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Abstract

Many of the industrial and research databases are plagued by missing values problem. 

One of common ways to cope with this problem is to perform imputation (filling in) o f 

the missing values through variety o f statistical and machine learning (ML) procedures. 

This study concentrates on performing experimental comparison between several 

algorithms for imputation o f missing values, which range from simple statistical 

algorithms such as mean and hot deck imputation to imputation algorithms that work 

based on application o f inductive ML algorithms. The thesis also proposes a new 

framework that can be used to improve the accuracy o f existing imputation method while 

maintaining the same asymptotic computational complexity. Extensive experimental test 

were performed and the results show that a significant improvement o f imputation 

accuracy can be achieved by applying the proposed framework, and that the accuracy o f 

the framework based methods is, on average, the highest among the considered methods.
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1. Introduction

Many of industrial and research databases are characterized by an unavoidable problem 

of incompleteness in terms of missing values. A variety o f reasons, such as manual data 

entry procedures, incorrect measurements and equipment errors result in this serious 

deficiency. In many domains it is not uncommon to encounter databases that have up to 

or even above 50% o f their entries missing. For example, an industrial instrumentation 

maintenance and test database maintained by Honeywell which has over 50% of missing 

information, despite regulatory requirements for data collection, is described in [44]. 

Another domain plagued by missing values problem is medicine, where it is not 

uncommon that almost every patient-record lacks some values, and almost every attribute 

used to describe patient’s records is lacking values for some patient-record [18]. For 

example, a medical database describing patients with cystic fibrosis that has over 60% of 

its entries missing was described in [43]. One of the reasons why medical databases are 

so heavily exposed is that most medical data are collected as a byproduct o f patient care 

activities, rather than for an organized research protocol [18].

Missing values usually make it difficult for analysts to perform data analysis tasks. Three 

types o f problems arc associated with missing values: loss o f efficiency, complication in 

handling and analyzing the data, and bias resulting from differences between missing and 

complete data [3]. We note that although some o f the data analysis methods can cope 

with databases that have missing values on their own, many others require the analyst to 

provide complete database to perform analysis. Standard statistical software works only 

with complete data, or uses very basic imputation methods [44]. Other data processing

1
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packages, such as visualization and modeling software, often use and display only the 

complete records, or map missing values to an arbitrary fixed value, e.g. -I or 999999, 

leading to distortion o f the presented results. Imputation is also invaluable in cases when 

the data needs to be shared, and the individual users may not have resources to deal with 

the incompleteness (47) (60).

There are two general approaches to deal with the problem of missing values: they can be 

ignored (removed), or imputed (filled in) with new values. The first solution is applicable 

only in case where only a small amount o f data is missing. Since in many cases databases 

contain substantial amount o f missing data, the focus o f this study is on the missing data 

imputation methods. A number o f different imputation methods are reported in the 

literature. Traditional methods use statistical approaches, and include simple algorithms, 

such as mean and hot deck imputation, and complex methods, such as regression based 

imputation and Kxpcetation-Maximization (KM) algorithm based imputation. In recent 

years a new family o f imputation methods, which uses Machine Learning (ML) 

algorithms, was proposed. In general, development o f new methods was driven by a need 

to improve accuracy o f the imputation. Karly methods were very simple and 

computationally inexpensive, while newer methods use more complex procedures, which 

improve the quality o f imputation, but also require very expensive computations. At the 

same time, a rapid and increasing growth trend in the database size is documented. 

Recently published results o f a 2003 survey on the largest and most heavily used 

commercial databases show that the average size o f Unix databases experienced a 6-fold,
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and Windows databases a 14-fold, increase compared to year 2001; large commercial 

databases now average 10 billion data points [75].

This study first performs experimental comparison o f several algorithms for imputation 

o f missing values, which range from simple statistical algorithms like mean and hot deck 

imputation to imputation algorithms that work based on application o f inductive ML 

algorithms. Three major families o f ML algorithms[19], such as probabilistic algorithms 

(e.g. Naive Bayes), decision tree algorithms (e.g. C4.5), and decision rule algorithms (e.g. 

CLIP4), are used to implement the ML based imputation algorithms. The study also 

proposes a new framework that can be used to improve the quality o f existing imputation 

methods, called base imputation methods. The base imputation methods are selected 

based on our comparative study. The developed framework is characterized by the 

following advantages:

-  It improves the accuracy o f imputation when compared to accuracy o f a base 

imputation method.

-  Application o f the framework to a base imputation method does not worsen the 

overall asymptotic computational complexity, when compared to complexity o f the 

base imputation method. We note that for some base methods, it can even result in 

improving their running time.

-  Many of imputation methods can be used as the base imputation methods. The 

proposed framework can be applied to both statistical and ML based imputation 

methods.

3
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Extensive experimental results presented in this thesis show that application o f the 

proposed framework to the base imputation methods gives substantial improvement in 

accuracy o f imputation. The experimental results show that using the proposed 

framework with very simple imputation methods, such as hot deck, gives imputation 

accuracies that surpass the quality o f results generated by advanced statistical imputation 

methods, while having the same computational cost. As an example, the proposed 

framework was applied to a linear complexity imputation method, i.e. a M L based 

imputation that uses Naive Bayes algorithm. The resulting imputation method was also 

linear, and the imputed missing values had an accuracy higher than that o f any other 

considered imputation method, including complex statistical methods.

Following, the second chapter discusses the background and definitions related to 

missing data imputations. Existing imputation methods are reviewed in chapter 3. 

Chapter 4 describes and discusses structure o f the proposed framework. Chapter 5 

experimentally compares performance o f several imputation methods and the results of 

this comparison arc used to choose the base imputation methods for the proposed 

framework. The second part o f chapter 5 reports experimental results performed with the 

proposed framework, and provides extensive comparison with existing imputation 

methods. The study ends with summary and conclusions.

1.1 Goals of the Research

It is not uncommon to encounter databases that have close to a half o f information 

missing, making them almost unusable to perform data analysis tasks. One o f the 

common ways to cope with this problem is to perform imputation (filling in) o f the

4
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missing values. Main aim o f the existing and newly developed imputation methods is to 

improve accuracy. Early methods were computationally inexpensive and characterized by 

relatively poor performance, while newer methods improve the quality o f  imputation, but 

with the cost o f higher computational complexity. The first part o f  the study concentrates 

on performing experimental comparison o f several algorithms for imputation o f missing 

values, which range from simple statistical algorithms like mean and hot deck imputation 

to imputation algorithms that work based on application o f inductive M L  algorithms. 

Three major families o f M L  algorithms, i.e. probabilistic, decision trees, and decision 

rule algorithms are used to implement the M L based imputation algorithms. Due to the 

recent rapid increasing growth trend in the database size, a new methodology, which is 

both efficient and accurate, is necessary. To this end, this study proposes a new 

framework that can be used to improve accuracy o f existing imputation method. The 

framework’s application to imputation methods should on average result in significant 

improvement o f  imputation accuracy, while maintaining the same asymptotic 

computational complexity. The study also presents a comprehensive review o f relevant 

missing data imputation methods.

Extensive experimental tests were performed to compare accuracy, running time, and 

asymptotic complexity o f  application o f the proposed framework to two imputation 

methods with six other state o f the art imputation methods. The results show that a 

significant improvement o f  imputation accuracy can be achieved by applying the 

proposed framework, and that the accuracy o f the framework based methods is, on 

average, the highest among the considered methods. We stress that application o f the 

framework to a low quality single imputation method results in a method that has

5
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imputation accuracy comparable to accuracy o f advanced multiple imputation methods, 

while application to a quality single imputation method results in imputation accuracy 

that is superior to other imputation methods. We also show, both theoretically and 

experimentally, that application o f the proposed framework has linear complexity, and 

therefore does not change asymptotic complexity o f the associated base imputation 

method.

The contents o f this thesis covers the materials which are published in |28] and J27). The 

first part o f studies, which is experimental comparison between several algorithms to 

impute missing values is mentioned in [28] and is the topic o f the chapters 3 and 5.1. 

Also the idea o f applying the framework to improve the accuracy o f imputation is 

discussed in [27J which is the topic o f chapters 4 and 5.2.

6
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2. Background and Definitions

This chapter provides an overview of the definitions for the concepts used in this study 

ineluding training set, class, and learning the classification rules. It also introduces 

different types o f data and defines the inductive learning concept, machine learning 

algorithms, and classifications. The verification test and accuracy test, which are used in 

evaluating the performance o f the imputation methods, are described.

2.1 Types of Data

There are four types o f data that appear in databases: nominal, ordinal, interval, and ratio 

scales. They are categorized into two groups: categorical and continuous data: nominal 

and ordinal scales are categorical data.

Categorical data with unordered scales are called nominal scales. In grades dataset, see 

figure 2. Name is an example o f a nominal scale. Categorical data with ordered scales 

are called ordinal scale. Rank is an example o f an ordinal scale. Continuous data are a 

type o f raster data that are quantitative (measuring a characteristic) and have related 

continuous values, such as the assignments grades in Figure 2. The reason for us to 

distinguish between different types o f data is that some data analysis methods can only 

deal with specific type o f data; for instance some methods may not be applicable to the 

databases that contain both categorical and continuous data. Some ML algorithms can 

only deal with the categorical data, and therefore continuous data should be discretized 

prior to applying them.

7
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2.2 Background

Databases consist o f one or multiple tables, where columns describe attributes (features), 

and rows describe records (examples or data points). Figure 1 shows a typical database, 

which consists o f five attributes, and where some of them contain missing values denoted 

by “ ?” ,This study concentrates on imputation procedures for categorical attributes. We 

note that the two main application areas o f missing data imputation procedures are 

concerned with equipment maintenance databases [44], and survey data [29][59][61], 

both of which use discrete data. Some o f the missing data imputation algorithms are 

supervised, i.e. they require so called class attribute. They impute missing values one 

attribute at the time by setting it to be the class attribute, and use data from the remaining 

attributes to generate a classification model, which is used to perform imputation.

Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5

data 7 data data data
? data data 7 data

data data data 0 data
data data data data data

F igure 1. A  database con ta in ing  m iss ing  values

For example Figure 2 shows grades o f the students for a certain course. In this table the 

first attribute is the name o f the students, the second attribute is the final mark of the 

students, the third attribute is the assignment marks and the forth attribute is class 

attribute, which classifies the students into two groups, pass and fail.

Name Final mark Assignments Status
Kate A 95% Pass
Sara C 30% Fail
M i 7 60% Pass

George ? 50% Pass
Paul 7 35% Fail

Em ily 7 70% Pass
John B 75% Pass
Jim A 90% Pass

7igure 2. The grades o 'the students

8
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Three different modes that lead to introduction o f missing values can be distinguished: 

missing completely at random (MCAR), missing at random (MAR), and not missing at 

random (NMAR) [44] [47],

• The MCAR mode applies when the distribution o f a record having a missing value 

for an attribute does not depend on either the observed data or the missing data. 

This mode usually does not hold for non-artificial databases. For example, a 

student’s final grade is missing, and this does not depend on his or her status or 

final grade.

• The MAR mode, where the distribution depends on the data, but does not depend 

on the missing data itself, is assumed by most o f the existing methods for missing 

data imputation [68], and therefore it is also assumed in this study. For example, 

student’s final mark is missing, and this does depend on his status, but not on the 

final grade. In case o f the MCAR mode the assumption is that the distribution o f 

missing and complete data are the same, while for MAR mode they are different, 

and the missing data can be predicted by using the complete data [47].

• The third, NMAR, mode, where the distribution depends on the missing values, is 

rarely used in practice. For example, student's final grade is missing, and this 

does depend on the final grade in terms that grades in a special range are all 

missing.

Below we define the terminology and concepts o f ML, since they are used to develop the 

imputation procedures presented in this work.

2.3 Definitions

2.3.1 Training Set

9
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Let A = {Ax,...,An} be a set o f attributes with domains Domx,...,Domn. A training set is 

a table over A . As an example Figure 3 shows a training set related to the grades o f the 

students.

N a m e F in a l m a rk A s s ig n m e n ts S tatus

Kate A 95% Pass
Sara C 30% Fail
John B 75% Pass

Jim A 90% Pass

F igure 3 .T ra in in g  set related to student's grade dataset

In this table the first attribute is the name o f the student, the second is the final mark, the 

third is the assignment mark and the forth is the status o f the student. The domain 

Dom\\s the set {Kate, Sara, John, Jim}, Do/7;2={A, B, C}, Domi ={95%, 30%, 75%, 

90%} and Dom ^-{Pass, Fail}.

2.3.2 Class

A class C, is a subset o f the training set S, consisting o f all objects that satisfy the class 

condition corni,:

C, = {o e S | condj(o)}

Objects that satisfy the condition condj are positive records or instances o f class C ,. The 

records outside o f this subset o f the training set are negative records.

2.3.3 Learning the classification rules

Learning classification rules means that the system has to find the rules that predict the 

class from the other attributes. Hence, first the user has to define the conditions for each 

class, and thus partition the S into subsets Cj,...,C/ias illustrated in Figure 4. Then the

10
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data mine system has to construct descriptions l \  /)„ for these classes, which results in

determining the classes lor the records.

Construct Classes 

 ».

Construct I ) I  -*■ C l 
Description

 ► 1)2 -► C2

D3 -► C3

Figure *1. Learning classification rules front a database 

2.4 Inductive learning

Human and other intelligent entities (cognitive systems) attempt to understand their 

environment by using a simplification of this environment called a model. The creation of 

such a model is called inductive learning. During the learning phase, the cognitive system 

observes its environment and recognizes similarities among objects and events in this 

environment. It groups similar objects in classes and constructs rules that predict the 

behavior o f the inhabitants o f such a class.

