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ABSTRACT

Model Predictive Control(MPC) uses a mathematical model of the process to
predict the future process output trajectory. A multi-step optimization problem is
then formulated which gives an optimal control action even in the presence of hard
constraints. MPC is “optimal” in the sense of minimization of a user-specified perfor-
mance index but the traditional design does not include any way of insuring stability
and/or robustness (to model error). Three important issues are covered in this the-
sis: (1) process modelling; (2) predictive control design and tuning; (3) closed loop
analysis of stability and robustness. All three are important requirements in both
academic and industrial applications.

A dual-model formulation is developed to represent the process. The dual-model,
specified in state space form, combines the advantages of both the Finite Step Re-
sponse(FSR) and the Deterministic Auto Regression and Moving Average(DARMA)
model forms. Defining the output predictions directly as the states, the dual-model
generates explicit output predictions for use in the control calculations and is also
convenient for expansion to multivariable process modelling and identification. Two
important related issues, state estimation and parameter estimation, are discussed in
detail. For optimal state estimation, the standard observer theory can be simplified
when applied to the specific structure of the dual-model. For parameter identifica-
tion, the extended Kalman filter gives predictive-control-relevant model identification
based on experimental data.

Predictive control design includes many user specified control tuning parameters.



Physically, the general effect of traditional tuning parameters is intuitive and easily
understood, but the selection of specific values is quite ‘ad hoc’. A new method which
results in better dynamic matrix conditioning is developed for choosing numerical
values of tuning parameters. Then, two simple new tuning parameters, a and f, are
introduced to fine tune the servo and regulatory performance respectively. With
and B, the controller can be adjusted on-line to obtain the best trade-off between

robustness and servo/regulatory performance.

Two important closed loop system issues, robustness and constrained stability,
are also discussed. Using the modelling errors in parametric form and matrix per-
turbation theory, simpler and less conservative robust stability criteria are developed
by using the special structure of the dual-model formulation. When MPC has active
constraints, its closed loop control structure is changed. The traditional constrained
stability analysis procedures are applied and some difficulties in practical applications
are explored. Then, two new approaches to handle hard constraints are proposed.

The theoretical research results developed in this thesis are incorporated into a
new predictive control scheme, Dual-Model Predictive Control(DMPC). DMPC pro-
vides enbanced functionality (e.g. control-relevant identification, constraint handling)
and more flexibility (e.g. MIMO identification and control) for practical control ap-

plications.
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Chapter 1

Introduction

Facing ever stronger global competition, today’s chemical industry is re-organizing
to achieve higher production efficiencies. In addition to the development of new pro-
cess technology with high production efficiency and minimal environmental impact,
plant wide automation becomes an important player to ensure optimized operation.
With better controlled performance, process operations can be pushed closer to their
limit to obtain more benefits. Conventional controllers such as PID can not meet the
challenge simply because they are single loop based control techniques which, because
of the lack of communication and coordination with other control loops, are not able
to provide plant wide optimization.

Multivariable control technology has been the subject of extensive research studies
in the past few years. Successful applications include LQC, a state space formulation
based optimal control strategy. LQC is generally regarded as a good control method
for areas where fast control responses are crucial and the processes themselves can be
described accurately. Therefore, they have been successfully applied in cost intensive
projects such as aerospace, aircraft control and robotics. LQC is very sound in theory
and comprehensive in practice. Unfortunately, chemical processes usually have differ-
ent characteristics. LQC based control can not used easily to handle chemical process
problems due to the model uncertainty, the diversified dynamics, and the economic
operation requirement.

1. Model uncertainty: Usually, there are many uncertain phenomenon inside the
chemical process and external disturbances so that accurate mathematical de-
scriptions are not available. Many methods have been proposed to improve the
robustness of LQC, e.g. the robust observer (Friedland 1986).

2. Diversified dynamics: A chemical plant typically consists of several control el-
ements in the field where time-delay, large process time constants are common
dynamics. Some elements can respond within seconds while some loop need

hours to settle.

3. Minimum cost: LQC does not explicitly consider costs and benefits which are
the highest priority for a chemical plant to stay in business.
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In practice, to control the distributed equipment (in the field), a centralized com-
puter control structure, Distributed Control System(DCS), has been the dominant
process control strategy. Supervisory control has been used to coordinate the pro-
cessing of individual controllers but typically the strategy uses the steady state re-
lationships among variables. Strictly speaking, it is a multi-loop control not mul-
tivariable control. For example, some control loops have to be detuned to prevent
multi-controllers fighting situations.

After several years of practical development and testing in industry, a new control
strategy, Model Predictive Control(MPC), started to show its powerful potential for
chemical process control. One of the most important concepts is the long range pre-
dictive feature of the controller. With prediction, the controller can forecast ahead to
overcome the limitations from process time-delay, nonminimum phase and slow pro-
cess dynamics. The control calculation is an optimization procedure involving matrix
manipulations which can include multi-channel dynamics easily. Therefore, it is a
multivariable control strategy. The costs of manipulated variables and the benefits
of controlled variables can appear directly in the optimization objective. The control
performance is then directly linked to how to operate the plant economically. Obvi-
ously, the rapidly advanced computer technology makes it possible to do complicated
on-line mathematical manipulations such as process modelling, model prediction and
constrained optimization. As the first commercial MPC control package, Dynamic
Matrix Control(DMC) has been applied widely by many large scale chemical compa-
nies to handle muitivariable control problem and to achieve plant wide optimization.
Currently, there are over 15 commercial competitors in this field.

The initial industrial successes of the model predictive control technology was very
impressive even without sound theoretical support. In the optimization formulation,
MPC emphasizes obtaining the optimization solution and handling constraints, rather
than good control performance. Many theoretical control considerations, from funda-
mental problems such as closed loop stability to advanced issues such as robustness,
constrained stability, were unresolved. The obtaining of a control solution with or
without constraints does not mean a stable control system. In 1989, the first suc-
cessful attempt was made to translate the step response model based DMC into a
state space formulation (Li, Lim & Fisher 1989). Then, in the state space domain,
state observer theory (including Kalman filter theory) was used to estimate the future
effects of unmeasured disturbances, i.e. the feedback scheme (Navratil, Lim & Fisher
1988). The unconstrained MPC control action was further classified into a state feed-
back controller format such that the stability of the MPC closed loop control system
can be evaluated (Morari & Lee 1991). Because of the similarity between MPC and
LQC, another research direction is to analyze MPC control systems by means of
LQC theory. It has been considered as a special form of (finite horizon) LQC (Bit-
mead, Gevers & Wertz 1990) and the stability can be improved by carefully selecting
the prediction horizons (Muske & Rawlings 1993). Nowadays, major research efforts
are concentrating on the following three general areas — process modelling, system
analysis and controller design and tuning.



1.1 Process Modelling and Identification

Model Predictive Control uses a mathematical model of the process dynamics to
predict the future output trajectory. Then, a multi-step optimization algorithm is
executed which gives an optimal solution with or without hard constraints. Finally,
feedback is necessary for regulatory control in the presence of unmeasured distur-
bances. Therefore, MPC systems usually include three major components — the
process predictor, the control move calculation and output feedback. These compo-
nents all require an accurate mathematical description of the process, i.e. a process
model.

Over the last 20 years, many types of predictive control schemes have been pro-
posed, where the major difference is the type of model used to represent the process.
Since the dynamics of the process are represented by different model formats, the
subsequent procedures for the controller design are also different. For example, an
FSR type step response model is used in Dynamic Matrix Control(DMC) (Cutler &
Ramaker 1980), a DARMA model in Generalized Predictive Control(GPC) (Clarke &
Mohtadi 1987), a state space model in State Space Model Predictive Control(SSMPC)
(Ricker 1991). Recently, a Laguerre polynomial model has been proposed in the de-
sign of the predictive controller (Finn, Wahlberg & Ydstie 1993). However, there has
been proven that the nominal performance of all linear predictive control schemes is
not dependent on the model form used to represent the process (Morari, Garcia &
Prett 1989). On the other hand, robust performance does depend on the model used
since different model forms, due to their inherent nature, tend to emphasize different
ranges of process dynamics. For example, the DARMA model emphasizes the middle
frequency dynamic part of the process with more model errors at the steady state and
in the time delay. Once the model type is defined, the controllable dynamic range
of the process is roughly fixed too. Therefore, the key step in the MPC design is to
choose an appropriate mathematical form for the predictive controller design.

Two most popular model formats - finite step response(FSR) model and DARMA
model, have been successfully used in the MPC design. For example, DMC uses the
FSR model and GPC uses the DARMA model. There has been a long and continuing
debate regarding which model form is most suitable for practical applications. Con-
ceptually, the FSR model has the advantages of easy model testing, identification and
understanding/interpretation. However, it has two major problems that more model
coefficients are required and it is unable to handle open-loop unstable processes. The
former results in slow parameter estimate convergence so that it is not suitable for
adaptive control applications. The DARMA model uses fewer parameters which fa-
cilitates on-line model identification and adaptive control. However, as mentioned
above, model uncertainties could degrade the control performance.

A dual-model approach for the implementation of predictive control is proposed in
this thesis which combines the two most popular model formats - FSR and DARMA
models. In a state space form, it has a nonparametric model (e.g. step response
coefficients) to handle the fast dynamics and a simple, compact DARMA model to
represent the unstable or slower dynamics. In other words, (expressed in terms of



the unit step response), the initial transient and the final approach to steady state
(or unstable) parts of the process response are described by different models. The
two model forms are combined in a single state space format — a Dual-Model state
space formulation. The proposed Dual-Model Predictive Control (DMPC) algorithm
includes the two most common control algorithms, DMC and GPC as subsets.

Obvious advantages of this dual-model structure include

1. Like GPC, it can be used for open loop unstable processes and can reduce the
high DMC dimension required for effective control.

2. Like DMC, it uses an unstructured (non-parametric) step response model to
describe the initial (fast) dynamics.

3. It has a solid theoretical foundation for multivariable process modelling, iden-
tification and control, due to the state space format;

In Chapter 2, the state definition and corresponding dual-model state space for-
mulation are given followed by open loop performance analysis including observability
and controllability analysis. Especially, from the controllability analysis, important
properties of the future output predictions can be explicitly evaluated.

Once the model structure for the predictive control is selected, the model pa-
rameters can then be determined by either transforming from model parameters in
other different but equivalent descriptions of the process, or estimated directly from
input/output data obtained from open loop tests. The latter approach to obtain the
model parameters, i.e. model identification, is especially important for the chemical
process control since in most processes, good mathematical models are almost im-
possible to derive from first principles. Therefore, model identification has played a
central important role in the process control applications. The developments of model
based, (advanced) control algorithms, including model based PID tuning (e.g. the
direct synthesis method (Seborg, Edgar & Mellichamp 1989) and the IMC method
for PID tuning (Rivera & Morari 1986)), rely heavily on the accuracy of the model.

Model identification algorithms are numerical procedures which have their own
dynamic characteristics being dependent upon many issues. For example, even with
the same least squares objective function, different model structures give model pa-
rameters emphasizing different dynamic response ranges of the process. Step response
model identification puts more emphases on the low frequency part (steady state part)
of the process. DARMA models, on the other hand, include more fast-dynamic com-
ponents. To achieve the best control performance, the dynamic characteristics of
the model identification algorithms should match those of the control algorithms, i.e.
control relevant identification.

Dynamic Matrix Identification(DMI) (Cutler & Yocum 1991) gives the least squares
estimates of the step response coefficients for DMC. DMI is an inverse process of DMC
and makes similar assumptions about the process disturbances, e.g. step type distur-
bances. With the objective function extended to cover the prediction errors, LRPI
(Shook, Mohtadi & Shah 1991) estimates the DARMA model parameters to match



the control requirement of GPC. In the dual-model state space formulation, due to
the particular definitions of the state variables, an extended Kalman filter algorithm is
used to obtain a predictive control-relevant identification method for DMPC. Related
issues will be discussed in Chapter 3.

1.2 Predictive Controller Design

After defining the model and obtaining the model parameters, a predictive con-
troller can be designed to calculate future control moves based on the information
about future process output trajectories. The future outputs are predicted from the
deterministic models of the process or measurable disturbances, or estimated from
stochastic disturbances/noise. Therefore, the design procedure for predictive con-
trollers includes feedback, feedforward and control calculations.

1.2.1 Predictive Control Calculations

Using the process model, the future behaviour of the process can be predicted
and subsequent future control moves can be found to bring the process output to
the desired trajectory. The task of the predictive controller is to find optimal future
control moves considering process dynamics, economic costs and benefits, and the
constraints on process inputs and outputs. Generally, it includes the selection of
certain tuning parameters.

Ideally, the future process output should track the desired trajectory exactly.
However, there are various restrictions which limit the input energy and practical
considerations such as safety and process capacity. Therefore, there have been many
intuitive and practical control parameters used in predictive controller designs. In
the predictive domain, the concept of prediction horizons is used for both manipu-
lated variables (as the control horizon, M) and controlled variables (as the prediction
horizon, P). A similar predictive horizon concept for better disturbance rejection can
be used for even the disturbance variables (Saudagar 1995). A general interpretation
is that the controlled variables are optimized over P-steps (instead of one step inher-
ently required by other control algorithms) using M (M < P) future moves. Other
parameters include weighting on various terms in the objective function such as the
control weighting, steady state weighting and output weighting. Conceptually, from
the point of view of controller design, the introduction of these parameters is very
intuitive and easy to understand. However, the selection of numerical values is quite
'ad hoc’ since they do not have unique effects on the control system performance
and/or robustness. For example, the same control performance can be obtained by
choosing different combinations of controller parameters, but other factors such as
robustness may be very different. Therefore, the selection of a particular control
parameter depends on not only the process model parameters but other controller
tuning parameters. Generally speaking, there is another degree of freedom to choose
the best combination of the tuning parameters for the control design.



The control move calculation for predictive control involves a pseudo-inverse of the
dynamic matrix, which consists of step response coefficients. Therefore, the numerical
condition of this dynamic matrix is a very important factor for control performance.
For example, an ill-conditioned dynamic matrix could lead to not only aggressive
control action but also poor robustness since even a small model error could result in
large changes to the control calculations. Better matrix conditioning can be obtained
by several methods including the addition of control weighting which is equivalent to
adding positive numbers to the diagonal elements of the dynamic matrix (Wilkinson,
Morris & Tham 1994). An interesting extension of this finding is that all tuning pa-
rameters in predictive control can be interpreted as different approaches to improve
the matrix condition. Therefore, Chapter 4 extends the concept of matrix condi-
tioning to include the selection of all control parameters. The integer type control
horizons are chosen by a special matrix decomposition scheme and the weighting are
determined by modifying the elements of the dynamic matrix. With such an inte-
grated approach, the best combination of the (conventional) tuning parameters can be
determined to implement the predictive control algorithm. Final performance tuning
is done using “dynamic tuning” as discussed below.

1.2.2 State Observer

The future output trajectory calculated from the process model is not the true pro-
cess future output because of model uncertainties and unmodelled disturbances/noise.
Feedback techniques must be used to estimate those effects based on currently avail-
able output measurements.

The predictive controller, with and/or without hard constraints, can be classified
as one type of state feedback controller (Morari & Lee 1991, Qi & Fisher 1994, Oliveira
& Biegler 1994). The controller gain is uniquely determined by the tuning parameters.
In the state space domain, two other issues, state variable estimation and the handling
of disturbances, are required for the calculation of control moves.

State observer theory is the natural basis for the estimation of the state variables
from input and output measurements. The dynamics of unmeasurable disturbances
and noise can be incorporated in the state space formulation such that Kalman Filter
type, optimal state estimation can be obtained (Navratil et al. 1988). While the
estimation algorithm itself is very straightforward, the convergence and optimality
properties are major concerns for these estimation algorithms. Since the original
state space formulation of MPC has a high dimension, direct applications of the
optimal based state observer design to predictive control leads to an algebraic Riccati
equation with a large dimension and consequently a complicated solution (Navratil
et al. 1988). However, if the disturbance is pre-defined as integrated type white
noise, a much simplified solution can be obtained for the MPC observer design (Lee,
Morari & Garcia 1993). Lee et al also proved that the simplified observer can be
applied to other kinds of disturbance models by imposing an additional filter in the
estimation algorithm. Note that similar disturbance models and feedback design have
been extensively studied for GPC (McIntosh, Shah & Fisher 1991), without the proof
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of optimality.

The application of the dual model representation definitely reduces the compu-
tational requirements if a Riccati equation solution is used. However, a different
approach is used in Chapter 5 to design the state observer. This pole-placement
based method gives a simpler solution for the deadbeat observer. Then, an addi-
tional parameter, 8, to fine tune the state observer and to compensate disturbance
models is introduced. This approach focuses on the convergence properties of the es-
timate such that effects of the disturbance horizon (Saudagar 1995) can be evaluated
in detail.

1.2.3 Feedforward Controller

Different approaches should be used to handle measurable disturbances. The
feedforward control scheme is especially useful since it does not affect the stability
of the feedback control system and in ideal situations, can reject the disturbance
perfectly. Traditionally, the measurable disturbances are treated the same way as
the manipulated variables except that there are no future move assumptions. With
deterministic disturbance models, the future output profiles due to past and current
disturbances can be readily predicted. (In some applications, it is even possible to
predict the future values of the disturbance itself, e.g. ambient temperature, based
on past data). Then, these effects can be added to the error trajectory. By mini-
mization, the MPC controller considers them as equivalent to setpoint changes and
can make control moves to compensate the disturbances. A feedback observer must
also be used to eliminate the effects of disturbances since, in practice, the feedforward
controller can not totally reject them, and to handle unmeasured disturbances and
design approximations.

The analysis in Chapter 5 first shows that the traditional way of handling measur-
able disturbances in MPC can not eliminate the disturbaunce effects in a feedforward
sense. Then, a new feedforward control scheme, predictive feedforward, is proposed.
With the help of the explicit state definition in the dual model formulation, different
options to design the predictive feedforward control are developed.

1.3 Control System Analysis

MPC was originally developed from an optimization formulation which minimized
the difference between the desired trajectory and the process output trajectory. As
long as the minimization functions properly, MPC is assumed to make the process
track the desired trajectory. However, the control performance can not be accurately
determined unless a full closed loop system analysis is performed.

