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Abstract

Matrix and tensor approximation have gradually become prominent techniques for

data mining. They are currently used for a multitude of applications in different

subject areas. There are many real-world applications that need to handle sparse

data. Given sparse observable or measured data, how to recover or predict the

missing entries is critical for these applications.

In this thesis, I study the application of matrix and tensor approximation tech-

niques to Internet latency prediction and purchase prediction in e-commerce. Pair-

wise latencies in a network are usually estimated from sampled partial measure-

ments. Traditional approaches based on Euclidean embedding suffer from the lim-

itation of the Euclidean assumptions such as triangle inequality and symmetric la-

tencies. I propose a new scheme that can decompose an incomplete latency matrix

into a distance component and a network feature component, and apply low-rank

matrix completion to complete the network feature matrix based on the fact that

network conditions are correlated. In the second problem, I further propose to use

tensor approximation for purchase prediction in e-commerce. I analyze the user be-

havior records collected from Alibaba group’s mobile B2C platform and note that

different types of historical actions all play an important role in recommending the
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next item for purchase. I propose a novel model, named Multifaceted Factorizing

Personalized Markov Chains (Multifaceted-FPMC), to jointly factorize the tensor

of purchase records into hidden factors for various context information, such as

user, item, different types of historical actions, etc. Extensive evaluations based

on real-world datasets show that our proposed approaches outperform traditional

approaches in both problems.
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Chapter 1

Introduction

1.1 Matrix and Tensor Approximation

Matrix and tensor approximation techniques are being used in different subject ar-

eas. In many applications it can be useful to approximate an incomplete matrix with

a low-rank matrix. For example, in the famous Netflix prize problem [1], we are

given a very large ratings matrix, whose rows are the customers and columns are

the movies, and the entries are the rating that each customer would hypothetically

assign to each movie. As not every customer has rented every movie, only a small

fraction of this matrix is actually known. However, if one makes the assumption

that most customers’ rating preference is determined by only a small number of

characteristics of the movie (e.g. genre, lead actor/actresses, director, etc.), then

the matrix should be approximately low rank. Matrix factorization characterizes

both customers and movies by vectors of latent factors inferred from movie rating

patterns [2]. After learned these vectors, we can estimate a customer’s rating to a

movie by the inner product of the two corresponding latent vectors. The concept of

matrix approximation naturally extends to tensor approximation. For high dimen-

sional data, researchers further propose to utilize tensor approximation techniques

to discover the latent factors beneath the data [3]–[5]. For example, in the problem

of next-basket recommendation [4], we are aiming to predict the items in users’

next shopping basket given his/her previous shopping basket items. In this prob-
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lem, a special case of Tucker Decomposition is utilized to complete a 3D transition

cube, in which each element represents the probability a user will purchase an item

given he/she already bought another item in the previous shopping basket [4]. In

this thesis, we consider two problems: mobile network latency prediction, and on-

line purchase prediction. Based on the analysis to real-world datasets, we propose

new models and algorithms based on matrix and tensor approximation techniques.

1.2 Network Latency Prediction

Recent years have witnessed a dramatic growth of Internet traffic of personal de-

vices, among which a large portion comes from mobile devices such as smartphones

and tablets [6]. Due to the increasing popularity of interactive applications includ-

ing live video chat (e.g., FaceTime, Skype, Google+) and gaming, understanding

the latencies between personal devices has become essential to the operation of

such real-time and delay-sensitive applications. A common idea to estimate end-

to-end Internet latencies in a large network is to measure RTTs for only a subset

of all pairs, based on which the missing latencies of other pairs are recovered. Ex-

isting solutions to such an estimation problem either relies on network embedding

(e.g., Vivaldi [7], GNP [8]), which maps nodes into a space, so that their distances

in the space predict their latencies, or applies matrix factorization [9] assuming the

latency matrix has a certain low rank.

However, the unique characteristics of personal devices have posed great chal-

lenges to latency estimation. First, almost all existing approaches perform static

network latency prediction, based on one incomplete matrix formed by current,

mean or median RTTs, assuming the latencies are stable or unchanged, while in

reality, latencies between personal devices could vary dramatically over time due

to changing network connectivities. In other words, the prediction based on such

2D sampling fails to utilize the significantly useful structures inherent in the 3D

data of delay matrices evolved over time. Second, network embedding algorithms

such as Vivaldi [7], [10] often attempt to find the network coordinates of nodes in a
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Euclidean space. However, it is a widespread belief [9], [11], [12] that the triangle

inequality may not hold for latencies among end users at the edge of the Internet.

Third, matrix factorization schemes [9] assume a certain rank of the delay matrices

to decide the dimensions of the factors. However, in reality, ranks of delay matrices

of personal devices are either hard to know or unstable.

In this thesis, we conduct an in-depth analysis of latency measurements col-

lected from Seattle [13], an educational and research platform of open cloud com-

puting and peer-to-peer computing. Seattle consist of laptops, servers, and phones,

donated by users and institutions. Compared with another dataset we collected

from the PlanetLab, we observe that the latencies between personal devices present

different properties in latency distribution as well as time-varying characteristics.

Based on measurements from Seattle, we propose novel methods for both static

and dynamic latency estimation problems. First, we propose the so-called “Distance-

Feature (D-F) Decomposition” method which can decompose a given incomplete

latency matrix into a distance matrix that models the impact of geographical dis-

tances on propagation delays, and a low-rank network feature matrix that models

correlated network conditions among nodes. We propose an iterative learning pro-

cess using Euclidean embedding and the Penalty Decomposition (PD) method for

matrix completion as subroutines. The proposed decomposition avoids the short-

comings of both Euclidean embedding and matrix completion, while exploiting

both of their strengths, since the symmetry and triangle inequality do not have to

hold for network features, while the low-rank assumption is not imposed on dis-

tances.

More importantly, to predict changing latencies, we propose a novel dynamic

recovery process to estimate the current missing latencies based on “frames” of in-

complete latency matrices sampled in the past. By jointly applying different matrix

transformation schemes, we convert the collected incomplete 3D data into struc-

tured 2D matrices, and extend the proposed D-F decomposition to apply to the

transformed matrices, leveraging the inherent structures both within each frame

and across different frames.
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We conduct extensive trace-driven simulations based on a large number of RTT

measurements collected from both Seattle and PlanetLab, and show that the D-

F decomposition significantly outperforms state-of-the-art latency estimation tech-

niques, including matrix factorization and Vivaldi with a high dimension, especially

for the Seattle data. The dynamic recovery based on 3D sampling can further sub-

stantially enhance the prediction accuracy of changing latencies between personal

devices.

1.3 Online Purchase Prediction

Online B2C purchase platforms (e.g., Alibaba group, Amazon, eBay) can now eas-

ily track and monitor customers’ past actions other than basic demographic infor-

mation. While the amount of data collected is staggering, effective approaches to

glean value from diverse information are still limited. One specific problem is how

to predict customers’ next-day-purchases given their historical records of different

actions that include click, collect, add-to-cart and payment. It is highly valuable

and promising if we are able to uncover the deep meaning of historical records data

and recommend appropriate commodities for users at the right time.

Traditional approaches for recommendation include content filtering [14], col-

laborative filtering (CF) [15], matrix factorization (MF) [2], etc. However, our

unique problem pose great challenge to these methods. First, with only the users’

historical actions records available, measuring the similarities between users and

items, a key step for both content filtering and collaborative filtering, is challeng-

ing. Second, users are more prefer to buy items different with what they have

bought. For example, a person who has already got an iPhone is unlikely to buy

another smartphone. However, based on what users have already bought, CF and

MF usually tend to recommend similar items to users. Third, the main information

contained in users’ historical action records is their action sequences and the time

of each action, rather than any kind of explicit ratings. New approaches are needed

to discover the underlying information from such kinds of historical action records
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data.

In this thesis, we conduct an in-depth analysis of the users’ historical action

records provided by the Alibaba group, the world’s largest e-commerce company

that is currently using big data to understand client behaviors and characteristics

and offer responsive financial services. Based on the analysis, we propose multi-

ple models and a unified framework to utilize users’ historical action records and

predict their next-day-purchases. The main contributions of this work can be sum-

marized as follows:

• We analysis the users’ historical action records dataset from Alibaba group

and propose a new model, Multifaceted Factorizing Personalized Markov

Chains (Multifaceted-FPMC). It incorporates multiple types of historical user

actions as well as the time information of predicted day to estimate the pur-

chase probability on the next day between each user-item pair.

• We further observe that users’ historical actions’ influence on their future

purchase actions decays with the time intervals between historical actions

and purchase actions, approximately following a power-law distribution. We

argue that this phenomenon plays an important role in users’ future behav-

ior prediction. Accordingly, we further propose our Time-decayed Multi-

faceted Factoring Personalized Markov Chains (Time-decayed Multifaceted-

FPMC) model, which incorporates the temporal influence decay phenomenon

for user-item pairs’ next-day-purchase probability estimation.

• Finally, we propose a unified framework, Bayesian Sparse Factorization Ma-

chine (BSFM), that subsumes our new models and learn model parameters

by Gibbs sampling.

• We conduct extensive evaluations based on the Alibaba dataset, and show

that our proposed approaches significantly outperform other state-of-the-art

prediction algorithms.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the prob-

lem of mobile network latency prediction, and our proposed models and algorithms.

Chapter 3 describes the problem of online purchase prediction, and introduces our

proposed models and the corresponding algorithm for learning the parameters of

models. We summarize our work and discuss future works in chapter 4.
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Chapter 2

Network Latency Prediction for

Personal Devices

2.1 Introduction

Latency prediction between personal devices including mobile devices becomes an

important problem due to an increasing popularity of real-time applications. Tra-

ditional approaches recover all-pair latencies in a network from sampled measure-

ments using either Euclidean embedding or matrix factorization. However, these

approaches targeting static or mean network latency prediction are insufficient to

predict personal device latencies, due to unstable and time-varying network con-

ditions, triangle inequality violation and unknown rank of latency matrices. By

analyzing latency measurements from the Seattle platform, we argue that either Eu-

clidean embedding or matrix factorization is sufficient to modelling the network

latencies between network nodes, and further propose new methods for both static

latency estimation as well as the dynamic estimation problem given 3D latency ma-

trices sampled over time. In our model, network latencies are explained by two

parts: a distance component and a network feature component. We then propose a

distance-feature decomposition algorithm that learns the two components in an iter-

ative manner. What is more, by leveraging the structured pattern inherent in the 3D

sampled data, we further increase the estimation accuracy of network latencies. Ex-
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tensive evaluations driven by real-world traces show that our proposed approaches

significantly outperform various state-of-the-art latency prediction techniques.

The remainder of this chapter is organized as follows. Sec. 2.2 reviews the

related literature, followed by a comparative study of latency measurements from

both Seattle and PlanetLab in Sec. 2.3. We propose the distance-feature decompo-

sition method for latency recovery in Sec. 2.4 and study its performance through

trace-driven simulations as compared to state-of-art algorithms. In Sec. 2.5, we

propose our dynamic latency estimation scheme based on the 3D data of latency

matrices evolved over time and again conduct extensive simulations to evaluate its

performance. This chapter is concluded in Sec. 2.6.

2.2 Relationship to Prior Work

Network coordinate systems (NCSs) embed hosts into a coordinate space such as

Euclidean space, and predict latencies by the coordinate distances between hosts

[16]. In this way, explicit measurements are not required to predict latencies. Most

of the existing NCSs, such as Vivaldi [7], GNP [8], rely on the Euclidean embed-

ding model. However, such systems suffer a common drawback that the predicted

distances among every three hosts have to satisfy the triangle inequality, which

does not always hold in practice. Many studies [10], [17] have reported the wide

existence of triangle inequality violations (TIV) on the Internet.

