates at the same time. Unfortunately, because clocks are loaded with the

greatest fanout, travel the longest distances, and operate at the highest speed of any signal

in the system, ensuring that all the clocks arrive at the same time is often impossible. The

interarrival time of two clock edges is the delay between the edges. Clock skew is the

absolute difference between the nominal and actual interarrival times of a pair of physical

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clock edges [43], where a physical clock is the clock that is actually received by the memory

element or clocked gate. Skew between a pair of clocks is shown Fig. 2.14, where the bold

lines denote the nominal interarrival time of the clocks.

i ; i
^kew-late

!- - - - ► :i ; i

ii
t 'skew-late

!- - - - ►:11

1111111111
/ / / / /ti ; i

1
! r ~ ')- - - - -

1
i— " A “ V \ ; n

i ;

* — !

11
■*— :

l11l
! /skew-early : skew-early : li

Figure 2.14: Definition of skew.

It is important to observe that only the skew between two sequentially adjacent mem­

ory elements or domino gates is relevant to the definition of skew. The skew between two

non-sequentially adjacent memory elements or domino gates has no meaning since these

two elements do not directly exchange data [37]. It should be noted that clock jitter, which

is another type of clock uncertainty that affects microprocessor cycle times [27], is encom­

passed in our definition of skew. Normally jitter is defined as the time difference in the

actual and expected transition of a single clock since the periodicity of a clock signal is

affected by the deviation of its edges from their expected transition time [8]. Jitter is a

characteristic of the clock generator and can be caused by supply voltage variations and

mismatches in the clock phase-locked-loop (PLL) circuitry which generates most clocks in

high-speed digital circuits. However, this definition of jitter and associated duty-cycle vari­

ations, which can be defined as the percentage of time that the clock is high as opposed to

when it is low, is actually a source of skew and hence is a contributor rather than a separate

variable. The causes of skew are many and can include [37,42]:

1. Mismatches in path lengths from the clock source to the clocked memory elements

or domino gates.

2. Mismatches in passive interconnect parameters; such as line resistivity of different

metal layers, line capacitance of different width metals, interconnect coupling capac-

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

itance, contact resistance etc.

3. Differences in active device processing parameters; such as variations in transistor

threshold voltages and channel mobilities which affect the delays of the repeaters or

buffers within the clock distribution network.

4. Environmental variations that cause repeater and buffer delay variations such as volt­

age and temperature

For a well-designed and balanced clock distribution network, the distributed clock re­

peaters and buffers are the principal cause of clock skew.

2.5 Skew-Tolerant Domino Logic

2.5.1 Skew-tolerant Pipelines

Skew-tolerant domino circuits remove the three sources of sequencing overhead found in

traditional latch-based domino pipelines: clock skew, latch overhead and pipeline imbal­

ances. This is accomplished through using overlapping clock phases to different stages of

domino logic [42, 43]. The use of overlapping clocks eliminates the need to budget clock

skew in the cycle time since data can now arrive and depart from different pipeline stages

irrespective of modest variations in the arrival time of the clocks. Furthermore, since the

overlapping clocks allow time for the first gate of a phase to evaluate before the last gate

of the previous phase precharges, latches are eliminated from the pipeline as domino gates

function as inherent latches [70], Finally, if the overlap between clock phases is larger than

the worst-case clock skew, then domino gates can time borrow across stages. Gates in two

adjacent phases can evaluate when their respective clocks are high and overlap, allowing

gates that nominally evaluate during a first phase to run late into a second phase. Thus,

removing all the sources of overhead allow the entire cycle time to be available for useful

computation. The method of skew-tolerant domino logic will become more apparent in

subsequent sections.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5.2 Definitions

We will follow the terminology as defined in [42, 43]. We consider N overlapping clocks.

The clock cycle of period Tc is divided into N phases. Each phase rises Tc/N after the

previous phase, and by symmetry all phases have the same duty cycle. Each phase is high

for an evaluation period te and low for a precharge period tp as shown in Fig. 2.15. Al­

though we show a three-phase system in all of our examples, the results are applicable to N

phase systems. Therefore, given these N clocks, it is possible to derive waveforms which

maximize the tolerable skew and amount of time borrowing in an iV-phase system, inde­

pendent of the actual logic contained in the phases. In the prior art skew-tolerant pipeline,

each dynamic gate in a phase receives one clock for both precharge and evaluate.

jm t

Precharge Clocks

a
Q

J M

JM
\TO_ rrm

\SS_

a 6 O O O

St
at

ic

c>>
Q

St
at

ic

c
Q

St
at

ic

£3
Q

St
at

ic

&
Q

St
at

ic

c
Q

St
at

ic

JM

Phase 1 Logic

JM
■m.

Phase i Logic

JM .

Evaluate Clocks

Phase 3 Logic Phase 1 Logic

rrm

Figure 2.15: Skew-tolerant domino with same clocks for precharge and evaluate.

A domino gate consists of a dynamic gate followed by a static gate, where the static

gate can be an inverter or a complex static CMOS logic gate as in [45]. From the timing

waveforms, it is assumed that logic in a phase begins evaluating at the latest rising edge of

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its clock and continues for Tc/N until the next phase begins. The nominal logic evaluation

time for a phase is therefore equal to Tc/N . When two consecutive clock phases overlap, the

logic of the first phase may run late into the time nominally allocated to the second phase.

The maximum amount of time that can be borrowed depends on the amount of nominal

overlap between consecutive clock phases. This nominal overlap in turn is affected by the

amount and type of clock skew between two consecutive clock phases. We will define skew

in a multi-phase system as measured backward from the rising edge of a second clock phase

to the falling edge of a first clock phase in the region where the two clock phases overlap.

A pair of clocks is positively skewed if the amount of overlap decreases from the nomi­

nal value, twej-iap as shown in Fig. 2.16. In this case, the second clock phase arrives late by

tskeui with respect to the first clock phase.

A pair of clocks is negatively skewed if the amount of overlap increases from the nom­

inal value, toveriap, as shown in Fig. 2.17. In this case, the second clock phase arrives early

by tskew with respect to the first clock phase.

In our example three phase skew-tolerant domino, positive skew between adjacent

clocks $2 wrt gives the $2 logic less time to evaluate when $1 logic is time-borrowing

from $2 while negative skew gives $3 logic less time to evaluate when $2 logic is time-

borrowing from $ 3. Assuming that the first clock arrives at the latest possible rising edge,

both types of skew effectively reduce the amount of nominal overlap that can be used for

skew tolerance and time borrowing.

M— --------►

^overlap nominal

, ...
r ~ r

-------►
^overlap positive skew

T . V

Figure 2.16: Positive skew in the context of multiple overlapping clocks.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1111
\J111

*4-----------►:

^overlap nominal

/ 11
//

------------- *►
^overlap negative skew

V \
1111111

■<—

Figure 2.17: Negative skew in the context of multiple overlapping clocks.

y i. rmr
(late)

TV TW ..rm
M r m r

(early)
m u

prech

Ma
I

4)Ylb
1

O O
a O OcdG td edC td

c/3Q o
14>la

\
Mb

Figure 2.18: Precharge time constraint.

2.5.3 Precharge and Evaluate

It was shown in [42] that for skew-tolerant domino, the precharge time, tp is limited by

the rate at which two consecutive gates in the same phase precharge. Assuming that a first

dynamic gate has its outputs coupled to the inputs of a first static gate and the first static gate

has its outputs coupled to the inputs of a second dynamic gate as in Fig. 2.18, the constraint

requires that the first dynamic gate precharge fully and discharge the output of the first static

gate below Vt by some noise margin, before the second dynamic gate enters evaluation. This

is so the first static gate does not cause the second dynamic gate to incorrectly evaluate old

data. This time, denoted by assumes its worst case when clock skew within a phase

causes the clock to the first dynamic gate to arrive at the latest possible time and the clock

to the second dynamic gate to arrive at the earliest possible time thus reducing the effective

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

precharge window by t^ e w Therefore, the lower bound to guarantee proper precharge is

equal to:

tp ^ tp re ch T tskcu) ■ (2.7)

,3zzr
n n r

m . jmr
\ \ \ \ \

§" l b 4>2a

1

p O
*2 '3 Os s •a
e 03 c $
5>*> </3 !>i 00
P Q

$lb

1
2a

Figure 2.19: Evaluation time constraint.

Similarly, it was shown in [42] that, te, is set by required overlap between adjacent

clock phases, since a phase must remain in evaluation until the following phase consumes

the data. Thus, the worst case occurs when the clock to the last dynamic gate of a first

phase arrives at the earliest possible time and the clock to the first dynamic gate of a second

phase arrives at the latest possible time as shown in Fig. 2.19. This necessary overlap, thdd,

is usually a small negative time since the first dynamic gate of the second phase evaluates

immediately after its rising clock edge while the precharge must ripple through both the

last dynamic gate and last static gate of the first phase. The precharge might take even

longer to ripple through if non-footed dynamic gates are used for the last several dynamic

gates gates of a phase. Moreover, domino logic is made to favor the critical falling edges of

the dynamic gates and the critical rising edges of the static gates at the expense of slower

precharge times, thus decreasing the hold time even more. A conservative number to use

for thoid is usually 0. Note that this hold time is not the same as the hold time associated

with latches of flip-flops, where that hold time denotes the time that the data must be stable

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following a sampling or enabling clock edge. Budgeting in the effect of clock skew and

adding the time shift of Tc/N between phases gives the lower bound to guarantee proper

evaluation as:

Tc
te ^ ~jy " I" thold " F t s k e w (2 - 8)

2.5.4 Skew Tolerance

Assuming all the available overlap between clock phases is used for robustness against

clock skew, the constraints on precharge (2.7) and evaluate (2.8) can be combined to yield

a formula for maximum allowable skew equal to [42, 43]:

j . _ j v ~~ ^hold ~ tprech m
''skew -m ax — ^ • (2 . y)

From (2.9), it is apparent that the precharge window and hold time must be guaranteed

independent of logic evaluation delays.

Since t skew must be budgeted at the interface between static and domino logic, as the

static output must be stable before the latest skewed evaluation clock arrives, building entire

critical paths and loops in skew-tolerant domino logic often requires the use of dual-rail

circuits to avoid inversions and non-monotonic behavior for single-ended signals [42]. Each

skew-tolerant domino path should also contain at least one gate per phase to avoid potential

race-through problems. Therefore, the outputs of a first phase domino gate should not

couple to the inputs of a third phase domino gate without at least passing through a second

phase domino buffer. However, this restriction normally would not limit the cycle time of a

circuit since a path that does no work will usually not be the critical path.

2.5.5 Exactly One Dynamic and Static Gate Per Phase

For some high frequency designs, it might be appropriate to use exactly one domino gate

per phase. In this case, the precharge constraint of (2.7) can be relaxed since the output of

the static gate in the first phase must fall low by the time the second phase, rather than the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first phase, reenters evaluation. The available precharge time therefore increases by Tc/N

to give [42,43]:

.max 2
(2 .10)

2.5.6 Global and Local Skew

Clock domains, as used in this dissertation, are lumped hierarchies of clocks where pairs

of clocks within the same local clock domain experience less skew than the skew seen by

clocks in different global clock domains [43]. If more than two levels of clock domains

exist, the higher-level clock domains see progressively more skew as delay variations in the

global clock distribution network appear as skew. Thus, reducing the local skew within local

clock domains increases the time available for global skew through the observation that: (1)

the precharge constraint (2.7) becomes dependent only on local skew since precharge must

complete before the next gate in the same phase resumes evaluation, (2) the evaluation

constraint (2 .8) remains dependent on global skew because clocks from different clock

domains must still be overlapping. Thus the maximum tolerable global skew when global

and local skews differ is equal to [42, 43]:

2.5.7 Time Borrowing

When two adjacent clocks overlap, that overlapping region toveriap can be used for skew

tolerance as discussed above, or for time borrowing as shown in Fig. 2.20. Time borrowing

happens when all the gates in a phase of logic take longer than Tc/N to evaluate. When that

happens, evaluation for the current phase of logic can run into the time nominally allocated

to the next phase of logic up until the end of the overlapping region. The gates of the

next phase must wait for the gates of the current phase to finish evaluating but do not have

to block the clock since domino logic makes a monotonic low-to-high transition during

evaluation and therefore the gates of the next phase cannot be unintentionally corrupted.

t skew-m ax-global — AT T c thold, tprech tskew Jocal ■ (2 .11)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pcechargei Clocks

m
_mr

1 1
\6\
i 2;

I ^*3 o *2 o 1 *9 o•a s ! §c 03 c 03
W i § +355 >s C/5 c/5Q Q ; 0

1
i +i N

Phase 1 Logic Phasi

jm r
Evaluate Clocks

‘ime borrowing windoiindo y

e 2 Logic

skew tolerance windov

Figure 2.20: Time borrowing and skew tolerance windows for overlapping clocks.

The time actually borrowed from the next phase, denoted by borrow, will reduce the

nominal time that the next phase has to evaluate by Tc/N — tborrow Time borrowing,

however, may take place over several phases thus alleviating the time borrowing penalty.

For example if a first phase evaluates for a duration of Tc/N + borrow, a second phase

may actually evaluate for a time between Tc/N — tborrow and Tc/N , since the second

phase can also borrow time from a third phase. This can go on indefinitely as long as the

results of a current stage are consumed by the next stage before a current stage precharges.

Thus balancing pipeline stages to increase clock frequency, which can be extremely difficult

for other design sty les, b ecom es easier. Furthermore, tim e-borrow ing is u sefu l because

it automatically helps to compensate for environmental conditions and process variations

across the die when positive and negative conditions/variations exist, and for inaccuracies in

the modeling and simulation of the digital circuits. Last, domino circuits actually run faster

with time borrowing into each stage, since the stage that is borrowed from would have

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its clock high and discharged the internal node capacitance at the drain of the evaluation

transistor before the data arrives. This is called a flow-through condition for domino gates

or transparent latches. It is interesting to note that if a phase of logic completes before the

nominal logic evaluation time of Tc/N , that the time between the end of evaluation and

the rise of the next phase clock is wasted. Thus, a hard edge is imposed which can only

be removed through asynchronous means beyond the scope of this work [70]. If all the

available overlap between phases is used for time-borrowing, the maximum amount of time

that can be borrowed is:

Tc
tb o rro w -m a x = ^ y ts k e w - (2 .1 2)

As time borrowing and skew tolerance trade off directly, the time allotted to time bor­

rowing as derived from (2.11), for global and local clock domains is equal to [42,43]:

- N ~ l Ttborrow ^y 2 c thold tprech ̂skew -Local ~ tskew-global- (2-13)

In (2.13) tskew Jocai is the skew between two directly coupled domino gates in a local

clock domain while t skew-globai is the skew between two directly coupled domino gates

from different local clock domains.

2.5.8 Racethrough or Min-Delay

Domino logic pipelines have constraints for minimum delay, that is data departing from one

clocked element as early as possible must not arrive at the next clocked element until a con­

tamination delay time, tC(i, after the sampling/falling edge of the next element. Otherwise,

the second clocked element would have latched or evaluated the first clocked element’s in­

put rather than its own input. In skew-tolerant domino, min-delay failure occurs when a

rising edge clock arrives early at the first phase dynamic gates and a falling edge clock ar­

rives late at the second phase dynamic gates. If the first phase logic is very fast or the logic

depth is small, data may arrive at the second phase gates a cycle early thereby contaminat­

ing the previous cycle results of those gates, since the second phase gates should not have

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

received the data until after the next rising edge of the second phase clock. An example of

this is shown in Fig. 2.21.

Prechar'ge Clocks

' i 'j)) l ----------------

*
Phase 1 Logic

VTT\

4^ | skewed early
Phase 2 Logic

i j n i
• Min-delay failure

n V *

~\ \ c n

*1
1

*1
1

i i i
I :

o o O
*3 o *3 O : *3 o
3 : s
G -4-̂ c cd ; c cd
>> CO > > CO : >> CO

Q U W

rrrrr

rrrrr
Evaluate ClocSks1

Figure 2.21: Min-delay failure for overlapping clocks.

In practice, the value of tC(i is usually a small positive number since the improper result

must propagate through the first phase logic before corrupting the second phase logic. Since

the nominal overlap between the first phase rising and the second phase falling is:

t m in-overlap
N - 1

N Tc — t e, (2.14)

the maximum global skew that can be tolerated, while ignoring the effects of the precharge

time constraint (2.7) and the evaluation time constraint (2.8) is [42]:

N ~ 1 r ptskew jrnax-global ^ Jy -‘■ c te tc(jr (2.15)

If the expression (2.15) is equal to zero, the domino system cannot tolerate any skew.

Furthermore, if the expression (2.15) is less than zero, the domino system cannot function.

The selection of the number of clock phases and duty cycle therefore can affect the max­

imum tolerable skew. For example, a three phase system with 50% duty-cycle clocks can

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tolerate 1/6 cycle of skew assuming tC(i = 0 while not considering the effect of precharge or

evaluate constraints. Two-phase skew-tolerant domino systems with 50% duty cycles can

tolerate no skew, assuming again that tcci — 0 while not considering the effect of precharge

or evaluate constraints. To circumvent this problem, extra non-overlapping clocks may be

used for the first domino gate in each phase as in [20], However, there may exist min-delay

problems between the extra non-overlapping clocks and the normal clocks. A solution,

used in two commercial processors, was to delay the normal clocks relative to the non­

overlapping clocks [29, 62] and ensure that at least one of the later gates of a phase is

clocked by the delayed clock as shown in Fig. 2.22.

! delay

/ / / / ' /

Precharge Clocks I delay

rrrrr

1 - extended 1 - extended !

r m r
"W V\>[

2^- extetfed

/ n Ar
Phase 1 Logic

I<j> (f) ;
2 -extended 2 -extended

Phase 2 Logic '

nub-"
-rms_ r m r

\\w\,
t rrw nn'r—

Evaluate Clocks

Figure 2.22: OTB domino logic min-delay risk and solution through extended clock delay.

The skew that can be tolerated for this opportunistic time-borrowing (OTB) domino is:

t-skew- - g lo b a l - O T B <-
N

N “2"c te '1 tcd -(- tdelay. (2.16)

tdelay is defined as the time from the rising edge of the non-overlapping clock of the

first gate of a phase to the rising edge of the overlapping clock of the remaining gates of a

phase.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Summary

In this chapter we introduced dynamic logic circuits and explained why they are faster, but

normally dissipate more power, than static CMOS circuits. We also showed that design­

ing domino circuits is often more difficult since issues with leakage, charge sharing and

other noise sources that affect floating dynamic nodes must be taken into consideration.

Further, we have defined clock skew and explained why they pose a problem for dynamic

circuit designs since domino logic is synchronized by clock signals. Last we have discussed

how skew-tolerant domino logic, and its derivatives such as Opportunistic Time-Borrowing

domino logic, can be pipelined to withstand fair amounts of clock skew, eliminate latching

overhead and allow time borrowing to balance pipeline stages.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Method for Single-Rail All-Domino
Pipelines

3.1 Introduction

Domino logic circuits are often used in microprocessor critical paths because of their 1.5

to 2 times speed improvement over static CMOS gates [43], Despite their wide application

to microprocessor design, single-rail domino is not functionally complete because of its

inability to perform inversions [61].

There are many situations, however, where inverting or non-monotonic logic needs to be

used in conjunction with non-inverting/monotonic logic. These include multiplexers, parity

circuits, and arithmetic units which depend heavily on XOR and XNOR functions. Nor­

mally, a designer must use slower logic styles such as static CMOS or transmission gates

to implement inverting and non-monotonic functions with the additional cost of increased

overhead to interface from dynamic to static logic and back. Some designs have also been

known to use clock-blocking techniques that require the clock to be the last input signal to

arrive at a dynamic gate after the data inputs so that non-inverting and monotonic functions

are possible, such as clock-delayed (CD)-domino [71, 72], However, these clock-blocking

techniques require precise matching of data and clock delays which have to be accounted

for under all possible process and environmental comers. Furthermore, clock skew must be

budgeted at each clock-blocking gate, making this logic family skew-intolerant. Last, scal­

ing of such designs would require complete re-verification of the data and clock delay paths.

For designs where speed is the most critical design parameter, Domino Dynamic Cascode

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Voltage Switch Logic (DCVSL)/dual-rail domino circuits [58] can be used to meet the re­

quirements for inverting and non-monotonic functions. Such circuits require approximately

double the number of transistors compared to single-rail domino logic, resulting in greatly

increased routing complexity, circuit area and in many cases, decreased circuit speed due

to longer differential routing lines. Furthermore, dual-rail domino circuits dissipate more

power (approximately double) than single-rail domino because of their increased routing

capacitance and unity activity factor.

This chapter proposes an alternative to these approaches which provide inverting or

non-inverting outputs in a single-rail domino pipeline. This technique involves using logic

functions of overlapping clocks so that dynamic gates do not receive the same clock for

precharge and evaluate. This method, known as Clock-Logic (CL) domino, is robust against

clock skew and allows time borrowing across pipeline stages as in skew-tolerant domino

logic [42, 43]. This method allows complete data and control paths to be built from single­

rail domino logic thereby improving speed over mixed domino/static techniques. This is

accomplished while minimizing power consumption and area overhead and maintaining

approximately equal speed compared to dual-rail differential domino.

This chapter is organized as follows: Section (3.2) derives the basic timing constraints

and gives practical examples of Clock-Logic (CL)-domino. Section (3.3) shows how the

extra clocks required for CL-domino do not have to be distributed but rather generated lo­

cally at the dynamic gates. Section (3.4) examines how locally generating the CL-domino

clocks can sometimes slow a domino gate and practical methods to deal with the added

delay as well as to prevent excessive charge sharing. Section (3.5) shows how a CL-domino

can be used with normal skew-tolerant domino to yield a CL-domino pipeline with mini­

mum delay. Finally, Section (3.6) shows that multiple phase clocks can easily be generated

from a single distributed clock originating from a clock source such as a phase locked loop

(PLL).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Clock Logic (CL)-Domino Timing

Clock logic (CL)-domino is built upon the observation that the clocks used to precharge

and evaluate a dynamic gate need not be the same. Instead logic functions derived from

multiple-phase clocks, can be used for separately precharging and evaluating domino logic

stages. Through adherence to certain rules based on those derived previously for skew-

tolerant domino circuits, entire microprocessor critical loops can be built in single-rail dy­

namic logic that supports skew-tolerance and time-borrowing thus saving circuit area and

power while minimizing circuit delay due to reduced wiring parasitics. We will show that

these asymmetric clocks can be generated at the transistor level at each domino gate.

3.2.1 Precharge Problem for Inverting and Non-Monotonic Domino Logic

If inverting functions (some inputs to the first dynamic gate of a phase are complemented)

or non-monotonic functions are used inside a domino pipeline with multi-phase clocks,

the inverting or non-monotonic functions will be corrupted when the the previous phase

precharges. For example, in Fig. 3.1, the inverting stage in phase 2 will be corrupted when

phase 1 precharges and likewise the inverting stage in phase 3 will be corrupted when phase

2 precharges. This is because an inverting function of the previous phase might cause

a 0 —► 1 transition on the input of the current phase in the middle of the evaluate cycle

where the input to the current phase should have remained at 0 as it was at the start of the

evaluate cycle. This is illustrated in Fig. 3.2 for the case of two AND gates in adjacent

phases, where one of the inputs to the second AND gate is complemented. In the case

of a non-monotonic function, the inputs to the dynamic gate will change before the end

of the current evaluate cycle and the output might no longer maintain the correct result.

Such a logic function where an inversion exists at the input of a dynamic gate or the gate

implements non-monotonic logic will hereafter be referred to as an input complemented or

non-monotonic dynamic logic function.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Precharge Clocks : Phase 2 Inserting Logic
Corruption

jnt
j m

S3>>Q

o
§00 >-*Q

\J ffl
Phase 1 Logic

JM

Evaluate Clocks

Phase 2 Logic

c
Q
>c

Phase 3 Inverting Logic
Corruption

mtr
JM

■m.

o
‘3
00

Phase

\ \ v \

C>%Q &

Logic

JM

Phase J Logic

JM

Figure 3.1: Inverting domino logic failure for overlapping clocks.

m

PrechargeEvaluate

Actually Rises HIGH

Vout
Should Stay LOW

Complemented Input

Vint Vdyn Vout

b = ’0’ d = ’O’

Inverting Dynamic Gate

Phase 1 Logic P h ase 2 L o g ic

Figure 3.2: Example of inverting domino logic failure for overlapping clocks.

3.2.2 OR-Precharge/Domino-Evaluate

Our first solution for all single-rail domino pipelines is to delay the precharge of the pre

vious phase until the end of the evaluation period of the current phase. This can be ac

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complished through extending the duty-cycle of the precharge clocks in the previous phase

up until the time that the evaluation period for the current phase ends and its evaluation

clock goes low as shown in Fig. 3.3, where Dynamic* is an input complemented function,

a non-monotonic function, or a regular dynamic logic function. D ynam ic on the other

hand is a regular dynamic logic function. We call this first embodiment of Clock-Logic

domino “OR-Precharge / Domino-Evaluate” since the precharge clocks are simply a logical

OR function of the precharge/evaluate clocks used in regular skew-tolerant domino logic.

A proprietary design technique for multi-phase clocks using a form of OR-precharge was

published in [1], although no systematic analysis or design considerations were disclosed

or explored.

Precharge Clocks

mr

1 | 2 1.2

Phase 1 ^recharge
D£lay

Phase 2 ^recharge
Delay

JUT

M t
'3 T 1

L
3 ‘ l '

J P

G>>Q
G

o
G

Q
1
55 G>>Q

§
C/3

Phase 1 Logic

JZZZt
\VA\

Evaluate Clocks

Phase Logic

VA\\

fTTTT

P hase ' Logic

J M
■m

-m

Logic

Figure 3.3: Clock-logic OR-precharge.

Inverting or non-monotonic functions can only be placed at the phase boundaries since

the remaining domino gates in a phase must still only make a monotonic 0 —> 1 transi­

tion during its evaluation period. Furthermore, if Dynamic* implements an input com­

plemented or non-monotonic function, the previous phase logic must now finish evaluation

(be stable) by the time the Dynamic* evaluation clock rises, thus imposing a hard edge

on the data much like the setup time required for flip-flops. Therefore, when clock skew is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accounted for, the previous phase of logic has a logic evaluation constraint of:

teva ljprev 5: ^ t s k e w (3-1)

A proprietary technique for domino logic establishing that (3.1) must hold true was

published in [12]. It should be noted that only the phase before the input complemented

Dynamic* has this evaluation constraint. This is just another way of stating that the pre­

vious phase cannot borrow time from the phase that implements an input complemented

function. Furthermore, a skew penalty must be paid by an input complemented or non­

monotonic function at the phase boundary. Skew-tolerance and time borrowing, however,

can occur normally, as in skew-tolerant domino, if the Dynamic* gate implements a nor­

mal dynamic logic function.

Since the precharge clock duty-cycle has been increased from its nominal value, there is

less time for the domino gates to precharge. The direction of the skew between two adjacent

clock phases <3>2 wrt $1 affects precharge times as follows: negative skew gives the $2

logic less time to precharge while giving the $1 logic more time to precharge and positive

skew gives the $ 2 logic more time to precharge and the logic less time to precharge.

For simplicity, both directions of skew effectively reduce the available precharge time by

Tc/N . The maximum skew tolerable decreases to:

N —2
N T c thold tprech

t skew -m ax-O R -pre — ^ ' (3 - 2)

The minimum number of phases in CL OR-precharge domino logic is three so that the

required number of precharge clocks are generated.

For the case of exactly one domino gate per phase the maximum tolerable skew is:

 jv r̂ 'c tfiold tprecfo /■'}
r skew -m ax -O R -pre — ^ • W - j)

If we consider global and local clock domains, the maximum global skew tolerable

decreases to:

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

t skew -m ax-global-O R -pre — ^y T c tfoold tp rech t skew J.ocal • (3-4)

The maximum time available for time borrowing does not change from (2.12) since the

evaluation is unaffected by the change in the precharge clocks. However, the time available

for time-borrowing, while trading off skew-tolerance and taking into account global and

local clock domains is reduced to:

_ N ~ ^rn
tborrow-O R-pre — j y T c thold tprech ^sfcewj ocal t skew-global ■ (3 -5)

In regards to min-delay failure (2.15) still holds since the evaluate clocks remain un­

changed from normal skew-tolerant domino logic. However, for domino systems clocked

strictly with OR-precharge, the system will fail due to a violated precharge time constraint,

as described above, before it will fail due to any racethrough conditions.

3.2.3 Domino-Precharge/AND-Evaluate

Our second solution for all single-rail domino pipelines is to end the evaluation of a phase

early. This can be accomplished through limiting the period of evaluation from the time

that the current phase clock rises up until the time that the previous phase clock goes low as

shown in Fig. 3.4, where Dynamic* is an input complemented function, a non-monotonic

function, or a regular dynamic logic function. D ynamic on the other hand is a regular

dynamic logic function. We call this second embodiment of Clock-Logic domino “Domino-

Precharge / AND-Evaluate” since the evaluate clocks are simply a logical AND function

of the precharge/evaluate clocks used in regular skew-tolerant domino logic. A proprietary

design technique which uses a form of AND-evaluate with a single-phase clock has been

published in [7],

The constraint that input complemented or non-monotonic functions be placed only at

phase boundaries, applies for AND-evaluate as it does for OR-precharge. The constraint

that the previous phase complete evaluation before the rising edge of an input comple­

mented or non-monotonic Dynamic* is enforced automatically because evaluation ends

early. The nominal evaluate time for a phase of domino logic is equal to:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Precharge Clocks

jmt
-rov

-m

Phase 2 parly End
Evaluate

-m
jm r

Phase 3 Parly End
Evaluate

JM T
JM

§
c/ 2 aQ

c
Q

i
C/2

c

Q 0*5 c
>>Q

§00 c
>vQ

s
C/2

3 1

3 1

Phase 1 Logic

1
i • <b
3 1

"m.
jar

Evaluate Clocks

Phase 2 Logic

■m.
mf

2 3

P hase; Logic

JOt

■m

Phase 1 Logic

-M

Figure 3.4: Clock-logic AND-evaluate.

Tc
t AN Dueval -cycle = ^tskew (3-6)

This is less than the nominal evaluate time for a phase of skew-tolerant domino logic

without time borrowing, Tc/ N — t skew. Furthermore, time-borrowing cannot occur for

domino gates that are clocked strictly by AND-evaluation even if Dynamic* implements

a regular dynamic logic function. However, for practical designs, AND-evaluate will never

be used exclusively without also incorporating other CL-domino or skew-tolerant domino

thus alleviating the evaluation time and non-time borrowing penalties. Thus the only im­

portant constraint is that no time can be borrowed from AND-Evaluate Dynamic* stages

that implement input complemented or non-monotonic functions.

