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ABSTRACT 

 

The omic sciences are the interdisciplinary study of all the biological molecules within an 

organism. The combination of different omics approaches is a powerful way to unravel 

physiological and pathological processes. In the past decades, we have seen major developments 

and breakthroughs in the genomics, transcriptomics and proteomics fields, but there is still a need 

for further research into the small molecules that control our metabolism. Lipids are a large class 

of hydrophobic molecules involved in energy storage, signaling, modulation of gene expression 

and membranes. Lipidomics focuses on comprehensive analysis of lipids and their interactions 

with other molecules. Although the potential of lipidomics to study physiological and pathological 

processes is undeniable, reliable methodologies for the comprehensive assessment of the lipidome 

in biological samples are still needed. 

Many biological samples are available in small volumes or limited amounts and display 

very complex lipid compositions. Nano-scale liquid chromatography allied to mass spectrometry 

(nanoLC-MS) offers extremely high sensitivity, although it is known to be technically more 

challenging than the conventional liquid chromatography approach. The first part of this work 

describes the development and optimization of a nanoLC-MS method for routine analysis of the 

lipidome of small volumes of biological samples (1.0 to 2.5 µL) with high sensitivity. The nanoLC 

method, mass spectrometry conditions and sample preparation by liquid-liquid extraction of the 

lipidome were fully optimized, including an evaluation of contamination sources. The method can 

be easily adapted to other types of biological samples where only limited volumes are available. 

A pilot study for biomarker discovery of spinal cord injury using the developed nanoLC-MS 

method applied to blood serum, cerebrospinal fluid and intraparenchymal microdialysate samples 
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is presented in Chapter III. Furthermore, an application of the method after minor modifications 

for extremely diluted exosome samples is described in Chapter IV. 

The second part of this work focuses on the application of comprehensive, untargeted 

lipidomics of biological samples by liquid chromatography coupled to mass spectrometry to study 

the physiological and pathological effects of different conditions upon the lipidome. In Chapter V, 

the mechanism of action of a novel vaccine against respiratory syncytial virus, the leading cause 

of acute lower respiratory infections in young children, is investigated in a rat model by a 

combination of untargeted lipidomics and chemical isotope labeling-based metabolomics. 

Metabolic pathways involving the lung surfactant layer, synthesis and regulation of amino acids 

and unsaturated fatty acids were modulated by immunization and viral challenge. Chapter VI 

describes the use of untargeted lipidomics of serum to identify novel biomarkers of Parkinson’s 

disease and predict the progression to dementia up to three years before noticeable symptoms. The 

results provide valuable new information to study the relationship between neurological diseases 

and the lipidome. Chapter VII investigates the lipidome alterations in different tissues upon 

treatment with dexamethasone, a glucocorticoid highly prescribed by the medical community but 

often associated with severe adverse effects. Finally, Chapter VIII shows an application of 

untargeted, comprehensive lipidomics to investigate alterations in the lipid metabolism related to 

cystic fibrosis. The study emphasizes the importance of odd-chain fatty acids, previously seen as 

irrelevant in humans due to their inherent low concentrations, for pathological processes.  

This work illustrates that lipidomic profiling can provide a comprehensive understanding 

of metabolic alterations caused by physiological and pathological processes in the organism. The 

results described herein confirm the potential of high-quality untargeted lipidomics studies for 

physiological and pathogenesis analyses, as well as for biomarker discovery. 
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PREFACE 

 

A version of Chapter II was recently accepted for publication at Analytica Chimica Acta 

as: Adriana Zardini Buzatto, Brian Kwon and Liang Li, Development of a NanoLC-MS Workflow 

for High-Sensitivity Global Lipidomic Analysis (Aug/2020). Part of the project was also presented 

as a poster at the 65th American Society for Mass Spectrometry (ASMS) Conference on Mass 

Spectrometry and Allied Topics (June 3-8, 2017, Indianapolis, Indiana, USA) as: Adriana Zardini 

Buzatto, Jaspaul Tatlay, Brian Kwon and Liang Li; Development of a high-sensitivity method for 

lipidomics of small volumes of biological fluids by nanoLC-MS. This work is part of a consortium 

established between University of British Columbia (Dr. Brian Kwon and Dr. Leonard Foster), 

University of Alberta (Dr. Liang Li) and the Rick Hansen Institute to study biomarkers of spinal 

cord injury through lipidomics, metabolomics, genomics and proteomics. Blood serum and 

cerebrospinal fluid samples from pigs were obtained through a collaboration with Dr. Brian Kwon 

(University of British Columbia, Vancouver, BC, Canada). I was responsible for the method 

development for the comprehensive, untargeted lipidomics of small volumes of biological samples 

using nanoLC-MS, including experimental design and execution, data processing and 

interpretation, and manuscript preparation. Dr. Liang Li contributed to the experimental design, 

supervised the project and edited the manuscript. Dr. Kwon provided the pig samples and edited 

the manuscript. 

Chapter III was part of the same consortium to study biomarkers of spinal cord injury 

through a collaboration with Dr. Brian Kwon. Versions of this chapter were presented as an oral 

presentation at the 101st Canadian Chemistry Conference and Exhibition (CSC, May 27 - 31, 2018, 

Edmonton, AB, Canada) and as a poster at the 66th American Society for Mass Spectrometry 

(ASMS) Conference on Mass Spectrometry and Allied Topics (June 2-9, 2018, San Diego, 
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California, USA)  as: Adriana Zardini Buzatto, Brian Kwon and Liang Li; Lipidomics of spinal 

cord injury: high sensitivity analysis of small volumes of biological fluids by nanoLC-MS. I was 

responsible for the experimental design and execution, data processing, data interpretation and 

writing. Dr. Liang Li supervised the project and designed the experiments. Dr. Brian Kwon 

designed the animal trial and supervised the project. 

A version of Chapter IV is currently being prepared for publication. The work was a 

collaboration with Dr. David M. Lubman (University of Michigan Medical Center, Ann Arbor, 

MI, USA). Serum samples and exosome isolates were obtained by Dr. Jianhui Zhu and Jie Zhang 

at the University of Michigan Medical Center. I was responsible for the experimental design and 

execution, data processing, interpretation and writing. Dr. Liang Li designed the experiments and 

supervised the project. Dr. David Lubman and his group collected the samples, designed the 

experiments and supervised the project. 

Versions of Chapter V were published as: (1) Indranil Sarkar, Adriana Zardini Buzatto, 

Ravendra Garg, Liang Li and Sylvia van Drunen Little-van den Hurk, Metabolomic and 

immunological profiling of respiratory syncytial virus infection after intranasal immunization with 

a subunit vaccine candidate, Journal of Proteome Research 2019, 18(3), 1145-1161; and (2) 

Adriana Zardini Buzatto, Indranil Sarkar, Sylvia van Drunen Little-van den Hurk and Liang Li, 

Comprehensive lipidomic and metabolomic analysis for studying metabolic changes in lung tissue 

induced by a vaccine against respiratory syncytial virus, ACS Infectious Diseases 2020.1,2 The 

project was performed through a collaboration with Dr. Sylvia van Drunen Little-van den Hurk’s 

research group (University of Saskatchewan, Saskatoon, SK, Canada), which developed the novel 

vaccine candidate, handled the animals, collected the samples and performed the immunology 

experiments reported in Sarkar et al.1 I was responsible for the method optimization for tissue 
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samples, experimental design and execution, data processing, data interpretation, and manuscript 

preparation and editing. Dr. Indranil Sarkar (University of Saskatchewan, Saskatoon, SK, Canada) 

handled the animals, collected the samples and prepared and edited the manuscripts. Dr. Sylvia 

van Drunen Little-van den Hurk and Dr. Liang Li designed the experiments, edited the manuscripts 

and supervised the project. 

Chapter VI was a collaboration with Dr. Richard Camicioli (Neuroscience and Mental 

Health Institute and Department of Medicine - Neurology) and Dr. Roger A. Dixon (Neuroscience 

and Mental Health Institute and Department of Psychology, University of Alberta, Edmonton, AB, 

Canada) to study lipid alterations induced by Parkinson’s disease and transition to dementia. A 

version of the work was presented as a poster at the 67th American Society for Mass Spectrometry 

(ASMS) Conference on Mass Spectrometry and Allied Topics (June 2-6, 2019, Atlanta, Georgia, 

USA) as: Adriana Zardini Buzatto, Barinder Bajwa, Jaspaul Tatlay, Roger A. Dixon, Richard 

Camicioli and Liang Li; Lipidomics of Parkinson’s Disease: towards more accurate diagnosis 

methods through omics technologies. I was responsible for the lipidomics method optimization, 

experimental design and execution, data processing, interpretation and writing. Barinder Bajwa 

(University of Alberta, Edmonton, AB, Canada) helped with the sample extraction steps. Dr. Liang 

Li designed the experiments, supervised the project and edited the text. Dr. Richard Camicioli and 

Dr. Roger A. Dixon recruited and assessed the patients and healthy controls, collected the samples, 

supervised the work and edited the text. A version of this chapter is currently being prepared for 

publication. 

Chapter VII was a collaboration with Dr. Anas M. Abdel Rahman and Dr. Majed Dasouki 

(King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia). I was responsible 

for the experimental design, sample analysis, data processing, interpretation and writing. Dr. Anas 
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M. Abdel Rahman and Dr. Majed Dasouki’s teams handled the animals and collected the samples. 

Dr. Liang Li designed the experiments, supervised the work and edited the text. Xiaohang Wang 

(University of Alberta, Edmonton, AB, Canada) helped with the sample homogenization and 

further worked on metabolomics experiments using the aqueous layer obtained after liquid-liquid 

extraction.3 A version of this chapter is currently being prepared for publication by Dr Anas M. 

Abdel Rahman’s team. 

Chapter VIII was also developed through a collaboration with Dr. Anas M. Abdel Rahman 

and Dr. Majed Dasouki (King Faisal Specialist Hospital and Research Center, Riyadh, Saudi 

Arabia). A version of this chapter was conditionally accepted for publication as Adriana Zardini 

Buzatto, Mai Abdel Jabar, Imran Nizami, Majed Dasouki, Liang Li and Anas Abdel Rahman, 

Lipidome Alterations Induced by Cystic Fibrosis, CFTR Mutation, and Lung Function, Journal of 

Proteome Research (Sep / 2020). I was responsible for the experimental design, sample analysis, 

data processing, interpretation and manuscript preparation. Dr. Anas M. Abdel Rahman and Dr. 

Majed Dasouki’s teams recruited the patients and collected the samples. Dr. Anas M. Abdel 

Rahman also edited the manuscript and supervised the experiments. Dr. Liang Li designed the 

experiments, supervised the work and edited the manuscript. 

Other conference presentations for projects not described in this thesis, but performed at 

University of Alberta as a PhD student and candidate include: (1) Nan Wang, Xian Luo, Shuang 

Zhao, Yiman Wu, Zhendong Li, Wei Han, Jaspaul Tatlay, Yunong Li, Kevin Hooton, Dorothea 

Mung, Adriana Zardini Buzatto, Xiaohang Wang, Aiko Barsch, Ulrike Schweiger Hufnagel and 

Liang Li, Enabling high-confidence human endogenous metabolite identification via high-

resolution MS/MS retention-time library (poster), 64th American Society for Mass Spectrometry 

(ASMS) Conference on Mass Spectrometry and Allied Topics (June 5-9, 2016, San Antonio, 
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Texas, USA); (2) Barinder Bajwa, Adriana Zardini Buzatto, Eric Smith and Liang Li; Lipidomics 

of Alzheimer’s disease and cerebral amyloid angiopathy: identification of potential biomarkers in 

human plasma by UHPLC-MS; 67th American Society for Mass Spectrometry (ASMS) 

Conference on Mass Spectrometry and Allied Topics (June 2-6, 2019, Atlanta, Georgia, USA); 

and (3) Adriana Zardini Buzatto, Shuang Zhao, Ulrike Schweiger Hufnagel, Aiko Barsch and 

Liang Li; Integration of metabolomic and lipidomic workflows for studying biological samples; 

67th American Society for Mass Spectrometry (ASMS) Conference on Mass Spectrometry and 

Allied Topics (June 2-6, 2019, Atlanta, Georgia, USA). 

Supporting figures for Chapters II, V, VI and VIII can be found in the Appendixes A, B, C 

and D, respectively. Supporting tables are available with Dr. Liang Li. 
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Chapter I: Introduction 

 

1.1.  Omic sciences for the study of biological samples 

Systems biology is a combination of analytical and biochemical approaches to study the 

relationship between different parts of a biological system. It is an interdisciplinary field that 

moves away from the traditional scientific method of focusing on small sections or parts of an 

organism; instead, the goal is a holistic approach to study the complex interactions that are part of 

all physiological and pathogenic processes, from the molecular level to the entire organism. This 

complex field of study requires the integration between different areas, including bioanalytical 

chemistry, biochemistry, biology, bioinformatics and statistics.  

The omic sciences, i.e., genomics, transcriptomics, proteomics, metabolomics, lipidomics 

and glycomics, are particularly useful for the study of systems biology. The combination of 

different omic approaches is powerful way to unravel physiological and pathological processes 

within an organism. In the past three decades, we have seen major developments and 

breakthroughs in the genomics, transcriptomics and proteomics fields, but there is still a need for 

further research into the small molecules that control our metabolism. Metabolomics is the 

comprehensive study of all metabolites and their relationships, including nucleic acids, amino 

acids, sugars, small peptides and lipids. Lipidomics, a branch of metabolomics first named by Han 

and Gross in 2003, is an integral part of systems biology and the main focus of this work.4–8 

Lipidomics is the characterization of all lipid species in a biological sample, including their 

interactions, biological properties and dynamics. Lipids exhibit a variety of functions in an 
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organism, including cell and organelle membranes, signalling, inter-cell communication, energy 

storage, protein trafficking and folding, amongst others. Their concentrations are affected by 

genetics, age, sex, diet, physical exercise, circadian rhythms, immune status and diseases. The 

potential of lipidomics for the medical, pharmaceutical and nutritional fields is extensive, 

including the identification of pathological and physiological processes, understanding 

pathogenesis and disease progression, identification of novel diagnostic biomarkers, prediction 

and evaluation of treatment efficacy and searching for new therapeutic targets. However, the 

lipidome of biological samples is highly complex and diverse; hence, the lipidomics field has been 

constantly changing and evolving for the past 30 years. A typical lipidomics experiment usually 

involves the sample collection and storage, preparation (homogenization, extraction), analysis 

(chromatography, mass spectrometry, nuclear magnetic resonance), data processing (alignment, 

mass correction, filtering), identification, normalization, statistics and evaluation of biological 

implications. Much emphasis has been placed upon the biochemistry of lipids, but there is still a 

need to further develop better analytical approaches to study such complex mixtures of biological 

molecules.4,9–14 

 

1.2.  Lipids and their implications in health and disease 

Although this work is mostly focused on the analysis of lipids, their characteristics and 

relationships are a vital part of lipidomics. Hence, the next sections provide an overview of lipid 

classes and their main biochemical reactions, followed by a review of methods for lipid analysis. 

Detailed discussions for selected lipid species and subclasses are provided with each chapter. 
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1.2.1. Lipids: overview 

Lipids (from the Greek lipos, “fat”) are roughly defined as hydrophobic biological 

molecules that are soluble in organic solvents but have low solubility in water. Examples of lipids 

that are easily recognizable include fats, oils, vitamins and hormones. However, this broad 

definition does not do justice to the enormous importance of lipids in metabolism: signalling, 

immune response, energy production and storage, cell structure, protein folding, trafficking, 

maintenance of homeostasis and others. Lipid bilayers are vital to compartmentalize living matter 

in cells and organelles, allowing the concentrations on each side of the membrane to be 

dramatically different, an essential characteristic for most processes in our body. More than half 

of the dry weight of the human brain is composed by lipids.9,12,15 Unlike proteins, nucleic acids 

and polysaccharides, lipids exhibit a much greater structural variety. They are mostly composed 

by a combination of different hydrophobic hydrocarbon chains and a polar headgroup, although 

not all lipids follow the same rules. 9,15 Hence, they can be divided into classes that share structural 

similarities. 

 

1.2.2. Lipid classification 

A comprehensive classification system for lipids was proposed by Fahy et al. under the 

leadership of the International Lipid Classification and Nomenclature Committee.16,17 Lipids were 

divided into eight major classes, each containing a number of subclasses: fatty acyls, glycerolipids, 

sphingolipids, sterols, glycerophospholipids, saccharolipids, polyketides and prenol lipids. 

Examples of molecular structures that can be found in each of the eight main categories are shown 

in Figure I-1. 4,16–18 
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Figure I-1. Examples of structures found in each lipid class. 

 

Fatty acids (FA) are usually composed by a hydrocarbon chain and a terminal carboxyl 

group (Figure I-1). The polar headgroup is typically deprotonated under physiological conditions, 

although the pKa of long-chain fatty acids increases with the number of carbons in the hydrophobic 

tail. They are the building blocks of most lipid classes, being commonly found esterified to other 

functional groups. The class is divided into 14 subclasses characterized by modifications to the 
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core structure, each one containing subgroups, viz. fatty acids and conjugates, octadecanoids, 

eicosanoids, docosanoids, fatty alcohols, fatty aldehydes, fatty esters, fatty amides, fatty nitriles, 

fatty ethers, hydrocarbons, oxygenated hydrocarbons, fatty acyl glycosides and others.4,16–18 

Eicosanoids (prostaglandins, thromboxanes, leukotrienes, lipoxins and endocannabinoids) are 

particularly important for metabolism as signalling molecules derived from the oxidation of 

arachidonic acid or other polyunsaturated fatty acids. They act in inflammatory processes, allergy, 

immune response, regulation of pregnancy and sexual function, pain, cell growth, blood pressure 

control, blood flow and others. The most common fatty acid residues have 14 to 22 carbons, but 

the hydrophobic tails can range from 2 to 36 carbons. Longer fatty acids are possible but rare. Most 

long-chain fatty acids found in nature contain one or more double bonds that are usually cis-

oriented, which bends the lipid structure, contributing to membrane fluidity. Saturated fatty acids 

and trans-oriented unsaturated lipids are correlated with cardiovascular diseases due to their 

increased tendency to tightly aggregate in aqueous media, depositing on the walls of arteries. 4,9,15 

Glycerolipids are composed by a glycerol unit esterified to one, two or three fatty acyls 

(mono-, di- or triacylglycerols, respectively). The class also includes glyceroglycans, which 

contain a sugar residue attached to the glycerol backbone. Triacylglycerols (TG) are the most 

common glycerolipid and constitute the major energy source of our organism upon oxidation 

(Figure I-1). They are stored in the adipose tissue until extra energy is required, which also 

provides thermal insulation.15 

Glycerophospholipids are essential components of cell membranes due to their 

characteristic structure composed by one or two hydrophobic fatty acyl residues (“hydrophobic 

tail”) esterified to a glycerol-3-phosphate backbone that may contain a polar headgroup (choline, 

inositol, ethanolamine or serine). The fatty acyl residue esterified to the sn-1 position of the 
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glycerol backbone is usually saturated, while the sn-2 group tends to be mono- or polyunsaturated. 

Species missing one of the fatty acyl residues due to the action of specific enzymes are known as 

lysoglycerophospholipids. Phosphatidic acid (PA, Figure I-1), also known as 

acylglycerophosphate, is the simplest of the glycerophospholipids, being the main source for the 

biosynthesis of other subclasses. The neutral acylglycerophosphocholines (also known as 

phosphatidylcholines, PC) and ethanolamines (PE) are the major components of cell membranes. 

The class also includes cardiolipins (CL, diphosphatidylglycerols) and plasmalogens (alkenyl-

ether glycerophosphates, denoted by the prefix “O-“ or suffix “e” in the nomenclature of lipid 

species).4,15–17,19,20 

Sphingolipids are neutral derivatives of sphingoid bases such as sphingosine, a C18-amino 

alcohol synthesized from serine and palmitoyl-CoA. They are typically enriched in neural tissue 

and can also be found in the outer layer of membranes, where they may form microdomains known 

as lipid rafts and act in signal transduction, cell recognition, immune response and stabilization. 

Ceramides (Cer), formed by an N-acylated sphingoid base, are one of the most abundant types of 

sphingolipids, but they can be modified to contain additional headgroups, e.g. sphingomyelins 

(SM, ceramides containing a phosphocholine or phosphoethanolamine unit - Figure I-1), 

cerebrosides (HexCer, hexosylceramides containing a sugar residue – glucose, galactose, N-

acetylglucosamine and others, Figure I-1), sulfatides (Sulf, anionic sulfated sugar residue) and 

gangliosides (oligosaccharide group containing a sialic acid unit). Sphingomyelin and ceramides 

can regulate the activity of protein kinases and phosphatases, while gangliosides act as specific 

receptors for hormones and other molecules on cell surfaces.4,15,20 

Sterol lipids are composed by a rigid structure derived from 

cyclopentanoperhydrophenanthrene, made of three 6-membered and one 5-membered fused, 
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nonplanar rings (Figure I-1). The class is divided into 6 subclasses, viz. sterols (cholesterol and 

derivatives, cholesteryl esters, ergosterols, stigmasterols, etc.), steroids (estrogens, androgens, 

glucocorticoids, mineralocorticoids, progestogins), secosteroids (vitamin D and derivatives), bile 

acids, steroid conjugates (glucoronides, sulfates, glycine and taurine conjugates), and others.16–

18,20 Cholesterol is the most commonly found sterol in animals and a major component of 

membranes (Figure I-1). Although it has been previously deemed as a nutritional villain, the rigid 

structure of cholesterol grants an essential ordering effect upon membranes, ensuring higher 

stability and control of permeability towards other molecules. Cholesterol also acts as a precursor 

of most hormones, including glucocorticoids (control of inflammatory reaction, response to stress 

and regulation of carbohydrate, protein and lipid metabolism, e.g. cortisol), mineralocorticoids 

(control of salt, water and ionic balance, e.g. aldosterone), sexual hormones (control of sexual 

function and phenotype, menstrual cycle and pregnancy, e.g. testosterone, estradiol and 

progesterone), bile acids (absorption of dietary lipids in the intestine) and the various forms of 

vitamin D. Cholesterol can also be esterified with fatty acyls to form the highly hydrophobic 

cholesteryl esters.4,15 

The combination of two or more isoprene units (2-methyl-1,3-butadiene) compose the 

prenol lipids, also known as terpenes, which include carotenoids, quinones, hydroquinones, 

vitamin A, vitamin E, vitamin K2, ubiquinone (coenzyme Q) and others. Squalene and lanosterol, 

two C30-triterpenes, are the precursors of cholesterol and other steroids (Figure I-1).4,15 

Polyketides and saccharolipids are usually not included in untargeted lipidomics studies 

due to their different characteristics (higher polarity and solubility in water) when compared to 

other lipid classes. Polyketides are lipids synthesized from propionyl-coenzyme A (CoA) and 

methylmalonyl-CoA (Figure I-1). They include important medications, such as tetracyclines, anti-
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cancer agents and anti-parasitic drugs, although some are potent toxins, e.g. aflatoxin B. Last, 

saccharolipids are glycerophospholipids that contain a sugar moiety attached to the polar 

headgroup (Figure I-1).4,15 

 

1.2.3. Lipid membranes 

Lipid bilayers form the boundaries of cells and organelles, acting as barriers to polar 

molecules. Membranes not only compartmentalize biological matter, but also control many 

biological functions, regulate the transport of molecules and ions, control intracellular 

communication and modulate gene expression. Although lipids are the main component of 

membranes, they may contain all types of macromolecules, except for nucleic acids. Lipid 

membranes are disordered, fluid bilayers kept together by a delicate balance between weak 

intermolecular forces. The amphiphilic characteristic of most lipids allows their natural 

aggregation in aqueous medium due to the hydrophobic effect, forming the bilayers that constitute 

most structures of our organisms. When hydrophobic molecules are put in an aqueous medium, 

the hydrogen bond network of water molecules need to be reorganized around them, which 

decreases the entropy of the system. Hence, lipids tend to aggregate to minimize the contact 

between their hydrocarbon tails and water, preserving the entropy. The self-assembled arrays of 

lipids, proteins and other molecules are mostly governed by hydrophobic dipole interactions 

between the hydrocarbon tails. The polar headgroups of lipids are oriented towards the surface 

(aqueous media), where they may form ionic and electrostatic interactions, whereas the 

hydrophobic tails aggregate to minimizes the contact with water. The hydrophobic core acts as a 

barrier to ions and polar molecules but can interact with hydrophobic compounds. Polar molecules 

and ions are transported through the bilayers by the action of protein channels or carriers.4,9,15 
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The two sides of biological membranes are not equal, granting transport of molecules in 

specific directions and allowing interaction with signalling molecules, hormones and reactions on 

the outer layer, typically enriched with sphingolipids, phosphatidylcholine and cholesterol. 

Glycoproteins and glycolipids are usually oriented with the carbohydrate group facing the exterior 

side of the membrane, where they can act as anchors or signalling receptors. Furthermore, enzymes 

that cleave the polar headgroup or remove fatty acyl residues can modify the shape and function 

of membranes. Phospholipases, i.e., enzymes that catalyze the cleavage of a fatty acyl residue of 

glycerophospholipids, are usually found outside of cells and cannot cross the membranes; hence, 

lipids on the external leaflet are more susceptible to hydrolysis. Flipases and translocases promote 

specific lipids to change membrane sides by facilitated diffusion (no energy consumption) or active 

transport with adenosine triphosphate (ATP) hydrolysis.9,15 

The structure of membranes is based on a subtle equilibrium between ionic forces, 

hydrogen bonds, dipole interactions and weak dispersion forces. Glycerophospholipids are 

particularly prone to form bilayers due to their pair of fatty acyl residues and polar headgroups. 

However, all polar lipids naturally aggregate in water. Proteins and other lipids can induce changes 

in the membrane structure and permeability. For example, the stiff steroid core of cholesterol 

requires ordering of the fatty acyl groups of the glycerophospholipids that compose most 

membranes, which increases their thickness and reduces the fluidity. The hydrophilic hydroxyl 

group of cholesterol tends to stay in the aqueous interface, while the steroid core requires 

conformational ordering of fatty acyl residues for stronger interactions, resulting in a bilayer that 

is thicker and tighter, but still fluid. Lipid rafts are membrane regions with elevated proportions of 

cholesterol and sphingolipids that result in higher ordering and organization. Rafts are involved in 

inter-cell communication, trafficking, cell surface adhesion, signalling and motility. 49,15 
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1.2.4. Lipid biosynthesis and metabolism 

Most lipids in the human body come from diet, but selected classes are biosynthesized 

within the cells. The detailed mechanisms of biosynthesis and metabolism of lipids are highly 

diverse and beyond the scope of this work. However, the basic principles are required to 

understand the implications of lipidomic analysis of biologic samples. The following sections 

briefly describe the mechanisms of lipid synthesis and metabolization. Enzymatic modifications 

of lipids can further alter their function in the organism.4 

 

1.2.4.1.Digestion and transport 

Most lipids acquired through diet are the highly hydrophobic triacylglycerols. Lipases 

secreted by the pancreas catalyze the hydrolysis of fatty acyl residues from triacylglycerols and 

other lipids in the lipid-water interface inside the small intestine. Bile acids are cholesterol 

derivatives synthesized by the liver and stored in the gallbladder that act as “detergents” when 

secreted in the small intestine during digestion. The bile acids emulsify the dietary lipids into 

micelles, allowing their transport across the intestinal walls. The dietary lipid products are then 

reconverted to triacylglycerols and packed with dietary cholesterol into lipoprotein particles 

known as chylomicrons, which are carried by the bloodstream to other organs and tissues. 

Chylomicrons transport dietary triacylglycerols and digestion products to muscle and adipose 

tissue, as well as dietary cholesterol to the liver, through the lymphatic and circulatory systems. 

Endogenous triacylglycerols and cholesterol synthesized in the liver are transported by similar 

particles known as very low-density lipoproteins (VLDL). Both types of particles can adhere to 

binding sites on the walls of capillaries in skeletal muscle and adipocytes, where they are 
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hydrolyzed by lipoprotein lipase. The resulting mono- and diacylglycerols and fatty acids are then 

taken up by the tissues and oxidized to produce energy or modified for synthesis of other lipids.15,21 

 

1.2.4.2. Energy production 

Fatty acids are released from triacylglycerols stored in adipose tissue by hormone-sensitive 

lipases in the cytoplasm, being further transported through the bloodstream to other organs as 

albumin complexes. Hormone-sensitive triacylglycerol lipase is regulated by phosphorylation in 

response to levels of cyclic adenosine monophosphate (cAMP) levels , which are in turn controlled 

by glucagon, epinephrine and norepinephrine. Alternatively, insulin decreases cAMP levels, 

inactivating hormone-sensitive lipase when there is no demand for energy. The ratio between 

glucagon and insulin determines the rate of fatty acid metabolism. The glycerol released by the 

action of lipases upon triacylglycerols enters the glycolysis pathway, while the fatty acid molecules 

undergo β-oxidation in the mitochondria or peroxisome to produce energy. Peroxisomal oxidation 

in animals shortens the long-chain fatty acids, which are then further degraded in the mitochondria. 

However, oxidation of fatty acids in plants fully happen in the peroxisome and glyoxissome. 15,21 

The β-oxidation of fatty acids is a progressive oxidation of 2-carbon units, starting at the 

carbon atom in the β position to the carboxyl headgroup. First, fatty acids are activated in the 

cytosol by an ATP-dependent reaction catalyzed by acyl-CoA synthetases to form a thioester bond 

with coenzyme A. However, acyl-CoA species cannot cross the mitochondrial membranes. The 

fatty acids are then transported into the mitochondria in the form of acyl-carnitines by the action 

of carnitine acyltransferases. Once inside the mitochondria, the acyl-carnitine is reconverted to 

acyl-CoA. The β-oxidation of fatty acids occurs in a series of four enzyme-dependent reactions 

that includes two dehydrogenation steps with FAD and NAD+ as hydrogen receptors. Each round 
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of β-oxidation results in a fatty acyl-CoA unit shorter in two carbon atoms, an acetyl-CoA 

molecule and ATP. The complete oxidation of fatty acids with even number of carbons results in 

acetyl-CoA, whereas odd-numbered fatty acids lead to acetyl and propionyl-CoA. The generated 

acetyl-CoA molecules are oxidized by the citric acid cycle and oxidative phosphorylation to 

produce ATP. The complete oxidation of palmitic acid, a C16 fatty acid, can generate up to 129 

molecules of ATP. 15,21 

 

1.2.4.3.Lipogenesis and metabolism 

Lipids are synthesized by two main pathways. The condensation of acetyl-CoA and 

malonyl-CoA generates fatty acyls, glycerolipids and glycerophospholipids, while the 

condensation of branched-chain five-carbon pyrophosphates with a carbocation intermediate leads 

to prenol lipids and sterols. The biosynthesis of fatty acids is the opposite process of β-oxidation 

and occurs in the cytosol of adipocytes and hepatocytes. Acetyl-CoA molecules are created in the 

mitochondria by oxidative decarboxylation of pyruvate or oxidation of fatty acids. Then, the 

molecules are transported to the cytosol by the ATP-driven tricarboxylate transport system in the 

form of citrate. Fatty acid synthesis starts with the activation of acetyl-CoA as malonyl-CoA by 

the action of biotin-dependent acetyl-CoA carboxylase. The acyl groups of acetyl-CoA are then 

anchored to acyl-carrier proteins (ACP) through a thioester bond, followed by a series of ATP-

dependent reactions that elongates the acyl group by two carbons via condensation with malonyl-

ACP. The cycle is sequentially repeated to elongate the fatty acid, usually culminating in palmitic 

acid (C16). Elongases and desaturases in the mitochondria and endoplasmic reticulum further 

modify the fatty acid to convert it into long-chain and unsaturated molecules. 15,19,21 

Polyunsaturated fatty acids, fatty acid esters and amides are substrates to oxygenase and 
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cyclooxygenase enzymes, which can introduce an oxygen atom in the hydrocarbon tail, an 

essential mechanism for the synthesis of prostaglandins and thromboxanes. Lipoxygenases, on the 

other hand, produce hydroperoxides such as leukotrienes, important mediators in inflammatory 

response and allergies. Non-steroidal anti-inflammatory drugs can inhibit the action of oxygenase 

enzymes to reduce inflammatory processes and control immune response. Polyunsaturated fatty 

acids can also undergo spontaneous radical-induced autoxidation, a process usually associated 

with oxidative stress. 19 

Triacylglycerols are obtained by further enzymatic reactions in the endoplasmic reticulum, 

mitochondria or peroxisome, where fatty acyl-CoAs are condensed with glycerol-3-phosphate. 

The resulting lysophosphatidic acid can be converted into a phosphatidic acid by acylation, which 

is then further modified to di- or triacylglycerols by the action of phosphatidic acid phosphatases 

and acyl transferases. The obtained phosphatidic acids and diacylglycerols are also the precursors 

of other glycerophospholipids, viz. phosphatidylcholines, ethanolamines, inositols and glycerols, 

as well as cardiolipins. Phospholipases and lipid kinases are two families of enzymes that modify 

glycerophospholipids to alter their function in the organism. The enzymes are involved is almost 

all pathophysiological processes, including inflammation, oxidative stress and infections. 

Sphingolipids are mostly synthesized from N-acyl-sphingosine in the endoplasmic reticulum, 

which is obtained from condensation of palmitoyl-CoA and serine. Cholesterol is synthesized in 

the liver by the condensation of six isoprene units, resulting in squalene. The 30-carbon linear lipid 

is further cyclized with the aid of oxygen and oxidized to lanosterol, which is finally converted 

into cholesterol. The molecule can be modified to a bile acid or esterified with a fatty acyl residue 

to form cholesteryl esters. 15,19,21 
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1.2.5. Cholesterol: villain or hero? 

Cholesterol is an essential component of membranes and a precursor of vital molecules for 

the organism. It can be obtained through diet or produced and metabolized in the liver. Cholesterol 

is transported to peripheral tissues by the blood stream as low-density lipoproteins (LDL), i.e., 

packages that contain cholesteryl esters (esterified cholesterol) and triacylglycerols wrapped in a 

layer of glycerophospholipids and proteins. LDL receptors on the surface of cells enable the 

permeation of cholesterol and triacylglycerols through receptor-mediated endocytosis. The lipids 

are then employed for membrane regulation, as hormones and for other vital functions. High-

density lipoproteins (HDL), in turn, transport cholesterol from peripheral tissue and organs back 

to the liver for excretion or modifications. Cholesterol is either oxidized to bile salts or modified 

to hormones and other vital molecules in the liver. Once oxidized, bile salts are transported to the 

gallbladder and intestines, where the cholesterol derivatives are reabsorbed or excreted.9,15 

Cells can regulate the levels of cholesterol, LDL and other lipids through surface receptors. 

The amount of cholesterol in the blood stream depends on the partition between LDL and HDL. 

When the levels of cholesterol in the cells are high, the transcription of LDL-receptors is 

suppressed, as well as the biosynthesis of cholesterol. The excess is transported to the liver for 

processing via HDL particles. If the process is not well-regulated, cholesterol will accumulate in 

the blood stream, where it can be oxidized and further processed by macrophages, resulting in 

foam cells. The fat-laden macrophages accumulate on the walls of blood vessels, forming plaques 

(atherosclerosis) that may block coronary arteries, causing heart attacks and strokes.9,15 
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1.2.6.  Lipids and diseases 

The previous sections illustrate the vast importance of lipids for the metabolism. 

Consequently, the hydrophobic molecules are also involved in most pathogenic and physiological 

processes in our organism. The relationship between high-fat diets and heart conditions is well 

recognized, but lipid dysregulation is also related to immune response against pathogens2,22–29, 

neurological diseases30–39, respiratory conditions2,40–44, oxidative stress45–51 and inflammatory 

processes41,52–58. Yet, the regulation of lipids in the organism is not yet well characterized. 

Although general relationships between the major lipid classes are known, the pathways involving 

the minor subclasses and lipid species remain to be determined.59 Hence, the study of the lipid 

composition of different biological samples, as well as their relationships and alterations in 

response to physiological and pathological processes, is a highly attractive field for research and 

the main objective of this work. 

 

1.3. Analytical methods for lipidomics 

Over the past two decades, many technical advances have been made regarding methods 

for the analysis of biological molecules. Although much focus has been put on genomics, 

proteomics and metabolomics, there is still a need for reliable analytical approaches that include 

sample preparation, analysis, data processing, normalization and identification of lipids. Lipidomic 

profiling can be achieved through targeted, untargeted or shotgun approaches. The experimental 

design selected for an application depends on its objectives, expected outcomes and nature of the 

samples. Targeted lipidomics focuses in one or a few selected lipid species or subclasses, while 

untargeted techniques attempt to profile the full composition of a sample that may contain 

thousands of different lipid species. Targeted lipidomics is often used when the molecules involved 
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in a particular biological process are previously known or suspected. It provides high selectivity 

and sensitivity, being appropriate for applications that require absolute quantification, such as 

biomarker validation. The low complexity of results and simple data processing when compared 

to untargeted and shotgun approaches is attractive, although the conclusions and implications that 

can be obtained are limited. Untargeted lipidomics, on the other hand, can detect thousands of 

molecules in one unique analytical procedure, generating extremely complex datasets with a high 

amount of information. It is usually employed for biomarker discovery and pathway analysis, 

along with relative quantification. Shotgun lipidomics, i.e., the direct injection of organic extracts 

into a mass spectrometer without prior separation, is used to identify patterns of changes in 

response to physiological or pathological processes. Intra-source separation of lipid subclasses can 

be achieved by changing the ionization polarity during ESI and the composition of the sample 

media. Shotgun lipidomics usually provides reliable results for lipids with moderate 

concentrations, which can be analyzed within minutes. The approach is a quick and efficient 

method to obtain a fingerprint of the lipid composition of a sample, but suffers from limited 

dynamic range, strong ion suppression, aggregation effects and overlap of isomeric and isobaric 

lipids.10,11,60  

This work focuses on untargeted lipidomics of biological samples to study pathological 

and physiological processes. Untargeted applications are usually the starting point for the 

investigation of unknown biological processes, as a great number of molecules are analyzed in a 

single experiment. It allows the relative quantification and identification of hundreds or thousands 

of compounds, in addition to the capability to find unexpected molecules and trends. Usually, 

untargeted lipidomics does not require absolute quantifications, but only relative comparisons 

between two or more conditions (e.g., healthy versus diseased). However, the complexity of the 



Chapter I 

 

17 
 

obtained data requires specialized techniques for sample preparation, analysis and data 

processing.10 

A typical lipidomics experiment starts with extraction of the lipid fraction of a biological 

sample, followed by separation, analysis, detection, data processing, statistics and data reporting. 

Within each step, an array of different options is available; hence, the experiments must be 

carefully planned and adapted to the application to ensure reliable and meaningful outcomes. The 

sample preparation includes the addition of internal standards, homogenization, isolation and 

purification of lipids. The separation of the lipidome can be achieved through liquid (LC) and gas 

chromatography (GC), although direct infusion without a prior separation technique is also 

employed for shotgun lipidomics. The analysis is usually performed with mass spectrometry (MS) 

allied to electrospray (ESI), nano-ESI or electron impact ionization, but nuclear magnetic 

resonance (NMR) has also been described. Last, the processing of the enormous amount of data 

generated by untargeted lipidomics requires mass recalibration (for MS-based applications), peak 

picking, alignment, identification, normalization and statistical analysis, followed by 

bioinformatics and pathway analysis. The structural characterization and identification of lipids, 

as well as the determination of absolute or relative concentrations, remain the biggest challenges 

for lipidomics. Derivatization methods for specific lipid classes have been previously proposed to 

improve analytical separation, detection and identification, but there is still no universal 

derivatization approach that allows comprehensive, untargeted lipidomics due to the variety of 

functional groups that can be found in lipids. The following sections describe the most common 

techniques employed for each step, with special emphasis on the comprehensive, untargeted 

methods employed in this work.12,59,61 
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1.3.1. Sample preparation and storage 

Lipids are highly prone to oxidation, peroxidation, hydrolysis and other modifications, 

particularly when extracted and exposed to normal atmospheric conditions. Hydrolytic enzymes, 

proteases and phosphatases present in biological fluids and tissues can modify the relative 

abundance of lipid species after sample collection, e.g. an artificial increase in the levels of 

lysoglycerophospholipids or oxidized glycerophospholipids. Hence, the preservation of the lipid 

composition of samples is essential to any preparation methodology. It is highly recommended 

that raw biological samples and lipid extracts are immediately snap-frozen after collection and 

stored under low temperature and protected from light to minimize degradation and enzymatic 

activity (-20°C for short-term and -80°C for long-term storage). The use of techniques that require 

long-term exposure of lipid samples to room temperature, light, oxygen, multiple freeze-thaw 

cycles, heat or acidic/basic conditions is highly undesirable. Although antioxidants are sometimes 

suggested to preserve lipid samples, they may not be compatible with the analytical techniques or 

cause extra modifications and contamination in the samples. Hence, the sample preparation steps 

must be performed quickly and accurately. Lipid extracts can be further purged with inert gas 

(nitrogen, argon) for storage to prevent oxidation. It is not advisable to store dried or concentrated 

lipid extracts under normal atmospheric conditions due to the possibility of degradation.4,12 

The preparation of samples may require a mechanical homogenization step for tissue or 

cells, such as sonication or a bead-beater. The hydrophobic nature of most lipids in aqueous 

biological samples or homogenates allow the use of liquid-liquid extraction with organic solvents 

to isolate the lipidome. The use of non-polar solvents disrupts membranes, lipid droplets and 

lipoprotein particles, allowing the isolation of the lipidome from the more polar compounds. 

Alternatively, solid-phase extraction methods, microwave-assisted extraction and supercritical 
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fluids have also been used for lipid isolation, particularly for targeted analysis. Ideally, extraction 

procedures should provide quantitative lipid isolates without major degradation, contamination or 

modification of the sample components. The most commonly used methods employ chloroform, 

methanol and water or salt solutions to promote a biphasic system, e.g. the popular Folch and Bligh 

& Dyer methods.62–64 The organic layer is then separated, dried under nitrogen flow or using a 

SpeedVac (room temperature), and resuspended in an appropriate medium for analysis. The 

chloroform-based methods usually allow high recoveries of low to mid-polarity lipids, such as 

triacylglycerols, glycerophospholipids and sphingolipids, but have a lower performance for the 

most polar lipids, e.g. small-chain fatty acids.4,6,14 

It is worth emphasizing that the use of non-polar organic solvents for extraction requires a 

cautious evaluation of glassware and plastic ware. Chloroform, dichloromethane, methanol and 

isopropanol, commonly used for lipidomics, can extract contaminants and plasticizers from 

vessels, caps and pipet tips. Although glassware is usually less prone to contamination, it has a 

high associated cost for single-use vessels and may promote selective retention of lipids in non-

silanized glass walls. Disposable vessels with polytetrafluoroethylene (PTFE) or Teflon lining and 

fittings are usually indicated for lipidomics. Quality control through blank extractions (water 

instead of sample) to verify contamination, pooled samples and standards with each batch of 

sample extractions is essential to ensure reliable results. Chapter II includes an evaluation of 

contamination sources for liquid-liquid extraction of lipids and clear examples of the effects of 

employing unsuitable vessels for lipidomics. 4,6,14 

The Folch liquid-liquid extraction method was originally developed for the isolation of 

lipids from tissue samples over 50 years ago, although it is still recognized as one of the most 

reliable preparation methods for lipidomics.62,63 It provides a high coverage of lipid classes through 
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a combination of chloroform and methanol in a 2:1 ratio, followed by a clean-up step with water 

or saline solution to a final proportion of 8:4:3 chloroform/ methanol/ water. The low polarity of 

chloroform promotes the selective extraction of hydrophobic compounds, while the combination 

with methanol controls the partition coefficient of intermediate-polarity compounds, disrupts 

hydrogen bonding between polar lipids and proteins, and promotes protein precipitation. The water 

wash step separates the undesirable polar compounds, such as proteins, sugars and amino acids. 

The adjustment of solvent ratios can increase the recovery of particular lipid classes. Nowadays, 

many researchers opt to substitute chloroform by dichloromethane due to lower carcinogenic risk, 

less restrictions to acquisition and reduced cost, while maintaining similar chemical and physical 

characteristics. The Folch method was employed for this work with dichloromethane and minor 

modifications for each application, as described in the Experimental section of all 

chapters.4,12,62,63,65,66 

A limitation to chloroform or dichloromethane biphasic extraction methods for biological 

samples is that the organic layer is located under a solid protein disk. The separation of the organic 

fraction requires pipetting the solvent through the upper aqueous layer and the protein disk, a 

procedure that can be tricky if performed by unexperienced analysts, particularly for samples with 

a high protein content. An extraction method employing methyl-tert-butyl ether (MTBE), 

methanol and water was reported by Matyash et al. in 2008 and has become increasingly popular 

in the last decade.67 MTBE promotes the organic phase to the upper layer of the biphasic system, 

facilitating the separation. The method provides similar recoveries and coverage of lipid subclasses 

to the Folch extraction, as well as comparable reproducibility, depending on the experience of the 

analyst. However, the procedure requires a long incubation period during which lipids can be 
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easily degraded or modified. A comparison between the Folch and the MTBE method is discussed 

in Chapter II. 12,67–70 

Quality control of sample extraction steps can ensure the reliability and stability of 

lipidomics. Usually, a pooled mixture composed by small aliquots of all samples is extracted along 

with each batch of samples. Alternatively, a sample with similar composition can be used if the 

available volumes of biological fluids are too small for pooling. Reference standards are also 

highly recommended to control retention time and mass shifts. Blank extracts (extraction of water 

or solvent instead of sample) are useful to control contamination and background noise, 

particularly for methods that employ organic solvents. Although quality control steps are rarely 

discussed or reported, they are essential for a correct evaluation of lipidomics results. Alterations 

in lipid concentrations cannot be attributed to physiological or pathological processes if the 

possibility of analytical interference is not controlled.14 

 

1.3.2. Separation 

Although the lipidome can be investigated without the use of separation techniques 

(shotgun lipidomics, i.e. direct injections of the organic extract), prior chromatography can reduce 

the complexity of the sample and eliminate contaminants, improving the quality of the obtained 

data. Separation approaches minimize aggregation effects, reduce ion suppression and increase the 

dynamic range for detection. Chromatography is a powerful technique that further allows the 

detection of lipids with very small concentrations, which is hardly ever achieved for shotgun 

lipidomics due to the complexity and high ion suppression of extracts. High-performance liquid 

chromatography is the most common approach for untargeted lipidomics, owing to high resolution, 

versatility and possibility of automation. Nanoscale-liquid chromatography (nanoLC) can further 
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increase the sensitivity and allow untargeted lipidomics of droplets of biological fluids, as 

discussed in Chapter II. Reversed-phase conditions are employed to separate lipids by 

hydrophobicity, while hydrophilic-interaction chromatography (HILIC) promotes separation 

based on the polar headgroups. Gas chromatography has also been used for the analysis of small 

fatty acids, triacylglycerols and sterols, but most lipids require lengthy derivatization procedures 

to increase their volatility and resistance to high temperatures.134,12 

Reversed-phase chromatography is the most common approach for lipid separation. The 

mobile phases must have a high content of strong organic solvents to ensure elution of the 

hydrophobic lipids, but chloroform and dichloromethane are not often indicated due to the 

possibility of corrosion and damage to metal surfaces and polymeric fittings in the instruments, as 

well as to columns. The strong organic solvents may also cause precipitation of buffers, additives 

and sample components inside columns and instruments. The analysis of lipids demand different 

and sometimes extreme analytical conditions, but the composition of mobile phases, injection 

volumes and handling of LC instruments require training and attention as overloading, peak 

distortions, co-elution, aggregation and damage to expensive instruments and columns are often 

seen and may impact research results.59 

The separation of lipids allows an additional criterion to increase the accuracy of 

identifications, as lipids with similar structures will elute within the same retention time range. 

Hence, lipid standards may be used to determine expected retentions to further confirm the 

identification of endogenous species. This principle was used in this work as a filtering step for 

isomeric and isobaric identifications of lipids, as described in Chapter II.10,12 
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1.3.3. Analysis- 

The complexity of the lipidome, associated with concentrations that can vary in 6-8 orders 

of magnitude, requires the use of high sensitivity, high resolution techniques with extensive 

dynamic ranges that can also provide structural information for identification. Hence, mass 

spectrometry (MS) is the ideal choice for untargeted lipidomics, although nuclear magnetic 

resonance (NMR) has also been described for the study of the lipidome. NMR is a non-destructive 

and fast technique, but it has limited sensitivity and can be challenging for highly complex 

samples. MS-based techniques offer the required broad coverage, high sensitivity and extensive 

dynamic range, in addition to the possibility of structural information, imaging and coupling to 

liquid and gas chromatography. Imaging techniques, e.g. MALDI, further provide the special 

localization of lipids at the cost of lower analytical coverage and reduced quantitation 

performance. Although triple quadrupole (QqQ) mass spectrometers are still constantly used due 

to the variety of scan modes, high sensitivity for selected molecules and lower cost, high-resolution 

instruments capable of detecting a wide range of masses with higher mass accuracy are typically 

employed for comprehensive lipidomics, including quadrupole ion trap, quadrupole time-of-flight 

(QToF) and orbitrap. The MSn capability of ion trap instruments offers better identifications, but 

the low mass cut-off and sensitivity decay for multiple tandem-MS experiments hinder their 

widespread application for lipidomics. Orbitrap-MS, on the other hand, has excellent resolutions 

and mass accuracy, but the high cost and slower spectra acquisition rate required for full resolution 

are the main disadvantages. The combination between quadrupole and time-of-flight mass 

spectrometry provides excellent resolution, high mass accuracy and extensive mass range allied to 

tandem-MS capability, being highly appropriate for untargeted lipidomics. Recently, the use of 

ion mobility MS (IMS) for lipidomics has been on the rise as it adds an additional dimension of 
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separation for isomeric and isobaric compounds (drift time). However, IMS does not solve the 

classical issues of lipidomic analysis, e.g. ion suppression and overlap between lipids with very 

similar structures and masses. 6,10–12,14 

The combination of high-resolution mass spectrometry with electrospray ionization (ESI) 

and liquid chromatography (LC) is the current gold standard for lipidomics. However, the inherent 

amphipathic characteristic of most lipids allied to the complexity of biological samples grants 

intense ion suppression for ESI-MS. The ionization efficiency of a lipid depends upon the polar 

headgroup, the number of carbons in the hydrophobic tail and the presence of unsaturation or other 

functional groups. The intensity of lipid peaks will also be impacted the detector response and ion 

transmission, further complicating the quantitation of species. Hence, normalization approaches 

that correct ion suppression and detector response are essential for meaningful comparisons. 

Nevertheless, many lipid species are not easily protonated or deprotonated ([M+H]+ and [M-H]- 

ions). Charged or zwitterionic lipids usually have higher ionization efficiencies, but non-polar 

lipids require derivatizations or adducts for MS analysis. The use of additives and modifiers in the 

mobile phase or sample medium is required to ensure adduct formation, enhancing the sensitivity 

of lipidomic analysis, as discussed in Chapter II. However, acidic mobile phases, commonly 

employed for LC-ESI-MS under positive ionization, are not advisable for lipidomics due to the 

possibility of cleavage of vinyl-ether bonds of plasmalogens and hydrolysis of lipid species.4,12,13 

 

1.3.4. Data processing 

The processing of the complex results obtained from untargeted lipidomics is an essential 

step to obtain high-quality data. The raw data must be corrected for mass errors, aligned and 

normalized to ensure that the biological and biochemical differences are kept, while analytical 
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effects that may affect the results are minimized. The correspondence determination, i.e., 

alignment of signals across multiple samples that correspond to the same lipid, may be complicated 

by retention time drifts, mass variations and sample degradation over time. Quality control is 

essential to ensure reliable and meaningful results, as well as differentiation between signals from 

analytes and random noise. However, there is no consensus in the scientific community regarding 

the best tools for processing the highly complex lipidomics datasets. A few software packages 

have been previously developed for metabolomics and may be adapted for lipidomics data 

(MZmine, XCMS, MetaboScape). Specialized software is also available (Lipid Data Analyzer, 

LipidSearch, MSDial LipidBlast, LipidXplorer), but their use still requires adaptations to each 

analytical platform and application.71–74 This work employed MetaboScape 4.0 (Bruker Daltonics, 

Billerica, MA, USA) for data alignment, correction, filtering and MS/MS identification, a software 

developed for metabolomics that can be further adapted for lipidomics. Although the software is a 

powerful tool for data alignment, it does not fulfill all needs for lipidomics. The normalization, 

putative identification, standardization of nomenclature and data checking steps, further discussed 

in the next sections, still mostly depend on manual work. 4,10,11,13 

  

1.3.5. Identification and nomenclature 

Lipids can have a variety of different structures that can be extremely different, but also 

very similar. Many isomeric lipids differ only in the position of an unsaturation or a functional 

group. However, lipid structures reflect their class or subclass characteristics and can generate 

specific fragments when tandem-MS with collision-induced dissociation (CID) is employed. The 

characteristic product ions and neutral losses obtained by CID-MS/MS of lipids usually include 

the headgroup, fatty acyl residues and other functional groups, depending on the structure of the 
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lipid and acquisition parameters. Targeted lipidomics can be very effective for positive MS/MS 

identification of lipids as a small number of species are selected for fragmentation. However, 

comprehensive, untargeted lipidomic approaches are limited by the number of ions that can be 

fragmented within an injection. Data-dependent analysis is based on the selection of a 

predetermined number of precursor ions from a survey scan, followed by CID and acquisition of 

the obtained fragments. The method allows the acquisition of thousands of MS/MS spectra and 

has the potential for identifying a high number of unknown lipids. Precursor ions are sequentially 

screened during the chromatographic elution of each peak. Although chromatographic separation 

reduces the complexity of the data, tens of lipids can still be detected within the small retention 

time range of a peak; hence, the most intense ions are usually selected for fragmentation, whereas 

the less intense species are not identified by tandem-MS. The obtained fragmentation spectra are 

then compared to spectral databases for positive identifications. Usually, the precursor ions are 

first scanned within a set mass-to-charge (m/z) error. Then, a similarity score (MS/MS score, 

between 0 and 1000) is calculated to assess the resemblance between the measured and the 

reference spectra. A high MS/MS score is related to better identifications. An isotope pattern score, 

known as mSigma, can also be used to verify the similarity between the measured and the expected 

isotope pattern for each ion as an extra layer of identification. Low mSigma values represent better 

isotope pattern matches. The three parameters, viz. m/z error, MS/MS score and mSigma, were 

employed to select MS/MS identifications for all applications shown in this work. Unfortunately, 

most MS/MS approaches cannot determine the position of unsaturation, which requires target 

methods with cleavage or derivatization of double bonds. 6,12,14 

A major limitation for tandem-MS identification of lipids is the relatively small number of 

entries in libraries and databases that are currently available. The high complexity of lipid extracts 
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containing thousands of different molecules with variable concentrations also restrains the number 

of precursors that can be fragmented in an analytical experiment. Hence, many species cannot be 

identified by tandem-MS. Putative identification by mass-match is a less accurate but still valid 

option to determine lipid species. It is worth emphasizing that lipids can have multiple isomers 

and isobars even when accurate masses are defined, meaning that multiple putative identifications 

are possible. Also, the composition of aliphatic chains and positions of unsaturation and branching 

cannot be specified. The term “annotation” has been mentioned as more appropriate for lipids 

identified by exact mass-match; however, this work adopts the more common “putative 

identification” to prevent confusion. The level of putative identifications is typically restricted to 

the molecular lipid (i.e., the headgroup or subclass, total number of carbons in fatty acyl residues 

and total number of unsaturation) rather than the structural identification (positions and 

stereochemical configuration of fatty acyl residues, unsaturation and other functional groups, such 

as branching, cyclization and hydroxyls).12,13,59 

One of the biggest challenges for untargeted lipidomics is the lack of a consensus for 

nomenclature of lipid species, classes and subclasses. Although several lipid databases can be 

found in the literature and online, most of them develops their own nomenclature rules, which 

further complicates the reporting and discussion of lipidomic results. Several initiatives have 

attempted to standardize nomenclatures and techniques for lipidomics, including LipidMaps 

(https://www.lipidmaps.org), the Lipidomics Standards Initiative (https://lipidomics-standards-

initiative.org), the European Lipidomics Initiative, the Lipid Mass Consortium (USA) and the 

Lipid Bank (Japan).10,12,18,20,75,76 The LipidMaps database is a great resource for researchers 

focusing on lipidomics that was adopted for all chapters of this work. The database is a 

compendium of 44,701 biologically relevant lipids (July/2020) and computationally generated 
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molecules that can be used for putative mass-match searches and general information regarding 

lipid classes, subclasses and species. The lipid nomenclature and subclass distribution of 

LipidMaps is often employed for reporting lipidomics data. The compendium partnered with the 

Lipidomics Standards Initiative on 2018, which led to an update on the nomenclature employed 

for the mass search tool on 2019. However, the database has not yet been fully modified 

(July/2020), leading to confusion regarding lipid names. Recently, a tool for nomenclature 

standardization was introduced to LipidMaps to convert lipid names from different sources into a 

standardized version, although further improvements are still required. For example, a search for 

the saturated fatty acid with 16 carbons FA(16:0) returns the common name Palmitic Acid; 

however, the Lipidomics Standards Initiative suggests a standardized nomenclature of FA 

16:0.20,76 The identity of this simple example could easily be confirmed, but differences in the 

nomenclature of the thousands of complex lipids that can be detected in a lipidomics experiment, 

containing a multitude of modifications, can be highly confusing, particularly for inexperienced 

personnel.12,20,61,75,76 

Unfortunately, although this problem has been constantly reported in the lipidomics 

community, there is still no consensus regarding the processing, identification and reporting of 

lipidomics data. This can be observed within the different chapters of this work, developed 

between 2016 and 2020. Although the same databases were employed for all chapters 

(LipidMaps16–18,75,77, MSDial LipidBlast73,78, Human Metabolome Database79–81 and MassBank of 

North America - MoNA82,83) and an effort was made to uniformize the nomenclature, there are 

differences that were incorporated as the databases were updated. The nomenclature adopted for 

all chapters is based on the abbreviated lipid subclass, followed by the number of carbons in fatty 

acyl residues, number of unsaturation and other functional groups.20 For example, the 16-carbon 
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saturated fatty acid commonly known as palmitic acid is named FA 16:0 with minor differences 

amongst chapters, while the same species with one double bond is FA 16:1. A phosphatidylcholine 

with two palmitate residues is named PC 16:0_16:0 if the MS/MS fragmentation spectra was 

acquired and matched to a database; or PC 32:0 for putative identification, as the identity of 

individual fatty acyl residues cannot be confirmed without fragmentation.76 

Even when an accurate identification of the detected lipids is achieved, another challenge 

remains: lipid pathways and networks are yet to be fully explored, as discussed in Chapter V. The 

integration of lipidomics with other omic sciences may help in this regard, as well as the 

amplification of high-quality lipidomic studies. 

 

1.3.6. Ion suppression and normalization approaches 

LC-MS-based lipidomics approaches have ion abundances that are affected by several 

factors, including biological differences, sample preparation, the strong ion suppression effect that 

is often observed for complex lipid mixtures, different ionization efficiencies, mass-dependent ion 

transmission within the MS instrument and detector response. Amphipathic molecules tend to stay 

in the air/water interface during electrospray ionization as the polar headgroup is solvated, but the 

hydrophobic tails are directed to the air to preserve the entropy of the system. Molecules that are 

on the surface of droplets are preferentially ionized, resulting in higher intensities, whereas other 

molecules may be suppressed. The polar headgroup, fatty acid chain length, modifications and 

degree of unsaturation may affect the ionization efficiency of different lipids. Furthermore, the 

instrument response usually decreases with increasing fatty acyl chain length. Longer fatty acyl 

residues have more hydrophobic intermolecular interactions, protecting the polar headgroup, 

which can decrease the ionization efficiency. The effect is even more pronounced for high 
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concentrations as hydrophobic lipids tend to aggregate. Appropriate normalization of the obtained 

data with multiple internal standards, added to the sample as soon as possible during the 

preparation step, is essential for reliable and meaningful results. Targeted or untargeted lipidomics 

should not be performed without a valid internal normalization approach to remove experimental 

bias while keeping the biological differences. The relative intensities or peak areas of lipid species 

are not directly related to their concentrations or abundances in biological samples, but can be 

compared if appropriate normalization procedures are applied.4,12–14,84,85 

External calibration methods cannot account for matrix effects; hence, they are not 

indicated for complex lipid extracts. Internal standards are expected to suffer similar effects as 

endogenous lipids with analogous characteristics and concentrations, hence allowing the 

correction of differences that may affect the ion count. Isotope-labeled internal standards are 

recommended, although lipids containing odd-chain fatty acyl residues have been previously 

employed as internal standards due to low natural abundancy in biological samples. Unfortunately, 

that approach resulted in under-reporting the importance of odd-chain fatty acids, which can be 

detected by high-sensitivity methods and are associated with pathogenic processes, as discussed 

in more details in Chapter VIII. Furthermore, although they have reduced concentrations, odd-

chain fatty acids are naturally found in biological samples, reducing the efficacy of the 

normalization.12 

The absolute quantification of lipids using mass spectrometry requires the use of multiple 

stable isotopologues for each lipid subclass to account for different ionization efficiencies, ion 

suppression, ion transmission and detector response. Ideally, one isotope-labeled standard should 

be used for each quantified molecule to ensure similar structures and properties. A stable 

isotopologue added at the beginning of sample preparation will suffer similar effects as the 
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molecule of interest, ensuring adequate normalization and quantification. Although that approach 

can be achieved for targeted analysis of a small number of lipids, an untargeted lipidomics 

experiment can provide the detection of thousands of different compounds. The acquisition of so 

many standards would be not only extremely expensive, but also generate further issues as to the 

addition of so many exogenous compounds to an already very complex biological sample. 

Nevertheless, the commercial availability of isotope-labeled lipid standards is still limited. 

Reliable normalization for relative quantification approaches can be achieved with one stable 

isotopologue standard for each polar lipid subclass if low concentrations can be maintained. 

Relative quantification, i.e., the comparison between the concentrations or intensities of species 

between two or more conditions without the need to determine their exact values, is commonly 

used for LC-MS biomarker discovery. The approach for lipid normalization using one 

representative isotope-labeled internal standard for each class or subclass is recommended and 

widely employed in the untargeted lipidomics field. Since the ionization efficiency is highly 

dependent upon the polar headgroup, individual lipid species within the same subclass have similar 

instrument response under low concentrations. Hence, all lipids that belong to the same subclass 

are normalized by one unique isotope-labeled internal standard that is structurally similar to the 

analytes and elutes within the same chromatographic retention time range. A commercially 

available mixture of 14 deuterated standards belonging to different lipid subclasses was used for 

normalization in this work (Splash Lipidomix Mass Spec Standard, Avanti Polar Lipids, Alabaster, 

AL, USA). After identification of the detected lipids and determination of their subclasses, each 

lipid was matched to one of the deuterated internal standards, according to subclass similarity and 

retention time. The intensity of the endogenous lipid was divided by the intensity of the matched 

deuterated internal standard to correct for differences that may happen during sample preparation 
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and analysis. It is worth emphasizing that the adopted strategy is widely recognized by the 

lipidomics community for relative comparisons between samples. Absolute quantification requires 

a higher number of isotope-labeled internal standards to normalize for different response factors 

and ensure accurate results, but it is not necessary for comparisons between similar samples if 

stable instrumental conditions and low sample concentrations can be maintained. 10,12,14 

 

1.3.7. Statistics applied to lipidomics 

Given the complexity and high dimensionality of lipidomics data, statistical models are 

essential to find trends and identify lipids that are significantly altered between the studied 

conditions. A deep discussion of statistical models is beyond the scope of this work, but the basic 

principles are required for the correct evaluation of lipidomics data. The massive complexity of 

terabytes of multidimensional lipidomics and metabolomics data is prone to small data processing 

and statistical faults that are hardly detected, leading to false patterns and conclusions. We are 

looking for a few small changes within thousands of random molecules, which can be highly 

challenging. The reproducibility and validity of omics data has been questioned due to a lack of 

reliable statistics and validation. Understanding the statistical models to avoid false performance-

enhancing practices is essential for high quality results.86 

Most statistical models employed for lipidomics require a normal distribution and are 

heavily affected by data scaling. The application of statistical models and tests in skewed data 

yield invalid results with no real meaning. Hence, auto-scaling (i.e., mean-centering with unit 

variance) and normalization to the median value, by the total ion count (summed intensities of all 

lipids employed for statistics) or quantile (ranked normalization to uniformize two distributions) 

is often required. Although normalization by internal standards has been previously discussed, the 
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extra normalization step before statistical analysis removes systematic variations that are not 

related to biological differences and may not be corrected by the internal standards, e.g. samples 

with different dilutions (e.g., saliva from a person that drinks 2 L of water versus a person who 

drinks 500 mL of water per day) and batch effects. Total intensity and median normalization 

assume that the change in intensity due to sample dilution or batch effects is uniform across all 

peaks; hence, a fixed scaling factor can be used for correction. Normalization by total intensity is 

highly affected by outliers or very intense features with high variability, while median 

normalization is less dependent upon such factors. Quantile normalization is based on forcing the 

distributions of compared datasets to be the same. Briefly, the values of each feature are ranked 

within each sample. Then, the average of each feature is determined across all samples and used 

to replace the values of features with the same rank or quantile. Finally, the transformed values are 

replaced in the original order, resulting in the correction of technical variability and batch effects. 

Unfortunately, there is no “recipe” for the most appropriate handling of lipidomics data. Different 

normalization and scaling approaches will affect the obtained results and should be considered 

along with the data structure and question being evaluated.11,85,87 

Principal Component Analysis (PCA) is useful to verify trends in the data, as well as 

clustering of experimental or injection replicates and quality control experiments. The statistical 

model reduces the dimensionality of the data by using orthogonal components, known as principal 

components. The first principal component explains as much of the original variance as possible, 

with decreasing portions for further components. Caution must be taken regarding data 

normalization and scaling, as PCA requires normal distribution and unit variance. If no data scaling 

is applied, the separation will be heavily affected by the most abundant lipids as they will have the 

highest absolute variation, causing misleading conclusions. The simple, non-supervised model is 
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not expected to result in a full separation between different groups (e.g. diseased versus healthy) 

in the score plot. PCA is a dimensionality reduction tool that may not be able to unravel the high 

complexity of the lipidome, particularly if the studied conditions only cause small changes for a 

few lipids in a sea of thousands of molecules. PCA can also be affected by noise, outliers and 

confounding factors. However, it is an excellent initial statistical tool to evaluate the performance 

of the chosen methods, data quality and initial trends. The clustering of quality control and sample 

replicates in PCA score plots are indications of the technical reproducibility and suitability of the 

employed methods.11 

Supervised statistical models take the class of each sample into consideration for the 

separation. Partial Least Squares – Discriminant Analysis (PLS-DA) is a popular statistical model 

for classification of complex datasets. A data matrix containing intensities for each detected feature 

is correlated to a second matrix containing the classification of each sample (e.g., healthy or 

diseased) through a linear regression. Caution must be taken regarding overfitting for datasets with 

a small number of samples and thousands of variables. In overfitted models, the observed 

separation may be due to modelling of random noise rather than meaningful variables. Thus, 

although an overfitted model is still a valid tool to evaluate the linear regression between the 

employed variables and the sample categories for the studied dataset, its performance may not be 

replicated for independent sample cohorts and result in false positives. The model must be 

validated by cross-validation and permutation tests to ensure reliable performance for biomarker 

discovery approaches. The parameters R2 and Q2 are employed to evaluate a PLS-DA model 

through cross-validation. R2 is defined as the correlation coefficient between the predicted and real 

sample categories, i.e. high R2 values are related to correct sample classification. Q2 is a measure 

of the prediction ability of the developed model, i.e., the average prediction error of a number of 
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cross-validations where one or a portion of the samples are retained to construct the model and 

further used to evaluate class prediction. There is no consensus for acceptable R2 and Q2 values, 

but high R2 with low Q2 indicate model overfitting. Permutation tests are performed by randomly 

assigning classes to different samples and calculating the performance of the resulting models to 

evaluate the significance of the original PLS-DA model. R2, Q2 and p values for permutation tests 

are provided for all PLS-DA models employed in this work. 88,89 

Random forest is a classification method that employs several randomized decision trees 

to predict the classification of samples. A random forest is a collection of a number of randomized 

regression trees. The combination of the decision from all trees gives the sample classification. It 

has a reliable performance for datasets in which the number of variables far exceeds the number 

of samples, as usually is the case for exploratory metabolomics and lipidomics. Each decision tree 

is prone to overfitting, but the combination of a high number of them results in a robust 

classification model. 90,91 

Univariate statistical methods also represent an important way of selecting significantly 

altered molecules, although the correlation between different compounds is disregarded. Analysis 

of Variance (ANOVA), t-tests and Volcano plots (fold change – FC versus p for Student’s t-test) 

are often employed for omics applications. However, the raw p values may not be suitable to 

evaluate the significance of lipids in complex datasets. There is much confusion in the literature 

regarding the interpretation of p values. When it was first introduced in the 1920s by the statistician 

Ronald Fisher, it was meant as an additional method to verify if it was worth further investigating 

a variable.92 The main idea was to provide a numeric measure to check if an observation was 

random by calculating the probability that results as extreme (or more) as the found values could 

be obtained if there was no difference between the compared groups. It was intended as a tool to 



Chapter I 

 

36 
 

select targets for further experiments rather than as a unique evidence for scientific conclusions. 

Nowadays, it is often seen as an indication that the mean values for two compared conditions are 

“statistically” different, but that is an incorrect affirmation. The p value represents the area below 

the probability density curve of the t-test, i.e., the probability of obtaining the observed or a more 

extreme result if the null hypothesis (equal means for two different conditions, H0: µ1 = µ2) is true. 

The significance level (α) chosen to reject the null hypothesis is an arbitrary value that is 

historically chosen as 0.05. A correct interpretation of p = 0.05 would be that the probability of 

observing a difference between the means of the tested conditions as large or larger than the 

observed value by chance alone is of 1 in 20.93 A low p value doesn’t mean that the null hypothesis 

of equal means is true. The p value by itself does not support conclusions about the probabilities 

of the tested hypothesis and carries no information about the magnitude of the difference between 

the conditions. A small p value may have no practical significance if the numeric difference 

between the two compared groups is very small. However, it can be a useful tool for rejecting the 

null hypothesis of equal means if interpreted correctly and in combination with other meaningful 

parameters, such as fold-change. The combination of the p value with other methods, such as 

volcano plots and multivariate statistics, can increase the reliability of the conclusions. 

Furthermore, a p value can only be correctly interpreted if authors report the corresponding fold-

changes, sample size, data exclusions, manipulations, scaling and modifications. Nevertheless, 

complex datasets with multiple hypothesis testing have increasing probability of erroneous 

conclusions, as the chance of a false-positive result increases when more than one variable is 

evaluated. A variety of multiple testing correction approaches can be used to reduce false positives 

when multiple features are assessed together. For this work, p values were adjusted for false-

discovery rate, where the null hypothesis is rejected if the kth ascending-ordered p value is larger 
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than 𝛼 𝑘 𝑛⁄ , where α is the significance level (usually 0.05), k is the rank of the p value in ascending 

order and n is the total number of features.94–98 

The statistical treatment of omics data is still a highly debated field. It is unlikely that 

researchers will reach conclusions on the most appropriate way to handle the complex datasets in 

the foreseeable future. Yet, the application of statistical models is essential to evaluate differences 

between the studied groups. This work includes comprehensive statistical analysis for each 

chapter, performed according to the current principles and requirements for reliable evaluations to 

the best of our knowledge. 

 

1.4. Limitations and challenges of current lipidomic approaches 

Lipidomics is a growing field that is constantly changing. Although new technologies, 

methods and applications are published almost daily, there are still many questions and problems 

that must be addressed. The previous sections have showcased the common approaches to study 

lipids and some of the issues found in the literature. 

First, there is still a need for analytical methods that allow a global profiling of lipids with 

reasonable sample amounts. The combination of lipidomics with other omic technologies for 

systems biology is hardly achieved if high volumes of precious biological fluids (>50 µL) or high 

masses of tissues (>350 mg) are required for each application. Second, the quality control of 

lipidomics data is essential to ensure reliable results, but usually not discussed or even mentioned 

in the literature. Sample preparation methods that require lipids to be exposed for long periods of 

time may seem attractive at first, but the results must be carefully evaluated. Furthermore, the 

precision of sample preparation and analysis methods is not always discussed, but essential for 

claiming that differences in lipid intensities or concentrations are related to a biological process 
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instead of technical flaws. Third, the normalization of lipidomics data is a vital step to obtain 

quantitative results, whether relative or absolute comparisons are being made. The use of internal 

standards for normalization, as well as data scaling and corrections, cannot be overlooked. Fourth, 

the statistical analysis and bioinformatics of lipids require careful planning and execution. The 

high complexity of the obtained datasets can easily hide small errors that will affect the biological 

implications and conclusions. The potential of lipidomics is undeniable but it can only be achieved 

with careful research and analytical development. 