To overcome the TIV problem, matrix factorization is introduced in [18] and

has recently drawn an increasing attention in the networking community [9], [19].

The key idea is to assume a network distance matrix is low-rank and complete it

by factorizing it into two smaller matrices using methods such as Singular Value

Decomposition (SVD) or Non-negative Matrix Factorization (NMF) [20]. The es-

timated distances via matrix factorization do not have to satisfy the triangle in-

equality. However, these systems actually do not outperform Euclidean embedding

models significantly, due to reported problems such as prediction error propagation

[11]. Besides, without considering the geographical distances between hosts that
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dictate propagation delays, they have missed a major chunk of useful information.

Beyond matrix factorization, the general matrix completion problem, includ-

ing minimizing the rank of an incomplete matrix subject to limited deviation from

known entries [21] and minimizing the deviation from known entries subject to a

fixed rank [22], has also been widely studied recently for numerous applications in

control, image recovery and data mining. Besides, measurement studies have been

conducted for different kinds of networks, such as WiFi networks [23], Cellular net-

works [24], and 4G LTE networks [25], reporting the latencies and other properties.

The latency measurement on Seattle is cross-network in nature, as Seattle involves

many different types of nodes from servers to laptops and smartphones.

2.3 Seattle vs. PlanetLab: Measuring the Latencies

In this section, we characterize the latencies between personal devices according to

the measurements we have collected from Seattle [13]. Seattle is a new open peer-

to-peer computing platform that provides access to personal computers worldwide.

In contrast to PlanetLab [26], which is a global research network comprised of

computers mostly located in stable university networks, the Seattle nodes include

many personal devices, such as mobile phones, laptops, and desktop computers,

donated by users and institutions. Due to the diversity, mobility and instability of

these personal devices, there is significant difference between Seattle and PlanetLab

in terms of latency measurements.

We have collected the round trip times (RTTs) between 99 nodes in the Seattle

network in a 3-hour period commencing at 9 pm on a day in summer 2014. The

measurement has resulted in 688 latency matrices containing 6, 743, 088 latencies,

each of which has a size of 99 × 99 and represents the pairwise RTTs between 99

nodes collected in a 15.7-second timeframe. In the sequence, we may refer to each

matrix as a “frame” in such 3D measurement data. Our data collection on Seattle

was limited to 99 nodes because as a new platform that includes both personal

computers and servers, Seattle is yet to receive more donations of personal devices.
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Fig. 2.1. RTT distributions in Seattle and PlanetLab. a) CDFs of all measured RTTs. b) CDFs of
the maximum RTT measured for each pair of nodes.

However, it will be clear in Sec. 2.4 and Sec. 2.5 that the collected data is rich

enough for the purpose of studying latency prediction algorithms.

As a benchmark dataset, we have also collected the RTTs between 490 Planet-

Lab nodes in a 9-day period in 2013 and obtained 18 matrices containing 4, 321, 800

latencies, each of which has a size of 490 × 490 and represents the pairwise RTTs

collected in a 14.7-hour timeframe. We compare the collected Seattle data and Plan-

etLab data in terms of inter-node RTTs, rank properties, and time-varying charac-

teristics.

Round Trip Times. Fig. 2.1(a) shows that the Seattle RTTs are greater than

those in PlanetLab, with values spread in a wider range. The mean RTT of the two

datasets are 0.36 seconds for Seattle and 0.15 seconds for PlanetLab, respectively.

While the largest measured RTT in PlanetLab is 7.90 seconds, the maximum RTT

measured in Seattle is 90.50 seconds, which maybe because a corresponding node

is not online, a frequent case for cellular devices out of the service region. The long

tail in Seattle RTTs implies that triangle inequality violation may be prevalent in

Seattle.

Rank of Latency Matrices. Fig. 2.2(a) and Fig. 2.2(b) plot the heat maps of

a typical frame (one of the 688 latency matrices) in the Seattle data and a typ-

ical frame in the PlanetLab data (with white representing large RTT values and

black representing small RTTs). We can observe that redundant patterns exist in

Fig. 2.2(a) and Fig. 2.2(b) and obtain an intuitive knowledge that the latency ma-

trices in both datasets may be low-rank. We further perform singular value decom-
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Fig. 2.2. The heat maps and singular values of a Seattle RTT matrix and a PlanetLab RTT matrix.

position (SVD) [27] on both latency matrices, and plot the singular values of both

latency matrices in Fig. 2.2(c) and Fig. 2.2(d). We can observe that the singular

values of both matrices decrease fast. The 15th singular value of the Seattle latency

matrix is 4.9% of its largest one, while the 7th singular value of the PlanetLab la-

tency matrix is 4.7% of its largest one. This confirms the low-rank nature of Internet

RTTs reported in previous measurements [28].

Time-Varying Characteristics. Unlike PlanetLab, since Seattle contains per-

sonal devices including laptops and mobile phones, the diversity and mobility of

these personal devices may greatly affect the stability of latency measurements.

Fig. 2.3 plots the RTT measurements evolved over time for 3 typical pairs of nodes

in Seattle and PlanetLab, respectively. In contrast to the latencies in PlanetLab

which almost remain unchanged over 9 days, the 3 pairs of nodes in Seattle have

latencies that vary frequently even in only 30 minutes. The average standard de-

viation of the latencies between each pair of nodes is 0.36s in Seattle and 0.01s in

PlanetLab.

To get a further idea about the evolution of the entire frame of data over time,

we denote M(t) the n × n matrix of RTTs measured at time t, where Mij(t) rep-
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resents the RTT between node i and node j. Then, we define the Relative Varying

Percentage (RVP) of M(t) relative to the first matrix M(1) as

RVP(t, 1) = 1
n2−n

∑n
i,j=1,i6=j[Mij(t)−Mij(1)]/Mij(1).

We compare the RVPs of the Seattle RTTs over time with those of the Planet-

Lab RTTs, by plotting the RVP of every frame at time t relative to the first frame

of data in Fig. 2.4, which shows a huge difference between the two datasets. While

the largest RVP of the PlanetLab frames over 9 days is only 0.09, the RVPs of

the Seattle frames measured for 3 hours vary from 0 to 5.8 × 105 with a mean of

1.5 × 105. This demonstrates the time-varying nature of Seattle latencies, which

makes it hard to predict the latency between two Seattle nodes. Traditional network

coordinate embedding is not suitable to model the latencies in personal device net-

works. For example, if a Seattle node is a cellphone, whenever the phone user

moves, its coordinate will change greatly according to the changes in surrounding

network environments.

2.4 Static Latency Estimation via Distance-Feature

Decomposition

In this section, we propose a new algorithm for the static network latency recovery

problem, given a frame of latency matrix with missing values. Our new algorithm

exploits both the underlying geographical distances and the low-rank structure of

the RTT matrix at hand. Traditional Euclidean embedding [7], [8] assumes symme-

try and triangle inequalities for pairwise latencies, which may not be true in reality,

especially for mobile devices with poor connectivity. On the other hand, matrix fac-

torization approaches [9] rely on the assumption of a fixed low rank in the latency

matrix. However, it is hard to know such a rank a priori. And this method may ig-

nore the true Euclidean component in latencies dictated by geographical distances.

Our algorithm combines the strengths of both methods by modeling the pairwise

13



latencies with two components: a distance component, representing geographic in-

formation that dictates propagation delay, and a network feature component, repre-

senting correlated network connectivity. The essence of our algorithm is a learning

process that iteratively decomposes both components.

2.4.1 The Static Network Latency Prediction Problem

Let Rn denote the n-dimensional Euclidean space. The set of all m × n matrices

is denoted by Rm×n. Assume a network contains n nodes, and the latency matrix

measured between these nodes is M ∈ Rn×n, with Mij representing the RTT be-

tween node i and node j. We use Θ to denote the set of index pairs (i, j) where

the measurements Mij are missing. For missing entries (i, j) ∈ Θ, we denote their

values as Mij = unknown. We define the sample rate R as the percentage of known

entries in M .

The static prediction problem is—given an RTT matrix M with missing entries,

recover the values of the missing entries. We let M̂ ∈ Rn×n denote the recovered

RTT matrix.

2.4.2 Iterative Distance-Feature Decomposition

We model the RTT matrix M as the Hadamard product (or entry-wise product) of

a symmetric distance matrix D ∈ Rn×n and an asymmetric network feature matrix

F ∈ Rn×n, i.e.,

M = D ◦ F, (2.1)

where Mij = DijFij, 1 ≤ i, j ≤ n, Dij represents the distance between nodes

i and j in a Euclidean space, and Fij represents the “network connectivity” from

node i to node j: a smaller Fij indicates a better connectivity. The rationale is that

while the geographical distance of two nodes on the earth dictates the propagation

delay between them, other factors such as network congestions and node status can

also affect the RTT values.

We assume that only the network feature matrix F is low-rank. This is because
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Algorithm 2.1 Iterative Distance-Feature Decomposition

1: D0 := M
2: for k = 1 to maxIter do
3: Perform Euclidean Embedding on Dk−1 to get the complete matrix of dis-

tance estimates D̂k

4: F k
ij :=

{
Mij

D̂kij
∀(i, j) /∈ Θ

unknown ∀(i, j) ∈ Θ

5: Perform Matrix Completion (2.4) on F k to get the complete matrix of net-
work feature estimates F̂ k

6: Dk
ij :=

{
Mij

F̂kij
∀(i, j) /∈ Θ

unknown ∀(i, j) ∈ Θ

7: M̂ij := D̂maxIter
ij F̂maxIter

ij , 1 ≤ i, j ≤ n

there exists correlation between network connectivities on all incoming (or outgo-

ing) links of each node. Another interpretation is through feature vectors. If the

rank of F is r, F can be represented by

F = FT
l Fr, Fl ∈ Rr×n, Fr ∈ Rr×n. (2.2)

We call the ith column of Fl, denoted by f il , the left feature vector of node i, which

represents the network feature from node i to other nodes. Similarly, we call the ith

column of Fr, denoted by f ir, the right feature vector of node i, which represents

the network feature from other nodes to node i. Hence, the network connectivity

from node i to node j can be determined by the feature vectors, i.e., Fij = f il
T
f jr .

Our model overcomes the weaknesses of both Euclidean embedding and low-

rank matrix completion, since symmetry and triangle inequalities only need to hold

for the distance matrix D but not F , and the low-rank property is only assumed for

network connectivity F .

To learn both the distance matrix D and network feature matrix F from a la-

tency matrix M with missing entries, we propose an iterative algorithm, described

in Algorithm 2.1, that incorporates both Euclidean embedding and low-rank matrix

completion as subroutines. Denote the estimated matrix D and F at iteration k as

D̂k and F̂ k. First, we initialize D0 to be the original latency matrix M with missing
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entries. In each iteration, we estimate the distance matrix D̂k with Euclidean em-

bedding. We then obtain the remaining ratio matrix between M and D̂k, which is

the incomplete network feature matrix F k. By applying low-rank matrix comple-

tion on F k, we get the estimated complete network feature matrix F̂ k at iteration k.

We then divide M by F̂ k to get Dk, which is the input for Euclidean embedding in

the next iteration, and so on. After a few iterations, D̂ and F̂ will approach the real

geographical distance component and the network factor, respectively. Finally, the

predicted latency between nodes i and j is given by (2.1).

The two critical subroutines in our algorithm are Euclidean embedding on Dk

and low-rank matrix completion on F k. There are various algorithms available for

these two tasks. We apply the Vivaldi algorithm [7] for Euclidean embedding, and

the Penalty Decomposition (PD) method [22] for low-rank matrix completion.

