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Abstract 

The manufacturing sector stands as a fundamental pillar of worldwide economies, 

contributing markedly to global economic expansion. Over the past five years, the implementation 

of automated machine-tending systems has widely extended from simulation or laboratory 

environments to real-world scenarios in manufacturing workshops, as robotics and artificial 

intelligence develop rapidly. Machine tending is a critical part of the manufacturing process 

through interaction with the machine and surrounding environments. Currently, most of the 

machine tending tasks are still carried out manually or via collaborative robots by cooperating with 

humans on site. However, with the development of AI-enabled robots, intelligent manufacturing 

has been moving from mass production to mass customization and uses robots and artificial 

intelligence techniques to minimize human interventions in manufacturing activities. Inspection 

of the machine’ working status is critical in manufacturing processes, ensuring that machines work 

correctly without any interruptions, e.g., in lights-out manufacturing. In addition, autonomous 

robot-based machine tending applications are necessary for smart factories with the increasing 

demand for full autonomy. So far, there is no attempt has been made toward the framework for 

fully autonomous robot-based machine-tending applications. Consequently, this research aims to 

develop an intelligent framework to attend CNC machines by integrating autonomous mobile 

manipulation systems, scene text recognition, real-time object detection, position estimation and 

path planning techniques to achieve fully autonomous operations of the mobile manipulator in 

manufacturing environments, which consist of four main stages: 1) a path planning, and docking 

to charging station method for autonomous mobile manipulator system to enable system move 

between different workstations and autonomous charging for continuously and smoothly working; 

2) an automatic object detection method for the machine-tending system to identify the target 
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machine in the workspace; 3) an intelligent inspection of machine’s working status through 

command recognition; 4) a button detection and localization method to support the manipulation 

by moving toward the control buttons to execute machine instructions. 

In the first stage, an autonomous mobile manipulation system (AMM) is proposed for part 

handling, loading and unloading, and some other auxiliary tasks in machine-tending. In addition, 

an improved path-planning algorithm based on Rapidly-exploring Random Tree (RRT) and the 

quintic B-spline curve technique is proposed for robotic machine-tending systems to move 

between the workstation and the charging dock. Furthermore, an autonomous docking and 

charging method is developed for machine-tending systems to work continuously in manufacturing 

environments. This method requires two steps: i) detecting the charging station, typically in an 

unstructured environment, and ii) autonomously docking to the charging station. For charging 

station detection, a YOLOv7-based method is developed to quickly and accurately recognize the 

charging station.  

The second stage of the proposed framework is the identification of the target CNC machine. 

It is important to note that there is often more than one CNC machine working in a representative 

manufacturing environment. Therefore, a deep learning-based machine detection method, called 

SiameseRPN, is developed to recognize the specific machine from a group of machines in the 

workspace. This method combines the Siamese neural network and region proposal network. 

In the third part, a command recognition method by integrating the text region proposal 

network, recurrent neural network and connectionist temporal classification was proposed to read 

and understand the CNC machine instruction for further operation. To improve the accuracy of 

recognition performance, a dictionary-guided procedure is also proposed. 
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In the last stage, a benchmark dataset for five different types of control buttons on the Haas 

CNC machine is created and the YOLOv7-based benchmark button detection method is developed 

to identify and localize the target buttons recognized in the machine commands to assist in the 

instructions executions of robotic machine-tending systems.  



 

v 

 

Preface 

This thesis is an original work by Feiyu Jia, and the research is performed under the supervision 

of Dr. Rafiq Ahmad and Dr. Yongsheng Ma. Some parts of this thesis have been submitted or 

published and are listed below. As such, the thesis is organized in paper format by following the 

paper-based thesis guidelines. 

1.  F. Jia, Z. Samadikhoshkho, Muhammad Tufail, Y. Ma, and R. Ahmad (2023) “An intelligent 

operation framework for autonomous robot-based machine-tending applications”, Applied 

Intelligence. (Under Revision). (Chapter 6). (I was responsible for conceptualization, literature 

review, coding, model construction, and writing of the original manuscript; R. Ahmad is the 

main supervisor and principal investigator of the project, and Y. Ma was the co-supervisor on 

this research). 

2.  F. Jia, Y. Ma, and R. Ahmad (2023) “Review of current vision-based robotic machine-tending 

applications”, The International Journal of Advanced Manufacturing. (Chapter 2) (I was 

responsible for the conceptualization, literature review, and writing of the original manuscript; 

R. Ahmad is the main supervisor and principal investigator of the project, and Y. Ma was the 

co-supervisor on this research).  

3.  F. Jia, M. Afaq, B. Ripka, Q. Huda, and R. Ahmad (2023) “Vision and Lidar-based autonomous 

docking and recharging of a mobile robot for machine tending in autonomous manufacturing 

environments”, Applied Science, vol. 13, no. 19, p.10675. (Chapter 4) (I was responsible for 

the conceptualization, literature review, data collection, coding and model construction, and 

writing of the original manuscript; R. Ahmad is the main supervisor and principal investigator 

of the project, and Y. Ma was the co-supervisor on this research). 



 

vi 

 

4.  F. Jia, A. Jebelli, Y. Ma, and R. Ahmad (2022) “An Intelligent Manufacturing Approach Based 

on a Novel Deep Learning Method for Automatic Machine and Working Status Recognition”, 

Applied Science, vol. 12, no. 11, p.5697. (Chapter 5) (I was responsible for the 

conceptualization, literature review, coding, model construction, and writing of the original 

manuscript; R. Ahmad is the main supervisor and principal investigator of the project, and Y. 

Ma was the co-supervisor on this research). 

5. F. Jia, Y. Ma, and R. Ahmad (2021) “Vision-Based Associative Robotic Recognition of 

Working Status in Autonomous Manufacturing Environment”, Procedia CIRP, vol. 104, pp. 

1535–1540. (Chapter 5) (I was responsible for the conceptualization, literature review, coding, 

model construction, and writing of the original manuscript; R. Ahmad is the main supervisor 

and principal investigator of the project, and Y. Ma was the co-supervisor on this research). 

6.  F. Jia, J. Tzintzun, and R. Ahmad (2020) “An Improved Robot Path Planning Algorithm for a 

Novel Self-adapting Intelligent Machine Tending Robotic System”, in Mechanisms and 

Machine Science, vol. 86, Springer International Publishing, 2020, pp. 53–64. (Chapter 3) (I 

was responsible for the conceptualization, literature review, coding, model construction, and 

writing of the original manuscript; R. Ahmad is the main supervisor and principal investigator 

of this research) 

 

  



 

vii 

 

Acknowledgments 

First and foremost, I would sincerely thank my supervisors, Dr. Rafiq Ahmad and Dr. Yongsheng 

Ma, for their kind guidance, constant support, care, and encouragement. Without their help, this 

work would not be possible. Also, I would like to thank my supervisory committee member, Dr. 

Martin Barczyk, who has provided invaluable suggestions to improve my research work. 

I would like to thank all my colleagues from Dr. Rafiq Ahmad’s group and the SMART lab, who 

contributed to a friendly research environment and helped me a lot in research. They are more than 

colleagues; they are friends and families. 

Last but not least, I appreciate the support from my beloved parents. Without their support and 

encouragement, I would not have completed this journey. 

Thank You. 

  



 

viii 

 

Table of Contents 

Chapter 1 : Introduction .............................................................................................................. 1 

1.1 Background ................................................................................................................ 1 

1.1.1 Manufacturing Industry ...................................................................................... 1 

1.1.2 Machine Tending (MT)....................................................................................... 3 

1.2 Research Motivation .................................................................................................. 5 

1.3 Research Objectives ................................................................................................... 7 

1.4 Research Methodology .............................................................................................. 8 

1.5 Thesis Outline .......................................................................................................... 10 

Chapter 2 : State of the Art ....................................................................................................... 13 

2.1 Chapter Overview .................................................................................................... 13 

2.1.1 Research Motivation and Objective .................................................................. 14 

2.1.2 Chapter Organization ........................................................................................ 14 

2.2 Literature Review Method ....................................................................................... 14 

2.2.1 Review Protocol ................................................................................................ 15 

2.2.2 Evaluation Process ............................................................................................ 17 

2.3 Results of Literature Review ................................................................................... 19 

2.3.1 Robotics in Machine Tending ........................................................................... 25 

2.3.2 Computer Vision in Machine Tending ............................................................. 30 



 

ix 

 

2.3.3 Artificial Intelligence in Machine Tending ....................................................... 34 

2.4 Discussions and Future Trends ................................................................................ 37 

2.4.1 Challenges ......................................................................................................... 37 

2.4.2 Future Directions .............................................................................................. 39 

2.5 Conclusions .............................................................................................................. 43 

Chapter 3 : An Improved 2D Path Planning Algorithm for a Novel Self-adapting Intelligent 

Robotic Machine-Tending System ............................................................................................... 44 

3.1 Chapter Overview .................................................................................................... 44 

3.2 Self-adapting Intelligent Machine-Tending Robotic system ................................... 46 

3.3 The Proposed 2D Path Planning Method ................................................................. 48 

3.3.1 Principle of the RRT algorithm......................................................................... 48 

3.3.2 Path Generation using Quintic B-spline Curves ............................................... 49 

3.4 Results and Discussion ............................................................................................ 51 

3.5 Conclusions .............................................................................................................. 56 

Chapter 4 : Vision and Lidar-based autonomous docking and recharging of a mobile robot for 

machine tending in autonomous manufacturing environments .................................................... 58 

4.1 Chapter Overview .................................................................................................... 58 

4.2 Related Work ........................................................................................................... 63 

4.3 System Description .................................................................................................. 64 

4.4 Proposed Autonomous Docking and Recharging Method....................................... 67 



 

x 

 

4.4.1 YOLOv7 Architecture ...................................................................................... 68 

4.4.2 Lidar and Vision Data Fusion Method for Autonomous Docking and Path 

Planning ........................................................................................................................ 69 

4.5 Results and Discussion ............................................................................................ 75 

4.5.1 Transfer Learning and Data Augmentation ...................................................... 75 

4.5.2 Datasets Building .............................................................................................. 75 

4.5.3 Training Environment and Parameters ............................................................. 76 

4.5.4 Results and Analysis ......................................................................................... 78 

4.6 Conclusion ............................................................................................................... 82 

Chapter 5 : An Intelligent Manufacturing Approach Based on a Novel Deep Learning Method 

for Automatic Machine and Working Status Recognition ............................................................ 84 

5.1 Chapter Overview .................................................................................................... 84 

5.2 Literature Review..................................................................................................... 87 

5.2.1 Object Detection ............................................................................................... 87 

5.2.2 Scene Text Recognition .................................................................................... 90 

5.3 The Proposed Intelligent Manufacturing Approach ................................................ 92 

5.3.1 Siamese Region Proposal Network (Siameserpn) Architecture ....................... 93 

5.3.2 Associative Recognition of Working Status ..................................................... 96 

5.3.3 Data Augmentation ......................................................................................... 102 

5.3.4 Transfer Learning............................................................................................ 102 



 

xi 

 

5.4 Experiments and Results for the proposed method ................................................ 103 

5.4.1 Robot System Structure .................................................................................. 103 

5.4.2 Training Details .............................................................................................. 104 

5.4.3 Evaluation ....................................................................................................... 105 

5.4.4 Results ............................................................................................................. 108 

5.5 Discussion and Limitations .................................................................................... 113 

5.6 Conclusion ............................................................................................................. 114 

Chapter 6 : An Intelligent Operation Framework for Autonomous Robot-based Machine-

Tending Applications .................................................................................................................. 115 

6.1 Chapter Overview .................................................................................................. 115 

6.2 Related Work ......................................................................................................... 119 

6.3 System Setup .......................................................................................................... 121 

6.4 Research Methodology .......................................................................................... 123 

6.4.1 Command Recognition ................................................................................... 123 

6.4.2 Button Detection and Localization ................................................................. 132 

6.4.3 Control Scheme for Manipulator Operation ................................................... 136 

6.5 Results of the framework implementation ............................................................. 138 

6.5.1 Performance of the Developed Command Detection and Recognition Method

 140 

6.5.2 Performance of the Developed Button Detection Method .............................. 143 



 

xii 

 

6.5.3 Performance of the Proposed Control Scheme ............................................... 145 

6.6 Discussion .............................................................................................................. 148 

6.7 Conclusion ............................................................................................................. 149 

Chapter 7 : Conclusions, Discussions & Future Work ........................................................... 151 

7.1 Conclusions ............................................................................................................ 151 

7.2 Research Contributions .......................................................................................... 153 

7.3 Limitations and Future Work ................................................................................. 156 

Reference .................................................................................................................................... 159 

 

  



 

xiii 

 

List of Tables 

Table 2.1: Study selection criteria. ........................................................................................... 15 

Table 2.2: Review of machine-tending systems with emerging technologies (integration of 

Robotics, CV and AI techniques). .................................................................................... 22 

Table 4.1: The specifications of the Ouster Lidar..................................................................... 64 

Table 4.2: The specification of the Hikvision camera. ............................................................. 65 

Table 4.3: Pseudo-code algorithm to implement the Lidar-based docking procedure. ............ 73 

Table 4.4: Training environment and specifications. ................................................................ 77 

Table 4.5: Training Parameters. ................................................................................................ 77 

Table 4.6: Comparison of the existing methods. ...................................................................... 81 

Table 5.1: Specifications of the robot manipulator. ................................................................ 103 

Table 5.2: Comparison of accuracy with benchmark methods (the target CNC machine 

detection)......................................................................................................................... 109 

Table 5.3: Compared results for RNN and the proposed method (working status recognition).

......................................................................................................................................... 112 

Table 6.1: The specifications of the Intel RealSense Depth Camera D455. ........................... 122 

Table 6.2: Training environment and computer specifications. ............................................. 139 

Table 6.3: Training Parameters. .............................................................................................. 139 

Table 6.4: Comparison results on different command detection methods. ............................. 142 

Table 6.5: Comparison results on different command recognition methods. ......................... 143 



 

xiv 

 

Table 6.6: Summary of the performance metrics of button detection. ................................... 144 

Table 6.7: Comparison results of predicted position with ground truth. ................................ 145 

  



 

xv 

 

List of Figures 

Figure 1.1: Example of machine-tending activities. ................................................................... 3 

Figure 1.2: Examples of machine tending by conventional industrial robot systems. ............... 4 

Figure 1.3: The AMM system used in this study. ....................................................................... 6 

Figure 1.4: Overview of the methodology. ................................................................................. 9 

Figure 2.1: Research work obtained from the initial search equation by publication year. ..... 17 

Figure 2.2: Adapted PRISMA approach for systematic literature review. ............................... 18 

Figure 2.3: Distribution of selected literature by different types of machine-tending tasks. .... 19 

Figure 2.4: The example of part pick and place, adapted from [22]. ........................................ 20 

Figure 2.5: The example of part quality inspection, adapted from [23]. .................................. 21 

Figure 2.6: The example of machine monitoring, adapted form [24]. ...................................... 21 

Figure 2.7: The prototype of the AMM. ................................................................................... 28 

Figure 2.8: The framework of the manufacturing-oriented CV system. ................................... 30 

Figure 2.9: The architecture of the neural networks (NN)........................................................ 35 

Figure 2.10: The architecture of a convolutional neural network (CNN). ................................ 37 

Figure 3.1: The structure of the Husky mobile robot system used in the study. ...................... 47 

Figure 3.2: The structure of the Ufactory mobile robot system used in the study. ................... 47 

Figure 3.3: The example of RRT. ............................................................................................. 49 

Figure 3.4: The example of the Quintic B-Spline Curve. ......................................................... 51 



 

xvi 

 

Figure 3.5: The example of scenario 1. ..................................................................................... 52 

Figure 3.6: The example of scenario 2. ..................................................................................... 52 

Figure 3.7: The example of scenario 3. ..................................................................................... 53 

Figure 3.8: The example of scenario 4. ..................................................................................... 53 

Figure 3.9: The example of scenario 5. ..................................................................................... 54 

Figure 3.10: The example of case study 1. ............................................................................... 55 

Figure 3.11: The example of case study 2. ............................................................................... 55 

Figure 3.12: The example of case study 3. ............................................................................... 56 

Figure 4.1: Husky robot setup with Lidar sensor and the Hikvision camera. ........................... 66 

Figure 4.2: The charging station used in this study. ................................................................. 67 

Figure 4.3: The block diagram of the proposed docking and recharging method. ................... 67 

Figure 4.4: The flowchart of the charger detection method...................................................... 68 

Figure 4.5: The illustration of the transformation process. ....................................................... 71 

Figure 4.6: The docking station gazebo virtual environment setup with one charger (top-left) 

and three chargers (top-right), and Rviz lidar point cloud visualization for one charger 

(bottom-left) and three chargers (bottom-right). ............................................................... 72 

Figure 4.7: The Lidar-based docking method visualization. .................................................... 74 

Figure 4.8: The Robot at different locations and orientations from the charger in a gazebo 

virtual environment setup. ................................................................................................ 75 

Figure 4.9: The example of labelled images. ............................................................................ 76 



 

xvii 

 

Figure 4.10: Training loss and validation loss of the charger detection model. ....................... 79 

Figure 4.11: The results of both performance metrics. ............................................................. 80 

Figure 4.12: The example of real-time charging station detection. .......................................... 81 

Figure 4.13: The example of autonomous docking procedures. ............................................... 82 

Figure 5.1: The flowchart of the proposed intelligent manufacturing approach. ..................... 93 

Figure 5.2: The architecture of the proposed SiameseRPN method. ........................................ 93 

Figure 5.3: The procedure of the proposed text recognition method. ....................................... 96 

Figure 5.4: The steps of text detection. ..................................................................................... 98 

Figure 5.5: The architecture of the CRNN.............................................................................. 100 

Figure 5.6: The receptive fields. ............................................................................................. 101 

Figure 5.7: The structure of the robot system. ........................................................................ 103 

Figure 5.8: Validation results for the target CNC machine and HMI detection. .................... 105 

Figure 5.9: Validation results for the target CNC machine and HMI detection. .................... 106 

Figure 5.10: Validation results for the target CNC machine and HMI detection. .................. 106 

Figure 5.11: Validation results for the target CNC machine and HMI detection. .................. 107 

Figure 5.12: Validation results for the target CNC machine and HMI detection. .................. 107 

Figure 5.13: Validation results for the target CNC machine and HMI detection. .................. 108 

Figure 5.14: Validation results for the target CNC machine and HMI detection. .................. 108 

Figure 5.15: The training and validation loss for the target CNC machine detection. ........... 109 



 

xviii 

 

Figure 5.16: The virtual simulation environment. .................................................................. 111 

Figure 5.17: The example of the case study. .......................................................................... 112 

Figure 6.1: The experimental system. ..................................................................................... 122 

Figure 6.2: The Intel RealSense Depth Camera D455. ........................................................... 122 

Figure 6.3: Research methodology outline. ............................................................................ 123 

Figure 6.4: The main steps of command recognition. ............................................................ 124 

Figure 6.5: The example of image deblurring via FFT. .......................................................... 125 

Figure 6.6: The example of reflection removal. ..................................................................... 126 

Figure 6.7: The examples of command detection methods. ................................................... 129 

Figure 6.8: The examples of command recognition methods. ................................................ 130 

Figure 6.9: Recognition result correction through the dictionary process. ............................. 131 

Figure 6.10: The main process of target button detection and localization. ........................... 132 

Figure 6.11: Examples of five different types of button detection. ........................................ 134 

Figure 6.12: The examples of emergency button detection and localization. ........................ 136 

Figure 6.13: The training and validation loss of the proposed command recognition 

method............................................................................................................................. 141 

Figure 6.14: The training and validation accuracy of the proposed command recognition 

method............................................................................................................................. 142 

Figure 6.15: The performance of the proposed button detection method. .............................. 144 

Figure 6.17: Cartesian coordinates of the end-effector position. ............................................ 146 



 

xix 

 

Figure 6.18: Orientation of the end-effector. .......................................................................... 147 

Figure 6.19: States of six joints............................................................................................... 148 

Figure 6.20: Temporal sequence of the robot manipulation. .................................................. 149 

Figure 7.1: The diagram of future work.................................................................................. 156 

 

  



 

xx 

 

List of Abbreviations 

SMEs 

CNC 

HMI 

MT 

RRT 

CV 

AI 

STR 

Cobots 

AMRs 

AMMs 

OCR 

ML 

DL 

SVM 

Small and Medium-sized Enterprises 

Computer Numerical Control 

Human-Machine Interface 

Machine Tending 

Rapidly-exploring Random Trees 

Computer Vision 

Artificial Intelligence 

Scene Text Recognition 

Collaborative Robots 

Autonomous Mobile Robots 

Autonomous Mobile Manipulators 

Optical Character Recognition 

Machine Learning 

Deep Learning 

Support Vector Machine 

NNs Neural Networks 

ANNs Artificial Neural Networks 



 

xxi 

 

RL 

CNNs 

GANs 

LSTM 

RNNs 

YOLO 

R-CNNs 

SSD 

RPN 

HOG 

SNNs 

SiameseRPN 

CRNN 

SGD 

IoU 

FFT 

mAP 

Reinforcement Learning 

Convolutional Neural Networks 

Generative Adversarial Networks 

Long Short-Term Memory 

Recurrent Neural Networks 

You Only Look Once 

Region-based CNNs 

Single Shot Detector 

Region Proposal Network 

Histogram of Oriented Gradients 

Siamese Neural Networks 

Siamese Region Proposal Network 

Convolutional Recurrent Neural Network 

Stochastic Gradient Descent 

Intersection over Union 

Fast Fourier Transform 

Mean Average Precision 

 

 



 

1 

 

 

Chapter 1 : Introduction 

1.1 Background 

1.1.1 Manufacturing Industry 

The manufacturing industry is a vital component of global economies, which holds immense 

importance and contributes significantly to overall economic growth. Recent global manufacturing 

industry reports indicate that the manufacturing sector constitutes an estimated 16% of the global 

GDP, and the global general manufacturing market is expected to increase from US$649.8 billion 

in 2020 to US$732.2 billion by 2027 [1]. It is also an essential source of employment, employing 

millions of workers worldwide and accounting for approximately 14% of total employment [1]. 

The significance of the manufacturing industry extends beyond its substantial GDP contribution 

and the provision of employment. It serves as a critical catalyst for innovation and technological 

progression. 

Furthermore, small and medium-sized enterprises (SMEs) in the manufacturing industry 

constitute a significant and vibrant portion of the global economy. These entities are instrumental 

in profit generation and economic development. Recent studies reveal that SMEs represent an 

estimated 45% of the total added value in the manufacturing sector while employing over 70 

million individuals worldwide, a significant proportion of total manufacturing employment [2]. 

Despite its achievements, the global manufacturing industry is facing several challenges. A 

persistent labor shortage is a prominent issue. As the manufacturing industry continues to evolve 

and integrate new technologies, skilled and experienced workers are becoming scarce, resulting in 
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difficulties in recruiting and retaining qualified personnel [3]. Additionally, the imperative of 

ensuring worker safety continues to be a major concern as manufacturers aim to construct safe 

working environments and minimize accident risks [4].  

To increase productivity and gain a competitive edge over other manufacturing factories, the 

concept of lights-out manufacturing was proposed. It advocates for machinery to operate round-

the-clock, without human intervention or with minimal human involvement during the second and 

third shifts [5]. Typically, extending operational hours demands extensive planning and 

scheduling, and often leads to increased labor expenses through either overtime or hiring more 

staff. However, with the advancement of Industry 4.0, The transformation of machine-tending 

systems into full robotic automation by integrating robotics, smart sensors, artificial intelligence 

and the Internet of Things, makes it feasible to achieve uninterrupted nighttime production without 

needing human oversight. Thus, in lights-out factories, all manufacturing tasks are carried out 

entirely by autonomous robotic systems, eliminating the necessity for labor force, light and 

windows. This pattern improves efficiency by prolonging operational hours and reducing defects 

in products. Due to energy savings, high efficiency, and the considerable reduction in labor costs, 

the lights-out factory has been widespread and preferred by most enterprises [6]. Moreover, some 

unexpected situations, such as the COVID-19 pandemic, have considerably impacted the global 

manufacturing industry, accelerating the implementation of advanced technologies to facilitate 

remote or autonomous operations [7]. This crisis underscored the importance of digital 

transformation and Industry 4.0 in establishing more flexible and resilient autonomous systems 

[8]. 
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1.1.2 Machine Tending (MT) 

Machine tending refers to the operation of industrial machine tools in a manufacturing plant 

performed by human operators or automation systems [4], which is the significant process of 

monitoring and supervising machines on the shop floor., Machine tending activities, such as 

loading and unloading materials or workpieces from machines or production lines, monitoring 

machines through initiating, stopping machine operations, and adjusting machine settings, and 

conducting quality inspections of outputs to ensure the seamless and uninterrupted operation of 

the machinery [9], are shown in Figure 1.1. Consequently, machine-tending tasks can often be 

repetitive, monotonous, physically demanding, and time-intensive. 

