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Abstract

The purpose of this thesis is to give a classification of anisotropic algebraic groups over

number fields of higher real rank. This will complete the classification of algebraic

groups over number fields of higher real rank, which was begun by V. Chernousov, L.

Lifschitz and D.W. Morris in their paper “Almost-Minimal Non-Uniform Lattices of

Higher Rank”. The classification of anisotropic groups of higher real rank is also used

to provide a classification of uniform lattices of higher rank contained in semisimple

Lie groups with no compact factors. In particular, it is shown that all such lattices

sit inside Lie groups of type An.

This thesis proceeds as follows: The first chapter provides motivation for the

classification and introduces all the main results of the thesis. The second chapter

provides relevant definitions and background material for the proof. The next chap-

ters provide a proof of the classification theorem, with chapters 3-5 examining the

absolutely simple groups and the final chapter examining the simple groups which

are not absolutely simple.
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Chapter 1

Introduction

1.1 Motivation

Lattices are an important class of discrete subgroups in Lie group theory, with many

physical applications. In particular, in the field of crystallography the space group is

a lattice which describes the symmetry of a given crystal. One of the challenges in

studying lattices in Lie groups is that it is not always possible to realize Lie groups

as matrix groups, hence we cannot always construct explicit realizations of lattices

sitting in the corresponding Lie groups. This forces us to rely on properties which

are intrinsic to the lattice. When considering the intrinsic properties of lattices, it is

often useful to know which are minimal under inclusion, as these commonly form a

base case for induction arguments.

One interesting property that can be examined using induction arguments is:

When can a lattice act in a non-trivial, orientation-preserving way on simple smooth

manifolds such as the real line? The action of groups on simple manifolds such as

the real line and the 1-circle has long been studied and have applications in many

diverse areas in mathematics. In particular, Thompson’s groups can be realized as

homeomorphisms of the circle. These groups have been used in the study of infinite

simple groups, homotopy and shape theory, group cohomology, dynamical systems

and analysis ([4]).
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An intrinsic property of lattices that is also interesting to several areas of math-

ematics is that of a left ordering. Left orderings of groups are of interest to several

branches of mathematics, including algebraic topology and abstract group theory.

The canonical example of a group with a left ordering is the additive group of the

real numbers with the natural order. In 1968, LaGrange and Rhemtulla were able to

prove that if the Z-group rings of two abstract groups are isomorphic and one of the

groups is left ordered, then the groups themselves must be isomorphic ([13]). It is

well-known that a group can act in a non-trivial, orientation-preserving way on the

real line if and only if it can be given a left ordering ([16], Remark 1.5(3), p. 2). In

the case of the additive group of the real numbers, one can consider their action on

the real line by translation.

The existence of a left ordering (or a non-trivial action on the real line) is a

restrictive condition in general. The multiplicative group of the real numbers does

not have a left ordering, for example. In 1999, E. Ghys conjectured that no irreducible

lattice sitting inside a semisimple Lie group of rank at least 2 has a left ordering. The

conjecture remains open in general, but some cases have been proven. In [16], Lifschitz

and Morris were able to prove Ghys conjecture for lattices which are non-uniform.

In order to prove Ghys’ conjecture for the non-uniform lattices, Lifschitz and

Morris employed a two-step strategy. First, together with Chernousov, they classified

the (almost) minimal non-uniform lattices under inclusion. If a non-uniform lattice

Γ were to have a left ordering, then one could restrict the ordering to arbitrary sub-

lattices of Γ. This would imply that at least one of the minimal lattices would have a

left ordering. Next, Lifschitz and Morris proved that none of the lattices obtained in

the first step act non-trivially on the real line in an order preserving way. Combining

the two steps proves Ghys’ conjecture in the non-uniform case.
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The first step, examining the minimal non-uniform lattices, was done by trans-

lating the problem from a Lie-theoretic one to a question about algebraic groups.

Using the Margulis Arithemeticity and Superrigidity theorems, Chernousov, Lifschitz

and Morris were able to show that classifying the minimal lattices in Lie groups

of higher rank is equivalent to classifying semisimple groups over the rational num-

bers with higher real rank. Moreover, using Margulis’ theorems, one can see that

classifying the minimal non-uniform lattices is equivalent to classifying the isotropic

groups over the rational numbers with higher real rank while classifying the minimal

uniform lattices is equivalent to classifying the anisotropic groups over the rational

numbers with higher real rank. Because Lifschitz and Morris were interested in the

non-uniform lattices, Chernousov, Lifschitz and Morris restricted themselves to the

isotropic algebraic groups.

To prove Ghys’ conjecture for the remaining case, the uniform lattices, it is natural

to follow the same steps as the proof in the non-uniform case. As stated before, the

first step, classifying the minimal non-uniform lattices, is equivalent to classifying

minimal anisotropic groups over Q with higher real rank. That is the focus of this

thesis. The second step, proving that none of the corresponding uniform lattices has

a left ordering, remains open.

Classifying minimal anisotropic groups over arbitrary fields has been an extremely

difficult problem of long standing interest in its own right. The proofs of several

important theorems (including the Hasse principle, mentioned below) depend on the

idea of finding subgroups of anisotropic groups. For some group types it is possible

to find proper semisimple subgroups regardless of the base field. In groups of type G2

and F4, for instance, it is possible to construct such subgroups by examining their root

systems (specifically, the sub-root system generated by the long roots). In [25], Tits
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was able to construct an example of a group of type E8 which does not contain any

non-trivial connected subgroups but the maximal tori. More recently, Garibaldi and

Gille have constructed groups of trialitarian type D4 which also have this property

([9]).

Once we begin placing restrictions on the base field, the problem of construction

subgroups of semisimple groups becomes easier. Over number fields, for instance,

it is possible to show that every group of type E8 contains a non-trivial semisimple

subgroup, which is contrary to the case over arbitrary fields. The case this thesis is

focused on, however, is made more difficult by the restriction that subgroups of the

groups in question must have appropriate real rank. In this case, virtually nothing

was known.

This thesis gives a complete classification of minimal anisotropic groups over num-

ber fields that have higher rank over certain completions. The definitions (given be-

low) ensure that when we restrict to the case of the rational numbers we return to

the case we began with, namely the anisotropic groups over the rational numbers

which have higher real rank. In particular, it is shown that all minimal anisotropic

groups have type 1,2Ap−1 for some prime p. This is a more complicated list than

was obtained by Chernousov, Lifschitz and Morris in the isotropic case, but this still

leaves a (relatively) small list of minimal uniform lattices to be considered in order

prove Ghys conjecture in the uniform case.

1.2 The Classification

We postpone all relevant definitions to the background section. The classification

of minimal anisotropic groups over number fields is broken into two pieces, first the
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absolutely simple minimal groups:

Theorem 1.1 If G is an absolutely simple, minimal, anisotropic group over an al-

gebraic number field F , then G is isomorphic to one of the following groups (up to

isogeny):

1. SU3(L, f) for L/F quadratic, f anisotropic hermitian on L3 with at least one

v ∈ V F
∞,R such that L⊗ Fv $ Fv × Fv, or

2. SU(D, τ) a central division algebra of prime degree p ≥ 3 over L quadratic over

F with involution of the second kind τ , or

3. SL(D) for a central division algebra D over F of prime degree p > 2.

Next, we classify the non-absolutely simple groups:

Theorem 1.2 If G is a minimal anisotropic group over an algebraic number field F

that is not absolutely simple, then G is isomorphic to one of the following groups, up

to isogeny (let ε = ±1):

1. RK/F (SL(D)) for a central division algebra D of odd prime degree over an ex-

tension K such that D does not descend to any P with F ⊂ P ! K or,

2. RK/F (SU(D, τ)), where D is a central division algebra of prime degree p ≥ 3

over a quadratic extension K ′/K with involution of the second kind τ such that

if (D, τ) descends to P ′ with F ⊂ P ! K and P ′/P quadratic, then Pwi $ R

and Pwi ⊗ P ′ $ C for all wi ∈ V P
∞,R lying over at least one v0 ∈ SG and

(a) if v0 ∈ S ′G then (D′⊗P Pwi , τ
′⊗ 1) $ (Mn(C), ε〈1, . . . , 1〉) for all wi ∈ V P

∞,R

lying over v0, or
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(b) if v0 ∈ S ′′G then (D′⊗P Pwi , τ
′⊗ 1) $ (Mn(C), ε〈1,−1, 1 . . . , 1〉) for at most

one i and (D′ ⊗P Pwi , τ
′ ⊗ 1) $ (Mn(C), ε〈1, . . . , 1〉) for all others, or

3. RK/F (SL(D)) for D a quaternion division algebra over K such that for every

F ⊂ P ! K such that D descends to P there exist v0 ∈ SG satisfying

(a) If v0 ∈ S ′G then Pwi $ R and D′ ⊗P Pwi $ H for all wi ∈ V P
∞,R lying over

v0 and

(b) If v0 ∈ S ′′G then there is at most one wi ∈ V P
∞,R lying over v0 such that

either Pwi $ C or D′ ⊗P Pwi $ M2(R), but not both, or

4. RK/F (SU3(K ′, f)) for K ′/K quadratic, f hermitian over K ′3 such that

(a) For any F ⊂ P ! K such that SU3(K ′, f) descends to P we have that

there exists a v0 ∈ SG such that Pwi $ R for all wi ∈ V P
∞,R lying over v0

and

i. If SU3(K ′, f) descends to SU3(P ′, f ′), where f ′ = 〈1, a2, a3〉 then Pwi⊗

P ′ $ C for every i and

A. if v0 ∈ S ′G then the image of aj in Pwi is positive for all i

B. if v0 ∈ S ′′G then the image of aj in Pwi is negative for at most one

i

ii. if SU3(K ′, f) descends to SU(D, τ) where D is a central division al-

gebra of degree 3 over P ′/P quadratic with involution τ of the second

kind then P ′ ⊗ Pwi $ C for every wi ∈ V P
∞,R lying over v0 and

A. If v0 ∈ S ′G then (D⊗Pwi , τ ⊗ 1) $ (M3(C), σ), where σ(X) = X
T
,

for every wi ∈ V P
∞,R
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B. If v0 ∈ S ′′G then (D ⊗ Pwi , τ ⊗ 1) $ (M3(C), σ) for all but at

most one wi ∈ V P
∞,R and for at most one wi, (D ⊗ Pwi , τ ⊗ 1) $

(M3(C), σ ◦ Int(ε diag(1,−1, 1)))

(b) For any F ⊂ P ⊆ K such that some subgroup SL(D′) ≤ SU3(K ′, f)

descends to SL(D) over P there exists some v0 ∈ SG such that

i. If v0 ∈ S ′G then Pwi $ R and D ⊗ Pwi $ H for all wi ∈ V P
∞,R over v0

and

ii. if v0 ∈ S ′′G then Pwi $ C or D⊗Pwi $ M2(R) for at most one wi ∈ V P
∞,R

over v0.

Applying the Margulis Arithmeticity and Superrigidity theorems, this gives the

classification of the minimal semisimple real Lie groups with no compact factors

containing uniform irreducible lattices of higher rank:

Theorem 1.3 Every uniform lattice of higher rank contained in a semisimple Lie

group with no compact factors contains a subgroup that is isomorphic to a finite index

subgroup of a lattice contained in either SLp(R)! × SLp(C)m × SUp(C, f1) × · · · ×

SUp(C, fn) where fi are Hermitian forms of index at least 1 or SL2(R)n × SL2(C)m

with n + m ≥ 2.
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Chapter 2

Background

2.1 Lattices in Lie Groups

If G is a real, connected semisimple Lie group, a subgroup Γ of G is called a lattice

if the induced topology is discrete and the quotient G/Γ has finite Haar measure

(see [19], page 221 for details). Given that Lie groups originally arose from consider-

ing homeomorphisms of smooth manifolds, it is natural to ask when there are mor-

phisms from subgroups of G to the homeomorphism groups of connected manifolds.

The simplest possible case of a connected real manifold is R itself and morphisms

form Γ to the homeomorphisms of R as a differentiable manifold are equivalent to

orientation-preserving actions of Γ on the real line. An interesting class of lattices

are the irreducible ones:

Definition 2.1 A lattice Γ is irreducible if it contains no subgroup Γ′ of finite index

such that Γ′ = Γ1 × Γ2 with Γi both infinite.

Notice that we cannot avoid the consideration of finite index subgroups, since

every finite index subgroup of a lattice Γ in G is also a lattice in G. Define the rank

of Γ to be the rank of G and define Γ to be of higher rank if the rank of Γ is at least

two. In 1999, E. Ghys conjectured the following:
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Conjecture 2.2 ([8]) Suppose that Γ is an irreducible lattice of higher rank. Then

Γ has no non-trivial, orientation preserving action on R.

If Γ is a lattice as in the conjecture, then any action of Γ on the real line can be

restricted to any subgroup of Γ. Thus to prove Ghys conjecture it suffices to examine

those lattices are minimal under inclusion. Because any finite index subgroup of Γ is

also a lattice, however, there are no minimal irreducible lattices of higher rank. If we

allow finite-index subgroups, however, we obtain:

Definition 2.3 A lattice Γ of higher rank is almost minimal if no proper subgroups

of infinite index are also lattices of higher rank.

It is reasonable, therefore, to consider the following two-step approach to proving

Ghys’ conjecture:

1. Classify all irreducible almost minimal lattices of higher rank, and

2. prove that no irreducible almost minimal lattices of higher rank have non-trivial,

orientation preserving actions on R.

Using two celebrated theorems due to Margulis, the first step can be translated

from a question about Lie groups to a question about algebraic groups. Notice that

if F is an algebraic group over Q, the real points F (R) of F can be given the struc-

ture of a real Lie group. Next, we construct a lattice in F (R). Choose a faithful

representation F ↪→ GLn and consider F (Z) := F (Q) ∩ GLn(Z). We then have

that F (Z) ⊂ F (R) is a lattice (see [19], Theorem 4.13, p. 213), and any finite-index

subgroup of such a group is called an arithmetic lattice. If we choose another repre-

sentation of F , then we may get another group but it is possible to show that the
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pre-images of the two subgroups will be commensurable in F (R) (i.e. their inter-

section will have finite index in either group). Because we are only concerned with

infinite-index subgroups, this is acceptable.

Theorem 2.4 (Margulis Arithmeticity, [17], IX, Theorem 1.10, p. 298)

Given an irreducible lattice Γ in a semisimple Lie group of higher rank with no

compact factors, one can find a Q-algebraic group F and a Lie group surjection τ :

F (R) → G such that:

1. ker(τ) is compact, and

2. τ(F (Z)) is commensurable with Γ.

This theorem allows us to ‘approximate’ irreducible lattices in semisimple Lie

groups of higher rank by arithmetic lattices. The Margulis superrigidity theorem

states that this approximation almost respects inclusion.

Theorem 2.5 (Margulis Superrigidity, [17], IX, Theorem 5.12, p. 327)

Given an embedding of lattices γ : Γ′ ↪→ Γ and algebraic Q-groups F ′ and F

corresponding to Γ′ and Γ, respectively, there exists an morphism of algebraic groups

δ : F ′ → F that almost extends γ.

By definition, δ almost extends γ if the two agree on finite-index subgroups of Γ

and Γ′. Again, because we are unconcerned with taking subgroups of finite index,

combining the above two theorems gives that finding almost minimal irreducible lat-

tices of higher rank is equivalent to finding minimal simple Q-groups of higher real

rank. When considering algebraic groups over Q, there is a dichotomy between the

anisotropic groups and the isotropic groups (discussed below). Applying the corre-

spondence given by the arithmeticity and superrigidity theorems, this corresponds
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exactly to the dichotomy between those cases where G/Γ is compact (in which case

Γ is called uniform) and those cases where G/Γ is not compact (then Γ is called

non-uniform).

The minimal, isotropic Q-groups have been classified by Chernousov, Lifschitz

and Morris. In fact they classified minimal algebraic groups over number fields,

considering isotropic groups that have higher rank over the completion Fv with respect

to some archimedean places v on F .

Definition 2.6 ([6], Definition 3.3, p. 7) Let G be a simple, isotropic group over

a number field F and let V F
∞,R be the set of real places on F . Let SG ⊂ V F

∞,R be the set

of places such that RankFv(G) ≥ 2. We say that G is minimal if SG /= ∅ and there

does not exist a proper, isotropic, simple F -subgroup H of G such that RankFv(H) ≥ 2

for all v ∈ SG.

Under this definition, Chernousov, Lifschitz and Morris proved:

Theorem 2.7 ([6], Theorem 3.4, p. 7) Suppose G is an isotropic, simple alge-

braic group over an algebraic number field F such, such that SG /= ∅. If G is minimal,

then G is isogenous to either:

1. SL3, or

2. SU3(L, f, τ), where

• L is a quadratic extension of F , such that L ⊂ Fv for some archimedean

place v of F ,

• τ is the Galois automorphism L over F , and

• f(x1, x2, x3) = τ(x1)x1 − τ(x2)x2 − τ(x3)x3),
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or

3. RK/F (SU3(L, f, τ)), where

• K is a quadratic extension of F , such that K /⊂ Fv, for some archimedean

place v of F ,

• L is a quadratic extension of K,

• τ is the Galois automorphism L over K, and

• f(x1, x2, x3) = τ(x1)x1 − τ(x2)x2 − τ(x3)x3,

or

4. RK/F (SL2) for some nontrivial finite extension K of F , such that either [K :

F ] > 2, or K ⊂ Fv for every archimedean place v of F .

Using the Marguils arithmeticity and superrigidity theorems, the above statement

implies the following:

Theorem 2.8 ([6], Theorem 1.13, p. 3) Every nonuniform lattice of higher rank

contains a subgroup that is isomorphic to a finite index subgroup of a lattice contained

in either SL3(R), SL3(C) or a direct product SL2(R)m × SL2(C)n, with m + n ≥ 2.

This provides an answer for the first step in proving Ghys’ conjecture for non-

uniform lattices. The second step was completed by Lifschitz and Morris in [16],

using arguments relying on virtually bounded generation by unipotent elements. The

remaining case for Ghys’ conjecture is the uniform lattices. The first step is to

classify the almost minimal uniform lattices of higher rank, and by the arithemticity

and superrigidity theorem this is equivalent to classifying the minimal anisotropic

Q-groups of higher real rank. That is the focus of this thesis.
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2.2 Algebraic Groups

Assume that all fields are of characteristic 0 unless stated otherwise.

2.2.1 Tori and Rank

A torus over k is a group which becomes isomorphic to a number of copies of the

multiplicative group, Gm, over the algebraic closure k. If a torus T is isomorphic to

a number of copies of Gm over k, then we call T k-split. On the other hand, if T

does not contain a subgroup isomorphic to Gm we say that T is anisotropic. Given a

semisimple group G over k, we define the k-rank of G to be the maximum dimension

of a k-split torus that embeds in G. The absolute rank of G is the rank of G over k.

Notice that the absolute rank is the highest possible rank.

If the k-rank of G is equal to the absolute rank of G, then we say that G is k-split.

On the other extreme, we say that G is anisotropic over k if the k-rank of G is 0. Up

to quotients by finite central subgroups, simple split groups are categorized by their

Dynkin diagrams, of which there are four infinite families, An, Bn, Cn and Dn and

five exceptional types E6, E7, E8, F4 and G2. For example, SLn+1 has type An and

SO2!+1(f) has type B2!+1, where f = ' · 〈1,−1〉 ⊕ 〈1〉.

2.2.2 Forms and Tits’ Classification

Assume for this section that G is a simple k-defined algebraic group. Recall that over

k G becomes split and split groups are characterized by their Dynkin diagram (or

type). Given two groups G and G′ over k that become isomorphic to G0 over k, we say

that G and G′ are k-forms of G0. The forms of G0 over k (up to k-isomorphism) are

in bijective correspondence with the the first Galois cohomology set H1(k, Aut(G))
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(see [22], Chapter 3 for more details). Letting Γ be the automorphism group of the

Dynkin diagram of G0, we have the following exact sequence of pointed sets:

H1(k, G0/Z(G0)) → H1(k, Aut(G0)) → H1(k, Γ)

and we say that a form G of G0 is inner if the corresponding cocycle in H1(k, Aut(G0))

has trivial image in H1(k, Γ) and we say that G is outer otherwise. If we assume

further that G0 is simply connected (i.e. there are non-trivial surjections G′ → G0

with finite kernel), then we have another exact sequence:

H1(k, G0) → H1(k, G0/Z(G0)) → H2(k, Z(G0)).

If G is an inner form of G0 and G corresponds to [ξ] ∈ H1(k, Aut(G)), then we can

consider a pre-image [χ] of [ξ] in H1(k, G0/Z(G0)). If the image of [χ] in H2(k, Z(G0))

is trivial, then we say that G is a strongly inner form of G0.

Given a form G of G0 corresponding to [ξ] ∈ H1(k, Aut(G)), if G0 has type X and

the image of [ξ] in H1(k, Γ) has order m, we say that G has type mX (in particular, G

is an inner form if and only if it is of type 1X). Given a group G of type mX, we call G

quasi-split if it contains a k-defined, connected, solvable group B such that G/B is a

complete variety. It can be shown that for each type mX, there is a unique quasi-split

group (up to isogeny) and the rank of a quasi-split group is maximal among groups

of type mX. In particular, an inner, quasi-split group is split.

Example 2.9 Assume that −1 /∈ k×2
and consider the following quadratic forms

over k:

f0 := 〈1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1〉

f1 := 〈1, 1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1〉

f2 := 〈1, 1, 1, 1, 1,−1, 1,−1, 1,−1, 1,−1〉
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also let D be a non-split quaternion algebra with canonical involution τ over k and

f3 be a 6-dimensional τ -skew-hermitian form with trivial discriminant. Let Gi =

SO12(fi) for i = 0, 1, 2 and let G3 = SU6(D, f3, τ). Then G0 is split of type D6 and

after extension to k, Gi all become isomorphic to G0. One can show that the image of

the cocycles correpsonding to Gi in H1(k, Γ) = k×/k×2
are given by the discriminant

of the corresponding quadratic or skew-hermitian form. Thus G0, G2 and G3 are all

inner, while G1 is outer by the assumption that −1 /∈ k×2
. It can also be shown that

strongly inner forms of G0 are all of the form SO12(f) for some quadratic form f ,

thus G3 is an inner form but not a strongly inner form.