2.4.2.1 Euclidean Embedding

Given the input matrix M ∈ Rn×n, Vivaldi predicts network latencies by assigning

every node a coordinate and estimating the latency between two nodes by their

Euclidean distance, i.e., the estimated latency M̂ij between nodes i and j is given

by

M̂ij = ‖xi − xj‖, (2.3)

where xi is a d-dimensional coordinate vector assigned to node i.

2.4.2.2 Low-Rank Matrix Completion

Given an input matrix X ∈ Rm×n with missing entries, the problem of low-rank

matrix completion is to find a complete matrix X̂ by solving

minimize
X̂∈Rm×n

rank(X̂)

subject to |X̂ij −Xij| ≤ τ, (i, j) /∈ Θ,

(2.4)

where τ is a parameter to control the error tolerance on known entries of X [22].

We utilize the Penalty Decomposition (PD) method [22] to solve the low-rank

16



matrix completion problem in Algorithm 2.1. The PD method can solve general

rank minimization problems like the following:

minimize
X

f(X) + ν rank(X)

subject to g(X) ≤ 0, h(X) = 0, X ∈ Φ ∩Ψ,

(2.5)

for ν > 0, where Φ is a closed convex set and Ψ is a closed unitarily invariant

convex set in Rm×n, and f : Rm×n → R, g : Rm×n → Rp and h : Rm×n → Rq are

continuously differentiable functions.

The PD method solves problem (2.5) by reformulating it as

minimize
X

f(X) + ν rank(Y )

subject to g(X) ≤ 0, h(X) = 0, X ∈ Φ, Y ∈ Ψ,

(2.6)

and defining a corresponding quadratic penalty function as

P%(X, Y ) = f(X) + ν rank(Y )

+
%

2
(‖[g(X)]+‖2

2 + ‖h(X)‖2
2 + ‖X − Y ‖2

F ),
(2.7)

where % > 0 is a penalty parameter, [·]+ denotes the nonnegative part of a vector

that x+ = max(x, 0) given a vector x ∈ Rn, and ‖ · ‖F is the Frobenius norm of

a real matrix X ∈ Rn×n, i.e., ‖X‖F = Tr(XY T ), with Tr(·) denoting the trace

of a matrix. Then the PD method minimizes (2.7) by alternately solving two sub-

problems: minimizing over X with Y fixed and minimizing over Y with X fixed,

each of which can be approximately solved by a block coordinate descent (BCD)

method, which is widely used to solve large-scale optimization problems [29].

It is easy to see that problem (2.4) is a special case of problem (2.5) with

f(X) ≡ 0, p = q = 0, ν = 1, Ψ = Rm×n and

Φ = {X ∈ Rm×n : |Xij −Mij| ≤ τ, (i, j) ∈ Θ}. (2.8)
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Thus, the two subproblems to be alternately solved are

minimize
X

{‖X − A(Y )‖2
F : X ∈ Φ},

minimize
Y

{rank(Y ) + %‖Y −B(X)‖2
F : Y ∈ Rm×n}

(2.9)

for some % > 0, A, B ∈ Rm×n, respectively. Thus, the PD method can be suitably

applied to solve (2.4). Please refer to [22] for more details about the PD completion

method.

2.4.3 Performance Evaluation

We evaluate our algorithm based on both the Seattle data and PlanetLab data, in

comparison with various state-of-the-art approaches. We define the relative estima-

tion error (RE) on missing entries as |M̂ij −Mij|/Mij , for (i, j) ∈ Θ, which will
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be used to evaluate prediction accuracy.

2.4.3.1 Comparison with Other Algorithms

We compare our algorithm with the following approaches:

• Vivaldi with dimension d = 3, d = 7, and d = 3 plus a height parameter;

• PD matrix completion (MC) directly applied to the latency matrix M ;

• DMFSGD Matrix Factorization [9] that attempts to approximate M by the

product of two smaller matrices U ∈ Rr×n and V ∈ Rr×n, i.e., M̂ = UTV ,

such that a loss function based on M − M̂ is minimized, where r is the

assumed rank of M̂ .

For our method, the Euclidean embedding part on D is done using Vivaldi with a

low dimension of d = 3 without heights.

We randomly choose 100 frames from the 688 frames in the Seattle data. For

PlanetLab data, as differences among the 18 frames are small, we randomly choose

one frame to test the methods. Recall that the sample rate R is defined as the

percentage of known entries. Each chosen frame is independently sampled at a low

rate R = 0.3 (70% latencies are missing) and at a high rate R = 0.7, respectively.

For DMFSGD, we set the rank of M̂ to r = 20 for Seattle data and r = 10

for PlanetLab data, respectively, since the 20th (or 10th) singular value of M is less

than 5% of the largest singular value in Seattle (or PlanetLab). In fact, r = 10 is

adopted by the original DMFSGD work [9] based on PlanetLab data. We have tried

other ranks between 10-30 and observed similar performance. We plot the relative

estimation errors on missing latencies in Fig. 2.5 and Fig. 2.6, for the Seattle data

and PlanetLab data, respectively, under 6 methods.

For the Seattle results in Fig. 2.5, we can see that the D-F decomposition outper-

forms all other algorithms by a substantial margin. We first compare with Vivaldi.

Even if Vivaldi Euclidean embedding is performed in a 7D space, it only improves

over 3D space slightly, due to the fundamental limitation of Euclidean assumption.
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Fig. 2.7. Influence of rank(F ) and maxIter for the Seattle dataset.

Furthermore, the 3D Vivaldi with a height parameter, which models the “last-mile

latency” to the Internet core [7], is even worse than the 3D Vivaldi without heights

in Seattle. This implies that latencies between personal devices are better modeled

by their pairwise core distances multiplied by the network conditions, rather than

by pairwise core distances plus a “last-mile latency”. Thus, we adopt 3D Vivaldi

without heights as the Euclidean embedding algorithm in our D-F decomposition.

We now look at the matrix completion algorithms in Fig. 2.5. Both PD matrix

completion and DMFSGD are inferior to our algorithm because they solely rely on

the low-rank assumption, which may not hold for pairwise core distances. As has

been pointed out in Sec. 2.4, ignoring the underlying Euclidean part which does

model geographical distances will not yield the best performance, especially for

unstable latencies in a mobile network.

For the PlanetLab results in Fig. 2.6, our algorithm is only slightly better than

other algorithms, which again implies the much different behavior of Seattle and

PlanetLab latencies. The improvement in PlanetLab is not as great as in Seattle,

because network conditions in PlanetLab are more stable, which makes the network

feature matrix F less useful. This fact again shows the unique strength of our

algorithm to cope with unstable personal device networks.

2.4.3.2 Impact of Parameters

We investigate the impact of three parameters to our algorithm: the sample rate R,

the rank of network feature matrix rank(F ) and the number of iterations maxIter.
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Fig. 2.5(a) and Fig. 2.5(b) reveal the robustness of our algorithm at both high (R =

0.7) and low (R = 0.3) sample rates. We have also tested other sample rates and

observed similar results.

We then study the impact of the achieved rank(F ) from the PD matrix comple-

tion part in our algorithm by tuning τ in (2.4) to indirectly control the produced

rank(F ). Recall that rank(F ) also represents the dimension of node left/right fea-

ture vectors. Fig. 2.7(a) shows how the median and mean of relative estimation er-

rors change as rank(F ) varies. Our experimental experience suggests that the best

results are usually achieved when 1 ≤ rank(F ) ≤ 10 (the best result is achieved at

7 in this figure).

Finally, Fig. 2.7(b) evaluates the impact of the number of iterations, which

shows the best accuracy is often achieved in just the 2nd or 3rd iteration. The

performance degrades when more iterations are performed due to the overfitting

effect.

2.5 Dynamic Latency Estimation via 3D Sampling

Traditional network latency estimation [7], [9],[18] all attempt to predict static (me-

dian/mean) network latencies. However, as shown in Sec. 2.3, the latencies between

personal devices may change over time. This motivates us to study the dynamic la-

tency estimation problem to fill the missing entries in the current frame T based

on a window of frames measured from t = 1 to t = T . We call such an approach

dynamic latency estimation from “3D sampling”, since the network latencies are

sampled over time, where each frame of data contains only partial measurements of

RTTs.

Although the latency between a pair of Seattle nodes changes frequently, it may

stay in a state for a while before hopping to a new state, as shown in Fig. 2.3.

Therefore, if we utilize the autocorrelation between frames at different times in

addition to the inter-node correlation in the network feature matrix, we may improve

the prediction accuracy.

21



Original MatricesFrame-Stacked Matrix

? M
12

? ?

M
11

?

M
12

? ?

M
12

?M
21

M
12

?

?

?

M
12

?

M
11

?

?

M
21

M
12

?

? M
12

?M
21

M
11

M
12

? ?

 ?  M
12

 ? ?

Column-Stacked Matrix

Time

Current Frame

ΘB

ΘA

T = 3

Fig. 2.8. An illustration for frame-stacking and column-stacking operations.

Time Frame Index

N
o
d
e
 P

a
ir
 I
n
d
e
x

(a) Matrix Heatmap

1 100 300 500 688

1

2000

4000

6000

8000

9801
1 20 40 60 80 99

0

200

400

600

800

Singular Value

M
a
g
n
it
u
d
e

(b) Matrix SVD

Fig. 2.9. The heat map and singular values of the column-stacked Seattle dataset. The size of the
compound matrix is 9801× 688, and every column of the matrix contains all the latencies measured
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Suppose we have measured the latency matrix of n nodes for T time frames,

where T is called the prediction window. Denote the incomplete matrix measured

at time t by M(t), then our objective is to predict the missing entries in the current

latency matrix M(T ) based on M(1), . . . ,M(T ).

2.5.1 D-F Decomposition from 3D Sampled Data

The main idea of our algorithm is to stack the latency matrices measured at dif-

ferent times in different ways to obtain 2D compound matrices, and then exploit the

low-rank nature of the compound matrices. We use two kinds of stack operations:

frame-stacking and column-stacking, as illustrated in Fig. 2.8. In column-stacking,

every latency matrix M(t) ∈ Rn×n is transformed into a column vector V (t) ∈ Rn2
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Algorithm 2.2 D-F Decomposition for 3D Sampled Data
1: Predicting Missing Pairs in ΘA:
2: Column-stack M(t) for 1 ≤ t ≤ T to get Ω. Perform matrix completion (2.4)

on Ω to get the complete matrix Ω̂. Unstack Ω̂ to get M̂c(t) as an estimate of
each M(t).

3: Predicting Missing Pairs in ΘB:
4: Initially, let D0(t) := M(t)
5: for k = 1 to maxIter do
6: Perform Euclidean embedding onDk−1(t) to get the complete estimated ma-

trix D̂k(t) for each t.

7: F k
ij(t) :=

{
Mij(t)

D̂kij(t)
∀(i, j) /∈ Θ

unknown ∀(i, j) ∈ Θ

8: Frame-stack F k(t) for 1 ≤ t ≤ T to get fk
F . Perform matrix completion

(2.4) on fk
F to get the complete estimated matrix f̂k

F . Unstack f̂k
F to get

F̂ k(t) ∈ Rn×n.

9: Dk
ij(t) :=

{
Mij(t)

F̂kij(t)
∀(i, j) /∈ Θ

unknown ∀(i, j) ∈ Θ

10: M̂f,ij(T ) := D̂maxIter
ij (T )F̂maxIter

ij (T ), 1 ≤ i, j ≤ n.

