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Abstract

In reinforcement learning, agents solve problems through interactions with the envi-

ronment. However, when faced with intricate environmental dynamics, learning can

become challenging, resulting in sub-optimal policies. A potential remedy to this

situation lies in the transfer of knowledge from previously solved tasks to enhance

the efficiency of the agent. In this dissertation, we investigate this approach, focusing

on the decomposition of neural network policies for Markov Decision Processes into

reusable sub-policies, which can be “helpful” for unforeseen tasks. We consider neu-

ral networks with piecewise linear activation functions, since they can be transformed

into oblique decision trees. Each sub-tree within an oblique decision tree corresponds

to a sub-policy associated with the primary task. We hypothesize that some of these

sub-policies can be helpful in downstream tasks. Given that the number of these sub-

policies grows exponentially with the neural network’s size, we select a subset of such

sub-policies while minimizing the Levin Loss. We transform the selected sub-policies

into temporally extended actions, or options. To validate the algorithm’s ability to

discover helpful options, we present empirical findings on two challenging grid-world

domains, each characterized by distinct dynamics. The experimental results show

that options can “occur naturally” within neural network encoding policies. Our re-

sults suggest that the process of decomposing neural network serves as a promising

avenue for option discovery.
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Chapter 1

Introduction

1.1 Motivation

Reinforcement learning (RL) is a class of problems where an agent learns through

interactions with the environment. In RL, The agent attempts to learn policies that

maximize the expected cumulative reward [1]. One key feature of intelligent systems

is their ability to transfer learned policies from one task to another, a concept explored

in previous research [2, 3]. Effective transfer learning depends on the agent’s ability

to retain knowledge from one task and selectively apply it to unforeseen challenges [4].

The transferring of knowledge can be especially promising when the agent is facing

a more complex task, motivating our investigation into the domain of knowledge

transfer in RL.

To accomplish this objective, our work uses the concept of temporally extended

actions, known as “options” [5, 6].

1.2 Problem Definition

In this work, we use the framework of Markov Decision Processes (MDPs) (S,A, p, r, γ)

[7, 8] to model the environment. In this definition, S represents the set of possible

states of the environment. A is the set of actions that the agent can take. Actions are

the choices available to the agent in any given state. Furthermore, p is the transition

function, denoted as p(st+1|st, at). p models how the environment changes over time.

1



Given the current state st and the action taken at, it specifies the probability of tran-

sitioning to the next state st+1. The reward function, represented as r, determines

the immediate reward that the agent receives when transitioning from one state to

another. It defines the goal or objective of the agent, as it assigns numerical rewards

to different state transitions. γ in [0, 1] is the discount factor.

In a reinforcement learning problem, one attempts to find a policy π that maximizes

the expected sum of discounted rewards, also known as the return. The return is

defined as: Eπ,p[
∑︁∞

k=0 γ
kRk+t+1|st]. A policy is a probability function π = Pr(at|st)

that receives a state s and an action a and returns the probability in which a is taken

in s. In this work, we use actor-critic algorithms, which aim to learn both a policy

and a value function. Value function Vπ(s) is the expected return if the agent follows

the policy π and starts at state s. The policy these algorithms learn, denoted πθ, is

parameterized and encoded using neural networks.

We define a set of tasks P = {ρ1, ρ2, · · · , ρn}, which represent different MDPs

for which the agent learns policies to maximize the return. After learning policies

for the tasks in P , we evaluate the agent’s performance while learning policies for a

different set of tasks P ′, where P ′∩P = ∅. In this setting, the focus is on transferring

knowledge from the tasks in P to the tasks in P ′ using the concept of options [9].

Our work comprises two primary components. The first component involves the

extraction of sub-policies from a trained neural network, while the second component

focuses on transferring these sub-policies as options across different tasks. Initially,

we employ deep neural networks [10] for policy learning, with a specific emphasis

on the use of two-part piecewise-linear activation functions, such as Rectified Linear

Units (ReLUs) [11]. The adoption of ReLU activation functions has become a trend

in numerous RL algorithms in recent years [12].

For a given input value, each neuron of the network is either in one part of the

linear function or in the other. For the ReLU functions, we say that each neuron

is active or inactive, as it produces a zero value or a linear combination of its input
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values [13–15]. The activation pattern of such a network specifies which neurons are

active and which neurons are inactive [16]. For a given activation pattern, we can

re-write the function the network represents as a linear function of its input. This

is because each neuron represents a linear function, and the combination of linear

functions is also linear. This type of network can be mapped to an oblique decision

tree [17], a type of tree where each node encodes a linear function of the input. In

the mapping, each node in the tree represents a neuron in the network, and each path

from root to leaf in the tree represents an activation pattern of the network [15]. This

mapping enables us to extract sub-policies via the decomposition of their equivalent

oblique decision tree. Each sub-tree within the primary tree corresponds to a function

of the input, thereby representing a sub-policy within the neural network represents.

Subsequent to the decomposition of the neural network into its sub-policies, we

employ the options framework, encapsulating each sub-policy within a fixed-duration

while loop to facilitate the creation of options. Notably, the number of sub-policies is

exponentially proportional to the number of neurons within the deep neural network.

Hence, we introduce a selection algorithm founded on the minimization of the Levin

Loss [18] applied to a uniform policy, utilizing the acquired options. This uniform

policy represents the random policy of the agent at the early stages. This minimiza-

tion of the Levin loss enhances the probability of encountering promising states early

in the training process, contingent on task similarities. Additionally, to validate our

hypothesis, we focus on policies with small neural networks. The choice of small

neural networks allows for the evaluation of all sub-policies, without being conflicted

with the problem of exploding number of possible sub-policies.

1.3 Contribution

Our work offers several contributions.

• We demonstrate the capacity to extract options from small neural networks
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using ReLU activation functions, even when such extraction was not the primary

objective during training. This enables the extraction of options from “legacy”

policies, under the assumptions outlined in this work.

• Our method operates without the need for human supervision or prior domain

knowledge before training, autonomously learning all option-related parameters

from the data, including the number of options, and the start and the termi-

nation of options. Furthermore, our approach uses simple feedforward neural

networks, making it simple and reusable in different scenarios.

• Our method introduces a novel approach for extracting sub-policies through

neural network decomposition, which holds potential applicability in RL, con-

tinual learning, and program synthesis. However, it is important to note that

the full extent of these possibilities is beyond the scope of this investigation and

warrants further exploration.

1.4 Thesis Statement

This thesis introduces a novel method for the extraction of sub-policies from feed-

forward neural networks, defining them as “Options”. The primary objective of this

research was to verify whether neural networks encoding policies encode sub-

policies that can be turned into “helpful” temporally extended actions.

1.5 Outline

We will discuss the following chapters in the rest of this dissertation. Chapter 2

provides a review of reinforcement learning and knowledge transfer. It also provides

state-of-the-art work on options. It sets the stage by introducing fundamental con-

cepts, highlighting their relevance, and identifying research gaps. Chapter 3 delves

into the core of our research. We describe the methodology, including the extraction

of sub-policies using neural network decomposition, the options framework, and the
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Levin Loss minimization process. Our experimental setup is detailed to prepare for

empirical evaluation. Chapter 4 presents the experimental results. We explore specific

grid-world domains, focusing on options discovery, and comparing them with related

baselines. Chapter 5 concludes our study, summarizing key findings and contribu-

tions. We discuss implications, acknowledge limitations, and suggest future research

directions. This chapter encapsulates the significance of our work and the potential

it holds for the future of RL.
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Chapter 2

Literature Review

2.1 Options

A particularly promising direction in the field of RL involves the application of skills

or options. This approach has been a central focus of many reinforcement learning

researchers in the past decade. The concept of options introduces a hierarchical

structure, empowering agents to break down tasks into sub-tasks. Option addresses

the challenge of handling multilevel temporal abstractions over actions, as elucidated

by Sutton et al. [5]. In their work, they formulate the option framework in RL

using the Markov decision process (MDP) [7, 8] and Semi-Markov decision processes

(SMDPs). However, it should be noted that this framework relies on human expertise

for option design. This limitation has spurred interest in developing methods that do

not require human intervention. This literature review explores recent advancements

in option discovery and their potential implications for RL.

Frans et al. [19] introduce a hierarchical framework [20] for option learning. Their

structure consists of two levels of neural networks, a high-level one that does the

general decision-making, and lower-level neural networks that interact directly with

the environment for a fixed duration of c steps. These low-level neural networks,

serving as options, can be then transferred across tasks. However, a limitation lies

in the manual determination of the number and duration of the options, which could

require domain-specific knowledge. Tessler et al. [21] adopt a similar approach for
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transferring options across tasks. Initially, they train policies on simpler tasks, encap-

sulating these policies as reusable “skills”. These skills are in fact wrapped policies

with fixed duration loops, and are made available to agents in a call-and-return man-

ner during new tasks along with primitive actions. This work motivated us to have

a similar baseline in our experiments. In Chapter 4 we show that wrapping previ-

ously trained policies is not sufficient, since these policies can be task-specific and

not suitable for unseen future tasks. Thus, by neural network decomposition, we aim

to find sub-policies that are generalizable. Andreas et al. [22] introduce a modular

learning method that leverages task sketches to capture high-level task structure and

relationships. However, this approach heavily relies on human supervision for task

sketch generation.

