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Abstract

Enhanced mixing has been found to occur after the passage of internal soli-
tary waves. This thesis presents a model for the turbulent dissipation of internal
solitary waves in a continuously stratified fluid of finite depth. By using a sim-
ple first-order closure scheme to represent a turbulent dissipation mech 1ism, the
governing equations lead to a Rayleigh perturbed KdV-Burgers equation which is

solved asymptotically using » multiple scales perturbation technique satisfying en-

in the lee of the wave, w' ! .- lead to the entrainment of nutrients in the upper

¥
A

regions of ::.e fluid » - sr, the amount of entrainment, if any, is not determined

due to the simplici'; i . closure scheme used.
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Chapter 1

Introduction

The Scotian shelf is characterized as a region of enhanced biological activity de-
spite its distance from land. It has been hypothesized: “The reason for enhanced
biological activity in the shelf-slope region ... may be due to higher nutrient con-
centrations resulting from increased vertical turbulence.” (Fournier et al., 1977).
Sandstrom and Elliott (1984) encountered internal solitary waves (KdV solitons)
during a measurement program of the Scotian shelf. They concluded that these
nonlinear internal waves were “energetic enough to be probably the primary mixing
mechanism in the shelf break zone.” A second study (Sandstrom et al., 1989) indi-
cated that associated with these internal solitons was a turbulent layer responsible
for significant dissipation.

While mathematical models for dissipating KdV solitons exist and, most recently,
a model for shear-induced decay of internal solitary waves (Bogucki and Garrett,
'993), none of the existing models incorporate a turbulent dissipation mechanism

for the decay of the internal solitary waves.

In order to account for turbulent effects in a fluid, the flow field is typically divided
into two parts: 1) a mean flow, and 2) a perturbation representing fluctuations of
the flow field about the mean flow. Substituting this two-part represe: ' ion (mean
flow plus fluctuation) for the flow field into the governing equations and employing
the technique of Reynolds averaging introduces new unknown quantities which are
nonlinear products of the fluctuation terms. Any attempt to include additional
equations to define these unknown quantities introduces even more new unknowns.
The production of additional unknown quantities continues, ad infinitum, for all
levels of closure. The unknown quantities introduced at the first level of closure
are known as Reynolds stresses and represent the transport of momentum by the
fluctuating unresolved flow: the divergences of these unresolved momentum fluxes

appear as forces in the evolution equations for the resolved (mean) flow. It is



possible to close the system of equations (which results from the Reynolds averaging)
by equating these unknown quantities to appropriate known quantities of the flow

field.

Having overcome the closure problem, the KdV equation mcy be derived from
the governing Navier-Stokes equation via a multiple scales technique. With the
incorporation of turbulence, the resulting KdV equation contains both a Rayleigh
damping term and a Burgers term, and a solution may be developed via pertur-
bation theory. However, the resulting leading order solution is not uniformly valid
both ahead of and behind the wave. These nonuniformities must be accounted for
and the resulting solutions for the regions ahead of and behind the wave must be

asymptotically matched to obtain a uniformly valid solution.

Kaup and Newell (1978), Knickerbocker and Newell (1980), and Kodama and
Ablowitz (1981) developed a solution to the Rayleigh perturbed KdV equation
which indicated the development of a shelf region behind the soliton followed by an
oscillatory wave tail. Kodama and Ablowitz (1981) also resolved the nonuniformity
ahead of the solitary wave via a WKB-similarity theory. A first-order perturbation
solution to the KdV-Burgers equation was developed by Swaters and Sawatzky

(1989) as part of a study on the propagation of pressure pulses in a viscoelastic
fluid filled tube.

‘The principal purpose of this thesis is to present a mathematical model for the
turbulent dissipation of internal solitary waves in a continuously stratified fluid of
finite depth as governed by a Rayleigh perturbed KdV-Burgers equation. This the-
sis is organized as follows: In chapter two, the governing equations for KdV solitons
are derived. These equations incorporate turbulence via a first-order closure scheme
and present the vertical structure as a solution to an eigenvalue problem. Chap-
ter three presents an asymptotic solution to the Rayleigh perturbed KdV-Burgers
equation developed in chapter two. As the asymptotic solution developed is singu-

lar, the solution region is divided into five subregions which may be asymptotically

2



matched. Chapter four presents a numerical solution to the Rayleigh perturbed
KdV-Burgers . , .ation which is compared to the solution of chapter three. Finally,
chapter five presents the uniformly valid asymptotic solution from which the ver-
ticz flux (momentum) calculations are done to demonstrate the enhanced vertical

mixing resulting frcm the passage of the solitary wave.



Chapter 2
Problem Formulation ard Derivation of the

Rayleigh Perturbed Korteweg-de Vries Burgers Equation

2.1 Problem Formulation

The governing equations are derived following the treatment of Leblond and
Mysak (1978). We begin by establishing a Cartesian frame for a non-rotating two-
dimensional ocean which is assumed to be incompressible, inviscid and stably strat-
ified. In this frame, the fluid extends horizontally, in z, from negative to positive
infinity and is bounded above and belo§v by two rigid surfaces at z=H and z =0
representing the surface and the bottom of the ocean respectively (Figure 1). We
are able to choose a non-rotating reference frame (thereby ignoring the Coriolis
force) since the period of the internal waves of interest to us is much smaller than
the inertixi period.

Assuming there are no sources or sinks within the fluid, the equation describing

mass conservation is

Dp
=L L, V.u= 1.
Di +pV-u=0, (2.1.1)
where p is the density, u = (u,w) is the velocity field and where —1% represents the
total (substantial) derivative ~iven by |
D 0
The horizontal and vertical momentum equations are
Du Op
Poi = "5a" (2.1.3)
Dw Op
'b—t— = —5; - pg. (2.1.4)



The Coordinate System

Atmosphere

-

Stably Stratified Ocean
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Figure 1: The Coordinate System

The coordinate system is depicted above with z extending from negative to pos-
itive infinity (increasing to the right) and z increasing positively upwards bounded
below at z = 0 (the ocean floor) and above at 2 = H (the ocean surface).



Here u,w represent respectively the horizontal and vertical components of the
velocity field, p represents the pressure, and ¢ the acceleration due to gravity
(g = —9.81 m/s?).

Since the fluid is assumed to be incompressible, the density is constant following

the motion, i.e.,

SIS
I
o

(2.1.5)
Substituting (2.1.5) into (2.1.1) (mass conservation) yields the continuity equation

Ou Ow

o+ 5 =0. (2.1.6)

Equations (2.1.3)-(2.1.6) are a system of four independent equations for the four
unknowns u, w, p, p. Hence, they represent a closed system and will completely de-

termine the flow.

In the absence of the velocity field (u = 0) equations (2.1.3) and (2.1.4) reduce

to, respectively,
— =0, (2.1.3)
and
- = —-—pq. .1. !
3 = P9 (2.1.4')

Equation (2.1.4') is known as the hydrostatic equation. Consequently an exact

nonlinear solution to equations (2.1.3)-(2.1.6) is given by

u=0; p=po(z); p=po(2), (2.1.7a)

where po, po satisfy

dpo _
—d;- = —=gpo. (21.7b)



In order to discuss motions departing from this motionless hydrostatic state, we

introduce time dependent pressure, p', and density, p', fields defined by

p = pe(2) +P'(z,2,1); p=po(2) +0'(z,2,1), (2.1.8)

along with a spatial and time dependent velocity field u = u(z, z,t). Substituting

(2.1.8) into equations (2.1.3)~(2.1.6) we have

a0 .
(po + PN = — 55 (P0 +P); (2.1.98)
(po + p')D—w = —E‘(Po +p') = (po + £')g (2.1.9b)
0 Dt Oz ’
D oot p)tuipot+ o) +w(po+p) =0 (2.1.9¢)
at\° oz Oz ’
Ou Ow
F el Wil (2.1.94)

Applying the hydrostatic solution given by (2.1.7), we see that equations (2.1.9)

reduce to

Du__of

P D = " Ba (2.1.10a)

p%%’- = —%%' -7'g, (2.1.10b)

%’:i + w%”f =0, (2.1.10¢)
g’;‘ + %’f =0. (2.1.10d)

We now assume that the scale of the variations in vertical motion, w, are small
when compared to the scale of the variations in density, p, which allows us to im-
pose the Boussinesq approximation. Simply stated, the Boussinesq approximation

replaces the density function, p, with a constant, p,, in all terms except those which

7



give rise to the forces of buoyancy (Gill, 1982). Applying the Boussinesq approxi-

mation we find that equations (2.1.10a and b) become

Du 1 dp

Di = —';; o (2.1.11a)
! !

Dw 19 _rg (2.1.11b)

where p, = constant is some characteristic reference density.
Equations (2.1.11) and (2.1.10c and d) are now rewritten dropping the primes

from the perturbation pressure and density fields, i.e.,

% - __pl_' g%, (2.1.12a)

%‘tﬂ - _% gg - Z_f, (2.1.12b)

_’1;_/: + w%‘:’ =0, (2.1.12¢)
g_: + %‘f ~0. (2.1.12d)

To incorporate turbulent effects into the problem we must firs. make two simpli-
fying assumptions

1) Any turbulence is homogeneous and the statistics are time independent.

2) Density, pressure and velocity fields may be divided into two parts: a mean

(ensemble average) flow and fluctuations about the mean.

The first assumption allows us to impose the ergodic condition (Stull, 1988)
that time, space and ensemble averages are all equal. With regards to the second

assumption we define the density, pressure and velocity fields by
p=p+p,p=p+p, u=0+u, w=T+v'. (2.1.13)

Here, an overstruck bar represents the ensemble average and prime denotes fluctu-

ations about this mean. The primed quantities have zero ensemble mean, i.e. they

8



satisfy o =0, 7 =0, w = 0, w' = 0. Substitution of (2.1.13) into (2.1.12) leads to

O gru)+ @+ ) (@ u)+ (@ w'iﬁ' u’
-a—t(u+u)+(u+-.)ax(u+ )+ (@ + )az( +u')

= 2 E+2), (2.1.14a)
a——- ! =T J I_?_-— 1 O w’it—”— wl
D@ +u) + @1 ) @+ ) + (@ + ) (@ 4 w)
=L 2+ - L+,
p. 0 (2.1.14b)
254 0) 4 @) 2B+ #) + (@05 (P+P)
+ @+ w')-a- =0, (2.1.14c)
8 . B .
5;(14 +u')+ 5;(w +w')=0. (2.1.14d)

We now introduce the ensemble averaging operator ()

(%) ;=% (2.1.15)

Applying this averaging operator to equations (2.1.14) we have

&+ %“') + <ﬁ§—“> +(a5s)

+(u’ o 2y 4 w3 )“’"5;)

), (2.1.16a)



ow ow' _ow _ow'
(E)+(_5t~)+(u5?)+(u_a?)
0w, 00, 0w
+Hu'z=) + (W) + (T5)

_ow'. |, 0@, 0w
+(w‘a—z) + (w 5;) +{w' - )

i, 1o
TV p. Oz ps Oz
g .. g
+(—=—p)+(——pr),
L)+ (L)

() + <—5}> <-—> + f’;;>

Py + w2+ @)

éf

& +(55 + (& +(5) =o.

(2.1.16b)

(2.1.16¢)

(2.1.16d)

If ¢ represents a constant and A, B fields, we observe the following properties

(Stull, 1988):

(2.1.17)



Applying (2.1.17) we find that equations (2.1.16) reduce to

(2.1.18a)

bt " 3 3 0z 9~ p. 0z p. (2.1.18b)
B g O P 0P 5O
3 T tuGy tTG WG B =0, (2.1.18c)
ot Ow
5 +5 = 0, (2.1.18d)

where we have also employed the identity
u' =0. (2.1.19)

Subtracting equation (2.1.18d) from (2.1.14d) we find that

o' Ow'
=+ 5 =0 (2.1.20)

Multiplying this last equation by u' and then applying the averaging operator
(2.1.15) yields

u’—z- +u'— =0. (2.1.21a)

ou' aw'
adedl i
w 3 +w 3 0, (2.1.21b)
ou' ow'
192 4 T
i +p 5% 0. (2.1.21c)

Finally, adding equations (2.1.21a,b,c) to equations (2.1.18a,b,c) respectively, leads
to (upon application of identities (2.1.17))

o
&

oz

— ou
+"az bz

0z

op

_ 1
+w +;3:c

11



%_- +'ﬁ%—"i +w;,),E + = %—5 +35= -—g—w'u' -,
t ’ 2 P02 P z z (2.1.22b)
?B_tﬁ +TIZ—'3- +mg_’—’ +-u?aT°- = —53—7,;' - -g— T
* # ‘ z (2.1.22¢)

The terms uw'u/, w'w, w'v/, w'vw', u'p’, w'p' in equations (2.1.22) are unknown
yielding a system of ten unknown quantities for the system of four equations ((2.1.22)
and (2.1.18d)).

The first four of these terms are Reynolds stresses and the latter two terms

represent the horizontal and vertical buoyancy flux. The '« ynolds stresses are

defined as:

Tzz = —pu'ul; T = —pw'v’,

(2.1.23)

Tz = Ter = —pu'w’ = —puw'u’,

The symmetry of the Reynolds stresses reduces the number of unknowns to nine.
In order to close this system of equations we now model the Reynolds stresses

(representing the momentum flux) as follows (Pedlosky, 1987):

Tzz _ gKHa—’ Tz _ 2]{‘,__6"’,

P 9z p 0z (2.1.24)
T. Tyz ou ow o
— =-<==Ky—+ Ky—.

p 0z Oz

The coefficients Kz and Ky in equations (2.1.24) are called, respectively, the hor-
izontal and vertical turbulent viscosity coefficients and are assumed constant but

not necessarily equal. Substitution of (2.1.24) into equations (2.1.22a,b) yields

1 2_ 52_
%E+ g-:+ 5£+—- ?=K36—%+Kv%-'§,
* Z POz ‘ z (2.1.25a)
o 1 *w *w
3’:—+a—a——‘_"_+wa—‘z+— ?+iﬁ—KHa'f + Ky
z Z P02 Pu T #*  (2.1.25b)

In forming equations (2.1.25) we have employed the continuity equation (2.1.18d).