11: M̂ij(T ) :=


M̂c,ij(T ) ∀(i, j) ∈ ΘA

M̂f,ij(T ) ∀(i, j) ∈ ΘB

Mij(T ) ∀(i, j) /∈ Θ

containing the latencies of all pairs of nodes. Then, the column-stacked matrix

Ω ∈ Rn2×T consists of vectors V (t) ordered by their measured time. In frame-

stacking, we directly concatenate all the measured latency matrices sorted by time

to form the frame-stacked matrix f ∈ RnT×n.

Fig. 2.9 shows the heat map and singular values of the column-stacked matrix

that consists of 688 frames of the Seattle data. As we can see, the heat map reveals

the low-rank nature of the compound matrix: even though the column-stacked ma-

trix has a size of 9801× 688, the 22nd singular value of the matrix is only 5% of the

largest one. This implies that the latency matrices measured at different times are

highly correlated while evolving with time.

Given a prediction window of T frames of latency matrices, we use Θ to denote

the set of index pairs (i, j) for which Mij(T ) are missing at the current time T . We
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can further divide Θ into two subsets:

ΘA = {(i, j)|Mij(t) is known for at least one t ∈ {1, . . . , T − 1}}

ΘB = {(i, j)|Mij(t) is missing for all t ∈ {1, . . . , T − 1}}

We use two different procedures to recover the missing pairs in ΘA and ΘB.

For ΘA, we simply apply PD matrix completion to the column-stacked matrix Ω

to recover the missing values. The predicted values of Mij(T ) are denoted by

M̂c,ij(T ) for (i, j) ∈ ΘA. The intuition is that when some past values Mij(t) are

measured, we could directly take advantage of the low-rank property of Ω, i.e., the

auto-correlation of measurements across times as shown in Fig. 2.9, to estimate the

current missing values.

For ΘB, we assume each M(t) can be decomposed into a distance matrix D(t)

and network feature matrix F (t), and apply a variation of the proposed Algo-

rithm 2.1 (D-F Decomposition) to the frame-stacked matrix f to recover the miss-

ing values. This requires us to iteratively apply Euclidean Embedding for every

frame of the distance component D(t) in the prediction window t ∈ {1, . . . , T},
and apply PD matrix completion to the entire frame-stacked matrix fF formed by

all the network feature frames F (t) for t ∈ {1, . . . , T}. Therefore, Algorithm 2.1

must be extended to handle the frame-stacking (before PD matrix completion) and

the unstacking (before Euclidean embedding).

We treat ΘB differently, since for (i, j) ∈ ΘB where no past value of Mij(t)

is measured, the column-stacked matrix is not useful to predict Mij(T ), since the

entire row in Ω composed of Mij(t) for 1 ≤ t ≤ T is missing. In this case, the

completed values of Mij(T ) will be meaningless, because the rank of Ω will not

change if we scale up or down the entire estimated row. Therefore, we exploit the

low-rank nature of fF , containing frame-stacked feature matrices F (t) for 1 ≤ t ≤
T . Algorithm 2.2 describes the detailed steps of our sparse recovery process based

on 3D data.
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2.5.2 Performance Evaluation

2.5.2.1 Comparison with Other Algorithms

We test our dynamic prediction algorithm on 50 3D matrices, each randomly se-

lected from the Seattle dataset. Every 3D matrix contains T = 3 latency frames.

The objective is to recover all the missing values in the last frame. We compare

our algorithm with the static prediction methods described in the previous section.

Besides, we also compare to four other methods:

• Column-Stack+MC: column-stack the latency matrices and perform PD ma-

trix completion on Ω;

• Column-Stack+Algorithm 1: column-stack the latency matrices and per-

form D-F decomposition on Ω;

• Frame-Stack+MC: frame-stack the latency matrices and perform PD matrix

completion on f;

• Frame-Stack+Algorithm 1: frame-stack the latency matrices and perform

D-F decomposition on f;

Notice that when we perform D-F decomposition on Ω or f, we perform Euclidean

embedding for each unstacked latency frame individually and perform matrix com-

pletion on the big stacked network feature matrix in each iteration.

Fig. 2.10(a) and Fig. 2.10(d) compare Algorithm 2.2 with the static prediction

algorithms. For both low and high sample rates R = 0.3 or R = 0.7, Algorithm 2.2

that exploits 3D sampled frames significantly outperforms the static latency predic-

tion methods. It verifies the significant benefit of utilizing historical information,

and reveals the strong correlation between different latency frames over timeline.

By exploiting the low-rank structure of the column-stacked latency matrix Ω and

the frame-stacked network feature matrix fF , Algorithm 2.2 takes full advantage

of the implicit information in the 3D data.
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Fig. 2.10(b) and Fig. 2.10(e) compare Algorithm 2.2 with two other methods

based on the column-stack operation: perform PD matrix completion on Ω, and

perform D-F decomposition on Ω. Compared with the method that perform PD

matrix completion on Ω, our Algorithm 2.2 outperforms it a lot when the sample

rate is low (R = 0.3). The improvement is due to the different treatment to latencies

for node pairs (i, j) ∈ ΘB in our algorithm. When the sample rate is high (R =

0.7), the difference between Algorithm 2.2 and the method that performs PD matrix

completion on Ω is tiny. Because the proportion of node pairs (i, j) ∈ ΘB will be

small if sample rate is high. For the method that performs D-F decomposition

on Ω, it is even worse than performing PD matrix completion directly on Ω. This

reveals the fact that we can benefit more from historical values ofMij when they are

available rather than using network condition correlations between different nodes

for estimation.

Fig. 2.10(c) and Fig. 2.10(f) compare Algorithm 2.2 with two other methods

based on the frame-stack operation: performing PD matrix completion on f, and

performing D-F decomposition on f. As we can see, our algorithm outperforms

both of them at both high (R = 0.7) and low (R = 0.3) sample rates. Furthermore,

compared with performing PD matrix completion on f, the effect of performing

D-F decomposition on f is better, which again implies that utilizing the low-rank

structure of the network feature matrix is more reasonable than utilizing the low-

rank property of the original latency matrices.

Through all the comparisons above, we show the benefits of incorporating his-

torical latency frames and prove the necessity of different treatments to unknown

node pairs (i, j) ∈ ΘA and (i, j) ∈ ΘB, i.e., the column-stack operation is suitable

for node pairs (i, j) ∈ ΘA and the frame-stack operation is better for node pairs

(i, j) ∈ ΘB. It is shown that the combined strategy in our hybrid Algorithm 2.2 is

optimal.
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Fig. 2.11. Influence of the prediction window T for the Seattle dataset.

2.5.2.2 Impact of Prediction Window T

Fig. 2.11 shows how the median and mean relative estimation errors for missing

values in frame T vary when the prediction window T increases. We make two

interesting observation. First, the best performance is achieved by T = 3 when

the sample rate is 0.7, but is achieved by T = 7 when the sample rate is 0.3. Sec-

ond, the prediction errors increase if we add more frames. When the sample rate

R is high, a few recent frames are enough to predict the current missing latencies.

However, when R is low, the latency between each pair of nodes is less frequently

measured, and thus more historical frames are needed to recover the current laten-

cies. However, once we have obtained enough information from some historical

frames, adding more frames will hurt performance, since the rank of the column-

stacked matrix will increase, making it harder to complete the stacked matrix with

low error.

2.6 Concluding Remarks

Based on measurements collected from the Seattle network that consists of user-

donated personal devices, in this chapter, we study the new challenges in estimating

the less stable and time-varying latencies in personal device networks. We propose

the distance-feature decomposition algorithm that avoids the defects of both Eu-

clidean embedding and matrix factorization. By decomposing the network latency

matrix into a distance matrix and a network feature matrix, our approach is able
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to capture the underlying geographical distance as well as varying network con-

ditions among the nodes. To predict changing latencies, we further formulate the

dynamic network latency estimation problem that aims to predict the current miss-

ing latencies based on frames of incomplete latency matrices collected in the past,

and extend our distance-feature decomposition algorithm for such 3D sampled data,

with the aid of a hybrid matrix transformation scheme. Extensive evaluation based

on both Seattle and PlanetLab data shows that our algorithms outperform state-of-

the-art network embedding algorithms (e.g., high-dimensional Vivaldi with/without

heights) and matrix factorization (e.g., DMFSGD) by a substantial margin, espe-

cially for personal device networks. The prediction accuracy is further significantly

improved by exploiting the structure inherent in the 3D sampled data through the

proposed hybrid dynamic estimation mechanism.
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Chapter 3

Online Purchase Prediction for

E-commerce

3.1 Introduction

Enterprises are now trying to glean intelligence from the staggering data collected

and translate that into business advantage. One specific problem is predicting users’

future purchases based on users’ historical action records and offering personalized

recommendations. Traditional approaches for recommendation includes collabo-

rative filtering (CF), matrix factorization (MF) and so on. However, given users’

historical action records rather than explicit ratings from users to items, these al-

gorithms show their limitations to fully utilize the information. In this chapter,

we analysis the user historical action records dataset from the Alibaba group. To

estimate the purchase probabilities between user-item pairs on the next day, we

propose a new model named Multifaceted Factoring Personalized Markov Chains

(Multifaceted-FPMC) that incorporates various influential context information ex-

tracted from users’ historical action records. We further observe that users’ histori-

cal actions’ influence on their future purchase actions decays with the time intervals

between historical actions and purchase actions, approximately following a power-

law distribution. We put a special emphasis on the temporal influence decay phe-

nomenon and argue that it plays an important role in users’ future actions. Accord-
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ingly, we further propose our Time-decayed Multifaceted Factorizing Personalized

Markov Chains (Time-decayed Multifaceted-FPMC) model, which incorporates the

temporal influence decay phenomenon for purchase probability estimation. Finally,

we propose a unified framework, named Bayesian Sparse Factorization Machines

(BSFM), that subsumes our new models and learn model parameters by Markov

chain Monte Carlo (MCMC). Extensive evaluations driven by real-world dataset

show that our proposed approaches significantly outperform multiple state-of-the-

art prediction algorithms.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

related literatures and shows their drawbacks in our case. In section 3.4, we con-

duct in-depth analysis to the Alibaba users’ historical action records dataset. From

our analysis, we conclude that all types of users’ historical actions have influence

on users’ future purchase actions. Besides, we also notice that users’ passion for

online shopping varies with different day-of-week. Based on these observations,

we propose our Multifaceted-FPMC model for online purchase probability estima-

tion. We then describe the temporal influence decay phenomenon of users historical

actions, and propose the Time-decayed Multifaceted-FPMC model in this section.

Finally, we propose a unified feature factorization framework BSFM that subsumes

our new models, and elaborate its relation and difference with general factorization

machines (FM). Furthermore, we describe the Markov chain Monte Carlo learn-

ing algorithm for model parameters estimation in section 3.5. In section 3.6, we

conduct extensive evaluations on the Alibaba dataset and compare the performance

of our proposed approaches with other algorithms. We conclude this chapter in

section 3.7.

3.2 Related Work

A lot of researches have been done in recommendation system to provide a list of

recommendations that users may be interested to purchase. Content filtering [14],

[30] methods create a profile for each user or item to characterize its nature and
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associate users with matching items. Content-based strategies is easy to express and

implement. However, they require gathering external information that might not be

available or easy to collect for creating the profiles. Another problem is the content

similarity of recommended items. Different with movie or music recommendation,

usually a user would not like to buy a similar item, such as a phone, again when

they already own one.