 

Figure 1.1: Example of machine-tending activities. 

Nonetheless, recent progress in robotics and sensor technology is increasingly instrumental 

in addressing these problems within the manufacturing sector. By incorporating these advanced 

technologies, many automated robotic machine-tending systems [10], [11], [11], [12], [12] have 

been developed and deployed to improve productivity, which are shown in Figure 1.2, minimize 

manual labor, enhance consistency, and increase overall operational efficiency. Thus, human 
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operators are liberated to concentrate on more intricate tasks that necessitate critical thinking and 

decision-making capabilities.  

 

Figure 1.2: Examples of machine tending by conventional industrial robot systems. 

Machine-tending applications are the oldest of applications for traditional industrial robots 

and are even more economically beneficial today than they were when the first robot was installed 

on a die-casting machine [4]. Nowadays, those benefits are more pronounced than before, with the 

cost of industrial robots in real terms has declined while labor rates have soared. At the same time, 

robots are helping manufacturers address many of the key challenges they face, including tight 

labor pools, global market competitiveness, and safety. 

However, while conventional industrial robots have proven essential in automating machine 

tending tasks, they are limited by their capacities. They are typically designed for specific tasks, 

with a limited capacity to adapt to changes or to handle new tasks without substantial 

reprogramming or physical adjustments [13]. Moreover, conventional industrial robots typically 

necessitate operation within confined areas or cages to ensure worker safety [14]. They lack the 

requisite intelligence capabilities to operate collaboratively with humans without posing a safety 

risk, which restricts their use in cooperative scenarios [15]. Furthermore, they function optimally 
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in highly controlled environments with precisely defined tasks. Any alteration in these conditions 

or deviation from the expected can precipitate substantial errors or even a complete cessation of 

operations [16]. From the perspective of most SMEs, traditional industrial robots represent a 

considerable financial outlay both in terms of initial acquisition and ongoing maintenance costs 

[1]. These robotic machine-tending systems demand significant space, limiting their suitability for 

constrained working environments and small manufacturing facilities. 

1.2 Research Motivation 

Numerous research and developments have been carried out to overcome these limitations 

and contributed to the application of robot machine-tending systems. Autonomous and self-

adaptive robot systems can be a solution to achieve fully automated machine tending, which can 

adapt to changing environments, learn to make decisions on their own based on an assortment of 

integrated digital technologies and enterprise-wide data, and evolve as the environment around 

them changes [17], [18], [19]. Autonomous mobile manipulator (AMM) systems can be used to 

realize fully-automated machine tending, which expands the flexibilities and capabilities of 

machine-tending systems by combining locomotion with manipulation abilities. Figure 1.3 shows 

an AMM used in this study in machine tending. 
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Figure 1.3: The AMM system used in this study. 

Despite all the advantages offered by current machine-tending applications, they are still in 

the very early stage of development and face numerous challenges to achieve fully autonomous 

machine tending with minimal or without human intervention. So far, machine-tending tasks are 

still mainly performed based on extensive human intervention, and there is no attempt has been 

made toward the intelligent framework to achieve fully autonomous robot-based machine tending 

[13]. To minimize or completely replace the human workers in the machine-tending tasks, the 

machine-tending system needs to learn and imitate human behavior, called the “eye-brain-hand” 

process, which is necessary to achieve autonomous machine tending [16]. This process can be 

divided into four steps. Firstly, identify the target machine from a group of machines. Secondly, 
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read and understand the commands on the machine’s display to execute the instructions and handle 

the emergency. Then, detect and localize the related target buttons in real-time once the commands 

are recognized, and instructions are associated with specific buttons. Finally, the robotic machine-

tending system executes the commands. Although many object detection methods have been 

developed, these methods mainly focus on classifying and detecting different object categories. 

Therefore, these methods are not suitable for detecting a target machine from many similar CNC 

machines in the manufacturing environment. Another issue is that a benchmark dataset and a 

button detection method are lacking for machine-tending tasks. In addition, a proper command 

recognition method is missing for current autonomous machine-tending systems. Finally, the 

docking and autonomous charging method for the mobile platform is also necessary to enable the 

autonomous machine-tending systems to work continuously and smoothly between different 

workstations with surrounding environments. 

Therefore, to address these problems, this thesis investigates and explores an intelligent 

framework for fully autonomous robot-based machine-tending applications by integrating robotics, 

vision sensors, computer vision, and deep learning technologies. The system envisioned shall be 

completely independent and work independently from the CNC machine, similar to a machine-

tending operator.  

1.3 Research Objectives 

The primary purpose of this thesis is to widely facilitate and accelerate fully autonomous machine 

tending by integrating emerging technologies into machine-tending robotic systems, as it provides 

the potential to overcome the challenges and issues in the manufacturing sector. Working toward 

the inclusion of full automation and advanced technologies and techniques can assist in reducing 

the costs of the initial installation costs and human labor usage, improve production accuracy and 
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efficiency, and improve safety issues. For this purpose, this thesis aims to research emerging 

technologies in the machine-tending domain, and the main objective of the thesis is to investigate 

and develop an intelligent framework for autonomous robot-based machine-tending 

applications. 

The specific objectives of developing this framework are outlined as follows: 

● O1: Review the machine-tending applications in terms of their current situation, associated 

emerging technologies, challenges, and prospective research trends (literature analysis). 

● O2: Design an autonomous recharging strategy for machine-tending systems to enable 

them to work continuously and smoothly during machine-tending applications (mobile 

system path planning and control). 

● O3: Develop an intelligent machine detection method to identify the specific CNC machine 

from a group of machines in the workspace (machine detection, identification, and 

localization). 

● O4: Develop an autonomous command recognition method for the inspection of the CNC 

machine’s working status (automated text detection, recognition, and interpretation). 

● O5: Develop a real-time button detection and localization method for CNC machine 

control keys and a control scheme to assist in the further operations of robotic machine-

tending systems (automated task execution and control). 

1.4 Research Methodology 

The proposed methodology aims to achieve a fully autonomous machine-tending process. A 

preliminary investigation was conducted, and a systematic literature review was completed to 

explore state-of-the-art machine-tending applications in current situations, emerging technologies, 
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main challenges, and future directions. The current machine-tending application can be improved 

by integrating path planning, real-time object detection and localization, scene text recognition, 

and intelligent decision-making. An overview of the methodology is presented in Figure 1.4. 

 

Figure 1.4: Overview of the methodology. 

With the input of real-time data obtained from the practical manufacturing environment, the 

four main objectives of this thesis are addressed in the main process. The proposed methodology 

is developed based on five research gaps with proposed solutions: preliminary investigation, 

autonomous charging, intelligent machine detection, working status inspection, and real-time 

button detection and localization. The details of each step are explained as follows:  

• For preliminary investigation, a systematic literature review based on the Protocol of 

Preferred Reporting Items for Systematic Review and Meta-Analyses to analyze the 50 

scientific literatures related to machine tending in the last five years is conducted. It 

contributes to the evolution of machine-tending applications by investigating the impacts of 
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emerging trends of advanced technologies, such as autonomous mobile robots, computer 

vision, machine learning, and deep learning. 

• For autonomous charging for the machine-tending system, there are three main stages. 

Firstly, an improved intelligent robot path planning method was proposed to enable 

machine-tending systems to move between workstations and charge stations. Once the 

system is close to the charging station, a YOLOv7-based method is applied to recognize and 

localize the charger. Finally, a vision and lidar-based docking strategy is developed to 

achieve quick and accurate docking of the machine-tending system to the target charger. 

• Intelligent machine detection is performed using the proposed deep learning-based method: 

SiameseRPN. It consists of two subnetworks: the region proposal network and the Siamese 

neural networks. It is observed that it performs better in distinguishing one specific CNC 

machine from a group of similar machines compared with other object detection methods. 

• In working status inspection, a deep learning-based command recognition method is 

developed by combining the text detection and recognition branches. Its architecture 

includes three parts: the adjusted text region proposal network, the recurrent neural network, 

and the connectionist temporal classification. Following the dictionary-guided procedure, it 

can achieve an accuracy of 100% in recognizing machine instructions. 

• In the last stage, to achieve the basic operation of machine-tending systems, a benchmark 

dataset about machine control keys is created, and a benchmark YOLOv7-based button 

detection and localization method is proposed and evaluated for future utilization in 

machine-tending tasks. 

1.5 Thesis Outline 

This thesis consists of seven chapters.  
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Chapter 1 provides the background of machine tending in the manufacturing industry. The 

motivations of this research are summarized by the challenges and issues of the implementation of 

emerging technologies. A brief statement on the objectives of this research and the main 

methodologies used are also presented at the end of this chapter. 

Chapter 2 presents the first research contribution, “Review of current vision-based robotic 

machine-tending applications”. It investigates the recent research in the machine-tending domain 

and summarizes state-of-the-art topics covered in this thesis, including robotics, target machine 

detection in environments, working status recognition, and abnormal handling.  

Chapter 3 presents an improved path-planning algorithm based on an RRT and quintic B-

spline curve to effectively generate smooth and collision-free paths for our designed Novel Self-

adapting Intelligent Robotic Machine-Tending Systems. This method will be further integrated 

with the docking method proposed in Chapter 4 for autonomous charging for the machine-tending 

systems in manufacturing environments. 

Chapter 4 proposes an autonomous docking method based on computer vision and lidar 

sensors for a mobile robot operating in a manufacturing environment. The proposed method is 

based on a lidar-based approach and Yolov7 models that can quickly and accurately recognize the 

charging station. 

Chapter 5 proposes a deep learning-based method for the CNC machine detection and 

working status recognition through an independent robot system without human intervention. 

Given that there is often more than one machine working in a representative industrial 

environment, the SiameseRPN method is developed to recognize and locate a specific machine 

from a group of machines on the shop floor. A deep learning-based text recognition method is 
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designed to identify the working status from the human–machine interface (HMI) display, and it 

is evaluated in a simulation environment. 

Chapter 6 proposes three parts of an intelligent operation framework for autonomous robot-

based machine tending applications. First, a command recognition method by using Fast Fourier 

Transform (FFT) and Generative Adversarial Networks (GANs) to reduce blurring and reflections. 

A dictionary-guided modification is developed to correct the output recognized results. This 

method is validated and achieves an accuracy of 100%. Second, a YOLOv7-based button detection 

method is developed. In this step, a benchmark dataset for five different types of control buttons 

on the Haas CNC machine is created, and the proposed button detection method is evaluated to 

observe its performance in real-world scenarios. This model can achieve an overall mAP_0.5 of 

98.8%. Finally, according to the results of case studies, the mobile manipulator can successfully 

reach the targeted button through the control scheme in the proposed intelligent framework. 

Finally, the conclusion of this thesis, summary of research contributions, limitations of this 

study, and future works are discussed in Chapter 7.  
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Chapter 2 : State of the Art 

2.1 Chapter Overview 

The manufacturing sector stands as a fundamental pillar of worldwide economies, 

contributing markedly to global economic growth [2]. However, the manufacturing industry is 

persistently confronted with issues impeding its development and expansion, such as manpower 

shortages, safety concerns, the high initial investment for installation, and long return on 

investment [13]. Within this context, machine tending has become a crucial component of the 

manufacturing process and potentially serves as a viable solution to the aforementioned 

predicaments. Over the past five years, the implementation of automated machine-tending systems 

has widely extended from simulation or laboratory environments to practical application in 

manufacturing workshops, as robotics and artificial intelligence develop rapidly. To fully benefit 

from the potential of machine-tending applications, it is necessary to comprehend and tackle the 

challenges associated with it. Therefore, this chapter aims to contribute to the evolution of 

machine-tending applications by investigating the impacts of emerging trends of advanced 

technologies, such as autonomous mobile robots, computer vision, machine learning and deep 

learning. This chapter, hence, offers a systematic literature review based on the Protocol of 

Preferred Reporting Items for Systematic Review and Meta-Analyses to analyze the 50 scientific 

literatures related to machine tending in the last five years. The findings of this review elucidate 

the prevailing trends in emerging technologies that are advancing the autonomy of machine 

tending. A noteworthy observation is that most of the research and applications are currently in 

their prototypical stage. Additionally, this chapter deliberates some challenges and potential future 

perspectives for achieving fully autonomous machine tending. In conclusion, this review provides 
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valuable insights into the current situation, identified bottlenecks and prospective future directions 

within the domain of machine-tending applications. 

2.1.1 Research Motivation and Objective 

Despite the enumerated limitations, Ongoing advancements in recent years in robotics and 

artificial intelligence are gradually overcoming these challenges, paving the way for the evolution 

of more flexible and adaptable intelligent robotic machine-tending systems [20]. However, the 

absence of a comprehensive review of the machine tending in terms of its current situation, 

associated emerging technologies, challenges, and prospective research trends, motivates me to 

undertake this study. The primary aim of this review is to elucidate the machine-tending 

applications that have emerged within the past five years, particularly in the context of the 

increasing implementation of advanced digital technologies in machine-tending applications. 

2.1.2 Chapter Organization 

This chapter presents a detailed analysis of 50 studies from the last five years, highlighting 

present-day machine-tending applications and advanced technologies. The chapter is structured as 

follows. Section 2.2 presents a methodology used to obtain the relevant literature. Section 2.3 

discusses the statistical results observed after a general analysis of the selected research studies 

and provides a detailed overview of the advanced technologies used in machine-tending 

applications. Section 2.4 discusses the challenges, open issues, and future perspectives of machine 

tending. Finally, Section 2.5 concludes the review. 

2.2 Literature Review Method 

This chapter conducts a systematic literature review to investigate the current machine-

tending applications in the manufacturing industry. Cases are searched where the term “machine 
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tending” appeared in the title, abstract, or keywords. In addition, a review protocol is also defined, 

and an evaluation process is applied to ensure a high-quality search process and make a systematic 

literature review. These steps are explained in the sequential subsections to follow. 

2.2.1 Review Protocol 

A review protocol can provide an efficient strategy for literature review. This chapter follows 

the adjusted Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [21] 

framework which aims to identify, evaluate and interpret the relevant literature to answer certain 

research questions. After establishing the research questions, a search strategy is defined to identify 

the relevant literature. Based on the research objective, four online publication repositories are 

used: Scopus, ScienceDirect, IEEE Xplore, and Web of Science. Finally, an approach is developed 

to identify pertinent publications on predefined inclusion and exclusion criteria, presented in Table 

2.1. 

Table 2.1: Study selection criteria. 

Inclusion criteria 

● Peer-reviewed journal and conference papers 

● Studies published between 2019 and 2023 

● Articles should provide answers to the research questions 

● Papers must include the title, year, source, abstract, and DOI 

Exclusion criteria 

● Summaries of events and seminars, book reviews, and editorial 

● Papers published before 2019 

● The publication is not available in full text 

● The publication is not in English 
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2.2.1.1 Research Questions 

An explicit protocol organizes this systematic review to answer a series of research questions. 

These research questions aim to gain insights into advanced digital technologies in machine-

tending applications ranging across different dimensions. Three research questions addressed in 

this literature review are listed below: 

● RQ1: What emerging technologies have been applied for machine-tending applications? 

● RQ2: How have these technologies impacted machine tending? 

● RQ3: What are the main challenges and future directions to achieve fully autonomous 

machine tending by integrating these technologies? 

2.2.1.2 Literature Search and Selection Criteria  

After formulating the research questions, a search strategy is defined to identify the relevant 

literature. In alignment with the research objective, four digital databases are employed for the 

literature search: Scopus, ScienceDirect, IEEE Xplore, and Web of Science. Finally, a 

methodology is developed to identify the pertinent publications on certain predefined inclusion 

and exclusion criteria. A preliminary search equation consisting of ideas and concepts directly 

associated with machine tending is outlined below. 

Preliminary search equation: (“manufacturing”) AND (“machine tending”), OR (“machine 

vision”, “computer vision” OR “artificial intelligence” OR “machine learning” OR “deep learning” 

OR “robot”). Based on this search equation, a total of 1303 articles were selected (Scopus – 363, 

IEEE Xplore – 414, ScienceDirect – 31, and Web of Science - 495). The distribution of the number 

of publications obtained through the preliminary search equation is illustrated in Figure 2.1. 
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Figure 2.1: Research work obtained from the initial search equation by publication year. 

2.2.2 Evaluation Process 

Upon establishing the review protocol, the succeeding phase in the systematic analysis is the 

evaluation process. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analysis), an evidence-based strategy [21], is utilized for this study, as depicted in Figure 2.2. This 

procedure delineates the number of records identified, screened, assessed for eligibility, and 

eventually included in the systematic review, as explicated below: 

● Identification: This literature review explores four online databases, leading to the 

manifestation of duplicate records. These duplicates need to be identified and consequently 

removed from the systematic review. Following the initial search, a total of 1019 records 

were identified. 

● Screening: Once removing duplicated records, the title and abstract of the papers are 

analyzed before reading the full article. In this step, a total of 722 records were excluded 

based on titles and abstracts. 
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● Eligibility: In this stage, a thorough reading of the full text is performed to assess the 

eligibility of a total of 297 records are assessed for eligibility concerning the objective of 

this study, as they either failed to answer the research questions, or the full text was not 

available. Out of these, a total of 252 papers were excluded. 

● Inclusion: After identifying a total of 45 eligible articles to be relevant for this literature 

review from the previous steps, an additional 5 papers are added to the study through a cross-

reference approach, adding up the total number of publications for meta-analysis to 50. 

 

Figure 2.2: Adapted PRISMA approach for systematic literature review. 
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2.3 Results of Literature Review 

This section presents the analysis results of implementing emerging technologies in various 

machine-tending tasks and provides some critical insights, contributing to answering RQ1 and 

RQ2. As shown in Figure 2. 3, the majority of the included studies engage with four different types 

of machine-tending tasks: 

 

Figure 2.3: Distribution of selected literature by different types of machine-tending tasks. 

i) loading and unloading, also named pick-and-place or part feeding. In [22], a UR5 

collaborative robot is used to manipulate manufactured parts for loading and unloading in 

production factories. In the system, two RGB-D cameras are integrated, where one is mounted on 

the end-effector of the robot arm for objection detection, and the other is used for pose estimation 

of detected parts. The example is shown in Figure 2.4. 
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Figure 2.4: The example of part pick and place, adapted from [22]. 

ii) quality inspection. In [23], a UR5 collaborative robot with a multi-functional gripper 

machine-tending system is designed to pick the manufactured part, and check the quality of the 

products through the implemented vision system based on the proposed convolutional neural 

networks. This example is presented in Figure 2.5. 
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Figure 2.5: The example of part quality inspection, adapted from [23]. 

iii) machine monitoring. For example, in [24], a KUKA robot arm with a smart vision system 

is used for machine monitoring. The system configuration is shown in Figure 2.6, where an RGB-

D camera is installed on the robot arm to capture real-time photos inside the CNC lathe machine 

and monitor machine tool condition through the proposed anomaly detection method. 

 

Figure 2.6: The example of machine monitoring, adapted form [24]. 
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iv) material handling or parts transportation between stations. For instance, in [25], a KUKA 

autonomous mobile robot with a gripper and vision system attached to the manipulator end-

effector is utilized to grasp the raw material from the local storage and transport it to the machine 

before loading operations. 

According to the literature analysis, it is observed that a fully autonomous machine tending 

to replace a human worker to monitor the screen for emergency handling and instruction execution, 

such as cycle start and stop, is the area not covered by the current literature. 

The major trends apparent following the systematic literature review, presented in Table 2.2, 

on emerging technologies in machine-tending applications are observed in topics such as robotics, 

artificial intelligence, and computer vision. Each of these technologies has been explored in the 

subsequent sections of this paper. 

Table 2.2: Review of machine-tending systems with emerging technologies (integration of 

Robotics, CV and AI techniques). 

Types of tasks Robotics CV application Algorithms  
Maturity 

level 
Reference 

Pick-and-place Cobots Object detection SIFT and SVM Prototype  [26] 

Pick-and-place RAS Object detection CNNs Prototype  [27] 

Quality 

inspection RAS Edge detection 

Binarization and 

Perspective Projection Prototype  [28] 

Machine 

monitoring  RAS Edge detection Canny Prototype [24] 

Quality 

inspection AMR Edge detection Canny Prototype [24] 
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Loading and 

unloading AMM Object detection 3D point cloud Prototype [29] 

Material 

handling AMM - - Conceptual [15] 

Machine 

monitoring Cobots 

Object detection and 

OCR 

SiameseRPN, HOG, and 

RNN Prototype [30] 

Pick-and-place Cobots 

Object detection and 

localization YOLOv3 Prototype  [22] 

Pick-and-place RAM 

Object detection and 

localization YOLOv5 Prototype [31] 

Loading and 

unloading 

Cobots and 

AMR 

Object detection and 

localization CNNs Prototype  [32] 

Loading and 

unloading AMM - - Prototype [33] 

Pick-and-place RAM 

Object detection and 

localization YOLOv3 Prototype [34] 

Pick-and-place AMM Object detection SSD Prototype [35] 

Machine 

monitoring 
Cobots Tool wear detection YOLOv4 Conceptual [36] 

Pick and place Cobots 
Object detection and 

localization 
YOLOv5, CNN, and SVM Prototype [23] 

Quality 

inspection 
Cobots Object detection CNNs and SVM Prototype [23] 

Autonomous 

charging 
AMM 

Object detection and 

localization 
- Conceptual  [37] 

Pick-and-place Cobots 
Object detection and 

localization 
- Prototype [38] 

Pick-and-place Cobots Object detection YOLOv5 Prototype [39] 
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Pick-and-place Cobots Object detection YOLOv4 Conceptual [40] 

Machine 

monitoring 
- Tool wear detection CNNs Conceptual [41] 

Loading and 

unloading 
Cobots - - Conceptual [42] 

Quality 

inspection 
- Object detection Gaussian and Gabor Filter Prototype [43] 

Pick-and-place RAM 
Edge detection/object 

detection 

Gaussian, Canny, and 

CNNs 
Prototype [44] 

Pick-and-place RAM Object detection CNNs Prototype [45] 

Material 

handling 
AMM Barcode recognition 

Morphological, Gaussian, 

and Harris  
Conceptual [46] 

Pick-an-place AMM Object detection - Prototype [47] 

Pick-and-place RAM Object detection Binarization, and HOG Conceptual [48] 

Pick-and-place Cobots Object detection CNNs Prototype [49] 

Quality 

inspection 
- Object detection SVM Prototype [50] 

Machine 

monitoring 
RAM 

Object detection and 

Speech recognition 
SSD, HMM, and LSTM Prototype [51] 

Material 

handling 
AMR Object detection CNNs Conceptual [52] 

Pick-and-place Cobots Object detection SSD Conceptual [53] 

Pick-and-place RAM 
Segmentation and 

Classification 
FT, and BPNN Prototype [54] 

Machine 

monitoring 
RAM Tool wear detection Sobel filter Prototype [55] 
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Pick-and-place AMM 
Object detection and 

localization 
R-CNN Prototype [56] 

Pick-and-place Cobots Task planning Q-Learning Prototype [57] 

Material 

handling 
AMM Marker recognition - Prototype [25] 

Pick-and-place Cobots Object detection YOLOv4 Prototype [58] 

Pick-and-place RAM Object detection YOLOv3 Prototype [59] 

Loading and 

unloading 
AMM Object detection - Prototype [13] 

Machine 

monitoring 
Cobots OCR CRNN Prototype [60] 

Machine 

monitoring 
- Tool damage detection CNNs Conceptual [61] 

 

2.3.1 Robotics in Machine Tending 

Robotics has been identified as an essential driving force in the evolution of Industry 4.0, 

contributing to the digital transformation of manufacturing processes and enabling the 

establishment of smart factories [62]. As sensor technologies and artificial intelligence evolve, 

their integration with robotics will continue to play a vital role in shaping the future of 

manufacturing and addressing the challenges faced by the manufacturing sector. Recently, robots 

equipped with advanced perception and control capabilities have been used for autonomous 

machine tending [63]. These robotic systems are competent in various tasks, including loading and 

unloading workpieces, changing tools or fixtures, monitoring machines, recognizing the 

operational status of machines, and performing quality inspections [64]. A synthesis of the selected 

literature reveals that robotic systems applied to machine tending can be broadly categorized into 
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three types: robotic arm systems, collaborative robots, and autonomous mobile manipulators. A 

detailed explanation of these systems will be provided in the following sections. 