12



Similarly we define the horizontal and vertical eddy buoyancy coefficients By and
By (Leblond and Mysak, 1978) by:

Tl — P T — £ 1.
u'p' = ~By -3 w'p B"az (2.1.26)
Substituting (2.1.26) into (2.1.22c) we have
ap  _0p 3‘ 6p o 0% o*p
_37+uaz+wa 6 = By 32+Bv32. (2.1.27)

Equations (2.1.18d), (2.1.25) and (2.1.27) now represent a closed system of four
equations for the four unknowns @, @, p, p. One further simplification is made by
assuming that the eddy buoyancy coefficients and the turbulent viscosity coefficients
may be equaled in the horizontal and vertical values (ie. v=Ky =By, p=Kv =
By). Typically, for oceanic flow the horizontal flux coefficients are larger than the
vertical flux coefficients. While no assumption is made as to the relative scale of
the horizontal and vertical flux coeflicients to each other it is assumed that both
parameters are small when compared to the forces which dominate and determine
the flow (i.e. the horizontal and vertical fluxes are considered “weak” forces).

By dropping the overstruck bar to simplify notation, the dimensional governing

equations may be rewritten

2 2
3u+u_6_1£+w21_1_+1 Op 0%u 0%u

_— —_—— =Y+ s,
ot ' oz 9z " p. Oz 0a? #oz2 (2.1.28a)
P 5 dw 1 8 2 ?
—5t1—”-+u-31:-+w-&-+— -6—5‘+"‘]—P=Vg—;g'+i‘aa_;:"
Pe Pe (2.1.28b)
8 ,  0p, Bp, Opo_ Pp  &p
2t %8s TV Tz = Yoz T FEa (2.1.28¢)
Ou Ow
5 + 5 = 0. (2.1.28d)

13



Boundary Conditions

The boundary conditions are formulated by assuming that the surface of the
ocean (z = H) behaves as a rigid lid. It fc'lows that there can be no net transport
of fluid across this boundary, thus the vertical velocity, w must vanish at z = H,
i.e. the fluid velocity normal to the surface z = H must equal zero. The ocean
floor, assumed flat, also behaves as a rigid surface. Therefore w also must vanish
at z=0.

In the far fields ahead and behind the perturbation flow, we assume the flow to
remain in the hydrostatic state. Thus, both u and w must vanish for large positive

and negative values of z.

In summary, the boundary conditions may be stated as

w=0, at z=0H; (2.1.29a)

im u=0; (2.1.29b)
T—TOO

lim w=0. (2.1.29¢)

2.2 Vorticity Equation Formulation and Derivation of the Rayleigh Per-
turbed KdV-Burgers Equation

The equations governing the motion are given by (2.1.28). It follows from the
continuity equation (2.1.28d) that there exists a streamfunction, ¢ = 9(z, 2,1), such
that the velocity field is given by

u=—1;; w=1Y;. (2.2.1)

The vorticity equation is obtained by subtracting the z-derivative of the horizon-

tal momentum equation (2.1.28a) from the z-derivative of the vertical momentum

14



equation (2.1.28b), yielding
At + us B + vl + wAp + wAY, = —f)—‘g + A + VAP, (2.2.2)

where

Ay = Yez + ¢zz, (2.2.3)

and ¢ is defined by (2.2.1). From the continuity equation (2.1.28d) we see that
(2.2.2) may be rewritten as

D z
Z A =-L2g 4 pAy,, +vBY.., (22.4)
Dt P
where 30; is the total derivative defined by (2.1.2). Substituting (2.2.1) into equa-

tions (2.1.28¢c) and (2.2.4) we arrive at the governing equations in vorticity form

d
pe + Yzps — Yzpz + 1!’:-;1%2 = Upzz + VPzz, (2.2.53)

Aty + At — YA, = —L2g + pAgh,, + VA,
Ps (2.2.5b)

In order for KAV solitons to exist, there must be a balance of weak nonlinearity
with weak dispersion. Typically, the dissipative forces of turbulence are also weak
when compared to the forces responsible for the storage and advection of mass and
vorticity. Thus, to determine the turbulent dissipation of KdV solitons, it is neces-
sary that the governing equations represent a balance between weak nonlinearity,
weak dispersion and weak dissipation.

Shallow water waves of small amplitude and low wavenumber, such as the solitons
detected by Sandstrom and Elliot (1984) in the region of the Scotian shelf, may be
characterized by introducing horizontal, L, and vertical, H, length scales such that

(-’t"L)2 < 1. Therefore, in view of these scaling considerations, we now introduce the
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following nondimensional (primed) coordinates

L
z = L1, t= —t,
veH
z=HZ, p=epp
oo _ ZPe gy =eH\/gHY' 2.2.6
— =5 5¢), P = eH\/gHY', (2.2.68)

vhere L and H are, respectively, typical horizontal and vertical length scales and
e= (1) «1.

During a measurement program on the Scotian Shelf, Sandstrom and Elliot
(1984) detected shoreward propegating solitons. The study area had o charac-
teristic depth of approximately 160 meters and was stably stratified with potential
density, o¢, ranging from 23.0 to 27.0 with the pycnocline at a depth of about 40
meters. The solitons which were detected were observed to pass by in about 200
seconds.

Based on the above observations, we choose the vertical length scale H = 160m
(the depth of the fluid) and set p, = 1025 kg/m?® (the average density). Since we
wish to model changes in the structure of a solitary wave which passes by in a time
of 200 seconds, we establish a slow time frame T = €t and choose € = ?(13'6' Given
then ¢ = (%)2 we may now calculate the horizontal length scale, L = 2000 meters.

The density structure of the ocean may be represented by an exponential function
(eg. Swaters and Mysak (1985)); it follows that S(z) (as defined in (2.2.6)) may be

represented as

S(z) = 5§ exply(z — 1)), (2.2.6b)

3
where So = [—;H_-%I ] and v represents the nondimensional scale height

=1
~=~*H (v* is the scale height of the Brunt-Viisila frequency which is assumed to
occur in the area of the pycnocline -,71.- = 40 meters). Assuming an average density

change of 2 kg/m? over a depth of 30 meters, we find typical values for So = 0.1
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and v = 4.0.
Substitution of (2.2.6a) into (2.2.5) yielas

p't’ + 6‘![);: p’zl - ET,b'zl p;t - 1/);: S(Z') = Eﬂ'p'zrzl + EV'p'z:zl ’ (2.2.73.)
]
Al + el Ay — edl AL, = —% ep' APl + eV A,
(2.2.7b)

where 4’ and ' are defined by

. 2 2 2 82 82
NotmgthatA::%;+8%y=f;-a%m+ﬁ1;-5;,7=>H2A=g;+s§;;wesee

that equation (2.2.7b) becomes

(Bhrar + Pz e + EWo (oo + Pz )sr — 93 (Brrp + Pz )t

= '—p'z' + E”’(¢;I:l + 61/):,.:::1);';' + €Vl(1,b'zlz: + E'll);/zl)z'z'.
(2.2.70")

By defining the Jacobian of two functions 4, B
J(A,B)=A.B. - A.By,

we see that the non-dimensional equations, (2.2.7a) and (2.2.7b’), may be written

as

pt +eJ (¥, p) — ¥25(2) = €ppz: + €VP2s, (2.2.8a)
(tpzz + 51!’::): + 5J(¢, ("pzz + e'wzz))

= —pz +ep(tPzz + EPzz)zr + V(Y22 + €zz)ze-
(2.2.8b)

In equations (2.2.8) the pi:mes denoting the non-dimensional quantities have been

dropped for notational simplicity.
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From equations (2.2.8) we see that the contributions of nonlinearity, dispersion
and dissipation occur over a time scale of O(¢71). To determine the effects of these
contributions on a rightward travelling (z > 0) soliton, we now introduce the fast

phase variable, £, and slow time variable, T, defined by:
E=2—~ct, T =c¢t,

where c is the translation velocity in the z-direction. The tast phase variable es-
tablishes a characteristic reference frame which moves rightward with the travelling
soliton while the slow time variable establishes a time frame by which it is possible
to determine the effects of nonlinearity, dispersion and dissipation.

In terms of these new variables, the partial derivatives are mapped as:
0 — €01 — cae, 0 — 65,

so that equations (2.2.8) become

epT — cpg +eJ (¥, p) — e S(2) = epp.s + €vpee, (2.2.9a)
€ (Y2 + eee)p — c(Yax +eee) + €J(¥, (s + €thee))
= —pg + e (Y +€¥¢¢),,
+ eV (Yrz + EPee ) (2.2.9b)

where J(A,B) = A¢B; — A, Bg.
Expanding the unknown function for density, p = p(z,£;T'), and the streamfunc-

tion ¢ = 9¥(2,£; T) in terms of the small parameter ¢ we have

e 65T) = Yoo e, T, (2.2.108)
n=0

¥(2,6T) = ie"rﬁ‘"’(z, & 7). (2.2.10b)
' n=0
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Substitution of (2.2.10" into (2.2.9) leads to the O(1) problem

oV = S(Z) ¥, (2.2.11a)
. p(o>
A fc (2.2.11b)

From equations (.2.11) we see that the streamfunction, 9, satisfies

% (¢(°’+ 5, ‘°)> q. (2.2.12)

Integrating (2.2.12) with respect to €, we have

S (2)

9+ =240 = D(z;T),

where D(z;T) is a constant of integration. Applying the boundary conditions
(2.1.9b,c) (the flow field vanishes as § — oo (i.e. ¢ — +o0)) it is readily seen
that D(2;T') = 0. Thus the above equation reduces to

S(z)

¥+ =590 =

Assuming a separable solution for /(9 (z, £; T) of the form

(2,6 T) = A&; T)é(2), (2.2.13)

we find that ¢(z) is governed by

bus + S(Z 224 =0, (2.2.14a)
subject to the boundary conditions
#(0) =¢(1)=0. (2.2.14b)
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Equations (2.2.14) establish the vertical modes of the flow field. There exist an
infinite number of solutions to problem (2.2.14), each corresponding to one of the
infinite denumerable eigenvalues, c,. The eigenvalues and corresponding eigenfunc-

tions will be calculated in chapter 3.

Solvability Conditions

Having determined the equation governing the vertical structure, ¢(z), of the flow
field, we now derive the equation governing the horizontal structure and its time
evolution as given by A(£,T). The evolution equation for A(£; T) is now shown to
arise as a solvability condition on the O(¢) problem. The O(¢) problem associated

with (2.2.9) and (2.2.10) is

S(z) 1

24y - ~TO, o) + p) F‘ P9 - ”,,20) (2.2.15a)

1 1 1 0 v
B~ 2o = 2T, D) + < - ¢“ B, — Sk
(2.2.15b)

pe) + ==

Solving for pgl) in equation (2.2.15a) and substituting into equation (2.2.15b) we
find that the O(¢) problem may be rewritten as

1 S(Z) 1 0 1 0 1 0
0+ =200 = — v + o0 + 9w

v
= P04 - Ly, - Ly

) (2.2.16)
+5 ¢(°) (0) _ ¢(o) QO 5 — o
u v
~ 500 - 2p‘?

Recalling (2.2.11a), (2.2.13), and (2.2.14a), we see that this last equation becomes

E (¢(1) S(Z) 1){)(l)) _ A€€f¢ _ §AT¢

— 2 ———
_635:AA€¢ + c3A(S¢)u+

2.2.17
0y (2.2.17)

4S9,
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Multiplying through equation (2.2.17) by ¢(z) and integrating fromz=0toz=1
the left-hand side of equation (2.2.17) becomes

=1
3% / #(2) («/:2‘) + %(-f—)wm) dz

Integrating this expression by parts (twice) we have

5% [(‘i’"’(l) z'/’"’):: io p™ (45" S )dz]. (2.2.18)

Applying boundary conditions (2.1.29) and equations (2.2.14) we find that (2.2.18)
evaluates to zero. This imposes the compatibility condition that upon multiplying
through by ¢(z) and integrating from z = 0 to z = 1 the right-band side of equation
(2.2.17) must also equal to zero. Hence,

! 25 2 2
/0 é [—A“Eq& ~ —AT¢ - —S,AAg}S2 + -E?A(Sfﬁ)u + -C%I'Aeg.gcﬁ] dz = 0.
(2.2.19)
Equation (2.2.19) may be rewritten as the Rayleigh perturbed KdV-Burgers equa-

tion
Ar + aAAg + BAgee = —7A + vAge, (2.2.20)

where a, 8,7 are defined by

' S.¢%d
= %’ (2.2.21a)
)
3 Zd
B=< ff ; ¢2;z (2.2.21b)
_ Jond(58)exdz __ p [y (9:)5%dz
: Tsea: ~ @ W. (2.2.21¢)

The last equality in (2.2.21c) is obtained through integration by parts (twice) and
application of equations (2.2.14).
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Equation (2.2.20) describes the amplitude evolution of a perturbed solitary wave
travelling in the positive z-direction. In chapter 3 an asymptotic solution to this
Rayleigh perturbed KdV-Burgers equation will be developed subject to suitable

initial and boundary conditions.
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Chapter 3
Vertical Modes and the Asymptotic Solution to the
Rayleigh Perturbed Korteweg-de Vries-Burgers Equation

3.1 The Vertical Modes

Before developing the asymptotic solution for the evolution of A(§; T), we first
determine the vertical structure, ¢(z) of the streamfunction, ) (z,&; T). As shown

in section 2.2, the vertical structure, ¢(z), must be a solution to the eigenvalue

problem
P2z + Sc(f )¢ =0, (3.1.1a)
#(0) = ¢(1) = 0. (3.1.1b)

The problem posed by (3.1.1) is a regular Sturm-Liouville eigenvalue problem.

Hence there exists a countable infinite of real eigenvalues, {ca},—o » such that

O<egg<ag< - <ep<cpp1 <....

Corresponding to each eigenvalue exists a unique eigenfunction, ¢n(z), which has n

zeros for 0 < z < 1. The set of eigenfunctions, {¢,}n—o form an orthonormal set

which must satisfy the equations

jd:—z-qﬁn + -S;’fg—)- n=0, (3.1.23.)
1
/o S(2)ba(2)brm(2) = Sam; (3.1.2b)

where §nm represents the Kronecker delta.

With S(z) defined by (2.2.6b), we introduce the new independent variable

N11/2
t=%[§§2—) , (3.1.3)
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such that

dn(t) = dn(2(2)).