 

1.5. Objectives 

Lipids are a tightly regulated but highly diverse class of biomolecules involved in virtually 

all physiological and pathological processes in an organism. Besides their function in regulating 

metabolism, lipids are also involved in a variety of diseases, e.g. atherosclerosis, diabetes, obesity 

and cancer.13,14 Hence, lipidomics is a highly attractive field that offers numerous possibilities, but 

the associated challenges described in the previous sections still require extensive research and the 

development of high-quality analytical approaches. This work aimed to unravel the relationship 

between different diseases and lipid metabolism through the use of comprehensive, untargeted 

lipidomics for relative quantification. 

The first objective consisted in the development of appropriate analytical methods for the 

sample preparation, chromatographic separation, mass spectrometry detection, data processing, 

identification and normalization of lipids. Chapter II describes the method development and 

optimization for comprehensive, untargeted lipidomics of small volumes of biological samples 

(1.0 – 2.5 µL) using nanoLC-MS. Then, the developed techniques were applied to study a variety 

of biological samples in Chapters III and IV (serum, cerebrospinal fluid, intraparenchymal 



Chapter I 

 

39 
 

microdialysate and exosome). Although the main focus of chapters II, III and IV was the analytical 

performance, the biochemistry of lipids was also briefly discussed in each chapter. 

The second objective was the application of developed UHPLC-MS methods to different 

types of biological samples. Chapters V to VIII describe a variety of applications of 

comprehensive, untargeted lipidomics to study pathological processes, including a novel vaccine 

candidate for respiratory syncytial virus (Chapter V, which also comprises metabolomics via 

chemical isotope labeling), biomarkers for Parkinson’s disease diagnosis and prediction of 

dementia onset before noticeable symptoms (Chapter VI), effects of glucocorticoids upon different 

tissues (Chapter VII), and biomarkers of cystic fibrosis (Chapter VIII). The main biochemical 

implications of the analytical findings are discussed for each chapter. 

This work aimed to showcase the importance of lipids in pathological and pathogenic 

processes, as well as the benefits of optimizing analytical and bioinformatics methods. The 

combination of lipidomics with other omic applications may provide the missing links to 

understand the many aspects of physiology and pathology that remain unexplained by the scientific 

community. 
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II  

Chapter II: Development of a NanoLC-MS Workflow for High-Sensitivity Global 

Lipidomic Analysis1,2,3 

 

1. Introduction 

Lipidomics has become an essential part of systems biology, providing valuable 

information on physiological and pathological processes involving lipids.99 The investigation of 

the lipid composition of biological samples, as well as their biochemical interactions with 

metabolites, proteins and other lipids, is essential for biomarker research.13,14,61 Despite great 

advances in lipid analysis methods in the last two decades, accurate quantification and rapid 

identification of lipid species in a comprehensive and high-throughput manner are still needed. 

14,61,99The complexity of biological samples and immense structural diversity of lipids summed to 

strong ion suppression requires the development of adequate methods for comprehensive 

lipidomics. Lipid analysis is further complicated by the low available amounts of precious 

biological samples, the limited capability of data processing routines, variations in lipid 

nomenclature and limited commercial availability of isotopic standards for data normalization and 

quantification. Chapter I provides a broad review of current techniques and challenges for 

lipidomics.12,13,61,100,101 

 

1 A version of this chapter was accepted for publication at Analytica Chimica Acta on Aug / 2020. 
2 Supporting figures for this chapter are available at Appendix A. Supporting tables are available with Dr. 

Liang Li. 
3 Pig blood and cerebrospinal fluid samples employed for this chapter were collected through a collaboration 

with of Dr. Brian Kwon (University of British Columbia, Vancouver, Canada). 
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The combination of lipidomics with other omics technologies can provide a comprehensive 

panel of the biochemical processes involved in physiological and pathological conditions; 

however, the small volumes of biological samples available usually restrain the use of different 

analytical techniques. Nanoflow liquid chromatography (nanoLC) offers extremely high 

sensitivity for small volumes of diluted samples, low organic solvent consumption and reduced 

waste. It can be easily coupled to electrospray ionization-mass spectrometry (ESI-MS), making it 

ideal for multiple omics applications in small amounts of diluted samples.100 NanoLC has been 

previously employed for the selective analysis of intact phosphatidylcholine molecules in soybean, 

bovine brain and bovine liver, as well as for lipids in tissue, plasma and human cerebrospinal fluid 

(CSF).102–107 Danne-Rasche et al. described a method for the sensitive analysis of lipids in 

Saccharomyces cerevisiae extract by nanoLC-MS, employing a long 110 min gradient focusing 

on phospholipids. The work achieved an increase in sensitivity of 2 to 3 orders of magnitude when 

compared to a narrow-bore HPLC system, showcasing the advantage of nanoLC applications 108. 

Yet, a method for sensitive analysis of diluted biological fluids with comprehensive lipid class 

coverage within a more reasonable analysis time is still required. This work describes the 

development of a high-sensitivity nanoLC-MS method for untargeted lipidomics of small volumes 

of biological samples. As part of the nanoLC-MS lipidomics workflow, we further optimized a 

modified Folch liquid-liquid extraction protocol based on dichloromethane and methanol for the 

comprehensive analysis of lipids in 1.0 – 2.5 µL of biological fluids. The evaluation of the method 

for lipidomics of serum and cerebrospinal fluid samples is also discussed. 
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2. Experimental 

2.2.1 Chemicals and reagents 

The chemicals and reagents employed for Chapter II to VIII were purchased from Sigma-

Aldrich (St. Louis, MO, USA; ammonium formate and formic acid), Avanti Polar Lipids 

(Alabaster, AL, USA; Splash Lipidomix Mass Spec Standard), Fisher Scientific (Waltham, MA, 

USA; analytical grade dichloromethane and LC-MS grade methanol, 2-propanol, acetonitrile and 

water) and Honeywell (Charlotte, NC, USA; LC-MS grade methanol, 2-propanol, acetonitrile and 

water). 

 

2.2.2 Instrumentation 

The nanoLC-MS experiments were performed on a Waters nanoAcquity UPLC system 

(Waters Corporation, Milford, MA, USA) employing Thermo Acclaim PepMap C18 nanoViper 

trap (20 mm × 75 µm × 3 µm) and analytical columns (150 mm × 75 µm × 2 µm; Thermo Fisher 

Scientific, Waltham, MA, USA). The nanoLC instrument was coupled to an Impact II quadrupole 

time-of-flight (QTOF) mass spectrometer through a CaptiveSpray NanoBooster electrospray 

ionization (ESI) source (Bruker Daltonics, Billerica, MA, USA) with acetonitrile-enriched 

nitrogen gas.  

The UHPLC experiments were performed on a Dionex UltiMate 3000 UHPLC system 

(Thermo Fisher Scientific, Waltham, MA, USA) employing a Waters Acquity BEH C18 column 

(5 cm × 2.1 mm × 1.7 µm; Waters Corporation, Milford, MA, USA) and coupled to the same mass 

spectrometer through a conventional ESI source.  
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2.2.3 Analysis methods 

The initial nanoLC method for lipidomics of biological fluids was selected after a literature 

review, namely: MPA - 20 mM NH4COOH, 5 mM formic acid (FA) in 45:45:10 methanol/ 

acetonitrile/ water (v/v/v); MPB - 20 mM NH4COOH, 5 mM formic acid in 2-propanol; trapping 

for 1 min at 7 µL/min (95% MPA); flowrate of 300 nL/min; column temperature of 45°C; 38 min 

gradient (0 min – 5% MPB; 2 min – 5% MPB; 12 min – 30% MPB; 24 min – 90% MPB; 28 min 

– 1% MPB; 38 min – 1% MPB) followed by 20 min of re-equilibrium at 95% MPA; and 2.0 µL 

injection. The initial nanoLC conditions were optimized for mobile phase composition, gradient, 

temperature, trapping time, trapping mobile phase composition, trapping flowrate, and injection 

volume. Initial MS conditions were also fully optimized, namely: capillary voltage of 1300 V, dry 

gas flow rate of 3.0 L/min, ion source temperature of 200°C, spectra acquisition rate of 2 Hz, and 

NanoBooster acetonitrile-enriched nitrogen gas pressure of 0.10 bar. Optimal conditions were 

selected based on peak intensity, visual chromatographic separation and the number of detected 

features. The relative standard deviation for peak intensities between replicates was also evaluated 

as a measure of technical reproducibility. Only features detected in all experimental replicate 

analyses were considered for method optimization. 

After the optimization, the sensitivity of the nanoLC method was compared to similar 

conditions applied to UHPLC-MS, i.e., MPA – 10 mM NH4COOH in 50:40:10 methanol/ 

acetonitrile/ water; MPB - 10 mM NH4COOH in 95:5 2-propanol/ water; 250 µL/min; 40 °C; 22 

min gradient (0 min – 5% MPB; 1.8 min – 5% MPB; 8.5 min – 30% MPB; 18 min – 95% MPB; 

22 min – 95% MPB) followed by 10 min of re-equilibrium (0 min – 95% MPB; 3 min – 95% 

MPB; 4 min – 5% MPB; 10 min – 95% MPB); and 4 µL injection. The UHPLC method was 
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previously optimized (data not shown), but MS conditions were identical to the method optimized 

for nanoLC analysis. 

 

2.2.4 Sample preparation 4 

The classical Folch method for liquid-liquid extraction of lipids by dichloromethane and 

methanol was optimized for handling 1.0 – 10.0 µL of blood serum. All optimization experiments 

were performed with serum samples obtained from Yucatan miniature pigs unless otherwise stated. 

Initially, 1.0 µL of serum was mixed with 55.4 µL of methanol, 110.8 µL of dichloromethane and 

33.4 µL of water. After resting for 10 min at room temperature, the mixture was centrifuged for 

10 min (12,000 rpm, 4°C) and the bottom organic layer was evaporated to dryness on a SpeedVac 

for 30 min. The dried extract was resuspended immediately in 10 µL of 6:4 MPA/MPB and diluted 

with 90 µL of 9:1 MPA/MPB. A mixture of 14 deuterated lipids in methanol (Splash Lipidomix 

Mass Spec Standard, Avanti Polar Lipids) was further added to the serum samples in equal 

volumes before extraction for internal standardization, namely: lysophosphatidylcholine – LPC 

d7-18:1, lysophosphatidylethanolamine – LPE d7-18:1, monoacylglycerol – MG d7-18:1, d7-

cholesterol, phosphatidylglycerol – PG d7-15:0/18:1 (sodium salt), phosphatidylinositol – PI d7-

15:0/18:1 (ammonium salt), phosphatidylcholine – PC d7-15:0/18:1, phosphatidylethanolamine – 

PE d7-15:0/18:1, phosphatidylserine – PS d7-15:0/18:1 (sodium salt), phosphatidic acid – PA d7-

15:0/18:1 (sodium salt), sphingomyelin – SM d9-d18:1/18:1, diacylglycerol – DG d7-15:0/18:1, 

triacylglycerol – TG d7-15:0/18:1/15:0, and cholesteryl ester – CE d7-18:1. Table II-1 provides 

 

4 Serum and CSF samples from Yucatan miniature pigs were obtained through a collaboration with Dr. Brian 
Kwon (University of British Columbia, Vancouver, BC, Canada). 
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details on molecular weight, formula and concentration of the internal standard mixture. The 

sample extraction method was optimized for: initial sample volume, equilibration temperature and 

time; drying time; composition of solvents for resuspension and dilution of the extract; and 

composition and proportions of extraction solvents. We also evaluated contamination sources for 

the extraction method, including polypropylene (PP) microcentrifuge tubes and autosampler vial 

inserts (PP and glass). 

 

Table II-1. Composition of the deuterated lipid standard mixture (14 standards in methanol 

solution) employed for internal standardization of lipidomics of biological samples (Splash 

Lipidomix Mass Spec Standard, Avanti Polar Lipids).  

Standard Formula Molecular weight 
Concentration               

(µg/mL)  

MG d7-18:1 C21H33D7O4 363.59 1.8 

CE d7-18:1 C45H71D7O2 658.16 329.1 

Cholesterol-d7 C27H39D7O 393.71 98.4 

LPE d7-18:1 C23H39D7NO7P 486.64 4.9 

LPC d7-18:1 C26H45D7NO7P 528.72 23.8 

DG d7-15:0/18:1 C36H61D7O5 587.98 8.8 

PA d7-15:0/18:1 C36H61D7NaO8P 689.94 6.9 

PE d7-15:0/18:1 C38H67D7NO8P 711.03 5.3 

SM d9-d18:1/18:1 C41H72D9N2O6P 738.12 29.6 

PC d7-15:0/18:1 C41H73D7NO8P 753.11 150.6 

PS d7-15:0/18:1 C39H66 D7NNaO10P 777.02 3.9 

PG d7-15:0/18:1 C39H67D7NaO10P 764.02 26.7 

TG d7-15:0/18:1/15:0 C51H89D7O6 812.37 52.8 

PI d7-15:0/18:1 C42H75D7NO13P 847.13 8.5 
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2.2.5 Data processing 

The detected features for each evaluated condition during the nanoLC-MS optimization 

were picked by the software Bruker Compass Data Analysis 3.1 (Bruker Daltonics, Billerica, MA, 

USA) and aligned on Profile Analysis 2.1 (Bruker Daltonics, Billerica, MA, USA), using S/N 

threshold of 3, correlation coefficient threshold of 0.7, minimum compound length of 10 spectra, 

smoothing width of 5 spectra, and retention time and mass tolerances for alignment automatically 

selected by the software. The data processing routine was fully optimized, focusing on maximizing 

the number of detected features. However, the combination of two software took an unreasonable 

amount of time for processing high sensitivity data (extracting and aligning >10,000 features). 

Hence, after the nanoLC-MS and extraction method optimization, the data processing routine was 

adapted for Bruker MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA). 

 

2.2.6 MS/MS identification of detected features 

MS/MS identification of lipids for the optimized method was performed with the following 

LC-MS/MS libraries: MS-Dial LipidBlast (https://fiehnlab.ucdavis.edu/projects/LipidBlast)73,78, 

the Human Metabolome Database (HMDB, https://hmdb.ca)80,81,109 and MassBank of North 

America (MoNA, a repository encompassing spectra from MassBank, HMDB, LipidBlast, the 

Fiehn’s lab FAHFA lipid library82, the Riken Center’s oxidized phospholipid library83 and others, 

https://mona.fiehnlab.ucdavis.edu). The libraries were combined to MetaboScape 4.0 for spectral 

match using precursor m/z tolerance of 5.0 mDa and (1) MS/MS score threshold of 500 and 

mSigma (isotope pattern match) threshold of 150; or (2) MS/MS score threshold of 100 and 

mSigma threshold of 50. Internal standard features were found by retention time and accurate m/z 

values. Lipid subclasses and categories followed the International Lipid Classification and 
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Nomenclature Committee (ILCNC), the LipidMaps database (2019-2020 update) and the 

Lipidomics Standards Initiative (Table II-2). 16–18,20,75,76 
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Table II-2. Abbreviation employed for lipid subclasses in Chapters II, III, IV, VII and VIII. 

Abbreviation Common name Lipid Subclass Lipid Class 

Acer Acylceramide Ceramides Sphingolipids 

AcylGlcADG Glucosyldiacylglycerol Glycosyldiradylglycerols Glycerolipids 

BMP 

Bis[monoacylglycero]phosphate / 
Hemibismonoacylglycerophosphate / 

lysobisphosphatidic acid 

Monoacylglycerophospho- 

monoradylglycerols 
Glycerophospholipids 

Car Fatty acylcarnitine Fatty esters Fatty Acyls 

CE Cholesteryl ester Cholesteryl esters Sterol lipids 

Cer Ceramide Ceramides Sphingolipids 

CL Cardiolipin Glycerophosphoglycerophosphoglycerols Glycerophospholipids 

CoA Fatty acyl CoEnzyme A Fatty esters Fatty Acyls 

DG Diacylglycerol (Diglyceride) Diradylglycerols Glycerolipids 

DGC 
Acyl-sn-glycero-3-O-carboxy- 

(hydroxymethyl)-choline 
Other Glycerolipids Glycerolipids 

DGD Digalactosyldiacylgylcerol Glycosyldiacylglycerols Glycerolipids 

DGT 
Diacylglyceryltrimethyl- 

homoserine 
Other Glycerolipids Glycerolipids 

FA 
Fatty acid / Fatty ester / Wax ester / 

Fatty acid derivative 

Fatty acids and 

conjugates 
Fatty acyls 

FC Free cholesterol Cholesterol Sterol lipids 

GMG 
Sulfoquinovosylmonoacyl- 

glycerol 
Glycosylmonoradylglycerols Glycerolipids 

HexCer 
Hexosylceramides / Glucosylceramide / 

Lactosylceramide 
Neutral glycosphingolipids Sphingolipids 

LPA 
Lysophosphatidic acid / 

Cyclic Lysophosphatidic acid 
Glycerophosphates Glycerophospholipids 

LPC Lysophosphatidylcholine Glycerophosphocholines Glycerophospholipids 

LPE Lysophosphatidylethanolamine Glycerophosphoethanolamines Glycerophospholipids 

LPG Lysophosphatidylglycerol Glycerophosphoglycerols Glycerophospholipids 

LPI Lysophosphatidylinositol Glycerophosphoinositols Glycerophospholipids 

LPS Lysophosphatidylserine Glycerophosphoserines Glycerophospholipids 
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LSL 
Lysosphingomyelin / 

lysoglycosphingolipid 
Sphingoid bases Sphingolipids 

MG 
Monoacylglycerol 

(Monoglyceride) 
Monoradylglycerols Glycerolipids 

MIPC Ceramide phosphoinositol Phosphosphingolipids Sphingolipids 

NAA 
N-acylamine / N-acylamide / 

N-acyl-taurine 
Fatty amides Fatty Acyls 

PA Phosphatidic acid Glycerophosphates Glycerophospholipids 

PC Phosphatidylcholines Glycerophosphocholines Glycerophospholipids 

PE 
Phosphatidylethanolamine / 

Diacylglycerophosphoethanolamine 
Glycerophosphoethanolamines Glycerophospholipids 

PE-Cer Ceramide phosphoethanolamine Phosphosphingolipids Sphingolipids 

PEtOH Phosphatidylethanol Other Glycerophospholipids Glycerophospholipids 

PG Phosphatidylgylcerol Glycerophosphoglycerols Glycerophospholipids 

PI 
Phosphatidylinositol / 

Diacylglycerophosphoinositolglycan / 
Glycerophosphoinositols Glycerophospholipids 

PIP Phosphatidylinositol-phosphate Glycerophosphoinositol phosphates Glycerophospholipids 

PS Phosphatidylserines Glycerophosphoserines Glycerophospholipids 

SM 
Sphingomyelin / 

Ceramide-1-phosphate 
Phosphosphingolipids Sphingolipids 

SPB 
Sphingoid base / 

Sphingoid base-1-phosphate 
Sphingolipids Sphingolipids 

ST 
Sterol / Cholesterol and 

Derivatives 
Sterols Sterol Lipids 

Sulf Sulfoglycosphingolipid (sulfatide) Acidic glycosphingolipids Sphingolipids 

SulfDG Sulfoquinovosyldiacylglycerols Glycosyldiradylglycerols Glycerolipids 

TG Triacylglycerol (Triglyceride) Triradylglycerols Glycerolipids 



Chapter II 

50 

 

2.2.7 Putative identification of lipids 

Features that were not identified by MS/MS were inputted on the LipidMaps database for 

putative identification based on mass-match (m/z error smaller than 5.0 mDa). Lipids can have 

multiple isomers and isobars within the mass tolerance of 5.0 mDa; hence, all possible isomeric 

and isobaric lipids for the same feature were filtered and ranked by a 5-tier system to ensure more 

accurate identifications. All isomeric and isobaric possibilities that passed initial filters for 

retention time and adduct detection were kept for each mass-matched feature, but they were ranked 

according to the characteristics of the employed method and biological fluids. A similar approach 

was employed for Chapters III to VIII with minor modifications.  

First, we applied a retention time filter to exclude identification possibilities that could not 

elute in the detected retention time, e.g. a triacylglycerol is expected to have high retention by the 

reverse-phase chromatography conditions employed for this work; hence, identifications for 

triacylglycerols with low retention times were excluded. We employed lipid standards and high-

confidence MS/MS identifications to determine the expected retention time range for each lipid 

subclass, sub-divided into 4 fatty acyl length groups (sum of the number of carbons for all fatty 

acyl residues): less than 14 carbons; 14 to 20 carbons; 21 to 33 carbons; and 34 carbons or more. 

The expected retention time ranges were then used to filter out identification possibilities that 

could not elute in the detected times. 

Second, we employed a filter for the identified adducts. Most lipid classes are not easily 

ionized by electrospray as the common [M+H]+ and [M-H]- ions; instead, they are detected as 

adducts that depend upon the modifiers employed for mobile phase and sample medium. The 

mobile phases and chromatographic conditions used for the optimized conditions allow different 

adducts to be detected, including [M+H]+, [M+NH4]
+, [M+Na]+, [M-H2O+H]+, [M-H]-, 
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[M+HCOO]- and [M-CH3]
-. However, different lipid subclasses can form different ions and 

adducts, e.g., simple fatty acids are often detected as [M-H]- but triacylglycerols cannot be ionized 

by the loss of a proton, being more commonly detected as the [M+NH4]
+ adduct. Therefore, we 

also employed lipid standards to determine the possible adducts for each lipid subclass. While 

identification possibilities for adducts that could not be detected were excluded (e.g., 

triacylglycerols as [M-2H]2-), all the possible matches were scored according to their expected 

ionization. The most likely adduct possibilities for each feature were given a score of one, while 

the less likely possibilities were given higher scores.  

Third, the identifications for the same feature were scored by their mass errors. While all 

identifications had a maximum mass error of 5.0 mDa, errors smaller than 5.0 ppm were given a 

score of one, while errors between 5.0 and 7.5 ppm received two points; 7.5 to 10.0 ppm received 

three; 10.0 to 15.0 ppm received four; and errors higher than 15.0 ppm received five points.  

Fourth, the isomeric and isobaric identifications were scored according to an odd or even 

number of carbons in fatty acyl groups. Even-numbered fatty acyls are more commonly found in 

mammals due to the acetyl-CoA biosynthesis route (Chapter I), although odd-chain fatty acyl 

groups can be detected in smaller amounts. Therefore, identification possibilities for isomers or 

isobars with even-chain fatty acyls received a score of one, while odd-chain fatty acyls were scored 

two points.  

Fifth, the presence of functional groups other than the expected for each lipid subclass 

(oxidation, dehydration, cyclization, etc.) was scored two points, while the absence of extra groups 

received one point due to being more common in biological fluids. Although modifications are 

typical for lipids, they require the action of specific enzymes or processes, leading to lower 

abundance when compared to unmodified species. 
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The identification possibilities that passed the retention time and adduct filter were ranked 

from the lowest to the highest total score. The most likely identification, i.e. lowest score, was 

chosen to determine the lipid subclass for normalization (Table II-2, p.48), although the remaining 

possibilities were kept for further reference. The positions of double bonds and the stereospecific 

configuration of glycerol derivatives were not determined in this study. 

 

3. Results and Discussion 

The initial sample extraction and nanoLC method resulted in low performance and 

robustness, with constant instrument issues (blockages, leaking), insufficient separation, peak 

tailing and fronting, intense background (contamination), and low sensitivity (Figure II-1A). The 

subsequent method optimization was separated into two phases. First, we optimized the initial 

trapping conditions, mobile phase composition, mobile phase flow rate, gradient and column 

temperature using the lipid extract from a pig serum. The MS acquisition method was also 

optimized for capillary voltage, dry gas flowrate, dry temperature, spectra acquisition rate and 

CaptiveSpray NanoBooster gas pressure. We finalized the first phase of optimization by evaluating 

the background intensity and contamination from plastic and glassware (sample extraction and 

sample injection vessels). The chromatograms presented substantial alterations after the evaluation 

of contamination sources. Furthermore, we introduced a mixture of 14 deuterated standards 

belonging to different lipid subclasses to assess the separation and sensitivity of the evaluated 

conditions, as well as for internal standardization (Table II-1). For the second phase of the 

optimization, we re-evaluated the separation gradient, trapping and MS acquisition method with a 

pool of 8 pig serum samples and the deuterated standard mix. The sample extraction method was 

also optimized. The method was finalized with a fine adjustment of the separation gradient and 
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injection volume. Detailed descriptions of the individual steps for the development of an optimized 

workflow are described below. Supporting figures for this chapter, i.e. chromatograms obtained 

for each step of optimization, are available in Appendix A (p. 404). 

 

 

Figure II-1. Base peak chromatograms (BPC) obtained with a serum sample from a pig for the first 

phase of nanoLC method optimization. (A) initial nanoLC-MS method, namely: MPA – 20 mM 

NH4COOH, 5 mM formic acid in 45:45:10 methanol/ acetonitrile /water; MPB - 20 mM 

NH4COOH, 5 mM formic acid in 2-propanol; trapping for 1 min at 7 µL/min (95% MPA); 300 

nL/min; 45ºC; 38 min gradient (0 min – 5% MPB, 2min – 5% MPB, 12 min – 30% MPB, 24 min 

– 90% MPB, 28 min – 1% MPB, 38 min – 1% MPB); 20 min equilibrium (95% MPA); 2 µL 

injection; electrospray ion source capillary voltage of 1300 V; nanoBooster acetonitrile-enriched 

nitrogen gas pressure of 0.10 bar; dry nitrogen gas flow rate of 3 L/min; ion source temperature of 

200ºC; and spectra acquisition rate of 2 Hz. (B) Initial optimization of trapping flow rate, time and 
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mobile phase composition (7.0 µL/min, 1.5 min, 95% MPA). (C) Optimized nanoLC-MS method 

for the first phase, namely: MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water; 

MPB – 10 mM NH4COOH in 95:5 2-propanol/ water; trapping for 1.5 min at 7.0 µL/min (100%A); 

45ºC; 300 nL/min; 50 min gradient (0 min – 30% MPB, 10 min – 40% MPB, 20 min – 90% MPB, 

30 min – 90% MPB, 31 min – 30% MPB, 50 min – 30% MPB); 20 min equilibrium (95% MPA); 

2 µL injection; electrospray ion source capillary voltage of 1300 V; nanoBooster acetonitrile-

enriched nitrogen gas pressure of 0.20 bar; dry nitrogen gas flow rate of 4 L/min; ion source 

temperature of 220ºC; and spectra acquisition rate of 1 Hz. Average RSD: average relative 

standard deviation between injection replicates for all detected features, employed as a measure of 

reproducibility. 

 

2.3.1 nanoLC separation method (initial optimization) 

The narrow nanoLC capillary columns have limited flowrates (nanoliter range) and are 

easily overloaded by small amounts of sample (less than 1.0 µL). The internal volume of the 

employed analytical column (15 cm × 75 µm) is calculated as 0.663 µL without considering the 

volume occupied by the stationary phase; hence, a 1.0 µL injection would fill the entire column, 

causing distorted peaks and bad chromatography. Furthermore, the nanoliter-range flowrates cause 

excessive long dead times. A trapping step with a smaller C18 capillary column with larger 

particles (2 cm × 75 µm, 3 µm particles) was employed before the injection of samples in the C18 

analytical column (2 µm particles). The small length and larger particle size of the trap column 

allows higher flowrates for loading the sample without risking damage to the delicate capillary 

due to excessive pressure. The C18 trap column, a waste line and the analytical column were 

connected to a valve (Figure II-2A). During the trapping step, the sample was injected into the trap 
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column, followed by the mobile phase at high flowrate (microliter-range) directed to the waste line 

(Figure II-2B). The goal was to eliminate non-retained, polar compounds and the excess of solvent, 

creating a narrow sample plug inside the trap column. After trapping, the flow rate was reduced 

and re-directed to the analytical column (Figure II-2C). The clean-up step provided by trapping 

the sample in a small C18 column is vital for reducing the long dead time of nanoliter-range 

flowrates and ion suppression, as well as preventing the overload of the capillary analytical 

column, which can greatly increase the sensitivity of the analysis. The reversed-phase character of 

the trap column requires hydrophilic conditions, i.e., high proportions of weak mobile phase 

(MPA), for maximum retention of lipids. Low flowrates and longer trapping times can improve 

the sample clean-up, peak shapes and intensity for the most hydrophobic compounds. However, a 

narrow injection band and adequate peak shapes for small, less hydrophobic lipids can only be 

obtained for the opposite conditions. We first performed an initial optimization of the trapping 

parameters to ensure the detection of a reasonable number of features for further method 

development. The initial trapping flow rate, time and mobile phase composition were evaluated 

between 3.0 and 10.0 µL/min for 0.75 to 1.5 min, with 90 to 99% of MPA (Appendix A, Figure A 

- 1, Figure A - 2 and Figure A - 3, respectively). The best conditions were selected based on the 

number of detected features, total peak intensity and average relative standard deviation (RSD) for 

injection replicates, i.e., trapping at 7.0 µL/min for 1.50 min at 95% of MPA. The initial 

optimization of the trapping conditions increased the number of detected features from 761 to 1026 

(34.8%, Figure II-1B). The overall reproducibility of peak intensities was also improved, as 

showed by the average RSD for injections replicates (from 19.4% to 18.3%). 
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Figure II-2. Scheme for the injection and trap valves for the nanoLC instrument. (A) Fittings 

connected to the 6-port injection valve and 3-port trap valve. The injection valve is connected to 

the sample loop (ports 1 and 4), volume detection device (port 2), sample needle (port 3), solvent 

manager (port 5) and the trap column (port 6), as indicated in the figure. The sample needle 

introduces the sample into the loop. The mobile phase carriers the sample from the loop to the trap 

column. The volume detection device uses air gaps to measure the sample volume. (B) Mobile 

phase path during the trapping step, indicated in red. The mobile phase flows from the solvent 

manager through the sample loop to push the sample into the trap column, with the flow directed 

to the waste line. (C) Mobile phase path during the analytical separation, indicated in green. The 

mobile phase flows through the sample loop and the trap column, pushing the trapped analytes 

into the analytical column for separation and detection. 
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Next, we optimized the analytical mobile phase composition (Table II-3, Figure II-3). The 

hydrophobic character of most lipids requires the use of strong organic solvents for elution under 

reversed-phase chromatography, even for the weak mobile phase (MPA). The combination of the 

hydrogen-bonding character of methanol, π interactions of acetonitrile and high polarity of water 

can provide the high selectivity required for MPA, while 2-propanol in the strong mobile phase B 

(MPB) ensures elution of the most hydrophobic lipids, such as cholesteryl esters and 

triacylglycerols.110,111 Therefore, the initial MPA contained a combination of methanol, 

acetonitrile and water (45:45:10 v/v/v), whereas MPB was composed of pure 2-propanol. The 

solvent composition was chosen after a literature review; however, the high viscosity of MPB 

caused dangerously high pressures (close to the column limit of 600 bar), which led to constant 

instrumental issues (leaking in zero-volume fittings, damage to the delicate sprayer tip, blockages 

and capillary fissures). We evaluated different proportions of solvents in MPA and MPB, searching 

for better separation and robustness (Table II-3). The viscosity of MPB was controlled through the 

addition of 5 to 10% of water, but higher percentages caused an undesirable increase in retention 

times of low polarity lipids and a decrease in the total number of detected features (Test ID Initial 

versus Test ID 1, Figure II-3). 
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Table II-3. Mobile phase compositions evaluated for method optimization. The optimized 

composition was test ID 7. 

Test 

ID 

MPA MPB 

Detected 

features 
Ammonium 

formate 

Formic 

acid 

Solvents 

(methanol/ 

acetonitrile/ H2O) 

Ammonium 

formate 

Formic 

acid 

Solvents 

(2-propanol/ 

H2O) 

Initial 20 mM 5 mM 47.5 : 47.5 : 5 20 mM 5 mM 100 : 0 1026 

1 20 mM 
0.1% 

(26.5 mM) 
47.5 : 47.5 : 5 20 mM 0.1% 90 : 10 559 

2 20 mM 5 mM 47.5 : 47.5 : 5 - 0.1% 90 : 10 673 

3 - 0.1% 47.5 : 47.5 : 5 - 0.1% 90: 10 229 

4 10 mM - 0 : 60 : 40 20 mM 0.1% 90 : 10 759 

5 10 mM 0.1% 47.5 : 47.5 : 5 10 mM 0.1% 90 : 10 376 

6 10 mM - 47.5 : 47.5 : 5 10 mM - 90 : 10 441 

7 10 mM - 50 : 40 : 10 10 mM - 95 : 5 1106 
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Figure II-3. BPC obtained for the optimization of mobile phase composition using a serum sample 

from a pig. The compositions of the tested mobile phases are described in Table II-3. NanoLC 

method: trapping for 1.50 min at 7 µL/min (95% MPA); 300 nL/min; 45ºC, 38 min gradient (0 

min – 5% MPB, 2 min – 5% MPB, 12 min – 30% MPB, 24 min – 90% MPB, 28 min – 1% MPB, 

38 min – 1% MPB); 20 min equilibrium (95% MPA); 2 µL injection. Initial MS conditions: 

electrospray ion source capillary voltage of 1300 V, dry gas flow rate of 3.0 L/min, source 

temperature of 200ºC, spectra acquisition rate of 2 Hz and nanoBooster acetonitrile-enriched 
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nitrogen gas pressure of 0.10 bar. The initial sample preparation method is described in the 

Experimental Section. 

 

Along with the mobile phase solvent optimization, we also evaluated the additive 

composition and concentrations. Most lipid species are not easily ionized under soft ionization 

techniques such as ESI. While charged or zwitterionic molecules can be easily detected by ESI 

under positive or negative ionization ([M+H]+ or [M-H]- ions), neutral or non-polar lipids are not 

promptly ionized and require the use of additives to form adducts, e.g., acylglycerols and 

cholesteryl esters.13,100,112 Different mobile phase additives have been employed in an attempt to 

promote ionization and, consequently, improve the sensitivity of lipid analysis, viz., ammonium 

formate, ammonium acetate and formic acid. Ammonium formate has been previously described 

as an optimal modifier for most lipids under positive ESI conditions, whereas formic acid is 

commonly added to promote positive ionization, although acidic conditions may cause the 

degradation of lipids through cleavage of vinyl-ether bonds of plasmalogens and hydrolysis.68,113 

Ammonium acetate has been cited as a better modifier for negative mode but the use of the same 

mobile phase composition and methodology for both polarities simplifies the analysis routine, 

avoids long equilibrium runs and decreases the amount of waste.113 

For this work, the initial mobile phases A and B contained a combination of 20 mM of 

ammonium formate and 5 mM of formic acid.12,114–119 However, ammonium formate has low 

solubility in 2-propanol and acetonitrile, which may result in the precipitation of salt crystals over 

time, clogging the narrow nanoLC column and the glass ion source sprayer tip. Moreover, the 

acidic initial conditions often result in peak tailing for compounds that contain deprotonated 

phosphate groups due to hydrogen bonding with free silanol groups in the C18 stationary phase, 
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as well as complexation of phosphatidyl and carbonyl groups by metal surfaces in the sample path 

(tubing, injection needle, etc.). In contrast, neutral conditions can promote better peak shapes for 

phospholipids while avoiding acid degradation of susceptible lipids.120 

Different mobile phase compositions were evaluated, focusing on improved sensitivity and 

simpler, robust preparation (Table II-3, Figure II-3). The concentration of formic acid was first 

increased to 0.1%, but the number of detected features decreased to about half of the initial value 

(Test ID 1). The use of formic acid as the only additive in MPB (Test ID 2) and both MPA and 

MPB (Test ID 3) were also evaluated, but the later provided strong peak tailing due to the acidic 

pH and the smallest number of detected features (Figure II-3). Therefore, formic acid didn’t offer 

enough advantages to be included in the mobile phase composition. Although a smaller 

concentration of ammonium formate decreased the number of detected features (Test IDs 1 versus 

5), the method robustness increased due to less precipitation. A compromise was achieved for 10 

mM ammonium formate in both MPA and MPB. A higher percentage of water in MPA further 

improved peak shapes and the number of detected features, probably due to an improvement of 

trapping for lipids with lower hydrophobicity (Test ID 7, Figure II-3). The combination of MPA – 

10 mM ammonium formate in 50:40:10 methanol/ acetonitrile/ water (v/v/v) and MPB - 10 mM 

ammonium formate in 95:5 2-propanol/ water (v/v) delivered the best peak shapes and a high 

number of detected features. The same mobile phase composition was employed for the nanoLC-

MS and UHPLC-MS applications described in Chapters III to VIII. 

The nanoliter-range flowrate of nanoLC separations leads to extremely high sensitivities 

due to reduced sample dilution during analysis and increased ESI ionization efficiency. However, 

it can also cause long dead times and peak broadening. The flow rate was varied between 300 and 

400 nL/min. The smallest value provided a higher number of detected features, but poor separation 
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and peak shapes (Appendix A - Figure A - 4). In contrast, the highest value was chosen due to 

smaller analysis time and relative standard deviations (i.e., better reproducibility for peak 

intensities), but it also slightly decreased the sensitivity and increased the pressure. 

Next, 26 different gradients were assessed (Figure A - 5, Figure A - 6 and Figure A - 7). 

The best conditions were achieved with 0 min – 30% MPB, 10 min – 40% MPB, 20 min – 90% 

MPB, 30 min – 90% MPB, 31 min – 30% MPB, 50 min – 30% MPB. The optimized gradient, 

combined with the previously optimized flowrate of 400 nL/min, led to dangerously high 

pressures; therefore, the flow rate was reduced to 300 nL/min (Figure A - 8).  

The separation temperature was further evaluated between 40 and 50°C (Figure A - 9). An 

increase in temperature promotes the diffusion of the solute in the column, but also a faster 

partition between the mobile and the stationary phase. Likewise, it can provide more reasonable 

pressures for higher percentages of MPB, but it can also cause degradation of lipids. Therefore, 

the intermediate temperature of 45°C was chosen. Finally, the trap mobile phase composition (70 

to 100% of MPA,  Figure A - 10), flowrate (4.0 to 10.0 µL/min, Figure A - 11) and time (1.0 to 

2.0 min, Figure A - 12) were re-evaluated, with the best separation and highest number of detected 

features found for 7.0 µL/min for 1.5 min at 100% of MPA. 

 

2.3.2 Mass spectrometry acquisition method (initial optimization) 

The analysis of biological samples by liquid chromatography coupled to electrospray 

quadrupole time-of-flight mass spectrometry (ESI-QqToF-MS) is well established due to high 

resolutions, ample m/z coverage and high sensitivities. For this work, we employed the Captive 

Spray NanoBooster ESI ion source, designed specifically for nanoLC-MS coupling. The 

NanoBooster technology allows the enrichment of nitrogen gas that flows around the emitter tip 
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with volatile solvents, which can improve ionization efficiency through charge state control. The 

use of acetonitrile as an enrichment solvent has been previously evaluated for peptide analysis, 

providing an overall increase in the average charge state and signal intensity.121 However, a 

detailed optimization of detection parameters is required for optimal performance. 

The positive mode ESI-QqToF parameters were optimized concomitantly, i.e., capillary 

voltage (1200 to 1400 V, Figure A - 13), acetonitrile-enriched nitrogen gas pressure (NanoBooster, 

0.10 to 0.30 bar, Figure A - 14), nitrogen gas flow rate (2.0 to 4.0 L/min, Figure A - 15), ion source 

temperature (180 to 220 °C, Figure A - 16) and spectra acquisition rate (1 to 3 Hz, Figure A - 17). 

The reduced flow rate of nanoLC can easily handle smaller acquisition rates, which provides 

higher sensitivities. Therefore, the rate of 1 Hz was selected for further experiments. Higher 

capillary voltages resulted in more detected features, but we also observed higher baseline noise 

and in-source fragmentation of lipid standards; therefore, the best compromise was chosen at 1300 

V. We found a higher number of detected features and total intensity for ion source temperature 

of 220°C, nitrogen gas flow rate of 4 L/min and NanoBooster gas pressure of 0.20 bar (Figure A - 

18).  

The nanoLC-MS method optimization for Phase 1 resulted in an increase of 31.8% for 

detected features, allied to higher intensity and lower average relative standard deviation between 

injection replicates (Figure II-1C). 

 

2.3.3 Evaluation of contamination sources 

The intense chromatograms obtained for blank extractions (extraction of water instead of 

the sample) prompted an examination of sources of contamination. We first employed 1.5 mL 

polypropylene (PP) microcentrifuge tubes from Fisher Scientific (Waltham, MA, USA) for sample 
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extraction, but the blank extracts were unreasonably intense (Figure II-4A). The application of 

single-use plastic ware for extractions with organic solvents is not ideal, although more practical 

and affordable than glassware. We hypothesized that different brands and sizes of tubes could 

provide different backgrounds for lipid extraction. Hence, we evaluated two brands of similar PP 

microcentrifuge tubes with different sizes (Fisher Scientific and Rose Scientific Ltd - Edmonton, 

AB, Canada, Figure II-4B) and two types of vial inserts for sample extraction and injection (PP 

autosampler inserts from Canadian Life Science, Peterborough, ON, Canada; and glass 

autosampler inserts from Agilent Technologies, Santa Clara, CA, USA, Figure II-5A). Overall, we 

observed that the contamination level from plastic ware varies with the brand (Figure II-4B, Figure 

A - 19) and the size of tubes (Figure II-4B, Figure A - 20), as well as with different batch numbers 

for the same manufacturer. The extraction in PP autosampler inserts provided a cleaner blank 

extraction when compared to the microcentrifuge tubes (Figure II-5, Figure A - 21). Even though 

the glass inserts provided low contamination (Figure II-5), the elevated costs associated with 

single-use glassware cannot be justified by the small differences found between the PP and glass 

inserts (circa 7 times more expensive for glass, Figure A - 22). We also examined the effect of 

pre-washing the plastic tubes with solvents but found no improvement (Figure A - 23, Figure A - 

24 and Figure A - 25). Hence, the further steps of method optimization were performed with 

extractions and injections in 250 µL PP autosampler inserts (Figure II-5B). After extraction, 

samples were stored in 250 µL PP autosampler inserts placed in amber vials capped with PTFE-

lined caps at 4°C and injected within a maximum of 48h. However, we recommend the use of 

glassware for long-term storage of lipid samples and solutions in strong organic solvents. 
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Figure II-4. Evaluation of contamination from extractions with dichloromethane and methanol in 

polypropylene (PP) microcentrifuge tubes from different brands. After extraction with each type 

of tube, the resuspended extract was transferred to a PP autosampler insert for injection in all cases. 

(A) A serum sample from a pig compared to a blank extract (extraction of water instead of the 

sample) and an injection blank (pure mobile phase); both extractions were performed in 1.5 mL 

PP microcentrifuge tubes from Fisher Scientific acquired between 2016 and 2017. (B) Extraction 

blanks obtained with 1.5 mL PP microcentrifuge tubes from Fisher Scientific compared to 2.0 mL 

and 600 µL PP microcentrifuge tubes from Rose Scientific, acquired between 2016 and 2017. 
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Figure II-5. Evaluation of contamination from extractions with dichloromethane and methanol in 

PP and glass autosampler inserts. After extraction with each type of tube, the resuspended extract 

was transferred to a PP autosampler insert for injection in all cases. (A) Chromatograms obtained 

for extraction blanks performed in PP and glass autosampler inserts compared to a blank injection. 

(B) Chromatograms obtained for a serum sample from a pig compared to a blank extract, with both 

extractions and injections performed in PP autosampler inserts. 
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2.3.4 Re-evaluation of the nanoLC separation method 

We observed massive differences for the chromatograms acquired with the optimized 

plastic ware (Figure A - 26). Furthermore, we chose to re-evaluate the separation method using 14 

deuterated lipid standards belonging to different lipid subclasses (Table II-1, Figure A - 27). The 

standard mixture was used not only for optimization of the separation between lipid subclasses but 

also as internal standards, i.e., added to each sample before extraction to correct for ion suppression 

and small differences that may happen during analysis. The gradient and trapping parameters were 

re-evaluated first (0 to 7.0 µL/min; 0 to 1.5 min , Figure A - 28 to Figure A - 39). The best 

conditions were found for trapping for 1.25 min at 5.0 µL/min, followed by a 50 min gradient 

separation (0 min – 0% MPB, 10 min – 30% MPB, 20 min – 70% MPB, 32 min – 95% MPB, 50 

min – 95% MPB) and 20 min of re-equilibrium at 100% MPA. 

 

2.3.5 Fine-tuning of the MS acquisition method 

The MS acquisition method was fine-tuned for NanoBooster acetonitrile-enriched nitrogen 

gas pressure (0.10 to 0.30 bar, Figure A - 40 and Figure A - 41), capillary voltage (1200 to 1450 

V, Figure A - 42 and Figure A - 43), ion source temperature (190 to 240°C, Figure A - 44 and 

Figure A - 45) and nitrogen dry gas flow rate (2.5 to 5.0 L/min, Figure A - 46 and Figure A - 47). 

Each parameter was first re-evaluated with the lipid deuterated standard mix (Table II-1) and then 

fine-tuned with a pool of serum from 8 pigs. The optimized conditions were: NanoBooster 

acetonitrile-enriched nitrogen gas pressure of 0.15 bar; capillary voltage of 1375 V; ion source 

temperature of 190 °C; and nitrogen gas flow rate of 2.5 L/min (Figure A - 48). The number of 

detected features increased by 44.3%, and we also found higher total intensity (summed intensity 

for all detected features). When compared to the initial nanoLC-MS method, the number of 



Chapter II 

68 

 

detected features increased from 761 to 3532 (Figure II-6), with reduced contamination and better 

separation of lipid subclasses. 

 

 

Figure II-6. Base peak chromatograms obtained for (A) a serum sample from a pig with the initial 

nanoLC-MS and sample extraction methods, before evaluation of contamination sources; and (B) 

a pool of serum samples from 8 pigs and a mixture of 14 deuterated lipids as internal standards 

(Table II-1) with the optimized nanoLC-MS method. 

 

2.3.6 Extraction of lipids from serum samples 

The Folch method is one of the most popular liquid-liquid extraction procedures for lipids, 

originally designed for 1 g or more of homogenized tissue. The classical method employs 20 parts 

of a mixture of chloroform and methanol 2:1 (v/v) for each part of the aqueous sample, followed 

by a clean-up step with water or a salt solution to achieve a total ratio of 8:4:3 chloroform/ 

methanol/ water.62,63 For this work, chloroform was substituted by dichloromethane due to its 
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lower carcinogenicity risk, lower restrictions to the acquisition and reduced cost.65,122 The classical 

method was further modified to handle small volumes of samples. For the initial extraction 

method, 1.0 µL of serum sample was mixed with 55.4 µL of methanol, 110.8 µL of 

dichloromethane and 33.4 µL of water. After resting for 10 min at room temperature to reach 

equilibrium, the mixture was centrifuged for 10 min (12,000 rpm, 4°C) and the bottom organic 

layer was evaporated to dryness on a SpeedVac for 30 min. The dried extracted was resuspended 

immediately in 10 µL of 6:4 MPA/MPB and diluted in 90 µL of 9:1 MPA/MPB (100× dilution). 

It is worth emphasizing that lipids can be easily degraded by oxidation when exposed to oxygen, 

peroxides, light and heat. Extraction procedures must be optimized in order to avoid excessive 

degradation, particularly for unsaturated species. Fast methods that minimize the direct contact 

between sample components and air, acidic conditions, high temperature and light are preferable.4 

We first optimized the volume of serum for extraction between 1.0 and 5.0 µL (Appendix 

A - Figure A - 49). The volumes of dichloromethane, methanol and water were not altered for this 

test, i.e., the proportions between sample and solvents were evaluated. After the extraction, all 

tested conditions were diluted 100× to the extracted volume of serum, e.g., the 2.5 µL sample 

aliquot was diluted to a total volume of 250.0 µL after the drying step, whereas the 1.0 µL sample 

aliquot was diluted to 100.0 µL. The extraction of 2.5 µL of serum provided an increase of 88.7% 

in detected features when compared to the initial volume of 1.0 µL.  

Next, we focused on the composition of solvents for resuspension of the dried extract by 

remaking it in 40 to 80% of MPA/MPB (v/v), but the best compromise between solubilization of 

the small lysophosphatidylglycerols and the long-chain, strongly hydrophobic triacylglycerols was 

achieved by 50% MPA/MPB (v/v, Figure A - 50), which provided the highest total intensity and 

number of detected features. The dilution solvents were also evaluated, with the best peak shapes 
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and total intensity for 100% MPA (Figure A - 51). The weak mobile phase composition for dilution 

provides better conditions for the trapping step, ensuring that the less hydrophobic lipids will be 

retained while the sample is introduced in the C18 trap column. 

The extraction procedure was further optimized for equilibrium time (0 to 15 min, Figure 

A - 52) and equilibrium temperature (room, 4°C, or -20°C, Figure A - 53). The equilibration 

between the organic and aqueous phase of the biphasic liquid-liquid extraction before centrifuging 

is required to achieve the desired partition of lipids and other hydrophilic molecules. The highest 

number of detected features and lowest average relative standard deviation (relative standard 

deviation for peak intensities between extraction replicates for each detected feature, averaged for 

all detected features, taken a measure of reproducibility) were found for 10 min of equilibrium at 

room temperature. The SpeedVac drying time (15 to 45 min, Figure A - 54) was also evaluated 

between 15 and 45 min. The organic phase was mainly composed of highly volatile 

dichloromethane, which was visibly dried within 15 min. However, any moisture or traces of 

solvents that may remain in the extract can influence lipid resuspension, as well as oxidation 

processes. We found that the initial drying time of 30 min provided the highest number of detected 

features and total intensity (Figure A - 55). 

Next, we focused on the extraction solvents (Figure II-7, Figure A - 56). The use of methyl 

t-butyl ether (MTBE) for the extraction of lipids has been previously reported as an alternative to 

dichloromethane or chloroform.67 The reproducibility of LLE methods based on dichloromethane 

or chloroform has been questioned due to the difficulty for selectively removing the bottom 

organic layer, particularly for samples with high protein content, which form a thick pellet disk 

between the layers.67,70,123 The introduction of a pipette tip through the solid pellet to achieve the 

bottom organic layer, allied to dripping losses of the organic solvents, may result in low 
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reproducibility if the procedure is not carefully executed by experienced personal. The extraction 

with MTBE promotes the organic phase to the upper layer, increasing reproducibility while 

keeping similar recoveries and lipid class coverage.67,70 The methodology was first described by 

Matyash et al. for 200 µL of serum, 1.5 mL of methanol and 5.0 mL of MTBE, followed by 1 hour 

incubation period at room temperature in a shaker.67 However, the sample volume demanded by 

the procedure is excessively high for studies with limited amounts of biological samples. We 

adapted the original method for 2.5 µL or serum (2.5 µL of the mixture of deuterated lipids as 

internal standards - Table II-1, 16.2 µL of methanol, 62.5 µL of MTBE and 15.6 µL of water), but 

observed slightly higher average relative standard deviations for peak intensities (RSD, i.e. lower 

reproducibility), lower total peak intensity and a longer extraction time when compared to our 

modified Folch method (1 h incubation in a shaker and 1h30min drying time for MTBE; 30 min 

drying time and no incubation for the modified or original Folch method, Appendix A - Figure A 

- 56). A slight decrease in the number of detected features of 4.5% was also observed. The 

substitution of dichloromethane by MTBE did not achieve the expected reproducibility 

improvement for extractions replicates, with an average relative standard deviation for peak 

intensities of 23.3% for MTBE, while the modified and original Folch methods resulted in 20.0 

and 21.6%, respectively. We attributed our observations to an increased period for evaporation of 

MTBE, which has a higher boiling point (55°C versus 39.8°C for dichloromethane) and higher 

solubility of water, summed to a 1-hour incubation period at room temperature. We hypothesize 

that the small volume of the organic solvents may have favoured the exposure of lipids to sources 

of oxidation and degradation, e.g. air, light, plastic/glassware and sample components, during the 

long extraction (about 3h for MTBE versus 1h for the modified Folch method), mitigating the 

expected gain in reproducibility. Nevertheless, the longer incubation and drying time reduced the 



Chapter II 

72 

 

throughput of sample preparation. When executed carefully, the dichloromethane-based extraction 

offered a lower relative standard deviation between experimental replicates. The combination of 

methanol, dichloromethane and water for the extraction of small volumes of serum provided the 

best sensitivity within a reasonable experimental timeframe. 

The optimized extraction procedure was also compared to the results obtained with the 

original Folch method (Figure II-7, Figure A - 56). The method optimized herein for small volumes 

of biological fluids resulted in the detection of 15.8% more features with higher reproducibility. 

The small solvent volumes employed to match the original proportions of the Folch method to 2.5 

µL of the sample (2.5 µL of the mixture of deuterated lipids as internal standards - Table II-1, 14.2 

µL of methanol, 33.3 µL of dichloromethane and 8.2 µL of water) hamper the pipetting step for 

the organic layer, particularly for samples with high protein content.  

Finally, we also evaluated the benefits of repeating the extraction of the aqueous phase for 

a second time before the drying step for all three sample preparation methods (Figure II-7). The 

aqueous phase and protein pellet obtained after the first extraction were re-extracted with the 

organic solvents, following the same procedure. The organic phases were then combined for 

drying. The number of detected features and the reproducibility were reduced for the modified 

Folch method with two combined extractions, probably due to degradation of lipids caused by the 

longer period required to complete both extractions allied to extra pipetting steps with potential 

dripping losses (Figure II-7). Even though the MTBE method provided slightly more detected 

features with the combined two extractions (3791 detected features) when compared to the 

modified Folch method with one unique extraction (3650 detected features), the time required for 

sample preparation was unreasonable (about 4.5h for MTBE with two combined extractions versus 

1h for modified Folch with one extraction). 
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Figure II-7. Evaluation of repeating the extraction procedure for the aqueous phase using the 

original and modified Folch methods, as well as the MTBE method described by Matyash et al., 

but adapted for 2.5 µL of serum.62,63,67,70 Modified Folch method: 2.5 µL of a pool of serum 

samples from 8 pigs were vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated lipid 

standards (Table II-1) and 53.3 µL of methanol; 110.8 µL of dichloromethane was added, followed 

by vortex for 20 s; the mixture was washed with 31.9 µL of water and vortexed for 10 s; after 

resting for 10 min at room temperature, the mixture was centrifuged for 10 min at 12,000 rpm and 

4ºC; the bottom organic layer was evaporated to dryness on a SpeedVac for 30 min, resuspended 

with 10.0 µL of 1:1 MPA/MPB and diluted with 90.0 µL of 9:1 MPA/MPB. Folch method: the 
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same procedure was followed, but with 2.5 µL of serum, 2.5 µL of the mixture of internal 

standards, 14.2 µL of methanol, 33.3 µL of dichloromethane and 8.2 µL of water. Adapted MTBE 

method: 2.5 µL of serum, 2.5 µL of the mixture of internal standards, 16.2 µL of methanol and 

62.5 µL of MTBE were incubated in a shaker for 1 h at room temperature, followed by vortex with 

15.6 µL of water; the remaining steps were identical to the modified Folch method, except for 

drying time of 1h30min. For two extractions, the exact same procedures were followed, but 

remaining aqueous phase and protein pellet were re-extracted with methanol and dichloromethane; 

or methanol and MTBE. The organic phases were combined for drying. 

 

Finally, the sample dilution was evaluated between 10 and 40× (Figure A - 57), with best 

results obtained with 10× (extraction of 2.5 µL of sample with final dilution of the dried extract to 

25.0 µL), which allowed the detection of 3602 features for positive ionization and 11 internal 

standards from different lipid classes (LPC, LPE, SM, PC, PE, PS, PG, PI, DG, TG and CholE, 

Table II-1 and Table II-2). However, we were able to detect over 3000 features at 40× dilution 

(extraction of 2.5 µL of serum sample with final dilution of the dried extract to 100.0 µL), i.e., the 

method can be easily adapted to smaller sample volumes without substantial sensitivity losses for 

applications with more restricted sample amounts. The application of the optimized method to 1.0 

µL of microdialysate fluid, as well as 2.5 µL of serum and cerebrospinal fluid, are presented in 

Chapter III. 

A chromatogram obtained with the optimized sample extraction procedure is presented in 

Figure II-8B. The optimization of the sample extraction method led to an increase of 81.8% in 

detected features (from 1981 to 3602 features, Figure II-8). For the optimized method, an aliquot 

of 2.5 µL of serum was vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated lipids (internal 
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standards, Table II-1) and 53.2 µL of methanol. Next, 110.8 µL of dichloromethane was added, 

followed by vortex for 20 s. The cleanup step was performed with 32.0 µL of water and 10 s vortex. 

The biphasic mixture rested at room temperature for 10 min and was centrifuged for 10 min at 

12,000 rpm and 4°C. An aliquot of 105.3 µL of the bottom organic layer was evaporated to dryness 

on a SpeedVac for 30 min. The dried extract was resuspended with 2.5 µL of 1:1 MPA/MPB, 

vortexed for 60 s and diluted with 22.5 µL of MPA. After preparation, the resuspended extracts 

were kept at 4°C for a maximum of 48 h; or at -20°C under a nitrogen atmosphere for up to 21 

days. It is worth noticing that unsaturated lipids can be easily oxidized when exposed to air or 

light; therefore, the dried extract must be either immediately resuspended and analyzed, or properly 

stored in a non-oxidant atmosphere at low temperature. 

 

 

Figure II-8. Base peak chromatograms obtained for a pool of 8 serum samples from pigs using (A) 

the initial sample preparation method; and (B) the optimized sample preparation method. 
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2.3.7 Injection volume 

The small internal volume of the nanoLC analytical capillary column usually restricts the 

amount of sample that can be injected without overloading to less than 1.0 µL. However, the initial 

trapping step adopted and optimized herein allows the injection of larger volumes, since the most 

hydrophilic components and solvent excess are directed to a waste line, whereas the more 

hydrophobic compounds are retained by the C18 trap column as a narrower sample band. The 

optimization of the injection volume guarantees optimal sensitivity while avoiding overloading the 

column, which could lead to preferential retention of hydrophobic compounds and distorted peaks. 

The injection volume was evaluated between 1.0 and 4.0 µL (sample loop size of 5.0 µL), and we 

detected the highest number of features with 4.0 µL injection (Figure A - 58). 

 

2.3.8 Data processing 

Different parameters were evaluated for peak picking and alignment of the chromatograms 

using MetaboScape 4.0 (Bruker Daltonics), namely: internal re-calibration masses (background 

ions detected for all injections between 13.5 and 18.5 min for positive ionization, and 18.2 and 

20.2 min for negative ionization), minimum intensity (3000 cts), correlation coefficient (0.8), 

retention time tolerance (60 s), m/z tolerance (5.0 mDa) and minimum compound length for 

alignment (8 spectra). The characteristic low flowrate of nanoLC can result in higher variation of 

retention times and broader chromatographic peaks, which requires higher retention time 

tolerances for alignment. However, the high mass accuracy achieved after internal re-calibration 

allows for narrow m/z tolerances.  

Statistical models used to evaluate the data cannot handle missing values; hence, we 

employed recursive extraction for features that were found for at least 10% of injections with the 
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alignment parameters, i.e. they were searched again in the raw chromatograms with a less strict 

minimum peak length of 4 spectra and no minimum intensity threshold. The aligned data was 

filtered by detection in at least 80% of injections within each group. A combination of positive and 

negative ion modes is required for full profiling of the lipid composition of biological fluids; 

therefore, features detected for positive and negative ionization were merged into a unique list with 

tolerances of 10 ppm and 30 s. 

 

2.3.9 Final nanoLC-MS method 

The last method optimization step consisted of fine-tuning the gradient and re-equilibrium 

of the trap and analytical columns. We previously employed a 20 min equilibrium run between 

injections, but the total analysis time of 70 min (50 min analytical run, 20 min equilibrium) reduced 

the sample throughput. To decrease the equilibrium time while still ensuring good separation, we 

took advantage of the long dead time of nanoLC separations by starting the equilibration while 

still acquiring the sample injection. Although the dead time after an injection is below 3 min due 

to trapping, it increases to about 8 min with the optimized analytical nanoLC flow of 300 nL/min. 

We used the 8 min dead time to start the re-equilibrium of the columns at 42 min (100% MPA), 

whereas data acquisition for the sample was finished at 50 min. The re-equilibrium run employed 

between sample injections was further reduced to 5 min at 100% MPA, resulting in a total analysis 

time of 56.25 min, including the trapping step. Although we acknowledge that 56.25 min per 

sample is usually not seen as high throughput, it still represents a great improvement when 

compared to usual lipidomics nanoLC methods, which can take 1.5 to 3 hours per sample 

injection.108,124,125 A comparison between the initial method for a serum sample from a pig and the 

optimized chromatograms for a pool of serum samples from 8 pigs and a pool of serum from 100 
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healthy humans is presented in Figure II-9. The extracted ion chromatograms for the internal 

standards (Table II-1) are shown in Appendix A - Figure A - 59, while the blank extract for the 

optimized method is presented in Figure A - 60. 

 

 

Figure II-9. Comparison between the initial nanoLC-MS and sample preparation method (top), the 

optimized methods for a pool of serum from 8 pigs (mid) and a pool of serum from 100 healthy 

humans (bottom chromatogram). Optimized nanoLC method: trapping at 5.0 µL/min for 1.25 min 

(100% MPA); MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB 

– 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 45ºC, 300 nL/min; 50 min gradient (0 min 

– 0% MPB, 10 min – 30% MPB, 20 min – 70% MPB, 25 min – 80% MPB, 30 min – 95% MPB, 

40 min  – 95% MPB, 42 min – 0% MPB, 50 min – 0% MPB), 5 min equilibrium (100% MPA); 4 

µL injection. Optimized MS method: electrospray ion source capillary voltage of 1375 V, 

nanoBooster acetonitrile-enriched nitrogen gas pressure of 0.15 bar, dry nitrogen gas flow rate of 

2.5 L/min, ion source temperature of 190ºC. Optimized sample preparation method: 2.5 µL of a 
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pool of blood serum samples from 8 pigs were vortexed for 20 s with 2.5 µL of the mixture of 14 

deuterated lipid standards (Table II-1) and 53.3 µL of methanol; 110.8 µL of dichloromethane was 

added, followed by vortex for 20 s; the mixture was washed with 31.9 µL of water and vortexed 

for 10 s; after resting for 10 min at room temperature, the mixture was centrifuged for 10 min at 

12,000 rpm and 4ºC; the bottom organic layer was evaporated to dryness on a SpeedVac for 30 

min, resuspended with 2.5 µL of 1:1 MPA/MPB and diluted with 22.5 µL of 9:1 MPA/MPB. 

 

2.3.10 Evaluation of the optimized method 

Although the positive ion mode of ESI is more commonly employed, some polar classes 

of lipids are better ionized under negative ionization, e.g., PI, PS and PG (Table II-2). Hence, a 

combination of positive and negative ionization is required for the comprehensive profiling of a 

biological sample. We merged the positive and negative aligned feature list with a tolerance of 10 

ppm and 30 s. The optimized method provided highly sensitive detection of 9900 to 12200 features 

by employing only 1.0 to 2.5 µL of serum samples from healthy humans (Figure A - 61). Similar 

conditions applied to a UHPLC-MS system allowed the detection of less than a third of the 

features, proving that the nanoLC setup is appropriate for highly sensitive analysis of biological 

fluids (Figure II-10, Figure A - 62 and Figure A - 63). The number of detected features with the 

optimized nanoLC-MS conditions could not be achieved with UHPLC-MS, even without sample 

dilution, i.e., extraction of 25.0 µL of sample and final dilution of the dried extract to 25.0 µL. The 

method was also applied to 2.5 µL of a pool of cerebrospinal fluid samples from 8 pigs, with the 

detection of over 13000 features (Figure A - 64). 
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Figure II-10. Comparison between detected features for the optimized nanoLC-MS method and 

similar conditions applied to a previously optimized UHPLC-MS method.  

 

The detected features for 2.5 µL of a pool of samples from 100 healthy humans (10× 

dilution) were employed for MS/MS identification. A total of 211 features were matched to known 

lipids found in the MSDial Lipid Blast, Human Metabolome Database (HMDB) and MassBank of 

North America LC-MS/MS libraries.73,78,82,83,109 The remaining 9654 features were inputted on the 

LipidMaps database for accurate mass search with a tolerance of 5.0 mDa and 5611 were putatively 

matched to biologically relevant lipids (Supp. Table 1) after application of the developed 5-tier 

filtering and scoring approach to select isomeric or isobaric identification possibilities, as 

described in the Experimental section (2.2.7. Putative identification of lipids, p. 50).77 The 

identification of 5842 lipids by MS/MS and accurate mass-match resulted in high coverage of 36 

different lipid subclasses belonging to six categories (sphingolipids, glycerolipids, 

glycerophospholipids, fatty acyls, sterol lipids and others, Table II-2 and Figure II-11). Our future 

work will focus on improving the MS/MS fragmentation to extend the number of high-confidence 

identifications. 
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Figure II-11. Subclasses for the 5842 lipids identified for a pool of serum from 100 healthy humans 

with the optimized nanoLC-MS and sample preparation methods, divided into the level of 

identification (MS/MS - blue, or accurate mass match, MS - red) and ionization polarity (positive 

– green, or negative - magenta). Putative identifications were filtered and ranked according to the 
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5-tier system described in the Experimental section (2.2.7. Putative identification of lipids, p. 50). 

Abbreviations to lipid subclasses are defined in Table II-2 (p. 48). 

 

Although a high coverage of lipids was achieved, the complexation of lipids that contain 

free phosphatidyl and carbonyl groups with metal surfaces in the sample path (injection needle, 

tubing, ion source, etc.) caused noticeable peak broadening and tailing, particularly for the more 

polar lysophospholipids and phosphatidic acids. The reversible complexation of the electron-

donating phosphatidyl group by metal ions, e.g., Fe(III), is a well-known issue in the analysis of 

lipids by LC-MS. 120,126 Since the use of chelators in the mobile phase is not advisable for nanoLC-

MS due to the possible damage to the instruments and columns, phosphoric acid has been 

previously described as a possible additive for mobile phase and sample resuspension to improve 

peak shapes. However, it was not employed herein due to the possibility of corrosion of the delicate 

nanoESI ion source and emitter tip, as well as clogging and ion suppression.108,127,128 As an 

alternative, ammonium bicarbonate buffers have also been shown to mitigate peak tailing, but they 

can easily decompose into ammonia, CO2 and water, creating air bubbles in the system. 129 Our 

goal was to develop a robust method suitable for comprehensive lipidomic analysis, but the use of 

such additives would increase the need for constant maintenance. Nevertheless, we have optimized 

a robust, high coverage method for the analysis of very small amounts of diluted biological samples 

(1.0 to 2.5 µL). We are currently working to improve the MS/MS fragmentation and identification 

of the detected features. 
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4. Conclusions 

This work described the development and optimization of a nanoLC-MS method for the 

untargeted, comprehensive lipidomics of small volumes of biological samples. The extremely high 

sensitivity of nanoLC is well known; however, the low robustness and constant instrumental issues 

of most methods prevent its wide application to lipidomics. The method development described 

herein focused on robustness, sensitivity and reproducibility, providing appropriate conditions for 

routine applications with low amounts of diluted samples. We also described the optimization of 

a lipid extraction procedure for low volumes of samples (1.0 to 2.5 µL), including an examination 

of contamination sources. The identification of 5842 lipids from 36 different subclasses was 

achieved with only 2.5 µL of blood serum. While improved sensitivity by nanoLC is well 

recognized, the work described herein demonstrates the possibility of achieving reproducible 

conditions for the analysis of biological samples with comprehensive lipidomic coverage. The 

sample preparation can be completed within 1h for a maximum of two samples or 1h30min for 

groups of up to 10 samples, whereas the nanoLC-MS analysis takes 56.25 min per injection. The 

application of the developed method to different types of diluted samples for biomarker discovery 

and biological research is described in Chapters II and III. Further applications have been 

performed but are currently under data processing. 
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III  

Chapter III: Lipidomics of Spinal Cord Injury: Pilot Study5 

 

3.1 Introduction 

The spinal cord is composed by nervous tissue enclosed by the vertebral column that 

extends from the brainstem to the lumbar region. The tubular structure acts as a communication 

pathway between the brain and the body. Nerve signals from the motor cortex travel through the 

spinal cord to reach the peripheral nervous system, allowing movement control, sensory function 

and reflexes. The human spinal cord is composed by a peripheral layer of white matter, containing 

nerve fibers or myelinated axons, three internal layers of grey matter made of nerve cells, and a 

central canal of cerebrospinal fluid (CSF) protected by meninges, viz. dura mater, arachnoid mater 

and pia mater. The subarachnoid space between the arachnoid and the pia matter also contains 

CSF, which provides mechanical and immunological protection, as well as regulation of cerebral 

blood flow, homeostasis and waste management for the neural tissue.130,131 

A spinal cord injury (SCI) is characterized by a partial or complete rupture of the spinal 

cord that may cause loss of sensory function and muscle control below the injury site. The position 

and extend of the injury determines which parts of the body are affected, i.e., a lesion on the top 

cervical segments may cause total paralysis of the body, whereas lesions in the lumbar region are 

related to loss of movement and sensation in the lower limbs. A SCI may also affect autonomic 

 

5 A collaboration between Dr. Brian Kwon (University of British Columbia, Canada), the Rick Hansen 

Institute (Vancouver, Canada) and Dr. Liang Li was established for this study. Animal handling and sample collection 

was performed under the supervision of Dr. Brian Kwon. 
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functions, such as control of respiratory movements, heart rate, blood pressure and body 

temperature, being potentially fatal without immediate medical care. 131–133 

The primary injury caused by the mechanical trauma upon the delicate spinal cord may 

cause immediate loss of function by contusion, compression, maceration, acute stretch, shearing 

and laceration of the nervous tissue.134 Within a few minutes, a cascade of biological processes 

will lead to secondary injuries, causing further cell death and loss of neuronal tissue, including 

hemorrhage, ischemia, necrosis, inflammation and swelling.135 While no effective, specific 

treatment is currently available for SCI, the mortality risk increases with the injury level and 

severity, but is mostly related to immediate, high-quality medical assessment to ensure 

immobilization, adequate spinal cord perfusion, management of excessive inflammation and life 

support.136 Glucocorticoids (e.g., methylprednisolone) have been historically used to control 

inflammation and as neuroprotective agents, although their efficacy for SCI, allied to severe 

adverse effects, is still highly controversial.135,137,138 Surgical interventions may be also required 

to align the column and decompress the affected area. Unfortunately, the spinal cord has a poor 

remyelination potential, limited plasticity and low possibility of axon regrowth, leading to a small 

chance of full spontaneous recovery once the neuronal tissue is lost. SCI patients may show 

different levels of neurological recovery that is usually more pronounced within the first 6 months 

after the injury, although improvements may occur for up to 5 years. However, the prognosis for 

recovery is uncertain and affected by many factors, such as the injury level and availability of 

prompt specialized medical care. The most severe patients are completely dependent on caregivers 

and assistive technology. 132,133,135,139–141 

The devastating physical, social and economical consequences for patients and their 

families emphasize the need for new therapies and biomarkers for better management of the 
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condition. The patients’ health and welfare are highly dependent on the initial injury assessment 

and treatment; yet, no biomarkers or laboratory-based tests have been approved by the medical 

and scientific community for a quick and accurate SCI diagnosis and prediction of neurological 

recovery. The injury is usually diagnosed through a combination of imaging techniques (plain X-

ray, computerized tomography - CT scans, magnetic resonance imaging - MRI) and clinical 

examination (sensation to pinprick and touch, muscle strength). X-rays cannot show the SCI but 

may be useful to find fractures of the cervical spine. CT scans and MRIs are highly recommended 

to diagnose and assess the injury but depend on the availability of expensive instrumentation and 

trained personal, often requiring transfers of patients with possible unstable spines. Biomarkers 

could provide a safe and accurate measure of the extent and severity of the primary injury, as well 

as prediction of neurological recovery. Although there is profuse ongoing research on biomarker 

candidates, their usefulness for SCI assessment has not been established by the scientific and 

medical community. A few proteomic and inflammatory biomarker candidates have been 

previously suggested, but large population studies and clinical validation are yet to be 

performed.135,136,138,142–144  

The currently available treatments for SCI are limited by the absence of specific drugs, but 

new clinical trials are compromised by the lack of accurate statistical data, unpredictable 

neurological recovery and unsuitable animal models. The inaccurate diagnosis and unpredictable 

spontaneous neurological recovery hamper the statistical evaluation of clinical trials, requiring 

large numbers of patients that are not easily recruited. Nevertheless, the biomechanical variability 

of human SCI requires the use of animal models for pre-clinical studies to reduce the heterogeneity, 

which are often performed with rodents. Over the past few decades, many promising therapies 

were successful in rodent model studies, but their efficacy was not translated to human clinical 
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trials. 134,135,138 Rodents are inexpensive models that require only basic housing facilities, easily 

available to researchers. Hence, rats are commonly used to study human conditions but differences 

in size, anatomy, metabolism and recovery potential impacts the translation between the animal 

model and human trials. Ideally, animal models should resemble humans as much as possible, but 

handling costs and complications must also be considered. Although primates are highly similar 

to humans, the high operational costs and large specialized facilities required to handle the animals 

are inaccessible for most research groups. 131–133,141,142 Recently, Yucatan miniature pigs (20 – 25 

kg) have been proposed as a plausible alternative to primates due to comparable spinal cord size, 

similar physiology and lower associated costs, but further studies are required to prove the 

possibility of translation to human trials.145 

Biomarkers that correctly reflect the extent of damage to the spinal cord and predict 

neurological recovery are required to improve SCI diagnosis and assessment, as well as the 

outcome of new clinical trials.142 Lipids are a diverse class of biomolecules involved in an 

assortment of processes.15 Inflammation, a hallmark for secondary injuries after a spinal cord 

trauma, is closely related to lipid signalling and oxidation; hence, the application of lipidomics to 

study SCI is promissing.146,147 Nevertheless, there is still a need of developing highly sensitive 

analytical tools for profiling lipids with high coverage in limited amounts of samples. NanoLC-

MS offers high sensitivity for reduced volumes of diluted samples, being ideal for handling small 

amounts of biological fluids. This work describes a pilot study for the evaluation of the lipidic 

composition of fluids obtained from Yucatan miniature pigs as animal model candidates after a 

controlled spinal cord injury. This work is part of a consortium between the University of Alberta 

(Edmonton, AB, Canada), the University of British Columbia (Vancouver, BC, Canada) and the 

Rick Hansen Institute (Vancouver, BC, Canada) to study biomarkers of spinal cord injury through 
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lipidomics, metabolomics, genomics and proteomics of spinal cord injuries in humans and mini-

pigs as animal models.134,145,148 We employed a previously developed nanoLC-MS method 

(Chapter II) for untargeted, comprehensive lipidomics of low volumes of blood serum, CSF and 

intraparenchymal microdialysate fluid (MD) obtained from the interstitial region around the spinal 

cord after a controlled injury. Although serum sampling is less invasive, CSF may provide a better 

representation of the pathology as it flows through the spinal cord structure.147,149 The parenchymal 

microdialysate obtained directly from the injury site may offer further essential information; 

however, the small volumes usually available (< 10 µL) hampers its investigation by traditional 

techniques.134,142 We compared the three types of biological fluids collected at different time points 

after the controlled injury to investigate the usefulness of untargeted lipidomics by nanoLC-MS to 

study the condition. The main objective of this work was not biomarker discovery, but the 

evaluation of the developed nanoLC-MS method (Chapter II) to assess the lipidome composition 

of different types of samples for future, large-scale studies. The use of reduced volumes of 

biological fluids may allow the application of other omic technologies, e.g. metabolomics, 

proteomics and genomics, to further characterize the composition of the samples, which amplifies 

the possibilities for finding biomarker candidates and molecules that may help unravelling the 

biological processes associated with SCI.  