1.3.1 Robust Stability Analysis

The dynamics of complicated, multivariable processes can not be totally captured
by a simple mathematical model. Model uncertainty is therefore unavoidable. The



effect of modelling errors on the control performances of any type of controller, espe-
cially model predictive controllers, is very important. Usually, the effect of the model
uncertainties on the (nominal) closed loop stability, i.e. robust stability, is of greatest
concern in control system design.

Robust stability can be evaluated in either the time domain or the frequency
domain, depending mainly on the ways used to represent the model uncertainties.
There are two common methods used for the estimation of model uncertainties. The
first one is to place the nominal modei in parallel with the process and subject it
to the same input excitation. Then, a residual signal is obtained by comparing the
process output and the model outputs. Power spectrum based signal analysis can be
used to estimate the residual dynamics which are a measure of the model plant mis-
match(MPM). The MPM dynamics are represented in a nonparametric format which
lumps all sources (disturbances, noise, MPM, etc) together in the frequency spectrum
domain. Therefore, in terms of MPM estimation, signal processing based algorithms
are very accurate. They have been used to evaluate the robustness of GPC success-
fully (Banerjee & Shah 1995). Other useful information about the model uncertainty
comes from the parameter estimation algorithm which normally gives the estimated
parameters as well as their confidence intervals, i.e. parameter uncertainties. Be-
cause of their parametric form, the model parameter uncertainties have a very clear
physical meaning which is helpful in identifying the sources of the plant and model
mismatches, e.g. in fault detection.

In the state space formulation, model uncertainties appear directly as perturba-
tions of matrices. Depending on the nature of the uncertainties, the robust stability
problem has been treated differently for unstructured and structured perturbations.
There are many research results available in the literature, especially for the case of
structured perturbations (Yedavalli 1985, Juang, Kuo & Hsu 1986, Kolla, Yedavalli
& Farison 1989). Most of these studies have applied the Lyapunov equation in the
time domain, or norm conditions in the frequency domain. A recent result is reported
for a particular perturbation structure, interval matrices, where the coefficients of the
matrices can be described by their upper and lower limits (Keel & Bhattacharyya
1995). This leads to a specialized formulation (structure) but most state space rep-
resentations of physical systems fall into this category. Efficient and less conservative
robust results can be obtained using this formulation.

The robustness analysis results are applied to evaluate the robust stability prop-
erty of MPC in Chapter 6. Instead of developing new robustness criteria, the main
objectives are to develop simpler and less conservative rules for robust predictive
control design by taking the advantage of the special structure of the dual model
representation. Then, the effects of the tuning parameters in the predictive controller
on the robustness are investigated in detail.

1.3.2 Constrained Stability Analysis

One of the major advantages of MPC is its ability to incorporate hard constraints
into the control calculations. When formulated as an optimization problem, the



future control moves may be found (numerically) inside the feasible region formed by
constraints on input and output variables. Even though more computational effort is
required to handle constrained MPC, the calculation of the predictive controller itself
is not a practical problem due to the rapid developments in both powerful computer
hardware technology and efficient numerical software.

However, from the design perspective, the nominal predictive controller is usually
designed and analyzed using an unconstrained control method, say the procedure
discussed in Chapter 4. Then, hard constraints are considered in the optimization
stage to calculate the control moves. Obviously, with the control energy restricted,
the controller structure is no longer a simple state feedback controller. The opti-
mal solution does not guarantee a stable closed loop control system. The stability
of the closed loop system is no longer guaranteed even if the system is designed to
be unconstrained stable. Actually, since the optimization would always generate a
constrained control solution on the constraint boundary, the control structure of the
constrained MPC could switch from one structure to another, i.e. piece-wise linear
control structures. Every combination of active constraint boundaries corresponds
to one possible control structure. The constrained stability problem becomes one of
closed loop system stability with multiple linear controller structures. Usually, to
guarantee the constrained stability, it is sufficient to require that all possible con-
trol structures be stable. Sufficient conditions have been reported in recent research
(Zafiriou 1990, Zafiriou 1991, Zafiriou & Marchal 1991). A general conclusion is that
active input constraints make the closed loop system open-loop. Active output con-
straints introduce extra feedback affecting the the stability of the closed loop system.
The stability conditions are usually conservative since some control structures may
never become active or occur just transiently in the whole control period. The litera-
ture results are difficult to understand and generally lead to a conservative controller
design which avoids all possible constraint violations. To overcome the difficulty of
constrained stability, several efforts have been made to relax the output constraints
(Zafiriou & Hung-Wen 1993), or modify the original MPC objective function (Campo
& Morari 1987, Rawlings & Muske 1993, Oliveira & Biegler 1994).

The constrained stability problem is reinvestigated using the dual model state
space formulation in Chapter 7. The concept and procedure for constrained stability
analysis are clarified and illustrated by examples, using the original MPC objective
function. It is shown that traditional constrained stability analysis methods have too
many possible controller structures to be examined and hence are not practical for
the design of stable constrained predictive controllers. An important stability result
is developed for MPC with a linear objective function. Then, practical approaches to
reduce constraint inconsistencies are discussed and a new predictive control scheme
defining the output weighting as functions of the constraint violation is proposed
which not only simplifies the control calculation but facilitates the stability analy-
sis. The constrained stability issues are discussed again in Chapter 8 as part of the
dynamic tuning.
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1.4 Controller Tuning

After the tuning parameters are selected, both analysis and simulation should be
applied to ensure that stable and good control performance of the nominal system
is achieved. Some parameters may need re-tuning. The most commonly adjusted
parameter in predictive control applications is the control weighting because of its
easily understood meaning and continuous adjustability.

Since complicated matrix manipulations of the dynamic matrix (which is a func-
tion of all the tuning parameters) and its pseudo inverse, are involved in the control
calculation, it is not recommended to tune the control parameters on-line. The major
reason is whenever a parameter is changed, the dynamic matrix and its inverse must
be reconstructed or calculated on-line. This is not a problem for small applications
(e.g. SISO), but causes big problems for large scale applications with many input and
output variables. Actually, commercial control packages such as DMC calculates the
required matrices and results off-line to save on-line computation effort and time. Ob-
viously, the enhanced power of current computer technology is very helpful in terms
of on-line tuning. For example, the latest version of DMC (e.g. Version 5.02) does
allow on-line dynamic matrix calculation by introducing new concepts like dynamic
weighting (Ishikawa, Baba, Miki, Ochi & Minter 1995).

Predictive controllers use both continuous and integer type parameters. The (inte-
ger) predictive horizon concept applied to both inputs and outputs is the fundamental
advantage of MPC. Their effects on the control performance of MPC are very signifi-
cant. However, in integer form, these crucial parameters can not be used to adjust the
control performance smoothly. Robustness analysis also shows that their effects are
not unique which increases the difficulty of on-line tuning. The earlier chapter of this
thesis (Chapter 4) put forward a systematic method for selecting conventional tuning
parameters. In Chapter 8, a new parameter, the fractional horizon, is introduced to
improve the smoothness of the tuning. The resulting new control structure, the a-
controller, is able to adjust the predictive control on-line easily and efficiently. It also
leads to excellent stability and robust stability results. In the later part of Chapter 8,
it is extended to handle hard constraints. An important theoretical breakthrough is
that constrained control stability can be absolutely guaranteed.

1.5 Thesis Structure

The structure of this thesis is organized as follows. A new model structure, the
dual-model state space formulation, is developed in Chapter 2. It is a general process
description with better properties and more flexibility than previous model forms.
Then, a Kalman filter based parameter estimation method is developed in Chap-
ter 3. This model identification algorithm is essentially a predictive-control-relevant
identification scheme. After obtaining the process model parameters, the nominal
MPC controller is designed as outlined in Chapter 4 where it is shown that all MPC
tuning parameters can be determined following one general approach. To handle
disturbances, measurable or unmeasurable, predictive feedforward and state observer
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feedback are used as discussed in Chapter 5. Chapter 6 covers the robustness analy-
sis issue by using matrix perturbation theory and the dual model formulation. The
effects of hard input and output constraints on the closed loop stability are described
in Chapter 7 for MPC with either a quadratic objective function (MPC-QP) or a
linear objective function (MPC-LP). This eventually leads to an important stabil-
ity result for MPC-LP. A new constraint handling scheme, dynamic weighting, to
avoid the uncertain stability difficulty is also discussed. Chapter 8 introduces a new
tuning parameter, a-controller, which can be used not only to continuously improve
the control performance, off-line or on-line, but also to obtain an analytical solution
for the constrained control problem. The final chapter, Chapter 9, summarizes the
contributions of this thesis and points out potential extensions.

Simulation results using MATLAB software (Matlab 1989) are used to illustrate
the development and performance of dual-model predictive control.



Chapter 2

Control-Relevant Process
Modelling: A Dual-Model
Formulation

2.1 Introduction

Several MPC schemes have been developed in the past fifteen years including the
industrially popular Dynamic Matrix Control(DMC)(Cutler & Ramaker 1980, Garcia
& Morshedi 1986) algorithm, the academic favourite adaptive Generalized Predictive
Control(GPC) (Clarke & Mohtadi 1987) and the State Space Model Predictive Con-
trol(SSMPC)(Ricker 1991). They are all based on the same general concepts, i.e.
finite output horizon for prediction, receding horizon control, and calculation of the
control action to optimize a (constrained) quadratic or linear objective function. But
they differ in the mathematical structures of the process model used to predict the
future output trajectory.

For a given process, a number of alternative, but equivalent, input-output rep-
resentations are possible. For example, in DMC, the process is characterized by its
finite step response(FSR) expressed as a series of coefficients {s;,i = 1,2,...,N }.
For stable processes, N is normally selected such that sy (or in some formulations,
sn+1) is equal to the steady state process response to a unit step input. GPC uses a
parametric DARMA model which facilitates on-line identification for adaptive control
applications. Even though the mathematical descriptions for a given linear process
can be in different forms, it has been proven that the nominal performance of all
predictive control schemes is not dependent on the model form used to represent the
process (Morari et al. 1989). However, robust performance does depend on the model
used since different model forms, due to their inherent natures, tend to emphasize
different frequency ranges of the process dynamics. The step response model requires
little prior knowledge about the plant. It can describe dynamic characteristics such
as time delay, non-minimum zeros very well. But it is of high dimension and can only
handle open-loop stable plants. On the other hand, the parametric DARMA model
has low order and can describe more general processes but the structure and order of

12
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the process must be specified a priori which may introduce large modelling errors.

A new state space, “dual-model” approach has been proposed (Qi & Fisher 1993)
which explicitly defines future output values as state variables. In fact, this “dual-
model” structure uses two different model formats. It uses step response data {S;,i =
1,2,...,n < N} to characterize the first n points of the process step response and a
low-order DARMA model to characterize the remaining (N — n) points of the step
response. The result is a non-minimal order, state space model that can be used
as a basis for output prediction and/or controller design. The advantages of the
dual-model approach are:

e it is general enough to handle most open-loop stable and/or unstable processes.

e the utilization of a low order DARMA form reduces the overall dimension of
the step response formulation significantly.

e the high frequency dynamics, including any time-delay, can be represented ef-
fectively.

e it includes most published techniques as special cases and provides a link be-
tween GPC and MPC.

e the state variables have direct physical meaning which allows explicit evaluation
of the predictions.

e since it is a state space format, it can be expanded to multivariable systems
without any difficulty. Classical state space control techniques are also available
for feedback observer design, stability analysis, etc.

Conceptually, the dual-model approach is similar to the orthogonal function based
predictive control technique of Finn et al (1993) but it is more general.

This chapter is organized as follows: the model predictions using the step response
model and DARMA model are given in Section 1. The recursive relation is built for
predictions at the same time instant in Section 2. Comparison results show their
properties and relations. Section 3 discusses several ways to select the order and
combine the step response and DARMA models. The corresponding state space
formulation using dual models is also presented in this section. Properties of the
state variables derived from controllability analysis are presented in Section 4. Three
typical examples in Section 5 show how to apply this new formulation.

2.2 Model Predictions

If a mathematical model of the process is available, the future behaviour of the
process can be predicted.
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2.2.1 Step Response Model Prediction

Output prediction using discrete step response model is based on the superposition
principle of linear systems and can be expressed in the following convolution form:

Yk+ilk+d = Y SjAu(k+i-j)

=1

= ZSjAu(k-f“i—j)-f‘ E S,Au(k-i-i—])

j=1 =i+l
3
= Y SjAu(k+i—j) +Ym(k+1i]| k) (2.1)
j=1
i = 0,1,2,...

where {S;,j = 1,2,...} are the discrete step response coefficients. k represents the
current time instant and the contribution to the future output trajectory due to all
past control actions is defined as

Yulk +3 | K) = 3 Sesulk — ) (2.2

=1

The notation Z(-|k) represents the prediction of Z(-) made at time k£ (and by
implication including the effects of all inputs up to and including time (k — 1)).

Then the recursive relationship between two consecutive time instants, £ and k£ — 1,

is

Youlk+i|k) = Ya(k+i|k—1)+SiaAu(k—1) (2.3)
] 0,1,2,...,n

]

where n + 1 is the dimension of the prediction vector Y,(- | k — 1).

Equation (2.3) is a forward recursive relation so that the output predictions at
instant k can be obtained using the predictions at k — 1 plus control move Au(k —1).
When i = n, the final element of the prediction vector, i.e. Yjn(n | k), becomes

Yo(k +n | k) = Yul(k — 1) + (n +1) | k — 1] + Sas1Au(k — 1) (2.4)

where Y;,[(k — 1) + (n+1) | k — 1] is the invalid, (n + 1)-th element of the prediction
vector. A new recursive relation is required to generate this term. In the standard
step response formulation where n = N, this is accomplished by assuming that (Li et
al. 1989) for a stable process

Svy1 = Swn
Yulk=1)+(N+1)|k—1] = Yy[(k—-1)+N)|k-1]



For an integrating process, Morari and Lee (1991) use

Snvy1 = 258~ Sna
Yul(k—1) + (N+1)[k—1] = 2Y,[(k—=1)+N|k—1] — Yn[(k—1)+(N—-1)|k—1]

The existence of a practical recursive relationship for general processes with n << N
is developed in the next section by using a DARMA model of the same process.

2.2.2 DARMA Prediction

The open loop process model in parametric DARMA form is
A(g™")A y(k) = B(g™") Au(k — 1)
where

A(q‘l) 1+ alq'I + agq"2 +---+ap, g™
B(g") = bo+big +bg 4 +bag ™™ (2.5)

and the time-delay is included in the B(g™!) polynomial.

Obviously, by definition, the step response coefficients S(k) also satisfies the
DARMA process model when the control action u(k) is a unit step. (Note: both
S; and S(z) refer to the step response coefficients here but S; represents the original
while S(i) refers to the calculated values using the DARMA model).

Let the step input be:

WB =17 ;5
and 1 k=0
Auk-1)=8k-1)={y ;2q

Then, the step response data S(k) can be obtained by
A(ghAS(k) = B(g sk —1)
= bk (k21) (2.6)
Multiplying both sides of Equation (2.2) by AA and using (2.6) give

o0

AAY(k+i|k) = Y AAS;;Au(k - 5) (2.7)
j=1

= Z bi+j_1AU(k - ]) (2'8)
j=1

Define the polynomial B(g™!) as
B(¢")=B;+q7'B;
Then, Equation (2.7) can be written as
AAYn(k +i | k) = BiAu(k — 1) (2.9)
REMARKS:
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1. The output prediction vector (the free response in GPC) assuming no further
control action { Au(k +12) = 0,7 = 0,1,2,... } can be calculated using the
DARMA model in (2.9).

2. The prediction equation (2.9) is in an implicit form instead of the explicit form
used by GPC.

Actually, using a Diophantine identity, the implicit prediction equation can be
easily transformed into the explicit form of GPC where

A ~BE+T4A
AA:.I_—LF"

E;
therefore ) B
(1 - q-tF})Ym(k +1 I k) = E’,—B,—Au(k - 1)
Yo(k+i| k)= G:Au(k — 1) + F;Yn(k | k) (2.10)

If the prediction for the current time Y,,(k | k) is replaced by the current output
measurement Y (k), the prediction equation is identical to that used for GPC
(McIntosh et al. 1991).

3. For most applications, n is much larger than n, which leads to Bpi; = 0.
Therefore, the resulting recursive equation generated from (2.9) can be directly
applied to replace the n + 1 term in Equation (2.4). However, the full model
structure of the A(g~!) polynomial, i.e. the order and coefficients, must be
known. Low order approximations of this polynomial should be considered.

2.2.3 Model Truncation and Integration

The prediction in Equation (2.9) is in a DARMA form and therefore requires
knowledge of the structure of the parametric model. Compared with GPC method-
ology, it has no advantage. In order to keep the advantages of non-parametric model
predictions, approximation methods should be considered.

Let n be the number of step response data used for prediction,
1. For any n > n,, we have
B,=0
and Equation (2.9) becomes
AAY,(k+n|k)=0
Considering the order of the state space formulation in Equation (2.3), this
recursive relation can be applied when n > maz(ne,ny).

Under this condition, only poles of the process (i.e. the poles of A(¢™!)) must
be identified. The zeros and time delay are defined by the non-parametric step
response model.
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2. Assume the polynomial A(g~!) can be factored into two parts:
A(g™) = Ai(g™M)A2(e7")

where A;(g™!) consists of stable, fast mode(s) and A;(¢~') represents the slow
or unstable mode(s).

Then, Equation (2.9) can be rewritten as

A AYp(k+nlk) = (AE—)nAu(k ~1)
1
= H,Au(k-1) (2.11)

where H(q™!) is a polynomial which has coefficients equal to the impulse re-
sponse of £ and

H(@') = ho+hg +hg?+---
= H;+q'H;

Since, by assumption, all roots of A; are within the unit circle and the fast
modes decay quickly to zero, after n; steps,
lim hy,, =0

Np—00
Therefore, if n is large enough so that h, = 0, Equation (2.11) reduces to
A AY (k+n|k)=0 (2.12)

REMARKS:

(a) Only the slow mode(s) dynamics in polynomial A;(g™!) need to be esti-
mated.

(b) Usually, the slow modes are relatively easy to identify using the final por-
tion of the step response {S;,7 > n} or by using various low pass filters
with parameter estimation algorithms such as Least Squares.

(c) Most chemical processes are over-damped with time-delay. A first order
ARX model is thus frequently sufficient to represent the dominant slow
mode. The n step response coefficients can cover time-delay, non-minimum
phase zeros effectively.