Under the transformation (3.1.3), the eigenvalue problem (3.1.2) becomes
20" 414l + 126 =0, (3.1.4a)

(where ¢!, = g;an and @) = -};,—¢,,) with boundary conditions

$a(A) = da(Ae??) =0, (3.1.4b)
and orthonormal condition
c27 Ac.’,,
—'2—— t¢n(t)¢m(t)dt = 5,",., (3146)
A
in which
2506—7/2
A=t|_ = — (3.1.5)

Equation (3.1.4a) is Bessel’s equation of order zero. Hence, the solution may be

written in terms of Bessel functions of the first and second kind, i.e.,

Pn(t) = AnJo(t) + B,Yy(t). (3.1.6a)

Applying the boundary conditions (3.1.4b), we have

AnJo(A) + BaYo(A) =0,

3.1.6b)
AnJo(Ae"?) + B, Yy (Ae?/?) =0, (

from which we find that a nontrivial solution will exist if and only if A satisfies

Jo(A)Yo(Ae/?) — Jo(Ae"/?)Y,(A) = G. (3.1.7)
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Having determined the values of A for which nontrivial solutions exist, we may find
the eigenvalues ¢, of (3.1.1) by inverting (3.1.5) so that

_ 2508—7/2

Cn ——m—, (318)

where A, is the n'® denumerable numeric solution of (3.1.7).
The first five roots, Ao, A1, Az, Az, A4 of equation (3.1.7) were found numerically
and are given below along with the corresponding eigenvalues, ¢, €1, €2, €3,C4, With

values Sp = 0.1, v = 4.0.

n An Cn
0 0.4717 0.0717
1 0.9702 0.0349
2 1.4653 0.0231
3 1.9591 0.0173
4 2.4522 0.0138

Having determined the eigenvalues, it remains to determine the constants A, and
B, of the solution (3.1.6). It is known (Abramowitz and Stegun, 1967, equation
(11.3.31)) that

+v+2

" (D, (1)dt =
/ MDDt = s

{Cu(2)Du(2) + Cu41(2)Du4a(2)}, (3.1.9)

where C,(z) and D,(z) represent any two cylinder functions of order p and v re-

spectively. Upon substitution of {3.1.6a) into (3.1.4c), the orthonormal condition

becomes
2y Ane?/? 2
-'—é— t[{Ando(t) + BuYo(2)]" dt =1,
or, equivalently,
2 Ane?/? 2 Ape?/?
£l / taiaond + 5L [ 2B T Ya(e)as

627 A”e"I/’
+-3 /A tBlYy(t)dt = 1.
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Since the Bessel functions Jo(t) and Yp(t) are both cylinder functions, we have upon

applying the identity (3.1.9)

A..c"“

3’7A2t [Jo (t)+J12(t)]

An

Ape?!?
+72A nBn— [Jo(t)n(t)+J1(t)Y1(t)]
An
A“evlﬁ
+-2- ;’73” [Yg(t)+Y,(t)] = 1. (3.1.10)
An

rom the boundary conditions (3.1.6b) we have

—[Yo(An) + Yo(Ane™/?)]

An = T7o(8n) + To(hne )]

(3.1.11)

so that upon substitution of (3.1.11) into (3.1.10) we have

—é— {Kszt [J3(2) + JE(2))

+ 2K, th [Jo(®)Yo(2) + B (BYi(t)]
A,.e"”

Bf, - [Y;, () + Y3(2)] } =1. (3.1.12)

An

Solviag (8.1.12) for B, yields

2 |{ K a0 + 710

+2Knt? [Jo()Yo(t) + J1()Yi(2)]
A..e"”] -1/2

B =

+2 [Y2(t) + Yf(t)]}

An

(3.1.13a)

where K, is defined by

— [Yo(An) + Yo(Ane?/?)]

Kn= [Jo(An)+J0(Aﬂ31/2)] .

(3.1.13b)
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In summary, the eigenfunctions are given by

én(t) = AnJo(t) + BaYo(t), (3.1.14a)
where
Ap = KnBhn, (3.1.14b)
2 242 2 2
B = 2o |{ K22 (7200 + 200
+ 2Kat? [Jo(t)Yo(t) + 1)1 (2)]
Ane?/? —1/2
2 [0 + Y20 | ] ,
An (3.1.14c)
in which
. — = [o(hn) + Yo(Ane™)]
" [Jo(An) + Jo(Ane/2)]
and
25’06—7/2
e =" (3.1.14d)
where A, satisfies
Jo(An)Yo(Ane™?) — Jo(Ane??)Yo(An) = 0. (3.1.14e)

The first three vertical modes are shown in Figure 2. Since the original govern-
ing equations are nonlinear, the principle of superposition does not apply and all
subsequent calculations involving the vertical structure of the streamfunction are

done using the gravest mode (¢g solution).
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3.2 Time Dependent Evolution of the Streamfunction

Having determined the structure of the vertical modes, ¢(z), we must now deter-

mine the evolution of A(£;T) to determine fully the streamfunction ¥(z,&; T) (re-

call that ¥(z,£; T) was chosen in chapter 2 to have the separable form ¥(z,§;T) =
#(2)A(&;T)). The function A(£;T) evolves according to the Rayleigh perturbed

KdV-Burgers equation

Ar + aAAe + BAgee = —vA + vAege,

(3.2.1)

which is a solvability condition on the O(g) problem as show in section 2.2. Under

the transformation

A

_e\E v
o () ar=et (D)

, _6ﬂ2%
¢ (a)e,

equation (3.2.1) becomes

g — 6qqe +geree = —7'q + V'gee,

where 7' = 73 (%g)% and V' = v (a%)i .

(3.2.1)



The first vertical mode
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Figure 2: The Vertical Modes

Figures 2a, 2b, and 2c show the first three vertical modes ¢o, ¢1, and ¢2, respec-
tively. The vertical modes ¢o, 1, and ¢2 correspond, respectively, to the eigenvalues
co = 0.0717, ¢; = 0.0349, c2 = 0.0231 with So = 0.1 and v = 4.0.
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The second vertical mode
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The third vertical mode
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In developing a solution to equation (3.2.1') we follow the procedure of Swaters
and Sawatzky (1989) and break the solution region into five subregions. Equation
(3.2.1') is then solved asymptotically in each of these regions; the final solution
is then given by the sum of each individual region minus the contributions in the
overlap zones between each region (Bender and Orszag, 1978). The various solutions
regions are: 1) the O(1)-amplitude main pulse; 2) the shelf region which emerges
behind the main pulse; 3) the dispersive wave-tail describing the transition from
the shelf to the zero-state; 4) the near field ahead of the main pulse; and 5) the far
field ahead of the main pulse (Figure 3).

For notational simplicity we again drop the primes from equation (3.2.1') and

rewrite it as

qr — 6qg¢ + geee = v(—pq + gee), (3.2.2)

where u = -:{; ~ O(1) and we assume v < 1.

3.2.1 Evolution of the main O(1) pulse

In the absence of forcing (v = 0) the single soliton solution to (3.2.2) is given by

(Kodama and Ablowitz, 1981)

g = —2n*sech? [n(¢ — 4n°T — 6o)] . (3.2.3)

This represents a soliton with maximum amplitude 2¢? propagating at speed 452
The parameters 7 and 6, are taken to be real with 8, representing a possible phase
shift. The unperturbed soliton is shown in Figure 4. The solution to (3.2.2) in
region 1 (the solution region about the propagating main pulse) is constructed as

follows.
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The Fire Solution Regions
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Figure 3: The Solution Regions

The five solution regions are shown graphically above. The solution regions are:
1) the O(1)-amplitude main pulse; 2) the shelf region; 3) the dispersive wavetail;
4) the near field ahead of the main pulse; and 5) the far field ahead of the main
pulse.
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The Unperturbed Soliton
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Figure 4: The Unperturbed Soliton Solution



The main pulse is assumed to dissipate adiabatically. Hence, to determine the
evolution of the pulse over time scales O (-};) , we now introduce the slow time

variable
x =vT, (3.2.4a)

where we take v < 1.

It is also convenient to introduce the comoving fast phase variable

4 vT
0=¢—— / n%(r)dr, (3.2.4b)
VJo
with derivatives
e =1, 6r = —4n*(x), xT =" (3.2.4c)

In terms of this adiabatic comoving coordinate system, a multiple scales pertur-

bation solution to (3.2.2) in the form
g~ ¢ O6; x) + vV x) + ..., (3.2.5)

may be constructed. The assumption that the parameter 5 (the propagation ve-
locity) is a function of slow time only, i.e. 7 = 5(x), is consistent with the work
of Kodama and Ablowitz (1981) where this dependence was shown as a solvability
condition for the perturbation expansion (3.2.5). Solvability conditions also show

that the phase shift, 8y, is also a function of slow time only so that
90 = OO(X)'- (3.2.6&)
Without loss of generality we take

60(0) = 0; (3.2.6b)
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that is, we assume that at ¢ = 0 the main pulse is centered at z = 0.

Substituting (3.2.4) into (3.2.2) we have
—4n?qe — 6990 + 9066 = V[—pq + qoe — ax). (3.2.7)
With the expansion (3.2.5) the O(1) problem for (3.2.7) becomes
—an?q)” — 6¢©q{" + gigp =0, (3.2.8)
which has the suliton solution
q® = —2n%sech®[n(8 — 6,)]. (3.2.9)

The O(v) problem for (3.2.7) is given by:

~4n2g5" — 6 qM)e + gfgh = ~ua® + gfy — ¢, (3.2.10a)
where
1
¢ = Enx[2q‘°) + (8 — 60)a"] — oxal". (3.2.10b)

Before deriving an exact solution to (3.2.10a) we determine the evolution of n(x)
and 6o(x). '

Following Kodama and Ablowitz (1981) and Swaters and Sawatzky (1989), we de-
termined the governing equation for 5(x) as follows. We rewrite equation (3.2.10a)

in the operator form
£(¢W) = F(¢?), (3.2.11a)
where

£(gV) i= —4n7qf" — 6[g g ™M)y + ¢f5h, (3.2.11b)
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and
F(®) == —pg® +¢i — ¢ (3.2.11¢)

The adjoint operator associated with £, denoted LA, is defined by
(v, L(u)) = (LA(v),u), (3.2.12a)
where (u,v) represents the inner product defined by
o0
(u,v) = / uvdf, (3.2.12b)
-—00
and u,v are test functions satisfying the boundary conditions
0-1-?:!1300 u,v =0, and oll.r:ixwuo, vg = 0. (3.2.12¢)
It follows from (3.2.12) that the adjoint operator, LA, must satisfy
o0
/ (uLA(v) — vL(u))d6 =0,
—00

or, equivalently,

/ wLA(v)d6 = / vL(u)db. (3.2.13)
-—Q0 -0
From (3.2.11b) we see that the right-hand side of (3.2.13) becomes

/ v[—4n?ugs — 6(gVu)e + ugse)dh. (3.2.14)

Integrating by parts and applying boundary conditions (3.2.12c), we find that the
integral (3.2.14) is equal to

/ u[dn?vy + 69 Pvy — vgee)db. (3.2.15)

-0
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Hence, given definition (3.2.12), it follows from (3.2.15) that the adjoint operator,

LA, is given by

LA = 47)2‘w9 + 6q(°)wo — Wgge-

(3.2.16)

We observe that the adjoint operator is the negative of the KdV operator cor-

responding to equation (3.2.8) which has solution, ¢(®), given by (3.2.9). Since the

solution (3.2.9) is an element of the kernel of the homogeneous adjoint operator

(3.2.16), i.e. £L4(q(®) = 0, for there to exist a nontrivial solution, the forcing func-

tion F(¢(®) (as defined by (3.2.11c)) must be orthogonal to ¢\® (the Fredholm

Alternative). Thus F(q(®)) must satisfy

o0
/ ¢ F(g®)ds =0,
—o0

i.e.,

= ©)? 4 (0),(0) _ (0),(0)
{wq +4q %o—qqx}w=0-
—00

Substituting (3.2.9) into (3.2.17) and integrating we have

16 , 64,
—3Hn —15n — 8nny,

or equivalently,

=23
SHn = 51

Equation (3.2.18) may be integrated immediately to give

=1(x) dn
I g
n=n(0) %l"’ + '18?'73
/n-n(x) -—11d17 / (x) 3 dn
n=n(0) 3“ + 15'7 =n(0)

38

(3.2.17)

(3.2.18)



n=n(x) n=n(x)
+ — In|n|

7°| %

BRI I

n=n(0) 7=1(0) (3.2.19)

Solving (3.2.19) for n(x) we have

10472 (0)e4x/3 ]%

n(x) = [10,; —8n2(0)(e= X7 = 1) (3.2.20)

where 7(0) is defined by n(x = 0), (the initial condition on 7(x)). The amplitude
evolution is shown in Figure 5.

The evolution equation for the phase shift, 8o(x), may be determined following
Karpman and Maslov (1978). From the IST (inverse scattering transform) formal-

ism developed by Karpman and Maslov, the evolution of the phase shift is given

by
_ -1 [ 0) (0) 2 2
Oox = ypel (—uq@(2) + go (2))(zsech®z + tanh z + tanh® 2)dz,  (3.2.21)
-0
where z = 7(6 — 6,), with ¢(®)(z) given by (3.2.9) as
¢ = —2n%sech®z.
Therefore
[ oo
Ooy = 2 / sech?z(zsech?z + tanh 2 + tanh? z)dz
;&
-7 / sech?z(zsech?z + tanh z + tanh? z)dz

-0

oo
+2n / sech?z tanh® 2(zsech?z + tanh z + tanh? z)dz.
~o0 (3.2.22a)

Evaluation of the integrals in (3.2.22a) yields

il P
box = 3, + 15" (3.2.22b)
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Evolution of ‘the Soliton Amplitude
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Figure 5: Amplitude Evolution

The amplitude evolution of the decaying soliton with parameters u = 1.0, v = ol
(Figure 5a) and g = 1.0, v = 335 (Figure 5b).
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Evolution of the Soliton Amplitude
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Hence, given (3.2.20) we have

. :
- — 8n? ~4ux'/3 _
o= £ [10# 81(0)(e*# 1)] ay’

3 10un2(0)e—4ux'/3
' 3
X 8 10pn2(0)e44x'/3 '
+./o 15 [10[1 —_ 81,2(0)(3—4px'/3 _ 1) dx . (3.2.23)

From (3.2.23) it follows that

0= ()" {-see (%50 |
s (2% )]

(108 —8p2O)e=#x 1)1} [ 5w *}
[ 8n2(0)e—4rx/3 ] +[4’72(0)] (5.2_24)

The evolution of the phase shift is depicted in Figure 6.