Two learning techniques are o f special interests, supervised and unsupervised learning. In 

superv ised learning, an external teacher defines classes and provides the cognitive system 

with examples o f each class. The system has to discover common properties in the 

examples for each class, which are called class description. This technique is also known 

as learning from examples. A class, together with its description forms a classification 

rule, such as “ i f  <description> then <dass>" that can be used to predict the class of 

previously unseen objects.

11
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In unsupervised learning the system has to discover the classes by itself, based on 

common properties o f objects. Hence, this technique is also known as learning from 

observation.

2.4.1 Machine learning

The automation o f inductive learning processes has been extensively researched in ML 

|42](45][51|.

A ML process consists o f two phases. The learning phase, in which a ML system 

analyzes the data and generates rules by finding similarities among the data, and the 

validation phase, in which the generated rules are verified by computing a performance 

evaluation function on new set o f data. The training data set consists o f M training data 

pairs (records):

S = {{xr C j ) | / = 1 M , j  = 1 Q

where: .v, is n-dimensional pattern vector, whose components are called attributes, and 

Cj is a known class.

The ML algorithm's role is to search the space o f possible hypotheses to discover the best 

estimate o f the mapping function f . such that Cj = f ( x ) .J  = 1 C.. For the search to be

successful the assumption has to be made that the attributes represent only properties of 

the records but not the relationships between the records. A ML algorithm generates 

hypotheses by finding common attributes and their values for records representing each 

class. Then, the generated hypotheses are applied to new records to predict their class 

membership.

12
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One of the issues in ML is presence o f noise in the data. The noise can be present in the 

attributes and/or in the class descriptions (false records). Only some o f M L algorithms are 

noise-tolerant, which means that they can generate rules that do not cover noisy records. 

Another issue is generalization and specialization of the generated rules. A general rule 

covers more records, and thus might perform better on unseen data than a specific rule. A 

record is covered by a rule when it satisfies all conditions o f the i f  part of the rule. In 

cases where the number o f the generated hypotheses is excessively large an algorithm has 

to choose a subset o f them [19] by means of:

• Heuristics

• Minimum description length principle

• Background knowledge about the domain

• Reasoning from first principles (like laws o f physics, mathematical)

• Decisions made by the user, based on his/her knowledge o f the problem.

2.4.2 Accuracy Test

The accuracy test quantifies quality o f a learning method such as missing data imputation

procedure. An accuracy test is defined as:

Correct imputation
Accuracy = -----------=---------------

Total

Where Correct ̂ imputation indicates the number o f imputed values, which are the same 

as the original values, and the Total is the total number for missing values.

2.4.3 Verification Test 

13
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When two outcomes (positive and negative) o f the imputation are possible the following 

three evaluation criteria, collectively called as a verification test, can be used for 

measuring the effectiveness o f the imputation procedure. In this case we have four 

possibilities, as shown below

Imputation positive Imputation negative
Original value positive TP FN
Original value negative FP TN

Where TP, or true positive, indicates the number o f correct positive imputations 

(classifications); TN or true negative is the number o f correct negative imputations; FP or

false positive is the number o f incorrect positive imputations; and FN or false negative is

the number o f incorrect negative imputations.

The three evaluation criteria are:

Sensitivity = --------------- —  100% = —  100%
Original _ value _ positive TP + FN

TN TN
Specificity =  100% = -------------100%

Original _ value _ negative FP + TN

TP + TN TP + TN
Pr edictive acuracv = 100% = -------------------------- 100%

total TP + TN + FP+FN

In other words, the sensitivity measures the percentage o f the imputed values, which are

positive when the original values were actually positive, i.e. how many o f the positive

test examples is recognized. The specificity measures the percentage o f the imputed

values, which arc negative when the original values were negative, i.e. how many o f the

negative test examples is excluded. Predictive accuracy gives the overall evaluation. It is

important to notice that a high level o f confidence can be placed only for results that yield

high values for all three measures: sensitivity, specificity, and predictive accuracy.

14
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2.4.4 Classification

A typical application o f the rules generated by ML algorithms is classification. A 

common feature o f M L algorithms is their ability to almost perfectly classify the training 

set, which corresponds to high correctness o f the generated rules. However, the true value 

o f the rules generated by an algorithm should be evaluated only by testing them on new, 

unseen during learning, data.

Figure 5 shows how an ML algorithm is used to generate and test a data model (rules) 

using input data, and how the model is used to perform a classification task. First, input 

data is divided into disjoint training and testing sets. The training set is used to generate 

rules, while testing data is used to evaluate validity o f the generated rules. Once the rules 

achieve satisfactory quality level, usually in terms o f accuracy o f describing data from the 

test set, they are used to perform classification on data that was not used during the 

training and testing process.

IL  A lgorithm

No
3 Data Model

Yes

Classification
New Data

Test
Data

Training
Data

Data
base

Figure 5. Classification task 

The data model generated by ML algorithm can be described in the form o f rules or 

decision trees. A decision tree is capable o f expressing knowledge about data described

15
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by a finite number o f classes. The tree consists o f nodes and labeled edges. Nodes 

represent attributes, while edges represent possible values of the attributes. The terminal 

nodes in the tree, called leaves, represent classes. The tree is used to perform a 

classification o f examples by following a path down the tree, starting from the top (root) 

node, and descending down by following edges, corresponding to the values o f the 

attributes, until a leaf node is reached. The class value assigned to the leaf node defines 

classification outcome. The decision tree representation is utilized by decision tree 

algorithms. An example tree is shown in figure 6.

Final
Hxam

>50%

M idterm
l-'xam Assignments

•50ao - ^ \  <50% > 5 0 % ^ ^ N ,  <50%

C A  1}

figure 6. Ex , 'e o f a decision tree
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3. Methods for Handling Missing Data

Existing methods for dealing with missing values can be divided into two categories: 

missing data removal and missing data imputation methods. The removal o f missing 

values is often concerned with discarding the records with missing values, or removing 

attributes that have missing information. The latter can be applied only when the removed 

attributes are not needed to perform analysis o f the data. Both, removal o f records and 

attributes result in decreasing the information content o f the data, and are practical only 

when a database contains small amounts o f missing information, and when an analysis o f 

the remaining complete records w ill not be biased by the removal [44]. They are usually 

performed in case o f dealing with missing data introduced in the MCAR mode. Another 

method belonging to this category suggests substituting the missing values for each 

attribute with an additional category. Although this method provides a simple and easy to 

implement solution, using it results in substantial problems during the subsequent 

analysis o f the resulting data [73].

3.1 Single and Multiple Imputation Methods

The imputation o f missing values uses a number o f different algorithms, which can be 

further subdivided into single and multiple imputation methods. In case o f single 

imputation methods, a missing value is imputed by a single value, while in case of 

multiple imputations methods, several usually likelihood ordered choices for imputing 

the missing value are computed [59]. Rubin defines multiple imputations as a process 

where several complete databases are created by imputing different values to reflect 

uncertainty about the missing data model, and later each o f the databases is analyzed by 

standard complete-data procedures. At the end, the analyses for each database are

17
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combined into one final result [11] [60]. Detailed description of multiple imputation 

algorithms can be found in [61] [68], while a primer can be found in [69]. Several 

approaches have been developed to perform multiple imputations. Li [46], and Rubin and 

Schafer [58] use Bayesian algorithms that perform imputation using posterior predictive 

distribution o f the missing data based on the complete data. The Rubin-Schafer method 

assumes the MAR mode, as well as multivariate normal distribution for the data. Azola 

and Harrell [2] introduce a method that imputes each incomplete variable by cubic spline 

regression given all other variables, without assuming that the data can be modeled by a 

multivariate distribution. The commonly used strategies for handling missing values with 

focus on multiple imputation methods, to impute the missing values in a database related 

to the airborne particulate matter are reviewed in [39]. In order to evaluate the 

improvements in accuracy o f imputation using multiple imputations, four ad hoc single 

imputation methods were used. A ll the ad hoc single imputation methods replace the fully 

missing values with the sample means o f the fully observed data for that attribute, but 

differ in their imputation o f missing values below detection limits. In addition, 95% 

confidence intervals are considered for the single and multiple imputation methods. From 

the viewpoint o f data analysts building models for multiple imputation. Integrated 

Moving Average (IMA) seasonal time series model [39] is considered as the most 

appropriate model for the airborne particulate matter data.

Figure 7 illustrates the flow o f operations in a multiple imputation procedure.

18
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V )-------
multiple imputed analysis

databases results

Figure 7. Flow o f operations in multiple imputation 

Multiple imputation methods are computationally more expensive than single imputation 

methods, but at the same time better accommodate for sample variability o f the imputed 

value, and uncertainty associated with a particular model used for imputation [44].

3.2 Data Driven, Model Based, and ML Based Imputation Methods

Both, the single and multiple imputation methods can be divided into three categories: 

data driven, model based, and ML based [44] [47] [52]. Data driven methods use only the 

complete data to compute imputed values, and assume that the data are fixed, i.e. they are 

not the outcomes o f random variables. Model based methods use data models to compute 

imputed values, and assume that the data are generated by a model governed by unknown 

parameters. Finally, ML based methods use the entire available data and a ML algorithm 

to perform imputation.

3.2.1 Data Driven Imputation Methods

The data driven methods include simple imputation procedures, such as mean, 

conditional mean, hot deck, cold deck, and substitution imputation [44] [64]. Mean and 

hot deck methods are described in detail later in the study, while the latter two are only 

applicable in special cases. The cold deck imputation requires additional database, other
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than the database with missing values, to perform imputation, which is usually not 

available to a data analyst. The substitution method is applicable specifically to survey 

data, which significantly narrows its application domains.

3.2.2 Model Based Imputation Methods

Several model based imputation algorithms are described in |47]. The leading methods 

include regression based, likelihood based, and linear discriminant analysis based 

imputation. In regression based methods, the missing values for a given record arc 

imputed by a regression that uses complete values o f attributes for that record. The 

method requires multiple regression equations, each for a different set o f complete 

attributes, which can lead to high computational cost. Also, different regression models 

must be used for different types o f data. i.e. linear or polynomial models can be used for 

continuous attributes, while log-linear models are suitable for discrete attributes (44]. The 

likelihood based methods can be used to impute values only for discrete attributes. They 

assume that the data is described by a parameterized model, where parameters are 

estimated by maximum likelihood or maximum a posteriori procedures, which use 

different variants o f the Expectation Maximization (EM) algorithm [15] [47].

3.2.3 Machine Learning Based Methods

Recently, several ML algorithms were applied to design and implement imputation 

methods. A probabilistic imputation method that uses probability density estimates and 

Bayesian approach was applied as a preprocessing step for a larger independent 

component analysis system, which is another example o f data analysis tasks that requires 

complete data [14]. Neural networks were used to implement missing data imputation
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methods [36] [73]. We also note the usage o f association rule algorithm, which belongs to 

data mining methods, to perform multiple imputations o f discrete data [76]. Recently, 

supervised ML algorithms were used to design supervised imputation methods. In this 

case, imputation is performed on one attribute at the time, where the selected attribute is 

used as a class attribute. A M l. algorithm is used to generate a data model from data 

associated with complete portion o f the class attribute, and the generated model is used to 

perform classification to predict missing values o f the class attribute. Several different 

families o f ML algorithms can be used, such as decision trees, probabilistic, and decision 

rule algorithms [ 19J. while the underlying methodology remains the same. For example, a 

decision tree algorithm C4.5 [53) [54j and a probabilistic algorithm Autoclass [15] were 

used in [44]. while a decision rule algorithm CLIP4 [16] [17] and a probabilistic 

algorithm Nai've-Bayes were used in [28]. Another supervised imputation method that 

combines decision trees and information retrieval principles to develop incremental 

conditional mean imputation is presented in [20]. Also, a limited comparison between 

statistical and ML based imputation methods is presented in [29].

The imputation using a ML algorithm is performed by executing multiple classification 

tasks. Kach classification task is performed in two steps. First, during the learning step a 

ML algorithm generates a model using learning data. The model is used to classify 

examples into a set o f predefined classes, which in case o f missing value imputation are 

all distinct values o f an attribute that has missing values. Second, during the testing step, 

the generated model is used to impute missing data for the testing data, which was not 

used during learning. The detailed procedure to impute missing values using ML 

algorithms follows.
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First, the attributes that contain missing values are determined. Each such attribute is 

treated as class attribute in turn, which means that classification task is performed as 

many times as the number o f attributes that contain missing values. Next, the data is 

divided into training and testing parts. A ll examples that have a non-missing value in the 

attribute that is selected as the class attribute are placed in the training set. The remaining 

examples, i.e. those that have missing information in the class attribute, are placed in the 

testing set. Next, the M L  algorithm is used to generate data model using the training data. 

The model is applied to the testing data, and classification task is performed to predict 

values o f the class attribute. The predicted values are imputed for the missing values. For 

each classification, i.e. imputation performed for each attribute that contains missing 

values, the results in terms o f sensitivity, specificity and accuracy o f the classification, 

are recorded. Next, another attribute that contains missing values is selected and the 

process repeats until all attributes are considered. Finally, the average value o f sensitivity, 

specificity and accuracy across all attributes is computed.