Since the evaluate clock duty-cycle has been decreased from its nominal value, there is

less time for the domino gates to evaluate. The direction of the skew between two adjacent

clock phases $2 wrt $1 affects evaluate times as follows: negative skew gives the $2 logic

more time to evaluate while giving the $3 logic less time to evaluate and positive skew gives

the $2 logic less time to evaluate and the $3 logic more time to evaluate. Clock skew will

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

eventually cause a domino CL AND-evaluate stage to fail when there is no more overlap

between adjacent clock phases. Therefore, the maximum tolerable skew is:

JV -l
■^c tho ld tprech4. _ N -in/iu, pi c.011,

‘'skew.max-AND-eval — ^ • w- l)

Note that this is the same equation as that derived for normal skew-tolerant domino

logic.

The minimum number of phases in CL AND-evaluate domino logic is three so that the

required number of evaluate clocks are generated and the results passed down through the

logic stages.

For the case of exactly one domino gate per phase, the maximum tolerable skew is:

4.___ ___ T c — thoid — tprecfi o x

1skewjmax-ANDjeval — ^ • \3-°)

This equation is again the same as that derived for normal skew-tolerant domino logic.

When comparing OR-precharge with AND-evaluate, AND-evaluate offers more skew

tolerance because the precharge operation to the dynamic gates is unaffected. However,the

amount of useful time per cycle is reduced from OR-precharge.

As is the case for normal skew-tolerant domino logic, reducing the local skew can be

used to increase the maximum tolerable global skew according to:

tskewjnnax-global-AN D ^eval = J y Tc — tfiold, ~ tprech ~ tskew Jo c a l■ (3-9)

As mentioned previously, time borrowing cannot occur across phases for CL-domino

gates clocked strictly by AND-evaluate. However, we will see that this constraint will

be relaxed for more general CL-domino pipelines. A min-delay condition can occur if

a rising edge of a first clock phase results in three consecutive clock phases being high

simultaneously. This occurs under the same conditions as that for normal skew-tolerant

domino logic (2.15). In the case of AND-evaluate, failure due to min-delay will occur first

before a violated precharge time constraint.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.4 OR-Precharge/AND-Evaluate

Our third embodiment of CL-domino combines OR-precharge with AND-evaluate to elim­

inate spurious transitions on the inputs of input complemented or non-monotonic functions,

when that gate is holding the evaluated data and doing no useful work. Spurious input

transitions can cause charge-sharing which may result in a change of the evaluated logic

state. Unwanted input transitions can occur for domino-precharge/AND-evaluate when the

previous phase is precharging and the current phase has finished evaluating thus leaving the

output floating high. The implementation of “OR-precharge/AND-evaluate” is shown in

Fig. 3.5.

: Phase 1 Possible
Prechar^e Glitch

Precharge Clocks !

Phase 2 Possible
Precharge Glitch

Phase 3 Possible
Precharge Glitch

Phase 11
D

recharge
:lay

Phase 2 precharge
DtHay

] \ \ \ \ / // /

<— u n

____ VY&5

d) +<b <b + 6 ! dj +
1 | 2 1 | 2 i 2

------- n ik

% <b + d) <b + d> ; <bn
3 Y1 3 1 T 1

1 1
♦,

e>>Q

Evaluate

Logic

-aar

T
*.1+2

Phase i Logic

* * 4
o o o o o

St
at

ic

s,
Q St

at
ic

c>> St
at

ic

R
Q St

at
ic

a
Q

St
at

ic

a>•»
P

St
at

ic

■m

Phase 3 Logic

3: T1
Phase i Logic

- a t

Phase 22 Early End
Evaluate

Phase 3 £arly End
Evaluate

Figure 3.5: Clock-logic OR-precharge/AND-evaluate.

Since this style of CL-domino combines OR-precharge with AND-evaluate, the equa­

tions derived for the skew-tolerance of OR-precharge and AND-evaluate are applicable.

We therefore, will take the worst case of the two CL-domino derivatives. Therefore the

constraints on skew tolerance for OR-precharge / Domino-evaluate will apply.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Furthermore, as for AND-evaluate, time borrowing cannot occur across phases for CL-

domino gates clocked strictly by OR-precharge/AND-evaluate. However, we will see that

this constraint will be relaxed for more general CL-domino pipelines. A min-delay con­

dition can occur if a rising edge of a first clock phase results in three consecutive clock

phases being high simultaneously. This occurs under the same conditions as that for normal

skew-tolerant domino logic (2.15).

3.2.5 OR-Precharge/OR-Evaluate

Our fourth solution for all single-rail domino pipelines takes advantage of the fact that the

precharge operation for a phase of domino logic occurs for all gates in parallel while evalua­

tion happens in series. Because series evaluation is usually the critical path, it is reasonable

to allocate a larger portion of the cycle for evaluation. This means that the duty cycle of the

evaluate clocks should be increased. However, from (2.15), we know that evaluate clocks

with large duty cycles will often fail due to min-delay failures. Conversely, long duty cycle

clocks will not be able to tolerate much skew or afford much time-borrowing. A technique

similar to using extra non-overlapping clocks to the first domino gate of each phase as in

[20] is shown for CL-domino in Fig. 3.6.

The extra clocks, denoted by —> $3, are just the normal clocks used in skew-tolerant

domino, and the extended evaluate clocks are just the logical OR of two consecutive clock

phases. We call this fourth embodiment of Clock-Logic domino “OR-Precharge / OR-

Evaluate”, since the precharge/evaluate clocks, with the exception of the extra clocks, are a

logical OR of the precharge/evaluate clocks used in regular skew-tolerant domino logic.

As in previous embodiments, Dynamic* can implement an input complemented func­

tion, a non-monotonic function, or a regular dynamic logic function. Dynamic, on the

other hand, is a regular dynamic logic function.

The constraint that input complemented or non-monotonic functions be placed only at

the phase boundaries applies as before. Any phase before an an input complemented of non­

monotonic Dynamic* cannot borrow time from that phase. Unlike the solutions proposed

for skew-tolerant OTB domino logic as described in [29, 62] and in Section 2.5.8, there is

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2

<}> + <(>
2 3

Precharge Clocks

l . 2 1 . 2

Phase 1 ^recharge
Delay

Phase 2 FJrecharge
D^lay

Tm. jn r
rm an

JET
! 6 + <b
' 3 Y 1 3 T 1

L

g.Q g,Q
I
C/3

C
>>Q

ICO g.Q
Ion

*o
e
Q

§
on

T
; 4,

Phase 3 Logic ! Phase 1 Logic

jus-------- i—

Phase 1 Logic

j m

Evaluate Clocks

Phase % Logic

jmt
ju t

m r \ Avoid mid-delay problem

 i am\VA\

Extend
Phase 2 Evaluate

Extend

Figure 3.6: Clock-logic OR-precharge/OR-evaluate.

no need to delay the extended (OR-evaluate) clocks from the extra clocks after the first gates

since the extended clocks are directly derived from the extra clocks using the transistors at

each gate. This means that min-delay problems cannot happen between the extra clocks

and the extended clocks. Furthermore, only the extra clocks have to be distributed from a

local clock generator, thus reducing the complexity of the clock generator and distribution

network. Most importantly, this CL-domino method eliminates the dead space between the

first gate of the phase and the later gates, where logic might possibly wait for the delayed

clock [29, 62]. It is also important to note that single-rail OTB domino, cannot by itself

incorporate input complemented or non-monotonic functions.

Since the evaluate duty-cycle has been increased, there is more time for the domino

gates to evaluate or equivalently the current phase can allocate more slack time to the pre­

vious phase so that the previous phase can borrow more time from the current phase. The

direction of the skew between two adjacent clock phases , <J>2 wrt $ 1, affects evaluate times

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

as follows: negative skew gives the $1 logic less time to evaluate while giving the #2 logic

more time to evaluate and positive skew gives the $1 logic more time to evaluate and the

$2 logic less time to evaluate.

Since the precharge duty-cycle has also been increased, there is less time for the domino

gates to precharge. The direction of the skew between two adjacent clock phases $2 wrt $1

affects precharge times as follows: negative skew gives the $2 logic less time to precharge

while giving the $1 logic more time to precharge and positive skew gives the $2 logic more

time to precharge and the $1 logic less time to precharge.

In regards to precharge and evaluate constraints, the equations derived for OR-precharge

/ Domino-evaluate will still apply, since the precharge of the domino gates are uncharged

from that embodiment and the OR of the evaluation clocks do not affect those constraints.

However, for phases where Dynamic* implements a regular dynamic logic function,

the maximum time that can be borrowed from next next phase is increased to:

tborrow -m ax-O R -pre-O Rueval — — t sfcetu- (3 .1 0)

The extra time available for time-borrowing helps to alleviate the design difficulties and

reduced cycle times associated with imbalanced pipeline stages in high-speed designs.

The min-delay constraint of (2.15) still holds even though the duty-cycle of the clocks

are effectively increased. This is a result of the extended clocks being directly derived from

the normal clocks. However, a system clocked strictly by OR-precharge/OR-evaluate will

fail due to a violated precharge time constraint before it will fail due to any racethrough

conditions.

3.2.6 Dynamic Cascaded OR-Precharge/Domino-Evaluate

Dynamic stages that are directly coupled to each other with no intervening static logic pre­

date the popularity of CMOS circuits [55]. A fifth method for CL-domino which uses OR-

precharge for all single-rail domino pipelines, is called “Dynamic Cascaded OR-Precharge

/ Domino-Evaluate” and is shown in Fig. 3.7.

Dynamic gates can be placed back-to-back at phase boundaries without an intervening

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Precharge Clocks

1 2
4> + 4>

2 3 mr

______ 'j±

7m

Phase 1 ^recharge
D£lay

■M

Phase 2 Ftrecharge
Delay

JOT
 M

3 1 ' 1 ' 2

c
>>Q

I
55 e

Q
1oo c

(S'
i55 c>>Q

o
o 3
••D 3
3 dan >>

Q

Phase 1 Logic

JEJf

Evaluate Clocks

Phase Logic

m

JM

Phase • Logic

JM
\w\

Phase 1 Logic

JM

Figure 3.7: Clock-logic dynamic cascaded OR-precharge/normal-evaluate.

static gate as long as the logic of the current phase finishes before the next phase begins.

Since it has been established in previous embodiments of CL-domino, that time cannot be

borrowed from a phase that implements an input complemented or non-monotonic function

in any case, cascading dynamic gates directly will result in better performance in some

situations since the pipeline will contain more dynamic gates in the critical paths.

Dynam ic is an input complemented function, a non-monotonic function, or a regular

dynamic logic function. Dynam ic on the other hand is a regular dynamic logic function.

Since this embodiment is based on OR-precharge/domino-evaluate, the equations de­

rived for Section 3.2.2 apply. However, a system with strictly back-to-back dynamic gates

across phases, will support no time-borrowing, as mentioned previously, and all phases

will have a restricted logic evaluation time as derived in (3.1). However, for practical CL-

domino pipelines, this logic style will often be used in combination with other CL-domino

or skew-tolerant domino, that does support time-borrowing across phases that require it.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.7 Dynamic Cascaded Domino-Precharge/AND-Evaluate

A directly cascaded version of AND-evaluate, where dynamic gates are directly coupled

back-to-back at phase boundaries without an intervening static gate, can also be derived.

Our sixth embodiment of CL-domino, which uses AND-evaluate for all single-rail domino

pipelines, is called “Dynamic Cascaded Domino-Precharge / AND-Evaluate” and is imple­

mented as in Fig. 3.8.

Precharge Clocks

JM

Phase 2 parly End
Evaluate

\\\\\

c
Q

§ cft £Q
c>>Q

' 3 ' l

(j) .(j) T1 2
<j> • d>

2 3

3 1 3 1

Phase 1 Logic

■m.
jia

Evaluate Clocks

JM

Phase 3 Early End
Evaluate

JMT

1 2
Phase

a £Q a &G

Logic

n 2 3 : 2 3

Phase 3 Logic Phase i Logic

JW

Figure 3.8: Clock-logic dynamic cascaded normal-precharge/AND-evaluate.

Dynamic f is an input complemented function, a non-monotonic function, or a regular

dynamic logic function. Dynamic on the other hand is a regular dynamic logic function.

Since this embodiment is based on normal-precharge/AND-evaluate, the equations de­

rived for Section 3.2.3 apply. A system with strictly back-to-back dynamic gates across

phases, will support no time-borrowing and all phases will have a restricted logic evalua­

tion time as determined by the amount of guaranteed overlap between adjacent phases (3.6).

This is less than the evaluation time as derived for dynamic cascaded OR-precharge/domino-

evaluate. However, for practical CL-domino pipelines, this logic style will often be used

in combination with other CL-domino or skew-tolerant domino, that does support time-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

borrowing across phases and longer evaluation duty cycles.

3.3 Local Clock Generation at the Dynamic Gates

In this section we shall describe how logic functions of overlapping clocks can be easily

implemented at the transistors of the dynamic gates in CL-domino. Generating the required

clocks within the dynamic gates simplifies the clock distribution network since fewer phases

have to be distributed, and hence, less inter-phase skew introduced. Local clock functions

are skew tolerant and also allow performance scaling of traditional skew-tolerant domino

designs, and its variants such as OTB domino, without much design modification since the

new clocks are implemented through an addition of a minimum number of transistors to a

dynamic gate.

3.3.1 Clock Logic Formulas

Clock-Logic Domino Equations

An ordinary N-type dynamic gate, as in Fig. 3.9, implements the logic function [61]:

Out = C L K + (BOOL) ■ C LK . (3.11)

BO O L is a non-inverting monotonic logic function. For example, the dynamic gate of

3.10 implements:

Bool = { A - B + C). (3.12)

Out = C L K + (A ■ B + C) ■ C LK . (3.13)

Through using multiple clocks at a dynamic gate, different logical functions of the

clocks can be used for precharge and evaluate operations. A Clock-Logic dynamic gate

therefore implements the generalized function:

Out = precharge condition + evaluate condition + state. (3.14)

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clocked transistor

clocked transistor

Figure 3.9: N-type dynamic
gate.

clocked transistor

i

clocked transistor

Figure 3.10: Example N-
type dynamic gate.

The state exists for dynamic logic when the clocks for precharge and evaluate are dif­

ferent and the clocked transistors fully disconnect the gate from Vdd and Vss. In this mode

of operation, the gate is neither precharging nor evaluating but instead holding its previous

state much like an opaque latch.

For the Clock-Logic implementations as described in Section 3.2, the dynamic stages

implement the following logic functions:

Outor_pre = C L K 1 • C L K 2 + (BOOL) ■ C L K 1 + state ■ C L K 1 • CLK 2. (3.15)

Outand_evai = C L K 2 + (BOOL) ■ C L K 1 • C L K 2 + state • C L K 1 • C L K 2. (3.16)

Outor_pr e and eval = C L K 2■ C L K 3 + (BOOL) ■ C L K 1 • C L K 2 + state ■ C L K 1 • C L K 2.

(3.17)

Out,or jpre-or -eval — '

' c L K 1 ■ C L K 2 + (BOOL) -C L K 1 + state - C L K 1 - C L K 2 :
first gate of phase.

C L K 1 • C L K 2 + (BOOL) ■ (CLK1 + CLK 2) :
other gates of phase.

(3.18)

O u t dyn _cascade_or_pre = O u t or_p re . (3.19)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Outdyn_cascade-cmd_eval — O u t and_eval• (3.20)

C L K 1 is a first clock phase, C L K 2 is a next clock phase and C L K 3 follows C L K ‘2.

Clock Logic Domino Transistor Level Implementation

The transistor level implementations of equations (3.15), (3.16), and (3.17) are shown as

Fig. 3.11, Fig. 3.12, and Fig. 3.13 respectively. Here series PMOS clock transistors repre­

sent ORed precharge clocks while series NMOS clock transistors represent ANDed evaluate

clocks.

C L K 5 ^ clocked transistor

clocked transistorclocked transistor clocked transistor

O U TO U T

clocked transistor

ln_1
O U T

ln_2

ln_3
ln_3ln_1

clocked transistor
clocked transistor

clocked transistor
clocked transistor clocked transistor

PDN PDN

PDN

Figure 3.11: OR-precharge. Figure 3.12: AND-evaluate. Figure 3.13: OR-precharge /
AND-evaluate.

The transistor level implementation of equations (3.18) is shown in Fig. 3.14 for the

first gate of each logic phase, while Fig. 3.15 shows the configuration used for the other

remaining gates in the phase. Here series PMOS clock transistors represent ORed precharge

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clocks while parallel NMOS clock transistors represent ORed evaluate clocks.

In the other degenerate case, parallel PMOS clock transistors can be used to represent

ANDed precharge clocks. The arrangement of transistors for ORing and ANDing clocks is

similar in form to that for normal static CMOS logic gates with data signals as the inputs to

the gate terminals of the transistors [5].

Figure 3.14: First gate of phase in OR- Figure 3.15: Remaining gates of phase in OR-

3.4 Transistor Level Design Considerations

3.4.1 Design Considerations for Series and Parallel Connections o f Clock
Transistors

Series connections of clocked transistors increases the resistance, while decreasing the con­

ductance, from the Vm supply-rail to the output node for series PMOS and from the bottom

of the logic network to the supply-rail for series NMOS. Parallel connections of clocked

transistors decreases the resistance, while increasing the conductance, when both transistors

clocked transistorclocked transistor

clocked transistorclocked transistor

clocked transistor

clocked tronsistor clocked tronsistor

precharge / OR-evaluate. precharge / OR-evaluate.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are on, while the resistance and conductance are unchanged from a single clocked transistor,

when only one transistor is on. This is commonly the case when these circuits switch.

Series PMOS Clock Transistors

In the case of series PMOS clock transistors, the increased resistance will negatively af­

fect the precharge time of the logic gate unless the channel width of the PMOS transistors

are increased. This is made worse by the fact that OR-precharge allows less time for the

precharge operation as discussed previously in Section 3.2. Increasing the channel width,

however, is detrimental to the clock load and hence the clock power of an OR-Precharge

CL-domino gate. Furthermore, the parasitic load capacitance to the output node is also in­

creased, thus reducing the gate’s evaluate switching speed. Last, since PMOS transistors

have one-half to one-third the mobility of NMOS transistors, they must be sized even larger.

These design issues can be managed through selective placement of series PMOS tran­

sistors which will be discussed in detail. So long as the dynamic gate can precharge within

the shortened precharge cycle time, the overhead incurred through larger PMOS transistors

is small compared to the power savings and delay performance obtained for Clock-Logic

domino compared to dual-rail skew-tolerant domino.

Series NMOS Clock Transistors

In the case of series NMOS clock transistors, the increased resistance will negatively affect

the time it takes the logic gate to pull-down the output node (logic evaluate time) unless the

channel width of the NMOS transistors are increased. This is compounded by the fact that

AND-evaluate allows less time for the evaluate operation as derived previously in Section

3.2. Increasing the channel width, however, is detrimental to the clock load and hence

the clock power of an AND-evaluate CL-domino gate. Since the height of the NMOS

Pull-Down-Network (PDN) has now been effectively increased by one transistor, all the

transistors of the NMOS stack should be increased to minimize circuit delay as is common

practice in digital CMOS circuits [61]. This will negatively affect the circuit area, increase

the effects of charge sharing, while increasing the output load of the logic gates that drive

it.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These design issues can be managed through selective placement of stacked NMOS

transistors which will be discussed in detail. As long as the dynamic gate can evaluate

within the shortened evaluate cycle time, the overhead incurred through larger NMOS tran­

sistors is small compared to the power savings and delay performance obtained for Clock-

Logic domino compared to dual-rail skew-tolerant domino.

Parallel PMOS Clock Transistors

Parallel PMOS clocked transistors have the effect of increasing the cycle time for precharge

compared to that for evaluate. Since precharge for a stage of dynamic logic often occurs

in parallel and evaluation occurs in series, increasing the precharge period is not normally

required for CL-domino logic.

Parallel NMOS Clock Transistors

In the case of parallel NMOS clock transistors, the decreased resistance, when both transis­

tors are on, will increase the conductance from the bottom of the PDN to ground. Increasing

the channel widths of the transistors will increase the PDN conductance even more while

trading off increased clock load and clock power. However, the increased parasitic capac­

itance of the additional clock transistor cannot be ignored. Thus the increase in pull-down

current is to some extent offset by the increase in parasitic capacitance of the the clock

transistor drains. When only one clock transistor is on, the pull-down current is the same as

when only clocked transistor is used. However, the drain node of the clock transistors will

still be capacitively loaded by the off clock transistor, thus decreasing the switching speed

of the logic gate. The decreased logic evaluate time is usually not appreciable.

3.4.2 Clock Input Ordering

Logic gates often have internal node capacitances that must be (dis)charged in addition to

the output load. Because of this, the ordering of the clock transistors can affect the transient

performance of CL-domino gates. In the sections that follow, we limit our discussion to

Clock-Logic functions of two inputs, although more inputs are possible and the results

extend to those gates as well.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Series PMOS Clock TVansistors

The ordering of the clock inputs for OR-precharge, can affect both the precharge and eval­

uate times of a CL-domino gate. The two options for the series connection of two PMOS

clock transistors are shown in Fig. 3.16 and Fig. 3.17, where C L K 1 is a current phase

clock, which rises Tc/ N before a later phase clock, C L K ‘2.

CLK2

OUT

OUT

CLK2

OUT

OUT

Figure 3.16: Placing current phase precharge Figure 3.17: Placing current phase precharge
clock nearest to the output. clock nearest to the supply rail.

The internal node capacitance, C j n t , has to be discharged along with the output ca­

pacitance C o u t during evaluation when the PMOS clock transistor closer to the output is

enabled. Since the size of the PMOS clock transistors are larger than normal skew-tolerant

domino, gates that are located early in a phase (after C L K 1 rises and C L K 2 is still low)

can evaluate faster if the clock transistor of the current phase is placed closer to the output

node as in Fig. 3.16. The capacitance that needs to discharged is equal to C o u t , resulting

in faster operation.

For C L K 1 phase gates that evaluate while C L K 2 is high, or alternatively when C L K 1

logic is borrowing time from CLK2, the ordering of the clock transistors does not affect

the evaluate time. However, during the precharge period, the capacitance to charge can

either be C o u t or C o u t + C ' / j V T - Therefore, when time borrowing into the next phase

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is expected, a gate can precharge faster through placing the current phase clock transistor

closer to the supply rail as in Fig. 3.17. This is because the internal node capacitance, C i n t ,

is already precharged by the time the next phase clock goes low and precharge of the output

node begins. Hence the capacitance to be precharged is equal to Cout during that period.

Series NMOS Clock Transistors

The ordering of the clock inputs for AND-evaluate, can affect the evaluate time, precharge

time and noise tolerance of a CL-domino gate. The two options for the series connection

of two NMOS clock transistors are shown in Fig. 3.18 and Fig. 3.19, where C L K 1 is a

previous phase clock which rises Tc/ N before a current phase clock, CLK2.

oQ.
O
Q.

CLK2

CLKl

CLK1

iNt CLK2 |K(T

Figure 3.18: Placing current phase precharge Figure 3.19: Placing current phase precharge
clock nearest to the PDN. clock nearest to the ground rail.

The internal node capacitance, C in t , has to be discharged in either case although it is

possible to discharge C i n t early. Since the size of the NMOS clock transistors are larger

than in norm al skew-tolerant domino, CL-Domino AND-Evaluate gates can evaluate faster

if the clock transistor of the current phase is placed nearest to the PDN as in Fig. 3.18. This

is because the internal node capacitance, C i n t . would have already been predischarged

when the current phase clock rises. This is similar to the method of transistor re-ordering to

reduce delay as is common practice in digital VLSI design [61], with C L K 2 synonymous

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with a late arriving input signal.

Since gates clocked with AND-Evaluate can have charge sharing problems when the

previous phase precharges as, described in Section 3.2.4, a gate can be made more robust to

this form of charge sharing through placing the current phase clock transistor nearest to the

ground-rail as in 3.19. This is because the internal node capacitance, C/jvt» is disconnected

from the PDN during the period that charge sharing can occur, while C L K 1 is low and

C L K 2 is high. Cj n t is reasonably large even when compared to the output capacitance

because of the increased height of the NMOS stacks and the increased sizes of the transistors

thus making the gate more susceptible to charge sharing.

3.4.3 Charge Sharing

Both OR-Precharge and AND-Evaluate have a time during the clock cycle where the output

node is floating either high or low as shown in Fig. 3.20. It is during this time that the gate

is susceptible to charge sharing.

Keeper Design

In order to alleviate charge sharing, leakage currents and staticize the dynamic circuits

during power saving clock stop, full keepers should be used on the outputs of Clock-Logic

dynamic gates. That is, if keepers are used, they must contain both PMOS and NMOS

feedback devices since the output node can float either high or low. For more generalized

CL-domino pipelines, as described further, full keepers should be used on every gate that is

clocked by OR-Precharge or AND-Evaluate. If maintaining circuit state during clock stop

is the only concern, then only the dynamic circuits of a chosen phase need contain keepers.

The use of weak keepers slightly increases the diffusion capacitance to the output nodes

of these dynamic gates. Furthermore, precharge and evaluate operations have to overcome

a brief period of contention between the keeper transistors and the precharge and logic

evaluation networks, respectively. Note that CL-domino systems clocked by OR-Precharge

/ OR-Evaluate as described in Section 3.2.5, do not require full keepers since the output can

only float high. A half PMOS feedback device will suffice in this case.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2
d> + <J>

2 3

3 T1

Precharj

Phase 3 ORr-Precharge
Output Floating

e Clocks

Phase 1 O k-Precharge
Output Floating

Phase 2 Ok-Precharge
Output Floating

Phase 1 ^recharge
D^lay

Phase 2 Precharge
D^lay

\ \ \ \ / / / /

; i ------u j j

+.*+2
d> + d> ; d> +

1 ̂ 2 - 2

L.. — U U \

cb ; d> 4 <b <b 4 cb ! cb 4 d>
T3 3 1 3 T i Ti : 2

1 : 1 i

3 T1

$1 2

* W * ■*
o O O O O O

a>>
a

...
...

St
at

ic

a>>
G St

at
ic

s.
Q

St
at

ic

S.
Q

St
at

ic

i>»
Q

St
at

ic

R
Q

St
at

ic

Phase i Logic

1 . 2

Phase 2 Logic Phase 3 Logic ; Phase

— i -fty ssl.
ju t

Evaluate-Clocks
Phase 2l Early End

Evaluate

: Phase 1 ANft-Evaluate j Phase 2 AND-Evaluate
Outpuli Floating Outpult Floating

Phase 3 fearly End
Evaluate

Phase 3 AND-Evaluate
Output Floating

Logic

JUt

Figure 3.20: Clock-logic Output Floating.

Precharging Internal Nodes

Precharging internal stack nodes is an effective method of dealing with charge sharing in dy­

namic circuits. For CL-domino logic, the secondary precharge network, used for precharg­

ing internal stack nodes, must have the same form as that used for the primary precharge

network as shown in Fig. 3.21 and Fig. 3.22. This is because precharging the internal stacks

in the same manner as in traditional dynamic logic may lead to the corruption of the output

values since the gate needs to maintain its state for a larger portion of the cycle than is the

case with a single clock.

The method of AND-evaluate also presents problems with charge sharing when the

previous phase precharges as described previously for gates that implement input comple­

mented or non-monotonic logic. This problem cannot be solved with the precharging cir­

cuitry of Fig. 3.22 since the secondary precharge network would not have been previously

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CLK1

C LK l

— NetWofk

* ||_C L K 2

OUT

: C INT

Secondory Prechorgt

cj* z jr

Secondary Pr#charg«
Hel^ork

^ycua

DyK|

CLK2

iC .DyH

iC iNt

CLK^p

Figure 3.21: OR-precharge of internal nodes. Figure 3.22: AND-precharge of internal
nodes.

enabled prior to the time where potential charge sharing occurs. A circuit that precharges

internal nodes during this glitching period is shown in Fig. 3.23.

CLK2

OUT

DYN

CLK2

S e c o n d a r y P r e c h a r g e
N e tw o rk

Figure 3.23: AND-precharge of internal nodes for charge sharing suppression.

The proposed circuit will not corrupt an evaluated low result on Out since the secondary

precharge network is conditionally activated only when the value of Out was evaluated

high. In this case, precharge of the internal node is desirable to avoid charge sharing. Fur-

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thermore, the circuit will initiate precharge of the internal node during the normal precharge

period to circumvent charge sharing during evaluate, and thus can be used in place of the

secondary precharge network of Fig. 3.22.

3.5 Optimized Placement for OR-Precharge/AND-Evaluate

3.5.1 CL-Domino and Skew-Tolerant Domino

It was established previously that exclusive use of CL-domino clocking for gates that do not

implement input complemented or non-monotonic functions, is detrimental to the switch­

ing speed and power dissipation of a dynamic pipeline. Therefore, a more general CL-

domino methodology might integrate CL-domino OR-Precharge, AND-Evaluate, Dynamic

Cascaded OR-Precharge and Dynamic Cascaded AND-Evaluate with normal skew-tolerant

domino logic to achieve the fastest speed, lowest power dissipation and lowest area.

Note that OR-Precharge / OR-Evaluate is a CL-domino logic style that cannot be in­

corporated with normal skew-tolerant domino. However, the extended evaluate duty cycle

and increased opportunity for time borrowing for that logic style may offset any potential

performance and power penalties incurred for that logic style.

For generalized CL-domino, only those gates that implement input complemented or

non-monotonic functions, at a phase boundary, require more than one clock to be distributed

to the dynamic gate. If OR-precharge is used, the last gate of the previous phase requires

two series PMOS clock transistors, each driven by successive clock phases. The first gate

of the current phase, that implements the input complemented/non-monotonic function, and

the subsequent gates of the phase can be clocked with single PMOS precharge transistors

and single NMOS evaluate transistors as in skew-tolerant domino logic. If AND-evaluate

is used, the first gate of the current phase, that implements the input complemented/non­

monotonic function, requires two series NMOS clock transistors, each driven by successive

clock phases. The subsequent gates of the current phase can be clocked with single PMOS

precharge and single NMOS evaluate transistors as with skew-tolerant domino logic.