Because −1 has order two in k×/k×2
, we have that G1 is of type 2D6. In fact

G1 is quasi-split of type 2D6 and the k-rank of G0 is 5, which is maximal among all

groups of type 2D6 (since groups of type D6 with k-rank 6 are split, and hence inner).

In [24], Tits gives a construction of the ‘Tits index’ of simple groups. Although I

will not go into detail of what this involves, these Tits indices classify simple groups

up to their anisotropic parts. Tits also gives a list of possible indices that can occur

for groups over finite fields, the field of real numbers, p-adic fields and number fields.

For each possible Tits index, the general form of groups with such an index is also

given. For example, groups of type 1An over an algebraic number field F are all of

the form SL(A) for a central simple algebra A over F of degree n + 1.

2.2.3 Galois Cohomology of Algebraic Groups

Because of the connection between first Galois cohomology sets and forms of algebraic

groups, the following results will be necessary. The first is due to Kneser:
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Theorem 2.10 ([19], Theorem 6.4, p. 284) If k is a non-archimedean comple-

tion of a number field, then H1(k, G0) = {1}.

In particular, this implies that over a non-archimedean completion of a number

field there are no non-trivial strongly inner forms of semisimple groups.

If H ≤ G is a subgroup, then a cocycle [ξ] ∈ H1(k, G) is said to have coefficients

in H if there is a cocycle [γ] ∈ H1(k, H) such that [γ] maps to [ξ] under the natural

map H1(k, H) → H1(k, G). The following theorem, due to Steinberg, gives many

important examples when a cocycle has coefficients in a maximal torus:

Theorem 2.11 ([5], Theorem 3.1, p. 301) Let G0 be a simple (not necessarily

simply connected) linear algebraic group, split or quasi-split over k and let ξ ∈

Z1(k, G0) be a cocycle with corresponding twisted group G =ξ G0. For any maxi-

mal torus S ⊂ G over k there is an k-embedding S ↪→ G0 such that the class [ξ] lies

in the image of H1(k, S) → H1(k, G0).

In the case that k = R, Borovoi proved the following:

Theorem 2.12 ([2], Lemma 1, p. 135) If G is a connected reductive group over

R and Ta is a maximal anisotropic R-torus of G, then H1(R, Ta) → H1(R, G) is a

surjection.

Given an algebraic group G over k and an extension k ⊂ k′, one can define the

restriction maps Res : H i(k, G) → H i(k′, Gk′). In the case that G is the automor-

phism group of an algebraic object, the restriction maps correspond to the exten-

sion of scalars. In the case that G is abelian, we can also define corestriction maps

Cor : H i(k′, Gk′) → H i(k, G) ([10], p. 62-63).
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Lemma 2.13 ([10], Proposition 3.3.7, p. 63) If k′/k is an algebraic extension

of degree n and G is a commutative group over k, then Cor ◦Res is given by multi-

plication by n.

If F is a number field and V F is the set of all places on F , then we have the

following theorem, known as the Hasse Principle:

Theorem 2.14 ([22], Remark 1, p. 152) Suppose that G is a simple algebraic

group over F , then the product map:

H1(F, G)
Q

ResFv−→
∏

v∈V F

H1(Fv, G)

is injective if G is adjoint and bijective if G is simply connected.

The following tells us that the image of an element under
∏

ResFv is trivial for all

but finitely many components of the product:

Proposition 2.15 Let G be a connected group over a number field F . Then G is

Fv-quasi-split for almost all places v on F .

Proof. [19], Theorem 6.7, p. 291.

While the Hasse Principle does not hold for tori, we do have the following local-

global principle:

Lemma 2.16 ([19], Corollary 2, p. 418) If T is a torus over F , then the product

map

H1(F, T )
Q

ResFv−→
∏

v∈V F

H1(Fv, T )

is a surjection.
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2.2.4 The Weak Approximation Property

I shall refer to the following many times throughout the thesis and is known as the

weak approximation property for number fields.

Theorem 2.17 ([19], Theorem 1.4, p. 13) Given an algebraic number field F and

a finite collection of places S on F , the canonical map

F →
∏

v∈S

Fv

has dense image, where
∏

v∈S Fv is given the product topology.

2.2.5 Standard Subgroups

Given a semisimple algebraic group G over k, a reductive k-subgroup H ≤ G is called

standard if there is a maximal torus T of G normalizing H ([5], p. 299). This is

equivalent to the statement that H is generated by the root subgroups Gα for the

roots in some sub-root system Σ′ ⊂ Σ(G, T ). We will sometimes denote H = GΣ′ .

2.2.6 Weil Restriction

If G is an algebraic group over F and F
σ

↪→ L is a morphism of fields, denote by GL,σ

the extension of scalars of G to L by σ (we omit the σ if it is clear from context).

Given a base field F , a separable extension L of F and an algebraic group H

over L, one can define the Weil restriction of H to F (denoted by RL/F (H)) in the

following way: If H is defined by polynomials f1, . . . , f! over L and L has an F -basis

ωi, then fj can be expressed as fi =
∑

ωjgij. Let RL/F (H) be the group obtained

by considering the F solutions of the gij (see [19], p. 49-51 for more details). Recall

that a group is absolutely simple if it is simple over the algebraic closure F .
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Lemma 2.18 Given an absolutely simple group H over L, RL/F (H) is F -simple.

As noted previously, the converse also holds:

Lemma 2.19 ([12], Theorem 26.8, p. 365) Any F -simple group that is not ab-

solutely simple is isomorphic to RL/F (H) for some absolutely simple group H and

some finite extension L/F .

When we compose restriction with extension, we obtain the following:

Lemma 2.20 Given F, L, H as above, if L ⊗F K $ L1 × · · · × Lm, where Li are

fields, denote σi to be the map L ↪→ L⊗F K
π→ Li then we have

RL/F (H)K $ RL1/K(HL1,σ1)× · · · ×RLm/K(HLm,σm)

Proof. See [19], p. 50.

The Galois cohomology of RL/F (H) over F is related to the Galois cohomology of

H over L by Shapiro’s lemma:

Lemma 2.21 ([10], Corollary 3.3.2, p. 61) Given an algebraic extension L of F

and an algebraic group H over L,

a) If H is abelian, then H i(F, RL/F (H)) $ H i(L, H) for all i, and

b) if H is non-abelian, then H1(F, RL/F (H)) $ H1(L, H).

2.2.7 Central Simple Algebras

For later reference, we begin by recalling some fundamental results in the theory of

central simple algebras. The following theorem is referred to as the Skolem-Noether

theorem:
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Theorem 2.22 ([12], Theorem 1.4, p. 5) Let A be a central simple algebra over

k and let B ⊂ A be a simple subalgebra. Every k-algebra homomorphism ρ : B → A

extends to an inner automorphism of A. In particular, every k-algebra automorphism

of A is inner.

The following will be useful in the construction of subgroups of groups of type An,

it is known as the double centralizer theorem:

Theorem 2.23 ([12], Theorem 1.5, p. 5) Let A be a central simple algebra over

k and let B ⊂ A be a simple subalgebra with centre k′ ⊃ k. The centralizer CA(B) is

a simple subalgebra of A with centre k′ which satisfies

dimk(A) = dimk(B) · dimk CA(B) and CACA(B) = B

Moreover, if k = k′, then multiplication in A defines a canonical isomorphism A $

B ⊗k CA(B).

For details on the definition of the Brauer group Br(k) over k see [10], Chap-

ters 2 and 4. Given a quadratic extension k′ = k(
√

a), we can consider the reg-

ular embedding R(1)
k′/k(Gm) ↪→ SL2(k). Taking quotients, this gives rise to a map

R(1)
k′/k(Gm)/µ2 → PGL2. Combining this with the fact that R(1)

k′/k(Gm)/µ2 $ R(1)
k′/k(Gm)

gives an induced map φ : H1(F, R(1)
k′/k(Gm)) → H1(k, PGL2).

Lemma 2.24 The image of φ is the set of quaternion algebras that are split over k′.

Proof. See [10], Corollary 2.5.5, page 36.

It is well-known that the Brauer group is a torsion group ([10], Corollary 4.4.8,

p. 99). By breaking the Brauer group into its p-primary components we obtain the

following:
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Lemma 2.25 ([10], Proposition 4.5.16, p. 105) Let D be a central division al-

gebra over k. Consider the primary decomposition

Ind(D) = pn1
1 · · · pn!

!

We can find central division algebras Di over k such that

D $ D1 ⊗k · · · ⊗k D!

and Ind(Di) = pni
i for each i. The Di are then determined uniquely up to isomor-

phism.

If ' > 1, then for each i SL(Di) embeds in SL(D) as a proper subgroup. If

' = 1 = n1, we have:

Lemma 2.26 ([9], Proposition 4.1, page 409) If D is a central division algebra

of prime degree p over F , then SL(D) has no proper semisimple subgroups.

If k′/k is a field extension, then the diagram:

H2(k, Gm) H2(k′, Gm)

Br(k) Br(k′)

!Resk′

"

&

"

&

!
−⊗kk′

commutes. The corestriction map (sometimes also called the norm map) is not as

easily described, but it can be calculated in some instances. Assume that k′/k is

algebraic and k contains a primitive n-th root of unity ωn. If (a, b)ωn is a cyclic

central simple algebra (see [10], Section 2.5) of degree n over k′ with a ∈ k then it

can be shown that

Cork([(a, b)ωn) = [(a, Nk′/k(b))ωn ].
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Central Simple Algebras over Number Fields

The general structure of central simple algebras over number fields is known, as de-

scribed in the following celebrated theorem due to Albert, Brauer, Hasse and Noether:

Theorem 2.27 ([19], Theorem 1.12, p. 38) Every central simple algebra over a

number field is cyclic.

Given a central simple algebra A over a number field F , it is known that the

order of [A] in H2(F, Gm) is equal to the index of A (see [19], p. 38). It is also well

known that there is only one non-trivial element of Br(R), namely the Hamiltonian

Quaternions. This, along with the above results, implies that if A is a central simple

algebra over a number field such that the order of [A] in Br(F ) is odd, then A splits

over any real completion of F .

For p-adic completions of number fields, we will use the following:

Lemma 2.28 ([14], Remark 2.7, p. 154) If D is a quaternion algebra over a fi-

nite extension K of Qp, then any quadratic extension K ′ of K splits D.

There is also a local-global principle for central simple algebras, known as the

Brauer-Hasse-Noether theorem:

Theorem 2.29 ([18], §18.4) Given a number field F , if V F is the set of all places

on F , then the map

θ : H2(F, Gm)
L

ResFv−→
⊕

v

H2(Fv, Gm).

is well-defined and injective.
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Involutions of the Second Kind

Given a quadratic etale extension k′/k, recall that a central simple algebra A with

involution of the second kind τ over k is either:

• a central simple algebra A over k′ with involution τ such that k′τ = k if k′ is a

field, or

• an algebra of the form A = B × Bop, where B is a central simple algebra over

k and τ is given by the exchange involution τ(x, y) = (yop, xop).

In the case that k′ is a field, we have the following

Lemma 2.30 ([12], Theorem 2, p. 31) Given a central simple algebra B over k′,

there exists an involution of the second kind on B which leaves k invariant if and only

if Cork([B]) is trivial in H2(k, Gm).

Given a central simple algebra with involution of the second kind over k, the

involution τ such that k′τ = k is not unique:

Proposition 2.31 ([12], Proposition 4.18, p. 53) Let (B, τ) be a central simple

k-algebra with involution of the second kind of degree n and let k′ be the centre of B.

For every b ∈ B whose minimal polynomial over k′ has degree n and coefficients in

k, there exists an involution of the second kind which leaves b invariant.

2.3 Minimal Anisotropic Groups of Higher Real

Rank

As in the case of isotropic algebraic groups, we do not restrict ourselves to the case

of Q-groups specifically, but instead consider the more general case of anisotropic
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groups over number fields. This requires us to first define minimal algebraic groups

over number fields of appropriate rank. As before, let V F
∞,R be the set of all real places

on F and let Fv be the completion of F with respect to the place v.

Definition 2.32 (Appropriate Real Rank) Given a group G over a number field

F and let

S ′G = {v ∈ V F
∞,R | RankFv(G) = 1} and S ′′G = {v ∈ V F

∞,R | RankFv(G) ≥ 2}.

We say that a subgroup H ≤ G has appropriate real rank if RankFv(H) = 1 for all

v ∈ S ′G and RankFv(H) ≥ 2 for all v ∈ S ′′G. Define SG = S ′G ∪ S ′′G.

This allows us to introduce the definition of minimality for the groups we are

interested in:

Definition 2.33 (Minimal) A F -simple group G as above is said to be minimal if

S ′′G /= ∅ and G contains no proper F -simple subgroups of appropriate real rank.

For a central simple algebra A over F , let SL(A) be the elements of A with norm

1. If D is a division algebra over F and A = Mn(D) we write SLn(D) = SL(A).

Similarly, if (A, τ) is a central simple algebra over a quadratic extension L/F with

unitary involution τ , write SU(A, τ) for the elements x of A such that τ(x)x = 1 and

Nrd(x) = 1. In the specific case that A = Mn(L) and τ corresponds to the hermitian

form f , write SUn(L, f) for SU(A, τ). For the groups of rational points associated

to each of these algebraic groups, we write SL(A), SLn(D), SU(A, τ) and SUn(L, f),

respectively.

Notice that all of the groups described above remain simple after extension to the

algebraic closure of F . Such groups are called absolutely simple. It is well known
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that every simple group that is not absolutely simple is isogenous to the restriction

of scalars (see 2.2.6) of an absolutely simple group (Lemma 2.19), and subgroups of

such groups are closely related to the concept of descent:

Definition 2.34 (Descent) Given an object A (an algebraic group, a central simple

algebra, a quadratic form, a hermitian form etc.) over a field K we say that A

descends to P ⊂ K if there exists an object A′ of the same kind defined over P such

that when we extend scalars we have A′
K $ A.

Notice that each of the non-absolutely simple groups in Theorem 1.2 is the restric-

tion of scalars of one of the groups listed in Theorem 1.1, except for type 3. Although

the technical conditions on the groups in each case appear cumbersome, they are

exactly as required to ensure that no subgroup has appropriate real rank.
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Chapter 3

Groups of Classical Type

3.1 Orthogonal Groups

In this section we consider groups of the form SOn(f) for a bilinear form f of dimen-

sion n over F . Up to isogeny, this describes all groups of type Bn and some of type

Dn. We will show that no groups of this form are minimal if n is at least 5:

Proposition 3.1 If G = SOn(f) where n ≥ 5 and S ′′G /= ∅, then G contains an

F -simple subgroup H of (absolute) type A1 × A1 with appropriate real rank.

Before we proceed, we introduce some notation from [12]. Given a quadratic form

f with diagonalization 〈a1, . . . , an〉, we define the determinant of f to be det(f) =
∏n

i=1 ai and the discriminant of f to be disc(f) = (−1)
n(n−1)

2 det(f). For n = 2m

even, we have that SO(f) is of inner type Dm if disc(f) ≡ 1 and SO(f) is of outer

type otherwise.

Note that the rank of G over Fv is equal to the Witt index of f over Fv. The

following two lemmas are consequences of the Weak Approximation Property :

Lemma 3.2 Let h = 〈1〉 ⊕ g be a n-dimensional quadratic form and Ω ⊂ V F
∞,R be

a subset such that h is isotropic over Fv for each v ∈ Ω. Then there exists a vector

w ∈ F n−1 such that g(w) is negative for all v ∈ Ω.
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Proof. Choose a diagonalization g = 〈b2, . . . , bn〉. The fact that h is isotropic

over Fv for all v ∈ Ω is equivalent to the statement that some bi is negative in Fv

for each v. Let iv be the first index such that biv is negative in Fv. Using the weak

approximation property, choose xj ∈ F , 2 ≤ j ≤ m such that for each v ∈ Ω

1. For j /= iv, 0 < |bjx2
j |v < 1

m−1 and

2. |bivx
2
iv |v > 1

and let w = (x2, . . . , xn). Then for v ∈ Ω,

g(w) =
∑

i

bjx
2
j <

∑

i(=iv

|bix
2
i |v − |bivx

2
iv |v < 0 ∈ Fv

Lemma 3.3 Let g be a 3-dimensional form over F , α ∈ F× be arbitrary and let

Ω ⊂ V F
∞,R be a set of places over which g is isotropic. Then there is a two-dimensional

sub-form g′ of g such that

1. disc(g′) /= α, and

2. g′ is hyperbolic over Fv for all v ∈ Ω.

Proof. Let g = 〈c1, c2, c3〉. Using Lemma 3.2, we can assume that c1 > 0 and

c2 < 0 in Fv for all v ∈ Ω. If c1 · c2 /≡ α let g′ = 〈c1, c2〉. This allows us to assume

without loss of generality that g = 〈c1, αc1, c3〉. This implies that α < 0 in Fv for all

v ∈ Ω.

It then suffices to find x1, x2 ∈ F such that

c1(αc1x
2
1 + c3x

2
2) /≡ α mod F×2

αc1x
2
1 + c3x

2
2 < 0 ∈ Fv ∀ v ∈ Ω.
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Multiplying each of these by c1α and replacing c3 by c̃3 = αc1c3, these conditions are

equivalent to finding x1, x2 such that:

x2
1 + c̃3x

2
2 /≡ 1 mod F×2

x2
1 + c̃3x

2
2 > 0 ∈ Fv ∀ v ∈ Ω

For p /= 2, in any p-adic completion vp of an algebraic number field, there are 4

elements of F×
vp

/F×2

vp
and each of the cosets is an open subset in Fvp . By continuity,

this means that if we choose xvp , yvp such that x2
vp

+ c̃3y2
vp
/≡ 1 mod F×2

vp
, then we can

choose an ε such that for any |x1−xvp |vp < ε and |x2−yvp |vp < ε, x1, x2 fulfill the first

condition. By the weak approximation property, we can choose x1, x2 ∈ F× such that

|x1−xvp |vp < ε and |x2−yvp |vp < ε and |x1|v > 1, |x2|v < min{1/2, 1/2|c̃3|v}. Because

x2
1 + c̃3x2

2 /≡ 1 mod F×2

vp
, we must have x2

1 + c̃3x2
2 /≡ 1 mod F×2

. By the restrictions

on |x1|v and |x2|v, the second condition is satisfied by the triangle inequality.

Proof of Proposition 3.1. Using the fact that the rank of G over Fv is equal

to the Witt index of f over Fv and the Witt cancellation theorem, Lemma 3.2 allows

us to assume that if f = 〈1, a2, . . . , am〉, then

1. For all v ∈ SG, a2 < 0 ∈ Fv, and

2. for all v ∈ S ′′G, a3 > 0 and a4 < 0 in Fv.

Lemma 3.3 allows us to find a sub-form g′ of 〈a3, a4, a5〉 such that g′ is hyperbolic over

Fv for all v ∈ S ′′G and disc(g′) /≡ a2. This is equivalent to saying that disc(〈1, a2〉⊕g′) /≡

1. Let H ≤ G be SO4(〈1, a2〉 ⊕ g′), then H is simple of appropriate rank and H has

type D2 = A1 × A1, as required.

Minimal groups of type A1 × A1 will be covered along with other non-absolutely

simple groups in a later section. Note that this section covers all groups of type Bn

and some groups of type Dn (see [24]).
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3.2 Type Cn

3.2.1 Classification over F and R

Groups of this type over F or R are of one of two forms (up to isogeny):

1. The special unitary group relative to a hermitian form h over a non-split quater-

nion algebra D of dimension n (denoted SUn(D, h)), or

2. The symplectic group Sp2n, which is automatically split.

For type 1 groups, the rank of G is equal to the index of h. Because we start with an

anisotropic group G over F , G is isomorphic (up to isogeny) to a group of the form

SUn(D, h) where h is a hermitian form of index 0 and D is non-split. Note that if K

is any extension of F such that D splits over K, then G also splits over K, since GK

is of type 2.

3.2.2 Minimality

Proposition 3.4 No group of type Cn is minimal.

Proof. As stated above, up to isogeny G is given by SUn(D, f). Let τ be the

canonical involution on D and f =
∑n

i=1 xτ
i aiyi, where ai ∈ Dτ = F . If n = 2, then

G has type C2 = B2 which was covered in the last section, so assume that n ≥ 3.

After normalizing, we can choose a1 = 1. For each v ∈ SG such that D ⊗F Fv = Dv

is non-split we have that at least one of ai < 0 ∈ Fv. Using the same arguments as

in Lemma 3.2, we see that after changing bases of Dn we can choose a2 such that

a2 < 0 ∈ Fv for all v ∈ SG.

If n = 3, then I claim that H = SU2(D, 〈1, a2〉, τ) ≤ G has appropriate real rank.

First, note that there are three possibilities for the rank of G over Fv:
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• v ∈ V F
∞,R\SG if and only if Dv is non-split and a2, a3 > 0 ∈ Fv

• v ∈ S ′G if and only if Dv is non-split and a2 or a3 < 0 ∈ Fv

• v ∈ S ′′G if and only if Dv is split

If v ∈ S ′G, then RankFv(H) = 1 by our choice of a2 and if v ∈ S ′′G then D is split

over Fv so H is split over Fv, so H has appropriate real rank. By construction, H is

absolutely simple, thus G is not minimal. Therefore we can assume that n ≥ 4.

Arguing as in Lemma 3.2 above, we can find b =
∑n

i=3 aib2
i , bi ∈ F such that

b > 0 ∈ Fv for all v ∈ S ′′G such that Dv is non-split, and so we can assume that a3

has this property after changing bases for Dn if necessary. Similarly, we can assume

a4 < 0 in Fv for all v ∈ S ′′G such that Dv is non-split. Let H = SU4(D, f ′, τ), where

f ′ =
∑4

i=1 xτ
i aiyi, so H ≤ G is absolutely simple of type C4. If Dv is split then Hv is

automatically of rank at least 2 and if Dv is non-spilt then by the choice of ai, HFv

has rank at least 2, thus G is not minimal.

3.3 Type Dn

3.3.1 Classification over F and R

Over F or R, groups of this type are of two types (up to isogeny):

1. The special unitary group relative to a skew-hermitian form h over a non-split

quaternion algebra D of dimension n (denoted SUn(D, h)), or

2. SO2n(f) for a quadratic form f .

Because we have already dealt with the orthogonal groups, we will assume that our

group G is of the form SUn(D, h). As before, let τ be the canonical involution on D.
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3.3.2 Background

Let h(x) = 〈d1, . . . , dn〉(x) =
∑n

i=1 xτ
i dixi, where di ∈ D0 = {d ∈ D | τ(d) = −d} and

x ∈ Dn. The discriminant of h is disc(h) =
∏n

i=1 d2
i ∈ F×/F×2

and the determinant

of h is given by (−1)n disc(h) ∈ F×/F×2
.