 

3.2 Experimental 

3.2.1 Animal model 

Blood serum, cerebrospinal fluid (CSF) and intraparenchymal microdialysate fluid (MD) 

were collected from 4 Yucatan miniature pigs (20-25 kg) that suffered a controlled spinal cord 

injury. The animal model and controlled injury were previously described elsewhere.134,145 Briefly, 
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a T10/T11 laminectomy was performed to expose the spinal cord. An impact weigh of 50 g was 

dropped directly onto the exposed spinal cord from a defined height (20 cm for serum and CSF; 

50 cm for MD) to generate the lesion. Immediately after the contusion, a compression weight of 

150 g was placed on top of the impactor for 5 min (blood serum and CSF) or 60 min (MD) to 

simulate sustained compression.134,145 Blood serum and CSF samples were collected through 

subcutaneous access ports for two of the animals at 0h (pre-injury), 24h, 72h and 168h after the 

lesion (Table III-1). The remaining animals were kept under anesthesia for collection of MD at 

4.75, 6.75, 8.75 and 10.75 h post-injury, followed by euthanasia. Four microdialysate probes were 

placed in the interstitial region around the spinal cord (about 15 and 35 mm cranial and caudal to 

the impact site). A perfusate isotonic solution with composition similar to CSF (147 mM NaCl, 

2.7 mM KCl, 1.2 mM CaCl2, 0.85 mM MgCl2) was flowed through the probe at a rate of 0.5 

µL/min to a total sample volume of 7 µL. All collected samples were immediately frozen and kept 

under -80°C until analysis. Samples were concomitantly collected for other related applications. 

134,145,148,150 

 

Table III-1. Sample set employed for the pilot study on spinal cord injury (N = 2). 

Fluid Time point 1 Time point 2 Time point 3 Time point 4 

Serum 0h 24h 72h 168h 

Cerebrospinal 

fluid (CSF) 
0h 24h 72h 168h 

Intraparenchymal 

microdialysate 

(MD) 

4.75h 6.75h 8.75h 10.75h 
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3.2.2  Sample extraction and nanoLC-MS analysis 

A modified Folch method for liquid-liquid extraction of lipids by dichloromethane and 

methanol was previously optimized (Chapter II). Briefly, samples were thawed for 1h at 4°C and 

vortexed for 1 min. For serum and CSF, aliquots of 2.5 µL of biological fluid (serum or CSF) and 

2.5 µL of an internal standard mixture composed by 14 deuterated lipids (Splash Lipidomix Mass 

Spec Standard, Avanti Polar Lipids, Table II-1, p. 45) were mixed with 53.2 µL of methanol, 110.8 

µL of dichloromethane and 32.0 µL of water, with vortex for 10 to 20 s between additions. After 

resting for 10 min at room temperature, the mixture was centrifuged for 10 min (12,000 rpm, 4°C) 

and the bottom organic layer was evaporated to dryness on a SpeedVac for 30 min. The dried 

extracted was resuspended immediately in 2.4 µL of 1:1 mobile phase A (MPA) / mobile phase B 

(MPB), vortexed for 30 s, and then diluted in 22.6 µL of MPA. For MD, each sample had a total 

volume of approximately 7 µL. Hence, a similar procedure was followed, but due to the reduced 

sample volumes, aliquots of 1.0 µL of sample and 1.0 µL of internal standard mixture (Table II-1, 

p. 45) were extracted to allow for further analysis procedures. All samples were extracted and 

stored in 250 µL polypropylene inserts (Canadian Life Science, Peterborough, ON, Canada) placed 

inside amber injection vials capped with PTFE-lined caps (Agilent Technologies, Santa Clara, CA, 

USA). A detailed discussion on sources of contamination and extraction vessels can be found in 

Chapter II (2.3.3. Evaluation of contamination sources, p. 63). The extracts were stored at 4°C for 

a maximum of 4 days before injection. Since the main goal of the experiment was to reduce the 

required sample volume, we opted for employing a pooled mixture of serum from 100 healthy 

individuals for quality control. However, features that were detected only for the QC injections 

were excluded before statistical analysis as they were not found for the samples. 
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The extracts were analyzed by nanoLC-ESI-QToF-MS with the optimized method 

described in Chapter II. Briefly, the method conditions included: MPA - 10 mM ammonium 

formate in 50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB - 10 mM ammonium formate in 

95:5 isopropanol/ water; trapping for 1.25 min at 5 µL/min (100% MPA); 300 nL/min; 45°C; 50 

min gradient (0 min – 0% MPB; 10 min – 30% MPB; 20 min – 70% MPB; 32 min – 95% MPB; 

50 min – 95% MPB) followed by a 20 min run for re-equilibrium (0 min – 90% MPB; 1 min – 

100% MPA; 20 min – 100% MPA); and 4.0 µL injection. The instrumentation and reagents were 

described in Chapter II (2.2.1. Chemicals and reagents and 2.2.2. Instrumentation, p. 42). All 

experiments were performed with extraction duplicates. Positive and negative ionization were 

acquired in separate, consecutive injections. Quality control (QC) was performed through 

injections of two aliquots of extracted pooled serum sample (a mixture of serum obtained from 

100 healthy individuals), viz. three QC injections before and three injections after all sample 

extracts, plus one QC injection after every 8 sample injections. 

 

3.2.3 Data processing 

The detected features were re-calibrated, selected and aligned by the software 

MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA). Alignment parameters included a 

minimum peak intensity (i.e., peak height) threshold of 2000 cts, minimum peak length of 22 

spectra, mass recalibration with background contaminants detected in all injections, retention time 

tolerance of 60s and m/z tolerance of 5.0 mDa. Missing values were substituted by recursive 

extraction of the raw data, during which the minimum intensity threshold was removed and a 

minimum peak length of 11 spectra was applied. All experiments were performed in duplicates 

and only features detected in more than 80% of injections for at least one of the time points were 
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considered for statistical analysis. Positive and negative ionization results were merged with a 

retention time tolerance of 30 s and m/z tolerance of 10 ppm. The remaining missing values for 

features detected in at least 50% of injections in each time group were replaced by the minimum 

within-group intensity. However, missing values for features not detected in at least 50% of 

injections within a time group were substituted by the minimum global intensity detected for all 

injections.  

 

3.2.4 Identification: tandem-MS and accurate mass 

The QC samples were further analyzed by CID-QToF tandem-MS (MS/MS) for positive 

identification. The collision energy for fragmentation was stepped between 15 (150 m/z) and 45 

eV (1000-1500 m/z). Precursor ions were selected for fragmentation by the software oToF Control 

(Bruker Daltonics) in auto-MS/MS mode, i.e., the most intense ions are fragmented by CID in 

each MS-MS/MS cycle. However, the less intense ions cannot be fragmented as the number of 

precursors chosen for CID is limited by the number of scans that can be performed within the time 

range of a chromatographic peak, which may contain tens of species. In order to fragment a higher 

number of precursor ions, the mass range for precursor selection was reduced to 100 Da intervals, 

i.e., one injection with precursors limited to m/z 150-250, a second injection for m/z 250-350, etc. 

All the collected MS/MS spectra were matched to the aligned peak list with retention time 

tolerance of 15 to 60 s and m/z tolerance of 5.0 mDa. The MS/MS fragmentation spectra were 

searched on the MSDial LipidBlast73,78, Human Metabolome Database79,81,109,151 and MassBank of 

North America LC-MS/MS libraries82,83 (m/z tolerance of 5.0 mDa) in two identification tiers: tier 

1 contained molecule identified with MS/MS score higher than 500, while tier 2 included 

molecules with mSigma (isotope pattern match) smaller than 50 and MS/MS score between 100 
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and 500. The identification procedure employed for this work followed the guidelines of the 

Lipidomics Standards Initiative (https://lipidomics-standards-initiative.org).20,76 The position of 

unsaturation and glycerol derivatives were not determined. 

Features that could not be identified by MS/MS match were inputted into the LipidMaps 

database for accurate mass identification with mass-to-charge (m/z) tolerance of 5.0 mDa 

(https://www.lipidmaps.org).17,75 Lipids are a broad class of molecules that can have many isomers 

and isobars. Hence, each detected feature, characterized by a combination of m/z and retention 

time, can have multiple mass-based putative identifications. We employed a six-tier filtering and 

scoring approach to determine the most likely putative identification to determine the lipid 

subclass. The five-tier approach described in Chapter II (2.2.7. Putative identification of lipids, p. 

50) was further improved with a sixth scoring tier to consider the sensitivity of the method for each 

lipid subclass and its expected concentrations in biological fluids. Isomeric possibilities that are 

not easily detected by nanoLC-MS or not commonly found in biological fluids were given higher 

scores, whereas the most likely detection possibilities received lower scores. After summing the 

scores for each step, the isomeric or isobaric identification for each feature with the lowest total 

score was chosen to determine the lipid subclass. All the possibilities that passed the retention time 

and adduct filtering were still kept for further reference, ordered from the lowest to the highest 

total score.  

 

3.2.5 Normalization and statistical analysis 

The identified lipids were matched to one of the 14 deuterated internal standards (Table 

II-1, p. 45) according to lipid subclass and retention time similarity. The peak intensity (i.e. peak 

height) of each identified lipid was divided by the intensity of the matched internal standard for 
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normalization of ion suppression and small differences that can occur during sample handling. The 

structural similarity between the deuterated standards and the matched lipids, eluting within the 

same retention time windows, ensure that ion suppression effects are mitigated for reliable relative 

comparisons. The normalization procedure employed herein is widely used by the lipidomics 

community and recommended by the Lipidomics Standards Initiative. Further information on 

normalization of lipids can be found in Chapter I (1.3.1.6. Ion suppression and normalization 

approaches, p. 29).12,152 

The normalized intensity ratios (intensity of feature / intensity of internal standard) were 

used for uni- and multivariate statistical analyses on MetaboAnalyst 4.0 

(https://www.metaboanalyst.ca).153 The web-based platform allows processing of a maximum of 

5000 features. Hence, the identified and normalized lipids were filtered by relative standard 

deviation (RSD) for quality control replicates to remove the compounds with high variation, 

ensuring that a maximum of 5000 were kept for statistics. The filtered lipids were further 

normalized by quantile to ensure uniform distribution and auto-scaled for statistical evaluation, 

including Principal Component Analysis (PCA), Partial-Least Squares – Discriminant Analysis 

(PLS-DA), Analysis of Variance (ANOVA) and Volcano plot analysis (fold change, FC, versus p 

value for Student’s t-test with unequal variances adjusted for false-discovery rate, p). Lipids were 

considered as significantly altered for p <0.05 and FC ≥1.5 or ≤0.67. A discussion on statistical 

models and the validity of p values is available in Chapter I (1.3.1.7. Statistics applied to 

lipidomics, p. 32). 
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3.3 Results 

3.3.1. Serum 

Twelve internal standards were detected in positive ionization with a maximum m/z error 

of 2.2 mDa or 5.1 ppm. For negative ionization, eleven standards were found with a maximum m/z 

error of 3.2 mDa or 3.8 ppm. The deuterated cholesterol and PG internal standards were not found 

for positive ionization, while PI, cholesterol and cholesteryl ester were not detected in negative 

ionization. We did not expect to detect the cholesterol species in negative mode due to their 

inherent structure. Although the concentrations of the commercial mixture employed for this work 

are advertised as similar to blood serum, some of the standards had low concentrations that resulted 

in intensities that were much inferior than the values found for similar lipids (Table II-1, p. 45). 

When allied to elution in retention time ranges with strong ion suppression from many other 

sample components, their intensities became too low for accurate detection, particularly for PI. A 

similar effect was observed for all projects described in this work. Although the Splash Lipidomix 

commercial mixture from Avanti Polar Lipids is highly useful, the relative concentrations between 

the standards may not be suitable for all applications (Table II-1, p. 45). 

The nanoLC-MS analysis of pig serum samples resulted in the identification of 16,638 

lipids, including 82 in tier 1 (m/z error ≤5.0 mDa and MS/MS score ≥500), 178 in tier 2 (m/z error 

≤5.0 mDa, MS/MS score between 100 and 500, and mSigma ≤50) and 16,350 in tier 3 (putative 

mass-match with m/z error ≤5.0 mDa), in addition to 28 internal standard features (different 

adducts for positive and negative ionization, Supp. Table 2). The most abundant lipid category was 

glycerophospholipids with 37.5% of the identified species (6223 lipids), followed by sphingolipids 

with 30.4% (5043 lipids, Figure III-1A and B). Serum had a high number of phosphatidylcholines, 

phosphatidylethanolamines and triacylglycerols when compared to CSF and MD (Figure III-1C). 
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Figure III-1. Lipid species identified for serum, CSF and MD samples from Yucatan miniature 

pigs (20-25 kg) after a controlled spinal cord injury. Lipids are divided into (A) categories with 

number of absolute identifications; (B) categories with percentual values to the total number of 

identified species for each fluid; and (C) lipid subclasses with absolute number of identifications. 

 

The identified species were filtered by RSD to remove lipids with higher variation and 

match the limit of 5000 features imposed by MetaboAnalyst 4.0.153 The 4722 lipids with RSD 

≤20% were auto-scaled and normalized by quantile for statistical analysis. The PCA score plot 

displayed tightly clustered QC injections, showcasing the reproducibility and suitability of the 

employed methods (Figure III-2A). The PCA score plot without the QC replicates (Figure III-2B) 
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showed full separation between the samples collected 0h and 24h post-injury, while the samples 

collected after 72 and 168h were clustered together. Unfortunately, the small number of samples 

and high complexity of the dataset resulted in an overfitted PLS-DA model, as indicated by the 

low Q2 value (Figure III-2C). Although the PLS-DA model for this pilot study was overfitted and 

did not pass the permutation test (p of 0.10), the separation found between the different time points 

and the excellent R2 value indicate that the development of large-scale studies to assess the 

development of SCI using the nanoLC method are reasonable. 

 

 

Figure III-2. Statistical analysis for lipidomics of serum samples from miniature pigs (N = 2) 

collected 0, 24, 72 and 168 h after a controlled spinal cord injury. (A) PCA score plot with 8 QC 



Chapter III 

99 

 

replicates (pooled serum from 100 healthy humans); (B) PCA score plots without QCs; (C) PLS-

DA score plot with 2 components (R2 of 0.9893, Q2 of 0.5498 and p of 0.10). 

 

The small number of biological replicates (N = 2) decreases the reliability of statistical 

models to find significantly altered lipids that may be related to biological effects after the 

controlled spinal cord injury. However, this project was meant as a pilot study to ensure adequate 

sample handling and analysis for future research. Hence, we performed univariate statistical 

analysis using ANOVA and Volcano plots. The ANOVA for the four time points resulted in 224 

lipids with p <0.05, including 67 ceramides (5.8% of the ceramides employed for statistics), 48 

PCs (9.6%), 25 TGs (6.2%) and 20 SMs (Supp. Table 3). The samples collected at 0h post-injury 

were further compared to 24h, 72h and 168h through Volcano plot analysis (Figure III-3). Overall, 

there were only mild changes in the lipidome of serum samples collected up to seven days after 

the injury. First, the lipidome of serum at 0h post-injury was compared to 24h, resulting in 21 

significantly altered lipids (FC ≤0.67 or ≥1.5 and p <0.05, Figure III-3, Supp. Table 3). The 

significantly affected compounds included 5 sphingomyelins (all with higher intensities for 24 h), 

5 ceramides and 4 phosphatidylcholines (all with lower intensities for 24h). Also, 13 of the 

significantly altered lipids were oxidized, with 76.9% of them displaying higher normalized 

intensities for the 24h group. The most intense significant fold-changes were found for the 

putatively identified PC 40:5 (or the isomers/isobars PC O-40:6;O, CerP 48:6;O4, PE 43:5 or PC 

38:2, with FC 0h / 24h of 9.4 and p of 0.02) and PG 40:3 (or the isomers/isobars PG O-40:4;O, PI 

O-38:3 and DG 50:12;O2, with FC 0h / 24 h of 4.7 and p of 0.01). The MS/MS identified PC 

22:0_18:2 was also significantly altered with FC 0h / 24h of 2.2 and p of 0.04. 
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Figure III-3. Volcano plot analysis for serum obtained from miniature pigs (N = 2) that suffered a 

controlled spinal cord injury, collected at 0h, 24h, 72h and 168h post-injury. Lipids were 

considered significantly altered for FC ≤0.67 or ≥1.5 and p <0.05. 

 

Second, we compared the lipidome of serum collected at 0h with 72h post-injury, resulting 

in 19 significantly altered lipids (Figure III-3, Supp. Table 3). All the 7 significantly affected 

ceramides had higher intensities for the later time point, as well as all 4 sphingomyelins. We also 

noticed that 71.4% of the affected oxidized lipids (10 compounds) were elevated for 72h. The most 
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intense significant fold-changes were found for the putatively identified Cer 47:3;O (FC 0h / 72h 

of 0.03 and p of 0.046) and HexCer 39:2;O4 (FC 0h / 72h of 0.08 and p of 0.049).  

Last, we compared the lipidome at 0h with 168h post-injury and 28 lipids were significantly 

altered (Figure III-3, Supp. Table 3). Most of the 11 significantly affected ceramides (90.9%) were 

elevated at 168h, but all the triacylglycerols had reduced intensities (5), indicating alterations in 

the energy metabolism within 7 days after the injury. Most oxidized lipids were once again 

elevated for the later point (18 species, 78.3%). The most intense significant fold-changes were 

found for PE-Cer 40:3;O5 (or the isomers/isobars SM 36:3;O3, PA O-44:7, SM 38:3;O5 and DG 

45:7;O, with FC 0h/168h of 0.21 and p of 0.04) and ST 22:0;O7;Hex (FC 0h / 168h of 4.5 and p 

of 0.04).  

No lipids were affected for all three comparisons (0 / 24h, 0 / 72h and 0 / 168h post-injury), 

but two lipids were significantly altered on both the 0h / 24h and 0h / 72h comparisons, namely 

PC 40:5 (or the isomers/isobars PC O-40:6;O , CerP 48:6;O4, PE 43:5 and PC 38:2, with FC 0h / 

24h of 9.4 and FC 0h / 72h of 8.1) and SM 46:2;O2 (or the isomers/isobars PE-Cer 49:2;O2, CerP 

51:3;O2 and TG 49:0;O3, with FC 0h / 24h of 0.64 and FC 0h / 72h of 0.54). One lipid was 

significantly affected for the 0h / 72h and 0h / 168h comparisons, i.e. HexCer 38:5;O3 (or the 

isomers/isobars DG 44:5;O2, TG 44:4;O, TG O-44:5;O2 and CE 24:5;O, with FC 0h / 72h of 0.40 

and FC 0h / 168 h of 0.50).  Furthermore, two lipids were significantly affected for both the 0h / 

24h and 0h / 168h comparisons, but not for the 0h / 72h comparison, i.e., SM 36:1;O4 (or the 

isomers/isobars PE-Cer 39:1;O4, CerP 41:2;O4, CE 24:6;O and PE 36:1, with FC 0h / 24h of 0.42 

and FC 0h / 168h of 0.40) and Cer 37:2;O2 (FC 0h / 24h of 2.37 and 0h / 168 h of 1.73). 
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3.3.1. Cerebrospinal fluid (CSF) 

Twelve internal standards were detected in positive ionization with m/z error between 0.3 

and 5.0 mDa (0.04 and 5.8 ppm, respectively). For negative ionization, 12 deuterated standards 

were also detected with m/z error between 0.2 and 3.0 mDa (0.3 and 3.4 ppm, respectively). The 

cholesterol and cholesteryl ester standards were not found for negative ionization, whereas the 

cholesterol and phosphatidylinositol standards were not detected in positive mode due to a 

combination of ionization efficiency, ion suppression and low concentrations.  

The lipidomics of CSF samples resulted in the identification of 16,432 lipids (61.1% of the 

detected features), including 84 in tier 1, 110 in tier 2 and 16,241 in tier 3. The samples displayed 

higher numbers of diacylglycerols (2030), total ceramides (3556) and fatty acids (1244) when 

compared to serum and MD (Figure III-1C, Supp. Table 4). However, the overall composition of 

CSF lipidome was very similar to serum samples (Figure III-1A and B). 

The 4745 lipids with RSD ≤24% were normalized by quantile and auto-scaled for statistical 

analysis. The PCA score plot resulted in tightly clustered QC samples (Figure III-4A) and partial 

separation between the four time points ((Figure III-4B). The samples collected at 24h were 

separated from the other time points on the first and second principal components, indicating 

changes in the metabolism of the animal within the first day after the injury. The remaining time 

points were separated only in the second principal component, showing less intense changes, but 

the last time point at 7 days after injury was fully separated. The low number of biological 

replicates (N = 2) and high complexity of the dataset also resulted in a heavily overfitted PLS-DA 

model. However, the model shows that the different time points can be separated with high 

correlation and indicate that further, large-scale studies may provide more information for 

evaluation of spinal cord injuries. 
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Figure III-4. Multivariate statistical analysis for CSF samples obtained from pigs 0, 24, 72 and 

168h after a controlled spinal cord injury (N = 2). (A) PCA score plot with 8 QC replicates (pooled 

serum from 100 healthy humans); (B) PCA score plot without QC replicates; (C) PLS-DA score 

plot with 2 components (R2 of 0.9721, Q2 of 0.2468 and p of 0.16 for 1000 permutations). 

 

The ANOVA resulted in 71 significant compounds (p <0.05), including 14 

phosphatidylcholines (PC), 13 phosphatidylglycerols (PG) and 8 diacylglycerols (Supp. Table 5) 

The samples collected at 0h post-injury were further compared to 24, 72 and 168h by Volcano plot 

analysis (Figure III-5, Supp. Table 5). First, the samples collected at 0h were compared to 24h 
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post-injury, but only three lipids were significantly altered, i.e. DG 52:8;O2 (or PG O-42:0;O, with 

FC 0/24h of 0.38 and p of 0.04), ST 18:1;O7;T (FC 0/24h of 2.4 and p of 0.04) and ST 23:0;O (FC 

0/24h of 2.4 and p of 0.04). 

 

 

Figure III-5. Volcano plot analysis for CSF samples collected from miniature pigs 0h, 24h, 72h 

and 168h after a controlled spinal cord injury (N = 2). 

 

Second, the samples collected at 0h were compared to 72h post-injury (Figure III-5, Supp. 

Table 5). Nine lipids were significantly altered, including 5 phosphatidylglycerols (PG), two 

phosphatidylinositols (PI), one sterol (ST) and one phosphatidylcholine (PC). All the eight 
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significant glycerophospholipids were elevated for 72h. The highest significant fold-changes were 

found for PC 58:11 (or the isomers/isobars PC O-58:12;O, PI-Cer 54:2;O6, PS 61:10 and PE 61:11, 

with FC 0/72h of 0.30 and p of 0.02) and PI 49:4;O (FC 0/72h of 0.30 and p of 0.02). 

Third, the CSF lipidome at 0h was compared to 168h post-injury and ten lipids were 

significantly affected, including 4 phosphatidylglycerols (PG) and two sterols (ST, Figure III-5, 

Supp. Table 5). The highest significant fold-changes were found for ACer 55:6;O4 (or the 

isomers/isobars ACer 53:3;O4, Cer 53:4;O5 and ACer 55:5;O5, with FC 0/168h of 0.36 and p of 

0.03) and PG 40:5 (or the isomers/isobars PG O-40:6;O, PI O-38:5 and DG 50:14;O2, with FC 

0/168h of 0.38 and p of 0.03). Furthermore, one lipid was significantly affected for both the 0/24h 

and 0/168h comparisons, namely ST 18:1;O7;T (FC 0/24h of 2.43 and FC 0/168h of 2.18), and 

one for the 0/72h and 0/168h comparisons, viz. ST 20:2;O4;T (or the isomers/isobars NAT 20:5;O2 

and MG 22:5;O, FC 0/72h of 2.07 and FC 0/168h of 1.83). No lipids were simultaneously affected 

for all three comparisons. 

 

3.3.1. Intraparenchymal microdialysate fluid (MD) 

Eleven internal standards were detected for positive ionization with a maximum mass-to-

charge (m/z) error of 5.1 mDa or 6.9 ppm, while eleven internal standards were found for negative 

ionization with a maximum m/z error of 5.8 mDa or 8.8 ppm. The untargeted lipidomic analyses 

resulted in the identification of 8453 lipids, including 50 in tier 1, 49 in tier 2, 8409 in tier 3 and 

35 internal standard peaks (different adducts for positive and negative ionization, Supp. Table 6). 

The MD samples displayed a high proportion of sterol lipids (1959 lipids, corresponding to 23.1% 

of all identified lipids), followed by total ceramides (1590, 18.7%), N-acyl amines (735, 8.6%) 

and diacylglycerols (638, 7.5%, Figure III-1). However, the most abundant lipid category was 
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glycerophospholipids, with 2458 identified compounds (29.0% of all identified species). When 

compared to serum and CSF, MD has a higher proportion of sterols, but smaller percentages of 

glycerolipids and glycerophospholipids (Figure III-1). 

The identified species were filtered by RSD to match the limit of 5000 features for 

statistical analysis using MetaboAnalyst 4.0.153 The 4135 lipids with RSD ≤30% were auto-scaled 

and normalized by quantile for statistical analysis. The PCA score plot displayed tightly clustered 

QC replicates (Figure III-6A), showcasing the reproducibility of the employed methods. The first 

collection time point, 4.75h post-injury, was fully separated from the others by PCA, indicating 

fast metabolism changes in the interstitial region around the injury that stabilized after a few hours. 

Unfortunately, the small number of samples (N = 2) and high complexity of the dataset once again 

resulted in an overfitted PLS-DA model (Figure III-6C), but the complete separation between the 

four time points indicate that further large-scale studies are justified for biomarker discovery and 

assessment of pathological pathways. 
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Figure III-6. Statistical analyses for intraparenchymal microdialysate fluid (MD) obtained from 

two pigs 4.75, 6.75, 8.75 and 10.75 hours after a controlled spinal cord injury. (A) PCA score plot 

with 6 QC replicates (a pool of serum from 100 healthy humans); (B) PCA score plot without QCs; 

(C) PLS-DA score plot with 3 components (R2 of 0.9956, Q2 of 0.5811 and p of for 0.13 for 1000 

permutations). 

 

The ANOVA for the 4 time points resulted in 159 significant lipids (p <0.05), including 9 

fatty acyls (7.9% of the fatty acyls used for statistics), 66 sphingolipids (5.2%) and 59 sterols 

(3.8%, Supp. Table 7). The samples collected 4.75 h post-injury were further compared with the 

remaining time points by Volcano plot analysis (Figure III-7, Supp. Table 7). The MD samples 
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showed a higher number of affected lipids when compared to serum and CSF. Whether that 

observation is a result of the closeness of the collected MD fluid with the injury site or the different 

time points (24 to 168h range for serum and CSF; 4.75 to 10.75h for MD) remains to be evaluated 

in future, large-scale studies. The comparison between MD samples collected at 4.75 h and 6.75 h 

post-injury resulted in the highest number of significantly altered lipids, with 145 species 

displaying decreased normalized intensities for the 6.75 h point, while 159 had increased 

intensities. The species with the most intense significant fold-changes were putatively identified 

in tier 3 as NAT 30:2 (or Car 28:6), with FC 4.75/6.75 of 0.02 and p of 3.0×10-8), PE-Cer 30:4;O5 

(or the isomers/isobars PE-Cer 28:1;O5, PA O-32:5, TG O-36:8 and PA O-29:0;O, with FC 

4.75/6.75 of 13.3 and p of 6.7×10-4) and Car 20:0;O (FC 4.75/6.75 of 0.1 and p of 5.5×10-3). 

Acylcarnitine (Car) species are associated with energy metabolism, as they act in the transport of 

fatty acyl residues across the mitochondrial membrane for β-oxidation. The elevated levels of an 

acylcarnitine for the 6.75h pos-injury collection may corroborate the previous indication of 

alterations in the energy metabolism, although further studies are required to confirm the 

hypothesis. 
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Figure III-7. Volcano plot analysis for intraparenchymal microdialysate collected around the 

controlled spinal cord injury region at 4.75, 6.75, 8.75- and 10.75 hours post-injury. Lipids were 

considered significantly altered for FC ≤0.67 or ≥1.5 and p <0.05. 

 

Although the samples collected at 8.75 and 10.75 h post-injury had smaller numbers of 

significantly altered lipids (49 and 88, respectively), more than 86% of them had lower intensities 

when compared to the 4.75 h time point (Figure III-7, Supp. Table 7). Ceramides were highly 

affected, with approximately 90% of the significantly altered species displaying decreased 

normalized intensities for the later points. Furthermore, all the 24 significantly altered sterols for 

the 4.75 versus 8.75 h points were also decreased as time passed. It is worth mentioning that most 
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of the significantly altered lipids containing polyunsaturated fatty acyl (PUFA) residues were 

increased for 4.75h post-injury compared to both 8.75 and 10.75h (92.3% and 87.5% of the 

significantly altered PUFA lipids, respectively). Most of the oxidized lipids (91.8% of the 

significant lipids for 4.75/8.75 and 93.2% for 4.75/10.75) also displayed higher intensities for 

4.75h compared to 8.75 and 10.75h post-injury. However, the same trend was not observed for the 

6.75h time point, which had similar numbers of significant lipids with PUFA residues or oxidized 

species with increased and decreased intensities when compared to 4.75h (45.9% of PUFA lipids 

and 53.1% of oxidized lipids with FC 4.75/6.75 ≥1.5). Oxidation is tightly related to inflammation, 

a known secondary effect of spinal cord injuries. Furthermore, 35 lipids were altered for the three 

binary comparisons, all with higher intensities for 4.75 h, including 15 ceramides and 18 sterols. 

However, 232 lipids were altered only for the 4.75 versus 6.75h comparison, while 7 were altered 

only for 8.75h and 23 for 10.75h (Supp. Table 7). It seems that the first few hours after the injury 

are associated with major changes which are partially mitigated by the metabolism within 10.75h. 

The most intense significant fold-changes for the comparison between 4.75 and 8.75 h 

post-injury were found for the putatively identified (tier 3) PI O-27:0 (or the isomers/isobars PA 

O-40:10, TG 41:9 and PA 34:1;O, FC 4.75/8.75 of 0.08 and p of 0.01) and PE 40:2 (FC 4.75/8.75 

of 4.6 and p of 0.02). For the comparison between 4.75 and 10.75 h post-injury, the most intense 

fold-changes were found for PE-Cer 30:4;O5 (or the isomers/isobars PE-Cer 28:1;O5, PA O-32:5, 

TG O-36:8 and PA O-29:0;O, with FC 4.75/10.75 of 12.4 and p of 1.1×10-4 – also one of the most 

intense fold changes for 4.75 versus 6.75), PC 27:3;O (FC 4.75/10.75 of 9.4 and p of 0.03) and 

Car 18:0 (FC 4.75/10.75 of 8.6 and p of 0.04). 
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3.4 Discussion 

This work described a pilot study for lipidomics of serum, cerebrospinal fluid (CSF) and 

intraparenchymal microdialysate (MD) of miniature pigs after a controlled spinal cord injury. 

Samples were collected from two pigs at different time points, i.e., 0, 24, 72 and 168h post-injury 

for serum and CSF; and 4.75, 6.75, 8.75 and 10.75h post-injury for MD. Unfortunately, the small 

number of biological replicates (N = 2) restrains the conclusions that can be drawn from the 

statistical models. However, the main objective of this work was to evaluate the suitability of the 

methods for future applications to study spinal cord injuries. The nanoLC-MS approach developed 

in Chapter II allowed the identification of thousands of different lipid species using only 1.0 to 2.5 

µL of each fluid. The evaluation of internal standards showcased the excellent mass accuracy (m/z 

error ≤8.8 ppm) obtained by a combination of high-resolution mass spectrometry and mass 

recalibration employing background features detected for all injections. Quality control (QC) 

samples composed by a pool of serum from 100 healthy humans were evaluated with each type of 

fluid. The QC replicates (extraction and injection) were tightly clustered in all PCA score plots 

(Figure III-2, Figure III-4 and Figure III-6), showcasing the reproducibility of the employed 

methods. Furthermore, more than 4500 lipids displayed relative standard deviations smaller than 

30% for the QC replicates analyzed with each type of fluid.  

The lipidome compositions of serum and CSF seem to be very similar. We observed 

comparable numbers of glycerolipids, glycerophospholipids, sphingolipids, fatty acyls and sterols 

in both fluids. The different time points were partially separated by PCA and fully separated by 

PLS-DA for all fluids. Samples collected at the time of injury only displayed minor differences 

when compared to 24, 72 and 168h post-injury. However, the serum samples collected at the 

moment of the injury were separated from samples collected after 24h by a simple PCA model, 
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whereas the samples for 72 and 168h post-injury were clustered together. The PCA analysis for 

serum indicates that the first 24h after a SCI may impose major metabolic alterations that are 

mitigated within the following days. 

We observed a higher amount of significantly altered lipids for different time points in MD 

samples. The first collection point at 4.75h after the injury was fully separated from the later points 

by a simple PCA model, indicating that the striking effect of the injury upon the spinal cord tissue 

lipidome is partially mitigated by the metabolism within hours. Prior studies have also shown a 

dramatic drop in glucose and pyruvate levels in MD within minutes after a SCI, as well as an 

increase in lactate levels that could be related to a high energy demand that causes the activation 

of glycolysis for about 60 min.134 We also observed minor alterations in acylcarnitines, which may 

corroborate the higher energy demand possibility, although further studies are required to confirm 

it. The observation agrees with the pathological development of SCI patients and emphasizes the 

need for immediate diagnosis and medical treatment right after a suspected injury. 

Overall, MD samples resulted in the identification of lower numbers of lipids when 

compared to serum and CSF, although more significant changes were found. Interestingly, the MD 

samples had a higher proportion of sterols, accompanied by lower proportions of glycerolipids, 

glycerophospholipids and sphingolipids. The composition of MD obtained from the interstitial 

region around the spinal cord is likely related to the metabolism of the nerve tissue cells, although 

the collected samples are also affected by the employed probe and perfusate. The aqueous 

composition of the perfusate solution makes it unlikely that highly hydrophobic lipid droplets, 

triacylglycerols and cholesteryl esters will be profusely represented in MD samples, but the 

oxidized and modified sterols, ceramides and fatty acids may have a higher polarity that can 

promote better diffusion through the probe. Yet, myelin, a lipid-rich substance the surrounds nerve 
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tissue in white matter, is enriched in cholesterol and sterol lipids.154 The acute phase that follows 

a severe SCI is characterized by death of nerve cells and oligodendrocytes, i.e. myelinating cells, 

as well as disruption of the blood-spinal cord barrier. The injury can destroy the white matter, 

mainly composed by myelinated axons.132,155 The MD samples collected a few hours after the 

injury should reflect the inherent effects caused by the spinal cord contusion and rupture of the 

myelinated tissue with high content of sterols and ceramides. Following a SCI, phagocytic cells 

are activated to clear the debris from myelin damage.132 Hence, we observed significantly affected 

levels of sterols and ceramides with increased intensities for the first time point that were reduced 

over the 10.75 hours of sample collection. About half of the significant sterols and ceramides had 

fold-changes higher than 1.5 for the comparison between 4.75 and 6.75h, but most of the 

significant sterols and ceramides showed elevated intensities for the 4.75 time point compared to 

8.75 and 10.75h post-injury, indicating that the profusion of sterol release in the interstitial region 

caused by cell death is mitigated over time. 

We will refrain from further discussing the biological importance of the significant lipid 

species as the small number of biological samples require more investigation to confirm the 

observations reported herein. Nevertheless, the nanoLC-MS method was highly suitable for the 

proposed application. A collaboration has been previously established between Dr. Brian Kwon 

(University of British Columbia, Vancouver, BC Canada), Dr. Leonard Foster (University of 

British Columbia, Vancouver, BC Canada), Dr. Liang Li (University of Alberta, Edmonton, AB, 

Canada) and the Rick Hansen Institute to study biomarkers of spinal cord injury through 

lipidomics, metabolomics, genomics and proteomics of serum and CSF samples obtained from 91 

human patients (different time points and injury severity) and miniature pigs (animal model 

candidates). The application of different omic approaches to precious biological samples requires 
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the use of high-sensitivity methods to reduce sample volumes. This pilot study indicated that 

lipidomics of small volumes of serum, CSF and MD samples by nanoLC-MS has great potential 

to study the pathogenesis of spinal cord injury, while allowing higher sample aliquots to be store 

for further omic experiments. The large-scale lipidomics and metabolomics studies for human and 

pig samples are currently underway in Dr. Liang Li’s lab at University of Alberta. 

 

3.5 Conclusions 

The pilot study described in this work aimed to verify the suitability of the nanoLC-MS 

method developed in Chapter II to study different biological fluids. The method allowed the 

reproducible detection and identification of thousands of lipids from 1.0 to 2.5 µL of serum, 

cerebrospinal fluid and intraparenchymal microdialysate, showcasing the potential of nanoLC-MS 

for untargeted lipidomics when only small volumes of diluted samples are available. Large-scale 

applications to study lipidome alterations following a spinal cord injury in humans and miniature 

pigs as candidate animal models are currently underway. 
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IV  

Chapter IV: Lipidomics of Exosomes6,7 

 

4.1 Introduction 

Extracellular vesicles are nano-sized membrane structures secreted by cells that are 

composed of biologically active molecules such as proteins, metabolites, hormones, lipids and 

nucleic acids. Extracellular vesicles are divided into exosomes (30-100 nm particles arising from 

the multivesicular endosomal pathway), microvesicles (100-1000 nm particles resulting from 

membrane shedding of platelets, endothelial cells, red blood cells and others) and apoptotic bodies 

(100-5000 nm particles from cell apoptosis). Exosomes are single-membrane, small extracellular 

vesicles obtained from the fusion of multivesicular bodies with the plasma membrane of virtually 

all types of eukaryotic cells. When the endosome produced by the endoplasmic reticulum matures, 

a portion of its membrane invaginates and buds into its lumen, generating intraluminal vesicles. 

The mature endosome filled with intraluminal vesicles is called multivesicular endosome or 

multivesicular body, which contains molecules destined for degradation or secretion. 156 Its content 

can be degraded by fusion with lysosomes or released into the extracellular space by fusion with 

the plasma membrane in the form of membranous extracellular vesicles. Once secreted into the 

extracellular medium, the multivesicular bodies are named exosomes. 157–160 

Exosomes can communicate with proximal and distal target cells by releasing signaling 

molecules into the extracellular space, binding to specific sites in cell surfaces, fusing with 

 

6 Serum samples and exosome isolates were obtained by Dr. David M. Lubman, Dr. Jianhui Zhu and Jie 

Zhang (University of Michigan Medical Center, Ann Arbor, MI, USA). 
7 Supporting tables for this chapter are available with Dr. Liang Li. 
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membranes, and by endocytosis. 161 Hence, they are essential for inter-cell communication and can 

influence a variety of processes in the body, including immune response and pathogenesis. 162 

Recent research has shown that exosomes may play a role in many pathophysiologies, being 

excellent candidates for biomarker discovery. Their diverse content and vital role in cell 

communication may result in exceptional, yet under-explored potential for biomarker research. 

However, the low concentrations, heterogeneity and isolation of exosomes constitute a challenge 

for untargeted omic techniques. Hence, the potential of exosomal lipids has not yet been confirmed 

and very little is known about its physiological and pathological roles. 160,162 

Exosomes are usually isolated from biological fluids or cell culture medium based on size, 

density or presence of marker molecules. There are different methods to isolate exosomes, viz. 

differential ultracentrifugation (UC), ultrafiltration, size-exclusion chromatography (SEC), 

immunoaffinity, precipitation and microfluidics. However, exosome fractions obtained by 

purification methods that depend on the presence of marker molecules, such as immunoaffinity, 

may result in the isolation of one subpopulation that may not be representative of the original 

sample. Although ultrafiltration and SEC may offer highly pure exosome isolates, the techniques 

may cause biases and fragmentation of larger vesicles under high pressure, affecting the analytical 

results obtained from the isolates. Alternatively, UC is one of the most common methods employed 

to study exosomes due to its simplicity and reliability. Samples are centrifuged at increasingly high 

speeds under refrigeration to separate particles according to their sizes and densities. However, co-

isolation of lipid particles, lipoproteins and protein aggregates of similar sizes is a possibility that 

must be considered, particularly if cells have been ruptured during the isolation procedure. 159,161,162 

However, multivesicular bodies are intermediate compartments of the endosome that are 

continuously changing. Consequently, there are no exclusive markers to characterize whether a 
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sample is purely composed of isolated exosome or other types of extracellular vesicles and 

particles. All the components of exosomes are derived from the cytosol or plasma membranes, 

hence not specific enough to serve as a marker of the type of extracellular vesicle present in the 

sample. However, a combination of markers may indicate the composition of the isolate obtained 

from a biological sample.160 

Exosomes can be excreted by most types of cells into biological fluids and tissues. Their 

composition is highly variable according to the type of source cell. Lipids are critical in exosome 

biogenesis, as the excretion process is dependent upon membrane vesiculation. The lipid content 

of exosomes has been the focus of many studies in the past few years. Their membranes are 

typically enriched in glycosphingolipids, cholesterol, phosphatidylserines, phosphatidic acids, 

polyunsaturated fatty acids (PUFA), prostaglandins, sphingomyelins and ceramides. Further 

information on lipid membranes can be found in Chapter I (1.2.3. Lipid membranes, p. 8). 

Cholesteryl ester and triacylglycerol species are typically not found in membranous structures such 

as exosomes. However, they may be fount in high proportions in lipid droplets and lipoprotein 

particles due to their high hydrophobicity; hence, high concentrations of such species may indicate 

co-isolation of undesirable structures. 157,159,162,163 Nevertheless, exosomes are generated by 

invaginations of mature endosomes, which are in turn involved in the processing of low-density 

lipoprotein (LDL) particles, containing high amounts of cholesteryl esters and triacylglycerols 

surrounded by a layer of glycerophospholipids and apolipoprotein B-100. In fact, triacylglycerols 

and cholesteryl esters have been previously reported in exosome isolates obtained by UC of 

colorectal cancer cells.164 

The biological role and composition of exosomal lipids remain unknown mostly due to a 

lack of comprehensive, high sensitivity techniques to study the low amounts of complex material 
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that can be obtained by isolation techniques. Most reports on exosome lipidic composition focus 

in a few lipid subclasses and rarely describe unique species, i.e. the fatty acyl components and 

other functional groups of lipids of interest within a subclass. Furthermore, the small size, low 

concentrations and high complexity of exosomes obtained from biological fluids require accurate 

methodologies with extremely high sensitivity for biomarker research, which has rarely been 

described.162 The interest in exosomes as a potential source of biomarkers and vehicles for drug 

delivery has grown in recent years. The nano-sized structures are involved in immune function, 

tumor growth, metastasis, degenerative processes and regulation of cardiac function. 161 However, 

many questions remain unanswered, and the lack of reliable methods to isolate, purify and analyze 

exosomes still hamper their application in pathophysiology research and biomarker discovery.159 

The use of chemical isotope labeling to study exosome metabolomics by nanoLC-MS was 

previously reported by Luo et al..165 Now, we hypothesized that our previously developed high-

sensitivity nanoLC-MS method for untargeted lipidomics (Chapter II) could be further adapted for 

exosome samples. Hence, we performed a pilot study with exosomes isolated from blood serum 

by ultra-centrifugation and size-exclusion chromatography. Our goal was to determine the 

composition of fractions obtained by both isolation techniques and further compare to the serum 

samples from which they were obtained. The samples employed for this work were also previously 

evaluated elsewhere for protein markers (CD9, CD63, CD81, albumin, apoliproteins, and total 

protein content), size distribution (transmission electron microscopy) and concentration of 

particles (NanoSight).165,166 
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4.2 Experimental 

4.2.1 Sample preparation 8 

For the first phase of the pilot study, the evaluation of the isolation method was performed 

with lipid extracts obtained from serum exosome samples of healthy volunteers obtained by ultra-

centrifugation (UC – 4 samples), size-exclusion chromatography (SEC – 1 sample) or a 

combination of both (UC&SEC – 1 sample). The extraction procedure previously optimized in 

Chapter II was adapted to the low concentrations of exosome samples, including sample volume, 

dilution of the extract, concentration of internal standards and injection volume (data not shown). 

For the optimized method, 30.0 µL of exosome isolate were mixed with 10.0 µL of the Splash 

Lipidomix Mass Spec Standard (Avanti Polar Lipids, Table II-1, p. 45) previously diluted 25× in 

methanol. The mixture was extracted with 256.7 µL of methanol and 533.3 µL of dichloromethane, 

with 20 s vortex between additions. A clean-up step was performed with 170.0 µL of water and 10 

s vortex, followed by equilibration at room temperature for 10.0 min. The biphasic mixture was 

centrifuged for 10.0 min at 10,000 rpm and 4°C. The organic layer (453.3 µL) was evaporated to 

dryness on a SpeedVac for 30 min. The dried residue was immediately resuspended in 3.0 µL of 

mobile phase B (MPB), vortexed for 1.0 min and diluted with 27.0 µL of mobile phase A (MPA) 

before injection, resulting in no dilution of the exosome sample and 75× dilution of the internal 

standard mixture (Table II-1, p. 45). 

Second, we compared the lipidome of serum samples and exosome fractions obtained by 

SEC. Exosome samples were prepared as previously described. For serum samples, the dilutions 

of the sample extract and the internal standard mixture (Table II-1) were further optimized. Serum 

 

8 Serum samples and exosome isolates were obtained by Dr. David M. Lubman, Dr. Jianhui Zhu and Jie 

Zhang (University of Michigan Medical Center, Ann Arbor, MI, USA). 
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samples cannot be analyzed with the same dilution factor as exosome isolates due to higher 

concentrations that would saturate the trap column of the nanoLC instrument and the MS detector, 

causing lipid aggregation, biases and potentially damaging the employed equipment. Hence, an 

aliquot of 9.0 µL of serum was mixed with 3.0 µL of the internal standard mixture (Table II-1, p. 

45). The mixture was extracted with 77.0 µL of methanol and 160.0 µL of dichloromethane, with 

20 s vortex between additions. A clean-up step was performed with 51.0 µL of water and 10 s 

vortex, followed by equilibration for 10 min at room temperature and centrifugation for 10 min at 

10,000 rpm and 4°C. The organic phase (136.0 µL) was evaporated to dryness on a SpeedVac for 

30 min and resuspended in 4.5 µL of MPB, followed by dilution with 40.5 µL of MPA. The 

resuspended extract was further diluted before injection (40× for serum and 120× for the internal 

standard mixture), i.e., aliquots of 3.8 µL of the extract were vortexed with 2.6 µL of MPB and 

23.6 µL of MPA. 

All samples were extracted in triplicates in polypropylene microcentrifuge tubes (1.5 mL, 

Fisher Scientific). The resuspended extracts were stored in polypropylene inserts placed in amber 

autosampler vials capped with PTFE-lined septa at 4°C for a maximum of 24h before injection. 

The extraction and injection sequences were randomized to prevent bias. Pooled mixtures 

composed of aliquots of all exosome samples and all serum samples were prepared for quality 

control (QC). One pooled mixture of exosome, one pooled mixture of serum and one blank (water 

instead of sample and methanol instead of the internal standard mixture) were extracted with each 

group of 3 samples to control reproducibility and contamination. The pooled mixtures were also 

employed for the acquisition of MS/MS spectra for identification. 
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4.2.2 Analysis 

Samples were analyzed by reversed-phase chromatography on a nanoLC instrument with 

C18 analytical and trap columns. The instrumentation and reagents were described in Chapter II 

(2.2.1. Chemicals and reagents and 2.2.2. Instrumentation). The nanoLC conditions included: 

MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water; MPB – 10 mM NH4COOH 

in 95:5 2-propanol/ water; trapping at 7.0 µL/min for 0.25 min at 75% MPA; 50 min gradient (0 

min – 5% MPB, 400 nL/min; 5 min – 30% MPB, 400 nL/min; 10 min – 50% MPB, 300 nL/min; 

15 min – 70% MPB, 300 nL/min; 28 min – 98% MPB, 300 nL/min; 42 min – 0% MPB, 300 

nL/min; 48 min – 0% MPB, 350 nL/min; 50 min – 0% MPB, 400 nL/min); 10 min re-equilibrium 

(50 min – 100% MPA, 400 nL/min; 59 min – 100% MPA, 400 nL/min; 59.5 min – 100% MPA, 

50 nL/min); 45°C; and 5 µL injection. The previously developed nanoLC-MS method was further 

adapted to improve mass recalibration using the injection of a 10 mM sodium formate calibrant 

solution in 1:1 isopropanol/water immediately before each sample injection. The injection, 

trapping and analysis parameters were optimized to ensure the elution of a calibrant peak during 

the dead time of each sample chromatogram (5.0 µL injection with trapping at 3 µL/min for 1.0 

min at 95% MPA; 1.6 min isocratic elution at 95% MPA and 420 nL/min). The mass spectrometer 

conditions were: electrospray ion source capillary voltage of 1375 V, nanoBooster acetonitrile-

enriched nitrogen gas pressure of 0.15 bar, dry nitrogen gas flow rate of 2.5 L/min, ion source 

temperature of 190ºC and spectra acquisition rate of 1.44 Hz.  

Samples were extracted in triplicates and each extraction was injected once in positive 

ionization and once in negative ionization. Injections were randomized, with each group of 6-9 

sample extracts sandwiched between QC injections. 
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4.2.3 Data processing and statistics 

The obtained chromatograms were re-calibrated using the sodium formate peak that eluted 

within the dead time of each injection to ensure high mass accuracy. Further lock mass calibration 

was applied to correct for minor mass drifts that may occur during the analytical run with 

erucamide for positive ionization, a plasticizer detected throughout all chromatograms (m/z 

338.341741), and stearic acid for negative ionization (m/z 283.264254). Samples were aligned 

with an m/z tolerance of 5.0 mDa, retention time tolerance of 60 s, minimum intensity threshold 

of 6000 cts for positive ionization and 2500 cts for negative ionization and minimum peak length 

of 22 spectra. Features not found with the alignment parameters but detected in at least 5% of 

injections were searched again on the raw data for recursive extraction (no minimum intensity cut-

off and minimum peak length of 11 spectra). The aligned features were filtered by detection in at 

least 80% of injections for one of the sample groups (exosome isolation method, serum or QC). 

The remaining missing values were substituted by the minimum intensity within each group 

(exosome isolation method) or type of sample (exosome or serum). 

MS/MS identification was performed with the chromatograms acquired for the QC pooled 

samples with a different number of precursor ions (3, 5 or 7), variable collision energies (10 to 80 

eV) and different MS/MS acquisition rates (2, 4 and 5 Hz). Precursor ions were automatically 

selected by the mass spectrometer software (Bruker oToF control) in auto-MS/MS mode, i.e., the 

most intense ions are selected in precursor scans for fragmentation within each MS-MS/MS cycle 

of 1.2 s (0.69 s for the precursor survey scan at 1.44 Hz; and 0.51 s for CID of each selected 

precursor ion at 2, 4 or 5 Hz). Unfortunately, many lipids with lower intensity when compared to 

co-eluting molecules were not selected for fragmentation or provided fragments with a very low 

intensity that could not be used for confident identification. MS/MS spectra were matched to the 

aligned feature list with an m/z tolerance of 7 mDa and a retention time tolerance of 30 s. In the 
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future, potential biomarkers or molecules of interest could be further investigated with targeted 

analysis to improve their identification; however, this work was focused on untargeted, 

comprehensive lipidomics. 

The lipid classes and subclasses of identified lipids followed the classification system 

proposed in 2005 and updated in 2009 by Fahy et al., as well as the shorthand notation proposed 

by Liebisch et al. in 2013 and recently adopted by the database LipidMaps.16,17,20 The identification 

procedure also followed the guidelines of the Lipidomics Standards Initiative (https://lipidomics-

standards-initiative.org).20,76 The MS/MS positive identification was performed with the MS-Dial 

LipidBlast73,78, Human Metabolome Database (HMDB)79,81,109,151 and MassBank of North 

America LC-MS/MS libraries (LipidBlast, HMDB, fatty acid esters of hydroxy fatty acids - 

FAHFA82, IMS Oxidized Phospholipids83 and all LC-MS/MS spectra) in combination with 

MetaboScape 4.0. MS/MS identifications were divided in two tiers, namely tier 1 for lipids with 

precursor m/z error ≤5.0 mDa, MS/MS score ≥500 and mSigma ≤150, and tier 2 for lipids with 

precursor m/z error ≤5.0 mDa, MS/MS score between 100 and 500 and mSigma ≤50. 

Unfortunately, many features could not be matched to MS/MS libraries due to the low intensity of 

precursor and fragment ions. Furthermore, many features were not chosen for fragmentation 

because of high-intensity co-eluting molecules. Unidentified features were searched in the 

LipidMaps database for exact m/z match (putative identification, tier 3). Lipids can have multiple 

isomers or isobars with similar structures, belonging to different lipid subclasses (Chapter I, 

1.3.1.5. Identification and nomenclature, p. 25). For this work, a six-tier filtering and scoring 

approach was employed to restrict the number of isomeric or isobaric compounds and select the 

best identification for each feature: (1) expected retention time range for each lipid subclass and 

fatty acyl/alkyl (FA) chain lengths (the total number of carbons); (2) expected adducts and 
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isoforms for each lipid subclass; (3) m/z error (ppm), (4) FA chain length, i.e., even-chain fatty 

acids are more commonly found in nature and more likely to be detected in human biological 

fluids; (5) presence of functional groups other than the expected for each subclass; and (6) method 

sensitivity and expected intensity ratios between lipid subclasses. The procedure was described 

with more details in Chapter II (2.2.7. Putative identification of lipids, p. 50). The scores for each 

ranking tier were summed and the top choice for each feature (lowest score) was selected to 

determine lipid subclass, i.e., the isomer or isobar with elution within the expected retention time 

range for the identified subclass; the most likely adduct and isoform; the smallest m/z error; an 

even number of carbons in FA chains; the expected structure for the subclass; and the lipid subclass 

more likely to be detected by the employed method and found in biological fluids. The top choice 

was used to determine the lipid subclass for normalization (Chapter I, 1.3.1.6. Ion suppression and 

normalization approaches, p. 29), but other isomeric or isobaric possibilities that passed the 

retention time and adduct filters were also kept, ordered according to their scores.  

The identified lipids were matched to one of the 14 deuterated internal standards according 

to subclass similarity and retention time range (Table II-1, p. 45). Normalized intensities were 

calculated by the peak intensity (i.e., peak height) of each identified lipid divided by the intensity 

of the most similar deuterated internal standard to correct for ion suppression and other small 

differences that may occur during sample handling. Statistical analysis was performed in 

MetaboAnalyst 4.0 (www.metaboanalyst.ca). 153 The web platform restrains the number of 

uploaded features to less than 5000; hence, the normalized lipids were filtered by the relative 

standard deviation (RSD) before statistics. The dataset was further normalized by median (i.e., the 

peak intensities were adjusted by a factor so that their median values for each sample were equal) 

and auto-scaled for statistical analysis, including Principal Component Analysis (PCA), Partial 
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Least Squares – Discriminant Analysis (PLS-DA), Random Forest, non-parametric Analysis of 

Variance (ANOVA) and Volcano plot analysis (fold change – FC versus p for t-test adjusted for 

false-discovery rate - p). Lipids were considered as significantly altered for p <0.05 and FC ≤0.67 

or ≥1.5. 

 

4.3 Results 

The nanoLC-MS method allowed the MS/MS positive identification of 286 molecules and 

the putative identification of 8198 lipids (47.5% of the detected features for exosome and serum 

samples, Supp. Table 8). A high number of diacylglycerols (DG, 1135), phosphatidylcholines (PC, 

849) and triacylglycerols (TG, 663) were identified (Figure IV-1). Abbreviations to lipid 

subclasses are described in Table II-2 (p. 48). Thirteen deuterated internal standards were detected 

with a maximum m/z error of 6.1 mDa or 7.6 ppm. 
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Figure IV-1. Subclass distribution of identified lipids for exosome samples, divided in 

identification level (tier 1: precursor m/z error ≤5.0 mDa, MS/MS score ≥500 and mSigma ≤150; 

tier 2: precursor m/z error ≤5.0 mDa, MS/MS score between 100 and 500, and mSigma ≤50; tier 

3: putative identification by accurate m/z match with m/z error ≤5.0 mDa) and detection polarity 

(Pos: positive ionization, Neg: negative ionization). Abbreviations to lipid subclasses are defined 

in Table II-2. 
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4.3.1 Exosome isolation method 

The lipidome of one exosome isolate obtained by size-exclusion chromatography (SEC), 

three obtained by ultracentrifugation (UC) and one obtained by ultracentrifugation followed by 

size-exclusion chromatography (SEC+UC) were first compared. The 11 QC extraction replicates 

(pooled exosome samples) were tightly clustered on the PCA score plot (Figure IV-2A), indicating 

good technical reproducibility for the employed methods. The extraction replicates for exosome 

samples were also clustered, as shown in the dendrogram (cluster analysis) in Figure IV-2B.  

 

 

Figure IV-2. Statistical analysis for quality control of exosome isolated from serum samples of 

healthy humans by size-exclusion chromatography (SEC, green), ultracentrifugation (UC, light 

blue), a combination of both (SEC+UC, dark blue) and extraction replicates of a pool of all 

exosome samples used as quality control (QC, red). (A) PCA score plot showcasing clustered QC 

extraction and injection replicates; (B) dendrogram with extraction replicates for each sample and 

quality control injections clustered together. 
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Examples of chromatograms obtained for each type of sample are displayed in Figure IV-3. 

The results obtained with the previously developed high-sensitivity nanoLC-MS method were 

compared to chromatograms obtained under similar conditions by UHPLC-MS for undiluted 

exosome, 10× diluted blood serum and a blank extract (Figure IV-4). The comparison between 

Figure IV-3 and Figure IV-4 confirms the potential of nanoLC-MS to analyze low volumes of 

diluted samples. 

 

 

Figure IV-3. Examples of chromatograms obtained for blood serum (40× dilution) and exosome 

(no dilution) isolated from serum by UC, SEC and a combination of both (SEC+UC). 
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Figure IV-4. Chromatograms obtained for the analysis of undiluted exosome samples (top), a blank 

extract (extraction of water instead of samples) and blood serum diluted 10× using UHPLC-MS. 

Samples were extracted as described in the Experimental section. Analysis method: MPA – 10 

mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water; MPB - 10 mM NH4COOH in 95:5 2-

propanol/ water; 250 µL/min; 40 °C; 25 min gradient (0 min – 5% MPB; 1.8 min – 5% MPB; 8.5 

min – 30% MPB; 18 min – 95% MPB; 25 min – 95% MPB) followed by 10 min of re-equilibrium 

(0 min – 95% MPB; 3 min – 95% MPB; 4 min – 5% MPB; 10 min – 95% MPB); and 4 µL 

injection. 

 

The exosome isolate obtained by UC, SEC and SEC+UC were fully separated on PCA, 

indicating that the composition of the samples was affected by each technique (Figure IV-5A). 

Samples were also separated by PLS-DA (Figure IV-5B). Unfortunately, the PLS-DA model did 

not pass the permutation test (p = 0.13 for 1000 permutations) due to the overfitting caused by the 

high complexity of the dataset allied to an insufficient number of samples. Nevertheless, the results 

indicate that different isolation techniques will deeply affect the lipidome of exosome samples.  
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Figure IV-5. Statistical analysis for evaluation of exosome isolation methods from blood serum 

samples. (A) PCA score plot; (B) PLS-DA score plot with 2 components (R2 = 0.9704, Q2 = 

0.7597, p = 0.13 for 1000 permutations). 

 

The one-way ANOVA for the three studied isolation techniques resulted in 1750 

significant lipids (Supp. Table 9, 62.8% of the lipids employed for statistics). Glycerolipids and 

glycerophospholipids had the highest number of significant lipids (19.3% and 51.2%, of the 

significant lipids, respectively).  

Binary comparisons through Volcano plot analysis showed specific differences related to 

each method (Figure IV-6). The exosome samples obtained by UC were first compared with SEC, 

resulting in 251 significantly altered lipids, including 195 with higher normalized intensities for 

SEC (Figure IV-6A, Supp. Table 10). The most affected lipid subclasses for the comparison 

between UC and SEC were diacylglycerols (DG, 103 significant lipids with 99.0% significantly 

elevated for SEC); phosphatidylcholines (PC, 27 significant lipids with 70.4% elevated for UC); 

and ceramides (Cer, 24 significant lipids with 91.7% elevated for SEC). PCs and Cer are typically 
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enriched in exosome membranes, while triacylglycerols (TG) and cholesteryl esters (CE) are more 

commonly found in lipid droplets and lipoprotein particles that may be co-isolated. However, as 

the endosomes that form exosomes are related to LDL metabolism, it is not surprising to find CE 

and TG species in exosome isolates. For UC and SEC, 43.8% of the glycerolipids employed for 

statistics and 39.0% of the glycerophospholipids were significantly altered. Most of the 

glycerolipids were elevated for the SEC isolation, but only 5 TGs were significantly affected, all 

with higher normalized intensities for UC. CEs were also not deeply altered, with only 2 significant 

lipids (both elevated for UC). The glycerophospholipids were split, with 55.1% with higher 

normalized intensities for SEC, while the remaining 44.9% were elevated for UC. Sphingolipids 

were also enriched for SEC, with 94.1% of the 34 significantly altered lipids showing higher 

normalized intensities. Overall, the comparison between UC and SEC resulted in minor alterations 

for the lipids that are typically found in undesired particles. 
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Figure IV-6. Volcano plot analysis for the binary comparisons between exosome samples obtained 

from blood serum by UC, SEC and a combination of both (SEC+UC). (A) SEC versus UC; (B) 

SEC+UC versus UC; (C) SEC versus SEC+UC. Abbreviations to lipid classes are defined in Table 

II-2 (p. 48). 

 

Second, the exosome samples obtained by UC were compared to UC followed by SEC 

(UC+SEC). A total of 1661 lipids were significantly altered (59.6% of the lipids employed for 

statistics), with 56.5% displaying higher normalized intensities for the UC+SEC combination 

(Figure IV-6B, Supp. Table 11). The most affected lipid subclasses were also diacylglycerols (DG, 

205 significant lipids with 197 elevated for UC); phosphatidylcholines (PC, 260 significant lipids 

with 140 elevated for SEC+UC); and ceramides (Cer, 219 significant lipids with 181 elevated for 
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UC). Glycerophospholipids were deeply affected for the UC/UC+SEC comparison, with 867 

significantly altered lipids (73.6% with higher normalized intensities for UC+SEC). Most 

glycerolipids (76.5% of significantly altered glycerolipids) and sphingolipids (83.6%) were 

enriched for UC. All the 127 significantly altered fatty acyls were also found to be elevated for 

UC+SEC. Unfortunately, 70.5% of the 61 significantly altered triacyclglycerols and 66.7% of the 

18 cholesteryl esters were elevated for UC+SEC, possibly indicating co-isolation of lipid droplets 

and particles. 

Third, the exosome samples obtained by SEC were compared to UC followed by SEC 

(UC+SEC). A total of 1252 lipids were significantly altered (44.9% of the lipids employed for 

statistics), with 50.4% displaying higher normalized intensities for SEC (Figure IV-6C, Supp. 

Table 12). The most affected subclasses included once again diacylglycerols (DG, 170 significant 

lipids with 99.4% elevated for SEC), phosphatidylcholines (PC, 233 significant lipids with 58.4% 

elevated for UC+SEC); and ceramides (Cer, 176 significant lipids with 88.1% elevated for SEC). 

Similarly to the observations for UC versus UC+SEC, glycerophospholipids were deeply affected 

by the SEC and UC+SEC comparison, with 637 significant lipids (72.2% elevated for UC+SEC). 

All the 49 significantly altered fatty acyls were also increased for UC+SEC, while most 

sphingolipids (75.8%) and glycerolipids (90.4%) had higher intensities for SEC. Most significant 

triacylglycerols (TG, 79.7% of 69 lipids) and cholesteryl esters (CE, 68.2% of 22 lipids) were 

elevated for UC+SEC. 

 

4.3.2 Comparison between serum and exosome lipidome 

The lipidome of five exosome isolates obtained by SEC of blood serum samples was 

compared to the lipidome of the five original serum samples. The comparisons between exosome 

isolates and blood serum must be considered along with the different dilutions employed for 
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analysis (no dilution for exosome and 40× dilution for serum); however, both types of samples 

were normalized by the median, i.e., all samples were scaled so that they have the same median 

normalized intensity to allow for direct comparisons. Even though exosome isolates are much 

more diluted than blood serum samples, the normalization procedures adopted herein are expected 

to compensate for the intensity differences so that the composition of the different types of samples 

are comparable by statistical models. Further information on data normalization and scaling for 

statistics of untargeted lipidomics is available in Chapter I (1.3.1.7. Statistics applied to lipidomics, 

p. 32) 

The 8 QC extraction replicates were tightly clustered on the PCA score plot, indicating the 

suitability of the employed methods (Figure IV-7A). Extraction replicates were also clustered, as 

shown in the dendrogram (cluster analysis, Figure IV-7B). The exosome isolates were fully 

separated from serum samples by PCA and PLS-DA (Figure IV-8A and B). Unfortunately, the 

PLS-DA model did not pass the permutation test (p of 0.13 for 1000 permutations) due to the small 

number of samples. However, all samples were correctly classified by a Random Forest model, 

which is less prone to overfitting, with 7 predictors and 500 trees (out-of-bag, OOB error of zero).  
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Figure IV-7. Statistical analysis for quality control of the comparison between the lipidome of 

exosome samples obtained from serum by UC and blood serum. (A) PCA score plot; (B) 

dendrogram (cluster analysis) with extraction triplicates for each of the five exosome and five 

serum samples. 

 

 



Chapter IV 

137 

 

 

Figure IV-8. Statistical analysis for the comparison between exosome samples obtained from blood 

serum by UC and serum samples. (A) PCA score plot; (B) PLS-DA score plot with 2 components 

(R2 of 0.9727, Q2 of 0.9761 and p = 0.13 for 1000 permutations). 

 

The Volcano plot analysis for serum and exosome samples resulted in 2102 significantly 

altered lipids (75.6% of the lipids employed for statistics, Figure IV-9, Supp. Table 13). As 

expected, we observed deep differences between the lipidomes. The most affected subclasses 

included ceramides (Cer, 352 significant lipids, 54.8% with smaller intensities for exosome); 

phosphatidylcholines (PC, 279 significant lipids, 59.5% with smaller intensities for exosome); and 

triacylglycerols (TG, 205 significantly altered lipids, 65.4% with higher intensities for exosome). 

We also observed that 92.8% of the significant sterols, 95.8% of the 

bis(monoacylglycero)phosphates (lysobisphosphatidic acids), 93.5% of fatty acids, and 90.3% of 

N-acyl amines displayed higher normalized intensities for the exosome samples. 
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Figure IV-9. Volcano plot analysis for the comparison between exosome samples isolated from 

blood serum by UC and serum samples. Abbreviations to lipid subclasses are defined in Table II-2 

(p. 48). 

 

4.4 Discussion 

We have performed untargeted, comprehensive lipidomics of exosome samples to explore 

the effect of different isolation techniques upon lipidic profile. First, we compared the lipidome of 

samples isolated by UC, SEC and a combination of both techniques (UC+SEC). UC and SEC 

resulted in similar lipidic profiles, but the combination of both caused a dramatic change. Second, 

we compared the lipidome of exosome samples isolated by UC from blood serum and the original 
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serum samples. The concentrations of both types of samples were normalized to the same median 

value and auto-scaled for accurate comparisons, as exosome samples are much more diluted than 

serum. The samples employed for this work were evaluated elsewhere for protein markers (CD9, 

CD63, CD81, albumin, apoliproteins, and total protein content), size distribution (transmission 

electron microscopy) and concentration of particles (NanoSight).165,166 

The nanoLC-MS approach applied for this work includes novel aspects when compared to 

previous studies on the lipidome of exosome samples. The employed method offers extremely 

high sensitivities for the diluted exosomes, allowing the detection and identification of thousands 

of lipids belonging to a variety of subclasses. Comprehensive untargeted lipidomics of exosome 

using mass spectrometry has rarely been described due to the difficulty in analyzing the extremely 

diluted samples. High volumes of blood serum are required to provide enough exosome sample 

volume to match the limits of detection of traditional LC-MS omics methods. However, the 

nanoLC-MS method development described in Chapter II, with further adaptations for exosome, 

allowed the identification of thousands of lipids using only 30 µL of each sample. We found that 

undiluted exosome lipid extract provided peak intensities that were comparable to 40× diluted 

serum samples, a dilution factor that is not applicable for most UHPLC-MS methods. 

The comparison between UC and SEC for isolation of exosomes from blood serum showed 

the effect of each technique upon the obtained samples. UC favored higher normalized intensities 

of 56 lipids, including all 5 significantly altered triacylglycerols and 5 cholesteryl esters. The 

hydrophobic lipid classes are not expected to be enhanced in extracellular vesicles but are more 

likely to be related to co-isolated lipid droplets and lipoprotein particles. However, a few 

triacylglycerol and cholesteryl ester species have been found in exosome fractions obtained from 

cancer cells by shotgun mass spectrometry analysis in the past, which corroborates our hypothesis 
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that previous assumptions about the composition of exosomes may not be entirely correct.164 We 

also observed an enhancement for the intensities of all 3 significantly altered 

bis(monoacylglycero)phosphates (i.e., lysobisphosphatidic acids, BMP), the 5 significantly altered 

phosphatidic acids, 70.4% of the phosphatidylcholines and 63.2% of the 

phosphatidylethanolamines. Glycerophospholipids are typically enriched in the membranes of 

exosomes; hence, these observations indicate better isolation of the desired extracellular vesicles 

by UC. However, the results show that both techniques are suitable to obtain reliable exosome 

isolates. On the other hand, the comparison of both isolation techniques with the combination of 

UC+SEC resulted in a high number of significantly altered lipids. The combination of SEC and 

UC should provide cleaner exosome samples, but the use of SEC columns demands expensive 

disposable materials. Overall, the highly hydrophobic triacylglycerols and cholesteryl esters were 

elevated for the combination of UC+SEC, while ceramides and glycerophospholipids, typically 

enhanced in exosome membranes, had higher normalized intensities for both separated techniques 

(no combination). Such observations indicate that the extra sample handling required by UC+SEC 

may cause contamination of the isolates. The obtained results show that the extra time and effort 

required by the combination of two isolation techniques is not advantageous.  