Bacon et al. [23] propose the “option-critic architecture”. In their work, instead of

fixed-duration options, they jointly train options and termination policies using gra-

dient descent optimization. Nevertheless, the number of options still requires prior

specification, and its impact on training efficiency is substantial. Despite this limita-

tion, the option-critic architecture showcases promising results, serving as a suitable

baseline for our comparative analysis. This comparison demonstrates our ability to

leverage knowledge derived from previous tasks, compared to learning options from

the task directly.

Achiam et al. [24] proposed an approach to option discovery using variational au-

toencoders (VAEs) [25]. By leveraging insights from autoencoders and ML, they

encode policy trajectories into a latent space, subsequently decoding them to regen-

erate trajectories. Latent vectors corresponding to favorable trajectories are identified

as options. This method offers a data-driven alternative to manual option design.

Options have proven to be an effective means of enhancing exploration, allowing

agents to traverse a broader state space and achieve superior results. Machado et al.

[26] and Machado et al. [27] explore representation learning methods for option dis-

covery. In the former work, they employ successor state representations [28] to obtain
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diffusive information flow (DIF) for option discovery. Successor state representations

are the next state representations determined by the environment’s dynamics and

the agent’s policy. In the latter work, the authors employ successor states directly to

discover options. Since the successor states method uses the similarity between the

next states to generalize between states, it seems a natural way to use these represen-

tations for learning options. These studies reveal that the options obtained through

these algorithms lead to a reduction in the expected number of steps required to

explore the state space compared to uniform random exploration. Moreover, Jinnai

et al. [29] propose the concept of deep covering options, aiming to directly reduce

the expected cover time of the state space, the expected number of steps needed to

cover the state space. Their method establishes an upper bound for this cover time

and demonstrates enhanced sample efficiency in experiments. Klissarov and Machado

[30] is another work that focuses on learning the options that help the task through

exploration. They aimed to train the options by focusing on the graph flow of the

environment’s dynamic and approximating the eigenfunctions related to the environ-

ment’s dynamic. We selected their approach, namely DCEO, as another baseline for

comparison.

Dabney et al. [31] is another work focusing on enhancing the exploration using

temporal abstractions. In their work, they introduce a temporal abstraction of the

ε-greedy algorithm. While the ε-greedy algorithm involves random exploration with a

probability of ε, this method takes exploration a step further. Rather than exploring

the environment one step at a time, it advocates for repeating an action for n steps,

a form of temporal abstraction for exploration. The significance of this approach lies

in its ability to facilitate more effective exploration of states, even those situated at

a considerable distance from the greedy policy. The ε-greedy algorithm contributes

to the ongoing exploration-efficiency discourse by extending the temporal aspect of

exploration. It is also selected as a baseline for comparison with our approach.

Other researchers also investigated option discovery in multi-task settings [24, 32].
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Igl et al. [32] present “Multitask Soft Option Learning”, allowing learned options to

adapt across tasks. They train the options in one task and transfer the learned option

to the next task, but these soft options have the flexibility to evolve in response to task

requirements. Nonetheless, the predefined number of options remains a prerequisite

for training.

In contrast to the aforementioned works, our proposed decomposition-based method

autonomously learns all option components, including the number of options, initia-

tion, and termination, from data. Importantly, it can be used with any off-policy or

on-policy RL algorithm.

2.2 Transfer Learning

Recent works have categorized the field of transfer learning and continual learning

within RL into different categories and techniques [33, 34]. One of these categories in-

volves “Regularization Approaches”, which entail the inclusion of a regularization

term in the loss function. This strategy prevents agents from becoming excessively

specialized in a single task and enables them to generalize across a spectrum of tasks.

Elastic Weight Consolidation (EWC) [35] is one such approach. However, previous

studies have revealed that relying solely on these regularization terms may fail when

tasks have contradictory objectives or exhibit interference [36]. Interference happens

when two or more tasks are incompatible for the same model [37]. An example of

interference would be when for two (or more) tasks, the same state has different goals.

“Complementary Learning Systems and Memory Replay” is another cat-

egory that pertains to knowledge transfer through the storage and replay of past

experiences, as demonstrated in works like CLEAR [37]. However, these methods

have proven challenging to adapt to on-policy algorithms, primarily suited for off-

policy learning. Moreover, in cases of interference [36], past experiences can become

detrimental. In our work, we lean towards the concept of transferable sub-policies,

which can be seamlessly integrated with both on-policy and off-policy RL algorithms.
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Weight transfer has also been explored within the realm of RL [38]. This

weight transfer can manifest in various forms, including policy transfer [39], value

network transfer, or even transferring entire models [40]. In the context of transfer

learning, our method aligns with the group of transferring sub-policies. Unlike trans-

ferring value networks, which entail transferring low-level information, we transfer

sub-policies. We hypothesize that sub-policies can generalize better compared to the

transfer of the entire model, which typically proves overly specific to the task. Also,

we compared our method with weight transfer methods where each model’s weight

is initialized with the weights learned in the previous task. Additionally, Modulating

Masks [41], a transfer learning method in RL utilizing supermasking [42], is selected

as another baseline example. In this approach, the authors initialize the masking

for each new task with a linear combination of all previously learned masks. We

chose Modulating Masks as another baseline example due to its relevance to our ap-

proach. The utilization of masking over neural networks allows the agent to access

sub-networks, which can be interpreted as sub-policies.

Dynamic Architecture centers on adaptively modifying neural network struc-

tures across tasks to facilitate knowledge transfer while allowing for the acquisition

of new policies. Methods such as Progressive Neural Networks [43], Dynamically

Expandable Networks [44], and Progress and Compress [45] fall under this classifi-

cation. These techniques leverage previously acquired features, albeit at the cost of

expanding the neural network. Among these methods, we have chosen Progressive

Neural Networks (PNN) as one of the promising baselines for comparing with our

approaches.

2.3 Compositional Methods

Another approach toward continual learning in RL involves around Compositional

Methods [46]. Modular approaches [47–49] aim to decompose the environment’s

functionality into modules and train all of these modules at once. These modules
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then will serve as sub-policies or skills which can be transferred.

Goyal et al. [48] propose a modular approach aimed at learning policies with en-

hanced generalization capabilities across new environments. They introduce modules

that compete with each other through information bottleneck as a part of the loss

function. This bottleneck compels each module to only make decisions for a subset

of states, effectively segmenting the state space into modules. π-PRL [50] is another

example of modular methods. It uses differentiable languages and program synthe-

sis instead of deep reinforcement learning. π-PRL leverages a collection of tasks to

acquire sub-policies, subsequently transferring them to new tasks as a set of actions.

Mendez et al. [49] tackle compositional methods by employing a set of modules, each

equipped with its unique inputs and outputs. These modules find utility in addressing

inherently submodular problems, and they are interconnected in a multi-level fashion.

Each module is provided with a part of the state representation corresponding to its

functionality or a feature vector derived from preceding modules.

It is essential to acknowledge that the mentioned modular approaches exhibit cer-

tain challenges, including their inherent complexity and reliance on user-specific or

domain-specific information. While supplying such information may be feasible in

specific scenarios, our approach seeks to provide an alternative that does not require

domain knowledge.
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Chapter 3

Learning Options with Neural
Network Decomposition

In this chapter, we elaborate on the methodology employed in our research, which is

designed to discover options using a set of tasks P , which can be applied to another

set of tasks P ′. Our method will generate policies for tasks in P as the first step. We

hypothesize that sub-policies possess a greater potential for unseen future tasks when

compared to task-specific policies. We define these sub-policies as the components

of the primary policy π learned over tasks in P in the previous step. Thus, we use

these sub-policies to create temporally extended actions and transfer them to tasks

P ′. These temporally extended actions play a pivotal role in enhancing the sample

efficiency of the training process, effectively expediting the learning process for tasks

within the set P ′ [19, 21, 23].

To formally define these temporally extended actions, we employ the options frame-

work [5, 6]. An option ω is characterized by a tuple comprising three components,

(Iω, πω, Tω). Specifically, Iω is a function that, given a state st, returns the probabil-

ity of the option initiating in state st. Subsequently, πω represents the policy that

the agent adheres to once the option is initiated, while Tω serves as a function that,

when provided with a state st, returns the probability of the option terminating in

that state. In our implementation, we adopt the call-and-return execution paradigm,

whereby the agent follows πω until the option concludes.

12



The key stages of our algorithm for options discovery can be summarized as follows.

1. Training Neural Policies: We begin by learning a set of neural policies

{πθ1 , πθ2 , . . . , πθn} using tasks from the set P .

2. Decomposition of Neural Policies: Subsequently, each neural network en-

coding πθi is decomposed into a set of sub-policies, which we collectively denote

as Ui. Further details on this decomposition process can be found in Section 3.1.

3. Options Synthesis: From the collection of sub-policies ∪ni=1Ui, we select a

subset to form a set of options, referred to as Ω. Section 3.2 explains this

selection process.

4. Expansion of Agent Action Space: In the final step, we augment the set

of actions available to the agent with the options acquired during Steps 1 to 3.

Consequently, the set of available actions for tasks in P ′ becomes A ∪ Ω.

For Step 1, we can employ any algorithms that enable the learning of a parameter-

ized policy πθ, including popular techniques like policy gradient [51] and actor-critic

algorithms [52]. In Step 4, the choice of an algorithm for solving MDPs is flexible, as

we augment the agent’s action space with the options acquired during Steps 1–3 [53].