Figure 8 is used to illustrate the above procedure. A  database, which contains missing 

values in all the attributes, is shown in this figure. To impute the missing values, in the 

first step attribute 1 is set to be the class attribute. Then the database is divided into 

training set and test set parts. The training dataset is used to develop a data model, which 

is applied on the testing data to predict the values o f the class attribute. In second step 

attribute 2 is taken as the class attribute and the same procedure as step one is repeated 

here as well. This procedure continues t il l imputing the missing values in nth attribute.
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3.3 History and Motivation

The development o f new missing data imputation methods is driven mainly by the need 

to improve accuracy o f imputation. The simplest data driven imputations methods, which 

were developed first, were followed by model based methods, which in turn were 

followed by multiple imputation procedures. As a result, very complex algorithms, such 

as multiple imputation logistic regression methods were developed. Recently, ML based 

imputations were experimentally compared with data driven imputation, showing their 

superiority in terms of imputation accuracy [28]. Because o f the recent rapid growth of 

database sizes, the researchers and practitioners require imputation methods that are not 

only accurate, but also most scalable. Multiple imputations and ML based imputation 

methods are characterized by relatively high quality, but at the same time are very 

complex and may be too slow when imputations must be computed rapidly in real time, 

or for large databases [64],
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To this end, a novel framework that aims to improve the accuracy o f existing imputation 

methods while maintaining their computational complexity is proposed in this study. We 

show, both theoretically and experimentally, that the proposed framework has linear 

asymptotic complexity, w ith respect to the number o f data points. Therefore as long as 

the base imputation method has linear or worse complexity (to the best o f  our knowledge, 

there are no sub-linear imputation methods), application o f the framework does not 

worsen the base method’ s complexity. The proposed framework consists o f three 

elements, which are mean pre-imputation, use o f confidence intervals and boosting. 

Extensive experimental tests show that application o f the proposed framework improves 

accuracy o f base imputation method and at the same time preserves its asymptotic 

complexity. The results show that applying the framework to a very simple imputation 

method, such as hot deck, improves its accuracy o f imputation to match accuracy o f 

complex model based imputation methods, such as multiple polytomous logistic 

regression imputation, while being significantly faster and easier to implement.

This study concerns imputation o f discrete attributes. This lim itation is imposed by the 

considered base imputation methods, i.e. in case o f considered M L  based imputation only 

discrete attributes can be imputed. We note that the proposed framework is applicable to 

imputation methods that handle continuous attributes, and its extension to these methods 

w ill be the subject o f  future work.
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4. Proposed Framework

All imputation methods used in this study are described in this chapter. These methods 

include both single and multiple imputation methods. Then the components o f the 

proposed framework i.e. mean pre-imputation module, confidence intervals, and 

boosting, are explained and analv/ed to obtain the asymptotic complexity o f the 

framework.

4.1 Introduction

The proposed framework for improving the accuracy o f existing missing data imputation 

methods is shown in Figure 9. It consists o f three main elements, i.e. mean pre

imputation. application o f confidence intervals, and boosting, which are shown as gray 

boxes.
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The missing values are first pre-imputed, i.e. temporarily filled with a value that is used 

to perform imputation, using a very fast method such as mean imputation. Next, each 

missing pre-imputed value is imputed using a base imputation method, and the imputed 

value is filtered by using confidence intervals. Confidence intervals are used to select the 

most probable imputed values, while rejecting possible outlier imputations. Once all the 

values are imputed and filtered, each o f them is assigned a goodness value that describes
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quality o f the imputation, i.e. it usually is expressed as an imputation probability or a 

distance. Top half o f the imputed values are accepted, while bottom half are rejected, and 

the process repeats with the new partially imputed database. After 10 iterations, all 

remaining imputed values are accepted, and the imputed database is created. We note that 

the base methods can be a data driven, model or ML based imputation algorithm. The 

study tests the framework with two very simple imputation methods, i.e. model driven 

hot deck imputation and ML based imputation method that uses Naive Bayes algorithm, 

to show that these combinations can generate imputations o f quality that is higher or the 

same as the quality o f advanced and complex model based methods.

4.2 Relevant Imputation Methods

This chapter provides short description o f relevant imputation methods, i.e. methods that 

were used in the proposed framework, or in the experimental section o f this study. A 

description o f how the selected methods arc incorporated in the proposed framework is 

also provided. Selection o f the imputation methods was driven by the following 

assumptions:

-  The base methods that w ill be tested with the proposed framework should be very 

simple to show that they can be improved by application o f the framework to match 

or surpass quality o f complex, high quality model based imputation methods. They 

should also cover both data driven and ML based categories. Therefore, hot deck 

imputation and ML based imputation that uses Naive Bayes algorithms were selected.

-  To provide comprehensive evaluation, the framework with the selected two base 

methods should be compared with advanced, high quality model based imputation 

methods, as well as fast data driven methods. Therefore, two multiple imputation
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methods, i.e. linear discriminant analysis based method and multivariate imputation 

that combines logistic, polytomous and linear regression, and three data driven 

methods, i.e. mean, hot deck, and multiple imputation by sampling, are used in the 

experimental section.

4.2.1 Single Imputation Methods

In the mean imputation, mean o f values o f an attribute that contains missing data is used 

to fill in the missing values. In case o f a categorical attribute, a mode, which is the most 

frequent value, is used instead o f mean. The algorithm imputes missing values for each 

attribute separately. Mean imputation can be conditional or unconditional. In case of 

unconditioned mean, the filled mean value is not conditioned on the values o f the other 

variables in the record. Consequently, variance o f the imputed variable and its covariance 

with other variables maybe underestimated. Conditional mean method that imputes the 

missing values with a mean, which depends on the values o f the recorded variables for 

the incomplete record, was introduced in [8], In this study, the unconditional mean, 

which is computationally faster, is used to both impute the missing values as a stand

alone method, as well as a method to perform pre-imputation o f the missing values in the 

proposed framework.

In the hot deck, for each record that contains missing values, the most similar record is 

found, and the missing values are imputed from that record. I f  the most similar record 

also contains missing information for the same attributes as the missing information in 

the original record, then it is discarded and another closest record is found. The procedure 

is repeated until all the missing values are successfully imputed or entire database is
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searched. In case when there is no similar record with the required values filled in, the 

closest record with the minimum number o f missing values is chosen to impute the 

missing values. There are several ways o f finding the most similar record to the record 

with missing values [61] [63] [29], In this study, the distance function which is used to 

measure the similarity between different records assumes distance o f 0 between two 

attributes i f  both have the same numerical or nominal values, otherwise the distance is 1. 

The distance o f 1 is also assumed for an attribute, for which any o f the two records has a 

missing value. As an example, considering a database described by 4 attributes that has 

two records with the same value for the first attribute, different values for the rest o f the 

attributes, and a missing value for the fourth attribute in one o f the records, the distance 

between the two records is 2. In the case o f supervised databases, it is very important to 

use classification characteristics o f the data because of the correlations (relationships) 

that exist between the records in the same class. Therefore, to use these characteristics 

and decrease running time, in this study the distance is computed between the records 

within the same class.

In regression, imputation is performed by regression o f the missing values using 

complete values for a given record [36]. Several regression models can be used, including 

linear, logistic, polytomous and other. Linear regression applies a linear model, while 

logistic regression applies maximum likelihood estimation after transforming the missing 

attribute into a logit variable, which shows changes in natural log odds o f the missing 

attribute. Usually, logistic regression model is applied for binary attributes, polytomous 

regression for discrete attributes, and linear regression for numerical attributes.
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Na'ive-Bayes is a ML technique based on computing probabilities [25], The algorithm 

works only with discrete data and requires only one pass through the database to generate 

a classification model, which makes it very efficient, i.e. linear with the number of 

records. Imputation based on Naive Bayes algorithm consists o f very simple and efficient 

two steps process. Each attribute is treated as the class attribute, and the data is divided 

into two parts: training database that includes all records for which class attribute is 

complete and testing database for which the records are missing. First, prior probability 

o f each non-class attribute value and frequency o f each non-class attribute value in 

combination with each class attribute value is computed based on using the training 

database. The computed probabilities are used to perform prediction of class attribute 

values for testing database, which constitute the imputed values.

CLIP4 is a rule-based algorithm that works in three phases [ 16][17]. During the first 

phase a decision tree is grown and pruned to divide the data into subsets. During the 

second phase the set covering method is used to generate production rules. Finally, 

during the third phase goodness o f each o f the generated rules is evaluated, and only the 

best rules are kept while the remaining (weaker) rules are discarded. A specific feature of 

CL1P4 is use o f the integer programming model to perform crucial operations, such as 

splitting the data into subsets during the first phase, selecting the data subsets that 

generate the least overlapping and the most general rules, and generating the rules from 

the data subsets in the second phase. The CLIP4 generates data model that consists o f 

production rules, which use inequalities in all selectors, i.e. IF NUMBER_OF_WHEELS 

4- 4 AND ENGrNE ^  yes THEN CLASS=bicycle. It works only with discrete data.
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( V J  is a decision tree algorithm |53]|54|. It uses an entropy based [70j measure, which 

is called gain ratio, as a splitting criterion to generate decision trees. Each tree level is 

generated by dividing the data at a given node into a number o f subsets, which are 

represented by branches, lutr each division, gain ratio is used to select the best attribute, 

which values are used to divide the data into subsets, Each subset contains data that takes 

on one o f the values o f the selected attribute. C4.5 generates data model that consists o f a 

decision tree, which can be translated into a set o f production rules that use equalities in 

all selectors. It can work with both discrete and continuous data.

4.2.2 Multiple Imputation methods

One o f the most flexible and powerful multiple imputation regression based methods is 

the Multivariate Imputation by Chained l-quations (MICH) [9j [10]. The method provides 

full spectrum of conditional distributions and related regression models. MICE 

incorporates logistic regression, polytomous regression, linear regression, and uses Gibbs 

sampler to generate multiple imputation [13]. MICE is furnished with a comprehensive, 

state-of-the-art missing data imputation software package [40], which is used in the 

experimental section o f this paper, and allows user to specify a different imputation 

method for each incomplete attribute. It provides Bayesian linear regression for 

continuous attributes, logistic regression for binary attributes, and polytomous logistic 

regression for categorical data with more than two categories. MICE also delivers a 

comprehensive library o f non-regression imputation methods, such as predictive mean, 

unconditional mean, multiple random sample imputation that is suitable for the attributes 

in the MCAR model, and linear discriminant analysis (EDA) for categorical data with 

more than two categories. EDA is a commonly used technique for data classification and
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dimensionality reduction [48], and at the same time serves as a statistical approach to 

classification based missing data imputation for univariate missing data. LD A method is 

especially valuable for data where within-class frequencies are unequal, as it maximizes 

the ratio o f between-class variance to the within-class variance to assure best separations.

Table 1 summarizes all methods, which are used in this study. Three single, and four 

multiple imputation methods were used. The methods include data driven, model based 

and M L  based types. We also note that some o f  the considered imputation methods work 

only with discrete attributes. The experimental section used the following imputation 

methods: random sampling multiple imputation (SAM), mean single imputation (Mean) 

and hot deck single imputation (HD), regression imputation that uses polytomous and 

logit multiple imputation (POLYLOGREG), linear discriminant analysis together with 

logit regression multiple imputation (LDALOGREG), M L  based Naive Bayes single 

imputation (NB), and Nai've Bayes and hot deck imputations combined w ith the proposed 

framework (FNB and FHD, respectively).

Table 1 .Summary of the imputation methods used in this study

Method name Imputation algorithm
Multiple/single

imputation
Discrete

data
Continuous

data Abbreviation

Naive-Bayes Naive Bayes algorithm single Yes No NB
Hot deck nearest neighbor single Yes Yes HD

Mean attribute average (mode) single Yes Yes Mean
Polyreg polytomous regression multiple Yes No POLYLOGREG

LDA
linear discriminant 

analysis
multiple Yes No LDALOGREG

Logreg logistic regression multiple Yes
(Binary)

No —

Sampling random sampling multiple Yes Yes SAM
Framework 
with Naive- 

Bayes

Proposed framework 
with Naive-Bayes 

algorithm
Single Yes No FNB

Framework 
with Hot deck

Proposed framework 
with Hot deck algorithm

Single Yes Yes FHD
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4.3 Detailed Description of the Proposed Framework

Following, each component o f the proposed framework, see Figure 9, is explained and its 

role in the overall framework is described. Also, each component’ s description is 

provided and its asymptotic complexity is investigated. We also note that defining n as 

the number o f attributes, r as the number o f records, m as max number o f missing values 

for an attribute, and v as the max number o f values for an attribute, the following 

assumptions need to be satisfied: r » n ,  r » v ,  r>m, and n and v are small constants. 

Therefore, we assume that complexity is a function o f r and n*m, and the remaining 

variables are omitted.

4 .3 .1  M ean  Pre-Im putation  M odule

The mean pre-imputation module was developed based on the premise that imputation 

methods would benefit, i.e. improve their accuracy, by having a complete database to 

obtain a model and impute the missing data. On the other hand, the pre-imputation should 

not worsen asymptotic complexity o f  the entire imputation procedure, and therefore a 

simple and efficient method should be selected to perform the pre-imputation. Mean 

imputation was selected as the best candidate for this purpose. Its advantages are 

simplicity in addition to the acceptable imputation accuracy [28]. Extensive experiments 

presented in chapter 5 show that mean pre-imputation on average improves imputation 

accuracy o f the subsequently used base imputation method. Also, since computing mode 

or mean values for each attribute from a given database requires one sweep through the 

data (for computing mode the attribute values should be encoded into consecutive 

integers to avoid searching through all attribute values when computing frequencies), the
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complexity o f performing pre-imputation is linear with respect to the number o f records, 

i.e. O(r), and does not depend on m. This procedure is best described in Figure 10 which 

presents a pseudo code for the mean pre-imputation procedure. We note that the impact 

o f the mean pre-imputation on the quality o f imputation w ill be shown experimentally 

later in the study. As it is mentioned before, the data used for this study is either discrete 

or categorical data. Therefore all the parameters used in the pseudo code should be 

defined as “ Strings”  to store the data, which increases the run time o f the program and 

occupies a huge amount o f  memory that is a big concern in the case o f large amount o f 

data. In order to solve this problem, all the data are encoded into the integer values after 

loading them from the database and is used in all parts o f the program. This encoding 

makes it possible to save the data in integer tables. Consequently the run time o f the 

program decreases and memory is used more efficiently. In this study the pseudo code 

related to the components o f the framework are described to find the asymptotic 

complexity o f the proposed framework. A fter finishing the imputation procedure, the 

encoded values w ill be decoded to their original values.