When an input complemented or non-monotonic function occurs in a domino pipeline,

only one of either OR-precharge or AND-evaluate is required. The remaining dynamic

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gates of the input complemented/non-monotonic phase and the gates of phases that imple­

ment normal monotonic output logic can be clocked with single PMOS precharge transis­

tors and single NMOS evaluate transistors, thus increasing the switching speed of those

gates and reducing the clock power. One very important property of this arrangement is

that only the gates that use series transistors for precharge or evaluation need to follow the

more stringent timing constraints for CL-domino logic while the remaining gates need to

adhere to the less stringent timing constraints for skew-tolerant domino logic. This gener­

alized method applies particularly well for non-footed dynamic gates to increase switching

speed with no short circuit current as will be discussed later.

Examples of cases where CL-domino and skew-tolerant domino gates adjacent within

the same pipeline are presented in Table 3.1. Here, a monotonic gate type describes a skew-

tolerant dynamic gate with a single precharge transistor and a single evaluate transistor.

3.5.2 Input Complemented or Non-M onotonic Gates in Two or More Con­
secutive Phases

When two or more consecutive clock phases contain input complemented or non-monotonic

logic, the connections of the clocked transistors in the pipeline demonstrates a unique pat­

tern.

If OR-precharge is used for the consecutive non-monotonic logic phases, the clocking

scheme employed will be that shown in Fig. 3.24.

(j) +cj)
2 3

o g
§ s
5
5 Q

o• l—H4—>CG
■4—>

C/5

O
•a0 o
a a
§11 >>

£

o
•

03
4—*
C/3

o
go o
c a
0 a
8 g1

Z,

o
V4—>
C/3

• a . §
% I
§ >.
s o

o
• fH

'S
4->
C/3

1
Phase 1 Phase 2 Phase 3

<1>1
Phase 1

Figure 3.24: OR-precharge in consecutive phases of non-monotonic logic.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: Examples of CL-domino and skew-tolerant domino in the same pipeline.

Phase Previous Gate Type Current Gate Type Next Gate Type
Position
first monotonic monotonic monotonic

monotonic OR-pre complemented
domino eval

monotonic

monotonic complemented
AND-eval

monotonic

complemented
AND-eval

monotonic monotonic

complemented
domino-eval

monotonic monotonic

middle monotonic monotonic monotonic
complemented
domino eval

monotonic monotonic

complemented
AND-eval

monotonic monotonic

last monotonic monotonic monotonic
monotonic monotonic complemented

AND-eval
monotonic monotonic OR-pre complemented

domino eval
first = last monotonic monotonic monotonic

monotonic OR-pre complemented
domino eval

complemented
AND-eval

monotonic complemented OR-
pre and AND-eval

complemented
domino eval

monotonic OR-pre complemented
OR-pre

complemented
domino eval

monotonic complemented
AND-eval

complemented
AND-eval

If AND-evaluate is used for the consecutive non-monotonic logic phases, the clocking

scheme employed will be that shown in Fig. 3.25.

Furthermore, if OR-precharge is followed by AND-evaluate in consecutive non-monotonic

logic phases, the clocking scheme will be that as shown in Fig. 3.26.

Last, if AND-Evaluate is followed by OR-precharge in consecutive non-monotonic

logic phases, the clocking scheme will be that as shown in Fig. 3.27.

3.5.3 Unfooted Gates

Unfooted gates can cause short circuit currents during the precharge operation since precharge

to those gates occur in series rather than in parallel as footed domino logic. An example of

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
^3

1
i

o
c . y

o♦ti
O O

CJ
• a
o o

CJ
c .a

O H o G § O g a O o c CJ
O t i

SI*
c54—>

0 0
S Eli« Q
o

4-Jcd4—>
0 0

S E l
1 ^ « Q

o
£

’S3
Cj4—>

0 0
g a c34—J

0 0

i |

1

$ 1 2
<j> .< j)

2 3

1

Phase 1 Phase 2 Phase 3 Phase 1

Figure 3.25: AND-evaluate in consecutive phases of non-monotonic logic.

<l> <l>

o g•w H
§ ao >>

S Q

cj

ts
co

o
•ao o
4-J *i-H
G 5

H
e Q o
£

o
' i
00

cj

•a0 O
4—> « i-HG 3

1 i
C Qo
£

$1
Phase 1 Phase 2

CJ
• ^
4 - >C34->
00

o
tiO+-»o
tios

o

G

Q

0
1
co

cj) .(j)
2 3 <l>.

Phase 3

1
Phase 1

Figure 3.26: OR-Precharge followed by AND-evaluate in consecutive phases of non­
monotonic logic.

an unfooted gate in a CL-domino pipeline for high-speed operation is shown in Fig. 3.28.

Normally the precharge delay of the footed dynamic gate (1) affects the short circuit

current through the unfooted dynamic gate (2) since gate (1) must have flipped the value

of its static gate from 1 —> 0 before gate (2) can fully precharge to the rail voltage. Fur­

thermore, since precharge now ripples, the precharge delay path must be considered as well

since all the dynamic gates must have a high voltage on its output node when the evalua­

tion phase begins. Using series PMOS transistors for the unfooted gate delays the onset of

precharge so that gate (1) is fully precharged before gate (2) starts precharging thus elim­

inating short circuit current. Note that while gate (2) has to obey CL-domino precharge

constraints, gate (1) only has to obey the relaxed precharge constraints of skew-tolerant

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3

o
•-d
Cj

■l-l
on

c0 O
c §
§ 03
S 51 ^ a Qo ^
£

o
-t—>

+->
CO

o
•a0 o
3 a
§ &
s a1 ^
« Qo
£

o
'S
cn

• a - a
o g-4-> H§ aS £>
S 0

o
'3
ot

<t>i
Phase 1

<t>1 2
Phase 2

4>
Phase 3

<i>1
Phase 1

Figure 3.27: AND-evaluate followed by OR-precharge in consecutive phases of non­
monotonic logic.

T* O

on

None

Phase 1

Figure 3.28: Unfooted dynamic gates in a CL-domino pipeline.

domino. However, logic gate (1) should not take too long to precharge since it must finish

precharge by the time $ i + $2 = 0, which starts the precharge of gate (2) in order to avoid

short circuit current. A proprietary circuit technique which produces a similar effect with a

delayed clock and series PMOS transistors can be found in [53].

In unfooted domino pipelines with more unfooted gates per phase as shown in 3.29, the

later unfooted gate, (3), will draw short circuit current when its prior dynamic gate, (2),

precharges. One method to reduce short circuit current in this case would be to delay the

precharge clock to gate (3) by the sum of the nominal evaluate delays of gate (2) and its

subsequent static gate as described in [8]. However, a better design alternative would be

to require a footed gate before any OR-precharge unfooted gate as shown in Fig. 3.30. In

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this way all of the footed gates would precharge when $1 is low while the unfooted gates

would precharge when $1 + $2 is low, hence eliminating short circuit current altogether

while maintaining high speed.

(i)

g i 8 «
r? a

C/3

(2)

T3 O
B'3 o a
£ « a ^
DO

(3)

T3 O
B 'l o a
<§ aa >.

o
§53

(4)

T3 O
a '3 o a
€ a
P Q

o
§53

Figure 3.29: Unfooted dynamic gates in a CL-domino pipeline with more gates per phase.

1

_-
e-

—

“ +

N-e
>

1
<|>+<|>2

Fo
ot

ed

„
D

yn
am

ic

“

St
at

ic

U
nf

oo
te

d
_

D
yn

am
ic

^

St
at

ic
1

Fo
ot

ed

„
D

yn
am

ic

“

St
at

ic

U
nf

oo
te

d
_

D
yn

am
ic

a

St
at

ic

1
i ^

1
None

1 1
None

Figure 3.30: Alternating footed and unfooted gates in a CL-domino pipeline.

3.5.4 Generalized CL-Domino Pipeline

A generalized CL-domino pipeline with selective placement of series connected PMOS and

NMOS clock transistors is illustrated in Fig. 3.31.

It is important to note that although there are nine set of clocks shown for this pipeline,

that only three clocks are actually distributed. All of the other clocks are locally generated

through series PMOS and NMOS transistors at the dynamic gates. This simplifies the clock

distribution network considerably and makes the network less prone to skew or other clock

uncertainties.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0
OS , ,O 9 +ep

3 1

Last gate;
of phase ;

Single gate
in phase

--
i

\ \ W —lid

r —

— i — ____ \ \ \ \ / / / /

■ — * ^ fUi
r y r ' r I

2 r̂echarge

First gate
of phase

Subsequent gate
of phase I

M
on

ot
on

ic
D

yn
am

ic

St
at

ic

M
on

ot
on

ic
D

yn
am

ic

St
at

ic

C
om

pl
em

en
te

d
D

yn
am

ic

St
at

ic

C
om

pl
em

en
te

d
D

yn
am

ic

St
at

ic

M
on

ot
on

ic
D

yn
am

ic

St
at

ic

M
on

ot
on

ic
D

yn
am

ic

St
at

ic

; 1

; ▲

1
None
▲

1 1

▲
AND-
Evaluate

1

=3

b <;t/Ja

8
0
■a

<f>

Si 9 * 9 8 1
u cj> • cf>

Phase 1 Logic

JM
"Ws.

More time Less time
to precharge to precharge

VVANo S h o rt '
Circuit Current

 m

Phase 2 Logic

JOB,'

-m :
jm

Phase 3 Logic Phase 1 Logic

m r
J M

■ m .
Less time to More time (o
evaluate evaluate \

f irs tg a te ^ ^ ^ ^ ^ ^ s u b s^ u ^ ^ ? 3 l

■m. M /

Figure 3.31: Generalized CL-domino pipeline.

3.6 Local Clock Generators

In most high frequency digital systems, including microprocessors, a single global clock is

distributed using either RC-matched trees or grids to minimize skew. Elements of tree net­

works include one-dimensional binary trees, H-trees, X-trees, geometrically matched trees,

arbitrary trees, tapered trees, trunks, spines, and meshes [4,8,29,31,35,37,52]. Moreover,

pseudogrid-spine networks have been shown which combine trees and grids [4, 18, 31].

Clock-logic domino, much like skew-tolerant domino, can use this same clock distribution

scheme with a single global clock. Within each unit or functional block, local clock gener­

ators utilizing either delay elements or feedback clock generators, such as Delay-Locked-

Loops (DLLs), could produce the required overlapping clock phases for CL-domino.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6.1 Clock Logic Generation Using Delay Lines

The simplest method to generate multiple overlapping clocks involve delay lines or delay

chains. This method is adequate for most applications since the generated clocks are dis­

tributed only within local clock domains and therefore skew can be controlled to a high

degree. Fig. 3.32 and Fig. 3.33 [71] show simple three phase clock generators that can be

used for CL-domino. The 1/3 cycle delay can be implemented with any even number of in­

verters, thus forming a non-inverting delay chain. In the general case, the amount of delay

required is Tc/ N and N phases can be produced by delaying the clock with delay chains.

Note that low-skew complement generators for complemented clocks are not required and

hence no additional skew is introduced for those components.

The delay line will closely track the speed of critical paths to which it feeds. This is

because the delay line will be located in close proximity to the clocked circuits and any

variations in voltage, temperature, transistor orientation and processing will affect both the

clock generator and clocked logic circuits equally, to a first order. Thus we can say that

Clock Logic domino is only sensitive to relative delays rather than absolute delays.

t > — o - i

1 1/3 Cycle Delay 1/3 Cycle Delay

Figure 3.32: Three phase clock generator Figure 3.33: Three phase clock generator
with inverting buffers. with non-inverting buffers.

3.6.2 Clock Logic Generation Using Delay Locked Loops

Lower skew and less duty cycle uncertainty can be achieved for CL-domino clocks using

feedback systems that track delays over process and environmental changes. There are two

common types of feedback systems which precisely generate local clocks from a globally

distributed reference. The simpler of the two are delay-locked-loops (DLLs) while the more

complicated are, from a loop architecture perspective, the phase-locked-loops (PLLs) [8] .

An example of a local three-phase DLL CL-domino generator is shown in Fig. 3.34. It is

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

important to note that this is just a abstracted view of a DLL system whose design is beyond

the scope of this work.

Reference

Control Voltageglobal

Control
C ircuit4 >

1/3 Cycle Delay 1/3 Cycle Delay 1/3 Cycle Delay

Multi-phase
generators

Figure 3.34: Three-phase DLL CL-domino clock generator.

A global PLL distributes a single-phase global clock to multiple DLLs at different CL-

domino functional units [54], This distribution scheme requires less area for clock wiring

and is free of inter-phase skew at the global level, where clocks could run for several tens

of millimeters. Each DLL loop receives the global clock and delays it by Tc/N , or 1/3 in

this case, through adjusting the control voltage to the inverters so that the delay line has

a full cycle delay. The delay line in this case is called a Voltage-Controlled-Delay-Line

(VCDL). The feedback controller; nominally containing a phase detector, a charge pump

and a loop filter [47]; compensates for process and environmentally dependent frequency

variations through modulating the delay line voltage. Normally the time required to perform

the compensation, or lock time in DLLs, is very short [8].

Recently, improved DLLs have been introduced which overcome, to a certain degree,

some limitations of classical DLLs. These include limited delay ranges [10, 34, 47, 56],

loop-to-loop jitter [36, 47, 56], power consumption [36, 47], and area penalty [47]. How­

ever, there still exists a relatively large area penalty for CL-domino units that employ DLLs

over those that employ delay lines. In addition, power requirements, which have recently

become a problem in high frequency integrated circuits, and design complexity have to be

balanced against any potential skew improvement and duty cycle invariability that DLLs

offer. In future microprocessor designs, however, where skew might account for a larger

portion of the clock cycle, DLLs might inevitably have to be used.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 Summary

Domino logic circuits provide a raw gate delay advantage over static circuits to achieve

multi-GHz performance in high speed designs. Skew-tolerant domino logic uses overlap­

ping clocks to remove the three sources of sequencing overhead in traditional single-ended

domino and dual rail domino: clock skew, latch delay and unbalanced logic. However,

single-rail domino only allows non-inverting, monotonic logic in the pipeline. Dual-rail

domino, with true and complemented versions of the inputs and outputs are usually re­

quired. Clock-logic domino, is an alternative to dual-rail domino for computing inverting

and non-monotonic logic in a single-rail dynamic pipeline. This is accomplished through

adding between one to four clocked transistors to selected dynamic gates. Many of the

benefits of skew-tolerant domino such as immunity against clock skew and time borrow­

ing to balance pipeline stages are inherited for normal monotonic logic functions although

the windows for skew tolerance are narrowed and non-time borrowing penalties exist for

any complemented or non-monotonic function. If the timing guidelines for CL-domino are

adhered to, a single rail domino pipeline can accomplish the same function as a dual-rail

domino pipeline while minimizing power consumption, RC delays and area.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Example High-Speed Microprocessor
Datapath: 64-bit ALU

4.1 Introduction

To evaluate the delay performance and power benefits of Clock-Logic domino in the context

of current generation high-speed microprocessors, we compared three 64-bit Arithmetic

Logic Unit (ALU) datapaths: the first built in CL-domino, the second built in dual-rail

skew-tolerant domino and the third built in static CMOS. The ALUs were simulated in

TSMC’s 0.18 /xm general purpose logic process, with a typical inverter delay of 29.5-ps,

an F04 inverter delay of 71.6-ps, and a nominal operating voltage of 1.8-V. We assumed

an ALU microarchitecture similar to that proposed by Intel [30, 32], by IBM [26], and by

Sun Microsystems [28], For the comparison study, each of the dynamic ALUs, CL-domino

and dual-rail domino, was modeled with contacted diffusion parasitics on each transistor

source/drain and with parasitic capacitors on long signal bus lines. We did not, however,

model the capacitive or resistive parasitics of the remaining signal wires. For the static

CMOS ALU, the transistor parasitics were modeled using extracted layout data from a

standard cell library and the effect of wiring was minimized using a very optimistic wire

load model for fair comparison.

This chapter is organized as follows: Section (4.2) describes the architecture and cir­

cuit design of a 64-bit ALU in three different CMOS logic families: CL-domino, dual-rail

skew-tolerant domino and static CMOS. Section (4.3) describes the simulation methodol­

ogy and gives the simulated power dissipation and delay performance results of the three

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ALU designs.

4.2 ALU Design

For current generation, out-of-order superscalar microprocessors, 64-bit ALUs that can ex­

ecute integer instructions and effective address calculations with single-cycle latency and

throughput in order to avoid unnecessary stalls are desirable [30, 32]. Multiple integer

ALUs, working in parallel, typically occupy a stage of a microprocessor pipeline in the

portion of the instruction cycle called “Execute” [44], The cycle time of the ALUs, in some

cases, can determine the maximum clock frequency of a microprocessor and so must be

designed for maximum speed. However, since the ALU is also one of the most utilized

components, they must also be energy-efficient to conserve power and improve reliability.

ALUs typically consist of a fast binary adder core, a set of inverted inputs to support

subtraction, input multiplexers, a variable shifter, and possibly output multiplexers to select

between the adder and other simpler functional units. All of these components will be

incorporated into our ALU test architecture.

4.2.1 ALU Architecture

The ALU structure as proposed in [22, 30] was used to design all three ALUs. This partic­

ular architecture contains wide input multiplexers; to support a combination of forwarding

from different microprocessor instruction pipeline stages and data from register files, first-

in-first-out (FIFO) buffers and other ALUs; variable 4-b left shift operations for one operand

as discussed in [22], and negation/subtraction operations for the second operand. It can also

select among the results of the adder and two other simpler logical units for the output result

bus. The simpler logical units are not on the critical path of the ALU and hence were not

implemented for these experiments. The ALU has a feedback path which allows the previ­

ous results to be used directly in the following cycle. This allows fast parallel out-of-order

execution for superscalar microprocessors.

Although microprocessor pipelining often occurs across instmction stages, micropipelin­

ing within an instruction stage is also possible. The CL-domino ALU and the dual-rail

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

skew-tolerant domino ALU are micropipelined to operate from a locally generated five-

phase clock with no intervening latches between blocks of domino logic to reduce the

skew penalty, manage logic imbalances and reduce the micropipeline overhead for latch

delays. Each stage of the ALU micropipeline is distinct from the other stages according to

the clocks that control its precharge and evaluate operations. Studies of assigning clocks

to skew-tolerant micropipelines in high speed functional units, including a 64-bit adder,

have been previously discussed [42, 46, 48]. Those micropipelines were concentrated on

efficient time-borrowing between stages to minimize the delay for stages of imbalanced

logic. We will concentrate not only on skew tolerance and time borrowing, but also on

assigning clocks to reduce the performance penalty at the interface between monotonic and

non-monotonic logic since time cannot be borrowed across this boundary.

CL-domino ALU

A generalized CL-domino pipeline using a combination of OR-precharge, AND-evaluate,

domino precharge, and domino evaluate was implemented in the first ALU design. Only

five clocks were distributed to the ALU and all other ORed and ANDed clocks were gen­

erated directly at the dynamic gates. Unfooted dynamic gates and compound static gates

were interspersed with footed dynamic gates and inverters. Furthermore, unfooted gates

used a delayed phase clock, matched to approximate the evaluation delay of the previous

gates in the same phase [8], in order to minimize short circuit currents without impacting

performance. The method of staggering footed and unfooted dynamic gates as discussed in

Section 3.5.3 was not used. Dynamic inverters and buffers were used to pass data through

phases that perform no logic to avoid race-conditions. An odd bitslice of the CL-domino

ALU with the clocks assigned to each stage is shown in Fig. 4.1. The dynamic gates that

im plem ent input com plem ented and/or non-monotonic logic are denoted in the figure. The

critical path through the adder core is from the 2:1 mux through the carry merge tree to

the XOR gate that produces the final sum. Thus nine dynamic and static gate stages must

execute in 3 • Tc/ N ps before the rising edge of $ 5.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Precharge M *',ed

ALU Output

Evaluate
Clocks

Precharge
Clocks

NoneNone None

Input Complemented/

Input Complemented/

1 Logie Phase 3 Logic Phase 4 Logic Phase 5 Logic

Cany

f

Figure 4.1: CL-domino ALU odd bitslice.

Dual-Rail Skew-Tolerant Domino ALU

A dual-rail skew-tolerant domino pipeline was implemented in the second ALU design.

A dual-rail ALU is used in most commercial microprocessors due to the non-monotonic

nature of the XOR functions needed to implement addition [19, 22, 28, 42, 66], In the

case of the Itanium 2, dual-rail signals are only generated before the adder core through a

dual-rail pulsed entry latch.

Although many differential domino logic families exist [58,64, 65], Domino Dynamic

Cascode Voltage Switch Logic (DDCVSL) is still the simplest, most robust, and is among

the fastest. As in the CL-domino ALU, footed and unfooted dynamic gates and compound

static gates were used extensively in the dual-rail skew-tolerant ALU. An odd bitslice of the

dual-rail DDCVSL ALU utilizing five-phase clocks is shown in Fig. 4.2.

Static CMOS ALU

The static CMOS logic style was used for the third ALU design. Although static CMOS

is usually 1.5-2.0X slower than dynamic logic [43], it still is important for many high-

performance microprocessor designs [17,28,25] because of its better noise margins, design

simplicity and support by synthesis tools. Furthermore, static circuits dissipate less power

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Precharge
Clocks |

• A_T
• Mu* •

A_T

Evaluate
Clocks

Precharge “ |
Clocks |

---------------- ► 9:1
a . Mu* •

E valuate ^ ~ \
Clocks <J>

Precharge t .
Clocks |

-----------------► 9:1

8 / Mu*
 f ► B_T

Evaluate I
Clocks 41,

Precharge
Clocks |

Delayed 4>

Evaluate I
Clocks <J>

B_T

H-1

• CM l :

CMl :

LT~J

Delayed $

_

--
None

Delayed $

 ..I.

PSum_T
n
I PSum_F

CM5 3

Lr J
Even

» Carry
t r

Mux

—I—

-D>

-[>

<-------- 200-ps -------- ^

-.00-,*,

............. \ /

/ \

! \ \

\ / \

Figure 4.2: Dual-rail skew-tolerant ALU odd bitslice.

than dynamic circuits, assuming a switching activity factor of 0.5, because they switch

only when their inputs change while dynamic circuits continuously cycle through precharge

and evaluate operations. Furthermore, no clock power is consumed. This ALU was not

micropipelined since static CMOS has no implicit latching and inserting latches in between

static circuits would incur too much overhead. Therefore, the static CMOS ALU is a purely

combinational circuit. A single bitslice of a static CMOS ALU is shown in Fig. 4.3.

Logical
Input#

ALU Output

Input Complemented/ Input Complemented/Input Complemented/

CM3 Cany

Figure 4.3: Static CMOS ALU bitslice.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Adder Core

Background

The 64-bit adder core is the primary component of an ALU and its architecture is critical in

determining its performance and power requirements. Although many adder architectures

exist [6, 8, 60], only a few are predominantly used inside modem microprocessors.

In the first generation Alpha design by DEC/Compaq (21064) [21], the 64-bit adder

used Manchester Carry Chains (MCC) at the eight-bit level with Carry-Look-ahead Addi­

tion (CLA) and Conditional-Sum Addition (CNSA) on the least and most significant 32-bits

respectively. Furthermore, a Carry-Select-Adder (CSLA) was used to produce the results

in the upper 32-bits. In more recent Alpha implementations (21164) [42], a two level carry

select scheme is used.

For recent IBM 64-bit PowerPC and the Power4 microprocessors [19, 25], the 64-bit

ALU is implemented so that the lower 24-bits are calculated faster than the higher order

40-bits because the lower order bits are required to access the translation-lookaside-buffer

(TLB) and the cache memory. In the Northstar PowerPC architecture, a CSLA architecture

is used where carry selection is performed at the eight-bit level. These eight bit slices were

built from simple-function dynamic circuits. In later designs, such as the Pulsar PowerPC,

the Istar PowerPC [2], and the Sstar PowerPC [33,66], the low order 24-bits were generated

with a three-level CLA and the remaining high-order 40-bits generated by the same CSLA

logic as the Northstar PowerPC. The Power4 uses a carry-lookahead Ling adder for its

low order 24-bits. It should be noted that the Istar, Sstar, and Power4 processors are built

in partially-depleted silicon-on-insulator (SOI), which boasts higher logic speeds at the

expense of increased design complexity and decreased circuit yield [11],

A recent Hewlett-Packard/Intel LA-64 processor (Itanium 2) implements 64-bit and 32-

bit ALUs which use a combination of Carry-Save Adders (CSA) and carry-look-ahead

adders with simplified 4-bit carry Ling term [22],

The Intel Pentium IV incorporates a 32-bit adder core using a simpler propagate-generate-

kill addition algorithm (PGK) on 16-bit slices at twice the core clock frequency [23]. The

low-order 16-bits are needed at one time to begin access of the LI data cache when used to

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculate an address. Because the low-order and high-order 16-bits are computed at twice

the rate of the core clock and can immediately feed a dependent operation in the second

half of the core clock cycle, read-after-write (RAW) hazards between two simultaneously

issued and dependent instructions are avoided in this superscalar architecture.

Some processors have adopted an alternative approach for addition based on recurrence

solvers of which the Kogge-Stone [50] and Han-Carlson [41,67] adders are the most popu­

lar. For example, the 32-bit floating point adder on the Intel IA-32 (Pentium II and Pentium

III) uses a Kogge-Stone architecture to support single instruction, multiple data (SIMD)

floating-point data types [63]. An IBM 64-bit PowerPC processor also uses a Kogge-Stone

architecture in its fixed-point execution unit [26], Sun Microsystems’ third-generation

SPARC V9 processor (UltraSPARC III) uses a modified Kogge-Stone carry chain for its

high performance single-cycle ALU [28]. Intel has demonstrated 32-bit and 64-bit versions

of single-cycle latency and throughput ALUs based on Han-Carlson adder cores [30, 32]

for possible use in future microprocessors.

Implemented 64-Bit Han-Carlson Adder Core

It was assumed in our implementation, that all bits of the ALU are equally critical and

therefore the results from the higher order bits are required as fast as the results of the

lower order bits. A recurrence solver-based adder was chosen based on its highly regular

layout properties, good control of fan-out and fan-in to the carry generation gates, and its

popularity in recent microprocessors [8],

Logarithmic look-ahead adders are often referred to as recurrence solver-based adders

or parallel-prefix adders [8, 60], They function in a way such that the carries are produced

in 0(log<2k) stages, where k denotes an k-bit adder. In essence, the “recurrence solver”

are sim ply a variation o f the m any p ossib le C L A topologies, where Cin = 0 to the least

significant bit, or L S B , is assumed. The carry-look-ahead equations rewritten in the form

of a recurrence is:

(g,p) • (g,p) = (g + P9,PP)- (4-1)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main disadvantage of the recurrence solver-based adders, is their inability to handle

subtraction in a single ALU cycle if the result is required in two’s complement form. An ex­

ception to this is when the ALU core is double clocked with-respect-to the rest of the logic

as is the case in some Intel architectures [30, 32]. ALU subtract operations therefore must

execute in two clock cycles through adding the true value of a first input operand to the com­

plemented value of a second input operand in the first cycle, to obtain a one’s complement

result, and then adding ‘1’ to the one’s complement result in the second cycle to obtain the

two’s complement result. The inability to execute single cycle subtract operations is usu­

ally not detrimental to processor performance since a 64-bit ALU covers the entire range

of possible memory addresses (i.e. all addresses can be calculated through additions) and

most integer subtract operations can be easily recoded into additions through the compiler

or in hardware. Furthermore, subtracted data in one’s complement form can be recomputed

into two’s complement form where necessary, possibly using a simple incrementor.

A recurrence solver-based adder computes the sum in three steps:

(1) A preprocessing step where the propagate and generate terms are calculated for the

input operands according to:

g = a ■ b
_ a + b : if psum used (4.2)

^ a © b : if psum not used.

The propagate term (4.2) can be obtained through the OR operation since carry gen­

eration does not require the use of an XOR term. An OR operation is good since it is a

monotonic, non-inverting function which can be implemented in conventional single-rail

domino logic as opposed to the XOR operation.

(2) A processing step that generates the carry bits using a parallel prefix algorithm. This

step is often referred to as carry m erging.

The partial sum (psum) could also be obtained in parallel during this step, if the OR

operation is used for calculation of carry propagate (4.2). This is appropriate since the

partial sum can be calculated much faster than the carry bits and therefore the partial sum

XOR operation is not on the critical path. The partial sum can be calculated from the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

following equation:

psum — a@b. (4.3)

(3) A postprocessing step where the final sum is calculated from the carry bits:

s u m
p s u m © Cin- 1 : if psum used

p © cm_j : if psum not used. (4.4)

While the Kogge-Stone and Han-Carlson adder architectures are similar, a recent study

of both has shown that a radix-2 Han-Carlson adder dissipates around 57% of the energy of

a Kogge-Stone adder [30]. This is because the carry-merge (carry generation) is performed

on alternating bitslices instead of on every bitslice. This reduces the number of logic gates

by approximately one-half at the cost of an extra stage delay in the carry merge tree. This

results in the carries being generated in 0(log2k + 1) stages. The interested reader can find

more information about recurrence solver addition in the available literature [59].

The chosen Han-Carlson adder core comprises of only nine primary types of cells.

Logic gate variants include footed dynamic, unfooted dynamic and static CMOS so that

the carry merge is accomplished in both the dynamic and static stages using compound

domino logic [45]. Static and dynamic inverters are further added to the paths to pass data

between stages on bitslices where carry merging does not take place. The dynamic inverters

functioned as latches which fed into compound domino logic. The logic equations for the

primary types of cells are:

1. PG Gen

Pi, 1 = a i bj ^
9i, 1 = ' b%-

2. Black Cells (Negative Input)

Pj,2k = Pt,2fe-1 + P j ,2 k - l (4.6)
9j,2k — (Pj,2k~\ + 9 i ,2 k - \) ' 9 j ,2 k - l

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Black Cells (Positive Input)

Pj,2k+1 = Pj,2k ■ 9i,2k + 9j,2k (A 7)

9 j ,2 k + l = Pi,2k ' Pj,2k

4. White Cells

Pi,k — P i,k — 1

9i,k = 9 i ,k —l
(4.8)

5. Sum Cells

psurrii | surrii = a; © | psurrii © Cj_i (4.9)

The adder core was constructed using carry merging on odd bitslices, skipping even

carries, as in [41], instead of carry merging on even bitslices as in [30, 32], This reduces

the number of carry merge bitslices by one. Minimum sized static and dynamic inverters

pass the p and g signals from the even bitslices to the next logic stage. This implementa­

tion assumes that the inputs to the adder are available in true form. Following the propa­

gate/generate stage, 64-bit carries are generated in six logic stages with an extra carry merge

logic stage required to generate the missing even carries at the end of the carry merge tree.