We further compared the lipidome of exosome isolates with blood serum samples. About 

half of the 2101 significantly altered lipids (49.7%) were enhanced for the exosome samples. We 

found higher levels of most triacylglycerols (65.4% of the significantly altered species) and 

cholesteryl esters (76.5%). Although that is usually seen as an indication that the exosome isolates 

may also contain lipid droplets and particles, we can’t dismiss the possibility of specific 

triacylglycerols and cholesteryl esters being packed inside the exosomes. The small vesicles 

originate from mature endosomes, which are also related to the metabolism of low-density 
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lipoproteins (LDL) composed by a hydrophobic core of triacylglycerols and cholesteryl esters. The 

hydrophobic lipid subclasses are not usually reported in exosomes, but the technique employed 

herein provides high sensitivity, which will result in the detection of different lipid species that are 

usually not easily ionized, such as the more hydrophobic lipids. This possibility is corroborated by 

our findings for the comparison between isolation by UC and SEC: only a very small number of 

triacylglycerols and cholesteryl esters were significantly altered for the techniques, indicating that 

both provide reliable results for exosome isolation. Further studies are required to confirm whether 

the significantly altered TGs and CEs are from the exosome vesicles or co-isolated lipid particles. 

We also found a high proportion of fatty acyls (88.2% of the significantly altered fatty 

acyls), lysoglycerophospholipids (78.7%), phosphatidic acids (75%) and 

bis(monoacylglycero)phosphates (BMP, 95.8%) with increased intensities for exosome samples. 

Phosphatidic acids and BMPs can trigger membrane fusion between exosomes and target cells 

through hydrolysis, allowing the release of exosomal contents into the cell’s cytosol.167 The 

biological pathways of cholesteryl esters and BMPs are deeply interconnected. When low-density 

lipoproteins (LDL) are metabolized by endosomes and lysosomes, free cholesteryl esters and 

triacylglycerols are obtained. The LDL-derived cholesterol is then further processed and 

transported by endosomes, which can eventually mature into multivesicular bodies. BMPs are also 

abundant in the internal membranes of endosomes, being involved in their structure and functions. 

The production of exosomes starts with the biogenesis of multivesicular bodies in the endosome, 

followed by transport to the plasma membrane, fusion and further release of the intraluminal 

vesicles into the extracellular fluid. 162 Hence, the presence of BMPs in exosome, as well as 

cholesteryl esters and triacylglycerols, is probably a consequence of the composition of the 
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intraluminal vesicles that were eventually excreted as exosomes. The lipid subclass is also actively 

involved in cholesterol transport, distribution and oxidation.168 

We recognize that this work is limited by a small number of samples. However, our goal 

was to complete a pilot study to confirm that the nanoLC-MS methodology that we previously 

optimized (Chapter II) could be employed to study the extremely diluted exosome samples with 

minor modifications. The results described herein confirm the potential of nanoLC-MS untargeted 

lipidomics to evaluate the composition of exosomes and other diluted samples. 

 

4.5 Conclusions 

Exosomes are a vital part of inter-cell communication and the trafficking of biologically 

active molecules. Although their impact upon the organism is highly recognized, their 

physiological and pathophysiological functions are not well known. The lipidome of exosome 

samples may play a role in homeostasis and pathogenesis of different diseases, but untargeted, 

comprehensive lipidomics has rarely been described due to the complexity and low concentrations 

of exosome isolates. We have previously developed a high sensitivity nanoLC-MS methodology 

for the lipidomics of small volumes of diluted biological samples (Chapter II) and confirmed its 

applicability to serum, cerebrospinal fluid and intraparenchymal microdialysate samples (Chapter 

III). Now, we completed a pilot study that shows that the method can be easily adapted to study 

exosome. The method was employed to study the differences between exosome samples isolated 

from blood serum by ultracentrifugation and size-exclusion chromatography, with both techniques 

generating similar results. We have also compared the lipidome of exosome with the parent blood 

serum, resulting in over 2000 significantly altered lipid species. In the future, we will improve the 

MS/MS conditions to obtain a higher proportion of positively identified lipids, which will provide 
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further insights into exosomal lipids. The method described herein can be further applied to study 

human diseases, e.g. cancer. The application of the methodology described in this work may help 

finally unravelling the role of exosomes in human physiology and pathogenesis. 
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V  

Chapter V: Comprehensive Lipidomic and Metabolomic Analysis of Lung Tissue for the 

Study of a Novel Vaccine Against Respiratory Syncytial Virus9,10 

 

5.1 Introduction 

Respiratory syncytial virus (RSV) is the main cause of acute lower respiratory infection in 

infants and young children. RSV incidence and mortality rates are difficult to assess due to the 

infrequent use of diagnostic tests, but the annual global burden is estimated at 33.1 million new 

cases in children younger than five years old and over 100,000 deaths every year.169,170 The disease 

is transmitted by contact with nasal or oral secretions and can repeatedly infect the public, causing 

a particularly high risk for pediatric and elderly populations.170,171 Adults with cardiac, pulmonary 

or immune-compromised conditions are also at high risk for severe infection.169 

Treatment options for RSV infection are usually limited to supportive care, e.g., 

supplemental oxygen and mechanical ventilation.171 The humanized neutralizing monoclonal IgG1 

antibody Palivizumab is used to prevent RSV in premature infants and high-risk populations; 

however, the high cost and monthly dosing required by the medication are prohibitive for 

widespread use. Although the virus has been known for several decades, no vaccines have yet been 

approved for human applications. A formalin-inactivated RSV vaccine was administered to infants 

and children during a clinical trial in 1966, resulting in abnormal immune responses that caused 

 

9 Versions of this chapter were published at ACS Infectious Diseases (Zardini Buzatto et al., ACS Infectious 

Diseases 2020) and Journal of Proteome Research (Sarkar et al., Journal of Proteome Research 2019, 18(3), 1145-

1161).1,2 
10 Supporting figures for this chapter are available in Appendix B. Supporting tables are available with Dr. 

Liang Li. 
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severe RSV infections and the death of two toddlers. The devastating results of this trial, as well 

as the increasing disbelief from the general population on vaccine safety and efficacy, warrant 

better characterization of vaccine-induced alterations in tissues and fluids before application in 

human subjects.169  

RSV is a negative-sense RNA orthopneumovirus containing a lipid envelope with three 

transmembrane glycoproteins: fusion (F), attachment (G) and small hydrophobic protein.172 The F 

protein facilitates the fusion of the virus with the host cell to promote viral penetration and is highly 

conserved amongst RSV viral strains, constituting a major candidate for novel vaccine 

formulations.169,173 A vaccine consisting of the subunit F-protein is a safer alternative to the live-

attenuated virus and is particularly interesting for elderly and maternal immunization. The RSV-

neutralizing antibody has been previously shown to be transferred from mother to fetus through 

the placenta, immunizing the fetus before birth.171,174,175 However, non-replicating vaccines based 

on subunit agents require adjuvants to augment their immunogenicity and stimulate long-lasting 

immune responses.176 We have previously developed a novel intranasal RSV vaccine formulation 

composed of a truncated version of the F protein (∆F) and a combination adjuvant (TriAdj) that 

promoted the production of cytokines, chemokines and interferons, as well as activation of 

dendritic cells, macrophages and neutrophils. The vaccine elicited complete protection from RSV 

challenge in mice.1,173,175,177,178 The immune responses to the ∆F/TriAdj formulation, as well as 

the inflammatory responses of immunized and non-immunized mice following an intranasal 

challenge by RSV, have been recently evaluated elsewhere.1 

In this study, we applied an integrated liquid chromatography – mass spectrometry 

lipidomics and metabolomics approach to study the metabolic changes induced by RSV in the 

lungs of ∆F/TriAdj-immunized and non-immunized mice. We hypothesized that the ∆F/TriAdj 
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formulation would mitigate the metabolic changes caused by RSV challenge in immunized mice, 

resulting in a metabolic and lipidic profile more similar to healthy controls. Lipids are not only a 

major energy source but also act as signaling molecules, hormones, modulators of gene expression 

and membrane components. The immune response depends on a cascade of signals that may 

include changes in cell membranes and phospholipid profiles, alterations in eicosanoid and 

polyunsaturated fatty acids (PUFA), and lipid oxidation and peroxidation. Exogenous and 

endogenous lipids and lipid-derived messengers play a critical role in the modulation of immune 

responses to pathogenic viruses and bacteria.24,26,179 We aimed to further investigate the 

mechanism of action of the ∆F/TriAdj formulation by unraveling metabolic and lipidic alterations 

after intranasal immunization followed by RSV challenge, which may provide crucial information 

for the improvement of vaccine efficacy and safety, as well as for the future development of new 

interventions. 

 

5.2 Experimental 

5.2.1 Immunization and RSV challenge11 

The ∆F/TriAdj vaccine formulation was prepared with a combination of three adjuvants, 

namely: polyinosinic:polycytidylic acid (poly(I:C)), innate defense regulator peptide 1002 

(IDR1002), and poly[di(sodiumcarboxylatoethylphenoxy)]-phosphazene (PCEP). The preparation 

of the formulation was described elsewhere.177 Briefly, an episomal vector was used to transfect 

HEK-293 cells with a truncated version of the RSV fusion protein (ΔF) without the transmembrane 

 

11 The vaccine preparation, immunization of animals, RSV challenge and collection of lungs were performed 

by Dr. Indranil Sarkar and Dr. Sylvia van Drunen Little-van den Hurk (Microbiology and Immunology, University of 

Saskatchewan, Saskatoon, Canada). 
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domain that was his10-tagged at the carboxyl terminus. The truncated ΔF protein was then purified 

by affinity chromatography with TALON Superflow resin (Clontech, CA, USA) and formulated 

with poly(I:C) (Invivogen, CA, USA), IDR1002 (VQRWLIVWRIRK, Genscript, NJ, USA) and  

PCEP (Idaho National Laboratory, ID, USA) at a ratio of 1:2:1 poly(I:C) / IDR1002 / PCEP in 

PBS (pH 7.4, Life Technologies, ON, Canada).177 

One cohort composed of three groups of five female, age-matched (six to eight-week-old) 

BALB/c mice (Charles River Laboratories, QC, Canada) were selected for this study (N = 5). 

Intranasal immunization of one group of five mice was performed with 20 µL of the vaccine 

formulation containing 1 μg of ΔF protein, 10 μg of poly(I:C), 20 μg of IDR1002 and 10 μg of 

PCEP (named group B). Three weeks after immunization, the immunized animals, along with five 

non-immunized mice (group C), were challenged with the RSV A2 strain (5 x 105 plaque-forming 

units in 50 µL, ATCC, VA, USA). Five untreated mice were used as controls (Group A). We 

selected only female mice to avoid cage effects, as males and females can not be intermingled in 

the same cage. As age and sex-matching are vital for reliable studies, we opted for only female 

mice to allow for comparisons with our previous related work. 1 The animal trial was carried out 

according to the guidelines established at the University of Saskatchewan following the Canadian 

Council on Animal Care. 

The ten challenged animals and five non-immunized, age-matched healthy controls were 

sacrificed seven days post-RSV challenge, followed by the collection of both lung lobes. The lung 

tissue samples were washed with ice-cold physiological saline (0.85% NaCl), blot-dried with 

sterile gauze and snap-frozen in liquid nitrogen. All samples were kept at -80°C until analysis and 

thawed in a 4°C fridge immediately before preparation. 
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5.2.2 Instrumentation 

Chromatographic separation was performed separately for lipidomics and metabolomics 

using a Dionex UltiMate 3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA) 

and a Waters Acquity BEH C18 column (5 cm × 2.1 mm with 1.7 µm particles; Waters 

Corporation, Milford, MA, USA). An ultra-high-resolution Maxis II QTOF mass spectrometer 

instrument (Bruker Daltonics, Billerica, MA, USA) equipped with an electrospray ionization (ESI) 

source was used for the detection of lipids and labeled metabolites.  

 

5.2.3 Tissue homogenization 

Both lung lobes from each animal were collected for this study. Each lung lobe was treated 

separately, i.e., one lobe was employed for lipidomics and dansyl chloride (DnsCl) labeling of 

amine and phenol-containing metabolites, while the other was used for p-

(dimethylamino)phenacyl (DmPA) labeling of carboxylic acid-containing metabolites. All three 

procedures started with homogenization followed by liquid-liquid extraction (LLE) with organic 

solvents. The volumes of all reagents were normalized for the wet mass of tissue to ensure accurate 

relative comparisons. 

Different sections of tissue samples may have a different distribution of metabolites and 

lipids; therefore, we opted not to divide the tissue samples for experimental replicates. 

Nevertheless, the introduction of an extra step to split and re-weigh tissue aliquots would require 

one extra freeze-thaw cycle and more time exposing the samples to room temperature, light and 

oxygen, which would affect the composition of the tissue samples. Hence, we opted for 5 

biological replicates in each group (i.e., five mice, N = 5), but we didn’t perform full experimental 

replicates. Instead, we have performed labeling triplicates for metabolomics and LC-MS injection 
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duplicates for lipidomics. Sample extraction and analysis were randomized to minimize batch and 

confounding effects.  

The first lung lobe (70 to 100 mg) from each animal was mixed with the Splash Lipidomix 

Mass Spec standard mixture (0.35 µL / mg of tissue, Table II-1, p. 45). Each lung lobe was then 

homogenized (Bio-Gen PRO200 Homogenizer, PRO Scientific Inc., Oxford, CT, USA) for three 

consecutive 30s intervals in methanol (4.0 µL / mg of tissue) and water (0.85 µL / mg of tissue), 

followed by 30 s rest periods in an ice bath. The homogenate was further processed by liquid-

liquid extraction (LLE) with dichloromethane and water (4.0 and 2.0 µL / mg of tissue, 

respectively). After three 30 s vortex cycles with 30 s intervals in an ice bath, the mixture was kept 

in ice for equilibration for 15 min and centrifuged for 10 min at 4°C (10,000 rpm). The organic 

layer was employed for lipidomics, while the aqueous layer was used for DnsCl labeling of amine 

and phenol-containing metabolites. The remaining lung lobe from each animal was employed for 

the chemical isotope labeling of carboxylic acid groups with DmPA. 

The sample preparation steps were performed in 2 mL polypropylene microcentrifuge 

tubes (Rose Scientific, Edmonton, AB, Canada). We also prepared one blank extract for each 

group of five samples for controlling possible chemical contaminations from plastic tubes by 

substituting the tissue samples for water (1.0 µL / mg of tissue) and the internal standard solution 

for pure methanol. The blank extracts had low intensities and only displayed a small number of 

reproducible chromatographic peaks (Appendix B - Figure B- 1). Lipid internal standard mix and 

amino acid standard extracts were also prepared with water instead of tissue samples for quality 

control of the extraction, labeling and analysis procedure. 
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5.2.4 Lipidomics 

After homogenization and LLE of the first lung lobe with dichloromethane, methanol and 

water, the upper aqueous layer was separated for metabolomics via dansyl chloride labeling of 

amine and phenol groups, while the organic layer was evaporated to dryness on a SpeedVac for 

30 min for untargeted lipidomics. The residue was immediately resuspended in a mixture of 6:4 

mobile phase A (MPA) / mobile phase B (MPB) (0.20 µL / mg of tissue), vortexed for 30 s and 

diluted with 0.50 µL / mg of tissue of 9:1 MPA / MPB. Each resuspended sample was divided into 

two vials for randomized injection duplicates. A pooled mixture composed by aliquots of all 

sample extracts was prepared for quality control (QC) injections and CID-MS/MS for lipid 

identification. As there are no other sample preparation steps after homogenization besides drying 

and resuspension, we opted for injection duplicates from separate vials for lipidomics. Samples 

were kept at 4°C in polypropylene inserts (Canadian Life Science, Peterborough, ON, Canada) in 

amber injection vials (Agilent Technologies, Santa Clara, CA, USA) capped with 

polytetrafluoroethylene (PTFE)-lined septa (Waters Corporation, Milford, MA, USA), and 

injected within a maximum of 2 days after the extraction.  

Samples were analyzed by reversed-phase ultra-high-performance liquid chromatography 

coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (RP-

UHPLC-ESI-QTOF-MS) under positive and negative ionization. LC-MS lipid analysis was 

performed with the following conditions: MPA – 10 mM ammonium formate in 50:40:10 

methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM ammonium formate in 95:5 isopropanol/ 

water (v/v); 250 µL/min; column temperature of 40°C; injection volume of 1.0 µL for positive 

ionization and 4.0 µL for negative ionization; 22 min gradient (0 min – 5% MPB; 1.8 min – 5% 

MPB; 8.5 min – 30% MPB; 18 min – 95% MPB; 22 min – 95% MPB) followed by 10 min of re-
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equilibrium (0 min – 95% MPB; 3 min – 95% MPB; 4 min – 5% MPB; 10 min – 95% MPB); and 

ESI-QToF detection (capillary voltage of 4500 V; end plate offset of 500 V, nebulizer gas pressure 

of 1.0 bar, dry gas flowrate of 8.0 L/min; dry temperature of 230°C; spectra acquisition rate of 1 

Hz, and m/z range of 150 to 1500 Da). QC pooled samples composed of equal aliquots of all 

sample extracts were injected six times before the sample sequence to stabilize chromatographic 

retention and MS signal. The 15 sample extracts (N = 5 for the three groups) were randomly 

divided into two sets, sandwiched between QC injections. Each set was injected twice, alternating 

between positive and negative ionization. 

MS/MS spectra were acquired for identification with the QC pooled mixture employing 

variable collision energies (10 to 80 eV) and injection volumes (1.0 to 5.0 µL). MS/MS 

fragmentation was performed on auto MS/MS mode, i.e., the mass spectrometer software (oToF 

Controls, Bruker Daltonics) automatically selected the most intense ions during precursor scans 

for MS/MS fragmentation. Hence, we have also acquired MS/MS chromatograms with variable 

mass ranges, i.e., the mass range for selection of precursor ions was reduced to 100 Da intervals 

to allow for fragmentation of ions that would not be chosen otherwise due to lower intensity when 

compared to other co-eluting molecules (e.g. only ions with precursor m/z between 150 and 250 

were selected for the first chromatogram; 250 to 350 for the second chromatogram, etc.). 

Unfortunately, many lipids with lower intensity when compared to co-eluting molecules were still 

not selected for fragmentation or provided fragments with very low intensities that could not be 

used for confident identification. In the future, potential biomarkers or molecules of interest could 

be further investigated with targeted analysis to improve their identification; however, this work 

was focused on untargeted, comprehensive lipidomics for relative quantification. 
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The obtained chromatograms were re-calibrated based on the direct infusion of 1.0 mmol/L 

sodium formate calibrant solution in 1:1 water/ isopropanol for the first minute of each injection. 

The data was aligned on MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA) with minimum 

intensity cut-off of 3000 cts; minimum peak length of 6 spectra; m/z tolerance of 5.0 mDa; 

retention time tolerance of 10 s; maximum cluster overlap of 0.25; and maximum isotope pattern 

error of 0.1. Missing values were substituted by recursive extraction, i.e., features detected in at 

least 10% of injections were searched again on the raw data with a minimum peak length of 1 

spectrum and without a minimum intensity cut-off. If not found, the remaining missing values 

were substituted by the minimum group intensity for features detected in at least 50% of within-

group injections, or global minimum intensity for features detected in less than 50% of within-

group injections (A, B, C or QC).  

The lipid classes and subclasses of identified lipids followed the classification system 

proposed in 2005 and updated on 2009 by Fahy et al. under the leadership of the International 

Lipid Classification and Nomenclature Committee (ILCNC).16,17 Lipid nomenclature followed the 

LipidMaps database; however, this work was completed before the recent update that took place 

between 2019 and 2020 (for further details, please refer to Chapter I - 1.3.1.5. Identification and 

nomenclature, p. 25). Hence, lipid subclasses and abbreviations are slightly different from 

Chapters II to IV, as described in Table V-1.  

The MS/MS positive identification was performed with the MS-Dial LipidBlast, Human 

Metabolome Database (HMDB) and MassBank of North America (MoNA) LC-MS/MS libraries 

in combination with MetaboScape 4.0.73,78,79,81–83,109,151 Unfortunately, many features could not be 

matched to MS/MS libraries due to the low intensity of precursor and fragment ions. Furthermore, 

many features were not chosen for fragmentation because of high-intensity co-eluting molecules. 
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The manual investigation of MS/MS spectra was performed for some of the lipids selected during 

statistical analysis; however, not all lipid classes display characteristic fragments that can be used 

to manually confirm their identification. Nevertheless, the manual check of thousands of lipids 

would be unreasonable. Hence, only lipids considered important for the discussion were verified.  

Unidentified features were searched in the LipidMaps database for accurate m/z match 

(putative identification). One of the biggest challenges in lipid identification by mass spectrometry 

is the differentiation of multiple isomers or isobars with similar structures. Each detected feature 

can usually be m/z-matched to multiple isomers or isobars that might belong to different lipid 

subclasses. For this work, a five-tier filtering and scoring approach was employed to restrict the 

number of isomeric and isobaric compounds and select the best identification to determine lipid 

subclasses for normalization, as described in Chapter II (2.2.7. Putative identification of lipids, p. 

50). The scores for each ranking tier were summed and the top choice for each feature was selected 

by the smallest total score, i.e., the isomer or isobar with elution within the expected retention time 

range for the identified subclass; the most likely adduct and isoform; the smallest m/z error; an 

even number of carbons in FA chains; and no extra functional groups except for the expected for 

the subclass. The top choice was used to determine the lipid subclass for normalization, but other 

isomeric or isobaric possibilities that passed the retention time and adduct filters were also kept, 

ordered according to their scores. The position of double bonds and the stereospecific 

configuration of glycerol derivatives were not determined. 

 

 

 



Chapter V 

154 

 

Table V-1. List of lipid subclass abbreviations employed for this study. Lipid nomenclature 

followed the LipidMaps database (2018). 

Subclass Category Abbreviation 

Bis(monoacylglycero)phosphate or 
hemibismonoacylglycerophosphate (lysobisphosphatidic 

acid) 

Glycerophospholipids BMP 

Carnitine or acylcarnitine Fatty acyls Car 

Ceramide Sphingolipids Cer 

Ceramide non-hydroxy fatty acid-sphingosine Sphingolipids Cer-NS 

Cholesterol and derivatives Sterol Lipids Chol 

Cholesteryl ester Sterol Lipids CholE 

Cardiolipin Glycerophospholipids CL 

Acyl Coenzyme A Fatty acyls CoA 

Diacylglycerol Glycerolipids DG 

Diacylglyceryltrimethylhomoserine Glycerolipids DGDMS 

Fatty acid or fatty acid ester Fatty acyls FA 

Diacylglycosylglycerol, monogalactosyldiacylgylcerols 

or digalactosyldiacylgylcerol 
Glycerolipids GDG 

Sulfoquinovosylmonoacylglycerols Glycerolipids GMG 

Hexosylceramide (gluco- and galactosylceramide) Sphingolipids HexCer 

Lactosylceramide Sphingolipids LacCer 

Lysophosphatidic acid Glycerophospholipids LPA 

Lysophosphatidylcholine Glycerophospholipids LPC 

Lysophosphatidylethanolamine Glycerophospholipids LPE 

Lysophosphatidylglycerol Glycerophospholipids LPG 

Lysophosphatidylinositol Glycerophospholipids LPI 

Lysophosphatidylserine Glycerophospholipids LPS 

Lysoglycosphingolipid Glycerophospholipids LSL 

Monoacylglycerol Glycerolipids MG 

N-acyl amine, ethanolamine or taurine Fatty acyls NAA, NAE, NAT 

Phosphatidic acid Glycerophospholipids PA 

Phosphatidylcholine Glycerophospholipids PC 

Phosphatidylethanolamine Glycerophospholipids PE 

Phosphatidylethanolamine-ceramide Sphingolipids PE-Cer 

Phosphatidylglycerol Glycerophospholipids PG 

Phosphatidylinositol or phosphatidylinositol-

monophosphate 
Glycerophospholipids PI 

Phosphatidylinositol-ceramide, Mannosyl-

phosphatidylinositol-ceramide 
Sphingolipids PI-Cer 

Phosphatidylserine Glycerophospholipids PS 

Sphingomyelin Sphingolipids SM 
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Subclass Category Abbreviation 

Sphingosine 1-phosphate Sphingolipids Sph 

Sphingosine or sphingoid base Sphingolipids Sph 

Sulfoquinovosyldiacylglycerols Glycerolipids SQDG or SulfDG 

Sulfatide (3-O-sulfogalactosylceramide) Sphingolipids Sulf 

Triacylglycerol Glycerolipids TG 

Wax ester Fatty acyls WE 

 

We employed a mixture of 14 deuterated lipid standards for internal normalization of the 

identified lipids (Table II-1, p. 45). The normalization procedure chosen for lipidomics in this work 

followed the Lipidomics Standards Initiative guidelines (https://lipidomics-standards-

initiative.org). The LC-MS separation gradient was optimized to ensure that lipids belonging to 

the same class eluted in a relatively narrow retention time window, while different classes are 

separated to reduce ion suppression and lipid aggregation as much as possible (Appendix B - 

Figure B- 1). The class of each identified lipid was determined and matched to one of the internal 

standards for normalization according to subclass, structural similarity and retention time range. 

Hence, lipids that belong to the same class were normalized by a deuterated internal standard that 

shares structural similarities and elutes in a comparable matrix. The intensity of each identified 

lipid was divided by the intensity of the matched internal standard to obtain normalized intensity 

ratios. This widely used approach for normalization of lipidomics data allows the correction of ion 

suppression and small variations that may occur during sample preparation.4,12,152,180 A detailed 

discussion on normalization strategies for lipidomics is available in Chapter I (1.3.1.6. Ion 

suppression and normalization approaches, p. 29). Normalized intensities, i.e., the intensity of 

each lipid (peak height) divided by the intensity of the matched internal standard, were auto-scaled 

and filtered by a relative standard deviation (RSD) smaller than 30% for QC injections before 
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statistical analysis. Features that were not identified as lipids by either accurate mass or MS/MS 

were not employed for statistical analysis.  

 

5.2.5 Metabolomics: amine and phenol-containing metabolites 

After LLE of the first lung lobe, the aqueous phase was employed for DnsCl labeling of 

amine and phenol groups.1,181 Synthesis of 13C-dansyl chloride (DnsCl) was performed as 

previously published.182–184 The chemical isotope labeling procedure employed for this work has 

been previously described in several publications.1,181,184–186 The accuracy and precision of the 

techniques for relative quantification of metabolites were also previously evaluated.181,184,185,187  

Briefly, aliquots of 25.0 µL of the aqueous layer obtained after LLE of the first lung lobe 

were mixed with 12.5 µL of acetonitrile, 12.5 µL of 250 mM NaHCO3/Na2CO3 aqueous buffer 

(pH 9.4) and 25.0 µL of 18 mg/mL DnsCl in acetonitrile. After 45 min incubation at 40°C, samples 

were cooled down to 4°C and vortexed with 5.0 µL of 250 mM NaOH in water, followed by 10 

min incubation at 40°C to quench the labeling reaction. Finally, the pH of the labeled samples was 

adjusted with 25.0 µL of 425 mM formic acid in 1:1 acetonitrile/ water. Three aliquots of each 

sample were labeled with 12C-DnsCl, whereas a pooled mixture composed of 25% of the total 

volume of the aqueous layer for each sample was labeled with 13C-DnsCl. The total dansyl-labeled 

metabolite concentration was determined by UHPLC-UV (Waters Acquity UPLC with a 

photodiode array detector, Waters Corporation, Milford, MA, USA) with an Agilent Kinetex C18 

column (50 X 2.1 mm, 1.7 µm, Agilent Technologies, Santa Clara, CA, USA), using a 6 min 

gradient elution (0 min – 0% MPB; 1 min – 95% MPB; 2.5 min – 95% MPB; 3.0 min – 0% MPB; 

6 min – 0% MPB), with MPA: 0.1% formic acid in 95:5 water/ acetonitrile, MPB: 0.1% formic 

acid in 95:5 acetonitrile/ water; 4.0 µL injection; 450 µL/min; 30°C; and UV absorbance detection 
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at 338 nm.181 A calibration curve was previously obtained with a mixture of 17 amino acid 

standards (Amino Acid Standard, Sigma Aldrich, St. Louis, MO, USA), labeled with 12C-DnsCl 

using the same procedure. The absorbance at the chosen wavelength is mostly related to the dansyl 

group and the gradient was developed to fully co-elute all labeled metabolites, allowing the 

accurate estimation of total metabolite concentrations by the calibration curve. The individually 

12C-DnsCl labeled samples were mixed with the 13C-DnsCl labeled pool in a 1:1 ratio of total 

metabolite concentration for normalization. The performance of the normalization procedure using 

total metabolite concentrations was previously assessed elsewhere.181,185,188 Labeled samples were 

kept at 4°C in polypropylene inserts placed in amber vials capped with PTFE-lined septa for a 

maximum of 5 days before the injection. 

LC-MS analysis for DnsCl-based metabolomics was performed employing: MPA - 0.1% 

formic acid in 95:5 water/ acetonitrile; MPB - 0.1% formic acid in 95:5 acetonitrile/ water; gradient 

elution (0 min – 80% MPA, 3.5 min – 65% MPA, 18 min – 35% MPA, 24 min – 1% MPA); 180 

µL/min; 30 °C; 10 min re-equilibrium (0 min – 1% MPA, 2 min – 1% MPA, 2.5 min – 80% MPA, 

10 min – 80% MPA); and ESI-QToF detection (capillary voltage of 4500 V; endplate offset of 500 

V, nebulizer gas pressure of 1.0 bar, dry gas flow rate of 8.0 L/min; dry temperature of 230°C; 

spectra acquisition rate of 1 Hz, m/z range of 220 to 1000 Da). The obtained chromatograms were 

re-calibrated based on the direct infusion of 1.0 mmol/L sodium formate calibrant solution in 1:1 

isopropanol/ water (v/v) for the first minute of each injection using Compass DataAnalysis 4.4 

(Bruker Daltonics, Billerica, MA, USA). Each chromatogram was exported as a comma-separated 

value (CSV) file before alignment using our in-house developed script IsoMS Shiny 0.3.1 

(www.mycompoundid.org).178,186 Peak pairs, i.e., the 12C-labeled metabolites from individual 

samples and the co-eluting 13C-labeled metabolites from the pool, only differ in two carbon atoms 
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(two 12C or two 13C atoms in the dansyl group); hence, they co-eluted perfectly. The intensity of 

each 12C-labeled metabolite from the individual samples was divided by the intensity of the 

corresponding 13C-labeled metabolite from the pool to obtain normalized intensity ratios. Since all 

samples were normalized to the same metabolite concentration with the pooled mixture, the 13C-

labeled pool acted as an “internal standard” mixture for each detected metabolite, ensuring 

normalization of ion suppression and other small differences that may occur during sample 

analysis. 

Definitive identification of metabolites was performed with the MyCompoundID retention 

time library (www.mycompoundid.org), based on m/z tolerance of 10 ppm and retention tolerance 

of 30 s.186,189,190 The non-identified 12C/13C peak pairs were searched on the MyCompoundID MS 

library for putative identification by mass-match (neutral mass tolerance of 5.0 mDa). The 

MyCompoundID library is composed by human endogenous metabolites and their predicted 

metabolic products after one or two common metabolic reactions. For this work, we considered 

identifications of endogenous metabolites without any reactions (endogenous metabolite standards 

in the MyCompoundID library identified without any modifications) and after one predicted 

metabolic reaction, i.e., the product of a metabolic reaction involving one of the endogenous 

metabolites in the MyCompoundID library, e.g. hydrolysis or oxidation. 191,192 

 

5.2.6 Metabolomics: carboxylic acid-containing metabolites 

The first lung lobe of each animal was used for lipidomics and dansyl chloride labeling of 

amine and phenol groups. The second lung lobe (80 to 150 mg) was employed for p-

dimethylaminophenacyl (DmPA) bromide labeling of carboxylic acid groups. Syntheses of 12C- 

and 13C-DmPA were performed as previously published.182–184 Samples were homogenized in a 
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mixture of ice-cold water (0.80 µL / mg of tissue), HCl 6.0 mol/L (0.20 µL / mg of tissue) and 

saturated NaCl (0.20 µL / mg of tissue) for three 30 s intervals, followed by 30 s intervals in an 

ice bath. The homogenate was immediately extracted with ethyl acetate (6.0 µL / mg of tissue), 

vortexed for 30 s and centrifuged for 10 min at 4°C (10,000 rpm). The organic layer, i.e., 85.0% 

of the initial ethyl acetate volume, was employed for the labeling of carboxylic acid groups with 

DmPA bromide, following a previously published method with minor modifications for tissue 

samples.183 Briefly, the organic layer obtained after homogenization and LLE with ethyl acetate 

was vortexed with 180 mg/mL triethylamine in acetonitrile (0.80 µL/mg of tissue) and evaporated 

to dryness on a SpeedVac. The residue was resuspended in 20 mg/mL triethylamine in acetonitrile 

(1.20 µL/mg of tissue). Three aliquots of each sample were individually and randomly labeled 

with 12C-DmPA, while a pooled mixture was prepared with 45.0 µL of each sample and labeled 

with 13C-DmPA. Each sample aliquot was vortexed with 15.0 µL of 20.0 mg/mL 12C- or 13C-

DmPA bromide in acetonitrile and incubated at 85°C for 55 min. After cooling down to room 

temperature, the labeled samples were diluted with 30.0 µL of 1:1 MPA/MPB (v/v). Each 

individually labeled sample was mixed with the 13C-DmPA-labeled pool in a 1:1 ratio (v/v) before 

LC-MS analysis. Labeled samples were kept at 4°C in polypropylene inserts placed in amber vials 

capped with PTFE-lined septa for a maximum of 5 days before injections.  

The labeled samples were analyzed by RPLC-ESI-QTOF-MS (positive ionization). LC-

MS analyses were performed with MPA: 0.1% formic acid in 95% water/ acetonitrile; MPB: 0.1% 

formic acid in 95:5 acetonitrile/ water; 6.0 µL injection; gradient elution (0 min – 70% MPA; 4 

min – 70% MPA; 18 min – 10% MPA; 30 min – 1% MPA; 40 min – 1% MPA); 10 min re-

equilibrium (0 min – 1% MPA; 2 min – 1% MPA, 2.5 min – 70% MPA, 10 min – 70% MPA); 

180 µL/min; 30°C; and ESI-QToF detection (capillary voltage of 4500 V; endplate offset of 500 
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V, nebulizer gas pressure of 1.0 bar, dry gas flow rate of 8.0 L/min; dry temperature of 230°C; 

spectra acquisition rate of 1 Hz, and m/z range of 150 to 1000 Da). The obtained chromatograms 

were re-calibrated based on the direct infusion of 1.0 mmol/L sodium formate calibrant solution 

in 1:1 isopropanol/ water (v/v) for the first minute of each injection using Compass DataAnalysis 

4.4 (Bruker Daltonics, Billerica, MA, USA). Each chromatogram was exported as a comma-

separated value (CSV) file before alignment using our in-house developed script IsoMS Shiny 

0.3.1 (www.mycompoundid.org).186 Peak pairs were selected as a 12C- DmPA labeled metabolite 

from the individual sample and the corresponding 13C-labeled metabolite from the pooled mixture. 

Since the 12C- and 13C-labeled metabolites only differ in two isotope-labeled carbon atoms, they 

co-elute perfectly. The normalization procedure was similar to the description for dansyl chloride 

labeling, i.e., normalized intensities were calculated by dividing the intensity of each 12C-labeled 

peak from the individual sample by the corresponding 13C-labeled peak from the pool. The 13C-

labeled metabolites were used as internal standards for each sample, ensuring normalization of ion 

suppression effect and other small differences that may occur during sample injection. Definitive 

identification of metabolites was performed with our recently extended MyCompoundID retention 

time library (www.mycompoundid.org), as described for metabolomics of amine and phenol-

containing metabolites. 

 

5.2.7 Statistics 

Statistical analysis and pathway analysis were performed using MetaboAnalyst 4.0 

(https://www.metaboanalyst.ca).153 Statistical tests were based on five biological replicates for 

each group (N=5). Metabolomics experiments included labeling triplicates for each labeling group, 

while lipidomics statistical models had LC-MS injection duplicates for each ionization polarity. 
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The PLS-DA models were evaluated by cross-validation (R2 and Q2) and permutation tests (p for 

1000 permutations). Student’s t-tests, Volcano plots and ANOVA were performed with non-

parametric tests with unequal variances and p value adjusted for false-discovery rate (p). 

Metabolites and lipids were considered significantly altered for p <0.05 and fold-change (FC) ≤1.5 

or ≥0.67. Pathway search was based on the Human Metabolome Database (HMDB, 

http://www.hmdb.ca) ID descriptors with the Kyoto Encyclopedia of Genes and Genomes database 

(KEGG, https://www.genome.jp/kegg/pathway.html) and Small Molecule Pathway Database 

(SMPDB, http://smpdb.ca).79,81,109,151,153,193–195  

 

5.3 Results and Discussion 

5.3.1. Lipidomics 

LC-MS lipidomic analysis of healthy control mice (group A), ∆F/TriAdj-immunized, 

RSV- challenged animals (group B) and non-immunized, RSV-challenged mice (group C) (Figure 

V-1, N = 5) resulted in 8377 detected features (92.9% with relative standard deviation - RSD <30% 

for QC injections), divided into 7883 features for positive ionization, 494 for negative ionization 

and 140 features commonly detected for both polarities (m/z tolerance of 10.0 ppm and retention 

time tolerance of 10 s). We putatively identified 354 lipids by MS/MS and 3723 lipids by mass-

match (m/z error ≤5.0 mDa, Supp. Table 14). Eighteen features were also positively identified as 

internal standards (Table II-1), i.e., twelve deuterated internal standards were detected for positive 

ionization with m/z error ≤2.5 ppm or 1.8 mDa, while six standards with m/z error ≤3.1 ppm or 

2.5 mDa were obtained for negative ionization. Representative chromatograms obtained for a 

quality control injection (QC, a pool of extracts from all samples), blank extracts (water instead of 

sample and methanol instead of internal standard mix) and each studied group are shown in 
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Appendix B - Figure B- 1, while the subclass distribution of identified lipids is provided in Figure 

V-2. 

 

 

Figure V-1. Experimental design employed for lipidomics and metabolomics of rat lung tissue. 

Group A: five healthy control mice (not immunized or RSV-challenged, red); Group B: five 

immunized, RSV-challenged animals (green); Group C: five non-immunized, RSV-challenged 

mice (blue). 
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Figure V-2. Subclass distribution for putatively (m/z match, MS) and positively (MS/MS) 

identified lipids. (A) Number of identified lipids divided into identification level: positive 

(MS/MS, red) or putative (mass-match, blue). (B) Number of identified lipids divided into positive 

(green) and negative ionization (orange). Abbreviations to lipid subclasses are provided in Table 

V-1. 
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By applying non-parametric Analysis of Variance (ANOVA) to the three groups, we found 

2316 significantly altered lipids with p value adjusted for false-discovery rate (p) <0.05 (Appendix 

B - Figure B- 2, Supp. Table 15). The most affected lipid subclasses included phosphatidylcholines 

(PC), phosphatidylethanolamines (PE), diacylglycerols (DG), phosphatidylserines (PS), 

phosphatidylglycerols (PG) and triacylglycerols (TG, Figure V-3A). A comprehensive list of 

abbreviations employed for lipid identifications and subclasses is provided in Table V-1. Boxplots 

for 10 of the most significantly altered lipids are displayed in Figure B- 3. 

 

 

Figure V-3. Statistical analysis for lipidomics of lung tissue for healthy controls (group A, red); 

immunized, RSV-challenged animals (group B, green); and non-immunized, RSV-challenged 
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mice (group C, blue). (A) Subclass distribution of significantly altered lipids with p <0.05 by non-

parametric ANOVA (Kruskal-Wallis test). (B) PCA score plot with quality control (QC, cyan) 

injections. (C) PLS-DA score plot built with five components, resulting in R2 of 0.9980, Q2 of 

0.9663 and p=0.002 for 1000 permutations. Abbreviations to lipid subclasses are provided in Table 

V-1. 

 

The PCA score plot in Figure V-3B displays all QC injections in a tightly clustered group, 

indicating good technical reproducibility of the employed methods. The PCA score plot without 

QCs is shown in Figure B- 4 with circled duplicate injections for each sample to emphasize their 

proximity. The healthy controls (A, red) and non-immunized, RSV-challenged (C, blue) mice are 

separated on the first principal component (PC1), whereas the ∆F/TriAdj-immunized group (B, 

green) is overlayered with the healthy controls (A, red), with a slight separation only in the second 

principal component. We didn’t expect a full separation between the three groups in the PCA score 

plot due to the high complexity of the dataset, but the observed trend demonstrates the efficacy of 

the formulation, as well as the suitability of the employed methods. The groups were fully 

separated by PLS-DA (Figure V-3C), indicating that the ∆F/TriAdj formulation and RSV 

challenge profoundly affect the lipid composition of lung tissue. All samples were correctly 

classified by a Random Forest model with 20 predictors and 1000 trees, with out-of-bag (OOB) 

error of zero.  

The healthy control mice were compared to the non-immunized, RSV-challenged mice 

(A/C) using a Volcano plot (fold change, FC, versus p for non-parametric Student’s t-test corrected 

for false-discovery rate, p). The Volcano plot for healthy versus non-immunized animals, along 

with PCA and PLS-DA score plots, are shown in Appendix B - Figure B- 5. Compounds were 
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considered significantly altered for FC ≥1.5 or ≤0.67 and p <0.05 A total of 1423 lipids were 

significantly altered (Figure V-4A; Supp. Table 15), demonstrating the dramatic change in the lung 

lipidic composition when non-immunized animals were compared to healthy controls. RSV 

challenge without prior immunization resulted in increased normalized intensities (i.e., the 

intensity of each identified lipid divided by the intensity of an internal standard belonging to the 

same or the most similar lipid subclass) for 94.1% of the significantly altered lipids in lung tissue. 

We have previously reported a higher influx of immune cells in the lungs of non-immunized mice 

compared to immunized or healthy control animals, which corroborates our current observations. 

1 The phosphatidyl glycerolipid and acyl glycerol metabolisms were profoundly affected by the 

virus. 
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Figure V-4. Classes of significantly altered lipids (p <0.05 and FC ≥1.5 or ≤0.67) for the binary 

comparisons between (A) healthy control versus non-immunized, RSV-challenged mice (A/C); 

(B) immunized versus non-immunized, RSV-challenged mice (B/C); and (C) healthy control 

versus immunized, RSV-challenged mice (A/B). Abbreviations of lipid classes are described in 

Table V-1 (p. 154). 
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The non-immunized, RSV-challenged mice were also compared to immunized animals 

(B/C) by a Volcano plot, resulting in 1053 significantly altered lipids (Figure V-4B; Supp. Table 

15). The Volcano, PCA and PLS-DA plots are shown in Figure B- 6. When compared to the 

immunized mice (group B), 92.5% of the significantly altered lipids displayed higher normalized 

intensities for the non-immunized mice (FC B/C ≤0.67, 974 lipids). Overall, we have observed 

that RSV challenge without prior immunization led to significantly higher levels of lipids when 

compared to immunized mice or healthy controls. Immunization with the ∆F/TriAdj formulation 

seems to mitigate the striking lipidic changes caused by RSV challenge. A total of 647 lipids were 

affected for the non-immunized animals compared to both the healthy controls or the immunized 

group (A/C and B/C), including 637 with significantly smaller normalized intensities for both 

(Figure V-5A and C). The Venn diagram on Figure V-5A emphasizes the effect of immunization: 

the comparison between non-immunized animals and healthy controls (A/C) had 574 lipids 

uniquely altered, i.e., related to RSV challenge, but modulated by the ∆F/TriAdj formulation. 
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Figure V-5. Venn diagrams and bar plots for binary comparisons of healthy control versus non-

immunized, RSV-challenged mice (A/C); immunized versus non-immunized, RSV-challenged 

mice (B/C); and healthy control versus immunized, RSV-challenged mice (A/B) for (A, C) 

significantly altered lipids (FC ≥1.5 or ≤0.67 and p <0.05); and (B, D) significantly altered amine, 

phenol and carboxylic acid-containing metabolites. The Venn diagrams (A and B) include all 

significantly altered compounds, whereas the bar plots (C and D) separates them according to fold 

change (FC) ≤0.67 (purple) or FC ≥1.5 (green). No molecules displayed opposite FC for the A/B 

and A/C comparisons, i.e., all the significantly altered lipids and metabolites had either FC ≤0.67 

or FC ≥1.5 for both the immunized and non-immunized groups. 
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The healthy control mice were further compared to the immunized, RSV-challenged 

animals (A/B), and 519 lipids were significantly altered (Figure V-4C; Supp. Table 15). The 

Volcano, PCA and PLS-DA plots are shown in Figure B- 7. The number of altered lipids was much 

smaller than what was found for the comparison of healthy controls with non-immunized, RSV-

challenged mice, confirming that the ∆F/TriAdj formulation modulates the effect of RSV 

challenge (Figure V-5A). Amongst the 519 significantly altered lipids, 65.5% displayed higher 

normalized intensities for the immunized group (Figure V-4C). However, 64.7% of the lipids 

altered for the immunized animals (group B) were also significantly affected for the non-

immunized group (C), suggesting a small effect of the ∆F/TriAdj formulation upon these lipids 

(Figure V-5C). Still, the immunized animals had the least amount of significant changes when 

compared to healthy controls (A/B, Figure V-5A), emphasizing the modulation of the ∆F/TriAdj 

formulation.  

A total of 183 lipids displayed significantly higher normalized intensities for the 

immunized group compared to healthy controls (A/B), but not for the non-immunized mice (A/C); 

hence related only to immunization. The positively identified bis(monoacylglycero)phosphate 

(BMP) 18:1_18:1, a common minor constituent of animal tissues, is an example of the significantly 

increased lipids for the immunized group but not for the non-immunized mice. BMPs stimulate 

the activity of lysosomal lipid-degrading enzymes, including acid sphingomyelinase, acid 

ceramidase and acid lipases. Accumulation of BMP has been previously linked to lipid storage 

disorders and dysregulation of cholesterol homeostasis. 168 Such alterations possibly introduced by 

immunization must be taken into consideration for future vaccine developments.  
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5.3.2. Metabolomics 

The chemical isotope labeling of amine and phenol groups by dansyl chloride (DnsCl) 

resulted in the detection of 2600 peak pairs. The PCA score plot obtained for the amine and phenol-

containing metabolites can be observed in Figure V-6. The MyCompoundID retention time library 

resulted in the identification of 120 unique metabolites by mass and retention time, while 2021 

metabolites were identified by mass-match (m/z error ≤5.0 mDa, Supp. Table 16).190–192 

 

 

Figure V-6. PCA score plot obtained for dansyl chloride labeling of amine and phenol-containing 

metabolites from lung tissue obtained from for healthy controls (group A, red); immunized, RSV-

challenged animals (group B, green); and non-immunized, RSV-challenged mice (group C, blue). 

 

The chemical isotope labeling of carboxylic acid groups with p-(dimethylamino)phenacyl 

(DmPA) bromide resulted in the detection of 3781 peak pairs, amongst which 47 were uniquely 

identified and 3061 were identified by mass-match (m/z error ≤5.0 mDa, Supp. Table 16). The 
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PCA score plot in Appendix B - Figure B- 8 displays all QC injections in a tightly clustered group, 

demonstrating good reproducibility for the employed method. 

The results for DnsCl labeling were combined with the DmPA data to generate one unique, 

comprehensive metabolite list containing 6381 peak pairs. The PCA score plot obtained after 

combining the datasets is shown in Figure V-7A, with QC injections and labeling triplicates tightly 

clustered together (Appendix B - Figure B- 9). The complexity of the dataset containing 6381 peak 

pairs prevented a complete separation between the three studied groups by the simple PCA model; 

however, the healthy controls and immunized animals are fully overlayered, whereas the non-

immunized group shows a slight separation trend. Nevertheless, a PLS-DA model displayed 

excellent separation (Figure V-7B), while a Random Forest model with 7 predictors and 500 trees 

resulted in outstanding classification performance, with an OOB error of zero. The non-parametric 

ANOVA analysis had 928 significant peak pairs for the three studied groups (p <0.05) (Appendix 

B - Figure B- 10; Supp. Table 17). 
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Figure V-7. PCA (A) and PLS-DA (B) score plots obtained for the combination of the DnsCl with 

the DmPA results for lung tissue samples from healthy control (A, red); immunized, RSV-

challenged (B, green); and non-immunized, RSV-challenged (C, blue) mice. The PLS-DA model 

with 4 components resulted in R2 of 0.9945, Q2 of 0.9512 and p=0.005 (1000 permutations). 

 

Univariate binary comparisons were also evaluated through Volcano plots. First, the 

healthy control mice were compared to the non-immunized, RSV-challenged mice (A/C). A total 

of 406 peak pairs were significantly altered (Figure V-8A; Supp. Table 17). The PCA and PLS-

DA score plots are presented in Appendix B - Figure B- 11. Interestingly, we found that lipids and 

metabolites were not affected to the same extent by RSV challenge. While 94.1% of the 

significantly altered lipids for the non-immunized animals had higher normalized intensities when 

compared to healthy controls (Figure V-4A), only 48.8% of peak pairs for significantly altered 

metabolites displayed the same behavior (FC A/C ≤0.67). 
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Figure V-8. Volcano plots for metabolites containing amine, phenol and carboxylic acid groups 

for the binary comparisons between (A) healthy control versus non-immunized, RSV-challenged 

mice (A/C); (B) immunized versus non-immunized, RSV-challenged mice (B/C); and (C) healthy 

control versus immunized, RSV-challenged mice (A/B). Significant peak pairs are indicated in red 

(FC ≤0.67 or ≥1.5 and p <0.05), while non-significant peak pairs are in blue. 

 

The non-immunized, RSV-challenged mice were also compared to immunized, RSV-

challenged animals (B/C) by Volcano plot, resulting in 177 significantly altered peak pairs (Figure 

V-8B; Supp. Table 17). The PCA and PLS-DA score plots are presented in Figure B- 12. While 

most significantly altered lipids had higher normalized intensities for the non-immunized group 
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(FC B/C ≤0.67, Figure V-4B), 81.9% of the significant peak pairs for metabolomics displayed 

higher intensities for the immunized animals (FC B/C ≥1.5). A total of 35 peak pairs were similarly 

affected for the non-immunized animals compared to both the healthy controls and immunized 

mice (A/C and B/C, Figure V-5B and D). 

The healthy controls were further compared to the immunized, RSV-challenged mice 

(A/B), and 142 peak pairs were significantly altered (Figure V-8C, Figure B- 13, Supp. Table 17). 

Most of them had higher normalized intensities for the immunized group. 23 peak pairs resulted 

in FC ≥1.5 for both the immunized and non-immunized mice compared to healthy controls (A/B 

and A/C), while 56 had FC ≤0.67 (Figure V-5B and D); hence, these 79 metabolites were not fully 

modulated by immunization. No peak pairs displayed opposite fold changes for the A/B and A/C 

comparisons.  

Analogous to lipidomics, the number of altered peak pairs for the immunized animals 

compared to healthy controls was smaller than what was found for the non-immunized group, once 

again emphasizing the reduced metabolic alterations of RSV challenge after immunization 

(Appendix B - Figure B- 14). However, 63 peak pairs were significantly altered for the immunized 

animals but not for the non-immunized group, indicating immunization-related alterations that 

cannot be explained by RSV challenge. For example, the positively identified 3-

hydroximethylglutaric acid (FC A/B of 0.41), an intermediate in the leucine degradation pathway, 

was significantly increased for the immunized animals, but not for non-immunized mice compared 

to healthy controls. This observation must be carefully noticed for further vaccine developments, 

as high levels of organic acids in tissue can lead to metabolic acidosis. 
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5.3.3. Reduction of metabolic changes caused by RSV after vaccination 

The untargeted lipidomics approach resulted in more significantly altered molecules than 

the chemical isotope labeling of metabolites, i.e., 60.2% of the lipids employed for statistics were 

significant in the non-parametric ANOVA test, whereas only 18.9% of the metabolites showed 

significant changes. This observation may be correlated with the higher influx of immune cells in 

the lungs of non-immunized animals when compared to immunized mice and healthy controls, as 

described by Sarkar et al.1 The control versus non-immunized, RSV-challenged mice (A/C) 

comparison led to the highest number of significantly altered metabolites and lipids, while 

immunized, RSV-challenged mice (A/B) had the lowest number, showcasing the ∆F/TriAdj 

modulation (Appendix B - Figure B- 14A). The observed changes for the comparisons of 

immunized and non-immunized mice with healthy controls are caused by a combination of 

immune response and viral replication. We have previously shown that there is increased and 

sustained inflammation in the lungs of the non-immunized, challenged group and controlled 

inflammation in the immunized group.1 Our previous work showed that, at day 7 post-RSV-

challenge (when lungs were collected for this study), the numbers of inflammatory cells were 

higher in the non-immunized group than in the immunized mice. Pulmonary homeostasis seemed 

to be restored for the immunized group seven days after RSV challenge. 1 For this work, we have 

observed increased levels of lipids for the non-immunized group compared to healthy controls 

(A/C), but the same was not valid for the immunized group (A/B), corroborating our previous 

findings. 

336 lipids and 79 metabolites were altered for both the immunized and non-immunized 

mice compared to healthy controls (A/B and A/C). 35 lipids and 23 metabolites showed lower 

normalized intensities after RSV challenge (FC ≥1.5, p <0.05 for A/B and A/C), while 301 lipids 
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and 56 metabolites had higher normalized intensities, regardless of vaccination (Figure B- 14). 

Such compounds were not regulated by the ∆F/TriAdj formulation, including the positively 

identified kynurenine, itaconic acid, mesaconic acid and several dipeptides, 

bis(monoacylglycero)phosphates (BMP), phosphatidylcholines (PC), phosphatidylglycerols (PG) 

and phosphatidylserines (PS). Itaconic and mesaconic acid are small, branched fatty acids involved 

in lipid metabolism, which can be directly related to the high number of significantly altered lipids 

found in this study. Furthermore, dysregulation of the kynurenine pathway may be triggered by 

inflammatory cytokines as an important part of the immune response. The result is a systematic 

upregulation when the immune system is activated, leading to the depletion of tryptophan. 

Although kynurenine displayed higher intensity ratios for both the immunized and non-immunized 

animals, other metabolites involved in its pathway were regulated by immunization, e.g. 

tryptophan and 5-hydroxyindoleacetic acid. In fact, 1087 lipids and 327 metabolites that were 

significantly altered for the non-immunized group were regulated in the immunized mice, 

including positively identified fatty acids, ceramides, acylglycerols, PCs, PEs, PSs, tryptophan, 5-

hydroxyindoleacetic acid, serotonin, cholic acid and hypoxanthine. The comparison between 

immunized and non-immunized, RSV-challenged animals (B/C) resulted in 974 lipids and 32 

metabolites with significantly higher normalized intensities for the non-immunized group (FC B/C 

≤0.67, p <0.05), while 79 lipids and 145 metabolites showed significantly lower normalized 

intensities (FC B/C ≥1.5, p <0.05) (Figure B- 14). 

Several compounds related to immune response and lung function were found to be 

significantly altered for the non-immunized, RSV-challenged mice (A/C), but not for the 

immunized animals compared to healthy controls (A/B, Appendix B - Figure B- 14). Dipalmitoyl-

phosphatidylcholine, also known as PC(16:0/16:0) or DPPC, was positively identified by MS/MS 
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(Figure V-9A). DPPC had significantly higher normalized intensities for the non-immunized group 

compared to control animals (FC(A/C)=0.65, p=0.001), but not for the immunized group 

(FC(A/B)=0.90, p=0.7, Figure V-9A). It was also significant for the comparison between 

immunized and non-immunized, RSV-challenged mice, emphasizing the ∆F/TriAdj modulation 

(FC(B/C)=0.72, p=0.02). DPPC is the major constituent of the pulmonary surfactant layer, the first 

point of interaction between the virus and the host innate immune system.15,196,197 Even though the 

mechanisms of the immune response in pulmonary surfactant are relatively well-characterized, 

secretion and regulation of the lipid fraction are still not well known.198 Surfactant degradation has 

been previously linked to higher susceptibility to lung inflammation and infection, while its 

synthesis and distribution is supposedly impaired during RSV infection due to damage to alveolar 

type II cells.197–199 Interestingly, DPPC normalized intensities were increased in lung tissue for the 

non-immunized, RSV-challenged group when compared to both the immunized animals and 

healthy controls. Palmitic acid, a substrate for the synthesis of DPPC, was also positively identified 

with significantly higher normalized intensities for the non-immunized group (FC B/C of 0.58, 

p=0.01), along with PC(30:0) and PC(32:1), minor components of the pulmonary surfactant layer 

(Figure V-9A). Even though PC(30:0) and PC(32:1) were not identified by MS/MS match with 

the employed databases, the putative identifications were manually confirmed by the characteristic 

neutral loss of 183.066 Da for phosphatidylcholines, as well as neutral losses corresponding to 

FA(14:0) and FA(16:0) for PC(30:0); and FA(16:0) and FA(16:1) for PC(32:1). Hence, we have 

found indications that the immunization by the ∆F/TriAdj formulation may help to maintain the 

integrity of the pulmonary surfactant upon RSV challenge.  
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Figure V-9. (A) Boxplots for lipids involved in the composition of the lung surfactant layer. (B) 

Linoleic acid and alpha-linolenic acid metabolism. Group A (control) is displayed in red; B 

(immunized, RSV-challenged) in green, and C (non-immunized, RSV- challenged) in blue. The 

displayed p values were obtained by non-parametric ANOVA for normalized, auto-scaled 

intensities. *Positive identification (MS/MS). 
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Pathway analysis was performed with the positively identified lipids (MS/MS match) and 

metabolites (mass and retention time match). Unfortunately, pathways that include specific lipid 

molecules are not yet well characterized. Furthermore, matching multiple complex lipids and 

metabolites to pathways requires the use of common database identifiers, but the currently 

available databases are limited and a high number of positively identified compounds could not be 

used. The 186 positively identified lipids (MS/MS) and 163 metabolites registered on the Human 

Metabolome Database (HMDB, Supp. Table 18) were employed for pathway analysis using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Small Molecule Pathway Database 

(SMPDB).79–81,109,153,193–195,200 We employed MetaboAnalyst 4.0 to compare (1) healthy controls 

and non-immunized, RSV-challenged animals (A/C, Figure V-10A); (2) immunized and non-

immunized, RSV-challenged animals (B/C, Figure V-10B); and (3) healthy controls and 

immunized, RSV-challenged animals (A/B, Figure V-10C).153 A total of 79 pathways had at least 

one matched metabolite or lipid (Table V-2). Forty-four pathways displayed p <0.05 for 

enrichment analysis of at least one of the three studied comparisons, viz., significant coordinated 

changes in normalized intensities of matched metabolites and lipids.200 However, only 7 showed 

pathway impact, the sum of importance of all matched metabolites and lipids within the pathway, 

≥0.5, including amino acid-related biosynthesis and metabolism (alanine, aspartate, glutamate, 

glutamine, phenylalanine, tyrosine, tryptophan, valine, leucine and isoleucine), linoleic acid 

metabolism and phosphatidylethanolamine biosynthesis (Table V-2).  
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Table V-2. Metabolic pathways matched for the 349 positively identified lipids (MS/MS) and metabolites (retention time library) with 

HMDB IDs for binary comparisons of the studied groups using MetaboAnalyst 4.0. Group A: healthy controls; group B: immunized, 

RSV-challenged animals; group C: non-immunized, RSV-challenged animals. 

Table V-2 

Pathway name Source Impact 

Match 

status 

(A/B) 

p (A/B) 

Match 

status 

(A/C) 

p (A/C) 

Match 

status 

(B/C) 

p (B/C) 

Alanine, aspartate and glutamate 

metabolism 
KEGG 0.716 7/24 9.66×10-3 7/24 3.82×10-3 7/24 6.01×10-1 

Alpha-linolenic acid and linoleic acid 

metabolism 
SMPDB 0.179 2/17 2.03×10-1 2/17 5.48×10-3 2/17 6.30×10-2 

Alpha-linolenic acid metabolism KEGG 0.000 1/9 3.56×10-2 1/9 6.60×10-3 1/9 2.44×10-1 

Aminoacyl-tRNA biosynthesis KEGG 0.129 16/69 3.31×10-2 16/69 5.68×10-3 16/69 2.68×10-1 

Ammonia recycling SMPDB 0.057 4/25 2.43×10-3 4/25 2.56×10-4 4/25 9.02×10-1 

Arachidonic acid metabolism KEGG 0.000 2/65 2.31×10-2 1/36 6.60×10-3 1/36 2.44×10-1 

Arginine and proline metabolism KEGG 0.304 7/44 1.89×10-2 7/44 3.06×10-3 7/44 1.85×10-1 

Aspartate metabolism SMPDB 0.800 3/34 5.57×10-4 3/34 2.94×10-4 3/34 9.30×10-2 

Beta-alanine metabolism KEGG 0.000 2/26 5.82×10-3 1/17 3.82×10-3 1/17 9.11×10-1 

Betaine metabolism SMPDB 0.000 1/18 4.07×10-1 1/18 2.05×10-1 1/18 4.91×10-2 

Bile acid biosynthesis SMPDB 0.019 5/60 4.53×10-2 5/60 3.76×10-2 5/60 7.95×10-2 

Biosynthesis of unsaturated fatty acids KEGG 0.000 10/42 3.72×10-1 10/42 1.82×10-3 10/42 1.05×10-2 

Biotin metabolism KEGG 0.000 1/5 4.13×10-1 1/5 5.61×10-1 1/5 3.46×10-1 

Butanoate metabolism KEGG 0.029 3/22 2.78×10-1 3/22 2.38×10-1 3/22 7.92×10-1 

Butyrate metabolism SMPDB 0.000 1/16 4.28×10-1 1/16 8.81×10-1 1/16 4.50×10-1 

Carnitine synthesis SMPDB 0.000 2/16 4.85×10-1 2/16 8.51×10-1 2/16 4.21×10-1 

Catecholamine biosynthesis SMPDB 0.000 1/14 1.20×10-1 1/14 6.14×10-1 1/14 3.82×10-1 

Citrate cycle (TCA cycle) KEGG 0.064 2/20 2.61×10-1 2/20 3.87×10-1 2/20 6.34×10-1 

Citric acid cycle SMPDB 0.102 2/25 2.92×10-1 2/25 4.01×10-1 2/25 6.30×10-1 
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Table V-2 

Pathway name Source Impact 

Match 

status 

(A/B) 

p (A/B) 

Match 

status 

(A/C) 

p (A/C) 

Match 

status 

(B/C) 

p (B/C) 

Cyanoamino acid metabolism KEGG 0.000 1/6 1.41×10-2 1/6 2.70×10-4 1/6 9.66×10-1 

Cysteine and methionine metabolism KEGG 0.138 3/27 1.89×10-2 3/27 7.67×10-4 3/27 4.34×10-1 

Cysteine metabolism SMPDB 0.000 1/24 4.28×10-1 1/24 5.93×10-1 1/24 9.02×10-1 

D-glutamine and d-glutamate 

metabolism 
KEGG 1.000 2/5 9.80×10-2 2/5 4.01×10-1 2/5 6.34×10-1 

Drug metabolism - cytochrome p450 KEGG 0.000 1/56 7.67×10-1 1/56 9.42×10-1 1/56 9.20×10-1 

Fatty acid biosynthesis SMPDB 0.075 3/33 4.07×10-1 3/33 1.87×10-1 3/33 1.32×10-1 

Fatty acid elongation in mitochondria SMPDB 0.000 1/27 1.04×10-1 1/33 7.83×10-2 1/27 3.90×10-2 

Fatty acid metabolism SMPDB 0.000 1/39 1.04×10-1 1/40 7.83×10-2 1/39 3.90×10-2 

Glutamate metabolism SMPDB 0.006 4/45 5.82×10-3 4/45 3.43×10-3 4/45 8.52×10-1 

Glutathione metabolism KEGG 0.104 4/26 2.64×10-1 4/26 2.76×10-1 4/26 5.37×10-2 

Glycerolipid metabolism KEGG 0.126 2/18 1.41×10-2 2/18 2.38×10-1 2/18 2.92×10-1 

Glycerophospholipid metabolism KEGG 0.498 7/30 1.09×10-2 7/30 1.39×10-3 7/30 1.56×10-1 

Glycine and serine metabolism SMPDB 0.072 4/50 2.85×10-2 4/50 9.68×10-3 4/50 4.21×10-1 

Glycine, serine and threonine 

metabolism 
KEGG 0.299 3/31 4.65×10-2 3/31 1.19×10-2 3/31 2.68×10-1 

Glycosylphosphatidylinositol(GPI)-
anchor biosynthesis 

KEGG 0.044 1/14 1.89×10-1 1/14 1.42×10-4 1/14 1.02×10-2 

Glyoxylate and dicarboxylate 

metabolism 
KEGG 0.129 1/18 1.70×10-1 1/18 2.13×10-1 1/18 9.82×10-1 

Histidine metabolism KEGG 0.242 4/15 3.56×10-2 4/15 5.90×10-3 4/15 2.36×10-1 

Homocysteine degradation SMPDB 0.000 1/7 1.13×10-2 1/7 2.56×10-4 1/7 9.47×10-1 

Ketone body metabolism SMPDB 0.000 1/12 4.28×10-1 1/12 8.81×10-1 1/12 4.50×10-1 

Limonene and pinene degradation KEGG 0.000 1/8 7.22×10-1 1/8 7.97×10-1 1/8 9.48×10-1 

Linoleic acid metabolism KEGG 1.000 2/6 9.80×10-2 2/6 4.12×10-3 2/6 2.20×10-1 

Lysine biosynthesis KEGG 0.000 2/4 4.13×10-1 2/4 4.25×10-2 2/4 1.31×10-1 

Lysine degradation SMPDB 0.237 2/20 4.28×10-1 2/20 3.47×10-2 2/20 7.32×10-2 
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Table V-2 

Pathway name Source Impact 

Match 

status 

(A/B) 

p (A/B) 

Match 

status 

(A/C) 

p (A/C) 

Match 

status 

(B/C) 

p (B/C) 

Malate-aspartate shuttle SMPDB 0.143 1/7 6.08×10-3 1/7 3.43×10-3 1/7 9.02×10-1 

Methane metabolism KEGG 0.400 1/9 1.41×10-2 1/9 2.70×10-4 1/9 9.66×10-1 

Methionine metabolism SMPDB 0.039 7/39 4.53×10-2 6/39 2.36×10-3 6/39 4.91×10-2 

Mitochondrial beta-oxidation of long 

chain saturated fatty acids 
SMPDB 0.000 1/24 5.42×10-1 1/24 7.04×10-1 1/24 9.02×10-1 

Mitochondrial electron transport chain SMPDB 0.000 1/15 4.28×10-1 1/15 8.81×10-1 1/15 4.50×10-1 

Nitrogen metabolism KEGG 0.000 3/9 3.56×10-2 3/9 8.06×10-2 3/9 7.96×10-1 

Oxidation of branched-chain fatty acids SMPDB 0.000 1/21 4.28×10-1 1/21 8.81×10-1 1/21 4.50×10-1 

Pantothenate and CoA biosynthesis KEGG 0.000 1/15 9.80×10-2 1/15 7.74×10-1 1/15 2.36×10-1 

Phenylalanine and tyrosine metabolism SMPDB 0.116 3/25 1.84×10-2 3/25 6.54×10-3 3/25 6.30×10-1 

Phenylalanine metabolism KEGG 0.407 3/11 3.56×10-2 3/11 2.69×10-2 3/11 6.34×10-1 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 
KEGG 1.000 2/4 3.56×10-2 2/4 4.25×10-2 2/4 4.34×10-1 

Phosphatidylcholine biosynthesis SMPDB 0.220 2/18 1.84×10-2 2/18 2.36×10-3 2/18 6.29×10-1 

Phosphatidylethanolamine biosynthesis SMPDB 0.500 3/13 2.84×10-3 3/13 5.86×10-5 3/13 8.02×10-1 

Phospholipid biosynthesis SMPDB 0.100 3/25 8.17×10-1 3/25 1.37×10-2 3/25 5.69×10-2 

Phytanic acid peroxisomal oxidation SMPDB 0.000 1/19 4.28×10-1 1/19 8.81×10-1 1/19 4.50×10-1 

Plasmalogen synthesis SMPDB 0.000 1/16 5.42×10-1 1/16 7.04×10-1 1/16 9.02×10-1 

Porphyrin and chlorophyll metabolism KEGG 0.000 1/27 3.87×10-1 1/27 5.61×10-1 1/27 9.41×10-1 

Porphyrin metabolism SMPDB 0.000 1/36 1.11×10-1 1/36 8.51×10-1 1/36 2.31×10-1 

Primary bile acid biosynthesis KEGG 0.030 3/46 1.52×10-1 3/46 4.39×10-2 3/46 4.34×10-1 

Propanoate metabolism KEGG 0.000 1/20 4.19×10-1 1/20 9.18×10-1 1/20 4.34×10-1 

Purine metabolism KEGG 0.077 6/68 3.56×10-2 6/68 5.87×10-2 6/68 2.87×10-1 

Pyrimidine metabolism KEGG 0.023 1/54 9.45×10-1 1/41 2.68×10-1 1/41 4.34×10-1 

Pyruvate metabolism KEGG 0.106 1/23 9.22×10-2 1/23 9.45×10-1 1/23 2.36×10-1 

Selenoamino acid metabolism SMPDB 0.000 2/28 1.91×10-2 2/28 1.14×10-4 2/28 9.30×10-2 
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Table V-2 

Pathway name Source Impact 

Match 

status 

(A/B) 

p (A/B) 

Match 

status 

(A/C) 

p (A/C) 

Match 

status 

(B/C) 

p (B/C) 

Spermidine and spermine biosynthesis SMPDB 0.086 2/14 1.36×10-1 2/14 2.16×10-2 2/14 6.23×10-2 

Sphingolipid metabolism KEGG 0.296 3/21 1.49×10-3 3/21 2.70×10-4 3/21 3.46×10-1 

Steroid biosynthesis KEGG 0.000 1/35 9.04×10-2 1/35 3.85×10-1 1/35 4.07×10-1 

Steroid hormone biosynthesis KEGG 0.000 1/72 7.22×10-1 1/72 5.13×10-1 1/72 2.44×10-1 

Taurine and hypotaurine metabolism KEGG 0.429 1/8 1.89×10-1 1/8 8.42×10-1 1/8 8.47×10-1 

Threonine and 2-oxobutanoate 
degradation 

SMPDB 0.000 1/13 4.07×10-1 1/13 3.71×10-1 1/13 1.05×10-1 

Tryptophan metabolism KEGG 0.371 4/40 1.49×10-3 4/40 4.60×10-6 4/40 1.83×10-3 

Tyrosine metabolism KEGG 0.140 1/44 1.09×10-1 1/44 5.68×10-1 1/44 3.49×10-1 

Ubiquinone and other terpenoid-

quinone biosynthesis 
KEGG 0.000 1/3 1.09×10-1 1/3 5.68×10-1 1/3 3.49×10-1 

Urea cycle SMPDB 0.266 2/23 1.44×10-2 2/23 3.43×10-3 2/23 6.23×10-2 

Valine, leucine and isoleucine 

biosynthesis 
KEGG 0.667 2/11 5.02×10-2 2/11 1.47×10-1 2/11 2.77×10-1 

Valine, leucine and isoleucine 
degradation 

KEGG 0.000 3/38 6.17×10-2 3/38 1.47×10-1 3/51 6.23×10-2 

Vitamin b6 metabolism KEGG 0.490 1/9 6.44×10-1 1/9 1.62×10-1 1/9 4.34×10-1 
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Figure V-10. Pathway analysis for the positively identified lipids and metabolites. Significantly 

affected pathways (p <0.05 and pathway impact >0.25 for at least one comparison) are labeled as: 

1. Tryptophan metabolism; 2. Linoleic acid metabolism; 3. Alanine, aspartate and glutamate 

metabolism; 4. Arginine and proline metabolism; 5. Aspartate metabolism; 6. 