2.3.1.1 Robotic Arm Systems (RAS) 

Robotic arm systems, also called industrial robots or manipulators, have been a mainstay in 

the manufacturing sector for several decades, integral components in tasks ranging from assembly 

lines to welding, and machine tending [65]. One of the primary advantages of these robotic arm 

systems is their precision and consistency, which allows them to repeatedly perform tasks to a 

degree of accuracy that far surpasses human capabilities. Further, they can operate tirelessly over 

extended periods, leading to increased productivity and efficiency, particularly for repetitive tasks. 

They are also able to handle hazardous materials and work in environments that may be unsafe or 

unsuitable for human workers, thereby enhancing worker safety [66]. This feature is particularly 

beneficial to free up operators from low-skilled machine-tending tasks.  

However, conventional robotic arm systems do present some limitations. For instance, they 

often require a dedicated, enclosed workspace due to safety concerns, consuming considerable 

floor space. They are also typically designed for specific tasks and lack the flexibility to adapt to 

changing production requirements without considerable reprogramming or physical modifications 

[67]. Additionally, traditional robotic arm systems often necessitate a high initial investment for 

their acquisition and setup. They require regular maintenance and may entail significant costs if 

any major repair or overhaul is needed. The programming and operation of these systems also 

typically require specialized technical skills, potentially adding to the operational costs [68]. 
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2.3.1.2 Collaborative Robots (Cobots) 

Cobots are designed to work alongside humans in a shared workspace. They can be 

programmed to perform machine tending tasks autonomously or under the guidance of human 

operators [69]. Cobots often incorporate safety features such as force-sensing technology or vision 

systems to ensure safe human-robot interaction. Compared with traditional robotic arm systems, 

Cobots can be seamlessly integrated into existing workflows due to their compact size and inherent 

safety features, which makes them highly adaptable and versatile in varying manufacturing 

environments by integrating with their abilities to be quickly reprogrammed and redeployed for 

different tasks. This feature enables Cobots to increasingly take over low-skilled manufacturing 

tasks and manufacturing facilities like machine tending, pick and place, and quality inspection [12]. 

Moreover, Cobots differ from their traditional industrial robots in their programming and 

operational simplicity. They often come with intuitive interfaces and programming methods, such 

as hand-guiding or visual programming, which enable non-expert users to set up and operate them 

without requiring extensive robotic training [11]. 

While Cobots have made substantial strides in increasing safety and interaction with human 

workers, mobility limitations exist. Cobots are usually designed to be stationary and are installed 

at a specific location within a production line [70]. They perform tasks within a defined working 

envelope and are generally not equipped to move around the workspace and work between 

workstations. This constraint limits their adaptability and versatility in dynamically changing 

manufacturing environments. It restricts them from performing tasks that require a high degree of 

spatial mobility or tasks that need to be done in various locations within the facility [71]. Although 

Cobots are designed for easy repositioning and can be manually moved between different 
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workstations, this process requires time and human labor, affecting the efficiency of the production 

line [72]. 

2.3.1.3 Autonomous Mobile Manipulators (AMMs) 

To overcome the limitation of Cobots, an emerging trend is the integration of Cobots with 

mobile robot platforms, named Autonomous Mobile Manipulators (AMMs) [73]. AMMs combine 

the benefits of Cobots, such as safe human interaction and versatile manipulation capabilities, with 

the autonomous mobility provided by Autonomous Mobile Robots (AMRs) [36]. The prototype 

of the AMM, used in our lab, is shown in Figure 2.7. 

 

Figure 2.7: The prototype of the AMM. 
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The mobile platform is usually equipped with various sensors, such as LIDAR or cameras, 

to perceive the environment and avoid obstacles while moving within a workspace [74]. The 

manipulator mounted on the mobile platform is also equipped with different sensors, such as an 

end-effector camera, to facilitate and perform more complex tasks, such as object pick-and-place 

and transporting workpieces between different machines or workstations [15]. The main advantage 

of AMMs is their ability to bring manipulation capabilities to different locations within a 

workspace, expanding the scope of automation and providing the flexibility that stationary robotic 

systems cannot offer [30]. Therefore, they can autonomously move from one workstation to 

another, performing machine-tending tasks such as loading and unloading, picking and placing, 

and inspection. With the integration of advanced artificial intelligence (AI) techniques, AMMs are 

becoming increasingly capable of adapting to dynamic environments and performing complex 

machine-tending tasks with less human intervention or even further without human intervention. 

They can learn from the surrounding environment, make decisions based on real-time data, and 

improve performance over time [30]. 

However, it is noticed that AMMs are limited by their battery and operating time [75]. 

According to the analysis results of the literature, these systems are still in their early stages of 

development and adoption, and thus further research and development are needed to address the 

challenges associated with autonomous charging, dynamic task planning, and seamless interaction 

with tended machines in unstructured environments. 

As technology advances, the adoption of AMMs is expected to grow, further transforming 

the manufacturing landscape. AMMs are also expected to play a crucial role in the next generation 

of manufacturing, driving the transition toward full automation and unmanned smart factories [72]. 
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2.3.2 Computer Vision in Machine Tending 

Computer vision (CV), which refers to machine vision in industrial applications, is a 

significant component of Industry 4.0 like other digital technologies [76]. It enables the CV system 

to sense and see the world through capturing real-time images or videos, image processing, and 

analysis of visual information [77]. Given its abilities and benefits, CV technologies can be applied 

to facilitate autonomous machine tending by increasing efficiency, reducing errors, gathering data, 

and robotic guidance [78], [79]. In addition, it may substitute for an absence of experienced 

workers to release them from some low-skilled machine-tend tasks such as quality inspection, 

processes monitoring, and part feeding. In machine-tending applications, the framework of a 

typical CV system is shown in Figure 2.8. 

 

Figure 2.8: The framework of the manufacturing-oriented CV system. 
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2.3.2.1 Low-Level Image Processing 

Image processing, also known as pre-processing, refers to the initial phase of image 

processing. It is the technology to transform a digital image using a series of mathematical 

operations, and the output can be either a processed image or a collection of characteristics or 

parameters related to the original image [80]. The primary objective of low-level image processing 

is to improve the quality of an image to facilitate the success of further procedures. This process 

is performed to enhance image quality, improve feature visibility, and reduce noise, which enables 

further accurate object recognition in machine-tending tasks such as loading and unloading, part 

identification, quality control, and machine monitoring. For image enhancement, some techniques 

such as Histogram, and Gamma Correction, can be used to enrich the visibility of features in an 

image [48]. In real-world applications, image blurring often occurs because of camera jitter. 

Therefore, image restoration is an important process to recover a captured original image. Median 

filtering, Gaussian smoothing, and Laplacian sharpening are used to highlight particular features 

or remove noise by emphasizing or de-emphasizing certain frequency ranges in an image [25], 

[43], [44]. The thresholding techniques convert grayscale images to binary images, making it 

easier to separate objects of interest from the background [28]. In addition, edge detection 

algorithms such as Sobel [55], and Canny [24] are applied to highlight the object boundaries within 

an image. Some morphological operations like dilation and erosion [60] can be beneficial to 

removing small imperfections or separating objects in an image. 

However, these algorithms can be compromised in uncontrolled environments due to the 

variability in classifications, changing lighting conditions, and occlusion, making implementing 

low-level computer vision algorithms in practical machine-tending applications challenging. In 

summary, these low-level image processing techniques are extensively adopted in the pre-
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processing phase, serving as the foundation for more complex tasks. Improving image quality and 

extracting basic image features establishes the groundwork for high-level techniques to perform 

tasks such as object detection and localization in machine-tending applications. 

2.3.2.2 Object Detection and Localization 

Object detection and localization are key techniques in computer vision that have widespread 

applications in the realm of machine tending in the manufacturing sector. The main goal of object 

detection algorithms is to recognize the target object through real-time video frames through vision 

sensors built into the machine-tending systems, generating a bounding box and a class label for 

each detected object [81]. Object detection identifies the presence and location of multiple objects 

in 2D image space, while object localization takes object detection a step further localization by 

focusing on identifying the location of a single object in real-world spatial space [76]. 

This technology allows machine-tending systems to identify and classify different 

workpieces or tools based on their features. It is crucial for tasks such as accurate loading and 

unloading, sorting or packaging parts [27]. In addition, using stereo vision, structured light, or 

time-of-flight cameras to capture depth information to estimate the pose and position of objects in 

practical manufacturing environments [31]. This allows machines to handle parts of varying shapes 

and sizes and perform tasks in three dimensions, such as defect detection [43] in real manufacturing 

processes, with high efficiency and accuracy. 

Although the applications using object detection and localization technology in machine 

tending are integral to enhancing automation and efficiency in the manufacturing sector, the 

success of these techniques heavily relies on the large amounts of high-quality data, which is 

adopted for training and fine-tuning of algorithms to accommodate specific tasks within dynamic, 

and real-world conditions. 
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2.3.2.3 Optical Character Recognition (OCR) 

OCR is a computer vision technology that converts text in images, collected through cameras, 

into machine-readable and editable data. It enables machines to read and understand characters, 

numbers, or labels presented on workpieces or displays [82]. Therefore, OCR techniques can be 

utilized to accurately identify part numbers, serial numbers, or other important information, 

ensuring accurate detection and recognition in the machine-tending process. There are some 

applications for OCR in machine tending [83]. For instance, part identification can be used to read 

and identify characters or numbers engraved or printed on parts [84]. This can help in sorting, 

tracking, and managing parts during manufacturing [85]. 

Moreover, in quality control, OCR can be applied to verify printed labels, barcodes, or texts 

on manufactured products to identify misprints or errors, ensuring that only qualified products pass 

through the manufacturing line [86]. In addition, OCR could be utilized to monitor the work status 

of CNC machines by reading and interpreting commands on displays, which can improve 

productivity and enhance overall safety in autonomous manufacturing environments [60]. In 

conclusion, OCR technology has the potential to significantly improve the efficiency and accuracy 

of machine tending applications within the manufacturing sector. 

Despite its benefits, it is noted that the implementation of OCR can be influenced by many 

factors in real-world scenarios, such as the quality of captured images, the instability of the vision 

system, and lighting conditions in the workspace [30]. Consequently, continuous advancements in 

OCR are essential to overcome these challenges and expand its implementation in practical 

machine-tending applications. 
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2.3.3 Artificial Intelligence in Machine Tending 

Artificial intelligence (AI) involves the formulation of theory and the architecture of 

computer systems capable of learning and behaving as humans and performing tasks traditionally 

requiring human intelligence, such as sensory perception and decision-making [87]. AI, 

specifically in the context of machine learning (ML) and deep learning (DL), is regarded as one of 

the key drivers behind the digital transformation of the manufacturing sector [88]. These 

technologies have the potential to enhance manufacturing production, enhance real-time 

monitoring, optimize loading and unloading procedures, and improve quality inspection. Several 

intelligent machine-tending systems [13], [30], [64] have been developed by integrating ML and 

DL algorithms, and these techniques are explored in the next two subsections, providing a 

comprehensive understanding of their applications in machine tending. 

2.3.3.1 Machine Learning (ML) in Machine Tending 

Machine learning (ML) is a subfield of AI that allows systems to learn and improve from 

experience without being explicitly programmed automatically. The process of ML begins with 

observations or data, inclusive of examples, direct experiences, or instructions, to discern patterns 

and contribute to decision-making processes [88]. Machine learning (ML) techniques are broadly 

classified into three categories: 1) supervised learning which encompasses linear regression [89], 

Bayesian linear regression [90], and support vector regression (SVM) [26]; 2) unsupervised 

learning, including K-means clustering [91], and neural networks (NN) [61]; and 3) reinforcement 

learning such as Q learning [57]. In terms of machine tending, NN is commonly employed to 

identify defects in parts or to differentiate between diverse types of workpieces based on specific 

features, and Figure 2.9 shows the preliminary architecture of an artificial neural network (ANN). 

K-means clustering is often deployed to detect anomalies or machine faults. Reinforcement 
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learning techniques such as Q learning [57] could be used in machine-tending instances where the 

robotic arm system needs to learn optimal strategies for parts transportation. 

However, in many machine-tending scenarios, high-quality data can be scarce or expensive 

to acquire. As a result, transfer learning [61], a method involving the use of a pre-trained model as 

a starting point for a new machine learning task, can assist in time-saving and resource 

conservation when formulating machine learning applications for machine tending. 

 

Figure 2.9: The architecture of the neural networks (NN). 

2.3.3.2 Deep Learning (DL) in Machine Tending 

Deep learning (DL) is the extension of classical ML, consisting of a deeper number of 

processing layers. The primary advantage of DL is featuring learning which involves the automatic 

extraction of high-level features from large datasets to assist in solving more complex problems 

efficiently and accurately [92]. Different DL algorithms have been used in machine-tending tasks 

such as convolutional neural networks (CNNs) [53], long short-term memory (LSTM) networks 
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[51], recurrent neural (RNN) networks [60], and generative adversarial networks (GANs) [93]. 

Figure 2. 10 presents an example of the architecture of CNNs. Given their proficiency in handling 

multi-dimensional and unstructured data, various CNNs such as region-based CNNs (RCNN), 

Faster-RCNN, Mask-RCNN, SSD, and YOLO have been employed in numerous machine-tending 

tasks. Especially, real-time object detection capability is very important for real-world machine-

tending applications, and one-stage CNN-based methods such as SSD [35] and YOLO series [71], 

[72], are more popular to tackle these problems in terms of both efficiency and accuracy. Currently, 

the state-of-the-art real-time object detectors are mainly based on YOLO-based methods. RNNs 

are used when there is a need for the model to remember the context or sequence of events, 

therefore in machine tending, RNNs can be utilized for tasks such as predicting the tool lifespan 

or machine monitoring when a machine needs an emergency stop or other operations based on a 

sequence of sensor readings [30][60]. 

Given that data is scarce or expensive to obtain in many machine-tending scenarios, GANs 

[94] can be used to generate synthetic training data, which can be useful to get the pre-train model 

with good performance. In addition, the concept of deep reinforcement learning (combining neural 

networks with reinforcement learning) has gained prominence. It involves training a model to 

make a sequence of decisions to maximize a reward through trial and error. In machine tending, 

this can be used to optimize the path that a robot arm might take to pick and place objects. 
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Figure 2.10: The architecture of a convolutional neural network (CNN). 

2.4 Discussions and Future Trends 

This section analyzes the selected literature and provides some critical insights to answer the 

RQ3 in terms of some current challenges and future trends to achieve fully autonomous machine 

tending. 

2.4.1 Challenges 

• Robust perception systems: To achieve efficient and error-free machine tending, a perception 

system involving object detection, recognition, localization and tracking capabilities is 

essential. Developing robust and reliable perception systems for recognizing and handling 

various objects, especially in dynamic and uncontrolled environments, remains a challenge 

[95]. 

• Dynamic environment awareness: Adapting to dynamic and changing environments, such 

as the presence of moving objects, shifting obstacles, or varying lighting conditions, poses 

challenges for machine tending systems. Therefore, developing algorithms and strategies 
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that can handle dynamic environments and make real-time adjustments is an ongoing 

research area [96]. 

• Decision-making abilities: To substitute human workers in a workspace, the ability to make 

task planning and generate execution strategies is important to the machine-tending systems 

because there are various uncertainties in real manufacturing environments, such as machine 

breakdowns. A big challenge, thus, is how to make decisions dynamically according to real-

time visual information [97]. 

• Runtime and autonomous charging: The ability of autonomous charging for machine-

tending systems is essential to achieve seamless manufacturing processes. The challenge for 

achieving autonomous charging is there is a lack of a robust and adapted navigation module 

to guide the machine-tending systems to the charging station in dynamic manufacturing 

environments with varying and complex illumination conditions [37]. 

• Implementation: Currently, computer vision and deep-learning algorithms utilized in 

machine tending are still relatively classic algorithms. The latest achievements of deep 

learning methods have not been quickly applied to the machine-tending applications facing 

real-world manufacturing environments. In addition, the majority of machine-tending 

applications in the literature are still in the prototype phase based on ideal problems and 

scenarios with a large amount of labelled data, which is very different from real-world issues. 

This also leads to the difficulty of implementing the latest research achievements into real 

machine-tending systems [97]. 

• Data collection: Data is one of the most important parts of machine learning and deep 

learning-based methods. Although more data can be obtained with the development of 

sensor technologies, collecting proper and high-quality data in some complex manufacturing 
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environments with poor lighting conditions is still a big challenge. The illumination 

condition is one of the biggest challenges for real-world computer vision systems [98].  

Moreover, the reflections on the surface of the object are a significant challenge affecting 

the quality of images [99]. Additionally, camera jitter and shadows, while the mobile robot 

system is moving, are also big concerns [30]. 

• Data labelling: Although data can be obtained from real-world complicated manufacturing 

environments, the original data usually lacks the necessary labels which are important to 

machine learning and deep learning algorithms. Therefore, humans need to manually label 

large amounts of raw data, which is very time-consuming. The current challenge is a lack of 

effective algorithms for handling nonlabelled data, as well as lacking methods to 

automatically label original data [30]. To apply deep-learning-based methods to many 

different manufacturing scenarios for different machine-tending tasks, more efforts need to 

be made in this regard. 

• Benchmark datasets: Although there are already some benchmarks for different real-world 

applications in the computer vision domain, such as COCO, MNIST, and ICDAR, it is 

difficult to directly apply these datasets to specific manufacturing cases because these 

benchmarks are mostly created for particular tasks such as vehicles detection, pedestrians’ 

detection, car plate recognition and traffic sign detection [81]. Therefore, more benchmarks 

for various machine-tending tasks are needed to be created for CV and DL algorithms to be 

further continuously utilized in machine-tending applications. 

2.4.2 Future Directions 

Although current research observed in this chapter, presented in Table 2.2, seems to focus 

on all major topics in machine-tending applications, such as advanced robotics, smart sensors, 
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computer vision techniques, and artificial intelligence, rising topics within the machine-tending 

field and potential collaborations between different research directions can be identified. 

Consequently, based on the research literature, and the above discussion of current challenges of 

machine-tending applications, this section proposes some potential future directions to facilitate 

and accelerate the implementation of advanced technologies in machine tending and broaden the 

research associated with machine tending in manufacturing. 

2.4.2.1 Cognitive robotic machine-tending systems 

By integrating artificial intelligence into conventional robotic machine-tending systems and 

learning a large set of manufacturing scenarios, cognitive robotic machine-tending systems can 

safely handle unusual situations without prior occurrences [100]. Cognitive abilities enable 

machine-tending systems to perceive, comprehend, and interact with working scenarios and the 

surrounding environment, which can bring advanced automation to numerous machine-tending 

tasks, including pick-and-place, quality inspection, and machine monitoring. Recent work can be 

found for different machine-tending tasks. For instance, an augmented reality-assisted gesture-

based robotic system is proposed in [101] to assist workers with no coding skills to tackle pick-

and-place tasks in which different-sized products are randomly positioned in an unstructured 

environment. In [13], a semi-autonomous mobile manipulator machine-tending system is 

developed to transport parts between different workstations through remote teleoperation. An 

intelligent robotic sorting system [31] is proposed to pick and sort the various industrial parts in 

an uncontrolled environment. In [16], a fully teleoperated mobile manipulator system is developed 

to execute both material handling and loading and unloading tasks. However, the integration of 

vision systems and robotics is still in the early stages for robotic machine-tending systems. With 

the continuous development and evolution of smart perception sensors and computer vision 
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technology, researchers will need to focus on designing cognitive robotic machine-tending systems 

by implementing evolving technologies. 

2.4.2.2 Real-time quality inspection and monitoring 

Currently, prevalent methods for assessing product quality and overseeing machine 

conditions remain manual inspection, but it can be time-consuming, labor-intensive, high-cost, and 

occasionally, associated risks. However, computer vision, characterized by its low cost, reasonable 

accuracy, and high robustness, is witnessing a surge in its application within the machine-tending 

field, particularly for quality inspection and condition monitoring. Noteworthy achievements have 

been observed in recent literature over the past half-decade. For example, [23], [24], [28] 

developed vision-based methods for product quality inspection and quality control, and [30], [41], 

[60] proposed deep learning-based methods for machine tools detection or working status 

monitoring. A notable challenge, however, persists with deep learning-based architectures like 

CNNs, which present weak performance in detecting and recognizing tiny objects [81]. It is also 

observed that certain tasks may not be optimally addressed by deep learning-based methods. 

Traditional image processing techniques retain a significant role and can be combined with 

machine learning or deep learning techniques to substantially enhance overall performance [30]. 

As manufacturing tends to deploy vision systems and vision-based algorithms to substitute manual 

inspection, more studies need to be done by researchers to address such challenges, thereby 

benefiting the machine-tending process through the maturation and integration of computer vision 

techniques. 

2.4.2.3 Imitation learning methods for robotic machine-tending systems 

One of the primary future desires in machine tending is to mimic humans’ behavior in given 

tasks and provide machine-tending systems cognitive competence to minimize or even completely 
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replace human workers on shop floors. As such, imitation learning, which enables robotic 

machine-tending systems to acquire knowledge via perception, observation and capture of human 

demonstrative motions, is a significant research topic. In recent years, deep RL stands out as the 

predominant technique enabling robotic systems to comprehend the working scenario and has been 

widely applied to deal with intricate tasks [96]. For example, Chen et al. [57] proposed a meta-RL 

framework to improve the adaptability of robotic systems to new tasks by transferring the policies 

from previously learned task modules. In [102], a Relative Entropy Q-Learning (REQ) is proposed 

to execute a complex pick-and-place manipulation task. In [103], the authors present a multi-view 

unified RL framework to perform complex tasks. However, most of the studies are still in the 

conceptual stages and validated in robotic simulation environments, and thus, more robust 

imitation learning methods for robotic machine-tending systems to perform complex and long-

horizon tasks in practical applications are required. 

2.4.2.4 Task-oriented models for machine-tending tasks 

Over the last five years, the interest in adopting and developing standard ML and DL-based 

models for specific machine-tending tasks has been steadily growing. Related research 

contributions can be found in industrial parts’ detection, localization, pick-and-place, and 

transportation [22], [23], [31], [39], [58], [59]. Nevertheless, these frameworks require extensive 

training computations and fine-tuning of parameters to obtain desirable outcomes for particular 

tasks. Once optimal performance is achieved, employing these pre-trained models and their 

corresponding parameters in analogous scenarios through transfer learning becomes feasible. 

However, most current research is limited by two concerns: benchmark datasets for specific tasks 

and data labelling. Building benchmark datasets is one of the promising trends for developing task-

oriented models, considering that public datasets are not always accessible [104]. In a relevant 
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study presented by [94], GANs were employed to construct a synthetic defect dataset. Data 

collected via sensing devices in real manufacturing environments is unannotated raw data. The 

quality of such data can be compromised due to poor illumination conditions or issues related to 

reflections. Therefore, it cannot be used directly for further procedures. Addressing this problem 

necessitates the establishment of effective preprocessing mechanisms for large amounts of raw 

data and original images, including data cleaning and image preprocessing [77]. Moreover, the 

exploration of either automatic or semiautomatic data annotation methods is promising to reduce 

the time costs associated with building trusted labelled datasets [105]. 

2.5 Conclusions 

Driving by the rapid development of advanced techniques and digital technologies in 

Industry 4.0, such as robotics, computer vision, and artificial intelligence, machine tending has 

developed towards digital transformation and full automation. To obtain a comprehensive 

understanding of the current situation, bottlenecks and perspectives of machine-tending 

applications in the present-day manufacturing sector, a systematic literature review is presented in 

this study. Based on the adapted PRISMA approach and review protocol, a total of 50 papers from 

the last five years were identified and analyzed. According to an extensive analysis of selected 

articles, three main prevailing technologies including robotics, computer vision and artificial 

intelligence were discussed. In addition, critical analysis is performed and several conclusions are 

drawn such as the majority of applications are still in the conceptual or prototype phases, and a 

framework to achieve fully autonomous machine tending by integrating emerging technologies 

lacks more research work and validation. Consequently, eight challenges and four potential future 

research directions are summarized to achieve further or complete autonomy in machine tending.  
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Chapter 3 : An Improved 2D Path Planning Algorithm for a Novel 

Self-adapting Intelligent Robotic Machine-Tending System 

3.1 Chapter Overview 

Recently, robots have been widely used in industry to perform repetitive, dumb, dangerous, 

dull, and dirty tasks. Therefore, industry robotics forms an essential part of the manufacturing 

backbone [106]. Task flexibility and robotic mobility are two main advantages that mobile 

manipulators bring to industrial applications. Furthermore, a mobile robot shall adapt to changing 

environments and perform a variety of tasks. It is essential to combine locomotion capabilities 

with manipulation abilities to extend the capabilities of future robotics. The concept of mobile 

manipulation refers to a robotic system that integrates a mobile platform, a robot arm, supported 

by a vision system. “Mobile manipulation” was introduced by Schuler in 1984 [107], where a robot 

arm is mounted on a mobile platform to execute tool handling and delivering duty in a workshop 

environment. 