The leading «.der behaviour of the dissipating solitary wave is completely de-
scribed by (3.2.9), (3.2.20) and (3.2.24), restated below for summary:

¢ = —2n%sech?[n(6 - 6o)],

10u?(0)e—ex/5__ 1*
U(X) = 2{0) p—4 /3 —- ]
10u — 8n2(0)(e—4#x 1)

w=3(3)' (e [ (5057) |
vow(2850)|

104 — 82(@) (e~ = 1)1 [ s 1}
"[ 8n?(0)e—rx/3 ]* [471’(0) ’
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3.2.2 The perturbation fleld

Having fully determined the leading order behaviour, we now construct a closed
form solution for the perturbation field given by equation (3.2.10a). Integrating
(3.2.10a) with respect to § we have (upon substitution of (3.2.9))

{—4n® + 129*sech’[n(6 - 6o)] + Bs0 g™
= ——-:-fﬂn tanh{n(f — 6o)] + %n“ tanh{n(6 — 6o)]
+ 4?“(9 — 8o)n*sech?[n(8 — 8o)] — 200xn°sech?[n(8 — 6o)]
= 186 - boyntsech?[n(8 ~ fo)] - 47° tank[n(6 — Go)]
+ T(x), (3.2.25)

where I'()) is a constant (dependent on x) of integration.
Demanding that the perturbation field vanish as # — oo so that ahead of the

main pulse there is no disturbance (i.e. ¢*) — 0 as § — oo) we find that
o 1693
I'(x) = ~ W T (3.2.26)
W.th I'(x) given by (3.2.26) and taking ihe limit as § — —oo of (3.2.25) we see that

Q) —¢_8&
Jim g®(0,x) - - . (3.2.27)

Equation (3.2.27) indicates the emergence of a shelf region behind the solitary wave.
Physically this shelf is formed since the perttirbed soliton cannot simultaneously

satisfy both mass and energy balance laws.
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Time Evolution of the Phase Shift
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Figure 6: Phase Shift Evolution

The phase shift evolution of the decaying soliton with parameters u = 1.0 and
v = & (Figure 6a) and g = 1.0, v = g5 (Figure 6b). .



Phase Shift

.922
.029
.018
816
.g14
.812
.g10
.ge8
.86
.004

.002

.p@2
.ge4
.26
.QGB
010

812

Time Evolution of the Phase Shift

lllr—rlrxlTl|l||1|||1|ll|]tl|l|l||r|lrl—rjt—llT|Tﬁ
5
LllLllIlllllll'lllL[lllllllllllllllIl_llLllJIJllll
[} S 18 15 20 25 30 35 46 45
Time
Figure 6b

45

50



Equation (3.2.25) may now be solved for ¢(1)(8,x) given I'(x) = 242 + l‘%g:.
Following Kodama and Ablowitz (1981) and Swaters and Sawatzky (1989), we sub-

stitute

¢ = tanh[n(6 — 6o)] (3.2.28)

into (3.2.25) to get

[12 - 4(1 — €2)7")¢® + [q‘”u ~ &)l
_ 2;1 1+¢ 8 14+¢
a0+ 2 (75 - o (755)

(4§ +46+ 16) (14 €)'y — 26,

(3.2.29)
The homogeneous problem corresponding to (3.2.29), i.e.
12— 41 - €)1l + [afa(1 — €M = 0,
is an associated Legendre equation which has a regular solution given by
¢ = P3(¢) = 15¢(1 — €%). (3.2.30)

In order to construct the particular solution to (3.2.29) we use the method of vari-

ation of parameters. Defining

g™ = ®(E)PE(€) (3.2.31)

and substituting (3.2.31) into (3.2.29), we have

€0 - €2 = 2ae(1 -+ 2e- o (115)

2255(1 &)n (l +)
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n 2 4
+ 2—25(166 + 44£" — 60€7)

21— £

=0 (3.2.32)

Integrating with respect to { we have

EA-V8=— 5~

2u [€2 1+ 1 1+¢
+Z§5[’2““(T——5>’§1"(1-g)+5
£ 1+¢ 2 1 2
S )__3__§1n|(1_§)|]

4 1-¢ 6 2> "4 \1-¢
N [gez 44 5
+ 508 [sg +=3 125]
2, [& ¢
-— 1500X -é- —_— -4— + cl’ (3.2-33)

from which it follows that

@_2;;[ 1 ¢ ]
T g5 (-2 3(1-¢2)°
2p

e [2(1 o Gig) ~ ST ey Gig)

1 3 1+¢
-y Ta-ey In (1 = 5)

1 1
+3(1 - £2)3 + 3€2(1 — £2)3 Inj(1- fz)I]

8n 1 1+¢ 1 1+¢ 1
225 [2(1—52)3 1“(1-6) ke (l—e) Ty

£2 1+¢ 13 1
tia-ern (1 -s) tsa-ay T iy

"4:2(11—52)3 o (iig)]
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n 8 44¢ 12¢3
+ 295 [(1 —£2)3 TIn-ey (- E’)“]
2, 1 _ & ] €1
T 15 0% [2(1 ey i1-ey) T ai-or

(3.2.34)

Integrating with respect to £ a second time yields

1+¢ 1 3
<I>(£)—45,[16 ( * \+8(1-—£2)+Z(1—€2)2]
2u 1

T 457 12(1 — £2)2

p {1 1+€) _ 1 2 (148), 1 1 1 1
* 15 2&1“( c>'§‘“ (1"—") &t 5(1—52)]

anp [1, [1+€\ 1,,(1+¢ 1 1 1
~ 525 251“( é)”éh‘ (1— )+6(1—£2)2+§(1—£2)]

n [3, [1+¢ 3¢ 2¢
+ 525 z‘“( +(1—£2)+(1—62)2]
n [11 1 662 3
tos 3=y -y T —&’)2]

1 1 1, [1+4¢
+ g5t [ 3 (755

_1 5¢ 156 15, (1+¢
'*“[«1—cnz+4u—en2 -t ‘(Ti?>]
+cq, (3.2.35)

so that in view of (3.2.31) we have
) = £ 14¢ 1 e
() [166(1 ¢)ln ( e) +3 s’ YR
e (1) to-ew (1)

+-1'-’5[—2(1 ez)m(1+§)+ 1601 - £)n? (i—“_“-%

3 2 1+¢ 262
+ 360 - (754) + 2

+4€ + 352]
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+ %Oox [—(1 - &)+ %{(1 ~ ) (1 + f)]

-1 5¢2 15 2 +¢
o[ om e e e e (1]
+ c2b(1 - £). (3.2.36)

Applying the boundary condition gV(E) =+ 0as £ — 1 (i.e. § — o) to (3.2.36),
we find that the terms containing Zl_}e"i are unbounded and therefore must cancel

each other for the boundary condition to be satisfied. Thus we must have

R n 26 [ 562 ] _
miom T ua-s i T-e (3.2.37)

from which it follows upon applying the boundary condition g(¢) - 0asf—1
(i.e. § — o0), that

hence

Wy = A o _3 1+¢
O = & [2-s¢ +e- Jra-enm (154)

1=l (”‘)——e(l et (124)]

+ 1 [ 8 — 1262 +4€ — 66(1 — £%)In (H{)

15 €
-2(1—&2)1n(1+§)+ e - (18]
-aox[ (1-6)+ 511 ez)m(Hg)]. (3.2.38)

Since we are interested only in the particular solution, the constant c; is arbitrary

and has been set equal to zero as it is a multiple of the homogeneous solutiorn.

Defining

¢ =n{6 — 6o),
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and recalling (3.2.28), yields

dM(6;x) = 3% [3sech®¢(1 — ¢ tanh ¢) + tanh ¢ — 1 — ¢sech’¢(4 tanh ¢ — 2)]
+ 15 [12sech?$(1 — ¢ tanh ¢) + 4(tanh ¢ — 1) + 24sech?$(¢ tanh ¢ — 2)]

+ %Gox [sech®$(¢ tanh ¢ — 1)] . (3.2.39)

As 6 — 400, (i.e. ahead of the solitary wave) we note that, asymptotically,

¢® ~ (_% + )¢2 exp(—24), (3.2.40a)

and as § —» —oo (i.e. behind the solitary wave)

W, =k _8& (2 ) 2
L™ 15+(3,, 7 ) ¢ exp(29). (3.2.40b)

From (3.2.40a) we see that ahead of the solitary wave the perturbation expansion
(3.2.5) decays at a rate of O(¢%e2%) while the solution (3.2.3) of the unperturbed
equation decays at a rate of O(e~2?%). It follows that ahead of the propagating
main pulse the perturbation expansion (3.2.5) is algebraically nonuniform. This
nonuniformity will be removed, following the method of Swaters and Sawatzky
(1989), by introducing a WKB power series and similarity solution procedure for
the near and far fields ahead of the main pulse.

Behind the solitary wave we see, upon inspection of (3.2.40b), an additional expo-
nential term which indicates that the perturbation solution (3.2.39) is exponentially
nonuniform behind the main pulse (recall that (3.2.27) predicts the emergence of a

shelf region, with amplitude —-3%’- 15 , behind the main pulse).
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3.2.3 Emergence and Evolution of the Shelf Region

The solution of the perturbation field (3.2.39) indicates the formation of a shelf
region behind the main pulse with an amplitude given by (3.2.27). While this
describes the formation of the shelf behind the main pulse, it does not describe the
subsequent evolution of this shelf region. The evolution of the shelf is determined

as follows.

Having assumed that at ¢ = 0 the soliton is centered around z = 0, the leading

order phase position relative to £ = 0 is given by
4 [x 2/ '
00 =5 [ r)ax (3:2.41)

With 7(x) given by (3.2.20) we have

104 = 87(0) (72X - 1)] (3.2.42)

30
€e(x) = Sv In [ 104

The amplitude of the shelf is small (O(v)) and varies slowly with respect to T
and ¢ in the region 0 < £ < £:(x) (Knickerbocker and Newell (1980), Kodama
and Ablowitz (1981), Swaters and Sawatzky (1989)). Thus, following Swaters and
Sawatzky (1989), we introduce the stretched phase variable © = v£ and describe
the evolution of the shelf tail by an asymptotic expansion of the form

g~ vi(x,0) + *§(x,©) +... . (3.%.43)

Substituting (3.2.43) into (3.2.2) we see that the leading-order dynamics of this

region are given by
i = —pg®, (3.2.442)

subject to the moving boundary condition

{900 = vee(x) = s - . (32.440)
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The boundary condition (3.2.44b) satisfies the requirement that, following the dissi-
pating soliton, the magnitude of the shelf is determined by the asymptotic behaviour
of ¢(1)(8, x) as § — —oo which is given by (3.2.27).

The solution to (3.2.44) is straightforward and is given by

16,0 ~ v (gt - TEOM) ep(-ux- 200, (3249

where x(9) (the arrival time of the main pulse) is given by

80/30 _
3 [IOy(e 1) + 1] ‘

X(0) = v In —877(0) (3.2.46)

3.2.4 Formation and Evolution of the Dispersive Wavetail

The transition back to zero in the region £ < 0 begins in the neighbourhood of
¢ = 0 and is dominated by O(v)-amplitude, high-wavenumber, spatially-decaying
oscillations (a dispersive wavetail) (Knickerbocker and Newell (1980), Swaters and
Sawatzky (1989)). Assuming that the dispe: sive wavetail is described by an asymp-

totic expansion of the form

g ~vi(T, &%) + V2 @E(T6x) + .. (3.2.47)

we have, upon substitution of (3.2.47) into (3.2.2), the leading order behaviour of

the dispersive wavetail described by
@ + Giet =0, (3.2.488)

subject to the boundary conditions

T, ) =0 as ¢— —oo, (3.2.48b)
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§ou(T,€) - (é_;i%i Zg))em( —p(x - %(vE)) as E—o0,  (3.2.48c)

where ¥ is given by (3.2.46).

Introducing the similarity variable

3
X = , 3.2.49
(37)3 (3:249)
we find that (3.2.48a) becomes
Bk x = X&), (3.2.50)

which has a bounded solution given by
10 = Ai(X), (3.2.51)

where Ai(X) is the bounded Airy function. Hence, with regards to (3.2.51), we fin:i
that the solution to (3.2.48) is

@0 ~ (55 - 210 expl-ntx - xwe) [ o pi(e)ds. (3:2.5)

Equation (3.2.52) describes the formation and evolution of the dispersive wavetail.
The development of the shelf and wavetail for various times is shown in Fiznre 7.

3.2.5 The Solution Ahead of the Muin Pulse

The solution (3.2.39) is nonuniform, as indicated by (3.2.40a), with respeci to
the soliton phase variable § as § — +o0. In order to remove this nonuniformity, we
follow the procedure of Swaters and Sawatzky (1989) and develop a combination

WKB-power-series similarity solution.

53



The shelf and wavetail at time, T=0
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Figure 7: Evclution of Zhelf and Wavetail

Figures 7a-k depict the evolution of the shelf and wavetail at times T = 0, 1,2, 3,4,

5,10, 15, 20,25 and 50, respectively, for parameter value v = 1'(176'
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The shelf and wavetail at time, T
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The shelf and wavetail at time, T
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The shelf and wavetail at time, T=5
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The shelf and wavetail at time, T
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We begin by introducing the stretched phase variable, Z, given by

Z=v {g -2 /0 " 2y’ — eo(x)} - (3.2.53a)

In the region where the phase variable satisfies 0 < (6 —8) ~ O(v™1), it is possible

to obtain an asymptotic solution to (3.2.2) of the form
q~4'(Z,x). (3.2.53b)
Substitution of (3.2.53) into (3.2.2) yields

g} — (4n2(x) + vhox)a} — 6q'a} +v2ah 77 = pa' + 17 ak 2. (3.2.54)

In solving (3.2.54), we require that the solution match the leading order behavionr
of the soliton plus perturbation field in the limit as § 3> 1 because in the region
of interest the solution is small, i.e. O(v). Thus ahead of the solitary wave the
solution must match ¢(® + vq(!) as given by (3.2.9) and (3.2.39). In view of (3.2.9)
and (3.2.39), we find that the leading-order behaviour is exponentially decaying
ahead of the main pulse, therefore we may neglect the nonlinear term in (3.2.54)
as it will be exponentially small when compared to other terms. Thus a'(Z,x) is
governed by (approximately) |

gl — (42 (x) + vox(x))a} — pa* = viahz — v¥a} 25, (3.2.55a)

subject to the matching condition

n(x) 22 up 22 —2n(x)Z
¢'(Z,x) - 8°(x) [-1 15 T T 200 7] =P ( v )53.2.551))

as Z —0
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and boundary condition

@(Z,x) — 0, as Z - too. (3.2.55¢)

exponentially

The algebraic non-uniformities in the solution are removed by constructing a

WKB solution (Bender and Orszag (1978)) to (3.2.55) in the form

o' ~ h(Z,x)exp [;l;f(Z, x>] +0(v), (3.2.56)

where h(Z, x) represents the amplitude of the wave and f(Z, x) represents the slowly

varying but nonconstant phase.

Substituting (3.2.56) into (3.2.552) we find that f and h may be determined from

the pair of equations

fx—m*()fz + fz =0, (3.2.57a)
hy — 402 (x)hz +3{hzf} + hfzfzz} = {5+ box(x)fz + 1} h.