These carries can then be combined with the precomputed partial sums to obtain the final

sum in a last stage. Therefore, all of the sum bits are computed in nine gate stages. In

the PG Gen, the fanout of p i j is limited to two gates while the fanout of g i j is limited to

one gate. For the other carry merge stages, p is limited to a fanout of three gates while g

is limited to a fanout of two gates. Since the p gates have more fanout than the g gates,

the precharge transistors for these dynamic gates are upsized appropriately. The switched

capacitance is negatively affected by the relatively long wires that route across the carry

merge tree. These wires can span 32-bit slices in the worst case. However, careful routing

and shielding of these signals can limit stray wire capacitance and coupling effects. A dy­

namic node spans no more than 16-bit slices in the worst case and the precharge transistors

are upsized to account for these long wires.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The parallel prefix graph of the 64-bit adder core is shown in Fig. 4.4. In order to

reduce the number of transistors used, the propagate term for each bit was only computed

where necessary. For example, bit 59 does not require the propagate term after CMl. All

the generate terms, however, are required to compute the carry out for that particular bit

position. The carry out for the most significant bit 63 is discarded.

4.2.3 Adder Core Cells

From the equations in Section 4.2.2, the largest dynamic or static gates are only 2-wide

in the adder core for minimum stray capacitance on the output nodes of the logic gates.

Furthermore, to increase speed at the expense of robustness to noise, keepers were omitted

from the dynamic gates of the carry merge tree.

CL-Domino Propagate/Generate Cells

The CL-domino propagate/generate cells implemented in dynamic logic are shown in Fig.

4.5.

Dual-Rail Skew-Tolerant Domino: Propagate/Generate Cells

The dual-rail skew-tolerant domino propagate/generate cells implemented in dynamic logic

are shown in Fig. 4.6.

CL-Domino: Dynamic and Static Carry Merge Cells

In order to increase the speed of the adder core in CL-domino, series clock transistors were

removed from the critical path as much as possible. An example of this occurs when con­

sidering the use of OR-precharge in the 2:1 multiplexer before the non-monotonic PSUM

gate. The series transistors were moved from the 2:1 multiplexer to the PSUM gate, which

was clocked with AND-evaluate, since that XOR gate is not on the critical path. The CL-

domino compound static carry-merge cells are shown in Fig. 4.7. The CL-domino footed

and unfooted dynamic carry-merge cells are shown in Fig. 4.8, while the carry-merge cell

that uses OR-precharge before the final sum is shown in Fig. 4.9.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PQo n

. i f
8o
f55! iCL>

C/5tzsn
<3J>
C _>o>
C/5o>Q-h

P Qo n

B I T 6 3 = S — ^ s > -

White Cell Black Cell Black Cell
Positive Input Negative Input

XOR Cell PQ Oen

Figure 4.4: 64-bit Han-Carlson adder core architecture.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk elk C
►gbor

Figure 4.5: Unfooted CL-domino: propagate/generate cells.

deloyed_c lk

p b a r_ f

o _ t b_ t b_f

a_ f

deloyed _c lk d e lay ed_clk

• g b a r _ t • g b a r_ f

b_ t o_f b_f

o _ t

Figure 4.6: Dual-rail skew-tolerant domino: propagate/generate cells.

Dual-Rail Skew-Tolerant Domino: Dynamic and Static Carry Merge Cells

The dual-rail compound static carry-merge cells are shown in Fig. 4.10.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pLborpLbor

qLbor

pi_bar_minus_1

qLbor qLbar

pLbor

Figure 4.7: CL-domino: static carry-merge cells.

The dual-rail footed dynamic carry-merge cells are shown in Fig. 4.11, while the un­

footed dynamic carry-merge cells are shown in Fig. 4.12.

CL-Domino: XOR Cells

The CL-Domino XOR gate is the true logic network of the high-performance XOR gate

proposed in [49]. This XOR gate was used for both the calculation of the partial sum and

final sum. The partial sum XOR gate uses OR-Precharge / AND-evaluate with internal node

precharging as shown in Fig. 4.13, while the final sum used domino-precharge/domino-

evaluate as shown in Fig. 4.14.

Although more complicated XOR circuits boasting higher performance using precharged

pass-gates and precharged Wang’s XOR [73] have been recently proposed [30, 32], we de­

cided to keep our design simple and robust.

Dual-Rail Skew Tolerant Domino: XOR Cells

The dual-rail skew tolerant domino XOR gate is the commonly known dual-rail XOR with

shared evaluation terms [43] This circuit is shown in Fig. 4.15.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

_ m in u s_ 1

elk

qj. ,m inu s_ 1

- c

c
-■ M e

►pLbor

►gLbor

J t - * -

deloye d _ c lk

p i_ m in u s _ 1

► p i_ b a r

c

deloye d - d k ^

q i_ m in u s_ 1

► g L b a r

J h - aL

I

Figure 4.8: CL-domino: dynamic footed and unfooted carry-merge cells.

4.2.4 Multiplexers

The multiplexers are on the critical path of the ALU and must therefore be designed for min­

im um delay. W h ile transm ission gate m ultiplexers have been used in other A L U designs

[30], it is more beneficial to implement dynamic multiplexers since they can help balance

the pipeline through time borrowing. The multiplexers are domino logic with one-hot en­

coded select inputs; meaning only one select bit goes high during the evaluate period as in

[3, 22, 29], The select inputs are at the top of the NMOS stacks and the data inputs are at

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c lk l

q i . .m in u s , 1

Figure 4.9: CL-domino: dynamic OR-precharge carry-merge cell.

the bottom to minimize charge sharing. Most variants of the dynamic multiplexers contain

standard PMOS half keepers to increase noise robustness while CL-domino multiplexers

with locally generated OR/AND clocks used full keepers. Each leg of the dynamic mul­

tiplexer used separate evaluation transistors thus improving evaluate and precharge delays

and reduced charge sharing at the expense of extra clock load.

9:1 Input Multiplexers

The 9:1 input multiplexers, used for forwarding and selecting data from register files and

FIFOs, are fairly wide OR-type structures, well suited for dynamic logic. The two variants

used for all circuit designs are footed domino with domino precharge as shown in Fig. 4.16

and footed domino with OR-Precharge as shown in Fig. 4.17. The OR-Precharge variant

is only used in the CL-domino ALU while the other one is used in both CL-domino and

dual-rail skew tolerant domino ALUs.

In deep sub-micron processes, increased leakage currents and greater noise sensitivity

of wide fan-in gates can often become problematic. To reduce the number of parallel pull­

down paths, a technique of splitting the storage node and then combining the storage nodes

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p i_ b o r_ m in u s _ 1 _ t 5
p i_ b o r_ t

► p L t

p i_bar_m inu! ,1_t

p i_bor_f
p!_bar_m inus 1_f

1----------------- * - * p i_ f

p L b o r_ m in u s_ 1 _ f_ |p

p i_ b o r_ || -

g i_ b a r_ m in u s i l_ f
p i_bor_f

p i_b o r_ t

q i_ b o r_ t

q i_ b o r_ m in u s_ 1 _ t

g i_bor_i q i_ b o r_ m in u s_ 1_f

pi_ b o r_ f
p i - b o r_ t

g i_ b a r_ m in u s i 1_t

Figure 4.10: Dual-rail skew-tolerant domino: static carry-merge cells.

with an output static NAND gate, much like compound domino, is commonly used [22, 29].

However, we did not implement wide multiplexers in this manner since they consume more

area and are more difficult to layout.

2:1 Inverting Multiplexer

The 2:1 multiplexer, used for implementing subtraction, is a 2-wide domino circuit that

accepts true and complemented values of the 9:1 ‘B’ multiplexer output. In single-rail CL-

domino, one of its inputs is fed by an even number of inverters after the preceding dynamic

gate and therefore is input complemented. This imposes a non-time-borrowing penalty

through that 2:1 multiplexer. In dual-rail domino, the true and complemented outputs of

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p i_ m nus_1_t
p i_ b o r_ t

elk

elk

g i_ T iin u s_ 1 _ t^ |-‘

P '- t I

► gLbof.t

9 '- t

■ninus_1_f

g L b o r _ f

Figure 4.11: Dual-rail skew-tolerant domino: dynamic footed carry-merge cells.

the 9:1 ‘B’ multiplexer are available and no time borrowing penalty exists at the expense

of almost twice the number of transistors and correspondingly increased power dissipation

and performance degradation due to increased routing complexity. The 2:1 multiplexer is

shown in Fig. 4.18.

4.2.5 Variable Shifter with 5:1 multiplexer

The 5:1 multiplexer is a 5-wide domino circuit that accomplishes shifting of the 9:1 ‘A’

multiplexer output operand through wiring. Each output bit of the ‘A’ multiplexer is wired

to the inputs of data transistors in 5 adjacent 5:1 multiplexer bit slices to accomplish left

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deloye d . c l k j j *̂

p i_m inus_1_t_ j |- '

►pLbar_t

dkii*-

5

pi_minus_1

~ T

►pi_bor_f

delayecL clk
c

elk

q i_m inus_ 1_t

p L t

C

- ♦ g i _ b a r _ t

gi-f
► gi_bar_f

_2kL

qi_m inus_ 1_f

5
I

Figure 4.12: Dual-rail skew-tolerant domino: dynamic unfooted carry-merge cells.

shifting by 0-4 bits. The most significant bits that are shifted out are discarded. While other

types of shifters exist, such as barrel shifters or logarithmic shifters [60], they are based on

pass-transistor techniques and thus do not have the benefits of time borrowing to balance

pipeline stages as in domino logic. The unfooted domino version of the 5:1 multiplexer

as used in the CL-domino implementation as shown in Fig. 4.19 and the footed domino

version as used in the dual-rail skew tolerant domino implementation is shown in Fig. 4.20.

4.2.6 3:1 Output Multiplexer

The 3:1 multiplexer is a 3-wide domino circuit that selects the output of the ALU from the

adder or two other simpler functional units. These other functional units were not designed

for these experiments since they are not on the ALU critical path. Examples of simple

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e l k 2

p s u m b

b_in ter jjb_ in te rb 0^ b_inter

ij a _ in te r ^

_________ internol_node

o_in ter

e l k 1

Figure 4.13: CL-domino: PSUMcell.

elk
HL

c o u t

s u m b

p s u r

- O -
c o u t

4 p s u m

■K

►sum

Figure 4.14: CL-domino: SUM cell.

functional units include zero detectors, counting leading zeros or rotators. The 3:1 output

mux is shown in Fig. 4.21.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elk

b _ t b _ t

o _ f

Figure 4.15: Dual-rail skew-tolerant domino: PSUM and SUM cell.

elk

o u tb
•out

sel< 1 sel< 2 : s e l<4:se l< 3 : s e l<5: s e l<6: se l< 7 : se l< 8 :

d < 1 > : d < 4 > .d < 0 > . d < 2 > i d < 3 > , d < 5 > . d < 6 > i d < 7 > . d < 8 > .

Figure 4.16: 9:1 input multiplexer.

clk2

clkl

outb o u t
e l< 0 > |rJ s e l< 1 > |fJ s e l< 2 > jJ s e l< 3 > |<-l sel<4>jr-J s e l< 5 > ir-j s e l< 6 > jJ s e K 7 > iJ s e l< 8 > |

d< 1>d < 0> d < 2 > d< 4>d< 3> d < 5> d < 7 >d< 6> d< 8>

Figure 4.17: 9:1 input multiplexer with OR-precharge.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cJh__

s e l< 0 > ||-

d < 0 > i r

elk

outb

sel< 1 >isel<0>i

Figure 4.18: 2:1 multiplexer.

t outb

se l< 1 >|^ s e l< 2 > | ^ s e l< 3 > | | j s e l< 4 > J

d < 1 > i d-^ H C d _ < 4 ^ |-

7 ' 7 K 7

Figure 4.19: 5:1 unfooted variable shifter/multiplexer.

►out

elk

s e K O ^ H sel< 1 >

d < 0 > i

e K 1 > |[~j se l< 2 > | J

outb

se l< 3 > iH sel<4>ir

d<1> d<2> i d<3> I d<4> i

► out

Figure 4.20: 5:1 footed variable shifter/multiplexer.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d < 0>

r—

J 7sel< 1 >if“ se l<2> | |~

d<1>
c

HE

d < 2 >
c

■c

Figure 4.21: 3:1 output multiplexer.

4.2.7 Bus Driver

- ♦ o u t

The ALU has to drive the inputs of other units used for integer execution such as register

files, FIFOs, data caches and loopback buses [30, 32, 42], This presents a fairly large

capacitive load to the ALU outputs and hence a string of progressively larger inverters

was used to drive the load. For our design, the string of inverters was folded into the

static output inverter of the 3:1 multiplexer for domino logic compatibility. Thus any odd

number of bus driver inverters would maintain the correct polarity. Since it was assumed

that the load capacitance is approximately 50-fF for each bit, a three stage inverter design,

with two inverters comprising the bus driver, was required. The scaling factor was 3.75 as

suggested in [68] instead of the exponential factor as suggested in other literature [5]. Using

a folded driver in this manner allowed the 3:1 output multiplexer to borrow evaluation time

from the 9:1 input multiplexers when the loopback bus was enabled, thus mitigating timing

constraints. The falling transition of the bus driver is now counted toward the precharge

delay of the output 3:1 multiplexer since an odd number of inverters exist between the

dynamic gate and the chain of static gates.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.8 Other Circuit Design Considerations

Other design considerations included the extensive use of compound static gates inside the

adder core, thus enabling carry merging to be accomplished in the static as well as the

dynamic logic stages. This substantially improves circuit performance. The compound

static gates inside the adder core favor rising outputs for evaluation at the expense of falling

outputs for precharge. This was accomplished through sizing all the NMOS network tran­

sistors minimum width and sizing the PMOS network transistors for equal drive strength as

a normally sized NMOS network.

The use of unfooted dynamic gates increases logic speed since the pull-down stack

height is reduced and the unfooted gates can use smaller logic transistors thus resulting in

smaller input loading. Unfooted dynamic gates, furthermore, reduce clock load thus saving

clock power. Care was taken to size the precharge transistors of the unfooted gates to meet

precharge timing, where some unfooted gates have less precharge time because they use

OR-precharge. Since it is imperative that the inputs to the unfooted gates discharge quickly

to minimize short circuit current and reduce precharge time, an unfooted dynamic gate must

be preceded by a footed dynamic gate [29]. Moreover, most unfooted domino gates were

clocked by a delayed version of the clock phase, as generated through passing the original

phase clock through two simulated inverters. The propagation delay of this delay buffer is

intended to match the delay of the dynamic and static gate of the previous footed domino

gate thus effectively delaying the precharge clock edge to reduce power without impacting

performance [8]. In our ALU designs, delayed clocks were slowed by the equivalent of two

back-to-back inverters. The output of the inverters have ideal drive strength, as determined

through the Cadence Mixed-Signal Interface, to minimize the design effort required for

the clock drivers. The delays of these inverters will compare favorably against the logic

delays for different process and environmental conditions since the precharge delay circuit

is placed in close proximity to the logic gates and therefore both will be affected by the

conditions equally. The only unfooted gate that was not clocked with a delayed phase clock

was PG Gen. This was so that the adder performed better for best case data as the expense

of extra short circuit power dissipation.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tapered pull-down NFET stacks were used extensively in the ALU designs to reduce

junction capacitance loading and increase speed [61, 62]. Tapering refers to increasing the

size of each NMOS transistor that is one level deeper in the stack because those transistors

must discharge more internal node diffusion capacitance than transistors higher up in the

stack. Last, if an inverter was used as the static gate at the output of a dynamic gate, it was

high-skewed with a ratio of 4:1 (P:N) to maintain a reasonable trip point for speed while

maintaining improved noise immunity [43]. The inverters on non-timing critical paths were

skewed with a 2:1 Beta ratio.

4.3 Simulation Study of 64-Bit ALUs

4.3.1 ALU and Adder Core Functional Verification

The ALUs were designed with a typical top-down microprocessor design flow [13]. The

starting point of the design was a functional ALU specification, followed by a behavioral

level model written in ‘C’ and then a functional model written in Verilog. The functional

Verilog model of the adder core, which implemented the Han-Carlson carry merge algo­

rithm, was verified for correctness against a Verilog model of the adder core implemented

with the V operator. Once all of the above steps were satisfied for the ALU design, the

CL-domino and dual-rail skew-tolerant domino ALUs were implemented at the transistor

circuit level while the static CMOS ALU was synthesized into a netlist comprising of gates

from a standard cell library.

Before CPU and memory intensive transient analysis of the dynamic ALUs was at­

tempted, the adder core and ALU were checked for functional correctness at the Ver­

ilog switch-level. The two dynamic ALU schematics were extracted and each transistor

was considered a primitive element modeled by one of four zero-delay switches: NMOS,

PMOS, weak NMOS, weak PMOS. The “weak” switches were used when the transistors

were configured as weak feedback elements so that the logic simulator (NC-Verilog) can

resolve signal contention on nets that have multiple drivers. This occurred frequently in

the adder and ALU for keepers that fed back to the outputs of dynamic gates. The Verilog

switch-level models also included capacitance on the transistor gate terminals. This allowed

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nets coupled to transistor gates to store previously driven logic values to accommodate sim­

ulation of dynamic logic.

The functionality of all three adder cores was simulated for 100 random test vectors

as generated by a ‘C’ program. The results of the schematic adders were compared to the

functional Verilog model of the 64-bit adder. The Cadence Comparescan utility was used

to compare the results of the schematic adder cores with the results of the functional model.

This program was a waveform viewer which flagged differences between digital signal

traces. All of the adder cores were completely verified for the generated input stimulus.

The functionality of the ALUs were verified for the first 28 random test vectors as

generated by the aforementioned ‘C’ program. A behavioral Verilog stimulus file provided

control for the ALU through issuing new data operands to the ALUs every global clock

cycle and controlling the flow of data through the ALUs. This was mainly accomplished by

asserting various multiplexer select lines at different points in the global clock cycle. Every

path through the ALUs was tested through asserting each multiplexer control signal at least

once during the course of 28 ALU cycles. All the multiplexer select lines, except for the

output multiplexer, are asserted on the rising edge of 4>i, while the output multiplexer is

asserted on the rising edge of $ 4. The schematic ALUs were compared against the results

generated by a separate ‘C’ program that modeled the behavior of the ALU. The Cadence

Comparescan utility, in conjunction with the stimulus file, was used for comparing the

simulation results between the ALU and the ‘C’ program. All the ALUs were completely

verified for the generated input stimulus.

4.3.2 ALU Functional Delay and Power Measurements

Methodology

Circuit entry was performed using the Cadence IC design tools version 4.4.6. The dynamic

ALUs were simulated using the Cadence spectreVerilog mixed-signal simulator. A simula­

tion run consists of a DC analysis followed by a transient analysis where a digital simulator

(NC-Verilog) and an analog simulator (Spectre) fork different processes on a UNIX work­

station and communicate results. Furthermore, mixed-signal simulation parameters were

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

required to obtain the initial solution of a mixed-signal design. The accuracy of the tran­

sient analysis correspond to a selectable “Moderate” accuracy setting inside the Cadence

Analog Environment. The Cadence Analog Environment was used to netlist the dynamic

ALU designs. The Verilog functional description of the static CMOS ALU was exported

to Synopsys, which in turn generated the static CMOS ALU netlist, using the Cadence to

Synopsys interface.

The transient analysis results of the CL-domino and dual-rail skew-tolerant domino

ALUs were analyzed using a combination of the Cadence Analog Waveform Viewer, Ana­

log Waveform Calculator, SignalScan and the Results Browser. The results of the static

CMOS ALU on the other hand was reported using static timing and power analysis in Syn­

opsys Design Analyzer.

The target operating frequency for the dynamic ALUs, both CL-domino and dual-rail

skew-tolerant domino, was 1-GHz under high skew conditions. The latency and throughput

for a single add instruction was set to the clock frequency, meaning that the rate of opera­

tions completed and the number of new operations issued to the ALU is equal to the cycle

time, 1-ns . Although both ALUs can function at higher frequencies, proper operation at

the target frequency was sufficient to characterize it for intended use in a modem 64-bit

microprocessor built in 0.18 /xm technology with aluminum interconnect.

This clock frequency may seem low compared with recent 32-bit microprocessors which

have reached speeds of over 3-GHz [14]. It is, however, representative of 64-bit processors

in comparable or smaller technologies with comparable or faster interconnects and/or low

threshold voltage transistors for critical paths as shown in Table. 4.1.

Table 4.1: 64-bit microprocessors.

Microprocessor Technology Interconnect Frequency Reference
Intel Itanium 0.18 fim bulk-CMOS 6-layer aluminum 800-MHz [62]

Intel Itanium 2 0.18 /xm bulk-CMOS 6-layer aluminum 1.0-GHz [29]
Sun UltraSPARC III 0.13 /xm bulk-CMOS 7-layer copper 1.1-GHz [24]
Fujitsu SPARC64 V 0.13 /xm bulk-CMOS 8-layer copper 1.35-GHz [51]

IBM POWER4 0 .1 8 /xm SOI-CMOS 7-layer copper 1.3-GHz [25]
HP Alpha 21364 0.18 /xm bulk-CMOS 7-layer copper 1.2-GHz [15]

HP PA-8700 0.18 /xm SOI-CMOS 7-layer copper 1.0-GHz [69]

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The target operating frequency of the static CMOS ALU, on the other hand, was not

fixed at 1-GHz since we could not achieve that speed with the provided tools and standard

cell library. In all likelihood, even a custom static CMOS implementation would not be able

to achieve 1-GHz. Instead, constraints were set in the synthesis tool to minimize the delay

through the ALU at the expense of extra area and power.

For the dynamic ALUs, the clock generator, developed in behavioral Verilog, was able

to independently skew each clock by arbitrary positive and negative increments in relation

to adjacent clocks. Since it was determined that the F04 inverter delay in our process is

71.6-ps at 25°C, the skew between selected clocks was skewed by 72-ps. The worst-case

skew was chosen to be 1 F04 inverter delay since a well-designed local clock distribution

network can bound the skew to within 1 to 2 F04 inverter delays [42], Moreover, re­

cent publications have shown that the local skew inside microprocessors (incorporating an

ALU) can be bounded even more tightly. Simulated and/or measured maximum local skew

inside a 0.18 fim aluminum interconnect Pentium IV microprocessor is 38-ps [52], while

the maximum local skew inside a 0.18 nm aluminum interconnect first generation Itanium

microprocessor is 28-ps [31] and is 20-ps on a second generation Itanium 2 microprocessor

[29]. The F04 inverter delay in these processes was 70-ps [27] and therefore the maximum

local skew is: 0.54 F04 inverter delays in the Pentium IV, 0.40 F04 inverter delays in the

Itanium, and 0.29 F04 inverter delays in the Itanium 2. The Pentium IV manages to reduce

skew through delay-matched taps while the Itanium reduces the skew through active deskew

compensation and feedback control. Last, the Itanium 2 uses carefully matched load and

resistance-capacitance (RC) delays, special gater clock circuits and short local routes of

less than 1000 fim to minimize skew. Thus the 1 F04 skew between adjacent clocks in our

ALU comparison is conservative.

The clocks were skewed according to Table. 4.2 for the CL-domino and dual-rail skew-

tolerant domino ALUs. For our simulation studies, the clock generator produced 50% duty-

cycle clocks and clocks with longer or shorter duty-cycles were generated directly at the

dynamic gates. This is because it is common to generate 50% duty-cycle clocks from

a PLL and in most cases the overlap provided by 50% duty-cycle clocks is sufficient to

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

compensate for any skew and required time-borrowing [42,43].

Table 4.2: Worst case skew parameters for ALU simulation.

Reference Skewed Skew Primary
Clock Clock Direction Effects
*1 $2 Positive Reduces precharge time of 9:1 Mux B

which uses OR-precharge
4*3 $4 Positive Reduces evaluate time o f Psum

which uses AND-evaluate
$4 $5 Positive Reduces precharge time o f Psum

which uses OR-precharge

reduces available
time borrowing o f $5 from $1

Both the ALU stimulus, that provided the ALU control signals and data operands, and

the multi-phase clock generator were written in behavioral Verilog. These behavioral com­

ponents exist in a digital simulation partition and therefore must be interfaced to the ALU

which is modeled in an analog simulation partition. Furthermore, analysis of large binary

numbers in the analog simulation domain is difficult and thus the ALU outputs must be

interfaced back into the digital simulation domain for use in a logic analysis tool. Cadence

provides this ability through its Mixed-Signal Hierarchy editor and D/A and A/D simulation

interface elements.

The simulation D/A interface primitive performs the most basic digital-to-analog con­

version step by converting a logic state to a voltage and timing relationship. The chosen

D/A interface element was implemented as a boolean-controlled voltage source and an out­

put resistor. The primary purpose of the resistor is to model the non-ideal output impedance

of the digital input pin driving the digital-to-analog interface net. However, we chose to

model the driving clock, control and data signal drivers as ideal voltage sources with ap­

proxim ately zero output im pedance to sim plify analysis. T h e input ed ge rate for c lock and

data inputs follows the example of [30]. The parameters for the D/A interface elements are

summarized in Table. 4.3.

The simulation A/D interface primitive performs the most basic analog-to-digital con­

version step by sensing voltage and converting it to a logic state. The chosen A/D element

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.3: D/A simulation interface element parameters.

Parameter Clock Control and
__________________________ Outputs Data Outputs
Output Impedance 1 aLl 1 a ll
V O H v dd v dd
VOL Vss Vss
Rise Time (V OL —> V O H) 10 p s 50 ps
Fall Time (VOH -> VOL) 10 ps 50 ps

was implemented as an open circuit voltmeter. The interface element determines the volt­

age level across its positive and negative terminals and sends out a logic ‘0 ’ if the voltage

value is below V IL and sends out a logic ‘1’ if its value is above VI H. If the value is

above V I L and below V I H for a period longer than the transit time, tim ex, the interface

element sends out a logic ‘X’. We chose to approximate tim ex by a value very close to

zero so that the value read by the logic simulator would be the stable high or low output

values of the analog circuit. The parameters for the AID interface elements are summarized

in Table. 4.4.

Table 4.4: A/D simulation interface element parameters.

Parameter Analog Input
Values

t im e x 1 as
V IH 2 /3 Vdd
V IL 1 /3 Vdd____________

Results

The comparison study involved three ALU designs while largely neglecting the parasitic ef­

fects introduced by wiring. Contacted diffusion parasitics were estimated for the transistor

terminals and the electrical behavior of all transistors was described by industry standard

BSIM3 physical device models made available by the foundry. For the static CMOS ALU,

the effects of wiring were mostly neglected through specifying an optimistic, “TSMC 8K

aggressive”, wire load model since a zero wire load model could not be selected. Each

output bit of the ALU, can be coupled to the inputs of register files, FIFOs and data caches,

which might comprise the next stage in a microprocessor pipeline, in addition to a loop-

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

back bus for both 9:1 ALU input multiplexers. Excluding the input gate capacitance of

the ALU multiplexers, a 50-fF load capacitor was used to approximate the capacitance

of each bit of the loopback bus and that of the inputs to the next stage execution units.

This value was estimated through comparing two ALU loopback buses, one for a 64-bit

ALU of 1200/Ltm length in a 0.18 fim process and another optimized one for a 32-bit ALU

of length 84/im in 0.13 fxm [30, 32]. All three ALUs were characterized under typical

(NMOS/PMOS=TT/TT) transistor processing, a nominal 1.8-V operating voltage and a

temperature of 25°C. The conditions under which each ALU was found to be functional

are summarized in Table. 4.5. The row in the table for “Static CMOS 1” refers to a synthe­

sized static CMOS design where optimization constraints were set to obtain the minimum

delay through the ALU critical paths. The row in the table for “Static CMOS 2” refers to a

synthesized design where optimization constraints were set so that 400-MHz operation was

achieved and power is saved by not optimizing the design any further.

Table 4.5: Confirmed functional performance of different ALUs with no wiring parasitics
except for output load.

ALU Clock Operating Result
Design Skew Frequency

CL-Domino 0FO 4 1-GHz functional
CL-Domino Worst-Case 1 F 0 4 1-GHz functional

Static CMOS 1 N/A 427-M Hz functional
Static CMOS 2 N/A 400-M Hz functional

Dual-Rail Domino 0F O 4 1-GHz functional
Dual-Rail Domino Worst-Case 1 F 0 4 1-GHz functional

Bits 62 and 63 of the adder core is on the critical path of the three simulated ALUs. The

correct operation of these bits for the output of the CL-domino ALU is shown in Fig. 4.22.

Correct operation of the CL-domino ALU under worst-case skew conditions is shown in

Fig. 4.23

Power dissipation of the transistors due to: (a) the charging and discharging of ca­

pacitors (b) short-circuit currents (c) noise currents and (d) static leakage was measured

separately from the switching power dissipation of the multi-phase clocks.

In the case of the CL-domino and dual-rail skew-tolerant domino ALUs, spectreVerilog

saves the results of the power dissipation of the transistors as a waveform, representing

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4>

<i>

1.90

> 9 00m

-1 0 0 m

1.90

^ 900m

^ -1 0 0 m

1.90

d) ~ 900m
4 —

bit 62

bit 63

900m

100m

10n 20n

time (s)

Figure 4.22: Clock-logic domino ALU critical path operation at 1-GHz operation and no
clock-skew.

1 F 0 4 positive skew 1 F 0 4 positive skew 1 F 0 4 positive skew

 r

Switch-Level 0 0 0 Q 0 0 * I 8 7 B 9 A 9 F C 6 9 1 7 5 B 6 2 4

Transient oooooooooooooooo

IQOOQQOOOOOOOO

1 1 8 7 B 9 A 9 F C 6 9 7 5 B 6 2 4

$xtensive overlap due to skew

l ! 4 E C B 7 E 1 6 6 7 0 7 8 4 3 4 ~ 1 0 0 0 0 0 0 0 *

"T IO O O O O O O O O O Q Q O Q Q Q I 1 4 E C B 7 E 1 6 6 7 Q 7 8 4 3 4

Figure 4.23: Clock-logic domino ALU at 1 GHz operation and worst-case 1 F04 skew.

the instantaneous power dissipated in the circuit during the transient analysis. The average

power was therefore computed as:

1 f TPive-transistors = rfi I P ft)
1 JO

p(t) represents the instantaneous power and T is the period of interest.