(d) For MIMO processes with fast loop(s) and slow loop(s), a similar procedure
is also applicable.

The dual-model strategy is shown in Figure 2.1 where the initial time-delay, non-
minimum phase, and fast dynamics are represented by the discrete step response co-
efficients. The number of step coefficients typically describes approximately a quarter
of the time to steady state. The continuous part refers to the slow dynamics repre-
sented by a simple DARMA model and covers 3 quarters of the time span. This
arrangement significantly reduces the number of step response coefficients required
without sacrificing model accuracy.
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Figure 2.1:Dual Models for Dynamic Processes

2.3 The Dual-Model, State Space Formulation

The two model formats, step response and DARMA, are combined to describe the
process dynamics. Future output predictions are obtained first from the step response
model in the short range, Equation (2.3), and then extrapolated by the ARX model
in the far range , Equation (2.12). The control move calculations are performed based
on those predictions. However, the two input/output model descriptions have to be
integrated into a compact model formulation for the purposes of further analysis and

feedback design.

2.3.1 Definition of The State Variables

The future output trajectory Yy, (- | k) plays a crucial role in MPC especially when
the process is subjected to disturbances and noise. Explicit expression of the trajec-
tory facilitates the estimation algorithms as well as the evaluation of the prediction
properties. Therefore, the state variables are defined here as

X(k) = [Ym(k|F) Ym(E+1]K) -+ Ya(k+n] B
X(k—l) = [Ym(k—l Ik—l) Ym(k l k-l) Ym(k'*'n"'l l k_l)]%;;+l)x1
Note that the dimension of the state variable X (k) is equal to the user-chosen value

n rather than N which is determined by the number of points required to define the
process step response to final steady state.
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2.3.2 The State Space Formulation

By combining Equation (2.3), (2.4), (2.12) and the state vector definition, the
state space model format of the process can be written as:

X(k) = oX(k-1) + 0Au(k-1) (2.13)
Y(k) = HX(k)
where _ 5
010 ---00 0 0
oo01---00 0 O
¢ = Dol el b on el
o000 ---00 ---0 1
| 000 ---0ry --- 12 Ty
- T
8 =[S S S - Sun]
H=/[100- 0]
where { r;, i = 1,2,...,n,} are the coefficients of A;A defined by
AA=1-rg" =12 = ~Tn g™
REMARKS:
1. The structure of the dual-model formulation of MPC in (2.13) is a standard state

space realization in canonical form, and is recommended by many researchers
for multivariable model identification (Guidorzi 1981).

The dual-model structure includes both an n-th order FSR model and a low
order ARX model.

The FSR model defines the time-delay and nonminimum phase dynamics.

The dual-model structure only uses the AR part of the parametric model so that
time delay, zeros, steady state gain, etc are not strict concerns of the DARMA
model estimation algorithms.

The AR part of the parametric model can describe open loop unstable process
dynamics and dramatically reduces the number of FSR coefficients required for
effective control, e.g. from 40 to 10.

Since it is in state space form, the prediction equation can be easily extended
for multi-input, multi-output processes by augmenting the state vector X (k).
The system matrix & and input matrix 6 can be extended correspondingly and
have a similar dual-model structure.
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7. The state variables can be directly used in the calculation of control moves. For
simplicity of model expression, the output prediction horizon P is assumed to
be less than the model order n of Equation (2.13). This assumption is quite
reasonable in practice though it can be removed without affecting the structure
of the open loop model predictor.

Assuming the prediction horizon P is greater than the model order n, the model
predictions, Y,,(k +ilk), i =0,1,...,n,n+1,..., P), can be obtained using
the standard state space prediction given by Ricker (1991) as:

i - H® ' - H®
Yn(k +1[k) H(® + ) H®?
You(k +nlk) 5 . 5
~ | By & |axm =| H® | x(k
Yalk+n+uh) | = | pumay | 450 = Bo [F®
| Y(k + Plk) HYE, & HoP

With the addition of the current output prediction Y;,(kjk) = HX(k), the above
prediction vector becomes

- - [ H ]
Ak B
Ym(k + llk) H‘D2
Yaktnlk) | =| g | X()
Yu(k+n+1[k) H®™+!

L Ym(k + Plk) 4 :IfQP

Using the special structures of & and H in the dual-model equation (2.13), it is
easy to verify that

H
H®
H®® | = [y

-HQ’.-

Therefore, the prediction vector Y;,(-|k) can be partitioned as two parts, Yy, (k)
and Y, 2(k), where



[ Yim(k|K)
Voa(h) = | EFI
| Yiu(k + nlk)
" Yiu(k +n + 1[E) HE™
Yoak) = :Y,,,(lc +n+2k) | :H<I>"+2 X(8)
| Yi.(k + Plk) HOP

Obviously, after obtaining the values of state variables from the dual-model
or the state observer discussed later, future predictions can be calculated as
above. Note that in this situation, the prediction vector Y, 2(k) is not directly
estimated but calculated which strongly depends on the process model parame-
ters (e.g. r;). Model uncertainties may cause prediction errors. The MPC based
on the minimal order state space formulation, e.g. SSMPC (Ricker 1991), has a
similar problem. Direct estimation of the prediction vector is one of advantages
of the dual-model state space formulation.

2.4 Special Cases of The Dual-Model Formulation

A large number of model predictive control techniques have been presented in
which different process models have been used. The following sections show that the
dual-model formulation includes several of them as special cases.

2.4.1 Full Step Response Model(DMC)

The dual-model formulation approaches the full order MPC step response formu-

lation as n — N, since
A2A =A=1 -q‘l

i.e.
rn=1n=1

which is exactly the full-order MPC(DMC) state space formulation (Li et al. 1989).
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2.4.2 Dual-Model in a Block-Companion Canonical Struc-
ture

Taking n = n, and assuming n, > n;, the prediction formulation can be written

as - .
0 1 0 ---0

0 0 1 ---0

@ = | : i i e

0o 0 0 -1
[ Tna+1 Tng Tna—1 """ T1 |

r T

6§ =[S S S5 -+ Spur1 |

H=/[100- 0]

where { r;, i = 1,2,...,n, + 1} are coefficients of AA and have a very simple rela-
tionship to the parameters in the DARMA model since {r; = Aag; = a; — ai—1,i =
1,2,...,n, + 1} where ag = 1,a,,41 =0.

The state space formulation, in block-companion canonical form, gives a canonical
realization of the DARMA model used by GPC.

2.4.3 State Space Model for MPC(SSMPC)

Directly employing a state space model to represent processes in MPC where the
open loop model is minimum-order has been recommended by Ricker (1991). Recall
that as discussed in Section (2.4.2), the dual-model formulation can provide a block-
companion canonical structure which is also in minimum-order state space form.
Although the model parameters may differ due to different state variable definitions,
these two models are similarity equivalent.

2.4.4 Predictive Control with Steady State Weighting

It is often important to include a steady state prediction in predictive control e.g.
(Kwok & Shah 1994, Saudagar 1995). The prediction equation (2.13) can be modified
to include a steady state prediction as an extra variable. The new state vector can
be defined as:

X(k)=[Ym(k | k) Yin(k+1]k) - Ym(k+n|k) Ym(ss | B)](riz)x1
(2.14)

where Y,(ss | k) represents the steady state output prediction based on all past
control actions.
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The state space form of the MPC predictor with steady state prediction has the
same structure as (2.13) with:

010 ---0 0 0 0 0]
o011 ---0 0 0 0 O
b = Do T
o0 :.--090 ---010
000 +:---0rmr, -1 1 0
|0 0 0 o 0 ---0 0 1J(n+2)x(n+2)
- T
0 = | Sl Sz 53 i Sn+1 S:s]

2.4.5 Dual-Model for Integrating Processes

A first-order integrating process has a pole at ¢ = 1 and the unstable mode is
described by A; =1 —¢~!. Thus

AA=1-2¢g1+42

e
n=2r=-Ln=2

This is exactly the structure suggested by Morari and Lee (1991).

2.4.6 Dual-Model for Exponentially Unstable Process

When a process has pole(s) located on the real axis outside the unit circle, it is ex-
ponentially unstable. The unstable mode(assuming only one such pole for simplicity)
can be represented by A; =1 — pg~!, where p > 1. Then

AA=1—(p+1)g ' +pg?
z.e.
Ty =P+1,T2 = -=p,ny =2
2.4.7 Dual-Model for Slow, Lightly-Damped Process

The parametric model in this dual-model approach can also be a stable mode. For
example, if a process consists of fast mode(s) but includes a dominate pair of slow,
lightly-damped modes such as A; = (1 — (0 + jw)g~1)(1 — (6 — jw)q™!), Then

AA =1-30q"" + (0 + w? + 20)q7% — (0% + w?)q™?

i.e.
rn=30,r=—(0>+w?+20),3 =0’ +wn. =3
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2.4.8 Dual-Model with Known Time-delay

Time delays appear as d zero terms in the control vector 8. This not only increases
the dimension of the state space formulation but also makes the first d elements
of the state vector uncontrollable. Usually, if the time delay is known, predictive
control algorithms consider only the output predictions after the initial dead-zone.
To accommodate a known time delay, the state variables can be redefined as:

X(k)=Yo(k+d | k) Yk +d+1|k) - Ym(E+d+n|k)E 0
(2.15)

and the state space formulation has the same structure as before.

2.4.9 Dual-Model with Absolute Input
By replacing the Au(k — 1) by u(k — 1), the dual-model formulation becomes

X(k) = ®X(k—1) + Ou(k—1) (2.16)
Y(k) = HX(¥)

Note that it is slightly different than the original dual model formulation in which
the absolute input u(k) is used instead of the incremental input Au(k). This ar-
rangement does not change the dual model structure but can improve the parameter
estimation performance as discussed later in Chapter 3. The state definition remains
the same but matrices ®, 8 include different coefficients. 6, is the Finite Impulse Re-
sponse(FIR) coefficients h; (instead of FSR). The last row elements of ® is determined
by the coefficients of the polynomial A;(g~!) (instead of AA,).

2.5 Properties of The State Variables

The state variables in the dual model state space formulation are not directly
measurable but can be easily estimated from the output measurements since they are
completely observable. It is easily proven that the observability matrix is an identity
matrix, z.e.

H
H®
H®?

= I(n+1)

h HQ" -

This result even holds for MIMO processes. Therefore, each individual state
variable can be estimated with equal weighting by a state observer (Qi & Fisher
1993). The equally weighted state formulation is also very helpful for the estimation
of model parameters, which will be discussed in the next chapter.
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On the other hand, it is also important how the state variables (i.e. the future
output values) are affected by changing the input sequence, i.e. the controllability of
the state variables. This is a fundamental property for several control design methods,
e.g. the pole-placement technique.

2.5.1 Complete Controllability Analysis

The controllability of future outputs in Equation (2.13) can be analyzed by eval-
uating the condition of the controllability matrix:

C=[0, 36, ---, 3"

1. Non-invertibility with Time Delay:

Obviously, if there is any time delay in the control vector 8, the first several
elements of the output predictions can not be controlled by the current input
action. Therefore, in formulating the MPC objective function, it is not desirable
to start the optimal minimization from time one. An initial prediction horizon
(called N, in GPC) is commonly used in the design of predictive controller,
where N, is greater than, or equal to, the time delay plus one.

2. Deficient Rank or Il-Conditioned:
Excluding the time delay, it is easy to show that the controllability matrix
is full-rank. However, it may be a matrix with very poor conditioning. For
example, consider a dual-model formulation for a third order process as follows.

Process 1/(s+1)(3s+1)(5s +1) (2.17)
Dual-Model T.=1,n=11
010 ---0 O 0 0 ]
001 ---0 O 0 0
@=]: : i " : :
000 ---0 O 0 1
(000 --- 0 02158 -11514 1.9031 |, .
6=00077 00358 0.0629 --- 0.0539 0.0465 ]T
Controllability det(C) =1.18 x 10~%
Matrix C cond(C) = 3.42 x 101°
rank(C) = 12

If only the rank is considered, the controllability matrix is full rank (= 12). How-
ever, the condition of this matrix is very bad (= 3.42 x 10*°). Obviously, with the
same control effort, the states (i.e. points in the output trajectory) can not be ad-
justed equally. Some linear combinations of the state variables are almost totally
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out of control. In terms of open loop poles, some poles are easy to shift arbitrarily
while others are very hard to shift by state feedback control. There is no serious
problem if all the uncontrollable poles are stable since they will eventually decay even
without external inputs. However, the dominant poles and/or steady state must be
controllable for effective closed loop control, i.e. to solve the stabilizability problem.

2.5.2 Controllability of Dominant Poles and Steady State

As defined in the dual-model formulation, the open-loop dominant poles are cap-
tured by the slow ARX model in the system matrix #. The non-minimum, dual-model
state space formulation can then be transformed into two sub-systems, controllable
and uncontrollable, by similarity transformations.

Define -
(k) =TX(k) = [ ng ]

5 _ 1_| ® O
® =TT -[ &,

6].2
0=T0=[6c]
A=HT

where ):(c(k) refers to the controllable sub-system with system matrix ®, and control
vector 6. The X;(k) is the uncontrollable sub-system with system matrix ®: and no
control vector (= 0).

For example, applying a similarity transformation to the process in (2.17), yields

—0.6184 0.7701 0.2028

0.1397 0.1617 0.0000
8, =
0.1227 -0.1979 0.9934

6. =[0.00 000 0.2330 ]

The eigenvalues of &, are 0.3679,0.7165,0.8187. Therefore, the three dominant
poles of the open loop process are controllable.
The steady state equation can be easily separated from other state equations as:

Tos(k + 1) = z,5(k) + SssAu(k)

It is obviously controllable with respect to Au(k). However, note that it is not
controllable by u(k) since AS,, = 0. In other words, an integral term must be
used for steady state control which is well known in the context of PID controller

applications.



2.6 Comments on State and Parameter Estimation

The discussion in the last section showed that it is possible to reduce the order
of the MPC state space formulation by using a dual-model. This raises the problem
of how to get the parameters of the ARX model that is used to represent the slow
modes of the plant. Three methods can be applied for this purpose:

1. Input/Output Model: The model parameters in a input/output process
model can be directly converted to the model coefficients in the dual model.
For example, the A(g™!) polynomial of a DARMA model can be used as the
last row elements of ®, with or without fast and slow mode decomposition. In
this way, the predictive controller based on the dual-model is totally equivalent
to GPC;

2. Extended Kalman Filter: This approach uses a pre-defined dual-model
structure first. Then, the state space model parameters are estimated by plant
testing;

3. Step Response Test: While the first few points can be used as the elements
in 6, the last part of the step response coefficients can be ‘curve-fit’ to yield a
recursive AR model.

Here, the discussion is restricted to the third method starting from the given step
response data which, for example, is obtained by either direct step excitation of the
plant or other techniques such as DMI (Cutler & Yocum 1991). The main purpose
is to enhance the understanding of the dual-model structure by means of the explicit
step response coefficients. A more general model parameter identification scheme
using an Extended Kalman Filter will be discussed in the next chapter.

2.6.1 Division Point n

The division point for the dual-model formulation (i.e. n) is determined by the
user. This point will separate the full step response data into an initial stage and a
final stage. Further, this point also assumes that the effect of the fast modes (i.e.
B/A; in Equation (2.11)) have decayed to zero and the rest of the step response
points (i.e. the final stage) can be completely determined by a simple DARMA
model. Obviously, the larger the value of n, the higher the order of DMPC state
formulation. At the other extreme, if n = maz(n,,n;), all the step response data
would be fitted by the DARMA model which could result in a large error if the model
structure is not chosen appropriately.

2.6.2 Estimation Algorithm

The parameters for the DARMA model that fits the final stage of the step response
transient can be easily obtained by any identification algorithm. The batch least
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squares method or AUDI (Niu, Fisher & Xiao 1992a) is ideal for this problem because
of its simplicity and good properties. By the step type excitation, all control inputs are
equal to one unit for this final part of the system response. The estimation algorithm
does not, in general, estimate the time delay of the process. As shown before, the last
row of system matrix needs only the coefficients of an AR model rather than those of
the MA part. Therefore, the problems associated with LS estimation method under
non-rich excitation do not affect the application of this algorithm in the dual-model
state space method.

2.6.3 Smoothness Constraint

Another important feature of the parameter estimation method should be men-
tioned here. In addition to estimating the coefficients of a DARMA model, the
connection of these two models should be considered. In fact, the structure of the
dual-model does allow a overlap of those two models such that the model predictions
at time n+j, j=1,2,... have a smooth transition for practical applications. This means
that at the division point n, in addition to the continuity condition S, = S(n), the
derivative should also be kept constant. This requires that the division point n should
be chosen in a region where the slope changes smoothly and that a constraint on the
slope should be added to the parameter estimation algorithm.

2.6.4 Effect of Noise

Under ideal conditions, the estimated parameters are very close to the true values
if the division point, ¢.e. n, is chosen properly. For example, the process
1

Cl)=Gron@+s+ 1)

consists of a slow overdamped mode and a fast oscillatory mode. Assuming a first
order model for estimation, only two parameters are required and Figure 2.2 shows
the estimated normalized parameters as a function of the truncation point. Note
that the parameter estimation in the denominator polynomial A(g~') converges very
quickly while that of the numerator polynomial B(g~!) is slower. When n > 25, the
contribution of the fast, underdamped mode to the overall system step response can
be neglected, and the coefficients in the AR part of the model can be easily estimated
correctly.

When the step response data are contaminated by noise, the signal-to-noise ratio
should also be considered. For uniformly distributed, zero-mean noise added to the
step response data, the selection of large n can reduce the effects of the fast mode.
However, as the process approaches steady state, the changes in the output signal
become smaller. Therefore, the signal-to-noise ratio(SNR) of the final stage of the
step response data (i.e. N — n points) tends to be smaller. This results in more
estimation error. For example, Figure 2.3 shows the parameter estimation trajectory
of the first order DARMA model of the above process when uniformly distributed
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noise with variance 0.1 is added to the step response data. The parameters in the
MA part change significantly (i.e. are sensitive to noise) while those in the AR
part show only small changes. Fortunately, the most commonly occurring noise in
industrial applications is at high frequencies which affects the estimation of high-
frequency (fast) dynamic modes much more than it does the estimation of the slower
modes since noise can be filtered or averaged out. An advantage of the dual-model
representation is that only the less noise sensitive AR part of the model is used for
the dual-model coefficients.