(3.2.57b)
3.2.5.1 The near-field WKB power-series solution

In the near field region ahead of the main pulse (i.e. Z small), the matching

condition (3.2.55b) suggests a power-series solution of the form

f(Z,x) = aa(X)Z + a2(X)Z* + ..., (3.2.58a)
h(Z,x) = Bo(x) + B (X}Z + ... . (3.2.58b)

Substituting (3.2.58a) into (3.2.57a), we have

(alz + azzz)x - 4172(01 + 2077 + 3(1322)
+ ol + 602y Z + (9a2a; + 122102 )2?
+ higher order terms =0. (3.2.59)
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Collecting like powers of Z we find that a; and a; must satisfy

7% —4n%a; +al =0, (3.2.60a)
Z': ayy — 9az + 6ajaz =0. (3.2.60b)
From (3.2.60a) we have
a; = £27.

Since the matching condition requires the solution to be exponentially decaying, we

choose
a; = —21. ‘ (3.2.61)

Substitution of (3.2.61) into (3.2.60b) yields
—2n, — 8n’ag + 24na; = 0. (3.2.62)

‘From (3.2.18) we have 1, = —2un—3£1? so that equation (3.2.62) may be simplified

to
4 16 4 2 _
el + i + 16n°az =0. (3.2.63)
Solving for a2 we have
_ =t 1)
ag = 12n(x) 5 (3.2.64)

Thus, to leading order we have

~—omZ (B P2
f(Z,x) ~-202Z (12n+15)z.

Having determined the phase function f(Z,x) tc leading order, we now deter-
mine the amplitude function h(Z, x) to leading order. Substitution of (3.2.58) into
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(3.2.57b) yields

(Bo + B1Z)x — 40°(Br +2P22)
+3(81 + 2622)(a? +4a22)
+ (Bo + P1Z)(a1 + 202Z)(2a2 + 63 Z) + higher order tuine
= [(o} + 4a1022) + Gox (a1 +2222) + ) (8o + B 2)

+ higher order terms. (3.2.65)
From (3.2.65) we see that upon collecting terms of order Z° we ks 2
Box — 40281 + 34102 + 6Boaraz = foal + BoxBoon + pfo. (3.2.66)

From equation (3.2.66) we find that So(x) is undetermined while

[Box + 6Bocsaz — Poat — Poboxar — #Bo)

Ai(x) = T — 3a7] (3.2.67)
The matching condition (3.2.55b), however, demands that
Bo(x) = —8n*(x)- (3.2.68a)

Appropriate substitutions for terms on the right-hand side of (3.2.67) yields

2
Bi(x) = —2u — 36—;—. (3.2.68b)

It follows that the amplitude function, k(Z, x), is given by (to leading order)

M2, x) ~ ~En’(x) - (2u + 19;-’3) z.
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Consequently, the leading-order near-field representation for ¢'(Z, x) may be writ-

ten as

a'(Z,x) ~ [-802(x) - (2# + };n’(x)) Z]

X exp [—2n(x) (1 + §Za + Eﬁg@) %] ' (3.2.69)

3.2.5.2 The far-field WKB similarity solution

In the far-field (Z — 400) ahead of the main pulse, the power-series solution
developed above is no longer valid since the WKB series diverges for large Z and
we require a similarity solution to (3.2.45). It is convenient to introduce the new

stretched phase variable
x
0=2+4 / ) = Z + v0u(3)- (3.2.70)
0

Under this transformation, equations (3.2.57) become

fx+(fo)? =0, (3.2.71a)
hy+3{hofd +hfofoo} = h{fd +box(x)fe + 1}
(3.2.71b)
Equation (3.2.71a) has solution
o\?
f(x,0) =-2 (3) x~t. (3.2.72)

Substitution of (3.2.72) into (3.2.71b) yields

© 1 sp/ox\! rex\}
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which we solve subject to the matching condition
h(x,©) = —8n%(x) as © — vl:(x). (3.2.73b)

Equation (3.2.73a) is solved using the method of characteristics. Letting s param-

eterize the characteristic curve we have

dx -

T =% Xm=% (3.2.74a)
de

2o =0, 0], =v8:(x), (3.2.74b)
dh [© 1 87 /Ox)\? Ox t U

ds—[3 2 15(3)+(3)3n+"xh’

h| oo = —87°(X)- (3.2.74c)

From equation (3.2.74a) and (3.2.74b), it follows that

X = Xe’, (3.2.75a)
O = vé.(X)e’, (3.2.75b)
and consequently,
1 Ox
§ = -2- In (W) . (3276)

Using (3.2.76) and integrating (3.2.74c) subject to the matching condition (3.2.73b),
it is found that h(x, ©) is given by

h(x, ©) = — 87%(x) [%7_)]%

) exp[g B J;Y(Gy)) _ (uo;g)> o (;b%)

) |z (_(_Xl) am],

(3.2.77a)
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where X is determined by
Ox = v8c(X)x- (3.2.77b)

It follows, given (3.2.58), the far-field WKB similarity solutiow is

~87%(x) [VagY)] % exp [% - ,,’Z(% - (%(T)% % (;@%)

————"0;(7) + X+ / %g) 7 00(7)],
1

2 1o\ _.
Xexp—;‘g- X
d

where ¥ satisfies OX = v6.(X)x. This completes the leading-order solution te "he

Y]

perturbation field.

The final uniform solution of the perturbed soliton is obtained by asymptoti-
cally matching the solutions from each region, which is done by adding together
the solution to each region and subtracting the contributions in the overlap zones
(Bender and Orszag, 1978). The time evolution of the decaying solution is shown

in Figure 8.
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" The Decaying Soliton at time, T=0
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Figure 8: Evolution of the Decaying Soliton

Figures 8a-k depict the evolution of the decaying soliton at time T =0, 1,2, 3,4,

5,10, 15,20, 25 and 30, res-ectively for parameter value v = .
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The Decaying Soliton at time, T

PN N

0.80
-1.08@

(x)b

-2.900

-3.00

29!}

avi

14

ogl

a9

av

o

8-

x—axis

Figure 8b

73



=2

The Decaying Soliton at time, T
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The Decaying Soliton at time, T
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The Decaying Soliton ai time, T
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The Decaying Soliton at time, T
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The Decaying Soliton at time, T
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The Decaying Soliton at time, T
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The Decaying Soliton at time, T
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The Decaying Soliton at time, T
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Chapter 4

Numerical Solution

Zabusky and Kruskal (1965) originally solved the unforced KdV equation
Ut + vz + Uzzz =0,

using a leap-frog scheme. Their scheme used centred differences to represent the

derivatives. Hence, the terms u;, uz, and usz; were given by

ur}+1 —_yn—1
Uy = —-J——2—A—t—"— + 0((At)2),
u'.' — u'.‘_
Uz = J+12A$ -1 + O((A.’B)z),
zrz 2(A2)3 .

In order to maintain the second order accuracy of the difference scheme, they

chose to approximate u by the spatial average
— 1 n n n o((A 2
u = ’3‘(“j+1 +u} +uj,) + O0(Az)%).

This choice for u resulted in a scheme which not only conserved mass but also
conserved energy to second order. Linear stability analysis of this scheme showed

it to be stable (Vliegenthart, 1971), provided

(Ac)?
A S @F @y

where |U| is taken as the maximum amplitude of u. Following this approach,
Knickerbocker and Newell (1980) used this scheme to simulate the differential equa-
tion

U +6uus + Uzz: = —puu,

83



where 0 < pu < 1. Their simulation, using this scheme, provided results which were

in very close agreement to their asymptotic solutions.

4.1 The Numerical Scheme

Following the lead of Knickerbocker and Newell (1980), it was decided to employ
the numerical scheme of Zabusky and Kruskal (1965) to simulate the equation

qe — 54]‘1: + Grzz = l/(—q + q::c)- (411)

(Note that this is identical to equation (3.2.2) with x4 = 1.) Uader this scheme the

terms in equation (4.1.1) are discretized by

1 n n
0= 3 (g + ] +4fa) + OB, (4120
q'."*'l — q'.'—l
_ 9 5 2
gt = i + O((AY)*), (4.1.2b)
= B9 oAy (4.1.2¢)
gz = oAz + O((Az)*), 1.2¢
_ 0541 — 297 + 47, 2
Qez = By + O((Az)*), (4.1.2d)
9342 — 20741 297, — g72 2

where t = nAt and = = jAz.

When employing this scheme to solve (4.1.1), it is necessary to calculate the terms
on the right-hand side (the forcing terms) at the (n — 1)** time step as the scheme
is unconditionally unstable if these terms are calculated at the n** time step. In
consideration of this stability requirement, substitution of (4.1.2) into (4.1.1) leads
to

-1 ., 24t .
Gt =qi7 + T [af + &f + ] (a7 — 6]
At
~ Gy [a74+2 — 24741 + 247y — ¢]—,]
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vt - - -
[af + 477" + 4757

At e -
+ (—AT)E qj+11 - 2‘1: 1 + qJ-_ll] . (4.1.3)

To determine the linear stability condition for (4.1.3), we follow the approach of
Vliegenthart (1971) (assuming g to be slowly varying) and study a localized version
of (4.1.3). Under this assumption, the nonlinear term in (4.1.3) is replaced by

6At

Z_ [q1+1 qz'.-—l] ’ (4°1'4)
so that (4.1.3) becomes
ntl _ n—1, 04 n
G =q  + —‘1 (4741 — a71]
A n n n

- (—A-;)_"- [qj+2 - 2‘1j+1 +2¢;_; — 95-2]
PATTAN 4 - _ _

- =R + 7 + 435
vt _ _

+ Gay i — 2007 -85, (4.1.5)

where ¢ in the nonlinear term represents some local value of the solution.

The exact solution of (4.1.5) may be representcd by the Fourier series

= f: Ci€"exp(ikjAz). (4.1.6)

k=—o0

To determine the amplification factor, £, we substitute the k*® term of (4.1.6) for

" (i.e. let ¢} = £ exp(ikjAz) in (4.1.5). This yields the equation

&+ {4zsxn9At [(Al (s —1) —3q] }e
+ WAL [5(2 cos0+1) — (Z?z-)—z(cos 6— 1)] ~1=0, (4.1.7)
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where 8 = kAz, which is quadratic in £. It follows that £ is given by

E= 2zsm0 [(A )2(c059 1)—3q]

+ {-4sm2 9((21;))2 [(Al 3 (cosd —1) —~ 3q]2

1/2
—2vAt [?13-(2 cosf +1) - -(Z?)—z-(cose - 1)] + 1} . (4.1.8)

A necessary condition for stability is J¢| < 1. If the discriminant of (4.1.8) is
negative so that ¢ is purely imaginary, it is readily shown that [£| > 1. It follows

that a sufficient condition for stability is that the discriminant be non-negative, i.e.

—45in? (At)2 L cosf—1)— ’
* 6’(Aﬂv)z [(Aw)’( =1 3q] (4.1.9)

- 2vAt [%(2 cosf +1) — y? ———(cos 6 — )] +120,

(A
for all 6.
In the case of equality in .4.1.9), equation (4.1.8) yields the linear stability con-
dition
(Az)?
At < . 4.1.10
@+ 6(azPHaD (4:110)
For the discriminant strictly positiv~ (4.1.8) yields
(Az)? .
< —i (4.1,
= DA+ (o)’ (4.1.11)

as the linear stability condition. Therefore for a stable solution it is necessary that

) (Az)? (Az)?
¢ <min{ (o CanTD at AT (4112)

To show consistency of the numerical scheme, we introduce a Taylor expansion
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for each term of (4.1.3) as follows.

it =y i(At)(at) += (At)2 (%t—-) + (At)3 (ézat—)J +(4 L.13a)
ulys = u} & 2(Az) (5%) +2(Az)? Z—-) 3 (AZ) ( ) (4 ; 13b)
uly, = u} +(Az) (Z ) + (A ) (g_) *5 (A )3( ) (4:1.130)

uls} = u} £ (Az) (-"-’-3)1 — (At) (51:-)5
+3007 (5 ';) 7 (a)(a8) 62&)j

+ Loy 92?) R (4.1.13d)
3\ )

Substituting (4.1.13) into (4.1.3) we find that the truncation error is given by

Ou Ou
2
(&) [ ~2ug + g 6t]1

i [ () -(3)+(3) ()1 8]

+ O((At)® + (At)(Az)).
(4.1.14)

Clearly,

truncation error

(A1)

— 0, as (At),(Az)—0.

Hence, the numerical scheme is consistent.

Having shown that the numerical scheme (4.1.2) is linearly stable and consistent,
we implemented this scheme on a convex C210 vector processor using the values
Az = 1/10 and At = 1/5010. The phase position of the travelling soliton at time,

to, was determined using parabolic interpolation under the following algorithm.
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Let Y;n = max|yal, vhere yo, {n =0,1,2,...,N} are the discrete values of the

n
numerical solution at time, £ = t3. Then denoting the neighbouring values of Yy,
as Yiu—1, Y41, the discrete pairs (Xm-1,Ym<1), (Xm,Ym) and (X;n41, Ym+1) ave

substituted into the parabolic equation

y =az? + bz +c, (4.1.15)

to determine the coefficients a,b, and c. The coefficients a, b, and ¢ are given by

a= A" [ZaYnt1 — Tnt+1Yn — (Tn-1Ynt1 — Tnt1¥n—1)

+Zn—1Yn — TnYn-1], (4.1.16a)
b=2A"1 [y"zi+l - yn+1$3: — (Yn-1 -"53:+1 - yn+1$3u—1)

+Yn—125 — YnTa_1) , (4.1.16b)
¢ = A7 [yn1(2n2hyy — Tnt125) ~ Yn(Eac1hyy — Tn41Th_y)

FYn1(Tn-122 — Tzl _, )] , (4.1.16¢)
where
A=z,22 ) — 2n3122 — (Tno1T2py — Tot122_) + Tn122 — 2z ;. (4.1.16d)

Having determined a, b, and ¢, the phase position of the soliton at time ¢, is given

by

zg = —b/2a, (4.1.17)

from which is calculated the current amplitude, yo, given by

Yo = az2 + bzxy +c. (4.1.18)
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4.2 Comparison of Numerical Results to Perturbation Solution

To compare the numerical and perturbation solutions, it was decided to calculate

the relative error of the phase position and the amplitude, the relative error being

defined by

1A, — A
64 = 14p = Anl x 100%, (4.2.1)
An
where subscript p denotes the result from th: irbation theory of chapter 3 and
subscript n denotes the numerical result fro. pter 4, section 1.

Both the phase position and the amplitudes compare favourably with maximum
error, over times 0 < t < 50, given in the table below for the cases where the
perturbation parameter v = 1/40 and v = 1/100 (p is taken to have the value
p = 1.0 for both cases) (see Figures 9 and 10).