(4 .10)

In the case of the static CMOS ALU, the power dissipation was measured from the

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

static power analysis tool found inside the Synopsys Design Analyzer.

The switching power dissipation of the ALU operands was not measured, although the

energy of those signals is small compared to the other sources of power dissipation.

The switching power dissipation of each clock phase and each delayed clock phase

was measured from the waveforms of instantaneous current through each D/A element that

served as a clock source. First the instantaneous current for each clock source was averaged

over the period of interest and compared to zero to determine whether a purely capacitive

load was being switched according to:

The approximate equality in (4.11) was to account for rounding errors in the simulator.

If (4.11) holds true, then the average clock current can be found from:

The 1/2 in (4.12), is necessary since |*(f)| is the measure of current flowing into and out

of the clock source, where only one or the other should be counted.

Finally the average power dissipated for a single clock can be calculated from:

For the 1-ns cycle time of the dynamic ALUs, the period of interest occurs between

1.45-ns to 30.3-ns, as the ALU input stimulus and clock generator must initialize at the

beginning of the transient analysis. It should be noted that the static CMOS ALU dissipates

no clock power since it is a purely combinational circuit except for the input flip-flops which

act as hard synchronization points. The average transistor power is added to the average

clock power to obtain the total power dissipation of the dynamic ALUs while the power

dissipation of the static CMOS ALU was found through static power analysis. The results

are summarized in Table. 4.6, while Fig. 4.24 shows an example plot of the instantaneous

transistor power dissipation in the CL-domino ALU over time.

(4.11)

(4.12)

Pave-clock — iave-clockVdd- (4.13)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.6: Power dissipation of different ALUs with no wiring parasitics except for output
load.

ALU Clock Operating Transistor Clock Total Total Normal
Design Skew Frequency Power Power Power Energy

(F04) (MHz) (mW) (mW) (mW) (pJ)
CL-Domino 0 1-GHz 61.61 52.08 113.69 113.69 1.00
CL-Domino 1 1-GHz 67.14 47.44 114.58 114.58 1.00

Static CMOS 1 N/A 427-MHz 249.69 N/A 249.68 584.74 5.10
Static CMOS 2 N/A 400-M Hz 174.08 N/A 174.08 435.19 3.80

Dual-Rail Domino 0 1-GHz 113.83 88.46 202.29 202.29 1.78
Dual-Rail Domino 1 1-GHz 111.55 82.11 193.65 193.65 1.69

300m

200m

100m

10i 30n0 0 20nin

time (s)

Figure 4.24: Clock-logic domino ALU transistor power dissipation at 1 GHz operation and
no skew.

While the results for the clock power dissipation may seem high, they are typical for

modem commercial microprocessors. For example, in the first and second generation Alpha

microprocessors, the clocks represented 40% of the total power consumption [40]. In the

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

third generation Alpha microprocessor (21264), the clock power represented 44% of the

total power consumption even though this design used a conditioned clock hierarchy [4,37].

In the latest IA-64 processor (Itanium 2), the clocks represent 1/3 of the total power [29].

In general clocks in local clock domains, can be conditioned or gated to save power [4, 52].

Gating a clock usually means disabling the clock feeding a module when that module is idle.

Thus, the heavily loaded capacitance of the clocks in the module are not switched in this

idle state, thus saving power. The overall power dissipation of the ALUs in this experiment

are high due to the use of unfooted domino gates which were clocked with delayed clocks

rather than the CL-domino method using OR-precharge for the footless gates as described

in Section 3.5.3. This was done to simplify the comparisons between CL-domino and dual­

rail skew-tolerant domino.

4.3.3 Discussion

Power Dissipation

As expected the power dissipation of the CL-domino ALU is much lower than that of the

dual-rail skew-tolerant domino ALU at the same operating frequency as shown in Fig. 4.25.

Without skew, the CL-domino ALU dissipates 56% of the power of the dual-rail domino

ALU and at 1 F04 skew, it dissipates 59% of the power. The discrepancy in the power

dissipation for skewed and unskewed clocks can be attributed to slightly different transistor

switching characteristics that result from the clocks arriving at different times.

The greater power dissipation of the dual-rail skew-tolerant domino ALU over the CL-

domino ALU can first be attributed to the unity activity factor of dual-rail gates; as one

of the true or complementary output node of each gate is cycled through precharge and

evaluate operations every cycle. The activity factor of single-rail domino is dependent on

the input signal probability instead. This is reflected in the transistor power dissipation for

each design as in Table. 4.6. The second source of increased power dissipation in the dual­

rail domino ALU is due to approximately double the number of clock transistors required

for dual-rail gates. This is reflected in the clock power dissipation for each design as in

Table. 4.6. The CL-domino ALU does not achieve a 50% reduction in clock power over the

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Clock Power
H Transistor Power

0-FO4 1-F04 0-FO4 1-F04

CL-Dom ino Dual-Rail Dom ino

Figure 4.25: Power dissipation of ALUs at 1 GHz operation.

dual-rail domino ALU as extra clock transistors are required for OR-precharge and AND-

evaluate. Furthermore, since the clock transistors are larger for the gates in CL-domino

that implement OR-precharge and/or AND-evaluate, more capacitance is switched and the

transistor power dissipation for CL-domino is higher than 50% of dual-rail skew-tolerant

domino. Had wiring contributions been taken into account, the increased wire lengths and

associated wiring capacitance of the dual-rail domino ALU would have resulted in even

higher power dissipation than the CL-domino ALU.

The results for the synthesized static CMOS ALU are much higher than expected since

static CMOS logic should dissipate less power than dynamic logic [8, 9]. Dynamic logic

eliminates spurious transitions, or glitches, due to finite propagation delays, and switches

less capacitance due to the elimination of the PMOS networks as compared to static CMOS.

However, the switching probability of a dynamic gate is equal to signal probabilities that

do not depend on the history of the inputs [61]. This signal probability, which will always

be higher than the transition probability of static CMOS, makes dynamic logic switch more

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequently, thus increasing power dissipation [60], Furthermore, the clock node has a guar­

anteed transition each cycle and is a significant source of power dissipation. Although the

total power dissipation of the second static CMOS design, “Static CMOS 2”, lies between

the results for CL-domino and dual-rail domino, we cannot safely conclude that CL-domino

dissipates less power than static CMOS. This is because a static timing analysis tool was

used to obtain the results for static CMOS while the dynamic ALUs used the results from a

SPICE simulation. In all likelihood, the reason for the high power dissipation in the static

CMOS designs is due to the course granularity of the drive strengths and associated tran­

sistor sizes in the standard cell library when comparing against the dynamic ALUs, which

used custom transistor sizes.

Delay Performance

Schematic simulations of the CL-domino versus the dual-rail skew-tolerant domino ALU

would most likely result in the dual-rail ALU obtaining similar latency and cycle times.

This is because the dual-rail ALU can time borrow across the phase boundaries to input

complemented and/or non-monotonic logic while the CL-Domino ALU must meet setup

times and pay a skew penalty at these boundaries. However, the dual-rail ALU will experi­

ence much greater RC delays due to wiring. A study of dual-rail versus single-rail domino

logic has shown that a 50% increase in transistors will result in approximately a 100% in­

crease in layout area which adversely affects delay [32], This increase in area means longer

wire lengths and much greater difficulty in routing differential signals, as all true signals and

all complement signals should be routed together to prevent coupling [43], Thus we could

tentatively conclude the CL-domino and dual-rail skew-tolerant domino would achieve al­

most equal delay performance. The CL-domino ALU was found to be fully functional at

1.12-GHz at 25°C. The performance would have been substantially higher if more care was

taken to size the precharge transistors, since the internal nodes do not precharge fully during

the precharge portion of the cycle when attempting to use the CL-domino ALU at higher

frequencies. The static CMOS ALU, on the other hand, was only able to achieve 427-MHz

performance with all the optimization constraints enabled.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Summary

Many high-speed datapaths require inverting or non-monotonic logic in small proportions to

normal non-inverting monotonic logic. Traditionally, any dynamic logic datapath requiring

these inversions have been built in a dual-rail fashion. In this chapter we investigated a

representative ALU datapath of a modem 64-bit microprocessor and found that the single­

rail techniques of CL-domino reduced power to 56% - 59% of a dual-rail skew-tolerant

domino design while maintaining similar delay performance and smaller area.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Future Work

5.1 Mask Layout and Extracted Capacitance Simulations

While schematic simulations, which neglect the effects of wiring, provide a good base

comparison for different logic styles, a mask layout for each of the CL-domino and dual-rail

skew-tolerant domino ALUs should be produced and simulations run using the extracted ca­

pacitance values. This would give designers more confidence that the CL-domino and dual­

rail skew-tolerant domino ALU have equal delays and robustness while the CL-domino

ALU dissipates much less power. A mask layout of the CL-domino ALU is included in the

Appendix F.l.

5.2 CL-domino Interfaces

CL-domino methodologies should be developed for integrating CL-domino with static logic,

as these interfaces almost always exist in real designs. The CL-domino/static interface

should be investigated to develop techniques for simple transitions between CL-domino to

static logic and from static logic to CL-domino. This involves developing timing types

and clocking strategies. Furthermore pipeline placement of flip-flops, transparent latches

and pulsed latches should be defined. Last, CL-domino should be investigated for gated

clock buffers that implement clock stop (qualified clocks) during power saving modes and

pipeline stalls.

In a real system, CL-domino circuits must also interface to special structures such as

register files, cache memories and programmable logic arrays (PLAs). These interfaces

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

should be adequately defined. Moreover, CL-domino may be used with other domino logic

families such as traditional domino with transparent latches, dual-rail skew tolerant domino,

CD-domino, CSG-domino, OTB domino, or OTB domino with Dynamic Latch Converters

(DLCs) [29]. An understanding of how to incorporate CL-domino with these other dynamic

circuit families, which are already used in commercial integrated circuits, would make CL-

domino more appealing to the average design engineer.

5.3 Testability

As integrated circuits continue to pack more transistors and wiring layers onto a single

silicon die, debug and functional production testing become more difficult. Design-For-

Testability (DFT) techniques trade area, and in some cases performance, to make the testing

task easier. The most often used testability technique is scan in which memory elements;

such as flip-flops, latches, or the outputs of domino circuits; are made externally observable

and controllable through a scan chain. This generally involves modifying the flip-flop, latch

or dynamic gate to add scan signals and scan logic.

Conceptually simple DFT techniques should be developed for CL-domino which min­

imize extra cell area, extra wiring, performance impact and testing time. Furthermore, the

scan should not introduce critical paths or require analysis and timing verification of the

scan logic since it does not add any direct value to the customer. Because of the constraints

for scan, simple “bolt-on” scan logic should be devised.

5.4 Leakage Energy

The use of wide dynamic gates is strongly impacted by reduced noise margins and in­

creasing leakage currents in sub 130-nm technologies [3]. Another advantage to single-rail

domino logic over dual-rail domino is the reduced leakage current due to fewer transistors

and dynamic nodes needed to implement the logic. In a recent CSG-domino scheduler in

0.13 fim dual-Vr CMOS, the active leakage energy dissipation was 50% lower than a dual­

rail domino design. As processes continue to scale to the 130 — nm node and beyond,

leakage power dissipation will be an even greater concern and the benefit of CL-domino for

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

leakage power dissipation should be quantified.

5.5 Clocking Issues

In our analysis, we derived timing constraints for the number of phases and the duty cycle

of the CL-domino clocks. From our work so far, we did not recommend an optimal number

of clock phases to use nor an optimal clock duty cycle. Although, these choices are design

specific, guidelines should be devised to make this decision easier.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

As microprocessors integrate more and more transistors on a die, decreasing the energy con­

sumption becomes as important as decreasing the cycle time. While skew-tolerant domino

logic has been effective at providing the necessary performance in a high-speed system, pro­

viding it with logic completeness usually meant doubling the area and power dissipation.

Clock-logic domino is a single-rail dynamic logic family that attempts to reduce the power

consumption and area of domino gates through using logic functions of overlapping clocks

so that dynamic gates do not receive the same clock for precharge and evaluate. Because

of the reduced wire delays inherent in single-rail gates, Clock-logic domino can implement

any boolean function while maintaining equal performance compared to the fastest dual-rail

logic styles.

Chapter 2 explored the design of dynamic circuits and skew-tolerant domino that mini­

mizes the effects of skew while affording time-borrowing to balance pipeline stages. Skew-

tolerant domino provides a substantial performance improvement since it hides the over­

head of traditional domino systems with latches. Chapter 3 provided a systematic method

of incorporating inversions and non-monotonic logic into a domino pipeline. This method,

called CL-domino, provided many of the advantages of skew-tolerant domino in regards to

skew tolerance and time borrowing while eliminating short circuit currents. It was shown

that selective partitioning of CL-domino logic allowed inverting gates to suffer a small

skew penalty while providing high-speed and low-power performance. Chapter 4 compared

a representative 64-bit microprocessor datapath in CL-domino and dual-rail skew-tolerant

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

domino logic. It was shown that while both designs functioned at very high frequencies,

that the CL-domino ALU dissipated 41% of the power of the dual-rail domino ALU. Fi­

nally, Chapter 5 explored several outstanding issues that would require solutions to make

CL-domino a preferred industry alternative. In particular, the issues of interfacing with

other logic families and methods to incorporate testability could be addressed.

In the near future, building faster microprocessors will mean meeting both power and

cycle time budgets. Without a method to address the former, systems with billions of tran­

sistors operating at many gigahertz might never become a reality.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] S. Abdel-Hafeez and N. Ranjan. Single rail domino logic for four-phase clocking
scheme. US Patent 6,265,899, July 24 2001. S3 Incorporated.

[2] A. Aipperspach, D. Allen, D. Cox, N. Phan, and S. Storino. A 0.2-p,m, 1.8-V, SOI,
550-MHz, 64-b PowerPC microprocessor with copper interconnects. IEEE J. o f Solid-
State Circuits, 34(11): 1430-35, November 1999.

[3] A. Alvandpour, R. K. Krishnamurthy, K. Soumyanath, and S. Y. Borkar. A sub-130-
nm conditional keeper technique. IEEE J. o f Solid-State Circuits, 37(5):633-38, May
2002.

[4] D. Bailey and B. Benschneider. Clocking design and analysis for a 600-MHz alpha
microprocessor. IEEEJ. o f Solid-State Circuits, 33(11): 1627-33, November 1998.

[5] R. Baker, H. Li, and D. Boyce. CMOS - circuit design, layout, and simulation, chapter
Static logic gates, pages 231-52. IEEE Press, 1998.

[6] A. Bellaouar and M. I. Elmasry. Low-Power Digital VLSI Design - Circuits and Sys­
tems. Kluwer Academic Publishers, 1995.

[7] P. Bosshart and P. Landman. Inverting hold time latch circuits, systems, and methods.
US Patent 6,242,952, June 5 2001. Texas Instruments Incorporated.

[8] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design o f high performance micropro­
cessor circuits. IEEE Press, 2001.

[9] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS digital de­
sign. IEEEJ. o f Solid-State Circuits, 27(4):473-84, April 1992.

[10] H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu. A wide-range delay-locked loop
with a fixed latency of one clock cycle. IEEE J. o f Solid-State Circuits, 37(8): 1021-27,
August 2002.

[11] C.T. Chuang, P. F. Lu, and C. J. Anderson. SOI for digital CMOS VLSI: design
considerations and advances. Proc. o f the IEEE, 86(4):689-720, April 1998.

[12] M. Ciraula, G. Lattimore, R. Masleid, and D. Mikan Jr. Creating inversions in ripple
domino logic. US Patent 5,892,372, April 6 1999. International Business Machines
Corporation.

[13] D. Clein. CMOS IC layout: concepts, methodologies, and tools. Newnes, Woburn,
MA, 2000.

[14] D. Deleganes, J. Douglas, B. Kommandur, and M. Patyra. Designing a 3GHz, 130nm,
Intel Pentium 4 processor. In Proc. IEEE Int. Symposium on VLSI Circuits, pages
130-33, June 2002.

[15] A. Jain et al. A 1.2-GHz Alpha microprocessor with 44.8 GB/s chip pin bandwidth.
In Proc. IEEE Int. Solid-State Circuits Conf, pages 240-41, February 2001.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16] A. Kowalczyk et al. the first MAJC microprocessor: a dual CPU system-on-chip.
IEEEJ. o f Solid-State Circuits, 36(11): 1609-16, November 2001.

[17] B. W. Curran et al. IBM eServer z900 high-frequency microprocessor technol­
ogy, circuits and design methodology. IBM J. o f Res. Develop., 46(4/5):631—44,
July/September 2002.

[18] C. Akrout et al. A 480-MHz RISC microprocessor in a OAl-pm lej j CMOS tech­
nology with copper interconnects. IEEE J. o f Solid-State Circuits, 33(11): 1609-16,
November 1998.

[19] D. Allen et al. Custom circuit design as a driver of microprocessor performance. IBM
J. o f Res. Develop., 44(6):799-822, November 2000.

[20] D. Harris et al. Opportunistic time-borrowing domino logic. US Patent 5,517,136,
March 3 1996.

[21] D. W. Dobberpuhl et al. A 200-MHz 64-b dual-issue CMOS microprocessor. IEEE J.
o f Solid-State Circuits, 27(11): 1555-67, November 1992.

[22] E. S. Fetzer et al. A fully bypassed six-issue integer datapath and register file on the
Itanium 2 microprocessor. IEEEJ. o f Solid-State Circuits, 37(11): 1433-40, November
2002.

[23] G. Hinton et al. A 0.18-pm CMOS IA-32 processor with a 4-GHz integer execution
unit. IEEEJ. o f Solid-State Circuits, 36(11): 1617-27, November 2001.

[24] G. K. Konstadinidis et al. Implementation of a third-generation 1.1-GHz 64-bit mi­
croprocessor. IEEEJ. o f Solid-State Circuits, 37(11): 1461-69, November 2002.

[25] J. D. Wamock et al. the circuit and physical design of the POWER4 microprocessor.
IBM J. o f Res. Develop., 46(1):27—51, January 2002.

[26] J. Silberman et al. A 1-GHz single-issue 64-bit PowerPC integer processor. IEEE J.
of Solid-State Circuits, 33(11): 1600-08, November 1998.

[27] M. S. Hrishikesh et al. The optimal logic depth per pipeline stage is 6 to 8 F04 inverter
delays. In Proc. 29th Annual Int. Symposium on Computer Architecture, pages 14—24,
May 2002.

[28] R. Heald et al. A third-generation SPARC Y9 64-b microprocessor. IEEE J. o f Solid-
State Circuits, 35(11): 1526-38, November 2000.

[29] S. D. Naffizger et al. The implementation of the Itanium 2 microprocessor. IEEE J. o f
Solid-State Circuits, 37(ll):1488-60, November 2002.

[30] S. Matthew et al. Sub-500-ps 64-b ALUs in 0.18-pm SOI/Bulk CMOS: design and
scaling trends. IEEE J. o f Solid-State Circuits, 36(11): 1636-46, November 2001.

[31] S. Tam et al. Clock generation and distribution for the first IA-64 microprocessor.
IEEEJ. o f Solid-State Circuits, 35(11): 1545-52, November 2000.

[32] S. Vangal et al. 5-GHz 32-bit integer execution core in 130-nm dual-Ft CMOS. IEEE
J. o f Solid-State Circuits, 37(ll):1421-32, November 2002.

[33] T. Buchholtz et al. A 0.18-pm , 1.5-V, SOI, 660-MHz, 64-bit PowerPC microproces­
sor with copper interconnects. In Proc. IEEE Int. Solid-State Circuits Conf, pages
88-99, February 2000.

[34] Y.-J. Jung et al. A dual-loop delay-locked loop using multiple voltage-controlled delay
lines. IEEE J. o f Solid-State Circuits, 36(5):784-91, May 2001.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[35] H. Fair and D. Bailey. Clocking design and analysis for a 600 MHz Alpha micropro­
cessor. In Proc. IEEE Int. Solid-State Circuits Conf., pages 398-99, 473, February
1998.

[36] D. Foley and M. Flynn. CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthe­
sizer and temperature-compensated tunable oscillator. IEEE J. o f Solid-State Circuits,
36(3):417-23, March 2001.

[37] E. G. Friedman. Clock distribution networks in synchronous digital integrated circuits.
Proceedings o f the IEEE, 89(5):665-92, May 2001.

[38] V. Friedman and S. Liu. Dynamic logic CMOS circuits. IEEE J. o f Solid-State Cir­
cuits, 19(2):263-66, April 1984.

[39] P. P. Gelsinger. Microprocessors for the new millennium: challenges, opportunities,
and new frontiers. In Proc. IEEE Int. Solid-State Circuits Conf, pages 22-25, Febru­
ary 2001.

[40] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and R. L. Allmon. High-
performance microprocessor design. IEEE J. o f Solid-State Circuits, 33(5): 1488-60,
May 1998.

[41] T. Han and D. A. Carlson. Fast area-efficient VLSI adders. In 8th Symp. Computer
Arithmetic, pages 49-56, September 1987.

[42] D. Harris. Skew-tolerant domino circuits. IEEE J. o f Solid-State Circuits,
32(11): 1702-11, November 1997.

[43] D. Harris. Skew-tolerant circuit design. Morgan Kaufmann Publishers, 2001.

[44] J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Mor­
gan Kaufmann Publishers, 2002.

[45] T. W. Houston, P. W. Bosshart, and C. Shaw. Compound domino CMOS circuit. US
Patent 5,015,882, May 14 1990. Texas Instruments Incorporated.

[46] G. Jung, V. Perepelitsa, and G. E. Sobelman. Time borrowing in high-speed funtional
units using skew-tolerant domino circuits. In Proc. IEEE Int. Symp. on Circuits and
Systems, volume 6 , pages 41-44, May 2000.

[47] C. Kim, I.-C. Hwang, and S.-M. Kang. A low-power small-area ±7.28-ps-jitter 1-
GHz DLL-based clock generator. IEEE J. o f Solid-State Circuits, 37(11): 1414-20,
November 2002.

[48] S. Kim and G. E. Sobelman. Efficient digit-serial FIR filters with skew-tolerant
domino. In Proc. IEEE Int. Symp. on Circuits and Systems, volume 6 , pages 369-
72, May 2002.

[49] U. Ko, P. T. Balsara, and W. Lee. Low-power design technique for high-performance
CMOS adders. IEEE Trans, on VLSI Systems, 3(2):327-33, June 1995.

[50] P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Transactions on Computers, C-22(8):783-91,
August 1973.

[51] K. Krewell. Fujitsu’s SPARC64 V is real deal. Microprocessor report, October 2002.

[52] N. A. Kurd, J. S. Barkatullah, R. O. Dizon, T. D. Fletcher, and P.D. Madland. A
multigigahertz clocking scheme for the Pentium 4 microprocessor. IEEE J. o f Solid-
State Circuits, 36(11): 1647-53, November 2001.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[53] H. L. Levy and S. A. Shah. Method and apparatus for fast evaluation of dynamic cmos
logic circuits. US Patent 5,825,208, October 20 1998.

[54] W. Dally M.-J. E. Lee and P. Chiang. A 90 mW 4 Gb/s equalized I/O circuit with input
offset cancellation. In Proc. IEEE Int. Solid-State Circuits Conf., pages 252-253,463,
February 2000.

[55] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley Pub Co,
1980.

[56] Y. Moon, J. Choi, K. Lee, D.-K. Jeong, and M.-K. Kim. An all-analog multiphase
delay-locked loop using a replica delay line for wide-range operation and low-jitter
performance. IEEEJ. o f Solid-State Circuits, 35(3):377-84, March 2000.

[57] G. Moore. Progress in digital integrated electronics. IEDM, 1975.

[58] P. Ng, P. T. Balsara, and D. Steiss. Performance of CMOS differential circuits. IEEE
J. o f Solid-State Circuits, 31(6):841—46, June 1996.

[59] B. Parhami. Computer arithmetic : algorithms and hardware designs. Oxford Uni­
versity Press, 2000.

[60] J. M. Rabaey. Digital integrated circuits - a design perspective. Prentice Hall, 1st
edition, 1996.

[61] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital integrated circuits - a design
perspective. Prentice Hall, 2nd edition, 2002. Preprint.

[62] S. Rusu and G. Singer. The first IA-64 microprocessor. IEEE J. o f Solid-State Circuits,
35(11): 1539-44, November 2000.

[63] R. Senthinathan, S. Fischer, H. Rangchi, and H. Yazdanmehr. A 650-MHz, LA-32
microprocessor with enhanced data streaming for graphics and video. IEEE J. of
Solid-State Circuits, 34(11): 1454-65, November 1999.

[64] D. Somasekhar and K. Roy. Differential current switch logic: a low power DCVS
logic family. IEEE J. o f Solid-State Circuits, 31(7):981—91, July 1996.

[65] D. Somasekhar and K. Roy. LVDCSL: a high fan-in, high-performance, low-voltage
differential current switch logic family. IEEE Trans, on VLSI Systems, 6(4):573-77,
December 1998.

[66] D. Stasiak, R. Mounes-Toussi, and S. Storino. A 440-ps 64-bit adder in 1.5-V/0.18-
pm partially depleted SOI technology. IEEE J. o f Solid-State Circuits, 36(10): 1546-
52, October 2001.

[67] B. Sugla and D. A. Carlson. Extreme area-time tradeoffs in VLSI. IEEE Transactions
on Computers, 39(2):251-57, February 1990.

[68] I. Sutherland, B. Sproull, and D. Harris. Logical effort. Morgan Kaufmann Publishers,
Inc., 1st edition, 1999.

[69] L. C. Tsai. A 1 GHz PA-RISC processor. In Proc. IEEE Int. Solid-State Circuits Conf,
pages 322-23, February 2001.

[70] T. Williams and M. Horowitz. A zero-overhead self-timed 160-ns 54-b CMOS divider.
IEEEJ. o f Solid-State Circuits, 26(11): 1651—61, November 1991.

[71] G. Yee. Dynamic logic design and synthesis using clock-delayed domino. Department
of electrical engineering, University of Washington, 1999.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[72] G. Yee and C. Sechen. Clock-delayed domino for dynamic circuit design. IEEE Trans,
on VLSI Systems, 8(4):425-30, August 2000.

[73] R. Zimmermann and W. Fichtner. Low-power logic styles: CMOS versus pass-
transistor logic. IEEEJ. o f Solid-State Circuits, 32(7): 1079-90, July 1997.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Process Characterization

A.l Process Parameters
The process technology characteristics for Taiwan Semiconductor Manufacturing Company
Ltd.’s (TSMC) 0.18 fim general purpose logic process are listed in Table. A.I. All the
implemented ALUs were designed in this process technology.

Table A.l: Process technology characteristics.

Parameter Value
Wafer Type bulk CMOS

Wells single N-type
L(drawn) 0.18-fim

L(effective-NMOS) 0.135-fim
L(effective-PMOS) 0.160 -fim

Tox 32 angstroms
Polysilicon Layers single layer

Poly 1 Pitch 0.46 -fim
Local Interconnect None

Wiring Layers 6 Aluminum
Metal 1 Pitch 0.46-/im

Metal 2-5 Pitch 0.56-/Lim
Metal 6 Pitch 0.90 -fim

Nominal Supply Voltage 1.8-V

A.2 Inverter and F04 Inverter Delays
Delay measurements are usually performed using a ring oscillator [Rabaey 96], which con­
sists of an odd number of inverters coupled together in a circular chain as in Fig. A.l. Due
to the odd number of inversions, the circuit does not have a stable operating point and os­
cillates between a logic 0 and a logic 1. The equation that governs the oscillation frequency
of a ring oscillator is [Baker98]:

fosc = 77 | 7 \ • (A . l)
n ■ { t p H L + t p L H j

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Odd Number of Inverters

Figure A.l: Ring oscillator for inverter delay measurement.

Assuming that tppL = tpLH, which is a good approximation when the PMOS tran­
sistors are two times the width of the NMOS transistors for equal rise and fall times, the
frequency of oscillation is equal to:

fo sc — 2 ■ n- t p

Re-arranging (A.2), the delay time through an inverter is equal to:

t p ~ Inverter
1

2 • n • f a

(A.2)

(A.3)

When measuring delays, it is often beneficial to use a process-independent unit of delay
so that intuition about delay can be carried over from one process to another [HarrisOl]. A
unit of delay common to custom designs is the Fanout-of-4 (F04) inverter delay, measured
as the the delay of an inverter driving four identical copies of itself. The F04 delay is
useful because it is easy to determine and because the theory of logical effort [Sutherland99]
predicts that cascaded logic drive a load fastest when each gate has a fanout of about 4.

The F04 inverter delay is also measured using a ring oscillator configuration as shown
in Fig. A.2. However, the output of each inverter, (a), is loaded with three additional copies
of itself, (b), to give the required fanout of four. Within a stage in the ring oscillator, the
load inverters, (b), must also have their outputs coupled to the inputs of four other inverters,
(c). This is because removing (c) would make (b) switch very rapidly. Because of the Miller
effect, this would increase the effective input capacitance of (b) and hence affect the output
load on (a). This would result in higher delays in the ring oscillator [Sutherland99] than is
the case of inverters in an integrated circuit. The F04 inverter delay is determined from the
following equation:

tp-FOi—
1

2 -n- fo.
(A.4)

The results for rings of minimum sized inverters with PMOS transistors W / L =
0.84/zm/0.18/zm and NMOS transistors W / L = 0.42/im/0.18/zm for different environ­
mental conditions and process comers are summarized in Table. A.2. Since a good es­
timate of the F04 inverter delay in a short-channel sub-micron process is approximately
400 • feature size-ps [HarrisOl], our simulation results closely match the predicted value,
which is equal to 72-ps in a 0.18 /zm process.

Table A.2: Single inverter and F04 inverter delay times for different environmental condi­
tions and process comers.

Component TT, 1.8V,
25° C (ps)

TT, 1.8V,
105°C (ps)

FF, 2.0V,
0°C (ps)

SS, 1.6V,
105° C (ps)

Inverter 29.46 32.49 25.91 36.73
F04 71.56 78.54 63.4 88.18

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Odd Number of Inverters

Three
Inverters
Each

Twelve
Inverters
Each

Figure A.2: Ring oscillator for F04 delay measurement.