An Exceptional Isomorphism

If n = 2, then SUn(D, h) is of type D2 = A1 × A1. Groups of type A1 × A1 are all

isogenous to RL/F (SL(A)), where L is a quadratic etale extension of F and A is a

central simple algebra of degree 2 over L. In [12] it is shown that L = F (
√

disc(h)),

thus SUn(D, h) is F -simple if and only if disc(h) is non-trivial (IV, Section 15.B and

VI, Section 26.B). Similarly, SO4(q) is simple if and only if disc(q) is non-trivial.

Morita Equvialence

In this section we wish to understand the behaviour of skew-hermitian forms over

extensions to fields that split D. Two rings are said to be Morita Equivalent if their

right-module categories are equivalent. The following is well-known, and is included

for notation to be used later on:

Proposition 3.5 Suppose A is an associative ring with 1, and P is a finitely gen-

erated, free A-module. Let B $ HomA(P, P ), then the category of finitely generated

A modules A − Mod is equivalent to the category of finitely generated B modules

B −Mod.

Proof. Assume for simplicity that B = EndA(P ) (i.e. don’t bother writing

λ : B → EndA(P ) each time). Define F : A − Mod → B − Mod by F(X) =
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HomA−Mod(P, X), where F(X) has a B-module structure given by, for b ∈ B, φ ∈

F(X), φ · b(p) = φ(b · p), where B has the canonical left action on P .

Define on P ∗ := HomA−Mod(P, A) the structure of a right B-module via q · b(p) =

q(b·p), where q ∈ P ∗ and B has the canonical left action on P . Then, for Y ∈ B−Mod,

define G(Y ) := HomB−Mod(P ∗, Y ), where we give this a right A−Mod-structure via

φ · a(q) = φ(a · q), where a · q ∈ P ∗ is given by (a · q)(p) = a · (q(p)).

Then F ,G give a natural equivalence of categories.

Lemma 3.6 In the notation above, P ⊗A P ∗ $ B in B −Mod and P ∗ ⊗B P $ A in

A−Mod.

Proof. Define φ : P ⊗A P ∗ → B via φ(
∑

pi ⊗ qi)(f) =
∑

pi · qi(f) and ψ :

P ∗ ⊗B P → A via ψ(
∑

qi ⊗ pi) =
∑

qi(pi). That the first is an isomorphism is left

as an exercise and for the second, choose e1, . . . , en to be a basis of P , and let e∗i be

the dual basis. Define πj ∈ B via

πj(ek) =






0 if k /= j

e1 if k = j

then ej∗ = e∗1 ◦ πj, so e∗j ⊗ ei = e∗1 ◦ πj ⊗B ei = e∗1 ⊗B πj(ei) = (e∗1 ⊗ e1) · δij. This

means that an inverse to ψ can be given by ψ−1(a) = (e∗1 ⊗ e1) · a.

Next, consider an involution ∗ on B. A sesquilinear form on a finitely generated

projective module M over B is a bi-additive map h : M ×M → B such that h(x ·

α, y) = α∗h(x, y) , h(x, y · α) = h(x, y)α for every x, y ∈ M , α ∈ B. Give M∗ =

HomB−Mod(M, B) a B−Mod structure by φ · b(m) = b∗ ·φ(m). Giving a sesquilinear

form is then equivalent to giving a B −Mod morphism M → M∗.

Assume now that we are in the case that A = k is a field. Write V for P , and then

B = Endk(V ) and k ↪→ Endk(V ) via scalar multiplication. Assume that ∗ restricts
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to the identity map on k. Given a skew-hermitian form on B, this corresponds to a

B −Mod morphism B
h→ B∗. Applying the Morita equivalence of categories above,

we see that this is equivalent to a map G(h) : G(B) → G(B∗).

We now apply this to the case where A = k is the splitting field of a quaternion

algebra D over K and B = D⊗K k $ Endk(V ) for a two dimensional k-vector space

V . Begin with a skew-hermitian form h on D, i.e. h(x, y) = τ(x)dy for some λ-

symmetric d ∈ D. After extending scalars to k, we can apply Morita equivalence to

this form to obtain a bilinear form, and our aim is to compute this form. We can

then extend to the case of a m-dimensional skew-hermitian form on Dm because each

of the functors in Morita equivalence are additive.

Choose a basis {e1, e2} of V and let {e∗1, e∗2} be the corresponding dual basis of V ∗

such that with this choice of basis, the natural involution ∗ on B becomes


α β

γ δ




∗

=



 δ −β

−γ α



 .

Then G(B) = HomB(V ∗, B) $ {b ∈ B | b ◦n = 0 ∀ n ∈ ker(e∗1◦)} ⊂ B via φ 8→ φ(e∗1).

The k-module structure on G(B) is given by φ · a(e∗1) = φ(a · e∗1) = aφ(e∗1), i.e.

identifying k with its image in B, we have that the k-space structure on ker(e∗1◦) is

given by left (or right) multiplication. Similarly, for G(B∗) we have that elements of

HomB(V ∗, B∗) are determined by the image of e∗1, except now we must have that for

all n ∈ ker(e∗1◦), φ(e∗1 ◦n) = n∗ ◦φ(e∗1) = 0 = φ(e∗1)
∗ ◦n, so φ(e∗1) lies in the submodule

{b ∈ B∗ | b∗ ◦ n = 0 | ∀ n ∈ ker(e∗1◦)}. In our choice of basis, we thus have that

G(B) = {



x 0

y 0



 | x, y ∈ k}, G(B∗) = {



0 0

x y



 | x, y ∈ k}

both with the canonical k-space structures. We can identify G(B∗) with G(B)∗ by

the following: if b2 ∈ G(B∗) and b1 ∈ G(B), then b2(b1) = x21(b2 · b1) where x21 is
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the coordinate function. Give G(B) the basis {v2 =



0 0

1 0



 , v1 =



1 0

0 0



}. Recall

that h is skew-hermitian, so that d∗ = −d, and then suppose that d =



α β

γ −α



.

Under our correspondences, h then corresponds to the bilinear form f on G(B) given

by f(x, y) = x21(x∗dy). In the basis that we have chosen, this is represented by the

matrix



 γ −α

−α −β



.

It can be shown that this equivalence preserves discriminants and that h is isotropic

over K if and only if the corresponding bilinear form has Witt index at least two (see

[21], Lemma 3.5, p. 362). These results are summarized below for future reference:

Lemma 3.7 ([21], p. 361-362) Given a skew-hermitian h on Dn as above, if F ⊂

K is a field extension splitting D then h⊗ 1 : (D⊗F K)n → (D⊗F K) corresponds to

a unique bilinear form bh on K2n, up to isometry, and disc(bh) = disc(h). Also, h is

isotropic over K if and only if bh has Witt index ≥ 2. This correspondence respects

direct sums, i.e. bh⊕h′ = bh ⊕ bh′ and on one dimensional forms 〈d〉, if we choose an

isomorphism D ⊗F K $ M2(K) and under this isomorphism d corresponds to


α β

γ −α





then there exists a basis of K2 such that b〈d〉 has matrix


 γ −α

−α −β



 .

Local-Global Principles and Skew-Hermitian Forms

Next, I include some results from [21] about skew-hermitian forms over local fields.
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Theorem 3.8 ([21], Theorem 3.6, p. 363) Let K be a p-adic field and D the

unique non-split quaternion algebra over K. For skew hermitian forms over D the

following statements hold:

1. Two regular forms are isometric if and only if they have the same dimension

and determinant.

2. Every form of dimension > 3 is isotropic.

3. In dimension 1 all regular forms are anisotropic; there are forms of any deter-

minant /= 1.

4. For any dimension > 1 there are forms of any determinant. In dimension 2

exactly the forms of determinant 1 are isotropic. In dimension 3, exactly the

forms of determinant 1 are anisotropic.

Theorem 3.9 ([21], Theorem 3.7, p. 364) Let K be a real closed field and D the

unique nonsplit quaternion algebra over K. Every skew hermitian form of dimension

> 1 is isotropic and forms of equal dimension are isometric.

Given d ∈ D0 it is possible to describe the isotropy type of b〈d〉 without appealing

to a specific isomorphism D ⊗F K $ M2(K). By direct calculation, the form b〈d〉 is

given (up to scalars) by 〈1,−d2〉 and so b〈d〉 is a hyperplane if and only if d2 > 0.

Now we address local-global properties. First, we have the following, due to

Kneser:

Theorem 3.10 ([21], Theorem 4.1, p. 366) Let K be a global field of character-

istic not 2, let D be a quaternion algebra over K and let h be a skew hermitian form

over D.
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1. If dim(h) ≥ 3 and h is locally isotropic, then h is isotropic

2. If dim(h) ≥ 2 and if d ∈ D0 which is represented locally by h, then d is repre-

sented globally by h.

The following is a corollary of the Weak Approximation Property:

Lemma 3.11 Given places {v1, . . . , v!} on F and dvi ∈ Dvi = D ⊗F Fvi such that

hvi = h⊗1 : (Dvi)
n → Dvi represents dvi, we can choose d ∈ D such that h represents

d and the one-dimensional skew-hermitian forms corresponding to d and dvi on Dvi

are isometric.

Proof. Identify Dn with F 4n and let xvi = (xvi,j)
4n
j=1 be the elements of (Dvi)

n

such that hvi(xvi) = dvi . Choose δi > 0 such that if |xj − xvi,j|vi < δi and we let

x = (xj)4
j=1 ∈ Dn

vi
, then h(x)2 ≡ d2

vi
mod F×2

vi
and the coefficients of hvi(x) and dvi

are close enough so that if Dvi is split, the forms represented by the matrices at the

end of Lemma 3.7 are isometric. By weak approximation, we can choose x ∈ F 4n so

that |xj − xvi,j|vi < δi.

Let f be the form corresponding to d = h(x) and fi be the forms corresponding

to dvi . If Fvi is p-adic and Dvi is non-split, then Theorem 3.8 gives that f ⊗ 1 and

fi are isometric. If Fvi is real and D ⊗ Fvi is non-split, then Theorem 3.9 gives that

f ⊗1 and fi are isometric. If Dvi is split, then f and fi are isometric by construction.

Corollary 3.12 In the situation above we can choose a diagonalization 〈d1, . . . , dn〉

of h such that 〈d〉 ⊗ 1 and 〈dvi〉 are isometric as 1-dimensional forms on Dvi.

We prove now that no groups of type Dn are minimal for n ≥ 3. We separate this

into three cases, n = 3, n ≥ 5 and n = 4:
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3.3.3 Case I: n = 3

In this case we can find a F -simple subgroup of type A1×A1 of appropriate real rank.

Proposition 3.13 Keeping the notation at the beginning of this section, if n = 3,

we can choose a diagonalization of f = 〈c1, c2, c3〉 so that SU2(D, 〈c1, c2〉, τ) ≤ G has

appropriate real rank and disc(〈c1, c2〉) /≡ 1 mod F×2
.

Proof. For every v ∈ V F
∞,R such that Dv is non-split, Theorem 3.9 gives that any

two 2-dimensional skew hermitian forms over Dv are isometric, so we ignore those

valuations. Let {v1, . . . , vm} be the elements of S ′G for which Dvi is split and notice

that Dv is split for every v ∈ S ′′G (by the same theorem). Let S ′′G = {vm+1, . . . , v!}.

Let fvi = f ⊗ 1 : Dn
vi
→ Dvi . Then fvi corresponds to an isotropic quadratic

form under Morita equivalence, say f ′vi
. This implies f ′vi

⊕ 〈1,−1〉 has Witt index at

least two, thus by Lemma 3.7 we have that fvi represents some cvi such that the one

dimensional skew-hermitian form 〈cvi〉 corresponds a hyperbolic plane under Morita

equivalence. By Corollary 3.12 there then exists c1 ∈ D such that f represents c1

and 〈c1〉vi corresponds to 〈1,−1〉 under Morita equivalence for all vi. Choose d2, d3

so that f = 〈c1, d2, d3〉. Repeating the same arguments for 〈d2, d3〉 yields c2 such

that 〈d2, d3〉 represents c2 and 〈c2〉vi corresponds to an isotropic form over F 2
vi

for all

vi ∈ S ′′G. Choose c3 so that f = 〈c1, c2, c3〉.

Assume G is of type 1D3 and that disc(〈c1, c2〉) = 1. Then we have that c2
1c

2
2c

2
3 ≡

c2
3 ≡ 1 mod F×2

. This contradicts the assumption that D is a division algebra over

F .

Let G be of type 2D3 and assume that c2
1c

2
2 ≡ 1 mod F×2

. I claim that 〈c2, c3〉

then represents some d ∈ D such that 〈d〉vi $ 〈c2〉vi for all vi and there exists some

place v0 such that d2 /≡ c2
1 mod F×2

. If this is true, then replacing c2 by d completes
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the proof.

Using Corollary 3.12, it suffices to show that there exists some p-adic place v0

on F such that 〈c2, c3〉v0 represents dv0 ∈ Dv0 with d2
v0
/≡ c2

1 mod F×2

v0
. Choose any

p-adic (p /= 2) place v0 such that Dv0 is split. Suppose that b〈c2,c3〉v0
= 〈β1, β2, β3, β4〉.

We then have that 〈β1, β2, β3, β4,−1〉 $ 〈1,−1〉 ⊕ 〈r, s, t〉 by the fact that any 5-

dimensional quadratic form over a p-adic field is isotropic. From [14], Corollary

2.5, p. 153 we have that 〈r, s, t〉 represents at least 3 square classes in F×
v0

/F×2

v0
,

thus we can choose y ∈ F×
v0

such that 〈r, s, t〉 represents −y and y /≡ c2
1 mod F×2

v0
.

Then 〈β1, β2, β3, β4〉 ⊕ 〈−1, y〉 has Witt index at least 2, and thus by Lemma 3.7, hv0

represents some dv0 such that 〈dv0〉 corresponds to 〈1,−y〉 under Morita equivalence.

Then d2
v0
≡ y /≡ c2

1 mod F×2

v0
, as required.

Note that H = SU2(D, 〈c1, c2〉) is F -simple by the restriction that disc(〈c1, c2〉) is

non-trivial, thus G is not minimal.

3.3.4 Case II n ≥ 5

This case is handled by constructing a diagonalization as in the previous case, except

now we construct an absolutely simple subgroup of type 1,2D4.

Proposition 3.14 In the notation of the previous section, we can find a diagonal-

ization f = 〈c1, . . . , cn〉 such that SU4(D, 〈c1, c2, c3, c4〉, τ) has appropriate real rank.

Proof. Arguing as in Proposition 3.13 we can find a diagonalization f = 〈c1, . . . , cn〉

such that b〈c1,c2〉v has Witt index at least 2 for every v ∈ S ′′G such that Dv is split and

Witt index 1 for every v ∈ S ′G. Then SU4(D, 〈c1, c2, c3, c4〉, τ) has appropriate rank

over Fv for every v such that Dv is split. For any v ∈ V F
∞,R such that Dv is non-split

Theorem 3.9 gives that both G and SU4(D, 〈c1, c2, c3, c4〉, τ) are of higher rank.
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Letting H = SU(D, 〈c1, c2, c3, c4〉, τ) we have that H is absolutely simple of ap-

propriate real rank, hence G is not minimal.

3.3.5 Case III: n = 4

Before we begin this case we recall some facts about groups of type 1,2D4. Suppose

that G is of type 2D4, then there is a unique quadratic extension of F such that

G becomes of inner type 1D4, say K. The simply connected quasi-split group of

type 2D4 (say G0) is then Spin(fqs), where fqs is the quasi-split quadratic form

〈1,−c, 1, 1, 1,−1,−1,−1〉. The centre of G0 is RK/F (µ2), and so H2(F, Z(G0)) $

2Br(K) by Lemma 2.21.

The simply connected split group of type D4 is Spin(fs), where fs is the split

quadratic form 〈1,−1, 1,−1, 1,−1, 1,−1〉. The centre of Spin(fs) is then µ2 × µ2,

and so H2(F, Z(G0)) $ 2Br(F )× 2Br(F ), again by Lemma 2.21.

Lemma 3.15 There exists α ∈ F such that:

1. F (
√

α) is a purely imaginary extension of F ,

2. −α /∈ F×2

3. G is split (or quasi-split) over F (
√

α).

Proof.

Let G correspond to [ξ] ∈ H1(F, PSO(fqs)) if G is of type 2D4 and H1(F, PSO(fs))

if G is of type 1D4. Then the image of [ξ] in H2(F, Z(G0)) is represented by a

quaternion algebra [T ] over K if G is of type 2D4 or a pair of quaternion algebras

([T1, T2]) over F . By Theorem 2.29, there are finitely many places v on K such that

[T ] is non-trivial over Kv (or finitely many places v on F such that [T1] or [T2] is
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non-trivial over Fv). Let r1, . . . , rm be the non-archimedean places on K such that

[T ] is non-trivial, si be the restriction of ri to F if G is of type 2D4. If G is of type

1D4, let t1, . . . , t! be the non-archimedean places on F such that [T1] or [T2] is non-

trivial (if no such ri or ti exist, choose any α such that F (
√

α) is purely imaginary

and −α /∈ F×2
). Choose one non-archimedean place r such that [T ] is split over Kr,

or one place r such that [T1], [T2] are split over Fr.

By Lemma 2.28, we have that [T ] (respectively [T1], [T2]) is split over any quadratic

extension of Ksi (respectively Fti). Assume that α ∈ F is chosen such that F (
√

α) is

purely imaginary, α ∈ F is non-square in Kri (respectively Fti), and −α is non-square

in Fr. Note that in the case that G is of type 2D4, α is not square in K because α is

not square in Kri .

Let L = F (
√

α)⊗F K if G is of type 2D4 and F (
√

α) if G is of type 1D4. In the

case that G is of type 1D4, we have that L⊗Fv $ C for any v ∈ V F
∞,R, and by Lemma

2.28 we have that T1, T2 are split over L ⊗ Fti for all i. By Theorem 2.29 we then

have that [T1], [T2] are split over L. This gives that ResL/F ([ξ]) is the image of some

[γ] ∈ H1(L, Spin(fs)). Because L has no real completions, the Hasse principle gives

that H1(L, Spin(fs)) = {0}, thus ResL/F ([ξ]) is split, i.e. G splits over L. In the case

that G is of type 2D4, note that G remains of type 2D4 over L, since K ⊗L is a field.

Analogous arguments to the case 1D4 yield that G is quasi-split over L in this case.

It remains to see that we can choose α such that F (
√

α) has no real completions,

α is non-square in Kri (or Fti) and −α is non-square in F . It is well-known ([14],

Theorem 2.2, p. 152) that for a non-archimedean completion Fv of a number field F ,

|F×
v /F×2

v | = 8 and if Kw is a quadratic extension of Fv, then the image of F×
v /F×2

v in

K×
w /K×2

2 is non-trivial. It is also well-known that square classes in non-archimedean

completions of number fields are open. This means that in the case that G is of
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type 2D4, we can choose αri ∈ F×
si

that are not square in Kri and αr so that −αr is

non-square in Fr. By the weak approximation property, we can choose α ∈ F such

that αri is the same square class as αri in Fsi for all i, α is in the same square class

as αr in Fr, and α is negative in Fv for every v ∈ V F
∞,R. Then α is as required. The

1D4 case is handled analogously.

Proposition 3.16 Up to isogeny, G contains an F -simple subgroup that is of appro-

priate real rank of the form RF (
√

a)/F (SO4(f
′)) for some a /≡ 1 mod F×2

.

Note that because GL is quasi-split, ResL/F ([D]) is trivial, so L is a maximal sub-

field of D. Choose an embedding L ↪→ D and let i be the image of
√

α under this

embedding. The following lemma is due to V. Chernousov and A. Merkurjev ([7]):

Lemma 3.17 If K is a maximal subfield of D, and f is a skew-hermitian form such

that bf is isotropic over K, then there exists v ∈ Dn such that F (f(v, v)) $ K.

Applying Lemma 3.17 we see that h has a diagonalization 〈β1i1, β2i2, β3i3, d〉 for

some βj ∈ F×, d ∈ D0 and ij ∈ D0 such that F (ij) $ F (i) ⊂ D for each j. By the

Skolem-Noether Theorem (2.22) we have that each of the ij are conjugate to i, say

d−1
j ijdj = i. If h(vj) = ij then h(vj ·dj) = Nrd(dj) ·i and so replacing vj by vj ·dj gives

that h has diagonalization 〈β1i, β2i, β3i, d〉, where d ∈ D0. Note that the subspaces

V1 = {d′ ∈ D0 | id′ = −d′i} and V2 = {d′ ∈ D0 | dd′ = −d′d}

both have dimension at least two and D0 has dimension 3, so {0} /= V1 ∩ V2 ⊂ D0.

Choose 0 /= d′ ∈ D0 such that id′ = −d′i and dd′ = −d′d, so that i−1d commutes

with d′ and thus i−1d ∈ F (d′). Note that if · ∈ Gal(F (d′)/F ) is the non-trivial

automorphism, then the restriction that i anticommutes with d′ implies that i−1xi =

x = τ(x) for every x ∈ F (d′).
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Consider the bilinear form b = 〈β1, β2, β3, i−1d〉 over F (d′), and let Xb ∈ M4(F (d′))

correspond to b. Then a matrix g with entries in F (d′) is in SO(b) if and only if

gT Xbg = Xb, which is equivalent to X−1
b gT Xb = g−1. If Xh ∈ M4(D) is the matrix

corresponding to h, then Xh = iXb, so for g ∈ SO(b):

X−1
h τ(g)T Xh = X−1

b i−1τ(g)T iXb = X−1
b gT Xb = g−1.

Thus g respects the skew-hermitian form h. Considering the F -coefficients of the F (d′)

entries of g, this gives an embedding RF (d′)/F (SO(b)) ↪→ G. Because Nrd(i) = −α,

we can replace β1 above by −αβ1 and repeat the same procedure. I claim that one

of these groups is F -simple.