Collaborative filtering is the most popular method in recommendation systems

[15], [31]. It has been widely used since 1990s and promoted the prosperity of

recommendation system [32]. Compared with content-based approaches, it doesn’t

requiring the creation of explicit profiles, but relies only on past user actions such

as previous transactions or item ratings. Collaborative filtering can be further di-

vided into two primary areas: the neighborhood methods and latent factor models

[33]. The neighborhood methods include user-based methods and item-based meth-

ods. The user-based algorithm measures the similarity of two customers in various

ways to identify users’ neighbors and generates recommendations based on a few

customers who are most similar to the user, while the item-based algorithm tracks

user preferences by identifying similar items rather than users. Alternatively, latent

factor models that tries to explain the ratings by characterizing both items and users

on a fixed length vector, or a latent factor, inferred from the ratings patterns. Some

of the most successful realizations of latent factor models are based on matrix fac-

torization. It characterizes both items and users by vectors of factors inferred from

item rating patterns. High correspondence between item and user factors leads to

a recommendation. However, both neighborhood methods and latent factor models

will still have the content similarity problem. Besides, it has been mentioned in [34]

that e-commerce recommender is different from movie or music recommendation

systems. They should take into account the utility and utility plus of items, rather

than recommend similar items based on users’ historical records.

In order to handle the content similarity problem, some researches take the se-

quential and temporal information contained in users’ historical records into ac-

count. [4], [35], [36] check the temporal dynamics in recommendation systems.
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[37] investigate how to extract sequential patterns for next state prediction, and

describe a sequential recommender based on Markov chains. [38] discover sequen-

tial patterns using pattern mining methods and generating recommendations. [39]

also develop a Markov chain based recommendation system using Markov decision

processes (MDP). To recommend more personalized items to different users, [4]

using personalized transition graphs to combine the benefits of sequential Markov

chain with time-invariant user taste. In this work, they proposed a model called

Factorizing Personalized Markov Chains (FPMC) that combines the latent factor

model and Markov chain model to predict what users will purchase the next time.

However, the FPMC algorithm only utilizes the order of purchased products. More

information, such as the time gaps between different purchases, can be utilized to

improve the temporal diversity in recommendation system. In addition to historical

purchase actions, other types of actions such as click, collect and add-to-cart can

also be utilized. Our Multifaceted-FPMC model incorporates all these information

and jointly factorizes latent feature vectors for different observable features. Be-

sides, our proposed Time-decayed Multifaceted-FPMC model further considers the

temporal influence decay phenomenon of users’ historical actions to improve the

accuracy of users’ next purchases prediction.

Factorization models have attracted a lot of researchers with their excellent pre-

diction capabilities shown in several applications. Factorization machines (FM)

[40] was proposed to combine the advantages of general machine learning classi-

fiers such as Support Vector Machines (SVM) with factorization models. It mod-

els the pairwise interactions between all features in a real valued feature vector.

However, when considering tens of context features, the feature vectors will be

quite long and not all the pairwise feature interactions are meaningful. We propose

BSFM that subsumes our new proposed models and express them in a unified man-

ner. Compared with traditional FM, it allows flexible feature interaction settings

through a feature interaction matrix.
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Fig. 3.1. Users’ historical actions sequence on different items.

TABLE 3.1
HISTORICAL ACTION RECORDS TABLE FIELDS

COLUMN DESCRIPTION
user id Identity of users
item id Identity of items
action type The user action type, including click,

collect, add-to-cart and payment.
time The time of the action to the nearest

hours.

3.3 Next-Day-Purchase Prediction

In this section, we first present the users’ historical action records dataset provided

by the Alibaba Mobile Recommendation Algorithm Competition that organized by

the Alibaba Cloud Computing Ltd. The competition is based on the real users-

commodities action data on Alibaba’s M-Commerce platforms. We then define our

problem formally and present the key notations used.

3.3.1 Data Description

The Alibaba dataset contains the complete action records data of 10, 000 users on

2, 876, 947 items. The time span of historical records is from November 18th, 2014
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to December 18th, 2014. Figure 3.1 illustrates the concept of online shopping

records. For each user, we record his/her different kinds of actions on different

items, together with the time he/she perform that action. For each historical ac-

tion, the user id, item id, action type and time information are recorded. Table 3.1

describes the different table fields for recording each historical action.

3.3.2 Definitions and Notations

We now formally define our next-day-purchase prediction problem. For ease of

reference, we define the notations used in this chapter, and list the key notations in

Table 3.2.

Historical user action records: denote a set of users as U = {u1, u2, ..., u|U|}
and a set of items as I = {i1, i2, ..., i|I|}. A historical user action record is a tuple

(u, i, a, t) ∈ R, where u ∈ U , i ∈ I, a ∈ {1, 2, 3, 4} that represent action click,

collect, add-to-cart and payment respectively, and t represents the time when user

u performs action a on item i with accuracy of hours. R is the set of all historical

action records.

Given the definition of users’ historical action records, our problem is defined

as following.

Problem definition: given a set of users U , a set of items I, and the historical

user action recordsR between U and I during the last T days, the task is to predict

which users will purchase which items on the next day.

3.4 Modeling Next-Day-Purchase Probability

In this section, we present our new proposed models for online purchase prediction

problem. First, we describe the Matrix Factorization approach and the Factoriz-

ing Personalized Markov Chains model for modeling users’ interest on items, and

show their limitations for fully utilizing the context information contained in users’

historical action records data. Second, we characterize the Alibaba dataset and pro-

pose our Multifaceted-FPMC model. Third, we further explore the temporal influ-
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TABLE 3.2
NOTATIONS USED IN THIS CHAPTER

SYMBOL DESCRIPTION
U , I,R set of users, items, historical action records
u, i, a, t, T a user, an item, action, time, history length by day
d day-of-week
p(u, i) the probability user u will buy item i
p(u, i|j) the conditional probability user uwill buy item i given

that he/she already purchased item j
p(u, i|j, a, d) the conditional probability user u will buy item i on

predicted day d given that he/she already performed
action a on item j

v latent feature vector
Bu the item set user u previously purchased
Bu,a the item set user u previously performed action a on
Cu,j,a the total times user u performed action a on item j
tu,j,a,c the time interval length between the time user u per-

form the c-th action a on item j and the predicted day
x, y feature vector, target
w0,w, V,Φ model parameters of BSFM
µ0, λ0, µwπ , λ

w
π , µ

v
f,π, λ

v
f,π Regularization parameters of BSFM

α0, β0, αλ, βλ, µ0, γ0 hyperparameters of BSFM

ence decay phenomenon of users’ historical actions, and propose the Time-decayed

Multifaceted-FPMC model that incorporates this phenomenon for purchase proba-

bility estimation.

3.4.1 From Matrix Factorization to Factorizing Personalized Markov

Chains

Traditional MF algorithm characterizes users and items by latent feature vectors

inferred from user-item ratings. Figure 3.2 illustrates how matrix factorization ap-

proach works. It assumes a low-rank structure for the rating matrix and factorizes it.

The interest of user u to item i is estimated to be proportional to the rating. Assum-

ing the rating for user u on item i is ru,i, matrix factorization model approximates
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the interest of user u on item i by

p(u, i) ∝ ru,i = 〈vu, vi〉, (3.1)

where vu ∈ Rk is the latent vector that describes user u and vi ∈ Rk is the latent

vector of item i. More details about matrix factorization for recommender systems

can be found in [2].

The Factorizing Personalized Markov Chains (FPMC) model proposed in [4]

further considers the most recent shopping basket of a user and factorizing a tran-

sition cube that contains the transition matrix of each user. Assuming C is a transi-

tion cube, then Cu,i,j denotes the probability user u will buy item i if he/she already

bought item j. The original FPMC model utilizes a special case of Tucker Decom-

position. Its form is further simplified when implemented by factorization machines

[41], [42]. Assuming Bu is the item set of user u’s last shopping basket, p(u, i|j)
gives the probability user u will buy item i when he/she already bought item j in

the most recent shopping basket. The FPMC model approximates the probability

by

p(u, i|j) ∝ 〈vu, vi〉+ 〈vu, vj〉+ 〈vi, vj〉, (3.2)

where vu ∈ Rk, vi ∈ Rk and vj ∈ Rk are the latent feature vectors of the user, the

predicted item, and the item the user purchased in the most recent shopping basket.

The FPMC model assumes the same prior probability p(j) = 1
|Bu| for different

historical purchased items j. Thus, the overall probability that user u will buy item

i in the next shopping basket is given by

p(u, i) =
∑
j∈Bu

p(u, i|j)p(j)

∝
∑
j∈Bu

1

|Bu|
(〈vu, vi〉+ 〈vu, vj〉+ 〈vi, vj〉)

∝ 〈vu, vi〉+
∑
j∈Bu

1

|Bu|
(〈vu, vj〉+ 〈vi, vj〉),

(3.3)

By jointly training these latent feature vectors, the FPMC model combines the
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Fig. 3.3. Left: amounts of different types of actions in the Alibaba dataset. Right: amounts of all
actions on different day-of-week.

advantages of both MF and Markov chain model. We refer to [4] for more details

about FPMC model.

However, given users’ historical action records data, more context information

can be considered for next-day-purchase prediction. First, the FPMC model only

considers the item set a user bought in his/her last purchases. However, rather

than only considering the last purchases of a user, we can also take other types of

actions into account. Besides, other factors, such as time, will also have influence

on users’ future decisions and thus can be utilized to improve prediction accuracy.

Second, the FPMC model utilize the most recent shopping basket of a user. The

time interval between a shopping basket and the previous shopping basket is not

considered. Third, when summarizing the conditional probabilities p(u, i|j), the

same prior probability p(j) = 1
|Bu| is assigned to different items j ∈ Bu. However, it

is not reasonable to assume that different historical purchased items are of the same

importance without considering the time and amount an item has been purchased.

3.4.2 Multifaceted Factorizing Personalized Markov Chains

We perform extensive analysis on the Alibaba dataset. Figure 3.3 compares the

amounts of different kinds of actions, and the amounts of total user actions on dif-

ferent day-of-week. First, the amount of click is much more than other actions,

which is reasonable as customers will browse lots of similar items before they per-

39



form any further actions on an item. Besides, the amounts of action collect and

add-to-cart are also larger than action payment. Without taking all kinds of his-

torical actions into account, the information contained in the dataset won’t be fully

utilized. Second, as we can see, customers are more active during weekdays than

weekends. The potential explanation is that people are more prefer to go outside for

other activities or just buy things in a real mall rather than stay home and shopping

online.

Based on the observations, we propose our Multifaceted-FPMC model to esti-

mate a user-item pair’s next-day-purchase probability. Denote the item set user u

performed action a on during the last T days as Bu,a. Assuming d ∈ {1, 2, ..., 7}
represents which day-of-week it is on the predicted day, where value 1 ∼ 7 repre-

sents Monday∼Sunday respectively. The probability user u will buy item i on the

predicted day d, given that he/she performed historical action a on item j during

the last T days, is given by

p(u, i|j, a, d) ∝ 〈vu, vi〉+ 〈vu, vd〉+ 〈vi, vd〉+ 〈vu, vj,a〉+ 〈vi, vj,a〉, (3.4)

where vd ∈ Rk is the latent feature vector for different day-of-week d, and vj,a is

the latent feature vector of item j ∈ Bu,a.
The Multifaceted-FPMC model estimates the probability of user uwill purchase

item i on the next day d by

p(u, i|d) =
4∑

a=1

∑
j∈Bu,a

p(u, i|j, a, d)p(j, a|d)

∝ 〈vu, vi〉+ 〈vu, vd〉+ 〈vi, vd〉+
4∑

a=1

∑
j∈Bu,a

1

|Bu,a|
(〈vu, vj,a〉+ 〈vi, vj,a〉),

(3.5)

where p(j, a|d) = 1
|Bu,a| is the prior probability of item j ∈ Bu,a.