A.3 Wire and Transistor Parasitics
In our 0.18 f im technology, a 45 f im long M l, minimum width (0.23 fim) wire running
over substrate with no coupling to adjacent signal wires is equivalent in load capacitance to
a minimum sized inverter. The load capacitance value of the minimum sized inverter is ap­
proximately 2.94 fF. This was measured in simulations through matching the delays when
driving an inverter without interconnect parasitics to driving a wire with interconnect par­
asitics. While this method abstracts the non-linear capacitance contribution of the inverter
and does not take into account wiring resistance, it is a reasonable ”back-of-envelope” ap­
proximation.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Single-Rail Domino Design
Alternative

B .l CSG-Domino
Other attempts at single-rail domino designs for input complemented and non-monotonic
logic have focused on using complementary signal generators (CSGs) to generate dual­
rail signals [Mathew01,Vangal02]. These techniques are usually protected by patent law
[Kanetani01,Krishnamurthy01]. A schematic of a single-rail input to domino-compatible
dual-rail output generator is shown in Fig. B.l.

Opt ionol K e e p e r s Opt i ona l K e e p e r s

s i n g l e _ r a i l _ i n

C o m p l e m e n t
P u l l - d o w n
P a t h

True
P u l l - d o w n
P a t h

o u t _ t

o u t _ f

Figure B.l: CSG generator.

The CSG circuit contains two dynamic nodes, a true dynamic node and a complemen­
tary dynamic node, where both nodes are cycled from precharge to evaluate using die same
clock. The complementary pull-down path is gated with the single-rail input signal while
the true pull-down path is gated by the complementary dynamic node. The circuit has a
race condition where the complementary pull-down path will discharge its dynamic node
faster than the true pull-down path can discharge its dynamic node if the input is high,

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while only the true pull-down path will discharge its dynamic node if the input is low. The
cross-coupled PMOS transistors provide weak feedback for noise immunity and statically
holds the true node when the complementary node discharges. This is especially important
since the true dynamic node will experience a noise droop due to the finite discharge time
of the complementary dynamic node. Furthermore, the circuit will function only when the
complementary pull-down path has a higher transconductance than the true pull-down path.
This can be accommodated if the transistors of the complementary path are wider than the
true path or if the transistors of the complementary path have longer length. Both of these
solutions to transconductance decrease die switching speed of the CSG circuit since wider
transistors present more input loading while longer transistors decrease transistor current.
The half-keepers on the dynamic nodes are used to further increase noise immunity.

Like CL-domino, a CSG circuit and the input complemented or non-monotonic logic
that follows it, must be placed at a clock phase boundary [MathewOl]. Data must setup at the
inputs of the CSG before the rising edge of the clock and therefore the evaluation imposes
a hard edge on the data, much like the setup time required for flip-flops. Therefore, when
clock skew is accounted for, the previous phase of logic has a logic evaluation constraint
equal to that previously derived for CL-domino (3.1). Therefore, time cannot be borrowed
from an input complemented or non-monotonic logic function in CSG-domino pipelines
much like the non-time borrowing penalty in CL-domino pipelines. Modified CSGs have
been shown to fold monotonic functions at the inputs and non-monotonic functions at the
outputs for increased speed as shown in Fig. B.2 [Vangal02]. When the CSG technique
was applied to a scheduler for an integer execution unit, the layout area and loopback in­
terconnect length was reduced by 67% and 25%, respectively, over a dual-rail design. For
this particular design in the literature, the number of gate stages required for a single-rail
scheduler was reduced over a dual-rail scheduler by two. This reduction in area and in gate
stages resulted in a 23% delay improvement over a comparable dual-rail domino design.

Optionol K eepers Optionol Keepers

Folded Output Logic

elk

Fold* d Input Logic

r \
gi M in u s 1 psurn

co rry |—l

Figure B.2: CSG generator with folded input and output logic.

B.2 CSG-Domino Versus CL-Domino
The CSG generators have a unity activity factor since either the true or complement node
is discharged and then must be precharged every cycle. This is unlike any circuit in CL-
domino, which only have activity factors equal to the input signal probabilities. Because the
CSG circuits have a small race condition, the cross-coupled keeper has to replenish charge

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lost on the true node when the complementary node discharges, thus increasing power dis­
sipation. Moreover, dual-rail domino gates are used to implement input complemented or
non-monotonic logic functions in CSG-domino. This is in contrast to CL-domino which
uses single-rail gates throughout, thus reducing circuit area and power dissipation. Clock
power dissipation is also higher since the CSG circuit, with precharge and evaluate tran­
sistors, must be clocked. There are more clock transistors in the CSG-domino than in CL-
domino even though a generalized CL-domino pipeline utilizes some series PMOS and/or
series NMOS clock transistors.

The CSG circuit might be considered a dynamic gate with a stack height of two for
the most optimal implementation where logic is folded into the circuit [Vangal02], A CSG-
domino design of the ALU used for our comparison studies (Section 4.2), would have added
two gate delays to the critical path compared to the CL-domino ALU of Section 4.2.1.
However, the CSG generators removes two sets of series CL-domino clock transistors in
the critical path, thus closing the performance gap between CSG-domino and CL-domino.
One must also consider that the CSG must be ratioed so that the complementary pull-down
path is faster than the true pull-down path, thus increasing the gate load of the CSG and
retarding performance.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Verilog Code

C.l Functional Verilog Code for ALU (Synthesizable)
The flip-flops found in the ALU verilog code were required for synthesis and can be re­
moved from the functional model.

/ / V e r i l o g n e t l i s t o f

/ / " a l u "

/ / H D L m o d e l s

/ / H D L f i l e - C S G _ a l u , t h r u , b e h a v i o r a l .

/ / v e r i l o g H D L f o r " C S G _ a l u " , " t h r u " " f u n c t i o n a l "

m o d u l e t h r u (i n , o u t) ;

i n p u t i n ;

o u t p u t o u t ;

a s s i g n o u t = i n ;

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u , b a c k _ t o _ b a c k _ i n v , b e h a v i o r a l .

/ / V e r i l o g H D L f o r " C S G _ a l u " , " b a c k _ t o _ b a c k _ _ i n v " " b e h a v i o r a l "

m o d u l e b a c k _ t o _ b a c k _ i n v (i n , o u t) ,-

p a r a m e t e r M I N _ D E L A Y S = 2 6 ;

p a r a m e t e r T Y P _ D E L A Y S = 2 9 ;

p a r a m e t e r M A X _ D E L A Y S - 3 7 ;

i n p u t i n ;

o u t p u t o u t ;

w i r e i n v _ o u t ;

n o t # (M I N _ D E L A Y S : T Y P _ D E L A Y S : M A X _ D E L A Y S) i O (i n v _ o u t , i n) ;

n o t # (M I N _ D E L A Y S : T Y P _ D E L A Y S : M A X _ D E L A Y S) i l (o u t , i n v _ o u t) ;

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u _ s y n , m u x 9 1 _ a , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u _ s y n " , " m u x 9 1 _ a " " f u n c t i o n a l "

m o d u l e m u x 9 1 _ a (o u t , c l k a , a O , a l , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , s e l) ;

p a r a m e t e r N W O R D S = 9 ;

p a r a m e t e r N B I T S ■ 6 4 ;

o u t p u t [N B I T S - 1 : 0] o u t ;

r e g [N B I T S - 1 : 0] o u t ;

i n p u t c l k a ;

i n p u t [N B I T S - 1 : 0] a O , a l , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 ;

i n p u t [N W O R D S - 1 : 0] s e l ;

a l w a y s ® (s e l o r a O o r a l o r a 2 o r a 3 o r a 4 o r a 5 o r a 6 o r a 7 o r a 8)

c a s e (s e l)

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 ' b O O O O O O O Q l : o u t = a O ;

9 ' b 0 0 0 0 0 0 0 1 0 : O u t « a l ;

9 ' b 0 0 0 0 0 0 1 0 0 : o u t * a 2 ;

9 ' b O O O O O l O O O : o u t = a 3 ;

9 ' b 0 0 0 0 1 0 0 0 0 : o u t - a 4 ;

9 ' b 0 0 0 1 0 0 0 0 0 : o u t * a 5 ;

9 ' b O O l O O O O O O : O u t = a 6 ;

9 ' b O l O O O O O O O : o u t = a 7 ;

9 ' b l O O O O O O O O : o u t = a 8 ;

d e f a u l t : o u t = a O ;

e n d c a s e

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u _ s y n , m u x 9 1 _ b , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u _ s y n " , " m u x 9 1 _ b " " f u n c t i o n a l "

m o d u l e m u x 9 1 _ b (o u t , c l k a , c l k b , b o , b l , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 ,

p a r a m e t e r N W O R D S = 9 ;

p a r a m e t e r N B I T S = 6 4 ;

o u t p u t [N B I T S - 1 : 0] OUt;
r e g [N B I T S - 1 : 0] o u t ;

i n p u t c l k a , c l k b ;

i n p u t [N B I T S - 1 : 0] b O , b l , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 , b 8 ;

i n p u t [N W O R D S - 1 : 0] s e l ;

a l w a y s @ (s e l o r b O o r b l o r b 2 o r b 3 o r b 4 o r b 5 o r b 6 o r b 7 o r b 8)

c a s e (s e l)

9 ' b O O O O O O O O l : o u t = b O ;

9 ' b O O O O O O O l O : o u t * b l ;

9 ' b O O O O O O l O O : o u t = b 2 ;

9 ' b O O O O O l O O O : o u t = b 3 ;

9 ' b O O O O l O O O O : o u t = b 4 ;

9 ' b O O O l O O O O O : o u t = b 5 ;

9 ' b 0 0 1 0 0 0 0 0 0 : O u t * b 6 ;

9 ' b O l O O O O O O O : OU t = b 7 ;

9 ' b l O O O O O O O O : o u t = b 8 ;

d e f a u l t : o u t = b O ;

e n d c a s e

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u _ s y n , m u x 5 1 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u _ _ s y n " , " m u x 5 l " " f u n c t i o n a l "

m o d u l e m u x 5 l (o u t , c l k a , d o , d l , d 2 , d 3 , d 4 , s e l) ;

p a r a m e t e r N W O R D S = 5 ;

p a r a m e t e r N B I T S » 6 4 ;

o u t p u t [N B I T S - 1 : 0] OUt;
r e g [N B I T S - 1 : 0 3 o u t ;

i n p u t c l k a ;

i n p u t [N B I T S - 1 : 0] d 0 , d l , d 2 , d 3 , d 4 ;

i n p u t [N W O R D S - 1 : 0] s e l ;

a l w a y s ® (s e l o r d O o r d l o r d 2 o r d 3 o r d 4)

c a s e (s e l)

5 ' b O O O O l : o u t = d 0 ;

5 ' b O O O l O : o u t = d l ;

5 ' b O O l O O : o u t = d 2 ;

5 ' b O l O O O : O Ut = d 3 ;

5 ' b l O O O O : OU t = d 4 ;

d e f a u l t : o u t = d O ;

e n d c a s e

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u _ s y n , m u x 2 1 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u _ s y n " , " m u x 2 1 " " f u n c t i o n a l "

m o d u l e m u x 2 1 (o u t , c l k a , d , s e l) ;

p a r a m e t e r N W O R D S = 2 ;

p a r a m e t e r N B I T S = 6 4 ;

o u t p u t [N B I T S - 1 : 0] OUt;
r e g [N B I T S - 1 : 0] o u t ;

i n p u t c l k a ;

i n p u t [N B I T S - 1 : 0] d ;

i n p u t [N W O R D S - 1 : 0] s e l ;

126

s e l) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a l w a y s ® (s e l o r d)

c a s e (s e l)

2 ' b 0 1 : o u t = d ;

2 ' b l O : o u t = ~ d ;

d e f a u l t : o u t = d ;

e n d c a s e

e n d m o d u l e

/ / H D L f i l e - C S G _ _ a l u _ s y n , f l i p _ f l o p , f u n c t i o n a l .

/ / V e r i l o g H D L f o r , lC S G _ a l u _ s y n n , " f l i p _ f l o p " " f u n c t i o n a l "

m o d u l e f l i p _ f l o p (c l k a , d , q) ;

p a r a m e t e r N B I T S = 6 4 ;

o u t p u t [N B I T S - 1 : 0 1 q ;

r e g [N B I T S - 1 : 0) q ;

i n p u t c l k a ;

i n p u t [N B I T S - 1 : 0] d ;

a l w a y s ® (p o s e d g e c l k a)

q < = d ;

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u , p b a r _ g b a r _ g e n _ 6 4 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u " , " p b a r _ g b a r _ g e n _ 6 4 " " f u n c t i o n a l "

m o d u l e p b a r _ g b a r _ g e n _ _ 6 4 (c l k b , c l k c , c l k d , c l k e , a , b , p b a r , g b a r , p s u m) ;

p a r a m e t e r N U M B I T S = 6 4 ;

i n p u t c l k b , c l k c , c l k d , c l k e ;

i n p u t [N U M B I T S - 1 : 0] a , b ;

o u t p u t [N U M B I T S - 1 : 0] p b a r , g b a r ;

o u t p u t [N U M B I T S - 1 : 0] p s u m ;

a s s i g n p b a r = ~ (a | b) ;
a s s i g n g b a r = ~ (a & b) ;

a s s i g n p s u m * a ~ b ;

e n d m o d u l e

/ / H D L f i l e - C S G _ _ a l u , c a r r y _ m e r g e _ 6 4 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G ^ a l u " , " c a r r y _ _ m e r g e 6 4 " " f u n c t i o n a l "

m o d u l e c a r r y _ m e r g e _ 6 4 (p b a r , g b a r , e l k , p , g) ;

p a r a m e t e r N U M B I T S = 6 4 ;

i n p u t [N U M B I T S - 1 : 0] p b a r , g b a r ;

i n p u t [3 : 5] e l k ;

o u t p u t [N U M B I T S - 1 : 0] p , g ;

i n t e g e r i ;

i n t e g e r j ;

r e g [N U M B I T S - 1 0] g e m o , p e m o ;

r e g [N U M B I T S - 1 0] g c m l , p c m l ;

r e g [N U M B I T S - 1 0] g c m 2 , p c m 2 ;

r e g [N U M B I T S - 1 0] g c m 3 , p c m 3 ;
r e g [N U M B I T S - 1 0] g c m 4 , p c m 4 ;
r e g [N U M B I T S - 1 0] g c m 5 , p c m 5 ;

a l w a y s ® (p b a r o r g b a r)

b e g i n

f o r (i = 0 ; i < N U M B I T S ; i = i + 1)

b e g i n

i f (i % 2 = = 0)
begin

/ / g c m O [i] = ~ g b a r [i]

/ / p c m o [i] = ~ p b a r [i]

/ / g c m l [i] = “ g c r n o [i]

/ / p c m l [i] = “ p c r n o [i]

/ / g c m 2 t i l - ~ g c m l [i]

/ / p c m 2 [i] = ~ p c m l [i]

/ / g c m 3 [i] = ~ g c m 2 [i]

/ / p c m 3 [i] ~ p c m 2 [i]

/ / g c m 4 [i] ~ g c m 3 [i]

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / p c m 4 [i j = ~ p c m 3 [i] ;

/ / g c m 5 [i] = ~ g c m 4 [i] ;

/ / p c m 5 [i] = ~ p c i n 4 [i] ;

p c m 5 [i] = p b a r [i] ;

g c m 5 [i] = g b a r [i] ;

e n d

e l s e

b e g i n

j = l ;

g c m O l i] = “ { (p b a r l i] | g b a r [i - j]) & g b a r [i]) ;

p c m O E i] = ~ { p b a r [i] | p b a r [i - j]) ;

j = 2 ;

i f (i - j < 0)

b e g i n

g c m l [i] = ~ g c m O [i] ;

p c m l [i] ■ ~ p c m O [i] ;

e n d

e l s e

b e g i n

g c m l [i] = “ ((p c m O E i] & g c m O [i - j]) | g c m O E i]) ;

p c m l [i] = “ (p c m O E i] & p c m O [i - j]) ;

e n d

j = 4 ;

i f (i - j < 0)

b e g i n

g c m 2 [i] = ~ g c m l [i] ;

p c m 2 [i] » ~ p c m l [i] ;

e n d

e l s e

b e g i n

g c m 2 [i j = “ ((p c m l E i] j g c r a l [i - j]) & g c m l [i]) ;

p c m 2 [i] = ~ < p c m l [i] | p c m l [i - j]) ;

e n d

j = 8 ;

i f (i - j < 0)

b e g i n

g c m 3 [i] * “ g c m 2 [i] ;

p c m 3 [i] = ~ p c m 2 [i] ;

e n d

e l s e

b e g i n

g c m 3 [i] - ~ ((p c m 2 [i 3 & g c m 2 [i - j]) | g c m 2 [i]) ;

p c m 3 [i] « ~ (p c r a 2 [i] & p c r o 2 [i - j]) ;

e n d

j = 1 6 ;

i f (i - j < 0)

b e g i n

g c m 4 [i] = ~ g c m 3 [i] ;

p c r a 4 l i] = ~ p c m 3 [i] ;

e n d

e l s e

b e g i n

g c m 4 [i] = ~ ((p c m 3 [i] | g c m 3 [i - j]) & g c m 3 [i]) ;

p c m 4 [i] * ~ (p c m 3 [i] | p c m 3 [i - j]) ;

e n d

j = 3 2 ;

i f (i - j < 0)

b e g i n

g c m 5 [i] = ~ g c i n 4 [i] ;

p c m 5 [i] = * * p c m 4 [i] ;
e n d

e l s e

b e g i n

g c m 5 [i] a ~ ((p c m 4 [i] & g c m 4 [i - j]) | g c m 4 [i]) ;

p c m 5 [i] = ~ { p c m 4 t i] & p c m 4 [i - j]) ;

e n d

e n d

e n d

e n d

a s s i g n g a g c m 5 ;

a s s i g n p a p c m 5 ;

e n d m o d u l e

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / h d l f i l e - C S G _ _ a l u , e v e n _ c a r r y _ g e n _ 6 4 , f u n c t i o n a l .

/ / v e r i l o g H D L f o r " C S G _ a l u " , " e v e n _ c a r r y _ g e n _ 6 4 " " f u n c t i o n a l "

m o d u l e e v e n _ _ c a r r y _ _ g e n _ 6 4 (p b a r , g b a r , c o u t) ;

p a r a m e t e r N U M B I T S = 6 4 ;

i n p u t [N U M B I T S - 1 : 0) p b a r , g b a r ;

o u t p u t [N U M B I T S - 1 : 0] COUt;

r e g [N U M B I T S - 1 : 0 l c o u t ;

i n t e g e r i ;

a l w a y s ® (p b a r o r g b a r)

b e g i n

c o u t [0] * ~ (g b a r [0]) ;

f o r (i = 1 ; i < N U M B I T S ; i = i + 1)

b e g i n

i f { (i % 2) = = 0)

c o u t [i] = ~ ({ p b a r [i] | g b a r [i - l]) & g b a r [i]) ;

e l s e

c o u t [i] ■ ~ g b a r [i) ;

e n d

e n d

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u , s u m _ x o r _ 6 4 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u " , " s u m _ x o r _ 6 4 " " f u n c t i o n a l "

m o d u l e s u m _ x o r _ 6 4 (c o u t , p s u m , c l k a , s u m) ;

p a r a m e t e r N U M B I T S = 6 4 ;

i n p u t [N U M B I T S - 1 : 0] p s u m , c o u t ;

i n p u t c l k a ;

o u t p u t [N U M B I T S - 1 : 0] s u m ;

a s s i g n s u m = p s u m ~ c o u t < < 1 ;

e n d m o d u l e

/ / H D L f i l e - C S G _ a l u _ s y n , b u s _ d r i v e r _ b i t , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u " , " b u s _ d r i v e r _ b i t " " f u n c t i o n a l "

m o d u l e b u s _ d r i v e r _ b i t (o u t , i n) ;

o u t p u t o u t ;

i n p u t i n ;

a s s i g n # 1 o u t = i n ;

e n d m o d u l e

I I H D L f i l e - C S G _ a l u _ s y n , m u x 3 1 , f u n c t i o n a l .

/ / V e r i l o g H D L f o r " C S G _ a l u _ s y n " , " m u x 3 1 " " f u n c t i o n a l "

m o d u l e m u x 3 1 (o u t , c l k a , d O , d l , d 2 , s e l) ;

p a r a m e t e r N W O R D S = 3 ;

p a r a m e t e r N B I T S * 6 4 ;

o u t p u t [N B I T S - 1 : 0] OUt;
r e g [N B l T S - l s O] o u t ;

i n p u t c l k a ;

i n p u t [N B I T S - 1 : 0] d O , d l , d 2 ;

i n p u t [N W O R D S - 1 : 0) s e l ;

a l w a y s ® (s e l o r d o o r d l o r d 2)

c a s e (s e l)
3'b001: O Ut = d o ;
3 ' b O l O : o u t = d l ;

3 ' b l 0 0 : o u t ■ d 2 ;

d e f a u l t : o u t = d O ;

e n d c a s e

e n d m o d u l e

/ / E n d H D L m o d e l s

I I L i b r a r y - C S G _ a l u _ s y n , C e l l - b u s _ d r i v e r , V i e w - s c h e m a t i c

/ / L A S T T I M E S A V E D : N o v 2 8 1 8 : 2 1 : 2 6 2 0 0 2

/ / N E T L I S T T I M E : N o v 2 8 2 2 : 5 7 : 4 3 2 0 0 2

' t i m e s c a l e I p s / l p s

m o d u l e b u s _ d r i v e r (o u t , { i n [6 3 j , i n [6 2] , i n [6 1] , i n [6 0] , i n [5 9] ,

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i n [5 8] , i n [5 7] , i n [5 6] , i n [5 5] , i n [5 4] , i n [5 3] , i n [5 2] , i n [5 1]

i n [5 0] , i n [4 9] , i n [4 8] , i n [4 7] , i n [4 6] , i n [4 5] , i n [4 4] , i n [4 3]

i n [4 2] , i n [4 1] , i n [4 0] , i n [3 9] , i n [3 8] , i n [3 7] , i n [3 6] , i n [3 5]

i n [3 4] , i n [3 3] , i n [3 2] , i n [3 1] , i n [3 0] , i n [2 9] , i n [2 8] , i n [2 7]

i n [2 6] , i n [2 5] , i n [2 4] , i n [2 3] , i n [2 2] , i n [2 1] , i n [2 0] , i n [1 9]

i n [1 8] , i n [1 7] , i n [l 6] , i n [l 5] , i n [l 4] , i n [1 3] , i n [l 2] , i n [l l]

i n [1 0] , i n [9] , i n [8] , i n [7] , i n [6] , i n [5] , i n [4] , i n [3] , i n [2]

i n [l] , i n [0] }) ;

o u t p u t [6 3 : 0] O u t ;

i n p u t [0 : 6 3] i n ;

s u p p l y O V S S _ ;

/ / L i s t o f p r i m a r y a l i a s e d b u s e s

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r —b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r —b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r b i t

b u s _ _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r ^ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r b i t
b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ _ b i t

b u s _ d r i v e r _ b i t

b u s _ d r i v e r _ b i t

b u s d r i v e r b i t

I 0 _ ° _
I 0 _ 1_
I 0 _ 2 _

I 0 _ 3 _

I 0 _ 4 _

I 0 _ 5 _

I 0 _ 6_
I0_7_
I 0 _ 8 _
I 0 _ 9 _

I 0 _ 1 0 _
I 0 _ H _

I 0 _ 1 2 _
I 0 _ 1 3 _

I 0 _ 1 4 _
I0_ 15_
I 0 _ 1 6 _

I0 _ 17_
I0 _ 18_
I 0 _ i 9 _

I0 _ 20_
1 0 _ 2 1 _

I 0 _ 2 2 _
I 0 _ 2 3 _

I 0 _ 2 4 _

I 0 _ 2 5 _
I 0 _ 2 6 _

I 0 _ 27_
1 0 _ 2 8_
1 0 _ 2 9 _

1 0 _ 3 0 _

I 0 _ 3 i _
I ° _ 3 2 _

I ° _ 3 3 _

I ° _ 3 4 ~

I 0 _ 3 5 .
I 0 _ 3 6 ~
I 0 _ 3 7 _
I 0 _ 3 8 _

I 0 _ 3 9 ~

1 0 _ 4 0_

1 ° _ _ 4 1_

I 0 _ 4 2 _
I 0 _ 4 3 _

I ° _ 4 4 _

I 0 _ 4 5 "

I 0 _ 4 6 ~

I 0 _ 4 7 _

10 _ 4 8 _ 10 _ 4 9_

I 0 _ 5 0 .
X 0 _ 5 l]

I 0 _ 5 2 _

I 0 _ 5 3 ;

I 0 _ 5 4 _
I ° _ 5 5 _

I 0 _ 5 6 _

I 0 _ 5 7

I 0 _ 5 8 .
I 0 _ 5 9 .
I 0 _ 6 0 *

I 0 _ 6 1

I 0 _ 6 2 '

1 0 63*

o u t [0 3 . i n [0])

o u t [1] , i n [1])
o u t [2] , i n [2])

o u t E 3] , i n [3])

o u t [4] , i n [4] }

o u t [5] , i n [5])

o u t [6] , i n [6])

o u t [7] , i n L 7 1)

o u t [8] , i n [8])

o u t [9] , i n [9])
o u t [1 0] , i n [1 0]) ;

o u t [1 1] , i n [1 1]) ;

o u t [1 2] , i n [1 2]) ;

o u t [1 3] , i n [1 3]) ;

o ut [1 4] , i n [1 4]) ;

o u t [1 5] , i n [1 5]) ;

o u t [1 6] , i n [1 6]) ;

o ut [1 7] , i n [1 7]) ;

o ut [1 8] , i n [1 8]) ;

o ut [1 9] , i n [1 9]) ;

out [2 0] , i n [2 0]) ;

out [2 1] , i n [2 1]) ;

out [2 2] , i n [2 2]) ;

OUt [2 3] , i n [2 3]) ;

O U t [2 4] , i n [2 4]) ;

O Ut [2 5] , i n [2 5]) ;

O U t [2 6] , i n [2 6]) ;

O U t [2 7] , i n [2 7]) ;

OU t [2 8] , i n [2 8]) ;

ou t [2 9] , i n [2 9]) ;

OU t [3 0] , i n [3 0]) ;

out [3 1] , i n [3 1]) ;

o u t [3 2] , i n [3 2]) ;

O U t [3 3] , i n [3 3]) ;
O U t [3 4] , i n [3 4]) ;

OUt [3 5] , i n [3 5]) ;

o ut [3 6] , i n [3 6]) ;
O U t [3 7] , i n [3 7]) ;

o u t [3 8] , i n [3 8]) ;

o ut [3 9] , i n [3 9]) ;

o u t [4 0] , i n [4 0]) ;

o u t [4 1] , i n [4 1]) ;

o u t [4 2] , i n [4 2]) ;

o u t [4 3] , i n [4 3 }) ;

o u t [4 4] , i n [4 4]) ;

O U t [4 5] , i n [4 5])

o u t [4 6] , i n [4 6]) ;

O U t [4 7] , i n [4 7]) ;

o ut [4 8] , i n [4 8]) ;

o ut [4 9] , i n [4 9])

O Ut [5 0] , i n [5 0]) ;

OUt [5 1] , i n [5 1]) ;

OUt [5 2] , i n [5 2])

OUt [5 3] , i n [5 3])

out [5 4] , i n [5 4]) ;
O u t [5 5] i n [5 5])

O U t [5 6] , i n [5 6])

o u t [5 7] i n [5 7]) ;

out [5 8] , i n [5 8])

out [5 9] i n [5 9]) ;

o u t [6 0] , i n [6 0]) ;
o u t [6 1] i n t 6 1]) ;

out [6 2] i n [6 2])

o u t [6 3] , i n [6 3]) ;

e n d m o d u l e

/ / L i b r a r y - C S G _ a l u , C e l l - a d d e r _ 6 4 , V i e w

/ / L A S T T I M E S A V E D : N o v 2 7 2 1 : 2 1 : 0 9 2 0 0 2

/ / N E T L I S T T I M E : N o v 2 8 2 2 : 5 7 : 4 3 2 0 0 2

' t i m e s c a l e l p s / l p s

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m o d u l e a d d e r _ 6 4 { s u m , a , b , e l k) ;

O u t p u t [6 3 : 0] s u m ;

i n p u t [6 3 : 0] a ;

i n p u t [6 3 : 0] b ;

i n p u t [2 : 5] e l k ;

s u p p l y O V S S _ ;

/ / B u s e s i n t h e d e s i g n

w i r e [6 3 : 0] C O U t ;

w i r e [6 3 : 0] g o u t ,

w i r e [6 3 : 0] p o u t ,

w i r e [6 3 : 0] g b a r ,

w i r e [6 3 : 0] p b a r ,

w i r e [6 3 : 0] p s u m ,

/ / L i s t o f p r i m a r y a l i a s e d b u s e s

s u m _ x o r _ 6 4 1 3 (c o u t [6 3 : 0] , p s u m [6 3 : 0] , e l k [5] , s u m [6 3 : 0]) ;

e v e n _ c a r r y _ g e n _ _ 6 4 1 2 (p o u t [6 3 : 0] , g o u t [6 3 : 0] , c o u t [6 3 : 0]) ;

c a r r y _ m e r g e _ 6 4 X I (p b a r [6 3 : 0] , g b a r [6 3 : 0] , e l k [3 : 5] , p o u t [6 3 : 0] ,
g o u t [6 3 : 0]) ;

p b a r _ _ g b a r _ g e n _ 6 4 1 0 (e l k [2] , e l k [3] , e l k [4] , e l k [5] , a [6 3 : 0] , b [6 3 : 0] ,

p b a r [6 3 : 0] , g b a r [6 3 ; 0] , p s u m [6 3 : 0]) ;

e n d m o d u l e

/ / L i b r a r y - C S G _ a l u _ s y n , C e l l - a l u @ s h e e t 0 0 2 , V i e w - s c h e m a t i c

/ / L A S T T I M E S A V E D : N o v 2 8 2 2 : 5 5 : 4 3 2 0 0 2

/ / N E T L I S T T I M E : N o v 2 8 2 2 : 5 7 : 4 3 2 0 0 2

' t i m e s c a l e l p s / l p s

m o d u l e c d s M o d u l e _ 8 (b u s _ _ o u t [6 3 : 0] , a [6 3 : 0] , b [6 3 : 0] , e l k [2] , e l k [3] ,

e l k [4] , e l k [5] , l o g i c a l _ _ c o n t r o l [2 : 0] , l o g i c a l _ i n 0 [6 3 : 0] ,

l o g i c a l _ i n l [6 3 0]) ;

o u t p u t [6 3 : 0] b U S _ O U t ;

i n p u t [6 3 : 0] a ;

i n p u t [6 3 : 0] b ;

i n p u t [6 3 : 0] l o g i c a l _ i n 0 ;

i n p u t [6 3 : 0] l o g i c a l _ i n l ;

i n p u t [2 : 0] l o g i c a l _ c o n t r o l ;

i n p u t [2 : 5] e l k ;

s u p p l y O V S S _ ;