Lemma 3.18 At least one of the groups

RF (d′)/F (SO(〈β1, β2, β3, i
−1d〉)) or RF (d′)/F (SO(〈−αβ1, β2, β3, i

−1d〉))

is F -simple.

Proof. It suffices to prove that SO(〈β1, β2, β3, i−1d〉) or SO(〈−αβ1, β2, β3, i−1d〉)

is F (d′)-simple (see Lemma 2.18). This is true if and only if disc(〈β1, β2, β3, i−1d〉) or

disc(〈−αβ1, β2, β3, i−1d〉) is non-trivial. Assume that both discriminants are trivial.

Then 1 ≡ β1 · β2 · β3 · i−1d ≡ −α mod F (d′)×
2
. By property 2 of Lemma 3.15, we

have that −α /∈ F×2
, hence this yields −α ≡ (d′)2 mod F×2

. By the assumption

that d′ is purely imaginary and d′i = −id′, we have that i, d′ is a quaternion basis for

D. Thus the norm form of D is given by 〈1,−α, α,−α2〉, but then D is split over F ,

a contradiction.

Let H ≤ G be RF (d′)/F (SO(〈β1, β2, β3, i−1d〉)) if β1 · β2 · β3i−1d /≡ 1 mod F (d′)×
2

and RF (d′)/F (SO(〈−αβ1, β2, β3, i−1d〉)) if β1 · β2 · β3i−1d ≡ 1 mod F (d′)×
2
.

42



Lemma 3.19 H has appropriate real rank over every real valuation on F .

First, I need the following lemma:

Lemma 3.20 Suppose we are given H = SO4(f1) × SO4(f2) ≤ SO8(f), then f $

〈c1〉 · f1 ⊕ 〈c2〉 · f2.

Proof. Because H is standard of type A4
1 in G of type D4, we have that over

F , H is conjugate to SO(f |V1) × SO(f |V2) for V1⊥V2 such that V1 ⊕ V2 = V (say

gHg−1 = SO(f |V1) × SO(f |V2)). This means that if we let W1 = {v ∈ V | g2v =

v | ∀g2 ∈ SO(f2)} and W2 = {v ∈ V | g1v = v ∀g1 ∈ SO(f1)}, then over F ,

g(Wi ⊗ F ) = Vi ⊗ F , hence W1 ∩W2 = {0} and W1⊥W2. Now SO(fi) ≤ SO(f |Vi),

each connected of equal dimension gives that SO(fi) = SO(f |Vi), thus there exist ci

such that 〈ci〉 · fi $ f |Vi .

Consider a v ∈ V F
∞,R such that D⊗Fv = Dv is split. By Lemma 3.7 we then have

that

GFv $ SO(〈β1, β1, β2, β2, β3, β3〉 ⊕ β4〈1,−d2〉).

Because i, d′ form a quaternion basis for D and we chose i such that i2 is negative in

every Fv for v ∈ V F
∞,R we have that F (d′) splits over Fv and

HFv $ SO4(〈β1, β2, β3, i
−1d〉)× SO4(〈β1, β2, β3, i−1d〉)

where · represents conjugation in F (d′).

Proof of Lemma 3.19. Let D = (α, γ), and note first that (d′)2 = γ ·

NF (
√

α)/F (x) for some x so (d′)2 < 0 ∈ Fv if and only if Dv is non-split.

We break the valuations v ∈ SG into three cases:

1. Dv is non-split: Then F (d′)⊗F Fv is a subfield of H = (−1,−1)Fv , thus F (d′)⊗F

Fv $ C and HFv $ RC/R(SL2 × SL2) has Fv-rank 2
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2. v ∈ S ′G: In this case Dv is split, βi all have the same sign and d2 > 0 ∈

Fv. Applying Lemma 3.20 and Witt cancellation then gives that 〈1,−d2〉 $

〈1,−1〉 $ 〈i−1d, i−1d〉. Thus one of i−1d, i−1d is positive in Fv and the other

negative, so RankFv(H) = 1.

3. RankFv(G) ≥ 3 and Dv is split: In this case, two of β1, β2 and β3 have different

signs in Fv and so RankFv(H) ≥ 2.

4. RankFv(G) = 2 and Dv is split: Because disc(〈β1, β1, β2, β2, β3, β3〉⊕β4〈1,−d2〉) =

−d2 and disc(〈1, 1, 1, 1, 1, 1,−1,−1〉) = 1 ∈ F×
v /F×2

v we have that d2 ≡ −1

mod F×2

v in this case. If two of β1, β2, β3 have different signs, then RankFv(H) ≥

2 so assume that β1, β2, β3 are all positive in Fv (the case where β1, β2, β3 are

all negative is handled analogously). In this case, Lemma 3.20 gives:

〈1, 1, 1, 1, 1, 1, β4, β4〉 $ c1〈1, 1, 1, i−1d〉 ⊕ c2〈1, 1, 1, i−1d〉

by inspection, the only possibility is that c1 = c2 = 1 and 〈−1,−1〉 $ 〈β4, β4〉 $

〈i−1d, i−1d〉 by Witt cancellation. Then HFv $ SO(〈1, 1, 1,−1〉)×SO(〈1, 1, 1,−1〉)

has Fv-rank 2.

Proof of Proposition 3.16. Lemma 3.18 gives the construction of a simple

subgroup as required and Lemma 3.19 ensures that the subgroup has appropriate real

rank.
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3.4 Type An−1

3.4.1 Type 1An−1

All groups of type 1An−1 are isogenous to SLm(D) for some central division algebra

D. Note that if G $ SLm(D) and D is a division algebra of degree d, then m− 1 is

the rank of G while the absolute rank of G is given by n− 1 = d ·m− 1. Recall that

any division algebra over a number field is cyclic, while the only division algebra over

R is the Hamiltonian quaternions.

Because we begin with an anisotropic group, G will be of the form SL(D) for a

central division algebra D. Over Fv for v ∈ V F
∞,R, we have that G either splits and is

isomorphic to SLn(Fv) or has rank n
2 and is isomorphic to SLn/2(H). If G becomes

SLn/2(H) over Fv then we must have that deg(D) = n is even. This means that if

deg(D) is odd, then SL(D) is split over Fv for all v ∈ V F
∞,R, in particular SL(D)

attains higher rank over every real completion of F .

Proposition 3.21 G is minimal if and only if deg(D) = p for p prime, p ≥ 3.

The following two lemmas address the non-minimal cases:

Lemma 3.22 If deg(D) is not a power of a prime, then G is not minimal.

Proof. Let deg(D) = pn1
1 · · · pnk

k , then D is of the form D1 ⊗ · · · ⊗ Dk, where

Di has degree pni
i (Lemma 2.25). Suppose p1 is odd (or else renumber the pi), then

because NrdD(d1⊗1⊗· · ·⊗1) = NrdD1(d1)deg(D)/p
ni
i , we have that SL(D1) ↪→ SL(D),

and SL(D1) is of higher rank over all real completions of F .

Lemma 3.23 If deg(D) = pm where p is prime and m > 1, then SL(D) is not

minimal.
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Proof. Let K ⊂ D be a maximal subfield which is a cyclic extension of F . Let

Gal(K/F ) = Z/pmZ = 〈1〉, and let Γ = 〈p〉 ≤ Gal(K/F ), K0 = KΓ. Let T = CD(K0)

and consider H = RK0/F (SL(T )) ≤ G (see Theorem 2.23). Because T is a central

division algebra, SL(T ) is simple over K0 and so H is F -simple.

If p is odd, then K0 and T both split over Fv for every v ∈ V F
∞,R, so SG = S ′′G and

H has appropriate real rank. If p = 2 and m = 2 then G has type 1A3 = 1D3, which

was handled previously.

If p = 2 and m ≥ 3 then there are two possibilities for K0⊗F Fv. If K0⊗F Fv $ C,

then HFv $ RC/R(SL2m−1) has Fv-rank 2m−1−1 ≥ 3. If K0⊗F Fv $ Fv×Fv let w1, w2

be the two completions of K0 that restrict to v on F , so

HFv $ SL(T ⊗K0 K0,w1)× SL(T ⊗K0 K0,w2)

if T splits over K0,w1 or K0,w2 , then RankFv(H) ≥ 2m−1 − 1 ≥ 3. If T becomes

M2m−2(H) over both K0,w1 and K0,w2 then HFv $ SL2m−2(H) × SL2m−2(H) so H has

Fv-rank at least 2m−1 ≥ 3.

Proof of Proposition 3.21. Recall that if D is a central division algebra over

F with deg(D) = p ≥ 3 prime, then SL(D) contains no proper semisimple subgroups

(Lemma 2.26) and SL(D) is split over Fv for all v ∈ V F
∞,R. This means that SL(D) is

minimal for any central division algebra D of prime degree p ≥ 3. Lemmas 3.22 and

3.23 address the converse.

3.4.2 Type 2An−1

Given a group G of type 2An−1 over k, G is isogenous to SU(A, τ) where A is a central

simple algebra of degree n over the unique quadratic extension k′ of k such that G

becomes inner over k′ and τ is an involution of the second kind on τ such that k′τ = k.
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Maximal tori of G are then equivalent to certain commutative subalgebras of A:

Proposition 3.24 ([20], Proposition 2.3) Any maximal torus in G corresponds to

a n-dimensional, τ -invariant commutative etale k′-sub algebra E with dimk(Eτ ) = n

If k = R then k′ = C and A = Mn(C), with τ corresponding to a hermitian form

f on Cn. If k = F is a number field and L = k′ is the unique quadratic extension over

which G becomes inner, then there are two possible types for GFv , given v ∈ V F
∞,R. If

L⊗F Fv is a field we have that GFv is outer, hence is of the form SUn(C, f) for some

hermitian form f . If L⊗F Fv $ Fv × Fv, however, then GFv is inner, hence is either

of the form SL(n)/2(H) or SLn(Fv).

Proposition 3.25 For any odd prime p, SU(A, τ) is minimal for any central division

algebra A of degree p.

Proof. Let L be the centre of A. If G were not minimal, then G would contain

a proper F -simple subgroup H. Then HL ≤ GL would be a proper closed semisimple

subgroup of SL(A) where A is a central division algebra of degree p, but SL(A)

contains no non-trivial semisimple subgroups by Lemma 2.26.

I claim that these are all of the possible minimal groups of type 2An−1 for n /= 3.

Lemma 3.26 If G $ SUm(L, f) for a hermitian form f over L, then G is minimal

if and only if m = 3 and L⊗ Fv $ Fv × Fv for some v ∈ V F
∞,R.

Remark 3.27 By the assumption S ′′G /= ∅ we have, m ≥ 3.

Proof. After normalizing, we may assume that f = 〈1, a2, . . . , am〉. If m ≥ 5, I

claim that we can choose a diagonalization of f such that 〈1, a2, a3, a4〉 corresponds

to a subgroup of G that has appropriate real rank. To see this, we use the same
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arguments as in the skew-hermitian case, namely that for any completions Fv such

that L ⊗ Fv $ C, the form fFv is isotropic, hence represents any a ∈ Fv. Thus, we

may use the weak approximation property to replace a2, a3, a4 if necessary so that:

• a2 < 0 in Fv for all v ∈ S ′G

• a3 > 0 and a4 < 0 in Fv for all v ∈ S ′′G such that L⊗ Fv $ C.

After this replacement, we have that SU4(L, 〈1, a2, a3, a4〉) is a simple, proper sub-

group of G that has appropriate real rank over every Fv, hence G is not minimal.

If G $ SU4(L, f), then G has type 2A3 = 2D3, so G is isomorphic to a group

handled in the skew-symmetric section.

Finally, assume m = 3. Then G has type A2 and any subgroup of appropriate

real rank must have absolute rank at least 2 (since S ′′G /= ∅). Assume that G contains

a proper simple subgroup H of appropriate real rank. We would then have that H

is standard, because the absolute rank of G is equal to that of H, and so the root

system of H corresponds to a sub-root system of A2. Because all the roots of G have

equal length, the only possibility is that H is of type A1×A1, but A2 does not contain

two orthogonal roots, a contradiction.

The above proposition and lemma deal with the case deg(A) = 3, and if deg(A) =

4 then G is of type A3 = D3, which was already considered. We have already

established that G is minimal in the case where deg(A) = 5, thus it suffices to

consider the following:

Proposition 3.28 If (A, τ) is a central simple algebra with involution τ of the second

type over a quadratic extension L/F such that Lτ = F , and deg(A) = n > 5 is not

prime, then SU(A, τ) is not minimal.

48



Our strategy for groups of this type will revolve around the central result from

Prasad and Rapinchuk [20]:

Theorem 3.29 ([20], Theorem A, p. 2) Let L be a global field. Let A be a central

simple L algebra of dimension n2 with an involution τ and let E/L be a field extension

of degree n with an involutive automorphism σ such that σ|L = τ |L. Then the local-

global principle for the existence of an embedding ι : (E, σ) ↪→ (A, τ) holds in each of

the following situations:

1. τ is an involution of the second kind;

2. A = Mn(L) and τ is an orthogonal involution;

3. A = Mm(D) where D is a quaternion algebra, m is odd, and τ is an orthogonal

involution.

To apply the local-global principle, I claim that it suffices to consider only finitely

many places on F , more precisely:

Lemma 3.30 Let A be a central simple algebra of degree n over L with involution τ

of the second type such that F = Lτ and τ |L = γ. Let K/F be a field extension of

degree n, and define σ = 1 ⊗F γ on E = K ⊗F L. Then, for any place v on F such

that SU(A, τ)Fv is split or quasi-split, there exists an embedding:

(E ⊗F Fv, σ ⊗ 1) ↪→ (A⊗F Fv, τ ⊗ 1)

of Fv-algebras that respects involutions.

Proof. First, consider the case where G = SU(A, τ) becomes quasi-split but not

split over Fv. This means that Lv = L ⊗ Fv is a field and A ⊗F Fv $ Mn(Lv). Let
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Kv = K⊗Fv, so that Kv/Fv is etale (but not necessarily a field) and Ev = Kv⊗Fv Lv.

Note that in this case, such an embedding is equivalent to finding an embedding of

Tv = SU(Ev, σ ⊗ 1) in Gv = SU(Mn(Lv), τ ⊗ 1) by Proposition 3.24. Because Gv is

quasi-split, Theorem 2.11 gives that this is equivalent to finding an inner form Hv

of Gv such that Tv ↪→ Hv. If we can find an involution τ ′ on Mn(Lv) such that

(Ev, σ ⊗ 1) ↪→ (Mn(Lv), τ ′), then setting Hv = SU(Mn(Lv), τ ′) yields such an inner

form.

Choose a generator θ of K/F , and consider the regular embedding ψ : Kv ↪→

Mn(Fv) ↪→ Mn(Lv). Then the minimal polynomial of ψ(θ) has degree n (because

Kv/Fv is an etale extension) and coefficients in Fv. By Proposition 2.31, this means

that there exists u ∈ Mn(Lv) invertible such that ψ(θ) is fixed under τ ′ = Int(u) ◦ τ .

Extend ψ to ψ̃ on Ev by defining it to be Lv-linear, then ψ̃ : Ev ↪→ Mn(Lv) respects

involutions, as required.

Second, consider the case where G is split by Fv. In this case, Lv $ Fv × Fv and

Av $ Mn(Fv) × Mn(Fv)op with exchange involution ε(x, y) = (y, xop). In this case,

Ev $ Kv×Kv and σ⊗1 acts on Kv×Kv via σ⊗1(a, b) = (b, a). We can then embed

Kv × Kv ↪→ Mn(Fv) × Mn(Fv) via the regular embedding on each component, and

this embedding respects involution by inspection.

Because G is split or quasi-split over Fv for almost every valuation v by Proposition

2.15, this means that we only have to control finitely many places on F to apply the

local-global principle for algebras of the type in Lemma 3.30.

In order to control the finitely many remaining valuations on F , we need the

following lemma:

Lemma 3.31 Given v0, . . . , vn places of F , K0, . . . , Kn etale extensions over Fvi of

degree m such that K0/Fv0 is a field, there exists a field K/F such that K⊗F Fvi $ Ki.
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Proof. Suppose Ki $ Fvi [x]/(fi) where fi ∈ Fvi [x] are monic of degree m with

no repeated roots. Choose 0 < εi < min{|αij − αik|vi/2} where {αij} are the roots

of fi in Fvi and choose g ∈ F [x] such that if {β1, . . . , βm} are the roots of g, then

|βj−αij|vi < εi (see [15], p. 44). In the terminology of [15] we say that βi is the unique

root of g belonging to αij for all i. Assume that fi = f (1)
i ·f (si)

i where f (j)
i are irreducible

over Fvi and that g decomposes as g(1)
vi ·g(ti)

vi where g(j)
vi are irreducible over Fvi . Let αi,1

be a root of f (1)
i and after renumbering assume that β1 is a root of g(1)

vi . By definition

of εi we have that Fvi(αi,1) ⊂ Fvi(β1) by Krasner’s lemma ([15], Proposition 2.3, page

43). Thus deg(f (1)
i ) ≤ deg(g(1)

vi ). Consider another root βj of g(1)
vi , then βj = σ(β1) for

some 1 /= σ ∈ Gal(Fvi/Fvi) and |σ(αi,1)− σ(β1)|vi = |αi,1 − β1|vi < εi. Then σ(αi1) is

another root of f (1)
i , and if σ(αi,1) = αik /= αij we have that

|αij − αik|vi ≤ |αij − βj|vi + |βj − αik|vi

< 2εi

< |αij − αik|vi

which is a contradiction. This means that for every root βj of g(1)
vi , there exists a

unique root of f (1)
i , so deg(g(1)

vi ) = deg(f (1)
i ) and Fvi(αi1) = Fvi(β1). Repeating this

inductively shows that if K = F [x]/(g), then K ⊗F Fvi $ Fi. Finally, note that if K0

is a field, then K must be a field.

Corollary 3.32 Given v0, . . . , vn places of F and towers of algebras:

Fvi ⊂ J (1)
vi
× · · · × J (si)

vi
⊂ K(1)

vi
× · · · ×K(si)

vi

such that

1. J (j)
vi are field extensions of Fvi with

∑si

j=1[J
(j)
vi : Fvi ] = m for all i
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2. K(j)
vi /J (j)

vi are etale extensions with dim
J

(j)
vi

(K(j)
vi ) = h for all i, j

3. Fv0 ⊂ Jv0 ⊂ Kv0 is a tower of field extensions

Then there exists a tower of field extensions F ⊂ J ⊂ K such that J ⊗F Fvi $
∏

J (j)
vi

and K ⊗F Fvi $
∏

K(j)
vi .

Proof. First apply Lemma 3.31 to Fvi ⊂
∏

J (j)
vi to obtain a field extension J as

required, and then substitute J ⊗F Fvi for
∏

J (j)
vi . This means that we can substitute

Jwi,j for J (j)
vi , where wi,j are all of the valuations on J that restrict to vi on F .

Next, apply Lemma 3.31 to Jwij ⊂ K(j)
vi to obtain a field extension J ⊂ K such

that K ⊗J Jwij $ K(j)
vi . It remains to show that K ⊗F Fvi $

∏
K(j)

vi , but this follows

from the fact that:

K ⊗F Fvi $ K ⊗J J ⊗F Fvi $ K ⊗J

∏
Jwij $

∏
K ⊗J Jwij $

∏
K(j)

vi

The next step is to construct algebras Jv ⊂ Kv over Fv that embed in (A⊗F Fv)τ⊗1.

Let {v1, . . . , v!} = V F
∞,R and let w1, . . . , wt be the non-archimedean valuations on F

such that G is not split or quasi split over Fwi . Consider two cases:

Case I n = 2m is even. For the archimedean valuations, A⊗F Fvi is isomorphic to

either Mn(C), Mn(R)×Mn(R)op or Mm(H)×Mm(H)op.

• If A ⊗F Fvi $ M2m(R) × M2m(R) with exchange involution, let Jvi = R2 ↪→

R2m = Kvi by the map

(j1, j2) 8→ (j1, . . . , j1, j2, . . . , j2).

Let Kvi embed as diagonal matrices in M2m(R) and compose this embedding

with the diagonal embedding of M2m(R) in A⊗F Fv. If e1 is the matrix consisting
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of 1’s along each first m diagonal entries in each component and 0’s elsewhere,

and if e2 = (I2m×2m, I2m×2m)− e1 then Jvi embeds in Kvi via R · e1 + R · e2.

• If A ⊗F Fvi $ M2m(C) with involution τ(X) = f−1X
T
f , which corresponds to

the hermitian form f = r · 〈1,−1〉⊕ (2m− 2r)〈1〉, then let Kvi = R2m embed in

(A⊗F Fvi)
τ⊗1 via diagonal matrices. Let e1 be the diagonal matrix with with the

first m entries equal to 1 and the last m entries equal to 0, and e2 = I2m×2m−e1.

Then Jvi = R2 embeds in Kvi via Re1 + Re2.

• If A⊗F Fvi $ Mm(H)×Mm(H)op, let Kvi = Cm embed in A⊗F Fvi as diagonal

matrices in each component, and let Jvi = C embed in Kvi as scalar matrices

in each component.

• If L⊗F Fwi = Lwi is a field, by [24] we have that

GFwi
$ SU2m(Lwi , f)

where f is the sum of m−1 hyperbolic hermitian forms and one anisotropic form

〈α, β〉. By rank considerations, SU2(Lwi , 〈−1, 1〉) $ SL2 and SU2(〈α, β〉) $

SL(Q) for some non-split quaternion algebra Q over Fwi . Choose any quadratic

extension Jwi of Fwi disjoint from Lwi . By [14], Remark 2.7, p. 154 we have that

Q is split over Jwi . By Steinberg’s theorem we can therefore embed R(1)
Jwi/Fwi

(Gm)

in SL(Q) and SU2(Lwi , 〈−1, 1〉). This is equivalent to finding embeddings of

Jwi · Lwi in M2(Lwi) such that the involutions corresponding to 〈1,−1〉 and

〈α, β〉 fix Jwi . Take the diagonal product of these embeddings to construct an

embedding Lwi · Jwi ↪→ M2m(Lwi) such that (Lwi · Jwi)
τ⊗1 = Jwi .

The double centralizer theorem (Theorem 2.23) gives that C := CA⊗Fwi
(Lwi ·Jwi)

is a central simple algebra over Lwi · Jwi of degree m. The fact that τ ⊗ 1 fixes
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Jwi means that τ ⊗ 1|C is an involution of the second kind on C fixing Jwi .