Compared with the FPMC model, our Multifaceted-FPMC model makes two

differences. First, rather than only considering the historical payment actions, it
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Fig. 3.4. Left: the histogram of time gaps between payment action and the previous action. Right:
fit the relation between the sample numbers and the time gaps by power-law distribution.

also take other three types of actions into account. Second, it learns a latent fea-

ture vector for each day-of-week, as it has been shown in Figure 3.3 that users’

passion for online purchase varies with different day-of-week. Figure 3.2 shows

the idea intuitively. From MF to Multifaceted-FPMC model, more and more latent

feature vectors are learned so that more context information is utilized for modeling

purchase probability.

3.4.3 Time-decayed Multifaceted Factorizing Personalized Markov

Chains

Previous models only consider what actions users have performed but ignore when

exactly the historical actions were performed. In other words, if user u performed

action a on item j1 and j2 in the last T days, it makes no difference for the two

items if the time of actions are different. Besides, these models also ignore how

many times user u performed action a on item j. For example, if user u clicked

item j1 for 10 times during the last day, but only clicked item j2 for one time, it is

highly possible that u is more interested in item j1 than item j2.

We look into how a user’s previous action will influence his/her next purchase

action with different time intervals between the two actions. For each user-item

pair, We extract the time interval lengths between user’s each purchase action and

the previous action. Figure 3.4 shows the histogram of the time interval lengths
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extracted. The maximum value is the number of action pairs that the time interval

between the two actions is less than one hour. The median value is zero, which

means that more than a half of all action pairs’ time interval are less than one hour.

From Figure 3.4, we conclude that most of users usually make their decision to

buy an item within one hour after he/she performed previous action on that item.

The longer the time interval is, the less possible the user will finally purchase the

item. Thus, previous actions’ influence on users’ purchase decision shall decay with

time interval. More specifically, we use the power-law distribution [43] to model

the temporal influence decay phenomenon. The right part of Figure 3.4 shows that

the likelihood that a user will buy an item in tgap hours after he/she performed the

previous action on it fits power-law distribution very well, approximately propor-

tional to t−1.68
gap with tgap represents the time interval between purchase action and

its previous action.

The temporal influence decay phenomenon of historical actions indicates that

different historical actions shall be distinguished by the time interval length between

the action time and the predicted day. In previous models, same prior probabilities

are assigned to different historical items. To incorporate the temporal influence

decay phenomenon into our online purchase prediction model, we further revise

the prior probability p(j, a).

Suppose user u performed action a on item j for totally Cu,j,a times. The time

interval length between the c-th action time and the predicted day d is tu,j,a,c. We

assign a prior probability p(j, a|d) to item j ∈ Bu,a by the following equation

p(j, a|d) ∝

Cu,j,a∑
c=1

t−bu,j,a,c

|Bu,a|
. (3.6)

According to the power-law fitting result in Figure 3.4, we set b = 1.68. Based on

this prior distribution for different historical items j, we propose the Time-decayed

Multifaceted Factorizing Personalized Markov Chains (Time-decayed Multifaceted-
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Fig. 3.5. Example for representing a recommender problem with real valued feature vectors x.
Each row represents a feature vector xi with its corresponding target yi. For easier interpretation,
we use different colors to group feature variables into indicators for different information such as
user id, item id, historical purchased items and day-of-week.

FPMC) model that can be represented as the following equation:

p(u, i|d) =
4∑

a=1

∑
j∈Bu,a

p(u, i|j, a, d)p(j, a|d)

∝ 〈vu, vi〉+ 〈vu, vd〉+ 〈vi, vd〉+
4∑

a=1

∑
j∈Bu,a

Cu,j,a∑
c=1

t−bu,j,a,c

|Bu,a|
(〈vu, vj,a〉+ 〈vi, vj,a〉).

(3.7)

3.4.4 Bayesian Sparse Factorization Machines

Now we have described the Multifaceted-FPMC model and the Time-decayed Multifaceted-

FPMC model. We can actually further represent our models in a unified manner.

Here we propose the Bayesian Sparse Factorization Machines (BSFM), a unified

framework that subsumes all previously mentioned models.

Given a prediction problem, we assume it is described by a design matrix X ∈
Rn×p, where the i-th row xi ∈ Rp of X describes one case with p real-valued

prediction variables. The prediction target of the i-th case is yi. BSFM model the

interactions between variables using factorized parameters. The model equation for

a 2-order BSFM is defined as:
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ŷ(x) := w0 +

p∑
j=1

wjxj +

p∑
j=1

p∑
j′=j+1

Φj,j′〈vj,vj′〉xjxj′ , (3.8)

where vj is the latent feature vector of length k for prediction variable xj . The

model parameters Θ = {w0, w1, ..., wp, v1,1, ..., vp,k} are

w0 ∈ R, w ∈ Rp, V ∈ Rp×k. (3.9)

Compared with the traditional factorization machines (FM) model, the key differ-

ence we make in our BSFM model is that we add a matrix Φ to control the inter-

actions between feature variable pairs in the feature vector x. Φ ∈ Rp,p is a sparse

matrix that defines whether xj and xj′ have interaction with each other. With this

sparse matrix, we can delete lots of meaningless feature interactions. That is why

we name our unified model as Sparse Factorization Machines. Φ is defined as:

Φj,j′ =

1 if xj interacts with xj′

0 if xj doesn’t interacts with xj′
(3.10)

The first part of BSFM is a linear regression model that contains the unary

interactions of every xj with the target. The second part contains the pairwise inter-

actions of input variables. Compared with standard polynomial regression model,

the key difference is that the interaction of xj and xj′ is not modeled by an inde-

pendent parameter wj,j′ but with a factorized parameterization wj,j′ ≈ 〈vj,vj′〉 =∑k
f=1 vj,fvj′,f based on the assumption that the effect of pairwise interactions has

a low rank [42]. The BSFM subsumes the factorization machines (FM) by setting

all the elements of Φ to be 1.

We show that both our new proposed models and the traditional factorization

models can be represented in the form of BSFM by defining appropriate feature

vector x and interaction matrix Φ for each model. For different models, the corre-

sponding feature vector x is defined as follows:

• MF: we can exactly approximate matrix factorization algorithm by defining
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the feature vector x using two categorical variables xu ∈ R|U| and xi ∈ R|I|,

that is,

xu = (0, ..., 0, 1, 0, ..., 0︸ ︷︷ ︸
|U|

), (3.11)

xi = (0, ..., 0, 1, 0, ..., 0︸ ︷︷ ︸
|I|

), (3.12)

where each variable in xu denotes a user, and each variable in xi denotes an

item. For user-item pair (u, i), the u-th entry in xu is 1, and similarly the i-th

entry in xi is 1, and the rest is 0 (e.g., see the first two groups of Figure 3.5).

Using a feature vector x ∈ R|U|+|I| with binary indicator variables as the

input of BSFM,

(u, i)→ x = (xu,xi), (3.13)

the BSFM will be exactly the same as a biased matrix factorization model

[44], [45]:

ŷ(x) = ŷ(u, i) = w0 + wu + wi +
k∑

f=1

vu,fvi,f . (3.14)

• FPMC: the FPMC algorithm incorporates the historical purchased item set

and factorizing an MF model and Markov chain model jointly. We can also

mimic the FPMC algorithm by adding a third part, x4 (4 represents action

payment), to feature vector x [42]. x4 is a set-categorical variable for repre-

senting the items that have been purchased by a user in the past T days,

x4 = (0, ..., 1/|Bu|, 0, ..., 1/|Bu|, 0, ..., 0︸ ︷︷ ︸
|I|, historical purchased item set

) (3.15)

where the |Bu| non-zero elements in it represent the items purchased by user

u. The feature vector representation x ∈ R|U|+2|I| will be

(u, i)→ x = (xu,xi,x4). (3.16)
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• Multifaceted-FPMC: we can incorporate more context information by adding

more feature sections into x. Similar with x4 in FPMC algorithm, we add

three more set-categorical variables, x1, x2 and x3 that respectively repre-

sents the item sets a user has clicked, collected or added-to-cart in the past T

days. Besides, considering users’ passion for online shopping changes with

different day-of-week, we can further add a categorical variable xd to indicate

which day-of-week it is on the predicted day.

xd = (0, ...0, 1, 0, ..., 0︸ ︷︷ ︸
7, day-of-week

). (3.17)

In this case, the feature vector x ∈ R|U|+5|I|+7 will be

(user, item)→ x = (xu,xi,xd,x1,x2,x3,x4). (3.18)

• Time-decayed Multifaceted-FPMC: the Time-decayed Multifaceted-FPMC

model can be represented in the form of BSFM similar with the Multifaceted-

FPMC model. Assuming set-categorical variable xta (a = 1, 2, 3, 4) repre-

sents the items user u performed action a on in the past T days,

xta = (0, ...,

Cu,j1,a∑
c=1

t−bu,j1,a,c/|Bu,a|, 0, ...,
Cu,j2,a∑
c=1

t−bu,j2,a,c/|Bu,a|, 0, ..., 0︸ ︷︷ ︸
|I|, historical purchased item set

) (3.19)

In this case, the feature vector x ∈ R|U|+5|I|+7 for the Time-decayed Multifaceted-

FPMC model will be

(u, i)→ x = (xu,xi,xd,x
t
1,x

t
2,x

t
3,x

t
4). (3.20)

By defining the above feature vectors, we represent our models in the form of

BSFM. The corresponding interaction matrix Φ is set according to Equation 3.10.
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Fig. 3.6. Graphical representation of BSFM.

3.5 Markov Chain Monte Carlo Inference of Model

Parameters

In this section, we introduce the Markov chain Monte Carlo (MCMC) [46] inference

for learning model parameters in the form of BSFM. Compared with algorithms

such as stochastic gradient descent (SGD) or alternative least square (ALS), the

MCMC algorithm is able to do automatic hyperparameter learning or no learning

hyperparameter. MCMC usually gives better accuracy with structured Bayesian

inference [47]. Bayesian models with hierarchical hyperpriors is suggested in [48].

As we learn our model parameters by Bayesian inference, we name our unified

model as Bayesian Sparse Factorization Machines. Here we present 2-order BSFM

without loss of generality.

3.5.1 Model Structure

Figure 3.6 depicts the graphical representation of our hierarchically BSFM frame-

work. According to the functionalities of different parameters, we divide them into

three categories.
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• Model parameters Θ := {w0,w, V,Φ}. The interaction matrix Φ is prede-

fined according to the feature interactions in a specific model. Other parame-

ters will be sampled by MCMC inference using Gibbs sampling.

• Regularization parameters ΘH := {µ0, λ0, µwπ , λ
w
π , µ

v
f,π, λ

v
f,π}. These param-

eters regularize the model parameters to prevent overfitting. π : {1, ..., p} →
{1, ...,Π} is a grouping of model parameters. For example, the regularization

value for vl,f would be λvf,π(l).

• Hyperparameters Θ0 := {α0, β0, αλ, βλ, µ0, γ0}. These parameter are intro-

duced in BSFM so that the regularization values ΘH can be automatically

determined, which is a major advantage of MCMC. The number of hyperpri-

ors |Θ0| is smaller than the number of regularization parameters |ΘH |. More

importantly, MCMC is typically insensitive to the choice of Θ0 [42].

3.5.2 Inference: Efficient Gibbs Sampling

We use Gibbs sampling to draw from the posterior of BSFM since posterior in-

ference is analytically intractable. Standard Gibbs sampling divides all inferred

variables Θ and ΘH into disjoint blocks and every block contains a subset of the

parameters. However, it will leads to high time complexities in the final Gibbs sam-

pler. Therefore, we use single parameter Gibbs sampling proposed in [42] instead

of standard block Gibbs sampling. Similar with the procedures in [42], we exploit

the multi-linear nature of BSFM for notational readability.