Figure 10 shows the pseudo code for the mean pre-imputation procedure.

The following is the description o f  the terms used in the Figure 10:

List: is a r*n table that stores the whole encoded data

Position: is a table that keeps the location o f the missing values related to the whole 

database so its dimension is a function o f the position and amounts o f missing values. 

mode: represents the mode (most frequent value) o f the values in each attribute 

mode-count: is a one dimensional array to count the frequency o f  each value in one 

attribute
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model: represents the frequency of the most frequent value

Given: Position, List, n (number of attributes).

1 Initialize mode =: O.modci -  0;

2 for j = 1 to n //for all attributes

2.1 if(  Position[j )[0] *  0)

2.1.1 then for i - 1 to v

2.1.1.1 initialize mode-count|] 0.

2.1.2 fo ri 1 tor //for till the records

2.1.2.1 if  (List[i] * ’'?” ) then mode-count|List[i]]r+; // ? stands for the missing value

2.1.3 for i ~ 1 to numberofvalues //for all values in each attribute

2.1.3.1 if( mode-countfi] > modci)

2.1.3.2 then modei - mode-count[ij; mode i:

2.1.4 for i -  1 to Position[j][0]

2.1.4.1 l.ist[illPosition[jl[i+l]) = mode:

•igure 10. Pseudo code o f the mean pre-imputation procedure

At the end all the missing values in each attribute in the List table are replaced by the 

mode of that attribute.

Also several “ for loops" exist in the pseudo code that arc described as following:

The first “ for loop" is repeated n times and each time one attribute is taken to impute 

its missing values with the mode (most frequent value) o f the attribute.

Loop in line 2. I. /: is to initialize the mode-count with zero

Loop in line 2.1.2: is to count the frequency of each value in the attribute

Loop in line 2.1.3: finds the most frequent value in the attribute

Loop in line 2.1.4: fills all the missing values in the list table with the mode (most

frequent value)
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In the following, the asymptotic complexity of the mean pre-imputation method is 

determined. The size o f the Position array is at most nO(m) just because some attributes 

may not contain missing values, List array is nO(r), Type is n and mode-count is O(v). To 

estimate the complexity o f the mean pre-imputation process, the complexity o f each step, 

is calculated separately as follows:

Asymptotic complexity o f  the step 1. i.e. initialization is: 

nO(ni) to derive Position matrix 

nO(r) to derive List matrix 

nO (l) to derive Type matrix

Thus, the total complexity o f step 1 is nO(m) + nO(r) + nO(l) = nO(r).

Asymptotic complexity o f step 2 is:

The entire step is repeated n times, and therefore complexity o f steps 2.1 through 

2.1.4.1 w ill be multiplied by n.

Line 2.1 0(1)

Line 2.1.1 0(v) and applies to line 2.1.1.1 nesting in pseudo-code

Line 2,1.1.1 0(1)

Line 2.1.2 0(r) and applies to line 2.1.2.1

Line 2.1.2.1 0(1)

Line 2.1.3 0(v) and applies to lines 2.1.3.1-2

Line 2.1.3.1 0(1)

Line 2.1.3.2 0(1)

Line 2.1.4 0(m) and applies to line 2.1.4.1

Line 2.1.4.1 0(1)
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The complexity of step 2 is: 0(n) * [0(1) + 0 (v )*0 ( l)  + 0 (r)*Q (l) + 0 (v )*(0 (l)  + 

0(1)) + 0 (m )*0 (l)] = 0(nr). The overall complexity is nO(r) + 0(nr) = 0(nr) = 

0(r).

So overall asymptotic complexity o f the mean pre-imputation is a linear function o f the 

size o f database.

4.3.2 Confidence Intervals Module

Confidence intervals for the mean are an interval estimate for the mean. Interval 

estimates are often desirable because the estimate of the mean varies from sample to 

sample. Instead of a single estimate for the mean, a confidence interval generates a lower 

and upper limit for the mean. The interval estimate gives an indication o f how much 

uncertainty there is in our estimate o f the true mean. The narrower the interval, the more 

precise is our estimate. Confidence limits are expressed in terms of a confidence 

coefficient. As a technical note, a 95% confidence interval does not mean that there is a 

95% probability that the interval contains the true mean. The interval computed from a 

given sample either contains the true mean or it does not. Instead, the level o f confidence 

is associated with the method o f calculating the interval. The confidence coefficient is 

simply the proportion o f samples of a given size that may be expected to contain the true 

mean. That is, for a 95% confidence interval, i f  many samples are collected and the 

confidence interval computed, in the long run about 95% of these intervals would contain 

the true mean.

In this study the confidence intervals module is used to filter out possible outlier 

imputation candidates that are generated by the base imputation method. The filter is
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based on the premise that imputed values, which are close to the mean (for numerical 

attributes) or mode (for nominal attributes) o f an attribute, have the highest probability of 

being correct. The filter is designed by computing so called confidence intervals. Imputed 

values for a given attribute that are within the intervals are kept, while the values outside 

of the interval are discarded. The confidence intervals are defined as an interval estimate 

for the mean of an attribute [72]. Confidence intervals define a lower and upper limit for 

the mean, which are defined as M -  < X  < M  + z a ^  , where M is the sample

mean, cr,( = is standard error of the mean, cr is the standard deviation o f the original
V /-

distribution, r is the number o f records, and the value o f z depends on the desired level of 

confidence. This definition applies to numerical attributes.

In the case o f nominal attributes, mean is substituted by mode, and frequency o f values 

for an attribute is computed and normalized as follows: value o f 1 is assigned to the most 

frequent value for the attribute, 0 is assigned to the frequency o f zero, and the frequencies 

o f the remaining attribute values are assigned a normalized value within [0,1]. By 

analogy to the confidence intervals for numerical attributes, the confidence intervals for 

nominal attributes are defined as: f av>, < X  < 1, where favg is an average value o f the

normalized frequencies for all attribute’s values. In other words, imputed values with a 

frequency lower than the average will be filtered out. To further improve quality o f the 

filter, for all supervised databases the confidence intervals are computed individually for 

each o f the predefined classes, i.e. a confidence interval is computed for each subset o f 

the database that is associated with a given class value. When applying the computed 

intervals to filter an imputed value, an interval is used that corresponding to the class
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value o f the records for which the value is imputed. We note that normalizing and 

computing average frequencies for all values for each attribute from a given database 

requires one sweep through the data (again, the attribute values should be encoded), the 

complexity of computing confidence intervals is linear with respect to the number of 

records, i.e. O(r), and does not depend on m. Also, filtering the imputed values using the 

confidence intervals requires 0(n*m) time since filtering each missing value takes 0(1) 

time, and therefore the complexity o f the confidence intervals module is 0(r) + 0(n*m), 

and is linear with respect to the number o f records and the total number o f missing 

values. Computation and application of confidence intervals for numerical attributes have 

also linear complexity. The details of the required procedure are shown in Figure 11,

which represents the pseudo code for computing the confidence intervals.

Given array[]

1 Initialize Numbers[] = 0, Count = 0; Interval!] = 0;

2.1 for j  = 1 to r //for all records

2.1.1 if  (arrayfj] ̂  ”?” )

2.1.2 then Numbers[array[j]]++;

2.2 max = Numbers[0]; min = Numbcrs[0]; Tnumbers = 0;

2.3 for k= 1 to v

2.3.1 if (max < Numbers[k])

2.3.2 then max = Numbers[k];

2.3.3 if (min > Numbers[k])

2.3.4 then min=Numbcrs[k];

2.4 for k=l to v

2.4.1 Numbers[k] = (Numbersfk] / max); //normalizing the frequencies

2.4.2 Tnumbers+ = Numbers[k];

2.5 TNumbcrs = Tnumbers / v;

2.6 for k = l to v

2.6.1 if  (Numbers[kj > Tnumbers or min = max)

2.6.2 then Interval[Count] = k; Count++;

Figure 11. Pseudo code fo r the procedure o f  com puting  the confidence intervals
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We note that the impact o f the confidence intervals module on the quality o f imputation 

will be shown experimentally later in the study.

In the above pseudo code the following terms are used:

Array: represents each attribute o f the database.

Numbers: represents the frequency o f each value in the attribute.

Count: counts the number o f values existing in the interval,

Interval: is a set o f values that constitute the intervals.

Tnumber: is the total number of records in the attribute ignoring the missing values. 

Description o f the loops existing in the pseudo code is as following:

Loop in line 2.1: obtains the frequency o f each value in the current attribute.

Loop in line 2.3: finds the most frequent and less frequent values in the database.

Loop in line 2.-I: nonnalix.es the frequencies with respect to the most frequent value, 

therefore the most frequent value w ill have a normalized frequency equal to 1.

Loop in line 2.6: selects all the values that have a frequency higher than the average 

and stores the data in an array called Interval.

Following, asymptotic complexity o f the procedure for computing the confidence 

intervals is determined. The complexity o f each step, is calculated separately as: 

Complexity o f the step I. i.e. initialization:

0(r) to derive array matrix

Tims, the total complexity o f step 1 is 0(r).

Complexity o f step 2 is:
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The entire step is repeated n*c times, where c is the number o f classes in a supervised 

database (c=l for unsupervised database), and therefore complexity of steps I through 

2.6.2 will be multiplied by n*c.

Line 1 0(v) + 0(1) + 0(v) = 0(v)

Line 2.1 0(r) and applies to lines 2.1.1 and 2.1.2

Line 2.1.1 0(1)

Line 2.1.2 0(1)

Line 2.2 0(1)

Line 2.3 0(v) and applies to lines 2.3.1 through 2.3.4

Line 2.3.1 0(1)

Line 2.3.2 0(1)

Line 2.3.3 0(1)

Line 2.3.4 0(1)

Line 2.4 0(v) and applies to lines 2.4.1 through 2.4.2

Line 2.4.1 0(1)

Line 2.4.2 0(1)

Line 2.5 0(1)

Line 2.6 0(v) and applies to lines 2.6.1 through 2.6.2

Line 2.6.1 0(1)

Line 2.6.2 0(1)

The overall complexity is O(nc) * [O(v) + 0 (r)* (0 ( l)  + 0(1) + 0(1)) + 0 (v )* (0 ( l)  + 

0(1) + 0(1) + 0(1)) + 0 (v )* (0 ( l)  + 0(1) + 0(1)) + 0 (v )*(0 (l)  + 0(1))] = O(ncr) = 

0(r).
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Thus, the overall complexity of the confidence intervals procedure is a linear function of 

the size o f database. Also, filtering the imputed values using the confidence intervals 

requires 0(1) time, and therefore the complexity o f the confidence intervals module is 

Q(r). Computation and application o f confidence intervals for numerical attributes have 

also linear complexity.

4.3.3 Boosting

Boosting is a ML procedure for improving the accuracy of classification algorithms [33] 

[65]; full reference list can be found at http://www.boosting.org/. The underlying idea of 

boosting is to combine simple “ rules”  to form an ensemble such that the performance of 

the single ensemble member is improved. Imagine /?|,/i2 are a set of parameters, 

and consider the function

r
/(.v) = Z c , /,(,•).

1=1

Here ^  denotes the coefficient with which the ensemble member /i( is combined; both 

ct and the learner or parameter //, are to be learned within the boosting procedure.

Keans and Valiant [41] proved that learners, each performing only slightly better than 

random, can be combined to form an arbitrary good ensemble hypothesis when enough 

data is available. Schapire [67] was the first one who provided a provably polynomial 

time boosting algorithm and the AdaBoost (Adaptive Boosting) algorithm [32][34] is 

generally considered as a first step towards more practical boosting algorithms. Arcing 

algorithm is a similar method to AdaBoost, which converges to a linear programming 

solution [7]. An interesting step towards practical applications states that large parts o f
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the early boosting literature persistently contained the misconception that boosting would 

not over fit even when running for a large iterations. Simulations by [37] [57] on datasets 

with higher noise content show the overfitting effects, which can be avoided by 

regularizing boosting so as to lim it the complexity of the function class. It is important to 

clarify the relations between optimization theory and boosting procedures in order to 

develop means for achieving robust boosting [7][31][35]. Developing this relationship 

can introduce new types of boosting algorithms. Some examples are boosting algorithms 

for regression [26][55], multi-class problems [1][56], unsupervised learning [12][56] and 

to establish convergence proofs for boosting algorithms by using results from the theory 

o f optimization. Further extensions to boosting algorithms can be found in 

[12][56][35][67][71 ][ 1 ][26] [49][23]. Recently, boosting strategies have been quite 

successfully used in various real-world applications. For example in [22] boosting was 

used for tumor classification with gene expression data. For further applications and more 

details we refer to the www.boosting.org/applications.

Boosting in its original version is a procedure where a set o f data models is iteratively 

generated by an algorithm for a given dataset based on modification of weights 

associated with records. The weights are modified to increase focus of the next model on 

generating correct model for records that were misclassified by the preceding classifiers. 

The classification generated by individual models is combined using a voting schema to 

generate classification outcome. In general, both theoretical and experimental studies 

show that boosting which is a weak classification algorithm, i.e. algorithms that 

generated models better than random drawing, results in a classification that is more 

accurate than a model generated by a strong classification algorithm.
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A boosting-like technique was applied in the proposed framework. The main goal was to 

improve the accuracy o f the imputation by accepting only high quality imputed values 

and using them, i.e. additional and reliable information, to impute the remaining values. 