The processes of decomposing the policies into sub-policies and defining/selecting a

set of options are described in Section 3.1 (Step 2) and Section 3.2 (Step 3), respec-

tively. As the set of options Ω is an integral part of the agent’s action space for tasks

in P ′, Step 3 primarily focuses on defining πω and Tω for all ω within Ω, with Iω set

to encompass all states within S. We also define our options to have a fixed duration,

thus our options terminate after running for some specific number of actions. We

refer to both the methodology for learning options and the resultant options as the

Dec-Options.
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Figure 3.1: A neural network with two inputs, two ReLU neurons in the hidden layer,
and one Sigmoid neuron in the output neuron is shown on the left. All bias terms
of the model are 1; for simplicity, we omit bias values. The neural tree representing
the same function encoded in the network is shown on the right. The root of the tree
represents the neuron A2

1, the nodes in the second layer represent the neuron A2
2, and

the leaf nodes represent the output neuron A3
1, where σ(·) is the Sigmoid function.

The colors of the neurons match the colors of the nodes in the tree that represent
them.

3.1 Decomposing Neural Policies into Sub-Policies

In our study, we consider parameterized policies denoted as πθ, which are encoded

using fully connected neural networks comprising m layers (1, . . . ,m). These neural

networks employ piecewise activation functions, such as the ReLU functions [11]. The

first layer serves as the input layer, denoted as X, while the m-th layer represents the

output of the network. To illustrate, in the network diagram depicted in Figure 3.1,

m is equal to 3. Each layer j is equipped with nj neurons (1, . . . , nj), where n1

corresponds to the number of input values within X. The parameters connecting the

layers i and i+ 1 in the network are represented as W i ∈ Rni+1×ni and Bi ∈ Rni+1×1.

Within these matrices, the k-th row vector of W i and Bi is designated as W i
k and

Bi
k, respectively, signifying the weights and bias term of the k-th neuron within the

(i + 1)-th layer. For instance, in Figure 3.1, we observe that n1 = 2 and n2 = 2.

Additionally, we introduce Ai ∈ Rni×1 as the values generated by the i-th layer, with

A1 = X and Am representing the model’s output. The computation of a forward pass

within the model entails the derivation of values for Ai = g(Zi), where g(·) serves as

the activation function, assumed to be the ReLU function in Figure 3.1. Here, we
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have Zi = W i−1 · Ai−1 +Bi−1.

We introduce the concept of a “neural tree”, which is represented as a binary tree

(N,E), where N encompasses the nodes in the tree, and E represents the connections

between these nodes. The neural tree is a representation equivalent to networks

employing two-part piecewise linear activation functions, such as the ReLU. In this

context, each internal node within the tree corresponds to a neuron within the layers

[2, . . . ,m − 1] of the network (comprising all neurons except those in the input and

output layer). The neurons within the output layer are represented within the leaf

nodes of the tree. This mapping shares similarities with oblique decision trees, as each

internal node of the neural tree defines a function P ·X + v ≤ 0 concerning the input

X. However, distinct from oblique decision trees, each leaf node in the neural tree

signifies the computation taking place in the output layer of the network. In the case

of a neural policy tailored for a Markov Decision Process (MDP) with |A| = 2 actions,

wherein the number of output neurons is nm = 1, each leaf node returns the Sigmoid

value resulting from P ·X + v. In scenarios where the number of actions is |A| > 2,

such that nm = |A|, each leaf node returns a probability distribution defined by the

Softmax values of P ′ ·X + V , with P ′ ∈ Rnm×n1 and V ∈ Rn1×1. In cases involving

continuous action spaces, each leaf node provides a parameterized distribution from

which actions can be sampled.

The definition of parameters for both internal and leaf nodes serves as a foundation

for inference, which initiates at the root of the tree. The process involves determining

whether P ·X + v ≤ 0 is true or false, subsequently guiding the traversal towards the

left or right child based on the outcome. This iterative process is continued until a

leaf node is reached, at which point the leaf node computation is performed.

The choice of a two-part piecewise linear function g(·), like the ReLU, results in a

neuron’s output value being determined by one of the two linear functions composing

g. For instance, in the case of a neuron employing a ReLU function, expressed

as g(z) = max(0, z), the neuron’s output is either 0 or z. This binary behavior
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leads to the notion of an “activation pattern”, which is an ordered set of binary

values that denotes whether a given node within the network is active or inactive

for a particular input X [13–15]. Every path within a neural tree corresponds to an

activation pattern, excluding those that pertain to the output layer. For example, if

the condition P ·X + v ≤ 0 is met at the root of the tree, the left sub-tree represents

a scenario in which the first neuron of the network is inactive, while the right sub-tree

signifies the scenario where the first neuron is active. The selection of a path within

the neural tree implies that each neuron represents a linear function of the input

X. This property enables the combination of multiple linear functions to result in

another linear function. This characteristic allows us to define the function of the

output layer in each tree as a linear function of the input X.

Example 1 In our illustrative example depicted in Figure 3.1, we explore a neural

network representing a neural policy with two actions, determined by the Sigmoid value

of the output neuron. The accompanying right-hand side diagram in Figure 3.1 shows

the neural tree that represents the neural network. The tree accounts for all activation

patterns in the neural network. For example, if both neurons in the hidden layer are

inactive, then A2
1 = A2

2 = 0 and the output of the network is σ(0·−1+0·1+1) = σ(1);

this activation pattern is represented by the left branch of the tree. If the first neuron

(from top to bottom) in the hidden layer is active and the second is inactive, the neural

network produces the output σ(−1 · (2x1 + x2 + 1) + 1 · 0 + 1)) = σ(−2x1 − x2); this

activation pattern is given by following the right and then left branch from the root.

Given that each node within the neural tree represents a function of the input,

each sub-tree within the neural tree represents a sub-policy of the policy encoded by

the network. A neural network comprising d neurons in a single hidden layer creates a

neural tree with height d+1. Such a tree can be decomposed into 2d+1−1 sub-policies,

with one sub-policy corresponding to each node in the tree. It is worth noting that

the order in which neurons are represented along the paths of the neural tree can lead
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to different sub-policies. In our ongoing example, the sub-policies obtained when A2
1

serves as the root of the tree differ from the sub-policies derived when A2
2 is the root.

The total count of distinct sub-policies for a network featuring a single hidden layer

with d neurons can be calculated as
∑︁d

i=0

(︁
d
i

)︁
· 2i. In our example, this computation

results in 1+4+4 = 9. To provide some perspective, the value of 1 for i = 0 signifies

the sub-policy identical to the original policy. The value of 4 for i = 1 denotes the

number of sub-policies stemming from trees rooted at the children of the tree’s root.

In this context, the root of the tree can represent two different neurons, each with

two children, yielding a total of 4 unique sub-policies.

To be able to evaluate and consider all the possible sub-policies resulting from

neural decomposition, we limit our work to only small neural policies with one hidden

layer. This enables us to evaluate our hypothesis that these sub-policies can be used

for discovering useful options without adding more complexity to the problem.

3.2 Synthesizing and Selecting Options

Let {πθ1 , πθ2 , · · · , πθn} represent the collection of policies that the agent learns for

various tasks within P . Each of these policies is capable of generating its own set

of sub-policies, denoted as Ui, using the neural network decomposition methodol-

ogy described earlier. The unification of these sub-policies across all tasks yields

the set U = {U1, U2, · · · , Un}. Additionally, consider a sequence of state-action pairs

{(s1, a1), (s2, a2), · · · , (sk, ak)}, observed under policy π, with an initial state distribu-

tion µ for a task ρ. Here, s1 is sampled from µ, and for each state st in the sequence,

the subsequent state st+1 is sampled from p(·|st, at), where at = argmaxa π(st, a).

Since the options obtained from Dec-Options act greedily, we used the argmax

operator over π to match the options’ behavior in the selection process. Plus, the

argmax helps us to reduce the noises in the selection step. If ρ is episodic, sk+1

constitutes a terminal state, while in non-episodic scenarios, k sets the maximum

horizon for the sequence. Let Ti denote a set of such sequences generated under πθi
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and the respective ρi’s initial state distribution µ. The overall collection of sequences

is represented as T = {T1, T2, · · · , Tn}.

Since the sub-policies in U are not options and are one-step sub-policies, we use

a while-loop for each sub-policy within U that iterates z times, transforming it into

a temporally extended action. Once initiated, the resulting option, denoted as ω,

executes for z steps before terminating. The value z associated with ω is denoted as

ωz. Within each iteration of the while-loop, the agent takes an action determined by

argmaxa π(s, a), where π corresponds to the sub-policy and s represents the agent’s

current state. The use of the argmax operator ensures deterministic behavior within

the loop. Given the length of the longest sequence in Ti as kmax, we consider op-

tions with z = 1, · · · , kmax for each sub-policy in Ui. The resulting set, denoted as

Ω = {Ω1,Ω2, · · · ,Ωn}, encompasses all while-loop options derived from U . Each Ωi

features kmax · |Ui| options for ρi, with one option corresponding to each value of z.