Glycerophospholipid metabolism; 7. Glycine, serine and threonine metabolism; 8. Methane 

metabolism; 9. Phenylalanine metabolism; 10. Phenylalanine, tyrosine and tryptophan 

biosynthesis; 11. Phosphatidylethanolamine biosynthesis; 12. Sphingolipid metabolism; 13. Urea 

cycle. (A) A/C comparison (healthy controls versus non-immunized, RSV-challenged animals); 

(B) A/B comparison (healthy controls versus immunized, RSV-challenged animals); (C) B/C 

comparison (immunized versus non-immunized, RSV-challenged animals); (D) Venn diagram for 

the number of significantly affected pathways (p <0.05), regardless of impact value. 
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The comparison between healthy controls and non-immunized, RSV-challenged mice 

(A/C, Figure V-10A) resulted in 38 significantly affected pathways (p <0.05), including five with 

impact ≥0.5: alanine, aspartate and glutamate metabolism; linoleic acid metabolism; 

phenylalanine, tyrosine and tryptophan biosynthesis; aspartate metabolism; and 

phosphatidylethanolamine biosynthesis. Similarly, the comparison between healthy controls and 

immunized, RSV-challenged mice (A/B, Figure V-10B) resulted in 32 significantly affected 

pathways, including four with impact ≥0.5: alanine, aspartate and glutamate metabolism; aspartate 

metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and phosphatidylethanolamine 

biosynthesis. The comparison between immunized and non-immunized, RSV-challenged mice 

(B/C, Figure V-10C) significantly affected 7 pathways, which were modulated by ∆F/TriAdj 

immunization (Table V-2, Table V-3): tryptophan metabolism, methionine metabolism, 

glycosylphosphatidylinositol(GPI)-anchor biosynthesis, betaine metabolism, biosynthesis of 

unsaturated fatty acid, fatty acid elongation in mitochondria and fatty acid metabolism. The 

tryptophan metabolism, affected for all three comparisons and further discussed in our related 

work, resulted in an impact of 0.37 and p=0.002 for the comparison between immunized and non-

immunized mice, while the remaining pathways had smaller impacts.1  
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Table V-3. Pathways related to ∆F/TriAdj immunization and RSV-challenge that were 

significantly affected (enrichment p <0.05) for at least one of the comparisons (A/B, A/C or B/C), 

including the identified metabolites and lipids. The remaining matched pathways are presented in 

Table V-2. 

Pathway 
p 

Identified metabolites/lipids 
A/B A/C B/C 

Glycerophospholipid  

metabolism 
0.01 0.001 0.03 

phosphatidylethanolaminea, 3-sn-

phosphatidylcholinea, 1-acyl-sn-glycero-3-

phosphocholine, ethanolamine phosphatea, 

ethanolaminea, phosphatidic acid, 3-O-sn-

phosphatidyl-L-serine 

Methionine metabolism 0.04 0.002 0.049 
L-serine, L-homoserine, sarcosine, putrescine, 

5’-methyladenosine, adenosine 

Biosynthesis of unsaturated  

fatty acids 
0.4 0.002 0.01 

palmitic acidª, stearic acidª, oleic acidª, linoleic 

acidª, gamma-linoleic acid, eicosenoic acidª, 

eicosadienoic acidª, eicosatrienoic acid, 

arachidonic acid*ª, erucic acidª, docosadienoic 

acid*ª, docosatetraenoic acidª, clupadonic 

acid*ª, docosahexaenoic acid*ª, nervonic acid*ª 

Linoleic acid metabolism 0.1 0.004 0.2 

PC(18:2_18:3)ª, linoleic acidª, linolenic acid, 

eicosatetraenoic acid*ª, eicosatrienoic acid, 

arachidonic acid*ª, docosapentaenoic acid*ª, 

adrenic acidª, tetracosatetraenoic acid*ª 

Lysine biosynthesis and  

degradation 
0.4 0.04 

0.1 (syn.);  

0.07 (degr.) 

lysine, (S)-2,3,4-tetrahydropiperidine-2-

carboxylate*, allysine*, aminoadipic acidª, 

oxoglutaric acid*, oxoadipic acid*ª, glutamic 

acid 

Phospholipid biosynthesis 0.8 0.01 0.06 

LPC(16:0)a, LPE(16:0)a, ethanolaminea, 

PA(32:0)*, PC(P-32:0)*a, PE(32:0)*, PG(P-

32:0)*a 

Primary bile acid biosynthesis 0.2 0.04 0.3 Cholic acida, taurine, chenodeoxycholic acid 

Spermidine and spermine  

biosynthesis 
0.1 0.02 0.01 putrescinea, 5’-methyladenosinea 

Alanine, aspartate and  

glutamate metabolism 
0.01 0.004 0.6 

aspartic acidª, asparagineª, oxaloacetic acid, 

alanineª, pyruvic acid*ª, (S)-1-pyrroline-5-

carboxylate*ª, glutamic acid*, 2-keto-glutamic 

acid*ª, oxoglutaric acid*, gamma-aminobutyric 

acid, succinic acid semi-aldehyde*ª, glutamine, 

succinic acid 
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Pathway 
p 

Identified metabolites/lipids 
A/B A/C B/C 

Phosphatidylethanolamine  

biosynthesis 
0.003 0.0001 0.8 

ethanolaminea, serinea, O- ethanolamine 

phosphatea, 3-O-sn-phosphatidyl-L-serine, 1,2-

diacylglycerola, phosphatidylethanolaminea, 3-

sn-phosphatidylcholinea 

Sphingolipid metabolism 0.001 0.0003 0.3 

L-serinea, ethanolamine phosphatea, ceramidea, 

sphinganine 1-phosphate*a, ceramide 1-

phosphate*, lactosyl ceramide*a, galactosyl 

ceramide*a, glucosyl ceramide*a, 

Purine 0.04 0.06 0.3 

hypoxanthineª, glutamine, adenosine 

monophosphateª, 2'deoxyguanosine-5'-

monophosphateª, guanosineª 

Glycerolipid metabolism 0.01 0.2 0.3 

Triacylglycerola, phosphatidic acid, 1,2-

diacylglycerola, monoacylglycerol, fatty acida, 

lysophosphatidic acid*, monogalactosyl-

diacylglycerol*, digalactosyl-diacylglycerol*a 

Nitrogen metabolism 0.04 0.06 0.3 Glutamine, glutamic acid 

*putatively identified based on mass matches. ªmolecules with p <0.05 for non-parametric ANOVA. 

 

Seven pathways were significantly altered only for the non-immunized, RSV-challenged 

group compared to healthy controls (A/C), but not for the immunized group (A/B); hence, they 

were modulated by the ∆F/TriAdj formulation: alpha-linoleic acid and linoleic acid metabolisms; 

lysine biosynthesis and degradation; and phospholipid, bile acid, spermidine and spermine 

biosynthesis. However, we found three pathways that were affected only for the immunized, RSV-

challenged mice compared to healthy controls (A/B, glycerolipid, nitrogen and purine 

metabolisms), which were considered as a result of immunization with the proposed ∆F/TriAdj 

formulation. Finally, 29 pathways were altered for both the A/C and A/B comparisons (Figure 

V-10D, p <0.05), thereby not modulated by immunization.  
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5.3.4. Linoleic acid and alpha-linolenic acid pathways 

Linoleic acid is an essential PUFA that acts as a precursor for longer omega-6 fatty acids, 

used in the biosynthesis of prostaglandins via arachidonic acid. The alternative form alpha-

linolenic acid is the precursor of omega-3 fatty acids via stearidonic acid. Both compounds affect 

the composition of membranes, which may influence cellular function, including inflammation 

and immune response. A scheme depicting the linoleic acid and alpha-linolenic acid metabolism, 

along with boxplots for the positively and putatively identified molecules, is displayed in Figure 

V-9B. The linoleic acid metabolism was exclusively affected for the non-immunized, RSV-

challenged mice versus healthy controls (A/C, Table V-3). No significant changes were observed 

for the immunized animals (A/B); thus, the metabolic reactions seem to be regulated by the 

∆F/TriAdj formulation. Overall, metabolites involved in the alpha-linolenic acid and linoleic acid 

metabolisms had higher normalized intensities for the non-immunized, RSV-challenged animals, 

with similar values for the healthy and immunized mice. Linoleic acid was significantly increased 

for the non-immunized mice compared to immunized animals (FC(B/C)=0.61, p=0.02) and healthy 

controls (FC(A/C)=0.72, p=0.0495); however, it was not significant for the immunized group 

versus healthy controls (FC(A/B)=1.17, p=0.50), suggesting ∆F/TriAdj modulation of RSV 

challenge. Other lipids involved in the alpha-linolenic acid and linoleic acid metabolisms were 

putatively or positively identified, i.e., tetracosatetraenoic acid (p=0.002), adrenic acid, (p=0.01), 

arachidonic acid (p=0.03), eicosatetraenoic acid (p=0.03), eicosatrienoic acid (p=0.14) and alpha- 

or gamma-linolenic acid (p=0.17). Most of them also displayed higher normalized intensities for 

the non-immunized animals, with regulation by the vaccine formulation in the immunized group 

(Figure V-9B). The PUFA docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were 
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also significantly increased for the non-immunized animals compared to healthy controls 

(FC(A/C) of 0.59 and 0.86, respectively, with p <0.05), but not for the immunized mice. 

Overall, we observed modulation of the linoleic and alpha-linolenic acid pathway by the 

∆F/TriAdj formulation. The relationship between unsaturated fatty acids, such as linoleic acid and 

alpha-linolenic acid, and the activation and proliferation of T-cells have a delicate balance. PUFA 

are immune modulators that can induce inflammatory responses and control cell homeostasis. 

There is an indication that low dietary intake of fatty acids is essential for the proliferation of T-

cells and the production of cytokines for an adequate immune response to pathogens, but excessive 

levels of PUFA may induce apoptosis of immune cells. 22 We have now found evidence that RSV 

challenge significantly affects the linoleic and alpha-linolenic acid pathways, including the PUFA 

DHA and DPA, with higher levels of most identified species in the lung tissue of mice challenged 

by RSV without prior immunization. The regulation observed for immunized animals may be a 

result of memory cells triggering a faster, stronger immune response, with increased uptake of 

fatty acids and stimulation of their oxidative metabolism immediately after viral challenge. Non-

immunized animals should display a less intense, long-lasting immune response that is still active 

when the lungs were collected, 7 days after RSV challenge. We have previously reported a high 

influx of immune cells in the lungs of both immunized and non-immunized animals one day after 

RSV challenge; however, the levels of immune cells decreased to numbers more similar to healthy 

mice 7 days after challenge.1 Hence, the composition of the lung tissue studied herein, collected 7 

days after RSV challenge, reflects the increased levels of PUFA precursors in non-immunized 

mice due to the slower, continuing immune response to the virus. The higher influx of immune 

cells whose membranes contain higher concentrations of PUFA precursors results in the 

upregulation of the linoleic and alpha-linolenic acid pathways and stimulation of the production 
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of PUFA as precursors of eicosanoids and prostaglandins, which act as important signaling 

molecules. We can infer that the mechanism of action of the proposed vaccine formulation 

involves the regulation of fatty acids and PUFA biosynthetic pathways, resulting in levels that are 

more similar to healthy controls for immunized mice compared to non-immunized animals. 

 

5.3.5. Biosynthesis of unsaturated fatty acids 

The biosynthesis of unsaturated fatty acids was significantly altered for both the healthy 

controls versus non-immunized, RSV-challenged group (A/C) and the immunized versus non-

immunized mice (B/C); however, it was not significant for the healthy controls versus immunized 

mice (A/B, Table V-3). The boxplots for the 15 positively and putatively identified fatty acids 

involved in the biosynthesis pathway are provided in Figure V-V-11. The biosynthesis and β-

oxidation of lipids is further discussed in Chapter I (1.2.4.2. Energy production and 1.2.4.3. 

Lipogenesis and metabolism, p. 11). The breakdown of triacylglycerols into fatty acids can be 

stimulated upon viral infection to increase the host energy supply for viral replication and immune 

response.201 Fatty acids are major energy sources for cells involved in the immune system and are 

required for cellular membranes. Also, PUFA may act as signaling molecules or their precursors 

during an immune response, as previously discussed.24,27,202 Overall, RSV challenge without prior 

immunization (C) seems to increase normalized intensities of fatty acids in lung tissue, whereas 

the effect is minimized for ∆F/TriAdj-immunized animals (B). Similarly to our findings for the 

linoleic and alpha-linolenic acid pathways, most of the identified lipids involved in the 

biosynthesis of unsaturated fatty acids displayed significantly higher normalized intensities for the 

non-immunized, RSV-challenged group (C), with FC (A/C) <0.67 and p <0.05 for six fatty acids, 

while the remaining nine had fold changes (A/C) between 0.68 and 0.86. The immunized animals 
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had normalized intensities that were more similar to the healthy control group, suggesting 

modulation of the pathway, with only one significantly altered lipid, FA(22:2) (FC(A/B)=0.54, 

p=0.01). Furthermore, the comparison between immunized and non-immunized, RSV-challenged 

mice resulted in 8 significantly altered fatty acids (FC(B/C) <0.67, p <0.05), and all the remaining 

lipids displayed fold changes between 0.67 and 0.87.  

 

 

Figure V-V-11. Boxplots for lipids involved in the biosynthesis of unsaturated fatty acids. Group 

A (control) is displayed in red; B (immunized, RSV-challenged) in green, and C (non-immunized, 
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RSV-challenged) in blue. The p values were obtained by non-parametric ANOVA for normalized, 

auto-scaled intensities. *Positive identification (MS/MS). 

 

5.3.6. Lysine biosynthesis and degradation 

The lysine biosynthesis and degradation pathways were also modulated by the ∆F/TriAdj 

formulation. Both pathways were significantly affected for the non-immunized group when 

compared to healthy controls (A/C), but not for the immunized animals (A/B, Table V-3, Figure 

V-12). Lysine is an essential amino acid that can induce an inflammatory and immune response. 

Although lysine was not significantly altered by immunization or RSV challenge, its oxidized 

derivative allysine had higher normalized intensities for the non-immunized, RSV-challenged 

mice compared to the control group (FC(A/C)=0.70, p=0.03), but not for the immunized group 

(FC(A/B)=0.76, p=0.22). The higher levels of the oxidized form may indicate higher oxidative 

stress due to the immune response. Allysine is involved in the stabilization of elastin and collagen, 

with increased levels being possibly related to pulmonary fibrosis. The observed regulation by the 

vaccine formulation suggests mitigation of oxidative processes upon immunization, with a 

possible protective effect against lung damage. Furthermore, aminoadipic acid (p=0.0002) and 

oxoadipic acid (p=0.048) were significantly affected by the three studied groups. Both acids are 

part of the kynurenine/alpha-aminoadipate aminotransferase mitochondrial reaction, i.e., 

conversion of aminoadipic and oxoglutaric acid into oxoadipic and glutamic acid. Aminoadipic 

acid, an intermediate in the breakdown of lysine, displayed lower normalized intensities for the 

non-immunized group when compared to the healthy controls (FC(A/C)=1.35, p=0.001) and 

immunized animals (FC(B/C)=1.24, p=0.0001). However, it was not significant for the immunized 

animals (FC(A/B)=1.09, p=0.7); hence, modulated by the vaccine. Oxoadipic acid, a product in 
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the aminotransferase reaction, had the opposite trend, with significantly higher normalized 

intensities for the non-immunized group (FC(A/C)=0.59, p=0.02), but also not significantly altered 

for the immunized mice. The aminotransferase enzyme is also involved in the tryptophan 

metabolism, significantly affected for all three comparisons (A/B, A/C and B/C). The lower 

normalized intensities found for aminoadipic and oxoglutaric acid, combined with higher 

intensities for oxoadipic acid, suggest higher activity of the aminotransferase enzyme upon viral 

challenge, with subsequent regulation by the vaccine formulation. 

 

 

Figure V-12 .Boxplots for metabolites involved in the biosynthesis and degradation of lysine. 

Group A (control) is displayed in red; B (immunized, RSV-challenged) in green, and C (non- 

immunized, RSV-challenged) in blue. The p values were obtained by non-parametric ANOVA for 

normalized, auto-scaled intensities. *Positive identification (retention time and accurate mass). 
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5.3.7. Alanine, aspartate and glutamate metabolisms 

The alanine, aspartate and glutamate metabolisms were not significantly affected for the 

immunized versus non-immunized, RSV-challenged mice (B/C), but resulted in enrichment p 

<0.05 for both groups compared to healthy controls (A/C and A/B, Table V-3, Figure V-13). The 

metabolism for the three amino acids seems to be affected by RSV challenge, but not modulated 

by ∆F/TriAdj immunization. Aspartic acid and asparagine, involved in the aspartate pathway, 

displayed higher normalized intensities for the RSV-challenged groups regardless of 

immunization. Both metabolites had significantly increased levels for immunized and non-

immunized animals compared to healthy controls (A/B and A/C p <0.05, FC between 0.71 and 

0.79), but they were not significantly altered in a direct comparison (B/C p=0.6 and FC of 1.0 for 

both). For the alanine metabolism, pyruvic acid was significantly altered for the immunized 

animals compared to non-immunized mice (FC(B/C)=1.99, p=0.02), while alanine was not 

significant for any of the three comparisons. The glutamate metabolism displayed no significant 

alterations for the immunized versus non-immunized mice (B/C), but 2-ketoglutaramic acid was 

significantly less intense for both RSV-challenged groups when compared to healthy controls (FC 

≥1.5, p <0.05), whereas succinic acid semi-aldehyde was significant only for the non-immunized 

group (FC (A/C)=1.29, p=0.004). 
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Figure V-13. Boxplots for metabolites involved in the alanine, aspartate and glutamate 

metabolism. Group A (control) is displayed in red; B (immunized, RSV-challenged) in green, and 

C (non-immunized, RSV- challenged) in blue. The p values were obtained by non-parametric 

ANOVA for normalized, auto-scaled intensities. *Positive identification (retention time and 

accurate mass). 
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We observed increased levels of pyruvic acid upon immunization, but similar normalized 

intensities for healthy and non-immunized animals. This alpha-keto acid is the output of glycolysis, 

acting as an energy source in the citric acid cycle during aerobic respiration by conversion into 

acetyl-CoA. Acetyl-CoA, in turn, is involved in lipid biosynthetic pathways (Chapter I – 1.2.4.3. 

Lipogenesis and metabolism, p. 12), which displayed extensive alteration due to immunization and 

RSV challenge. Dysregulation in pyruvate metabolism may be related to many diseases, including 

cancer and neurodegenerative conditions; however, the higher levels observed herein for 

immunized animals may be a consequence of immune response, which requires proliferation of 

immune cells and activation of signaling processes. 203  

 

5.3.8. Glycerolipid, nitrogen and purine metabolisms 

The glycerolipid, nitrogen and purine metabolisms were significantly affected exclusively 

for the immunized, RSV-challenged mice compared to healthy controls (A/B, Table V-3, Figure 

V-14 and Figure V-15). The significant coordinated alterations upon immunization for the three 

pathways may be related to the vaccine formulation. The nitrogen and purine metabolisms are 

deeply interconnected, with both being significantly affected (Figure V-14). The purine 

metabolism regulates nucleotide biosynthesis and degradation, involving different types of 

nitrogen-containing heterocyclic molecules, e.g., adenine, guanine, hypoxanthine, xanthine, 

theobromine, caffeine and uric acid. Dysregulation in purine metabolism is related to autoimmune 

conditions and neurological dysfunction.204 Even though we found p <0.05 for enrichment analysis 

for the comparison between immunized mice and healthy controls (A/B), the univariate analysis 

by Volcano plot did not result in any significantly altered metabolites for the purine metabolism, 

i.e., metabolic changes between the matched molecules were coordinated, but individual changes 
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were below the previously established significance threshold. Nevertheless, the comparison for 

healthy controls and non-immunized mice resulted in p=0.06 for pathway enrichment analysis, 

just slightly above the arbitrary limit of 0.05. Hypoxanthine and 2’-deoxyguanosine-5’-

monophosphate were significantly altered for the non-immunized group versus healthy controls 

(A/C) with opposite behaviors: hypoxanthine was more intense for the RSV-challenged group 

(FC(A/C)=0.64), while 2’-deoxyguanosine-5’-monophosphate had higher normalized intensities 

for the healthy group (FC(A/C)=1.57). For the immunized group versus healthy controls, 

adenosine monophosphate and 2’-deoxyguanosine-5’-monophosphate displayed FC(A/B)=1.5 

with p=0.07, while the remaining metabolites had higher p values.  
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Figure V-14. Boxplots for metabolites involved in the purine and nitrogen metabolisms. Group A 

(control) is displayed in red; B (immunized, RSV-challenged) in green, and C (non-immunized, 

RSV- challenged) in blue. The p values were obtained by non-parametric ANOVA for normalized, 

auto-scaled intensities. *Positive identification (retention time and accurate mass). 
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Figure V-15. Boxplots for positively identified lipids involved in the glycerolipid metabolism. 

Group A (control) is displayed in red; B (immunized, RSV-challenged) in green, and C (non-
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immunized, RSV- challenged) in blue. The p values were obtained by non-parametric ANOVA 

for normalized, auto-scaled intensities. 

 

The glycerolipid metabolism involves the biosynthesis of acylglycerols, beginning with the 

combination of glycerol-3-phosphate with acyl groups from acyl-CoA molecules. Further details 

are provided in Chapter I (1.2.4.3. Lipogenesis and metabolism, p. 12) The resulting phosphatidic 

acids may have variable fatty acyl lengths and can be dephosphorylated to produce diacylglycerols. 

The addition of one extra fatty acyl moiety via acyl-CoA or acyltransferases results in 

triacylglycerols, which are stored in the organism as a source of energy. Processes that require 

extra energy may trigger the breakdown of triacylglycerols into glycerol and fatty acids. The β-

oxidation of fatty acids has acetyl-CoA or propionyl-CoA as final products (Chapter I, 1.2.4.2. 

Energy production). We have previously discussed that pyruvic acid or pyruvate, also a source of 

acetyl-CoA through glycolysis, had higher normalized intensities for the immunized animals, but 

not for healthy or non-immunized mice (Figure V-13). Now, we also observed a dramatic change 

in the glycerolipid composition of lung tissue upon immunization and RSV challenge (Figure 

V-15). The immunized group had significantly lower levels of triacylglycerols when compared to 

healthy controls (FC(A/B) ≥1.5, p<0.05). Even though the levels were also reduced for the non-

immunized animals (FC(A/C) ≥1.5), the difference was less pronounced and none of them was 

significant (p>0.05). The boxplots for triacylglycerols in Figure V-15 emphasize a trend of lower 

levels for the immunized group compared to both the non-immunized and healthy controls, i.e., 

the animals were either synthesizing fewer triacylglycerol molecules or consuming them for 

energy-demanding processes after immunization and RSV-challenge. However, the positively 

identified diacylglycerols, phosphatidic acid and fatty acids were not significantly altered for the 
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immunized animals (A/B); in fact, we observed similar levels of both lipid subclasses for the 

control and immunized groups, but higher levels for the non-immunized animals. The lower levels 

of fatty acids and triacylglycerols found for immunized animals, combined to higher levels of 

pyruvic acid, indicate a higher rate of β-oxidation of lipids. Immune cell differentiation is highly 

dependent on lipid metabolism, with fatty acids residues being vital for their activation, function 

and survival. It has been previously demonstrated that memory T cells employ lipid oxidative 

metabolism, i.e., cleavage of triacylglycerols, as a main source of energy. Hence, the observed 

results suggest higher uptake of energy by the action of memory cells in the immunized animals. 

25,205,206 

 

5.4 Conclusions 

Our previous work has shown the immunological and protective effects of the ∆F/TriAdj 

formulation against RSV. 1 Now, we characterized its effects upon metabolites and lipids, as well 

as the affected metabolic pathways in lung tissue. The combination of two chemical isotope 

labeling techniques for metabolomics with untargeted lipidomics allowed a more complete 

evaluation of metabolic changes induced by the vaccine formulation and RSV challenge, greatly 

expanding our previous knowledge. This work provided information to elucidate the mechanism 

of action for the vaccine formulation, as well as the alterations caused in lung lipidic and metabolic 

composition upon RSV challenge. Linoleic acid, fatty acids and amino acid metabolisms resulted 

in significantly coordinated changes between matched molecules for healthy controls, immunized 

and non-immunized RSV-challenged mice. We also observed significantly higher intensities for 

lipids involved in the lung surfactant layer for the non-immunized, RSV-challenged animals 

compared to healthy controls, whereas immunization with the proposed formulation seems to 
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stabilize its composition. The healthy versus immunized, RSV-challenged comparison showed the 

least amount of significant changes, with only three affected pathways: glycerolipid, nitrogen and 

purine metabolism. The characterization of metabolic changes due to the ∆F/TriAdj formulation 

shows modulation of RSV infection, as well as minimal alterations when compared to healthy 

animals. In the future, we intend to evaluate the vaccine formulation effects for an immunized, 

non-challenged group, as well as evaluation of sex-related differences that may appear for male 

versus female mice. 

The pathology due to RSV infection is not essentially caused by the viral replication, but 

by the immune responses occurring in the lungs. In this study, the lung metabolites and lipids that 

were found to be altered in response to RSV infection involved glycerophospholipids, purine, 

pyrimidine and amino acids, which can be correlated to the production of pro-inflammatory 

cytokines, including IL-1β, IL-6, IL-10, TNF-α, and IFN-γ. The modulation of metabolic and 

lipidic alterations operated by the ΔF/TriAdj formulation in immunized animals when compared 

to unvaccinated, RSV-challenged mice supports the reduction of the immunopathology resulting 

from RSV infection. Some of the key lipids that were significantly altered include linoleic acid 

and alpha-linolenic acid, as well as the PUFA docosapentaenoic acid (DPA) and docosahexaenoic 

acid (DHA). These lipids have potential roles in pathophysiological events but were regulated by 

the triple-adjuvant vaccine formulation. Therefore, they are potential candidates as biomarkers for 

vaccine mechanism and efficacy. Future development in vaccine / adjuvant formulation for RSV 

may focus on the significantly altered lipids and metabolites found in this study. Also, novel 

adjuvant formulations targeting these lipids can be incorporated into subunit vaccines to improve 

vaccine efficacy. 
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We recognize that this work is limited by a small number of animals (N = 5) and the 

inherent differences found for mice as animal models of human conditions. Nevertheless, we 

achieved a broad characterization of the metabolic effects of RSV challenge and ∆F/TriAdj 

immunization that, when considered in conjunction with our previous immunological work, 

depicts a clear image of the immune response to the virus and provides crucial information for 

future developments and therapies.  
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VI  

Chapter VI: Lipidomics of Parkinson’s Disease and Dementia12,13 

 

6.1 Introduction 

Parkinson’s disease (PD) is a chronic disorder characterized by progressive motor deficits, 

e.g., rest tremor, rigidity and bradykinesia.33,207,208 The disease onset is associated with the 

formation of Lewy bodies, i.e., abnormal aggregation of α-synuclein proteins, in the substantia 

nigra pars compacta region of the midbrain, leading to progressive loss of dopaminergic neurons 

and microgliosis. 33 As the pathology spreads to the cerebral cortex, cognitive decline and dementia 

may ensue in up to 80% of patients.207,209 About 6.1 million people were living with Parkinson’s 

disease worldwide in 2016 and the risk of mortality for affected individuals is approximately 1.5 

times higher when compared to a healthy population. 210,211 However, there are no objective 

biological tests for definitive diagnosis of PD and even less is known about differential transition 

to dementia. Clinical diagnosis and pathological examination of the brain after death remains the 

gold standard, but symptoms become evident only when the dopaminergic neuronal loss reaches 

50 to 80% of pars compacta neurons. Consequently, the condition is often undiagnosed in the 

early stages, when neuroprotective treatments would likely be most beneficial.209,212 Recent 

systematic reviews note the accuracy of PD clinical diagnosis between 79.6 and 83.9%. Only 53% 

of early PD cases were correctly identified and the diagnosis accuracy at the first visit varied 

 

12 The experimental design and sample collection were performed in collaboration with Dr. Richard 

Camicioli (Neuroscience and Mental Health Institute and Department of Medicine - Neurology) and Dr. Roger A. 

Dixon (Neuroscience and Mental Health Institute and Department of Psychology, University of Alberta, Edmonton, 

Canada). 
13 Supporting figures for this chapter are available in Appendix D. Supporting tables are available with Dr. 

Liang Li. 
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between 26 and 88%. 213,214 Early and more accurate diagnosis of PD and prediction of differential 

transition to dementia through a biomarker panel could allow the use of effective neuroprotective 

treatments to prevent dopaminergic neuron death and the spread of the α-synuclein pathology. 

The information currently available for PD onset and transition to dementia is fragmented. 

Hence, additional approaches are required to further advance our understanding of the pathology. 

A combination of different omics technologies to study Parkinson’s disease and its progression to 

dementia may provide crucial information for biomarker discovery and pathogenesis research. 

Lipidomics is the large-scale and unbiased study of lipids in a given biological system, as well as 

their biochemical interaction with metabolites, proteins and other lipids. 11,215 Lipid concentrations 

are the products of complex and changing interactions; thus, unlike proteins and genes, they are 

not usually directly associated with a specific biological pathway. Recent findings showed that 

lipid metabolism may play a significant role in neurodegenerative disorders.32,216 Multiple 

mutations and single-nucleotide polymorphisms in genes involved in lipid metabolism have been 

linked to PD, e.g., glucosylceramidase beta (GBA)217–219; sterol regulatory element-binding 

transcription factor 1 (SREBF1)220, diacylglycerol kinase (DGKQ)221, N-acyl sphingosine 

amidohydrolase 1 (ASAH1)222, phospholipase A2 (PLA2G6)37 and sphingomyelin 

phosphodiesterase 1 (SMPD1).222 Also, the lipid-binding α-synuclein protein may interact with 

phospholipids and fatty acids. 37 However, even though targeted analyses of lipids have been 

reported for brain tissue 223–225, plasma 226,227 and serum 228; untargeted comprehensive lipidomics 

analyses for biomarker discovery is yet to be performed. 

The metabolic profiling of serum samples from PD patients and healthy controls was 

previously evaluated by chemical isotope labeling.229 Now, we performed a two-phase study of 

untargeted lipidomics for the same sample set. First, we hypothesized that there would be 
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alterations in the lipidome of PD patients compared to healthy controls. We compared lipidomic 

profiles from 43 healthy controls and 43 patients diagnosed with Parkinson’s disease with no 

baseline symptoms of dementia. Second, we hypothesized the lipidome of baseline samples would 

discriminate PD patients who progressed to dementia (PDD) after a 3-year interval from those who 

remained cognitively stable (PDND). No sample collection was performed for the 3-year post-hoc 

assessment; therefore, we expected that later dementia could be predicted using the baseline 

lipidome up to three years before noticeable symptoms. 

 

6.2 Experimental 

6.2.1 Participants14 

We recruited 43 patients aged between 65 and 82 years old with a clinical diagnosis of PD, 

no features of atypical Parkinsonism and no unstable health conditions compromising survival 

from the University of Alberta Movement Disorder Clinics, community neurologists and the 

Parkinson’s Society of Alberta (Edmonton, AB, Canada) (Table VI-1). Parkinson’s disease was 

diagnosed by experienced neurologists based on the presence of two out of three key symptoms 

(rest tremor, bradykinesia and rigidity), as described elsewhere. 230 The 43 healthy controls aged 

between 65 and 84 years old were recruited via seniors’ centers, advertisements, clinics, and 

patient contacts. Participants were matched on age and sex. The University of Alberta Health 

Ethics Review Board approved this study and participants provided informed consent according 

to the Declaration of Helsinki.  

 

14 The recruitment and assessment of patients and healthy controls were performed in collaboration with Dr. 

Richard Camicioli and Dr. Roger A. Dixon (University of Alberta, Edmonton, AB, Canada). 
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Table VI-1. Summary of baseline demographic information for the samples used for lipidomics of 

Parkinson’s disease and dementia. 

 Healthy 

control 

Parkinson’s 

disease (PD) 
p 

PD with no 

dementia 

(PDND) 

PD with incipient 

dementia 

(PDD) 

p 

N 43 43 N/A 27 16 N/A 

Age (years) 
71.5 

(±5.0) 

70.7 

(±4.1) 
0.44 

69.6 

(±3.5) 

72.6 

(±4.5) 
0.028 

Gender (F/M) 19/24 19/24 1.0 12/15 7/9 0.97 

Levodopa 

equivalents 

(mg) 

N/A 
644.0 

(±360.1) 
N/A 

611.8 

(±392.9) 

703.8 

(±293.4) 
0.41 

Levodopa 

duration 

(years) 

N/A 
4.7 

(±4.2) 
N/A 

3.5 

(±3.6) 

6.7 

(±4.3) 
0.020 

PD duration 

(years) 
N/A 

8.4 

(±4.7) 
N/A 

7.6 

(±4.3) 

9.6 

(±5.1) 
0.21 

UPDRS - part 

III 

2.2 

(±3.2) 

16.1 

(±7.9) 
3.81×10-15 

16.7 

(±8.1) 

15.2 

(±7.8) 
0.56 

B12 

(ng/mL) 

388.5 

(±198.7) 

293.25 

(±112.8) 
0.0080 

295.7 

(±92.2) 

289.1 

(±144.5) 
0.87 

Notes: values are displayed as average for each group, accompanied by one standard deviation 

within brackets; p <0.05 was deemed significant, and calculated for two-tailed, unpaired Student’s 

t-tests; Levodopa equivalents – contribution of each PD drug taken by the patient that has a similar 

effect of Levodopa; UPDRS - part III: motor deficit score for the Unified Parkinson’s Disease 

Rating Scale.  

 

Participants performed standardized assessments at 0, 18 and 36 months, including motor 

deficit and cognitive function (Table VI-2 and Table VI-3). However, blood samples were 

collected only at the first visit. No patients or controls displayed cognitive deficits at the time of 

sample collection. Volunteers were reassessed after 18 and 36 months for cognitive and functional 

decline by the study neurologist (Dr. Richard Camicioli, University of Alberta, Canada) and a 

research assistant through interviews with patients and caregivers, as well as cognitive and 
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functional assessments. Each visit (0, 18 and 36 months) included assessment of the standardized 

Mini-Mental Status Examination (MMSE), Frontal Assessment Battery (FAB), Dementia Rating 

Scale (DRS-II), Clinical Dementia Rating (CDR), Geriatric Depression Scale (GDS), Blessed-

Orientation-Concentration Test, Unified Parkinson’s Disease Rating Scale (UPDRS), Hoehn and 

Yahr Rating Scale (HY), and Cumulative Illness Rating Scale (CIRS). 229–231 Demographic 

information (age, sex, education), vital signs, levodopa-equivalent dosages and other medications 

were also recorded (Table VI-1, Table VI-2 and Table VI-3). Patients that did not meet criteria for 

PD or that developed other conditions in the follow-up visits were excluded before the analysis 

phase, as well as any participants with baseline dementia (CDR <1.0; MMSE <23), stroke, 

cerebellar signs, early autonomic dysfunction, supranuclear gaze Palsy, conditions that might 

affect cognition (recent myocardial infarction, angina, congestive heart failure), severe depression, 

psychosis, cognitive sequelae, alcoholism, drug abuse, or atypical Parkinsonism. No volunteers 

were taking cognitive enhancing drugs during the study. 229–232 
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Table VI-2. Demographic information acquired at 0 (baseline) and 36 months after sample collection for the study participants. 

PD: Parkinson’s disease; PDD: Parkinson’s disease with dementia; PDND: Parkinson’s disease with no dementia diagnosis; NA: not 

available; mo.: months. 

Table VI-2 

ID PD Dementia  

Dementia  

score 

(36 mo.) 

Sex 
Age  

(baseline) 

Education 

 (years) 

Apolipoprotein 

 E4 Count 

B12 

(ng/mL, 

baseline) 

Folate 

(ng/mL, 

baseline) 

Homocysteine 

(µmol/L, 

baseline) 

2 PD PDND 1 M 65.7 10 0 327 883 12.2 

3 PD PDND 1 M 73.7 12 0 333 672 25.1 

4 PD PDND 2 M 65.6 20 0 249 789 11.8 

6 PD PDD 3 M 70.7 13 0 214 505 19.0 

7 PD PDND 2 M 65.1 14 0 289 936 13.3 

8 PD PDD 4 F 66.2 15 0 350 1237 11.4 

9 PD PDD 3 M 75.9 12 1 551 912 11.7 

10 Control Control 1 F 67 16 0 1050 990 11.1 

12 PD PDND 1 F 68.9 25 0 466 1180 5.0 

13 PD PDND 1 F 73 16 0 281 971 11.1 

14 Control Control 1 F 65 20 NA 309 725 9.3 

15 PD PDD 4 M 72.3 12 0 137 706 18.8 

17 PD PDND 1 M 72.2 18 0 309 620 15.3 

18 Control Control 1 M 66.2 18 1 424 852 9.5 

19 PD PDD 4 M 75.2 9 0 289 1025 9.4 

20 PD PDND 1 M 67.5 17 0 389 945 9.4 

21 PD PDND 2 F 69.2 14 1 592 859 19.0 

22 PD PDND 1 M 70.2 16 0 331 810 11.2 

23 PD PDND 1 M 72.1 16 0 384 717 12.3 

24 PD PDD 3 F 67.8 12 0 172 902 12.8 

25 PD PDD 4 M 69.5 15 2 663 1012 10.9 
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Table VI-2 

ID PD Dementia  

Dementia  

score 

(36 mo.) 

Sex 
Age  

(baseline) 

Education 

 (years) 

Apolipoprotein 

 E4 Count 

B12 

(ng/mL, 

baseline) 

Folate 

(ng/mL, 

baseline) 

Homocysteine 

(µmol/L, 

baseline) 

26 PD PDND 1 M 69.6 13 0 190 493 13.0 

27 PD PDD 4 F 75.1 16 0 171 800 12.8 

28 PD PDD 3 M 69.7 16 0 397 762 19.2 

29 PD PDND 1 F 68.7 12 1 251 792 15.8 

30 PD PDND 1 M 66 16 0 235 927 10.1 

32 PD PDD 3 M 70.8 12 0 253 723 10.1 

33 Control Control 1 M 67.6 21 0 494 945 9.2 

34 Control Control 1 F 73.4 16 1 240 959 8.9 

35 Control Control 1 M 68 14 1 376 872 10.6 

36 PD PDD 4 F 82.5 12 0 257 1349 14.2 

37 Control Control 1 F 72.1 13 0 176 723 15.0 

38 Control Control 1 M 72.8 13 0 235 799 11.7 

40 Control Control 1 M 68.4 18 0 598 844 7.2 

42 PD PDND 1 M 65.2 17 0 208 643 16.0 

43 PD PDD 4 F 79.5 16 1 293 1082 13.1 

45 PD PDND 1 M 77.1 10 0 173 705 16.8 

46 Control Control 1 F 73.1 14 0 250 824 12.2 

47 PD PDND 1 F 66.2 12 0 245 658 10.7 

48 Control Control 1 M 79.1 16 0 435 754 8.7 

49 Control Control 1 F 76.2 14 0 186 942 14.0 

50 Control Control 1 M 70.4 16 0 281 613 14.0 

51 Control Control 1 F 78.5 12 0 682 1388 12.8 

52 PD PDND 2 F 66.2 11 0 315 877 9.4 

53 Control Control 1 M 71.6 9 0 536 862 8.6 

54 Control Control 1 M 65.3 8 1 268 666 13.6 

55 Control Control 1 M 77.6 11 1 554 760 9.1 

56 Control Control 1 F 72.1 9 1 472 931 6.1 
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Table VI-2 

ID PD Dementia  

Dementia  

score 

(36 mo.) 

Sex 
Age  

(baseline) 

Education 

 (years) 

Apolipoprotein 

 E4 Count 

B12 

(ng/mL, 

baseline) 

Folate 

(ng/mL, 

baseline) 

Homocysteine 

(µmol/L, 

baseline) 

57 Control Control 1 M 69.1 16 0 322 621 6.0 

59 Control Control 1 F 66.6 23 0 601 940 10.5 

60 Control Control 1 F 68.7 15 0 497 1076 8.0 

63 PD PDND 1 F 77.3 17 0 283 823 10.9 

64 PD PDD 4 M 67.9 16 0 300 750 17.4 

65 Control Control 1 F 67.8 13 1 295 727 9.6 

66 Control Control 2 F 83.3 17 0 1023 684 14.8 

67 Control Control 1 F 68.3 19 0 399 983 5.6 

68 Control Control 1 F 74.7 15 1 393 982 8.4 

69 Control Control 1 F 68.5 10 0 467 715 9.6 

70 Control Control 1 F 69 11 0 132 541 12.9 

71 PD PDD 3 M 69.7 12 1 150 835 18.2 

72 PD PDD 4 F 73.8 14 0 224 817 15.7 

73 Control Control 1 F 71.3 18 0 469 1083 10.0 

74 Control Control 1 M 66 19 0 404 931 12.5 

75 Control Control 1 F 71.5 21 0 338 893 9.6 

76 Control Control 2 M 81.5 18 0 256 816 6.6 

77 PD PDND 1 M 71.6 12 0 194 539 18.5 

78 Control Control 1 M 69.6 16 0 312 859 11.5 

79 Control Control 1 M 66.3 12 0 429 580 11.6 

81 PD PDND 2 F 71.4 11 0 328 715 6.1 

82 PD PDND 1 F 69.7 15 0 214 792 15.5 

83 Control Control 1 F 81.1 14 0 514 1177 8.9 

84 Control Control 1 M 72.9 16 0 374 1323 11.9 

86 Control Control 1 M 70.5 19 0 168 1328 10.2 

87 PD PDND 1 M 69.8 18 0 371 735 12.2 

89 PD PDD 4 F 75.5 14 0 205 1240 16.6 
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Table VI-2 

ID PD Dementia  

Dementia  

score 

(36 mo.) 

Sex 
Age  

(baseline) 

Education 

 (years) 

Apolipoprotein 

 E4 Count 

B12 

(ng/mL, 

baseline) 

Folate 

(ng/mL, 

baseline) 

Homocysteine 

(µmol/L, 

baseline) 

91 PD PDND 1 F 68.6 16 0 239 903 10.5 

92 PD PDND 2 F 75.1 12 0 196 885 15.3 

93 Control Control 1 M 71.8 15 0 151 685 14.1 

94 Control Control 2 M 83.5 15 1 190 1752 15.8 

95 Control Control 1 M 65.1 14 1 401 1120 8.0 

96 PD PDND 2 F 66.6 14 0 325 1265 11.1 

98 PD PDND 1 M 66.4 14 0 267 439 15.6 

99 Control Control 1 M 73.5 11 0 227 529 12.8 

100 Control Control 1 M 68.5 16 0 168 1007 9.6 

103 Control Control 1 M 70.9 16 0 369 764 8.8 

104 Control Control 1 M 68.6 12 0 242 715 8.7 
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Table VI-3. Demographic information acquired at 0 (baseline), 18 and 36 months (mo.) after sample collection for the study participants 

(cont.). NA: not available; MMSE: Mini-Mental Status Examination; HY: Hoehn and Yahr Rating Scale; UPDRS: Unified Parkinson’s 

Disease Rating Scale; mo.: months 

Table VI-3 

ID Dementia 

MMSE HY 
UPDRS part 3 

(motor) 

UPDRS total 

score 

PD 

duration 

(years) 

Levodopa 

duration 

(years) 

Levodopa 

equivalent 

dosage (mg) 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

0 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

002 PDND 30 28 28 2.0 2.0 1.5 12 12 11 15 14 12 5.6 0.11 225.0 900.0 450.0 

003 PDND 29 30 29 3.0 2.0 2.0 31 33 21 42 41 33 10.8 3.80 675.0 937.5 875.0 

004 PDND 29 26 27 2.0 1.0 2.0 17 5 9 36 14 16 4.0 0.00 100.5   

006 PDD 30 29 29 2.0 2.5 2.0 22 31 30 38 44 43 5.7 3.71 175.0 175.0 250.5 

007 PDND 30 28 26 1.5 1.0 1.0 16 13 13 23 26 19 3.2 1.65 600.0 651.0 1095.0 

008 PDD 29 29 28 2.0 1.5 2.0 12 11 8 22 13 19 5.7 2.15 617.0 1668.0 483.6 

009 PDD 25 24 29 2.0 2.0 2.0 8 6 11 12 20 20 9.4 8.92 675.0 575.0 0.0 

010 Control 27 30 30 0.0 0.0 0.0 0 0 0 0 0 0   0.0 0.0 0.0 

012 PDND 29 27 27 2.5 3.0 4.0 16 15 26 27 25 43 5.8 1.24 750.0 1150.0 1875.0 

013 PDND 30 29 28 3.0 2.0 3.0 11 9 20 14 12 23 3.4 0.26 550.0 700.0 700.0 

014 Control 29 28 29 0.0 0.0 0.0 7 7 6 10 9 12 0.0 0.00 0.0 0.0 0.0 

015 PDD 27 24 27 2.0 2.0 2.0 20 13 14 35 29 26 7.9 6.89 625.5 700.5 850.5 

017 PDND 29 29 30 2.0 2.0 2.0 17 20 21 26 31 32 2.5 0.11 300.0 300.0 300.0 

018 Control 30 29 29 0.0 0.0 0.0 3 3 3 9 9 9 0.0 0.00 0.0 0.0 0.0 

019 PDD 28 29 30 2.0 2.0 2.0 15 12 27 32 25 47 14.0 11.96 500.0 437.5 550.0 

020 PDND 29 28 28 2.0 2.0 2.0 22 21 21 31 25 29 4.6 2.40 601.0 601.0 601.0 

021 PDND 30 27 29 3.0 2.5 2.5 14 11 15 21 19 23 11.0 10.02 800.0 600.0 600.0 

022 PDND 29 27 28 2.0 2.0 2.0 29 27 19 39 35 26 5.6 0.44 225.0 750.0 1125.0 

023 PDND 30 28 27 2.0 2.0 2.0 17 18 14 24 27 25 3.2 1.78 450.0 750.0 1000.0 

024 PDD 29 29 26 2.0 2.0 2.0 3 2 4 6 5 10 13.1 2.87 825.1 1100.1 800.0 
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Table VI-3 

ID Dementia 

MMSE HY 
UPDRS part 3 

(motor) 

UPDRS total 

score 

PD 

duration 

(years) 

Levodopa 

duration 

(years) 

Levodopa 

equivalent 

dosage (mg) 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

0 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

025 PDD 26 20 16 2.0 3.0 4.0 17 28 45 31 49 79 5.1 4.06 450.0 375.0 400.0 

026 PDND 30 30 29 2.0 2.0 2.0 16 10 11 29 27 27 7.1 2.14 500.0 600.0 800.0 

027 PDD NA NA NA 3.0 NA NA 25 NA NA NA NA NA 17.2 11.88 NA NA NA 

028 PDD 27 26 26 2.0 2.5 2.5 7 17 16 20 28 28 12.6 9.31 801.0 913.5 1026.0 

029 PDND 28 30 29 2.0 1.0 2.0 10 16 20 23 26 33 9.3 2.27 450.0 450.0 450.0 

030 PDND 29 28 29 2.0 2.0 2.0 12 14 14 22 25 24 3.3 0.00 301.5 526.5 526.5 

032 PDD 29 29 26 2.0 3.0 2.5 8 15 33 12 21 45 15.4 12.35 1367.0 1875.0 824.1 

033 Control 28 28 30 0.0 0.0 0.0 1 4 0 2 5 4 0.0 0.00 0.0 0.0 0.0 

034 Control 27 29 28 0.0 0.0 0.0 2 3 3 2 5 4 0.0 0.00 0.0 0.0 0.0 

035 Control 28 29 27 0.0 0.0 0.0 0 0 2 0 0 2 0.0 0.00 0.0 0.0 0.0 

036 PDD 27 28 21 2.5 2.0 5.0 11 14 31 23 28 69 14.4 5.38 975.0 1112.8 0.0 

037 Control 30 29 29 0.0 0.0 0.0 1 0 1 1 1 2 0.0 0.00 0.0 0.0 0.0 

038 Control 28 28 29 0.0 0.0 0.0 0 1 0 0 2 2 0.0 0.00 0.0 0.0 0.0 

040 Control 29 29 30 0.0 0.0 0.0 1 0 4 1 0 9 0.0 0.00 0.0 0.0 0.0 

042 PDND 27 28 26 3.0 3.0 3.0 22 19 23 24 28 29 18.4 13.42 2100.0 1376.3 1326.0 

043 PDD 26 27 26 2.5 2.5 2.5 24 30 29 42 50 43 3.5 2.46 400.0 400.0 750.0 

045 PDND 25 26 23 2.0 2.0 2.5 14 34 42 24 46 48 14.5 8.50 1125.0 1562.5 0.0 

046 Control 29 30 28 0.0 0.0 0.0 0 1 2 1 2 4 0.0 0.00 0.0 0.0 0.0 

047 PDND 28 30 28 1.0 1.0 2.0 6 8 5 6 10 7 5.2 0.48 600.0 750.0 1000.0 

048 Control 28 28 25 0.0 0.0 0.0 2 0 0 2 1 2 0.0 0.00 0.0 0.0 0.0 

049 Control 29 28 27 0.0 0.0 0.0 0 0 1 0 0 3 0.0 0.00 0.0 0.0 0.0 

050 Control 30 28 29 0.0 0.0 0.0 0 0 2 0 1 8 0.0 0.00 0.0 0.0 0.0 

051 Control NA NA NA 0.0 NA NA 12 NA NA NA NA NA 0.0 0.00 NA NA NA 

052 PDND 29 26 28 2.0 2.0 2.0 11 0 13 20 8 23 6.5 3.50 450.0 450.0 450.0 

053 Control 29 29 28 0.0 0.0 0.0 3 5 2 3 5 2 0.0 0.00 0.0 0.0 0.0 

054 Control 27 25 26 0.0 0.0 0.0 2 0 2 3 1 4 0.0 0.00 0.0 0.0 0.0 
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Table VI-3 

ID Dementia 

MMSE HY 
UPDRS part 3 

(motor) 

UPDRS total 

score 

PD 

duration 

(years) 

Levodopa 

duration 

(years) 

Levodopa 

equivalent 

dosage (mg) 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

0 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

055 Control 25 26 29 0.0 0.0 0.0 3 4 4 7 5 7 0.0 0.00 0.0 0.0 0.0 

056 Control 29 26 30 0.0 0.0 0.0 0 1 0 0 1 1 0.0 0.00 0.0 0.0 0.0 

057 Control 28 28 29 0.0 0.0 0.0 0 0 1 0 0 1 0.0 0.00 0.0 0.0 0.0 

059 Control 30 28 28 0.0 0.0 0.0 1 2 0 2 4 2 0.0 0.00 0.0 0.0 0.0 

060 Control 30 28 29 0.0 0.0 0.0 4 3 6 4 7 8 0.0 0.00 0.0 0.0 0.0 

063 PDND 26 29 27 2.0 2.5 2.0 33 27 36 47 37 53 14.5 2.52 100.0 200.0 100.0 

064 PDD NA NA NA 2.0 NA NA 12 NA NA NA NA NA 0.7 0.65 NA NA NA 

065 Control 30 29 29 0.0 0.0 0.0 0 0 0 1 0 0 0.0 0.00 0.0 0.0 0.0 

066 Control 29 29 26 0.0 0.0 0.0 15 9 15 15 12 26 0.0 0.00 0.0 0.0 0.0 

067 Control 30 28 28 0.0 0.0 0.0 0 0 0 1 1 0 0.0 0.00 0.0 0.0 0.0 

068 Control 28 29 24 0.0 0.0 0.0 6 8 8 6 10 8 0.0 0.00 0.0 0.0 0.0 

069 Control 29 27 29 0.0 0.0 0.0 2 0 3 3 0 4 0.0 0.00 0.0 0.0 0.0 

070 Control 28 27 28 0.0 0.0 0.0 0 0 1 0 1 2 0.0 0.00 0.0 0.0 0.0 

071 PDD 28 25 23 2.5 2.5 2.5 11 19 23 20 26 30 12.8 12.79 817.0 750.0 750.0 

072 PDD 23 22 13 3.0 2.5 4.0 16 11 36 20 14 61 3.0 1.51 650.0 1312.5 225.0 

073 Control NA NA NA 0.0 NA NA 3 NA NA NA NA NA 0.0 0.00 NA NA NA 

074 Control 30 28 29 0.0 0.0 0.0 1 0 2 3 1 3 0.0 0.00 0.0 0.0 0.0 

075 Control 29 29 29 0.0 0.0 0.0 0 0 1 1 0 1 0.0 0.00 0.0 0.0 0.0 

076 Control 29 27 28 0.0 0.0 0.0 3 2 5 4 3 8 0.0 0.00 0.0 0.0 0.0 

077 PDND NA NA NA 3.0 NA NA 39 NA NA NA NA NA 4.9 2.44 NA NA NA 

078 Control 27 25 27 0.0 0.0 0.0 2 3 3 2 4 3 0.0 0.00 0.0 0.0 0.0 

079 Control 29 27 26 0.0 0.0 0.0 0 2 0 3 5 3 0.0 0.00 0.0 0.0 0.0 

081 PDND 28 27 27 2.0 2.0 2.5 19 25 27 30 41 43 5.9 5.94 601.5 601.5 701.5 

082 PDND 29 28 27 1.5 1.0 1.5 12 7 9 29 21 25 9.8 3.74 750.0 600.0 501.0 

083 Control 25 24 26 0.0 0.0 0.0 6 3 4 10 3 7 0.0 0.00 0.0 0.0 0.0 

084 Control NA NA NA 0.0 NA NA 0 NA NA NA NA NA 0.0 0.00 NA NA NA 
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Table VI-3 

ID Dementia 

MMSE HY 
UPDRS part 3 

(motor) 

UPDRS total 

score 

PD 

duration 

(years) 

Levodopa 

duration 

(years) 

Levodopa 

equivalent 

dosage (mg) 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

0 

mo. 

0 

mo. 

0 

mo. 

18 

mo. 

36 

mo. 

086 Control 30 29 28 0.0 0.0 0.0 1 1 1 2 2 2 0.0 0.00 0.0 0.0 0.0 

087 PDND 30 30 30 1.0 1.0 2.0 11 9 19 16 13 25 14.1 11.47 876.5 1001.5 1001.5 

089 PDD 29 27 28 3.0 3.0 4.0 32 27 40 40 37 61 13.1 10.09 975.0 1800.0 1800.0 

091 PDND 29 27 28 1.0 1.0 2.0 8 10 6 17 19 13 5.0 2.96 450.0 550.0 750.0 

092 PDND 28 28 28 2.0 1.0 2.0 12 6 10 16 10 14 8.2 5.17 700.0 501.0 701.0 

093 Control 30 26 28 0.0 0.0 0.0 3 0 0 4 3 3 0.0 0.00 0.0 0.0 0.0 

094 Control 24 24 25 0.0 0.0 0.0 3 3 5 6 6 9 0.0 0.00 0.0 0.0 0.0 

095 Control 30 30 27 0.0 0.0 0.0 0 0 0 1 2 1 0.0 0.00 0.0 0.0 0.0 

096 PDND 30 28 30 1.0 2.0 2.0 8 10 9 10 16 13 13.9 2.14 751.5 751.5 751.5 

098 PDND 30 28 0 2.0 2.0 0.0 15 16 0 17 19 0 6.1 6.12 875.0 875.0 0.0 

099 Control 29 28 26 0.0 0.0 0.0 0 2 1 0 3 2 0.0 0.00 0.0 0.0 0.0 

100 Control 30 30 28 0.0 0.0 0.0 0 0 0 1 1 1 0.0 0.00 0.0 0.0 0.0 

103 Control 29 30 30 0.0 0.0 0.0 5 4 7 8 8 11 0.0 0.00 0.0 0.0 0.0 

104 Control 29 29 30 0.0 0.0 0.0 1 1 0 2 1 0 0.0 0.00 0.0 0.0 0.0 
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Parkinson’s disease dementia (PDD) was defined at the 36-month visit through a cognitive 

decline in at least two domains (a 3-point change on the MMSE when compared to baseline, 6-

point change on the DRS-II or impairment in two or more domains on the CDR) during the 3-year 

study, along with functional impairment due to cognitive decline. Dementia diagnosis was 

confirmed by the study neurologist (Dr. Richard Camicioli, University of Alberta) through 

interviews, cognitive evaluations and functional assessments. Patients that declined to below age- 

and education-based cut-offs were included in the dementia subgroup, but volunteers without 

functional impairment or clear cognitive decline were grouped with the non-impaired subjects.  

 

6.2.2 Instrumentation 

Samples were analyzed by a Dionex UltiMate 3000 UHPLC system (Thermo Fisher 

Scientific, Waltham, MA, USA) employing a Waters Acquity BEH C18 column (5 cm × 2.1 mm 

with 1.7 µm particles; Waters Corporation, Milford, MA, USA) and Maxis II QTOF mass 

spectrometer instrument (Bruker Daltonics, Billerica, MA, USA) equipped with an electrospray 

ionization (ESI) source. 

 

6.2.3 Sample preparation and analysis 

Blood serum samples were prepared according to a modified Folch liquid-liquid extraction 

protocol with a combination of dichloromethane, methanol and water. 62,63 The employed 

chemicals and reagents were described in Chapter II (2.2.1. Chemicals and reagents, p. 42). An 

internal standard mixture composed of 14 deuterated lipids was added to samples before extraction 

for normalization of ion suppression and small differences that may occur during sample handling 
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(Table II-1, p. 45). Different sample volumes and final dilutions were employed for detection under 

positive and negative electrospray ionization due to the inherent characteristics of each polarity. 

For positive ionization, aliquots of 6.0 µL of human blood serum were vortexed with 2.0 µL of the 

internal standard mixture, 54.0 µL of methanol, 111.0 µL of dichloromethane and 28.0 µL of 

water. After a 10 min equilibration at room temperature, samples were centrifuged for 10 min at 

10,000 rpm and 4°C. The bottom organic layer (95% of the dichloromethane volume, 105.4 µL) 

was evaporated to dryness using a SpeedVac for 30 min. The residue was immediately resuspended 

in 12.0 µL of 1:1 mobile phase A (MPA)/mobile phase B (MPB) and diluted with 108.0 µL of 

MPA (20-fold dilution). For negative ionization, 30.0 µL aliquots of blood serum and 10.0 µL of 

the internal standard mixture were extracted with 46.0 µL of methanol, 111.0 µL of 

dichloromethane and 4 µL of water, followed by resuspension in 3 µL of 1:1 MPA/MPB and 

dilution with 27.0 µL of MPA (no dilution). Samples were kept under 4°C for a maximum of 2 

days before the injection. Experimental duplicates were performed, and samples were randomized 

for preparation and analysis. Quality control (QC) samples were prepared with a pool of human 

serum obtained from 100 healthy individuals. 

The extractions and injections were performed in 250 µL polypropylene inserts (Canadian 

Life Science, Peterborough, ON, Canada) placed inside 2 mL amber vials (Agilent Technologies, 

Santa Clara, CA, USA) with PTFE/silicone septa caps (Waters Corporation, Milford, MA, USA). 

We recognize that the use of plastic ware with organic solvents is not ideal, although much more 

practical and affordable than glassware. For this study, all samples were prepared using the same 

type and batch of inserts, septa, vial caps and pipet tips, thus minimizing the effects of plasticizers 

and other contaminants upon the statistical analysis. Blank extractions of water instead of the 

sample were performed with each sample batch to ensure quality control. A detailed discussion on 
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contamination sources and plastic/glassware for lipidomics is available in Chapter II (2.3.3. 

Evaluation of contamination sources, p. 63) 

Reversed-phase chromatography was performed by UHPLC-ESI-QToF-MS. Analysis 

conditions were: mobile phase A (MPA) – 10 mM ammonium formate in 50:40:10 acetonitrile/ 

methanol/ water (v/v/v); mobile phase B (MPB) – 10 mM ammonium formate in 95:5 isopropanol/ 

water (v/v); 250 µL/min; column temperature of 40°C; injection volume of 5.0 µL for positive 

ionization and 9.0 µL for negative ionization; and 22 min gradient (0 min – 5% MPB; 1.8 min – 

5% MPB; 8.5 min – 30% MPB; 18 min – 95% MPB; 22 min – 95% MPB) followed by 10 min of 

equilibration (0 min – 95% MPB; 3 min – 95% MPB; 4 min – 5% MPB; 10 min – 95% MPB). A 

ultra-high-resolution Maxis II QTOF mass spectrometer instrument equipped with an ESI source 

was used for detection under positive and negative ionization (capillary voltage of 4500 V; 

endplate offset of 500 V, nebulizer gas pressure of 1.0 bar, dry gas flow rate of 8.0 L/min; dry 

temperature of 230°C; spectra acquisition rate of 1 Hz, m/z range of 150 to 1500 Da). A 1.5 min 

segment for mass re-calibration was inserted at the beginning of each chromatogram during which 

1.0 mmol/L sodium formate calibrant solution in 1:1 isopropanol/ water (v/v) was infused into the 

ion source using a peristaltic pump. Quality control (QC) samples, i.e., the extract of a pool of 

serum samples obtained from 100 healthy individuals, were injected six times before the sample 

sequence to stabilize retention time and MS signal, and then re-injected after every ten sample 

injections to account for technical variation, totaling 18 QC replicates.  

 

6.2.4 Data processing 

The detected features were aligned using MetaboScape 4.0 (Bruker Daltonics, Billerica, 

MA, USA) with minimum intensity cut-off of 5000 cts for positive and 2000 cts for negative 
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ionization; minimum peak length of 6 spectra; retention time tolerance of 15 s; m/z tolerance of 

5.0 mDa; missing value substitution by recursive extraction for features detected in at least 10% 

of injections with a minimum peak length of 6 spectra; filtering by features detected in at least 

80% of injections for each group (control, Parkinson’s disease, or QC); and adduct correlation cut-

off of 0.8. Features detected under positive and negative ionization were merged into a unique list 

with m/z tolerance of 5.0 mDa and retention time tolerance of 15 s. 

 

6.2.5  Identification 

A comprehensive classification system for lipids was proposed in 2005 and updated in 

2009 by Fahy et al. under the leadership of the International Lipid Classification and Nomenclature 

Committee and has been adopted for the present work.16,17 Abbreviations to lipid classes and 

nomenclature followed the LipidMaps database (https://www.lipidmaps.org; database 

nomenclature from 2018) and the MS-DIAL LipidBlast spectral library (Table V-1).16,17,20,73,78 

MS/MS spectra were acquired for identification using a pool of all samples with collision 

energies between 20 and 60 eV. Positive MS/MS identification was performed with the MS-Dial 

LipidBlast MS/MS library, Bruker Human Metabolome Database (HMDB) Metabolite Library 2.0 

and MassBank of North America (MoNA) LC-MS/MS libraries, in combination with 

MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA).73,78–83,109 Lipids with MS/MS score 

higher than 50, combined with precursor mass error smaller than 5.0 mDa and mSigma (isotopic 

pattern match factor) smaller than 100, were considered as positively identified (Supp. Table 19).  

Features not identified by MS/MS were inputted in the Lipid Maps database for putative 

mass match (tolerance of 5.0 mDa).75 Lipids can have a high number of isomers and isobars, 

particularly for mass-based identification. A mass search for lipids can define (1) lipid class, (2) 
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the sum of components, i.e., total number of carbons in fatty acyl/alkyl chains and double bonds, 

and (3) the bond type. The individual compositions of specific fatty acyl/alkyl chains require 

MS/MS match, and cannot be determined by a mass search. 20 Furthermore, isomeric/isobaric 

overlap for different lipid classes and adducts may occur. Each detected feature can be m/z 

matched to a high number of isomeric and isobaric lipids that may belong to different classes. 

Hence, we employed a 5-tier filtering and scoring approach to select the best identification 

possibilities, as described in Chapter II (2.2.7. Putative identification of lipids, p. 50). The scores 

for each ranking tier were summed, and the top choice for each feature was selected by the smallest 

m/z error and total score. The top choice was used to determine lipid class for normalization, but 

other isomeric or isobaric possibilities that passed the exclusion filters for retention time range and 

adducts were kept, ordered by score values (Supp. Table 20). 

 

6.2.6 Normalization and statistics 

Lipids can suffer strong ion suppression in ESI due to their characteristic high 

hydrophobicity and amphiphilic behavior. We adapted a widely used approach for normalization 

of lipidomics data to correct ion suppression, as well as small variations that may occur during 

sample preparation, by using a set of 14 deuterated internal standards belonging to different lipid 

classes (Table II-1, p. 45). The putatively identified lipids were matched to one of the 14 internal 

standards according to lipid class similarity and expected retention time range for each class. 

Normalized intensity ratios, i.e., the intensity of each lipid divided by the intensity of the matched 

internal standard, were calculated for normalization. Normalized intensity ratios were auto-scaled, 

normalized for the median value for all samples and filtered by a relative standard deviation (RSD) 

smaller than 30% for QC injections (2633 lipids) for statistical analysis on MetaboAnalyst 4.0 
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(www.metaboanalyst.ca), viz. PCA, PLS-DA, orthogonal partial least square discriminant analysis 

(OPLS-DA) and Random Forest. 153 Lipids not detected for QCs, but found in healthy control or 

PD samples, were also included. Volcano plots, i.e., fold change (FC) versus p adjusted for false 

discovery rate (p), were used to select significantly altered lipids with FC ≥1.2 or ≤0.84 and p 

<0.05 (two-tailed, non-parametric test for unequal variances). Biomarker panels were selected by 

classification performance using Random Forest and evaluated through Receiver Operating 

Characteristic (ROC) curves.  

 

6.2.7 Confounding factors 

Confounding factors are characteristics that may cause biological differences within the 

studied population, but not expected to be specifically related to the disease status. They may lead 

to severe false discovery and bias if not statistically evaluated. We examined the effect of age, sex 

and B12 serum levels as potential confounders for the separation between control individuals and 

PD patients. For PD patients without dementia (PDND) and with incipient dementia (PDD), we 

evaluated age, sex, time since PD diagnosis, medication dosages (Levodopa equivalents), 

treatment period and motor deficit score (UPDRS part 3). Healthy control individuals (n=43) were 

age and sex-matched to PD patients (n=43) (Table VI-1). Similarly, the PDND (n=27) and PDD 

subgroups (n=16) were matched on sex, but the PDND subgroup was significantly younger than 

PDD (p of 0.03, Table VI-1). B12 serum levels were significantly higher for healthy controls when 

compared to PD patients (p of 0.008), but not significantly altered for the PDND/PDD comparison 

(p of 0.9, Table VI-1). PDND and PDD patients were not significantly different regarding disease 

duration (time since PD diagnosis, p of 0.2) or motor deficit score (UPDRS – part III, p of 0.6, 

Table VI-1). Furthermore, all PD patients were treated with varying doses of Levodopa or 
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equivalent drugs before and throughout the study period, according to medical instructions. 

Medication dosages were therapeutically adjusted during the 3-year evaluation due to disease 

progression, but treatment courses were not altered on account of participation in this study. The 

Levodopa equivalent dosages at baseline sample collection were not significantly different for 

PDND and PDD patients (p of 0.4), even though the PDD patients received medication for longer 

periods (p of 0.02, Table VI-1). 

The seven potentially confounding factors were evaluated by separating groups (healthy 

control and PD; or PDND and PDD) into two subgroups at the median value for age, sex, levodopa 

equivalent dosage, the period of treatment, time since PD diagnosis, B12 serum levels and motor 

deficit score (UPDRS - part III, Table VI-1). We employed statistical analysis through Volcano 

plots, two-way ANOVA, PCA, PLS-DA and ROC curves to gauge the effect of each factor upon 

the PD diagnosis or dementia classification. The evaluation of confounding factors followed a 

four-step procedure: 

1. Evaluation of the overall effect of each potentially confounding factor on the 

lipidome, regardless of disease status, by Volcano plots, PCA and PLS-DA. 

2. Evaluation of the potential interference or interaction of each confounding factor 

and the control/PD or PDND/PDD classification by two-way ANOVA. Each 

sample was given two labels: (1) disease status (control/PD or PDND/PDD), and 

(2) above or below the median value for the evaluated confounder. Two-way 

ANOVA interaction models were calculated. For the null hypothesis, we 

considered that there was an additive relationship between disease status 

(control/PD, or PDND/PDD) and the confounder, e.g., null hypothesis = the mean 

intensity ratios for control individuals are equal for males and females. For the 
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alternative hypothesis, we considered that the effect of changes due to disease status 

depended on the confounding factor. The null hypothesis was rejected for 

interaction p <0.05. If there was no significant interaction (p >0.05), the effects of 

changes in disease status were not significantly different at each level of the 

evaluated confounder and the 1-way ANOVA model was adequate. 

3. Evaluation of the performance of the proposed biomarker panels to classify samples 

as below or above the median for each factor. ROC curves were constructed using 

the two biomarker panels (control/PD or PDND/PDD) but applied to classify the 

samples as “below the median” or “above the median”. Uni- and multivariate AUC 

values were compared to the ones found for the control/PD or PDND/PDD 

comparisons. When the performance for median-split classification surpassed the 

performance for disease classification (higher uni- and multivariate AUC values), 

the biomarker candidate was further investigated. 

4. Evaluation of the performance of the proposed biomarker panels to classify the 

median-split samples as control/PD or PDND/PDD. Each median-split subgroup of 

samples was employed for the classification of samples as control/PD or 

PDND/PDD by Random Forest, using the proposed biomarker panels. 

Confounding was indicated by multivariate AUC values outside the 95% 

confidence interval (CI) for the ROC curve with the complete sample cohort 

(control/PD or PDND/PDD).  

We recognize that the current analyses of confounding factors were thorough but not 

exhaustive. Yet, confounders cannot be easily controlled, especially if the goal is to achieve a 

statistically representative number of human patients. Restricting the patient cohort to prevent 
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minor effects would substantially decrease the sample set available for the study. The only option 

to completely control confounders is by using cellular or animal models; however, as often found 

in clinical research, models do not always reflect the same biological and biochemical alterations 

as studies with human patients. 

 

6.3 Results 

6.3.1. Lipidomic profile generated by UHPLC-QToF-MS 

The healthy control, Parkinson’s disease and QC samples resulted in the detection of 6032 

features for positive ionization (82.1% with RSD ≤30% for QC injections) and 1001 for negative 

ionization (84.6% with RSD ≤30% for QC injections). Examples of chromatograms obtained for 

healthy individuals, PD patients, QC injections and the internal standard mixture are displayed in 

Figure VI-1. Positive and negative ions were merged to a list of 7043 features, with 318 positive 

identifications by MS/MS (Supp. Table 19). Furthermore, 2768 features were putatively mass-

matched to lipids with a mass tolerance of 5.0 mDa (Supp. Table 20). All 14 deuterated internal 

standards (Table II-1, p. 45) were detected and identified with an m/z error ≤3.7 ppm (1.3 mDa, 

Figure VI-1G and H). The PCA plot in Figure VI-2 displays all QC injections in a tightly clustered 

group, as well as duplicate experiments for each sample, indicating good technical reproducibility.  
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Figure VI-1. Examples of base peak chromatograms (BPC) obtained under positive (A, C, E and 

G) and negative ionization (B, D, F and H) for lipidomics or Parkinson’s disease and dementia. 

(A, B) QC injections; (C, D) blood serum extract of a healthy control subject; (E, F) serum extract 
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of a Parkinson’s disease patient; and (G, H) extracted ion chromatograms for the internal standard 

mixture, composed by 14 deuterated lipids belonging to different classes (Table II-1). 

 

 

Figure VI-2. PCA score plot for the separation between healthy control subjects (red), PD patients 

(green) and quality control (QC) replicates (blue). The tight clustering of QCs and duplicate 

experiments for each sample indicates a high reproducibility for the chosen methods. 

 

6.3.2. Parkinson’s disease patients versus healthy controls 

We first hypothesized that samples from PD patients displayed a different lipid 

composition than healthy controls. The Volcano plot analysis for the lipidome of PD patients 

compared to healthy controls showed a significant decrease in intensity ratios for PD for 34 lipids 

(FC for healthy control/PD ≥1.2 and p ≤0.05) and increased values for 95 lipids (FC for control/PD 

≤0.84) (Figure VI-3A, Supp. Table 21). Boxplots for some of the significantly altered lipids are 

displayed in Appendix C - Figure C-1. The significantly altered lipids included 16 sphingomyelins 
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(SM), 7 ceramides (6 ceramide-phosphoethanolamines and one hexosyl ceramide) and 5 

triacylglycerols (TG) with lower normalized intensities for the PD patients, whereas 38 

phosphatidylserines (PS), 15 phosphatidic acids (PA) and 14 fatty acids (FA) displayed higher 

normalized intensities when the disease was diagnosed (Figure VI-3B). 

 

 

Figure VI-3. Volcano plot analysis for lipidomics of Parkinson’s disease. (A) Volcano plot with 

significantly altered lipids displayed in red (FC ≥1.2 or <0.84, p ≤0.05), and non-significant lipids 

in blue. (B) Classes of significantly altered lipids for the control/PD Volcano plot analysis. 