This chapter focuses exclusively on the machine-tending domain by developing an improved 

path-planning algorithm for our designed robotic system. Path planning is a purely geometric 

process that is only concerned with finding a collision-free path regardless of the feasibility of the 

path [108], [109]. Recently, sampling-based path planning (SBP) algorithms have received 

considerable attention due to their capability in complex and time-critical real-world planning 

problems [110]. SBP is unique in the fact that planning occurs by sampling the configuration space 

(C-space). In a sense, SBP attempts to capture the connectivity of the C-space by sampling it. This 

randomized approach has its advantages in terms of providing fast solutions for severe problems. 
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Furthermore, the computational capacity of the robot controller unit is limited in my applications; 

SBP is a better choice because of its lower computational cost.  

Sampling-based planning was proposed to overcome the complexity of deterministic robot 

planning algorithms for a robot with six degrees of freedom [111]. The use of random 

computations to solve otherwise rather tricky problems has been immensely successful [112]. Both 

sampling-based planners and the success of random computations inspired the development of the 

Randomized Potential Planner (RPP) [113]. RPP used random walks to escape the local minima 

of the potential field planner. Later on, a planner based entirely on random walks, with adaptive 

parameters, was proposed [114]. 

The work of Barraquand and Latombe [115] paved the way for a new generation of path-

planning algorithms that employ randomization. Arguably, the most commonly used SBP 

algorithms are the Probabilistic Roadmap Method (PRM) [116], [117] and Rapidly-exploring 

Random Trees (RRT) [118]. Several other algorithms were developed at the same time that 

outperformed RPP. The intuitive implementation of both RRT and PRM and the quality of the 

solutions lead to their widespread adoption in robotics and many other fields. Although the idea 

of connecting points sampled randomly is fundamental in both approaches, these two methods are 

different in the manner that they construct a graph connecting the points [119]. A comprehensive 

survey of work in SBP is presented [120]. The PRM algorithm has been recorded to be 

implemented well in high-dimensional state spaces. The PRM is created by curves or straight lines 

that enable the robot to go anywhere in its free space. The two well-known methods, named 

visibility graph (VG) and Voronoi diagram (VD) have achieved very good results for very different 

types of roads. However, the path generated by VG touches obstacles at the vertices or edges and 
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thus is dangerous for the robot. Contrary, the solution paths based on VD are not optimal because 

they tend to maximize the distance between the robot and the obstacles. 

RRT has received a considerable amount of attention, because of its computational efficiency 

and effectiveness and its ability to find a feasible motion plan relatively quickly, even in high-

dimensional space [121]. In [122], RRT is implemented and combined with a slightly modified 

dynamic window method. RRT explores a robot working area by incrementally building a tree, 

creating new branches by generating points randomly and linking them to the closest location for 

which an obstacle-free path is obtained. A problem in RRT is that it produces paths with many 

branches in the workspace by using the randomized technique. To overcome this problem, an 

improved robot path-planning algorithm based on the RRT and quintic B-spline curves is proposed 

to generate collision-free and smooth paths for a novel self-adapting intelligent machine-tending 

robotic system. 

The chapter is organized as follows: In Section 3.2, a novel self-adapting intelligent machine-

tending robotic system is introduced. The principle of the algorithm is demonstrated in Section 3.3. 

In Section 3.4, the results and discussion are presented. Finally, Section 3.5 concludes the paper. 

3.2 Self-adapting Intelligent Machine-Tending Robotic system 

In this study, two self-adapting intelligent mobile robot systems, named the Husky mobile 

robot and the Ufactory mobile robot, are used to perform the developed 2D path planning algorithm 

in this chapter. The structure of these two mobile robot systems is shown in Figure 3.1 and Figure 

3.2, respectively. .  
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Figure 3.1: The structure of the Husky mobile robot system used in the study. 

 

Figure 3.2: The structure of the Ufactory mobile robot system used in the study. 
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3.3 The Proposed 2D Path Planning Method 

3.3.1 Principle of the RRT algorithm 

To introduce the proposed improved 2D path planning algorithm, the necessary procedures 

of RRT must be defined. They are demonstrated as follows: (1) sampling: this procedure is used 

to select a configuration randomly and add it to the tree. The samples can be either in the free, or 

obstacle configuration space. This is the core of the RRT; (2) metric function: this procedure 

returns a value, or cost that indicates the effort required to reach C1 from C2, given two 

configurations C1 and C2 in the workspace; (3) nearest neighbors: this procedure uses a search 

algorithm which returns that closest node to the new sample. The value is based on the predefined 

metric function; (4) select parent: this procedure selects the nearest existing node to connect to the 

newly sampled node. That current node is considered parent; (5) local planning: given two 

configurations C1 and C2, this procedure attempts to establish a connection between them; (6) 

collision checking: it is mostly a Boolean function that returns success or failure when connecting 

two configurations C1 and C2. A connection is successful if it does not intersect an obstacle area 

[119]. 

The ability of RRT to explore free space in a workspace with obstacles is illustrated in Figure 

3.7, where the vertical and horizontal axis represent the height and width of the 2D configuration 

space in meters. Two red crosses indicate the start and goal points, respectively. Black circles 

represent the obstacles in the space. The green straight line is the tree or path generated by the 

RRT algorithm. By updating new nodes and connecting new nodes by checking collision-free 

edges based on RRT, the shortest path from the start point to the target point can be calculated. 
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Figure 3.3: The example of RRT. 

It is known that the RRT algorithm is intuitive to employ straight-line paths, and the tree 

produced contains too many branches. However, for most robotic systems this is not a feasible 

plan due to kinematic or dynamic constraints. Thus, we integrate the quintic B-spline curves to 

help the robotic system generate a curvature continuous path in a practical workspace. 

3.3.2 Path Generation using Quintic B-spline Curves 

In this part, we use a quintic B-spline curve [123] to interpolate points Qk, k = 0…n. The 

quintic B-spline curve is presented as follows: 

𝑆(𝑡) = ∑𝑃𝑖𝑏𝑖,5(𝑡)

𝑚

𝑖=0

 (3.1) 

Where 𝑃𝑖 is the control point, 𝑚 = n + 4, 𝑏𝑖,5(𝑡), 𝑖  = 0, …, m, is a quintic B-spline basis 

function. According to the chord length method, if an interpolating curve follows very closely to 

the data polygon, the length of the curve segment between two adjacent data points would be very 

close to the length of the chord of these two data points. The length of the interpolating curve 
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would also be very close to the total length of the data polygon. Then, we assign a parameter value 

𝜏𝑖 to each data point 𝑄𝑖. It is shown as follows: 

𝜏0 = 0 (3.2) 

𝜏𝑖 = 𝜏𝑖−1 + 
|𝑄𝑖 − 𝑄𝑖−1|

𝐿
, 𝑖 = 1,… , 𝑛 (3.3) 

where 𝐿 is the sum of the lengths of these chords: 

𝐿 =  ∑|𝑄𝑖 − 𝑄𝑖−1|

𝑛

𝑖=1

 (3.4) 

Therefore, the ratio of the chord length from the data point  𝑄0 to data point 𝑄𝑘, denoted as 

𝐿𝑘, over the length of the data polygon is 

𝐿𝑘 = 
∑ |𝑄𝑖 − 𝑄𝑖−1|

𝑘
𝑖=1

𝐿
 (3.5) 

For a clamped quintic B-spline curve, a knot vector for interpolation can be calculated 

without end conditions [124]: 

 𝑡0 = ⋯ = 𝑡5 = 0, 𝑡𝑛+1 = ⋯ = 𝑡𝑛+6 (3.6) 

 𝑡𝑗+5 = 
1

5
 ∑𝜏𝑖

𝑗+6

𝑖=𝑗

, 𝑗 = 1, … , 𝑛 − 5 (3.7) 

The performance of the quintic B-spline curve to smooth a straight-line path is shown in 

Figure 3.8. 
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Figure 3.4: The example of the Quintic B-Spline Curve. 

3.4  Results and Discussion 

In this paper, five different scenarios (the goal point in each scenario in a different position) 

are executed to evaluate the developed path-planning algorithm. In each figure, the black circle 

areas represent the obstacles in the workspace. The green line represents the generated trees; the 

yellow line is the original path generated by the RRT algorithm; the blue line is the trimmed path, 

and the red is the improved smooth, continuous curve path produced by the developed 2D path-

planning algorithm. The results are presented below: 
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Figure 3.5: The example of scenario 1. 

 
Figure 3.6: The example of scenario 2. 
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Figure 3.7: The example of scenario 3. 

 
Figure 3.8: The example of scenario 4. 
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Figure 3.9: The example of scenario 5. 

The path generated based on the proposed improved 2D path planning method can find a 

shorter and smoother path, which makes the path feasible for vehicle motion according to the 

kinematic and dynamic constraints. However, there still exists a chance that the vehicle might 

collide with obstacles. Therefore, continuous collision checking must be executed. A rectangular 

is placed in the simulation environment as a mobile robotic system, and detection of the collision 

between the four edges and the boundary of the obstacles is performed. When a path cannot be 

generated, the error message will be reported.  

If there is no collision, the path will be generated successfully. Once the path is generated, 

the mobile robot system can move along the path at a constant rate by coinciding its orientation 

with the tangent of the curve. The algorithm is applied to three cases to evaluate the performance. 

The visualizations of these case studies are shown as follows: 
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Figure 3.10: The example of case study 1. 

 

Figure 3.11: The example of case study 2. 
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Figure 3.12: The example of case study 3. 

The results of the three case studies show that the proposed path-planning algorithm has 

excellent performance for the mobile robotic system in a 2D environment from the above three 

cases. Since this algorithm is only used for generating the best path from one position to the other, 

it can be applied to various types of mobile robot systems without considering holonomic 

constraints. 

3.5  Conclusions 

In this chapter, we propose an improved path-planning algorithm based on a quintic B-spline 

curve to effectively generate smooth and collision-free paths for our designed Novel Self-adapting 

Intelligent Robotic Machine-Tending System. The advantage of our algorithm is that it makes the 

original path trimmed and smooth, so the mobile robotic system can continuously move following 

the kinematic and dynamic rules and slightly rotate its wheel, which extends the life of tires. 

However, this algorithm is not suitable for a very narrow path between obstacles. 
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In the next stage, this proposed path planning method will be used for autonomous docking 

and recharging for the mobile robot in real-world scenarios in manufacturing environments. 
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Chapter 4 : Vision and Lidar-based autonomous docking and 

recharging of a mobile robot for machine tending in autonomous 

manufacturing environments 

4.1 Chapter Overview 

The autonomous recharging process is an important part of a mobile robot’s autonomous 

operation, allowing it to work continuously without any human intervention. Docking [125] can 

be understood as the navigation and localization of a robot toward the desired location. Docking 

requires an accurate pose estimate of the robot, often from a position close to the docking station 

through path planning [126]. Mobile robots are used across various applications [72], [127], [128], 

[129], [130], including surveillance, planetary exploration, dangerous environments, factory 

automation, search and rescue operations, indoor manufacturing environments, and so on. The role 

of mobile robots has become increasingly important for present and future applications. Thus, 

independent autonomous recharging becomes a fundamental requirement to ensure the 

autonomous operation of mobile robots in varying conditions. For a mobile robot to initiate the 

docking and recharging process, it needs to identify the charging station first, and then align itself 

with the charger autonomously by following a series of rotational and translational steps. 

The location of the charging station (e.g., indoor or outdoor) plays an important role in the 

selection of sensors in a docking procedure. Outdoor environments are more complex, 

unpredictable, and dynamic due to the presence of moving objects and obstacles. Moreover, the 

performance of non-visual sensors like Lidars used for docking can be depreciated due to outdoor 

weather conditions such as snow, dust, and fog [131]. Based on the sensor implemented, the 

autonomous docking techniques in literature are divided into three categories: i) infrared (IR) 
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sensor-based methods [132], ii) computer vision [133], and iii) laser-based approaches [134]. To 

receive IR signals properly, the IR receiver needs to be implemented at a specific location on the 

mobile platform, which limits the mechanical design of the mobile robots. Computer vision and 

laser-based techniques such as object localization and Lidar-based approaches are the most 

commonly used methods to solve odometry-related problems. However, both techniques have their 

respective limitations and benefits. Although Lidar [135] can extract different features of the 

environment, not being affected by the change in lighting conditions, and obtain more accurate 

range measurements than the camera, Lidar data is sparsely distributed and has a limited visibility 

range. Furthermore, its operations are based on collecting large amounts of data, which requires 

more computational power than the camera.. However, a standard camera without a 360-degree 

view has a limited visibility angle, resulting in a blind spot [133]. 

To overcome the challenges of conventional methods, the combination of different sensors 

has been investigated for years, and recent research has proved that the fusion approach yields 

better performance than a single-sensor method [135]; the limitations of the IR-based, laser-based, 

and vision-based methods for autonomous docking and recharging methods were overcome by 

combining multiple sensors. In [136], an attempt has been made to integrate a camera and IR 

sensor with laser range finders to improve the reliability of the autonomous docking process. In 

[137], a vision-based autonomous docking and recharging approach was applied to a security robot. 

An artificial landmark was installed on top of the charging station at the same height as the camera 

to assist the robot in detecting and locating the charging station area. The rotational and 

translational errors were compensated by using a virtual spring model motion control approach. 

The model [137] assumed that the robot and the charger could be connected by a virtual spring, 

and the compliant forces in the direction of the translation deformation and bending determined 
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the motion control. However, the vision-based docking approach is prone to calibration errors, as 

demonstrated in [138], where a Faster R-CNN algorithm was used to detect arbitrary visual 

markers. The pose of the mobile robot was estimated using the solvePnP algorithm that related the 

2D-3D point pairs. However, the solvePnP algorithm gave systematically inaccurate pose 

estimates in the x-direction and hence, proved to be ineffective for docking. Laser range finder 

techniques usually detect the charger based on a uniquely manufactured shape of the charging 

station to distinguish it from surrounding objects. One such example is the V-shaped recess on the 

MiR (mobile industrial robot) [32] by Fetch Robotics which required the charger to be placed 

separately from any laser-height obstacles to successfully detect the contour of the charger by the 

laser range finder. However, the requirement of a special shape adds to the charger station 

fabrication costs and limits mobile robots’ practical application in unstructured environments. To 

solve this problem, a self-adhesive reflective tape is used to help the robot identify the charger as 

reported in [32]. With this reflection detection technique, the charger was easily distinguished from 

other similar objects in an unstructured environment that was verified by extensive experiments. 

Moreover, Lidar can be used for obstacle detection and avoidance, navigation, and pose estimation 

of the mobile robot without the use of additional hardware. In [139], a multi-sensor fusing method 

uses intensity and range data fusion with a covariance intersection approach to estimate robot pose 

during docking and recharging. Using the inverse perspective projection method, an artificial 

landmark was employed as a visual cue on the charging station to be identified by the robot. Then 

based on the laser range data, the geometrical relationship between the robot and charger station 

was estimated precisely with the covariance intersection method. Furthermore, in [136], ultrasonic 

sensors and IR sensors were integrated with a wheeled robot to assist in autonomous docking and 

recharging. Ultrasonic sensors were used to detect the charger and estimate the distance from it. 
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At the same time, the IR sensors were employed to adjust the orientation of the robot and achieve 

the exact position for the docking. In [140], automated guided vehicle (AGV) autonomous docking 

was investigated in an unstructured environment with human presence. An autonomous docking 

technique was implemented with a non-visual sensor like Lidar and AprilTag for charger detection. 

A deep learning network was used to detect and recognize humans and objects. Practical 

experiments verified that the AGV could co-exist with humans and perform autonomous docking 

in unstructured environments. With the development of deep learning techniques, deep learning-

based approaches perform better in autonomous docking applications. In [140], the MobileNetv2-

SSDLite deep learning framework was adopted to detect and recognize the specific person in the 

human-robot collaborative environment. Once the particular human is identified, the robot system 

can achieve automatic docking to the target person based on LiDAR and the RGB-D camera. In 

[26], Faster-RCNN is adopted to detect arbitrary dynamic obstacles. Given that high-resolution 

images from the camera can provide rich information, in [141], [142], authors proposed a fusion 

method to make use of images from a camera to enrich the raw 3D point clouds from LiDAR. The 

sparse convolutional neural network is adopted to predict the dense point clouds to enrich the raw 

point clouds and then employed to execute LiDAR SLAM. In [142], the Faster-RCNN model with 

a MobileNetv3-Large FPN backbone is used to identify the charging station. It has been proven 

that it can distinguish the charging station from other surrounding objects in most scenarios. 

Based on previous studies, the autonomous docking and recharging process becomes more 

reliable and repeatable with a multi-sensor fusion approach in both structured and unstructured 

environments. However, the IR sensors require specific configurations such as signal receivers 

which is inconvenient and high costs [132]. Therefore, most current fusion methods consider 

combining the Lidar sensor with computer vision techniques because of their low cost and non-
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destructive abilities. However, computer vision techniques, especially deep learning-based object 

detection, require a large amount of proper task-oriented high-quality data for training and tuning 

to achieve the desired performance [95]. The changing lighting conditions and the shaking of the 

camera on mobile robots can also affect the performance of deep learning-based object detection 

models [143], which makes it difficult to implement computer vision techniques solely in real-

world manufacturing applications. 

Considering the aforementioned challenges, this chapter aims to develop a Lidar-camera data 

fusion method for mobile robots to achieve autonomous docking and re-charging in a complex 

manufacturing environment. This chapter contributes to the transition of state-of-the-art real-time 

object detection methods from general public datasets to real-world manufacturing tasks by 

combining deep learning-based techniques to identify the charging station in a complex 

manufacturing environment, followed by a Lidar-based approach to localize the detected wireless 

charger and dock the mobile robot to it for recharging. In this chapter, an indoor manufacturing 

environment with an enclosed space where the wireless charging station is set is considered to 

implement the docking procedure. The proposed method is analyzed and discussed based on the 

autonomous docking and recharging of a Husky robot by Clearpath Robotics. A YOLOv7-based 

method is used to detect the charging station for the robot to navigate to the desired location. 

Afterward, the Lidar sensor is used, integrating with the detected results and vision data, to 

determine the distance from the charger and side wall to achieve correct pose estimation and then 

successfully dock the robot to the charging station. The proposed method can be easily adapted to 

different types of wireless chargers and locations in a complicated manufacturing environment. 

The distance data between the Lidar and the camera can be calibrated to get ac-curate alignment 

and pose estimation. 
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The remainder of this chapter is organized as follows: Section 4.2 will present the related 

work; Section 4.3 will describe the mobile robot system used in the case study; Section 4.4 will 

explain the proposed method in detail; Section 4.5 will demonstrate the experiment results; and 

Section 4.6 will present the discussion and conclude this chapter. 

4.2 Related Work 

In this section, the recent docking and recharging methods for mobile robot systems in the 

manufacturing field based on Lidar and computer vision techniques are presented. Fan et al. [128] 

proposed a vision-based docking and recharging method that can be applied in a warehouse 

environment. This method used the AprilTag for the detection and identification of the robot's pose. 

It achieved around 97.33% docking success rate. In [138], authors proposed a Faster RCNN model 

to detect and localize the designed markers mounted on the docking station, combing with the 

solvePnP algorithm to navigate the mobile robot in a ROS simulation environment. This model 

has achieved an accuracy of 96.3% based on thirteen testing images. The detector takes around 

35ms to process each image. Song et al. [140] adopted a single shot detector (SSD) to identify 

moving people and then dock to the target person for human-robot collaborative tasks in an 

unstructured environment. In [142], the SSD was developed to detect the charging stations in 

obstacle-free scenarios. This method can achieve a performance of 99.8% for successful docking 

to the charger. It takes an average of 12s to complete the docking procedures based on their de-

signed scenarios. 

Although these methods have made great contributions to autonomous docking and 

recharging applications, some limitations are observed. Most methods are evaluated in a 

simulation or laboratory environment instead of a manufacturing environment. In addition, two-

stage deep learning models such as Faster RCNN, are inefficient compared to one-stage real-time 
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models. Considering these limitations, the state-of-the-art real-time deep learning-based model, 

YOLOv7, is developed to distinguish and identify the target wireless charger from a complex 

manufacturing environment, integrated with a proposed Lidar-based approach to achieve efficient, 

low-cost, and robust docking and recharging tasks. 

4.3 System Description 

The autonomous mobile robot is shown in Figure 4.1. A Husky UGV field search robot by 

Clearpath Robotics is used to implement the Lidar-vision-based docking method and conduct 

autonomous charging experiments in indoor manufacturing environments. Figure 4.1 shows the 

Husky robot installed with an Ouster Lidar sensor and the Hikvision camera. The specification 

information of the Ouster Lidar and Hikvision camera is presented in Tables 4.1 and 4.2.  

Table 4.1: The specifications of the Ouster Lidar. 

Specifications Value 

Max range 200 m 

Vertical field of view 45° 

Channels of resolution 128 

Max points 5.2 M/second 

Max frame rate 20 Hz 

Operating temperature −40℃ − 60℃ 
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Table 4.2: The specification of the Hikvision camera. 

Specifications Value 

Max resolution 3840 × 2160  

Vertical field of view 56° to 17° 

Horizontal field of view 108° to 30° 

Focal length 12 mm 

Frame rate 30 fps 

Max range 29 m 

 

A ROS software development platform is used to program the docking process using the 3D 

Lidar sensor and control the robot’s motion through the docking steps. 
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Figure 4.1: Husky robot setup with Lidar sensor and the Hikvision camera. 

The wireless charging station used in the case study is presented in Figure 4.2, which is 

installed inside a custom sized modular structure. A ramp door placed in the front allows the robot 

to come out from the docking station to run missions and return for recharging as necessary. 
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Figure 4.2: The charging station used in this study. 

4.4 Proposed Autonomous Docking and Recharging Method 

This section proposes a vision and lidar-based autonomous docking and recharging approach. 

The proposed method consists of three main steps: i) data collection, which adopts a Hikvision 

Camera and Ouster Lidar to capture the RGB images and depth in-formation respectively, ii) a 

deep learning-based object detection method, using the YOLOv7 model as the core architecture, 

to recognize the charging station in the manufacturing environment, iii) a Lidar-based approach to 

adjust the pose of the mobile robot and then dock it to the detected wireless charger. The flowchart 

of the proposed method is presented in Figure 4.3. 

 

Figure 4.3: The block diagram of the proposed docking and recharging method. 
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4.4.1 YOLOv7 Architecture 

YOLOv7 is a one-stage model and the latest algorithm for real-time object detection so far, 

and it performs well in both speed and accuracy [144]. The architecture of the proposed charging 

station detection method based on YOLOv7 is presented in Figure 4, which is composed of three 

main components: backbone, neck, and head. The convolutional back-bone module adopted the 

Darknet-53 [145] to extract image feature maps from the input image and transfer them to the neck 

layers. In the neck module, the Feature Pyramid Network (FPN) [146] is used to enhance the 

feature maps. These maps are then combined, fused, and passed to the subsequent layers. Finally, 

the head network predicts the bounding boxes and classes of the objects. 

 

Figure 4.4: The flowchart of the charger detection method. 

YOLOv7 adopts a developed Extended Efficient Layer Aggregation Network to improve 

inference efficiency. This network can quicken learning ability without disturbing or changing the 

original gradient propagation path. In addition, a novel scaling method, named corresponding 

compound model scaling, is proposed to address the issue of a larger width output of the 

computational block by directly scaling the depth of the con-catenation-based model. Moreover, 

several techniques have been used to improve inference accuracy while keeping low training costs. 