L2 Normalized Parameter Estimation Trajectory

09} :" . . .. S S 4
/MA parameter, b
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Figure 2.2: DARMA Parameter Estimates from Step Response Coef-
ficients

2.7 Case Studies

This section presents two examples based on ideal situations, i.e. there is no noise
or error in the step response data. A constrained BLS algorithm is applied to the
final stage step response data to obtain the slow mode(s) DARMA model. The effects
of the model parameters on the open-loop predictions are evaluated by the setpoint
tracking performance of an MPC control system. Tuning parameters in the MPC
algorithm are specified as M = 1,P = 10 and without any constraints. Initially,
external output feedback is not used. Then, the effects of feedback options show that
for some cases, it is necessary to include feedback to compensate for modelling errors
which cause instability problems - internal model instability.
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Normalized Parameter Estimation Trajectory, Noise added
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Figure 2.3:The Effect of Noise on Parameter Estimation

2.7.1 Case 1: Open Loop Stable Underdamped Process

The first example is an underdamped 3rd order process

1
Gls) = (s+0.2)(s2+s+1)

which has fast under-damped mode(s) s = —0.5 + 0.867 and a slow mode s = —0.2.

With the sampling interval T, = 0.2, the process response reaches steady state
within 120 steps. This means the dimension of a full state space formulation (Li et
al. 1989) would be at least 121. However, since the fast mode decays to zero in 30
steps, the dimension of the reduced dual-model formulation can be only one quarter
of the full sized MPC.

With n = 30, the remainder of the 90 points of the step response data can be fit
by a first order model where

A(g™') =1-0.9638g7"
B(g™') =0.1823¢7!

The true discrete model corresponding to the slow mode 1/(s+0.2) is A(g™") =
1—-0.9608¢~! and B(g~') = 0.1961q~! so the fitted response is very close. In practical
applications where the “slow response” is higher-order, then the fitting of a first-order
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model implies an approximation. (Note that the delay is included in the initial step
response data and hence does not occur in the DARMA model).

The open loop control results are shown in Figure 2.4. Note that since there is
no output feedback, the small gain mismatch in the DARMA model results in small
steady state error. Closed loop MPC would eliminate this error completely.

3 - - - Setpoint and Qutput Trajectoly - . -~
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Figure 2.4:DMPC Control without Feedback

2.7.2 Case 2: Exponential Unstable Process

The open-loop process in the following example is exponentially unstable,

1
Gol8) = G0 T+ 1)

Since the unstable mode dominates the process output, the oscillatory modes have
very little effect on the parameter estimation. Again choosing n = 30, the DARMA

model is
A(g™') =1 -~1.0408¢7!

B(g™!) =0.2019¢71

Due to truncation error accumulation, the open loop controller tends to be diver-
gent (Figure 2.5). Stable performance can be obtained as shown in Figure 2.6 by
introducing a deadbeat feedback option (Qi & Fisher 1993).
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Figure 2.5:DMPC Control of An Unstable Process Without Feedback

2.8 Conclusion

A new dual-model state space formulation is developed to describe the process dy-
namics. It combines an explicit step response model and an implicit DARMA model.
This formulation is a general process representation which keeps the advantages of
using non-parametric step response coefficients to represent the fast dynamics and
the compact parametric DARMA model to handle slow dynamics and/or unstable
modes. The inclusion of a DARMA model significantly reduces the high dimension
and computation required by non-parametric (step or impulse response) process rep-
resentations. The special definition of the state variables facilitates state related
analysis, state estimation, controllability analysis and leads to control relevant model
identification. Simulations results show that the control performance using the re-
duced dimensional DMPC is equivalent to those of full order MPC of open loop stable
processes.
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Chapter 3

Control Relevant Dual-Model
Identification

3.1 Introduction

Usually, the process model based on theoretical analysis is either impossible to
derive rigorously or unsuitable for process control applications. In many practical sit-
uations, theoretical analysis or conceptual design can only give a rough idea about the
process such as the independent/dependent variables. According to their cause-effect
relationships, these variables are further defined as the controlled outputs, manipu-
lated inputs and/or disturbance variables. Then, preliminary tests or pilot-plant tests
are performed to estimate the structure of the process in terms of the steady state
gain, over-damped or under-damped dynamic responses, etc. The detailed structure
and parameters of the process model have to be obtained by model identification
using dynamic input/output data.

Model identification itself is a very broad research field which has attracted exten-
sive investigations for many years. How well the mathematical model can represent
the process depends on many factors, from the types of excitation signals, the fil-
ters used in the data processing, to the algorithms used in estimating the model
parameters. Obviously, different identification strategies can achieve different models
even for the same process. Even though all models could give parameter convergent
and therefore valid descriptions of the process, different models are used for different
applications. For example, from the view point of control, a first order model is ade-
quate for control of the slow dynamics of the process. On the other hand, in order to
improve the specific control performance, the estimated model should be coordinated
with the control objectives, i.e. control-relevant model identification.

Generally speaking, the least squares based algorithms are the most widely used
parameter estimation methods, whether they are in BLS, RLS, AUDI and variations
for the input/output model, or EKF for the linear/nonlinear state space models.
Nevertheless, there are lots of adjustable parameters used in these algorithms which
can be used to satisfy specific control requirements. For example, the objective func-
tion of BLS can be extended to match that of long range predictive control. For
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the input/output model (e.g. DARMA) used by Generalized Predictive Control, the
conventional BLS which minimizes the difference between the actual output and es-
timated output is extended to Long Range Predictive Identification(LRPI) to cover
the future differences between actual and predicted future output trajectories (Shook
et al. 1991). In general, it is a nonlinear estimation algorithm requiring numerical
searching. However, a simplified solution (which requires a prior information of the
process) is also available which applies a LRPI filter to the input/output data.

For a model in state space form, instead of minimizing the output error, the general
objective of model identification is to minimize the state variances. Several estimation
algorithms have been developed and successfully applied in the past to achieve this
objective. Extensive research in aerospace exploration and aircraft applications has
provided solid theoretical support in the control area, such as LQC. Applying the
Kalman Filter to estimating unknown parameters, the so-called Extended Kalman
Filter approach has been developed to calculate the parameters recursively. Now, after
many years of development both in the theory and practice, the EKF is recognized
as a standard algorithm for state space model parameter estimation.

The state space model usually has two typical problems compared with input/output
models. In matrix form, the state space model has more parameters than that the
input/output transfer function format has. Since unknown parameters are treated as
new variables, the dimension of the estimation problem is much larger. Fortunately,
most matrices are sparse matrices with zeros or fixed values that significantly reduce
the number of unknown parameters. Non-uniqueness is another problem of the state
space model. For a given process, there exist several state space realizations, and
the state variables in many state space representations do not have physical mean-
ings. Therefore, most applications define the state variables and model structure first.
Then, the state/parameter variables are estimated recursively to give a convergent
result. Obviously, the choice of the state definition and the model structure is very
important. Another approach does not pre-define the state variables and the model
structure. Instead, it uses the numerical correlation inside the experimental data to
determine the model. As a typical example, Canonical Variance Analysis(CVA) is
a numerical algorithm which captures the principle (numerical) properties of the ex-
perimental data, with state variables defined as the principle components (Larimore
1990).

The objective of the estimation algorithm in the state space formulation is to
minimize the state variance. Therefore, the definition of the state variables is very
important. Poor choices often make direct measurement of the states impossible and
generate impractical requirements for the EKF. For example, even if a state variable
has no physical meaning, in order to reduce its variance, the EKF must make an
extra effort during estimation. As a result of this unnecessary requirement, the main
objective may be compromised. A minimal order state space based predictive control
scheme (Ricker 1991, Balchen, Ljungquist & Strand 1992), designed to take advantage
of the state space formulation and its solid theoretical supports, has the same problem
in terms of parameter identification. As a matter of fact, using a minimal order
description of the process leads eventually to a scheme equivalent to GPC.
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A major requirement for predictive control is an accurate estimate of the future
output predictions. Therefore, if the output predictions are defined as the state vari-
ables, a parameter identification algorithm which minimizes the variances of output
predictions can best serve the predictive control’s objective. The main purpose of this
chapter is to combine the dual-model formulation with EKF to obtain estimates of
the model parameters. Relevant issues such as parameter convergence and parameter
uncertainties are also discussed in the following sections.

3.2 Dual-Model with Augmented State Variables

Define © as the unknown parameter vector. Then the dual-model state space
formulation in Equation (2.16) with a disturbance/noise term can be rewritten as:
X(k+1) = ®(©) X(k) + 0(©)u(k) + v(©)E(k) (3.1)
Y(k) = HX(k)+v(k)
Note that in the dual-model structure, the parameter vector © includes both the
impulse response coefficients with respect to the absolute input u(k) and the AR
model parameters which define the unstable or slow dynamics .
© = [k, b2, s Bty Ty - T [T

The unknown disturbance model coeflicients can also be handled by © in the same
way as other parameters. The resulting EKF estimation algorithm is essentially the
same when disturbances are included although numerical difficulties may occur. For
reasons of simplicity, they are not included in the future derivations of this thesis.

The parameter updating equation is
O(k + 1) = O(k) + w(k) (3-2)

Define an augmented state variable as:

so-=[54]

Then, the corresponding state space formulation becomes:

Z(k+1) = A(®)Z(k) + B(©)u(k) (3.3)
Y(k) = CZ(k)+uv(k)

where the system matrices A, B and C are

A©) = [@(Oe) M(G}X,u)]
s - [1]

C = [H, 0] (3.4)



and

M(©, X, u) = Z[®(O)X (k) +6(8)u(k)]le=6

(w(k) 0 --- 0 0 0 e 0 0
0 uk) --- 0 0 0 e 0 0
0 0 - uk) 0 0 e 0 0
| 0 0 --- 0 u(k) zTaszn (k) -+ Za(k) zTppr(k) | (nt1)x(ntne+1)

Note that the elements in the last row of M-matrix are the absolute values of the state
estimates. If the original dual-model state space formulation in Equation (2.13) were
used here, the elements of the last row would become the state differences Az; instead.
Since the terms in the last row are the real driving force for parameter convergence,
the closeness of consecutive state variables may lead to slow convergence or divergence
of the parameters.

3.3 Predictive Criterion for Parameter Estimation

The EKF algorithm applied to the dual-model formulation Equation (3.3) has the
following objective function:

J = Var[Z(k)]
= Var[X(k)] + Var[©(k)] + others
= J1+ J2 + others

where the interactions between the parameter and state estimates are included in the
‘others’ term.

The dual-model’s state definition is:

X(k) = Ym(lk)
X(k) = Yu(-|k)
Therefore, the direct application of EKF to the dual-model(DMEKF) gives:

e the unknown parameters in © by minimizing the variance of the future output
prediction;

e optimal estimates of the output predictions which can be used to calculate
future control moves in the state feedback controller;

The first part of the DMEKF objective function, J, can be further extended to
a form similar to the LRPI form (Shook et al. 1991).
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Ji = Var|Yn(-|K)] ) R
= E{[Ym(k) ~ Yu(lB)|" Y (1K) — Yu(-1R)}
= E{[Y,(k) — Yu(-|k) — AAU|T[Y,(k) — Ym(-|k) — AAUJ}
= Var[Yp(k) — Ym(-|k)] + Var(AAU) + others
= Ju + J12 + others
Ju = VarlY (k) ~ Yu(-[¥)]
n+l
= E{gly(k +3) — Jm(k + §lF)I}
1_ Np—nn+l ) R i 2
~ N Th k§=_‘,1 ,g{[y(k +3) — Gm(k + 7|F)]
~ LRPI (with N;=n+1)
REMARKS:

1.

Both DMEKF and LRPI are predictive control relevant parameter estimation
methods. DMEKF consists of a LRPI term plus extra terms related to param-
eter variances;

The order of the dual-model state space formulation, i.e. n, determines how
many output predictions are considered by the parameter identification algo-
rithm. To match the control performance, it is better to choose n equal to or
greater than the prediction horizon P. Note that it is not a restriction on the
choice of the dual-model order. If n < P, the estimation algorithm would con-
sider less predictions but still give a better result than ordinary LS algorithms.

The extra terms in the DMEKF objective functions, i.e. J2, Ji2, restrict large
changes in the parameter estimates and thereby promote parameter averaging
or smoothing.

DMEKEF can simultaneously estimate the states and parameters for the purpose
of adaptive control (even though the adaptive control is not covered in this

thesis);

Because of the integrated framework, a trade-off can be easily made between
state estimation and parameter estimation. For the purpose of state estimation,
the parameter part can be turned off (like state observer). On the other hand,
better parameter convergence can be achieved by putting more weightings on
this term.
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3.4 Parameter/State Observability Analysis

In state space formulations, a fundamental observability analysis should be carried
out before any attempt is made to estimate the unmeasured state variables and/or
unknown parameters. A standard observability analysis can tell whether it is possible
to obtain a convergent estimate of unknowns from a finite number of measurements
of the process inputs and outputs.

3.4.1 Observability with Augmented State Variables

The original dual-model state space structure is changed by extending the state
variable to cover unknown parameters which directly affects the state observability.
As discussed in Chapter 2, with known model coefficients, the state variables in the
dual-model formulation are equally estimated(observed) from the output measure-
ments. The state feedback controller can then treat them equally for future control
calculations.

When the unknown parameters are also included in the state variables, the ob-
servability matrix of the augmented equation (3.3) is:

" C
CA
o= |ca
C An+1
:c A2n+2+nr
" H I Hon+t b
H® | He"+?
.I:I(bn+l { .H¢2n+2+nr
= —_—— - 4+ —-——=-
0 I H 21—01
HM | HIE AM
I
H)::':o‘ ‘M| HZ?L‘&“" AM |
_ [Ou On
| 021 Oz

For simplicity, the sub-matrices in O can be written here, with n, =1, as

011 = In+1
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[ 0 0 0 00
u(k) 0 0 00
u(k) u(k) 0 00
O = : : .ot
u(k) u(k) --- uwk) 0 0
| u(k) u(k) --- u(k) 0 0 J (n+1)x(n+2)
0 0 00Tr
00 0 0 r2
00 00
On = | . . .ot
00 ---00 rtt
00 --- 00 r™* | (n+2)x(n+1)
[ u(k) u(k) --- u(k) u(k) Tn+1(k)
u(k) u(k) --- u(k) u(k)(1+r) Tn+1(k)(1 + 1)
o u(k) u(k) --- uw(k) uwk)Q+r+71%) Tpn(B)L+1+72)
A S S - :
u(k) u(k) - u(k) w(k)Tigr  Zaa(h) S
L u(k) u(k) Tt u(k) u(k) 2_'1‘:01 r zﬂ-i—l(k) 2?:01 r! d (n+2)x(n+2)

The observability matrix for the augmented dual-model formulation has two obvious
features:

1. The observability matrix includes only one input u(k), the states, and the pa-
rameters. Usually, the latter can be replaced by their estimates.

2. For the simple case of n, = 1, only the estimates of the state variable z,,(k)
and the last parameter estimation r appear in the matrix, and hence play par-
ticularly important roles for the properties of the observability.

Since the columns from (n + 2) to (2n + 1) of the observability matrix O can be
deleted by simple transformation, it is not difficult to observe that, no matter what
values are used in u(k), Zp+1(k) and r, the maximum column rank of O is n + 2.
This implies that, theoretically, some parameters and/or their combinations defined
in the dual-model state space formulation are not observable. This property definitely
affects the convergence of parameter/state estimations.

3.4.2 Parameter Estimation Convergence

Observability analysis is actually a batch form of the state/parameter estimation
problem. A set of linear algebraic equations can be made up of (n +n, + 1) unknown
variables and (n+n,+1) output measurements. In order to make the batch estimation
algorithm convergent, generally, a sufficient condition is that the observability matrix
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be full rank. With this condition, the unknown states and parameters can be uniquely
estimated by inverting the observability matrix.

Even though the Kalman filter algorithm appears in a recursive form, questions
about the convergence of the algorithm are also answered by examining its corre-
sponding batch form, i.e. the observability. Theoretically, the estimation procedure
is convergent within finite steps only if the formulation is fully observable. In those
non-observable situations, the original formulation should be adjusted to improve the
properties of the observability matrix. For example, previous measurements of the
output variable can be used (Gudi, Shah & Gray 1994). A general method is to use
an initial covariance matrix in the recursive estimation algorithm (detailed in the
next section). An explanation in terms of the batch format observability analysis
is that this constant matrix is added to improve the condition of the observability
matrix(which is equivalent to the control weighting constant A commonly used in pre-
dictive control calculation). The result, as expected, is that more than (n + n, + 1)
output measurements are required to estimate the (n + n, + 1) unknowns.

3.5 Parameter/State Estimation by Extended Kalman Fil-
ter

After more than 30 years of development, the EKF technique is quite mature.
The special structure of the dual-model further simplifies the formulation.