/ / B u s e s i n t h e d e s i g n

w i r e [6 3 : 0] s u m ;

w i r e [6 3 : 0] s u m _ o u t ;

/ / L i s t o f p r i m a r y a l i a s e d b u s e s

m u x 3 1 1 6 { s u m _ _ O u t [6 3 : 0] , e l k [5] , s u m [6 3 : 0] , l o g i e a l _ i n 0 [6 3 : 0] ,

l o g i c a l _ i n l [6 3 : 0] , l o g i c a l _ c o n t r o l [2 : 0]) ;

b u s _ d r i v e r 1 7 (b u s _ o u t [6 3 : 0] , s u m _ _ O u t [6 3 : 0]) ;

a d d e r _ 6 4 1 4 { s u m [6 3 : 0] , a [6 3 : 0] , b [6 3 : 0] , c l k [2 : 5]) ;

e n d m o d u l e

/ / L i b r a r y - c S G _ a l u _ s y n , C e l l - a l u @ s h e e t 0 0 1 , v i e w - s c h e m a t i c
/ / LAST TIME S A V E D : N O V 2 8 2 2 : 4 8 : 3 0 2 0 0 2

/ / N E T L I S T T I M E : N o v 2 8 2 2 : 5 7 : 4 3 2 0 0 2

' t i m e s c a l e l p s / l p s

m o d u l e c d s M o d u l e _ 9 (a [6 3 : 0] , b [6 3 : 0] , a 0 [6 3 : 0] , a l [6 3 : 0] , a 2 [6 3 : 0] ,

a 3 [6 3 : 0] , a 4 [6 3 : 0] , a 5 [6 3 : 0] , a 6 [6 3 : 0] , a 7 [6 3 : 0] , b O [6 3 : 0] ,

b l [6 3 : 0] , b 2 [6 3 : Q] , b 3 l 6 3 : 0] , b 4 [6 3 : 0] , b 5 [6 3 : 0] , b 6 [6 3 : 0] ,

b 7 [6 3 : 0] , b u s _ o u t [6 3 : 0] , c l k [l] , c l k [2] , m u x _ c o n t r o l _ 0 [8 : 0] ,

m u x _ c o n t r o l _ l [8 : 0] , s h i f t _ c o n t r o l [4 : 0] , s i g n _ c o n t r o l [1 : 0]) ;

o u t p u t [6 3 : 0] a ;

o u t p u t [6 3 : 0] b ;

i n p u t [6 3 : 0] a 7 ;

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i n p u t [6 3 : 0] a 6

i n p u t [6 3 : 0] a 5

i n p u t [6 3 : 0] a 4

i n p u t [6 3 : 0] a 3

i n p u t [6 3 : 0] a 2

i n p u t [6 3 : 0] a l

i n p u t [6 3 : 0] a O

i n p u t [6 3 : 0] b 7

i n p u t [6 3 : 0] b 6

i n p u t [6 3 : 0] b 5

i n p u t [6 3 : 0] b 4

i n p u t [6 3 : 0] b 3

i n p u t [6 3 : 0] b 2

i n p u t [6 3 : 0] b l

i n p u t C 6 3 : 0] b O

i n p u t [1 : 0] s i g n _ c o n t r o l ;

i n p u t [4 : 0] s h i f t _ c o n t r o l

i n p u t [1 : 2] e l k

i n p u t [6 3 : 0] b u s _ o u t ;

i n p u t [8 : 0] m u x ^ c o n t r o l l

i n p u t [8 : 0] m u x _ _ c o n t r o l _ 0
s u p p l y O V S S _ ;

/ / B u s e s i n t h e d e s i g n

w i r e [6 3 : 0] b _ m u x ;

w i r e [3 1 9 : 0] a _ _ m u x ;

w i r e [0 : 2] d e l a y e d _ c l k l ;

w i r e [6 3 : 0] b u s _ o u t _ l a t c h ;

11 L i s t o f p r i m a r y a l i a s e d b u s e s

/ / L i s t o f a l l a l i a s e s

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

a s s i g n

d e l a y e d _ c l k l [0] = c l k [l] ;

a _ m u x [1 2 4 : 6 5] = a _ m u x [3 1 9 : 2 6 0] ;

a _ m u x [1 2 4 : 6 5] « a _ m u x [5 9 : 0] ;

a _ m u x [1 2 4 : 6 5] = a _ m u x [2 5 4 : 1 9 5] ;

a _ m u x [1 2 4 : 6 5] = a _ r n u x [1 8 9 : 1 3 0] ;

_ m u x [1 2 5]

_ m u x [1 2 5]

_ m u x [1 2 5]

_ m u x [1 2 6]

_ m u x [1 2 6]

_ m u x [1 2 7]

_ m u x [2 5 5] ;

_ m u x [6 0] ;
_ m u x [1 9 0] ;

_ r n u x [1 9 1] ;

_ m u x [6 1] ;

_ m u x [6 2] ;

f l i p _ f l o p 1 2 3 (d e l a y e d _ c l k l [0] , b u s _ o u t [6 3 : 0] , b u s _ o u t _ l a t c h [6 3 : Q]) ;

m u x 2 1 1 3 (b [6 3 : 0] , e l k [2] , b _ m u x [6 3 : 0] , s i g n _ c o n t r o l [l : 0]) ;

m u x S l 1 2 (a [6 3 : 0] , d e l a y e d _ c l k l [2] , a _ m u x [6 3 : 0] , a _ m u x [1 2 7 : 6 4] ,

a _ _ r n u x [1 9 1 : 1 2 8] , a _ m u x [2 5 5 : 1 9 2] , a _ m u x [3 1 9 : 2 5 6] ,
s h i f t _ c o n t r o l [4 : 0]) ;

m u x 9 1 _ b I I { b _ m u x [6 3 : 0] , d e l a y e d _ _ c l k l [0] , e l k [2] , b 0 [6 3 : 0] , b l [6 3 : 0] ,

b 2 [6 3 : 0) , b 3 [6 3 : 0] , b 4 1 6 3 : 0] , b 5 [6 3 : 0] , b 6 [6 3 : 0] , b 7 [6 3 : 0] ,

b u s _ o u t _ l a t c h [6 3 : 0] , m u x _ c o n t r o l _ _ l [8 : 0]) ;

m u x 9 1 _ _ a 1 0 (a _ m u x [6 3 : 0] , d e l a y e d _ _ c l k l [0] , a 0 [6 3 : 0] , a l [6 3 : 0] ,

a 2 [6 3 : 0] , a 3 [6 3 : 0] , a 4 [6 3 : 0] , a 5 [6 3 : 0] , a 6 [6 3 : 0] , a 7 [6 3 : 0] ,

b u s _ o u t _ l a t c h [6 3 : 0] , m u x _ e o n t r o l _ 0 [8 : 0]) ;

b a c k _ t o _ b a c k _ i n v I 5 _ 0 _ (d e l a y e d _ c l k l [0] , d e l a y e d _ _ c l k l [1]) ;

b a c k _ t o _ b a c k _ i n v I 5 _ _ l _ (d e l a y e d _ c l k l [l] , d e l a y e d _ c l k l [2]) ;
t h r u 1 1 9 _____

t h r u I 1 9 _ l _

t h r u I 1 9 _ 2 _

t h r u I 1 9 _ 3 _

t h r u I 1 8 _ 0 _ _

t h r u I 1 8 _ 1 _

t h r u I 1 8 _ 2 _

t h r u I 1 7 _ _ 0 _

t h r u 1 1 7 1

(V S S _

(V S S _

(V S S _

(V S S _

(V S S _

(V S S _

(V S S _

(V S S _

(v s s _
thru 116 (V SS

m u x [2 5 9])

a _ m u x [2 5 8])

a _ _ m u x [2 5 7])

a _ _ m u x [2 5 6])

a _ m u x [1 9 4])

a _ m u x [1 9 3])

a _ m u x [1 9 2])

a _ m u x [1 2 9])

a _ m u x [1 2 8])
_tnux [64]) ;

e n d m o d u l e

/ / L i b r a r y - C S G _ a l u _ s y n , C e l l - a l u , V i e w

/ / L A S T T I M E S A V E D : N o v 2 8 2 2 : 5 5 : 4 9 2 0 0 2

/ / N E T L I S T T I M E : N o v 2 8 2 2 : 5 7 : 4 3 2 0 0 2

' t i m e s c a l e l p s / l p s

s c h e m a t i c

m o d u l e a l u (b u s _ o u t [6 3 : 0] , a 0 [6 3 : 0] , a l [6 3 : 0] , a 2 [6 3 : 0] , a 3 [6 3 : 0] ,

a 4 [6 3 : 0] , a 5 [6 3 : 0] , a 6 [6 3 : 0] , a 7 [6 3 : 0] , b 0 [6 3 : 0] , b l [6 3 : 0 j ,

b 2 [6 3 : 0] , b 3 [6 3 : 0] , b 4 [6 3 : 0] , b 5 [6 3 : 0] , b 6 [6 3 : 0] , b 7 [6 3 : 0] ,

c l k [l] , e l k [2 1 , e l k [3] , c l k [4] , c l k [5] , l o g i c a l _ c o n t r o l [2 - . 0] ,

l o g i e a l _ i n 0 [6 3 : 0] , l o g i c a l _ i n l [6 3 : 0] , m u x _ e o n t r o l _ 0 [8 : 0] ,

m u x _ c o n t r o l _ i [8 : 0] , s h i f t _ c o n t r o l [4 : 0] , s i g n _ c o n t r o l [l : 0]) ;

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o u t p u t [6 3 : 0] b u s _ o u t ;

i n p u t [6 3 : 0] a O

i n p u t [6 3 : 0] a l

i n p u t [6 3 : 0] a 2

i n p u t [6 3 : 0] a 3

i n p u t [6 3 : 0] a 4

i n p u t [6 3 : 0] a 5

i n p u t [6 3 : 0] a 6

i n p u t [6 3 : 0] a 7

i n p u t [6 3 : 0] b O

i n p u t [6 3 : 0] b l

i n p u t [6 3 : 0] b 2

i n p u t [6 3 : 0] b 3

i n p u t [6 3 : 0] b 4

i n p u t [6 3 : 0] b 5

i n p u t [6 3 : 0] b 6

i n p u t [6 3 : 0] b 7

i n p u t [4 : 0] s h i f t _ c o n t r o l ;
i n p u t [1 : 5] e l k

i n p u t [1 : 0] s i g n _ c o n t r o l ;

i n p u t [2 : 0] l o g i c a l _ c o n t r o l ;

i n p u t [6 3 : 0] l o g i c a l _ i n 0 ;
i n p u t [6 3 : 0] l o g i c a l _ i n l ;

i n p u t [8 : 0] m u x _ c o n t r o l _ 0 ;

i n p u t [8 : 0] m u x _ c o n t r o l _ l ;

S u p p l y O V S S _ ;

I f B u s e s i n t h e d e s i g n

w i r e [6 3 : 0] a ;

w i r e [6 3 : 0] b ;

/ / L i s t o f p r i m a r y a l i a s e d b u s e s

c d s M o d u l e _ 8 S H 2 { b u s _ O U t [6 3 : 0] , a [6 3 : 0] , b [6 3 : 0] , c l k [2] , c l k [3] ,

e l k [4] , e l k [5] , l o g i c a l _ c o n t r o l [2 : 0] , l o g i c a l _ i n 0 [6 3 : 0] ,

l o g i c a l _ i n l [6 3 : 0]) ;

c d s M o d u l e _ 9 S H I (a [6 3 : 0] , b [6 3 : 0] , a 0 [6 3 : 0] , a l [6 3 : 0] , a 2 [6 3 : 0] ,

a 3 [6 3 : 0 1 , a 4 [6 3 : 0] , a 5 [6 3 : 0] , a 6 [6 3 : 0] , a 7 [6 3 : 0] , b 0 [6 3 : 0] ,

b l [6 3 : 0] , b 2 [6 3 : 0] , b 3 [6 3 : 0] , b 4 [6 3 : 0] , b 5 [6 3 : 0] , b 6 [6 3 : 0] ,

t>7 [6 3 : 0] , b u s _ O u t [6 3 : 0] , c l k [l] , e l k [2] , m u x _ c o n t r o l _ 0 [8 : 0] ,

m u x _ c o n t r o l _ l [8 : 0] , s h i f t _ c o n t r o l [4 : 0] , s i g n _ c o n t r o l [1 : 0 3) ;

e n d m o d u l e

C.2 Behavioral Verilog Transistor Models
For the Verilog transistor models used for switch-level simulations, the normal NMOS/PMOS
can overdrive the resistive NMOS/PMOS in the case when there are multiple drivers on a
net. The “trireg” statements enable the simulation of dynamic logic, since the previously
driven logic value is retained when there is no direct path to V(id or Vss.

U V e r i l o g H D L f o r " c m o s p l 8 L o c a l " , " n f e t 3 " " v e r i l o g "

m o d u l e n f e t 3 (D , G , S) ;

i n o u t D ;

i n o u t G ;

i n o u t S ;

/ / t r i r e g D ;

/ / t r i r e g S ;

t r i r e g G ;

n m o s (D , S , G) ;

e n d m o d u l e

/ / v e r i l o g H D L f o r " c m o s p l 8 L o c a l " , " n f e t 3 _ r e s " " v e r i l o g "

m o d u l e n f e t 3 _ r e s (D , G , S) ;

i n o u t D ;

i n o u t G ;

i n o u t S ;

/ / t r i r e g D ;

/ / t r i r e g S ;
t r i r e g G ;

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r n m o s (D , S , G) ;

e n d m o d u l e

11 v e r i l o g H D L f o r " c m o s p l S L o c a l " , " p f e t 3 " " v e r i l o g "

m o d u l e p f e t 3 (D , G , S) ;

i n o u t D ;

i n o u t G ;

i n o u t S ;

/ / t r i r e g D ;

/ / t r i r e g S ;

t r i r e g G ;

p m o s { D , S , G) ;

e n d m o d u l e

/ / V e r i l o g H D L f o r " c m o s p l S L o c a l " , " p f e t 3 _ r e s " " v e r i l o g "

m o d u l e p f e t 3 _ _ r e s (D , G, s) ;
i n o u t D ;

i n o u t G ;

i n o u t S ;

/ / t r i r e g D ;

/ / t r i r e g S ;

t r i r e g G ;

r p m o s (D , S , G) ;

e n d m o d u l e

C.3 Behavioral Verilog Multi-phase Clock Generator
This clock generator, can skew adjacent clocks arbitrarily according to the values of the
input parameters.

/ / V e r i l o g H D L f o r " C S G _ t e s t b e n c h " , " c l o c k _ >g e n _ f o u r _ p h a s e " " b e h a v i o r a l "

/ / T e s t b e n c h d o e s n o t w o r k f o r g r e a t e r t h a n 7 5 % d u t y c y c l e c l o c k s

/ / m o d u l e c l o c k _ g e n _ f i v e _ j p h a s e (p h i , p h i a n d , p h i o r , p h i d e l a y) ;

m o d u l e c l o c k _ g e n _ f i v e _ p h a s e (p h i , p h i a n d , p h i o r , p h i d e l a y , p h i g a t e) ;

p a r a m e t e r p e r i o d = 3 2 ;

p a r a m e t e r p u l s e _ w i d t h = 1 6 ;

p a r a m e t e r n u m _ p h a s e s = 5 ;

p a r a m e t e r d e l a y e d _ c l o c k j p u l s e _ w i d t h = 2 4 ;

/ / s k e w p a r a m e t e r s

/ / m u s t b e p o s i t i v e

p a r a m e t e r p h i l _ s k e w * 0

p a r a m e t e r p h i 2 _ s k e w = 0

p a r a m e t e r p h i 3 _ s k e w = 0

p a r a m e t e r p h i 4 _ s k e w = 0

p a r a m e t e r p h i 5 _ s k e w s 0

p a r a m e t e r p h i d e l a y l _ s k e w ■ 0

p a r a m e t e r p h i d e l a y 2 _ s k e w ■ 0

p a r a m e t e r p h i d e l a y 3 _ s k e w = 0

p a r a m e t e r p h i d e l a y 4 _ s k e w = 0

p a r a m e t e r p h i d e l a y 5 _ s k e w ■ 0

p a r a m e t e r h a l f _ p e r i o d = p e r i o d / 2 ;

p a r a m e t e r T c _ o v e r _ N = p e r i o d / n u m _ p h a s e s ;

/ / d e f i n e c l o c k o u t p u t s

O u t p u t [1 : 5] p h i ;

o u t p u t [1 : 5] p h i a n d ;

o u t p u t [1 : 5] p h i o r ;

o u t p u t [1 : 5] p h i d e l a y ;

o u t p u t [1 : 5] p h i g a t e ;

/ / c l o c k o u t p u t s m u s t h o l d t h e i r v a l u e s

r e g [l : 5] p h i ;

r e g [l : 5] p h i a n d ;

r e g [l : 5] p h i o r ;

r e g [l : 5] p h i d e l a y ;

r e g [l : 5] p h i g a t e ;

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ / i n t e r n a l v a r i a b l e s

r e g e l k , c l k l , c l k 2 , c l k 3 , c l k 4 , c l k 5 ;

i n i t i a l

b e g i n

e l k ■ 1 ' b O ;

c l k l ■ 1 ' b O ;

C l k 2 = 1 ' b O ;

c l k 3 = 1 ' b O ;

C l k 4 = 1 ' b O ;

c l k 5 = 1 ' b O ;

e n d

/ / g e n e r a t e i n t e r n a l r e f e r e n c e c l o c k s

i n i t i a l

b e g i n

f o r e v e r

b e g i n

(h a l f _ p e r i o d) e l k = “ e l k ;

e n d

e n d

a l w a y s ® (p o s e d g e e l k)

b e g i n

0 c l k l * " c l k l ;

p u l s e _ w i d t h c l k l » “ c l k l ;

e n d

a l w a y s ® (p o s e d g e c l k l)

b e g i n

(T c _ o v e r _ N) c l k 2 = “ c l k 2 ;

p u l s e _ w i d t h c l k 2 ■ ~ c l k 2 ;

e n d

a l w a y s ® (p o s e d g e c l k 2)
b e g i n

(T c _ o v e r _ N) c l k 3 = ~ c l k 3 ;

p u l s e _ w i d t h c l k 3 = “ c l k 3 ;
e n d

a l w a y s ® (p o s e d g e c l k 3)

b e g i n

(T c _ o v e r _ N) c l k 4 = “ c l k 4 ;

p u l s e _ w i d t h c l k 4 * “ c l k 4 ;

e n d

a l w a y s ® (p o s e d g e c l k 4)

b e g i n

{ T c _ o v e r _ N) c l k 5 = “ c l k 5 ;

p u l s e _ w i d t h c l k 5 ■ “ c l k 5 ;
e n d

/ / s e t a l l s k e w - e n a b l e d c l o c k s t o i n i t i a l v a l u e s

i n i t i a l

b e g i n

p h i [1 : 5] = 5 ' h O ;

p h i a n d [1 : 5] * 5 ' h O ;

p h i o r [1 : 5] » 5 ' h O ;

p h i d e l a y [i : 5] * 5 ' h O ;

p h i g a t e [1 : 5] = 5 ' h O ;
e n d

/ / g e n e r a t e d i f f e r e n t d e l a y e d p h a s e s o f t h e c l o c k

a l w a y s ® (p o s e d g e c l k l)

b e g i n

p h i l _ s k e w p h i [l] = ~ p h i [l] ;

p u l s e _ w i d t h p h i [1] = ~ p h i [l] ;

e n d

a l w a y s ® (p o s e d g e c l k 2)
b e g i n

p h i 2 _ s k e w p h i [2] = “ p h i [2] ;

p u l s e _ _ w i d t h p h i [2] = “ p h i [2] ;
e n d

a l w a y s ® (p o s e d g e c l k 3)
b e g i n

p h i 3 _ s k e w p h i [3] = ~ p h i [3] ;

p u l s e _ w i d t h p h i [3] = “ p h i [3] ;

e n d

a l w a y s ® (p o s e d g e c l k 4)

b e g i n

p h i 4 _ s k e w p h i [4] = “ p h i [4] ;

p u l s e _ _ w i d t h p h i [4] = “ p h i [4] ;

e n d

a l w a y s ® (p o s e d g e c l k 5)
b e g i n

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

p h i 5 _ s k e w p h i [5] = " p h i [5 3 ;

p u l s e _ w i d t h p h i [5] = " p h i [5 3 ;

e n d

/ / g e n e r a t e a n d e d v e r s i o n s o f a d j a c e n t c l o c k s

a l w a y s ® { p h i [l] o r p h i [2])

b e g i n

p h i o r [l] * p h i [l] | p h i [2] ;

e n d

a l w a y s ® (p h i [2] o r p h i [3])

b e g i n

p h i o r [2] = p h i [2] | p h i [3 3 ;

e n d

a l w a y s ® (p h i [3] o r p h i [4])

b e g i n

p h i o r [3] = p h i [3] | p h i [4] ;

e n d

a l w a y s ® (p h i [4] o r p h i [5])

b e g i n

p h i o r [4] ■ p h i [4] | p h i [5] ;

e n d

a l w a y s ® (p h i [5] o r p h i [1])

b e g i n

p h i o r [5] = p h i [5 3 j p h i [1 3 ;
e n d

/ / g e n e r a t e o r v e r s i o n s o f a d j a c e n t c l o c k s

a l w a y s ® (p h i [1] o r p h i [2 3)

b e g i n

p h i a n d [1] = p h i [l] & p h i [2] ;

e n d

a l w a y s ® (p h i [2] o r p h i [3 3)

b e g i n

p h i a n d [2] = p h i [2] & p h i [3] ;

e n d

a l w a y s ® (p h i [3) o r p h i [4])

b e g i n

p h i a n d [3] « p h i [3] & p h i [4] ;

e n d

a l w a y s ® (p h i [4 1 o r p h i [5])

b e g i n

p h i a n d [4] > p h i [4] & p h i [5] ;

e n d

a l w a y s ® (p h i [5] o r p h i [1 3)

b e g i n

p h i a n d [5] = p h i [5] & p h i [l] ;

e n d

/ / g e n e r a t e d e l a y e d c l o c k s f o r O T B d o m i n o

a l w a y s ® (p o s e d g e c l k l)

b e g i n

p h i d e l a y l _ s k e w p h i d e l a y [1] = " p h i d e l a y [1] ;

d e l a y e d _ c l o c k _ p u l s e _ w i d t h p h i d e l a y [l j = " p h i d e l a y [1] ;

e n d

a l w a y s ® (p o s e d g e c l k 2)

b e g i n

p h i d e l a y 2 _ s k e w p h i d e l a y [2] = " p h i d e l a y [2] ;

d e l a y e d _ c l o c k _ p u l s e _ w i d t h p h i d e l a y [2 3 = " p h i d e l a y [2] ;
e n d

a l w a y s ® (p o s e d g e c l k 3)

b e g i n

p h i d e l a y 3 _ s k e w p h i d e l a y [3] ■ " p h i d e l a y [3] ;

d e l a y e d _ c l o c k _ _ p u l s e _ w i d t h p h i d e l a y [3] = " p h i d e l a y [3] ;
e n d

a l w a y s ® (p o s e d g e c l k 4)

b e g i n

p h i d e l a y 4 _ s k e w p h i d e l a y [4] = " p h i d e l a y [4] ;

d e l a y e d _ c l o c k _ p u l s e _ w i d t h p h i d e l a y [4] = " p h i d e l a y [4] ;

e n d

a l w a y s ® (p o s e d g e c l k 5)

b e g i n

p h i d e l a y 5 _ s k e w p h i d e l a y [5] = " p h i d e l a y [5 3 ;

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d e l a y e d _ c l o c k _ p u l s e _ w i d t h p h i d e l a y [5] = ' p h i d e l a y [5] ;

e n d

/ / g e n e r a t e g a t e d e v a l u a t i o n s

a l w a y s ® (p h i [l] o r p h i [2])

b e g i n

p h i g a t e [l] = p h i [l] & ' p h i [2] ;

e n d

a l w a y s ® (p h i [2] o r p h i [3])

b e g i n

p h i g a t e [2] = p h i [2] & ' p h i [3 3 ;

e n d

a l w a y s ® (p h i [3 3 o r p h i [4])

b e g i n

p h i g a t e [3] = p h i [3] & ' p h i [4 3 ;

e n d

a l w a y s ® (p h i [4] o r p h i [5])

b e g i n

p h i g a t e [4] ■ p h i [4 3 & ' p h i [5] ;

e n d

a l w a y s ® (p h i [5] o r p h i [l })
b e g i n

p h i g a t e [5] > p h i [5] & ~ p h i [l] ;

e n d

/ / a l w a y s ® (p h i d e l a y [1] o r p h i d e l a y [3 j)

/ / b e g i n

/ / p h i g a t e [l] = p h i d e l a y [l] & ' p h i d e l a y [3] ;

/ / e n d

/ / a l w a y s ® (p h i d e l a y [2] o r p h i d e l a y [4])

/ / b e g i n

/ / p h i g a t e [2] *= p h i d e l a y [2 3 & ' p h i d e l a y [4] ;

/ / e n d

/ / a l w a y s @ (p h i d e l a y [l] o r p h i d e l a y [3])

/ / b e g i n

/ / p h i g a t e [3] = ' p h i d e l a y [l] & p h i d e l a y [3] ;
/ / e n d

/ / a l w a y s ® (p h i d e l a y [2] o r p h i d e l a y [4])

/ / b e g i n

/ / p h i g a t e [4] = ' p h i d e l a y [2] & p h i d e l a y [4 3 ;

/ / e n d

e n d m o d u l e

C.4 Behavioral Verilog ALU Stimulus
This Verilog testbench stimulus, provided test vectors and control signals for the 64-bit
ALUs under test.