The module is appended at the end of the imputation process, when all imputed values 

are already filtered. It works iteratively, where in each iteration it selects and accepts top, 

high quality imputed values, while rejecting remaining values. In this way. a partially 

imputed database is created and fed back to the base imputation algorithm. Next, the 

process repeats, but this time concentrating on imputing the remaining values. The 

number o f iterations is set to 10, where in the last iteration all remaining imputed values 

are accepted. The imputed values are accepted or rejected based on their weight and a 

threshold, i.e. all values with weights above the threshold are accepted while remaining 

values are rejected. The weights should represent quality o f imputation, and are 

dependent on a particular base imputation method. In this study two base imputation 

methods, i.e. Nai've-Bayes ML imputation method and hot deck imputation method, are 

investigated. In case o f Naive-Baycs ML imputation, the weights are defined as the 

probability o f the top class variable, i.e. probability that is used to perform imputation. 

The threshold is set to be the mean top class probability for all imputed values. Similarly, 

for the hot deck imputation the weights are defined as the distance between the record 

with imputed values and the records from which the imputed value was taken, i.e. the two 

records that are used to perform imputation. The threshold is set as the average distance 

between the records with missing data and their closest records for all the imputed values. 

Since weight values are taken directly and without additional computational cost from the 

base imputation methods, computation o f the threshold requires Ofn^m) time since it
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involves computing moan value among weights for all imputed values, the 

selection/rejection o f imputed values takes 0(n*m) time since filtering each imputed 

value takes 0(1) time, and therefore the complexity o f the boosting module is 0(n*m). 

The complexity is constant with respect to the number o f records, and linear with respect 

to the total number o f missing values. The pseudo code related to the boosting procedure, 

which is applied to the NaVve-Bayes imputation method is shown in f  igure 12. We note 

that impact o f the boosting on the quality o f imputation w ill be shown experimentally 

later in the study.

1 I for i t lo numbcrofvalue* adding up all the probabilities

12 Mean-l'rob* prob|i|. liml the average probability

2.1 Meaii-l’rob Mean - prnb noiinmmg:

2 2 fo rk  I tom for all the missing values in that attribute

12.2 I i f  (prob|k| • Mean-l'rob)

Jz .2.2 thcnl.ist[kj linal-dccisimi|k|.

figure"! 2. Pseudo code'of thclS^sting pivicedure for the Naive Bayes imputation method as the 
base method

Hie boosting part o f the framework is coupled with the base imputation method. As an 

example the pseudo code related to boosting the Naive-Bayes algorithm is shown in 

figure 12. After calculating the probability o f each imputation candidate, the result is 

added to the previous probabilities (line 1.1 and 1.2) in order to find the average 

probability o f the candidates in line 2.1.

The loop in line 2.2 and the ’‘i f  condition”  in line 2.2.1 only accept the imputed values 

which have a probability higher than the average and locate them into the database (List) 

instead o f the missing values. The number o f missing values, m, can be different in each 

attribute so based on the attribute which is in process, the loop will be repeated m times.
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The values which do not satisfy the condition are imputed in the next iterations and this 

process is repeated 10 times. A ll the imputed values are accepted during the last iteration.

Complexity o f the method

Line 1.1 O(v) // and applies to 1.2

Line 1.2 0(1)

Line 2.1 0(1)

Line 2.2 0(m) // and applies to 2.2.

Line 2.2.1 0(1)

Line 2.2.2 0(1)

The total complexity o f the confidence interval module is: 

Number-Of-Iterations*[0(v)*0(l )+0( 1 )+0(m )*[0( 1 )+0( 1 )]]=Number-Of- 

Iterations*0(m)=0(m).

This process w ill repeat for each attribute so in general the total complexity is 0(n*m). 

The overall complexity o f the proposed framework is computed as the complexity o f pre

imputation, i.e. O(r). summed with complexity o f the confidence intervals module and 

boosting module multiplied by number o f boosting iterations, i.e. 10*(O(r) + 0(n*m) + 

0(n*m)). Therefore the total complexity is O(r) + 10*(O(r) + 0(n*m) + 0(n*m)) = O(r) 

+ 0(n*m), and is linear with respect to both the number o f records and the total number 

of missing values.
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5. Experiments and Results

This chapter, which is composed of two parts, experimentally investigates the effect of 

the proposed framework on improving the performance o f the imputation methods. In the 

first, several data imputation methods from different groups are experimentally compared 

to evaluate their performance. Then in the second part, the proposed framework is 

applied to two imputation methods, i.e. Hot deck and Nai've-Bayes, and the effect of each 

component on improving the imputation accuracy is investigated. Then the results of 

imputation are compared with other state o f the art methods.

5.1 Experimental Analysis of Imputation Methods

The first set o f experiments concentrate on performing experimental analysis o f several 

algorithms for imputation o f missing values, which range from simple statistical 

algorithms like mean and hot deck imputation to imputation algorithms that work based 

on application o f inductive ML algorithms. Three major families o f ML algorithms, such 

as probabilistic algorithms (e.g. Nai've Bayes), decision tree algorithms (e.g. C4.5), and 

decision rule algorithms (e.g. CLIP4), are used to implement the M L based imputation 

algorithms. The experiments were performed using seven different datasets, and the five 

missing data imputation algorithms. The selected seven datasets originally do not contain 

missing values. The missing data were introduced artificially, using the MAR model, into 

each o f the datasets. As a result missing values were introduced into all attributes, 

including class attribute. The missing data was artificially generated to enable verification 

o f the quality o f imputation, which was preformed by comparing the imputed values with 

the original values.
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In what follows, first the seven selected datasets are introduced and described. Each 

dataset is described by a set o f characteristics. The selected datasets cover entire spectrum 

of values for each o f the characteristics. Next, the imputation experiments are described 

and explained. Finally, the results o f experiments are investigated to analyze possible 

links between the characteristics o f input datasets and quality o f imputation o f specific 

algorithms.

5.1.1 Experimental Setup

The experiments use seven datasets selected from the UC1 ML repository [4]. The 

selected datasets include only discrete attributes, since both Nai've Bayes and CLIP4 ML 

algorithms, which are used to perform supervised imputation, cannot work with 

continuous attributes. The description o f the selected datasets, ordered by the number o f 

examples, is shown in Table 2. It should be noted that only datasets which are specified 

by gray color, both dark and light, are used in this chapter that are Len, Hay, Tic, Car, 

Krs, LED and Nrs datasets. The following characteristics are considered for this 

experiment.

• the size o f datasets, expressed in terms o f the number o f examples ranges between 

24 and almost 13K

• the number o f attributes ranges between 4 and 36

• the number o f classes ranges between 2 and 10

• the ratio o f Boolean attributes ranges between 0 and 97%

In general, the datasets were selected to assure comprehensiveness o f the results. The 

experiments introduce missing values in four different quantities, i.e. 5%, 10%, 20% and

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50% of data was randomly turned into missing values. This assures that entire spectrum, 

in terms o f amount o f missing values, is covered.

The quality o f imputation was evaluated by comparison o f imputed values with the 

original values. The experiments report accuracy o f the imputation, fo r the supervised 

imputation methods, sensitivity and specificity o f the imputation are also computed. 

These values are computed for each o f the attributes in the data, and the average value is 

reported.

5.1.2 Relevant Database Characteristics

Based on the experimental results, several changes were made in respect to the choice 

and design o f the database characteristics initially considered and described in parti. We 

note that these characteristics were designed for general data analysis purposes, not just 

for the missing data imputation task. While analysis o f results with respect to some 

characteristics, such as number o f attributes and number o f examples, generated some 

interesting knowledge, analysis lor the remaining characteristics, i.e. number o f classes 

and proportion o f Boolean attributes, did not generate useful knowledge showing that 

their definitions need to be redesigned.

In general. ML algorithms depend not only on the number o f classes, but more properly 

on the number o f examples for each class. Therefore, in this study, “ number o f examples/ 

number of classes" characteristic is used instead o f the “ number o f classes”  characteristic. 

Similar reasoning applies to the “ proportion o f Boolean attributes”  characteristic. Using a 

simple proportion does not accommodate for the characteristics o f the remaining, non 

Boolean, portion o f the data, which is important from the ML point o f view. We note that 

ML algorithms can be sensitive to granularity o f attributes expressed in terms of number
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of their distinct values combined with the number of classes defined in the data. For 

example, attributes with number o f distinct values lower than number o f classes cannot 

be successfully used to distinguish between all classes. This lead to defining a new 

characteristic "number o f Boolean values / (number o f values*number o f classes)” , which 

was used instead o f the "proportion o f Boolean attributes”  characteristic. Also, a new 

"amount o f missing values" characteristic was added. Therefore, the following new 

characteristics are used to describe the input databases in order to come up with 

guidelines to select the most suitable missing data imputation methods:

• Amount o f missing values.

• Number o f examples,

• Number o f attributes.

• Number o f Boolean values/(number o f values*number o f classes).

• Number o f examples/number o f classes.

Next chapter provides and analyzes comparison of imputation methods based on the 

above characteristics.

5.1.3 Comparison of the data imputation methods

The results section summarizes experiments that apply five missing values imputation 

methods on seven datasets, for which four different amounts o f missing information were 

introduced. The results report accuracy o f the imputation, and are analyzed from the 

perspective o f each o f the input data characteristics.
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First, Figure 13 summarizes imputation accuracy o f each method against the four 

amounts o f missing values. The accuracies for each amount o f the introduced missing 

values are averaged over the seven datasets. Figure 13 shows that the supervised 

imputation method based on the C4.5 M L algorithm has on average the best imputation 

accuracy throughout the entire considered spectrum o f amounts o f missing values. The 

supervised imputation method based on the Nai've Bayes M L algorithm has the mean 

imputation accuracy, which is very close to the accuracy o f the imputation based on the 

C4.5 algorithm. The Mean imputation method has, on average, the mean imputation 

accuracy that places it on the third position, while the remaining methods are 

significantly worse. In general, we observe that the supervised imputation algorithms 

have better performance comparing to the unsupervised algorithms. Among the 

supervised algorithms, method based on the C4.5 M L  algorithm, which is a decision tree 

algorithm, has the best mean imputation accuracy across the different amounts o f missing 

values. Figure 2 shows that, in general, the imputation accuracy o f all imputation 

methods declines w ith the increasing amount o f  missing information, which is a result o f 

poorer quality o f  the underlying data.
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Figure 13. Accuracy against amount o f Figure 14. Slope o f the accuracy trend for 
missing values different amounts o f missing values

Figure 14 shows the slope o f the linear trend between the mean imputation accuracy and 

the different amounts o f missing information. The slope shows the pace o f performance 

degradation o f each o f the missing data imputation methods with the increasing amount 

o f missing data. The higher the value o f the slope the faster the quality of the method 

degrades. It can be observed that the Mean imputation method is the most stable 

imputation method. Although it has lower mean imputation accuracy for the considered 

amounts o f missing information than the supervised methods based on the C4.5 and 

Naive Bayes methods, its stability suggests that for higher amounts o f missing values it 

may overrun the supervised imputation methods. We note that in general datasets contain 

small amount o f missing information, but for some domains it is possible to have more 

then 50% o f missing values. For example, a medical data describing patients with cystic 

fibrosis that contains over 65% o f missing information was successfully used to find 

useful relationships about the disease [43].
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To summarize, Figure 14 shows that the unsupervised imputation methods are more 

stable comparing to the supervised methods. The main reason is that the supervised 

methods must have a training dataset o f proper quality to develop an accurate model that 

is used to impute the missing information. On the other hand, the unsupervised 

imputation methods are less sensitive to the amount o f missing values.

Figure 15, Figure 16, Figure 17, and Figure 18 compare different missing data imputation 

methods based on the normalized rank values. The normalized rank enables side by side 

comparison o f  the imputation methods, which is independent o f  the quality o f  the 

considered datasets. In order to compute the normalized rank value, the imputation 

accuracy o f all methods is scaled to a common [0, 1 ] interval, w ith the lowest accuracy 

set to 0, and highest accuracy set to 1. The remaining imputation accuracy values are 

computed proportionally w ithin the interval. For example, i f  the lowest accuracy for a 

given method would be 60% and the highest 90%, then 90% becomes 1, 60% becomes 0, 

and the scaled value for 80% accuracy would be 0.667.

Figure 15 shows the normalized rank values for the average imputation accuracy, across 

different amounts o f  missing values, for all imputation methods against the increasing 

number o f examples in the datasets. The rank for both CLIP4 and Naive Bayes based 

supervised imputation methods improves with the increasing size o f  the dataset. We note 

that in general the amount o f  input data is an important factor for M L algorithms. Having 

more data may help the M L algorithms to generate a better model, which consequently 

improves the quality o f  imputation. We also note that the supervised imputation method 

based on the C4.5 M L  algorithm almost always performs the best. The quality o f  the 

imputation performed w ith  the unsupervised imputation methods does not dependent on
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the size of the data. There is 110 clear trend in their performance for the increasing amount 

o f input data.
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figure 15. Normalized rank of the average 
imputation accuracy versus the number of 
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figure 16. Nomtalized rank of the average 
imputation accuracy versus the Boolean 
characteristic

figure 16 shows the normalized rank values for the average imputation accuracy, across 

different amounts o f missing values, for all imputation methods against the Boolean 

characterisiie. which is defined as "number o f Boolean values / (total number o f 

values*number o f classes)". We observe that for the increasing values o f this 

characteristic, performance o f the supervised imputation method based on the Naive 

Bayes algorithm gets worse comparing to the method based on the C4.5 ML algorithm. 