These techniques, called Bags of Freebies (BoF), include planned re-parameterization, dynamic 

label assignment, and batch normalization. After thoroughly investigating the re-parametrized 

convolution, the author demonstrated increased model accuracy when using the RepConv without 
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an identity connection. Furthermore, batch normalization integrates the mean and variance of the 

data to adjust the bias and weight of the convolutional layer, which can immediately impact the 

training process by utilizing a higher training rate and faster convergence. 

According to [147], YOLOv7 optimizes the inference process and improves detection 

accuracy and speed compared with other existing real-time object detection methods because of 

its more advanced network structure and training strategies. However, it has not been used yet in 

autonomous docking and recharging domains. In this chapter, YOLOv7 is adopted as the backbone 

architecture to detect and recognize the charging station. 

4.4.2 Lidar and Vision Data Fusion Method for Autonomous Docking and Path Planning 

In recent research, Lidar sensors and cameras are commonly used together in autonomous 

driving applications because a lidar sensor can collect 3D spatial information. In contrast, a low-

cost camera captures the appearance and texture of the corresponding area in 2D images. Therefore, 

the fusion of Lidar and the camera data can improve object detection performance. Lidar-camera 

calibration estimates a transformation matrix that gives the relative rotation and translation 

between the 2D coordinates by the Hikvision camera and 3D spatial coordinates by Lidar as 

demonstrated in Equation 4.1 – 4.5 [148]. By coinciding the camera coordinate system with the 

global coordinate system, the transformation matrix can be derived in Equation 4.6. Then,  3D 

coordinates of the charging station can be calculated by Equation 4.7 – 4.9 based on the predicted 

bounding box in the image domain. 

𝑧𝑐 [
𝑢
𝑣
1
] =  

[
 
 
 
 
𝑓𝑥
𝑑𝑥

0 𝑢0

0
𝑓𝑦

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

 [𝑅𝑧𝑅𝑦𝑅𝑥 𝑇] [ 

𝑋
𝑌
𝑍
1

] (4.1)  
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𝑅𝑥 = [
1 0 0
0 cos 𝜃𝑥 −sin 𝜃𝑥

0 sin 𝜃𝑥 cos 𝜃𝑥

] (4.2)  

𝑅𝑦 = [

cos 𝜃𝑦 0 sin 𝜃𝑦

0 1 0
−sin 𝜃𝑦 0 cos 𝜃𝑦

] (4.3)  

𝑅𝑧 = [
cos 𝜃𝑧 −sin 𝜃𝑧 0
sin 𝜃𝑧 cos 𝜃𝑧 0

0 0 1

] (4.4)  

𝑇 =  [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇 (4.5)  
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𝑣
1
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𝑓𝑦

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

 [
1 0 0 0
0 1 0 0
0 0 1 0

] [ 

𝑋
𝑌
𝑧𝑐

1

] (4.6) 

𝑋 =  
𝑢 − 𝑢0 ∙  𝑧𝑐 ∙ 𝑑𝑥

𝑓𝑥
 (4.7) 

𝑌 = 
𝑣 − 𝑣0 ∙  𝑧𝑐 ∙ 𝑑𝑦

𝑓𝑦
 (4.8) 

𝑍 = 𝑧𝑐 (4.9) 
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 where 𝑢 and 𝑣 are 2D coordinates from the camera; 𝑢0 and 𝑣0 is the origin of the camera 

coordinate system; 𝑋, 𝑌 and 𝑍 are the 3D global coordinates from the Lidar; 𝑓𝑥 and 𝑓𝑦 are the focal 

length along 𝑥 and 𝑦 directions. 𝑅𝑧𝑅𝑦𝑅𝑥 and T are the rotation matrix from the camera coordinate 

to the global coordinate, respectively. And 𝑧𝑐 is the distance between the detected object and the 

camera. The illustration of the transformation process is presented in Figure 4.5. 

 

Figure 4.5: The illustration of the transformation process. 

An ouster Lidar sensor is utilized to calculate distances from the robot frame of reference to 

the side wall and the depth or the distance to the charger. It is assumed that the charging station is 

enclosed within walls to simplify the pose estimation of the robot for the docking process. Two 

scenarios are considered for the Lidar-vision docking method implementation which is docking in 

an environment with only one charger and with three chargers as shown by the gazebo virtual 

environment setups in Figure 4.6. 
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Figure 4.6: The docking station gazebo virtual environment setup with one charger (top-left) and 

three chargers (top-right), and Rviz lidar point cloud visualization for one charger (bottom-left) 

and three chargers (bottom-right). 

In the case of three different chargers, the vision-based method will aid the robot in 

identifying the correct charger and autonomously dock with it. Rviz software is used to visualize 

lidar point cloud data of the charging stations for both one charger and three charger setups as 

demonstrated in Figure 4.6. The pose estimation and navigation for docking are applied with the 

lidar sensor data based on the information depicted in Figure 4.7. After the correct charging station 

is identified with the developed YOLOv7-based method, the lidar point cloud data is filtered to 

obtain two diagonal and two straight lines called: Front_laser, Back_laser, Wall_laser, and 

Charger_laser. Based on this information, a series of rotations and linear motion can be applied to 
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the robot to move it to the desired location in front of the charger. The pseudo-code algorithm to 

implement the Lidar-based docking procedure is described in Table 4.3: 

Table 4.3: Pseudo-code algorithm to implement the Lidar-based docking procedure. 

State 1: Robot straightening  

Initialize: Front_laser, Back_laser, Charger_laser, and Wall_laser 

If (Front_laser – Back_laser) > 0 then rotate clockwise until Front_laser = Back_laser 

else if (Front_laser – Back_laser) < 0 then rotate anti-clockwise until Front_laser = 

Back_laser 

If Wall_laser > Known distance  

Change state to 3 

else if Wall_laser < Known_distance  

Change state to 2 

State 2: Robot turning left if to the right of the charger 

Turn the robot anti-clockwise until Back_laser = Wall_laser 

Then change state to 4 

State 3: Robot turning right if to the left of the charger 

Turn the robot clockwise until Front_laser = Wall_laser 

Then change state to 4 

State 4: Robot’s linear motion 

Move the robot in a linear motion until Wall_laser = Known_distance 

Then change state to 5 

State 5: Robot straightening the second time 

If (Front_laser – Back_laser) > 0 then rotate clockwise until Front_laser = Back_laser 

else if (Front_laser – Back_laser) < 0 then rotate anti-clockwise until Front_laser = 

Back_laser 

Then change state to 6 

State 6: Robot moving towards the charger 

Move the robot in a linear motion until Charger_laser within 2 to 3 cm’s away from the 

charger 

Then change state to 7 

State 7: Robot docking with the charger 

Stop the robot’s motion and change the status to docked 
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Figure 4.7: The Lidar-based docking method visualization. 

The above algorithm was tested on the Husky robot and gave a fairly accurate pose 

estimation and localization for the docking, except for systematic errors based on the lidar data 

readings. The algorithm was tested for various initial poses and locations from the charger, a few 

of those case scenarios considered can be viewed in Figure 4.8. The known distance of the charger 

from the side wall can be determined using the vision-based method and matched with the 

Wall_laser to fuse the lidar-vision data. Moreover, once the robot is in the correct docking position 

for charging or close to the desired location, the lidar point cloud data and the camera-based 2D 

image can be calibrated to eliminate any errors and improve the pose estimation for autonomous 

docking of the robot. 
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Figure 4.8: The Robot at different locations and orientations from the charger in a gazebo virtual 

environment setup. 

4.5 Results and Discussion 

4.5.1 Transfer Learning and Data Augmentation 

Deep learning models frequently require extensive input images for the training process. 

However, gathering enough practical images for some applications can be difficult. Therefore, 

rather than building a model from scratch, transfer learning provides an alternative strategy for 

addressing this problem [55]. It adopts a pre-trained deep learning model as a template for another 

training task. The modified YOLOv7 model trained and tested on the Microsoft COCO dataset 

with the parameters was used in this study, significantly improving training efficiency. Due to the 

limited number of charging stations, images do not have extensive features. As a result, 

diversifying the training data is a common technique for improving generalization and reducing 

overfitting [22]. This study randomly introduces geometric distortions such as rotation, translation, 

scaling, and vertical flipping and image distortions such as Gaussian blur and noise. 

4.5.2 Datasets Building 

Since there are no public datasets for charging stations, used in the case study, a specific 

dataset was built for the experiments. The images of charging stations were collected through the 
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Hikvision camera mounted on the mobile robot. The created dataset has 240 images with a 

resolution of 1920 × 1018 pixels, shot from different angles and split into three sub-datasets: 160 

training images, 40 validation images, and 40 testing images. These images in the dataset were 

annotated using LabelImg Software, which is an open-source annotation tool. The labelled images 

are shown in Figure 4.9. 

 

Figure 4.9: The example of labelled images. 

4.5.3 Training Environment and Parameters 

The model for detecting and recognizing the dock and charging stations was trained and 

tested on a local Desktop with the specifications listed in Table 4.4. The pre-trained hyper-

parameters for the dock and charging station detection are presented in Table 4.5. 
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Table 4.4: Training environment and specifications. 

Specifications Value 

Operating System Windows Server 2019 

CPU AMD Ryzen Threadripper 3970X 32-Core 

GPU NVIDIA GeForce RTX 3090 

RAM 128 GB 

CUDA Version 11.1 

PyTorch Version 1.10.1 

 

Table 4.5: Training Parameters. 

Parameters Value 

Learning Rate 0.001 

Learning Momentum 0.9 

Batch Size 16 

Epochs 100-300 
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4.5.4 Results and Analysis 

4.5.4.1 Evaluation Metrics 

This chapter adopted the mean average precision (mAP) as the evaluation metric. It is the 

area under the precision and recall (true positive rate) curve calculated by Equation 4.5-4.8 at 

different intersection-over-union (IoU) thresholds. mAP_0.5, at a 0.5 intersection-over-union (IoU) 

threshold, is commonly used as the evaluation metric. In addition, mAP_0.5:0.95, which is the 

average mAP over multiple IoU thresholds, can affect the modal with better performance. 

Therefore, both metrics will be considered in the training and testing procedures to evaluate the 

performance of dock and charging station detection. 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4.5) 

𝐴𝑃 = ∫ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) 𝑑(𝑅𝑒𝑐𝑎𝑙𝑙)
1

0

 (4.6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.8) 

where TP, FP, and FN are true positive, false positive, and false negative of the predicted bounding 

box, respectively. 

4.5.4.2 Results 

Figure 4.10 depicts the training and validation loss for detecting the charging station. To 

optimize the proposed model, the loss function used in YOLOv7 needs to be minimized, it presents 
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that around 300 epochs, the training and validation loss both decrease to a stable point with a 

minimal gap between the two final values. Figure 4.11 displays the model performance based on 

both performance metrics of the model in the validation. It can achieve about 99.4% mAP_0.5 and 

86.5% mAP_0.5:0.95. During the training and validation, various epochs were tested. It can be 

observed that when the epoch is below 300, both training loss and validation loss continue to 

decrease at the end of curves, which indicates the proposed model can be further improved through 

further learning. However, with the epoch surpassing 300, the validation loss begins increasing, 

which leads to an overfit. Therefore, in the training and validation, the epoch of 300 times was 

chosen to obtain the optimized pre-trained model which can achieve the best performance. 

 

Figure 4.10: Training loss and validation loss of the charger detection model. 
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Figure 4.11: The results of both performance metrics. 

In addition, an evaluation is performed for real-time charger detection while the mobile robot 

is moving based on the proposed method. Figure 4.12 depicts an example of the recognized results. 

A metric for evaluating the method performance in a practical environment is adopted, as shown 

in Equation 4.9. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁

𝑇
 (4.9) 

Where N is the number of correct recognized images, and T is the total number of images 

used in the evaluation process. It can be observed that the accuracy of testing the developed 

charging station detection method in real-time scenarios can achieve an average of 95%. 
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Figure 4.12: The example of real-time charging station detection. 

In this chapter, the case study of the mobile robot in different positions and poses is 

conducted to evaluate the proposed Lidar-based approach in a real-world manufacturing 

environment. Figure 4.13 is an example that presents the different states of the mobile robot when 

performing the docking task. Based on the case study, the proposed method can achieve successful 

docking and recharging. The criteria to determine the success is the mobile robot can contact the 

charging station properly and be recharged successfully. The comparison results with the related 

work are presented in Table 4.6. 

Table 4.6: Comparison of the existing methods. 

Related work Method Accuracy 

Kriegler et al. [141] Faster RCNN 96.3% 

Fan et al. [130] ApriTag 97.33% 

Romero et al. [147] SSD 99.8% 
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- Proposed 100% 

 

Figure 4.13: The example of autonomous docking procedures. 

4.6 Conclusion 

This chapter discusses the challenges faced by current autonomous docking and recharging 

methods in the context of mobile robots in manufacturing environments. Current state-of-the-art 

methods heavily rely on Lidar, which makes it expensive and time-consuming for the mobile 

robotic system to achieve autonomous docking and recharging applications. Therefore, a Lidar and 

vision data fusion method by combining deep learning object detection and Lidar-based docking 

approaches was proposed to address the aforementioned problems. A YOLOv7-based real-time 

object detection model was developed to identify the wireless charger. For evaluating the 

developed detection method, a set of testing images and real-time video frames captured through 

the Hikvision camera were used, and it achieved an average of 95% accuracy. The performance of 

the detection model of the charging station was compared with current methods. According to the 

comparison results, the proposed method outperformed other existing methods. A Lidar and vision 
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data fusion approach was then developed to localize the wireless charger, and then navigate the 

mobile robot to achieve the docking to the charging station, reducing the computation costs for the 

system. Despite the advantages of the proposed method, it is limited by some challenges. For 

instance, the wireless charging station needs to be in an enclosed space, which can be used to 

calculate the Wall_laser distance in the proposed method. Moreover, the developed charging 

station detection method can be affected by the low illumination conditions in the manufacturing 

environment and blurring caused by the unstable movement of the mobile robot. Additionally, to 

achieve autonomous docking and recharging for mobile robots in any location, a path-planning 

algorithm to navigate the mobile robot from any position to the target position close to the charging 

station while avoiding obstacles in real-time is missing. 

So far, this proposed Lidar-camera data fusion method for autonomous docking and 

recharging has only been validated on a 2-D camera and Lidar system. Future work will focus on 

the stereo camera and Lidar system to improve the performance of the developed method in a 

practical autonomous manufacturing environment. Furthermore, for the docking procedure itself, 

the calibration between the vision and Lidar data to improve the pose estimation of the robot with 

the charger needs to be implemented for future work.
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Chapter 5 : An Intelligent Manufacturing Approach Based on a 

Novel Deep Learning Method for Automatic Machine and Working 

Status Recognition 

5.1 Chapter Overview 

With current labor shortages and high costs, workers’ health, safety, and product quality may 

be compromised to compensate for manufacturing productivity [149]. Most manufacturing 

activities, such as machine tending tasks, are low-tech, repetitive, and dull, so workers can easily 

be replaced. With the development of robots, they are gradually being applied to machine tending 

tasks by collaborating with operators and even replacing workers to load and unload the raw parts 

of the machines. Recently, numerous research and developments have been carried out and 

contributed to the robotic system in smart manufacturing [150], [151], [152], [153], [154]. Since 

robots can sense and respond to different scenarios for various manufacturing tasks, collaborative 

robots (Cobots) have been widely implemented to relieve workers from risky, tedious, and 

repetitive manufacturing tasks [155]. In addition, it ensures high throughput rates and low costs 

[156]. 

Collaborative robots work in four different manners according to different collaborative 

environments [157], which are: (1) Coexistence: the robot and operator are in the same 

environment but generally do not interact with each other; (2) synchronized: the robot and worker 

are in the same workspace, but at different times; (3) cooperation: the worker and robot are in the 

same workspace at the same time, but each focuses on separate tasks; and, (4) collaboration: the 
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robot and operator execute the same task, which means the action of the one has immediate 

consequences on the other. However, these four types of Cobots still suffer from some challenges 

and drawbacks. Safety is the primary concern. Although some perception sensors are utilized on 

Cobots to avoid injuries, operators must be careful all the time working with Cobots if they move 

too fast. Moreover, Cobots are often dedicated and fixed for a particular machine, and programmed 

for a specific task. It is an inefficient use of factory space and causes high costs to satisfy all 

manufacturing activities. In addition, it requires experienced engineers to reprogram the Cobots to 

meet different production requirements when changing manufacturing tasks. 

The autonomous mobile manipulator (AMM) is proposed to extend the capabilities of 

conventional collaborative robots [15]. The architecture of AMM is a robot arm mounted upon a 

mobile platform, which combines locomotion capability with manipulation ability. Since it 

combines collaborative and mobile robot characteristics, it is more flexible and adaptable to 

changes in tasks or environments. Although AMM can perform more manufacturing tasks than 

traditional Cobots cannot, there is still a need for experienced operators to be onsite to assist the 

AMM in finding the target machines, checking the machine’s working status, and taking 

emergency actions in case of problems. For example, the robot does not load raw materials 

properly. 

As discussed in [158], smart devices and intelligent solutions can significantly improve the 

manufacturing process with artificial intelligence and imaging equipment development. They have 

gradually become a hot topic in smart manufacturing [159]. In [160], authors propose an intelligent 

perceiving and planning system based on deep learning for a 7-DoF manipulator with a vision 

system. The vision system and designed intelligent process enhance collaboration ability through 

recognizing the target objects and improving the efficiency of robot planning. In [161], a 
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collaborative robotics framework for top-view surveillance is proposed. This study adopts pre-

trained deep learning models for object detection and localization to assist human operators in 

managing and controlling different applications. However, there is a challenge to recognize objects 

because the appearance of objects changes significantly due to the change in camera position and 

shooting angle, which results in weak performance. In [56], authors develop a deep learning-based 

object detection method for the mobile robot manipulator in small and medium-sized enterprises 

production. This study applies region convolutional neural networks to recognize and localize the 

charging station and printing machine to achieve automatic tag production. In addition, it designs 

a human detection algorithm for the manipulator to increase safety while collaborating with 

operators. 

Most recent studies and existing applications in smart manufacturing adopt mobile 

manipulators with the vision system and designed object detection methods to improve 

manufacturing production safety, efficiency, and intelligence. In those studies, humans often take 

great responsibility for controlling and operating robots through computer programs. 

Consequently, imitating human behavior, such as the “eye-brain-hand” process, is necessary to 

realize intelligent and autonomous manufacturing production truly and has become a widespread 

trend [160]. Therefore, this chapter proposes a deep learning-based intelligent manufacturing 

approach, aiming to achieve true intelligence and autonomous manufacturing production and 

machine tending. Compared with other solutions, the benefits of the proposed approach are low 

costs and high efficiency for small and medium-sized enterprises. In addition, this approach can 

be applied in lights-out manufacturing to reduce the workload for operators who need to tend 

machines and tackle the problems on the production floor. In the current study, an autonomous 

mobile manipulator with a vision system is adopted. The main objectives of this work are to 
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develop an intelligent object detection method for the target CNC machine and HMI display 

detection in a complex environment and to design a text recognition method for the machine’s 

working status recognition to further assist in autonomous robot decision-making and problem 

handling. 

The remainder of this chapter is organized as follows: in Section 5.2, an overview of object 

detection and text recognition is presented. Section 5.3 explains the methodology of the proposed 

intelligent manufacturing approach for automatic machine detection and working status 

recognition. The case studies and results are demonstrated in Section 5.4. Section 5.5 outlines some 

limitations and potential future work. Finally, conclusions are presented in Section 5.6. 

5.2 Literature Review 

5.2.1 Object Detection 

With the development of computer vision technology, object detection has been applied to 

many areas, including face detection, pedestrian detection, and traffic sign/light detection. 

Intelligent manufacturing mainly utilizes object detection techniques, such as quality management, 

product sorting, packaging, and assembly lines. There are two categories of object detection given 

in recent research: traditional object detection methods and deep learning-based detection methods. 

5.2.1.1 Traditional Object Detection Methods 

Most classical object detection methods are usually developed based on low-level and mid-

level features, such as color, shapes, edges, and contours. In the late 1990s and early 2000s, there 

were several milestones in object detection methods dominated by hand-crafted features. Scale 

Invariant Feature Transform (SIFT) is one of them which transforms an image into a wide set of 

locally scale-invariant features. These scale-invariant features are invariant to image translation, 
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rotation, scaling, illumination, occlusion, and 3D projection. Highly distinctive scale-invariant key 

points are further proposed to match individual features with features from known objects, and 

then the clusters belonging to the same object are identified through the Hough transform and 

finally verified by least squares. In [162], a local feature descriptor, Histogram of Oriented 

Gradients (HOG), was first proposed. It counts the occurrences of gradient orientation in localized 

portions based on a dense grid of uniformly spaced cells and uses overlapping local contrast 

normalizations to improve accuracy. Despite being similar to SIFT descriptors, it is a significant 

improvement and gives excellent results for human detection. Because of the advantages of HOG, 

it has been an important architecture for many object detection methods. As an extension of HOG, 

the Deformable Part-based Model (DPM) [163] is the best classical object detection method. DPM 

achieves improvement in both precision and efficiency compared with the previous methods. It 

considers an object as a global template covering an entire object and a collection of part templates. 

Then the models are trained discriminatively through a support vector machine. However, as the 

performance of handcrafted features reached its limits, object detection has fallen into a bottleneck 

period. 

5.2.1.2 Deep Learning-Based Detection Methods 

Deep learning-based object detection breaks the deadlocks as deep convolutional neural 

networks can learn an image’s robust and high-level features. With the development of GPU 

computing resources and the availability of large-scale datasets, many deep learning-based object 

detection methods have been developed. This section introduces the milestone frameworks in 

object detection because almost all detectors proposed over the last seven years use one of them 

as the foundation. In general, deep learning-based object detection methods are grouped into two 

main categories: two-stage methods and one-stage methods. 
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Regions with Convolutional Neural Networks (R-CNN) is the first proposed deep learning-

based object detection algorithm. The basic idea is extracting enormous proposals as candidate 

regions based on selective search [164], and then scaling all proposals to fixed-size images and 

feeding them into a pre-trained CNN model to obtain object features. Finally, using Support Vector 

Machine (SVM) classifiers to predict the presence of the object and to recognize the object 

category. However, the redundant feature computations on many overlapped proposals lead to a 

plodding detection speed. Therefore, Ross Girshick proposed Fast-RCNN [165] to improve R-

CNN. It can train a detector and predict bounding boxes simultaneously under the same network 

configurations, which improves the detection speed. 

Faster-RCNN [166] is proposed shortly after the Fast-RCNN. Its main contribution is the 

design of the Region Proposal Network (RPN). RPN can generate region proposals quickly and 

efficiently. Although Faster-RCNN breaks through the speed bottleneck, computation redundancy 

occurs at the subsequent detection stage. Joseph Redmon presented a method called You Only 

Look Once (YOLO) [167] to solve this problem. This algorithm applies a single neural network 

to simultaneously divide the image into candidate regions and predict probabilities containing the 

object for each region. Although YOLO improves the detection speed significantly, it suffers from 

a low accuracy in localization compared with previous methods, especially in some small object 

detection. Meanwhile, the proposed Single Shot Multi-Box Detector (SSD) [168] introduces multi-

reference and multi-resolution detection techniques to improve detection accuracy while 

maintaining high detection speed. 

Although SSD and YOLO-based methods achieve good accuracy and computation 

efficiency performance, those models require too much labelled data for training. However, 

sometimes much data is not available or easy to obtain for a specific object or task. These methods 
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also suffer from bad performance for small object detection tasks. In addition, those milestone 

methods mainly focus on classifying and detecting different object categories, so it is not suitable 

for detecting a particular target CNC machine from many machines in the industrial environment. 

In this study, Siamese Neural Networks [169], [170] are integrated with the region proposal 

network to solve this problem. It helps build models with good accuracy and efficiency, even with 

fewer data and imbalanced class distribution. 

5.2.2 Scene Text Recognition 

Scene images contain abundant and precise information, especially the text in the scene 

images, which is helpful for people to understand the surrounding environment. Scene Text 

Recognition (STR) is developed as one of the research fields of computer vision to recognize the 

text from scene images and convert it into machine-readable information [170]. STR consists of 

two stages, which are text detection and text recognition. Text detection aims to determine whether 

there is text in a given image or video and to localize the text using bounding boxes. Text 

recognition aims to identify the detected text and translate the text into machine-readable 

information [171]. Recently, scene text recognition applications gained much popularity in many 

fields, such as car plate recognition, product labelling, sorting, and packaging. 