3.5.1 Formulation

The general state space formulation

X(k+1) = ®(O)X(k) + 6(O)u(k) + 7(O)&(k)
Y(k) = HX(K)+uv(k)

requires prior knowledge of covariances of the noise terms :

EE™) = @°
Ew") = Q"
E@E") = @

With measured process input/output data:

Ug, Yo, UL, Y15 - - -

a two step EKF algorithm can be obtained as (Ljung 1979):

X(k+1) = ®X(k) + Ou(k) + Ki[Y (k) - HX (k)] (3.5)
O(k+1) = O(k) + LY (k) — HO(K)] (3.6)
X(k+1) =0 (3.7)
Ok+1) = © (3.8)
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The gain vectors for states and parameters, K and Ly, are calculated recursively by:

K. = [®PeHT + M PLHT + Q°|S;!
L. = [PLH"IS!
S = HPI,kHT'l‘Q”
Pigs1 = OpP®T + OuPyeME + MiPLET + McPs M — KiSeKi +7Q%"

i

Pgi1 & Pyy + My Py — K Sk LT

Pijs1 = ®xPyy— LiSeLly
Py = I
Pz‘o =0
Py = %

II; and ¥¢ are the variances of the initial estimates of states and parameters
respectively. Together, they make up the covariance matrix of the augmented state
Z(0), t.e. the initial guess,

P(,=E(Z(0)Z(0)T)=[P(I)'0 533:2]:[[3" 200]

where P3 corresponds to the initial parameter covariance matrix used in the in-
put/output DARMA recursive least squares algorithms (Shah & Cluett 1991). In
practice, these initial covariance matrices become tuning parameters in the model
identification algorithm which actually specify the weighting matrix in the EKF ob-
jective function. The commonly suggested choices are:

X(0)=0 , Iy ="Var(y)
0(0) =6y , Xo=100x Var(y)

Special Considerations:

1. In the Recursive Least Squares(RLS) algorithm, the diagonal elements of the
parameter covariance matrix should be large enough to achieve both parameter
convergence and algorithm alertness (Shah & Cluett 1991). Therefore, the cor-
responding matrix P3g should have large absolute values for diagonal elements
and large relative values compared to those in the matrix P o;

2. The unknown parameters for the AR model in the dual-model description usu-
ally determine the dominant pole locations of the process. Special emphases
should be given to their estimation, e.g. large weightings should be put in P; .
For example, a typical covariance matrix P, for parameter estimation is

I (n+1) 0 0
B = 0 100 (n+1) 0 Var(y)
0 0 5001,
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An important feature of the DMEKF is that it explicitly illustrates the relationship
between state and parameter estimation in the same covariance matrix. The so called
“relative importance” of the parameters/states is reflected by the properties of the
covariance matrix P.. At the initial stage, a trade-off can be easily obtained by
manipulating the diagonal elements in the P, matrix. For example, by applying
an EKF to an 8th order dual-model formulation, Figure 3.1 shows the estimation
trajectories (the solid line for the actual value and dotted line for the estimated value)
of the last parameter(9th) and the last state variable(9th), for an initial weighting
matrix

L 0 0
Po = 0 100[9 0 Var (y)
0 0 100
The initial conditions for parameters and state variables are
1 0
1 0
X0) =y | . |:00)=].|;r(0)=06

1 0

Note that the parameter estimates converge within 100 steps and the state estimate
converges much fast (< 40 steps). Even though more weighting is applied on the
parameters (100 times more), the parameter estimation still converges more slowly
than the state variable. This is very reasonable since the parameter updating equation
(3.2) is artificially introduced to reduce the differences in the state variables.

With a different weighting on the parameter estimation part in Py,

ILhb 0 0
Po=|0 500, 0 |Var(y)

0 0 500

the same parameter/state estimation set is shown in Figure 3.2. Note that now the
parameter estimate converges faster (< 50 steps) at the expense of larger variations
in the state estimates.

3.5.2 Parameter/State Uncertainty Estimation

By definition, the covariance matrix P includes all the information about the
quality of the estimates at the kth-instant,

O COR Rl

0 Py

Just as in the RLS algorithm for estimation of the DARMA model parameters, P(k)
has to be large for algorithm alertness and small for good estimation accuracy. There-
fore, usually, the initial values used for P, elements are relative large so that the esti-
mation algorithm can sense the estimation errors and correct the initial estimates of
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Figure 3.1:The Effect of P, on State and Parameter Estimates

the state and parameters. As the recursive process goes, the covariance is gradually
reduced and a better estimate is obtained.

From the estimated covariance matrix, a 95% confidence interval can be obtained
for the estimation of parameters and states. This provides information about the
model uncertainty bounds. Note that even though the EKF simultaneously gives
estimates and uncertainties of both the states and parameters, only the parameters
and their uncertainties affect the closed loop stability (detailed in Chapter 6). There-
fore, for robustness analysis, parameter estimation needs more attention than state
estimation. It is recommended that a separate feedback observer be used for state
estimation (Chapter 5). The state uncertainty does affect the optimality of the pre-
dictive control performance. The state estimation uncertainty may also be helpful to
invalidate points in the output trajectory if their estimates are bad, e.g. to put lower
weight on the invalidated output estimates when completing the control calculation.

3.5.3 Determination of the Optimal Order of the Dual-
Model

As shown in Chapter 1, the dual-model formulation is a special state space real-
ization with the order greater than the minimal order realization form but less than
the order of the full FIR model(e.g.DMC). There is a wide range for the order speci-
fication of the dual-model, with some restrictions. It would be desirable to generate
an optimal model order of the dual-model from the input/output measurements.
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Figure 3.2:The Effect of P, on State and Parameter Estimates

Several methods have been used in the past to find the optimal model order
including the general AIC criterion. Simple methods have been obtained by using
the residuals of the actual output measurements and model outputs for determining
the best order of DARMA models (Niu & Fisher 1994). Another upcoming method
is based on CVA analysis for a state space model (Larimore 1990) which determines
the model order based on the numerical significance of the state variables. Even
though it gives a minimum order state space formulation, the CVA model usually
does not have a physical meaning for its state variables. Therefore, the residual
method, which minimizes the difference between the actual output measurements
and the model outputs, is used here.

A nonlinear optimization can be formulated to find the optimal model order n,

N
min J =Y [V(k) - YK
k=1
st. n>0
X(k+1) =8 X(k) + Oeulk) + Ke(Y (k) — HX(k))
Y (k) = HX (k)

This procedure is straightforward since the order is simply an integer in a finite
range.
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3.6 Simulation Results

The process used in the previous sections is used again as an example of the
DMEKETF algorithm. From the observability analysis, an appropriate initial covariance
matrix P, has to be used to obtain a convergent parameter set. The resulting model
coefficients are compared with those by LRPI and BLS. Parameter uncertainty is also
obtained for the later illustration of robustness analysis.

The true process is a third order system 1/(s+1)(3s+1)(5s+1). A PRBS signal
sequence is used to excite the process for model identification with the sampling
interval T, = 1. A first order model is assumed for the slow AR model, i.e. one
unknown model parameter. Therefore, the total number of unknown parameters is
n+2. As the model order increases, the residual decreases to minimum point around
n = 8 (Figure 3.3). After the parameter estimation converges, the estimated step
responses of the process can be calculated as shown in Figure 3.4 and Figure 3.5.
Obviously, without the addition of measurement noise, the estimated step response
moves closer to the true one (the solid curve) as the model order increases. With
noise, the best model order is n = 7 since increasing model order drives the model to
fit the random noise. As shown in Figure 3.5, the estimated step responses with the
model order n = 8 and n = 11 move away from the true one.
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0.4 . - .. - . e . -

0_035 oo B . e e e . -

o
8
¥

1

EKF Residual
5
T

0.02} ]

0.015} with noise, SNR=10 ,_
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Figure 3.3:The Effect of Model Dimensions on the Residual

After fitting a DARMA model to the measured data, the step responses generated
using the parameters estimated by different parameter estimation algorithms, :. e.BLS,
LRPI and DMEKEF, were calculated and plotted in Figure 3.6. Note that for a fair
comparison, a low order dual-model, n = 1, is used. Therefore, DMEKEF has 3
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Figure 3.4:The Step Response Coefficients Using DMEKF, No Noise

(= n + 2) unknown parameters and 2 (= n + 1) output predictions in its estimation
objective function. The corresponding LRPI uses first order polynomials for both
A(g™!) and B(g™!) in the DARMA model (i.e. 3 unknown parameters), and N, = 2
as the prediction horizon. The simple BLS has both A(g~') and B(q™"') as first order
polynomials as well. Even with a model order less than optimal, DMEKF gives much
better estimation, due to its control relevant formulation.

3.7 Conclusion

The extended Kalman filter algorithm applied to the dual-model representation
leads to a model well suited for predictive control. Detailed observability analyses
have been used to develop methods of achieving fast parameter convergence and to
make trade-off between the state estimation and parameter estimation. The same
algorithm can also be used to estimate state variables for feedback control and the
parameter uncertainties for robustness analysis. Analysis and simulation show su-
perior results relative to other model structures and estimation algorithms. Finally,
another advantage of using the EKF algorithm in the dual-model formulation is that
it can also be extended to multivariable processes without any changes.
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Figure 3.5:The Step Response Coefficients Using DMEKF, With Noise

14

1.2

0.6

04

0.2

Comparison of Model Identification Algorithm, SNR=10

=T T A T ~r T ™

True Step Respanse

reeeo ]
-

e 2l

. e "Dual-ModeHEKF |

ol
-®
-
I ol i ]
”
~
-
.’l'
S .~ .. LRPLN222.. -
s
y 4
o
o.’
= . BLS -

-

I i

Figure

5 10 15 20 25 30 35 40 45 50
# of Steps

3.6:A Comparison of DMEKF and LRPI algorithms



Chapter 4

Nominal Controller Design Based
on The Dynamic Matrix

4.1 Imntroduction

Generally speaking, predictive control is an optimization problem with or without
constraints. It calculates the future control sequences, based on open loop process
model predictions, that minimize the differences between predicted future outputs and
the desired output trajectory. In the state space domain, the unconstrained predictive
controller can be considered as a special type of state feedback controller with a fixed
controller gain. Therefore, its closed loop performance, i.e. pole locations, stability
as well as robustness can be evaluated (Lee et al. 1993, Qi & Fisher 1994). The
controller gain is a function of the MPC tuning parameters, e.g. integer numbers such
as prediction horizon, control horizon, and continuous numbers such as input/output
weightings, etc.

In contrast to other control tuning parameters such as PID parameters or pole
locations in several pole assignment controller design methods, the MPC tuning pa-
rameters usually have very intuitive explanations. For example, the output prediction
horizon is how far the controller looks into the future, and the control horizon is how
many future control moves are used to correct the differences between the setpoint
and output trajectories. The control weighting is simply a penalty on large input
moves. As a result of being easily understood, they are widely accepted for practical
applications. On the other hand, mathematically, they are also incorporated into the
optimization formulation. Therefore, in addition to the process modelling, another
major part of controller design is the choice of these MPC parameters. This is a
rather more difficult task than understanding the predictive control theory.

Since the first commercial MPC control software - DMC emerged in the early
80's, there have been many variations and similar products marketed with specific
features for different control applications. Many MPC tuning guidelines, have been
put forward in the past few years based on either academic developments or indus-
trial experience (Ricker 1991). However, the fundamental concept and the general
structure of the predictive controller are still the same and include the same dynaemic
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matriz. The dynamic matrix representing the process dynamics is used to calculate
future control moves and therefore its matrix properties are important factors for the
control performance. In spite of this, many MPC tuning rules were developed intu-
itively from either physical explanations or extensions of the optimization objective
function without evaluating their effects on the properties of the dynamic matrix.

Another problem with predictive controller design is that although these control
parameters do have explicit physical explanations, they do not have a unique inde-
pendent impact on the control performance. This increases the difficulty of tuning
the multivariable predictive controller.

The MPC design problem is therefore re-investigated from the view point of con-
trollability analysis. In order to make the controlled variables, i.e. process outputs,
follow the future desired trajectory, future control profiles need to be calculated. Ob-
viously, model inverse designs such as Internal Model Control (Morari et al. 1989) are
the theoretical solution. However, in reality, various restrictions apply due to either
constraints on the process variables or inaccurate modelling. Similar problems exist
for the design of the predictive controller. Perfect tracking of future outputs requires
an exact inverse of the dynamic matrix. However, in most processes, the full dimen-
sional dynamic matrix is poorly conditioned which either does not allow a matrix
inverse or results in severe problems due to model uncertainties. Several methods
have been used over the years to make the trade-off between performance and robust-
ness. In the following sections, the effect of several intuitive control parameters used
to manipulate the matrix structure is explained in terms of changing the condition
number of the dynamic matrix. Therefore, a systematic design scheme for predictive
controller can be obtained based on formal analysis of the dynamic matrix.

4.2 Output Prediction Equation

The future output trajectory including the effects of future control moves can be
represented as:

Y, (k) = ®,X (k) + AAU (k) (4.1)

where the M-step future control vector, AU, and the P x M dynamic matrix A, are

given by
AU(k) = [Au(k), Au(k+1), ---, Au(k+ M - 3]

[ Sy 0 0 0
S S 0 0
S3 Sz Sl 0
Sy Sm-1 Sm-—2 --- St
L Sp Sp-1 Sp—2 -+ Sp-m+1 lpyy
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The constant matrix ®, is used to balance the dimensional difference between the
state vector X (k) and the prediction output vector Y,(k),

010 ---0---0
oo01-.---0 ---0
e,=|. . . . . .

000 --1 ---0

px(n+1)

Then, for every setpoint trajectory, an unconstrained MPC solution can be obtained
by calculating the control trajectory, AU, that minimizes an appropriate performance
index such as: P
J = Z[’.’lsv(k +7) = yp(k + P (4.2)
J=1
Using the output prediction Equation (4.1) defined above leads to the following control
law:

AU(K) = A°(Yap(K) — @, X (k)]
where the pseudo-inverse of the dynamic matrix A is
At = (ATA)—IAT

REMARKS:
In order to make the future outputs Y,(k) achieve the desired trajectory perfectly,
two conditions must be satisfied:

1. The number of future control moves should be equal to or greater than the
output predictions, i.e. M > P;

2. The dynamic matrix, A, should be full rank, i.e. a square matrix A, with
M = P for the dynamic matrix A.

However, for most processes, although the dynamic matrices A, are full rank math-
ematically, they are ill-conditioned numerically. Direct application of Equation (4.1)
usually results in aggressive control with a very poor robustness since a small change
in the process model, i.e. the elements of A,, produces a large error in the calculated
control moves. Therefore, many MPC tuning parameters have been introduced to
improve the numerical condition of the matrix.

4.3 The State Feedback Form of Predictive Control

In practice, the control profile AU(k) obtained from optimization is not used to
drive the actuator over the full control trajectory. Instead, only the first element,
Au(k), is implemented at time k and the control law is executed at every control in-
terval in accordance with the widely used receding horizon principle. This enables the



 ———— iy

32

controller to pick up new disturbances coming into the process and make corrections.
Therefore,

Au(k) = CTAU(k)
CT A [Yip(F) — B, X (k)] (4.3)
where CT = [1, 0, ---, 0]. Note that this is a state feedback controller and, in
general, the feedback gain is time invariant but is a function of the MPC tuning
parameters as shown by (4.4), i.e.
Kmpe = Fi(\,M,P)=CTA®, (4.5)
R = F(\M,P)=CTA"

Using the dual model formulation Equation (2.13) for the open loop process, the

closed loop formulation can be described as

X(k+1) = (@ —0Kmpe)X(k) +ORYp(k) (4.6)
Y(k) = HX(k)

REMARKS:

1. For an asymptotically closed loop stable system, all eigenvalues of the discrete
control matrix (i.e. ® — 0K pp:) must be within the unit circle.

Note that the eigenvalue condition for state space system stability is a much
stronger condition than the pole location requirements in other input/output
descriptions. As a matter of fact, since some states and/or their combina-
tions are not completely controllable, (unstable) zero and pole cancellation can
happen when converting the state space formulation into an input/output de-
scription. Therefore, this sufficient and necessary state stable condition of the
state space system becomes only a sufficient condition for the input/output
system. A direct effect of using this stronger stability condition can be found
in the robustness analysis (in Chapter 6) where sufficient conditions result in
conservative robust criteria.

2. If the process model is accurate and all the parameters are known then the
design procedure is straightforward and the performance and stability of the
closed loop system can be evaluated directly. However, this conventional ap-
proach can not be used if MPM is significant. For example, deadbeat control
design normally places all the poles at the origin. However, the pole locations
are strongly affected by MPM so that the actual system stability margins and
performance are unknown. The robustness issue will be analyzed in Chapter 6.

3. So far, the state variables have been assumed to be available for use in state
feedback control. In fact, only the process output is directly measured and
hence the state variables have to be estimated by a state observer which will be
discussed in Chapter 5 in detail.



4.4 Dynamic Matrix Conditioning

Two effective methods, matrix decomposition and matrix weighting, can be used
to improve the numerical condition of the dynamic matrix at the cost of slowing
the control response. Even though it means the controlled output values from the
prediction equation (4.1) will not exactly match the desired trajectory (the control
calculation becomes a least squares solution), the benefits are significant enough to
overcome the negatives. Actually, the controlled output predictions will reach the
desired trajectory after additional control steps (> P).

The condition of a matrix can be evaluated by a scalar, the condition number.
Mathematically, the condition number can be calculated by the ratio of the largest
eigenvalue to the smallest eigenvalue and therefore is a relative measure of the matrix
condition. For a deficient matrix D, Cond(D) = oo.

4.4.1 Matrix Decomposition

A subset matrix with better conditioning can be obtained by matrix decompo-
sition. Then the inversion of the sub-matrix does not result in the same numerical
problems.

1. Principle:
Decompose the full sized, dynamic matrix A4, into two parts:

A, =T, - P,,T + FE
where

A, € RE*P
T, € RFxe
PT ¢ goxF

Then the least squares solution using the sub-matrix 7, can be obtained as
AU, (K) = T2 (Yep(k) — B, X (K)) (47)

and the original control moves AU(k) can be retrieved, if necessary, from
AU,(k) using the relation

AU, (k) = PTAU (k) (4.8)

The objective of matrix decomposition is to find a well-conditioned 7, and
matrix P, which best represents the original matrix A,. The residual matrix £
should be as small as possible. Matrix decomposition also involves finding the
best dimension a for the matrices T, and F,.
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Principal Component Analysis(PCA) is one approach that can be applied to
decompose the dynamic matrix into two parts (Wilkinson et al. 1994). The
T, matrix consists of principle eigenvalues and the P, matrix consists of the
corresponding eigenvectors. Since only significant eigenvalues are included in
Ts, good conditioning of this matrix can be obtained and hence the numerical
properties of the AU, (k) calculation in Equation (4.7) are improved. However,
since AU, does not contain future control moves to be implemented, the true
control moves AU(k) have to be retrieved using Equation (4.8). Remember
that since PT is a (a x P) matrix with more columns than rows, there are more
unknown variables than equations. The solution for AU (k) is not trivial. Math-
ematically, there is an infinite number of solutions AU(k) for a specific AU, (k).
Additional information has to be used to select the best one to implement as
the control move.

A different approach, the finite horizon method, is used to decompose the dy-
namic matrix since it is much simpler and efficient.

. Finite Control Horizon Method:

The finite control horizon method uses

(a) A pre-specified matrix A to replace T,. Note that the matrix A is the dy-
namic matrix commonly used in MPC with M < P. The first M columns
of A are identical to those in A,. Mathematically, the dynamic matrix A,

is decomposed as
A, =A-PT+E

(b) The calculated AU, (instead of AU(k)) in Equation (4.8) is implemented
directly.

This arrangement has several advantages including a better matrix condition of
A, a meaningful description of the process and a unique least squares solution
for the control moves.