Hie same trend can be observed for the Mean imputation method. Other methods are not 

susceptible to this characteristic, and the imputation method based on the C4.5 ML 

algorithm has the best performance.
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imputation accuracy vs. the average number o f imputation accuracy versus the number o f
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Figure 17 shows the normalized rank values for the average imputation accuracy, across 

different amounts o f missing values, for all imputation methods against the average 

number o f examples per class, which is defined as “ number o f examples / number o f 

classes” . The Figure shows that the quality o f imputation for the supervised imputation 

methods based on the CLIP4 and Naive Bayes algorithms improves with the increasing 

value o f the average number o f examples per class. This can be attributed to the improved 

quality o f the data model generated by the ML algorithms with the increasing number of 

examples that are used to generate it. As a result, the quality o f the imputation that is 

performed using the generated data model improves. On the other hand, it can be 

observed, as expected, that the unsupervised imputation algorithms are not susceptible to 

this characteristic. We also note that the imputation method based on the C4.5 algorithm 

has the best average normalized rank.
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Figure 18 shows the normalized rank values for the average imputation accuracy, across 

different amounts o f missing values, for all imputation methods against the number of 

attributes. The rank o f supervised imputation methods based on both CLIP4 and Nai've 

Bayes algorithms improves with the increasing number o f attributes. This trend can be 

attributed to the increasing quality o f the data models used to perform imputation, 

similarly as for the results described in the Figure 17. Again, we note that imputation 

method based on the C4.5 algorithm has the best average normalized rank.
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The average sensitivity, over the seven input datasets, o f the supervised imputation 

methods against the different amounts of the missing data is shown in Figure 19. 

Similarly, Figure 20 shows the average specificity o f different imputation methods. In 

general, increasing the amount o f missing values results in decline o f both sensitivity and
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specificity for all supervised imputation methods. In case o f the sensitivity, the slope o f 

the trend line for the imputation method based on the Naive-Bayes and CLIP4 ML 

algorithms is greater than the method based on the C4.5 algorithm. We also note that the 

imputation method based on the C4.5 algorithm achieves the best sensitivity values. On 

the other hand, the specificity o f this method is worse than specificity o f the method 

based on the Naive Bayes algorithm. This shows that the imputation method based on the 

C4.5 is not universally better than imputation based on the Nai've Bayes algorithm, but 

rather they complement each other.

5.1.4 Discussion

The results shown in Figure 13 through Figure 18 indicate that the supervised imputation 

method based on the C4.5 ML algorithm has the best overall performance. The results 

also indicate that the imputation method based on the Nai've Bayes ML algorithm is the 

second best. In general, it can be seen that the supervised imputation methods have better 

performance than the unsupervised imputation methods.

The analysis o f stability o f performance o f the imputation methods with the increasing 

amount o f missing values shows some interesting relationships. The Mean imputation is 

the most stable, which means that its performance degradation is the slowest compared to 

all other methods considered in this study. We expect that for the datasets with high 

amounts o f missing values, unsupervised imputation algorithms may perform better than 

the supervised one. The rationale behind it is that supervised methods build data model 

which is used to perform imputation and which quality is dependent on the quality o f 

underlying data, while unsupervised methods are more robust in terms o f the quality o f 

the underlying data.
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Another important trend shows that increasing the number of attributes and number o f 

examples results in increasing the quality of imputation for the supervised imputation 

methods. Comparison between the sensitivity and specificity of different supervised 

imputation methods shows that although the C4.5 based method has better sensitivity, the 

Naive Bayes based method is superior in terms o f specificity. This shows that these 

methods complement each other.

The results also show that the performance of the unsupervised imputation methods does 

not depend on the number o f attributes, which conforms to the procedures they use.

We also note that although the execution time of the imputation algorithms was not 

measured, in general the unsupervised Mean imputation method was the fastest and 

scaled well with the increasing size o f the input data. The second fastest was the 

supervised imputation that uses the C4.5 algorithm.

5.2 Missing Data Imputation Using the Proposed Framework

The proposed framework was tested with a wide range o f databases to experimentally 

verify its advantages.

The experiments were performed using fifteen real databases. These databases are mostly 

supervised and chosen from UC1 ML repository [4] and KDD repository [38], The 

selected databases initially do not contain missing values. The missing data were 

introduced artificially, using the MCAR mechanism, into each o f the databases. As a
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result missing values were introduced into all attributes, except the class attribute. Hence 

the classification characteristic o f the supervised databases can be used to improve the 

accuracy o f imputations. The missing data was artificially generated to enable 

verification o f the quality o f imputation, which was performed by comparing the imputed 

values with the original values. The introduced missing values are in six different 

quantities, i.e. 5%. 10%. 20%, 30%, 40% and 50% to cover the entire spectrum of 

amount o f missing values.

In the following, first the fifteen selected databases are introduced and described. Each 

database is described by a set o f characteristics. The selected databases cover the entire 

spectrum o f values for each o f the characteristics. Next, the effect o f each component in 

the framework on the improvement in accuracy o f imputation is experimentally 

demonstrated. Also the results o f experiments obtained from the framework with Naive- 

Bayes and Hot deck imputation methods are compared to the results from other 

imputation methods. In addition, this chapter considers the run time o f the all imputation 

methods as well as the time scalability analysis related to the asymptotic complexity o f 

the proposed framework.

The imputation procedure is depicted in f  igure 21. As it is shown on the figure, the 

database is initially a complete database, which makes it possible to introduce different 

amounts o f missing values in it. In this figure the missing values are shown by "?". In the 

next step the missing values are imputed using the imputation methods. Therefore all the 

“ ?”  are replaced by “ IData”  which represents the imputed data. Finally the results o f 

imputation are compared with the original values to calculate the accuracy o f imputation.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The number o f correct imputations over the total number o f missing values determines 

the accuracy o f the imputation method.

In trod ucing  Im p u tin g

M is s in g  M is s in g

V a lu es  V a lu e s

A t t l A tt2 A t t l A tt2 A t t l A tt2

D a ta D a ta D ata 0 D a ta I D a ta

D a ta D a ta ? D ata (D a ta D a ta

D a ta D a ta D ata •> D a ta ID a ta

C o m p ariso n

Figure 21. Imputation procedure including introducing missing values and imputing the missing 
values

5.2.1 Experimental Setup

The experiments use sixteen databases from the UCI ML and KDD repository. The 

selected databases include only discrete attributes, since Naive-Bayes ML algorithm, 

which is used to perform supervised imputation, cannot work with continuous attributes. 

However the proposed framework can be applied to the methods that deal with both 

continuous and discrete values such as Hot deck imputation. The description of the 

selected databases, ordered by the number o f examples, is shown in Table 2. Only 

datasets in white color or light gray color rows are used in this part o f the experiments. 

The syn is a synthetic dataset being generated using a dataset generator published at 

www.datasetgenerator.com, and is used to evaluate complexity o f the considered 

methods. The dataset was generated using the following settings: number o f predicting 

attributes was set up as 20, domain size o f the attributes is equal to 20, number o f rules is 

10, and number o f records was taken as 256,000.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.datasetgenerator.com


Table 2 .Description o f  the databases used in the experiments

Name
Number o f 
Examples

Number of 
Attributes

Number
of

Classes

Percentage 
o f Boolean 
attributes

Abbreviation

Lenses 24 5 3 60 Len

Soybean (small) 47 36 4 36.11 Soy

Postoperative Patient 
Data

87 9 3 11.11 Pos

Promoters 106 58 2 1.7 Pro

Hayes-Roth 132 5 3 0 Hay

Monks 1 432 7 2 43 M k l

Monks2 432 7 2 43 Mk2

M onks] 432 7 2 43 Mk3

Balance 625 5 3 0 Bal

Tic-lac-toe 958 10 2 11.11 Tic

CM C 1473 10 3 30 Cmc

Car 1728 7 4 0 Car

Splice 3190 61 3 0 Spl

Kr-vs-kp 3196 36 2 97.3 Krs

LED 6000 8 10 87.5 Led

Nursery 12960 9 5 11.11 N'rs

K r-V -K 28056 7 17 0 Krv

Synt256 256000 21 10 0 Syn

The databases originally arc complete, and missing data were introduced randomly. This 

enables computing performance index, in terms o f accuracy o f imputation, defined as the 

number o f correct imputations over the total number o f missing values, by comparing 

imputed values with the original values. Missing values were introduced uniformly into 

all attributes, except the class attribute. The missing values were introduced at six 

different levels, i.e. 5%, 10%, 20%, 30%, 40% and 50% to demonstrate the impact o f the 

amount o f missing data on the imputation quality.
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The experimental section is divided into three parts:

1. Framework module evaluation. The goal is to provide motivation for the proposed 

design o f the framework. The effect o f each o f the three framework modules on the 

accuracy o f imputation improvement is experimentally demonstrated. Figure 22 

shows how the experimental evaluation was performed for each o f the modules, and 

for the entire framework.

experimental evaluation c t accuracy o f module 1 experimental evaluation of accuracy of module 2

imputed
value

imputed 
value >

imputed value 
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Database 
w ith  m issing 

vn I urs
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experimental evaluation o f accuracy o f the proposed framework
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igurc 22. E xperim enta l eva luation  o f  the proposed fram ew ork and its components

2. Experimental comparison with other imputation methods. The goal is to 

experimentally compare quality of imputation between the standalone base methods,
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i.e. NuYve-iiayos MI, based imputation and hot deck, base methods in the 

framework, and other slate o f the art imputation methods.

3. lixpcnmcntal complexity analysis. The goal is to show that computational 

complexity o f application o f the proposed framework is linear, and therefore does 

not worsen complexity o f the base method. Running times for both base methods, 

and base methods in the framework are compared between each other and with the 

theoretical complexity estimates.

5.2.2 Framework Modules Evaluation

This chapter summarizes experiments that apply the mean pre-imputation, confidence 

intervals and boosting modules o f the framework in separation to show accuracy gain that 

corresponds to each o f the modules. The experiments compare accuracy o f imputation of 

the two considered b;ise methods (hot-deck (III)) and Naive-Bayes ML based (NB)). the 

base methods with each o f the framework's modules in separation, and finally the base 

methods combined with the entire framework. They are performed on fifteen databases 

(.vivi database is omitted) with six different levels o f missing values. The results report 

average (over all datasets) imputation accuracy gain, defined as the difference between 

the imputation accuracy o f base method with one o f the framework's modules or the 

entire framework and the imputation accuracy o f the base method, for all considered 

levels o f missing data.

figure 23 shows the results for the hot deck imputation as the base imputation method, 

figure 23a shows that applying confidence intervals results in average imputation 

accuracy gain o f up to 4%. Figure 23b shows that using the mean pre-imputation results 

in imputation accuracy gain by up to 4.5%, and that the improvements are larger for
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larger amounts o f missing data. This is related to poorer imputation accuracy of the base 

method with increasing amount o f missing data, which is compensated by better 

effectiveness o f the framework’s module. Figure 23c shows impact of boosting, which 

improves imputation by up to 2.5%, and is also characterized by increasing trend. Finally, 

the average imputation accuracy gain for the entire framework is shown in Figure 23d. It 

is evident that using the proposed framework results, on average, in raising the accuracy 

o f imputation by up to 9%, which is a significant improvement.
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We note that the individual effects of all modules are not cumulative, but the overall 

improvement shown by the framework is significantly larger than the improvements
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generated by each o f the modules, and close to be cumulative. In addition, the increasing 

trend in improvement with the increasing amount o f missing values shows that the 

framework can effectively compensate for the degradation o f accuracy o f the base 

method.

Figure 24 shows detailed results concerning the difference between imputation accuracy 

o f the framework with hot deck as the base method, and standalone hot deck imputation 

for six levels o f missing values and fifteen databases. The bars with black ceiling 

represent negative values, which result from decrease o f imputation accuracy related to 

application o f the framework, while gray ceilings show improvement. It is clear that for 

most datasets and different levels o f missing data the imputation accuracy was improved 

by applying the framework: 13 times accuracy was worse, while 47 times it was 

improved. We note that the highest improvements were about 25%.

F igure 24. D iffe re nce  in im putation accuracy between the hot deck w ith  and w ith ou t the 
fram ew ork (F H D  -  H D ) fo r s ix  levels o f  m iss ing  values and fo r fifte en  databases

In the following graphs, a similar analysis is applied when using Naive-Bayes ML 

imputation method as the base method. The average improvement in accuracy o f 

imputation and its standard deviation are summarized in Figure 25. Figure 25a shows the 

impact o f confidence interval, which results in imputation accuracy gain by up to 3.5%.
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Similarly, Figure 25b shows average improvement o f imputation accuracy due to 

applying mean pre-imputation, and Figure 25c due to boosting modules. In both cases the 

achieved imputation accuracy gain ranges between 1% and 2.5%. Finally, Figure 25d 

shows that application o f all modules in tandem results in imputation accuracy gain up to 

4%. Although the effects o f all modules are not cumulative, the overall improvement is 

significantly larger than the improvement resulting from application o f the best module.
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Figure 26 shows the difference in imputation accuracy between the Naive-Bayes ML 

imputation method with and without the framework for six levels o f missing values and 

for fifteen datasets. Similar to results shown in Figure 24, they show that majority o f the
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values (53 out o f 60) are positive, which indicates improvement in accuracy o f 

imputation as a result o f using the framework.
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Figure 26. DitYcrencc in the accuracy o f imputation between the Naive-Bayes ML imputation 
method with and without the framework (FNB - NB) for sis levels o f missing values and for 
fifteen databases

We conclude that application o f each o f the framework's modules in separation and 

together always results in average improvement o f imputation accuracy for both o f the 

considered base imputation methods. It can be expected that application o f the framework 

should on average result in improving the imputation accuracy. In the next section, the 

amount o f the improvement is quantified and compared with performance o f other 

imputation methods. In general, we note that the amount o f imputation accuracy gain 

depends on the performance o f the base method, i.e. it is larger for low quality imputation 

methods such as hot deck, while being smaller for better quality base methods such as 

Naive Bayes M L method.
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Figure 27 and Figure 28 compare average accuracy o f imputation of the hot deck and 

Naive Bayes ML imputation methods with and without the framework, respectively.