The objective is to identify a subset of “helpful” options from the set Ω. The

measure of a set’s helpfulness is determined based on the Levin loss [18]. This metric

quantifies the expected number of environmental steps (i.e., calls to the function p)

required for an agent to reach a target state under a given policy. It assumes a

deterministic p and a fixed initial state. The sole source of variability arises from the

policy itself. The Levin loss for a sequence Ti and policy πi is defined as Equation (3.1).

L(Ti, π) =
|Ti|∏︁

(s,a)∈Ti π(s, a)
(3.1)

The factor 1/
∏︁

(s,a)∈Ti π(s, a) represents the expected number of sequences that

an agent must sample using policy π to observe Ti. Importantly, the length of the

sequence required to observe Ti is considered known and fixed as |Ti|. Consequently,

the agent performs exactly |Ti| steps within every sampled sequence.

Consider πu as the uniform policy for an MDP, meaning it assigns an equal prob-

ability to all available actions within a given state. Furthermore, let πΩ
u represent

the uniform policy after augmenting the MDP actions with the options in Ω. The
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inclusion of options has two effects: it can either increase or decrease the Levin loss.

On one hand, the probability of selecting each action decreases, affecting not only

the actions in the target sequence but all actions. On the other hand, the reduction

in the number of decisions required by the agent can lead to fewer multiplications in

the denominator of the loss. The primary task is to choose a subset of options from

the set Ω, generated by decomposed policies, that minimizes the Levin loss.

argmin
Ω′⊆ΩT

∑︂
Ti∈TV

L(Ti, πΩ′

u ) . (3.2)

To enhance the chances of selecting options that generalize well, it is essential to

divide the set of tasks P into separate training and validation sets. Options derived

from policies that involve while loops with a duration matching the sequence length

for a specific task are unlikely to generalize to other tasks, as they are highly task-

specific. In Equation (3.2), ΩT denotes the set of options extracted from the policies

learned for tasks in the training set, and TV represents the sequences produced by

applying policies learned for tasks in the validation set. Uniform policies are a sensible

choice for our formulation as they serve as reasonable approximations of neural policies

during the initial stages of training when network weights are randomly initialized.

Minimizing the Levin loss leads to a reduction in the expected number of sequences

that an agent needs to sample in order to observe high reward values. While the

subset selection problem in Equation (3.2) is known to be NP-hard in general [54], so

we opt for a greedy approximation to address it.

3.2.1 Greedy Approximation to Select Options

Algorithm 1 shows the pseudocode for the greedy approximation we use to solve

Equation (3.2). The greedy algorithm for approximating a solution to Equation (3.2)

begins with initializing Ω′ as an empty set. In each iteration, the algorithm identifies

and adds to Ω′ the option that results in the most significant reduction in Levin loss.

This iterative process continues until the inclusion of another option no longer leads
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Algorithm 1 Greedy-Selection

Require: Sequences of state-action pairs TV and set of options ΩT

Ensure: A subset Ω′ of options ΩT

1: Ω′ ← ∅
2: while True do
3: ω ← argminω∈ΩT

∑︁
Ti∈TV L(Ti, π

Ω′∪{ω}
u )

4: if L(Ti, πΩ′∪{ω}
u ) ≥ L(Ti, πΩ′

u ) then
5: return Ω′

6: Ω′ ← Ω′ ∪ {ω}

to a reduction in the loss. At this point, the algorithm terminates and returns the

subset Ω′.

Due to the call-and-return model inherent in this approach, a dynamic program-

ming procedure becomes essential to efficiently compute the values of L while selecting

Ω′. This is because it is not evident which action or option the agent will use in each

state within a sequence, making it challenging to minimize the Levin loss. To illus-

trate this, consider an option ω that provides the correct action for ωz states within

a sequence initiated at s1. In contrast, ω′ may not return a1 for s1 but is suitable

for the sequence of ω′
z states starting from s2. If, in this context, ωz < ω′

z, and if

employing ω in s1 prevented the use of ω′ in s2 because ω was still executing in s2,

it is conceivable that selecting a1 from the action space A for s1 and subsequently

initiating ω′ in s2 could minimize the Levin loss.

Algorithm 2 Compute-Loss-Optimized

Require: Sequence T , probability pu,Ω, options Ω
Ensure: L(T , πΩ

u )
1: M [i] ← i for i = 0, 1, · · · , |T | − 1 # initialize table as if only primitive actions

are used
2: for j = 0 to |T | do
3: for ω in Ω do
4: if ω is applicable in sj then
5: M [j + ωz]← min(M [j + ωz],M [j] + 1) # ω is used in sj for ωz steps
6: if j > 0 then
7: M [j]← min(M [j − 1] + 1,M [j])
8: return |T | · (pu,Ω)−M [|T |−1]
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Algorithm 2 demonstrates the computation of L. This procedure takes as input

a sequence T , the probability pu,Ω (calculated as 1
|A|+|Ω|) representing the likelihood

of selecting any action from the augmented action space (including the options in

Ω) under a uniform policy. Additionally, the procedure receives the set of options

Ω, the set of options that are used alongside actions to generate the sequence T .

The algorithm’s objective is to compute L(T , πΩ
u ). This algorithm uses the dynamic

programming approach to calculate the Levin loss. Algorithm 2 employs a table M

of size |T | that is initially populated with values numbered from 0 to |T |− 1. Within

this table, each entry j shows the minimum number of actions (or combination of

actions and options) needed to be called to reach state sj.

Line 5 addresses the situation in which an option can be utilized. An option

ω is considered for use in (sj, aj) if and only if aj+i = argmaxa∈A πω(sj+i, a) for

i = 0, · · · , ωz. This condition implies that the actions returned by ω align with the

ωz actions within the sequence that starts at aj. When an option is employed at sj,

the agent can jump from sj to sj + wz in one step. Thus, we update the entry of

j + wz (and any other entry after j + wz) with respect to the current value of entry

j in our table.

Once the calculation of every entry in the M is completed, we use the values

of this table to compute the Levin loss. Since entry |T | − 1 stores the minimum

number of steps needed to reach the end of the sequence |T |, this value is used for

the computation of the Levin loss (as observed in Line 8). The utilization of the

table M ensures that the loss value for any combination of actions and options is not

recomputed multiple times, resulting in an efficient algorithm with time complexity

of O(|Ω| · |T |) and the memory complexity of O(|T |).

Example 2 Let T = s0, s1, s2, s3, s4, s5 be a sequence of states and Ω = {ω1, ω2} be

a set of options. ω1 can start in s0 and it terminates in s2; ω2 can start in s1 and it

terminates in s4. Next, we show how the table M in Algorithm 2 changes after every
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iteration of the for-loop in line 3. The value of 3 for M [5] indicates that state s5 can

Iterations M

initialization 0, 1, 2, 3, 4, 5

0 0, 1, 1, 3, 4, 5

1 0, 1, 1, 3, 2, 5

2 0, 1, 1, 3, 2, 5

3 0, 1, 1, 2, 2, 5

4 0, 1, 1, 2, 2, 5

5 0, 1, 1, 2, 2, 3

be reached with three actions: a primitive action from s0 to s1, ω2 from s1 to s4, and

another primitive action from s4 to s5. If pu,Ω = 0.25, then the optimal Levin loss

value returned in line 8 of Algorithm 2 for T and Ω is 6
0.253

= 384.
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Chapter 4

Experiments

In this chapter, we explain the experimental methodology and outcomes of our study

to assess our hypothesis that options can be extracted through the decomposition

of neural network policies. In our experimental setup, we have two sets of tasks: P

and P ′. Initially, we train agents on the set of tasks P . Subsequently, our aim is to

transfer “helpful” options from P to P ′, thereby expediting the training process of

agents operating on tasks within P ′. While all tasks in both sets, P and P ′, have the

same observation and output structures, they may have distinct objectives, reward

systems, or dynamics.

It is important to emphasize that the Dec-Options approach is not confined to

a specific reinforcement learning algorithm. Through this chapter, we demonstrate

its efficacy with the Deep Q-Network (DQN) algorithm [12], in conjunction with

Proximal Policy Optimization (PPO) [55]. Additional details about agent architec-

tures, hyperparameter settings, and the libraries employed will be presented in their

respective sections.

4.1 Baselines

We have chosen a set of baselines to provide insights into the effectiveness of our

approach. The first baselines, which we refer to as Vanilla-RL, involve training the

DQN and PPO algorithms using the original actions. Our hypothesis posits that our
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Dec-Options framework is more sample-efficient than these “vanilla” reinforcement

learning baselines.

Building upon our literature review, we have also identified a series of baselines

closely related to our work. These baselines serve as reference points for assess-

ing the efficacy of our Dec-Options approach. Two transfer learning algorithms,

namely Transfer-PPO and Modulating-Mask, have been selected as baselines. In

Transfer-PPO, we train on one task and initialize the model weights, including both

the policy network and the value network, to be identical to those of the previously

trained task at the outset of the next task. Modulating-Mask is inspired by the work

of Ben-Iwhiwhu et al. [41], which bears a close relation to our approach, particularly

in terms of utilizing sub-policies and sub-networks.

We also use the PNN baseline, which pertains to methods that modify the struc-

ture of neural networks. To showcase the effectiveness of transferring skills from

previous tasks, we have created two additional baselines: Neural-Augmented and

Dec-Options-Whole. In Neural-Augmented, we augment the action space of the

target task with neural policies from previous tasks in P . Comparing this approach

with our Dec-Options framework highlights the impact of sub-policies and tempo-

ral abstraction. Dec-Options-Whole is a variant of Dec-Options where we incor-

porate the policy networks from previous tasks in P without neural decomposition.