Consider an arbitrary subfield Ewi of C such that [Lwi · Jwi : Ewi ] = m, then

[20], Proposition 2.1, p. 5 gives that Kwi = Eτ⊗1|C
wi is a degree m extension of

Jwi disjoint from Lwi .

• If L⊗F Fwi $ Fwi×Fwi , then A⊗F Fwi $ A′
wi
×A

′op
wi

with the exchange involution,

so we can choose a maximal subfield Kwi of A′
wi

and let Jwi ⊂ Kwi be such that

[Kwi : Jwi ] = m. Then Ewi = Kwi ×Kop
wi
$ K2

wi
⊂ Awi and E

τwi
wi = Kwi .

• Finally, if L ⊗F Fwi $ Fwi × Fwi for all i and L ⊗F Fvj $ Fvj × Fvj for all j,

choose a (non-archimedean) valuation s on F such that L⊗F Fs = Ls is a field

and choose an arbitrary subfield Es ⊂ A⊗F Fs such that dimFs(E
τs
s ) = 2m and

Es $ Eτs
s ⊗Fs Ls and let Ks = Eτs

s with Js ⊂ Ks an arbitrary subfield with

[Ks : Js] = m.

Case II n is odd.

In this case, let p be the smallest prime dividing n and let n = mp. For the

archimedean valuations, either A⊗F Fvi $ Mn(C) or Mn(R)×Mn(R)op.

• If A⊗F Fvi $ Mpm(R)×Mpm(R) with exchange involution, let Jvi $ Rp ⊂ Rn =

Kvi where Kvi embeds as in the even case, but now let ei be the matrix with 1’s

in the (i− 1)m + 1 to im diagonal entries and 0’s elsewhere and let Jvi embed

in Kvi via
∑

Rei.

• If A ⊗F Fvi $ Mpm(C) with involution τ(X) = f−1X
T
f , which corresponds to

the hermitian form f = r · 〈1,−1〉 ⊕ (pm − 2r)〈1〉, then let Kvi = Rn embed

in A ⊗F F τ⊗1
vi

via diagonal matrices. Let ei be the matrix with 1’s in the
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(i − 1)m + 1 to im diagonal entries and 0’s elsewhere. Then Jvi = Rp embeds

in Kvi via
∑

Rei.

• For the non-archimedean valuations, choose Kwi , Jwi (and Ks and Js, if neces-

sary) as in the case that n is even.

Let F ⊂ J ⊂ K be a tower of field extensions of F such that J ⊗F Fxi $ Jxi

and K ⊗F Fxi $ Kxi , where xi is any archimedean valuation or any non-archimedean

valuation listed in the section above. By construction, E = K ⊗F L is a field and in

the notation of Lemma 3.30 there exists an embedding of Fv-algebras with involution

(E ⊗F Fxi , σ ⊗ 1) ↪→ (A⊗F Fxi , τ ⊗ 1).

By Lemma 3.30 such an embedding exists for any valuation not among the xi

(since all valuations such that GFv are not split nor quasi-split are contained in the

xi), thus by [20], there exists an embedding of algebras with involution:

(K ⊗F L, 1⊗ γ)
ι

↪→ (A, τ).

Next I claim that ι(K⊗L)⊗F Fv and Ev are conjugate by an element of GFv for every

archimedean place v on F . Indeed, ι(K ⊗L)⊗Fv and Ev both correspond to unique

maximal tori in GFv it suffices to show that the corresponding tori are conjugate (see

[20], Proposition 2.3, p. 6).

If A⊗F Fv $ Mn(C), then ι(K ⊗ L)⊗ Fv and Ev both correspond to anisotropic

maximal tori in GFv , hence are conjugate in GFv . If A ⊗F Fv $ Mn(R) ×Mn(R)op,

then both ι(K ⊗ L)⊗ Fv and Ev correspond to tori of maximal Fv-rank, hence they

are also conjugate by an element of GFv . Finally, if A⊗F Fv $ Mn/2(H)×Mn/2(H),

then ι(K⊗L)⊗Fv and Ev both correspond to maximal tori of maximal rank over Fv
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in GFv , hence they are conjugate as well. By considering eigenvalues with multiplicity

we must have that this conjugation takes ι(J ⊗ L)⊗ Fv to Jv.

Proof of Proposition 3.28. Let P = J ⊗F L and consider

H = RJ/F (SU(CA(P ), τ |CA(P ))) ≤ G.

Then H is a proper simple subgroup, and I claim that H has appropriate real rank.

To see this, note that if v ∈ V F
∞,R is such that J⊗F Fv $

∏
J (i)

v where J (i)
v are field ex-

tensions of Fv, then HFv $
∏

R
J

(i)
v /Fv

(SU(CA(P ), τ |))
J

(i)
v
$

∏
R

J
(i)
v /Fv

(SU(CA(P )⊗J

J (i)
v , τ | ⊗ 1)).

First, consider the case that J⊗F Fv $ C. This implies that A⊗F Fv $ Mn/2(H)×

Mn/2(H), and because J⊗F Fv is conjugate to Jv, we have that CA⊗F Fv(Jv⊗L) consists

of scalar matrices in each component. Thus SU(CA⊗F Fv(J ⊗F L ⊗ Fv), τ | ⊗ 1) $

SLn/2(C), and so HFv $ RC/R(SLn/2(C)) has rank n
2 − 1 ≥ 2, as required.

Next, assume that J ⊗F Fv is not a field. Then J ⊗F Fv $ Rp if n = pm, where

p is the smallest prime dividing n and up to conjugation (and possibly renumbering)

J (i)
v = Rei. To calculate SU(CA(P ) ⊗J J (i)

v , τ | ⊗ 1), consider the following chain of

isomorphisms:

⊕
CA(P )⊗J J (i)

v $ CA(P )⊗J (
∏

J (i)
v ) $ CA(P )⊗J J ⊗F Fv

$ CA(P )⊗F Fv $ CA⊗F Fv(P ⊗F Fv)

$ CA⊗F Fv(Pv) $
∏

i

Cei·A⊗F Fvei(Rei · Lv)

all of the isomorphisms respect components and involutions (because we conjugate

by an element of GFv), thus HFv $
∏

SU(CeiA⊗F Fvei(Rei · Lv)).

If A⊗F Fv $ Mn(R)×Mn(R), then this means that HFv $
∏p

i=1 SLm(R), which

has higher rank. If A ⊗F Fv $ Mn(C) and τ ⊗ 1 corresponds to the hermitian
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form with diagonalization r · 〈1,−1〉 ⊕ (pm− 2r)〈1〉, then HFv $ SUm(C, f1)× · · · ×

SUm(C, fp), where f = f1 ⊕ · · · ⊕ fp and f1 is taken from the first m coefficients of

the diagonalization of f , f2 from the second, and so on. If r = 1, then both GFv and

SUm(C, f1) have rank 1, thus HFv has rank 1. If r ≥ 2 and m > 3, then SUm(C, f1)

has rank ≥ 2, thus HFv is of higher rank. If r ≥ 2 and m = 3, then SUm(C, f1) has

rank 1, as does SUm(C, f2), thus HFv is of higher rank as well.

Combining these cases shows that H has appropriate real rank and thus G is not

minimal.
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Chapter 4

Exceptional Groups Splitting over

Quadratic Extensions

The purpose of this section is to prove that absolutely simple groups of type E7, E8, F4

and G2 are not minimal. Unless otherwise stated, G will be simply connected through-

out this section. The approach for these four cases will rely on the following obser-

vation:

Lemma 4.1 Any group of type E7, E8, F4 or G2 over F becomes split over a purely

imaginary quadratic extension K.

Proof. Notice that the automorphism groups of the Dynkin diagrams for each of

these groups are trivial, and that any group of type E8, F4 or G2 has trivial centre,

while a simply connected group of type E7 has centre µ2. If we choose any purely

imaginary quadratic extension K of V , then Theorem 2.14 immediately gives that

GK is split for any G of type E8, F4 or G2.

If G is of type E7, assume that G = ξG0, where G0 is split and simply connected

of type E7 and [ξ] ∈ H1(F, G0). Then the image of [ξ] in H2(F, Z(G0)) corresponds

to a quaternion algebra over F , say D. By the weak approximation property, there

exists an a ∈ F such that the image of a in Fv is negative for all v ∈ V F
∞,R and a is non-

square in Fv for all non-archimedean places v on F such that D⊗F Fv is non-split. Let
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K = F (
√

a), then D becomes split over K by the Hasse principle for central simple

algebras. This means that ResK/F ([ξ]) is in the image of H1(K, G0) → H1(K, G0),

but H1(K, G0) is trivial by Theorem 2.10 so ResK/F ([ξ]) is trivial, i.e. G is split over

K.

Remark 4.2 Note that in the case that G has type G2, we can choose K = F (
√

a)

with a positive in Fv for all v ∈ SG such that G splits over K. Recall from Tits’

classification [24] that in this case SG = S ′′G, i.e. G is split over Fv for all v ∈ SG.

By the weak approximation property, we may choose a ∈ F such that the image of

a in Fv is positive for all v ∈ SG = S ′′G and the image of a in Fv is negative for all

v ∈ V F
∞,R\SG. Let K = F (

√
a), then if w ∈ V K

∞,R lies over v ∈ SG we have

ResKw/K ◦ResK/F ([ξ]) = ResKw/Fv ◦ResFv/F ([ξ]) = ResKw/Fv(1) = 1

and if w ∈ V K
∞,R lies over v ∈ V F

∞,R\SG then Kw is algebraically closed so

ResKw/K ◦ResK/F ([ξ]) = 1

automatically. Applying the above corollary gives that G splits over K, and K ↪→ Fv

for all v ∈ SG.

I introduce some notions developed by Chernousov in [5] relating to groups split-

ting over quadratic extensions. Let G be an F -defined group splitting over a quadratic

extension K/F , τ be the non-trivial element of Gal(K/F ) and T be some maximal

F -torus in G splitting over K (see [5], §4, p. 302 for remarks on the existence of T ).

Lemma 4.3 ([5], Lemma 4.1, p. 303) Let T be as above, then for any α ∈ Σ(G, T ),

we have τ(α) = −α.
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Definition 4.4 ([5], p. 304) If we choose a Chevalley basis {Hα1 , . . . , Hαn , Xα, α ∈

Σ(G, T )} then the above lemma implies that τ(Xα) = cαX−α for some cα ∈ F . Call

{cα | α ∈ Σ(G, T )} the structure constants of G with respect to T .

Note that these structure constants depend of the choice of T :

Lemma 4.5 ([5], Lemmas 4.6 and 4.7, p. 305) Any two maximal F -tori (say T

and T ′) of G splitting over K are isomorphic over F and T ′ = gTg−1 for some

g ∈ G(K) such that t = g−1+τ ∈ T (K). Moreover, if t = hα1(t1) · · ·hαn(tn) then

ti ∈ F× and the structure constants {c′α} with respect to T ′ are related to the structure

constants {cα} with respect to T by:

c′α = t−〈α,α1〉
1 · · · t−〈α,αn〉

n · cα

Because τ(α) = −α, we have that Gα is F -defined, and furthermore it can be

shown that:

Lemma 4.6 ([5], Lemma 4.11, p. 306) Gα $ SL1(Dα), where Dα is the quater-

nion algebra (d, cα).

Using this, we can already eliminate one type of algebraic group from the list of

possible minimal algebraic groups:

Proposition 4.7 Every anisotropic group G of type G2 over F contains an absolutely

simple subgroup H of type A2 of appropriate real rank.

Proof. Choose a as in remark 4.2 and T splitting over K = F (
√

a). Recall the

notion of a standard subgroup and the notation GΣ′ from 2.2.5. Let Σ′ be the root

sub-system of long roots in Σ(G, T ) and let H = GΣ′ . For any v ∈ SG we have that

T is split over Fv, thus H is split over Fv.
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Assume again that G is any simple group splitting over quadratic extension and

that τ , T are as above. The structure constants defined above are very useful in

determining the isotropy of G over Fv for v ∈ V F
∞,R. From Lemma 4.6, we obtain:

Lemma 4.8 Given v ∈ V F
∞,R such that K ⊗F Fv $ C:

1. G is anisotropic over Fv if and only if cα are negative in Fv for all α ∈ Σ(G, T )

2. If 〈α, β〉 = 0 and cα, cβ > 0 in Fv, then G has higher rank over Fv.

Proof. Only the “if” direction of the first statement requires proof, the others are

immediate. Note that over Fv $ R, a semisimple group is anisotropic if and only if it

is compact. If all structure constants are negative in Fv, then every root subgroup is

anisotropic. By Tychonoff’s theorem, the arbitrary product of these root subgroups

is compact. Because GFv is generated by the root subgroups, this gives that GFv is

the image of a compact set and therefore compact.

From [24], there are three possibilities for the rank of a group G of type F4 over

any field. Over a completion Fv for v ∈ V F
∞,R, I claim that the sign of the structure

constants completely determines the rank of G over Fv.

Lemma 4.9 If G is anisotropic over F of type F4, T ≤ G is a maximal F -defined

torus splitting over K as in Lemma 4.1 and {cα} are the structure constants of G

with respect to T , then for v ∈ V F
∞,R:

1. cα < 0 in Fv for all α if and only if GFv is anisotropic.

2. Over Fv, cα < 0 for all long roots α and cβ > 0 for some short root β if and

only if G has Fv-rank 1.

3. At least one long root α has cα > 0 in Fv if and only if G is Fv-split.
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Proof. The first statement is Lemma 4.8(1). Assume that for some α ∈ Σ(G, T )

with length 2 we have cα > 0 in Fv. I claim that GFv is then split.

Let Σ′ ≤ Σ(G, T ) be the sub-root system generated by the long roots, so that Σ′

has type D4, and let H = GΣ′ . Then because Gal(K/F ) stabilizes {±α} for each

α ∈ Σ(G, T ), we have that H is of type 1D4. By the assumption that cα > 0 for some

long root α, we also have that H is Fv-isotropic. From [24], we therefore have that

RankFv(H) ≥ 2, thus RankFv(G) ≥ 2 and so G is split over Fv.

To complete the proof of the lemma, it suffices to prove that if G is split over Fv

then cα > 0 for some long root α ∈ Σ(G, T ). Assume that G is split over Fv and

let T ′ be a maximal torus in G split over Fv. If cα < 0 in Fv for all α ∈ Σ′, then

H is anisotropic over Fv. Let B be a Borel subgroup of G containing T ′. Note that

(B ∩H)0 is reductive. Because reductive groups are unirational (see [23], Corollary

13.3.9, p. 231), this means that (B ∩ H)0(Fv) is non-empty. Choose a Fv-rational

point x ∈ (B ∩ H)0(Fv) of infinite order, then 〈x〉 is a connected diagonalizable

subgroup of H defined over Fv, a contradiction.

4.1 Modification of Structure Constants

Recall that the structure constants are dependent on the choice of maximal F -torus

T ≤ G splitting over K, and that Lemma 4.5 gives a formula for how the structure

constants change if we choose another T ′ ≤ G. We can use this to ‘modify’ structure

constants by replacing T with gTg−1 for specifically chosen g ∈ G(K). In particular,

Lemma 4.6 gives that Gα(K) $ SL2,K for all α ∈ Σ(G, T ), so given y ∈ K× we can

define

gα =



1 τ(y)
cα−yτ(y)

0 1







1 0

y 1




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and show that g1−τ
α = hα( cα

cα−yτ(y)). If {cβ} are the structure constants of G with

respect to T and we replace T by T ′ = gαTg−1
α and let {c′β} be the structure constants

of G with respect to T ′, then Lemma 4.5 implies that c′β =
(

cα
cα−yτ(y)

)〈β,α〉
cβ.

Given that Lemma 4.8 is interested only in the sign of cβ in Fv for v ∈ V F
∞,R (which

I denote by Signv(cβ)), this is all we are interested in modifying when we modifying

structure constants. We can do this for each v ∈ V F
∞,R independently:

Lemma 4.10 Given α ∈ Σ(G, T ), v ∈ V F
∞,R such that Signv(cα) = 1, we can choose

gα ∈ Gα(K) such that, if {c′β} are the structure constants of G with respect to gαTg−1
α ,

then

1. Signw(c′β) = Signw(cβ) for all w /= v ∈ V F
∞,R and

2. Signv(c
′
β) = (−1)〈β,α〉 Signv(cβ) for all β.

Proof. By the weak approximation property, we can choose y ∈ F such that

|y2|w < |cα|w for all w /= v ∈ V F
∞,R and |cα|v < |y2|v. Define gα as above. Replacing T

by T ′ = gαTg−1
α , we get that c′β =

(
cα

cα−y2

)〈β,α〉
cβ. Our choice of y gives that c′β has

the desired sign in Fv for all v ∈ V F
∞,R.

We call a modification of the form above a modification of T by α with respect to

v.

Proposition 4.11 Every anisotropic group G of type F4 over F contains an abso-

lutely simple subgroup H of type B3 of appropriate real rank.

Proof. Let Σ′ be the root subsystem of Σ(G, T ) generated by {α1, α2, α3} and let

H = GΣ′ (throughout the proof I use Bourbaki’s explicit realization of root systems

([3], Plate I-IX, with identical notation). Then H is a proper, absolutely simple

subgroup of G, so it suffices to show that H has appropriate real rank.
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Claim 4.12 We can choose T in such a way that Signv(cα3) = 1 for all v ∈ SG and

Signv(cα1) = 1 for all v ∈ S ′′G.

First I claim that we can modify T so that Signv(cα1) = 1 for all v ∈ S ′′G. If v ∈ S ′′G,

then by Lemma 4.8 we have that Signv(cα) = 1 for some long root α ∈ Σ(G, T ). The

possibilities for 〈α1, α〉 are 0,±1 and ±2. If there exists a long root α such that

Signv(cα) = 1 and 〈α1, α〉 = ±2, then α = ±α1, so assume no such α exists. If there

exists such an α such that 〈α1, α〉 = ±1, then modifying T by α with respect to v

yields T as desired.

If there does not exist an α with Signv(cα) = 1 and 〈α1, α〉 = ±1, but there does

exist α with Signv(cα) = 1 and 〈α1, α〉 = 0, then α must be of the form ±(ε1 + ε2) or

±ε3 ± ε4. If α = ±ε3 ± ε4 let α′ = ε2 + ε4 and if α = ±(ε1 + ε2) let α′ = ε2 + ε3. In

either case, we have that 〈α′, α〉 = ±1 and 〈α1, α′〉 = ±1, so modifying T by α′ with

respect to v returns us to the case that there exists a long root α with Signv(cα) = 1

and 〈α1, α〉 = ±1.

Assume that v ∈ S ′′G and we have done the modifications above so that Signv(cα1) =

1. If Signv(cα3) = 1, then T is as required. If Signv(cα3) = −1 and there exists a

short root β such that Signv(cβ) = 1 and 〈α3, β〉 = ±1, then modifying T by β with

respect to v gives T as required. If no such β exists, let β′ = 1
2(ε1 + ε2 − ε3 + ε4),

then 〈β′, α1〉 = 1 = 〈α3, β′〉 and 〈α1, β′〉 = 2. Modifying T by α1 with respect to

v gives a new T such that Signv(cβ′) = 1. Next, modifying T by β′ with respect

to v gives another T such that Signv(cα3) = 1 and Signv(cα1) is unchanged (because

〈α1, β′〉 = 2). This new T is such that Signv(cα1) = 1 = Signv(cα3) for all v ∈ S ′′G.

Assume now that v ∈ S ′G. If Signv(cβ) = 1 for β = ±1
2(ε1 ± ε2 ± ε3 ± ε4), then

〈β, α3〉 = ±1, so we can modify T by β with respect to v to obtain Signv(c
′
α3

) = 1. If

Signv(cβ) = −1 for all β of the form above, then we must have that Signv(εi) = 1 for
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some i /= 4 by the assumption that some short root has positive associated structure

constant. Fix β = 1
2(ε1 + ε2 + ε3 + ε4). Then Signv(cβ) = −1 by assumption, and we

have 〈εi, α3〉 = 0, 〈β, εi〉 = 1 for all i. This means that if we modify T first by εi and

then by β with respect to v, we will have Signv(c
′′
α3

) = 1. This proves the claim.

Combining Lemma 4.8 with the above claim yields that H has appropriate real

rank, thus H is not minimal.

Proposition 4.13 Any anisotropic group G of type E7 over F contains an absolutely

simple subgroup H of type A3 of appropriate real rank.

Remark 4.14 By [24], SG = S ′′G for G of type E7.

Proof. For a maximal F -defined torus T of G, define Σ′ ⊂ Σ(G, T ) to be the sub-

root system generated by {α5, α6, α7}, and let H = GΣ′ . Clearly, H is an absolutely

simple proper subgroup of type A3 and it remains to show that H has appropriate

real rank. By Lemma 4.8, it suffices to prove the following:

Claim 4.15 We can choose T so that cα5 , cα7 > 0 in Fv for all v ∈ SG.

By Lemma 4.8, we may always choose some α ∈ Σ(G, T ) such that Signv(cα) = 1.

After modification, we can say that Signv(cα7) = 1. Indeed, assume that Signv(cα7) =

−1. If there exists α with 〈α7, α〉 = ±1, then modification of T by α with respect to

v reverses the sign of cα7 . If 〈α7, α〉 ∈ {0,±2} for all α ∈ Σ(G, T ) with Signv(cα) = 1,

then choose an α with Signv(cα) = 1, define κ = ε7 − ε8 + ε6 − ε5 and let α′ be





εj + ε6 if α = ±εj ± εk, j < k ∈ {1, 2, 3, 4}

ε4 + ε6 if α = ±(α5 + α6)

1
2(κ +

∑4
i=1 εi) if α = ±(ε7 − ε8)

1
2(κ + (−1)ν(4) +

∑3
i=1(−1)1−ν(i)εi)if α = 1

2(ε7 − ε8 ± (ε5 + ε6) +
∑4

i=1(−1)ν(i)εi)
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Then modifying T by α with respect to v returns us to the case where there exists

α′ with Signv(cα′) = 1 and 〈α7, α′〉 = ±1, and so we can modify T again so that

Signv(cα7) = 1.

Now, assuming that we have modified T so that Signv(cα7) = 1, I claim that we

can modify T further so that Signv(cα5) = 1 as well. To see this, let β1 = ε1 − ε6

and β2 = 1
2(ε8 − ε7 + ε6 + ε5 + ε4 − ε3 − ε2 − ε1). Recall that if Signv(cα) = 1, then

modifying T by α with respect to v only affects Signv(β) for those β with 〈β, α〉 odd.