Abbreviations to lipid subclasses are defined in Table V-1 (p. 154). 
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A PCA model did not result in a good separation between PD patients and healthy controls 

due to the complexity of the dataset (Figure C-2), but duplicate experiments were tightly clustered. 

The PLS-DA analysis with 8 components resulted in good separation (Figure VI-4A), as well as 

the OPLS-DA analysis (Figure VI-4B). Moreover, a Random Forest model resulted in an out-of-

bag error (OOB) of 0.02 with 1000 trees and 12 predictors (classification error or 3.5% for controls 

and 0% for PD). 

 

 

Figure VI-4. Statistical analysis for lipidomics of Parkinson’s disease. (A) PLS-DA score plot with 

8 components, R2 of 0.9573, Q2 of 0.7783 and p <0.001 for 1000 permutations. (B) OPLS-DA 
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score plot with R2Y of 0.957, Q2 of 0.823 and p <0.001 for 100 permutations. (C) ROC curve 

obtained for the control/PD separation with the proposed 7-lipid biomarker panel, as presented in 

Table VI-4. 

 

One-quarter of the control and PD samples (11 controls and 11 PD) was randomly retained 

as a validation set, while the remaining three-quarters (32 controls and 32 PD) were employed as 

a training set for the selection of potential biomarkers. Lipids were ranked regarding their ability 

to correctly classify the training samples from PD patients or healthy controls by Random Forest. 

The area under the Receiver Operating Characteristic (ROC) curve (AUC) were used to gauge the 

classification performance. Multivariate AUC values increased for biomarker panels composed by 

two to seven lipids but, as more compounds were added, AUC values became steady. Hence, we 

constructed a biomarker panel with the 7 most important lipids for the control/PD classification by 

Random Forest using the training set (Table VI-4). The proposed 7-lipid biomarker panel resulted 

in AUC of 0.989 (95% confidence interval - CI of 0.965 – 1.000), sensitivity of 95.3%, specificity 

of 93.8% and average accuracy of 93.8% for 100 cross-validations (Figure VI-4C). The 7-lipid 

biomarker panel for the control/PD classification (Table VI-4) was further employed to predict the 

disease status for the validation set. We achieved sensitivity of 90.9%, specificity of 90.9% and 

overall accuracy of 90.9%. 
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Table VI-4. Proposed biomarker panel for the classification of samples as (1) control or PD; or (2) 

PDND or PDD. Abbreviations to lipid subclasses are defined in Table V-1 (p. 154). 

Classification 

Polarity m/z / 

retention time 

(min) 

Univariate 

AUC 
Identification 

(1) 

Control/PD 

N802.60161/ 

13.26 
0.719 

HexCer(t37:1) | PS(P-38:0) | PS(O-38:1) | PC(O-

35:2) | PC(P-35:1) 

P320.25676/ 

1.74 
0.739 NAE(18:4) | NAE(16:1) | Sph(d18:2) 

N764.54187/ 

11.78 
0.753 

PS(O-34:0(OH)) | PC(31:0) | PE(34:0) | PE-

NMe2(32:0) | PC(O-31:1(OH)) 

P775.66759/ 

15.06 
0.787 PE-Cer(d42:0) | SM(d39:0) | CerP(d44:1) 

P809.65147/ 

13.23 
0.685 SM(d40:1) | PE-Cer(d43:1) | MGDG(39:1) 

P803.69882/ 

15.92 
0.770 PE-Cer(d44:0) | SM(d41:0) | CerP(d46:1) 

P845.65181/ 

12.96 
0.626 MGDG(42:4) 

(2) 

PDND/PDD 

N814.59749/ 

13.47 
0.854 

PC(P-36:2) | PC(O-36:3) | PE(40:2(OH)) | PS(P-

39:1) | PC(38:2(OH)) 

P320.25676/ 

1.74 
0.760 NAE(18:4) | NAE(16:1) | Sph(d18:2) 

P740.55611/ 

8.34 
0.734 

LPC(34:4) | PC(O-34:4) | PC(P-34:3) | LPC(32:1) 

| PC(O-32:1) 

P786.59935/ 

12.92 
0.832 PC(18:1/18:1) 

P723.56329/ 

11.36 
0.769 

PE-NMe(32:0) | PC(30:0) | PC(O-30:1(OH)) | 

PC(P-30:0(OH)) | PE(33:0) 

Notes: For putative identifications, all isomeric and isobaric possibilities with m/z error ≤5.0 mDa 

that passed the retention time and adduct filters were kept, but a maximum of five are shown; 

AUC: area under the ROC curve; P: positive ionization; N: negative ionization. 

 

6.3.3. Parkinson’s disease dementia 

In the second phase, baseline lipidome discrimination of PDND and PDD was evaluated. 

All samples were collected three years before dementia diagnosis, when patients displayed no 
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signals of dementia; hence, the second phase consisted in an evaluation of prediction of transition 

to PDD up to three years before clinical symptoms. A volcano plot resulted in 66 lipids with 

decreased normalized intensity ratios for dementia patients (FC for PDND/PDD ≥1.2 and p ≤0.05, 

Figure VI-5A), including 25 triacylglycerols (TG) and 20 diacylglycerols (DG). In contrast, 48 

lipids had increased intensity ratios for dementia patients (FC for PDND/PDD ≤0.84 and P ≤0.05), 

including 18 phosphatidylcholines (PC), 9 fatty acids (FA) and 4 phosphatidylethanolamines (PE) 

(Figure VI-5B, Supp. Table 22). Boxplots for some of the significantly altered lipids are displayed 

in Appendix C - Figure C-3. 
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Figure VI-5. Volcano plot analysis for lipidomics of PD patients that didn’t develop dementia in 

the 3-year interval after sample collection compared to PD patients clinically diagnosed with 

dementia in the post-hoc assessments. (A) Volcano plot with significantly altered lipids displayed 

in red (FC ≥1.2 or <0.84, P ≤0.05) and non-significant lipids in blue. (B) Classes of significantly 

altered lipids for the PDND/PDD Volcano plot analysis (FC ≥1.2 or <0.84, P ≤0.05). Abbreviations 

to lipid subclasses are defined in Table V-1 (p. 154). 

 

A PCA model did not result in a good separation between PDND and PDD patients due to 

the complexity of the dataset (Figure C-4), but experimental duplicates were tightly clustered. The 
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PLS-DA model with 6 components and the OPLS-DA score plot showed a clear separation 

between the two subgroups (Figure VI-6A and B). The Random Forest model with 12 predictors 

and 5000 trees resulted in an OOB error of 0.06. 

 

 

Figure VI-6. Statistical analysis for lipidomics of PD patients that didn’t develop dementia in the 

3-year interval after sample collection (PDND, purple) compared to PD patients clinically 

diagnosed with dementia in the post-hoc assessments (PDD, yellow). (A) PLS-DA score plot with 

6 components, R2 of 0.9700, Q2 of 0.7640 and p of 0.04 for 1000 permutations. (B) OPLS-DA 

score plot with R2Y of 0.986, Q2 of 0.884 and p <0.001 for 1000 permutations. (C) ROC curve 
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obtained for the PDND/PDD separation with the proposed 5-lipid biomarker panel, as presented 

in Table VI-4.  

 

As in the previous phase, we compared PDND with PDD by selecting the most important 

lipids for classification by Random Forest as biomarker candidates. The sample set was randomly 

divided into a training set, composed by 20 PDND and 12 PDD samples, and a validation set, 

composed by 7 PDND and 4 PDD samples. We constructed a biomarker panel with the 5 most 

important lipids for the PDND/PDD classification by Random Forest using the training set, as 

shown in Table VI-4. The ROC analysis resulted in multivariate AUC of 0.973 (95% CI of 0.919 

– 1.000), sensitivity of 95.8%, specificity of 90.0% and overall accuracy of 91.9% (Figure VI-6C).  

The 5-lipid biomarker panel (Table VI-4) was further employed to classify the PD samples 

randomly retained for a validation set as PDND or PDD. All samples were correctly classified, 

resulting in excellent sensitivity of 100%, specificity of 100% and overall accuracy of 100%. 

 

6.3.4. Confounding factors 

We evaluated the effect of seven potentially confounding factors on the lipidome, viz., age, 

sex, time since PD diagnosis, medication dosages (levodopa equivalents), the period of treatment, 

motor deficit score (UPDRS - part III) and B12 serum levels (Table VI-1). Using a median split, 

we divided the dataset (control and PD; or PDND and PDD) into two subgroups for each potential 

confounder (i.e., above/below the median). The detailed description and results for the evaluation 

of confounding factors are provided on the following sub-sections.  

In summary, although we detected significant fold changes for selected lipids for each 

potential confounder (Figure VI-7), the classification of samples as healthy control or PD by the 



Chapter VI 

237 

 

proposed 7-lipid biomarker panel was only minimally affected. As previously mentioned, the 

classification of the complete sample set as control or PD resulted in AUC of 0.989 with 95% 

confidence interval between 0.965 and 1.000 (Figure VI-4C). For age, we examined the 

multivariate AUCs obtained when the control and PD individuals were separated as above and 

below the age median before disease classification. Both groups were within the 95% confidence 

interval for the complete control/PD dataset, i.e., the classification of individuals above the age 

median as PD or control resulted in AUC of 0.972, while people below the median resulted in 

AUC of 0.987. For sex, stratified classification as control or PD resulted in slightly reduced AUC 

values for females (0.985) and males (0.942). We also evaluated the performance of the 7-lipid 

biomarker panel for individuals with B12 levels below (AUC of 0.949) and above the median 

(0.993), which only showed minor differences. Overall, AUC values were only slightly below the 

95% confidence interval for sex (males) and B12 levels (below the median value). The 2-way 

ANOVA analysis for each potential confounder and PD status showed no significant interference 

for the 7 lipids in the biomarker panel, i.e., interaction p was above the arbitrary significance level 

of 0.05. 
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Figure VI-7. Classes of significantly altered lipids (FC ≥1.2 or <0.84 and p <0.05) for the evaluated 

potential confounding factors by Volcano plot. (A) control/PD comparison; (B) PDND/PDD 

comparison. Abbreviations to lipid subclasses are defined in Table V-1 (p. 154).  

 

For the second study phase, the classification of samples as PDND or PDD using the 5-

lipid biomarker panel (Table VI-4, p. 232) was also not strongly affected by age, sex, medication 

dosage, period of treatment, time since PD diagnosis or UPDRS-III score. The classification of all 

samples as PDND or PDD resulted in AUC of 0.973 with 95% confidence interval of 0.919 – 

1.000, as previously described (Figure VI-6C). The AUC values for the median-split subgroups 

were within the 95% confidence interval of the complete PDND/PDD subgroups for most 
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confounders. The period of treatment with Levodopa or equivalent medication was the only 

exception, with AUC of 0.894 for patients below the median value (8.0% smaller than the complete 

PDND/PDD cohort) and 1.000 for patients above the median (2.9% higher), indicating a mild 

influence. However, the five lipids in the PDND/PDD biomarker panel resulted in p >0.05 for the 

interference between all potential confounders and disease status, i.e., not significant by 2-way 

ANOVA. 

 

6.3.4.1 Age 

The age of healthy control subjects was not significantly different from the PD group (p of 

0.44, Table VI-1), but the PDND and PDD subgroups were not age-matched (p of 0.03). It is 

expected that the aging processes will influence the lipidome of blood serum samples; however, 

the changes caused by PD as the patient ages are not entirely understood, particularly as dementia 

develops. Therefore, the effect of age on the lipidome was evaluated for the control and PD 

subjects.  

 

6.3.4.2 Age effect on the lipidome of control and PD subjects 

The 43 healthy control and 43 PD samples were separated into two subgroups: (1) below 

the median (20 control and 23 PD samples) and (2) above the median of 69.97 years old (23 control 

and 20 PD samples). For the control group, univariate analysis through a volcano plot resulted in 

two triacylglycerols with significantly decreased normalized intensity ratios for the older subgroup 

(FC for below/above median ≥1.2 and p ≤0.05), while 40 lipids showed increased values (FC 

<0.84), including 20 phosphatidylcholines and 10 phosphatidylethanolamines (Supp. Table 23). 

Two of the significant lipids with FC (below/above the median) <0.84 were also significantly 
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altered for the control/PD comparison: one phosphatidylserine and one hexosyl ceramide. 

Furthermore, five significant lipids for age were also significantly altered for the PDND/PDD 

comparison, with all of them displaying higher intensity ratios for individuals above the age 

median and diagnosed with PDD (FC below/above the age median and PDND/PDD <0.84). The 

lipids selected for the control/PD and PDND/PDD biomarker panels were not significantly 

affected by age. The multivariate statistical analysis by PCA did not result in a discernible 

separation between individuals above and below the age median, but a PLS-DA model was 

developed with 8 components, resulting in R2 of 0.9428, Q2 of 0.6837 and p <0.001 for 1000 

permutations (Appendix C - Figure C-5). 

The PDND and PDD subgroups were not age-matched (p of 0.03), increasing the 

importance of significant effects caused by age differences. For the PD group, the Volcano plot 

for lipids detected below the median (16 PDND and 6 PDD) and above the median of 69.74 years 

old (11 PDND and 10 PDD) resulted in 19 lipids with decreased intensities for the older subgroup, 

while 36 had increased values (Supp. Table 24). The lipids with lower intensity ratios for the older 

subgroup include 16 triacylglycerols and 2 diacylglycerols; whereas for higher intensity ratios, 17 

phosphatidylcholines, 7 phosphatidylethanolamines and 5 phosphatidic acids, amongst others. 

Two of the significantly altered lipids were also selected for the PDND/PDD comparison, both 

with FC (below/above median) <0.84 and FC (PDND/PDD) <0.84, i.e., they were affected by age 

regardless of disease status. However, the lipids selected for the biomarker panels for control/PD 

and PDND/PDD were not significantly altered. The PCA score plot displayed no discernible 

differentiation for the median-split PD subgroups, but PLS-DA with 6 components resulted in R2 

of 0.9769, Q2 of 0.8359 and p of 0.03 for 1000 permutations (Figure C-6). 
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6.3.4.3 Age effect on PD and dementia classification 

The age-matched control and PD samples were split into two subgroups at the median value 

of 69.97 years old. The two-way ANOVA analysis for age (above/below median) and disease 

status (control/PD) resulted in 15 lipids with significant interactions between the two factors 

(interaction p <0.05, Supp. Table 25), but none of them were part of the 7-lipid control/PD 

biomarker panel (Table VI-4). Even though the PDND and PDD subgroups were not age-matched, 

two-way ANOVA analysis for dementia status (PDND/PDD) and age (below/above median) 

revealed that none of the identified lipids had significant interaction between the two factors (Supp. 

Table 26). 

The 7-lipid biomarker panel for the control/PD comparison (Table VI-4, p. 232) was 

employed to generate a ROC curve for the classification of PD samples as below or above the 

median of 69.97 years old. The obtained multivariate AUC was 0.701, with an accuracy of 65.3% 

(Table VI-5, Figure VI-8A). The values were much smaller than the ones for the sample 

classification as control or PD (AUC of 0.989 and accuracy of 93.8%, Figure VI-4C), indicating 

little effect. Similarly, the five-lipid biomarker panel for the PDND/PDD comparison (Table VI-4, 

p. 232) was employed to generate a second ROC curve for the classification as below or above the 

age median for the PD group (69.74 years old). The obtained multivariate AUC was 0.712 with an 

accuracy of 67.4% (Table VI-6, Figure VI-9A), once again smaller than the values found for the 

original PDND/PDD classification (AUC of 0.972 and accuracy of 91.9%, Figure VI-6C). The 

low performance of both biomarker panels to classify samples as below/above the age median, 

when compared to their excellent performance for classification as control/PD or PDND/PDD, are 

indications that age is not an important confounding factor for the selected lipids. 
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Figure VI-8. ROC curves using the 7-lipid biomarker panel for the control/PD comparison (Table 

VI-4, p. 232) to evaluate age as a confounding factor. The biomarker panel was used to classify: 

(A) all control and PD samples as above or below the age median of 69.97 years old, with 

sensitivity of 62.8%, specificity of 72.1% and overall accuracy of 65.3% by 100 cross-validations; 

(B) only samples from individuals aged below the median of 69.97 years old as control or PD, 

with sensitivity of 91.3%, specificity of 100% and accuracy of 93.0%; (C) only samples for 

individuals aged above the median of 69.97 years old as control or PD, with sensitivity of 95.0%, 

specificity of 93.5% and accuracy of 92.0%. 
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Figure VI-9. ROC curves for PD patients (PDND and PDD) using the 5-lipid biomarker panel 

(Table VI-4, p. 232) to evaluate age as a confounding factor. The biomarker panel was used to 

classify: (A) all PD samples as above or below the age median of 69.74 years old, with sensitivity 

of 63.6%, specificity of 76.2% and overall accuracy of 67.4% by 100 cross-validations; (B) only 

samples from PD patients aged below the median of 69.74 years old as PDND or PDD, with 

sensitivity of 100.0%, specificity of 87.5% and accuracy of 87.9%; (D) only samples from PD 

patients aged above the median of 69.74 years old as PDND or PDD, with sensitivity of 95.0%, 

specificity of 100.0% and accuracy of 96.4%. 
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Table VI-5. Uni- and multivariate AUCs for the proposed biomarker panel for diagnosis of PD 

(Table VI-4, p. 232), when applied for the classification of samples as below or above the median 

for age, sex (male or female) and B12 serum level. For putative identifications, all isomeric and 

isobaric possibilities with the same m/z error that passed the retention time and adduct filters were 

kept, but a maximum of five are shown. The ionization mode is described as “P” for positive or 

“N” for Negative. Lipid class abbreviations are described in Table V-1 (p. 154). 

Polarity m/z / 

retention time 
Identification Class 

Univariate AUC 

Control/ 

PD 
Age Sex B12 

N764.54187/ 

11.78 

HexCer(t37:1) | 

PS(P-38:0) | PS(O-38:1) | 

PC(O-35:2) | PC(P-35:1) 

HexCer 0.753 0.573 0.520 0.548 

N802.60161/ 

13.26 

NAE(18:4) | NAE(16:1) | 

Sph(d18:2) 
NAA 0.719 0.685 0.555 0.547 

P320.25676/ 

1.74 

PS(O-34:0(OH)) | PC(31:0) | 

PE(34:0) | 

PE-NMe2(32:0) | 

PC(O-31:1(OH)) 

PS 0.739 0.527 0.558 0.548 

P775.66759/ 

15.06 

PE-Cer(d42:0) | 

SM(d39:0) | CerP(d44:1) 
PE-Cer 0.787 0.567 0.527 0.516 

P803.69882/ 

15.92 

SM(d40:1) | 

PE-Cer(d43:1) | 

MGDG(39:1) 

SM 0.771 0.548 0.508 0.565 

P809.65147/ 

13.23 

PE-Cer(d44:0) | 

SM(d41:0) | CerP(d46:1) 
PE-Cer 0.685 0.520 0.532 0.606 

P845.65181/ 

12.96 
MGDG(42:4) GDG 0.626 0.510 0.572 0.594 

Multivariate AUC (7-lipid biomarker panel) 0.989 0.701 0.836 0.749 

95% confidence interval for multivariate AUC 
0.965- 

1.000 

0.585- 

0.785 

0.702- 

0.923 

0.611- 

0.879 
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Table VI-6. Uni- and multivariate AUCs for the proposed biomarker panel for prediction of PDD (Table VI-4, p. 232), when applied 

for the classification of PD samples as below or above the median for age, sex (male or female), time since PD diagnosis, Levodopa 

equivalent dosage, period of treatment, and UPDRS-part 3 (motor assessment). The ionization mode is described as “P” for positive or 

“N” for Negative. Lipid class abbreviations are described in Table V-1 (p. 154). 

Polarity m/z / 

retention time 
Identification Class 

Univariate AUC 

PDND/ 

PDD 
Age Sex 

Levodopa 

dosage 

Levodopa 

duration 

PD 

duration 
UPDRS 

N814.59749/ 

13.47 

PC(P-36:2) | PC(O-36:3) | 

PE(40:2(OH)) | PS(P-39:1) | 

PC(38:2(OH)) 

PC 0.854 0.531 0.527 0.579 0.621 0.584 0.502 

P320.25676/ 

1.74 

NAE(18:4) | NAE(16:1) | 

Sph(d18:2) 
NAA 0.760 0.538 0.556 0.631 0.601 0.586 0.543 

P723.56329/ 

11.36 

PE-NMe(32:0) | PC(30:0) | 

PC(O-30:1(OH)) | PC(P-

30:0(OH)) | 

PE(33:0) 

PE-

Cer 
0.769 0.532 0.555 0.514 0.554 0.593 0.543 

P740.55611/ 

8.34 

LPC(34:4) | PC(O-34:4) | 

PC(P-34:3) | LPC(32:1) | 

PC(O-32:1) 

LPC 0.734 0.652 0.531 0.576 0.530 0.540 0.639 

P786.59935/ 

12.92 
PC(18:1/18:1) PC 0.832 0.523 0.581 0.627 0.569 0.700 0.526 

Multivariate AUC (5-lipid biomarker panel) 0.961 0.712 0.677 0.602 0.711 0.750 0.702 

95% confidence interval for multivariate AUC 
0.919- 

1.000 

0.551- 

0.881 

0.510- 

0.826 

0.458- 

0.723 

0.547- 

0.882 

0.566- 

0.902 

0.537- 

0.826 
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The median-split subgroups were further employed to generated ROC curves for the 

classification of disease status using each distinct subgroup, i.e., only samples below or only 

samples above the age median. For the control/PD classification, the samples from individuals 

aged above the median resulted in AUC of 0.972 (95% confidence interval between 0.879 and 

1.000) and accuracy of 92.0% (Figure VI-8C, Table VI-7). For individuals below the median, the 

AUC was 0.987 (95% confidence interval between 0.953 and 1.000) and accuracy of 93.0% 

(Figure VI-8B, Table VI-8). The performances for classification of the subgroups composed only 

by individuals below or above the age median as control or PD were similar to each other, and not 

better than the results found for the complete control/PD sample set (AUC of 0.989 with 95% 

confidence interval between 0.965 and 1.000, and accuracy of 93.8% - Figure VI-4C). Likewise, 

the distinct median-split subsets for PDND and PDD resulted in AUC of 0.996 (95% confidence 

interval between 0.956 and 1.000) with an accuracy of 96.4% for above the median (Figure VI-9C); 

and AUC of 0.949 (95% confidence interval between 0.854 and 1.000) with an accuracy of 87.9% 

for below the median (Figure VI-9B). The performance for the subgroup above the age median 

was slightly better than for people below the median, but both AUC values were within the 95% 

confidence interval for the complete PDND/PDD data set (AUC of 0.972 with 95% confidence 

interval between 0.919 and 1.000, Figure VI-6), indicating that the separation of patients according 

to age is not required for the selected biomarker panels. 
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Table VI-7. Uni- and multivariate AUCs for the proposed biomarker panel for the classification of samples as healthy control or PD, 

when applied for median-split subgroups for age, sex and B12 serum levels. The 7-lipid biomarker panel was used to classify only 

samples from (a) individuals below the age median; (b) individuals above the age median; (c) males; (d) females; (e) individuals below 

the median for B12 serum level; and (f) individuals above the median for B12 serum level as control or PD. The ionization mode is 

described as “P” for positive or “N” for Negative. Lipid class abbreviations are described in Table V-1. 

Polarity m/z / 

retention time 
Identification Class 

Univariate AUC 

Control/ 

PD 

Age Sex B12 serum level 

Below 

median 

Above 

median 
Males Females 

Below 

median 

Above 

median 

N764.54187/ 

11.78 

HexCer(t37:1) | PS(P-38:0) | 

PS(O-38:1) | PC(O-35:2) | 

PC(P-35:1) 

HexCer 0.753 0.777 0.658 0.673 0.777 0.744 0.707 

N802.60161/ 

13.26 

NAE(18:4) | NAE(16:1) | 

Sph(d18:2) 
NAA 0.719 0.764 0.734 0.705 0.797 0.728 0.775 

P320.25676/ 

1.74 

PS(O-34:0(OH)) | PC(31:0) | 

PE(34:0) | PE-NMe2(32:0) | 

PC(O-31:1(OH)) 

PS 0.739 0.773 0.659 0.737 0.721 0.584 0.871 

P775.66759/ 

15.06 

PE-Cer(d42:0) | SM(d39:0) | 

CerP(d44:1) 
PE-Cer 0.787 0.730 0.873 0.688 0.891 0.793 0.796 

P803.69882/ 

15.92 

SM(d40:1) | PE-Cer(d43:1) | 

MGDG(39:1) 
SM 0.771 0.671 0.847 0.655 0.862 0.750 0.829 

P809.65147/ 

13.23 

PE-Cer(d44:0) | SM(d41:0) | 

CerP(d46:1) 
PE-Cer 0.685 0.643 0.722 0.716 0.676 0.726 0.620 

P845.65181/ 

12.96 
MGDG(42:4) GDG 0.626 0.783 0.554 0.596 0.607 0.586 0.712 

Multivariate AUC (7-lipid biomarker panel) 0.989 0.987 0.972 0.942 0.985 0.949 0.993 

95% confidence interval for multivariate AUC 
0.965- 

1.000 

0.953- 

1.000 

0.879- 

1.000 

0.859- 

0.992 

0.935- 

1.000 

0.863- 

0.999 

0.965- 

1.000 
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Table VI-8. Uni- and multivariate AUCs for the proposed biomarker panel for the classification of samples as PDND or PDD, when 

applied for the classification of median-split PD samples for age, sex (male or female), time since PD diagnosis, Levodopa equivalent 

dosage, period of treatment, and UPDRS-part 3 (motor assessment). The 5-lipid biomarker panel was used to classify only samples from 

(a) individuals below the median or (b) individuals above the median as PDND or PDD. The ionization mode is described as “P” for 

positive or “N” for Negative. Lipid class abbreviations are described in Table V-1 (p. 154). 

Polarity 

m/z / 

retention 

time 

Univariate AUC 

PDND 

/PDD 

Age Sex 
Levodopa 

dosage 

Levodopa 

duration 
PD duration UPDRS3 

Below 

median 

Above 

median 
Males Females 

Below 

median 

Above 

median 

Below 

median 

Above 

median 

Below 

median 

Above 

median 

Below 

median 

Above 

median 

N814.59749/ 

13.47 
0.854 0.724 0.909 0.724 0.857 0.664 0.950 0.750 0.843 0.672 0.893 0.730 0.808 

P320.25676/ 

1.74 
0.760 0.737 0.830 0.769 0.810 0.813 0.808 0.756 0.768 0.776 0.807 0.851 0.808 

P723.56329/ 

11.36 
0.769 0.646 0.750 0.741 0.640 0.652 0.718 0.618 0.784 0.693 0.689 0.690 0.709 

P740.55611/ 

8.34 
0.734 0.836 0.564 0.741 0.702 0.504 0.988 0.521 0.920 0.560 0.873 0.887 0.536 

P786.59935/ 

12.92 
0.832 0.802 0.845 0.730 0.935 0.652 0.950 0.750 0.852 0.635 0.889 0.847 0.745 

Multivariate 

AUC 
0.961 0.949 0.996 1.000 0.960 0.965 1.000 0.894 1.000 0.995 0.977 0.982 0.978 

95% CI 
0.919- 

1.000 

0.854- 

1.000 

0.956- 

1.000 

0.995- 

1.000 

0.813- 

1.000 

0.759- 

1.000 

1.000- 

1.000 

0.551- 

1.000 

1.000- 

1.000 

0.936- 

1.000 

0.833- 

1.000 

0.906- 

1.000 

0.894- 

1.000 
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6.3.4.4 Sex 

The control/PD groups and PDND/PDD subgroups were sex-matched (p >0.05, Table 

VI-1). Sex is an important moderator in PD development, and it has been suggested that the disease 

may affect males and females differently. More males are diagnosed with PD than females, and 

there are a few clinical characteristics that are observed more often in men, e.g., rigidity and rapid 

eye movement disorder. The possible neuroprotective effect of the female hormone estrogen has 

been cited as a cause for the gender-related symptoms, which may also alter the metabolome and 

lipidome of patients.233 Hence, we investigated the effect of sex on the lipidome, as well as the 

possibility of interference for control/PD and PDND/PDD classifications. 

 

6.3.4.5 Sex effect on the lipidome of control and PD subjects 

For the control/PD sample set, univariate analysis through a volcano plot resulted in 220 

lipids with significantly decreased intensity ratio for the males when compared to the females (FC 

for females/males ≥1.2 and p ≤0.05), and 155 with increased values (FC for female/male <0.84) 

(Supp. Table 23, Figure VI-7). Out of the 375 significantly altered lipids, 49 were identified as 

phosphatidylcholines, 43 phosphatidylethanolamines, 29 phosphatidylserines, 35 ceramides and 

22 wax esters. The glycerophospholipid metabolism was strongly gender-dependent, with mostly 

higher intensity ratios for female subjects. We also observed a strong influence of sex on the 

sphingomyelin and ceramide metabolisms. Nineteen lipids were significantly changed for sex and 

the control/PD comparison, including two with FC for control/PD ≥1.2 and 17 with FC <0.84 (P 

≤0.05). The seven lipids selected for the control/PD biomarker panel (Table VI-4, p. 232) were not 

significantly altered by sex. A partial separation for males and females was observed for the 
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multivariate statistical analysis by PLS-DA with 8 components, resulting in R2 of 0.9597, Q2 of 

0.8402 and p <0.01 (100 permutations, Figure C-7).  

For the PD group, similar results were observed. 137 lipids had significantly smaller 

intensities for the male subgroup (FC for females/males in PD group ≥1.2 and p ≤0.05), while 126 

had a significant increase (FC <0.84 and p ≤0.05, Supp. Table 24). The glycerophospholipid 

metabolism was once again affected, with 38 phosphatidylethanolamines, 20 phosphatidylserines 

and 13 phosphatidylcholines significantly altered; however, we also found significant alterations 

for 35 triacylglycerols, 14 diacylglycerols, 32 ceramides and 22 wax esters. Six lipids were 

significantly altered for both the sex and PDND/PDD comparisons, with one displaying FC 

(female/male) and FC (PDND/PDD) ≥1.2, while the rest had FC (female/male) and FC 

(PDND/PDD) <0.84. None of the five lipids selected for the PDND/PDD biomarker panel were 

significantly affected by sex. A good PLS-DA separation for males and females with PD was 

achieved with 6 components, resulting in R2 of 0.9746, Q2 of 0.8472 and p <0.01 for 100 

permutations (Figure C-8).  

 

6.3.4.6 Sex effect on the PD and PDD diagnosis 

Two-way ANOVA for disease status (control/PD) and sex (male/female) resulted in 61 

lipids with significant interference (interaction p <0.05, Supp. Table 25), meaning that both the 

disease status and sex influence their intensity ratios. However, the 7 lipids selected for the 

control/PD biomarker panel (Table VI-4, p. 232) did not show significant interference for disease 

status and sex (p >0.05). Similarly, 50 lipids displayed significant interference for sex and 

PDND/PDD classification, but none of the five selected for the PDND/PDD biomarker panel 

(Supp. Table 26). 
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ROC curves using the 7-lipid biomarker panel for control/PD (Table VI-4, p. 232) to 

classify samples as females or males resulted in multivariate AUC of 0.836 (95% confidence 

interval between 0.702 and 0.923), with an accuracy of 76.6% and univariate AUCs between 0.508 

and 0.572 (Figure VI-10A, Table VI-5). Likewise, we used the 5-lipid PDND/PDD biomarker 

panel (Table VI-4, p. 232) to classify samples as females or males, resulting in a multivariate AUC 

of 0.677 (95% confidence interval between 0.510 and 0.826, Figure VI-11A, Table VI-6) and 

accuracy of 63.8%. Univariate AUCs for the 5 lipids were between 0.527 and 0.581 (Table VI-6). 

The low multi- and univariate AUC values, combined with lower accuracies and no significant 

interference, indicate that sex is not an important confounding factor for the selected biomarker 

panels. 
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Figure VI-10. ROC curves using the 7-lipid biomarker panel for the control/PD comparison (Table 

VI-4, p. 232) to evaluate sex as a confounding factor. The biomarker panel was used to classify: 

(A) all samples (control and PD) as male or female, with sensitivity of 84.4%, specificity of 75.0% 

and overall accuracy of 76.6%; (B) only samples from female individuals as control or PD, with 

sensitivity of 89.5%, specificity of 97.4% and accuracy of 93.8%; (C) only samples from male 

individuals as control or PD, with sensitivity of 89.6%, specificity of 87.5% and accuracy of 

86.6%. 
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Figure VI-11. ROC curves for PD patients, including PDND and PDD, using the 5-lipid biomarker 

panel (Table VI-4, p. 232) to evaluate sex as a confounding factor. The biomarker panel was used 

to classify: (A) all PD samples as male or female, with sensitivity of 68.4%, specificity of 64.6% 

and overall accuracy of 63.8%; (B) only samples from female PD patients as PDND or PDD, with 

sensitivity of 100%, specificity of 96.7% and overall accuracy of 94.8%; (C) only samples from 

male PD patients as PDND or PDD, with sensitivity of 85.7%, specificity of 91.7% and overall 

accuracy of 88.6%. 
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The distinct male and female subgroups were examined for classification as healthy control 

or PD using the 7-lipid biomarker panel (Table VI-4, p. 232). For the female subgroup, the ROC 

analysis resulted in a multivariate AUC of 0.985 (95% confidence interval between 0.953 and 

1.000) and accuracy of 93.8% (Figure VI-10B, Table VI-7). For the males, we observed 

multivariate AUC of 0.942 (95% confidence interval between 0.859 and 0.992) and accuracy of 

86.6% (Figure VI-10C, Table VI-7). The performance for females was very similar to the results 

found when all samples were employed, with multivariate AUC within the 95% confidence 

interval for the complete dataset (AUC of 0.989 with 95% CI between 0.965 and 1.000), but the 

performance for males was not as good.  

The male and female subsets were also distinctly classified as PDND or PDD by Random 

Forest using the 5-lipid biomarker panel (Table VI-4). The ROC curve for the PDND/PDD 

classification using only male subjects resulted in a multivariate AUC of 1.000 (95% CI between 

0.995 and 1.000) and accuracy of 94.8% (Figure VI-11B, Table VI-8). For female patients, the 

multivariate AUC was 0.960 (95% CI between 0.813 and 1.000) and accuracy of 88.6% (Figure 

VI-11C, Table VI-8). The ROC classification of dementia status divided by sex resulted in slightly 

better performance for males when compared to the results obtained regardless of sex (multivariate 

AUC of 0.972 with 95% confidence interval between 0.919 and 1.000, and accuracy of 91.9%). 

However, the multivariate AUC values for separated subgroups for males and females were within 

the 95% confidence interval for the complete dataset. Hence, the separation between males and 

females is not required for the accurate diagnosis of PDD using the 5-lipid biomarker panel. 

However, we highly recommend sex-matching for future research. 
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6.3.4.7 Time since PD diagnosis 

The PDND and PDD subgroups were statistically matched regarding disease duration, i.e., 

time since PD diagnosis (p of 0.2). Nevertheless, PD progression and dementia development are 

closely related; thus, we investigated the lipidome differences between patients diagnosed (1) 

below the median of 6.5 years before baseline sample collection (16 PDND and 6 PDD) and (2) 

above the median value (11 PDND and 10 PDD).  

 

6.3.4.8 Time since PD diagnosis: effect on the lipidome of PD patients 

Univariate analysis through a volcano plot resulted in 37 lipids with significantly increased 

intensity ratios for the subgroup diagnosed for more than 6.5 years at sample collection (FC for 

below/above median <0.84 and p ≤0.05), but only seven showed decreased values (FC for 

below/above median ≥1.2, Figure VI-7, Supp. Table 24). Out of the 44 increased lipids, we 

identified 9 phosphatidylcholines, 12 phosphatidylethanolamines, 3 phosphatidylserines and 5 

ceramides. Such compounds might be related to PD progression; however, further investigation is 

needed to confirm this hypothesis. Interestingly, eight of the significantly increased lipids for the 

subgroup diagnosed for longer periods (FC below/above median <0.84) also had significantly 

smaller intensity ratios for the PDD subgroup (FC PDND/PDD ≥1.2). None of 7 lipids selected 

for the control/PD biomarker panel (Table VI-4, p. 232) were significantly altered for time since 

PD diagnosis. However, one of the 5 lipids selected for the PDND/PDD biomarker panel displayed 

significant FC (below/above median) ≥1.2, identified by MS/MS as PC(18:1/18:1) 

(P786.59935/12.92, p of 0.049). Although the p value was just barely below the arbitrary 

significance limit of p<0.05, the lipid was further evaluated by 2-factor ANOVA but no significant 

interaction between dementia status and time since PD diagnosis was observed (p of 0.40), i.e., no 
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interference between the below/above the median status and dementia classification. There was a 

slight separation for the multivariate statistical analysis by PCA, but a PLS-DA model with 6 

components resulted in R2 of 0.9752, Q2 of 0.8554 and p of 0.03 for 1000 permutations (Figure C-

9).  

 

6.3.4.9 Time since PD diagnosis: effect on the PDD diagnosis 

The two-way ANOVA interaction model for dementia status (PDND/PDD) and time since 

PD diagnosis (below and above the median of 6.5 years) resulted in 91 lipids with significant 

interference (p <0.05, Supp. Table 26). The five lipids selected for the PDND/PDD biomarker 

panel were not significantly affected by the interaction between dementia status and time since PD 

diagnosis (p >0.05, Table VI-4). 

The ROC curve using the 5-lipid PDND/PDD biomarker panel (Table VI-4) to classify 

samples as above or below the median value of 6.5 years since PD diagnosis showed multivariate 

AUC of 0.750 and accuracy of 68.1%. The univariate AUCs for the 5 lipids in the biomarker panel 

were smaller than the values originally found for the PDND/PDD classification (Figure VI-12A, 

Table VI-6). The low values indicate that the median-split classification for time since PD 

diagnosis employing the 5-lipid PDND/PDD biomarker panel was rather random. 
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Figure VI-12. ROC curves for PD patients, including PDND and PDD, using the 5-lipid biomarker 

panel (Table VI-4, p. 232) to evaluate time since PD diagnosis as a confounding factor. The 

biomarker panel was used to classify: (A) all PD samples as above or below the median of 6.5 

years since PD diagnosis at baseline sample collection, with sensitivity of 75.0%, specificity of 

71.4% and overall accuracy of 68.1%; (B) only samples from PDND and PDD patients diagnosed 

with PD for less than the median of 6.5 years before sample collection, with sensitivity of 100%, 

specificity of 100% and accuracy of 92.8%; (C) only samples from PDND and PDD patients 

diagnosed with PD for more than 6.5 years before sample collection, with sensitivity of 100%, 

specificity of 96.7% and accuracy of 99.3% by cross-validation. 
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The ROC analysis for PDND/PDD classification for each subgroup resulted in similar 

multivariate AUC values that were within the 95% confidence interval of the complete dataset 

(0.919 to 1.000, Figure VI-6C). For patients diagnosed with PD for more than 6.5 years at sample 

collection, we found multivariate AUC of 0.977 and accuracy of 99.3% (Figure VI-12C, Table 

VI-8). For patients diagnosed for less than the median of 6.5 years, the multivariate AUC was 

0.995 with an accuracy of 92.8% (Figure VI-12B, Table VI-8). The results were slightly better for 

the subgroup above the median. If dementia emerges in PD, it does so over extended periods. 

Regarding the current results, a reasonable expectation is that longer follow-up periods (beyond 

the three years in the present study) would produce more distinct time-based profiles. 

 

6.3.4.10 Medication (Levodopa equivalent dosage and period of treatment) 

Levodopa, also known as L-DOPA, is a dopamine precursor that can cross the blood-brain 

barrier, allowing for higher dopamine concentrations and, consequently, mitigation of PD 

symptoms. The compound (or similar versions) is a component of most PD treatments. All patients 

in this study were treated with Levodopa or equivalent drugs. PDND and PDD patients were not 

given significantly different dosages (p of 0.41, Table VI-1), but PDD patients received treatment 

for longer periods (p of 0.02). Therefore, statistical models were developed to evaluate the effect 

of medication dosage and treatment period for the PD group. First, the PD patients were divided 

into two subgroups delimited by the median dosage of 609.25 mg (16 PDND and 4 PDD patients 

below; 10 PDND and 10 PDD patients above the median). Second, PD patients were divided into 

two subgroups delimited by the median period of 2.96 years receiving treatment at the time of 

sample collection (17 PDND and 5 PDD patients below; 10 PDND and 11 PDD patients above the 

median). 
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6.3.4.11 Medication (Levodopa equivalent dosage and period of treatment): effect 

on the lipidome of PD patients 

Univariate analysis through a volcano plot resulted in 16 lipids with significantly increased 

intensity ratios for the subgroup taking dosages above the median (FC below/above the median 

≤0.84 and p ≤0.05), and 25 lipids with significantly decreased ratios, including 8 

phosphatidylcholines, 5 phosphatidylethanolamines, 5 phosphatidylserines, 3 fatty acids and 3 N-

acyl amines (Supp. Table 24). Four lipids were also significant for the PDND/PDD comparison, 

but none were selected for the 5-lipid PDND/PDD biomarker panel (Table VI-4, p. 232). There 

was no visual separation for the multivariate statistical analysis by PCA, and a PLS-DA model 

with 5 components resulted in R2 of 0.9517, Q2 of 0.7392 and p of 0.003 (1000 permutations) 

(Figure C-10).  

The period receiving levodopa-based treatment did not result in major differences. Only 

two lipids were significantly altered for the below/above the median comparison through a volcano 

plot (Supp. Table 24), both with FC (below/above the median) ≥1.2, but neither was selected for 

the 5-lipid PDND/PDD biomarker panel (Table VI-4, p. 232). One lipid was also significantly 

altered for the PDND/PDD comparison (FC PDND/PDD <0.84), but there was no overlap between 

the significantly altered lipids for medication dosage and period of treatment. There was no visual 

separation for the multivariate statistical analysis by PCA for treatment period, and a PLS-DA 

model with 6 components resulted in R2 of 0.9734, Q2 of 0.7986 and p of 0.02 (1000 permutations) 

(Figure C-11). 
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6.3.4.12 Medication (Levodopa equivalent dosage and period of treatment): effect 

on the PDD diagnosis 

The two-way ANOVA for Levodopa dosage and dementia status resulted in only one lipid 

with significant interference (interaction p <0.05, Supp. Table 26). However, 17 showed 

interference for the period of treatment and dementia status (p <0.05, Supp. Table 26), i.e., the 

intensity ratios for PDND or PDD patients is affected by the period of treatment for the selected 

lipids. None of them were selected for the 5-lipid PDND/PDD biomarker panel (Table VI-4, p. 

232). 

The ROC curve using the 5-lipid PDND/PDD biomarker panel (Table VI-4) for 

classification of PD samples as below or above the dosage median resulted in a multivariate AUC 

of 0.602 and accuracy of 59.1% (p of 0.005 for 1000 permutations, Figure VI-13A), indicating 

random classification. For the period of treatment, we found a multivariate AUC of 0.711 and an 

accuracy of 66.9% (Figure VI-14A, Table VI-6).  
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Figure VI-13. ROC curves for PD patients, including PDND and PDD, using the 5-lipid biomarker 

panel (Table VI-4, p. 232) to evaluate Levodopa equivalent dosage as a confounding factor. The 

biomarker panel was used to classify: (A) all PD samples as above or below the median of 609.3 

mg of Levodopa or equivalent medication, with sensitivity of 67.5%, specificity of 60.0%, and 

overall accuracy of 59.1%; (B) samples from PD patients taking levodopa equivalent dosages 

smaller than the median of 609.3 mg as PDND or PDD, with sensitivity of 100%, specificity of 

87.5% and accuracy of 82.1%; (C) samples from PD patients taking Levodopa equivalent dosages 

higher than the median of 609.3 mg at the moment of sample collection as PDND or PDD, with 

sensitivity of 100%, specificity of 100.0% and accuracy of 98.9%. 
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Figure VI-14. ROC curves for PD patients, including PDND and PDD, using the 5-lipid biomarker 

panel (Table VI-4, p. 232) to evaluate to evaluate period of treatment with Levodopa or equivalent 

medications as a confounding factor. The biomarker panel was used to classify: (A) all PD samples 

as above or below the median of 2.96 years of treatment with Levodopa or equivalent medication 

at the moment of sample collection, with sensitivity of 63.6%, specificity of 71.4%, and overall 

accuracy of 66.9%; (B) samples from PD patients taking levodopa or equivalent medication for 

less than 2.96 years at sample collection as PDND or PDD, with sensitivity of 80%, specificity of 

88.2% and accuracy of 76.6%; (C) samples from PD patients taking Levodopa or equivalent 
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medication for more than 2.96 years at the moment of sample collection as PDND or PDD, with 

sensitivity of 100%, specificity of 100.0% and accuracy of 97.1%. 

 

The ROC curves for classification of each distinct dosage subgroup as PDND or PDD 

resulted in multivariate AUC of 0.965 and accuracy of 82.1% for the subgroup below the median 

(Figure VI-13B, Table VI-8); and AUC of 1.000 and accuracy of 98.9% for above the median 

(Figure VI-13C, Table VI-8). For the treatment period subgroups, the PDND/PDD classification 

with the proposed 5-lipid biomarker panel resulted in multivariate AUC of 0.894 and accuracy of 

76.6% for below the median (Figure VI-14B, Table VI-8); and multivariate AUC of 1.000 and 

accuracy of 97.1% for above the median (Figure VI-14C, Table VI-8). The results for the 

Levodopa dosage and treatment period subgroups above the median were slightly better than the 

values found for all the diseased subjects (AUC of 0.972 and accuracy of 91.9%, Figure 2E), but 

AUC values were within the 95% confidence interval for the complete dataset of 0.919 to 1.000 

(Figure VI-6C, p. 235), except for the treatment period below the median. 

We found evidence that the lipidome and dementia diagnosis is mildly affected by 

medication dosages and period of treatment. However, it is not viable or ethical to perform studies 

for advanced PD with untreated patients. Even though PD patients usually do not require treatment 

in the early stages, PDD is a condition that develops as the disease progresses. PD symptoms can 

be severe, and it would be unethical to keep impaired human patients suffering without treatment 

when it is available. The only option to completely exclude confounding factors is through studies 

with animal models or in vitro, but the results are often not reproducible in human patients. We 

previously published a metabolomics study using the same sample set that excluded any 

compounds involved in the dopamine pathway to minimize the Levodopa interference, but lipid 
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pathways and interactions with other molecules are not yet well known, which hinders the 

possibility of exclusion for this work. Nevertheless, diagnosis tests for PDD will probably be 

applied to patients that are receiving treatment for PD; hence, the elimination of this confounder 

for biomarker discovery would be unreasonable. 229  

 

6.3.4.13 UPDRS part III (motor examination) score 

The Unified Parkinson’s Disease Rating Scale (UPDRS) is a series of questions developed 

for patients and caregivers and used to classify the impairment level of PD patients. In this study, 

only Part III – Motor Examination was considered, covering 14 items scored from 0 to 4. PDND 

and PDD patients were not significantly different regarding the UPDRS-III score (p of 0.56, Table 

VI-1); however, the impairment level may be related to disease development. Therefore, the PD 

group was once again divided into two subgroups, delimited by the median UPDRS-III score of 

15.0 (14 PDND and 9 PDD patients below the median; and 13 PDND and 7 PDD patients above 

the median). 

 

6.3.4.14 UPDRS - part III (motor examination) score: effect on the lipidome of PD 

patients 

Univariate analysis through a volcano plot resulted in three wax esters with significantly 

decreased intensity ratios for the subgroup with higher scores, i.e., more severe motor impairment 

(FC below/above the median ≥1.2 and p ≤0.05, Supp. Table 24). None of the studied lipids were 

also significantly affected for the PDND/PDD comparison nor selected for the 5-lipid biomarker 

panel (Table VI-4, p. 232). There was no visual separation for the multivariate statistical analysis 
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by PCA, but a PLS-DA model showed a partial separation with 6 components, resulting in R2 of 

0.9714, Q2 of 0.7838 and p of 0.03 for 1000 permutations (Figure C-12). 

 

6.3.4.15 UPDRS - part III (motor examination) score: effect on PDD diagnosis 

The two-way ANOVA analysis resulted in five lipids with significant interference between 

the UPDRS-III score and dementia status (Supp. Table 26). The 5 lipids in the PDND/PDD 

biomarker panel displayed p >0.05 for the interaction, i.e., the null hypothesis of equal means for 

the biomarker candidates for PD patients with UPDRS-III above or below the median cannot be 

discarded (Table VI-4, p. 232). 

A ROC curve using the 5-lipid PDND/PDD biomarker panel (Table VI-4) for the 

classification of samples as below or above the UPDRS-III median resulted in a multivariate AUC 

of 0.702 and accuracy of 64.0% (Table VI-6, Figure VI-15A). Univariate AUC values were smaller 

than the ones found for the PDND/PDD classification (0.502 to 0.639); therefore, the severity of 

motor impairment did not interfere with the proposed 5-lipid biomarker panel.  
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Figure VI-15. ROC curves for PD samples, including PDND and PDD, using the 5-lipid biomarker 

panel (Table VI-4, p. 232) to evaluate UPDRS – part III (motor examination) as a confounding 

factor. The biomarker panel was used to classify: (A) all PD samples as above or below the UPDRS 

- part III (motor examination) median score of 15, with sensitivity of 65.2%, specificity of 60.0% 

and overall accuracy of 64.0%; (B) only PD samples from patients with UPDRS – part III scores 

below the median of 15 as PDND or PDD, with sensitivity of 100.0%, specificity of 92.9% and 

accuracy of 93.3%; (C) only PD samples from patients with UPDRS – part III scores above the 

median of 15 as PDND or PDD, with sensitivity of 100.0%, specificity of 88.5% and accuracy of 

87.3%. 
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The ROC curve constructed for the classification of the subgroup below the median as 

PDND or PDD led to an AUC of 0.982 and accuracy of 93.3% (Figure VI-15B, Table VI-8); 

whereas the subgroup above the median resulted in an AUC of 0.978 and accuracy of 87.3% 

(Figure VI-15C, Table VI-8). Both subgroups had a good classification performance, but AUC 

values were within the 95% confidence interval for the complete dataset (AUC of 0.972 with 95% 

confidence interval between 0.919 and 1.000, Figure VI-6C). Interestingly, the subgroup with 

UPDRS-III scores above the median of 15.0, i.e., more severe motor impairment, resulted in 

slightly lower accuracy for PDD diagnosis than the patients with lower scores. 

 

6.3.4.16 B12 levels 

Vitamin B12 deficiency is common in PD patients, and there is some evidence linking low 

levels with more severe motor and cognitive decline. For this study, the healthy controls had 

significantly higher levels of B12 when compared to PD patients (p of 0.008), but PDND and PDD 

patients were not significantly different (p of 0.87, Table VI-1). Therefore, the healthy controls 

and PD individuals were separated at the median value of 304.5 ng/mL (16 controls and 27 PD 

patients below the median; and 27 controls and 16 PD patients above the median). 

 

6.3.4.17 B12 levels: effect on the lipidome of PD patients 

Univariate analysis through a volcano plot resulted in 15 lipids with significantly decreased 

intensity ratios for the subgroup with higher B12 levels (FC below/above the median ≥1.2 and p 

≤0.05), including 5 phosphatidylserines, 3 fatty acids and 3 wax esters (Supp. Table 23). 

Conversely, 51 lipids had significantly increased ratios (FC below/above the median <0.84), 

including 13 phosphatidic acids, 10 phosphatidylglycerols, 8 phosphatidylcholines, 7 



Chapter VI 

268 

 

phosphatidylinositols and 4 phosphatidylserines. The 7 lipids in the control/PD biomarker panel 

were not significantly affected by B12 levels (Table VI-4, p. 232). There was no visual separation 

for the multivariate statistical analysis by PCA, but a PLS-DA model showed a partial separation 

with 8 components, resulting in R2 of 0.9534, Q2 of 0.6422 and p of 0.001 for 1000 permutations 

(Figure C-13). 

 

6.3.4.18 B12 levels: effect on PD diagnosis 

The two-way ANOVA analysis resulted in six lipids with significant interference between 

the B12 levels and disease status (Supp. Table 25). The 7 lipids in the control/PD biomarker panel 

and the 5 lipids in the PDND/PDD biomarker panel (Table VI-4, p. 232) displayed interaction p 

>0.05, i.e., no significant interference. 

A ROC curve using the 7-lipid control/PD biomarker panel (Table VI-4) for the 

classification between below and above the B12 level median resulted in a multivariate AUC of 

0.749 and an accuracy of 68.2% (Table VI-5, Figure VI-16A). The ROC curve constructed for the 

classification of the subgroup below the median as control or PD led to multivariate AUC of 0.949 

and accuracy of 86.9% (Figure VI-16B, Table VI-7); whereas the subgroup above the median 

resulted in multivariate AUC of 0.993 and accuracy of 95.7% (Figure VI-16C, Table VI-7). The 

median-split subgroup with higher B12 levels produced a slightly better classification, although 

within the 95% confidence interval for the complete dataset (AUC of 0.989 with 95% confidence 

interval between 0.965 and 1.000). The subgroup with lower levels had the opposite effect, with 

AUC slightly below the 95% confidence interval. 
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Figure VI-16. ROC curves for control and PD samples using the 7-lipid biomarker panel (Table 

VI-4, p. 232) to evaluate B12 serum levels as a confounding factor. The biomarker panel was used 

to classify: (A) all samples as above or below the median of 304.5 ng/mL for B12 serum level, 

with sensitivity of 72.1%, specificity of 62.8% and overall accuracy of 68.2%; (B) only samples 

from individuals with B12 serum levels below the median of 304.5 ng/mL as control or PD, with 

sensitivity of 88.9%, specificity of 90.0% and accuracy of 86.9%; (C) only samples from 

individuals with B12 serum levels above the median of 304.5 ng/mL as control or PD, with 

sensitivity of 97.0%, specificity of 100.0% and accuracy of 95.7%. 
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6.4 Discussion 

PD is a complex neurodegenerative disorder for which new biomarker approaches are 

being harnessed to improve early detection and prediction of dementia. We used untargeted 

lipidomics of blood serum applied in two phases. For the first phase, healthy control individuals 

were separated from PD patients. In the second phase, the PD group was divided into patients that 

either progressed to dementia (PDD) or did not show a significant cognitive decline (PDND) after 

3 years. The LC-MS method, combined with the developed data processing routine, provided good 

lipid coverage with reproducible results. We constructed two distinct biomarker panels for (1) 

diagnosis of PD with 7 lipids; and (2) prediction of dementia using 5 lipids. Validation with 

independent sample cohorts resulted in excellent sensitivities, specificities and accuracies. The 

selected biomarker panels are promising and may improve the clinical diagnosis of PD and 

prediction of dementia. 

In the first phase, 129 lipids were found to be significantly altered in the serum of PD 

patients when compared to healthy controls, including sphingomyelins, ceramides and 

sphingosine. The 7-lipid control/PD biomarker panel also emphasized the effect of PD upon the 

sphingolipid metabolism: out of seven selected lipids, four are sphingolipids. Our findings indicate 

that the regulation of sphingomyelin and ceramide metabolisms is affected by PD and might be 

useful diagnostic and therapeutic targets. It is often unclear whether significant changes in the 

levels of specific lipid species are a result of a pathological or a compensatory mechanism. 

Mutations in the glucosylceramidase beta (GBA) gene, which codes for the lysosomal enzyme 

glucocerebrosidase (GCase), are commonly associated with PD. GBA mutations have been 

previously related to autophagy-lysosome pathway dysfunction, which is one of the main 

degradation mechanisms for α-synuclein. The enzyme GCase catalyzes the break-down of 
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glucosylceramides into glucose and ceramide. Hence, the observed altered levels of ceramides 

may be linked to deficiency or decreased activity of the enzyme, possibly affected by the mutations 

in the GBA gene.234 The accumulation of α-synuclein into Lewy bodies, a hallmark of Parkinson’s 

disease development, is therefore correlated with altered levels of ceramides in blood serum. 234 It 

is still not clear if a GCase deficiency causes the accumulation of α-synuclein or an excess of the 

protein decreases GCase activity. However, dysregulation in ceramide metabolism has been 

previously suggested to contribute to the accumulation of α-synuclein protein, enhancing its 

toxicity. Abnormal concentrations of ceramides have also been linked to increased neuronal death, 

a characteristic marker of PD.235–237 Furthermore, dopaminergic neurons regulate the activity of 

the DNase enzyme known as neutral sphingomyelinase, responsible for breaking sphingomyelin 

into phosphocholine and ceramide, which may be affected by neuronal death. 238 Our findings 

confirm that the regulation of sphingolipids and ceramide metabolisms is affected during 

Parkinson’s disease and might be useful diagnosis and therapeutic targets. 237 

The glycerophospholipid metabolism was also affected by the control/PD comparison. The 

role of phospholipids for PD onset is still not clear, but recent studies suggest that they may play 

a part in α-synuclein folding and aggregation. The protein has an amphipathic α-helix domain at 

the N-terminus and a hydrophobic central domain, suggesting lipid-binding activity. The N-

terminal domain adopts the helical structure upon interaction with lipid membranes, particularly 

the negatively charged species such as PS and PI. The interaction with PS, a subclass highly 

affected in the control/PD comparison (38 significantly elevated PS species for PD patients), has 

been previously shown to cause increased oligomerization of α-synuclein.239 Hence, interaction 

with glycerophospholipids can control protein folding and modulate structural changes that could 

provoke or avoid aggregation. Also, α- and β-synucleins can inhibit phospholipases, enzymes that 



Chapter VI 

272 

 

catalyze the hydrolysis of phospholipids into lysophospholipids, phosphatidic acids, 

diacylglycerols and fatty acids. It is worth noting that 14 fatty acids had higher intensity ratios for 

the PD group, while none resulted in lower values. We also observed higher levels of 15 

phosphatidic acids when PD was diagnosed, which is consistent with the expected alterations in 

phospholipase activity. Recessive mutations in the phospholipase PLA2G6 gene (PARK14), 

related to the cleavage of the phosphate group from phosphatidyl lipids, have also been previously 

related to early-onset and sporadic PD. 223,240,241 

In the second phase, the baseline discrimination of PDND and PDD (with incipient 

dementia) was examined. This approach led to insights into the transition of PD to dementia. 

Specifically, 114 lipids were significantly altered for the PDND and PDD subgroups. The 

glycerolipid, glycerophospholipid and ceramide levels were markedly affected in patients who 

developed dementia. Elevated levels of diacylglycerols, essential precursors of 

glycerophospholipids, have been previously reported in brain tissue for PD patients, as well as 

individuals with Lewy body dementia. 242 We now found evidence that reduced levels of both 

diacylglycerols and triacylglycerols in serum may be correlated with incipient dementia in PD 

patients, indicating alterations in energy metabolism. The impact of PD progression to dementia 

upon the glycerolipid metabolism contrasts with the first phase of this study: only 2 diacylglycerols 

and 9 triacylglycerols were significantly affected for the control/PD comparison, whereas 20 

diacylglycerols and 25 triacylglycerols had significant changes for PDND/PDD. We also observed 

that glycerophospholipid metabolism was highly involved in PD progression to dementia, 

particularly for membrane lipids, which may play an important role in α-synuclein aggregation. 

The 5-lipid PDND/PDD biomarker panel reflects the previous observations, with two 

phosphatidylcholines, one lysophosphatidylcholine and one phosphatidylethanolamine. 
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An important aspect of this study is the evaluation of possible confounders, rarely 

presented in biomarker discovery studies. We evaluated the effects of age, sex, medication dosage 

and period, PD duration, motor deficit severity and B12 levels on the lipidome of healthy controls 

and PD patients, as well as the possible interference in the proposed biomarker panels. Fortunately, 

the biomarker panels were not majorly affected. However, we detected significant fold changes 

for lipids that were not part of the panels due to each confounding factor, emphasizing that an 

evaluation of confounders should be an essential step for biomarker discovery. Yet, such factors 

cannot be easily controlled, especially if the goal is to achieve a representative number of patients. 

Restrictions for only minor effects would substantially decrease the sample size of the cohorts 

available for future studies. Although we recommend matching the compared groups regarding 

age, sex, medication and disease progression, the benefits of excluding significant portions of the 

patient cohort to ensure reliable conclusion must be evaluated against the reduction in the number 

of available subjects.  

Although this study presents very strong evidence for two novel biomarker panels 

discriminating healthy subjects from Parkinson’s disease patients and predicting differential 

transition to dementia, a few limitations must be noted. First, stereoisomers and positions of 

unsaturation were not addressed, as these usually require targeted, specific methodologies. Instead, 

we chose to emphasize untargeted, comprehensive lipidomics. In the near future, we will confirm 

the identifications of the selected biomarkers by targeted MS/MS analysis. Second, biological and 

demographic differences for the patient cohort are potential confounders. We evaluated the effects 

of seven confounders, but the proposed biomarker panels were only mildly affected. Third, PD 

patients did not have autopsy confirmation of diagnosis as they were alive at the time this study 

was completed. PD and PDD diagnosis were based on clinical evaluation confirmed by the study 
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neurologist (Dr. Richard Camicioli, University of Alberta). Fourth, the specificity of the proposed 

biomarker panels has not yet been tested against similar conditions or on a second, large-scale 

patient cohort. This study aimed for an initial biomarker discovery evaluation, which obviously 

requires a follow-up to address possible issues and validate the proposed biomarkers. Nevertheless, 

the presented results demonstrate the potential of lipidomic analysis for biomarker discovery and 

pathogenesis study. Lipids are involved in a variety of different processes in our organism, 

granting the massive importance of evaluating their alterations to study physiological and 

pathological processes. The information described herein emphasizes that untargeted lipidomics 

may provide essential information for the selection of biomarkers and future therapeutic targets.  

 

6.5 Conclusions 

This work highlights that lipids play a more significant role in Parkinson’s disease and 

dementia than previously recognized. We selected two biomarker panels that resulted in excellent 

AUC and diagnosis accuracy for PD and progression to dementia, surpassing the currently 

available clinical diagnosis. The two distinct biomarker panels allowed (1) the diagnosis of PD 

and (2) prediction of transition to dementia up to three years before clinical diagnosis. Validation 

of the proposed biomarkers showed an excellent performance. Furthermore, the untargeted 

lipidomics approach resulted in further clues to unravel the mechanisms of the pathologies. Our 

future work will extend the current results for blood serum with lipidomics of other fluids and 

tissues, as well as comparison to similar diseases, to further study the pathogenesis of PD and PD 

dementia. 
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VII  

Chapter VII: Tissue Lipidomic Alterations Induced by Long-Term Exposure to High 

Dosages of Dexamethasone15,16 

 

7.1 Introduction 

Dexamethasone is an anti-inflammatory and immunosuppressant glucocorticoid synthetic 

drug, a class of corticosteroid medications composed by molecules analogous to steroid hormones 

produced by the adrenal cortex. Corticosteroids, including glucocorticoids and mineralocorticoids, 

regulate a myriad of essential biochemical and physiological processes in various tissues in the 

organism, with intense effects upon inflammation and immune response. The discovery of adrenal 

corticoid hormones in the 1950s was awarded a Nobel Prize in Physiology or Medicine due to the 

exceptional results achieved when patients with rheumatoid arthritis were treated with “Compound 

E”, a synthetic version of the steroid hormone cortisol isolated from animal adrenal glands, at the 

Mayo Clinic (Rochester, MN, USA).243 To this day, research into the immune regulation and 

adverse effects of synthetic glucocorticoids remains an active topic of research. 244 

Glucocorticoids play a role in the organism’s response to stress and are part of the feedback 

mechanism of the immune response. Cortisol is a key example of natural corticosteroid action, 

which induces adaptive responses to stressful situations. Endogenous glucocorticoids are 

synthesized from cholesterol through steroidogenesis in the adrenal cortex upon activation of the 

 

15 Supporting tables are available with Dr. Liang Li. 
16 The sample collection and experimental design for this work was performed in collaboration with Dr. Anas 

M. Abdel Rahman and Dr. Majed Dasouki (King Faisal Specialist Hospital and Research Center, Riyadh, Saudi 

Arabia). The sample preparation was performed by the author (AZB) and Xiaohang Wang, who later worked on a 

related application for metabolomics of the aqueous fraction obtained after homogenization and liquid-liquid 

extraction of tissue samples.3 
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hypothalamic-pituitary-adrenal (HPA) axis, which coordinates endocrine responses to external 

stimuli, e.g., psychological stress or trauma. The steroid molecules bind to glucocorticoid receptors 

(GR) in virtually all types of cells in the organism. GR modulate the immune response through 

alterations in gene expression, modulation of transcription factors and regulation of T cell 

activation, suppressing the production of inflammatory mediators such as eicosanoids. Low 

dosages of glucocorticoids have been linked to increased immune response, while high 

concentrations suppress the immune system. 243 Glucocorticoids also display non-genomic effects, 

including alteration of cation transport through membranes and cytoplasmic signaling complexes. 

Their synthetic versions, including dexamethasone, prednisone and prednisolone, are used to treat 

conditions related to an exaggerated immune response, e.g., allergies, asthma, rheumatoid arthritis, 

anaphylactic shock and sepsis. They can also be used for cancer treatment due to an interference 

in the mechanism of abnormal cell proliferation in malignant tumors. Despite their beneficial 

effects, glucocorticoids increase the turnover of stored energy and mitochondrial oxidation, 

leading to dyslipidemia, obesity, insulin resistance and oxidative stress.245 Systemic, long-term 

exposure to glucocorticoids also includes suppression of the HPA axis, causing an adrenal crisis.246 

The long-term production of high concentrations of cortisol or treatment with high dosages of 

synthetic glucocorticoids for long periods is the cause of Cushing’s syndrome, a condition 

characterized by a fatty hump between the shoulders (“buffalo hump”), rounded (“moon”) face, 

weight gain, slow healing of wounds, high blood pressure, heart disease and bone loss.244 

Dexamethasone is a synthetic corticosteroid derived from cortisol used for the treatment of 

arthritis, allergic reactions, asthma, inflammation, septic shock, cerebral edema, anaphylactic 

reactions, eczema, psoriasis and selected types of cancer, amongst others. It acts as an agonist of 

GR in the cytoplasm of cells and has minor mineralocorticoid activity. The protective and adverse 
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effects of dexamethasone are mediated through activation of GR in the liver, adipose tissue, heart 

and skeletal muscle, as well as minor effects upon the mineralocorticoid receptors in the kidneys 

and heart.245 GRs are expressed in most types of tissues; hence, the systemic metabolic effects of 

dexamethasone may affect different organs. Recently, dexamethasone has been suggested as a 

potential treatment for COVID-19, with a reported decrease in mortality rates between 8 and 26% 

for patients with hypoxemia.247 Although the results were not peer-reviewed and more information 

is still required (Aug/2020), the preliminary results were received by governments with optimism 

and led to immediate alterations in the COVID-19 treatment protocols followed by the National 

Health Service (NHS) of the United Kingdom (Aug/2020).248 

Even though dexamethasone is on the World Health Organization’s List of Essential 

Medicines and is one of the most commonly prescribed drugs in the USA, it is accompanied by an 

extensive list of potential adverse effects.249 The long-term, high-dosage use of dexamethasone 

has been related to bone loss, cataracts, glaucoma, myopathy, candidiasis, weight gain, euphoria, 

irritability, hyperactivity, psychosis, nausea, hypertension, persistent headache, growth 

suppression in children, and others.244,246,250 Furthermore, sudden withdraw after long-term 

treatment may lead to hypotension, fever, adrenal insufficiency, cardiovascular collapse and 

death.250 The effects of long-term glucocorticoid treatment upon skeletal muscle (weakness, 

atrophy, fatigue), heart (cardiac failure, ischemic heart disease, atrial fibrillation), brain (mood 

changes, euphoria, anxiety, psychosis, headaches), kidney (nephrocalcinosis, nephrolithiasis, 

increased uric acid) and liver (hepatic steatosis or “fatty liver,” deposition of glycogen) are 

relatively well known.3,244,251 However, the biological processes that cause these undesirable 

symptoms are yet to be explored. 
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Recently, the alterations caused by long-term, high-dosage dexamethasone treatment upon 

different tissues was investigated by proteomics and metabolomics in a rat model.3,252 However, 

as blood serum dyslipidemia is a hallmark of excessive exposure to glucocorticoids, we 

hypothesized that untargeted, comprehensive lipidomics could provide further insight into the 

mechanisms of dexamethasone adverse effects in different types of tissue.244 Little is known about 

glucocorticoid-induced lipidic alterations, besides reported elevated levels of serum total 

triglycerides and cholesterol.253 There is some evidence that dexamethasone may promote lipid 

accumulation in muscle tissue, affect fatty acid β-oxidation (Chapter I – 1.2.4.2. Energy 

production, p. 11) and induce oxidative stress.253,254 To investigate the relationship between 

dexamethasone and tissue lipids, we performed comprehensive, untargeted lipidomic analysis of 

skeletal muscle, liver, kidney, heart and brain tissue obtained from rats that were injected with 

high dosages of dexamethasone or saline solution (controls) for 14 weeks to promote controlled 

adverse effects of prolonged treatment. The lipidic composition of the selected types of tissue may 

provide further information into the biological mechanisms that cause the undesirable effects of 

dexamethasone, as well as insights into glucocorticoid-related pathways. 

 

7.2 Experimental 

7.2.1 Animal model17 

The protocol employed for this study was approved by the animal ethics committee of the 

King Faisal Specialist Hospital and Research Center (KFSHRC, approval number 2150016). Male 

 

17 Animal handling and sample collection were performed in collaboration with Dr. Anas M. Abdel Rahman 

and Dr. Majed Dasouki (King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia). 
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Sprague-Dawley rats (n = 20) aged between 6 and 8 weeks were housed in the animal facility of 

the Department of Comparative Medicine (KFSHRC) under standard temperature (20-24°C), 

humidity (45-50%) and light/dark cycle (12h) conditions, as previously described elsewhere.3,253 

Animals had free access to food and water for the duration of this study. The rats were separated 

into two groups of 10 animals each. The dexamethasone group received intramuscular injections 

of 2.5 mg/kg of dexamethasone twice a week for 14 weeks, while the control group was injected 

with saline solution. Both groups were monitored weekly for weight and blood sugar (glucose 

level). After week 14, the animals were sacrificed. The brains (5 samples from control animals and 

4 samples from dexamethasone-treated rats), hearts (5 control and 5 dexamethasone rats), kidneys 

(6 control and 5 dexamethasone rats), livers (4 control and 4 dexamethasone rats) and samples of 

skeletal muscle (6 control and 5 dexamethasone rats) were collected, snap-frozen in liquid nitrogen 

and stored at -80°C until analysis. The remaining animals for each group were sacrificed for a 

related study that included radiological examinations and blood work.253  

  

7.2.2 Sample preparation 

The tissue extraction was performed by a modified Folch procedure that included 

homogenization followed by liquid-liquid extraction with dichloromethane and methanol.3 

Chemicals and reagents were described in Chapter II (2.2.1. Chemicals and reagents, p. 42). 

Sample preparation and analysis were randomized to minimize batch effects. Reagent and solvent 

volumes were normalized for the wet mass of tissue to ensure reproducible extractions and reliable 

comparisons. All samples were extracted in 2 mL polypropylene microcentrifuge tubes obtained 

from the same manufacturer with identical lot numbers to prevent contamination bias. A detailed 
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discussion on sources of contamination for lipidomic analysis is available in Chapter II (2.3.3. 

Evaluation of contamination sources, p. 63). 

The wet masses of each sample were measured between 160 and 320 mg. Since tissues are 

solid samples that may not have a homogenous distribution of lipids, we opted for not splitting the 

samples for full experimental replicates. Instead, the biological replicates of each type of tissue 

were homogenized and extracted altogether (N = 4 to 6). Samples were mixed with the lipid 

internal standard mixture (Table II-1, 0.140 µL/mg of tissue – wet mass), methanol (1.86 µL/mg) 

and water (0.425 µL/mg). Then, each sample was immediately homogenized twice in an ice bath 

with a Bio-Gen PRO200 handheld homogenizer fitted with a Multi-Gen adapter and Multi-Gen 

7XL probes (Pro Scientific, Inc., Monroe, CT, USA) for 30 s, with a 30 s interval. The homogenate 

was vortexed with 2.00 µL of dichloromethane and 1.00 µL of water/mg of tissue. After 

equilibration for 15 min in an ice bath, samples were centrifuged for 10 min at 4 °C and 12,000 

rpm. The aqueous supernatant was used for metabolomics, as described elsewhere.3 The organic 

layer was evaporated to dryness on a SpeedVac for 45 min. The extract was resuspended in 0.4 

µL/mg of 3:2 mobile phase A (MPA)/mobile phase B (MPB). For positive ionization, samples 

were further diluted with 10 µL of 9:1 MPA/MPB /mg of tissue, whereas for negative ionization, 

we used 1 µL of 9:1 MPA/MPB /mg of tissue. After dilution, aliquots from each sample extract 

were pooled together for a quality control (QC) mixture. The prepared samples were stored in 

polypropylene inserts placed in amber autosampler vials with PTFE-lined caps at 4 °C for a 

maximum of 48h before injection. 