Maximum Error

v=1/40 v =1/100
Amplitude 0.612% 0.191%
Phase Position 1.53% 0.223%

Although the phase position and amplitude of the two solutions (numerical and
perturbation) agree quite well, there are noticeable differences in the behaviour of
the two solutions in the region of the shelf and the oscillatory wavetail (Figure
11). In the region of the wavetail, while the period of oscillation between the
numerical and perturbation solutions is in close agreement, the amplitude of the
oscillation differs significantly, with the amplitude of the wave in the perturbation
solution being at least one order of magnitude larger than that of the numerical
solution. Similarly, the shelf height, as determined by the perturbation solution, is

also significantly greater than the shelf height determined numerically.
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Position of Soliton
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Figure 9: Comparison of Phase Position‘

Figures 9a and 9b show a comparison of the phase position vs time of the decaying
soliton for parameter values v = -41—0 and 1—(1)3 respectively. The solid line represents

the perturbation solution while the numerical solution is represented by circles.
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Position of Soliton
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Amplitude Evolution of the Soliton
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Figure 10: Comparison of the Aiuplitude Evolution

Figures 10a and 10b show a comparison of the amplitude vs time of the decaying
soliton for parameter values v = 5 and 735 respectively. The solid line represents

the perturbation solution while the numerical solution is represented by circles.
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Amplitude Evolution of the Soliton
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Perturba't.ion vs. Numerical Solution at T=1
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Figure 11: Comparison of Shelf and Wavetail Regions

Figures 11a-j show a comparison of the perturbation solution (thin line) to the
numerical solution (dark line) in the region of the shelf and wavetail for times

T=1,2,3,4,5,10,15,20, 25, and 50 with parameter v = 55
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Perturbation vs. Numerical Solution at T:=4
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Perturbation vs. Numerical Solution at T
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Perturbation vs. Numerical Solution at T=10
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Perturbation vs. Numerical Solution at T
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Perturbation vs. Numericai'Snlution at. T
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Perturbation vs. Numerica! Solution at T=256
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Perturéation vs. Numerical Solution at T
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Defining the mass of the wave, M, at time, T, by

N

M(T) = /-: gdz = Z q(zi) Az, (4.2.2)

=1

where ¢ is the calculated solution values (either numerical or perturbation), we find
that, while the region of the wavetail (~c0 < z < 0) makes little contribution to the
total mass, the shelf region (0 < z < z., where z. = the phase position) contributes
significantly. It is worthwhile to note that the total mass of the perturbation solution
is significantly greater than the total mass of the numer:ral solution (Figure 12).
Although the error in the numerical scheme is of order 5((Ax, ), it is possible to
verify the accuracy of the mass of the numerical scheme using a conservation law
approach. This approach is necessary since for the choice Az = 1_16 the magnitude

of the error for the numerical scheme is larger than the solution in the region of the

shelf.
Following a conservation law approach, the mass balance law for the travelling

soliton is

a o0 [~=]
-6—1-;/ gdz = —-u/ gdz. (4.2.3)

With mass defined by (4.2.2), the integro-differential equation (4.2.3) may be rewrit-

ten as the differential equation
My =—-vM (4.2.4)

which has solution
M(D) = Moe™T (4.2.5)

where M, is the mass of the soliton at time T’ = 0. A comparison of the mass of the
numerical solution to that predicted by the conservation law approach was found

to be favorable for both v = % and v = 155 and is shown in Figure 13.
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Evolution of the mass of the soliton
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Figure 12: Comparison of Mass

Figures 12a and 12b show a comparison, with parameter values v =  and 155
respectively, of the “mass” of the perturbation solution (solid line) with that of the
numerical solution (circles) for times 0 < T < 50.
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Comparison to ilie Mois Balance Law
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Figure 13: Comparison of Mass
. . o _ 1 1
Figures 13a and 13b show a comparison, with parameter values v = 5 and 153

respectively, of the “mass” as predicted by the conservation law (solid line) with
that of the numerical solution (circles) for times 0 < T' < 50.
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While it may be expected that the extra mass in the perturbation solutior. may
be accounted for by the mass of the shelf, this was only found to be true for times
T ~ O(v~'/?). The difference in mass of the two solutions is not unexpected,
however, since the asymptotic solution developed in Chapter 3 did not require a
mass balance, but was developed using energy balance laws as was the solution of
Swaters and Sawatzk; 1" )).

The perturbation theory developed in Chapter 3 predicts a shelf with initial
amplitude given by (3.2.27). It is interesting to note that predicted shelf is not
monotonic (as was the case in both Knickerbocker and Newell (1980) and Swaters
and Sawatzky (1989)) and that the time at which the derivative changes sign is
approximately T' ~ v—1%. It is possible that there may be some relationship between
this non-monotonic behaviour and the observation that the shelf region does not
fully account for the additional mass in the perturbation solution as was the case
in Knickerbocker and Newell (1980). (Swaters and Sawatzky (1989) presented no
numerical work for comparison.)

Although the mass of the numerical and perturbation solutions was found not to

be in good agreement, a plot of the energy, E, defined by
E = / —g%dz = —q(z,-)q(a:,-)Az.-.
1

shows that the perturbation and numerical solutions agree favorably over times
0 < T < 50 (see Figure 14). (N.B. Recall that the numerical scheme was chosen to

conserve both mass and energy.)
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Evolution of the energy of the soliton
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50.808

Figures 14a and 14b show a comparison, with parameter values v = 4—10- and T(lﬁ
respectively, of the “energy” of the perturbation solution (solid line) with that of

the numerical solution (circles) for times 0 < T < 50.
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Evolution of the energy of the soliton
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Chapter 5

Calculation of the Vertical Momentum Flux and Conclusion

As indicated at the end of chapter 3, a uniformly valid solution for the vortic-
ity field may be obtained via asymptotic matching. In what follows, the uniform
solution is calculated in terms of the original (non-dimensional) variables.

Ahead of the solitary wave, the near-field and far-field sclutions are, respectively,
[ 16
QReas(Z) ~ l--'Snz(x) - (2u + —5-112(x)) Z]

L zZ  pZ Z
X exp l—27I(X) (l + 30 + 24172()()) ;] , (5.0.1)

0 (%, ©) ~ = 87°(x) [Mgﬂ] exx)[? - V’;f(%
() ()
+ KX+ ("9;;.7))% 00(7)]

X exp ["72 (%)% x-%] . (5.0.2)

Substituting © = Z + v8.(x) into (5.0.2), we have

q:ar(x’ Z) ~= 8712(X) [Z :’0:’(053)()]
Z+v0:(x) ux(Z +vh.(x))
<emp | S -
vBe(R)\* o (X(Z+ 8 VX
-(5) (™) -
v0.(7)\ ¥
+ e+ () 90(7)]
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X exp [_—V_z (M)g x‘*] : (5.0.3)

3

Adding (5.0.1) and (5.0.3), then subtracting (3.2.73b), the contribution of the over-

lap between the two solutions yields

g'(Z,x) ~ [—8n2(x) - (Zu + }gn’(x)) Z]

X exp [—ZU(X) (1 + % + = ) %]

24n%(x)
- 87%(x) [——-—-V9°(7) ]

7+ Voc(X)
Z +vlc(x) 1¥(Z +v0.x))
X exp [ 3 - Vec(')—(’)

_ (%z) oo (L4 400)

L ("—"3—(7—7—))l ec(”x‘;v]]

r_ 3
o (24

+ 8n%(x)- (5.0.4)

The near field ahead of the soliton is matched to first order to the solution for

the main pulse. The solution of the main pulse to first order given by (3.2.9) and

(3.2.33) is

g(6,x) ~ — 2n*(x)sech?[n(6 — 6o)]

+ u{ b [3sech?¢(1 — ¢ tanh §) + tanh ¢ — 1

6n(x)
—gsech®¢(¢ tanh ¢ — 2)]

+ Z’-%Q [12sech2¢(1 — ¢ tanh ¢) + 4(tanh ¢ — 1)

+ 2¢sech?¢(¢ tanh ¢ — 2)]
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+ 100y [secg(g tann 6 1]} (5.0.5)

With Z = v(6 — 6,), the solutien of the near field ahead of the soliton, (5.0.1), may

be rewritten as

2
q;ear(e’ X) ~ [—SWZ(X) -V (2# + ms—(ﬁ> (0 - 00)]
x exp [—2n(x)(0 — bo)

v(0—6p) pv(6—6)
x (1 PR 5 4770 )] (5.0.6)

The matching condition, (3.2.55b), with the same substitt tion for Z, becomes

t T vn(x) PR N i RY
then =870 | -1+ TS0 - 0} — 550 - o)

x exp [~2n(x)(6 — b0} - (5.0.7)

Thus, by adding (5.0.5) and (5.0.6), then subtracting (5.0.7), we have a uniform

solution for the main pulse and near-field given by

g(8,x) ~ — 2n*(x)sech®[n(8 — 6o)]
[
+v { 6700) [3sech2¢(1 — ¢tanh @)
4+ tanh¢ -1

— gsech?(¢ tanh ¢ — 2)]

+ 9—5—}5{)- [125ech7‘¢(1 — $tanh ¢)
+ 4(tanh ¢ — 1)
+ 2¢sech’¢(¢ tanh ¢ — 2)]

+%oox [sech?¢(¢ tanh ¢ — 1)]}

+v [—Snz(x) +v (2p - 19-17—})—(-)-) (6 - 00)]
x exp [—2n()(8 — 6o)
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x<1+”‘”33”°’—“:if,zz:;”>]

— v87*(x) [—1 + Z"T(f)x—)(o —6p)% — 19 T )( - 90)2]
x exp [—27(x)(8 — 6o)] . (5.0.8)

Similarly, the solution for the shelf region may be matched to the trailing edge
(§ — —o0) of the main pulse; given (3.2.45), the solution of the shelf region along
with matching condition (3.2.44b), we have (in terms of the variables 6 and x)

8n(x(6, x))
X exp [— #(x‘(ﬂ, x) = x5 (5.0.9a)
where
_ =3 [{10p(exp [8v(8 + 6:(x))/30] — 1)}
(6, = 2 [ —87(0) + 1] , (5.0.9b)
and overlap
Gshelf, pulse(a, X) ~ 3;(;;) - 81?1(;() (5.0.10)

Thus the uniformly valid solution for the shelf and main pulse is given by (5.0.5)
plus (5.0.9a) minus (5.0.10), is

(8, x) ~ — 2n%(x)sech?[n(6 — 6o)]
+v { 6n’(‘x) [3sech?¢(1 — ¢ tanh ¢)
+ tanh¢ — 1
—gpsech?$(¢ tanh ¢ — 2)]
+ ’7§_§) [12sech?$(1 — ¢ tanh ¢)
+ 4(tanh ¢ — 1)
+2¢sech?$(¢ tanh ¢ — 2)]
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TS,

+v ( —E__ 8"(’2)) exp[—p(X — x|

3n(x) 15
B 8n(x)
+v (377()() + 15 ) . (5.0.11)

Finally, we match the solution for the dispersive wavetail to that of the shelf

given by (3.2.52)

Grail ~ (3;1_(;) - 801(;2);) exp [—u(x — x) /_E’L)}— Ai(s)ds. (5.0.12)

With boundary condition (3.2.48c), the uniform solution may be written as

{tail shelf ~ — V (31;(‘).() + '8"1(;2 )) exp[—u(x — X))

x |1+ /EL)? Ai(s)ds]

¢, 8(0)
+u(3n(0) + 15 ) (5.0.13)

Combining solutions (5.0.4), (5.0.8), (5.0.11), and (5.0.13) yields a uniform solution

valid for the entire interval (—o0, 00).

5.1 Velocity Field Calculations

The uniformly valid approximation for the interval (—o00,00) is given by

q(8, x) = — 2n’sech®[n(8 — 60)]
iy {é% [3sech?$(1 — ¢ tanh @) + tanh ¢ — 1
—g¢sech? ¢(¢ tanh ¢ — 2)]
+ inE [12sech?$(1 — ¢ trnh ¢) + 4(tanh ¢ — 1)
+2¢sech’ §(¢ tanh ¢ — 2)]
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+%90x [sech’¢(gtanh ¢ - 1)]}

iy {_31;2 ~v (2;1 + %) (6~ 90)}

X exp [_2,7(0 — 6y) (1 + V(03—0 6o) + w(?i;fo))]

_ 2 ) vn o 2 _ KV g _ 2
Ve { L (6= 0) — 15,06 0°)}
x exp[—2n(8 — 6o)]

+v {—8172 [9 _ ::(fzc(x)]

v(6 — 6o +6c(x)) _ BX(8 — o + 6:(x))
3 0:(X)

B (%(7_7_) > 6, (7(9 - g:(;)oc(x)))

X 1+ (0 90(7)]

< exp [_2 (0 - ;— 9c(X)>% x‘*]

+8n2}

o { (4 - 210 ) exp[-ux - x)
LB §z}

- u{ ( 317’(‘7) + 8"1(57)) exp [—p(X - X)|

x /_ f)}— Ai(s)ds}

g 8n(0)

xexp[

The streamfunction is given by multiplying equation (5.1.1) by the vertical struc-
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ture solution (equations (3.1.3), (3.1.14a-€)), restated here for completeness:

én(t) = AnJo(t) + BnYo(2), (5.1.2a)
where
An = Ky Bny, (5.1.2b)
2
Bn = — 7 [{Kat’ EHORFHO)
+ 2K t? [Jo()Yo(t) + J1(B)Y1(2)]
A,.e"lz ~1/2
+2 (X2 + Y]} ] , (5.1.2¢)
An
in which
K. = - [K)(An) + }’O(Ane‘Y/z)]
"7 [Jo(An) + Jo(Ane?/?)]
and
25’06_7/2
Cn = A (5.1.2d)
where A, satisfies
Jo(An)Yo(Ane?) — Jo(Ane™?)Yo(An) = 0. (5.1.2¢)
With the streamfunction, ¥(z,£,T), as given in (2.2.13), we have
(2§, T)= a(, x)$(2), (5.1.38.)
with
4 vT
§=¢-- / n*(7)dr, (5.1.3b)
0
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and
x = vT. (5.1.3¢)
It follows that the velocity field is given by

u=—1; = —qps, (5.1.4a)
w =1 =q:4 = g9, (5.1.4b)

since £ = z — ct. Thus the horizontal velocity, u, is given by

U= —Q(G’X)¢zs
= —q(8,x)(0)z, (5.1.5)

where

(¢0)z = (¢0)t
= ~(4n5i(8) + BRO) 2SI H1S(2)
= —(4n4i(2) + BaYa(®)Ao[S(2)]}

=205 [4u: (B2842) + B (Brst)]. (5.1.6)

Similarly, the vertical velocity, w, is given by

w=q;¢, (5.1.7)

where

gz = 4n°sech®[n(8 — 6o)] tanh [1{6 — 6o)]