[Multi-linear Nature of BSFM] For each model parameter θ ∈ Θ, the BSFM

is a linear combination of two functions gθ and hθ that are independent of the value

θ. Therefore, equation 3.8 can be rewritten as [40]:

ŷ(x|Θ) := gθ(x) + θhθ(x),∀θ ∈ Θ (3.21)
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where

hθ(x) =
∂ŷ(x|Θ)

∂θ
=


1 if θ is w0

xl if θ is wl

xl
∑

j 6=l Φl,jvj,fxj if θ is vj,f

(3.22)

The value of gθ will be computed by gθ(x) = ŷ(x|Θ) − θhθ(x) instead of

computing directly, therefore its definition is omitted here.

We now describe the MCMC inference for BSFM. MCMC samples from the

posterior distributions of parameters rather than learn an optimal value for each of

them. For hyperparameters, as MCMC is typically insensitive to the choice of Θ0,

we choose α0 = β0 = αλ = βλ = γ0 = 1 trivially.

For regularization parameters, MCMC places distributions on the priors for

integration of ΘH . By integrating regularization parameters into the model, it

avoids a time-consuming search for these parameters. Specifically, for each pair

(µθ, λθ) ∈ ΘH of prior parameters, we assume a Gamma distribution for each prior

precision λθ and α except λ0, and a normal distribution for each mean µθ of all

model parameters θ ∈ Θ but µ0:

λwπ ∼ Γ(αλ, βλ), µ
w
π ∼ N (µ0, γ0λ

w
π ), (3.23)

λvf,π ∼ Γ(αλ, βλ), µ
v
f,π ∼ N (µ0, γ0λ

v
f,π), (3.24)

α ∼ Γ(α0, β0). (3.25)

Given n observed samples (yi,xi) ∈ Rp+1, the corresponding conditional posterior

distributions for ΘH are [42]:

α|y,X,Θ0,Θ ∼ Γ

(
α0 + n

2
,
1

2

[
n∑
i=1

(yi − ŷ (xi|Θ))2 + β0

])
, (3.26)

λπ|Θ0,ΘH\{λπ},Θ ∼ Γ

(
αλ + pπ + 1

2
,
1

2

[
p∑
i=1

δ (π(j) = π) (θj − µθ)2 + γ0 (µπ − µ0)2 + βλ

])
,

(3.27)
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µπ|Θ0,ΘH\{λπ},Θ ∼ N
(

1

pπ + γ0

[
p∑
i=1

δ (π(j) = π) θj + γ0µ0

]
,

1

(pπ + γ0)λπ

)
,

(3.28)

where

pπ :=

p∑
i=1

δ (π(j) = π) , (3.29)

and δ is the indicator function

δ(b) :=

1 if b is true

0 if b is false
(3.30)

For model parameters, we assume normal distribution. With n observed sam-

ples (yi,xi), the corresponding conditional posterior distributions for Θ satisfy:

p(Θ|y, X,ΘH) ∝
n∏
i=1

√
αe−

α
2

(yi−y(xi,Θ))2
∏
θ∈Θ

√
λθe

−λθ
2

(θ−µθ)2 . (3.31)

Using the multi-linear representation form of BSFM, we can infer that the con-

ditional posterior distribution for each model parameter θ ∈ Θ is:

θ|X, y,Θ \ {θ},ΘH ∼ N (µ̃θ, σ̃
2
θ), (3.32)

where

σ̃2
θ :=

(
α

n∑
i=1

h2
θ (xi) + λθ

)−1

, (3.33)

µ̃θ := σ̃2
θ

(
αθ

n∑
i=1

h2
θ (xi) + α

n∑
i=1

hθ (xi) ei + µθλθ

)
, (3.34)

ei is the prediction error of the i-th sample:

ei := yi − ŷ(xi|Θ). (3.35)

3.5.3 Learning Procedures

Algorithm 3.1 depicts the learning procedures of Gibbs sampling for BSFM.
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Algorithm 3.1 Markov Chains Monte Carlo Inference (MCMC) for BSFM
Input: Training data Strain, test data Stest, initialization σ, Φ.
Output: Prediction ŷtest for test cases.
Initialization Step:

1: w0 ← 0; w← (0, ..., 0); V ∼ N (0, σ)
2: #samples← 0

Gibbs Sampling Step:
1: repeat
2: ŷ← predict all cases Strain
3: e← y − ŷ
4: //update the regularization parameters
5: sample α using Equation 3.26
6: for (µπ, λπ) ∈ ΘH do
7: sample λπ using Equation 3.27
8: sample µπ using Equation 3.28
9: //update the model parameters

10: sample w0 from N (µ̃w0 , σ̃
2
w0

)
11: for l ∈ {1, ..., p} do
12: sample wl from N (µ̃wl , σ̃

2
wl

)
13: update e
14: for f ∈ {1, ..., k} do
15: for l ∈ {1, ..., p} do
16: sample vl,f from N (µ̃vl,f , σ̃

2
vl,f

)
17: update e
18: #samples ← #samples + 1
19: ŷ∗test ← predict all cases Stest
20: ŷtest ← ŷtest + ŷ∗test
21: until stopping criterion is met
22: ŷtest ← 1

#samples
ŷtest

First, we initialize the model parameters to be zero or random values. For every

sampling iteration, we sample the regularization parameters and model parameters

in sequence. Before sampling the next parameter, the depending variables and pa-

rameters must be updated using the sampled new parameters.

We need to make two changes for binary classification task. First, after we get

the probabilities, we need to map the normal distributed ŷ to a probability P (ŷ) ∈
[0, 1] that defines the Bernoulli distribution for binary classification [48]. Here we
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use the CDF function of a normal distribution for mapping:

P (ŷ) := Φ(ŷ). (3.36)

Second, in algorithm 3.1, instead of regressing to y, we sample it in each iteration

from its posterior that has a truncated normal distribution

y′i|xi, yi,Θ ∼

N (ŷ(xi,Θ), 1)δ(y′i < 0) if yi belongs to negative class

N (ŷ(xi,Θ), 1)δ(y′i > 0) if yi belongs to positive class
.

(3.37)

Sampling from this distribution is efficient [49].

3.6 Experiments

In this section, we compare our approaches with multiple state-of-the-art algorithms

and show the benefits of incorporating various context information and the temporal

influence decay phenomenon of historical actions.

3.6.1 Experimental Setup and Metrics

Our performance evaluation is conducted on a subset of the Alibaba dataset. Specif-

ically, we only keep the users who have more than 20 purchase (or payment) actions

during November 18th, 2014 to December 18th, 2014 and the items that have been

bought by at least one user. After filtered by this criteria, the dataset contains the

historical action records of 1299 users and 1445 items. Our objective is predict

the user-item pairs that will have purchase actions on a prediction date based on

previous action records. We run experiments on different prediction dates and ob-

served similar results. Thus, without loss of generality, we fix the prediction date to

be December 18th, 2014 and report our experimental results to evaluate different

approaches’ performance.

To evaluate the performance of different approaches, we are interested in finding

52



out how many user-item pairs that have purchase actions on the predicted day can be

correctly predicted by different methods. Denote NTP as the number of correctly

predicted user-item pairs, NT as the number of total user-item pairs that actually

have purchase actions on the predicted day, and NP the number of total predictions,

we compute the following metrics for evaluation:

• Precision@N: the ratio of correctly predicted pairs to the NP predicted pairs

Precision@N =
NTP

NP

, (3.38)

• Recall@N: the ratio of correctly predicted pairs to the NT pairs that really

have purchase actions on the predicted day

Recall@N =
NTP

NT

, (3.39)

• F1 Score: the comprehensive evaluation metric that combines both prediction

precision and recall rate

F1@N =
2× Precision@N ×Recall@N
Precision@N +Recall@N

. (3.40)

In our experiments, we test the performance with N = 300, 600 and 1000.

3.6.2 Evaluated Approaches

We compare our approaches with multiple state-of-the-art algorithms. By incor-

porating different features into the feature vector that describes a user-item pair,

we are able to utilize different context information and factorize multifaceted la-

tent factors for prediction and recommendation. Specifically, we compare the per-

formance of the following methods: MF, FPMC, Multifaceted-FPMC and Time-

decayed Multifaceted-FPMC.

53



N=300 N=600 N=1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
re

ci
si

o
n
@

N

Precision@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
ca

ll@
N

Recall@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F1
@

N

F1@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
re

ci
si

o
n
@

N

Precision@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
ca

ll@
N

Recall@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F1
@

N

F1@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
re

ci
si

o
n
@

N

Precision@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
ca

ll@
N

Recall@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F1
@

N

F1@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
re

ci
si

o
n
@

N

Precision@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
e
ca

ll@
N

Recall@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

N=300 N=600 N=1000
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F1
@

N

F1@N
Time-decayed Multifaceted-FPMC

Multifaceted-FPMC

FPMC

MF

Fig. 3.7. Compare different algorithms with various history lengths. From top to down, the history
lengths are T = 1 day, 3 days, 14 days, 28 days.

3.6.3 Performance Evaluation

We compare the performance of different approaches on the filtered Alibaba dataset.

The lengths of latent vectors are fixed to be k = 10. The Precision@N ,Recall@N
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Fig. 3.8. Compare the performance of Time-decayed Multifaceted-FPMC model and the FM
version Time-decayed Multifaceted-FPMC model (history length T = 14 days). The FM version
replaces all elements of interaction matrix Φ with 1.

and F1@N with N ∈ {300, 600, 1000} and the time span of historical records

T ∈ {1 day, 3 days, 14 days, 28 days} are reported in Figure 3.7.

Figure 3.7 significantly demonstrates the effectiveness of our new proposed

models. The Multifaceted-FPMC model outperforms the FPMC model and MF

model significantly in most cases, which proves the importance of taking all types

of historical actions into account. When history length is not long (such as 3 days

or 7 days), incorporating actions other than payment is quite necessary. The rea-

son is that it is highly possible that users may have only a few purchase actions

or even no purchase action during the last few days. However, the times of other

actions such as click are usually much more than payment action. In this case, the

Multifaceted-FPMC model achieves benefit by utilizing other actions’ information

for future purchase prediction.

Compared with other approaches, the performance of Time-decayed Multifaceted-

FPMC keeps being the best under different experiment settings. As we can see,

after taking the time intervals of historical actions into account and model the tem-

poral influence decay phenomenon by power-law distribution, the Time-decayed

Multifaceted-FPMC model further improves the prediction accuracy and outper-

forms all other approaches. This demonstrates the key role of time intervals for

purchase prediction.

We also compare the performance of Time-decayed Multifaceted-FPMC model

with the fully interaction version of Time-decayed Multifaceted-FPMC model. In
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the fully interaction version of Time-decayed Multifaceted-FPMC model, the dif-

ference is that all the elements of interaction matrix Φ is 1. In this case, it is equiva-

lent with an factorization machine (FM) model. Figure 3.8 shows the performance

comparison of two versions of Time-decayed Multifaceted-FPMC model using 14

days of history. As we can see, the FM version of Time-decayed Multifaceted-

FPMC model doesn’t outperform our proposed Time-decayed Multifaceted-FPMC

model. The reason is that FM models the pairwise interactions between all variable

pairs. However, with long feature vector x that contains lots of prediction variables,

not every pairwise interaction will be meaningful.

3.7 Conclusions

To summarize, traditional approaches for recommendation and future purchase pre-

diction, such as MF and FPMC, are insufficient to fully utilize the various context

information contained in users’ historical records data.

In this chapter, based on the users’ historical action records dataset from Al-

ibaba group, we investigate the characters of real users’ actions and get some in-

sights. First, we show that different types of actions user performed previously

are all helpful for users’ future purchase prediction. Based on this discovery, we

propose our Multifaceted-FPMC model that utilizes all different kinds of actions.