Itot-deck 

>all together

A m o u n t o f  m u s in g  valueaCH) A m o u n t o f  m is s in g  va lues(% )

Figure 27. Accuracy of imputation using Figure 28. Accuracy of imputation using 
framework with hot deck and standalone hot framework with Naive-Bayes ML and 
deck standalone Naive-Bayes ML method

The comparison shows that application o f the framework results in flattening the 

accuracy curve with respect to increasing the amount o f missing data, especially for hot 

deck imputation method, see Figure 27. Application o f the proposed framework 

compensates for degradation o f imputation accuracy o f the base method caused by larger 

amount o f missing information, which is valuable when dealing with sparse databases. 

We again note that the amount o f obtained improvement depends on the quality o f the 

base method. For high quality method, such as Naive-Bayes ML imputation, the 

improvement is relatively small, i.e. 2% - 4%. while the accuracy o f the base method is 

on average about 44.5%. In case o f hot deck imputation, the improvement ranges 

between 4 and 9%, while the accuracy o f the base method is on average about 42%. We 

note that the accuracy o f both imputation methods combined with the framework is very 

similar.
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We stress that a recent study as well as this thesis have shown Naive Bayes ML method 

has superior accuracy compared with hot deck imputation [28]. At the same time, 

application o f framework to hot deck method results in imputation method that has higher 

accuracy than accuracy o f standalone Naive Bayes ML based imputation method. This 

shows that the proposed framework provides a solution that helps to develop relatively 

simple and efficient imputation methods that are characterized by high imputation 

accuracy.

5.2.3 Experimental Comparison with Other Imputation Methods

Several representative imputation methods from the three categories are chosen for the 

experimental part. They include data driven methods, such as random sampling multiple 

imputation (SAM), mean (Mean) and hot deck (HD), model based methods, such as 

regression including polytomous and logit multiple imputation (POLYLOGREG), and 

linear discriminant analysis and logit multiple imputation (LDALOGREG), and ML 

based methods, such as Naive Bayes (NB). These methods are compared with Naive 

Bayes based and hot deck imputations combined with the proposed framework (FNB and 

FHD, respectively). Therefore total o f 8 methods are compared on 15 databases. The 

multiple imputation methods were set to 5 imputation rounds. The number of round was 

established experimentally. More rounds resulted, on average, in insignificant or no 

improvement in accuracy, but worsened the running time.
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Figure 29. Summary o f imputation accuracy results for the considered eight imputation methods

Figure 29 shows average, over fourteen datasets (syn database is omitted and soy 

database has not enough records to perform regression based imputation), imputation 

accuracy using the eight imputations and for all considered levels o f missing values. The 

results show that the best results are achieved by the FNB method. The method is 

consistently better considering the entire spectrum o f missing values levels. The second 

best is the FHD imputation, which has superior accuracy over more complex model base 

imputation methods, such as POLYLOGREG and LDALOGRED, and the ML based NB 

imputation, for larger amount o f missing values, and similar accuracy for small amounts. 

The least accurate are the data driven imputation methods, such as HD, Mean, and SAM. 

We note that while the HD imputation has poor performance, applying the framework 

results in improving accuracy to be superior to, or at least as accurate as accuracy o f 

advanced model based methods. We also note that accuracy o f some imputation methods, 

such as LDALOGREG, POLYLOGREG, and SAM deteriorates with the increasing 

amount o f missing data, while the methods that utilize the framework perform with the 

same level o f accuracy. The experiments clearly demonstrate effectiveness o f the
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proposed framework, which can be applied to simple imputation methods to provide 

significant improvement in imputation accuracy, and can help to achieve accurate 

imputations even in the presence of large quantities o f missing information.

In the scatter plot o f Figure 30 the accuracy o f the FNB imputation method is compared 

with accuracy o f all methods that do not utilize the proposed framework. The shown 

values are the average, over the six levels of missing values, imputation accuracy for each 

o f the fourteen databases. The y-axis position is the accuracy o f FNB, while the x-axis is 

the accuracy o f other imputation method. Therefore, points above diagonal line 

correspond to databases for which FNB achieves better average imputation accuracy. 

Visual inspection confirms that the FNB imputation method performs better than other 

imputation methods on significant majority o f the databases. Similarly, a scatter plot o f 

Figure 31 compares FFID method with other methods that do not utilize the proposed 

framework. Again, since majority of the points are located above the diagonal line, we 

conclude that FHD method on average performs better than other imputation methods.

In the nutshell, experimental results indicate that application o f the proposed framework 

results in improvement o f imputation accuracy when compared with accuracy o f the 

standalone base imputation method and other state o f the art single and multiple 

imputation methods. Applying the framework to simple imputation methods, such as hot 

deck, results in an imputation method that on average performs better than complex 

model based imputation methods. We also note that application o f the framework makes 

the base method more robust to the larger levels o f missing data.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

xx

XX
POIYIOGREG

IDAtOGRF.G40
x  SAM

?0 000 49

100

o<

Q 1‘Oi.YlOGREG 

IOAIOGRCG 

X SAM

M ear

Actwafyo!

0 COB0

Figure 30. Accuracy o f imputation using the Figure 3 1. Accuracy o f imputation using the
framework with Naivc-Bavcs against otlter framework with Hot deck against other
imputation methods imputation methods

5.2.4 Analysis of Experimental Complexity

Hie demonstrated experiments show that the application o f the proposed framework 

results in improving imputation accuracy. However the important question is related to 

how much computational effort is necessary to apply the framework and most 

importantly i f  the application o f the framework could worsen computational complexity 

of the base imputation method. Therefore, following tests aim to test computational 

complexity associated with application o f the proposed framework to a base imputation 

methods. The main goal is to experimentally assess theoretical estimate that implies 

linear complexity with respect to the number o f records. Confirming this hypothesis 

implies that the application o f the framework does not worsen asymptotic complexity of 

the base imputation method, since there is no imputation method with sub-linear 

complexity. For this purpose, the syn database w ith 256K records was chosen to observe 

steepness o f the running time curv e with increasing size o f the database. The syn database
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was used to randomly derive nine databases o f different sizes including IK , 2K, 4K, 8K, 

16K, 32K, 64K, 128K, and finally the original database with 256K records. The 

experiments record running time on the databases with the incrementally doubled size. 

Also to investigate the effect o f level o f missing values on the asymptotic complexity of 

the method, two levels o f missing values, i.e. 10% and 60%, were randomly introduced 

into the databases, and the experiments were performed separately for both levels. Figure 

32 shows the run time versus size o f the database in the log-log scale for FNB and NB 

imputation methods and two levels o f missing values (FNB 10%, FNB 60%, NB 10%, 

and NB 60%) and for the generated nine databases. Both linear and log-linear curves 

were plotted on the figure for the reader's convenience.

-N B  t>%

■ NB 60% 

rto g (n ) 

n*n

FNB-13% 

FNB-60%

Linear

Figure 32. Runtime against the size of the database for the FNB and NB imputation methods and 
for 10% and 60% of missing values

The curves for FNB and NB methods align in parallel to the linear curves for both levels 

o f missing data, which shows that the linear asymptotic complexity o f the Naive Bayes 

ML based imputation method is preserved when applying the proposed framework. We
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note that the corresponding curves for the standalone and framework based method are 

shifted in parallel. This indicates that additional computational work, which is connected 

with application o f the framework, is performed, but it does not change the type of 

asymptotic complexity.

Similar experiment was performed with FHD and HD imputation methods and 

summarized in Figure 33. Closer analysis o f the figure shows that plots for both HD and 

FHD are parallel to the quadratic curve. This implies that original complexity of the 

standalone hot deck method, i.e. quadratic with the number o f data records, is preserved 

when the framework is applied. The corresponding curves for the standalone and 

framework based method are shifted in parallel, which indicates identical asymptotic 

complexity, but the results show that application o f the framework actually shortens the 

running time when compared to the running time o f the standalone method. This is the 

results o f applying confidence intervals that filter out less probable candidates for 

imputed values. As a result, the search space o f the hot deck imputation procedure to find 

the closest record is reduced resulting in a shorter running time. Therefore, in case o f the 

hot deck imputation, application of the framework not only results in improved 

imputation accuracy, but also in lowering running time o f the method.

In short, application o f the framework does not change the asymptotic complexity o f the 

base method, while it results in increasing the accuracy o f imputation.
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Figure 33. Run time against the size o f the database for Hot deck imputation with and without the 
framework, for 10% and 60% o f missing values

The experimental complexity analysis is supplemented by the running time of the eight 

considered missing data imputation methods, for the fourteen databases and for the six 

levels of missing values, see Table 3. First two rows for each o f the missing data levels 

show results o f imputation methods that use the proposed framework, i.e. FNB and FHD, 

next three rows show results for multiple imputation methods, i.e. LDALOGREG, 

LDALOGREG, and SAM, and last three rows show results for single imputation 

methods, i.e. NB, HD, and Mean. Bolded values indicate the lowest run time for a given 

database with a given level o f missing data. As expected, the mean imputation is the 

fastest imputation method, while at the same time, as Figure 29 shows, its imputation 

accuracy on average is better than accuracy of SAM and HD methods.

We note that while in general high amounts o f missing values result in lowering 

imputation accuracy, the mean imputation method is robust to the large amount o f 

missing values [28].
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Table 3, Running time of the eight imputation methods, for the fourteen databases and the six 
levels of missing values

Pos Pro M kl Mk2 Mk3 Bal Tic Cmc Car Spl Krs Led Nrs Krv
F N B 0 . 0 0 0 . 1 1 0 . 0 3 0 . 0 2 0 . 0 2 0 . 0 0 0 . 0 8 0 . 2 8 0 . 1 0 1 1 . 3 1 4 . 1 3 0 . 3 7 2 2 3 3  8 0

F I I D 0 . 0 2 0 . 0 4 0 . 3 3 0 . 1 1 0 . 1 5 0 . 2 6 0 . 7 4 2 . 4 4 2 . 3 9 6 1 6 . 5 0 4 0 . 5 6 4 5 . 5 5 1 3 5 1 . 1 1 7 2 1  0 3

P O L Y L O G R E G 1 0 . 0 4 1 3 1 7 . 9 5 1 2 . 5 4 1 3 . 4 2 1 3 2 7 2 2  9 7 9 9 . 9 9 1 2 0 1  9 4 1 2 6 . 1 7 7 1 4 . 5 6 7 1 . 2 5 6 2 0 7 9 . 5 9 1 3 1 2 2 3 1 1 8 8 7  9 9

> % L D A L O G R E G 5 . 3 2 3 0 6 . 9 6 6-12 6 . 1 1 6 . 1 1 6 4 9 9 9 . 9 9 1 1 7 . 2 9 2 8  7 7 7 0 7  0 0 20.47 3 3 1 0 . 0 0 3 0 1  4 7 1 0 8 0  0 0

S A M 3 . 5 0 7 4 . 1 9 3 . 0 0 2 . 9 8 3 . 1 9 2 . 8 9 5 4  7 0 5 2 0 1 1 3  5 8 4 4 4  5 5 8 . 7 0 1 9 7 8 . 0 0 1 7 7 . 7 3 3 7 1  0 0

N B 0 . 0 1 0 . 0 3 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 7 0 0 3 1 . 5 9 0 . 5 9 0 . 1 1 0 4 0 0  9 0

H D 0 . 0 1 0 . 1 5 0 . 2 5 0 . 1 5 0 . 1 4 0 . 2 9 1 . 8 3 2 . 1 7 3 . 9 6 3 6 4  6 0 1 3 0 . 7 5 5 8 . 1 2 9 0 7 . 6 7 4 9 0

M e a n 0 . 0 0 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 0 0 . 2 8 0 . 1 4 0 . 0 6 0 . 1 3 0 . 2 8

F N B 0  0 1 0 . 2 0 0 . 0 4 0 . 0 4 0 . 0 3 0 0 3 0 1 1 0 3 6 0 1 9 1 4  9 5 5 . 0 0 0 4 8 2 7 1 4  5 4

F H D 0 0 3 0 . 0 9 0 . 2 5 0 . 2 8 0 3 2 0 . 4 4 1 . 9 0 1 4 . 1 1 1 3 . 8 2 6 0 0 . 0 0 3 4 . 1 6 9 4 . 8 3 1 5 2 5 9 9 9 6 1  0 0

P O L Y L O G R E G 8 7 0 1 3 7 4 . 0 0 1 2 . 6 3 1 1 . 9 2 1 3 . 0 8 2 1  8 1 9 8 . 1 0 1 1 4 9  6 7 1 1 5  9 4 6 9 9  7 2 7 8 . 5 5 5 0 3 5 7 . 0 0 1 2 9 4  4 1 1 2 7 5 6  0 0

i o ° i ,
L D A L O G R E G 5 7 3 2 9 7 . 7 3 6.67 6 . 4 7 6 3 3 6 6 4 9 8  1 0 1 1 1  4 5 3 0  0 6 649 39 21 14 3 2 1 8 . 0 0 2 7 3  4 0 1 0 8 7  5 6

S A M 3 3 0 7 6 . 9 0 2 . 9 9 3 . 1 5 2 . 9 4 2 . 8 0 5 6 . 2 0 4 4  8 8 1 3  9 5 1 5 3  0 3 8 9 6 1 8 2 1 . 0 0 1 7 8  0 0 3 5 9  0 0