 

 

 



Chapter VII 

282 

 

7.2.3 Lipidome profiling by UHPLC-MS 

Chromatographic separation was performed using a Dionex UltiMate 3000 UHPLC system 

(Thermo Fisher Scientific, Waltham, MA, USA) with a Waters Acquity BEH C18 column (5 cm 

× 2.1 mm with 1.7 µm particles, Waters Corporation, Milford, MA, USA), using MPA – 10 mM 

ammonium formate in 50:40:10 acetonitrile/methanol/water (v/v/v), and MPB – 10 mM 

ammonium formate in 95:5 isopropanol/water (v/v). Comprehensive lipid profiling was achieved 

with the following conditions: injection volume of 5.0 µL for positive ionization and 9.0 µL for 

negative ionization; flowrate of 250 µL/ min; column temperature of 40°C; 22 min gradient 

separation (0 min – 5% MPB; 1.5 min – 5% MPB; 8.5 min – 30% MPB; 18 min – 95% MPB; 22 

min – 95% MPB); and 10 min re-equilibration (0 min – 95% MPB; 3 min – 95% MPB; 4 min – 

5% MPB; 10 min – 5% MPB). The UHPLC instrument was coupled to a high-resolution Maxis II 

quadrupole-time-of-flight (QToF) mass spectrometer (Bruker Daltonics, Billerica, MA, USA) 

with an electrospray ionization (ESI) source (capillary voltage of 4500 V; endplate offset of 500 

V; nebulizer gas pressure of 1.0 bar; dry gas flow rate of 8.0 L/min; dry temperature of 230 °C; 

spectra acquisition rate of 1 Hz; and m/z range of 150 to 1500 Da). Samples and blank extracts 

were randomly injected in triplicates (i.e., 4 to 6 biological replicates for each condition analyzed 

with injection triplicates), with one QC injection after every 10 sample injections. Positive and 

negative ionization were acquired separately, with polarity switching for consecutive groups of 10 

sample injections and one QC, totaling 6 injections for each sample extract. A 1.5 min mass re-

calibration segment was inserted at the beginning of each chromatogram during which 1.0 mM 

sodium formate calibrant solution in 1:1 isopropanol/ water (v/v) was infused with a peristaltic 

pump to ensure high mass accuracy. 
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7.2.4 Data processing 

Chromatograms were aligned on MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, USA) 

with a minimum intensity cut-off of 5000 cts for positive ionization and 2000 cts for negative 

ionization; minimum peak length of 6 spectra; mass recalibration with the sodium formate 

segment; m/z tolerance of 5.0 mDa; and retention time tolerance of 15 s. The aligned features were 

filtered by detection in more than 80% of injections for at least one type of tissue (evaluation of 

tissue composition) or treatment status (dexamethasone or control). Missing values were 

substituted by recursive extraction for features detected in at least 10% of injections with a 

minimum peak length of 6 spectra. The positive and negative ionization results were merged with 

an m/z tolerance of 10 ppm and retention time tolerance of 15 s. The remaining missing values 

were substituted by the minimum within-group intensity for features detected in more than 50% 

of injections in each group (type of tissue and treatment status). If not found in at least 50% of 

injections within the group, missing values were substituted by the global minimum intensity for 

all samples and QC injections.  

 

7.2.5 Lipid identification 

MS/MS spectra were acquired for identification using the pooled QC sample with collision 

energies between 10 and 80 eV. The MS/MS spectra were matched to the aligned feature list with 

a precursor m/z tolerance of 5.0 mDa and retention time tolerance of 15 s. Identification was 

performed with the MS-Dial LipidBlast (https://fiehnlab.ucdavis.edu/projects/LipidBlast), Human 

Metabolome Database (https://hmdb.ca) and MassBank of North America 

(https://mona.fiehnlab.ucdavis.edu) LC-MS/MS libraries in combination with MetaboScape 4.0, 

using precursor m/z tolerance of 5.0 mDa combined with MS/MS score threshold of 500 and 
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mSigma (isotope pattern match) tolerance of 100; or MS/MS score threshold of 100 and mSigma 

tolerance of 50. 73,78,79,81–83,109,151  

The unidentified features were searched in the LipidMaps database 

(http://www.lipidmaps.org) for putative identification by mass-match with m/z tolerance of 5.0 

mDa.75 Isomers were ranked by the filtering and scoring approach described in Chapter II (2.2.7. 

Putative identification of lipids). Isomers that had the lowest total scores, i.e., elution within the 

expected retention time range, most likely adduct, smallest m/z error and even number of carbons 

in fatty acyl side chains, were selected as the most likely identification for the choice of lipid 

subclass. Other isomeric and isobaric possibilities that passed the retention time and adduct filters 

were kept, but not considered for the determination of lipid subclass. The positions of double bonds 

and the stereospecific configuration of glycerol derivatives were not determined in this study. 

The MS/MS or putatively identified lipids were divided into 41 subclasses and 6 main 

categories (sphingolipids, glycerolipids, glycerophospholipids, fatty acyls, sterol lipids and others, 

Table II-2, p. 48). The lipid subclasses and categories followed the classification system proposed 

by the International Lipid Classification and Nomenclature Committee (ILCNC), the LipidMaps 

database and the Lipidomics Standard Initiative (https://lipidomics-standards-initiative.org). 16–

18,20,76 

 

7.2.6 Normalization and statistics 

Each identified lipid was matched to one of the 14 deuterated internal standards (Table 

II-1, p. 45) for normalization according to lipid subclass, structural similarity and retention time. 

Normalized intensities, i.e., the peak intensity of each identified lipid divided by the peak intensity 

of the matched internal standard, were filtered by relative standard deviation smaller than 30% for 



Chapter VII 

285 

 

QC injections, auto-scaled and normalized by the summed intensity (i.e. total ion count) before 

statistical analysis.153 The normalization procedure adopted for this work allows the correction of 

the ion suppression effect caused by the complex lipid samples during electrospray ionization, as 

well as small differences that may occur during sample handling and lipid intensity variations 

between different types of samples, ensuring accurate comparisons.12 The identification and 

normalization steps followed the guidelines of the Lipidomics Standard Initiative. 76 A detailed 

discussion on normalization and scaling strategies for lipidomics is available in Chapter I (1.3.1.6. 

Ion suppression and normalization approaches and 1.3.1.7. Statistics applied to lipidomics, p. 29).  

Statistical analysis was performed on MetaboAnalyst 4.0 

(https://www.metaboanalyst.ca).153 Normalized, auto-scaled intensity ratios were examined 

through univariate and multivariate analysis, including non-parametric Analysis of Variance 

(ANOVA), Volcano plots (fold change – FC versus p adjusted for false discovery rate –p), 

Principal Component Analysis (PCA), Partial Least Square – Discriminant Analysis (PLS-DA) 

and Random Forest. For univariate analysis (non-parametric tests for unequal variances), lipids 

were considered significant for p (adjusted for false-discovery rate) <0.05 and FC ≥1.5 or ≤0.67. 

 

7.3 Results 

The untargeted LC-MS lipidomics approach employed for this work allowed the detection 

of 6856 features for positive ionization and 2318 for negative ionization. The aligned features were 

merged into a unique list of 8765 features. Thirteen deuterated internal standards were detected 

with a maximum m/z error of 7.2 ppm. The glycerophosphoinositol lipid standard PI d7-15:0/18:1 

was not detected due to a small concentration in the commercial mixture employed for this study 

(Avanti Splash Lipidomix Mass Spec Standard, Table II-1, p. 45). A total of 63.1% of the detected 
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features were identified in 34 lipid subclasses, including 381 by MS/MS spectral match, 5132 by 

putative mass match and 20 internal standard ions for positive and negative ionization (Supp. Table 

27). More than 40% of the identified lipids were glycerophospholipids, while 16.4% were 

glycerolipids, 17.8% were sphingolipids, 10.3% were fatty acyl species and the remaining 10.4% 

were sterols (Figure VII-1). Eight features were not identified as lipids, i.e., medications, 

phthalates and contaminants. 

 

 

Figure VII-1. Subclass distribution for the lipids identified for liver, kidney, heart, brain and 

skeletal muscle samples from male rats treated with dexamethasone or normal saline solution 

(intramuscular injections) for 14 weeks. Abbreviations to lipid subclasses are defined in Table II-2 

(p. 48). 

 

The normalization procedure using a deuterated internal standard mixture for subclass-

match greatly improved the relative standard deviation (RSD) calculated for quality control (QC) 

replicates. Only 72.0% of features displayed RSD smaller than 50% for the raw data, but the 

number was improved to 97.4% after normalization. These results show the importance of 
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adopting appropriate normalization procedures for lipidomics analysis, particularly when very 

complex samples with potentially different compositions (e.g. tissues from different organs) and 

high ion suppression are compared. A detailed discussion on the necessity of normalization 

strategies for lipidomics is available in Chapter I (1.3.1.6. Ion suppression and normalization 

approaches, p. 29). 

 

7.3.1. Lipidic composition of different types of tissue 

The PCA score plot for the 5 different types of tissues (brain, heart, kidney, liver and 

muscle) displayed all the QC replicates tightly clustered, indicating good reproducibility for the 

employed method (Figure VII-2A). Although a complex dataset was used with a simple statistical 

model, the brain samples were fully separated from the other types of tissue in the first principal 

component, which shows a dramatically different lipidic composition. The PCA score plot without 

the brain samples showed that the kidney tissue also has a lipidic composition that causes its 

separation in the second principal component from heart, liver and muscle (Figure VII-2B). The 

liver and muscle samples were partially separated in the first and second principal components, 

while the heart samples were partially overlaid with skeletal muscle. 
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Figure VII-2. PCA score plots for the investigated tissues, regardless of treatment status 

(dexamethasone or control). (A) All samples and quality control (QC, pooled extracts from all 

tissues) replicates; (B) Heart, kidney, liver and muscle tissue (brain and QC replicates were 

removed for better visualization). The 33 QC replicates (yellow) and sample injection triplicates 

for each biological replicate (N = 4 to 6) were tightly clustered. 

 

The non-parametric ANOVA analysis for the type of tissue (regardless of dexamethasone 

treatment) resulted in 2937 significant lipids (p <0.05, 99.9% of the compounds employed for 

statistics, Supp. Table 28). The most significantly altered subclass (smallest p) was sphingomyelin 

(SM), which presented the highest total normalized intensity (i.e., the sum of normalized intensities 

for all lipids belonging to the same subclass) for kidney samples (Figure VII-3). Carnitines (Car) 

were found to be elevated for heart, while hexosylceramides (HexCer) and 

phosphatidylethanolamines (PE) were more related to brain samples. Fatty acyls (FA), N-acyl 

amines (NAA) and lysophosphatidic acids (LPA) were elevated for liver tissue. The total 
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normalized intensities for acyl-coenzyme A (CoA) and monoacylglycerols (MG) were not 

significantly altered for the five types of tissues by non-parametric ANOVA (p >0.05). 

 

 

(cont.) 
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Figure VII-3. Boxplots for the summed normalized intensities for lipids detected in each subclass. 

Only acyl-coenzyme A (CoA) and monoacylglycerol (MG) species were not significant for non-

parametric ANOVA (p >0.05). Lipid subclass abbreviations are defined in Table II-2. 

 

7.3.2. Long-term treatment of dexamethasone for different types of tissues 

A Volcano plot analysis for the tissue samples obtained from dexamethasone-treated rats 

and controls (regardless of tissue type) resulted in 44 significantly altered lipids (fold-change, FC 
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control/dexamethasone ≥1.5 or ≤0.67 and p adjusted for false-discovery rate, p <0.05, Supp. Table 

29), including 14 fatty acyls, 5 phosphatidic acids and 5 sterols (Figure VII-4). The fatty acyl 

metabolism seems to be deeply affected by long-term dexamethasone treatment for all five types 

of tissue. The significant alterations for the same lipid species in different tissues indicate a 

systemic effect of long-term dexamethasone treatment upon the metabolism. The highest 

significant fold-changes were found for the putatively identified ST 18:0;O4 (or the 

isomers/isobars ST 18:1;O3, FA 16:1;O, FA 18:4;O and MG O-13:2, with FC 

control/dexamethasone of 0.17) and PA 38:2 (or PA O-38:3;O and DG 39:3;O2, with FC 

control/dexamethasone of 0.22), with both displaying elevated intensities for the dexamethasone-

treated animals. Amongst the high-confidence MS/MS identified lipids, the highest fold-change 

was found for the glycerophosphate PA 18:0_18:2 (FC control/dexamethasone of 0.32). 

 

 

Figure VII-4. Significantly altered lipid classes for the comparison between controls (saline 

solution) and long-term dexamethasone treatment for brain, heart, kidney, liver and skeletal muscle 

tissue (fold-change control/dexamethasone  ≤0.67 or ≥1.5 and p <0.05). 
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PLS-DA models for each type of tissue fully separated the dexamethasone-treated animals 

from controls (injected with saline solution), as shown in Figure VII-5. The Volcano plot analysis 

emphasized the different effects of long-term dexamethasone treatment upon the studied tissues 

(Figure VII-6, Supp. Tables 30 to 34). Skeletal muscle presented the highest number of 

significantly altered lipids (417, corresponding to 14.1% of the lipids employed for statistics), 

followed by liver (357), heart (325), kidney (200) and brain (47). The Venn diagram in Figure 

VII-7 compares the significantly altered lipids for the dexamethasone-treated and control animals 

in all five types of tissue. Muscle and liver shared 30 significantly altered lipids, while heart and 

kidney shared 25. However, no lipids were significantly altered for all tissues when 

dexamethasone-treated animals were compared with the controls within each type of tissue. 
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Figure VII-5. PLS-DA score plots obtained for the five types of tissue labeled as control (Ctrl, 

green) or long-term dexamethasone treatment (Dex, red). The models were cross-validated and 

passed permutation tests (N = 4 to 6, p <0.05 for 1000 permutations), except for the brain tissue (p 

= 0.24).  
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Figure VII-6. Volcano plots for the comparison between tissues obtained from long-term 

dexamethasone-treated rats and controls (saline solution). Lipids were considered significant for 

fold-change (FC control/dexamethasone) ≤0.67 or ≥1.5 and p <0.05 (N = 4 to 6, Supp. Tables 30 

to 34). 
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Figure VII-7. Venn diagram for significantly altered lipids in the comparison between 

dexamethasone-treated rats and controls. 

 

Skeletal muscle was deeply affected by long-term dexamethasone treatment (Figure VII-6). 

Amongst the 417 significantly altered lipids, 19.9% were identified as diacylglycerols (DG, 83 

lipids), 11.8% were phosphatidylethanolamines (PE, 49) and 7.9% were sphingomyelins (SM, 33). 

In fact, 40.2% of the sphingomyelins employed for statistics were significantly altered, with all of 

them displaying higher normalized intensities for the dexamethasone group (Figure VII-8). The 

long-term treatment seems to be related to increased levels of most lipid subclasses in skeletal 

muscle, as 94.7% of the significantly altered lipids had higher normalized intensities for the 

dexamethasone group (Figure VII-8, FC control/dexamethasone ≤0.67 and p <0.05). The lipids 

with the most intense fold-changes were identified as SM 42:1;O2 (or PE-Cer 45:1;O2, FC 

control/dexamethasone of 0.07), PS 26:0_18:1 (MS/MS match, FC control/dexamethasone of 

0.07) and PC 22:0_18:1 (MS/MS match, FC control/dexamethasone of 0.07). 
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Figure VII-8. Fold-changes (FC) for the significantly altered lipids between brain, heart, kidney, 

liver and muscle tissue obtained from rats (N = 4 to 6) treated with dexamethasone or saline 

solution (control). Fold-changes (control/dexamethasone) were calculated by non-parametric 

Volcano plot analysis for lipids with false-discovery rate adjusted-p <0.05 (Supp. Tables 30 to 34). 
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The blue bars represent lipids with higher normalized intensities for the dexamethasone group, 

whereas the red bars represent lipids with lower intensities. Lipid subclass abbreviations are 

defined in Table II-2 (p. 48). 

 

A similar trend was observed for liver tissue, with 78.4% of the 357 significantly altered 

lipids showing higher normalized intensities for the dexamethasone-treated group (Figure VII-6). 

The only subclasses that did not follow the elevated intensity trend for the dexamethasone animals 

were carnitines (Car), phosphatidic acids (PA) and triacylglycerols (TG), with lower values for 11 

(out of 12), 14 (out of 15) and 5 (out of 5) significantly altered lipids, respectively (Figure VII-8). 

The lipid species with the most intense fold-changes (control/dexamethasone) displayed lower 

intensities for the dexamethasone group, namely the putatively identified Car 18:2;O (or the 

isomers/isobars NAE 23:3;O3, FA 25:4;O3, ST 25:1;O5 or MG 22:4;O, FC 

control/dexamethasone of 63.3), the MS/MS-matched TG 12:0_16:1_18:2 (FC 

control/dexamethasone of 51.1) and the putatively identified TG 59:7 (or the isomers/isobars TG 

O-59:8;O, DG 59:8;O or DG O-59:9;O2, FC control/dexamethasone of 35.4). 

Glycerophospholipids were deeply affected for liver tissue with mostly higher normalized 

intensities for the dexamethasone group, summing 48.5% of the significant lipids. The most 

affected subclasses included phosphatidylcholines (PC, 53 lipids, 14.8% of the significantly 

altered species), phosphatidylethanolamines (PE, 44, 12.3%), sterols (ST, 40, 11.2%), N-acyl 

amines (NAA, 6.2%) and ceramides (Cer, 21, 5.9%, Figure VII-8).  

Out of the 325 significantly altered lipids for heart tissue, 65.5% had higher normalized 

intensities for the dexamethasone-treated group (Figure VII-6). Glycerophospholipids were also 

deeply altered (43.1% of the significant lipids), but the most affected subclass was sterols (ST, 
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12.9% or 42 lipids), followed by phosphatidylethanolamines (PE, 12.0%,39) and fatty acyls (FA, 

10.2%, 33). All the 25 significantly altered phosphatidic acids (PA) had higher intensities for the 

dexamethasone group, along with 84.6% of the phosphatidylethanolamines (33) and 86.4% of the 

ceramides (Cer, 19, Figure VII-8). The most intense fold-changes were observed for the putatively 

identified FA 24:4 (or the isomers/isobars NAE 22:3 and ST 24:1;O2, FC control/dexamethasone 

of 0.02), MG O-17:4 (or the isomers/isobars ST 20:0;O3, FA 18:0;O, FA 20:3;O or MG O-15:1, 

FC control/dexamethasone of 0.02) and ST 22:0;O3 (or the isomers/isobars FA 20:1, ST 22:1;O2 

and FA 22:4, FC control/dexamethasone of 0.03). 

Kidney tissue had 200 lipids that were significantly altered for the control group and the 

dexamethasone-treated rats (Figure VII-6). Most of them (62.0%) showed lower normalized 

intensities for the dexamethasone group (except for fatty acyls), going against the observations for 

muscle, liver and heart. More than 90% of the 33 significant phosphatidylcholines (PC) were 

reduced for the treated group, as well as 90.9% of the 11 phosphatidylethanolamines (PE) and 

85.7% of the 28 diacylglycerols (DG, Figure VII-8). The lipid species with the most intense fold-

changes were putatively identified as FA 20:3;O2 (or the isomers/isobars Car 10:2;O2, NAE 

15:3;O4, MG 17:3 and ST 22:2;O5, with FC control/dexamethasone of 0.02), PA 52:4 (or the 

isomers/isobars PE 50:3, PA O-52:5;O, PE O-50:4;O and PC 47:3, with FC control/dexamethasone 

of 0.03) and NAE 16:4;O3 (or the isomers/isobars CAR 11:3;O, FA 21:4;O, MG O-18:5 and ST 

23:3;O4, with FC control/dexamethasone of 26.6). 

The brain tissue was only mildly affected by long-term treatment with dexamethasone 

(Figure VII-6). Out of the 47 significantly altered lipids, 6 were identified as fatty acyls (FA), 6 as 

lysophosphatidic acids (LPA), 5 as phosphatidylcholines (PC) and 5 as triacylglycerols (TG, 

Figure VII-8). All the significant fatty acyls, lysophosphatidic acids, phosphatidylcholines, 
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phosphatidylethanolamines (PE) and sterols (ST) had higher normalized intensities for the 

dexamethasone group (Figure VII-8). The lipid species with the most intense fold-changes were 

putatively identified as TG 44:1 (or the isomers/isobars DG 44:2;O, TG O-44:2;O and DG O-

44:3;O2, FC control/dexamethasone of 8.6), TG 38:1 (or the isomers/isobars DG 38:2;O, DG O-

38:3;O2, TG O-38:2;O and Cer 41:2;O5, FC control/dexamethasone of 7.8) and LPS 30:2 (or the 

isomers/isobars LPG 30:4, LPS O-30:3;O, LPG O-30:5;O or LPS O-28:0;O, with FC 

control/dexamethasone of 0.2). 

 

7.4 Discussion 

The biological mechanisms responsible for the adverse effects of one of the most 

commonly prescribed class of drugs are not yet well known. We have performed comprehensive, 

untargeted lipidomics of brain, heart, kidney, liver and skeletal muscle tissue from rats that 

received high dosages of dexamethasone for 14 weeks versus controls treated with normal saline 

solution. First, we investigated the lipidic composition of each tissue, regardless of treatment. 

Second, we hypothesized that the long-term treatment with dexamethasone would provoke deep 

alterations in the tissues’ lipidome that could be correlated with common adverse effects. A related 

study using the same animal model design to perform phenotypic and metabolomic profiling of 

serum samples was recently published.253 The authors reported that the dexamethasone-treated rats 

had an age-dependent weight loss of about 20%, as well as significantly higher blood glucose and 

total triglycerides. Although the total serum cholesterol was not significantly different, low-density 

lipoprotein (LDL) was reduced for the dexamethasone group. There were no changes between the 

kidneys and livers of control and dexamethasone-treated animals by MRI examination, although 

cysts were observed at the time of sacrifice.253  
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We found that 99.9% of the lipids employed for statistical analysis were significant by 

ANOVA (p <0.05) between the five types of tissue, regardless of treatment status (dexamethasone 

or saline). While phosphatidylethanolamines and hexosylceramides were elevated for brain, 

carnitines and bis(monoacylglycero)phosphates were correlated with heart samples (Figure VII-3). 

Brain tissue is mostly composed of membrane lipids, which are generally rich in 

glycerophospholipids, such as phosphatidylethanolamines. However, it depends almost 

exclusively on glucose for energy, as shown by the low levels of triacylglycerols (Figure 

VII-3).255,256 Hexosylceramides are neutral glycosylated N-acyl fatty acid derivatives of 

sphingosine (Chapter I, 1.2.2. Lipid classification, p. 3).16,17 They contain one or more sugar 

moiety, such as glucose, galactose, N-acetylglucosamine, N-acetylgalactosamine or fucose. The 

monoglycosylceramides are known as cerebrosides (gluco- and galactocerebrosides), typically 

found in neural tissue.15 Galactosylceramide is one of the most important components of the 

myelin sheet of nerves, acting as insulators for axons of neuronal cells, which correlates with our 

findings. Furthermore, bis(monoacylglycero)phosphates (BMPs) are a minor constituent of all 

tissues. The cone-shape and hydrated negatively charged headgroup that is characteristic of BMPs 

and cardiolipins aid membrane fusion and invaginations, promoting extracellular vesicles. The 

polyglycerophospholipids are essential for regulation of membrane curvature and stabilization of 

inner mitochondrial membranes. Interestingly, we found elevated levels of BMPs in heart tissue, 

but cardiolipins, crucial for ATP production, had higher intensities for skeletal muscle. 257,258 

Kidney tissue was particularly related to high levels of sphingolipids, including sphingomyelins, 

sphingophospholipids and sphingoid bases. The role of sphingolipids in renal function are not yet 

well known, but sphingomyelins have been previously described as dysregulated in several renal 

diseases. 259,260 The kidneys displayed high intensities of sphingomyelins, sphingoid bases and 
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ceramide glycerophospholipids, but liver tissue had elevated levels of lysophosphatidic acids, fatty 

acyls and N-acyl amines. The particularly high levels of fatty acyls in the liver, regardless of 

treatment status, are a result of its role in the biosynthesis and metabolism of lipids (Chapter I, 

1.2.4.3. Lipogenesis and metabolism, p. 12).261,262 Last, skeletal muscle resulted in slightly higher 

intensities of cardiolipins and lysophosphatidylcholines when compared to the other four types of 

tissues. Acyl-coenzyme A and monoacylglycerols were the only lipid subclasses the were not 

significant across the studied samples. Monoacylglycerols are one of the products of 

triacylglycerol metabolism. They can be hydrolyzed by monoglyceride lipases during lipolysis of 

adipose tissue to generate fatty acids and glycose. The oxidation of fatty acids to produce energy 

is dependent upon their activation by an ATP-dependent acylation reaction that results in acyl-

CoA. Once activated, the fatty acyl portion of acyl-CoA species are transferred to carnitines by 

carnitine palmitoyl transferase to allow their transport into the mitochondria, where fatty acids are 

degraded by β-oxidation. The resulting acetyl-CoA moieties enter the citric acid cycle and 

oxidative phosphorylation to produce energy. Hence, the two lipid subclasses that were not 

significantly altered are deeply related.15 

The long-term dexamethasone treatment caused significant alterations in 44 lipids across 

all tissues, indicating a systemic effect (Figure VII-4). The glycerophosphate PA 18:0_18:2 was 

identified by MS/MS match with a significant fold-change of 0.32 for all tissues of control animals 

compared to dexamethasone-treated rats. Six other phosphatidic acids were putatively identified 

with significantly higher levels in dexamethasone-treated animals. Heart tissue seems to be 

particularly affected by the alteration in phosphatidic acid metabolism: all the 25 significantly 

altered phosphatidic acids showed higher levels in heart tissue of dexamethasone-treated rats, 

including four species identified by MS/MS-match, namely PA 18:0_18:2 (fold-change for 
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control/dexamethasone of 0.09), PA 16:0_20:1 (0.10), PA 20:0_20:4 (0.15) and PA 20:0_18:2 

(0.22). Phosphatidic acids are important intermediates in the biosynthesis of triacylglycerols and 

other glycerophospholipids (Chapter I, 1.2.4.3. Lipogenesis and metabolism, p. 12). The elevated 

intensities observed for tissues obtained from the dexamethasone group were not accompanied by 

significantly higher levels of triacylglycerols, but we noticed 7 elevated phosphatidylcholines and 

phosphatidylethanolamines, indicating increased biosynthesis rate for glycerophospholipids. 

Furthermore, phosphatidic acids act as signalling molecules for coagulation, stimulation of 

membrane fusion, modulation of cardiac muscle contractions and others. Elevated levels of 

phosphatidic acids have also been previously suggested as markers of cardiac hypertrophy.263 

Inflammatory mediators can activate phospholipases to stimulate the conversion of other 

glycerophospholipids to phosphatidic acids. Glucocorticoids are used to control exaggerated 

immune response and inflammations; hence, the systemic elevated levels of phosphatidic acids 

suggest a regulation of the activity of phospholipases. 264,265  

We also found 14 elevated fatty acyls and 5 sterols for all tissues obtained from the 

dexamethasone-treated rats. All types of tissues showed elevated levels of fatty acyl lipids for the 

dexamethasone group compared to control animals. Liver and muscle tissue also had higher levels 

of most significantly altered diacylglycerols and sterols after dexamethasone treatment. The effect 

of glucocorticoids upon fatty acid and glycerolipid metabolism is unclear. During normal 

metabolism conditions, dietary lipids are degraded into fatty acids during digestion, which are then 

converted to triacylglycerols and packaged into lipoprotein particles (i.e., chylomicrons) along 

with dietary cholesteryl esters (Chapter I, 1.2.4.1. Digestion and transport, p. 10). Alternatively, 

endogenous lipids synthesized in the liver are packaged into very-low density lipoprotein particles 

(VLDL), which are majorly composed by endogenous triacylglycerols and cholesteryl esters 
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wrapped in an outer layer of cholesterol, phospholipids and proteins. Lipoproteins containing 

endogenous (VLDL and others) and exogenous triacylglycerols and sterols (chylomicrons) are 

transported into tissue cells by low-density lipoprotein (LDL)-receptors. Triacylglycerols are then 

hydrolyzed by lipoprotein lipases in the capillaries of tissues, leading to free fatty acids and the 

steady levels of monoacylglycerols observed for all five types of tissues. Hence, lipoprotein lipases 

regulate serum concentrations of triacylglycerols and lipoprotein particles. The free fatty acids are 

taken up by the liver, being further activated as fatty acyl-CoAs and esterified with glycerol-3-

phosphate (obtained from glucose) to form new triacylglycerol species. The liver regulates the 

levels of blood glucose and synthesizes or degrades triacylglycerols to generate energy. When the 

energy demand is high, the liver degrades triacylglycerols into fatty acids, which are then are 

metabolized into acetyl-CoA by β-oxidation, as previously described (Chapter I, 1.2.4.2. Energy 

production, p. 11). When the demand for energy is low, the liver incorporates fatty acids into 

triacylglycerols, which are excreted to the blood stream as VLDL for further uptake by adipose 

tissue for future use. In times of starvation and fasting, the stored triacylglycerols are hydrolyzed 

by adipose triglyceride lipase into diacylglycerols, which are in turn hydrolyzed to 

monoacylglycerols, glycerol and fatty acids, completing the glycerol and fatty acid metabolism. 

15,266  

Glucocorticoids are known to promote increased lipolysis in adipose tissue by inducing the 

activity of adipose hormone-sensitive triglyceride lipase (promotes the breakdown of 

triacylglycerols into diacylglycerols and fatty acids); diglyceride lipase (diacylglycerols to 

monoacylglycerols and fatty acids); and monoglyceride lipase (monoacylglycerols to fatty acids 

and glycerol). They can also inhibit lipoprotein lipase, which affects serum levels of 

triacylglycerols.266 Hence, dexamethasone increases triacylglycerol turnover in adipose tissue and 
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accumulation of free fatty acids, which are in turn taken up by tissues, explaining the elevated 

levels observed in the comparisons between controls and dexamethasone-treated rats (Figure 

VII-8). Furthermore, excessive glucocorticoid consumption or biosynthesis under stress conditions 

is known to increase de novo fatty acid synthesis via acetyl-CoA (Chapter 1 – 1.2.4.3. Lipogenesis 

and metabolism, p. 12) by stimulation of the transcription of enzymes such as acetyl-coA 

carboxylase and fatty acid synthase. The uptake of fatty acyls from the blood stream by the liver 

is balanced by β-oxidation and secretion of VLDL, which ensures relatively small quantities of 

triacylglycerols accumulated within the organ. There are reports that glucocorticoids can also 

supress β-oxidation of fatty acids in the liver.267 The consequent hepatic lipid deposition upon 

conversion of free fatty acids to triacylglycerols causes a condition known as steatosis or “fatty 

liver”, one of the adverse effects of long-term dexamethasone treatment.268 Contrastingly, 

glucocorticoid treatment seems to increase the activity of lipin-1 in the liver, leading to increased 

oxidative fatty acid metabolism.269 

Although we observed increased levels of 12 fatty acyls in liver tissue after long-term 

dexamethasone treatment, all the five significantly altered triacylglycerols had decreased 

intensities, which counteracts the expected deposition of triacylglycerols that is a hallmark of 

hepatic steatosis. Liver tissue displayed increased levels of 78.4% of the significantly altered 

lipids, including fatty acyls, diacylglycerols, sterols, glycerophospholipids and ceramides, but not 

triacylglycerols. In fact, the lipid with the second most intense fold-change for liver tissue was 

identified by high-confidence MS/MS-match as TG 12:0_16:1_18:2 (fold-change 

control/dexamethasone of 51.1, i.e., significantly decreased levels for liver tissue of 

dexamethasone-treated rats). TG 12:0_12:0_12:0 was also identified by MS/MS-match with a 

fold-change (control/dexamethasone) of 17.7. The higher levels of diacylglycerols and fatty acids, 
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combined with lower levels of triacylglycerols, indicate a higher rate of hydrolysis of complex 

glycerolipids in the liver. A previous study with the same animal cohort reported higher serum 

levels of triacylglycerols, which were mainly attributed to the dexamethasone-induced enhanced 

secretion of lipoprotein lipase, the enzyme that hydrolyzes triacylglycerols from VLDL. 253 Our 

observations indicate that the excess fatty acid accumulation in tissues may not be counterbalanced 

by  β-oxidation.253 We found decreased levels of 11 carnitines in liver tissue of dexamethasone-

treated rats (out of 12 significantly altered carnitines), including the MS/MS-matched Car 18:2 

(fold-change control/dexamethasone of 32.8) and Car 18:1 (24.8). Elevated levels of carnitines 

were reported for blood serum samples of the same animal cohort.253 Carnitines are essential for 

the transportation of fatty acids through mitochondrial membranes for β-oxidation; hence, an 

alternative compensation mechanism is suggested for the regulation of liver function. The higher 

levels of diacylglycerols and glycerophospholipids (PC, PE, PI, PS, PG) indicate that the excess 

of fatty acids may induce higher rates of lipogenesis of membrane lipids instead of energy 

production through β-oxidation in liver tissue. 270,271 

Contrary to metabolites, brain tissue lipids were remarkedly not affected by the long-term 

dexamethasone treatment.3 However, skeletal muscle showed higher levels of multiple lipid 

subclasses after dexamethasone treatment, including ceramides, diacylglycerols, fatty acyls, 

hexosylceramides, glycerophospholipids, sphingomyelins, sterols and triacylglycerols. Myopathy, 

a clinical disorder of skeletal muscle that causes muscle weakness, cramps and fatigue, is a known 

adverse effect of glucocorticoids that seems to be related to an abnormal accumulation of lipids. 

An excess of ceramides has been previously related to decreased phosphorylation and activation 

of protein kinase B, affecting insulin resistance and signalling, which decreases muscle glucose 

uptake. The lipid subclass may also inhibit IGF-1 protein synthesis and differentiation, as well as 
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amino acid uptake, affecting muscle development and repair. Oxidative stress and mitochondrial 

dysfunction are also partially related to upregulation of ceramides.272 Furthermore, some of the 

most intense fold-changes for muscle tissue were observed for the MS/MS-matched plasmalogens 

PE O-18:0_18:3 (fold-change control/dexamethasone of 0.09) and PE O-18:0_18:2 (0.09). The 

vinyl-ether containing glycerophospholipids act in organization and stability of lipid rafts in 

membrane regions involved in cell signalling. Although the biological roles of plasmalogens are 

not yet fully understood, they have been related to antioxidant function. The vinyl-ether bond 

presents a high reactivity with reactive oxygen species, being preferentially oxidized instead of 

other types of lipids. Interestingly, the previously published metabolomics study for the same 

sample cohort pointed to a systemic alteration of the glutathione metabolism, a well-known 

essential antioxidant against oxidative stress.3 Decreased levels of oxidized glutathione were found 

in muscle tissue, indicating a mitigation of oxidative processes. The higher levels of plasmalogens 

found in this study can be correlated with the lower levels of oxidized glutathione, which shows 

an inhibition of oxidative stress in muscle. Plasmalogens are synthesized by peroxisomes, small 

organelles that are also responsible for β-oxidation of long-chain fatty acids. As previously 

discussed, glucocorticoids can suppress β-oxidation of fatty acids, which were mostly increased 

for muscle tissue. Hence, there is a suggested effect of dexamethasone upon peroxisomal oxidative 

processes and redox equilibrium.273,274 

 

7.5 Conclusions 

Glucocorticoids are widely used for treatment of different pathologies. However, their 

adverse effects may become increasingly dangerous upon long-term, high-dosage application. The 

metabolic and phenotypic alterations caused by long-term dexamethasone treatment were 
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previously reported in related works. Now, we have investigated the lipidic alterations caused by 

dexamethasone upon brain, heart, kidney, liver and skeletal muscle tissue. The employed LC-MS 

methodology allowed the reliable comprehensive, untargeted detection of thousands of lipids from 

different subclasses. Our results show that, although brain lipids are only mildly affected, the 

synthetic glucocorticoid causes systemic effects upon different organs. The benefits of 

dexamethasone treatment are undeniable, but this study helps unravel the biochemical implications 

of long-term use that give rise to the many adverse effects observed by patients and medical 

professionals. 
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VIII  

Chapter VIII: Lipidomic Alterations Induced by Cystic Fibrosis, Genotypic Mutation and 

Lung Function Decay 18,19,20 

 

8.1 Introduction 

Cystic fibrosis (CF) is a systemic autosomal recessive syndrome characterized by 

progressive obstructive lung disease and pancreatic insufficiency. The condition is caused by 

recessive mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, which produces 

a glycoprotein that controls the transport of chloride and bicarbonate ions through cell membranes, 

as well as the regulation of transepithelial sodium. 275,276 CFTR is an ATP-binding cassette (ABC) 

transmembrane protein that contains a cytosolic regulatory domain, two nucleotide-binding 

domains and two membrane-spanning domains that form a transmembrane channel. The CFTR 

channel is activated by phosphorylation of the regulatory domain by cAMP-dependent protein 

kinase A (PKA). The phosphorylated channel is gated by binding of ATP to both nucleotide-

binding domains, triggering a conformational change that allows ion passage. ATP hydrolysis 

disrupts the dimer, which closes the ion channel and prevents ion trafficking. 275,277–279  

The mutated CFTR protein produced by CF patients affects the normal traffic of chloride 

ions and water though membranes of the respiratory, gastrointestinal and reproductive tracts, 

causing insufficient hydration of airway surfaces, desiccated mucous secretions and high sodium 

 

18 A version of this chapter was conditionally accepted for publication at Journal of Proteome Research on 

Sep/2020. 
19 Supporting figures for this chapter are available in Appendix E. Supporting tables are available with Dr. 

Liang Li. 
20 The sample collection was performed by Dr. Majed Dasouki and Dr. Anas M. Abdel Rahman’s research 

groups (King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia). 
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chloride concentrations in sweat. The consequent accumulation of thick mucus is the cause of 

intestinal obstructions, pancreatic insufficiency, infertility, persistent cough, respiratory infections, 

and pneumonia. As the CF pathology evolves, the airways become chronically infected with 

pathogenic bacteria and viruses, leading to exacerbated inflammation. The progressive cycle of 

chronic infection and inflammation in the respiratory tract culminates in reduced lung respiratory 

function and permanent lung damage, with progressive chronic obstructive pulmonary disease 

(COPD) being the cause of death for more than 90% of patients. 280–284 Currently, there is no cure 

for CF. Although the prognosis may seem dire, the mortality rates and life expectancies of CF 

patients are improving. When CF was first described in 1938, the life expectancy was less than 

one year, but the median survival age reached 40.6 years old in the USA and 50.9 in Canada in 

2013. 285,286 

While the classical presentation of CF is well known, a definitive CF diagnosis is only 

achieved by a combination of symptoms, family history, a positive newborn screening test (if 

available) and laboratory evidence of CFTR malfunction, e.g., positive genetic testing for two 

CFTR mutations (one in each parental gene) or elevated sweat sodium chloride levels. The 

newborn screening test with a dried blood spot collected after birth usually includes inspection of 

the immunoreactive trypsinogen (IRT) protein, a marker of pancreatic insufficiency, which is one 

of the earliest manifestations of classical CF. However, elevated immunoreactive trypsinogen 

levels are not conclusive for CF and require confirmation through abnormal sweat tests or 

identification of two CF-related mutations. 280,281,287–290 

Therapies that correct CFTR function are promising, but still not sufficiently available to 

patients. The progress of the disease can be slowed down through pancreatic enzyme replacement, 

mucolytic agents, antibiotics, and mucus-clearing approaches. Lung transplantation is frequently 
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required in advanced stages of the disease. 280,281,283 However, new mutation-specific drugs are 

leading towards an essential change in CF management. The most common CFTR mutations are 

divided into six classes: (I) CFTR is not synthesized (frameshift, splicing or nonsense mutations, 

resulting in no mRNA or no protein); (II) is inadequately processed, e.g. interruption of protein 

trafficking to the cell membrane, misfolding, abnormal degradation or deletion (lower 

concentrations); (III) is dysregulated or inactivated, i.e., even though the protein is produced and 

processed correctly, the chloride channels remain closed in response to stimuli; (IV) has abnormal 

channel conductance; (V) has reduced synthesis due to the introduction of promoter or splicing 

abnormalities; and (VI) is unstable, with quick degradation once the protein reaches the cell 

membrane. Mutations related to the most severe phenotypes (class I, II and III) are associated to 

loss of CFTR function, leading to early age diagnosis, pancreatic insufficiency and elevated sweat 

chloride levels; however, patients in classes IV, V and VI have less severe CF symptoms, with 

sweat chloride levels closer to normal. 280–282,284,288,291,292 Patients may have combinations of two 

mutations belonging to different classes. The development of targeted therapies and medication 

based on CFTR gene mutation classes is a promising alternative for CF treatment. For example, 

Class II mutations may be treated with therapies focusing on the rescue of CFTR protein traffic, 

whereas class III requires potentiators to restore ion channel activity, such as VX-770 

(Ivacaftor).291 However, the molecular mechanisms associated with each genotypic mutation are 

not yet fully known. 

There is still a need for a better understanding of biological pathways involved in CF 

pathophysiology and the effect of different mutation classes upon the patient’s metabolism. The 

synthesis, processing and action of the CFTR protein have been the main target of most CF-related 

studies. Targeted and untargeted metabolomics was applied to blood, sputum, bronchoalveolar 



Chapter VIII 

311 

 

lavage fluid and urine of CF patients, as well as in vitro studies. Several metabolites have been 

related to the disease, e.g., amino acids, lactate, bile acids, nucleotides, carbohydrates and 

cortisol.293 Yet, very little is known about CFTR interaction with lipid metabolism and cell 

membranes. The interaction of the transmembrane CFTR protein with membrane lipids seem to 

play an important role in protein stability and function, whereas lipid mediators may aid protein 

folding and traffic.43,275 There is some evidence of sphingomyelin regulation of CFTR activity and 

inhibition through catalysis. 294–296 Previous studies targeted to specific lipid categories and 

subclasses have also shown dysregulation of fatty acids, lysophospholipids and 

glycerophospholipids related to CF disease severity in plasma and bronchoalveolar lavage, with a 

significant decrease in levels of phosphatidylcholine species, as well as higher triglyceride 

levels.297–299 A more comprehensive characterization of molecular mechanisms involved in CF 

development, mutation classes and lung function decay may help elucidate the pathophysiology 

of the condition and improve therapies.  

We performed untargeted, comprehensive liquid chromatography-mass spectrometry (LC-

MS) lipidomics of blood serum samples from CF adult patients and healthy controls. First, we 

hypothesized the role of CFTR mutations on the expression of serum lipidome. The lipidome of 

CF patients was compared with healthy controls using statistical analysis to select significantly 

altered lipid species and reveal biomarker candidates. Second, we studied lipidic alterations 

induced by each particular CFTR mutation class. Third, we investigated the correlation between 

the serum lipidome of patients and their lung function, measured by spirometry tests as the 

predicted forced expiratory volume in 1 second (FEV1%). FEV1% is an established marker of CF 

progression, with decreased FEV1% values often related to increased risk of death.300,301 
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8.2 Experimental 

8.2.1 Participants21 

All procedures performed in this study involving human participants followed the ethical 

standards of the Declaration of Helsinki and the guidelines of the International Conference on 

Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use 

Good Clinical Practice (ICH-GCP). This study was reviewed and approved by the Institutional 

Review Board at King Faisal Specialist Hospital and Research Center (Riyadh, Saudi Arabia - 

approval number 2160 031). Written informed consent was obtained from all participants.  

Forty CF patients (17 males and 23 females aged between 12 and 34 years old) were 

recruited from the CF-Pulmonology clinic at the King Faisal Specialist Hospital and Research 

Center (Table VIII-1). Patients who had been enrolled in another clinical study in the last 30 days, 

unable or unwilling to provide informed consent, or diagnosed with conditions other than CF were 

excluded from this study. The genotypic mutation of each patient was determined as previously 

described.302 Patients presented gene mutations belonging to classes II (4 patients), III (13), IV 

(14), V (4) or VI (1). Spirometry tests were performed for each patient, including forced expiratory 

volume for the first second of the forced breath (FEV1), forced vital capacity (FVC), the proportion 

of the lung vital capacity that a person can expire within the first second of forced expiration 

(FEV1/FVC ratio or FEV1%), and predicted FEV1% (FEV1% divided by the average FEV1% for 

a population with similar physical characteristics, Table VIII-1). The genotypic class, gene 

mutation, mutation type, sex, age, FEV1% and predicted FEV1% values for each patient are 

 

21 The patient recruitment, assessment and sample collection were performed by Mai Abdel Jabar, Imran 

Nizami, Dr. Majed Dasouki and Dr. Anas M. Abdel Rahman (King Faisal Specialist Hospital and Research Centre, 

Riyadh, Saudi Arabia). 
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presented in Supp. Table 35. Patients reported having the following CF symptoms: persistent 

cough (35 patients), lung infections (3), positive septum culture (1), sinusitis (6), bowel 

irregularities (2), heartburn (1) and flu (1). All patients were taking medications, i.e., tobramycin 

(32 patients), colistin (1), ciprofloxacin (1), azithromycin (37), tacrolimus (1), dornase alpha (36) 

or ivacaftor (1). Treatments also included percussive therapy (11), lung transplant (1), pancreatic 

enzyme supplement (39), vitamin D supplement (2) and liver transplant (1). One patient left the 

study before collection of genotypic class, mutation type and spirometry results; hence, the patient 

was included for the comparison between cystic fibrosis patients and healthy controls but excluded 

for the remaining evaluations. Three patients passed away before spirometry tests were performed 

and were also excluded from the FEV1% statistical analysis.  

 

Table VIII-1. Patient cohort selected for this study. Detailed information for each patient is 

available in Supp. Table 35. 

 Average (± one SD*) Median Minimum Maximum 

Age 21.1 (± 5.2) 20.0 12 34 

Sex 17 males / 23 females 

FEV1 (L) 1.6 (± 0.8) 1.4 0.61 3.84 

FVC (L) 2.2 (± 0.9) 2.0 0.81 4.92 

FEV1% (%) 71.5 (± 13.3) 72.5 48.1 100.0 

Predicted FEV1% (%) 53.4 (± 25.9) 47.5 15.0 98.0 

*SD: standard deviation 

 

The 20 healthy control samples were obtained from the King Faisal Specialist Hospital and 

Research Center blood bank. The healthy volunteers were screened to match the age, sex and body 
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mass index range of patients; however, as samples were collected anonymously from a blood bank, 

no specific information about each healthy individual is available. All blood samples were 

collected by vein puncture into plain non- EPIC tubes (Vacutainer, BD Biosciences, San Jose, CA, 

USA). The serum was separated by centrifugation and immediately frozen at -80°C until analysis. 

 

8.2.2 Sample preparation 

The lipid fractions of the blood serum samples were obtained through a modified Folch 

liquid-liquid extraction with dichloromethane and methanol. The employed chemicals and 

reagents were previously described in Chapter II (2.2.1. Chemicals and reagents, p. 42). Aliquots 

of 18.0 µL of blood serum were vortexed for 20 s with 4.6 µL of the internal standard mixture 

(Table II-1, p. 45) and 145.4 µL of methanol. After protein precipitation, the mixture was vortexed 

again for 20 s with 300 µL of dichloromethane, followed by 10 s vortex with 94.4 µL of water. 

The mixture was equilibrated at room temperature for 10 min and centrifuged for 10 min at 12,000 

rpm and 4°C. The organic phase (240.0 µl) was evaporated to dryness on a SpeedVac for 30 min. 

The residue was resuspended in 3.6 µL of 1:1 mobile phase A (MPA) / mobile phase B (MPB), 

vortexed for 30 s and diluted with 32.4 µL of MPA (2× dilution). The extract was not further 

diluted for negative ionization; however, for positive ionization, an aliquot of 6 µL of the extract 

was diluted with 2.4 µL of 1:1 MPA/MPB and 21.6 µL of MPA (10× dilution). After extraction, 

the prepared samples were stored at 4 °C for a maximum of 48h before injection. 

Sample preparation was randomized in groups of 6 to 8 samples. A pool containing aliquots 

of all samples was employed as quality control (QC). One identical QC aliquot was extracted with 

each group of 6 to 8 samples to control the reproducibility of the extractions and injections. 

Samples were extracted in polypropylene microcentrifuge tubes and stored in polypropylene 
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autosampler inserts in amber injection vials capped with polytetrafluoroethylene (PTFE)-lined 

caps. Blank extracts, using water instead of sample and methanol instead of the internal standard 

mixture, were prepared with each group of 6-8 samples to control the possibility of contamination 

from solvents and materials. 

 

8.2.3 LC-MS Analysis 

Chromatographic separation was performed using a Dionex UltiMate 3000 UHPLC system 

(Thermo Fisher Scientific, Waltham, MA, USA) and a Waters Acquity BEH C18 column (5 cm × 

2.1 mm with 1.7 µm particles, Waters Corporation, Milford, MA, USA). Mobile phases were 

composed by 10 mM ammonium formate in 50:40:10 acetonitrile/ methanol/ water (v/v/v, MPA), 

and 10 mM ammonium formate in 95:5 isopropanol/ water (v/v, MPB). Untargeted, 

comprehensive lipidomics was achieved with the following conditions: injection volume of 4.0 µL 

for positive ionization and 5.0 µL for negative ionization; column temperature of 42 °C; 25 min 

gradient separation (0 min – 2% MPB, 250 µL/min; 3.0 min – 5% MPB, 250 µL/min; 8.0 min – 

30% MPB, 250 µL/min; 21 min – 95% MPB, 230 µL/min; 25 min – 95% MPB, 230 µL/min); and 

10 min re-equilibration (0 min – 95% MPB, 230 µL/min; 2 min – 5% MPB, 250 µL/min; 9.95 min 

– 5% MPB, 250 µL/min; 10 min – 5% MPB, 50 µL/min). The UHPLC instrument was coupled to 

a high-resolution quadrupole-time-of-flight (QToF) mass spectrometer (Maxis II, Bruker 

Daltonics, Billerica, MA, USA) with electrospray ionization (ESI) source (capillary voltage of 

3800 V for positive and 4000 V for negative ionization; endplate offset of 500 V; nebulizer gas 

pressure of 1.4 bar; dry gas flow rate of 4.0 L/min; dry temperature of 230 °C; spectra acquisition 

rate of 1.44 Hz; and m/z range of 150 to 1500 Da). MS/MS acquisition was performed for all 

sample injections in auto-MS/MS mode using the software oToF Control (Bruker Daltonics) for 
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all sample injections with a cycle time of 1.2 s; active exclusion of precursors detected for more 

than 3 consecutive spectra within 0.50 min intervals; spectra acquisition rate ramping between 4.0 

Hz for low-intensity precursor ions (below 500 cts) and 8.0 Hz for high intensity (> 1,000,000 cts); 

and collision energy ramping with precursor m/z values (m/z 150 – 8.0 eV; m/z 500 – 12.0 eV; 

m/z 1000 – 25.0 eV; m/z 1500 – 30.0 eV). Extra MS/MS injections were acquired for the pooled 

QC with different collision energies (5 to 100 eV), MS spectra acquisition rates (1.0 to 6.0 Hz), 

cycle time (1.2 to 2.6 s), number of precursor ions in each cycle (3 to 10), precursor m/z ranges 

(50 to 150 Da intervals), and injection volumes (4.0 to 12.0 µL). 

The data acquisition sequence was randomized for samples and blank extracts, with one 

QC injection after every 6-8 sample injections. Hence, the QC results include extraction and 

injection replicates of the same pooled mixture. Positive and negative ionization were acquired in 

separate injections, with polarity switching for consecutive groups of 6-8 sample injections plus 

one QC. A 1.0 min mass re-calibration segment was inserted between the end of each 

chromatogram and column re-equilibration, during which 0.10 mM sodium formate calibrant 

solution in 1:1 isopropanol/ water (v/v) was infused with a peristaltic pump for mass recalibration. 

 

8.2.4 Data processing 

Chromatograms were processed on MetaboScape 4.0 (Bruker Daltonics, Billerica, MA, 

USA) with a minimum intensity cut-off of 7000 cts for positive and 2000 cts for negative 

ionization, minimum peak length of 6 spectra, m/z recalibration with sodium formate calibrant 

solution, m/z tolerance of 5.0 mDa and retention time tolerance of 15 s. Missing values were 

substituted by recursive extraction, i.e., features found for at least 10% of injections were searched 

again on the raw data without the minimum intensity limit and with a minimum peak length of 6 
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spectra. The aligned features were filtered by detection in more than 90% of injections in at least 

one group (CF, control, or QC). The remaining missing values were substituted by the minimum 

group intensity for features detected in more than 50% of injections in each group (CF, control, or 

QC); or global minimum intensity (all injections) for features detected in less than 50% of 

injections in each group. 

 

8.2.5 Lipid identification 

A three-tier putative identification routine was applied to the aligned features. Tiers 1 and 

2 were based on tandem mass spectrometry (MS/MS) identification, while tier 3 comprised lipids 

putatively identified by mass match. There was no overlap between the lipids identified in each 

tier. Lipid identification followed the guidelines established by the Lipidomics Standard Initiative 

(https://lipidomics-standards-initiative.org). 20,76  

For tiers 1 and 2, tandem mass spectrometry (MS/MS) identification was performed with 

the MS-Dial LipidBlast library (https://fiehnlab.ucdavis.edu/projects/LipidBlast), the Human 

Metabolome Database (https://hmdb.ca) and the MassBank of North America LC-MS/MS 

libraries (https://mona.fiehnlab.ucdavis.edu), combined to MetaboScape 4.0.73,78,79,81–83,109,151 Tier 

1 identification contained lipids with precursor m/z tolerance of 5.0 mDa, MS/MS score threshold 

of 500 and mSigma (isotope pattern match) threshold of 150, whereas tier 2 employed precursor 

m/z tolerance of 5.0 mDa, MS/MS score between 100 and 500, and mSigma threshold of 50. 

Features not identified for tiers 1 and 2 were searched in the LipidMaps database 

(http://www.lipidmaps.org) for putative identification by mass-match with m/z tolerance of 5.0 

mDa (tier 3).75 Lipids can have multiple isomers and isobars with different chemical structures; 

hence, the isomeric or isobaric identifications for each feature were ranked by a five-step filtering 
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and scoring approach, as described in Chapter II (2.2.7. Putative identification of lipids). The 

positions of double bonds and the stereospecific configuration of glycerol derivatives were not 

determined in this study. 

The MS/MS and putatively identified lipids were divided into 41 subclasses and 6 main 

categories (Table II-2, p. 48). The lipid subclasses, categories and nomenclature followed the 

classification system proposed by the International Lipid Classification and Nomenclature 

Committee (ILCNC), the LipidMaps database (March / 2020) and the Lipidomics Standard 

Initiative. 16–18,20,76 Internal standard features were found based on retention time and accurate m/z 

values. 

 

8.2.6 Normalization and statistics 

The positively (MS/MS, tiers 1 and 2) or putatively (mass match, tier 3) identified lipids 

(Supp. Table 36) were matched to one of the 14 deuterated internal standards (Table II-1, p. 45), 

according to lipid subclass similarity and retention time range. The non-identified features were 

not used for statistics. Normalized intensities were calculated as the peak intensity of each 

identified lipid divided by the peak intensity of the matched internal standard, which belonged to 

the same or the most similar lipid subclass and eluted within similar retention time ranges. 

Normalized intensities were auto-scaled and normalized for the median intensity value for all 

samples.  

Statistical analysis was performed on MetaboAnalyst 4.0 (https://www.metaboanalyst.ca), 

which limits the number of features to less than 5000.153 Hence, lipids with relative standard 

deviation (RSD) higher than 19% for QCs were excluded before statistical analysis to match the 

feature limit, as they displayed lower reproducibility for extraction and injection replicates of the 
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pooled mixture. Statistical analysis included Volcano plots (fold change – FC versus p for non-

parametric Student’s t-test corrected for false discovery rate –p), Principal Component Analysis 

(PCA), Partial Least Square – Discriminant Analysis (PLS-DA), Random Forest and Receiver 

Operating Characteristic (ROC) curves for biomarker analysis.153 For univariate analysis, lipids 

were considered significantly altered for p <0.05 and FC ≥1.5 or ≤0.67 (non-parametric tests for 

unequal variances). All PLS-DA models were cross-validated and passed permutation tests (1000 

permutations). R2 and Q2 values for cross-validation, as well as p for permutation tests, are 

provided in the caption of each PLS-DA score plot. 

 

8.3 Results 

A total of 6489 and 4575 features were detected in positive and negative ionization modes, 

respectively. Representative chromatograms are shown in Figure VIII-1. 1346 lipid species were 

positively identified by MS/MS, including 879 lipids in tier 1 (precursor m/z error ≤5.0 mDa, 

MS/MS score ≥500 and mSigma ≤150) and 467 lipids in tier 2 (precursor m/z error ≤5.0 mDa, 

MS/MS score between 500 and 100, and mSigma ≤50) (Supp. Table 36). The excellent number of 

MS/MS identifications was a result of the combination of an optimization of the data acquisition 

parameters employed for all sample injections and the data processing routine (data not shown). 

The remaining 9718 unidentified features were searched on the LipidMaps database for putative 

identification (tier 3), and 5600 lipids were identified by accurate mass-match with m/z tolerance 

of 5.0 mDa (Supp. Table 36). The lipid subclasses of the identified compounds are shown in Figure 

VIII-2, whereas abbreviations for lipid classes are defined in Table II-2 (p. 48). Identifications 

included 2160 lipids containing one or more odd-chain fatty acyls (OCFA, 385 identified in tiers 

1 or 2) and 4988 lipids with polyunsaturated fatty acyls (PUFA, 1094 identified in tiers 1 and 2). 
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Figure VIII-1. Representative base peak chromatograms obtained under positive (A, C, E, G and 

I) and negative ionization (B, D, F, H and J) for the evaluation of lipidomics of cystic fibrosis. (A) 

and (B) a randomly chosen control sample; (C) and (D) a randomly chosen CF sample; (E) and 

(F) quality control (QC) injections; (G) and (H) a blank extract, i.e., extraction of water instead of 

the sample; and (I) and (J) the internal standard mixture composed by 14 deuterated lipids (Table 

II-1). Abbreviations to lipid subclasses are defined in Table II-2 (p. 48). 
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Figure VIII-2. Subclass distribution of identified lipids for lipidomics of cystic fibrosis. The 

compounds were divided into (A) identification level (tiers 1, 2 or 3) and (B) detection polarity 

(positive or negative). Abbreviations to lipid subclasses are defined in Table II-2 (p. 48). 
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Thirteen internal standards were identified with a maximum m/z error of 1.4 mDa or 1.7 

ppm. The 6946 identified compounds (Supp. Table 36) were matched to one of the internal 

standards for normalization according to lipid subclass and retention time range. Fifty-four 

MS/MS-identified features (tier 1 or 2) were excluded from the statistical analysis for not being 

identified as lipids (medications, other metabolites and contaminants from sample preparation). 

Thirty internal standard peaks, corresponding to different adducts of the 13 detected internal 

standards (Table II-1, p. 45), were also removed after normalization.  

The QC samples, composed by aliquots of all CF and control samples, were used to gauge 

the reproducibility of extractions and injections. MetaboAnalyst 4.0 limits the number of features 

for statistics at a maximum of 5000; hence, 1963 lipids with relative standard deviation (RSD) 

higher than 19% for QC extraction and injection replicates were excluded before statistical analysis 

due to low reproducibility. The remaining 4931 lipids with RSD ≤19% were employed for 

statistics.153 

 

8.3.1. CF patients versus healthy controls 

The PCA score plots in Figure VIII-3A (with QCs) and Appendix D - Figure D - 1 (without 

QCs) display all the 42 QC and sample experimental replicates tightly clustered, showcasing the 

reproducibility of the employed methods. The CF and control samples were fully separated by 

PCA and PLS-DA (Figure VIII-3A and B). A Random Forest model with 7 predictors and 500 

trees resulted in correct classification of all samples, with out-of-bag (OOB) error of zero. 
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Figure VIII-3. Statistical analysis for cystic fibrosis patients (CF, red) compared to healthy controls 

(green) using (A) PCA, (B) PLS-DA with 8 components (R2 of  0.9986, Q2 of 0.9960 and p <0.001 

for 1000 permutations),  and (C) Volcano plot, where significant lipids displayed fold-change (FC) 

≥1.5 or ≤0.67 and p value adjusted for false-discovery rate (p) <0.05. (D) Subclass distribution of 

all lipids employed for statistics (blue) compared to lipids that were significantly altered when CF 
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patients were compared to healthy controls (orange). Abbreviations to lipid subclasses are defined 

in Table II-2 (p. 48). The PCA score plot without quality control (QC) injections (blue) is available 

in Appendix D - Figure D - 1. 

 

Univariate analysis through a Volcano plot resulted in 2353 significantly altered lipids (p 

<0.05 and FC ≥1.5 or ≤0.67), which corresponds to 47.7% of all lipids employed for statistics 

(Figure VIII-3C and D, Supp. Table 37). The significantly altered lipids included 439 

phosphatidylcholines (PC, 43.8% of all PCs used for statistics), 393 ceramides (Cer, 36.3%), 318 

diacylglycerols (DG, 68.2%), 222 triacylglycerols (TG, 93.7%) and 181 

phosphatidylethanolamines (PE, 46.2%) (Figure VIII-3D). The glycerolipid, sterol and fatty acyl 

metabolisms were deeply affected by CF: 74.9% of the glycerolipids employed for statistics were 

significantly altered (598 significant lipids), followed by 60.5% of the employed sterols (78 

significant lipids) and 57.9% of fatty acyls (234 significant lipids). The boxplots for significantly 

altered lipids with the most intense fold-changes are presented in Appendix D - Figure D - 2 

(identifications in tiers 1 and 2) and Figure D - 3 (identifications in tier 3). 

Overall, 63.1% of the significantly altered lipids resulted in lower normalized intensities 

for the CF patients when compared to healthy controls (FC CF/control ≤0.67, Figure VIII-4). CF 

seems to be particularly related to lower levels of glycerolipids, sterol and fatty acyls in blood 

serum. Most acylceramides (Acer, 63.6% of the significantly altered acylceramides), carnitines 

(Car, 71.9%), N-acyl amines (NAA, 78.1%), monoacylglycerols (MG, 88.0%), diacylglycerols 

(DG, 62.3%), triacylglycerols (TG, 85.1%), sphingoid bases (SPB, 94.7%) and sterols (ST, 84.1%) 

displayed lower normalized intensities for the CF patients. Interestingly, 690 lipids identified with 

one or more odd-chain fatty acyls were also significantly altered, with 69.9% displaying lower 
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normalized intensities for the CF patients. Only hexosylceramides (HexCer), sulfatides (Sulf), 

ceramide phosphoinositols (MIPC) and phosphatidylglycerols (PG) had a majority of significantly 

altered lipids with higher intensity ratios for the CF patients.  

 

 

Figure VIII-4. Significantly altered lipids (fold change, FC ≥1.5 or ≤0.67 and p adjusted for false-

discovery rate, p <0.05) for the comparison between cystic fibrosis patients (CF) and healthy 

controls, divided into FC (CF/control) ≥1.5 (blue) or ≤0.67 (orange). Lipids with FC ≥1.5 (blue) 

displayed higher normalized intensities for the CF patients, while lipids with FC ≤0.67 (orange) 

had lower normalized intensities for CF patients when compared to the healthy controls. 

Abbreviations to lipid subclasses are defined in Table II-2 (p. 48). 
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We selected biomarker candidates using the area-under-the-curve (AUC) of Receiver 

Operating Characteristic (ROC) analysis with sample classification based on Random Forest. The 

sample-set was first divided into a test set, containing 70% of injections (28 CF patients and 14 

healthy controls), and a validation set, with the remaining 30% (12 CF patients and 6 healthy 

controls). The test set was employed for the selection of biomarkers candidates and construction 

of the classification model, whereas the validation test was retained for evaluation of the 

performance of the model. The ROC analysis for the test set resulted in 435 lipids with univariate 

AUC of 1.0, including 93 phosphatidylcholines, 55 N-acyl amines, 48 ceramides, 27 

phosphatidylethanolamines and 27 sterols (Figure D - 4). N-acyl amines, 

lysoglycerophospholipids and sphingoid bases seem to be particularly affected by CF, as more 

than 30% of the lipids employed for ROC analysis resulted in the maximum AUC of 1.0. The 

results indicate that lipid metabolism is highly affected by CF, and a high number of different 

lipids could be potentially employed as biomarkers for CF diagnosis.  

We first selected two lipids with AUC of 1.0 and the highest fold-change values to further 

investigate as unique biomarker candidates, namely: (1) P373.25848/1.86 (positive ionization, m/z 

of 373.25848 and retention time of 1.86 min), putatively identified in tier 3 as the eicosanoid FA 

20:2;O4 (FC CF/control = 1.05×10-3; p = 3.11×10-26), and (2) P385.2584/2.01, putatively 

identified in tier 3 as FA 21:3;O4 or FA 19:0;O4 (FC CF/control = 1.12×10-3; p = 3.11×10-26). The 

extracted ion chromatograms for the selected lipids are shown in Appendix D - Figure D - 5. ROC 

curves were generated for each of them using Random Forest to classify the test samples as control 

or CF. Both candidates resulted in AUC of 1.0 (95% confidence interval – CI between 1.0 and 

1.0), with sensitivities, specificities and overall accuracy of 100% (Figure VIII-5A and B). The 
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validation samples were blindly classified as control or CF using each model, but both candidates 

resulted in perfect specificity, sensitivity and accuracy of 100%.  

 

 

Figure VIII-5. ROC analysis for six distinct lipids selected as potential biomarker candidates for 

cystic fibrosis. (A) FA 20:2;O4 (tier 3); (B) FA 21:3;O4 | FA 19:0;O4 (tier 3); (C) PC 15:1_21:2 
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(tier 1); (D) PC 15:1_21:2 (tier 1); (E) PC 40:5;O | PG O-42:7 | PS O-42:5 | PE 43:5;O | CerP 

48:6;O5 (tier 3); (F) NAT 22:1;O2 | CAR 20:5;O2 | ST 19:1;O;HexNAc (tier 3). Lipids are named 

by the ionization polarity (P for positive or N for negative), mass-to-charge ratio (m/z) and 

retention time (min), as well as putative (tier 3) or MS/MS identification (tiers 1 and 2). 

 

Since the two lipids with the highest FC selected for ROC were only putatively identified 

in tier 3, we also selected the two lipids positively identified by MS/MS in tier 1 with the highest 

FC and AUC of 1.0 for further investigation, namely: (1) P784.58482/8.5, identified as PC 

15:1_21:2 (FC CF/control = 35.4; p = 3.11×10-26), and (2) P784.584841/9.16, identified as PC 

15:1_21:2 (FC CF/control = 29.5; p = 3.11×10-26). Interestingly, both lipids were identified as the 

same species, differing only in the position of fatty acyls or unsaturation, which were not 

determined in this study. It is worth noticing that both lipids contain odd-chain fatty acyl groups. 

The extracted ion chromatograms for the selected lipids are shown in Figure D - 6. Both candidates 

resulted in AUC of 0.996 (95% CI: 0.950-1.00), with sensitivity of 96.4%, specificity of 100% and 

overall accuracy of 98.2% for cross-validation of the test set (Figure VIII-5C and D). The 

validation samples were blindly classified as control or CF using each model. While the first 

candidate (P784.58482/8.5) resulted in sensitivity of 100%, specificity of 95.8% of accuracy of 

97.9% (one misclassified sample), the second (P784.584841/9.16) correctly classified all samples 

in the validation set (sensitivity, specificity and accuracy of 100%). 

Finally, we selected the two lipids with the best classification performance using Random 

Forest, namely: (1) P852.61033/9.81, putatively identified in tier 3 as PC 40:5;O, PG O-42:7, PS 

O-42:5, PE 43:5;O or CerP 48:6;O5 (FC CF/control = 13.7; p = 4.14×10-26), and (2) 

P495.34425/1.25, putatively identified in tier 3 as NAT 22:1;O2, CAR 20:5;O2 or ST 
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19:1;HexNAc (FC CF/control = 0.01; p = 3.11×10-26). The first compound was not matched to the 

MS/MS libraries employed for identification in tiers 1 and 2, but the characteristic fragment of 

phosphatidylcholines (m/z 184.07) was observed in its MS/MS spectra, confirming the lipid 

subclass as PC. The extracted ion chromatograms for the selected lipids are shown in Appendix D 

- Figure D - 7. Both biomarker candidates resulted in AUC of 1.0 (95% CI: 1.0 – 1.0), with 

sensitivities, specificities and accuracies of 100% by cross-validation of the test set (Figure 

VIII-5E and F). The validation samples were blindly classified using each lipid, resulting in 

sensitivities, specificities and accuracies above 91%. Hence, the six distinct biomarker candidates 

resulted in excellent classifications for the test set (cross-validation) and the validation set. 

 

8.3.2. CF genotypic class 

The sample cohort for this study included patients that belonged to the CF genotypic 

classes II (N = 4 patients), III (N = 14 patients), IV (N = 14 patients), V (N = 5 patients) and VI 

(N = 2 patients). The statistical analysis for the genotypic class was performed in two steps. First, 

all classes were evaluated together. Second, we performed binary comparisons between class III 

versus IV; IV versus V; and III versus V. Classes II and VI had a small number of patients (4 and 

2, respectively); therefore, statistical models for binary comparisons may not be representative and 

were not considered. 

First, samples belonging to patients with class II to VI mutations were evaluated together. 

The different classes could not be fully separated by PCA (Figure VIII-6A) due to the complexity 

of the dataset and the simplicity of the statistical model; however, a partial separation can be seen 

between classes IV and V, while class III falls between them. The PLS-DA model for classes II to 

VI resulted in a separation between the more severe classes II and III, and the less severe classes 
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IV, V and VI (Figure VIII-6B). A Random Forest model with 1000 trees and 15 predictors 

correctly classified all samples from classes III and IV, but one patient from class II, one for class 

V and one from class VI were misclassified (OOB error of 6.4%), probably due to the smaller 

number of patients. The non-parametric ANOVA displayed 2820 significant lipids for the five 

genotypic classes (57.2% of all 4931 lipids employed for statistical analysis), with 608 identified 

by MS/MS in tiers 1 and 2 (Supp. Table 38). Sterols, glycerophospholipids and sphingolipids were 

deeply affected by the genotypic class, with more than 56% of the lipids employed for statistics 

displaying p <0.05 (Figure VIII-6C). Similarly to the control/CF Volcano plot analysis, the 

subclasses with the highest number of significantly altered lipids included phosphatidylcholines 

(PC, 593 significant lipids, corresponding to 59.1% of the PCs employed for statistics), ceramides 

(592 significant, 21.0%), diacylglycerols (DG, 254 significant, 54.5%) and 

phosphatidylethanolamines (PE, 218 significant, 55.6%) (Figure VIII-6C). It is also worth noticing 

that all the 68 phosphatidic acids (PA) employed for statistical analysis displayed p <0.05 for 

ANOVA, as well as more than half of the oxidized lipids (58.0%) and species containing 

polyunsaturated (PUFA, 58.0%) and odd-chain fatty acyls (57.2%). 
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Figure VIII-6. Statistical analysis for all CF genotypic classes (II to VI). (A) PCA score plot; (B) 

PLS-DA score plot with 8 components (R2 of 0.9936, Q2 of 0.8817 and p <0.001 for 1000 

permutations); (C) Subclass distribution of all lipids employed for statistics (blue) compared to 

lipids that were significantly altered (p <0.05) when the different CF genotypic classes were 

compared by non-parametric ANOVA (orange). Abbreviations to lipid subclasses are defined in 

Table II-2 (p. 48). 