In the following graph, the nodes correspond to roots, and edges connect roots such

that 〈α, β〉 is odd:

β1 β2

α7 α6 α5

α4

#
#

##

If Signv(cα5) = 1, then no modification is necessary. If Signv(cα5) = −1, but Signv(cβ2)

or Signv(cα4) = 1, then modify T by β2 or α4 with respect to v to change the sign

of cα5 in Fv. Assume then that Signv(cα5) = Signv(cα4) = Signv(cβ2) = −1. If

Signv(cα6) = Signv(cβ1) = 1, then modifying T first by α6, then by β1 with respect

to v reverses Signv(cα7) twice and Signv(cα5) once, so after modification Signv(cα7) =

1 = Signv(cα5). If Signv(cα6) = Signv(cβ1) = −1, then modifying by α7 with respect

to v returns us to the case where Signv(cα6) = Signv(cβ1) = 1.

If Signv(cβ1) = 1 and Signv(cα6) = −1, then modifying T by α7 with respect to v

gives Signv(cβ1) = −1 and Signv(cα6) = 1. Therefore the only case left to consider is
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the case where:

Signv(cα7) = Signv(cα6) = 1

Signv(cβ1) = Signv(cβ2) = Signv(cα5) = Signv(cα4) = −1

In this case, if we modify T with respect to v by roots in the following order

α6, α5, β2, β1, α4, then (Signv(cα7), Signv(cα5)) changes in the following way:

(1,−1)
α6→ (−1, 1)

α5→ (−1, 1)
β2→ (−1,−1)

β1→ (1,−1)
α4→ (1, 1)

so after modification, Signv(cα7) = 1 = Signv(cα5), as required.

Proposition 4.16 Any anisotropic group G of type E8 over F contains an absolutely

simple subgroup H of type A3 of appropriate real rank.

Proof. As in the previous case, define Σ′ to be the subsystem of Σ(G, T ) generated

by {α5, α6, α7}. Also as in the previous case, from [24] we have SG = S ′′G for groups

of type E8, so it suffices to prove that we can choose some maximal F -torus T of G

so that Signv(cα5) = Signv(cα7) = 1 for all v ∈ SG.

Let Σ′′ ⊂ Σ(G, T ) be the subsystem of Σ(G, T ) of type E7 generated by {α1, . . . , α7}.

To reduce the proof to the previous case, it suffices to show that it is possible to

choose a maximal F -torus T of G so that Signv(α) = 1 for some root α ∈ Σ′′. In-

deed, if we can show that some α ∈ Σ′′ has Signv(cα) = 1, then we can modify T

with respect to each v by roots in Σ′′ as described in the previous proof to obtain

Signv(cα5) = Signv(cα7) = 1 for all v ∈ S ′′G.

Let β1 = ε6 + ε8 and β2 = ε6 − ε8, then 〈
∑8

i=1(−1)ν(i)εi, βj〉 /= 0 mod 2 for j = 1

or 2. Next, if α = ±εi ± εj and 〈βj, α〉 ≡ 0 mod 2, then 〈α, αi〉 /= 0 mod 2 for some

1 ≤ i ≤ 7. This means that no matter what, for every α ∈ Σ(G, T ), there exists a

γ ∈ Σ(G, T ) and a δ ∈ Σ′′ such that 〈α, γ〉 ≡ 〈γ, δ〉 ≡ 1 mod 2.
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If Signv(cδ) = 1, we are done. If Signv(cγ) = 1, modify T by γ with respect to v

to obtain that Signv(c
′
δ) = 1. If Signv(cγ) = −1, modify T by α with respect to v.

This ether reverses the sign of cδ with respect to v, or it returns us to the previous

case. In any event, Signv(cδ) = 1, with δ ∈ Σ′′.
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Chapter 5

Modification of Cocycles

5.1 Modification of Cocycles Lemma

There are two types of absolutely simple groups left to examine, 3,6D4 and 1,2E6. Let

G0 be a simply connected quasi-split group of the above type, let G0 = G0/Z(G0) be

the corresponding quasi-split adjoint group and for a subgroup H ≤ G0, let H be the

image of H in G0. We use the following technique for both types: Let G correspond

to [ξ] ∈ H1(F, G0) and assume that we can construct a maximal torus T ≤ G0 such

that:

1. [ξ] is in the image of H1(F, T ) → H1(F, G0),

2. T normalizes a proper, simple subgroup H of G0, and

3. (T ∩H)0 has appropriate real rank.

If these conditions hold, then a twisted copy of H lies in G by conditions (1) and (2),

and H has appropriate real rank by condition (3), thus G is not minimal.

Assume that we can construct a torus T satisfying properties (2) and (3) and we

can find [µ] ∈ H1(F, T ) such that [ξ] and [µ] have the same image in H2(F, Z(G0))
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under the commuting diagram with exact rows:

H1(F, G0) H1(F, G0) H2(F, Z(G0))

H1(F, T ) H1(F, T ) H2(F, Z(G0))

!π1 !δ1

$
ι1

!
π2

$
ι2

!
δ2

$
= (1)

We wish to ‘modify’ [µ] ∈ H1(F, T ) by an element [α] ∈ H1(F, T ) to get [µ] ·π2([α]) ∈

H1(F, T ) so that ι2([µ] · π2([α])) = [ξ]. More precisely:

Lemma 5.1 (Modification of Cocycles) Given G0, G0, T, T , [ξ] as above, if there

exist:

1. [µ] ∈ H1(F, T ) with δ2([µ]) = δ1([ξ]), and

2. [νv] ∈ H1(Fv, T ) with ι2([νv]) = [ξv] for each archimedean place v

then there exists a [γ] ∈ H1(F, T ) such that ι2([γ]) = [ξ].

Proof. Keep the notation of diagram (1). By the Hasse principle for H1(F, G0)

(see Theorem 2.14), it suffices to show that we can choose [γ] ∈ H1(F, T ) such that

ι2([γv]) = [ξv] for any valuation v on F .

Fist, I claim that ι2([µv]) = [ξv] for any non-archimedean place v. From the

condition that δ2([µ]) = δ1([ξ]), we see that ι2([µv]) ∈ δ−1
1 (δ1([ξv])). From [22], Chap-

ter 1, Section 5, δ−1
1 (δ1([ξv])) is in bijective correspondence with H1(Fv, ξG0)/ ∼

for some equivalence relation ∼. Because we assume that ξG0 is simply connected

and v is non-archimedean, Kneser’s theorem gives that H1(Fv, ξG0) = {1} and so

δ−1
1 (δ1([ξv])) = {[ξv]}, i.e. ι2([µv]) = [ξv].
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Next, given v ∈ V F
∞,R, condition (2) gives that δ2([νv]) = δ1([ξv]) and condition (1)

gives that δ2([µv]) = δ1([ξv]), so δ2([νv]) = δ2([µv]). By the exactness of the bottom

row in diagram (1), we get that [µv] = [νv] · π2([λv]) for some [λv] ∈ H1(Fv, T ). From

Lemma 2.16, the map H1(F, T )
ΠResFv−→ Πv∈V F

∞,R
H1(Fv, T ) is surjective. This means

that we can choose [α] ∈ H1(F, T ) such that [αv] = [λv] for all v ∈ V F
∞,R.

I claim that [γ] := [µ] · π2([α]) has ι2([γv]) = [ξv] for every v. For v non-

archimedean, note that

δ1(ι2([γv])) = δ2([γv]) = δ2([µv]) · δ2(π2([αv])) = δ2([µv]) = δ1([ξv])

but we have shown that the fibre of [ξv] under δ1 is just {[ξv]}, so ι2([γv]) = [ξv] for

every non-archimedean v. Finally, for v ∈ V F
∞,R we have

ι2([γv]) = ι2([µv] · π2([αv])) = ι2([µv] · π2([λv])) = ι2([νv]) = [ξv]

by construction.

5.2 Type 3,6D4

5.2.1 Groups of type D4 over R

First, we recall some facts about groups of type D4 over R: Because there exist no

cubic field extensions of R, any group G of type D4 over R is of type 1,2D4. By Tits’

classification, any simply connected group of type 1D4 over R is isomorphic to a group
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of the form Spin(fi), where fi is one of:

f0 =
8∑

i=1

x2
i ,

f2 =
6∑

i=1

x2
i − y2

1 − y2
2, or

f4 =
4∑

i=1

x2
i −

4∑

i=1

y2
i

up to multiplication by ±1. Let G0 be the split simply connected group of type 1D4,

so G0 $ Spin(f4). Note that f4 is a Pfister form over R and recall that a Pfister

form over R is either split or anisotropic. This gives that Spin(f0) and G0 are the

two distinct groups corresponding to cocycles from the set H1(R, G0), and Spin(f2)

corresponds to a cocycle in H1(R, G0) that is not contained in the image of H1(R, G0).

If G has type 2D4, then G is also isomorphic to a group of the form Spin(fi),

except now fi has discriminant −1, thus fi is either:

f1 =
7∑

i=1

x2
i − y2

1, or

f3 =
5∑

i=1

x2
i −

3∑

i=1

y2
i

up to multiplication by ±1.

5.2.2 Construction of T

Let G now be a simply connected group of type 3,6D4 corresponding to [ξ] ∈ H1(F, G0),

where G0 is now the simply connected quasi-split group of type 3,6D4. Let E be a

cubic extension of F over which G has type 1,2D4. Then Z(G0) $ R(1)
E/F (µ2) and so

H2(F, Z(G0)) $ ker( 2Br(E)
Cor−→ 2Br(F )) where N is the norm map. Recall that the
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order of an element of Br(E) is equal to its index (see Section 2.2.7), so the image of

[ξ] in H2(F, Z(G0)) is represented by the isomorphism class of a quaternion algebra

[(a, b)E]. Because the corestriction of [(a, b)E] is trivial we can choose a, b such that

a ∈ F and NE/F (b) = 1 (see [10], Section 7.3, p. 195). Applying the weak approx-

imation property to the norm form of [(a, b)E], it is not difficult to see that we can

also choose a so that F (
√

a) has no real completions.

The following result is proven the proof of [6], Theorem 6.1:

Theorem 5.2 There exists a subgroup H < G0 of type A1 × A1 × A1 × A1 that is

isogenous to RP/F (SL2) for some quartic field extension P/F that is contained in

E(
√

b,
√

σ(b),
√

σ2(b)) where
√

σi(b) are the Galois conjugates of
√

b in the normal

closure of E over F .

Let H̃ = RP/F (SL2), H the image of H̃ in G0, H the image of H̃ in G0 and

H
′
= H̃/Z(H̃). If we consider the sequence of projections

H̃
φ1−→ H

φ2−→ H
φ3−→ H

′

then ker(φ1) is the diagonal embedding of µ2 into Z(H̃) over the algebraic closure,

ker(φ2) = Z(G0) and ker(φ3) = Z(H) $ Z(H)/Z(G0) $ µ2.

In [6], Chernousov, Lifschitz and Morris construct a maximal torus T0 ≤ G0

that is the almost direct product of Gm and RE/F (R(1)

E(
√

b)/E
(Gm)). Let T̃0 = Gm ×

RE/F (R(1)

E(
√

b)/E
(Gm)), then T̃0 → T0 ≤ G0 via the product map. Let T0 be the

image of T0 in G0. If α1, . . . , α4 are a basis of Σ(G0, T0), then RE/F (R(1)

E(
√

b)/E
(Gm)) =

T0 ∩Gα1,α3,α4 and H = GΦ, where Φ = {α2, α2 + α3 + α4, α2 + α1 + α4, α2 + α1 + α3}.

In this notation, we have:

Lemma 5.3 There exists a cocycle [µT0
] ∈ H1(F, T0) such that [µT0

] 8→ [(a, b)E]

under H1(F, T0) → H1(F, G0) → H2(F, Z(G0))
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Proof. Consider the sub-torus S ≤ T0 given by S = RE/F R(1)

E(
√

b)/E
Gm and let S

be the image of S in G0. I claim that there exists a [µS] ∈ H1(F, S) that maps to

[(a, b)E] ∈ H2(F, Z(G0)). The image of [µS] under the map H1(F, S) → H1(F, T0) is

then the cocycle we are looking for.

To see that [µS] exists, consider the F -defined subgroups Z̃, Z ≤ S where Z is

the centre of G0 and Z̃ is the 2-torsion part of S, also given by RE/F (µ2). Note that

over F , Z̃ has the form µ2 × µ2 × µ2, the norm map is given by the product of the

entries and Z is the kernel of this map. Using this, we have an interlocking diagram

of exact sequences:

1

1 µ2

1 Z S S 1

1 Z̃ S S/Z̃

µ2 1

1

"

" "
! !

" "

=

! !

"
! !

"

NE/F

!

"

!

"
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which induces the following exact sequences of Galois cohomology sets with corre-

sponding morphisms:

H1(F, S) H1(F, S) H2(F, Z)

H1(F, S) H1(F, S/Z̃) H2(F, Z̃)

H2(F, µ2) H2(F, µ2)

"

=

! !

" "
! !

" "

NE/F

!=

Assume that there is [µS/ eZ ] ∈ H1(F, S/Z̃) that maps to [(a, b)E] under H1(F, S/Z̃) →

H2(F, Z̃) in the diagram above. The norm of (a, b)E is trivial by assumption, so [µS/ eZ ]

is the image of some [µS] ∈ H1(F, S). We have a section λ : µ2 → Z̃ given by the

diagonal embedding, and so H2(F, Z) → H2(F, Z̃) is injective. This, combined with

the commutativity of the upper-right hand square, shows that [µS] 8→ [(a, b)E] ∈

H2(F, Z).

It remains to prove that there exists a [µS/ eZ ] ∈ H1(F, S/Z̃) such that [µS/ eZ ] 8→

[(a, b)E] ∈ H2(F, Z̃). Note that, by Shapiro’s Lemma,

H1(F, S/Z̃) → H2(F, Z̃)

is equivalent to

H1(E, R(1)

E(
√

b)/E
(Gm)/µ2) → H2(E, µ2).

Thus Lemma 2.24 gives the existence of [µS/ eZ ] ∈ H1(F, S/Z̃).

Let [µH ] be the image of [µT0
] in H1(F, H), [µH

′ ] its image in H1(F, H
′
) and

[(r, s)P ] the image of [µH
′ ] under the isomorphism H1(F, H

′
) → H2(F, RP/F (µ2)) $

2Br(P ). Choose p ∈ P such that [(r, s)P ] splits over P (
√

p), and define T̃ =
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RP/F (R(1)
P (
√

p)/P (Gm)) embedded in H̃ via the regular representation. Let T be the

image of T̃ in H, T the image of T̃ in H and T
′
the image of T̃ in H

′
. Then:

Lemma 5.4 There exists [µ] ∈ H1(F, T ) such that [µ] 8→ [µH ] under H1(F, T ) →

H1(F, H)

Proof. Consider the following commutative diagram with exact rows:

1 Z(H) T T
′ 1

1 Z(H) H H
′ 1

! !

"

=

!

"

!

"
! ! ! !

This induces the following commutative diagram with exact rows:

H1(F, Z(H)) H1(F, T ) H1(F, T
′
) H2(F, Z(H))

H1(F, Z(H) H1(F, H) H1(F, H
′
) H2(F, Z(H)

!ι1

"

=

!π1

"

ι2

!δ1

"

ι4

"

=

!
ι3

!
π2

!
δ2

(2)

By Shapiro’s Lemma, H1(F, T
′
)

ι4−→ H1(F, H
′
) is isomorphic to

H1(P, R(1)
P (
√

p)/P (Gm)) → H1(P, PSL2)

and so by Lemma 2.24, there exists a [µ′] ∈ H1(F, T
′
) such that ι4([µ′]) = [µH

′ ]. The

assumption that ι4([µ′]) = [µH
′ ] gives that δ1([µ′]) = δ2([µH

′ ]) = 1, and so there exists

a [µ′′] ∈ H1(F, T ) such that π1([µ′′]) = [µ′]. By the commutativity of diagram (2),

π2(ι2([µ′′])) = π2([µH ]) and so from [22], Chapter 1, Section 5 we find that there exists

a [θ] ∈ H1(F, Z(H)) such that ι3([θ]) · ι2([µ′′]) = [µH ]. If we define [µ] = ι1([θ]) · [µ′′],

then ι2([µ]) = ι2ι1([θ]) · ι2([µ′′]) = ι3([θ]) · ι2([µ′′]) = [µH ].
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5.2.3 Modification of [µ]

By Lemma 5.4 and the commutativity of the following diagram:

H1(F, T ) H2(F, Z(G0))

H1(F, H)
"

!

%
%

%
%

%
%%&

we have that [µ] 8→ [(a, b)E] under H1(F, T ) → H2(F, Z(G0)). In this section we

modify [µ] as in Section 5.2.1 to obtain a cocycle [γ] ∈ H1(F, T ) such that [γ] 8→ [ξ]

under H1(F, T ) → H1(F, G0). In order to do this, we need cocycles [νv] ∈ H1(Fv, T )

for each v ∈ V F
∞,R such that [νv] 8→ [ξv] under H1(Fv, T ) → H1(Fv, G0). We break

this into two cases:

E ⊗F Fv $ Fv × Fv × Fv

In order to understand how T behaves over Fv, it is necessary to understand the

structure of P ⊗F Fv. Recall that H is isogenous to RP/F (SL2), and so in order to

understand P ⊗F Fv, it is instructive to examine H over Fv. In order to examine H,

we need to remember that H = GΦ where Φ = {α2, α2 + α3 + α4, α2 + α1 + α3, α2 +

α1+α4} ⊂ Σ(G, T0) has Galois action described in [6]. I claim that the sign of b under

each of the maps E ↪→ E ⊗F Fv
πi−→ Fv determines the Galois action of Gal(C/Fv)

on Φ, hence the structure of H and thus the structure of P ⊗F Fv.

Lemma 5.5 In the notation above, let b1, b2, b3 be the images of b under the maps

E ↪→ E⊗F Fv
πi−→ Fv. If at least one of b1, b2, b3 are negative then P ⊗F Fv $ C×C,

while if all of b1, b2, b3 are positive then P ⊗F Fv $ Fv × Fv × Fv × Fv.
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Proof. Suppose that b1, b2, b3 are all positive in Fv. In this case,

RE/F (R(1)

E(
√

b)/E
(Gm))Fv $ R(1)

Fv(
√

b1)/Fv
(Gm)×R(1)

Fv(
√

b2)/Fv
(Gm)×R(1)

Fv(
√

b3)/Fv
(Gm)

$ Gm ×Gm ×Gm

thus T0 is split over Fv. This gives that all α ∈ Σ(G0, T0) are fixed under Gal(C/Fv).

This means that Φ is fixed under Gal(C/Fv), hence H̃Fv $ SL2 × SL2 × SL2 × SL2,

and so P ⊗F Fv $ Fv × Fv × Fv × Fv.

Suppose now that one of b1, b2, b3 is negative. Up to renumbering, we may assume

then that b1, b2 are negative while b3 is positive (because NE/F (b) = 1). In this case

RE/F (R(1)

E(
√

b)/E
(Gm))Fv $ R(1)

Fv(
√

b1)/Fv
(Gm)×R(1)

Fv(
√

b2)/Fv
(Gm)×R(1)

Fv(
√

b3)/Fv
(Gm)

$ R(1)
C/Fv

(Gm)×R(1)
C/Fv

(Gm)×Gm

and thus (again, up to renumbering) 1 /= τ ∈ Gal(C/Fv) acts by

α1 8→ α1

α3 8→ −α3

α4 8→ −α4

and if α̃ is a root of maximal height, α̃ 8→ α̃ (since this was true over F ). This

means that α2 8→ α2 + α1 + α3 and α1 + α2 + α4 8→ α2 + α3 + α4 and so Φ has type

(A1 × A1) × (A1 × A1) with Gal(C/Fv) permuting the factors within the brackets.

This gives that H̃Fv $ RC/Fv(SL2)×RC/Fv(C/Fv), thus P ⊗F Fv $ C× C.

By our restriction that E ⊗F Fv $ Fv × Fv × Fv, we have that GFv is of type

1D4. By the classification given in Section 5.2.1, we have that GFv is either of rank

0, 2 or 4. Recall that [ξ]v is in the image of H1(Fv, G0) → H1(Fv, G0) if and only if

G has rank 0 or 4. This is true if and only if (a, b1)Fv , (a, b2)Fv and (a, b3)Fv are all

split, which is equivalent to the condition that b1, b2, b3 are all positive (since F (
√

a)

is purely imaginary by assumption). This, combined with Lemma 5.5 gives that:
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Lemma 5.6 If GFv has rank 2, then T̃ has the form

RC/Fv(Gm)×RC/Fv(Gm)

and at least one of b1, b2, b3 are negative in Fv.

If GFv is anisotropic or split then b1, b2, b3 are all positive in Fv. Moreover, if we

let ψi,v be the composition

P ↪→ P ⊗F Fv $ Fv × Fv × Fv × Fv
πi−→ Fv

then T̃Fv has the form

R(1)

Fv(
√

ψ1,v(p))/Fv
(Gm)×R(1)

Fv(
√

ψ2,v(p))/Fv
(Gm)×R(1)

Fv(
√

ψ3,v(p))/Fv
(Gm)×R(1)

Fv(
√

ψ4,v(p))/Fv
(Gm)

Notice that if b1, b2, b3 are all positive in Fv, then the structure of T Fv depends on

the sign of ψi,v(p). The following lemma allows us to control these signs.

Lemma 5.7 There exists p ∈ P such that P (
√

p) splits [(r, s)P ] and ψi,v(p) > 0 in

Fv if and only if [ξ] is trivial over Fv.

Proof. Recall the definition of [µH ] and [µH
′ ], defined immediately before Lemma

5.4.

Let Ψ1 ⊂ V F
∞,R be the set of all places of F such that b1, b2, b3 are all positive

in Fv but [ξ]v is non-trivial. Let ([(r1, s1)Fv ], [(r2, s2)Fv ], [(r3, s3)Fv ], [(r4, s4)Fv ]) be the

image of [(r, s)P ] under the isomorphism H1(Fv, H
′
) $ H2(Fv, µ2)× · · ·×H2(Fv, µ2).