The finite control horizon method has been utilized in predictive control for
many years, without theoretical proof or analysis. It is well known that the
control horizon M is a very critical tuning parameter for the total control per-
formance. But the choice of the control horizon has been intuitive in nature
and lacked theoretical support. For SISO processes, the choice is quite intuitive
and straightforward. But, for MIMO processes, there has been no general rule
to follow and intuitive choices have lead to problems.

Based on matrix decomposition theory, this problem can be investigated to
determine the optimal value of M. Obviously, the choice of M should result in
e Better conditioning of the dynamic matrix A;

e Minimum residuals in F.



35

Note that for MIMO processes, the control horizon M is the summation of all
control horizons of all input channels and P is the sum of all output prediction
horizons.
. Decomposition Procedure
Mathematically, the general objective is

miny [|As — APT]|

st. 1<MXLP
Cond(A) < specified value e.g. 100

This can be solved by integer optimization programs. However, since M is

simply a bounded integer, a much simpler recursive numerical procedure for
this purpose can be summarized as:

e STEP 1: Build the full sized P x P dynamic matrix A, using the unit
step response coefficients of the process, A, € RF*¥;

e STEP 2: Start from M =P —1;

e STEP 3: Decompose A, = APT, which leads to a least squares solution:

PT = A*A,
where A* is the pseudo-inverse of the P x M dynamic matrix.
e STEP 4: Calculate the error matrix

E=A,-APT

e STEP 5: Evaluate the error by Variance-Explained (VE)
_ Var(E)
Var(A,)

where r € [0, 1]. A perfect decomposition gives r = 1, i.e. 100% explained.
e STEP 6: If r and Cond(A) are acceptable, e.g. 7 > 95%(user specified)

and Cond(A) < 100(user specified), then stop and choose the M as the
control horizon. Otherwise, go back to STEP 2 with M =M — 1.

Note that the variance of a matrix is defined as the sum of the variances of the
column vectors, e.g.
P
Var(E) =Y _ Var(e;)

=1
Since M = 1 gives a matrix A with a condition number Cond(A) = 1, this
optimization problem is guaranteed to have a solution.
After the decomposition, typically 95% of the dynamics in the full sized matrix
A, can be explained by its subset A. In other words, the residual part in E
is not statistically significant. An example in a later section will illustrate the
above procedure.



4. Control Action

The least squares solution for the control moves over a finite horizon in the
future

AU (k) = A% (Yyp(k) — ®, X (K))
can not make the future output perfectly match the setpoint trajectory. Actu-
ally, the full sized control action AU (k) is usually called ‘deadbeat’ control since
it can make any arbitrary state reach the desired location within P steps. The
new reduced horizon control profile is a linear combination of the ‘deadbeat’
profile in which

AUy, (k) = PTAU(K)

But it is not necessary to re-calculate AU(k) by inverting the PT matrix since
AU, has a very clear physical meaning. Even though the reduced control input
profile does not produce perfect control, it has better robustness. The output
deviation produced as a result of this slower control action can be evaluated as
follows.

The future outputs produced by the reduced horizon control profile are:
Y, (k) = 8, X (k) + AAU, (k)
and the deviation vector
e(k) = Yy(k)—Yp(k)

= A AU(k) — AAUR(K)
APTAU(k) + EAU (k) — AAU,(k)

= FEAU(k)
With a successful decomposition, most components of A, are represented by A

and P,. The variance of the error matrix, E, is typically less than 5% of that
of Ag, t.e.

[

le(®)ll < 5%Ill4.AU ()l
< 5%[|Yep(k) — B X ()l

where the Y,,(k) — ®,X (k) term is the feedback residual term used for the
state feedback control. The above derivation clearly shows that, after the im-
plementation of the first reduced horizon control profile, the difference between
the setpoint and the process output has been reduced by 95% (Note that only
one ‘deadbeat’ control profile AU (k) is needed to completely eliminate the dif-
ference). For practical applications, the performance using a reduced control
horizon can be quite satisfactory. Actually only two more control moves are
needed to reduce the output error close to zero, i.e. (5%)® = 0.0125%. In other
words, if the deadbeat control can make the output match the desired setpoint
within P steps, the reduced control horizon method can almost certainly make
it with P + 2 steps. The advantage is that the reduced control horizon method
gives a much better robustness without losing too much of the control speed
and accuracy.



5. Illustration
Consider the design of a predictive controller for a SISO process with an under-
damped response. The process transfer function is

y(g™) _ 0.0014¢7! +0.0054¢~2
u(g~!) ~ 1-—1.94q7! +0.9527¢~2

Due to its under-damped response, this process would require over 150 steps
to reach the steady state (Figure 4.1). But, for predictive control purposes,
a smaller value of the prediction horizon, e.g. P = 20, is better from a com-
putational point of view. A full sized dynamic matrix A, is 20 by 20 with
poor conditioning ( condition number =7.44 x 10'* ). Reduced control hori-
zon methodology can be applied to this process. The corresponding matrix
decomposition results are summarized in Table (4.1).

09 T v v - r - ~r -

0.6 - . - S R . . - -

Amplitude

0'4 - . . . . . . . . . -4

o 20 40 60 80 100 120 140 160 180 200
No. of Samples

Figure 4.1:Example: The Step Response of An Under-damped Process

Obviously, for this process, the control horizon can be chosen as M = 2 or
M = 3 which gives a good conditioning of the dynamic matrix (~ 100) and
small matrix error (< 1%). The corresponding MPC control system is stable
with a dominant (discrete) pole of 0.8008 or 0.2277 respectively.



Table 4.1:Dynamic Matrix Conditioning using Reduced Control Horizon

Control Horizon M | Cond. Number | Var. Explained, r | Closed Loop Pole
1 1 95.93% 0.928 + 0.0973;
2 41.97 99.28% 0.8008
3 668.81 99.65% 0.2277
4 2.49 x 103 99.75% ~—0.2428 + 0.0073;
20 7.44 x 1014 100% —0.2593

4.4.2 Matrix Weighting

Another method to change the matrix condition is to put penalty factors in the
optimization objective function for predictive control, e.g.

P M
T =3 vilum(k +3) ~ y(k+ )P + 3 ABu(k +j ~ )] + Ys[ysp(00) — y(0)]* (4.9)
j=1 Jj=l1
which is equivalent to using weightings on the elements of the dynamic matrix. A
generalized matrix can be obtained which improves the condition number of the dy-
namic matrix substantially. The pseudo inverse required for the control calculation
becomes
(ATT A + M +~,ATA,) 1 ATT,
The commonly used weightings include control weighting )\, steady state weighting 7,
and output weighting v; (Ty is a matrix with +; as its diagonal elements). Generally,
A and +, improve the control performance by avoiding overly aggressive control. The
negative part is that if they are too large, the optimization puts the emphasis on
reducing the control moves instead of the output errors, which results in slow output
tracking and poor control accuracy. Therefore, the recommended procedure for de-
signing a predictive controller is to first specify a reduced control horizon that will
bring the matrix condition to an acceptable region. Then, weighting parameters can
be used to fine tune the matrix conditioning and control performance. In this way,
the weightings turn out to be reasonable values.
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1. Control Weighting, A

The concept of using control weighting A was introduced long before the pre-
dictive control technique emerged. A successful application is Generalized Min-
imum Variance(GMV) control which uses A-weighting to overcome the internal
instability of Minimum Variance(MV) control. A-weighting can also be used
to constrain the control movement of non-square MIMO systems, e.g. (Treiber
1984). Since MV control can be considered as a special case of predictive con-
trol with M = P =1, it is quite natural to use the control weighting in MPC
to avoid overly aggressive control action. As a matter of fact, it is the most
commonly used and effective tuning parameter in practical applications of pre-
dictive control. The general tuning guideline is that the larger the weighting,
the slower the closed loop response and the more robust the control system.
However, without a quantitative design procedure that determines its effect on
the controller, the control weighting A can only be determined by trial and er-
ror. Just recently, the effect of A on the dynamic matrix condition has been
studied (Wilkinson et al. 1994).

Obviously, with control weighting, the numerical condition of the matrix to be
inverted when calculating the control action, i.e. ATA+ A, can be improved
significantly.

Assuming that the largest and smallest singular values (which are defined as
the square root of the eigenvalues of the matrix AT A) of the original dynamic
matrix A are Spmer and Spi, respectively, then,

Sfm’n
With the control weighting A, the condition number becomes
82 + 2\
A) = | =E— 4.10

It is very easy to prove that the condition of A can be improved since
Co = Cond(A, A = 0) > Cond(A,\ > 0)

Note that Equation (4.10) can be used directly to calculate a value of A that
results in good numerical conditioning of the generalized matrix. By specifying
a desired condition number Cyqz,

1/2
Cond(A, )) = (-“::zzm&{—:\\) < Crnas (4.11)

which leads to

A> S?nin(cg - Crznaz)
- Cznuu: -1
For example, to change the original matrix with Cy = 1.0 x 10° to0 Cpnaz = 50,
the control weighting should be A > 1.35.

REMARKS:



60

e Generally, the worse the matrix condition, the larger the control weighting
required;
e The magnitude of the control weighting is gain dependent since Sp;n is a

function of the process gain. If a normalized dynamic matrix is used, then
a revised relationship for the control weighting is

i > S;zl,min(cg —szaz)
<7 ¢z, -1

where G is the process gain. Obviously, to obtain the same matrix condi-
tion, a high gain process needs a high A while a low gain process requires a
lower A. This conclusion can also be obtained from looking at the objective
functions where the control weighting term has to be gain dependent to
balance the the first output error term.

e This method of calculating the control weighting is also applicable to the
design of a predictive controller to put different weight on each individual
control move, e.g. A\, for Au(k) and A; for Au(k + 1) or for MIMO pro-
cesses. But, there is no explicit design procedure to calculate the weight-
ings. A trial and error procedure must be performed for proper choice of
the weighting parameters.

Since the control weighting parameter can significantly improve the predictive
controller, it is frequently used for tuning the controller and sometimes the only
parameter provided by some commercial predictive control software, e.g. the
control suppression factor in DMC. Even though most parameters are deter-
mined off-line, the control weighting can also be adjusted on-line to adapt to
changes in the process dynamics (Wilkinson et al. 1994).

. Steady State Weighting, v,

Steady state weighting is another important tuning parameter for predictive
controllers (Kwok & Shah 1994, Saudagar 1995). For open loop stable processes,
it emphasizes the predicted steady state error term relative to the dynamic
errors. Conceptually (as well as mathematically), it stabilizes the controller.
Due to the lack of quantitative guidelines for the selection of 7;, it is generally
chosen by trial and error.

From the point of view of dynamic matrix conditioning, this parameter can be
easily incorporated since the matrix inverse becomes

A* = (ATT, A+ 12ATA,)™!

where the matrix A, consists of the steady state gain of the process (as discussed
in Chapter 2.)

Obviously, a quantitative measurement of the effect of v, can be made in a way
similar to that used for the control weighting A. The differences are that
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(a) ~s, together with the steady state gain, is added to every element of the
dynamic matrix since A* can be written as

11 ---1
11 ---1

A = (ATpA+2S2| . L )T
11 -1

while A changes the diagonal elements only.

(b) the use of «, introduces a rank deficient unit matrix into the dynamic
matrix. Mathematically, it can not change the rank of the dynamic matrix
but may affect its conditioning. As discussed above, the dynamic matrix
is full rank but may be ill-conditioned. The proposed design procedure
selects a value for 7, which improves the conditioning of the matrix.

(c) the effect of v, is directly affected by MPM in the process gain while that
of A is indirectly influenced.

(d) The addition of v, also introduces an extra state variable, i.e. the steady
state variable, into the feedback controller and thereby stabilizes the con-
troller further. However, these effects are not reflected by the condition
of the dynamic matrix. This and related issues are beyond the scope of
dynamic matrix conditioning and therefore are not covered here.

The effect of v, on the dynamic matrix is usually evaluated by calculating the
eigenvalues and condition number of A* numerically. A typical example is
shown in Figure 4.2 where the same process in Figure 4.1 is used to build the
dynamic matrix. Obviously, as v, increases, the dynamic matrix condition of
At improves. The difference between using either A or -y, to improve the matrix
condition is also clearly shown in Figure 4.2. A small increase in A results in
a dramatic improvement in terms of the matrix condition. On the other hand,
the effect of 7, is much slower and limited. (However, the actual closed loop
performance should also be examined to determine the full effect of v,).

A similar method has been included in the commercial DMC algorithm by
the addition of input steady-state weighting A, (Qin & Badgwell 1996). At
steady state, input and output variables simply follow the state gain relation-
ship. Mathematically, for the unconstrained solution, it is equivalent to the
output steady-state weighting ~, discussed here. Therefore, the methodology
for selecting 7, can be also used to choose the input steady-state weighting.
In DMC, the physical interpretation of A, is very interesting. It includes a
new equation restricting that the sum of all future control inputs equal to the
optimal steady-state target, i.e.

ue—y + {Au(klk) + Au(k +1|k) + ... + Au(k + M — 1K)} = U,

M-step control moves
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Figure 4.2: Effect of A (top, with v, = 0) and v,(bottom, with A =0) on
the condition of the dynamic matrix

This equation is not a hard constraint but imposed in the least squares sense
in the control implementation instead. After simple manipulation, the equation

becomes
Au(t|t)
Au(t + 1{t)

[1s 11"'1 1] =U33'-ut—-1

Au(t + M — 1|t)
and can be added as an extra row element, with a weighting factor, in the
dynamic matrix. Obviously, it has the same effect as v, on the dynamic matrix.

Note that mathematically, the condition of the dynamic matrix can also be
changed by the output weighting matrix [,. Practically, these parameters are
related to the relative importance of output deviations as determined by process
requirements, economics and quality control. Therefore, usually, their values
can not be chosen freely for the purpose of condition improvement.

4.4.3 Summary and Illustrations

The recommended procedure for the design of the nominal model predictive con-
troller can be summarized as:

e STEP 1: choose the output prediction horizon P and associated relative output
weightings ['y;
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e STEP 2: build the full sized P by P dynamic matrix A,;

e STEP 3: find the reduced control horizon M that improves the condition of
the dynamic matrix A to within an acceptable region, e.g. < 100;

e STEP 4: use the control weighting A and/or the steady state weighting v, to
fine tune the matrix conditioning and if desired check the closed loop perfor-
mance by simulation;

e STEP 5: implementation.

A MIMO distillation process is used here to illustrate the design procedure of
MPC. This process has 2 inputs and 2 outputs and was modeled by Wood and Berry
(Wood & Berry 1973) as:

12.8e—* —18.9e=3¢

[Xd ] = [ %667:-{;1 2119.2;1%' ] [Rf ]
.Ge™'® ~19.4e¢™

Xo 109541 14.4s+1 Vs

Ry: the reflux flow.

Vp: the vapour boil-up rate.

X4: the mole fraction methanol in the distillate.
X,: the mole fraction methanol in the bottoms.

This is a strongly interacting, 2 x 2, process with time-delays. With a control
interval T, = 2.5 min, the maximum number of steps to reach steady state is 40
(Figure 4.3). Choosing the output prediction horizon P as 20, the full sized dynamic
matrix A, for this MIMO process results in an ill-conditioned, 40 x 40 matrix.

A reduced control horizon M is used first to improve the condition of the matrix,
followed by the addition of control weighting A. The whole procedure is shown in
Table 4.2. Note that the dominant closed loop pole is also calculated to check the
stability of the MPC control system.

Note that for this 2 x 2 distillation process, a closed loop stable MPC system can
be achieved by using a reduced control horizon. For example, choosing M = 8 gives
a stable MPC system but an ill-conditioned dynamic matrix. A control weighting
of A = 100 can be used to improve the matrix conditioning. Increasing A does
not significantly decrease the controller performance under nominal conditions, e.g.
the dominant closed loop pole location is only a little worse than that without A
weighting , 0.9846 vs. 0.9816. But increasing A significantly improves the robustness
of the control system. The condition number of the dynamic matrix is improved from
451.73 to 152.47. This example shows that, in general, there is trade-off between
performance and robustness, i.e. increased robustness is obtained at the cost of poorer
closed-loop performance but the trade-off is example dependent.
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Figure 4.3: The Step Responses of the Wood and Berry Distillation
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Table 4.2:The Selection of Control Parameters

Methods Condition Number | % VE | Closed-Loop
of A Pole

”Perfect Control”

P=M=20 0] 100 0.0

Reduced control horizon

with A =0

M=1 1.0 84.23 0.9719

M=2 28.23 88.32 0.9850

M=3 127.90 89.45 0.9827

M=5 302.52 91.02 0.9819

M=38 451.73 92.52 0.9816

Control Weighting

with M =8, 7, =0

A =100 152.47 N/A 0.9846
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The controller gain matrix in Equation (4.5) has the following structure

p-

0 | 0]
0.8227 | 0.0183
0.0622 | -0.0279
0.0044 | 0.0231
—0.0794 | —0.0042
0.1273 | —0.0209

~-0.1092 | 0.0379
0.0487 | —-0.0341
—0.0034 | —0.0011
—-0.0102 | 0.0075
—0.0075 | 0.0057
—0.0051 | 0.0041
—0.0031 | 0.0028
—0.0013 | 0.0017
0.0003 | 0.0008
0.0017 | ~0.0000
0.0029 | ~0.0007
0.0040 | —0.0013
0.0050 | —~0.0017
0.0058 | —0.0022
0.0065 | ~0.0025
Kgpc =l -—"————-= l ———————
0 | 0
—0.0419 | —0.3791
—-0.0015 | —-0.0155
0.0515 | 0.0031
—0.0831 | 0.0136
0.0700 | —0.0255
-0.0186 | 0.0251
—0.0586 | ~0.0096
0.0993 | —0.0152
~0.0132 | 0.0069
-0.0107 | 0.0054
—-0.0085 | 0.0041
—-0.0066 | 0.0028
~0.0051 | 0.0018
—-0.0037 | 0.0008
—0.0026 | ~0.0001
—0.0017 | —0.0009
~0.0009 | ~0.0016
—-0.0002 | —~0.0022
0.0004 | ~0.0028
| 0 | 0]
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4.5 Special Cases

Since the dynamic matrix elements are step response coefficients, its condition is
sensitive to the characteristics of the actual process. Two special process characteris-
tics, time delay and nonminimum phase, deserve more attention during the design of
predictive controllers. The use of unit step response coefficients in MPC means that
both time delay and nonminimum phase appear explicitly.