This comparison underscores the significance of neural decomposition in utilizing sub-

policies.

To highlight the effectiveness of our algorithm’s exploration, we consider ez-greedy

[31] baseline. Lastly, to emphasize the influence of knowledge transfer through op-

tions, we considered Option-Critic and DCEO as representative algorithms for

directly learning options within tasks P ′. Both Option-Critic and DCEO do not

leverage the knowledge of policies learned for tasks in P and discover options by

interacting with the target task directly, while our Dec-Options learn the options

from previous tasks and evaluate them in the downstream problems.
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Open-Loop is another baseline we experimented with. In this setting, we gener-

ate deterministic loops of all different sizes and action combinations. In this baseline,

we consider having all possible options from length 1 to length K, in which K is

determined by upper-bound computation. This baseline then for each length of p will

generate all possible combinations of actions. Considering that the agent has M ac-

tions, then there will beMp different options with size p. For example, if the agent has

3 actions of {0, 1, 2}, and we want to generate all options of length 2, we will end up

with the set of options {{0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2}}.

These options’ policies do not depend on the observation of the agent, hence giving

them the name of Open-Loop. Then, we run our option selection method described

earlier to select the open loop options that minimize the Levin Loss. The option selec-

tion algorithm is the same between our approach and the Open-Loop baseline. The

only difference between these two approaches is the neural-network decomposition in

our approach, and having the exhaustive set of all possible deterministic options in

Open-Loop approach. Thus, the goal of comparing our method with Open-Loop

is to show that the options that the neural network decomposition generates play an

important role. The sub-policies acquired through decomposition would have infor-

mation about the dynamics and the state of the environment that the agent can take

advantage of.

4.2 Problem Domains

We use two distinct hard exploration domains. In these domains, we created a set of

simpler tasks designated as P and more challenging tasks grouped under P ′. While

all tasks within both P and P ′ share certain similarities, they also exhibit unique

characteristics that differentiate them. This arrangement is particularly conducive to

the transfer of knowledge between tasks, a key aspect of our study. The two domains

utilized in our experiments are MiniGrid [56] and ComboGrid. In the forthcoming

sections, we will provide an introduction to each of these domains, outlining their key
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(a) Simple Crossing 1 (b) Simple Crossing 2 (c) Simple Crossing 3

Figure 4.1: MiniGrid Simple Cross Tasks in set P

(a) Four Rooms 1 (b) Four Rooms 2 (c) Four Rooms 3

Figure 4.2: MiniGrid Four Rooms Tasks

attributes and relevance to our research.

4.2.1 MiniGrid

Our first domain is based on the implementation of MiniGrid, as provided by Chevalier-

Boisvert et al. [56]. This library encompasses a variety of tasks, each characterized

by distinct objectives that challenge various aspects of RL. The significance of Min-

iGrid in our experiments lies in the fact that all these environments offer partial

observations of the states, thereby evaluating the performance of our method in sce-

narios involving partial observable, and sparse rewards. In the MiniGrid domain,

the agent’s observation is limited to a small window of the environment in front of

itself, as determined by the parameter “view size”. Within MiniGrid, we selected a

set of simpler tasks to comprise P . Specifically, we chose the Simple Crossing tasks,
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illustrated in Figure 4.1. These tasks are characterized by three different variants

of “MiniGrid-SimpleCrossingS9N1-v0”, all of which operate within a 9 × 9 grid and

feature only one wall. For tasks within P ′, we sought more challenging environments

within MiniGrid. Our selection consisted of three different variants of the Four Rooms

environment, as depicted in Figure 4.2. In the Four Rooms environment, the agent

navigates through a grid world divided into four distinct rooms, each interconnected,

as shown in Figure 4.2. The primary objective here is for the agent to explore and

reach its goal efficiently. The grid size for these tasks is 19 × 19. We selected three

different variations of the Four Rooms such that they have different difficulties. In

the first variant, the agent and the goal are located within the same room. In the

second, they are in neighboring rooms, and in the final task, they are positioned in

two non-neighboring rooms. This delineation of tasks within the MiniGrid domain

serves as a foundational component of our experimentation, allowing us to explore the

transfer of knowledge and options between simpler and more complex environments.

Observation and Action Space In our selected MiniGrid domains, the achieve-

ment of goals is streamlined to only require the use of three distinct actions out of

the original set of MiniGrid actions. These primitive actions include:

• Turning Left (represented by 0 for the agent)

• Turning Right (represented by 1 for the agent)

• Moving Forward (represented by 2 for the agent)

Because the domain used only needs these 3 actions, we simplified the action space

to only the 3 mentioned actions. Also, the observations provided to the agent in

MiniGrid were simplified. For our experiments, we modified the default view size of

7 × 7 in MiniGrid to a reduced view size of 5 × 5 in front of the agent. Changing

the view size of the MiniGrid domain has been done in other works before [48]. This

smaller view size would help to have a smaller input allowing us to use a smaller
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neural network. At each time step, the agent receives an observation comprising a

modified version of the original MiniGrid’s observation. This view grid is represented

using a one-hot-encoding scheme, with distinct encoding for different objects within

the 5 × 5 view grid. These objects include walls, empty floor spaces, and the goal

object. Additionally, similar to the original MiniGrid setup, the agent is presented

with information regarding its facing direction. This direction can take on one of

four values, ranging from 0 to 3, encoded in one-hot encoding, each corresponding to

one of the four cardinal directions. This directional information operates akin to a

compass, aiding the agent in navigation and exploration tasks.

Rewards and Episodes In our experimental setup, we have defined reward struc-

tures and episode lengths that vary between the tasks in P and those in P ′. For

the tasks within P , the agent receives a reward of -1 for each step it takes, with the

exception of reaching the goal, which yields a reward of 0. This reward structure in-

centivizes the agent to reach the goal as quickly as possible while penalizing excessive

exploration or deviations from the optimal path. To ensure adequate exploration in

these simpler tasks, the maximum episode length for tasks in P has been set at 1000

steps. In contrast, the tasks within P ′ are designed with sparse rewards. Here, the

agent receives a reward of 0 for each step except when it successfully reaches the goal,

in which case it obtains a reward of 1. This sparse reward setting encourages the

agent to focus on the task of reaching the goal efficiently, as rewards are only granted

upon successful goal attainment. In all tasks, episodes may terminate prematurely if

the agent reaches the maximum episode length before achieving the goal. For tasks

in P , this maximum episode length is set to 1000 steps. Conversely, tasks in P ′

have a maximum episode length of 19 ∗ 19 = 361 steps. The starting position of the

agent and the location of the goal are deterministic and fixed across episodes within

a specific task. This deterministic setup ensures the hardness of the task remains

constant across episodes of a task, providing a reliable and consistent environment
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(a) Grid 5x5 - Task 1 (b) Grid 5x5 - Task 2 (c) Grid 5x5 - Task 3 (d) Grid 5x5 - Task 4

(e) Grid 6x6 - Task 1 (f) Grid 6x6 - Task 2 (g) Grid 6x6 - Task 3 (h) Grid 6x6 - Task 4

Figure 4.3: ComboGrid tasks in P . In this depiction, the agent is highlighted in red,
while the goals are denoted in green, and the walls are represented in grey.

(a) ComboGrid 3x3 (b) ComboGrid 4x4 (c) ComboGrid 5x5 (d) ComboGrid 6x6

Figure 4.4: ComboGrid P ′ tasks

for the agent to learn and explore.

4.2.2 ComboGrid

Our second experimental domain, known as ComboGrid, offers a fully observable

environment where temporally extended actions can help deal with the problem’s

dynamics. This environment serves as an ideal platform for validating our hypothesis

and assessing our method’s performance. ComboGrid is a grid world environment

in which the agent’s objective is to collect goals. However, the agent’s navigation

is governed by sequences of actions referred to as Combos, as opposed to individual
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actions. These Combos correspond to movements in the cardinal directions, with

four distinct combinations defined within the environment’s dynamics. To execute

a successful move, the agent must perform the correct sequence of actions, aligning

with one of the defined Combos. Failure to execute the correct combination results in

the agent remaining in the same cell, while the history of past actions resets. These

combo actions are described as follows.

• Moving Down: 0, 2, 2, 1

• Moving Up: 0, 0, 1, 1

• Moving Right: 1, 2, 1, 0

• Moving Left: 1, 0, 2, 2

For our experiments in ComboGrid, we designed four distinct variations, each charac-

terized by a different grid size. The selected grid sizes are 3×3, 4×4, 5×5, and 6×6.