/ / V e r i l o g H D L f o r " C S G _ a l u " , " a l u _ s t i m " " b e h a v i o r a l "

m o d u l e a l u _ s t i m (a O , a l , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , b O , b l , b 2 , b 3 , b 4 , b 5 , b 6 , b 7 ,

l o g o , I o g l , m u x _ c o n t r o l _ 0 , m u x _ c o n t r o l _ l , s h i f t _ c o n t r o l , s i g n _ c o n t r o l , l o g i c a l _ c o n t r o l) ;

p a r a m e t e r n u m b i t s = 6 4 ;

p a r a m e t e r P E R I O D ■ 1 0 0 0 ;

p a r a m e t e r H A L F _ P E R l O D = P E R I O D / 2 ;

p a r a m e t e r f i f t h _ p e r i o d = p e r i o d / 5 ;

/ / A L U s t i m u l u s

output [NUMBITS-1:0] aO,al,a2,a3,a4,a5,a6,a7;
output [NUMBITS“1:03 bO,bl,b2,b3,b4,b5,b6,b7;
output [NUMBITS-lsO] log0,logl;

o u t p u t [8 : 0 1 m u x _ c o n t r o l _ 0 ;

o u t p u t [8 : 0] m u x _ c o n t r o l _ l ;

o u t p u t [4 : 0] s h i f t _ c o n t r o l ;

o u t p u t [1 : 0] s i g n _ c o n t r o l ;

o u t p u t [2 : 0] l o g i c a l _ c o n t r o l ;

r e g [N U M B I T S - 1 : 0] a 0 , a l , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 ;

r e g [N U M B I T S - 1 : 0] b 0 / b l , b 2 >b 3 , b 4 , b 5 , b 6 / b 7 ;

r e g [N U M B I T S - 1 : 0] l o g O . l o g l ;

r e g [8 : 0] m u x _ c o n t r o l _ 0 ;

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r e g [8 : 0] m u x _ _ c o n t r o l _ l ;

r e g [4 : 0] s h i f t _ c o n t r o l ;

r e g [1 : 0] s i g n _ c o n t r o l ;

r e g [2 : 0] l o g i c a l _ c o n t r o l ;

/ / I n t e r n a l M e m o r i e s f o r r e a d i n g i n t e x t d a t a

r e g [N U M B I T S - 1 : 0] a [0 : 7] ;

r e g [N U M B I T S - 1 : 0] b [0 : 7] ;

r e g [N U M B I T S - 1 : 0] l o g [0 : 1] ;

r e g [N U M B I T S - 1 : 0] a l u _ y e c [0 : 2 7] ;

r e g [N U M B I T S - 1 : 0] a l u _ o u t ;

/ / L o c a l v a r i a b l e s

i n t e g e r i ;

i n i t i a l

b e g i n

$ r e a d m e m h (" / h o m e s / s u n g / a s p / a s p _ c m o s p l 8 _ r s . W o r k / C S G _ a l u / a d d e r _ 6 4 _ s t i m / b e h a v i o r a l / a d d e r _ 6 4 _ v e c _ a . t x t " , a)

$ r e a d m e m h (" / h o m e s / s u n g / a s p / a s p _ c m o s p l 8 _ r s . W o r k / C S G _ a l u / a d d e r _ 6 4 _ s t i m / b e h a v i o r a l / a d d e r _ 6 4 _ v e c _ b . t x t " , b) ;

$ r e a d m e m h (" / h o m e s / s u n g / a s p / a s p _ c m o s p l 8 _ _ r s . W o r k / C S G _ a l u / a d d e r _ 6 4 _ s t i m / b e h a v i o r a l / l o g i c a l _ v e c . t x t ", l o g) ;
$ r e a d m e m h (" / h o m e s / s u n g / a s p / a s p _ c m o s p l 8 _ r s . W o r k / C S G _ a l u / a d d e r _ 6 4 _ s t i m / b e h a v i o r a l / a l u _ v e c _ o u t p u t s . t x t " , a l u _ v e c) ;
e n d

i n i t i a l

b e g i n

a O = a [0] ;

a l = a [l] ;

a 2 = a [2] ;

a 3 = a [3] ;

a 4 * a [4] ;

a 5 * a [5] ;
a 6 = a [6] ;

a 7 * a [7] ;

b O * b [0] ;

b l » b [l] ;

b 2 = b [2] ;

b 3 * b [3] ;

b 4 = b [4] ;

b 5 = b [5] ;

b 6 = b [6] ;

b 7 = b [7] ;

l o g O = l o g l o l ;

l o g l = l o g [l] ;

a l u _ _ o u t = 6 4 ' b O ;

m u x _ _ c o n t r o l _ 0 = 9 ' b O O O O O O O O O ;

m u x _ _ c o n t r o l _ l * 9 ' b 0 0 0 0 0 0 0 0 0 ;

s h i f t _ c o n t r o l = 5 ' b O O O O l ;

s i g n _ c o n t r o l = 2 ' b O l ;

l o g i c a l _ c o n t r o l = 3 ' b O O l ;

e n d

i n i t i a l

b e g i n

P E R I 0 D ;

H A L F _ P E R I O D ;

r a u x _ c o n t r o l _ 0 = 9 ' b 0 0 0 0 0 0 0 0 l ;

m u x _ c o n t r o l _ _ l = 9 ' b 0 0 0 0 0 0 0 0 1 ;

/ / t e s t f i r s t d a t a s e t a O + b O

F I F T H _ P E R I O E > ;

F I F T H _ _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t = a l u _ v e c [0] ;

/ / t e s t f u n c t i o n a l i t y o f f i r s t 9 : 1 m u l t i p l e x e r

f o r (i = l ; i < 9 ; i = i + l)
b e g i n

m u x _ c o n t r o l _ 0 » m u x _ c o n t r o l _ 0 < < 1 ; / / b O + { a l : a 7 , s u m (b 0 + a 7) }

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ _ P E R I O D ;

a l u _ o u t ■ a l u _ v e c [i] ;

e n d

/ / t e s t l o o p b a c k s e c o n d t i m e

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t = a l u _ _ v e c [9] ; 11 b O + (s u m (b 0 + a 7) + b O)

m u x _ c o n t r o l _ 0 = 9 ' b O O O l O O O O O ;

m u x _ c o n t r o l _ l ■ 9 ' b O O O O O O O O l ;

11 a 5 + b O

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t ■ a l u _ v e c [1 0] ; / / a 5 + b O

/ / t e s t f u n c t i o n a l i t y o f s e c o n d 9 : 1 m u l t i p l e x e r

f o r (i « 1 1 ; i < 1 9 ; i - i + 1)

b e g i n

m u x _ c o n t r o l _ l = m u x _ c o n t r o l _ l < < l ; / / a 5 + { b l : b 7 , s u m { a 5 + b 7) }

F I F T H _ P E R I O D ;

F I F T H _ _ P E R I O D ;

F I F T H _ _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t » a l u _ v e c [i] ;

e n d

/ / t e s t l o o p b a c k s e c o n d t i m e

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t = a l u _ v e c [1 9] ; / / a 5 + (s u m (a 5 + b 7) + a 5)

/ / s e l e c t a 3 a n d b 6

m u x _ c o n t r o l _ 0 > 9 ' b 0 0 0 0 0 1 0 0 0 ;

m u x _ c o n t r o l _ l = 9 ' b O O l O O O O O O ;

/ / t e s t s h i f t c o n t r o l

f o r (i = 2 0 ; i < 2 4 ; i = i + 1 }

b e g i n

s h i f t _ c o n t r o l = s h i f t _ c o n t r o l < < i ; / / b 6 + { a 5 < < l , a 5 < < 2 , a 5 < < 3 , a 5 < < 4 }
F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ _ P E R I O D ;

F I F T H _ P E R 1 0 D ;

F I F T H _ P E R I O D ;

a l u _ o u t = a l u _ v e c [i] ;
e n d

s h i f t _ c o n t r o l * 5 ' b O O O O l ; / / r e s e t s h i f t t o s h i f t < < 0

/ / t e s t l o g i c a l c o n t r o l

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

l o g i c a l _ c o n t r o l = 3 ' b 0 1 0 ;

F I F T H _ P E R I O D ;

F I F T H _ P E R X O D ;

a l u _ o u t = a l u _ v e c [2 4] ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;
F I F T H _ P E R I O D ;

l o g i c a l _ c o n t r o l = 3 ' b l O O ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D j

a l u _ o u t m a l u _ v e c [2 5 l ;

/ / t e s t s u b t r a c t i o n a 6 - b l

m u x _ c o n t r o l _ 0 * 9 ' b 0 0 1 0 0 0 0 0 0 ;

m u x _ c o n t r o l _ l = 9 ' b O O O O O O O l O ;

a O ■ 6 4 ' b l ; / / l o a d c o n s t a n t 1

s i g n _ c o n t r o l = 2 ' b l O ; / / s e l e c t i n v e r t e d v a l u e s

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l o g i c a l _ c o n t r o l * 3 ' b 0 0 1 ; / / d e s e l e c t l o g i c a l o u t p u t s
F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

a l u _ o u t = a l u _ v e c [2 6] ;

t n u x _ c o n t r o l _ 0 = 9 ' b O O O O O O O O l ; / / s e l e c t c o n s t a n t 1

m u x _ c o n t r o l _ l = 9 ' b l O O O O O O O O ; / / s e l e c t l o o p b a c k

s i g n _ c o n t r o l ■ 2 ' b 0 1 ; / / s e l e c t n o n - i n v e r t e d v a l u e s a g a i n

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R 1 0 D ;

a l u _ o u t * a l u _ v e c [2 7] ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

F I F T H _ P E R I O D ;

$ f i n i s h ;

e n d

e n d m o d u l e

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Test Vectors

D.l C Program for generating random input vectors for Adder
and ALU

i n c l u d e < s t d i o . h >

i n c l u d e < s t d l i b . h >

m a i n O

{
i n t i , n u m b e r s , s e e d ;

p r i n t f (" / / E n t e r t h e n u m b e r o f i n p u t v a l u e s t o g e n e r a t e ") ;

s c a n f (" % d " , & n u m b e r s) ;

p r i n t f (" % d \ n " , n u m b e r s) ;

p r i n t f { " / / E n t e r s e e d v a l u e t o s t a r t r a n d o m n u m b e r g e n e r a t i o n ") ;

s c a n f (" i d " , f c s e e d) ;

p r i n t f (" % d \ n " , s e e d) ;

s r a n d (s e e d) ;

f o r (i = 0 ; i < n u m b e r s ; i + +) {

p r i n t f { " % 0 4 x % 0 4 x % 0 4 x % 0 4 x \ n " , r a n d () , r a n d O , r a n d {) , r a n d O) ;

)
}

D.2 Input Vectors for Adder and ALU
/ / A - i n p u t

/ /
/ / E n t e r t h e n u m b e r o f i n p u t v a l u e s t o g e n e r a t e 1 0 0

/ / E n t e r s e e d v a l u e t o s t a r t r a n d o m n u m b e r g e n e r a t i o n 5 0

5 8 b b 5 7 9 e 3 f 9 3 5 3 a 9

1 3 2 a 2 3 2 8 0 f 1 7 6 6 7 3

4 e 3 1 5 4 6 4 6 e l 4 0 3 a c

3 2 f 2 6 7 c 6 5 1 c 6 0 9 d 4

7 0 c f 0 c 3 f 4 d d e 4 c e a

3 f c c 2 c 6 a 6 4 4 3 5 1 7 3

2 c a l 5 e 7 c l 4 8 d 2 c 4 a

0 a a 2 6 6 e 8 6 7 3 e l 3 2 b

2 7 4 f 3 9 d 5 7 0 b e 6 9 f e

I b b b 2 7 4 0 0 8 1 d 5 8 e 3

5 7 9 d l d f 1 2 d 8 7 3 7 0 1
4 2 3 7 3 1 1 f 5 c 8 6 5 6 0 e

0 c e b 4 c e 2 4 5 f b 7 a 9 e

1 3 9 6 4 5 5 d 2 d d a 0 d 2 d

6 6 b 3 2 c a 7 6 8 a 8 4 f e b

5 b 3 1 1 b 7 e 3 4 b 6 2 5 4 a

3 c 0 f 5 8 a a 6 b l b 3 3 4 8

7 9 b d 0 b 3 3 4 4 7 2 6 f 7 c

7 3 3 3 6 3 4 2 2 d 5 8 5 f e 3

3 4 c d 6 5 d 7 6 6 a 4 1 c 6 8

4 8 e d 4 7 3 0 6 d 6 5 5 d 3 5

7 6 4 f 7 f f 5 6 6 9 d 2 1 b c

0 8 2 b 0 9 2 4 0 a b e 3 c 8 3

7 c 0 c 6 a b f 4 c e 8 4 f b 4

3 1 7 3 0 9 3 7 3 9 e 0 0 6 6 0

7 7 2 b 5 d 9 6 4 a d 0 1 6 9 7

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 6 a 0 4 7 0 2 7 c l 5 8 2 8

I b a c 4 f 8 7 1 5 d 8 7 c 3 8

4 d 4 f 4 6 4 1 0 d 5 4 3 1 8 5

I f e f 4 0 c a 3 3 4 3 4 1 7 8

5 0 7 f 0 a 0 9 3 3 0 7 7 1 e c

2 c 2 c 3 4 4 4 3 3 8 c 3 7 c l

3 d f 2 0 c 9 2 6 4 4 6 0 6 1 f

3 9 f a 5 9 0 4 5 d e d 4 6 8 a

4 2 b a 4 d 9 2 5 2 f 8 4 5 a a

6 3 c b 6 3 c 7 4 b d b 2 0 d 8

5 e 8 9 0 1 2 c 6 a f f 0 0 6 8
2 4 6 c l 8 7 6 7 4 8 5 2 a b 9

l b 2 9 3 1 6 f I 5 b b 3 b f d

0 6 8 8 0 3 a 4 2 8 5 a 0 e c 9

34040fd46d86215C
4 4 2 4 6 4 1 3 7 c 8 3 0 3 a f

2 d 9 c 7 6 c l 6 1 3 6 1 a 4 0

5 6 2 3 4 4 2 f 2 6 6 3 4 1 9 f

5 d l 2 1 b 0 a 4 7 a 0 l e b 5

7 3 c l 4 3 8 f 4 7 1 c 2 7 d 7

5 f a l 6 d 6 d 6 3 1 2 3 2 8 f

0 2 1 9 1 0 7 9 2 7 0 a l 2 2 4

0 2 2 1 2 c l 4 5 4 d 6 1 2 e f

7 3 a l l l 5 c 6 1 4 8 5 e 5 d

1 8 8 7 2 4 1 5 0 0 b 4 1 3 c 3

1 7 a a 3 e 5 6 7 f 2 9 2 1 e 5

4 5 6 2 2 2 f 3 6 0 6 e 2 d 4 4

5 9 e 4 2 a a e 0 3 b e 0 f 2 b

3 1 5 e l 8 1 c 4 7 4 3 3 9 7 8

7 1 d 6 3 e 5 9 6 7 5 4 0 b 2 b

3 2 c 3 6 6 6 b l 5 6 f 6 1 b 0

0 2 6 8 1 f 7 7 0 2 f 5 7 2 e c

6 4 f 4 6 5 a 6 5 b a 8 3 c 0 9

2 9 5 b 4 b d 5 6 b e 5 1 1 0 2

2 f f 2 l 3 f f 6 e a l l 8 e d

7 e c d 6 2 6 a 3 f 2 4 4 3 0 C

3 f d 8 7 7 9 4 6 a 8 8 0 0 9 2

0 4 b 8 1 c d c 5 c f 0 4 f 3 5

6 c 5 f 2 f f 1 2 6 8 9 6 0 7 7

0 6 7 1 7 8 f b l 4 4 2 6 9 b 4

I 0 5 a 3 7 8 b l 8 4 b 6 8 e c

6 8 2 c l 2 4 3 3 e 4 f 6 a 4 e

5 1 3 9 5 5 4 5 2 7 7 0 1 a 8 9

6 6 7 4 2 b 5 C 4 a 0 6 3 1 d 2

5 6 8 8 3 d e d 7 1 1 8 0 3 b 3

4 5 b 6 6 7 9 c 3 7 9 6 3 f 9 a

7 1 6 f 6 5 b d 7 b 5 c 2 e l d

7 1 b 5 3 4 8 1 0 3 e 7 7 7 0 e

3 4 3 2 0 1 d d 5 8 d 5 3 c 4 3

0 d l 5 6 3 3 9 0 4 1 e l 5 2 2

7 9 b 0 3 9 d e 3 c l 5 3 6 e f

7 0 d 2 7 2 1 c 3 1 1 c 5 5 d 5

5 c e 6 0 9 3 e 7 b 2 a 0 a b 5

l b c 8 0 6 2 f 6 2 f e 4 9 b 2

2 0 6 b 5 0 e 9 0 3 2 0 3 5 7 9

1 2 2 b l 4 a l 7 c 9 c 5 b 5 1

0 5 f 3 1 8 b 4 3 b 7 e 2 3 e 6

2 d 0 e 3 c 4 f 0 7 0 c 0 4 d 5

1 5 c e 0 0 e l 5 9 c 6 3 e f 6

5 9 d f 4 f 4 2 3 d l e 3 5 6 d

5 6 6 8 6 3 a 0 2 4 f 8 2 9 7 0

4 9 e 7 0 c 2 d 0 6 e 0 6 6 d 5

7 3 c 9 2 6 8 a 2 9 0 d 2 d 6 3

l l c c 0 7 f 2 6 5 1 9 6 2 d 5

5 7 1 5 3 c 2 7 5 a 7 e 5 9 a d

3 9 1 0 4 7 I d 4 c d 0 3 8 b f

2 e 0 c 5 5 6 7 2 9 b d 4 f 7 8

3 9 9 2 0 7 6 5 7 2 c 4 6 2 f 3

6 2 8 8 4 3 2 b 0 6 b 8 3 f b a

6 f 0 a 3 9 3 0 0 6 f 4 1 C 5 C

0 2 0 4 C 7 b b 5 4 5 b l 8 b 3

7 6 8 f 2 9 0 d 6 0 1 6 6 5 f 2

1 5 1 1 1 8 4 f 4 c 0 d 6 3 7 1

7 e l 3 5 9 3 a l 7 2 2 3 c 3 8

/ / B - i n p u t

/ /
/ / E n t e r t h e n u m b e r o f i n p u t v a l u e s t o g e n e r a t e 1 0 0

/ / E n t e r s e e d v a l u e t o s t a r t r a n d o m n u m b e r g e n e r a t i o n 2 0 0

6 2 e d 6 2 e 4 0 9 3 f 4 b 7 8

2 3 a b 4 6 4 3 0 0 5 6 3 2 7 4

2 a b 6 6 f 0 4 2 8 a 3 5 1 a a

0 9 7 5 2 c b f 4 f f 3 7 8 1 9

4 7 e d 7 d 9 2 0 5 3 2 6 4 b l

0 e f f 5 1 a c 0 2 c 4 3 2 c l

3 a 6 5 7 b 9 8 2 7 2 8 2 1 2 4

0 e 6 b 5 9 4 a l 6 f 0 2 0 2 b

0 d 6 d 0 l e a 6 4 a l 5 2 4 9

2 9 1 4 0 4 6 4 5 a 5 4 6 b 8 1

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 b 4 f 0 2 a c 4 1 1 1 1 b 9 0

7 3 1 3 3 5 d 2 4 1 e 6 6 e d a

6 0 d 3 2 6 c 9 3 c c b 5 2 1 5

0 e b e 2 7 f 7 3 1 3 6 2 4 b 7

7 0 b c 5 b 7 c l 4 7 c 0 6 2 0

3 8 2 6 5 2 4 2 3 l e e 4 9 8 7

1 7 4 7 0 f c 9 7 0 a f 3 c a 6

4 0 9 7 7 e a f l b 5 7 2 d 2 5

I d b l 2 2 0 2 0 5 4 9 5 8 c 8

7 a l 9 0 f 4 6 2 9 d 4 3 4 5 7

I d b 0 7 d 4 5 2 1 0 c 3 5 5 1

1 2 f 3 7 3 9 9 0 6 6 6 0 a 4 f

1 4 f 7 6 6 f a 2 d l 6 6 e 3 9

6 1 2 5 4 e 4 8 3 e 2 9 0 2 2 c

6 8 b 5 7 c 5 7 1 c 6 1 5 a 2 7

I d e c 4 a 7 e 2 9 d 4 2 8 7 8

5 9 1 4 5 f d e 4 b 4 3 3 3 e 9

1 1 4 0 2 1 7 3 4 5 3 b 0 4 a 9

6 4 b c l 6 d c 4 e e e 7 3 f c

2 d 5 6 4 f e a 7 6 c f 0 a a 2

I c 5 0 1 6 e a 3 4 e f 5 a 0 9

I a 2 0 7 b b 3 4 7 1 a 3 c 3 2

6 5 e e 0 3 6 e 3 2 b 0 2 6 6 3

3 0 c a 0 9 2 8 0 8 4 5 7 a 9 1

3 0 b l l b l 9 4 4 f 8 0 3 8 c

6 7 3 e 6 0 b 2 6 d 9 4 0 7 e 8

1 8 3 0 5 5 6 8 3 f 6 8 1 f a f

2 b 9 f 6 4 4 3 1 2 e 6 3 8 c 8

7 7 f d 3 0 2 5 4 b f e 7 6 2 6

2 f c f 1 4 d b 7 4 3 8 5 5 b 0

6 f 2 9 2 c e 5 5 a 9 4 4 8 f 3

2 4 e b 6 8 0 5 5 5 2 1 2 c 8 a

5 3 b e 7 e 8 a 0 0 5 f 4 a 4 9

6 6 c c 4 d 5 9 1 8 5 6 5 2 2 c

164166C047737602
1 7 8 6 6 3 f b 0 7 2 5 1 3 d 9

1 5 3 8 4 3 8 2 6 e 3 c l b 2 8

2 a e a 6 0 1 8 0 8 f c l 8 b f

6 0 a 0 4 c 9 4 1 7 0 4 1 5 6 f

6 2 0 6 2 0 6 e 4 a e l 3 3 7 9

6d730109677136b7
3 6 a 2 7 3 c 2 5 6 f 9 6 3 8 c

3 9 2 a 4 4 b d l 8 0 6 6 0 8 d

3 6 c 3 0 e 6 a l c 0 4 0 6 e c

5 d 3 7 2 d d 9 7 3 9 f 4 d a 8

5 0 2 9 2 f C 3 6 4 d d 3 b 7 7

1 2 8 9 0 2 5 4 4 6 f 8 0 b 6 e

0 b d 3 7 7 b 9 3 f f d 7 0 7 6

2 5 0 a 6 5 6 e 4 0 2 5 2 3 6 f

3 9 7 8 6 c 4 5 5 6 f 6 2 8 2 1

5 7 2 2 3 5 3 5 3 e l 9 7 4 e 7

0 b 0 d 2 e e 8 3 5 £ a 6 9 1 a

3 5 3 4 1 8 0 2 1 0 2 2 3 e 3 e

2 0 4 4 6 2 3 3 0 3 5 4 5 f e £

5 9 1 d 3 9 f b 2 5 6 9 5 6 8 9

0 2 0 9 3 f 4 0 2 6 e b 3 0 9 a

I d b a 3 a 9 1 2 c 7 4 1 7 0 9

0 e 0 6 5 b 3 8 6 1 c 5 7 8 0 3

4 2 6 1 4 a 0 2 2 2 a 5 7 4 a 9

5 2 1 e l c c d 5 5 8 0 7 d 7 a

7 e 6 5 7 6 d 6 5 3 b b 4 9 8 2

5 7 f 3 6 1 b f 7 b d 8 1 4 4 0

0 4 9 5 2 b 6 3 4 9 4 e 4 e 5 8

6 0 6 2 5 4 5 a 0 e 2 6 2 c f d

7 6 b b 5 b 4 b 2 a 5 5 4 4 1 c

O f 0 3 7 0 f 4 5 c d c l 7 4 9

4 9 I f 6 0 f a 0 a a 2 4 d 6 a

0 5 a c 3 b 7 2 1 7 0 c 7 3 2 6

1 6 0 3 0 b 2 b 2 a 6 2 7 8 0 b

6 f e e 2 4 c l 0 1 e l 5 2 8 2

6 1 2 7 5 a 6 3 2 5 a 0 7 6 7 3

7 e 9 4 2 0 5 f 2 0 2 3 0 a b 7

4 b 4 5 6 e 7 2 1 3 c 0 0 9 4 1

5 3 2 9 6 9 d 2 4 9 b 6 3 6 0 c
3 5 9323f7 1 7 0 7 18C4
5 b 7 1 7 a 2 d 3 3 1 9 6 5 3 4

554661db5Cl07e72
I c e c 2 d 9 1 6 4 e 8 0 0 c c

3 7 0 c l 6 d 3 0 9 5 6 7 e 7 1

7 0 5 9 1 8 a 7 2 3 5 c 5 a d f

3 2 8 f 6 6 e 0 1 e a e 7 1 l 0

2 d 2 f 0 e 2 9 4 5 c 8 7 0 6 4

4 d f 7 0 8 d l 4 4 c c l c 4 d

4 5 2 3 5 4 5 8 7 e l d 5 a b c

H 6 6 5 3 b d 0 c b c 3 d 4 f

4 f a 7 0 a 8 5 1 0 6 5 7 1 3 7

4 a 7 c 7 c 8 b l f 6 8 4 1 e b

0 5 6 7 3 e 8 b 7 a 4 9 l a 8 e

3 f d 3 0 3 6 c 5 d l 7 3 2 2 1

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 b c c 3 2 5 1 0 a 8 c 4 e 6 8

/ / I n p u t f r o m L o g i c a l U n i t s

/ /
/ / E n t e r t h e n u m b e r o f i n p u t v a l u e s t o g e n e r a t e 2

/ / E n t e r s e e d v a l u e t o s t a r t r a n d o m n u m b e r g e n e r a t i o n 8 0

O d f 8 2 6 a c 4 e 4 f 3 8 6 c

3 0 1 1 7 6 f a 3 f 5 7 4 2 7 3

D.3 Expected Results of ALU operations
The following numbers are in hexadecimal format.

/ / O u t p u t = b o + (a O : a 7 , s u m (b 0 + a 7) } t h e n b o + { b O + s u m (b 0 + a 7) }

/ / O u t p u t = a 5 + { b l : b 7 , s u m (a 5 + b 7) } t h e n a 5 + { a 5 + s u m (a 5 + b 7) }

/ / O u t p u t « b [6] + { a 5 < < l , a 5 < < 2 , a 5 < < 3 , a 5 < < 4 }

/ / O u t p u t = l o g O . l o g l

/ / O u t p u t = { a 6 + (~ b l) } + 1 } = a 6 - b l

b b a 8 b a 8 2 4 8 d 2 9 f 2 1

7 6 1 7 8 6 0 c l 8 5 6 b l e b

b l l e b 7 4 8 7 7 5 3 4 f 2 4

9 5 d f c a a a 5 b 0 5 5 5 4 c

d 3 b c 6 f 2 3 5 7 1 d 9 8 6 2

a 2 b 9 8 f 4 e 6 d 8 2 9 c e b

8 f 8 e c l 6 0 1 d c c 7 7 c 2

6 d 8 f c 9 c c 7 0 7 d 5 e a 3

d 0 7 d 2 c b 0 7 9 b c a a l b

3 3 6 a 8 f 9 4 8 2 f b f 5 9 3

a 2 b 9 8 f 4 e 6 d 8 2 9 c e b

6 3 7 7 7 2 a d 6 4 9 9 8 3 e 7

6 a 8 2 9 b 6 e 8 c e 6 a 3 1 d

4 9 4 1 5 9 2 9 b 4 3 d c 9 8 c

8 7 b 9 a 9 f c 6 9 7 5 b 6 2 4

4 e c b 7 e l 6 6 7 0 7 8 4 3 4

7 a 3 1 a 8 0 2 8 b 6 b 7 2 9 7

4 e 3 7 8 5 b 4 7 b 3 3 7 1 9 e

8 e 0 3 b 2 1 e d f 7 6 c 3 1 1

c d c f d e 8 9 4 3 b a l 4 8 4

a 0 4 a 4 b 2 4 c a b 4 3 4 c c

0 6 2 f I a b l 6 e 4 0 4 8 7 4

d l f 8 b 9 c a b 5 5 8 6 f c 4

6 9 8 b f 7 f d 4 3 8 8 b e 6 4

O d f 8 2 6 a c 4 e 4 f 3 8 6 c

3 0 1 1 7 6 f a 3 f 5 7 4 2 7 3

0 8 f 6 1 8 3 9 1 4 3 6 f 9 d 5

0 8 f 6 1 8 3 9 1 4 3 6 f 9 d 6

Q 8 f 6 1 8 3 9 1 4 3 6 f 9 d 6

D.4 C Program that models ALU operations
i n c l u d e < s t d i o . h >

d e f i n e F I L E 1 " a d d e r _ 6 4 _ _ v e c _ a . t x t "

d e f i n e F I L E 2 " a d d e r _ 6 4 v e c _ b . t x t "

d e f i n e F I L E 3 " l o g i c a l _ v e c . t x t "

m a i n {)

{
l o n g l o n g a [8] , b l 8] , s u m [1 0] , t e m p , l o g [2] ; / / d e f i n e 6 4 b i t n u m b e r s

F I L E * f p l , * f p 2 , * f p 3 ;

s h o r t i ;
c h a r b u f [1 2 8] ; / / c h a r a c t e r b u f f e r t o r e a d a w a y t h e c o m m e n t s

/ / g e t r i d o f f i r s t a n d s e c o n d l i n e o f c o m m e n t s f o r f i l e 1
f p l = f o p e n (F l L E l , " r ") ;
f g e t s (b u f , 1 2 8 , f p l) ;

f g e t s (b u f , 1 2 8 , f p l) ;

/ / g e t r i d o f f i r s t a n d s e c o n d l i n e o f c o m m e n t s f o r f i l e 2

f p 2 ■ f o p e n { F l L E 2 , " r ") ;

f g e t s (b u f , 1 2 8 , f p 2) ;

f g e t s (b u f , 1 2 8 , f p 2) ;

/ / g e t r i d o f f i r s t a n d s e c o n d l i n e o f c o m m e n t s f o r f i l e 2
f p 3 = f o p e n (F l L E 3 , wr w) ;

f g e t s (b u f , 1 2 8 , f p 3) ;

f g e t s (b u f , 1 2 8 , f p 3) ;

/ / s c a n i n e i g h t n u m b e r s f o r i n p u t t o t h e 9 : 1 m u x e s

f o r d = 0 ; i < 8 ; i + +) {

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f s c a n f (f p l , " % l l x " , & a [i]) ;

f s c a n f (f p 2 , " % l l x " , s b [i]) ;

}
/ / s c a n i n l o g i c a l i n p u t s

f o r (i a 0 ; i < 2 ; i + +) {

f s c a n f (f p 3 , " % l l x " , & l o g [i]) , -

}
p r i n t f (" / / O u t p u t * b O + { a O : a 7 , s u m (b 0 + a 7) } t h e n b O + { b O +

p r i n t f (" / / O u t p u t ■ a 5 + { b l : b 7 , s u m (a 5 + b 7) } t h e n a 5 + { a 5 +

p r i n t f (" / / O u t p u t = b [6] + { a 5 < < l , a 5 < < 2 , a 5 < < 3 , a 5 < < 4 } \ n ") ;

p r i n t f (" / / O u t p u t ■ l o g O , l o g l \ n ") ;

p r i n t f (" / / O u t p u t » { a 6 + (~ b l) } + 1 } = a 6 - b l \ n ") ;

/ / t e s t a l l s e l e c t l i n e s o n f i r s t m u l t i p l e x e r

f o r (i = 0 ; i < 8 ; i + +) {

s u m [i] *= a [i] + b [0] ;

p r i n t f (" % 0 1 6 l l x \ n " , s u m [i]) ;

}
/ / t e s t l o o p b a c k t o f i r s t m u l t i p l e x e r

s u m [8] = s u m [7] + b [0 3 ;

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [8]) ;

/ / t e s t l o o p b a c k t o f i r s t m u l t i p l e x e r a g a i n

s u m [9] ■ s u m [8] + b [0] ;

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [9]) ;

/ / t e s t a l l s e l e c t l i n e s o n s e c o n d m u l t i p l e x e r

f o r (i a 0 ; i < 8 ; i + +) {

s u m t i] = b [i] + a [5] ;

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [i]) ;

)
/ / t e s t l o o p b a c k t o s e c o n d m u l t i p l e x e r

s u m [8] = s u m [7] + a [5 3 ;

p r i n t f { " % 0 1 6 1 1 x \ n " , s u m [8]) ;

/ / t e s t l o o p b a c k t o s e c o n d m u l t i p l e x e r a g a i n

s u m [9] = 8 u m [8] + a [5 3 ;

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [9]) ;

t e m p = a [3] ;

/ / t e s t s h i f t c o n t r o l

f o r (i = 0 ; i < 4 ; i + +) {

t e m p = t e m p < < 1 ;

s u m [i] * t e m p + b [6] ;

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [i]) ;

}
/ / t e s t l o g i c a l c o n t r o l

f o r { i = 0 ; i < 2 ; i + +) {

p r i n t f { " % 0 1 6 1 1 x \ n " , l o g [i j } ;

}
/ / t e s t s u b t r a c t i o n

t e m p = ~ b [1] ;

s u m [0] = a [6] + t e m p ; / / a 6 + (~ b l)

p r i n t f (" % 0 1 6 1 1 x \ n " , s u m [0]) ;
s u m [0] * s u m [0] + l ; / / a 6 - b l

p r i n t f (, , % 0 1 6 1 1 x \ n , , , s u m [Q 3) ;

p r i n t f (" % 0 1 6 1 1 x \ n " , a [6] - b [1]) ;

}

145

s u m (b 0 + a 7) } \ n ") ;

s u m (a 5 + b 7) } \ n ") ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix E

Spectre Verilog Environment

E.l Example Spectre Verilog Run script
spectre -env artist4.4.6 +log ../psf/spectre.out -format psfbin
-raw ../psf -mixmod -slvhost v880
'- slave"/scratch/sung/trans_CL_TT_25_Novl6_lns/netlist/digital
verilog.vmx -a +sxl_keep_minimum +typdelays -y ./hdlFilesDir
+libext+.v+ +incdir+hdlFilesDir +sdf_verbose +sdf_nocheck_celltype
-1 verilog.log +COSIM_WARNING_OFF +vmxwavedir../../psf -f
mmenvOpts testfixture.template -f verilog.inpfiles"' analog/input.scs

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix F

Mask Layouts

F.l Mask Layout Plot of CL-Domino ALU

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure F.l: Layout plot of CL-domino ALU.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