4.5.1 Processes with Time Delay

The time delay of a process appears as zero elements in the initial step response.
If included in the dynamic matrix, it would certainly degrade the numerical condition
of the matrix. Even though the known time delay can be excluded from the dynamic
matrix, unknown time delays and/or its drift can affect the condition dramatically.

Predictive control, with its long range prediction, can handle time delays through
proper use of the tuning parameters. For example, to control a process with time
delay, a full sized predictive controller can not be used since its matrix inverse does
not exist. The reduced control horizon method and/or control weighting method can,
however, be applied to handle the unknown time delay.

After building the dynamic matrix, the controller parameters can be selected in
the same way as discussed before. Due to the effect of time delay, the actual effective
prediction horizon has changed from P to P —d (where d is the implicit time delay).
This can be easily proven by

— deM
APXM = [ A(P—d)xM ]

and
AgxMAPXM = A(Tp-d)xMA(P—d)xM

Obviously, the output prediction horizon P must be greater than the possible time
delay d.

4.5.2 Processes with Nonminimum Phase Behaviour

Unstable zeros in a process have an effect similar to time delays. In the step
response coefficients, they usually appear as a fast but reverse response during the
initial process response. Conceptually, in order to capture the process response re-
quired for effective control, the output prediction horizon should be much larger than
the nonminimum phase period. Another effective approach is to use an initial predic-
tion horizon (e.g. N; in GPC) to exclude the first few rows of the dynamic matrix.
Unlike the time delay, the NMP will still have negative effects on the dynamic matrix
even with the application of the initial prediction horizon. Generally, the control
parameter selections are trial and error procedures. The effect of NMP can also
be evaluated by the condition number of the dynamic matrix to ensure satisfactory
performance.



67

4.6 Conclusion

A predictive control design procedure has been developed based on the structure
and numerical properties of the dynamic matrix. Using a single analytical objective,
improving the matrix condition, all tuning parameters in the predictive controller
can be selected. The suggested procedure for the design of a predictive controller
is to decompose the dynamic matrix first to determine the control horizon. Then,
weightings are selected to further improve the condition of the matrix. This new
design scheme facilitates the control design especially for multivariable systems. A
simulation example using a 2 x 2 interacting process illustrates the design for an
application of predictive control.



Chapter 5

Disturbance Handling:
Feedforward and Feedback

5.1 Introduction

In practice, a process is usually subjected to many disturbances from either known
or unknown sources. Therefore, the major controlled variables, the process outputs,
are functions of not only the manipulated variables but also of disturbances. For the
setpoint tracking problem of MPC, many input/output models, including DARMA,
step response coefficient, regular state space and the dual-model state space discussed
in the previous chapters, have been extensively studied for the output predictions.
On the other hand, the regulatory control problem which includes estimating out-
put predictions as a function of disturbances remains a challenging research area.
This problem is especially important for chemical process control where the primary
concern is usually to maintain the process conditions in the presence of disturbances.

Generally, the disturbances include measurable/unmeasurable variables, random
noise and/or modelling error. Both deterministic and stochastic models can be used
to describe how the process outputs are affected. Obviously, in contrast to traditional
PID control, predictive control should have the ability to estimate what will happen
in the future so that immediate control action can be taken to compensate these
future upsets. Predictive control is an effective method for regulatory control and has
been successfully applied to many chemical processes.

Many disturbances to a process can be identified easily and are practically mea-
surable. For example, ambient conditions such as temperatures, pressure and/or
humidity have a significant influence on some petrochemical processes. For measur-
able disturbances, a feedforward scheme can be used. With deterministic models,
the future output profiles due to these measurable disturbances can be readily calcu-
lated. Then, traditionally, they are subtracted from the setpoint trajectory. During
the optimal minimization, the MPC controller considers them as the setpoint changes
and make control moves to compensate these measurable disturbances. An important
issue, how well can the MPC controller eliminate disturbance, was often ignored in
the past due to the fact that most predictive controllers come with feedback options

68
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which estimate the output deviations caused by the disturbances. Actually, MPC
has a ‘built-in’ model feedback loop (Figure 5.1) as a result of the minimization indez.
Even without the extra output feedback loop, the internal model feedback still works
to minimize the error caused by either setpoints or disturbances in the forward chan-
nel. In a classical control sense, some compensation is made via feedback rather than
feedforward. This increases the difficulty for feedback design especially for a state
estimation based method.

- %

Yﬂ)‘—’

Model 1 -stevp; d_b

Figure 5.1: Disturbances and Feedforward, Feedback Loops in The
MPC Control Scheme

In the first part of this chapter, it is shown that the capabilities of state feedback
based MPC controllers to eliminate disturbances have been overestimated. It can not
eliminate the disturbance in a feedforward sense and hence relies on feedback. A new
separate feedforward control scheme, predictive feedforward, is put forward to address
this design deficiency.

For unmeasurable disturbances, model errors, etc, the effects on the process out-
puts have to be estimated. Convergence and optimality are major concerns for these
estimations. In the dual model state space formulation, the state variables are di-
rectly defined as the process output predictions. Therefore, classical state observer
theory can be applied. Direct application of optimal based, state observer design to
predictive control in a state space form leads to a large dimensional algebraic Riccati
solution (Navratil et al. 1988). Later, Lee and Morari proposed a much simplified
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observer design scheme for MPC which assumes a special model for the disturbance
(equivalent to introducing a integrator in the feedback loop) (Lee et al. 1993). In
the second section of this chapter, a different approach based on pole-placement is
developed. Effective approaches which use a calculated feedback gain, a feedback
horizon (Saudagar 1995) and a rotating factor, are developed.

5.2 Dual Model with Disturbances

Disturbance variables can be easily incorporated into the dual model state space
formulation in the form of measurable disturbances and/or unmeasurable distur-
bances/random noises. In addition to the manipulated variable Auk), process noise
and measurement noise can be represented as:

X(k) = ®X(k—1) + 0Au(k—1)+ CAd(k-1)+ TAw(k-1) (5.1)
Y(k) = HX(k)+v(k)

where T consists of the step response coefficients of the process output with respect
to the measured disturbances d(k). T is a suitable step response model for the
unmeasured or random input w(k). For example, white noise is represented by a T-
vector with unit elements, and coloured noise is represented by a T-vector containing
elements with a first order or second order dynamics. This arrangement splits the
measurable disturbance term and the unmeasurable or random noise term to facilitate
feedforward and feedback design.

The future prediction in Equation (4.1) can be rewritten as:
Y, (k) = ®,X (k) + AAU(k) + BAD(k) + CAW (k) (5.2)

The A matrix consists of the step response coefficients and is usually called the
‘Dynamic Matrix’. Correspondingly, the B and C are also in matrix form with a
structure similar to A. It is reasonable to define them as ‘Dynamic Feedforward
Matrix’ and ‘Dynamic Feedback Matrix’.

The D(k) and W (k) vectors include future deterministic disturbances and random
noise in a manner analogous to U(k). Obviously, by assumption, the disturbance d(k)
at the current time step is measurable so that at least the first element of D(k) is
available for control applications. On the other hand, the effect of future disturbances
and the random noise W (k) on the state variables can only be estimated. Therefore,
in the next two sections, these two issues will be considered in more detail.

5.3 Predictive Feedforward Design

Considering the measurable disturbances only, the future output prediction in
Equation (5.2) becomes:

Y,(k) = ®,X (k) + AAU (k) + BAD(k) (5.3)
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To design a feedforward controller successfully, both the B matrix (i.e. the distur-
bance model) and the future disturbance inputs should be available. Otherwise, this
term would have to be treated via feedback design instead of feedforward. Feedfor-
ward control is preferred since it does not cause any stability problems and theoret-
ically perfect disturbance rejection can be achieved. As shown later, the predictive
feedforward approach has many advantages over traditional feedforward design meth-
ods.

5.3.1 Disturbance Profile

For simplicity, consider a single disturbance trajectory AD(k) with a dimension
of Npp. Note that an explicit explanation for this assumption is that there will be
Nrp steps in the future disturbance. The disturbance is assumed to be constant after
Nrr steps. With Ngp = 1, only one disturbance is assumed to occur. Since the value
of the only disturbance can be determined by on-line measurement, no prediction of
future values of this disturbance is needed. This method has been widely used in the
past for the feedforward design in predictive controllers. However, in general

AD(k) = [Ad(k), Ad(k +1), ..., Ad(k + Nep)|* (5.4)

The only available measurement of the disturbance d(k) is at time instant k. Future
disturbances may or may not have a fixed relationship with current and past distur-
bance values. However, for the purpose of simplicity, introduce a vector Kgp which
satisfies:

AD(k) = [Ad(k), Ad(k+1), ..., Ad(k + Neg — 1)|T
= [fh f21 ey prp]TAd(k)
= Krrld(k) (5.5)
where, traditionally in MPC, e.g. DMC, fi =1,fa=--- = fnp. =0.

5.3.2 Feedforward Compensator

For regulatory control, the prediction equation (5.3) defines the objective as
®,X (k) + AAU(k) + BKppAd(k) =0 (5.6)

To compensate the disturbance, the required future control action U(k) is:

AAU(k) = -®,X(k) — BKrrAd(k)
or
AU(k) = A[-®,X(k)— BKprAd(k)] (5.7)

Note that the pseudo-inverse of the dynamic matrix includes all the design parameters
discussed in Chapter 4. By applying the receding horizon principle and separating
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the feedback and the feedforward terms, the current control action required to reject
the disturbance can be represented as:

Au(k) = —Kmpe X (k) + CTA*BKrrAd(k) (5.8)
Applying this control action to the state space equation, yields

X(k) = (® —0Kmpe)X(k~1) + (~8CTA*BKrp +T)Ad(k—1)  (5.9)
Y(k) = HX(k) +u(k)

Equation (5.9) shows that the MPC controller uses state feedback to correct the
residual effect of measurable disturbances, if they are not completely rejected. The
‘built-in’ state feedback, ® — 0Ky, comes from the quadratic optimization. Ob-
viously, the disturbance term in (5.9) does not change the state feedback property
(® ~ 0K mp) (which determines the closed loop stability). As long as the system is
stable, state feedback alone would eliminate the effect of the disturbance on the state
and/or output. However, if possible, it is better to use the disturbance term in (5.9)
to improve regulatory control performance.

1. Dynamic State Compensator

In Equation (5.9), the effect of the disturbance on all state variables may be
eliminated if
—FKpp+T'=0 (5.10)

where
F=0CTA'B
Every matrix/vector in Equation (5.1} is known except the disturbance profile

vector Krr which has a dimension of Ngp x 1 for a single disturbance variable.
The state feedforward controller can be obtained as:

Kpp = (F)'T

where F* is, in general, a pseudo-inverse. Usually, this solution can not com-
pletely remove the disturbance effect in the state equation because:

e With Ngg < n, it is under-determined, i.e. has fewer unknown parameters
than equations. Therefore, a least square solution which minimizes the
effect of the disturbance on the states is used.

o With Ngr = n, it is theoretically possible to get a perfect solution de-
pending on the condition of the matrix FTF. If this matrix is full rank,
then a complete rejection of the disturbance can be achieved.

e Considering the components of the matrix F, it is most likely not full rank.
In that case, a weighting matrix + similar to the control penalty matrix
should be used to improve the condition of the matrix. The feedforward
controller gain can be calculated by:

Kpp = (FTF +4)7'FTT
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e Problems also arise due to time delays in the input and disturbance models
O, B and A. In general, this requires impractical solutions for singular
matrix F.

Using a third order process model 1/(s+1)(3s+1)(5s+1), the dynamic compen-
sator design can be shown as follows. The control parameters P =9, M =2, =
0 give a stable state feedback MPC controller (dominant poles 0.3402+0.17315).
The disturbance model is 1/(10s + 1). The feedforward gain Krr can be ob-
tained as:

Npp=1 Kgr=0.3104
Npp =2 Kpp=[0.2161, 0.1427]7
Npp =5 Kgpp=1[0.1968, 0.1300, 0.0596, —0.0014, —0.0420]T

Note that for Npp > 2 cases, a small weighting v = 0.001 should be used in the
F matrix to avoid problems due to ill-conditioning.

. Steady-State Output Compensator

Ideally, the control objective is to remove all effects of the disturbance on the
state variables by feedforward. However, this requirement is often too strict to
implement and may cause ill-conditioning problems. The control requirements
can be relaxed by

(a) considering only the effects of the disturbance at the steady state;

(b) removing the effect of disturbance on the process output only, i.e. some
linear combinations of the state variables instead of all state variables.

Then, assuming a steady state can be reached such that X (k+1) = X (k),Y (k) =
0, the state equation in (5.9) can be rewritten as:

(I = ®+0Kpnpe)X(k) = (—0KmpcBKrp+T)Ad(k —1)
or
X(k) = (I—®+6Knp) (—~0Kmp:BKrr +T)Ad(k ~1)

which gives the process output at the steady state as

Y(k) = HX(K)
= H(I — & + 0Kumpe) " (~0KmpcBKrp + T)Ad(k — 1)  (5.11)

Therefore, the objective for steady state feedforward control is
H(I — ® + 0K mpe) (—~0KmpcBKrr +T) =0 (5.12)
The steady-state feedforward controller requires solving the matrix equation,

H(I - ® + 0Kompe) 60 KpmpeBKpr = H(I = ® + 6Kpe)™'T (5.13)
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Now, the conventional method of including feedforward in the design of predic-
tive controllers where Npgp = 1, Kprp = f; = 1 can be evaluated. Substitution
of these values into (5.13) shows that there is no other tuning parameter to
adjust the controller and hence the disturbance rejection performance is very
limited. Even though it is simple in design, feedback has to function to reject
the disturbance which may result in many problems including instability.

Using the same process model and disturbance model as in the previous exam-
ple, the following values for Krp are obtained

Nrrp =1 Kpp =18170
Npp =2 Kpp=[1.8170, 0|7

The disturbance rejection performance is shown in Figure 5.2 for the process
outputs, and Figure 5.3 for the control efforts.
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Figure 5.2:Disturbance Rejection by Predictive Feedforward

In these simulations, a disturbance horizon Npp = 1 was chosen and different
values of Krp were applied. As mentioned above, even though this MPC feed-
forward scheme relies on the state feedback part, the feedforward parameter
Kpgrp does influence the disturbance rejection performance. As Krp increases,
the controller rejects the disturbance faster by generating larger control inputs.
A conclusion from this simulation is that the Kr, as defined in Equation (5.5),
can be considered as a tuning parameter in the MPC control scheme, particu-
larly for the rejection of measurable disturbances.
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Figure 5.3:Control Actions to Reject Disturbance

5.4 Output Feedback Design Using A State Observer

In addition to the ‘built-in’ model feedback, output feedback is always included
in MPC for two major reasons:

1. The state variables in the dual-model formulation are required to calculate the
next control move for predictive control. However, only the first element can be
directly measured from the process output. The other (observable) states need
to be estimated from the current output measurements.

2. The existence of random noise, model uncertainty and unmeasurable distur-
bances makes the process deviate from the desired trajectory. Feedback should
be used to estimate the effects so that the controller can make corresponding

adjustments.

For state space models, classical state observer theory has existed for years and has
been applied successfully as part of LQC type control. While algebraic derivations are
sufficient to obtain the state variables from the output measurements of deterministic
processes, optimal state observer design methodology such as the Kalman filter is
required for processes with stochastic disturbances.
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5.4.1 State Observer for The Dual-Model Formulation

With stochastic noise terms, the process with process noise and measurement
noise can be described by a dual-model formulation as:

X(k) = ®X(k—1) + 0Au(k ~1) + T Aw(k — 1) (5.14)
Y(k) = HX()+v(k)

Note that the disturbance model is represented by both T° and ®. As defined
in the dual model formulation, the T vector is the unit step response of the process
output to the disturbance. The matrix ¢ also includes the slow or unstable modes of
the disturbance dynamics. This can be shown by using an input/output description
of the process.

Assume a Box-Jenkins model with a disturbance term,

y(k) = ig:g u(k—1)+ %gé%w(k -1)

For this process, assume that the denominator parts can be decomposed into two
parts, fast and slow modes, as

A(g™") = Ai(g V) A2(g™Y)
D(g7') = Di(g7")Da(g7h)

Then, the process can be rewritten as

- - B(g')Ds(¢7h) C(g")A42(g7")
Ax(qg ) Da(gHAy(k) = Au(k —1) + Aw(k -1
2(q ) 2(q ) y( ) Al(q—l) ( ) Dl(q_]_) ( )
Obviously, the same procedure used in Chapter 2 can be applied to obtain the pa-
rameters in the ® matrix. The last row of the ® matrix in the dual model formulation
(Equation (2.13)) is

AsD)A=1-— 1‘1q"1 - 1'2q‘2 ——e =T g "

Note that, strictly speaking, there is no existing acronym that correctly describes
this model form with the addition of disturbance term. But DARMA (arguably) is the
closest one and is used in this thesis. Therefore, the similar procedure in Chapter 2
is applied here to handle the disturbance model.

REMARKS:

1. The inclusion of the slow disturbance model D;(g~') inside the system matrix
® significantly improves the disturbance rejection properties of MPC. Espe-
cially for slow disturbances similar to ramps, traditional DMC feedback design
is unable to eliminate their effects. This issue will be illustrated later in an
example.
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2. The fast models for both the process and the disturbance are still described by
the step response coefficients in 8 and T'.

Since the dual model formulation in Equation (5.14) is in a standard state space
form with complete state observability, standard observer theory including Kalman
Filter theory can be applied (Navratil et al. 1988, Morari & Lee 1991). For example,
the two stage type observer gives:

X(k) = #X*(k—1) + 0Au(k—1)
Y (k) HX(k) (5.15)
X*(k) = X(k) + K[Y (k) — Y(K)]

where X (k) is the model based estimate of the states. X*(k) is the estimated state
variable vector to be used by the control algorithm. Y (k) is the actual output mea-
surement in (2.13) and K is the generalized feedback observer gain.

Note that this is a very general model-based formulation for estimating state
variables from process outputs. Many methods, differing mainly in how to calculate
the feedback gain K, are available. The state convergence and optimality are major
concerns of the state observer design.