This range of grid sizes enables us to evaluate our hypothesis and baselines across a

spectrum of complexity. Beginning with simpler scenarios in smaller grids, we subse-

quently assess the robustness of our algorithm and compare it to other baselines in

larger and more challenging grids. Within the ComboGrid environment, we identified

four tasks for inclusion in set P . These tasks differ in terms of the initial position of

the agent and the placement of the goals, as illustrated in Figure 4.3. These differ-

ences introduce tasks that can potentially interfere with each other. One example of

such interference can be seen in Task 1 and Task 3 depicted in Figure 4.3 where in

Task 1 the combo leading to going up in the cells in the middle of the grid can be a

good policy, but in Task 3 the combo leading to going down is in favor. Following

training in the four tasks within the set P , we transferred the learned Dec-Options

to a single task within the set P ′. These specific tasks are visually represented in

Figure 4.4, for different grid sizes. In these tasks, the agent is placed in the center,

with the goals located on the four sides.
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Observation and Action Space Throughout our experiments in ComboGrid,

consistency was maintained in both the action and observation spaces, regardless of

the grid size. This uniformity encompassed all tasks within sets P and P ′. Agents

operated with a consistent set of primitive actions, represented by integers 0, 1, and

2. These actions were utilized to create combos following the specifications outlined

in 4.2.2. The combos are the same across all the domains in ComboGrid. At each

time step, the agent receives a comprehensive view of the entire grid, presented in the

form of a one-hot encoding representation. This representation encompassed not only

the agent’s position but also the positions of the goals within the grid. Consequently,

the dimensionality of the observation space was directly proportional to the size of

the grid, resulting in a representation of size grid size ∗ grid size ∗ 2. This represen-

tation provided the agent with a holistic understanding of the environment’s state,

enabling effective decision-making. Additionally, the agent received the sequence of

past actions applied in the current cell as part of its input. This action history, in-

tegrated into the agent’s observations, allowed for a temporal understanding of the

agent’s past actions, ensuring that the problem is Markovian. This consistent action

and observation space framework ensured a standardized environment across tasks,

enabling a thorough and meaningful evaluation of our method and baselines within

the ComboGrid domain.

Rewards and Episodes Within our ComboGrid experiments, we have defined

distinct reward structures and episode lengths for tasks in sets P and P ′, tailoring

these parameters to the specific objectives and challenges posed by each set of tasks.

For tasks within the set P , the reward structure is designed such that the agent

receives a reward of -1 for each step taken in the environment, with the exception

of reaching the goal, which yields a reward of 0. This reward scheme encourages

the agent to reach the goal as quickly as possible. The maximum episode length

is set at grid size ∗ grid size ∗ 80 steps. Conversely, tasks within set P ′ present a
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distinct objective. Here, the primary objective of the agent is to collect a total of

4 goals distributed across the grid. The reward structure is sparse, with the agent

receiving a reward of 0 for each step taken in the environment, except when collecting

goals. Upon reaching each goal, the agent receives a reward of 10. Collecting all 4

goals accumulates a total reward of 40. The maximum episode length for tasks in

P ′ is set at grid size ∗ grid size ∗ 16 steps. In both sets of tasks, episodes may

terminate if the agent reaches the maximum allowable steps within an episode. This

termination mechanism ensures that episodes do not run indefinitely, allowing for

controlled experimentation.

4.3 Empirical Results

For training across the task set P , we used actor-critic algorithms [52], specifically

PPO, and implemented them using the Stable-baselines framework [57]. The policy

network was configured as a small feed-forward neural network with ReLU activation

functions. This design choice ensures that we can comprehensively explore the space

of sub-policies, allowing us to evaluate our hypothesis that these sub-policies can

be used for discovering “helpful” options. Since the value network is not used in

Dec-Options, we left the size of the value network unconstrained.

In Figure 4.5, we present the results obtained from our experiments conducted

within the MiniGrid Four Rooms domain. These results showcase the performance

of our Dec-Options method alongside selected baseline algorithms. The figures are

organized into two sections, as follows: 1) The first three rows of the figure show the

performance of agents trained using the PPO algorithm. 2) The last row of the figure

shows the performance of agents trained using the DQN algorithm.

In all of these plots, we display the average return achieved by the agents, based

on data from 24 independent agents for each baseline. Additionally, the plots include

a 95% confidence interval computed over these runs. As detailed in Section 4.2.1, it is

important to note that the maximum achievable reward for an agent in each episode
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Figure 4.5: Performance of different methods on MiniGrid Domain

is 1, attained upon reaching the terminal goal. Within the Four Rooms domain,

which includes three different variations as described in Section 4.2.1, several obser-

vations can be made. The Vanilla-RL baseline faces difficulties in learning effective

policies, even in the case of the simplest variation, Four Rooms 1. These challenges

stem from the environment’s dynamics and the impact of partial observability, where
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Figure 4.6: Performance of different methods on ComboGrid Domain, using PPO
algorithm

agents cannot simply move toward a direction, but it must first turn to the correct

direction and then move. Transfer-PPO and PNN exhibit similar performance, which

can be attributed to the interference caused by task differences [36]. Since in this

scenario repeating the actions (like moving forward) for multiple steps can lead to
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Figure 4.7: Performance of different methods on ComboGrid Domain, using DQN
algorithm

better exploration and potentially better policy, we expected the ϵz-greedy baseline to

perform well. The ϵz-greedy showed to have a better exploration strategy compared

to the simple ϵ-greedy algorithm [31]. However, this approach did not present much

more than Vanilla-RL. One reason here could be that this approach only repeats a

randomly selected action for a number of steps and only in the exploration strategy,

which is triggered only at random with probability ε. Also, note that doing actions

like rotating in the MiniGrid environment multiple times will result in the agent ro-

tating around itself, and might not provide much new information to the exploration

strategy.

In contrast,Dec-Options, Dec-Options-Whole, Neural-Augmented, and Modulating-

Mask, Open-Loop perform well in the Four Rooms 1 scenario, showcasing their effec-

tiveness in overcoming challenges presented by the environment. Moving to harder

scenarios such as Four Rooms 2, most baselines encounter difficulties, with successful

convergence observed primarily in transfer learning-based methods. Dec-Options

consistently performs well, even in these more challenging scenarios, underscoring its

robustness. As tasks become increasingly demanding, such as in the case of Four
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Rooms 3, Dec-Options stands out as the only method capable of achieving optimal

solutions.

Comparing the Dec-Options with the Open-Loop baseline also suggests that the

observation feedback gives more flexibility to our discovered options, making them

more useful for unseen future tasks.

In the context of DQN agents, Option-Critic, DCEO, and Dec-Options surpass

Vanilla-RL, demonstrating their utility in enhancing learning performance. Further-

more, an example trajectory from the Four Rooms 3 scenario in the Section 4.4

highlights the effectiveness of our approach. The sequence of actions taken by the

trained agent is substantially reduced from a trajectory of size 39 to just 10 actions.

This reduction in complexity demonstrates the significant advantage of our discovered

options. This sequence is shown in the 4.4.

In Figure 4.6 and Figure 4.7, we present the results obtained from our experiments

conducted within the ComboGrid domain. Similar to Figure 4.5, we organize the

results into two sections, showcasing the performance of agents trained with the PPO

algorithm in Figure 4.6 and agents trained with the DQN algorithm in Figure 4.7.

Notably, in this domain, the maximum achievable return for an agent in an episode

is set at 40, as described in Section 4.2.2. Our experiments within the ComboGrid

domain encompassed various grid sizes, starting from 3× 3 and progressively scaling

up to grids of 6× 6. As depicted in Figure 4.6 and Figure 4.7, in the smallest case of

ComboGrid, most baselines exhibit similar performance. However, as the size of the

grid increases, the complexity and challenges presented by the environment intensify.

It is important to note that a naive repetition of actions is not an effective policy

in this context, as the combos within the environment comprise different actions.

Repeating a single action multiple times does not lead to meaningful exploration of

the state space, which is evident from the performance of the ϵz-greedy baseline,

closely resembling that of Vanilla-RL.

It is evident from the figures that as we transition to larger grid sizes, notably
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6× 6, Dec-Options outperforms other methods, learning more rapidly. The results

suggest that Dec-Options can be robust and sample-efficient when confronted with

different levels of environmental complexity. This observation holds for experiments

conducted with the DQN algorithm as well. Similarly to our findings in MiniGrid,

the performance gap between Dec-Options and other methods widens as the grid

size increases, showcasing the effectiveness of our approach across varying degrees of

complexity.

While we assessDec-Options alongside other algorithms designed for learning op-

tions, it is crucial to recognize that Dec-Options addresses a fundamentally distinct

problem compared to the other methods under consideration. Specifically, DCEO

focuses on exploration during the process of learning options for a specific task. In

contrast, our approach involves learning options across a set of tasks and subsequently

assessing their utility in solving subsequent problems.

4.4 Qualitative Results

Dec-Options learned long options for MiniGrid. The sequence below shows the

actions from the initial state to goal (left to right) of the Dec-Options agent in the

Four Room 3 environment. This trajectory is sampled from one of the trained agents.

Here, 0, 1, and 2 mean ‘turn right’, ‘turn left’, and ‘move forward’, respectively. The

curly brackets show what is covered by one of the options learned. The episode

finishes after the agent takes four actions from the option. The option reduces the

number of agent decisions from 39 to only 10.