Traditional text detection and recognition algorithms often adopt handcrafted features to 

separate the text and non-text regions in a scene image, requiring demanding and intricate image 

processing steps [172]. Since traditional methods are not robust, challenging to implement, and 

constrained by the complexity of creating handcrafted features, they can hardly deal with intricate 

circumstances. Therefore, this section only discusses recent deep learning-based methods. 
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5.2.2.1 Text Detection 

Given the similarity between text detection and general object detection, most text detection 

methods use a general object detection framework as core architecture. Combining a random forest 

word classifier and convolutional neural network (CNN) was proposed to achieve a high recall 

rate and precision [173]. In [174], Faster-RCNN was enhanced by the inception region proposal 

network, responsible for obtaining text candidate regions. Then an iterative bounding box voting 

scheme was applied to ensure high recall and the best results. In [175], an image processing method 

named non-maximum suppression was proposed to reduce overlapped and redundant effects. An 

SSD-based text detection method called TextBoxes++ was proposed to detect arbitrary-oriented 

scene text with high accuracy and efficiency using a quadrilateral rectangle without post-

processing steps involved, such as non-maximum suppression. However, the accuracy of region 

proposal-based methods heavily relies on the candidate regions’ generation. Unlike general objects, 

the text usually has varying aspect ratios. Therefore, it is necessary to manually design anchors 

with different aspect ratios and scales, which makes text detection complicated and inefficient. 

5.2.2.2 Text Recognition 

Most text recognition methods recognize the scene text by grouping the recognized 

characters, making text recognition inefficient and difficult for real-time applications. In [176], an 

accurate scene text recognition method without character-level segmentation was proposed based 

on a Recurrent Neural Network (RNN). Shi [177] presented a convolutional recurrent neural 

network (CRNN) to recognize the scene text in arbitrary lengths in scene images by stacking CNN 

and RNN. This method is not limited to any predefined lexicon and can achieve remarkable 

performances in scene text recognition tasks. In [178], recursive recurrent neural networks with 

attention mechanisms [179] were developed to achieve good performance for dictionary-free scene 



 

92 

 

text recognition. Liao [180] proposed a TextBoxes method by combining the SSD and CRNN to 

speed up the text recognition task to recognize text in scene images. 

Although numerous studies have been done, the limitations and challenges of scene text 

recognition while applying it to real-world manufacturing tasks have not been researched. 

Efficiency and precision are two main concerns using text recognition methods to obtain the 

working state of a CNC machine. Text blurring often happens when the mobile robot moves due 

to camera shake and de-focus, which degrades recognition accuracy [181]. In addition, efficiency 

is a shortcoming of deep learning-based methods, making it challenging to deploy those methods 

on mobile devices and lightweight systems [182]. Therefore, this study integrated some pre-

processing steps that reduce the complexity of images into the developed text recognition method 

to improve image quality. In addition, the combination of HOG and CRNN can realize real-time 

working status recognition of CNC machines while ensuring accuracy. 

5.3 The Proposed Intelligent Manufacturing Approach 

There are three main targets of this research. One is to automatically recognize the target 

CNC machine in a complex environment through a camera mounted on a moving mobile 

manipulator. Simultaneously, detect the human-machine interface (HMI) of the CNC machine. 

Once the HMI is detected, it can identify the working status by recognizing the text on the HMI 

display. This study proposes a novel deep learning-based approach to achieve these goals. First, 

the Siamese region proposal network (SiameseRPN) method was proposed to achieve the target 

CNC machine and HMI detection. Then, the detected HMI images are extracted, pre-processed, 

and used as inputs for working status recognition. Finally, the novel text recognition method by 

combining the projection-based segmentation and the convolutional recurrent neural network 

(CRNN) was developed to identify the working status of the target CNC machine. Figure 5.1 
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presents the flowchart of the proposed intelligent manufacturing approach. The following section 

explains the SiameseRPN method and the machine’s working status recognition method. 

 

Figure 5.1: The flowchart of the proposed intelligent manufacturing approach. 

5.3.1 Siamese Region Proposal Network (Siameserpn) Architecture 

The Siamese Region Proposal Network is proposed for target detection and consists of two 

subnetworks: The Siamese Neural Network and the Region Proposal Network. The framework of 

SiameseRPN is shown in Figure 5.2. 

 

Figure 5.2: The architecture of the proposed SiameseRPN method. 
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5.3.1.1 Siamese Neural Network 

The Siamese Neural Network (SNN) network [169] has been proven effective in the object-

tracking domain. It uses two branches, which share the same parameters, to learn the similarity 

between each other. The objective of SNN is to understand the embedding space, which places 

similar items nearby. In other words, SNN is trained with positive and negative pairs of objects, 

where positive pairs correspond to samples that need to stay close in the embedding space while 

negative pairs need to stay far away. Although SNN has drawn significant attention because of its 

balanced accuracy and speed, it lacks bounding box regression. It has to do a multiscale test to 

locate the video targets, making it less elegant. This study integrated a region proposal network 

with SNN to address this drawback. 

In this study, SNN adopts a convolutional neural network without padding to extract the 

features. Assume the term LT represents the translation operator of the kernel; then remove all the 

paddings to satisfy the full convolution with strike k. 

In Equation 5.1 [169], h is a fully convolutional function with integer stride k that maps 

signals to signals for any translation τ: 

h(Lkτx) = Lτh(x) (5.1) 

In this subnetwork, the template frame and the detection frame are fed into the SNN as inputs. 

The template frame is the previous frame in the video and the detection frame is the current frame 

in the video. In addition, these two branches have the same hyperparameters and transformations. 

For convenience, two outputs of the SNN are represented by M(z) and M(x), which are the feature 

map representations of the template branch and detection branch. 
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5.3.1.2 Region Proposal Network 

The region proposal network (RPN) is first proposed in Faster-RCNN [166], which can 

extract precise candidate regions quickly and efficiently. Therefore, it makes proposal generation 

very effective while achieving high accuracy. 

In this subnetwork, RPN consists of two parts: pairwise correlation and supervision. The 

supervision consists of two branches: regression and classification. The regression is to generate 

the candidate regions, and the classification is to distinguish the foreground and background of 

input images. If n anchors are automatically generated, RPN needs 2n representation channels for 

the classification task and 4n presentation channels for the regression task. Therefore, the pairwise 

correlation needs to divide M(z) into two datasets [M(z)] cls and [M(z)] reg, and divide M(x) into 

[M(x)] cls and [M(x)] reg. Then, [M(z)] is used as the correlation kernel to compare similarity with 

[M(x)]. Finally, the regression correlation Creg and classification correlation Ccls are computed 

through Equation 5.2 [176]: 

Creg = [M(z)]reg * [M(x)]reg, Ccls = [M(z)] cls * [M(x)] cls (5.2) 

where [M(z)]reg and [M(z)] cls are used as convolutional kernels, and the sign * is the 

convolution operation. 

Smooth L1 loss function with normalized coordinates and cross-entropy loss function are 

used for regression and classification, respectively. If Px, Py, Pw, Ph represent the coordinates of 

the center point, the width and the height of predicted bounding boxes, and Tx, Ty, Tw, Th represent 

those parameters of the ground truth. Then normalized distances between the prediction and 

ground truth can be computed. RPN is optimized by minimizing the loss function in Equation 5.3 

[169]: 
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Loss = Lcls + λLreg (5.3) 

where λ is the hyper-parameter to balance the performance of regression and classification. 

Lreg is the loss function for regression, and Lcls is the loss function for classification. 

5.3.2 Associative Recognition of Working Status 

The study proposes a novel text recognition method combining HOG and CRNN to 

accurately and efficiently identify the working status of the CNC machine. This method consists 

of two stages: text detection using projection-based segmentation, and text recognition using 

convolutional recurrent neural network. The steps of the proposed text recognition method are 

presented in Figure 5.3. 

 

Figure 5.3: The procedure of the proposed text recognition method. 
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The proposed segmentation algorithm has three steps. First, the projection scans horizontally 

to determine the upper and lower bounds of the text area. Second, the projection scans vertically 

to define the left and right bounds of the text area, and then bounding boxes containing the text 

information are generated. Finally, the non-text regions are removed and the feature maps of text 

regions are extracted for recognition. 

Before applying this segmentation algorithm, some pre-processing steps are adopted. First, 

transform the color images into grayscale images. The pixel value is from 0 to 255 in a grayscale 

image. Second, binarization will convert the grayscale images to binary images using thresholding. 

Pixels with a greater value than the threshold P are replaced with white color and other pixels are 

replaced with black color. Here the value of the black pixel is set to one, and the value of the white 

pixel is set to zero. That is: 

Value (i, j) = 1, pixel (i, j) < P (5.4) 

Value (i, j) = 1, pixel (i, j) > P (5.5) 

0 < i < width, 0 < j < height (5.6) 

Width and height are two image parameters, and m is a variable threshold according to the 

image background color. The number of black pixels accounted for by Equation (5.7): 

𝑝𝑖𝑥𝑒𝑙𝑅𝑜𝑤[𝑗] =  ∑

𝑚+1
𝑁

×𝑤𝑖𝑑𝑡ℎ

𝑖=
𝑚
𝑁

×𝑤𝑖𝑑𝑡ℎ

𝑉𝑎𝑙𝑢𝑒(𝑖, 𝑗)  (5.7) 

0 < j < height, m = 0, 1, 2, …, N − 1 (5.8) 
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Here divides the whole image into N parts with the same height and width. Then, an 

appropriate threshold Q is set to separate the text and non-text pixels. In Equations (5.9) and (5.10), 

when pixelRow [j] > Q, it is set to one, otherwise, it is set to zero: 

Horizontal [j] = 1, pixelRow[j] > Q (5.9) 

Horizontal [j] = 1, pixelRow[j] < Q (5.10) 

0 < j < height (5.11) 

Horizontal [j] is calculated, traversing the entire array. When the array’s value changes from 

zero to one, record this pixel as the start point. When the array’s value changes from one to zero, 

record this pixel as the endpoint. Finally, the text bounding boxes are generated, and the three steps 

of text detection are depicted in Figure 5.4. 

 

Figure 5.4: The steps of text detection. 
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After text detection, CRNN [177] is used to recognize the detected text. The framework of 

CRNN used in this study is shown in Figure 5.5. It consists of three subnetworks: convolutional 

layer, recurrent layer, and transcription layer. The convolutional layer automatically extracts 

feature map sequences from input images. Then the extracted feature sequences are fed into the 

recurrent network to predict each feature sequence. The transcription layer is used to translate each 

frame prediction generated in the recurrent layer and group them into a labelled sequence. The 

main benefit of the CRNN is that it can be trained with one loss function despite being composed 

of different network architectures. 
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Figure 5.5: The architecture of the CRNN. 

The convolutional layer in CRNN is modified from a standard CNN model by removing the 

fully connected layers. It extracts feature map representation from an input image. All the input 

images are scaled to the same size in the pre-processing step. Then feature vector sequence is 

obtained after the feature maps are extracted in the convolutional layer. To keep the order of the 

text unchanged, each feature vector is generated from left to right on the feature maps, and the i-
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th feature vector is the concatenation of the i-th columns of all the feature maps. Finally, those 

sequences will be fed into the recurrent layer as inputs. 

The feature maps are divided into many rectangle regions with a fixed width, which is the 

receptive field. Each feature vector sequence can represent one rectangle region, which is 

illustrated in Figure 5.6. 

 

Figure 5.6: The receptive fields. 

Although CNN has proven good performance in recognizing general objects, it is not suitable 

for text detection because of its various aspect ratios. Those feature maps extracted from the 

convolutional layer need to be transformed into sequential representations to avoid being affected 

by the length variation. Therefore, the recurrent layer modified from the recurrent neural network 

is adopted to solve this problem. The main advantage of RNN is that it has the stable ability to 

capture the context in a sequence, which is more useful than identifying each character individually 

because some ambiguous characters can be easily predicted by observing the contexts. 

The transcription layer aims to convert the predicted labelled distribution into a label 

sequence with the highest conditional probability. Connectionist Temporal Classification (CTC) 

[183] is used to calculate conditional probability. The conditional probability in this study is 

defined as the label sequence conditioned on the per-frame prediction. The expression of the 

conditional probability is shown in Equation 5.7 [177]: 
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𝑝(𝒍|𝒚) =  ∑ 𝑝(𝝅|𝒚)

𝜋:𝐵(𝜋)=𝑙

 (5.7) 

where l is the label sequence, y is the predicted labelled distribution obtained from the 

recurrent layer (y = y1, y2… yT), and T is the length of the input sequence. B is a mapping function, 

which maps the sequence 𝜋 onto l by removing the duplicate labels and blank labels. For example, 

B maps the sequence “-m-7-7-” (“- “represents blank label) onto “m77”, which is shown in Figure 

5.3. 

5.3.3 Data Augmentation 

Although this study adopts enough data to train the proposed model, images of CNC 

machines tend not to have extensive features due to the limited number of different CNC machines. 

As a result, increasing the diversity of the training data is widely used to improve the generalization 

and reduce overfitting [184]. Some geometric distortions are randomly added in this study, 

including rotation, translation, scaling, vertical flipping, and image distortions, such as Gaussian 

blur and noise. 

5.3.4 Transfer Learning 

Deep learning models often require a large number of input images as training data. However, 

it is tough to collect enough images for some applications. Transfer learning provides an alternative 

strategy to address this problem by using a pre-trained deep learning model as a starting point for 

another training task rather than building a model from scratch. This study adopted the modified 

AlexNet pre-trained from ImageNet with the parameters [185], significantly improving training 

efficiency. 
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5.4 Experiments and Results for the proposed method 

5.4.1 Robot System Structure 

Figure 5.7 shows the DOBOT CR5 manipulator used in the robot system. It is fixed on a 

moveable desk that can move around the working environment. 

 

Figure 5.7: The structure of the robot system. 

Specifications of this manipulator are demonstrated in Table 5.1. A webcam with 1920 × 

1080 pixels resolution is mounted on the top of the robot arm, used to sense the surrounding 

environment. 

Table 5.1: Specifications of the robot manipulator. 

Parameter Value 

Weight 25 kg 

Maximum Payload 5 kg 
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Max Reach 1096 mm 

Voltage DC48 V 

Maximum Speed of TCP 3 m/s 

Communication TCP/IP, WIFI 

Power 150 W 

Axes 6 

 

5.4.2 Training Details 

The webcam was used to collect the CNC machine and HMI images. The dataset includes 

training and testing images with a resolution of 960 × 1080. Images were gathered from different 

positions in our lab. Two hundred images, including 160 training images and 40 testing images, 

are used to train and test the developed models. The experiments were conducted on a laptop 

equipped with an Intel Core i7-8750H 4.0 GHz CPU and a single NVIDIA GeForce GTX 1060 

under the Ubuntu 18.04 64-bit operating system. 

During the training process, Stochastic Gradient Descent (SGD) is adopted to train the 

proposed SiameseRPN based on the pre-trained SNN model using ImageNet. In addition, picking 

positive and negative training samples is also necessary. The criterion used in the target CNC 

machine detection and HMI detection tasks is based on intersection over union (IoU) and two 

thresholds Thigh and Tlow. When the predicted bounding boxes have IoU > Thigh with respect to the 

ground truth, they are considered positive samples, which means the correct results. When the IoU 

< Tlow, those are considered negative samples and will be removed from the results; the Thigh and 

Tlow are set as 0.3 and 0.6 in this study, respectively. 
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5.4.3 Evaluation 

This section evaluates the proposed methods using the video recorded by the webcam 

mounted on the robot manipulator in the lab environment. Figure 5.8 – 5.14 show some case 

studies for detecting the target CNC machine and HMI display where the target CNC machine is 

detected in the green bounding box, obstacles such as the table in the yellow bounding box, and 

the HMI in the red bounding box. The robot system moves from the lab door toward the target 

CNC machine and records real-time video through the mounted camera. Based on the proposed 

SiameseRPN method, the target CNC machine and HMI display are recognized and located using 

green and red bounding boxes, respectively. Figure 5.17 presents particular examples of 

recognizing the text information on the HMI display using the proposed working status recognition 

method, such as the basic instruction information and G-codes. Once the text is identified, it is 

converted into machine-readable text that assists the autonomous robot system in recognizing the 

real-time working status of the machine, which is significant for the robot system to achieve further 

decision-making and execution actions to tackle the emergency and ab-normal conditions in a 

completely autonomous environment. 

 

Figure 5.8: Validation results for the target CNC machine and HMI detection. 
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Figure 5.9: Validation results for the target CNC machine and HMI detection. 

 

Figure 5.10: Validation results for the target CNC machine and HMI detection. 
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Figure 5.11: Validation results for the target CNC machine and HMI detection. 

 

Figure 5.12: Validation results for the target CNC machine and HMI detection. 



 

108 

 

 

Figure 5.13: Validation results for the target CNC machine and HMI detection. 

 

Figure 5.14: Validation results for the target CNC machine and HMI detection. 

5.4.4 Results 

5.4.4.1 Target Detection 

For the target CNC machine detection, the training and validation loss of the model is plotted 

in Figure 5.15. It can be observed that the loss for training and validation achieved 0.127 and 0.112, 

respectively. 
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Figure 5.15: The training and validation loss for the target CNC machine detection. 

In this chapter, two hundred frame images from the recorded video were used for validation. 

The accuracy of the proposed method is shown in Equation 5.12. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁

𝑇
 (5.12) 

where N is the number of correctly detected objects, and T represents the total number of 

images used. Table 5.2 compares our proposed method with three milestone methods in CNC 

machine detection: Faster-RCNN, SSD, and YOLO. 

Table 5.2: Comparison of accuracy with benchmark methods (the target CNC machine detection). 

Method Accuracy 

Faster-RCNN 0.67 



 

110 

 

SSD 0.54 

YOLO 0.53 

The Proposed Method (this chapter) 0.78 

The performance is acceptable considering the size of the dataset. Different parameter values, 

such as the batch size of training data, the learning rate of the model, and the activation function, 

have been applied, but they achieved limited benefit. Therefore, increasing the training dataset size 

would be better to improve the models’ performance. 

5.4.4.2 Associative recognition of working status 

In this chapter, the proposed scene text recognition method was first validated in a virtual 

autonomous manufacturing environment and will be further modified and evaluated in real 

scenarios. Thus, a virtual environment is created in RoBIM simulation software. RoBIM is a 

robotics simulator that enables the manufacturer to plan, simulate, and control the industrial robot. 

It provides a virtual design and validation environment for linking the digital model to a robot's 

control system. In the established simulation environment, a Haas CNC machine and UR5 

manipulator are used to perform the case study, which is shown in Figure 5.16. 
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Figure 5.16: The virtual simulation environment. 

The camera system built on the manipulator can capture the real-time scene images of the 

display panel. Based on the captured scene images, the proposed scene text recognition method is 

used to recognize and understand the information and alerts. To realize abnormal condition 

recognition, two simulated abnormal scenarios are designed. One scenario is that if the workpiece 

is not put in the right position, then the “wrong part position” will be shown on the screen. The 

other is that if the tool gets damaged and needs to be changed, then a “tool damage” alert will be 

presented on the screen. An example of recognizing the information on the CNC machine’s screen 

in a simulation environment is demonstrated in Figure 5.17. Some G-codes, execution commands, 

and alert information are shown on the CNC screen, which can be recognized through the proposed 

scene text recognition method by the robotic system and then facilitate the following decision-

make of the robotic system to handle the happened the abnormal condition during the 

manufacturing process. Moreover, the experiments will also be carried out in the real system. 

However, compared with the simulation, the real system has some limitations, such as the 

background color of the display screen, the condition of the illumination in the working 

environment and the shake of the camera used in the robotic system. 
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Figure 5.17: The example of the case study. 

From the established simulation environment, 1000 images are obtained and then adopted 

for the model training and test. For the training set, 80% of the dataset is taken, and 20% for the 

test set. For validation purposes, a new dataset containing 20 images is used to evaluate the 

proposed method. The benchmark method RNN was compared with the proposed method in this 

study to estimate the performance of the proposed method. The results for both methods are 

presented in Table 5.3. It can be concluded that the proposed method improves the recognition 

performance in precision without the loss of efficiency. 

Table 5.3: Compared results for RNN and the proposed method (working status recognition). 

Method Accuracy 

RNN 78.2% 

The Proposed Method (this chapter) 85.7% 
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5.5 Discussion and Limitations 

This paper presented a novel framework to support autonomous machine tending in lights-

out manufacturing, which minimizes the involvement of machine operators during the production 

process. Most machine-tending robot systems adopt collaborative robots that connect to the 

machine via Ethernet to perform various tasks efficiently under the inspection and tending of onsite 

operators [16], [42]. Autonomous mobile robots can use our proposed architecture to achieve fully 

autonomous machine tending through the integrated vision system and computer vision-based 

algorithms. The proposed intelligent manufacturing approach can truly achieve autonomous 

machines, HMI, and emergency detection without the operator’s assistance to support various 

machine-tending tasks. The proposed methods are flexible, scalable, and adaptable; however, it 

has some limitations. Text detection and recognition are more sensitive to image quality than 

general object detection [186]. Sometimes, the mobile camera captures images and videos 

suffering from poor lighting conditions, such as shadow in the images or reflection of light due to 

inappropriate shooting distance or angle, making the feature extraction process challenging. 

Moreover, camera motion or shaking while capturing images can cause text to be blurred [182]. 

Further research to address the problems mentioned above is necessary to implement the 

proposed algorithms in autonomous machine-tending applications in a real-world industrial 

environment. Since the performance of deep learning models largely relies on the size of training 

data, a bigger and better dataset will be collected in the future and used to improve the proposed 

approach. Image deblurring [187], [188] and reflection removal [189], [190] methods will also be 

applied to improve the quality of the captured images. Moreover, a reference dictionary containing 

common abnormal conditions of CNC machines will be designed to match and correct text 

recognition results. 
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5.6 Conclusion 

Smart manufacturing has been considered high in intelligence, efficiency, accuracy, 

productivity, and safety compared to traditional manufacturing. With robotics development, vision 

sensors and computer vision-based algorithms have been widely used in smart manufacturing to 

tackle complex and hazardous production tasks. Automatic working status recognition and 

emergency handling through autonomous robot systems have become critical steps in the 

autonomous manufacturing process, ensuring that machines work properly without human 

involvement. However, onsite workers still carry out the current inspection of the manufacturing 

process and machine tending by working with Cobots because of lacking an appropriate intelligent 

manufacturing approach for machine detection and working status recognition. This chapter 

developed an automatic deep learning-based approach to detect a particular CNC machine and the 

human-machine interface simultaneously in real-time in a complicated lab environment through a 

camera mounted on the mobile manipulator. In addition, it can identify the working status of the 

machine by automatically recognizing the text information on the HMI display. According to the 

validation results, the developed methods are proven to achieve good performances in both 

accuracy and efficiency. The proposed target CNC machine detection method is 16.5% more 

accurate than the milestone method Faster-RCNN. The developed machine’s working status 

recognition method is 10% more accurate than the benchmark algorithm tested. However, the 

performance of deep learning-based methods often largely relies on the size of training data and 

image qualities, so a bigger and better dataset will be collected in the future and used to improve 

the proposed approach.  
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Chapter 6 : An Intelligent Operation Framework for Autonomous 

Robot-based Machine-Tending Applications 

6.1 Chapter Overview 

Machine tending is a common and significant part of the manufacturing industry through 

interaction and cooperation with the machine and surrounding environments [4]. In the past, most 

machine tending tasks, such as loading the raw parts on the machine and unloading produced parts 

onto the workstation, transferring workpieces between different machines, and quality inspection, 

were executed manually by laborers. Since the first robot was applied to die-casting machines in 

1960, machine tending has become the typical application of the traditional industrial robot [60]. 

Currently, industrial robots have been widely used to replace workers from low-tech, dull, 

repetitive, and highly risky machine tending tasks and play a crucial role in addressing labor 

shortages and skill gaps. The most popular conventional industrial robots, such as KUKA and 

ABB, can only work in structured and pre-defined environments with long changeover time [33]. 