Given a quaternion algebra over the real numbers, it is always possible to find a pure

quaternion q such that q2 = −1. For v ∈ Ψ1, choose xi,v, yi,v, zi,v ∈ Fv such that

rix
2
i,v + siy

2
i,v − risiz

2
i,v = −1.
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Let Ψ2 be the set of all places of F such that [ξ]v is split. For every such v, I claim

that [(r1, s1)Fv ], [(r2, s2)Fv ], [(r3, s3)Fv ] and [(r4, s4)Fv ] are split. To see this, recall the

definition of S from the proof of 5.3, and consider the short exact sequence

1 → Z(G0) → S → S → 1.

Recall also that [µH
′ ] was the image of a cocycle [µS] ∈ H1(F, S) that mapped to

[(a, b)E] under H1(F, S) → H2(F, Z(G0)). Because [(a, b)E] is split over Fv, this

means that [µS] is the image of some [µS] ∈ H1(Fv, S), but by the definition of S,

SFv $ Gm × Gm × Gm. This means that [µS] is split over Fv by Hilbert 90, hence

[µH
′ ] is also split over Fv, and thus [(r1, s1)Fv ], [(r2, s2)Fv ], [(r3, s3)Fv ] and [(r4, s4)Fv ]

are split as claimed.

Because [(ri, si)Fv ] are split, there exist pure quaternions qi ∈ (ri, si) such that

q2
i = 1. For v ∈ Ψ2, choose xi,v, yi,v, zi,v ∈ R such that

rix
2
i,v + siy

2
i,v − risiz

2
i,v = 1.

Next, choose ε > 0 such that if |x′i,v − xi,v| + |y′i,v − yi,v| + |z′i,v − zi,v| < ε, then

|rix
′2
i,v + siy

′2
i,v − risiz

′2
i,v − rix

2
i,v − siy

2
i,v + risiz

2
i,v| <

1

2

applying the weak approximation property then provides x, y, z ∈ P such that

|ψi,v(x)− xi,v| + |ψi,v(y)− yi,v| + |ψi,v(z)− zi,v| < ε

and so if we let p = rx2 + sy2 − rsz2, p satisfies the conditions of the lemma.

Recall that there are three possibilities for GFv . Either GFv is split, anisotropic,

or of rank 2. If GFv is split, then [ξ]v is trivial, so we can let [νv] = 1 and then

[νv] 8→ [ξ]v. If GFv is anisotropic, then by our choice of p, TFv is anisotropic and thus
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TFv is isomorphic to a maximal torus of GFv . By Steinberg’s theorem, we therefore

have an embedding φ : T Fv ↪→ G0Fv
and [ν ′v] ∈ H1(Fv, φ(T Fv)) such that [ν ′v] 8→ [ξ]v.

Any two anisotropic maximal tori in G0Fv
are conjugate ([11], Theorem 32.1),

hence the image of H1(Fv, T Fv) and H1(Fv, φ(T Fv)) in H1(Fv, G0Fv
) are the same

and there exists a [νv] ∈ H1(Fv, T Fv) such that [νv] 8→ [ξ]v.

Finally, we must consider the case that GFv has rank 2. In this case Lemma 5.6

gives that P⊗F Fv $ C×C and T̃Fv $ RC/R(Gm)×RC/R(Gm). Recall the definition of

T0, then the action of Gal(C/R) on Σ(G0, T0) is described in Lemma 5.5 and up to re-

numeration the subsets Φ1 = {α2, α2 +α1 +α3} and Φ2 = {α2 +α3 +α4, α2 +α1 +α4}

are Gal(C/R)-stable. Let Gi be the subgroup of G0,Fv generated by Gα where α ∈ Φi.

Finally, recall that G0 is split over Fv in this case and hence G0,Fv $ Spin(f4) (where

f4 is defined in Section 5.2.1). The following is a slight re-phrasing of Lemma 3.20 to

our situation.

Lemma 5.8 Given (V, f4) as above, there exist V1, V2 ⊂ V such that V = V1 ⊕ V2,

V2 = V ⊥
1 under ( , )f and if g1 = f4|V1, g2 = f4|V2 then f = g1⊕ g2 and up to isogeny

Gi ≤ G0,Fv is given by SO(gi) ≤ SO(f4).

For a given 4-dimensional quadratic form g over a field F , recall that Spin(g) $

R
F (
√

disc(g))/F
(SL(T )), where T is a quaternion algebra over F (

√
disc(g)) (see Section

3.3.2). Recalling that Gi $ RC/R(SL2) from Lemma 5.5, this gives that gi have non-

trivial discriminant, so up to multiplication by ±1, g1 = 〈1, 1, 1,−1〉 = g2. The

above lemma gives that g1 ⊕ g2 = 〈1,−1, 1,−1, 1,−1, 1,−1〉, so up to renumbering,

g1 = 〈1, 1, 1,−1〉 and g2 = 〈1,−1,−1,−1〉.

Let T ′ be the image of T in SO(f4). Consider z = (1,−1) ∈ SO(g1) × SO(g2) ≤

SO(f4). Let [ν ′v] ∈ H1(Fv, PSO(f4)) = H1(Fv, G0Fv
) be given by (ν ′v)τ = z ∈ PSO(f4)
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if τ ∈ Gal(C/R) is non-trivial. By definition of T , T ′ ∩ SO(g2) is a maximal torus

in SO(g2), thus Z(SO(g2)) ≤ T ′ ∩ SO(g2), and so z ∈ T ′. Therefore there exists

[νv] ∈ H1(Fv, T Fv) such that [νv] 8→ [ν ′v].

Lemma 5.9 Under H1(Fv, T Fv) → H1(Fv, G0Fv
), [νv] 8→ [ξ]v.

Proof. It suffices to show that ν′vG0,Fv $ G. This property is invariant un-

der taking quotients by a central subgroup, so it suffices to show that ν′vSO(f4) $

SO(
∑6

i=1 x2
i − x2

7 − x2
8). Identifying gi on Vi with their corresponding 4× 4 matrices,

we have that

SO(f4)(C) =




x =



x11 x12

x21 x22



 | xij ∈ M4×4(C), det(x) = 1,

xT
11g1x11 + xT

21g2x21 = g1

xT
11g1x12 + xT

21g2x22 = 0

xT
12g1x12 + xT

22g2x22 = g2





and the new action of Gal(C/R) on ν′vSO(f4) is given by

τ ′x = z τxz−1 =



1 0

0 −1







x11 x12

x21 x22







1 0

0 −1



 =



 x11 −x12

−x21 x22





so x is fixed under the new Gal(C/R)-action if and only if x11, x22 ∈ M4×4(R) and

x12, x21 ∈ M4×4(iR). If we let g =



1 0

0 i



, then direct calculation shows that x

is stabilized by the twisted action of Gal(C/R) if and only Int(g)(x) preserves the

form represented by the matrix



g1 0

0 −g2



. Thus ν′vSO(f4) $ SO(g1 ⊕ (−g2)) =

SO(
∑6

i=1 x2
i − x2

7 − x2
8).

Remark 5.10 By our choice of p, T Fv has higher rank for all v ∈ V F
∞,R such that

Fv ⊗F E $ Fv × Fv × Fv and v ∈ S ′′G.
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This completes the examination of the case that E ⊗F Fv $ Fv × Fv × Fv and we

are left with the case:

E ⊗F Fv $ Fv × C

In this case, we have [(a, b)E] has norm [(a, b1)Fv ] ·ResC/R([M2(C)]) = [(a, b1)Fv ] where

b1 is the image of b under the map

E ↪→ E ⊗F Fv
π1−→ R× C.

By the restriction that NE/F ([(a, b)E]) = 1, we therefore get that (a, b1)E becomes

split over Fv. Because we chose a such that F (
√

a) is purely imaginary, Signv(a) = −1,

thus Signv(b1) = 1. This tells us the structure of P ⊗F Fv:

Lemma 5.11 If E ⊗F Fv $ Fv × C, then P ⊗F Fv $ R× R× C.

Proof. Recall that if G0 is as in [6], then G0,α1,α3,α4 has the maximal torus

RE/F (R(1)

E(
√

b)/E
(Gm)) which becomes Gm×RC/Fv(Gm) over Fv. Thus up to relabeling

Gal(C/Fv) acts by fixing α1 and sending α3 8→ ±α4. From [6] we see that α̃ is fixed

so Gal(C/Fv) acts on Φ = {α2, α2 + α3 + α4, α2 + α1 + α3, α2 + α1 + α4} by fixing

two elements and permuting the other two (which are fixed and which are permuted

depends on the sign of α3 8→ ±α4). This gives that H̃Fv $ SL2 × SL2 × RC/Fv(SL2),

thus P ⊗F Fv $ R× R× C.

As in the case E ⊗F Fv $ Fv × Fv × Fv, it is necessary to understand the sign of

p under the maps ψi,v : P ↪→ P ⊗F Fv
πi−→ Fv where i = 1, 2. How the sign of ψi,v(p)

is controlled will depend on the form that G takes over Fv. From the restriction that

E ⊗F Fv $ Fv ×C, we have that G is of type 2D4 over Fv, and so Tits’ classification

gives two possibilities; GFv is quasi-split of rank 3 or GFv has rank 1.
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Let Ψ3 ⊂ V F
∞,R be the set of all places of F such that E ⊗F Fv $ Fv × C and G

becomes quasi-split over Fv and Ψ4 ⊂ V F
∞,R be the set of all places of F such that

E ⊗F Fv $ Fv × C and G has rank 1 over Fv.

Lemma 5.12 There exists p ∈ P satisfying the conditions of Lemma 5.7 such that

ψi,v(p) is positive in Fv if v ∈ Ψ3 and negative in Fv if v ∈ Ψ4.

Proof. The proof is identical to the proof of Lemma 5.7 with one exception.

Recall the definitions of S and S from Lemma 5.3. We do not have that S is split

in this case, however, we still have that H1(Fv, S) = H1(Fv, Gm × RC/R(Gm)) = 1,

and the same arguments as in Lemma 5.7 then give that [(r1, s1)Fv ] and [(r2, s2)Fv ]

defined as in Lemma 5.7 are split (here there are no [(r3, s3)Fv ] or [(r4, s4)Fv ], as

P ⊗F Fv $ Fv × Fv × C).

Now, choosing p as in Lemma 5.12, I claim that there exist [νv] ∈ H1(Fv, T Fv)

that map to [ξ]v for all v ∈ Ψ3 ∪ Ψ4. This is proven in an analogous manner to the

case where E ⊗F Fv $ Fv × Fv × Fv, with a few exceptions. Namely, in this case

G0,Fv $ Spin(f3). Recall the definition of T0 ≤ G0 and the Gal(C/R)-action described

in Lemma 5.11. Up to re-numerating, if we let G1 be the subgroup of G0 generated

by the root subgroups corresponding to {α2, α2 + α3 + α4} then G1 $ SL2 × SL2,

and if we let G2 be the subgroup generated by the root subgroups corresponding

to{α2 + α1 + α4, α2 + α1 + α3} then G2 $ RC/R(SL2).

Lemma 5.13 Given (V, f3) with f3 defined as in Section 5.2.1, there exist V1, V2 ⊂ V

such that V = V1 ⊕ V2, V2 = V ⊥
1 under ( , )f3 and if g1 = f3|V1, g2 = f3|V2 then

f = g1 ⊕ g2 and up to isogeny Gi ≤ G0,Fv is given by SO(gi) ≤ SO(f3).

Proof. As in Lemma 5.8.
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Recall that we have Spin(gi) $ R
Fv(
√

disc(gi))/Fv
(SL(T )) where T is a quaternion

algebra over Fv(
√

disc(gi)). Because G1 is split, g1 is as well, while G2 has no Fv-

defined subgroups of type A1, thus g2 has non-trivial discriminant. This means that

up to multiplication by ±1, we have that

g1 = x2
1 − x2

2 + x2
3 − x2

4

g2 = y2
1 + y2

2 + y2
3 − y2

4

and the criterion that g1 ⊕ g2 = f3 means that we can choose gi as above.

If GFv has rank 3, then GFv $ G0,Fv , so [ξ]v is trivial and 1 ∈ H1(Fv, T ) maps

to [ξ]v. If GFv has rank 1, then recall that by our choice of p, we have that T1 =

T ∩G1 $ R(1)
C/Fv

(Gm)×R(1)
C/Fv

(Gm). Let S1 = Spin(x2
1 + x2

3)× Spin(−x2
2 − x2

4) ≤ G1.

Because any two anisotropic tori over R are conjugate, if T1 and S1 are the images

of T1 and S1 in PSO(g1), we have that the image of H1(Fv, T1) and H1(Fv, S1) in

H1(Fv, PSO(g1)) is the same. Let T ′
1 and S ′1 be the images of T1 and S1 in SO(g1),

and let z1 = (1,−1) ∈ S ′1. If we let [γv] ∈ H1(Fv, S1) be given by (γv)τ = z1 ∈ S1, let

[γ′v] ∈ H1(Fv, T1) be chosen such that im([γ′v]) = im([γv]) ∈ H1(Fv, PSO(g1)).

Let [νv] ∈ H1(Fv, T ) be the image of [γ′v] under the map H1(Fv, T1) → H1(Fv, T Fv).

Let g11 = x2
1 +x2

2, g12 = −x2
2−x2

4, so that g1 = g11⊕ g12. As in 5.9, direct calculation

shows that νvSO(f3) $ SO(f1), thus:

Lemma 5.14 In the situation above, [νv] 8→ [ξ]v under H1(Fv, T Fv) → H1(Fv, G0Fv
).

Remark 5.15 For every v ∈ SG such that E ⊗F Fv $ Fv × C, we have that TFv has

rank 1 whenever v ∈ S ′G and TFv is of higher rank whenever v ∈ S ′′G.

5.2.4 Concluding Argument

Thus far we have constructed a torus T ≤ G0 such that:
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1. there exists [γ] ∈ H1(F, T ) that maps to [ξ] ∈ H1(F, G0),

2. T ≤ H, where H ≤ G0 is a simple group of type A1 × A1 × A1 × A1 and,

3. T has appropriate real rank.

Arguing as in Section 5.1, G is not minimal.

Remark 5.16 In [1] B. Allison showed how to construct all central simple Lie al-

gebras of type D4 over an algebraic number field. These results can also be used to

obtain subgroups of G of type A1×A1×A1×A1, at least one of which has appropriate

real rank. We keep the original proof here because the same technique (modification

of cocycles) is used to prove that groups of type 1,2E6 are not minimal.

5.3 Type 1,2E6

Let G0 be a split (or quasi-split) simply connected group of type 1,2E6 over F . If G0

is of outer type, let L/F be the unique quadratic extension over which G0 becomes

inner. It is well-known ([19], p. 332) that Z(G0) = µ3 if G0 is of inner type and

Z(G0) = R(1)
L/K(µ3) if G0 is of outer type. This gives that H2(F, Z(G0)) is 3Br(F ) if

G0 is inner and ker(3Br(L)
Res→3 Br(F )) if G0 is outer. Combining Lemma 2.30 with

the fact that the index of a central simple algebra over a number field is equal to its

exponent in the Brauer group (Section 2.2.7), we see that ker(3Br(L)
Res→3 Br(F )) is

in bijective correspondence with degree 3 division algebras D with involutions of the

second kind over F such that Z(D) = L.
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5.3.1 Construction of a Special Torus

Let T0 be a F -defined split or quasi-split torus of G0 and let Σ′ ⊂ Σ(G0, T0) be the

root system generated by roots {α1, α3, α4, α5, α6}. Let H0 be the subgroup of G0

generated by the root subgroups corresponding to α ∈ Σ′. If G0 is split, then H0 is

split of type 1A5, i.e. is isogenous to SL6. If G0 is quasi-split, then H0 is quasi-split of

type 2A5, i.e. is isogenous to SU6(L, fq) for a quasi-split hermitian form of dimension

6. Let α̃ be the root of maximal height in either case, and let Gα̃ be the root group

corresponding to α̃ (so Gα̃ $ SL2 and Gα̃ commutes with H0).

Let G be a simply connected, anisotropic group of type 1,2E6 over F and assume

that G corresponds to [ξ] ∈ H1(F, G0). Let [D] be the image of [ξ] in H2(F, Z(G0)).

Type 1E6

In this case, let M be any degree 3 Galois subfield of D (this exists because all central

simple algebras over number fields are cyclic). Let P = F (
√
−1) and consider M ·P .

Define T1 to be the the image of R(1)
M ·P/F (Gm) in H0 via the regular embedding and

let T2 be the image of R(1)
P/F (Gm) in Gα̃. Define T to be the almost-direct product

T1 · T2.

Lemma 5.17 T defined as above satisfies condition 1 of Lemma 5.1, i.e. there exists

a [µ] ∈ H1(F, T ) with δ2([µ]) = [D] (in the notation of Lemma 5.1).

87



Proof. Consider the following diagram:

µ2 µ2

µ6 T1 × T2 T

Z(G0) T T

"

!

"

"

!

"

!

"
! !

with exact columns and rows. This gives a diagram of interconnected long exact

sequences with segment:

H1(F, T1 × T2) H1(F, T ) H2(F, µ6) H2(F, T1 × T2)

H1(F, T ) H1(F, T ) H2(F, µ3)
"

! !φ1

"

!φ2

"

φ3

! !φ4

By commutativity, im(φ4) = im(φ3 ◦ φ1) = φ3(ker(φ2)). Using Shapiro’s lemma, we

have that H2(F, T1 × T2) = ker(Br(M · P )
N−→ Br(F )) × ker(Br(P )

Norm−→ Br(F )).

Recall that elements of 6Br(F ) can be written in the form [D1 ⊗D2] with D1 cubic

cyclic and D2 a quaternion algebra because F is a number field. The map µ6 → T1×T2

takes ξ6 8→ (ξ6, ξ3
6), so φ2([D1 ⊗ D2]) = ([D1 ⊗F D2 ⊗F M · P ], [D1 ⊗F D2 ⊗ F ]3) =

([D1⊗F D2⊗F M ·P ], [D2⊗F P ]). If [D1⊗F D2] is in the kernel of this map, then D2

is split by P and D1⊗F D2 is split by M ·P . The first condition gives that D1 is split

by M ·P , and so the fact that the degree of D1 is relatively prime to the degree of P

over F , we have that D1 is split over M . This means that the kernel of φ2 is given

by {[D1 ⊗ D2] ∈ 6Br(F ) | [D1 ⊗M ] = 1 = [D2 ⊗ P ]}. The map µ6 → µ3 is given
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by squaring, so φ3([D1 ⊗F D2]) = [D1 ⊗F D2]2 = [D1]−1. Combining these results

gives that [D] is in the image of φ4 if and only if [D]−1 contains M as a maximal

subfield, which is true because [D] is assumed to contain M and [D]−1 = [Dop]. Thus

the existence of [µ] is proven.

Type 2E6

Let [(D, τ)] correspond to the image of [ξ] in H2(F, Z(G0)), and let σ be the involution

on M2(D) corresponding to the τ -hermitian form 〈1,−1〉 on D2. Recall from the

classification of minimal groups of type 2An that given local constructions Ev ⊂

M2(D)⊗F Fv such that Eσv
v has dimension n for every v ∈ V F

∞,R, there exists a sub-

field E ⊂ M2(D) such that (E ⊗F Fv, σ ⊗ 1) $ (Ev, σv) (Lemma 3.31, Corollary 3.32

and Theorem 3.29). We break the local construction into the following cases:

If RankFv(G) = 0, then by Tits’ classification, G remains outer over Fv in this case,

thus (M2(D) ⊗ Fv, σ ⊗ 1) $ (M6(C), 〈1,−1, 1,−1, 1,−1〉). Let Ev = C6 embed via

diagonal matrices, so Eσv
v = R6 and the maximal torus of SU6(C, 〈1,−1, 1,−1, 1,−1〉)

corresponding to Ev is anisotropic.

If GFv is isotropic of outer type, we have that

(M2(D)⊗ Fv, σ ⊗ 1) $ (M6(C), 〈−1,−1,−1, 1, 1, 1〉).

Note that M3(R)×M3(R) ⊂ M6(C)σv in this case, so we can embed Fv = (R×C)×

(R×C) ⊂ M6(C)τv by first embedding R×C ⊂ M3(R) via the regular representation

along the diagonal and then taking the product of this embedding with itself. We

then let Ev = Fv ⊗R C ↪→ M6(C) via (M3(R)×M3(R)⊗ C ↪→ M6(C). Then

{x ∈ Ev | xσv(x) = 1 = Nrd(x)} = {(z1, z2, z
−1
2 , z−1

1 , z4, z
−1
4 ) | NC/R(z1) = 1}
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so the maximal torus of SU6(C, 〈1,−1, 1,−1, 1,−1〉) corresponding to Ev in this case

has Fv-rank 2.

If GFv is isotropic of inner type, let Ev = C3 × C3 ↪→ M6(R) × M6(R)op with

exchange involution (embedded via the regular embedding). Then the maximal torus

of SL6(R) corresponding to Ev is

{(z1, z2, z3) | NC/R(z1z2z3) = 1}

which has rank 2 over R.

Let E ⊂ M2(D) be a maximal sub-field such that (E ⊗F Fv, σ ⊗ 1) $ (Ev, σv) for

each v ∈ V F
∞,R. Note that E = K ⊗F L for some degree 3 field extension K of F

with τ acting on the second component by [20], Proposition 2.1, p. 5. Let T1 be the

maximal torus in H ′ = SU2(D, 〈1,−1〉) given by

{x ∈ E | xτ(x) = 1 = Nrd(x)}

Lemma 5.18 There exists an embedding T1 ↪→ H0 ≤ G0 and a [µ] ∈ H1(F, T1) such

that δ2([µ]) = δ1([D]).

Proof. Let H̃0 = H0/Z(H0) and T̃1 = T1/Z(H0). Then H ′ is a form of H0,

hence there exists [λ′] ∈ H1(F, H̃0) such that λ′H0 = H ′. By Steinberg’s theorem

(Theorem 2.11), there exists an embedding T1 ↪→ H0 such that [λ′] ∈ im(H1(F, T̃1) →

H1(F, H̃0)). Let [µ′] ∈ H1(F, T̃1) be chosen such that [µ′] 8→ [λ′]. Let [χ′] be the image

of [µ′] in H2(F, Z(H0)). Note that H ′ becomes quasi-split over K, hence [λ′] (and

[χ′]) become split over K as well. This means that |[χ′]| divides 3 in H2(F, Z(H0)).