 

Second, we performed binary comparisons for the genotypic classes III, IV and V. Class 

III is characterized by dysregulated or inactivated CFTR protein (loss of function), while class IV 
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is related to abnormal conductance of the ion channel and class V, reduced synthesis of CFTR 

protein. Overall, we observed partial PCA separations (Figure VIII-7A, B and C), while PLS-DA 

models resulted in better separations (Figure VIII-7D, E and F). Random Forest models for III 

versus IV and IV versus V had OOB errors of 0.0% and 2.6%, respectively, but class III versus V 

had a higher error of 5.3%. The Volcano plot comparisons for classes III versus IV (603 

significantly altered lipids, corresponding to 12.2% of all lipids employed for statistical analysis, 

Supp. Table 39) and IV versus V (696 significantly altered lipids, 18.8%, Supp. Table 40) resulted 

in high numbers of significantly altered lipids, but classes III versus V significantly affected only 

130 lipids (3.5% of all lipids employed for statistical analysis, Supp. Table 41) (Figure VIII-7G, 

H and I). The smaller differences for classes III and V can be related to the characteristic loss of 

function or reduced synthesis of CFTR, while class IV displays normal CFTR protein, but 

abnormal ion conductance through the channel. 
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Figure VIII-7. Statistical analysis for binary comparisons between CF genotypic classes III, IV 

and V. (A) PCA score plot for classes III and IV; (B) PCA score plot for classes IV and V; (C) 
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PCA score plot for classes III and V; (D) PLS-DA score plot for classes III and IV with 3 

components (R2 of  0.8988, Q2 of 0.7261 and p <0.001 for 1000 permutations); (E) PLS-DA score 

plot for classes IV and V with 3 components (R2 of  0.9417, Q2 of 0.8040 and p <0.001 for 1000 

permutations); (F) PLS-DA score plot for classes III and V with 2 components (R2 of  0.8820, Q2 

of 0.6749 and p=0.001 for 1000 permutations); (G) lipid subclass distribution of significantly 

altered lipids in the Volcano plot analysis for the comparison between classes III and IV; (H) lipid 

subclass distribution of significantly altered lipids in the Volcano plot analysis for the comparison 

between classes IV and V; (I) lipid subclass distribution of significantly altered lipids in the 

Volcano plot analysis for the comparison between classes III and V. Abbreviations to lipid 

subclasses are defined in Table II-2 (p. 48). 

 

The abnormal conductance of CFTR in class IV seems to be related to dyslipidemia of 

complex glycerolipids. We observed lower normalized intensities for diacylglycerols (DG) and 

triacylglycerols (TG) in class IV, but increased intensities for monoacylglycerols (MG), indicating 

either an increased breakdown of more complex glycerolipids for class IV or reduction for classes 

III and V. Furthermore, class IV seems to be closely related to higher normalized intensities of 

phosphatidic acids (PA) and fatty acyls (FA). All the 68 detected phosphatidic acids were 

significantly increased for class IV compared to both classes III and IV, but not altered for the 

direct comparison between classes III and V. Similarly, 47 out of 50 significantly altered fatty 

acyls were increased for class IV compared to III and V. 

Class III and IV were further investigated by ROC analysis. Samples were randomly 

divided into a test set (10 class III and 10 class IV samples) and a validation set (4 class III and 4 

class IV samples). The test set was employed for the selection of biomarker candidates and 
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building the Random Forest classification model, while the validation set was used to verify the 

model performance with independent samples. 889 lipids resulted in univariate AUC higher than 

0.750, including 211 ceramides (74.9% of the ceramides employed for statistics), 165 

phosphatidylcholines (28.5%), 73 diacylglycerols (15.9%) and 64 glycerophosphates (80.0%). The 

significantly altered lipids were ranked according to their distinct AUC values and importance for 

Random Forest classification of the test set. A combination of four lipids was selected for a 

biomarker panel, namely P635.52219/10.62 (identified in tier 3 as HexCer 28:0;O2, TG O-34:0;O, 

TG 36:2 or TG O-36:3;O), N453.39492/8.94 (identified in tier 3 as FA 28:1;O2 or FA 27:1), 

N761.54461/9.18 (identified in tier 3 as SM 34:2;O3 or SM 36:2;O5, with the lipid subclass 

confirmed as SM by the characteristic neutral loss of 60.02 Da and the fragment with m/z 168.04), 

and P843.69493/13.26 (identified in tier 3 as PE-Cer 46:2;O3, CerP 48:3;O3, PC O-40:3, SM 

43:2;O3 or PE O-43:3). The 4-lipid biomarker panel generated an ROC curve with AUC of 0.987 

(95% CI of 0.908-1.00), with sensitivity of 90.0%, specificity of 95.0% and overall accuracy of 

90.1% (100 cross-validations) (Figure VIII-8). The 4-lipid biomarker panel was validated with the 

independent validation set, resulting in excellent sensitivity, specificity and accuracy of 100.0%. 
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Figure VIII-8. ROC analysis for CF genotypic classes III and IV using a 4-lipid biomarker panel. 

The boxplots for the biomarker candidates are also shown. Lipids are named by the ionization 

polarity (P for positive and N for negative), m/z and retention time (min). 

 

8.3.3.  Lung function (FEV1, FVC and FEV1%) 

The lung function of CF patients can be evaluated through FEV1, the volume of breath 

forcefully exhaled within 1 second, and FVC, the full amount of air that can be forcefully exhaled 

in a full breath. The FEV1% or FEV1/FVC ratio, also known as the Tiffeneau-Pinelli index, is 

often used to diagnose and assess obstructive lung diseases. Decreased FVC values with normal 

FEV1% is usually an indication of restrictive lung conditions, e.g., idiopathic pulmonary fibrosis, 

pneumonia or pleural effusion; however, reduced FEV1 and FEV1% values are consistent with 
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obstructive conditions, e.g. asthma, emphysema or bronchiolitis. Normal values for the FEV1% 

ratio depend on age, sex, height and ethnicity, but are approximately 70-75% or higher. Following 

spirometry tests, patients were separated into subgroups above and below the median of 72.5% for 

FEV1%. We performed statistical analysis to compare the two median-split subgroups, looking 

for alterations in the lipid profile that may be related to loss of lung function in CF patients. The 

PCA score plots displayed poor separation (Figure VIII-9A), but PLS-DA (Figure VIII-9B) and 

Random Forest models (OOB error of 1.4%) resulted in good classification performances, 

indicating differences in the lipid profile that can be related to loss of lung function. 
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Figure VIII-9. Statistical analysis for patients above (red) and below (green) the median value of 

FEV1% (A, B) and predicted FEV1% (C, D and E). (A) PCA score plot for FEV1%; (B) PLS-DA 
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score plot for FEV1% (R2 of  0.9586, Q2 of 0.8126 and p=0.04 for 1000 permutations); (C) PCA 

score plot for predicted FEV1%; (D) PLS-DA score plot for predicted FEV1% (R2 of  0.9670, Q2 

of 0.8371 and p=0.04 for 1000 permutations); (E) Lipid subclass distribution for significantly 

altered lipids for the Volcano plot comparison between CF patients with predicted FEV1% values 

above and below the median of 47.5%, divided into fold-change (FC) ≤0.67 (orange) or ≥1.5 (p 

adjusted for false-discovery rate <0.05). Lipids with FC ≤0.67 (orange) displayed higher 

normalized intensities for the patients with reduced lung function, whereas lipids with FC ≥1.5 

(blue) had lower normalized intensities. Abbreviations to lipid subclasses are defined in Table II-2 

(p. 48). 

 

The predicted FEV1% is defined as the percentage difference between the FEV1% of each 

patient and the average FEV1% of a population with similar age, sex, height, weight and ethnicity. 

The European Respiratory Society defines the predicted FEV1% as the main criteria to diagnose 

chronic obstructive pulmonary disease (COPD, <88% for men or <89% for women). The Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) sets a limit of predicted FEV1% higher 

than 80% to diagnose mild COPD, whereas values between 50 and 80% are moderate, 30 to 50% 

are severe and less than 30% are considered very severe. 303 To evaluate lipidome alterations 

related to the predicted FEV1%, we separated the patients into subgroups above and below the 

median of 47.5%. Similarly to the observations found for FEV1%, the PCA score plots displayed 

poor separation (Figure VIII-9C) due to the simplicity of the model combined to the high 

complexity of the dataset, but PLS-DA (Figure VIII-9D) and Random Forest models (OOB error 

of 2.8%) resulted in good classification performances. However, only 77 lipids were significantly 

affected for the median-split predicted FEV1% (1.6%) (Figure VIII-9E, Supp. Table 42). The most 
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affected lipid subclasses included glycerophospholipids (44 significantly altered, with 88.6% 

displaying higher normalized intensities for patients below the median value, i.e., reduced lung 

function) and sphingolipids (14 significantly altered, with 78.6% displaying lower normalized 

intensities for patients below the median). Interestingly, all the significantly altered glycerolipids 

(12 lipids) had lower normalized intensities for the patients with reduced lung function. 

We divided the sample set into a test set (13 above the median and 13 below the median 

patients for FEV1%) and a validation set (5 above the median and 5 below the median samples) 

for biomarker analysis. The test set was used to select biomarker candidates and build the Random 

Forest classification model, while the validation set was employed for the independent evaluation 

of the model performance. The ROC analysis for the median-split groups of predicted FEV1% in 

the test set resulted in 103 lipids with univariate AUC ≥0.750, including 22 ceramides, 31 

phosphatidylcholines and 11 phosphatidylethanolamines. These observations emphasize the effect 

of reduced lung function upon the ceramide and glycerophospholipid metabolism. The highest 

univariate AUC was achieved for PE O-18:2_22:0 (positively identified in tier 2); however, the 

lipid was not significantly altered in the Volcano plot (FC above/ below the median of 1.43, p = 

0.001). A panel composed of five lipids was selected amongst the significantly altered lipids based 

on the highest univariate AUC values and importance for classification of the test set as above or 

below the median by Random Forest (Figure VIII-10). The panel was composed by 

N369.17414/1.08 (identified in tier 3 as the sterol sulfate ST 19:1;O2;S), P852.60997/9.04 

(identified in tier 3 as PC 40:5;O, with lipid subclass confirmed by the characteristic fragment with 

m/z 184.07), P779.60475/10.69 (identified in tier 3 as SM 40:5;O2, PE-Cer 43:5;O2, CerP 

45:6;O2, PE-Cer 41:2;O2 or SM 38:2;O2), P796.54881/6.52 (identified in tier 3 as PC 36:5;O or 

PC 34:2;O, with lipid subclass confirmed as PC by the characteristic fragment at m/z 184.07 and 
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neutral loss of choline), and N731.53423/9.72 (identified in tier 3 as the SM 33:2;O2 or SM 

35:2;O4, with the lipid subclass confirmed by the characteristic neutral loss of 60.01 and the 

fragment with m/z 168.04). The 5-lipid biomarker panel resulted in a multivariate AUC of 0.932 

(95% CI of 0.815 – 1.000) for the test set, with an overall accuracy of 83.7% (cross-validation), 

sensitivity of 80.8% and specificity 88.5%. The validation set resulted in sensitivity, specificity 

and accuracy of 90.0%. Even though the ROC validation results are inferior to the observed values 

for the control/CF diagnosis, the selected biomarker panel emphasizes the extensive effect of lung 

function decay on the lipidome. 

 

 

Figure VIII-10. ROC analysis for CF patients with predicted FEV1% values above and below the 

median of 47.5% using the proposed 5-lipid biomarker panel. Boxplots for the biomarker 
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candidates are also shown. Lipids are named by the ionization polarity (P for positive and N for 

negative), m/z and retention time (min). 

 

8.3.4.  Evaluation of age and sex as possible confounders 

We evaluated sex and age for potential confounding effects upon the observed results. The 

CF patients were first divided at the median value for age (20 years old). Only 27 lipids were 

significantly altered in a Volcano plot analysis between the patients above and below the median 

age, including 10 ceramides, and 6 diacylglycerols (Supp. Table 43). Amongst the 27 significant 

lipids, 25 were also significantly altered for the comparison between CF patients and healthy 

controls. For sex, 90 lipids were significantly altered for males and females CF patients, including 

29 triacylglycerols, 21 diacylglycerols and 11 phosphatidylcholines (Supp. Table 44). The lipids 

that were significantly altered for age and sex were not considered as potential biomarkers due to 

the possibility of influence of the confounders upon the observed results.  

 

8.4 Discussion 

We have performed untargeted, comprehensive lipidomics of blood serum to explore the 

potential of lipidomics for studying the pathogenesis of cystic fibrosis (CF). First, we compared 

the lipid profile of CF patients with healthy controls to evaluate the changes caused by the disease, 

regardless of the mutation type. There was a dramatic change in the serum lipidome of CF patients 

characterized by dyslipidemia for most lipid subclasses. We selected six potential independent 

biomarkers that were able to classify samples as CF or control with high sensitivity, specificity 

and accuracy. Second, we employed the same techniques to compare CF patients with different 

genotypic classes (II to VI). We observed a correlation between class IV and increased intensities 
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of phosphatidic acids and fatty acyl lipids. Classes III and IV were selected for biomarker analysis, 

and a panel of four lipids, including two putatively identified ceramides, one sphingomyelin and 

one fatty acid, correctly classified all samples retained for the validation set. Third, we have 

explored the correlation between the lipidome and lung function in terms of predicted FEV1%. A 

5-lipid biomarker panel was correlated with reduced lung function with an accuracy of 90% for 

the validation set.  

Our approach included novel aspects when compared to previous studies. Untargeted, 

comprehensive lipidomics of CF has been rarely described in the literature. Traditional lipidomics 

usually focuses on one or a few selected lipid classes to reduce the high complexity of the lipidome 

for biological samples. However, the LC-MS methodology employed for this study allowed 

untargeted, comprehensive lipidomics with high sensitivity for the detection of more than seven 

thousand lipids belonging to 39 different lipid subclasses using less than 20 µL of blood serum. 

Also, fully untargeted lipidomics approaches based on LC-QToF-MS usually lack on the 

identification of lipids; however, our optimized techniques identified 1348 lipids by MS/MS 

spectral match. When allied to the data processing routine, the method provided reliable results for 

the statistical analysis of CF lipidome. We were able to pinpoint extensive alterations caused by 

the disease, as well as select potential biomarkers that may be used for future studies.  

The dyslipidemia observed for most lipid subclasses when CF patients were compared to 

healthy controls is a known effect of this condition. 304 We observed significantly lower levels of 

serum cholesterol in CF patients (FC CF/control of 0.53), which is corroborated by the poor 

nutrient absorption that is characteristic of the pathology, as well as higher intracellular cholesterol 

levels.299,305,306 However, we also noticed higher levels of 7-ketocholesterol (FC CF/control of 

1.95), possibly indicating higher rates of oxidation. Other studies have also reported indications of 
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increased oxidative stress in CF patients. 307,308 The higher oxidation rate noticed herein is also 

indicated by the lipid that displayed the highest fold-change between CF patients and healthy 

controls, identified in tier 3 as FA 20:2;O4 (FC CF/control of 1.0×10-3; putatively identified as 

prostaglandin 13,14-dihydro-19R-hydroxyPGE1, 19R-hydroxy-PGF1α or TXB1), which is 

related to inflammation and tissue damage. 26,41,309 

The comparison between CF patients and healthy controls also showcased the importance 

of odd-chain fatty acids (OCFA), rarely investigated in human samples. The four positively 

identified lipids (tiers 1 and 2) with the highest significant fold-changes for the CF/control 

comparison contained at least one OCFA moiety: PC 15:1_21:2, PC 19:2_19:2, PS 22:0_17:2 and 

DGT 25:0_24:4. In fact, we found 139 significantly altered OCFA lipids that were identified by 

MS/MS in tiers 1 and 2. This represents the first report of elevated levels of OCFA in the blood 

serum of CF patients. Lipids with OCFA were also affected for different genotypic mutation 

classes, indicating that the alterations are present even for patients on controlled diets. While only 

45 OCFA lipids were altered for the comparison between classes III and V, over 170 were affected 

for class III versus IV and IV versus V. Such molecules are more commonly found in ruminant fat 

and milk, as well as in some plants and bacteria metabolism. The majority of fatty acid studies in 

human samples focus on the more concentrated even-chain fatty acids; hence, many researchers 

have used saturated OCFA lipids as low-cost internal standards for GC and LC-MS analysis. 

Unfortunately, the procedure prevented their incorporation into statistical analysis, limiting our 

current understanding of OCFA metabolism and its relationship with human diseases.298,310 

Although OCFAs have small concentrations in human fluids and tissues, they can be detected by 

high sensitivity methods, such as the one adopted for this work. Large-scale epidemiological 

studies have shown that plasma OCFA levels may be associated with type 2 diabetes and coronary 
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heart disease; now, our results indicate that OCFA-containing lipids may also play an important 

role for CF. 311–313  

Previous studies have shown that lipids containing C15:0 fatty acyls may be correlated 

with diet, but the same relationship was not observed for C17:0 fatty acids, indicating that non-

dietary OCFA lipids can be biologically synthesized or modified in animals.314 The source of 

distinct OCFAs with variable carbon lengths seems to be related to different processes, including 

diet and biosynthesis. There has been some evidence that OCFAs may be generated by human 

metabolism through biosynthesis via propionyl-CoA and α-oxidation of even-chain fatty acids, 

which can be affected by metabolic and genetic pathologies. 310,314 The biosynthesis of C17 fatty 

acyls is substantially affected by 2-hydroxyphytanoyl-CoA lyase (Hacl1), an enzyme involved in 

the α-oxidation of even-chain fatty acids through the cleavage of a carbon-carbon bond, generating 

an OCFA.314 However, OCFAs can also be synthesized by the conversion of propionate into 

propionyl-CoA, which in turn is condensed with malonyl-CoA, resulting in 3-oxovaleryl-ACP. 

The compound is then elongated by several consecutive additions of two carbons though the action 

of fatty acid synthases. The resulting product is an OCFA, which can be esterified to generate 

different lipids. Furthermore, the oxidation of plasmalogens can produce odd-chain fatty 

aldehydes, which may be further incorporated into other lipid classes. Alternatively, the 

degradation of OCFA though β-oxidation yields propionyl-CoA, which is converted into 

methylmalonyl-CoA by the action of propionyl-CoA carboxylase. The product is further converted 

into succinyl-CoA for entry into the citric acid cycle, finalizing the degradation pathway of OCFA, 

which results in ATP production. Propionyl-CoA is also obtained by the β-oxidation of amino 

acids and cholesterol.  
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It is yet unclear if the increased levels of OCFAs observed for CF patients in this work are 

related to increased synthesis via propionyl-CoA, higher rates of α-oxidation or reduced rate of β-

oxidation. We observed decreased levels of most MS/MS-identified plasmalogens, indicating 

higher rates of oxidative processes, including α and β-oxidation of lipids. We have also previously 

discussed the indications of oxidative stress for cholesterol, resulting in increased production of 

propionyl-CoA as a degradation product, which could be related to the observed higher rates of 

OCFA biosynthesis. Further studies are required to confirm the hypotheses. Nevertheless, higher 

levels of OCFAs have also been reported for patients with propionic acidemia, a genetic condition 

characterized by mutations in the propionyl-CoA carboxylase subunit alpha (PCCA) and 

propionyl-CoA carboxylase subunit beta (PCCB) genes, causing absence or dysfunction of 

propionyl-CoA carboxylase and accumulation of propionyl-CoA in the organism.315 The 

accumulation can cause impairment, mental disability, lethargy and other issues due to an 

abnormal buildup of organic acids. Higher levels of propionyl-CoA may induce higher rates of 

OCFA biosynthesis, as well as inhibition of OCFA degradation, which could cause the previously 

reported higher levels of OCFA for propionic acidemia patients. Similar alterations could explain 

the observed increased levels of OCFA for CF patients.315 

Amongst the most significantly altered lipids for the comparison between CF patients and 

healthy controls, we also found many elevated PUFA oxylipins, such as PI 18:0_20:4-12-HETE 

(FC CF/control of 17.2), PE O-18:1_20:4-12-HETE (FC CF/control of 13.4) and PE 16:0_20:4-8-

HETE (FC CF/control of 12.6). The hydroxy-eicosatetraenoic acids 12-HETE and 8-HETE are 

majorly produced by the lipoxygenase pathway, closely related to the cyclooxygenase (COX) 

pathway, which catalyzes the conversion of arachidonic acid into prostaglandins and 

thromboxanes. 308 Such oxylipins are key inflammatory mediators derived from arachidonic acid, 
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which also displayed higher normalized intensities for CF patients (FA 20:4, identified in tier 1 

with FC CF/control of 1.30 and p of 1.9×10-4). Although we noticed elevated levels of important 

lipids related to oxidation and inflammation, most lipid subclasses were significantly decreased 

for CF patients, including total N-acyl amines, fatty acids and steroid sulfates. Most steroid sulfates 

are precursors for active hormones, but some may act as neurosteroids and ion channels 

modulators, including γ-aminobutyric acid (GABAA) and N-methyl-D-aspartate (NMDA) 

receptors. Steroids are sulfated to promote circulation, but sulfatases can hydrolyze the sulfate 

esters inside cells to allow the activation of steroid function.316 

Phosphatidic acids (PA) were particularly affected by different CF genotypic classes. All 

the 68 detected PAs were significantly elevated for class IV when compared to classes III (FC 

III/IV between 0.20 and 0.61) and V (FC IV/V between 2.2 and 6.1). However, whether that 

observation was caused by the upregulation of PAs for class IV or downregulation in classes III 

and V remains to be determined. Only 12 PAs were significantly altered when all CF patients were 

compared to healthy controls, including 10 with significantly lower normalized intensities for CF 

patients, which emphasizes the effect of different genotypic classes upon PA metabolism. PAs act 

as precursors for the biosynthesis of glycerolipids and other glycerophospholipids, cell signaling 

and activation of lipid-gated ion channels. Even though PAs are essential for lipid metabolism and 

survival, their concentrations are usually low, as the molecules are rapidly converted into 

diacylglycerols and other lipids. We observed higher levels of all the detected PAs for class IV 

compared to III, but lower levels of 77.3% of the significantly altered diacylglycerols and 86.0% 

of triacylglycerols, indicating alterations in the activity of phosphatidic acid phosphatases. A 

similar trend was seen for class IV compared to V. CFTR channel gating is mostly regulated by 

protein kinase A phosphorylation, conformational changes and protein trafficking from the 
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endoplasmic reticulum to the Golgi apparatus and the cell membrane.317 Protein kinases and 

phosphatases are potential regulators of CFTR channel activation. There is also some evidence of 

the regulatory function of PAs in CFTR transport between the endoplasmic reticulum and the 

Golgi apparatus. Hashimoto et al. have shown that the concentrations of PA must be regulated by 

phospholipase D to ensure post-Golgi transport of the CFTR protein. 318 However, the genotypic 

mutation classes III, IV and V are usually characterized by normal CFTR transport, but abnormal 

channel functioning (III), abnormal conductance (IV), or insufficient amounts (V). We found 

evidence that CF genotypic mutations have different effects upon PA levels. The elevated levels 

of PA and reduced levels of diacylglycerols for class IV may be related to a reduced activity of 

phosphatases, which would potentially affect concentrations of both lipid classes, as well as CFTR 

channel gating. 

The 5-lipid biomarker panel selected for lung function (predicted FEV1%) included two 

phosphatidylcholines (PC 40:5;O and PC 36:5;O or 34:2;O), two sphingomyelins (SM 33:2;O2 or 

35:2;O4 and SM 40:5;O2 or 38:2;O2) and one steroid sulfate (ST 19:1;O2, putatively identified as 

5a-dihydrotestosterone sulfate, 5α-androstane-3α-ol-17-one sulfate or etiocholanolone sulfate). 

Although all five lipids were putatively identified in tier 3 by accurate mass-match, the lipid 

subclasses of three of them (both phosphatidylcholines and one sphingomyelin) were confirmed 

by characteristic MS/MS fragmentation and neutral losses. Interestingly, all 5 molecules were 

putatively identified as oxidized lipids, correlating to our findings for plasmalogens, cholesterol 

and oxylipins. CF has been previously related to elevated markers of oxidative stress.319 

Chronically elevated oxidation can perturb homeostasis through alterations of signaling molecules 

and biological pathways, such as glutathione, cysteine, oxidized nicotinamide adenine 

dinucleotide phosphate (NADP+), prostaglandins and nitrotyrosine. 307,319,320 Hydrolysis products 
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of phosphatidylcholines have been previously related to lung surfactant dysfunction. 305 The 5-

lipid biomarker panel selected for predicted FEV1% emphasizes the importance of redox 

regulation in lung function. 

Ex vivo lipid oxidation is often cited as a limitation of untargeted lipidomics studies. 

However, the sample storage and preparation employed in this worked aimed to minimize 

oxidative processes by protecting the samples from light, atmospheric air and heat. We opted for 

not employing anti-oxidants as the molecules are known to have little, unreliable effect upon 

different lipid classes, along with the risk of a pro-oxidative action for selected species and 

concentrations.321,322 Nevertheless, we were able to detected and identify more than 280 

plasmalogens, a lipid class that is known to undergo quick oxidation due to the highly susceptible 

vinyl-ether bonds, indicating that oxidative processes were controlled during sample handling. We 

recognize that this work is limited by the small number of individuals and the presence of potential 

confounders, e.g., medication and treatments. It is also worth noticing that the diet of patients and 

healthy control subjects was not controlled, which may affect serum lipidome. However, the 

results described herein confirm the potential of high-quality untargeted lipidomics studies for 

pathogenesis analyses and biomarker discovery.  

 

8.5 Conclusions 

We have applied comprehensive, untargeted LC-MS lipidomics to investigate CF-related 

alterations upon the lipidome metabolism in human patients. The results described in this work 

indicate that CF is deeply related to alterations in lipid pathways, particularly for odd-chain and 

polyunsaturated fatty acyls and phosphatidic acids. The proposed biomarkers may be used for 

reliable screening of cystic fibrosis, as well as for studying the affected biological pathways and 
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the efficacy of new drugs and treatments. Furthermore, we have achieved a novel perspective for 

CF and found new clues for further research, where the role of lipids may be of vital importance. 
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IX  

Chapter IX: Conclusions 

Lipidomics, along with other omic sciences, represent a huge step for biomedical research. 

The detailed description of physiological and pathological processes should significantly improve 

our understanding of biological and disease-associated mechanisms, facilitating biomarker 

discovery and the development of new therapies. The importance of lipids to metabolism is 

undeniable. The hydrophobic molecules are involved in virtually all processes in our body but 

impose a challenge for analytical approaches. Lipidomics is a highly complex field of research 

that demands interdisciplinary knowledge and experience.  

This work showcased the potential of lipidomics to study human diseases and physiological 

processes with LC-MS. Although the analytical aspect was the main goal, each chapter described 

different lipid pathways and mechanisms that may be related to specific pathologies or treatments. 

Furthermore, excellent results were achieved with small volumes of precious, invasive biological 

samples. The integration of lipidomics and metabolomics data was successfully achieved in 

Chapter V and will be further employed in related studies in the near future. 

From extremely low volumes of samples on chapters III, IV and V to the MS/MS 

identification of more than one thousand lipids in Chapter VIII, the analytical and biochemical 

possibilities of lipidomics are endless. There is still much room for improvements in the lipidomics 

field. Although this work presented reliable analytical results, the detection of thousands of 

features is meaningless without accurate identifications. The standardization of nomenclature 

employed by different databases and confirmation of identification is a manual, laborious work 

that still requires a lot of human intellect rather than automatized software. Chapter VIII showed 

that a carefully optimized LC-MS/MS method can result in the identification of over one thousand 
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lipids in blood serum, but there is still an under-explored potential that requires the expansion and 

standardization of lipid databases. Furthermore, the standardization of data analysis and reporting, 

as well as minimal requirements for quality control and normalization, are urgently needed. 

Scientific research has been discredited by a considerable portion of the population in the last few 

years; hence, it is vital to ensure that accurate and reliable results are communicated not only to 

our peers, but also to the population in an appropriate, simple manner.  

In summary, the full potential of lipidomics and omic sciences has not yet been achieved, 

but each step takes us closer to understanding the role of lipids in our organism. This work 

described major advances in lipidomics of biological fluids and can aid to future developments 

and breakthroughs in this complex but highly attractive area. 
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Figure A - 1. Base peak chromatograms (BPC) obtained for the initial optimization of the trapping 

flowrate using a serum sample from a pig. The parameters chosen as optimized are displayed in 

green. Average RSD: average relative standard deviation of peak intensities for injection replicates 

for all detected features, taken a measure of reproducibility. Initial nanoLC method: MPA – 20 

mM NH4COOH, 5 mM formic acid in 45:45:10 methanol/ acetonitrile/ water; MPB - 20 mM 

NH4COOH, 5 mM formic acid in 2-propanol; trapping for 1 min at 7 µL/min (95% MPA); 300 

nL/min; 45ºC, 38 min gradient (0 min – 5% MPB, 2 min – 5% MPB, 12 min – 30% MPB, 24 min 

– 90% MPB, 28 min – 1% MPB, 38 min – 1% MPB); 20 min equilibrium (95% MPA); 2 µL 

injection. Initial MS conditions: electrospray ion source capillary voltage of 1300 V, dry gas flow 

rate of 3 L/min, source temperature of 200ºC, spectra acquisition rate of 2 Hz and nanoBooster 

acetonitrile-enriched nitrogen gas pressure of 0.10 bar. The initial sample preparation method is 

described in the Experimental Section. 
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Figure A - 2. BPC obtained for the initial optimization of trapping time using a serum sample from 

a pig. The nanoLC and MS methods are described in Figure A - 1. The initial sample preparation 

method is described in the Experimental Section. 
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Figure A - 3. BPC obtained for the initial optimization of trapping mobile phase composition using 

a serum sample from a pig. The nanoLC and MS methods are described in Figure A - 1. The initial 

sample preparation method is described in the Experimental Section. 
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Figure A - 4. Initial optimization of the analytical flowrate. NanoLC method: trapping for 1.50 

min at 7 µL/min (95% MPA); MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ 

water; MPB – 10 mM NH4COOH in 95:5 2-propanol/ water; 45ºC, 38 min gradient (0 min – 5% 

MPB, 2 min – 5% MPB, 12 min – 30% MPB, 24 min – 90% MPB, 28 min – 1% MPB, 38 min – 

1% MPB); 20 min equilibrium run (95% MPA); 2 µL injection. MS conditions are identical to 

Figure A - 1. 
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Figure A - 5. Evaluation of the nanoLC gradient (1 to 11) for the first phase of optimization. 

Gradient 11 was selected as the best option. NanoLC method: trapping for 1.50 min at 7 µL/min 

(95% MPA); MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water (v/v/v/); MPB 

– 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 400 nL/min; 45ºC; 20 min equilibrium (95% 

MPA); 2 µL injection. MS conditions are identical to Figure A - 1. 
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Figure A - 6. Evaluation of the nanoLC gradient (11 to 20) for the first phase of optimization. 

Gradient 11 was selected as the best option. The nanoLC method is described in Figure A - 7. MS 

conditions are identical to Figure A - 1. 
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Figure A - 7. Evaluation of the nanoLC gradient (21 to 26) for the first phase of optimization. 

Gradient 24 was selected as the best option. The nanoLC method is described in Figure A - 5. MS 

conditions are identical to Figure A - 1. 
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Figure A - 8. Re-evaluation of the flowrate for the optimized gradient (gradient 24, Figure A - 7). 

NanoLC method: trapping for 1.50 min at 7 µL/min (95% MPA); MPA – 10 mM NH4COOH in 

50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ 

water (v/v); 45ºC; 50 min gradient (0 min – 30% MPB, 10 min – 40% MPB, 20 min – 90% MPB, 

30 min – 90% MPB, 31 min – 30% MPB, 50 min – 30% MPB), 20 min equilibrium (95% MPA); 

2 µL injection. MS conditions are identical to Figure A - 1. 

  



Appendix A 

419 

 

 

Figure A - 9. Optimization of the column temperature. NanoLC method: trapping for 1.50 min at 

7 µL/min (95% MPA); MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water 

(v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 400 nL/min; 50 min gradient 

(0 min – 30% MPB, 10 min – 40% MPB, 20 min – 90% MPB, 30 min – 90% MPB, 31 min – 30% 

MPB, 50 min – 30% MPB), 20 min equilibrium (95% MPA); 2 µL injection. MS conditions are 

identical to Figure A - 1.  



Appendix A 

420 

 

 

 Figure A - 10. Optimization of the trapping mobile phase composition. NanoLC method: MPA – 

10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH 

in 95:5 2-propanol/ water (v/v); 45ºC, 300 nL/min; 50 min gradient (0 min – 30% MPB, 10 min – 

40% MPB, 20 min – 90% MPB, 30 min – 90% MPB, 31 min – 30% MPB, 50 min – 30% MPB), 

20 min equilibrium (95% MPA); 2 µL injection. MS conditions are identical to Figure A - 1. 
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Figure A - 11. Optimization of the trapping flowrate. The nanoLC method is described in  Figure 

A - 10. MS conditions are identical to Figure A - 1. 

  



Appendix A 

422 

 

 

Figure A - 12. Optimization of the trapping time. The nanoLC method is described in  Figure A - 

10. MS conditions are identical to Figure A - 1. 
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Figure A - 13. Optimization of MS capillary voltage. Total intensity: summed intensity of all 

detected features for each injection. NanoLC method: trapping for 1.5 min at 7 µL/min (100% 

MPA), MPA – 10 mM NH4COOH in 50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB – 10 

mM NH4COOH in 95:5 2-propanol/ water (v/v); 45ºC, 300 nL/min; 50 min gradient (0 min – 30% 

MPB, 10 min – 40% MPB, 20 min – 90% MPB, 30 min – 90% MPB, 31 min – 30% MPB, 50 min 

– 30% MPB), 20 min equilibrium (95% MPA); 2 µL injection. MS conditions: dry gas flowrate of 

3 L/min, source temperature of 200ºC, spectra acquisition rate of 2 Hz and nanoBooster 

acetonitrile-enriched nitrogen gas pressure of 0.10 bar. 
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Figure A - 14. Optimization of nanoBooster acetonitrile-enriched nitrogen gas pressure. Although 

0.30 bar provided more detected features, the consumption of acetonitrile to enrich the 

nanoBooster nitrogen gas was unreasonable (over 1 L for each day of analysis). NanoLC method: 

identical to Figure A - 13. MS conditions: electrospray ion source capillary voltage of 1300 V, dry 

gas flow rate of 3 L/min, source temperature of 200ºC and spectra acquisition rate of 2 Hz. 
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Figure A - 15. Optimization of ion source dry nitrogen gas flowrate. NanoLC method: identical to 

Figure A - 13. MS conditions: electrospray ion source capillary voltage of 1300 V, nanoBooster 

acetonitrile-enriched nitrogen gas pressure of 0.10 bar, source temperature of 200ºC and spectra 

acquisition rate of 2 Hz. 
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Figure A - 16. Optimization of ion source temperature. NanoLC method: identical to Figure A - 

13. MS conditions: electrospray ion source capillary voltage of 1300 V, nanoBooster acetonitrile-

enriched nitrogen gas pressure of 0.10 bar, dry nitrogen gas flow rate of 3 L/min and spectra 

acquisition rate of 2 Hz. 
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Figure A - 17. Optimization of the spectra acquisition rate. NanoLC method: identical to Figure A 

- 13. MS conditions: electrospray ion source capillary voltage of 1300 V, nanoBooster acetonitrile-

enriched nitrogen gas pressure of 0.10 bar, dry nitrogen gas flow rate of 3 L/min and ion source 

temperature of 200ºC. 
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Figure A - 18. Initial versus optimized mass spectrometry methods. NanoLC method: identical to 

Figure A - 13. Initial MS conditions: electrospray ion source capillary voltage of 1300 V, 

nanoBooster acetonitrile-enriched nitrogen gas pressure of 0.10 bar, dry nitrogen gas flow rate of 

3 L/min, ion source temperature of 200ºC and spectra acquisition rate of 2 Hz. Optimized MS 

conditions: electrospray ion source capillary voltage of 1300 V, nanoBooster acetonitrile-enriched 

nitrogen gas pressure of 0.20 bar, dry nitrogen gas flow rate of 4 L/min, ion source temperature of 

220ºC and spectra acquisition rate of 1 Hz. 
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Figure A - 19. Comparison between pig serum extracts and blank extracts (water instead of the 

sample) when two different brands of polypropylene (PP) microcentrifuge tubes were employed 

for extraction (1.5 mL tubes from Fisher Scientific and 600 µL tubes from Rose Scientific acquired 

between 2016 and 2017). 
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Figure A - 20. Chromatograms obtained for blank extracts (water instead of the sample) when 

extractions were performed in a PP autosampler insert (Canadian Life Science) and different sizes 

of PP microcentrifuge tubes (Rose Scientific, acquired between 2016 and 2017), compared to an 

injection blank (pure mobile phase). 
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Figure A - 21. Comparison between blank injections (injection of pure mobile phase, black) with 

blank extracts (extraction of water instead of the sample, green and red) for extractions performed 

inside a PP autosampler insert (Canadian Life Science, green) and a 600 µL PP microcentrifuge 

tube (Rose Scientific, red). All samples were transferred to PP autosampler vial inserts for 

injection. 
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Figure A - 22. Comparison between serum (black) and blank extracts (extraction of water instead 

of the sample) for extractions performed inside a glass (Agilent Technologies, green) and a PP 

autosampler insert (Canadian Life Science, red). 
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Figure A - 23. Chromatograms obtained for blank extracts (extraction of water instead of the 

sample) for extractions performed in 1.5 mL PP microcentrifuge tubes (Fisher Scientific, acquired 

between 2016 and 2017) unwashed, washed with dichloromethane (DCM), and sequentially 

washed with 2-propanol (IPA), methanol (MeOH) and dichloromethane (DCM). Each tube was 

rinsed with 1 mL of each solvent and air-dried at room temperature in a fume hood before 

extraction. The chromatograms obtained for the pure solvents are displayed in Figure A - 25. 
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Figure A - 24. Chromatograms obtained for blank extracts (extraction of water instead of the 

sample) for extractions performed in 600 µL PP microcentrifuge tubes (Rose Scientific, acquired 

between 2016 and 2017) unwashed, washed with dichloromethane (DCM), washed with water, 

washed with methanol (MeOH), washed with methanol and sonicated, and sequentially washed 

with dichloromethane (DCM), methanol and 2-propanol (IPA). Each tube was rinsed with 1 mL 

of each solvent and air-dried at room temperature in a fume hood before extraction. The 

chromatograms obtained for the pure solvents are displayed in Figure A - 25.  
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Figure A - 25. Chromatograms obtained for pure LC-MS grade water, methanol and 

dichloromethane. 
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Figure A - 26. Comparison between pig serum extracts and blank extracts (extraction of water 

instead of the sample) when extractions were performed inside a 1.5 mL polypropylene (PP) 

microcentrifuge tube (Fisher Scientific, acquired between 2016 and 2017, top) and in a 250 µL PP 

autosampler vial insert (Canadian Life Science, bottom). 

  



Appendix A 

437 

 

 

Figure A - 27. Chromatograms obtained for a pool of serum samples from 8 pigs compared to a 

mixture of 14 deuterated lipid standards, belonging to different lipid subclasses (Table II-1). The 

top and middle base peak chromatograms (BPC) are shown in full scale, whereas the bottom 

chromatogram is at a lower intensity range for better visualization of the less intense standards. 

NanoLC method: trapping for 1.5 min at 7 µL/min (100% MPA), MPA – 10 mM NH4COOH in 

50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ 

water (v/v); 45ºC, 300 nL/min; 50 min gradient (0 min – 30% MPB, 10 min – 40% MPB, 20 min 

– 90% MPB, 30 min – 90% MPB, 31 min – 30% MPB, 50 min – 30% MPB), 20 min equilibrium 

(95% MPA); 2 µL injection. MS conditions: electrospray ion source capillary voltage of 1300 V, 

nanoBooster acetonitrile-enriched nitrogen gas pressure of 0.20 bar, dry nitrogen gas flow rate of 

4 L/min, ion source temperature of 220ºC and spectra acquisition rate of 1 Hz.  
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Figure A - 28. Re-evaluation of the separation gradient employing a mixture of 14 deuterated lipid 

standards from different lipid subclasses (Table II-1). Gradient 10 was chosen as the best option 

for this step. The nanoLC-MS method is identical to Figure A - 27, except for gradient. 
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Figure A - 29. Comparison between the gradient optimized during the first phase (initial 

conditions) and gradient 10 for the 14 deuterated lipid standards (Table II-1). Both gradients are 

described in Figure A - 28. The nanoLC-MS method is identical to Figure A - 27, except for 

gradient 10. 
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Figure A - 30. Comparison between the gradient optimized during the first phase (initial 

conditions) and gradient 10 for a pool of serum samples from 8 pigs. Both gradients are described 

in Figure A - 28. The nanoLC-MS method is identical to Figure A - 27, except for gradient 10. 
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Figure A - 31. Re-optimization of trapping parameters (conditions 1 to 7) employing a mixture of 

14 deuterated lipid standards from different lipid subclasses (Table II-1). Trapping conditions 8 to 

14 are shown in Figure A - 32. The nanoLC-MS method is identical to Figure A - 27, except for 

gradient (gradient 10, Figure A - 28) and trapping. 
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Figure A - 32. Re-optimization of trapping parameters (conditions 8 to 14) employing a mixture 

of 14 deuterated lipid standards from different lipid subclasses (Table II-1). Trapping conditions 

1 to 7 are shown in Figure A - 31. Trapping 11 was chosen as the best option for this step. The 

nanoLC-MS method is identical to Figure A - 27, except for gradient (gradient 10, Figure A - 28) 

and trapping. 
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Figure A - 33. Detailed comparison between the previously optimized trapping conditions and the 

best parameters found for the second phase of optimization, employing a mixture of 14 deuterated 

lipid standards from different lipid subclasses (Table II-1). All standards are shown on the top two 

base peak chromatograms, whereas the most intense standard (PC d7-15:0/18:1) is removed on the 

bottom two chromatograms for better visualization. The nanoLC-MS method is identical to Figure 

A - 27, except for gradient (gradient 10, Figure A - 28) and trapping (trapping 11, Figure A - 32). 
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Figure A - 34. Comparison between the trapping conditions optimized during the first phase (initial 

conditions, top) and the parameters chosen during the second phase of optimization (gradient 10 

and trap at 5.0 µL/min for 1.0 min, bottom) for a pool of serum samples from 8 pigs. The nanoLC-

MS method is identical to Figure A - 27, except for gradient (gradient 10, Figure A - 28) and 

trapping (trapping 11, Figure A - 32). 
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Figure A - 35. Fine adjustment of the separation gradient employing a mixture of 14 deuterated 

lipid standards from different lipid subclasses (Table II-1). Gradient 16 was chosen as the best 

option for this step. The nanoLC-MS method is identical to Figure A - 27, except for gradient and 

trapping (5 µL/min, 1.0 min). 
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Figure A - 36. Detailed comparison of the previously optimized gradient (gradient 10, Figure A - 

28) and the optimized gradient (gradient 16, Figure A - 35) employing a mixture of 14 deuterated 

lipid standards from different lipid subclasses (Table II-1). The two top base peak chromatograms 

display all standards, whereas the most intense peak (PC d7-15:0/18:1) is removed on the bottom 

chromatograms for better visualization. Both gradients are described in Figure A - 35. The 

nanoLC-MS method is identical to Figure A - 27, except for gradient and trapping (5 µL/min, 1.0 

min).  
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Figure A - 37. Detailed comparison of the previously optimized gradient (gradient 10, Figure A - 

28) and the new optimized gradient (gradient 16, Figure A - 35) employing a pool of serum from 

8 pigs. Both gradients are described in Figure A - 35. The nanoLC-MS method is identical to 

Figure A - 27, except for gradient and trapping (5 µL/min, 1.0 min). 
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Figure A - 38. Fine adjustment of trapping conditions employing a mixture of 14 deuterated lipid 

standards from different lipid subclasses (Table II-1). The top three base peak chromatograms 

display all standards, whereas the most intense peak (PC d7-15:0/18:1) is removed on the bottom 

chromatograms for better visualization. Trapping 15 (5.0 µL/min, 1.25 min) was chosen as the 

best option for this step. The nanoLC-MS method is identical to Figure A - 27, except for gradient 

(gradient 10 described in Figure A - 35) and trapping.  
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Figure A - 39. Comparison between the previously optimized conditions for nanoLC-MS analysis 

of lipids obtained from a pool of serum samples from 8 pigs (top) and the fine-tuned parameters 

for phase 2 (bottom). NanoLC method: MPA – 10 mM NH4COOH in 50:40:10 methanol/ 

acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 45ºC, 300 

nL/min; 20 min equilibrium  (95% MPA); 2 µL injection. Trapping conditions are described in 

each chromatogram, with the best results for 5.0 µL/min for 1.25 min (100% MPA, bottom 

chromatogram). Gradient 10: 0 min – 0% MPB, 10 min – 40% MPB, 20 min – 90% MPB, 39.5 

min – 90% MPB. Gradient 16: 0 min – 0% MPB, 10 min – 30% MPB, 20 min – 70% MPB, 32 

min – 95% MPB, 50 min – 95% MPB. The MS method is identical to Figure A - 27. 
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Figure A - 40. Re-evaluation of the nanoBooster acetonitrile-enriched nitrogen gas pressure 

between 0.10 and 0.30 bar employing a mixture of 14 deuterated lipid standards from different 

lipid subclasses (Table II-1). The base peak chromatogram is shown in black, whereas the extracted 

ion chromatograms for the lipid deuterated standards are shown in different colors. NanoLC 

method: trapping at 5.0 µL/min for 1.25 min (100% MPA); MPA – 10 mM NH4COOH in 50:40:10 

methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 

45ºC, 300 nL/min; 50 min gradient (0 min – 0% MPB, 10 min – 30% MPB, 20 min – 70% MPB, 

32 min – 95% MPB, 50 min – 95% MPB), 20 min equilibrium (95% MPA); 2 µL injection. The 

MS method is identical to Figure A - 27, except for nanoBooster nitrogen gas pressure. 
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Figure A - 41. Fine-tuning of the nanoBooster acetonitrile-enriched nitrogen gas pressure with a 

pool of serum samples from 8 pigs. The base peak chromatogram for serum is shown in black, 

whereas the extracted ion chromatograms for the lipid deuterated standards are shown in different 

colors (Table II-1). More features were detected for 0.25 bar, but there was a high consumption of 

acetonitrile and higher average relative standard deviation (RSD), i.e. lower peak intensity 

reproducibility. The nanoLC method is identical to Figure A - 40. The MS method is identical to 

Figure A - 27, except for nanoBooster nitrogen gas pressure. 
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Figure A - 42. Re-evaluation of the capillary voltage for the optimized nanoLC method employing 

a mixture of 14 deuterated lipid standards from different lipid subclasses (Table II-1). The base 

peak chromatogram is shown in black, whereas the extracted ion chromatograms for the lipid 

deuterated standards are shown in different colors. The nanoLC method is identical to Figure A - 

40. The MS method is identical to Figure A - 27, except for capillary voltage. 
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Figure A - 43. Fine-tuning of the capillary voltage for the optimized nanoLC method with a pool 

of serum samples from 8 pigs. The base peak chromatogram for serum is shown in black, whereas 

the extracted ion chromatograms for the lipid deuterated standards are shown in different colors 

(Table II-1). The nanoLC method is identical to Figure A - 40. The MS method is identical to 

Figure A - 27, except for capillary voltage. 
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Figure A - 44. Re-evaluation of the ion source temperature for the optimized nanoLC method 

employing a mixture of 14 deuterated lipid standards from different lipid subclasses (Table II-1). 

The base peak chromatogram is shown in black, whereas the extracted ion chromatograms for the 

lipid deuterated standards are shown in different colors. The nanoLC method is identical to Figure 

A - 40. The MS method is identical to Figure A - 27, except for source temperature. 
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Figure A - 45. Fine-tuning of the ion source temperature for the optimized nanoLC method with a 

pool of serum samples from 8 pigs. The base peak chromatogram for serum is shown in black, 

whereas the extracted ion chromatograms for the lipid deuterated standards are shown in different 

colors (Table II-1). The nanoLC method is identical to Figure A - 40. The MS method is identical 

to Figure A - 27, except for source temperature. 
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Figure A - 46. Re-evaluation of the dry nitrogen gas flowrate for the optimized nanoLC method 

employing a mixture of 14 deuterated lipid standards from different lipid subclasses (Table II-1). 

The base peak chromatogram is shown in black, whereas the extracted ion chromatograms for the 

lipid deuterated standards are shown in different colors. The nanoLC method is identical to Figure 

A - 40. The MS method is identical to Figure A - 27, except for dry nitrogen gas flowrate. 
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Figure A - 47. Fine-tuning of the dry nitrogen gas flowrate for the optimized nanoLC method with 

a pool of serum samples from 8 pigs. The base peak chromatogram for serum is shown in black, 

whereas the extracted ion chromatograms for the lipid deuterated standards are shown in different 

colors (Table II-1). The nanoLC method is identical to Figure A - 40. The MS method is identical 

to Figure A - 27, except for dry gas flowrate. 
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Figure A - 48. Comparison between chromatograms for a pool of serum samples from 8 pigs 

obtained with the previously optimized MS method (top, electrospray ion source capillary voltage 

of 1300 V, nanoBooster acetonitrile-enriched nitrogen gas pressure of 0.20 bar, dry nitrogen gas 

flow rate of 4 L/min, ion source temperature of 220ºC) and the re-evaluated, fine-tuned parameters 

(bottom, electrospray ion source capillary voltage of 1375 V, nanoBooster acetonitrile-enriched 

nitrogen gas pressure of 0.15 bar, dry nitrogen gas flow rate of 2.5 L/min, ion source temperature 

of 190ºC). The spectra acquisition rate was kept at 1 Hz. The nanoLC method is identical to Figure 

A - 40. 
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Figure A - 49. Evaluation of the sample volume for extraction. Sample preparation method: 1.0, 

2.5 or 5.0 µL of a pool of serum samples from 8 pigs were vortexed for 20 s with equal volumes 

of the mixture of 14 deuterated lipid standards (Table II-1) and 55.8 µL of methanol; 110.8 µL of 

dichloromethane was added, followed by vortex for 20 s; the mixture was washed with 33.4 µL of 

water and vortexed for 10 s; after resting for 10 min at room temperature, the mixture was 

centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to dryness 

on a SpeedVac for 30 min and resuspended with 10% of 6:4 MPA/MPB and 90% of 9:1 

MPA/MPB for 100× dilution (total of 100.0 µL for the 1.0 µL serum aliquots; 250.0 µL for the 

2.5 µL serum aliquots; and 500.0 µL for the 5.0 µL serum aliquots). NanoLC method: trapping at 

5.0 µL/min for 1.25 min (100% MPA); MPA – 10 mM NH4COOH in 50:40:10 methanol/ 

acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 2-propanol/ water (v/v); 45ºC, 300 

nL/min; 50 min gradient (0 min – 0% MPB, 10 min – 30% MPB, 20 min – 70% MPB, 32 min – 

95% MPB, 50 min – 95% MPB ), 20 min equilibrium (95% MPA); 2 µL injection. MS method: 

electrospray ion source capillary voltage of 1375 V, nanoBooster acetonitrile-enriched nitrogen 

gas pressure of 0.15 bar, dry nitrogen gas flow rate of 2.5 L/min, ion source temperature of 190ºC.  
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Figure A - 50. Optimization of the resuspension of the dried lipid extract. Sample preparation 

method: 1.0 µL of a pool of serum samples from 8 pigs were vortexed for 20 s with 1.0 µL of the 

mixture of 14 deuterated lipid standards (Table II-1) and 55.8 µL of methanol; 110.8 µL of 

dichloromethane was added, followed by vortex for 20 s; the mixture was washed with 33.4 µL of 

water and vortexed for 10 s; after resting for 10 min at room temperature, the mixture was 

centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to dryness 

on a SpeedVac for 30 min, resuspended with 10.0 µL of the resuspension solvents (as described 

for each chromatogram) and diluted with 90.0 µL of 9:1 MPA/MPB to 100× dilution. The nanoLC-

MS methods are identical to Figure A - 49. 
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Figure A - 51. Optimization of the composition of mobile phases for sample dilution before 

injection. Sample preparation method: 2.5 µL of a pool of serum samples from 8 pigs were 

vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated lipid standards (Table II-1) and 55.8 

µL of methanol; 110.8 µL of dichloromethane was added, followed by vortex for 20 s; the mixture 

was washed with 33.4 µL of water and vortexed for 10 s; after resting for 10 min at room 

temperature, the mixture was centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic 

layer was evaporated to dryness on a SpeedVac for 30 min, resuspended with 7.5 µL of 6:4 

MPA/MPB and diluted with 67.5 µL of the mobile phase mixture described for each 

chromatogram. The nanoLC-MS methods are identical to Figure A - 49. 
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Figure A - 52. Optimization of the equilibrium time before centrifugation of the biphasic mixture 

obtained by liquid-liquid extraction. Sample preparation method: 1.0 µL of a pool of serum 

samples from 8 pigs were vortexed for 20 s with 1.0 µL of the mixture of 14 deuterated lipid 

standards (Table II-1) and 55.8 µL of methanol; 110.8 µL of dichloromethane was added, followed 

by vortex for 20 s; the mixture was washed with 33.4 µL of water and vortexed for 10 s; after 

resting for different times (as described for each chromatogram) at room temperature, the mixture 

was centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to 

dryness on a SpeedVac for 30 min, resuspended with 10.0 µL of 6:4 MPA/MPB and diluted with 

90.0 µL of 9:1 MPA/MPB. The nanoLC-MS methods are identical to Figure A - 49. 
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Figure A - 53. Optimization of the temperature for equilibrium before centrifugation of the 

biphasic mixture obtained by liquid-liquid extraction. Sample preparation method: 1.0 µL of a pool 

of serum samples from 8 pigs were vortexed for 20 s with 1.0 µL of the mixture of 14 deuterated 

lipid standards (Table II-1) and 55.8 µL of methanol; 110.8 µL of dichloromethane was added, 

followed by vortex for 20 s; the mixture was washed with 33.4 µL of water and vortexed for 10 s; 

after resting for 10 min at variable temperatures (as described for each chromatogram), the mixture 

was centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to 

dryness on a SpeedVac for 30 min, resuspended with 10.0 µL of 6:4 MPA/MPB and diluted with 

90.0 µL of 9:1 MPA/MPB. The nanoLC-MS methods are identical to Figure A - 49. 
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Figure A - 54. Optimization of the SpeedVac drying time for the organic phase obtained after 

liquid-liquid extraction of serum samples. The three intervals allowed visible drying of the organic 

solvents, but traces of solvents and water may remain for reduced periods. Sample preparation 

method: 1.0 µL of a pool of serum samples from 8 pigs were vortexed for 20 s with 1.0 µL of the 

mixture of 14 deuterated lipid standards (Table II-1) and 55.8 µL of methanol; 110.8 µL of 

dichloromethane was added, followed by vortex for 20 s; the mixture was washed with 33.4 µL of 

water and vortexed for 10 s; after resting for 10 min at room temperature, the mixture was 

centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to dryness 

on a SpeedVac for variable periods (as described for each chromatogram), resuspended with 10.0 

µL of 6:4 MPA/MPB and diluted with 90.0 µL of 9:1 MPA/MPB. The nanoLC-MS methods are 

identical to Figure A - 49. 
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Figure A - 55. Comparison between the initial sample preparation method and the optimized 

volume of serum, resuspension mobile phase mixture, equilibrium time and temperature, and 

SpeedVac drying time. The initial sample preparation is described in Figure A - 49 for 1.0 µL of 

serum. Optimized conditions for sample preparation: 2.5 µL of a pool of serum samples from 8 

pigs were vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated lipid standards (Table II-1) 

and 55.8 µL of methanol; 110.8 µL of dichloromethane was added, followed by vortex for 20 s; 

the mixture was washed with 33.4 µL of water and vortexed for 10 s; after resting for 10 min at 

room temperature, the mixture was centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom 

organic layer was evaporated to dryness on a SpeedVac for 30 min, resuspended with 10.0 µL of 

1:1 MPA/MPB and diluted with 90.0 µL of 9:1 MPA/MPB. The nanoLC-MS methods are identical 

to Figure A - 49. 
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Figure A - 56. Comparison between the modified Folch method, the original Folch method and 

the MTBE method adapted from Matyash et al. for 2.5 µL of serum.67,70 Modified Folch method: 

2.5 µL of a pool of serum samples from 8 pigs were vortexed for 20 s with 2.5 µL of the mixture 

of 14 deuterated lipid standards (Table II-1) and 53.3 µL of methanol; 110.8 µL of 

dichloromethane was added, followed by vortex for 20 s; the mixture was washed with 31.9 µL of 

water and vortexed for 10 s; after resting for 10 min at room temperature, the mixture was 

centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was evaporated to dryness 

on a SpeedVac for 30 min, resuspended with 10.0 µL of 1:1 MPA/MPB and diluted with 90.0 µL 

of 9:1 MPA/MPB. Folch method: the same procedure was followed, but with 2.5 µL of serum, 2.5 

µL of the mixture of internal standards, 14.2 µL of methanol, 33.3 µL of dichloromethane and 8.2 

µL of water. Adapted MTBE method: 2.5 µL of serum, 2.5 µL of the mixture of internal standards, 

16.2 µL of methanol and 62.5 µL of MTBE were incubated in a shaker for 1 h at room temperature, 

followed by vortex with 15.6 µL of water; the remaining steps were identical to the modified Folch 

method, except for drying time of 1h30min. The nanoLC-MS methods are identical to Figure A - 

49.  
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Figure A - 57. Dilution of the sample after extraction. Sample preparation: 2.5 µL of a pool of 

serum samples from 8 pigs were vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated 

lipid standards (Table II-1) and 53.3 µL of methanol; 110.8 µL of dichloromethane was added, 

followed by vortex for 20 s; the mixture was washed with 31.9 µL of water and vortexed for 10 s; 

after resting for 10 min at room temperature, the mixture was centrifuged for 10 min at 12,000 rpm 

and 4ºC; the bottom organic layer was evaporated to dryness on a SpeedVac for 30 min, 

resuspended with 10% of 1:1 MPA/MPB and diluted with 90% of 9:1 MPA/MPB, according to 

the dilutions described for each chromatogram. The nanoLC-MS methods are identical to Figure 

A - 49.  
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Figure A - 58. Optimization of the sample injection volume for the nanoLC-MS analysis. 

Optimized sample preparation: 2.5 µL of a pool of serum samples from 8 pigs were vortexed for 

20 s with 2.5 µL of the mixture of 14 deuterated lipid standards (Table II-1) and 53.3 µL of 

methanol; 110.8 µL of dichloromethane was added, followed by vortex for 20 s; the mixture was 

washed with 31.9 µL of water and vortexed for 10 s; after resting for 10 min at room temperature, 

the mixture was centrifuged for 10 min at 12,000 rpm and 4ºC; the bottom organic layer was 

evaporated to dryness on a SpeedVac for 30 min, resuspended with 2.5 µL of 1:1 MPA/MPB and 

diluted with 22.5 µL of 9:1 MPA/MPB. The nanoLC-MS methods are identical to Figure A - 49, 

except for the injection volume. 
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Figure A - 59. Base peak chromatogram for a pool of serum samples from 100 healthy humans 

and extracted ion chromatograms for the deuterated lipids employed as internal standards. 

Optimized nanoLC method: trapping at 5.0 µL/min for 1.25 min (100% MPA); MPA – 10 mM 

NH4COOH in 50:40:10 methanol/ acetonitrile/ water (v/v/v); MPB – 10 mM NH4COOH in 95:5 

2-propanol/ water (v/v); 45ºC, 300 nL/min; 50 min gradient (0 min – 0% MPB, 10 min – 30% 

MPB, 20 min – 70% MPB, 25 min – 80% MPB, 30 min – 95% MPB, 40 min  – 95% MPB, 42 

min –0% MPB, 50 min –0% MPB), 5 min equilibrium (100% MPA); 4 µL injection. Optimized 

MS method: electrospray ion source capillary voltage of 1375 V, nanoBooster acetonitrile-

enriched nitrogen gas pressure of 0.15 bar, dry nitrogen gas flow rate of 2.5 L/min, ion source 

temperature of 190ºC. Optimized sample preparation method: 2.5 µL of a pool of serum samples 

from 8 pigs were vortexed for 20 s with 2.5 µL of the mixture of 14 deuterated lipid standards 

(Table II-1) and 53.3 µL of methanol; 110.8 µL of dichloromethane was added, followed by vortex 

for 20 s; the mixture was washed with 31.9 µL of water and vortex for 10 s; after resting for 10 

min at room temperature, the mixture was centrifuged for 10 min at 12,000 rpm and 4ºC; the 

bottom organic layer was evaporated to dryness on a SpeedVac for 30 min, resuspended with 2.5 

µL of 1:1 MPA/MPB and diluted with 22.5 µL of 9:1 MPA/MPB.  
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Figure A - 60. Comparison between chromatograms obtained for a pool of serum samples from 8 

pigs (top); serum from 100 healthy humans (mid); and a blank extract (extract of water instead of 

the sample, bottom chromatogram) for positive ionization. The nanoLC-MS and sample 

preparation methods are described in Figure A - 59. 
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Figure A - 61. Comparison of base peak chromatograms obtained for 1.0 µL (25× dilution) and 

2.5 µL (10× dilution) of a pool of serum samples obtained from 100 healthy humans with positive 

and negative ionization. The nanoLC-MS and sample preparation methods are described in Figure 

A - 59. 
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Figure A - 62. Base peak chromatograms obtained for a pool of serum samples from 100 healthy 

humans with UHPLC-MS (positive ionization). The UHPLC-MS method is described in the 

Experimental Section. 
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Figure A - 63. Base peak chromatograms obtained for a pool of serum samples from 100 healthy 

humans with UHPLC-MS (negative ionization). The UHPLC-MS method is described in the 

Experimental Section. 
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Figure A - 64. Base peak chromatograms obtained for a pool of serum or cerebrospinal fluid 

samples from 8 pigs, and a pool of serum from 100 healthy humans with positive and negative 

ionization. The nanoLC-MS and sample preparation methods are described in Figure A - 59. 
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between healthy control mice (group A); immunized, RSV-challenged mice (group B); and non-

immunized, RSV-challenged mice (group C). ......................................................................... 491 

  



Appendix B 

478 

 

 

Figure B- 1. Examples of total ion chromatograms obtained under positive and negative ionization 

for: (A) and (B) QC injections; (C) and (D) the control group; (E) and (F) the immunized, RSV-

challenged mice; (G) and (H) the non-immunized, RSV-challenged mice; (I) and (J) extracted 

internal standard mix composed of 14 deuterated lipids (Table II-1); and (K) and (L) a blank extract 

(extraction of water instead of sample, following the identical sample preparation procedure).   



Appendix B 

479 

 

 

Figure B- 2. Non-parametric ANOVA (Kruskal-Wallis test) for lipidomics of lung tissue of control 

(group A); immunized, RSV-challenged (group B); and non-immunized, RSV -challenged (group 

C) mice. The 2316 significant lipids (p <0.05) are shown in red, while non-significant lipids (p 

>0.05) are in green. 
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Figure B- 3. Boxplots for ten of the most significant lipids (lowest p values) found by non-

parametric ANOVA for lipidomics of lung tissue of control (group A, red); immunized, RSV- 

challenged (group B, green) and non-immunized, RSV-challenged (group C, blue) mice. 

Normalized intensities (intensity of each lipid divided by the intensity of the class-matched internal 

standard) were auto-scaled for statistical analysis. For identification, all isomeric and isobaric 

possibilities that passed the retention time and adduct filters were ordered according to the filtering 

layers described in the Experimental section (Chapter V, 5.2.4 Lipidomics), but a maximum of five 

are shown.  



Appendix B 

481 

 

 

Figure B- 4. PCA score plot obtained for untargeted lipidomics of lung tissue from control (group 

A, red); immunized, RSV-challenged (group B, green); and non-immunized, RSV-challenged 

(group C, blue) mice. The sample names of injection duplicates are circled to emphasize their 

proximity. 
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Figure B- 5. (A) Volcano plot, (B) PCA score plot and (C) PLS-DA score plot obtained by 

lipidomics for healthy controls (group A) versus non-immunized, RSV-challenged mice (group 

C). The PLS-DA model was constructed with 2 components and resulted in R2 of 0.9616, Q2 of 

0.8735 and p=0.02 for 1000 permutations.  
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Figure B- 6. (A) Volcano plot, (B) PCA and (C) PLS-DA score plots obtained by lipidomics for 

immunized (group B) versus non-immunized (group C), RSV-challenged mice. The PLS-DA 

model was constructed with 2 components and resulted in R2 of 0.9451, Q2 of 0.8551 and p=0.02 

for 1000 permutations. 
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Figure B- 7. (A) Volcano plot, (B) PCA and (C) PLS-DA score plots obtained by lipidomics for 

healthy controls (non-immunized and unchallenged, group A) versus immunized, RSV- 

challenged mice (group B). The PLS-DA model was constructed with 2 components and resulted 

in R2 of 0.9691, Q2 of 0.9149 and p=0.02 for 1000 permutations. 

  



Appendix B 

485 

 

 

Figure B- 8. PCA score plot obtained for DmPA labeling of lung tissue samples from healthy 

control (A, red); immunized, RSV-challenged (B, green); and non-immunized, RSV-challenged 

(C, blue) mice. 

 

  



Appendix B 

486 

 

 

Figure B- 9. PCA score plot obtained for Dns and DmPA labeling of lung tissue samples from 

healthy control (A, red); immunized, RSV-challenged (B, green); and non-immunized, RSV- 

challenged (C, blue) mice. The fractions obtained after homogenization were split for labeling 

triplicates, which are indicated by the colored circles. 
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Figure B- 10. Non-parametric ANOVA (Kruskal-Wallis test) for metabolomics of lung tissue via 

DnsCl and DmPA chemical isotope labeling for control (group A); immunized, RSV-challenged 

(group B); and non- immunized, RSV-challenged (group C) mice. The 926 significant metabolites 

(p <0.05) are shown in red, while non-significant lipids (p >0.05) are represented by green circles. 
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Figure B- 11. (A) PCA and (B) PLS-DA score plots obtained for amine, phenol and carboxylic 

acid-containing metabolites for the comparison between healthy controls (non-immunized, non-

challenged, group A, red) versus non-immunized, RSV-challenged mice (group C, blue). The PLS-

DA model was constructed with 2 components and resulted in R2 of 0.9784, Q2 of 0.9037 and 

p=0.05 for 1000 permutations. 
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Figure B- 12. (A) PCA and (B) PLS-DA score plots obtained for amine, phenol and carboxylic 

acid-containing metabolites for the comparison between immunized (group B, green) versus non- 

immunized, RSV-challenged mice (group C, blue). The PLS-DA model was constructed with 2 

components and resulted in R2 of 0.9566, Q2 of 0.7545 and p=0.05 for 1000 permutations. 
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Figure B- 13. PCA and PLS-DA score plots obtained for amine, phenol and carboxylic acid-

containing metabolites for the comparison between healthy controls (non-immunized, 

unchallenged, group A, red) versus immunized, RSV-challenged mice (group B, green). The PLS-

DA model was constructed with 2 components and resulted in R2 of 0.9700, Q2 of 0.8246 and 

p=0.05 for 1000 permutations. 
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Figure B- 14. Significantly altered lipids and metabolites (p <0.05) for the binary comparison 

between healthy control mice (group A); immunized, RSV-challenged mice (group B); and non-

immunized, RSV-challenged mice (group C). (A) Binary comparisons for the three studied groups; 

(B) Significantly altered lipids and metabolites for the immunized (group B) and non-immunized 

(group C), RSV-challenged mice, when compared to healthy controls. 
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Figure C-1. Boxplots for eight of the most significantly altered lipids for the separation between 

healthy control subjects (red) and PD patients (green). Features are considered significantly altered 

if fold change (FC) healthy control / PD ≥1.2 or <0.84 and p <0.05. FDR-p: p value adjusted for 

false-discovery rate.  
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Figure C-2. PCA score plot for the separation between healthy control subjects (red) and PD 

patients (green). Experimental duplicates for each sample were tightly clustered. 
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Figure C-3. Boxplots for eight of the most significantly altered lipids for the separation between 

PD patients with no dementia (PDND, purple) and clinically diagnosed with dementia 3 years after 

sample collection (incipient dementia, PDD, yellow). Features are considered significantly altered 

if FC for PDND/PDD ≥1.2 or <0.84 and p <0.05.  
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Figure C-4. PCA score plot for the separation between PDND (purple) and PDD patients (yellow). 

Experimental duplicates for each sample were tightly clustered. 
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Figure C-5. PCA and PLS-DA score plot for the separation between healthy controls and PD 

patients aged below (Group 1, cyan) and above (Group 2, magenta) the median of 69.97 years old. 

The PLS-DA model with 8 components resulted in R2 of 0.9428, Q2 of 0.6837 and p of <0.001 for 

1000 permutations. 
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Figure C-6. PCA and PLS-DA score plot for the separation between PD patients aged below 

(Group 1, cyan) and above (Group 2, magenta) the median of 69.74 years old. The PLS-DA model 

with 6 components resulted in R2 of 0.9769, Q2 of 0.8359 and p of 0.03 for 1000 permutations.
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Figure C-7. PCA and PLS-DA score plot for the separation between female (Group 1, cyan) and 

male (Group 2, magenta) control and PD subjects. The PLS-DA model with 8 components resulted 

in R2 of 0.9597, Q2 of 0.8402 and p <0.01 for 100 permutations. 
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Figure C-8. PCA and PLS-DA score plot for the separation between female (Group 1, cyan) and 

male (Group 2, magenta) PD patients, including PDND and PDD. The PLS-DA model with 6 

components resulted in R2 of 0.9746, Q2 of 0.8472 and p <0.01 for 100 permutations. 
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Figure C-9. PCA and PLS-DA score plot for the separation between PD patients, including PDND 

and PDD, that were diagnosed with PD for less (Group 1, cyan) or more (Group 2, magenta) than 

the median of 6.5 years before baseline sample collection. The PLS-DA model with 6 components 

resulted in R2 of 0.9752, Q2 of 0.8554 and p of 0.03 for 1000 permutations. 
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Figure C-10. PCA and PLS-DA score plot for the separation between PD patients, including 

PDND and PDD, that were treated with levodopa equivalent dosages below (Group 1, cyan) or 

above (Group 2, magenta) the median of 609.3 mg at baseline sample collection. The PLS-DA 

model with 5 components resulted in R2 of 0.9517, Q2 of 0.7392 and p of 0.003 for 1000 

permutations. 
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Figure C-11. PCA and PLS-DA score plot for the separation between PD patients that were treated 

with levodopa for more (Group 2, magenta) or less (Group 1, cyan) than the median of 2.96 years 

at the moment of baseline sample collection. The PLS-DA model with 6 components resulted in 

R2 of 0.9734, Q2 of 0.7986 and p of 0.02 for 1000 permutations. 
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Figure C-12. PCA and PLS-DA score plots for the separation between PD patients with UPDRS 

– part III (motor examination) scores below (Group 1, cyan) and above (Group 2, magenta) the 

median of 15. The PLS-DA model with 6 components resulted in R2 of 0.9714, Q2 of 0.7838 and 

p of 0.03 for 1000 permutations. 
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Figure C- 13. PCA and PLS-DA score plots for the separation between healthy controls and PD 

patients with B12 serum levels below (Group 1, cyan) and above (Group 2, magenta) the median 

of 304.5 ng/mL. The PLS-DA model with 8 components resulted in R2 of 0.9534, Q2 of 0.6422 

and p of 0.001 for 1000 permutations. 
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Figure D - 1. PCA score plot for healthy controls (red) compared to cystic fibrosis patients (green). 

Each sample was analyzed with extraction and injection replicates. The corresponding replicates 

are tightly clustered, showcasing the reproducibility of the employed methods. 
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Figure D - 2. Boxplots for significantly altered lipids with the highest fold-changes (FC) for the 

comparison between cystic fibrosis patients (CF, red) and healthy controls (green), identified in 

tiers 1 or 2 (MS/MS positive identification). Lipids are identified by polarity (P for positive and N 

for negative), mass-to-charge ratio (m/z) and retention time (min), as well as the MS/MS 

identification.  
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Figure D - 3. Boxplots for significantly altered lipids with the highest fold-changes (FC) for the 

comparison between cystic fibrosis patients (CF, red) and healthy controls (green), identified in 

tier 3 (putative mass-match identification). Lipids are named by polarity (P for positive and N for 

negative), m/z and retention time (min), as well as the putative identification with a maximum of 

5 isomers or isobars. 
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Figure D - 4. All lipids employed for Receiver Operating Characteristic (ROC) analysis (blue) 

compared to lipids that resulted in area-under-the-curve of 1 (orange), divided by lipid subclasses, 

for the healthy controls and CF patients. Abbreviations to lipid subclasses are defined in Table 

II-2. 
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Figure D - 5. Extracted ion chromatograms obtained for two distinct biomarker candidates selected 

for differentiating cystic fibrosis patients from healthy controls, namely P373.25848/1.86 and 

P385.2584/2.01. Lipids are named by polarity (P for positive and N for negative), m/z and retention 

time (min).  
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Figure D - 6. Extracted ion chromatograms obtained for two distinct biomarker candidates selected 

for differentiating cystic fibrosis patients from healthy controls, namely P784.58482/8.2 and 

784.584841/9.16, identified as PC 15:1_21:2(tier 1). Lipids are named by polarity (P for positive 

and N for negative), m/z and retention time (min). 
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Figure D - 7. Extracted ion chromatograms obtained for two distinct biomarker candidates selected 

for differentiating cystic fibrosis patients from healthy controls, namely P373.25848/1.86 and 

P385.2584/2.01. Lipids are named by polarity (P for positive and N for negative), m/z and retention 

time (min). 