To assure safety, the working cell is surrounded by fences, which causes a waste of working space 

[9]. Traditional industrial robots are also limited in terms of their capabilities and need specialized 

programming whenever the workpieces change, or machine tending tasks change [68]. With 

advancements in AI and robotics technologies, collaborative robots have gradually replaced 

conventional industrial robots to deal with more complex machine-tending tasks by collaborating 

with experienced operators [11]. Although some perception sensors are installed on collaborative 

robots, operators still need to be careful all the time to avoid injuries when they interact with 

collaborative robots. In addition, collaborative robots have some limitations. For instance, each 

collaborative robot can only serve one machine because of lacking mobility, which leads to high 
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costs for all factory machines to satisfy all machine-tending tasks [13]. Therefore, autonomous 

mobile manipulators play a vital role in shaping intelligent manufacturing and addressing the 

increasing demands to deal with more complex machine-tending tasks and interact with 

unstructured and challenging environments by extending the capabilities of collaborative robots 

[15]. 

So far, an intelligent framework for autonomous mobile manipulators that will meet the high-

level and complex requirements and apply to different machine-tending tasks, such as self-

recognized commands and execution autonomously, in changing environments is still lacking [30]. 

To achieve the mentioned tasks or similar tasks, mobile manipulators need to have the ability to 

achieve scene text recognition that can help machines autonomously analyze and understand the 

corresponding environments, object detection that helps machines identify the target buttons that 

can be used in the operation process, object location that helps mobile manipulator sense the target 

buttons, and motion planning that allows the mobile manipulator to execute machines’ commands 

autonomously. 

In the manufacturing industry field, most traditional object detection methods extract 

handcrafted features from the image such as scale-invariant feature transform (SIFT) [191] or 

speeded-up robust features (SURF) [192], to match the templates of targeted objects. However, 

these methods depend on objects’ known features and position; they cannot be applied to detect 

objects with unknown features. Since convolutional neural networks can learn robust and high-

level features from images, CNN-based methods, such as image classification [193], semantic 

segmentation [194], [195], instance segmentation [196], [197] and object detection [198], have 

been used in intelligent manufacturing to achieve object recognition. Once the target objects are 

detected from an unstructured environment via object detection methods, the bounding box will 
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be used to determine the center point of the target objects. Currently, many object detection-based 

manufacturing applications have been developed.  

In [61], a convolutional neural network was developed for tool condition monitoring 

applications in machine shops. This method can distinguish the conforming and non-conforming 

producing tools based on tool change policy and pre-trained model. In [148], a Mask-RCNN model 

was proposed to detect the damages on the pipeline and obtain the 2D pixel coordinates of the 

damaged segments for remanufacturing applications. In [30], a SiameseRPN method was 

developed to detect each specific CNC machine in machine shops, and it can be further used in 

intelligent machine-tending applications in smart factories for mobile manipulators to fulfill 

machine-tending tasks between machines. In [199], the authors developed a damage detection 

method based on the Faster R-CNN model, which can be used in laser cladding repair processes. 

This method achieved an accuracy of 88.7% in identifying the damaged area on the cylindrical 

component and a time reduction of 63% compared with current industrial practice.  

Unlike general object detection tasks, text detection and recognition have more challenges, 

such as being more sensitive to varying aspect ratios and blurring [186]. Although CNN has proven 

good performance in recognizing general objects, it is unsuitable for text detection because of its 

various aspect ratios. Feature maps extracted from convolutional layers need to be transformed 

into sequential representations to avoid being affected by the length variation. Therefore, the 

recurrent neural network (RNN) [200] is adopted to overcome this problem. In [180], a TextBoxes 

method was proposed to detect text from scene images in arbitrary orientation. It can achieve both 

high accuracy and efficiency using deep convolutional neural networks as core architecture and 

default rectangles with different specifications. However, it fails to handle some cases, such as 

large character spacing because it is a character-based or word-based recognition. In [201], a 
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connectionist text proposal network method is proposed which is more robust and suitable for 

different aspect ratios. It applies recurrent neural networks with convolutional networks which can 

generate character labels in the sequence, but it still suffers from the word-based text spotting 

limitation. To improve the text spotting speed and efficiency that is significant for practical 

applications, an efficient text detection method that improves efficiency while retaining accuracy 

was proposed in [202]. It achieves the leading performance on the speed with an FPS of 16.8. 

Since character segmentation is the main challenge for text recognition, a method named 

connectionist temporal classification (CTC) [203] was proposed. It can train the model using 

sequence labels. So far, many studies [204], [205] on recognition have been done by combining 

different neural networks with CTC to generate the feature sequences, and then predict feature 

sequences as a label distribution. Finally, translate those frame predictions into a final text label. 

Benefits from the research on optical character recognition and scene text recognition, many 

text recognition-based applications have been developed in the manufacturing industry, such as 

recognizing the date of packaged goods and reading serial numbers of products [206]. In [207], 

the author proposed a connected-component-based character recognition algorithm for a display 

reader application to detect digits from a LED display, it suffers from some challenges, such as 

glare on the screen and low contrast of the images.  

For most real-world text recognition applications in the manufacturing industry, some 

limitations and challenges have always been there affecting the accuracy and efficiency, like 

blurring and reflections. In addition, for practical applications, recognition speed and the robust 

are always crucial for real-time mobile systems. 

Considering the aforementioned problems and challenges, this chapter develops a command 

recognition method by using preprocessing techniques to reduce the influences of image blurring 
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and screen reflection. A postprocessing process is also used to improve the accuracy of the 

recognition. After recognizing and understanding the machine commands, a YOLOv7-based 

button detection method is applied to identify and localize target buttons related to commands for 

further manipulator operation. The chapter also proposes an intelligent operation framework for 

autonomous robot-based machine-tending applications based on scene text recognition and object 

detection techniques to achieve fully autonomous manufacturing production in smart factory 

environments. 

Besides the Introduction section, this chapter is organized as follows. Section 6.2 presents 

the related work; Section 6.3 demonstrates the experimental setup. In Section 6.4, the methodology 

and main process of the proposed intelligent framework are described in detail. Section 6.5 

presents the experiments and results to validate and evaluate the developed methods. Section 6.6 

discusses the limitation of the study, and Section 6.7 concludes this research. 

6.2 Related Work 

This section presents the recent and relevant real-time object detection and scene text 

recognition methods that have been used in the manufacturing sector, especially in assisting in 

manufacturing tasks or machine-tending-related tasks.  

Optical character recognition (OCR) or scene text recognition (STR) has recently been 

developed in manufacturing applications. In [208], authors use CRNN to recognize the tire text for 

anomaly detection, which can achieve an accuracy of 96% and show the possibility of being 

applied to real manufacturing applications such as tire quality inspection of online production. In 

[209], a PP-OCR method was proposed to read industrial sticker information, which can achieve 

an accuracy of 88%. This method adopts differentiable binarization [210], a segmentation network, 
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a text detector, and CRNN as a text recognizer. In [86], an optical character recognition system is 

proposed to extract the printed identification on steel coils, which uses traditional image processing 

techniques to extract the features of captured images with text information. Then the convolutional 

neural network is used to recognize each single character image. This proposed method can 

achieve an accuracy of 98%. In [30], authors developed a text recognition method to identify the 

machine's working status. First, a projection-based segmentation was proposed to detect the text 

and non-text areas from captured images and extract the region of interest, which includes the text. 

After detection, a CRNN is applied to recognize the detected text, and this method can achieve an 

accuracy of 85.7%. 

Real-time object detection and position estimation have also been hot research topics in 

manufacturing applications. Compared with two-stage deep learning methods, one-stage methods, 

especially YOLO variants, have been the state-of-the-art real-time object detectors due to their 

high compatibility with industrial requirements, such as lightweight, faster and robust architecture, 

more accurate detection performance, more efficient label assignment, more efficient training 

method and friendly deployment conditions [145]. In [22], YOLOv3 and transfer learning were 

used to detect target objects to assist in pick-and-place through a collaborative robot. This method 

can achieve an accuracy of 95.9% in detection and 79.9% in position estimation and grasping. In 

[58], YOLOv4 was adopted to detect the different types of industrial objects, achieving an 

accuracy of 86.3%. In [31], YOLOv5s is used to visually identify three different 3D printed 

industrial parts in uncontrolled conditions, which achieves 97.65% accuracy and 35ms runtime. 

These methods have greatly contributed to manufacturing or machine-tending tasks, but 

some limitations are observed. For instance, most research has been done in a simulation or a lab 

environment with ideal conditions such as simple backgrounds and perfect imaging conditions 
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[186]. Although some latest text recognition methods [211], [212] have been proposed in the 

computer vision domain, they mainly focus on specific issues, such as multilingual or multi-

oriented text recognition, which is not within the research scope of this study. Although the current 

state-of-the-art real-time object detection method for manufacturing applications is mainly based 

on YOLOv7, there is no benchmark dataset and proper model for button detection tasks in the 

CNC machining process. Considering these issues, this paper proposed an intelligent operation 

framework to tackle machine-tending tasks. This framework developed a text recognition 

approach by integrating image preprocessing, region proposal network, and recurrent neural 

network to recognize and understand commands from CNC machines. In addition, a proper dataset 

consisting of five different types of buttons from the Haas CNC machine was created, and a 

YOLOv7-based model was trained and tuned for button detection and localization for further 

manipulator operation. 

6.3 System Setup 

In this study, the experimental setup is shown in Figure 6.1. The Ufactory mobile 

manipulator and a Haas CNC machine control panel are used for the case study. A Logitech 

webcam with a resolution of 1080 × 720 is utilized to capture the frames from the CNC display, 

which will be used for command recognition. An Intel RealSense Depth Camera D455, shown in 

Figure 6.2, is mounted on the end-effector of the robot manipulator for target button detection and 

localization. Its specifications are presented in Table 6.1, and it is observed its ideal range is from 

0.6m to 6m. 
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Figure 6.1: The experimental system. 

 

Figure 6.2: The Intel RealSense Depth Camera D455. 

Table 6.1: The specifications of the Intel RealSense Depth Camera D455. 

Specifications Value 

Depth technology Stereoscopic 

Depth output resolution 1280 × 720 
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Depth frame rate 90 fps 

RGB frame resolution 1280 × 800 

RGB frame rate 30 fps 

Ideal range 0.6 m to 6 m 

Length × Depth × Height 124 mm × 26 mm × 29 mm 

Connectors USB‑C* 3.1 Gen 1* 

 

6.4 Research Methodology 

The premier task in this study was to control the mobile manipulator to reach the target 

button successfully. The block diagram in Figure 6.3 illustrates the three sequential research 

modules. Each module and the elements are demonstrated in the next subsections. 

 

Figure 6.3: Research methodology outline. 

6.4.1 Command Recognition 

This section describes the main command recognition steps, depicted in Figure 6.4. 
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Figure 6.4: The main steps of command recognition. 

6.4.1.1 Fast Fourier Transform (FFT) to deblur the image 

Image blurring is a common problem caused by camera movement or jitter, and it causes a 

decline in image quality. In addition, low illumination conditions often require longer exposure 

time for the camera, which leads to a slight jitter. Therefore, image deblurring is important for 

practical applications in industry. Many deblurring algorithms have been developed recently, and 

the Fast Fourier Transform (FFT) is one of the most widely used image processing techniques. It 

is a convenient mathematical algorithm for computing the Discrete Fourier Transform (DST), 

which is the sampled Fourier Transform and is good enough to describe the spatial domain image 

fully. The principle of FFT is converting an image from its spatial domain into a representation in 

the frequency domain. By doing so, noises can be effectively mitigated or eliminated by instituting 

an amplitude-based threshold. Following this filtration, the processed image can subsequently be 

converted back to the spatial domain [213]. Therefore, the FFT is widely used in many applications, 

such as image compression, image filtering and image reconstruction. In this study, an image 

deblurring method based on FFT [213] is applied to calculate the blur filter kernel which is used 

to remove the noise and improve the quality of images. Figure 6.5 shows an example of image 

deblurring. 
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Figure 6.5: The example of image deblurring via FFT. 

6.4.1.2 Reflection Removal via Generative Adversarial Networks (GANs) 

Natural scene text recognition has become popular in manufacturing applications; however, 

it suffers from many problems affecting performance. Blurring and undesirable reflections are the 

main reasons causing the low quality of images, which decrease the performance of computer 

vision applications such as detection and recognition. When capturing images through a 

transparent material such as glass, screen, or display, the images often contain undesirable 

reflections. These reflections lower the quality and visibility of the images. There are some 

traditional methods to solve these problems. The camera can shoot the images in a dark 

environment or manually adjust the camera position and the shooting angle. However, these 

methods are inefficient and not applicable for practical applications under bright conditions and 

autonomous environments. Recently, many approaches have been developed to achieve reflection 

removal and they are generally divided into two categories: conventional methods and deep 

learning-based methods. Conventional methods adopted handcrafted features to separate the 

background and reflections in specific conditions [214]. Deep learning-based methods, particularly, 

GAN-based methods have achieved good results in reflection removal [215]; generative 

adversarial networks are a learning method that maps noise to an image. 



 

126 

 

In this study, the image is denoted as I. The background layer is denoted as B, and the 

reflection layer is denoted as R. Then, the image I can be modelled as a linear combination of 

background B and reflection R, shown below: 

I = B + R (6.1) 

This section applies a GAN-based method with gradient constraint [215] to remove the 

undesired reflection from the captured images by separating the background and reflection layer. 

In addition, gradient constraint loss is used to minimize the correlation between the background 

and reflection layer, which can remove reflections effectively in real-world images and achieve 

outstanding performance. Figure 6.6 shows an example of reflection removal. 

 

Figure 6.6: The example of reflection removal. 

6.4.1.3 Text Detection and Recognition 

This study proposes a command recognition approach to accurately and efficiently identify 

the text information from the CNC machine display by combining the text detection branch and 

the text recognition branch. 
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The proposed text detection branch consists of three subnetworks. First, the adjusted region 

proposal network (RPN) was developed to predict the text regions on the input images. Unlike 

generic objects, the text is a sequence that does not usually have a well-defined boundary and 

center because it contains multi-level components like characters, words or text lines, which are 

not distinguished clearly between each other. It is observed that the RPN [166] is difficult to 

accurately find the horizontal boundaries of words or text lines. Therefore, to achieve text spotting 

at the text-line level instead of a single character or part of words, it is important to consider a text 

line as a sequence of fixed-width text proposals, where each text proposal represents a part of a 

text line. Therefore, each proposal in the adjusted RPN is defined as a fixed width of 16 pixels, the 

same as the stride in the last convolution of the backbone architecture VGG16 [216]. Next, an 

anchor mechanism is developed in which 10 vertical anchors with fixed widths, and different 

heights are used to predict the text/non-text score (s) and vertical coordinates (v) of each text 

proposal. Text proposals are generated based on the anchors with a text/non-text score larger than 

0.7. These text proposals can be considered as a feature sequence xt = x1, …, xw and further fed 

into RNN for encoding. 

Given that generated text proposals are detected separately and independently, a recurrent 

neural network (RNN) [200] is adopted to encode the information and group them into sequential 

context information for text recognition. The main advantage of RNN is that can capture the 

context in a sequence, which is more useful than identifying each character individually because 

some ambiguous characters can be easily predicted by observing the contexts. In the RNN layer, 

a bidirectional long short-term memory (LSTM) architecture [217] was used, with 256D output 

channels per direction, to capture range dependencies of the input sequential features. Then, 



 

128 

 

internal hidden states ht = h1, …, hw are updated at each time in both directions and then fed into a 

fully connected layer, and the output layer provides the predictions of the t-th text proposal. 

Finally, multi-task learning is integrated jointly to optimize the model parameters. The 

overall text detection loss function Ldec consists of two parts: 𝐿𝑆
𝑐𝑙  calculates the errors of the 

text/non-text scores, and 𝐿𝑣
𝑟𝑒 compute the errors of vertical coordinates. To minimize the Ldec, the 

rule in [166] is followed: 

𝐿𝑑𝑒𝑐 =
1

𝑁𝑆
∑𝐿𝑆

𝑐𝑙(𝑠𝑖, 𝑠𝑖
∗)

𝑖

+
1

𝑁𝑣
∑𝐿𝑣

𝑟𝑒(𝑣𝑗, 𝑣𝑗
∗)

𝑗

 (6.2) 

where i is the index of an anchor in a mini-batch. 𝑠𝑖 is the predicted probability of the anchor being 

a true text region. 𝑠𝑖
∗ is the ground truth. 𝑗 is the index of an anchor in the set of valid anchors for 

vertical coordinates regression. The valid anchor is defined as the intersection-over-union (IoU) is 

larger than 0.5. 𝑣𝑗  and 𝑣𝑗
∗ are the prediction and ground truth of the y-coordinates. 𝐿𝑆

𝑐𝑙 is the text 

classification loss to distinguish text and non-text regions, and 𝐿𝑣
𝑟𝑒 is the bounding box regression 

loss. Both losses can be calculated through smooth function L1 in [166]. 𝑁𝑆  and 𝑁𝑣  are the 

normalization parameters, representing the total number of anchors used for 𝐿𝑆
𝑐𝑙 and 𝐿𝑣

𝑟𝑒. 

Figure 6.7 shows some examples of command detection results using TextBoxes++ [218], 

EAST [202] and the proposed method from the left to the right, respectively. The detected results 

show that the proposed text detection method can achieve more accurate results and the best 

performance for line-text command detection. 
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Figure 6.7: The examples of command detection methods. 

After text detection, the text recognition branch predicts text labels based on the region 

features extracted in shared convolutions. This recognition branch shares the convolutional layers 

and recurrent layers in the text detection branch, followed by a CTC decoder [203]. 

The RNN layer in the detect branch can predict a label distribution yt = y1, …, yw based on 

the input sequential features. Then, the predicted label distribution is fed into the CTC layer, which 

is utilized to convert frame-wise classification scores to a label sequence with the highest 

conditional probability. Here, the conditional probability defined in CTC [203] is used for the 

ground truth label sequence l = {l1, …, lw} conditioned on the predictions yt = y1, …, yw. The 

conditional probability is the sum of probabilities of all paths 𝜋 that are mapped by β onto l, 

conforming to [203]: 

𝑝(𝒍|𝒚) = ∑ 𝑝(𝝅|𝒚)
𝜋:𝐵(𝜋)=𝑙

  (6.3) 

where is a sequence-to-sequence mapping function that defines a many-to-one map from the set 

of possible labels by removing the repeated labels first, and then removing blank labels. The 

objective of the training process is to maximize the log-likelihood of the conditional probability 

of ground truth. The text recognition loss Lrec is calculated by Equation 6.4: 
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𝐿𝑟𝑒𝑐 = −
1

𝑁
∑ 𝑙𝑜𝑔 𝑝(𝒍|𝒚)

𝑁

𝑛=1

 (6.4) 

where N is the number of text regions in an input image, therefore, the total loss is the adding up 

the detection loss Ldet and the recognition Lrec: 

𝐿 = 𝐿𝑑𝑒𝑐 + 𝜆𝐿𝑟𝑒𝑐 (6.5) 

where 𝜆 is a hyper-parameter, which controls the trade-off between two losses. In this study, 𝜆 is 

set to 1. Figure 6.8 shows the recognition results based on CRNN [177] and the developed 

command recognition method. 

 

Figure 6.8: The examples of command recognition methods. 

6.4.1.4 Dictionary-guided Modification 

Text recognition accuracy is impossible to be 100% accurate every time using a camera in 

real-world scenarios because it is not only affected by the illumination conditions in the 

environment but also by the position and angle of the camera. Therefore, the modified method to 

automatically correct the outputs when recognition results are wrong is necessary. In this study, 
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common instructions shown on the CNC display such as “Turn Emergency STOP to release”, 

“Press POWER UP”, “Press CYCLE START to run a program”, and etc., are used to create a data 

list in the dictionary. Once the command on the screen is recognized, the output is modified by 

comparing it with the instructions listed in the dictionary via cosine similarity metrics, which is 

shown in Equation 6.6 [219]. 

𝒔𝒊milarity (𝐀,  𝐁) =  cos(𝜃) =  
𝐀 ∙ 𝐁 

‖𝐀‖ ‖𝐁‖
 =  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

 (6.6) 

 

where A and B represent the vectors of the predicted commands and ground truth, 

respectively. Then set a threshold of 0.5 for the similarity as the standard metric. If the cosine 

similarity is larger than 0.5, replace the recognized results with the text in the dictionary. Therefore, 

this check and correct process can fix wrong recognition problems. Figure 6.9 shows the example 

of the dictionary process, the left image is the recognized result and the right image is the output 

after dictionary-guided modification. 

 

Figure 6.9: Recognition result correction through the dictionary process. 
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6.4.2 Button Detection and Localization 

This section explains the target button detection and localization process, which is shown in 

Figure 6.10. 

 

Figure 6.10: The main process of target button detection and localization. 

6.4.2.1 Target Button Detection through YOLOv7 

YOLOv7 has been proved the excellent performance for real-time object detection in terms 

of both speed and accuracy, and it can be trained much faster on small datasets without any pre-

trained weights [76]. However, it has not been applied to detect the buttons on CNC machines in 

manufacturing-related applications. Therefore, a benchmark of the YOLOv7 on the CNC machine 

button datasets is essential to observe and investigate its performance on button detection tasks. In 

this study, the YOLOv7-based method is developed to detect the buttons on the Haas CNC 

machine for further robot manipulator operation. 

YOLOv7 is a one-stage model with three main components: backbone, neck, and head [144]. 

The backbone extracts image feature maps and transfers them to the neck layers. These feature 

maps are then combined, fused, and passed to the subsequent layers. Finally, the head network 

predicts the bounding boxes and classes of the objects. YOLOv7 adopts a developed Extended 

Efficient Layer Aggregation Network (E-ELAN) to improve inference efficiency. It can enhance 

learning ability without disturbing or changing the original gradient propagation path. In addition, 
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a novel model scaling method for concatenation-based models, named corresponding compound 

model scaling, is proposed to address the issue of a larger width output of the computational block. 

Moreover, several techniques have been used to improve prediction accuracy while keeping 

training costs low. These strategies, named Bags of Freebies (BoF), include planned re-

parameterization convolution, dynamic label assignment, and batch normalization. After 

thoroughly investigating how the re-parametrized convolution is combined with other different 

networks, it is observed an increase in model accuracy when using the RepConv without an identity 

connection (RecpConvN). When training the deep networks, two heads, the lead head, and the 

auxiliary head, need to be used. The lead head represents the final output of the model, and the 

auxiliary head is used to assist in training. Previously, the most popular methods used two heads 

separately and then used their predictions and the ground truth to distribute soft labels. However, 

YOLOv7 proposed a novel label assignment method that guides both heads. Here, two types of 

label assigners were developed. One is the lead head guided label assigner, where the soft label is 

mainly generated based on the lead head and ground truth. The other is a coarse-to-fine lead head 

guided label assigner, where two different sets of soft labels, coarse label and fine label, are 

generated, where the fine label is the same as the soft label generated in the lead head guided 

assigner, while the coarse label is generated through relaxed rules on the positive sample 

assignment process. Furthermore, batch normalization integrates the mean and variance of the data 

to adjust the bias and weight of the convolutional layer, which can improve the training process 

by using a higher training rate and faster convergence [220]. This chapter mainly focuses on 

optimizing the training process to obtain better button detection accuracy and speed and precise 

localization of the target buttons in the next step. 
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Figure 6.11: Examples of five different types of button detection. 

6.4.2.2 Calculate Three Coordinates of the Central Point of the Detected Target Button 

In this study, perspective projection transformation [221] is used to determine the 3D 

coordinates of the central point of the detected target button from the scene image. From the 

detected results, the 3D coordinates of the target point can be calculated from the equations below. 

From the depth camera image, the pixel's depth value with the central point Z can be determined. 

By substituting the Z value in the equation below, the X and Y coordinates of the target point can 

be obtained through the equations below: 

X = Z 
𝑢− 𝑐𝑥

𝑓𝑥
 (6.7) 
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Y = Z 
𝑣− 𝑐𝑦

𝑓𝑦
 (6.8) 

where f is the focal distance, (u, v) is the 2D image coordinates, (cx, cy) is the optical center of the 

camera, and (X, Y, Z) is the scene point position in the world coordinate system. 

However, only using one-point coordinates could be unreliable because it is will be 

calculated incorrectly. In this study, ten central points will be measured through ten frames and 

then used to calculate the average position of the center. Even if several points have abnormal 

values as compared to other points, it is easy to exclude these abnormal points from the calculation 

to find the 3D coordinates of the center point through the equation below: 

𝑐 =  
1

𝑁
∑(𝑥𝑖 𝑦𝑖 𝑧𝑖 )

𝑁

𝑖=0

 (6.9) 

where c is the average 3D coordinates of the central point for the detected target button. The 

example of detecting and localizing the emergency button from the Haas CNC machine control 

panel is shown in Figure 6.12. 
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Figure 6.12: The examples of emergency button detection and localization. 