Note that Z(H0) = R(1)
L/F (µ6) and Z(G0) = R(1)

L/F (µ3) fit in the exact sequence:

1 → Z(G0) → Z(H0) → µ2 = R(1)
L/F (µ2) → 1 (∗)
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and this sequence splits. We can use this to construct the following diagram with

exact columns:

H2(F, µ2) H2(F, µ2) H2(F, µ2)

H1(F, T̃1) H1(F, H̃) H2(F, Z(H0))

H1(F, T1) H1(F, H0) H2(F, Z(G0))

!= !=

$

!

$

!

$

$

!

$

!

$

Because [χ′] has order dividing 3, its image in H2(F, µ2) is trivial, and because the

diagram commutes, this means that there are [µ] ∈ H1(F, T1) and [λ] ∈ H1(F, H0)

such that [µ] 8→ [µ′] and [λ] 8→ [λ′] under the maps in the diagram. Let [χ] be the

image of [λ] in H2(F, Z(G0)) and consider the diagram:

H2(F, Z(G0)) H2(F, Z(H0))

H2(L, Z(G0)) H2(L, Z(H0))
"

Res

!

"
Res

!

the horizontal arrows are injections because the sequence (∗) is exact. The vertical

arrow on the left hand side is injective because Cor ◦Res is multiplication by [L :

F ] = 2 and H2(F, Z(G0)) is a 3-torsion group. Thus, to prove that [λ] ∈ H1(F, H0)

maps to [D] in H2(F, Z(G0)) it suffices to show that [χ]L = [D]L. Recall that if

[α] ∈ H1(F, PGLn) has αSLn = SL(A) for A a central simple algebra of degree n (not

necessarily a division algebra), then [A] = im([α]) ∈ H2(F, µn) = nBr(F ).

The proof is then completed by noticing that λ(H0)L = SL2(D) and H2(L, Z(G0)) ↪→

H2(L, Z(H0)).
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To define T2, choose a ∈ F such that a is positive in Fv for all v ∈ V F
∞,R such

that GFv is split or quasi-split and negative otherwise and let T2 = R(1)
F (
√

a)/F
(Gm),

embedded in Gα̃ via the regular embedding. As before, let T = T1 · T2. Then T

satisfies the first criteria of Lemma 5.1 by Lemma 5.18.

5.3.2 Modification of [µ]

Notice that in both cases, T normalizes H0, an absolutely simple subgroup of type A5.

By construction, (T ∩ H0) also has appropriate real rank. To proceed as in Section

5.1, it therefore suffices to show that T satisfies the second criteria of Lemma 5.1, i.e

that [ξ]v is in the image of H1(Fv, T ) → H1(Fv, G0) for every v ∈ V F
∞,R. In the case

that Gv is split, we may choose the trivial cocycle in H1(Fv, T ). In the case that Gv is

anisotropic, T is anisotropic over Fv by construction, and so H1(Fv, T ) ! H1(Fv, G0)

by Theorem 1 of [2]. Thus it remains to show that in the cases where Gv is isotropic

but not split.

If Gv is inner, then note that |H1(Fv, G0)| = 2, so it suffices to prove that the

image of H1(Fv, T ) in H1(Fv, G0) is non-trivial. Also, if Gv is outer of rank 2, then

Tv is also rank 2, and so any twist by a cocycle in Tv will also have rank at least 2.

We have that |H1(Fv, G0)| = 3 by Tits’ classification, with one element being trivial

and another corresponding to the anisotropic group. If 1 /= [χ] is in the image of

H1(Fv, T ) in H1(Fv, G0), then χG0 is neither split nor anisotropic, hence must be

equal to [ξ]v. Thus it suffices to prove that the image of H1(Fv, T ) in H1(Fv, G0) is

non-trivial as well.

Lemma 5.19 If T is a non-split maximal torus in a split or quasi-split group G0 of

type E6 over R, then the image of H1(Fv, T ) → H1(Fv, G0) is non-trivial.
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Proof. In the case that G0 is inner over R, then T has rank 2 over R, and

thus the anisotropic part of Ta over R has rank 4, hence is maximal anisotropic (see

Proposition 5.21 below). Thus H1(R, Ta) ! H1(R, G0) by [2], in particular the image

of H1(R, T ) → H1(R, G0) is non-trivial.

In the case that G0 is outer over R let T = T1 · T2 where T1 is split of rank 2

over R and T2 is anisotropic of rank 4. Then CG0(T2) is a reductive group, hence

CG0(T2) = H · S, where S is a torus in G0 containing T2 and H is semi-simple.

Claim 5.20 S = T2

Suppose not. If H is trivial, then CG0(T2) = T , but G0 contains a maximal

anisotropic torus containing T2, and T has rank 2, a contradiction.

If H has rank 1, then CG0(T2) = SL2 ·S. Let Ta be a maximal torus of G0 which is

anisotropic over R and contains T2, then Ta ⊂ SL2 ·S yields that Ta∩S has dimension

5 and S is anisotropic. In particular CG0(T2) has rank 1, but T ⊂ CG0(T2) has rank

2, a contradiction. This proves the claim.

Because H is standard of rank 2 there are two possibilities, H is of type A1 ×A1

or A2 (if H has type G2 or B2, then H would have roots of different lengths, which is

impossible). In either case, H contains a split subgroup of type A1. If α̃ is the root

of maximal height in E6, then we may assume after conjugation that Gα̃ ≤ H. Then

T2 ⊂ CG0(H) ⊂ CG0(Gα̃), and so we can consider CCG0 (Gα̃)(T2). Then CCG0 (Gα̃)(T2) =

H ′ · S ′, where H ′ is semisimple and S ′ is a torus containing T2, as before.

Note that C = CG0(Gα̃) is standard in G0 of type 2A5. Thus C contains an

anisotropic torus of rank 5. Arguing as in the claim, we see that S ′ = T2 and

H ′ $ SL2. Let β̃ be the root of maximal height in A5. After conjugation by an

element of C we may assume that H ′ = Gβ̃. Then CC(H ′) = H ′′ · S ′′, where H ′′ is of
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type 2A3 and S ′′ is anisotropic of dimension 1. Then T2 ∩H ′′ is a maximal torus of

H ′′ which is also maximal. By [2], we then have that there exists an element [α] of

H1(R, T2 ∩H ′′) such that αH ′′ is compact. It suffices to show that the image of [α]

in H1(R, G0) is non-trivial.

To see this, first note that because αH ′′ ≤ αC is standard, if αH ′′ = SU(C, f4) for

a compact hermitian form f4, then αC = SU(C, f4 ⊕ f2) for some hermitian 2-form

f2. Thus the maximum possible rank of αC is 2, so the image of [α] in H1(R, C) is

non-trivial.

To complete the proof, it suffices to show that if [α] ∈ H1(R, C) maps to the

trivial cocycle in H1(R, G0), then [α] is trivial. Recall that C commutes with Gα̃

by definition of C, and so for any [α] ∈ H1(R, C) we have that αGα̃ = Gα̃. Let T0

be a split torus sitting in Gα̃, and consider CαG0(T0). Because αC ≤ CαG0(T0) and

CαG0(T0) is reductive, we have that CαG0(T0) = T0 ·α C. Thus the maximum possible

rank of any torus containing T0 is 1 + 2 = 3, but if αG0 is split, then T0 is contained

in a maximal split torus in αG0 which has rank 4, a contradiction.

5.4 Ansiotropic Tori in E6 over R

The following was used in the proof of Lemma 5.19:

Proposition 5.21 Over R, any maximal anisotropic torus of a split group G0 of type

E6 has absolute rank 4.

Proof. Because all maximal anisotropic tori are conjugate, it suffices to prove

that there exists an anisotropic torus of rank 4 in G0 that is not properly contained in

a larger anisotropic torus. Using the numbering found in [3], Plate I-IX, consider the

subgroup H0 of type 1D4 generated by the root subgroups Gα2 , Gα3 , Gα4 , Gα5 . This
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is isogenous to the group SO8(
∑4

i=1 x2
i −

∑4
i=1 y2

i ), and thus contains an anisotropic

torus of rank 4 (take products of the SO(x2
i + x2

i+1)). Call this torus T .

Claim 5.22 CG0(T ) is a torus.

Note that this claim holds over F if it holds over F . For the purposes of the proof

of this claim, take now a maximal torus of G0 that includes T , and consider the root

system of G0 with respect to this torus over the closure. Because T is a torus, CG0(T )

is reductive, hence CG0(T ) is the almost direct product of a central torus and its

derived subgroup. The derived subgroup is generated by those root subgroups that

commute with T , of which I claim there are none. This is proven by computing

hα2(t2)hα3(t3)hα4(t4)hα5(t5)Xα(hα2(t2)hα3(t3)hα4(t4)hα5(t5))
−1

and showing that this is not Xα for any α. Indeed, if this is true for some α, then

〈αi, α〉 = 0, for i = 2, 3, 4, 5. If α =
∑8

i=1 ciεi (again, in the notation of [3], Plate

I-IX), then these equations give:

c1 = −c2, c1 = c2, c2 = c3, c3 = c4

which imply c1 = c2 = c3 = c4 = 0, which is impossible for any root α ∈ E6. This

proves the claim.

Any torus is contained in a maximal torus, and so there is a maximal torus

contained in CG0(T ), call it S. Because CG0(T ) is also a torus, we must have that

CG0(T ) = S. Assume that S contains a split torus of rank 2. If there is an anisotropic

torus properly containing T , say S ′, then we would have that S ′ ⊂ CG0(T ) = S, and

so S could have rank at most 1, a contradiction. Thus, it suffices to prove that S

contains a split torus of rank 2.
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Note that if CG0(H0) contains a split torus of rank 2, then CG0(T ) does as well. In

order for an element
∏

hαi(ti) (recalling that we take roots with respect to a F -split

torus again) to commute with H0, we have the following restrictions on ti:

t22t4 = 1, t1t
2
3t4 = 1, t3t

2
4t2t5 = 1, t6t4t5 = 1

and elements of the form hα1(s
2t2)hα2(s)hα3(t)hα4(s

−2)hα5(t
−1)hα6(s

2t) form a two

dimensional split torus that commutes with H0 (and thus with T ).
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Chapter 6

Non-Absolutely Simple Groups

Collecting the results from Chapters 2-4 completes the proof of Theorem 1.1. It

remains to prove Theorem 1.2. Thus, we consider G that is not absolutely simple.

Recall that simple algebraic groups over number fields that are not absolutely simple

are the restriction of scalars of absolutely simple groups over finite extension of F

(Lemma 2.19). Moreover, the following lemma shows that we may restrict ourselves

to the case where G is the restriction of a minimal absolutely simple group.

Lemma 6.1 If G = RK/F (H) where H is an absolutely simple group over K of

absolute rank at least 2 and H is not minimal, then G is not minimal.

Proof. Choose a subgroup H ′ ≤ H that has appropriate real rank over K.

Consider G′ = RK/F (H ′) ≤ G. This is proper because H ′ is. For v ∈ V F
∞,R

G′
Fv

= RKw1/Fv(H
′
Kw1

)× · · · ×RKws/Fv(H
′
Kws

)

where wi are the valuations on K that restrict to v on F . Assume v ∈ S ′G. If Kwi $ C

for some i, then GFv has a factor of the form RKwi/Fv(HKwi
) which has rank at least

2, which contradicts v ∈ S ′G. If Kwi $ R for each i, then HKwi
has rank 1 for some i,

so H ′
Kwi

has rank 1 as well, thus G′ has Fv-rank 1.

If v ∈ S ′′G and wi ∈ S ′′H for some i, then H ′
Kwi

has higher rank, hence so does

G′
Fv

. Also, if Kwi $ C for some i, then G′ also has Fv-rank at least two because
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RKwi/Fv(H
′) does. Thus, we may assume that no wi is in S ′′H and no wi has Kwi $ C.

This gives that at least two wi are in S ′H = S ′H′ , so G′ has appropriate Fv-rank.

Notice that SL(D) and SU(D, τ) are simply connected and have no F -defined

proper semisimple subgroups for deg(D) = p prime. The following lemma strongly

limits the possible simple subgroups RK/F (G) when G has no semisimple K-defined

subgroups.

Lemma 6.2 Suppose that G = RK/F (H), where H is defined over K, simply con-

nected and has no proper semi-simple subgroups defined over K. Then every F -simple

proper subgroups of G is isomorphic to RP/F (H ′) where F ⊂ P ! K, H ′ is defined

over P and H ′
K is isomorphic to HK. In particular, if G has proper F -simple sub-

groups, H admits descent to a subfield P ⊂ K.

Proof. Suppose that G′ ≤ G is a non-trivial proper semi-simple subgroup of

G as above. Let K ⊗F K $ K × K ′, where K ′ is an etale extension of K and

GK $ HK × RK′/K(H1) for some H1 defined over K ′. Let π be the projection

GK ! HK . Then π(G′
K) is a semi-simple subgroup of HK , thus π(G′

K) is either

trivial or all of HK .

Assume that the image of G′
K under π is trivial. Over K, GK becomes

HK × · · · ×HK ,

with Γ = Gal(K/K) permuting the components of GK transitively. Let 1 /= g =

(g1, . . . , gn) ∈ G′
K(K) and suppose that gj /= 1. Because Γ permutes the components

of GK transitively, there exists a σ ∈ Γ such that the first component of σ(g) is

σ(gj). Then π(σ(g)) = σ(gj) /= 1, but σ(g) ∈ G′
F (K) because G′ is F -defined, and so

π(σ(g)) = 1, a contradiction.
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If G′ is absolutely simple then the kernel of π is finite, so setting H ′ = G′ and

P = F we have that π is a finite covering of HK by H ′
K . By the assumption that H

is simply connected, we obtain that π is an isomorphism.

If G′ is not absolutely simple, then G′ = RF ′/F (H ′) for some H ′ absolutely simple

over F ′. Suppose F ′ ⊗F K $ K1 × · · · ×K! with Ki/K finite field extensions. Then

G′
K $ RK1/K(H ′

K1
)× · · · ×RK!/K(H ′

K!
).

Let πi be the composition RKi/K(H ′
Ki

) ↪→ G′
K

π! HK . If the images of all of the

πi are trivial, then the image of π is trivial, which is impossible. Thus, because HK

contains no proper semi-simple subgroups and RKi/K(H ′
Ki

) are K-simple, some πi is

an K-defined isogeny. By the assumption that HK is simply connected, we get that πi

is an isomorphism. If Ki/K is a non-trivial field extension, then πi is an isomorphism

between one group which is absolutely simple and one that is not, which is impossible.

Thus Ki = K and πi is an isomorphism H ′
K ! HK . Identifying P with the image of

F ′ in Ki = K, we see that H ′ is defined over P and G′ = RP/K(H ′), as required.

This lemma allows us to handle several cases:

Proposition 6.3 If G = RK/F (SL(D)) for a central division algebra D/K of prime

degree p ≥ 3, then G is minimal if and only if D does not descend to any sub-field

F ⊂ P ! K.

Proof. Assume that D does not descend. By Lemma 6.2, G contains no proper

F -simple subgroups in this case. If D does descend, then H = RP/F (SL(D′)) is a

proper F -simple subgroup of appropriate real rank. Indeed, by the assumption that

D′ has prime degree p ≥ 3, we must have that D′ is split over Pw for all w ∈ V P
∞,R.

Proposition 6.4 If G is of the form RK/F (SL(D)) for D a quaternion algebra over
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K, then G is minimal if and only if for every F ⊂ P ! K such that D descends to

P there exist v0 ∈ SG such that

• If v0 ∈ S ′G then Pwi $ R and D′ ⊗P Pwi $ H for all wi lying over v0 and

• If v0 ∈ S ′′G then there is at most one wi lying over v0 such that either Pwi $ C

or D′ ⊗P Pwi $ M2(R).

Proof. Using Lemma 6.2 we find that all possible F -simple subgroups correspond

to F ⊂ P ! K such that D descends to P , and the conditions imposed upon such P

exactly yield that the corresponding subgroup cannot have appropriate real rank.

Example 6.5 Let K = Q( 3
√

2,
√

3), D = (−1,−1), F = Q and G = RK/Q(SL(D)).

Then K has two real completions and two complex, so

GR $ SL(D)× SL(D)×RC/R(SL2(C))×RC/R(SL2(C))

has R-rank 2. For any field Q ⊂ P ! K, we have that D descends to P , but P has at

most one complex completion, thus RP/Q(SL(D)) has R-rank at most 1 and therefore

by Lemma 6.2, G is minimal.

Proposition 6.6 If G = RK/F (SU(D, τ)) for D a central division algebra of degree

p ≥ 3 over K ′/K quadratic with involution of the second kind τ such that K ′τ = K,

then G is minimal if and only if for all F ⊂ P ! K such that D descends to a central

simple algebra (D′, τ ′) over a quadratic extension P ′/P with involution of the second

kind τ ′ with P ′τ ′ = P , there exists some v0 ∈ SG such that Pwi $ R and Pwi ⊗P ′ $ C

for all wi lying v0, and

1. if v0 ∈ S ′G then (D′ ⊗P Pwi , τ
′ ⊗ 1) $ (Mn(C),±〈1, . . . , 1〉) for all wi lying over

v0, or
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2. if v0 ∈ S ′′G then (D′⊗P Pwi , τ
′⊗ 1) $ (Mn(C),±〈1,−1, 1 . . . , 1〉) for at most one

i and (D′ ⊗P Pwi , τ
′ ⊗ 1) $ (Mn(C),±〈1, . . . , 1〉) for all others.

Proof. Using Lemma 6.2 we find that all possible simple subgroups correspond

to F ⊂ P ! K such that D′ exists as above, and the conditions imposed upon such

P exactly guarantee that the corresponding subgroup cannot have appropriate real

rank.

It remains to consider the restrictions of absolutely simple groups of the form

SU3(K ′, f) for K ′/K a quadratic extension and f a 3-dimensional Hermitian form over

K ′. Notice that there exist proper, non-trivial, K-simple subgroups H ≤ SU3(K ′, f),

but because A2 does not contain a root system of type A1 ×A1, these can only be of

absolute rank 1.

Proposition 6.7 If G is of the form RK/F (SU3(K ′, f)) for K ′/K quadratic, f her-

mitian over K ′3, then G is minimal if and only if:

1. For any F ⊂ P ! K such that SU3(K ′, f) descends to P we have that there

exists a v0 ∈ SG such that Pwi $ R for all wi lying over v0 and

(a) If SU3(K ′, f) descends to SU3(P ′, f ′), where f ′ = 〈1, a2, a3〉 then Pwi⊗P ′ $

C for every wi and

i. if v0 ∈ S ′G then the image of aj in Pwi is positive for all i

ii. if v0 ∈ S ′′G then the image of aj in Pwi is negative for at most one i

(b) if SU3(K ′, f) descends to SU(D, τ) where D is a central division algebra

of degree 3 over P ′/P quadratic with involution τ of the second kind then

P ′ ⊗ Pwi $ C for every i and
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i. If v0 ∈ S ′G then (D⊗Pwi , τ ⊗ 1) $ (M3(C), σ), where σ(X) = X
T
, for

every wi

ii. If v0 ∈ S ′′G then (D ⊗ Pwi , τ ⊗ 1) $ (M3(C), σ) for all but at most

one wi and for at most one wi, (D ⊗ Pwi , τ ⊗ 1) $ (M3(C), σ ◦

Int(diag(1,−1, 1))) or (M3(C), σ ◦ Int(diag(1,−1,−1)))

2. For any F ⊂ P ⊆ K such that some subgroup SL(D′) ≤ SU3(K ′, f) descends

to SL(D) over P there exists some v0 ∈ SG such that

(a) If v0 ∈ S ′G then Pwi $ R and D ⊗ Pwi $ H for all wi over v0 and

(b) if v0 ∈ S ′′G then Pwi $ C or D ⊗ Pwi $ M2(R) for at most one wi over v0.

Proof. Arguing as in Lemma 6.2, let G′ ≤ G be an F -defined, F -simple subgroup,

and GK = SU3(K ′, f) × RK′/K(H1). Let π : GK → SU3(K ′, f) be projection on

the first component. If π(G′
K) = 1, then as before G′ = 1, a contradiction. This

means that π(G′
K) is either all of SU3(K ′, f) or isomorphic to SL(D) for a quaternion

algebra D defined over K. If π(G′
K) ≤ SL(D) ≤ SU3(K ′, f) and g = (g1, . . . , gn) ∈

G′
K(K), then for any gi there exists σ ∈ Γ such that σ(gi) is the first component of

σ(g). Because SL(D) and G′
K are K-defined, we therefore have that gi ∈ SL(D).

This means that G′ ≤ RK/F (SL(D)), so we can apply Lemma 6.2 to find that G′ is

isomorphic to RP/F (SL(D′)) for some D′ over P . The conditions listed in item (2)

are exactly what is necessary to ensure that no subgroup of this form has appropriate

real rank.

Assume that π(G′
K) = SU3(K ′, f). If G′

K is absolutely simple then π is an iso-

morphism, and setting F = P , the conditions in 1 ensure that any such subgroup

does not have appropriate real rank. If G′ is not absolutely simple, G′ $ RF ′/F (H ′)
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for some absolutely simple H ′. Then

G′
K = RK1/K(H ′

K1
)× · · · ×RKm/K(H ′

Km
)

Let πi be the restriction of π to RKi/K(H ′
K1

). Because RKi/K(H ′
Ki

) are K-simple,

we must have that ker(πi) is either finite or all of RKi/K(H ′
Ki

). Assume that some

πi is surjective. Then πi is an isomorphism because SU3(K ′, f) is simply connected.

Arguing as in Lemma 6.2, we have that Ki = K and H ′
K $ SU3(K ′, f) and the

conditions listed in (1) are exactly the conditions required to ensure that G′ does not

have appropriate real rank.

Assume πi is not surjective for any i. The image of πi cannot be trivial for all i, or

else the image of π would be trivial, thus there exists some i for which the image of πi

is SL(D) for some quaternion algebra D over K. This means that H ′
Ki

has type A1,

so πi : RKi/K(SL(D1)) → SL(D) is a surjection with finite kernel. This means that πi

must be an isomorphism, and G′ is again of the form RP/F (SL(D)) for a quaternion

algebra D. The conditions listed in 2 are exactly what is required for such a subgroup

not to have appropriate real rank.
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