+v {6£1; [—65ech2¢ tanh ¢@e(1 — ¢ tanh ¢)
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+ 3sech?$(— o tanh ¢ — gsech® §(¢e)) + sech® (o)
— dosech? $(4 tanh ¢ — 2) + 2¢sech’ tanh ¢($e)(¢ tanh ¢ — 2)
— ¢sech?¢(dg tanh ¢ + gsech’ $(40))]
+ 1 [~24sech’ $ tanh §(¢0)(1 — § tanh 9)
+ 12sech? ¢(— g tanh ¢ — gsech® §(¢e)) + 4sech’® $(¢e)
+ 2¢gsech?¢($ tanh ¢ — 2) — d¢sech’ § tanh ¢($e)(4 tanh ¢ —2)
+2¢sech? $(¢o tanh ¢ + gsech®$(4s))]

+ 360y [~2scch? ¢ tanh §(go)($ tanh § — 1)

+ sech?(¢s tanh ¢ + gsech®$(4s))] }

AL | W B

V(9 - 90) _ ;w(e - 90))]
% (1 t 30 a2

+v {—8172 +v (2# - 19'_77_) (6 - 00)}

5 [_27] (1 + u(030 bo) IJV(2947’290)) — 2n(6 — 6o) (‘:3% - 221;2)]

x exp |—27(0 — 8o) [ 1 + v(6—060) _ pv(6—6)
[F2nto -0 (14555 =]
— v8y? {2""(0 o) — 22 0= eo)} expl—2n(6 — 60)]

-—u8n{ 1+-—(9 60)? — n(o—eo)z}

x (—2n) exp [—2n(0 — 6o)]
o [04(0)X6(8 — 8o + 0(X)) + 6(X)
T {’8” [ =8+ 6.007 ]
o [0 00 _ 4RO
3 6.(%)

() o ()
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3 3X

¢ exp [_2 (=2 +0:00)) : X_%]

8:(X)

~or |5 s )
N {g ‘ [uX (8 — 8o + 6:(x)) + p#X] 6-(X) — px (6 — 90+9c(x)192(x)><o)

3 \ 62(x)

1 (v8:(0)\? [ v8L(R)Xe3X — ¥8:(X)3X
() ()
X(8 — 6o + 6.(x))
xo“( 6:(%)

()’ =gt

(IXo(9 8o + 0:(x)) + %) (%) — X(8 — 8o + 8(x))0; (X)Xo)

92(x)
V9L(x)79 YKo+ (ve?:(_x))

N [Val (X)X03§7—2 V9c(7)370] 60(%)

- (22) o]

v(0— 00 +0:(x)  wx(8 — 6o + 8:(x))
% e"p[ 3 - oczsz)

-(52) o (Lpd )

D |y () 0(7)]

X exp [—2 (9 — 6o ;‘ 9c(X)> X-%]

= ol

) | o (VGC(Y) : 90(7)]
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[V(" 8o +0c(x))  pX(6 — b0 + 6:(x))
8:(X)

3 (Vec(x)) ( X(6 — :O(i')ec(X)))
X
vl (x) ( c(X)) (7)]

§ ((o—eo;rec(x))= X_%)
 exp [_2 (0 — 6o g-oc(x))%x_%] }

+u{ ( ) T S)U(X)Xa exp[—pu(X — x)]

p | 8(X) - -
- ( T ) (—#Xe) exp[—n(X — x)]}

{(3172(‘) 8)?) (X)X o exp[—1(X = x)]
X /—E:_:()T Ai(s)ds

| 8n(x) - -
+ (5 + 2 iz exvl-ntx )

x /_ f;{ Ai(s)ds

X exp

+ (gt 8 ) explonte - 4 ((3;)%) (3;)%'

Defining the fluid speed v = (u? + w?)3, a gray level scale plot (Figure 15) of the
region from —40 <z <60and 0<Z <1 reveals that the highest speeds occur in

the region of the pycnocline with a cell-like behaviour in the region of the wavetail.

Since a contour plot of the vertical velocity field (Figure 16) reveals that in the lee

of the solitary wave the vertical velocity is entirely positive, the cell-like behaviour

must occur due to changes in the horizontal velocity (which is shown as a contour

plot in Figure 17). The vertical velocity indicates complete upwelling. Hence, there
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is, indeed, enhanced vertical mixing occurring due to the passage of the soliton. The

complete flow field is depicted as a contour plot of the streamfunction in Figure 18.

5.2 Vertical Flux Calculations

The vertical kinematic momentum flux (i.e. the z-momentum flux across surfaces
of z = constant) is proportional to the rate of change of the vertical velocity w in
the z-direction, i.e. %—'z‘i. This simplified approach was discussed in Section 2.1 when
a first order closure scheme was invoked to incorporate turbulent effects into the
solution. It follows that

Tz Ow

r x 5= = qz(z,)¢:(2). (5.2.1)

The solutions for ¢;{(x,t) and ¢.(z) are given by equations (5.1.9) and (5.1.7) re-
spectively.

Figure 19 shows a contour plot of the vertical kinematic momentum flux. The plot
indicates that the greatest flux occurs in the region of the wavetail. The momentum
decreases as one travels upward. Since the vertical velocities decrease only slightly
over time (sce Figure 16), this suggests that there is a continual upwards forcing

occurring in the region of the shelf and the wavetail.
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Figure 15: The Fluid Speed

The fluid speed, v = (u? + w?)}, is shown as a gray level scale plot with param-
eters 4 = 1.0 and v = y55. Figures 15a~j show the evolution of the fluid speed for
times T = 0, 1,5, 10, 15, 20, 25, 30,40, and 50, respectively. Plots are shown with
0<z<1land -40<z L60.
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The Fluid Speed at time, t=15
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The Fluid Speed at time, t=20
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Figure 15f
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Figure 15h
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The Vertical Velocity at time, t=0
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Figure 16: The Vertical Velocity

The vertical velocity, w, as determined by the streamfunction with parameters

=10andv = 1—(1,0. Figures 16a—j show the evolution of the vertical velocity for
times, T' = 0,1,5, 10, 15,20,25, 30,40, and 50, respectively. Plots are shown with
0<z<1and —40 <z < 60.
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The Vertical Velocity at time, t=40

z-axis

0.0 T T T T T T T T T T T T T T
.40.0 -30.0 200 -100 0.0 10.0 200 30.0

T I L) T Lo
40.0 500 60.0

x-axis

Figure 16i

142



The Vertical Velocity at time, t=50
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The Horizontal Velocity at time, t=0
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Figure 17: The Horizontal Velocity

The horizontal velocxty, u, as determined by the streamfunction with parameters
p=10and v= '10— Figures 17a-j show the evolution of the horizontal velocity for
times, T = 0,1,5,10, 15,20,25, 30,40, and 50, respectively. Plots are shown with
0<2<1and—-40 <z <L60.
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The Horizontal Velocity at time, t=1
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z-axis

The Horizontal Velocity at time, t=5
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z-axis

The Horizontal Velocity at time, t=20
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The Horizontal Velocity at time, t=40
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The Horizontal Velocity at time, t=50
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The Streamfunction at time, t=0
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Figure 18: Contour Plot of Streamfunction

The ﬁow field as a contour plot of the streamfunction with parameters 4 =
1.0, v = 755 Figures 18a-j show the development of the streamfunction for times

T=0,1, 5 10 15, 20, 25, 30,40, and 50, respectively. Plots areshownwith0 <z <1
and —40 <z <A0.
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The Streamfunction at time, t=5
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The Streamfunction at time, t=10
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z-axis

The Streamfunction at time, t=15
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The Streamfunction at time, =20
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The Streamfunction at time, t=25

1.0

0.9

0.8 -

0.7

0.6 -

R
4 054 i
8

0.4

0.3

0.2

0.1

0-0 T T T T ¥ —“:’. lllllllllll
400 -30.0 -20.0 -100 0.0 100 200 30.0 400 50.0 60.0

x-axis

Figure 18g

160



z-axis

The Sueamﬁlncﬁon at time, t=30
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z-axis

The Streamfunction at time, t=40
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The Streamfunction at time, =50
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The Vertical Flux at time, t=0
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Figure 19: Contour Plot of Vertical Kinematic Momentum Flnx

Figures 19a—j show lines of constant vertical momentum flux, with parameters
p =10, v = 35, for times T = 0,1,5,10,15,20,25,30,40, and 50. Plots shown
with 0 < 2 <1 and —40 < z £ 60.
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The Vertical Flux at time, t=5
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Z-axis

The Vertical Flux at time, t=15
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z-axis

The Vertical Flux at time, t=20
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z-axis

The Vertical Flux at time, t=25
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z-axis

The Vertical Flux at time, t=30
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Z-axis

The Vertical Flux at time, t=40
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Z-a=18

The Vertical Flux at time, t=50
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5.3 Conclusion

Sandstrom et al (1989) concluded from their observations that enhanced mixing
oceurred due to the passage of intecnal solitary waves. By using a simple first-
order closure scheme to represent the turbulent dissipation of a single soliton, we
have developed a model which demonstrates that in the lee of the wave there is,
indeed, enhanced vertical mixing in the region of the pycnocline. In addition to
the upwelling, our model also demonstrates vertical shear in the horizontal velocity
field.

The model presented in this thesis satisfies energy balance laws but fails to satisfy
mass balance laws (in fact, the solution creates mass, primarily in the shelf region
of the dissipating soliton). Despite the model’s failure to satisfy the mass balance
law, the author suggests that the model presented here does demonstrate that a
turbulent dissipation mechanism is partially responsible for the enhanced mixing
found to occur after the passage of internal solitary waves. However, while the
vertical velocity field indicates that continual upwelling occurs in the lee of the
soliton, the vertical kinematic momentum flux seems to indicate that this upwelling
may not act as a nutrient pump but may merely be the restoration of the pycnocline
to its undisturbed state (i.e. the buoyancy forces may be acting to restore the fluid

to its hydrostatic state with very little, if any, entrainment occurring).
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Appendix A

The following is the FORTRAN source code used to generate the data for the
asymptotic solution developed in Chapter 3.

PROGRAM TDIS

REAL*8 X,XC,ETA,ETA0,PHI,TH,THODT,MU,NU,U0,U1,ST,
1 THO,UT,SCH2,FT,UTAIL,51,UTL,OVRLP,NORM,
2 UON U1N,UTAILN,OVRLPN,UTS,UTSN,SHELF ET,
3 T0,FTA,XBGN,XEND,UPLT(11,1001),EPSN,
4 STALOC,STLC(11,1001),MASS, ENERGY,

5 THETAC,THETAO0

CHARACTER BLNK

BLNK=""

OPEN(UNIT=6,FILE="tdis.out’)
OPEN(UNIT=7,FILE="tdis.dat’)
OPEN(UNIT=8,FILE="tdis.mas’)
OPEN(UNIT=9,FILE="tdis.nrg’)
OPEN(UNIT=10,FILE="tdis.sol’)

INITIAL AMPLITUDE
ETA0=-2.D0

DISSIPATION PARAMETER

Qo oo

NU=1.0D0/100.0DC
MU=1.D0

FAST TIME LOOP

oaQaQ

DO 100 1=2,100
FT = DFLOAT(I-1)
ST = NU*FT
PHASE POSITION
XC=THETAC(ST)

PHASE SHIFT

QaaQaaQ aaaQ

THO=THETAO(ST)
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aQQ

aQaaa

20
21
22
23
24
25
26
C
C
C

aaQ

QO

AMPLITUDE PARAMETER

ETA=ET(ST)

DERIVATIVE OF PHASE SHIFT W.R.T. ST

THODT=-MU /(3.DO*ETA)+8.DO*ETA/15.D0
WRITE(6,20) NU

WRITE(6,21) MU

WRITE(6,22) FT

WRITE(6,23) XC

WRITE(6,24) ETA

WRITE(6,25) THO

WRITE(6,26) THODT

WRITE(6,*) ' .

FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’
FORMAT(’

The dissipation parameter nu = ', F10.5)
The dissipation parameter mu = ’, F10.5)

The fast time t = >, F10.5)
The phase position = ’ F10.5)
The amplitude = ', F10.5)
The phase shift = ’,F10.5)
The phase shift derivative = ' F10.5)

PHASE DO LOOP

XBGN=-40.D0

XEND=160.D0

DO 200 J=1,2001
X=XBGN+(XEND-XBGN)*DFLOAT(J-1)/2000.D0

ARRIVAL TIME

IF (X.GE.0.D0) T0=-(3.D0/(4.D0*MU))

1 *DLOG(((20.D0*MU*(DEXP(8.DO*NU*X /30.D0)
2 -1.D0))/(-8.D0))+1.D0)

IF (X.LE.0.D0) T0=0.D0

FTA=T0/NU

AIRY INTEGRAL ARGUMENT

IF (FT .NE. 0.D0) S1= X/((3.DO*FT)**(1.00/3.D0))

180



TH=X-XC

PHI=ETA*(TH-TH0)

SCH2=1.D0/(DCOSH(PHI)**2)

NORM = -2.DO*ETA0**2

IF (FT .EQ. 0.D0) OVRLP=0.D0

IF (FT .EQ.0.D0) GOTO 1000

IF (X.LE.XC) OVRLP=-NU*(8.D0*ETA/15.D0 + MU / (3.D0 * ETA))
1 *DEXP(-MU*T0)

IF (X.GT.XC) OVRLP=0.D0

1000 CONTINUE

C
C
C

oNON®)]

QOQ

QQaQ

MAIN PULSE

U0=-2.DO*ETA**2*SCH2

UON=U0/NORM

IF (FT .NE. 0.D0)U1=NU*((MU/(6.DO*ETA))

1 *((3.D0*(1.D0-PHI*DTANH(PHI))*SCH?2)

1 +DTANH(PHI)-1

2 -(PHI*SCH2)*(PHI*DTANH(PHI)-2.D0))

3 +(ETA/15.D0)*((12.D0*SCH2*(1.D0-PHI*DTANH(PHI)))
4 +4.D0*(DTANH(PHI)-1.D0)

5 +(2.DO*PHI*SCH2*(PHI*DTANH(PHI)-2.D0)))
6  +(THODT/2.D0)*(SCH2*(PHI*DTANH(PHI)-1.D0)))

IF (FT .EQ. 0.D0) U1=0.D0

WAVE TAIL
IF (X.LE.XC) SHELF=-NU*(MU/(3.DO*ET(T0))+(8.D0*ET(T0)/15.D0))
1 *DEXP(-MU*(ST-TO0))
IF (X.GT.XC) SHELF=0.D0
IF (FT .NE.0.D0) UTAIL=UTL(S1)*SHELF
IF (FT.EQ.0.D0) UTAIL=0.D0
SHELF AND TAIL SOLN