0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2⏞ ⏟⏟ ⏞
Option 1

, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0⏞ ⏟⏟ ⏞
Option 1

, 2, 2, 2, 2, 2, 0, 2, 2, 2⏞ ⏟⏟ ⏞
Option 1

Similarly, we show sub-sequences of an episode of the Dec-Options agents in the

ComboGrid.
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ComboGrid 3× 3 (full trajectory):

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞
Option 3

,

Up⏟ ⏞⏞ ⏟
0, 0, 1, 1⏞ ⏟⏟ ⏞
Option 2

,

Up⏟ ⏞⏞ ⏟
0, 0, 1, 1⏞ ⏟⏟ ⏞
Option 2

,

Right⏟ ⏞⏞ ⏟
1, 2, 1, 0⏞ ⏟⏟ ⏞
Option 2

,

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞

Option 4

,

Left⏟ ⏞⏞ ⏟
1, 0, 2, 2⏞ ⏟⏟ ⏞
Option 2

,

Left⏟ ⏞⏞ ⏟
1, 0, 2, 2⏞ ⏟⏟ ⏞

Option 4

ComboGrid 4× 4:

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞
Option 2

,

Right⏟ ⏞⏞ ⏟
1, 2, 1, 0⏞ ⏟⏟ ⏞
Option 2

,

Up⏟ ⏞⏞ ⏟
0, 0⏞⏟⏟⏞

Option 1

, 1, 1⏞⏟⏟⏞
Option 1

,

Left⏟ ⏞⏞ ⏟
1, 0, 2, 2⏞ ⏟⏟ ⏞
Option 2

,

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞
Option 2

,

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞
Option 2

,

Down⏟ ⏞⏞ ⏟
0, 2, 2, 1⏞ ⏟⏟ ⏞
Option 2

,

Left⏟ ⏞⏞ ⏟
1, 0, 2⏞⏟⏟⏞

Option 1

, 2

ComboGrid 5× 5:

Up⏟ ⏞⏞ ⏟ Up⏟ ⏞⏞ ⏟ Right⏟ ⏞⏞ ⏟ Right⏟ ⏞⏞ ⏟ Down⏟ ⏞⏞ ⏟ Down⏟ ⏞⏞ ⏟
0, 0, 1, 1, 0, 0, 1⏞ ⏟⏟ ⏞

Option 2

, 1, 1⏞⏟⏟⏞
Option 1

, 2, 1, 0⏞ ⏟⏟ ⏞
Option 5

, 1, 2, 1⏞ ⏟⏟ ⏞
Option 5

, 0, 0⏞⏟⏟⏞
Option 4

, 2, 2⏞⏟⏟⏞
Option 4

, 1, 0⏞⏟⏟⏞
Option 4

, 2, 2⏞⏟⏟⏞
Option 3

, 1

ComboGrid 6× 6:

Left⏟ ⏞⏞ ⏟
1, 0, 2, 2,

Left⏟ ⏞⏞ ⏟
1, 0, 2, 2⏞ ⏟⏟ ⏞

Option 2

,

Up⏟ ⏞⏞ ⏟
0, 0⏞⏟⏟⏞

Option 3

, 1, 1⏞⏟⏟⏞
Option 1

,

Up⏟ ⏞⏞ ⏟
0, 0⏞⏟⏟⏞

Option 3

, 1, 1⏞⏟⏟⏞
Option 1

,

Up⏟ ⏞⏞ ⏟
0, 0⏞⏟⏟⏞

Option 3

, 1, 1⏞⏟⏟⏞
Option 1

,

Right⏟ ⏞⏞ ⏟
1, 2, 1⏞ ⏟⏟ ⏞
Option 4

, 0

It can be shown that in the grid of size 3 × 3, the learned options almost match

exactly the dynamics of the problem, except for Option 4 which only partially executes

the sequence of actions that allow the agent to move left.

For Combogrid of size 4 × 4, option 2 learns sequences of actions that move the

agent to another cell on the grid (e.g., “Down” and “Right”). Option 1 is shorter

than Option 2 and it applies in many situations. For example, calling Option 1 twice

can move the agent up, or even finish a left move to then move up.

In the larger grids of size 5× 5 and 6× 6, Dec-Options learns longer and more

complicated options. For instance, for 5 × 5, Option 2 can almost complete the

sequence of actions to go up twice, while for 6×6, Option 2 can perform the sequence

of actions to go left twice.

Heatmap Analysis We employed heatmaps to visually depict the distribution of

visited cells within the MiniGrid environment during the training process of tasks
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Figure 4.8: This figure displays the heatmap of visited cells in the Four Rooms
1 environment for both the Dec-Options and Vanilla-RL methods. The first row
depicts theDec-Optionsmethod’s heatmap, while the second row shows the Vanilla-
RL method. The first, second, and third columns show the heatmap after 1, 3200,
and 12800 steps, respectively.

in P . These heatmaps offer insights into the states that the agent explores at vari-

ous training stages. A comparison of the heatmaps generated by the Dec-Options

method with those produced by Vanilla-RL, as shown in Figure 4.8, reveals contrast-

ing exploration patterns and their influence on task completion. Our findings reveal

that an agent equipped with Dec-Options explores the space more deliberately,

leading to a quicker discovery of the goal state. In contrast, traditional methods like

Vanilla-RL tend to distribute their visits uniformly across all cells in the early stages

and visit each of those states many times. For example, in the first two columns

of Figure 4.8, the Dec-Options agent mostly explores the cells in the room where

the goal is located. While the Vanilla-RL agent spends some explorations to explore

other rooms.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

In this research, we introduce a novel method called Dec-Options which serves

as a means to discover options by extracting partial policies from neural networks.

Our work showcases the practical utility of the sub-policies, particularly in the con-

text of option discovery. Through experimentation and analysis, we conclude that

sub-policies that can be turned into options are present in neural policies, revealing

the feasibility of extracting them directly from the network architecture. This of-

fers a perspective on the potential for neural networks to have options encoded in

themselves.

Given that the number of options we can extract from neural networks grows expo-

nentially with the number of neurons in the network, we employ a greedy procedure to

select a subset of these options. This selection process is guided by the minimization

of the Levin loss, a critical metric in our methodology. Minimizing the Levin loss not

only optimizes the selection of sub-policies but also augments the likelihood that the

agent will execute sequences of actions leading to high-reward states, based on past

task experiences.

To validate the effectiveness of our approach, we conducted experiments on grid-

world problems that demand intricate exploration. The outcomes of these experi-

ments provide support for our hypothesis: options extracted from neural networks
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encoding policies for a set of tasks can accelerate the learning process in similar but

different tasks. These results underscore the practical value of our approach, illumi-

nating its potential to expedite learning and problem-solving in complex scenarios.

5.2 Future Work

In terms of future research, our method presents opportunities for exploration in sev-

eral directions. One avenue involves scaling the approach to larger neural networks.

This investigation could provide valuable insights into the method’s performance when

dealing with larger models, contributing to a better understanding of its generaliz-

ability. An answer to the scalability of the method, and an interesting future work lies

in delving into combinatorial search techniques within the space of sub-policies. By

exploring strategies for refined and targeted searches in this space, we can potentially

enhance the efficiency and effectiveness of our approach, leading to improved learning

and knowledge transfer.

Extending the application of our method to more intricate neural network archi-

tectures, particularly convolutional neural networks (CNNs), and Long Short-Term

Memory (LSTM), is another promising direction. Evaluating its performance in the

context of CNNs could offer insights into its adaptability across diverse network struc-

tures and its applicability to different types of tasks.

Additionally, there is a compelling opportunity to conduct an analysis of the se-

mantics embedded within the extracted sub-policies. Understanding the learned rep-

resentations and behaviors of these sub-policies can provide deeper insights into the

decision-making processes of the neural network, contributing to a more interpretable

understanding of the knowledge encoded within the network.

Furthermore, the neural decomposition method introduced in our work serves as

a general approach for extracting information from neural networks. Investigating

the broader applicability and potential extensions of this approach, for example in

program synthesis, could be a compelling avenue.
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In summary, future research could explore these avenues to further advance the

understanding of neural network behaviors, enhance the applicability and scalability

of our method, and application of our method in other research areas.
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Appendix A: Experiment Details

A.1 Plots

The figures presented in Section 4.3 were generated following a standardized method-

ology, ensuring consistency and robustness across all experiments. This methodology

involved a well-defined procedure:

• We initiated the process with a comprehensive hyperparameter search for each

baseline. This search enabled us to select the most effective hyperparameters

for the respective algorithms.

• We conducted training for each baseline using 30 different seeds.

• We evaluated the performance of the seeds and identified the six seeds with

the poorest results. These six seeds were subsequently discarded from further

analysis.

• The remaining 24 seeds, which demonstrated more promising results, were used

to calculate the mean performance. Additionally, we computed the 95% confi-

dence intervals for each baseline.

A.2 Architecture and Parameter Search

For algorithms utilizing the Proximal Policy Optimization (PPO) framework, such

as Vanilla-RL, Neural-Augmented, Transfer-PPO, PNN, ez-greedy, Dec-

Options-Whole, and Dec-Options, we relied on the stable-baselines library [57].
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This library provided the foundation for training and evaluation. For the PNN

method, we integrated the code from (https://github.com/arcosin/Doric) and com-

bined it with the PPO algorithm from the stable-baselines. The Modulating-Mask

method utilized the code provided by the original authors (https://github.com/dlpbc/

mask-lrl). For the ez-greedy algorithm, we integrated the temporally-extended ε-

greedy algorithm with the PPO algorithm from the stable-baselines. We set the ε to

be equal to 0.01 and the µ to be equal to 2, as they did the same in their work.

We conducted hyperparameter searches using a grid search method [58] for each

algorithm, covering parameters clipping parameter, entropy coefficient, and learning

rate. These parameters are reported for each domain in their respective sections. The

optimal hyperparameters for each algorithm were selected based on this search.