6.4.3 Control Scheme for Manipulator Operation  

The robotic manipulator executes the task by using the end-effector to press the instruction 

buttons. It uses the information on the target button position obtained previously. Using the 

developed control scheme, position control of the endpoint of the manipulator is possible when 

the end effector moves to the desired position. 

To achieve the successful execution of an interaction task, such as pushing a button using 

motion control, accurate planning is crucial. This planning necessitates a precise model of both the 

robot manipulator and the environment. While achieving a precise manipulator model is feasible, 

obtaining a detailed description of the environment is challenging. 

For the analysis of the interaction between the manipulator and the environment, it is 

beneficial to examine the system's behavior under a position control scheme known as active 
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compliance control [222]. The primary objective of such a controller is to achieve suitable active 

compliance that can be easily adjusted through the control software to fulfill the requirements of 

button-pushing tasks. 

To derive a control law to push the button, an error definition in the operational space must 

be taken into account.  Let's define the end-effector’s rotation matrix as 𝑅𝑒 and the position of the 

end-effector as 𝑜𝑒. Consequently, the homogeneous transformation matrix for the end-effector, 𝑇𝑒, 

can be expressed as follows: 

𝑇𝑒 = [𝑅𝑒   𝑜𝑒  0
𝑇  1 ] (6.10) 

Similarly, the desired end-effector’s corresponding transformation matrix can be defined as: 

𝑇𝑑 = [𝑅𝑑  𝑜𝑑   0𝑇  1  ] (6.11) 

Therefore, the relative transformation matrix of the end-effector with respect to the desired 

frame, 𝑇𝑒
𝑑, is expressed as: 

𝑇𝑒
𝑑 = (𝑇𝑑)−1𝑇𝑒 = [𝑅𝑒

𝑑  𝑜𝑑,𝑒
𝑑    0𝑇  1 ] (6.12) 

where 

𝑅𝑒
𝑑 = 𝑅𝑑

𝑇𝑅𝑒 and 𝑜𝑑,𝑒
𝑑 = 𝑅𝑑

𝑇(𝑜𝑒 − 𝑜𝑑) (6.13) 

Having the above relative rotation and position, the operational space error can be found as: 

�̃� = −[𝑜𝑑,𝑒
𝑑   𝜙𝑑,𝑒   ] (6.14) 

where 𝜙𝑑,𝑒 denotes the Euler angles of the relative rotation matrix. 

Having the error in operational space and the robot’s gravity matrix, the proportional 

derivative control law with gravity compensation term can be obtained as: 
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𝑢 = 𝑔(𝑞) + 𝐽𝐴𝑑

𝑇 (𝑞, �̃�)(𝐾𝑝�̃� − 𝐾𝐷𝐽𝐴𝑑

 (𝑞, �̃�)�̇�) (6.15) 

where 𝐽𝐴𝑑

  is the desired analytical Jacobian which can be calculated as: 

𝐽𝐴𝑑

 (𝑞, �̃�) = 𝑇𝐴
−1(𝜙𝑑,𝑒)[𝑅𝑑

𝑇  0  0  𝑅𝑑
𝑇  ]𝐽(𝑞) (6.16) 

here, 𝑇𝐴
  denotes the analytical transformation matrix and 𝐽  is the geometric Jacobian which 

depends on the robot’s joint type. 

𝑇𝐴
 (𝜙𝑑,𝑒) = [𝐼 0 0  𝑇(𝜙𝑒)  ] (6.17) 

In the absence of interaction, the stability of the proposed control law can be proved using 

the following Lyapunov function [222]: 

𝑉(�̇�, �̃�) =
1

2
�̇�𝑇𝐵(𝑞)�̇� +

1

2
�̃�𝑇𝐾𝑃�̃� > 0 (6.18) 

where B denotes the inertia matrix of the robot’s dynamics model presented by the Lagrangian 

method. 

6.5 Results of the framework implementation 

This section presents the performance of the proposed method and compares it with other 

existing similar methods. In addition, the validation and performance estimation of the proposed 

methods are presented through the case study. 

Since there are no public datasets for command texts and control buttons from CNC 

machines, a specific dataset for each other is essential and built for the experiments. The images 

with commands and five different control buttons were collected using the Logitech camera. The 

created datasets for machine instructions and control buttons have 200 images and 1000 images 

with a resolution of 1080 × 720, respectively. Both datasets are split into three sub-datasets: 70% 
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training images, 20% validation images, and 10% testing images. These images in the dataset were 

annotated using LabelImg Software, which is an open-source annotation tool. 

Both models for detecting machine commands and control buttons were trained and tested 

on a local Desktop with the specifications listed in Table 6.2. The pre-trained hyper-parameters 

are presented in Table 6.3. 

Table 6.2: Training environment and computer specifications. 

Specifications Value 

Operating System Windows Server 2019 

CPU AMD Ryzen Threadripper 3970X 32-Core 

GPU NVIDIA GeForce RTX 3090 

RAM 128 GB 

CUDA Version 12.0 

PyTorch Version 1.12.0 

Table 6.3: Training Parameters. 

Parameters Value 

Learning Rate 0.001 

Learning Momentum 0.9 

Batch Size 8-32 

Epochs 100 
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This paper adopted the mean average precision (mAP) as the evaluation metric. It is the area 

under the precision and recall (true positive rate) curve calculated by Equation 6.18 at different 

intersection-over-union (IoU) thresholds. mAP_0.5, at a 0.5 intersection-over-union (IoU) 

threshold, is commonly used as the evaluation metric. In addition, mAP_0.5:0.95, which is the 

average mAP over multiple IoU thresholds, can affect the model with better performance. 

Therefore, both metrics will be considered in the training and testing procedures to evaluate the 

performance of developed methods. 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (6.19) 

𝐴𝑃 =  ∫ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) 𝑑(𝑅𝑒𝑐𝑎𝑙𝑙)
1

0

 (6.20) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6.21) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6.22) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6.23) 

where TP, FP, and FN represent true positive, false positive, and false negative of the classification 

and predicted bounding box, respectively. 

6.5.1 Performance of the Developed Command Detection and Recognition Method 

This study adopted two hundred scene text images collected from the Haas CNC machine 

display to validate the developed command recognition method. The proposed method is compared 

with the previous works and other state-of-the-art methods, and the results are shown in Table 6.4 

and Table 6.5. It can be concluded that the proposed method can achieve an accuracy of 100% in 

command recognition which improves text recognition performance in accuracy compared to other 
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similar methods without the loss of efficiency. For the training process, 100 iterations were 

executed in 1.5 hours and the validation loss and precision were shown in Figures 6.13 and 6.14. 

Although different learning rates and batch sizes were tried during the training process, there were 

no significant changes in model precision and loss. 

 

Figure 6.13: The training and validation loss of the proposed command recognition method. 



 

142 

 

 

Figure 6.14: The training and validation accuracy of the proposed command recognition method. 

Table 6.4: Comparison results on different command detection methods. 

Method P R F 

Fast R-CNN 0.79 0.71 0.75 

TextBoxes++ 0.92 0.86 0.89 

EAST 0.83 0.78 0.80 

Proposed 0.99 0.98 0.98 

 

For command recognition, the result of the developed method is compared with the previous 

work and some similar relevant works, and the comparison is presented in Table 6.5. 
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Table 6.5: Comparison results on different command recognition methods. 

Method Accuracy Speed (second/image) 

CRNN 84% 0.3 

Previous 97% 0.15 

Proposed 100% 0.12 

 

6.5.2 Performance of the Developed Button Detection Method 

During the training process for the proposed button detection model, 1000 images were used 

as a dataset, 70% was used as the training set, 20% was used as the test set, and 10% was used as 

the validation set. 100 epochs were executed in 4.82 hours and the performance of the button 

detection method is presented in Figure 6.15. Although different learning rates, batch sizes and 

different iterations were tried during the training process, there was no significant change in the 

precision and loss, only changes in the rate of convergence. In addition, the summary of 

performance metrics of the proposed button detection method is shown in Table 6.6. 
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Figure 6.15: The performance of the proposed button detection method. 

Table 6.6: Summary of the performance metrics of button detection. 

Button Class mAP_0.5 mAP_0.5:0.95 Precision Recall F1-Score 

Emergency Stop 0.996 0.784 0.998 0.99 0.994 

Power On 0.984 0.749 0.998 0.979 0.988 

Power Off 0.978 0.719 0.98 0.968 0.974 

Power Up 0.989 0.701 0.971 0.978 0.974 

Cycle Start 0.993 0.738 0.982 0.982 0.982 

Overall 0.988 0.738 0.986 0.981 0.983 

 

In addition, a case study was carried out to validate the accuracy of the proposed button 

localization method. Moving the depth camera at five different positions to detect and localize the 

emergency stop button on the control panel, then recording the predicted position of the central 
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point of the button and comparing it with the measured actual position of the button (ground truth). 

The results are presented in Table 6.7. 

Table 6.7: Comparison results of predicted position with ground truth. 

Case Number Ground Truth (mm) Predicted Position (mm) Reachable 

1 (-5, 25, 550) (-6.9, 25.8, 551.7) Yes 

2 (40, 32, 203) (41.6, 33.6, 205.3) Yes 

3 (100, 31, 607) (102.1, 31.4, 610.5) Yes 

4 (-102, 22, 399) (-100.7, 22.8, 402.8) Yes 

5 (41, 20, 401) (44.3, 20.2, 405.1) Yes 

 

6.5.3 Performance of the Proposed Control Scheme 

This case study elucidates the application of the button detection and localization 

methodology proposed in this paper, with a specific focus on navigating the robot end-effector 

towards a designated target: the emergency button. In the beginning, set up a fixed position (152, 

76, 460) as the initial position of the end-effector of the manipulator. The robot will always start 

from its initial position, press the target button and then return to the initial position to wait to 

execute the subsequent operations.  

Figure 6.16 provides a graphical representation of the end-effector's Cartesian coordinates 

(x, y, z) throughout this manipulator operation. It is observed that the robot arm is at state A and 

initiates movement from its initial position at approximately 3.7 seconds and succeeds in reaching 

the emergency button at (553,6, 179.6, 511.2) by 8.04 seconds, which is state B. Subsequently, the 

robot maintains its position momentarily until 10.5 seconds and then moves back to its initial 

position in preparation for subsequent operations, which is shown in state D. 
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Figure 6.16: Cartesian coordinates of the end-effector position. 

Additionally, Figure 17 illustrates the end-effector's rotations, expressed in terms of roll, 

pitch, and yaw. It shows that the initial values of roll, pitch, and yaw are 0, -85, and -180 degrees, 

respectively. When the robot arrives at the position of the emergency button, the orientation of the 

end-effector is 160, -78, and 30 degrees, respectively. 
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Figure 6.17: Orientation of the end-effector. 

Figure 6.18 offers insights into the state of the robot's six joints during this operation. Before 

the experiment starts, the initial state of the six joints is (0,0,0,0,0,0). When the end-effector 

reaches the emergency button, the state of the six joints is (16.1, -94.5, -90.8, 0.6, 86.7, 0). Finally, 

the effector returns to the initial state. 
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Figure 6.18: States of six joints. 

6.6 Discussion 

In summary, this chapter presents an intelligent operation framework for autonomous robotic 

machine-tending applications, which can perform machine-tending tasks with full autonomy, 

negating the need for human intervention. 

Despite all the benefits of the proposed framework, certain limitations persist. Primarily, the 

case study conducted within this research was centered on the Haas CNC machine. Given the 

inherent dependency of deep learning-based methods on high-quality labelled training datasets, 

the developed button detection method might cause higher error rates when applied to other CNC 

machine brands. Additionally, this study solely incorporated five distinct control button categories 

from the Haas CNC machine, which might not be fully representative of various machines. 

Moreover, the framework is restricted to executing preliminary operations, such as navigating the 
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manipulator to engage specific buttons in response to emergencies and lacks the capacity for 

mature and intricate decision-making. Figure 6.19 presents the temporal sequences of the robot 

manipulation in response to an emergency in the case study. It can be observed that the field of 

view of the depth camera does not encompass the entire control panel. Consequently, it 

necessitates posture adjustments to discern all significant buttons. As the robot manipulator 

advances towards the emergency button, the accuracy in detection and position estimation 

diminishes because of the constraint attributable to the intrinsic limitations of the RealSense depth 

camera D455. This leads the robot system to return to its initial position to obtain better results 

following each task completion. 

 

Figure 6.19: Temporal sequence of the robot manipulation. 

6.7 Conclusion 

This chapter discusses the major challenges confronting current robotic machine-tending 

systems and proposes an innovative framework for autonomous robotic machine-tending systems 

to overcome these impediments. In the proposed framework, an efficient text spotting approach is 

developed, which integrates the adjusted text region proposal network with recurrent neural 

network and bi-LSTM architecture. It facilitates the recognition and comprehension of the 

instructions from the CNC machine display. Furthermore, the study puts forth a YOLOv7-based 
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approach for button detection and localization, aiming to identify critical control keys on the CNC 

panel and subsequently calculate their spatial coordinates. Additionally, an accompanying control 

scheme is presented, executing the recognized commands by operating the robotic machine-

tending system to click the corresponding buttons. To validate its efficacy, the performance of the 

framework was compared with existing related works. The results revealed that the proposed 

methods enshrined in the developed framework have outperformed the existing methods in terms 

of precision and adaptability. Thus, the study indicates that this intelligent operation framework 

possesses the requisite accuracy and flexibility to be implemented to perform machine-tending 

tasks in real-world manufacturing scenarios and autonomous environments. 

The future work will aim to augment the autonomous robotic machine-tending systems to 

encompass capabilities such as autonomous docking and recharging. This advancement enables 

robotic machine-tending systems to work continuously without interruption, thereby reducing 

human oversight. Furthermore, to enhance the versatility and efficacy of the proposed methods, 

the training and testing datasets will be enriched with images characterized by intricate 

backgrounds and various buttons derived from different CNC machine brands. Moreover, more 

decision-making strategies will be considered and incorporated. This will facilitate a more 

seamless, streamlined, and adaptive manipulation of the robotic machine-tending system, 

equipping it to handle the various scenarios encountered by machines in case of emergency. 
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Chapter 7 : Conclusions, Discussions & Future Work 

7.1 Conclusions 

The manufacturing sector is a fundamental pillar of worldwide economies, contributing 

markedly to global economic growth. However, the manufacturing industry is persistently 

confronted with issues impeding its development and expansion, such as manpower shortages, 

safety concerns, high initial investment for installation, and long return on investment. Within this 

context, machine tending has become a crucial component of the manufacturing process and 

potentially serves as a viable solution to the aforementioned predicaments. Over the past five years, 

the implementation of automated machine-tending systems has widely extended from simulation 

or laboratory environments to practical applications in manufacturing workshops as robotics and 

artificial intelligence develop rapidly. To fully benefit from the potential of machine-tending 

applications, it is necessary to comprehend and tackle the challenges associated with machine 

tending. Therefore, a preliminary investigation was conducted, and a systematic literature review 

based on the Protocol of Preferred Reporting Items for Systematic Review and Meta-Analyses was 

completed to analyze scientific literature related to machine tending in the last five years. The 

findings of this review elucidate the prevailing trends in emerging technologies that are advancing 

the autonomy of machine tending. A noteworthy observation is that most research and applications 

are currently in their prototypical stage. Additionally, it deliberates some challenges and potential 

future perspectives for achieving fully autonomous machine tending, and so far, an intelligent 

framework to achieve fully autonomous machine tending is still lacking. 
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An intelligent framework for autonomous machine-tending applications is proposed to 

address the research gaps and overcome the challenges in realizing the autonomous machine-

tending process. This framework is composed of four main steps.  

An autonomous charging strategy is proposed to charge machine-tending systems to achieve 

continuous and smooth working human intervention in an uncontrolled manufacturing 

environment. This autonomous charging strategy proposed an improved intelligent robot path 

planning method based on RRT and quantic B-spline curve techniques to enable machine-tending 

systems to move between workstations and charge stations without collision. This method can 

generate a trimmed and smooth path for mobile platforms moving continuously following the 

kinematic and dynamic rules. Then, a YOLOv7-based method is developed to recognize and 

localize the charger in real-time. Finally, a vision and lidar-based docking strategy is proposed to 

dock the machine-tending system to the target charger. The developed YOLOv7 model was trained 

and tested on the created datasets in this work. According to the results, it can achieve 99.4% mean 

average precision accuracy of the charger detection and 100% accuracy in docking the mobile 

platform to the target charger in real experiments. 

Secondly, a deep learning-based intelligent machine detection method is developed to detect 

a particular CNC machine in real-time in a complicated manufacturing environment. This method 

is named SiameseRPN, and it consists of two subnetworks: the region proposal network and the 

Siamese neural networks. It is noted that it performs better to distinguish one specific CNC 

machine from a group of similar machines compared with other object detection methods 

according to the validation results. Compared with other milestone object detection methods such 

as Faster-RCNN, SSD, and YOLO, the developed method can improve performance in both 

efficiency and accuracy. It achieves 11% higher accuracy than Faster-RCNN. 
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Once the target CNC machine is detected, an OCR-based method is applied to inspect the 

working status of the machine, given that scene text recognition has a promising capability in 

detecting and understanding the commands and instructions from the machine’s display. In this 

step, the command recognition method is developed by combining the text detection and 

recognition branches. Its architecture includes three parts: the adjusted text region proposal 

network, the recurrent neural network, and the connectionist temporal classification. In addition, 

several pre-processing techniques, including FFT and GANs, are used to improve the quality of 

captured real-time images by removing noises and reflections to improve text recognition accuracy. 

Furthermore, the recognized results are fed into the dictionary-guided procedure to modify and 

correct the output results. This proposed method can achieve an accuracy of 100% in recognizing 

machine instructions. 

In the last step, the recognized commands from the previous procedure are used as a 

reference for detecting and localizing the target buttons mentioned in the commands to achieve the 

basic operation of machine-tending systems next. Here, a benchmark dataset for five different 

machine control keys from the Haas CNC machine is created. A benchmark YOLOv7-based 

button detection and localization method is proposed, trained, and tested on the created dataset for 

future utilization in machine-tending tasks through transfer learning. According to the analyzed 

results, this proposed method can achieve an overall accuracy of 98.8%. 

7.2 Research Contributions 

This research contributes to machine tending by proposing an intelligent framework to 

automate the machine-tending process by integrating novel developed methods with emerging 

technologies. The primary contributions of this thesis are summarized as follows: 
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• Conduct a systematic literature review of current machine-tending systems applications. It 

can contribute to the evolution of machine-tending systems and applications by investigating 

the impacts of emerging trends of advanced technologies and providing a comprehensive 

understanding of the current research status, bottlenecks, and future directions of machine 

tending due to the lack of a comprehensive literature review. It is observed that the majority 

of the research and applications are still in the conceptual or prototypical stages. Moreover, 

an intelligent framework to achieve fully autonomous machine tending is still missing and 

lacks more research work and validation. 

• Developed an autonomous charging strategy for machine-tending systems, which enables 

the system to move between different machines and charging stations, detect the charger, 

and dock to the charger. This method can achieve a good accuracy (99.4% mAP_0.5 and 

86.5% mAP_0.5:0.95) to recognize the target charging with a small training dataset and low 

cost for the system based on transfer learning techniques. 

• Developed a deep learning-based method for automatic machine detection to identify the 

target CNC machine from many similar machines in the complex manufacturing 

environment. The author created the specific dataset, and 200 images of the Haas CNC 

machine in total with a solution of 960 × 1080 were shot from different angles and positions 

in our lab. The architecture consists of two subnetworks: the region proposal network and 

the Siamese neural network, and this model is trained based on the created dataset. This 

method can achieve the 0.127 training loss and 0.112 validation loss, respectively. 

• Developed a deep learning-based command recognition method for work status inspection 

with three subnetworks: the convolutional network for feature extraction, the recurrent 

neural network to predict the label sequence, and the connectionist temporal classification 
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to predict the output text. A proper text dataset was created by collecting 200 images 

captured from the CNC machine display and labelled manually using the LabelImg 

Software. This unified model is trained based on the created dataset, achieving 0.02 training 

loss and 100% accuracy. For the testing, it can also achieve an overall 99% accuracy in 

detection and 100% accuracy in recognition, respectively. According to the experiment 

results, this method improves the command detection and recognition compared with 

benchmark text detection methods such as TextBoxes++ and EAST, and benchmark text 

recognition methods such as CRNN. 

• Developed a real-time button detection and localization method that can identify the target 

button after obtaining the machine instructions and provide the position information to the 

machine-tending system to execute the related commands autonomously. This step creates 

a benchmark dataset of five different categories of control buttons from the Haas CNC 

machine due to the lack of a proper public dataset. In the dataset, 1000 images with a 

resolution of 1080 × 720 are collected and annotated manually, including the five most 

commonly used buttons: emergency stop button, power on button, power off button, power 

up button, and cycle start button. In addition, this method uses the YOLOv7-tiny as the 

backbone architecture, and the spatial three-dimensional coordinates of the central point of 

the detected target button can be calculated based on the image coordinates of the bounding 

box and depth information obtained from the depth camera. This method shows an overall 

98.6 precision in detecting and distinguishing the different target buttons. In addition, this 

method is estimated in case studies by moving the depth camera to five different positions. 

It is observed that the end-effector of the machine-tending robot arm can reach the target 
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button successfully although there are small errors between the predicted position and 

ground truth. 

7.3 Limitations and Future Work 

Even though the proposed intelligent framework for autonomous machine tending achieved 

promising results, the research presented is confronted by particular limitations and can be 

addressed in future work. The works as expanding solutions from the author’s perspective to 

improve and enhance the developed intelligent framework related to each process are presented in 

Figure 7.1. 

 

Figure 7.1: The diagram of future work. 

The limitations and future work are explained in details as below: 
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• For system recharging process, the proposed methods present a good performance in terms 

of recognizing the target charging station and docking the mobile robot system to the 

wireless charger in a manufacturing environment. However, the improved path-planning 

method is limited by the static environment. Considering most of practical machine-tending 

tasks are performed in an uncontrolled and dynamic environment, a dynamic path-planning 

method is capable of moving mobile robot systems between different workstations and 

charging stations while avoiding unknown moving obstacles in real-time needs to be 

developed. In addition, a strategy to determine when the mobile robot system needs to be 

recharged is also necessary. 

• Implementing the autonomous machine detection model to a practical manufacturing 

application requires more fine-tuning to achieve reliable and accurate results. The tunning 

process is carried out by training the detection model on real-life data, and the performance 

of the model depends on large amounts of high-quality data. Therefore, less data might lead 

to large biases and failure to achieve the desired results. To overcome these challenges, a 

customized dataset with more annotated real-life data needs to be created in the future 

development of the machine detection method. 

• In the command recognition process, one limitation of deploying the proposed method is the 

design of the guided dictionary. Different brands of CNC machines have their own 

expressions of instructions, which might cause the low accuracy to adopt the proposed 

command recognition method directly to other machines. Consequently, a reference 

dictionary needs to be designed considering instructions from various brands of CNC 

machines to improve the generalization ability of the developed model. 
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• For the button detection and localization process, the implementation of the developed 

method is limited by the range of the Intel RealSense Depth camera used in the study. In 

addition, although image-to-spatial mapping based on the position of the bounding box and 

depth information can predict the 3D coordinates of buttons accurately, it can also lead to 

failure for the end-effector to reach the target button because the pose of the button is also a 

significant factor in the real-world scenarios. Therefore, a proper pose estimation method for 

the target button needs to be developed in future work to over this challenge. 

• For instruction execution prosess, some machine-tending systems must make decisions to 

interact with complex environments and deal with various situations. Therefore, the ability 

of task planning is a demand. Further development of decision-making strategies for 

machine-tending systems using ML- and DL-techniques such as Q learning is required in 

the future. 

• Currently, the proposed intelligent framework is the first real attempt to develop fully 

autonomous machine tending; therefore, many complicated scenarios will need to be 

considered in the future to make this a system to replace humans in lights-out manufacturing. 

It is validated and estimated based on ideal problems and scenarios with a good amount of 

labelled data. However, the real-world scenarios are different, such as imperfect lighting 

conditions and object occlusion, which leads to the difficulty of implementing the 

framework into practical machine-tending applications based on real-life data. Task-oriented 

methods can be a solution. Therefore, more examination and experiments are required to 

explore the different ML or DL structures and parameters to achieve satisfactory 

performance for each machine-tending task, which can be further applied to the same or 

similar tasks.  
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