Second, we further observe that users’ historical actions’ influence on their future

purchase actions decays with the time intervals between historical actions and pur-

chase actions. The decay speed is approximately following a power-law distribu-

tion. Based on this temporal influence decay phenomenon, we further propose our

Time-decayed Multifaceted-FPMC model for future purchase probability estima-

tion. Finally, we show that our models can be represented in a unified manner and

propose the BSFM framework. Extensive evaluations show that the proposed mod-

els achieves better performance than previous approaches such as MF and FPMC.
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Chapter 4

Conclusion and Future Work

Given sparse observed data, we refer to latent factor models related to matrix or

tensor approximation to reveal the hidden structure of it and explain it by learning

the latent factors beneath the data. In the thesis, we look into two different problems

and solve them by proposing new models based on matrix or tensor approximation

techniques.

The first problem is about mobile network latency prediction. Given a small per-

centage of measured latencies between mobile network nodes, our objective is to

predict the remaining unmeasured latencies. Traditional methods include Euclidean

embedding and matrix factorization. We argue that both of the two methods are not

appropriate to explain the structure of the network latency. We decompose the

network latency matrix into two components: the Euclidean distance matrix part,

which comes from the geographical Euclidean distances between network nodes;

the network feature matrix part, which accounts for the different network condi-

tions of different nodes. We assume a low-rank structure for the network feature

matrix and learn it by matrix completion. For the distance matrix part, we learn it

by traditional Euclidean embedding algorithm (Vivaldi). We further propose an it-

erative algorithm to learn the two components jointly. Extensive evaluations on two

datasets show that our proposed models and algorithms outperform state-of-the-art

algorithms significantly. To further improve the prediction accuracy, we incorporate

the information from historical network latency matrices by stacking these matrices
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into a big matrix and applying our algorithms on it. In this way, we further improve

the prediction accuracy of network latencies.

The second problem is about predict users’ next-day-purchases based on his/her

historical action records. This will help enterprises to offer their customers person-

alized services and recommendations. We analysis the dataset from the Alibaba

group. Based on our observations, we propose the Multifaceted-FPMC and Time-

decayed Multifaceted-FPMC models to estimate user-item pairs’ purchase proba-

bilities using various information from users’ historical records data. We further

represents our models in a unified framework, Bayesian Sparse Factorization Ma-

chines (BSFM), and learn the model parameters using MCMC inference. Compared

with traditional factorization machines, BSFM further introduces a interaction ma-

trix that limits the interactions of feature variable pairs in the model, as not all the

interactions between feature variables are meaningful. Thus, BSFM subsumes fac-

torization machines as a special case, and it is able to mimic existing factorization

models exactly by defining appropriate feature vectors and interaction matrices. We

learn the model parameters by Markov chain Monte Carlo algorithm. Evaluations

on the Alibaba dataset shows the effectiveness of our proposed models.

Lots of works can be done in the future. First, distributed algorithms and sys-

tems can be developed to improve the running speed of current prediction algo-

rithms. Second, things are always changing. Network latencies or peoples’ interests

keep changing with time. Thus, online learning algorithms that are able to update

model parameters based on newly collected data is in need. For example, in our D-F

Decomposition algorithm for network latency problem, the network feature matrix

F is used to characterize the network conditions. As the network conditions of per-

sonal devices are keep changing, online algorithms that can update the F matrix

based on new measured latencies are highly valuable. Besides, customers’ interest

on items keeps changing with time, thus, developing online prediction algorithm is

also very important and helpful for e-commerce. Third, BSFM learns a latent vec-

tor for each feature variable. However, each feature variable will have interactions

with different kinds of other feature variables. Instead of learning a single latent
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vector for each variable, it may be more appropriate to learn multiple latent vectors

for different interactions. Last but not the least, we can apply our proposed BSFM

on other real-world problems.

59



References

[1] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings of KDD cup

and workshop, vol. 2007, 2007, p. 35.

[2] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-

ommender systems,” Computer, no. 8, pp. 30–37, 2009.

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

review, vol. 51, no. 3, pp. 455–500, 2009.

[4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personal-

ized markov chains for next-basket recommendation,” in Proceedings of the

19th international conference on World wide web. ACM, 2010, pp. 811–820.

[5] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor factorization

for personalized tag recommendation,” in Proceedings of the third ACM in-

ternational conference on Web search and data mining. ACM, 2010, pp.

81–90.

[6] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling

internet traffic dynamics of cellular devices,” in Proceedings of the ACM SIG-

METRICS joint international conference on Measurement and modeling of

computer systems. ACM, 2011, pp. 305–316.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized

network coordinate system,” in ACM SIGCOMM Computer Communication

Review, vol. 34, no. 4. ACM, 2004, pp. 15–26.

60



[8] T. E. Ng and H. Zhang, “Predicting internet network distance with

coordinates-based approaches,” in INFOCOM 2002. Twenty-First Annual

Joint Conference of the IEEE Computer and Communications Societies. Pro-

ceedings. IEEE, vol. 1. IEEE, 2002, pp. 170–179.

[9] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Dmfsgd: A decentralized ma-

trix factorization algorithm for network distance prediction,” Networking,

IEEE/ACM Transactions on, vol. 21, no. 5, pp. 1511–1524, 2013.

[10] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in the wild.” in

NSDI, vol. 7, 2007, pp. 299–311.

[11] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, and X. Li, “Phoenix: A

weight-based network coordinate system using matrix factorization,” Network

and Service Management, IEEE Transactions on, vol. 8, no. 4, pp. 334–347,

2011.

[12] G. Wang, B. Zhang, and T. Ng, “Towards network triangle inequality viola-

tion aware distributed systems,” in Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement. ACM, 2007, pp. 175–188.

[13] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle: a

platform for educational cloud computing,” in ACM SIGCSE Bulletin, vol. 41,

no. 1. ACM, 2009, pp. 111–115.

[14] M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in

The adaptive web. Springer, 2007, pp. 325–341.

[15] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-

to-item collaborative filtering,” Internet Computing, IEEE, vol. 7, no. 1, pp.

76–80, 2003.

[16] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network coordinates

systems, design, and security,” Communications Surveys & Tutorials, IEEE,

vol. 12, no. 4, pp. 488–503, 2010.

61



[17] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha, “On suitability of euclidean em-

bedding of internet hosts,” in ACM SIGMETRICS Performance Evaluation

Review, vol. 34, no. 1. ACM, 2006, pp. 157–168.

[18] Y. Mao, L. K. Saul, and J. M. Smith, “Ides: An internet distance estimation

service for large networks,” Selected Areas in Communications, IEEE Journal

on, vol. 24, no. 12, pp. 2273–2284, 2006.

[19] Y. Liao, P. Geurts, and G. Leduc, “Network distance prediction based on de-

centralized matrix factorization,” in NETWORKING 2010. Springer, 2010,

pp. 15–26.

[20] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative

matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[21] E. J. Candès and B. Recht, “Exact matrix completion via convex optimiza-

tion,” Foundations of Computational mathematics, vol. 9, no. 6, pp. 717–772,

2009.

[22] Z. Lu, Y. Zhang, and X. Li, “Penalty decomposition methods for rank mini-

mization,” Optimization Methods and Software, no. ahead-of-print, pp. 1–28,

2014.

[23] K. LaCurts and H. Balakrishnan, “Measurement and analysis of real-world

802.11 mesh networks,” in Proceedings of the 10th ACM SIGCOMM confer-

ence on Internet measurement. ACM, 2010, pp. 123–136.

[24] J. Sommers and P. Barford, “Cell vs. wifi: on the performance of metro area

mobile connections,” in Proceedings of the 2012 ACM conference on Internet

measurement conference. ACM, 2012, pp. 301–314.

[25] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close

examination of performance and power characteristics of 4g lte networks,” in

Proceedings of the 10th international conference on Mobile systems, applica-

tions, and services. ACM, 2012, pp. 225–238.

62



[26] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and

M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,”

ACM SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 3–12,

2003.

[27] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares

solutions,” Numerische mathematik, vol. 14, no. 5, pp. 403–420, 1970.

[28] L. Tang and M. Crovella, “Virtual landmarks for the internet,” in Proceedings

of the 3rd ACM SIGCOMM conference on Internet measurement. ACM,

2003, pp. 143–152.

[29] P. Tseng, “Convergence of a block coordinate descent method for nondiffer-

entiable minimization,” Journal of optimization theory and applications, vol.

109, no. 3, pp. 475–494, 2001.

[30] T. Westergren, “The music genome project,” Online: http://pandora.

com/mgp, 2007.

[31] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative fil-

tering recommendation algorithms,” in Proceedings of the 10th international

conference on World Wide Web. ACM, 2001, pp. 285–295.

[32] W. Gu, S. Dong, and Z. Zeng, “Increasing recommended effectiveness with

markov chains and purchase intervals,” Neural Computing and Applications,

vol. 25, no. 5, pp. 1153–1162, 2014.

[33] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM Trans-

actions on Information Systems (TOIS), vol. 22, no. 1, pp. 89–115, 2004.

[34] B. Li, A. Ghose, and P. G. Ipeirotis, “Towards a theory model for product

search,” in Proceedings of the 20th international conference on World wide

web. ACM, 2011, pp. 327–336.

63



[35] Y. Koren, “Collaborative filtering with temporal dynamics,” Communications

of the ACM, vol. 53, no. 4, pp. 89–97, 2010.

[36] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun, “Tem-

poral recommendation on graphs via long-and short-term preference fusion,”

in Proceedings of the 16th ACM SIGKDD international conference on Knowl-

edge discovery and data mining. ACM, 2010, pp. 723–732.

[37] A. Zimdars, D. M. Chickering, and C. Meek, “Using temporal data for making

recommendations,” in Proceedings of the Seventeenth conference on Uncer-

tainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2001, pp.

580–588.

[38] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Using sequential and non-

sequential patterns in predictive web usage mining tasks,” in Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on.

IEEE, 2002, pp. 669–672.

[39] G. Shani, R. I. Brafman, and D. Heckerman, “An mdp-based recommender

system,” in Proceedings of the Eighteenth conference on Uncertainty in arti-

ficial intelligence. Morgan Kaufmann Publishers Inc., 2002, pp. 453–460.

[40] S. Rendle, “Factorization machines,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 2010, pp. 995–1000.

[41] I. Bayer and S. Rendle, “Factor models for recommending given names,”

ECML PKDD Discovery Challenge, p. 81, 2013.

[42] S. Rendle, “Factorization machines with libfm,” ACM Transactions on Intel-

ligent Systems and Technology (TIST), vol. 3, no. 3, p. 57, 2012.

[43] J. Alstott, E. Bullmore, and D. Plenz, “powerlaw: a python package for anal-

ysis of heavy-tailed distributions,” 2014.

64



[44] A. Paterek, “Improving regularized singular value decomposition for collabo-

rative filtering,” in Proceedings of KDD cup and workshop, vol. 2007, 2007,

pp. 5–8.

[45] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix factoriza-

tion,” in Advances in neural information processing systems, 2004, pp. 1329–

1336.

[46] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to

mcmc for machine learning,” Machine learning, vol. 50, no. 1-2, pp. 5–43,

2003.

[47] C. Freudenthaler, L. Schmidt-Thieme, and S. Rendle, “Bayesian factorization

machines,” 2011.

[48] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis.

Taylor & Francis, 2014, vol. 2.

[49] C. P. Robert, “Simulation of truncated normal variables,” Statistics and com-

puting, vol. 5, no. 2, pp. 121–125, 1995.

65