In scenarios where the Deep Q-Network (DQN) was employed, such as Vanilla-

RL and Dec-Options baselines, we used the stable-baselines framework. Similarly

to PPO, we performed a parameter search, this time targeting Tau and the learning

rate while keeping other parameters fixed. Option-Critic implementations were

based on (https://github.com/lweitkamp/option-critic-pytorch), where we used the

best parameters found for the learning rate and the number of options. All the

parameter searches mentioned were performed using the grid search method. Also,

for the codebase of DCEO baseline, we used the original paper’s implementation

(https://github.com/mklissa/dceo/). The parameter search is applied to the learning

rate, the number of options, and the probability of option execution during training.

The choice of network architecture varied depending on the domain and the method

used. In the MiniGrid domain, we employed feedforward networks for the policy

and value networks. The policy network structure consisted of a single hidden layer

comprising 6 nodes, while the value network used three hidden layers with sizes [256,

256, 256]. As tasks transitioned to P ′, we adapted the policy network structure to

include more hidden layers and neurons to accommodate the increased complexity of

the tasks. The selected size of deep neural network for tasks in P ′ was set to [50, 50,
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50]. The Transfer-PPO method maintained a consistent policy network structure of

size [50, 50, 50] across all tasks in both P and P ′. The Modulating-Mask method

retained the neural network structure as it existed in the original implementation,

which included a shared feature network with three hidden layers of sizes [200, 200,

200], followed by one hidden layer of size [200] for policy, and one hidden layer of size

[200] for value networks. DQN-based methods, Vanilla-RL andDec-Options, along

with Option-Critic and DCEO, the neural network structure remained consistent

with three hidden layers, each with sizes [200, 200, 200].

In the ComboGrid domain, we applied a methodology consistent with the MiniGrid

domain to maintain a standardized approach. For tasks in P , the policy network

featured a single hidden layer with 6 nodes. Similar to MiniGrid, For tasks in P ′,

we increased the policy network structure to include one hidden layer with 16 nodes.

The Transfer-PPO method maintained a uniform policy network structure across

all tasks in both P and P . This structure consisted of one hidden layer with 16

nodes. The value network structure for tasks in both P and P ′ featured three hidden

layers with sizes [200, 200, 200]. As for the Modulating-Mask method, the neural

network structure is as before.

For methods that employed DQN, such asVanilla-RL,Dec-Options, andOption-

Critic, we adopted a consistent neural network structure. This structure included

two hidden layers with sizes [32, 64].

The discounting factor for all tasks in P ′ is set to 0.99.
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Appendix B: Parameter Search

In pursuit of reasonable hyperparameters, we performed a parameter search for all

methods used in our experiments. We have outlined the search spaces for each method

below.

B.1 MiniGrid

For methods using the PPO algorithm, we searched over the following hyperparame-

ters:

• Learning Rate: 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Clipping Parameter: 0.1, 0.15, 0.2, 0.25, 0.3

• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2

For methods relying on the Deep Q-Network (DQN) paradigm, our parameter

search encompassed the following hyperparameter lists:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001

• Tau: 1., 0.7, 0.4, 0.1

In the case of the Option-Critic method, we searched over the following hyperpa-

rameters:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options 2, 3, 4, 5, 6
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As for the DCEO baseline, we searched over the following hyperparameters:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options: 3, 5, 10

• Option Probability: 0.2, 0.7, 0.9

Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.15 0.05 0.0005

Neural-Augmented 0.2 0.2 0.0005

Transfer-PPO 0.15 0.15 0.0001

PNN 0.1 0.0 0.0001

Modulating-Mask 0.15 0.1 0.001

ez-greedy 0.15 0.05 0.0005

Dec-Options-Whole 0.3 0.15 0.0005

Dec-Options 0.25 0.1 0.0005

Open-Loop 0.25 0.05 0.001

Table B.1: Four Rooms 1 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 0.7 0.0001

Option-critic 2 0.0001

Dec-Options 0.7 0.0005

DCEO 5 (Probability: 0.9) 0.0005

Table B.2: Four Rooms 1 best parameters - DQN

B.2 ComboGrid

For methods utilizing the PPO algorithm, we searched over the following hyperpa-

rameter ranges:
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Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.1 0.2 0.0005

Neural-Augmented 0.15 0.0 0.0005

Transfer-PPO 0.1 0.05 5e-05

PNN 0.25 0.0 0.005

Modulating-Mask 0.2 0.0 0.01

ez-greedy 0.1 0.0 0.0001

Dec-Options-Whole 0.25 0.05 0.0005

Dec-Options 0.2 0.1 0.001

Open-Loop 0.15 0.0 0.0005

Table B.3: Four Rooms 2 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 1.0 0.0005

Option-critic 2 0.0001

Dec-Options 1.0 0.001

DCEO 10 (Probability: 0.9) 0.001

Table B.4: Four Rooms 2 best parameters - DQN

• Learning Rate: 0.05, 0.01, 0.005, 0.001

• Clipping Parameter 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2

As for the Modulating-Mask method, we explored the following hyperparameters:

• Learning Rate: 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Clipping Parameter 0.1, 0.15, 0.2, 0.25

• Entropy Coefficient: 0.0, 0.05, 0.1, 0.15, 0.2
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Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.2 0.0 5e-05

Neural-Augmented 0.1 0.0 0.001

Transfer-PPO 0.1 0.05 0.0001

PNN 0.15 0.0 0.001

Modulating-Mask 0.1 0.0 0.005

ez-greedy 0.25 0.05 0.0005

Dec-Options-Whole 0.15 0.05 0.001

Dec-Options 0.2 0.1 0.001

Open-Loop 0.2 0.0 0.001

Table B.5: Four Rooms 3 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 0.7 0.001

Option-critic 3 0.0001

Dec-Options 0.1 0.0005

DCEO 10 (Probability: 0.9) 0.0001

Table B.6: Four Rooms 3 best parameters - DQN

For methods relying on the Deep Q-Network (DQN) paradigm, our parameter

search encompassed the following hyperparameter lists:

• Learning Rate: 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001

• Tau: 1., 0.7, 0.4, 0.1

In the case of the Option-Critic method, we searched over the following hyperpa-

rameter combinations:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005

• Number of Options 2, 3, 4, 5, 6
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For the DCEO baseline, we explored the following hyperparameter combinations:

• Learning Rate: 0.01, 0.005, 0.001, 0.0005, 0.0001

• Number of Options: 3, 5, 10

• Option Probability: 0.2, 0.7, 0.9

Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.15 0.1 0.01

Neural-Augmented 0.25 0.05 0.01

Transfer-PPO 0.3 0.05 0.001

PNN 0.2 0.1 0.01

Modulating-Mask 0.1 0.1 0.0005

ez-greedy 0.15 0.05 0.005

Dec-Options-Whole 0.15 0.05 0.005

Dec-Options 0.2 0.05 0.005

Open-Loop 0.1 0.0 0.005

Table B.7: ComboGrid 3x3 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 1. 0.001

Option-critic 2 0.001

Dec-Options 1. 0.001

DCEO 10 (Probability: 0.2) 0.0005

Table B.8: ComboGrid 3x3 best parameters - DQN
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Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.1 0.0 0.005

Neural-Augmented 0.3 0.0 0.005

Transfer-PPO 0.05 0.2 0.001

PNN 0.2 0.1 0.005

Modulating-Mask 0.25 0.15 0.0001

ez-greedy 0.2 0.05 0.005

Dec-Options-Whole 0.25 0.05 0.01

Dec-Options 0.25 0.0 0.005

Open-Loop 0.1 0.0 0.005

Table B.9: ComboGrid 4x4 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 0.7 0.0005

Option-critic 3 0.0005

Dec-Options 1. 0.0005

DCEO 3 (Probability: 0.2) 0.0005

Table B.10: ComboGrid 4x4 best parameters - DQN
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Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.25 0.1 0.005

Neural-Augmented 0.15 0.0 0.005

Transfer-PPO 0.1 0.2 0.001

PNN 0.25 0.05 0.005

Modulating-Mask 0.2 0.05 0.001

ez-greedy 0.2 0.15 0.005

Dec-Options-Whole 0.2 0.05 0.005

Dec-Options 0.2 0.05 0.005

Open-Loop 0.1 0.0 0.01

Table B.11: ComboGrid 5x5 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 0.7 0.001

Option-critic 4 0.0001

Dec-Options 1. 0.001

DCEO 5 (Probability: 0.7) 0.001

Table B.12: ComboGrid 5x5 best parameters - DQN
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Clipping Entropy Coeff. Learning Rate

Vanilla-RL 0.1 0.05 0.005

Neural-Augmented 0.2 0.05 0.005

Transfer-PPO 0.3 0.05 0.001

PNN 0.05 0.0 0.005

Modulating-Mask 0.15 0.0 0.005

ez-greedy 0.2 0.05 0.005

Dec-Options-Whole 0.2 0.0 0.001

Dec-Options 0.15 0.05 0.005

Open-Loop 0.15 0.0 0.005

Table B.13: ComboGrid 6x6 best parameters - PPO

Tau/Number of Options Learning Rate

Vanilla-RL 0.7 0.001

Option-critic 2 0.005

Dec-Options 0.7 0.001

DCEO 3 (Probability: 0.9) 0.0001

Table B.14: ComboGrid 6x6 best parameters - DQN
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