UTS = U1+UTAIL-OVRLP
UTSN =UTS/NORM

COMPLETE SOLUTION

UT=U0+UTAIL+U1-OVRLP
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200

900

902
903

100

QO Q

WRITE(7,30) X,UT
FORMAT(2F15.5)
MASS = MASS + UT
ENERGY = ENERGY + 0.5D0*UT**2
CONTINUE
WRITE(6,22) FT
WRITE(6,*) "MASS = ,MASS
WRITE(6,*) 'ENERGY =’ ENERGY
WRITE(G,*)’
WRITE(7,900) BLNK
FORMAT(A1)
WRITE(8,902) FT,MASS
WRITE(9,902) FT,ENERGY
WRITE(10,903) FT,XC,-2.DO*ETA**2
FORMAT(2F15.5)
FORMAT(3F15.5)
MASS = 0.D0
ENERGY = 0.D0
CONTINUE

" CLOSE(UNIT=6)

CLOSE(UNIT=T)
CLOSE(UNIT=8)
CLOSE(UNIT=9)
CLOSE(UNIT=10)
STOP

END

DISPERSIVE WAVE TAIL SOLUTION

DOUBLE PRECGISION FUNCTION UTL(S)
REAL*8 S,FBS,ERR,ANS,ERT,UL,LL,DALDQDAG
EXTERNAI DAL DQDAG

INTEGER INT

EBS=3.50

ERR=1.D-6

IF(S.EQ.0.D0) UTL=2.D0/3.D0
IF(5.EQ.0.D0) RETURN

IF(S.LT.0.D0) UL=0.D0

IF(S.LT.0.D0) LL=S

IF(S.LT.0.D0) INT=6

IF(S.GT.0.D0) UL=S
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IF(S.GT.0.D0) LL=0.D0
IF(S.GT.0.D0) INT=2
CALL DQDAG(DAILLL,UL,EBS,ERR,INT,ANS ERT)
IF(S.LT.0.D0) UTL=2.D0/3.D0-ANS
IF(S.GT.0.D0) UTL=2.D0/3.D0+ANS
RETURN
END
DOUBLE PRECISION FUNCTION INTGRD(SP)
REAL*S ALAIP,SP
CALL AIRY(SP,AILAIP)
INTGRD=AI
RETURN
END
DOUBLE PRECISION FUNCTION ET(X)
REAL*8 U,N0O,ET2,X
U=1.0D0
N0=1.0D0
ET2 = ((10.D0 * U * NO**2 * DEXP(-4.D0 * U * X / 3.D0))
1 /(10.D0 * U - 8 * NO**2 * (DEXP(-4.D0 * U * X / 3.D0)
2 -1.D0)))
ET = DSQRT(ET?2)
RETURN
END
DOUBLE PRECISION FUNCTION THETAC(X)
REAL*8 V,U,N0,X
U=1.0D0
V=1.0D0/100.0D0
N0=1.0D0
THETAC = (30.D0 / (8.D0 * V))*DLOG(((10.D0* U - 8.D0 * N0**2
1 *(DEXP(-4.D0* U * X / 3.D0) -1.D0))
2 /(10.D0 * U)))
RETURN
END
AOUBLE PRECISION FUNCTION THETAO(X)
WAL*8 NO,U,BETA1,BETA2,X

U=1.0D0

N0=1.0D0

BETA1=DSQRT((8.D0 * N0**2 * DEXP(-4.D0 * U * X / 3.D0))
1 /(10.D0 * U + 8.D0 * N0**2))
BETA2=DSQRT((10.D0 * U - 8.D0 * NO**2

1 * (D¥XP(-4.D0 * U * X / 3.D0) - 1.D0))

2 / (8.D0 * No**2
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3 * DEXP(-4.D0 * U * X / 3.D0)))

THETAO = 0.5D0 * DSQRT(4.D0 / (5.D0 * U))

1 * (-3.D0 * DASIN(BETA1)

2 +3.D0 * DASIN(DSQRT((8.D0*N0**2)

3 /(10.D0*U+8.D0*N0**2)))-BETA2+DSQRT((10.D0*U)/(8.D0*N0**2)))
RETURN

END
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The following is the FORTRAN source code used to generate the numerical
solution developed in Chapter 4.

PROGRAM FKDV
REAL*8 Q1(-1:2200),Q2(-1:2200),Q3(-1:2200),DT,DX,X(0:2200)
REAL*8 M1,M2,M3,E1,E3,DELTAE,MU,XLOC,YVAL,X1M(3),Q1M(3)
INTEGER N,J,K,L
CHARACTER BLNK
OPEN(UNIT=6,FILE="fkdv.out’)
OPEN(UNIT=7,FILE="fkdv.dat’)
OPEN(UNIT=8,FILE="mass.out’)
OPEN(UNIT=9,FILE="ener.out’)
OPEN(UNIT=10,FILE="amp.out’)
BETA=0.0050D0
BLNK=""
MU=1.0D0/100.0D0
M1=0.0DO
M2=0.0D0
M3=0.0DO0
E1=0.0D0
E3=0.0D0
DELTAE=0.0D0
TIME=0.0D0
DX=0.1D0
DT=1.0D0/5010.0D0
DO 10 J=0,2200
Q1(J3)=0.0D0
Q2(J3)=0.0D0
Q3(J)=0.0D0
X(J)=0.0D0
10 CONTINUE
Q1(-1)=0.0D0
Q2(-1)=0.0D0
Q3(-1)=0.0D0
X(0)=-40.0D0
DO 20 J=1,2200
X(J)=X(0)+J*DX
20 CONTINUE
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C

C

X(3)=X(0)+J*DX
DO 100 J=0,800
Q1(J)=-2.0D0/COSH(X(J))**2
WRITE(7,901) X(3),Q1(J)

C901  FORMAT(2F15.5)
100 CONTINUE

C

WRITE(7,903) BLNK

C 903 FORMAT(A1)

C

DO 401 J=0,500
M1=M1+Q1(J)
M2=M2+Q2(J)
M3=M3+Q3(J)
E3=E3+0.50D0*Q3(J)**2
E1=E1+0.50D0*Q1/J)**2

401 CONTINUE

DELTAE=E3-E1

WRITE(6,*) "TIME = *,TIME

WRITE(6,*) 'MASS = ' M1, ',M2’ ’M3
WRITE(6,*) 'ENERGY = ",E3,’ ',El1,; 'DELTAE
WRITE(6,*) ' '

WRITE(8,901) TIME,M1

WRITE(9,901) TIME,E1

CALL FMAX(X,Q1,X1M,Q1M)

CALL PARA(X1M,Q1M,XLOC,YVAL)
WRITE(10,902) TIME,XLOC,YVAL

902 FORMAT(3F15.5)

DO 210 J=1,802

Q2(J)=-2.006/COSH(X(J)-4.0D0*DT)**2
-(DT/DX**3)*(Q1(J+2)-2.0D0*Q1(J+1)+2.0D0*Q1(J-1)
-Q1(J-2))
+(2.0D0*DT/DX)*(Q1(I+1)+Q1(N)+Q1(I-1))*(Q1(I +1)-Q1(I-1))
+ 2.0D0*MU * ((-DT*(-2.0D0/COSH(X(J)-4.0D0*DT)**2))
+ (DT/DX**2)*((-2.0D0/COSH(X(J+1)-4.0D0*DT)**2)
-2.0D0*(-2.0D0/COSH(X(J)-4.0D0*DT)**2)
+(-2.0D0/COSH(X(J-1)-4.0D0*DT)**2)))

SRS SR S S ol o

210 CONTINUE

ORORS!

TIME=TIME+DT

DO 310 J=1,804
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prree

310

Q3(3)=Q1(J)
(DT/DX**3)*(Q2(J+2)-2.0D0*Q2(J+1)+2.0D0*Q2(J-1)
-Q2(J-2))
+(2.UD0*DT/DX)*(Q2(I+1)+Q2(3)+Q2(J-1))*(Q2(I+1)-Q2(J-1))
+ 2.0DO*MU*((-DT*Q1(J))
+(DT/DX**2)%(Q1(J+1)-2.0D0*Q1(3)+Q1(J-1)))

CONTINUE

TIME=TIME+DT

C
C

DO 400 J=0,2200

400

M1=M1+Q1(J)
M2=M2+Q2(J)
M3=M3+Q3(J)
E3=E3+0.50D0*Q3(J)**2
E1=E1+0.50D0*Q1(J)**2
CONTINUE

DELTAE=E3-E1l

Qaoaaaaaa

WRITE(6,*) *"TIME = ', TIME

WRITE(6,*) 'MASS = ’,M1,” 'M2’ ’M3
WRITE(6,*) "ENERGY = ",E3,; ’E1; ’DELTAE
WRITE(6,*)" °

DO 2000 J=1,100999

WRITE(6,*) 1, ',Q1(3), *,Q2(3),’ ,Q3(J)

2000 CONTINUE

0 1000 L=0,100
1 .10 N=1,1670

rRrrer

1111

M1-=0.0D0
M=0.C LY
£ .4=0.D0
£1=0.0D0
E3=0.0D0
DELTAE=0.0D0
DO 1111 J=1,2198
Q1(J)=Q2(J)
-(DT/DX**3)*(Q3(J+2)—2.0D0*Q3(J+1)+2.0D0*Q3(J-1)
-Q3(J-2))
+(2.0D0*DT/DX)*(Q3(3+1)+Q3(3)+Q3(3-1))*(Q3(3+1)-Q3(J-1))
+ 2.0D0*MU * ((-DT*Q2(J))
+(DT/DX**2)*(Q2(J+1)-2.0D0*Q2(J)+Q2(J-1)))
CONTINUE
TIME=TIME+DT
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DO 1121 J=1,2198
Q2(J3)=Q3(J)
&  -(DT/DX**3)*(Q1(J+2)-2.0D0*Q1(J+1)+2.0D0*Q1(J-1)
& -Q1(3-2)
&  +(2.0D0*DT/DX)*(Q1(I+1)+Q1(3)+Q1(J-1)*(Q1(J+1)-Q1(J-1))
&  + 2.0D0*MU * ((-DT*Q3(J))
&  +(DT/DX**2)*(Q3(J+1)-2.0D0*Q3(J)+Q3(J-1)))
1121  CONTINUE
TIME=TIME+DT

DO 1131 J=1,2198
Q3(3)=Q1(J)
-(DT/DX**3)*(Q2(J+2)-2.0D0*Q2(J +1)+2.0D0*Q2(J-1)
-Q2(J-2))
+(2.0D0*DT/DX)*(Q2(J+1)+Q2(3)+Q2(J-1))*(Q2(J+1)-Q2(3-1))
+2.0D0*MU * ((-DT*Q1(J))
+(DT/DX**2)*(Q1(J+1)-2.0D0*Q1(3)+Q1(3-1)))

1131  CONTINUE

TIME=TIME+DT
C  IF (MOD(N,167) .EQ. ¢ THEN

N RIS

C  ENDIF
C DO 1141 J=1,90+6*(N-1)+1998*L
C Q2(3)=Q2(J)+(BETA/2.0D0)*(Q3(J+1)-2.0D0*Q2(J)+Q1(J-1))

C1141 CONTINUE

100 CONTINUE
DO 1300 J=1,10100
IF ((-20.D0 .LE. X(J)).AND.(X(J).LE. 20.D0))
1 WRITE(6,*) X(J),” ",Q3(J)
1300 CONTINUE
WRITE(6,*) '"COMPUTING MASS AND ENERGY’
DO 1400 J=0,2200
M1=M1+Q1(J)
M2=M2+Q2(J)
M3=M3+Q3(J)
E1=E1+0.50D0*Q1(J)**2

a0
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1400

1301

E3=E3+0.50D0*Q3(J)**2
CONTINUE
DELTAE=E2-F1
WRITE(6,*) 'TIME =’ TIME,’ SECONDS’
WRITE(6,*) 'MASS =’ M1, 'M2’ ’M3
WRITE(6,*) 'ENERGY = ",E3, ’E1; ',.DELTAE
WRITE(6,*)’  °
WRITE(8,901) TIME,M3
WRITE(9,901) TIME,E3
CALL FMAX(X,Q3,X1M,Q1M)
CALL PARA(X1M,Q1M,XLOC,YVAL)
WRITE(10,902) TIME,XLOC,YVAL
DO 1301 J=0,2000

WRITE(7,901) X(J),Q3(J)
CONTINUE

WRITE(7,903) BLNK

1000 CONTINUE
CLOSE(UNIT=6)
CLOSE(UNIT=7)
CLOSE(UNIT=8)
CLOSE(UNIT=9)
CLOSE(UNIT=10)
STOP
END
SUBROUTINE FMAX(X,Y,XMAX,YMAX)
REAL*8 X(0:2200),Y(-1:2200),XMAX(3),YMAX(3),MAX
INTEGER I,J,LYMAX

200

MAX=Y(0)
DO 200 1=0,2199

IF(ABS(Y(I+1)).GT.ABS(MAX)) THEN
MAX=Y(I+1)
LYMAX=I+1

ENDIF

CONTINUE

XMAX(1)=X(LYMAX-1)
XMAX(2)=X(LYMAX)
XMAX(3)=X(LYMAX+1)
YMAX(1)=Y(LYMAX-1)
YMAX(2)=Y(LYMAX)
YMAX(3)=Y(LYMAX+1)

RETURN
END
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SUBROUTINE PARA(X,Y,XLOC,YVAL)
REAL*8 X(3),Y(3),A1,A,B1,B,C1,C,DETA,XLOC,YVAL
INTEGER 1]
DETA=(X(2)*X(3)**2-X(3)*X(2)**2)
S(X(1)*X(3)**2-X(3)*X(1)**2)

2 H(X(1)*X(2)**2-X(2)*X(1)**2)
C1=Y(1)*(X(2)*X(3)**2-X(3)*X(2)**2)
-Y(2)*(X(1)*X(3)**2-X(2)*X(1)**2)
2 FY(3)HX(1)*X(2)**2-X(2)*X(1)**2)
B1=(Y(2)*X(3)**2-Y(3)*X(2)**2)
C(Y(1YRX(3)**2-Y(3)*X(1)**2)

9 H(Y(1)*X(2)**2-Y(2)*X(1)**2)
A1=(X(2)*Y(3)-X(3)*Y(2))
-(X(L)*Y(3)-X(3)*Y(1))

2 H(X()*Y(2)-X(2)*Y(1))
C=C1/DETA

B=B1/DETA

A=A1/DETA

XLOC=-B/(2.D0*A)
YVAL=C+B*XLOC+A*XLOC**%
RETURN

END

[y
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