N B 0 . 0 0 0 . 0 4 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 1 0 0 3 0 1 1 0  0 4 2  0 3 0  7 5 0 1 6 0  5 2 1 5 0

H D 0 0 3 0 . 1 3 0 . 2 8 0 2 9 0  2 6 0  5 3 4 . 0 8 9  5 0 1 0  1 9 4 2 7  3 3 1 3 9  0 0 1 0 4 . 1 7 1 0 5 1 . 9 5 7 3 8

M e a n 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 2 0 . 0 0 0 . 0 3 0 . 0 2 0 . 3 1 0 . 1 4 0 . 0 6 0 . 1 4 0 . 3 0

F N B 0 . 0 1 0 . 3 6 0 . 0 5 0 . 0 6 0 0 5 0 0 4 0 . 1 7 0 . 6 7 0 2 5 1 9 . 5 9 5 8 8 0 . 6 9 3 4 7 6  3 9

F I I D 0 . 0 6 0 . 1 9 0 . 4 4 0 . 4 6 0 3 0 1 . 1 2 4  1 4 1 2 6 1 6  7 3 4 3 9  3 7 8 6 7 1 1 0 4  3 4 9 7 5  9 5 1 3 2 5  8 4

P O L Y L O G R E G 7 . 9 7 1 3 9 3 . 5 0 1 3 4 9 1 1 . 9 2 1 2  4 8 2 0 8 8 9 7 . 4 7 1 0 6 4 7 8 1 1 2  0 0 6 2 0  3 6 5 9  1 1 4 6 8 0 6  0 0 1 0 7 6 1 3 1 1 2 5 3 0 0

■ R f i ,
L D A L O G R E G 3 . 9 2 2 7 0  8 3 7 . 0 3 6 4 7 6 2 7 6 5 9 9 7  4 7 1 0 1 . 7 2 2 8  9 7 599 12 21 51 1 6 0 7 . 0 0 2 5 0  5 7 1 4 6 1  9 9

S A M 3 3 6 7 4 . 6 0 3 . 1 7 3 . 1 4 3 2 2 2 9 2 6 3 3 1 4 5 9 7 1 4 0 3 3 3 6  8 6 8 4 9 1 9 5 5  0 0 1 9 2  5 5 4 1 6 9 5

N B 0 . 0 0 0 . 0 6 0 . 0 2 0 . 0 2 0  0 2 0 0 2 0 0 6 0 . 1 9 0  0 8 2 8 9 0 9 9 0 2 5 0  8 9 3  8 1

H D 0 . 0 3 0 . 0 9 0 . 3 5 0  3 4 0 3 1 0 7 5 6 7 2 8  0 8 6  7 8 3 7 8  2 5 1 4 0 . 7 4 1 0 3  6 4 1 0 9 4 0 3 1 1 3 6  0 0

M e a n 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 0 . 0 0 0 . 2 9 0 . 1 6 0 . 0 6 0 . 1 3 0 . 3 1

F N B 0 0 2 0 . 5 0 0 . 0 6 0 . 0 8 0  0 6 0 0 8 0  2 4 1 0 3 0  3 5 2 4 5 8 6  7 8 0 8 3 4 4 5 7  3 9

F H D 0 . 0 7 0 . 1 8 0 . 4 8 0  5 8 0 3 6 0 9 8 3 5 1 1 1  5 8 6  6 8 1 3 5  4 2 8 6  2 2 1 0 2 4 8 1 1 6 5 5 9 4  2  0 0

P O L Y L O G R E G J 7  1 8 1 4 6 7 . 9 1 1 1 . 2 7 1 1 . 4 0 1 1  6 6 1 8  3 6 9 5  0 1 9 3 2  9 4 1 0 2  2 4 5 6 3  4 9 5 1  5 0 3 7 9 9 9  7 1 9 6 9 4 0 9 6 4  8  0 0

i n s L D A L O G R E G 3  8 5 2 4 8 . 5 1 7.07 6 . 4 0 6  4 9 7 0 7 9 5  0 1 8 6  0 5 2 9  3 4 526.98 21 68 1 8 4 4 . 0 0 2 5 8  1 9 9 7 3  4 5

S A M 3  3 5 7 6 . 8 3 2 . 9 7 3 4 2 2 9 8 2  8 4 5 8  4 4 8  9 0 1 9 8 1 3 4 0  0 7 8  6 9 1 8 4 4  0 0 1 8 5  3 3 3 8 4  0 0

N B 0 . 0 0 0 0 7 0 . 0 1 0 . 0 3 0 0 2 0 0 3 0  0 8 0 2 7 0 1 1 3 7 2 1 . 1 9 0 3 1 1 2 1 4  0 6

H D 0 . 0 2 0 . 1 1 0 3 2 0  3 3 0  2 8 0  8 2 2  8 4 5  2 0 5  5 3 1 7 0 9 5 1 3 1 1 1 7 8  4 0 1 1 6 5 0 0 1 5 8 5  0 0

M e a n 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 0 0 . 0 3 0 . 0 0 0 . 2 9 0 . 1 8 0 . 0 7 0 . 1 4 0 . 3 1

F N B 0  0 2 0 6 2 0 . 0 7 0  0 8 0 0 6 0  1 1 0  3 3 1 2 6 0 4 1 3 2 4 1 8  8 6 1 0 1 5  9 3 9 4 4

F I  I D 0 0 5 0  1 8 0 4 7 0 . 5 9 0 4 7 0 9 7 3  0 8 1 8 6 4 6 2 1 3 0 3  7 7 9 8  5 2 9 6  0 1 1 0 5 7  0 0 5 5 2 1  0 0

P O L Y L O G R E G 6 . 3 4 1 4 5 6  9 6 1 1  0 6 1 0 . 3 5 1 1 . 5 5 1 6 3 9 8 2 4 8 8 6 2 . 9 4 8 8  7 2 4 2 6  6 7 4 7  9 7 3 2 1 2 4  6 9 8 5 2  5 6 8 0 2 2  0 0

,in». L D A L O G R E G 3 8 9 2 3 2 9 2 7.02 6 6 1 6  6 4 7 4 7 8 2  4 8 5 8  8 1 3 0  4 6 474 25 24 08 1 5 9 3  0 0 2 4 1 . 7 7 9 0 7  9 2

S A M 3  1 7 7 6 6 9 3  1 1 3  2 5 3  0 9 2  9 8 5 4  7 5 5 9  4 4 1 4  1 9 3 2 4  0 0 8  6 1 1 5 9 3  0 0 1 7 2 8 1 3 2 1  4 9

N B 0 . 0 0 0 0 9 0 0 4 0  0 3 0  0 3 0  0 3 0  0 9 0  3 0 0  1 4 4  5 8 1  6 1 0 3 5 1 5 4 5 1 6

H D 0 0 2 0  1 2 0  2 6 0 2 5 0  2 6 0 5 5 1 7 3  2 6 4  9 9 1 7 6  2 2 2 8 7  7 5 5 6 0 5 1 0 5 7  0 0 1 2 0 3  0 0

M e a n 0 . 0 0 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 2 0 . 3 1 0 . 1 6 0 . 0 7 0 . 1 6 0 . 3 2

F N B 0 . 0 2 0 . 7 5 0 . 1 1 0 . 1 0 0 0 9 0 1 7 0  4 0 1 5 4 0  5 2 3 7  0 5 9  4 2 1 . 1 4 3  7 5 1 2  1 1

F H D 0  0 4 0  1 9 0 . 6 2 0 . 4 7 0 4 6 0 9 5 2  9 1 1 7  3 1 6 4 1 1 9 5  2 5 8 1  8 8 9 7  1 3 5 6 6  0 0 5 9 2 3  0 0

P O L Y L O G R E G 6 . 6 1 1 2 1 0 9 7 1 0 2 9 1 0  6 4 1 0  7 9 1 5  6 3 8 5  5 0 7 4 9 9 6  1 5 3 8 3  8 8 4 5 4 7 2 8 0 0 0  0 0 1 0 8 5  7 7 6 0 6 9  0 0

W i
L D A L O G R E G 3  1 0 2 3 6 8 5 7 18 6 7 6 6 5 4 7 6 1 8 5  5 0 5 1  6 8 3 0  0 5 3 S 0  0 0 2 4 3 6 1 6 8 9 0 0 2 6 3  1 5 8 5 8  4 0

S A M 3  1 9 6 9 0 2 3  0 8 3 3 9 3  0 6 2  6 8 6 0  5 9 5 2 7 0 1 4  5 8 3 4 3 7 5 8 8 3 1 6 8 9  0 0 1 7 6  8 4 3 1 8  6 5

N B 0 . 0 0 0 . 1 1 0 0 3 0  0 3 0 0 3 0  0 4 0  1 3 0 4 2 0  1 6 5  1 7 1 5 8 0  4 2 0  8 3 7  3 4

H D 0  0 2 0  1 3 0  2 4 0 2 5 0 1 7 0  3 9 1 8 7 3  6 1 3  4 6 1 7 0 5 2 3 5 4  0 0 4 1  8 4 5 6 6  0 0 7 9 1  0 0

M e a n 0 . 0 0 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 0 2 0 . 3 2 0 . 1 8 0 . 0 6 0 . 1 4 0 . 3 4

Close analysis o f the above table reveals that:

-  Running time o f the most accurate FNB method, which uses the proposed framework, 

is always significantly shorter than the running time o f the considered multiple 

imputation methods, with exception of results for the krs database for large amounts
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of missing data that are a bit better than the results o f poorly performing SAM 

method.

-  Application o f the proposed framework to N il method results on average, through all 

experiments, in 3.7 times increase of running time when compared with running time 

o f the standalone method. Similarly for the HD method, 1.6 times increase is 

suffered.

-  Application o f the framework to the hot deck imputation method may result in 

decrease o f the running time when compared with the running lime o f the standalone 

method. It can be observed for the krs database, and for small amount o f missing data 

for the pro. hal. tic. car, and led databases. This is attributed to the filtering o f less 

probable candidate imputed value by the confidence intervals, which results in 

shorted time to find the closest record. Consequently computational time may be 

reduced.

The regression based multiple imputation method. POLYLOGREG, is characterized by 

the longest running time. Its running time is 6 orders o f magnitude slower than running 

time o f the fastest single Mean imputation method, and 5 orders o f magnitude slower 

than running time o f the most accurate FNB single imputation method; see results for the 

led database. Although the experiments were performed using the same hardware and 

different software packages (the POLYLOGREG, LDALOGREG. and SAM methods 

were executed using MICE package [40|, while the remaining methods were 

implemented in C++ by the authors), which may result in some minor distortion of 

running time results, the significance o f the difference cannot be disputed.
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To summarize, the experiments demonstrate that each module o f the proposed framework 

i.e., confidence intervals, mean pre-imputation and boosting, improves imputation 

accuracy o f the base imputation method. The proposed framework can be successfully 

used to improve imputation accuracy of any base method, which can generate weights 

representing quality o f each imputed value to perform boosting. In practice almost all 

existing imputation methods satisfy this requirement; this paper demonstrates how to 

apply the framework with two imputation methods: hot deck and Nai've Bayes ML based 

imputation. Application o f the framework results, on average, with significant gain o f 

imputation accuracy when compared with accuracy o f the base method. The results show 

that a poor quality single imputation method, such as hot deck, can be improved with the 

use o f the framework to match quality o f advanced multiple imputation methods. The 

results also show that the best imputation accuracy was achieved by the Nai've Bayes ML 

based imputation in the proposed framew-ork. It performed with higher imputation 

accuracy and in the lower running time than any of the considered model based and ML 

based single and multiple imputation methods. Finally, we have shown, both theoretically 

and experimentally, that the proposed framework has linear asymptotic complexity, and 

therefore its application does not worsen asymptotic computational complexity of the 

base method.
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6. Summary and Conclusions

Most o f the real world industrial and research databases have a shortcoming o f containing 

missing values. One o f common ways to cope with this problem is to perform imputation 

(filling  in) o f the missing values through variety o f  statistical and machine learning (M L) 

procedures. In this study, an experimental comparison o f several imputation methods is 

performed to evaluate the performance o f each method. Also, a novel framework that 

aims to improve accuracy o f the existing imputation methods is proposed. The new 

framework consists o f  three components: mean pre-imputation, confidence intervals and 

boosting, and can be applied to many o f existing imputation methods, including data 

driven, model based, and M L based. The framework is characterized by a number o f 

advantages. Its application to an imputation methods results, on average, in significant 

improvement o f  imputation accuracy, while at the same maintaining the same asymptotic 

computational complexity. For some imputation methods, such as hot deck, application 

o f the framework may even result in lowering the running time, while in general 

computational cost o f  applying the framework is relatively low.

To demonstrate advantages o f the proposed framework, it was used w ith two imputations 

methods: Naive-Bayes M L  based imputation method and hot deck data driven imputation 

method. The two above imputation methods were experimentally tested on fifteen 

databases, and compared w ith six other popular imputation methods, including single 

imputation mean and hot deck methods, multiple imputation random sample, regression, 

and linear discriminant analysis methods, and M L based single imputation Naive Bayes 

method. The results show that a significant improvement o f imputation accuracy can be
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achieved by applying the proposed framework, and that the accuracy o f the framework 

based methods was on average the highest among the considered methods. We stress that 

application o f the proposed framework to a simple and low quality single imputation 

method, such as hot deck, resulted in a method that was characterized by imputation 

accuracy comparable to accuracy o f advanced multiple imputation methods. At the same 

time, application o f the framework to a quality imputation method, such as the ML based 

Naive Bayes method, resulted in imputation accuracy that was superior with respect to 

accuracy o f other imputation methods. We also show, both theoretically and 

experimentally, that application o f the proposed framework has linear complexity, and 

therefore does not change asymptotic complexity o f the associated imputation method.
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