]

5.4.2 Optimal State Observer Design

Given the covariance matrices W and V of the random noise terms w(k) and v(k),
the observer gain based on Kalman filter theory can be obtained as a solution of the
Riccati equation,

K = PHT(HPHT +V)! (5.16)
B = QP[;_1QT - @Pk_lHT(HPk_d:IT + V)—IHPk_ICPT +TWTT

The Kalman filter method, gives minimum variance estimates of the states. How-
ever, some problems arise in practical implementations of MPC.

e It requires the solution of a large dimensional complicated Riccati matrix equa-
tion;

o It needs detailed information about the disturbance model and statistical prop-
erty, i.e. T, W and V.

Lee and Morari (1991) assumed a unit step type disturbance in the state equation,
i.e.
T=[1,1,...,1,17

and
TA=[0,0,...,0, 1T

Note that, mathematically, TA can be either [0,0,...,1] or [1,0,...,0]. The former
is preferred so that the noise is added to the last state variable first and gradually
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propagated to other state variables. Recall that in the dual-model formulation, the
last state variable has more controllability than the others, so this arrangement of
TA certainly has advantages for disturbance rejection.

With the assumption of T as a step type disturbance model and white noise in
Aw(k), the noise term w(k) is an integrated noise. Therefore, this type of disturbance
is equivalent to the integrated noise model in DARMA model used by GPC (without
T-filter), and also the fundamental disturbance model assumed by DMC.

Then, the solution of the Riccati equation is much simplified, i.e. (Morari & Lee
1991):

e Open Loop Stable Processes,
K=f[11,...,1T

where f € [0,1] is a scalar depending on the Signal-to-Noise ratio of the output
measurement;

o Integrating Processes,
K =f“[1’ 1’ 1’ et 1]T+fb[01 17 27 seey n]
where f,, f, € [0,1] are scalars.

Obviously, this disturbance model results in a very simple observer design which is
optimal for some specific disturbance forms, i.e. step type disturbances. The scalars
are treated as tuning parameters and knowledge of the noise properties is not required.
However, as pointed out before, this formulation is identical to the integrated noise
model for the DARMA model of GPC. It is also an implicit assumption by DMC,
which functions well for step type disturbances. For general disturbance models, this
feedback design may not work satisfactorily.

5.4.3 State Observer Design by Pole-Placement

Instead of dealing with the Riccati equation which may result in practical prob-
lems, a state observer can be obtained based on pole placement methods (Qi & Fisher
1993).

Define the state error vector
X(k) = X (k) — X*(k) (5.17)

and combine Equation (2.13), (5.15) and (5.17). The following stochastic equation is
obtained _ .

X(k)=(I-KH)®X(k-1)+ (I~ KH)TAw(k —1) (5.18)
For an asymptotically stable, i.e. state convergent, predictive observer, it is required

that .
lim X(k) =0

k—o00
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Since the characteristic equation of the observer is:
detA\] — (I - KH)®] =0 (5.19)

for an asymptotically stable observer, all eigenvalues of the observer should be within
the unit circle. Without the extra output feedback, i.e. K = 0, the state convergence
is determined by eigenvalues of the open loop process ®. The feedback gain K can
be designed to shift the original eigenvalues of ® to the desired locations.
Assume
K=[k, k, -+, kana]”

Equation (5.19) can be expanded in terms of eigenvalues as:
detA\I — (I - KH)3] = A\t

+ (ka —r)A"

+ (ka b lez - 1'2)/\"—1

+ .- (5.20)
i-1

+ (ki1 — 2 risikio) AP
Jj=0

+ .
n-—1

+ (knsr — Y Tisrrkioj)A

d
= 0

where r; =0, if j > n,.

From this equation, the properties of the MPC observer can be summarized as:

e The coefficients of the characteristic equation (CE) are independent of k;. For
convenience, let k; = 1.

e Equation (5.20) is a (n + 1)th order polynomial but without a constant term so
that at least one root is at the origin. i.e. one eigenvalue is A = 0.

The feedback observer gain K can therefore be calculated using standard pole
placement techniques to obtain the desired observer performance. Usually fast con-
vergence for the state variables is required so that the observer design does not affect
the closed loop control system dynamics and provides accurate state information to
the MPC controller. Therefore, deadbeat design, which is rarely used for controllers,
is very common for state observer design.

If all coefficients in Equation (5.20) are assigned to zero, all the eigenvalues of
the observer are equal to zero and a deadbeat performance can be obtained. The
deadbeat feedback observer gain K must satisfy following recursive equations:

i—1
k‘H—I = er-i-lki—j’ 1= 11 2""1"’ (5’21)

j=0
kl = 1
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e For example, open loop stable processes with the model order n large enough
to cover the whole dynamics of the process giverg = land r, =r3 = ... =
rn4+1 = 0. The solution of Equation (5.21) becomes

K*=[,1, ---, 1T

i.e. the basic DMC feedback option is a deadbeat observer for open loop stable
processes.

e For integrating processes, n, = 1, rg = 2, r; = ~1, the solution of Equa-
tion (5.21) is
K*=[1, 2, ---,n+1]T

This is the feedback design obtained by Morari et al.(1991).

e For general processes with open loop unstable poles or slow dynamics, a dead-
beat observer can be designed by solving the simple algebraic Equation (5.21).

As a matter of fact, DMC always assumes a step type disturbance added to the process
output. This assumption, together with the full step response model description,
gives a simple feedback gain K = [1, 1, ---, 1] which works very well for most
control applications in the petrochemical industry. But it can not handle ramp type
disturbances and has difficulties with slow disturbances.

The inclusion of the slow dynamics Dy(g™!) in ® gives a much better result. For
example, as shown in Figure 5.4, a ramp disturbance D, = 1 — ¢~! gives a upward
straight line for the feedback gain. The step disturbances D, = 1 results in a flat
curve and a general first order dynamics in D, = 1—0.8¢~! gives a first order damped
response for the feedback gain vector.

5.5 Dynamic Tuning of the Feedback Observer

There is a potential problem in the feedback design based on the pole-placement
method. The stochastic equation (5.18) has a noise term Aw(k — 1) with parameter
vector (I — KH)T. Obviously, the feedback gain, K, would affect the way the noise
is added to the state variables. For example,

o with K =[1,1,1,1]T, [-KH)TA =0, (t; —t2), (t2—t3), (ta—t4)]T. The effect
is reduced by the impulse response coefficient 8t; = (¢; —ti—;) of the disturbance
model. If the number of model coefficients is large enough, 4t; approaches zero
to give a complete rejection of the disturbance.

e with K = [1, 2, 3, 4]T, (I - KH)TA = [O, (2t1 - tg), (tl + 1y — t3), (t1 + i3 —
t4)]T. There would be a constant noise addition, t;w(k — 1), to the steady state
estimation.

e with [1, 1, 1, 1]T < K < [1, 2, 3, 4]7, the noise term is added more to the
first few state variables than to the steady state variable. The noise addition is
slowly reduced to zero as it approaches the steady state.
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Figure 5.4:The Deadbeat State Feedback Gain Trajectory

Therefore, the feedback gain trajectory obtained from the pole-placement algorithm
is usually too large to be used in practical applications. Further adjustments are
required to improve the feedback performance. In addition to changing the gain
arbitrarily, two formal methods can be applied. One is to use an integer ‘feedback
horizon’ to modify the feedback gain. Another is to ‘rotate’ the whole gain trajectory
to a reasonable region (Figure 5.5). These methods are discussed in the following

subsection.

5.5.1 Feedback Horizon, Nrp

After obtaining the feedback observer gain, a feedback horizon, Nrpg, can be
introduced to further adjust the elements (especially the steady state elements) of
the gain vector. While the effects of Ngp on the control performance have been
illustrated extensively by Saudagar (1995), the effect of Nrp on the state observer is
evaluated here.

With the feedback horizon Nrg, the gain vector is modified as:

K= [Fla k2: '.'7kN[.EkNp5! "'1kNp3]T

Nrg

This modification changes the pole locations of the state observer, i.e. the eigenvalues
of (I — KH)®, and the properties of the noise addition to the states, i.e. the elements
of (I — KH)TA as discussed previously.
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Assuming a first order model for the A; polynomial in the dual-model formulation,
and a deadbeat state feedback design in K, the effects of Npp on the poles of the
state observer can then be analyzed as follows.

With A = 1 + roq, yields
AA=1-(1-r)q "  —1og~?

and

Ty = 1—m
The characteristic equation of the observer with feedback horizon Npg is a simplified
version of the general equation in (5.20) as:

det\I — (I — KH)®] = A+

(kg —r1)A™

(k3 — T1k2 — r2) A"
. . (5.22)
(kNPB - rlkNrB—l - r2kNPB—2)’\n+2—NFB
(kNpa —T1kNgg — r2kNFB—l)’\n+1-NPB

(knes — T1knps — T2kngg) A" VFE

+ 4+ + + + + + +

(kNpB - rlkNFB - 7'2":1\0-'8)A
0



83

Obviously, with the deadbeat observer design, the coefficients of the first (Npg — 1)
terms, i.e. from A" to A"*2~NF8 _ are still equal to zero. The coefficients of the last
(n — Npp) terms, i.e. from \"~VF8 to ), are the same as (ky,; — T1kny5 — T2kNgs)-
Using the relationship between r; and r;, these coefficients are further simplified as:

kNra - rlkNPB - r2kNpB
= kNFB (1 - - 1‘2)
=0

Therefore, the feedback horizon only changes one term in the characteristic equation,
the coefficient of the A®*'~¥r2 term. This coefficient is simplified as:

kngg — T1kNgs — T2kNpg-1
= kNPB - (1 - r2)kNp3 h rszpe—l
= rﬁ(kNra - kNF'B-l)

The characteristic equation in (5.22) becomes:
det[AI - (I - KH)Q] —_ Aﬂv+l + r2(kNpB - kNpB—l)/\n-{—l-NpB

where as many as (n + 1 — Npp) eigenvalues are located on the origin and Nrp
eigenvalues are relocated on a circle with a radius of

A= [72(kNPB - kNFB-I)]I/NPB

REMARKS:

e Use of the feedback horizon Ngp relocates the eigenvalues of the state observer
and hence affects the convergence speed of the state estimates;

e From the point of view of state convergence speed, Nrp should be selected
carefully at a point where the deadbeat gain does not change too much, i.e.
keep Akypz(= knps — ENpg—1) smaller;

e The dominant pole of the open-loop process r; also affects the feedback observer.
Obviously, the feedback horizon method can not be used for open loop unstable
processes because |rp| > 1 and Aky,, > 1 yield an unstable pole for the state
observer.

As illustrated by simulations, using a feedback horizon Ngg = 8, the eigenvalues
of the state observer are changed significantly from the origin to 0.8 (Figure 5.6).

Also shown by simulations, the noise addition to the first Nrp state variables does
not change with changes in the feedback horizon (Figure 5.7). But they are completely
cut-off beyond the feedback horizon. Therefore, even though it would decrease the
rate of convergence of the state estimation, Nrp does have the advantage of limiting
the noise propagation into the state variables.
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5.5.2 Feedback Gain Rotation, 8

State observer design based on pole placement is obviously very simple. It avoids
the sophisticated Riccati equation and also does not require any assumptions about
the disturbance model. Therefore, the disturbance model (if available) can still be
used in the state space formulation for calculating the future output prediction. The
pole locations give a clear picture on how fast the observer can achieve the true state
estimates which are used in the controller design and calculation. This information
can be used to coordinate the design of the observer and controller (as opposed to
treating them as two independent sequential design steps). For example, the weighting
factors on the state estimates used in the control optimization can be adjusted as a
function of observer design/performance. The only drawback is that optimality of
the state estimation is unknown.

Different methods for designing the feedback observer are summarized in Table 5.1.

Table 5.1:Summary of Feedback Observer Design

Method Disturbance Gain K Pole Comments
Model T
Large
Navratil, General Optimal N/A dimension
et al (1988) Riccati Riccati
solution equation
Lee and Morari | Step Type Optimal Simple
(1991) [0---01 | f[1---11] 1-f
Qi and Fisher General Deadbeat Algebraic
(1993) K® 0 solution
B-Observer General |14+ B(K%® —1) | ~(1 — B)rz | Algebraic
solution

A scalar parameter (3, similar to the f parameter used by Lee and Morari, can be
used for on-line tuning. Then the feedback gain K is given by

K =1+B(K* -1)

which yields
ki=1-B8)+BkP, i=12,...,n+1
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Again, for the simple case A; = 1 +rpg¢~L, it is easy to verify that the coefficients of
the last (n — 1) terms, 1.e. from A*! to A, of the characteristic equation (5.20) are
still equal to zero. The coefficient of A™ becomes:

kz—Tl = (1—,3)'*',3’8%6—1'1
= (1-8)(1—-m)
(1= B)r,

The characteristic equation is therefore simplified as:

A™L 4 (1 = B)raA® =0

which yields n roots at the origin and one extra solution as A = —(1—8)r,. Therefore,
the rotating factor, 5, moves the original pole of deadbeat observer from the origin
to a new place —(1 — B)r, where r, is the slow mode pole of the process and/or
disturbance. As shown in Figure 5.8, for § = 0.2, the dominant pole of the observer
becomes (1 — 0.2) * 0.80 = 0.64 as compared to zero for the ideal deadbeat observer
design.

For general structures of the feedback gain K and matrix ®, the following lemmas
are useful to obtain the dominant pole location of the feedback observer.

Lemma 5.1 The dominant poles of the state observer (I — KH)® are equal to the
open loop poles of the process if a unit element feedback gain K is used, i.e.

K=[,1,---,1]F

yields
det[]\I — (I — KH)®] = A;,(A"H)A"

Proof:
With K = [1,1,---,1]7, the characteristic equation of the state observer in Equa-
tion (5.20) becomes

det(\I — (I - KH)®] = A**!
+ (1-r)A"
+ (1=rp—r)A!
+ .-
b (Lo mr— e g AR
b (L mrym e = g )X
+ .
+ (l=ri—rg—--+—Tp)A
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n+l1 n n—1 n+l-—n,

= z/\j-rlz/\j—rgz/\j—"'-ﬂ,' 2 Aj

= (: - z\"“)ﬁl = A) " "
- n(A=AM/(1- )
~— (A=A /(1))

— T, (A=A /(1))

= (L=rA T A2 AN/ (L — A7)
+ l=-ri—ry—---—1,)/(1=A)
(5.23)
Note that since
A Hl-qg)=1-rgt—rg 2~ —rp g™
yields
Ag)=Q-rg —rog 2= =1 g ™)/(1—q7")
and
Ag Y1 —-g Y=y =1—-r1—12 =+ =1y, =0

The characteristic equation can then be rewritten as:
det{\I — (I — KH)®] = A,(A71)A"

g

As discussed before, the original DMC feedback gain is exactly the same as this
case. It would result in poor state convergence if used directly inside the dual-model
formulation. The rotating factor 8 can be used to modify the observer performance
so that it lies between the DMC feedback design and other feedback design options.
Following Lemma describes the state convergence property.

Lemma 5.2 Assuming SR° and SR! are the spectral radius of the state observer
with K and K respectively, the spectral radius SR? of the state observer with K =
K° + B(K! — K°) satisfies

SRP < (1-B)SR® +BSR!

Proof:
With K = K% 4+ (K — K"), the state observer
SR’ = [[(I-KH)® ||
= [[(1-8)I ~-K°H)®+p(I-K'H)2 |2
< 1-HIUI-KHE|2+8] (I ~K'H)® ||
< (1-PB)SR° +BSR! a
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Obviously, if the feedback gains K® = KPMC and K! = K%, Lemma 5.2 shows
that the B-observer has SR? = (1 — B)r, (where r; is the dominant pole of the
open loop process). This S-observer has better state convergence properties than the
feedback horizon approach discussed in Section 5.5.1. It also simplifies on-line tuning
and provides an optimal state estimates for some specific disturbance models.

The noise addition to the state estimates is also reduced significantly (Figure 5.7).
In this way, the noise propagation can be reduced. It can also be concluded that a
combination of using the S-observer and the feedback horizon Ngp can give a better
feedback performance and eliminate the effect of noise in the long term.
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02+ - - e e . . -
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E o Ao : ‘
028 ....‘.";‘..5 < i
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08} - I . . i
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Figure 5.8: Eigenvalue Distributions of the Feedback Observer with g-
Factor
The new observer design procedure with dynamic tuning consists of 5 steps:
e STEP 1: Build a dual-model state space formulation with ®,0,T';
e STEP 2: Design the deadbeat observer, K%;

e STEP 3: Design the S-observer, K = 1 + (K% — 1) to facilitate dynamic
tuning;

e STEP 4: Define a disturbance horizon, Ngg, to limit the addition of noise to
the state vector;

e STEP 5: Tune S on-line.

In the next section, an example will be used to show the performance of f-observer.
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5.5.3 Simulations

The plant used here is a process with slow disturbance dynamics.

1
20s+1

Y(s)= e *U(s) + D(s)

10s+1
With a sampling rate of 1 minute, this process has a over-damped dynamics (Fig-
ure 5.9). For this type of pseudo-ramp disturbance, Lee and Morari suggested using
an integrator to replace the disturbance model in the feedback loop (Morari & Lee
1991). Four feedback designs are considered in this simulation:

DMC: K =1[,1 1, 1, 1, 1, L AT
Integrator: K = [I, 2.90, 5.63, 9.09, 13.22, 19.97, ..., 142.34]T
Deadbeat : K = [1, 2.85, 5.44, 8.64, 12.35, 1649, ..., 98.23[T

B —Observer: K = [1, 1.37, 1.88, 2.52, 3.27, 4.10, , 20457

where 8 = 0.2 is used.

An MPC controller with P = 20, M = 2, A = 0 is used for this example. For a
step change in the disturbance, as shown in Figures 5.10 and 5.11, DMC feedback
(the dot-dashed line) takes a long time to reject the disturbance. Integrator feedback
(the dotted line) over-reacts and introduces a very large ‘pulse’ into the input and
output variables. Deadbeat feedback (the solid line) eliminates the disturbance almost
immediately but requires strong control effort. [-feedback (the dashed line) is a
compromise where disturbance rejection is slower than with the deadbeat design but
the control action is more practical. The output performance is still very good, i.e.
better than DMC and integrator feedback.

5.6 Conclusion

A predictive feedforward controller designed specifically for predictive control is
developed to reject measurable disturbances. Feedforward horizon, together with
several design methods, is put forward to improve the performance. Simulation results
show much better performance over conventional methods.

Several output feedback design methods, feedback horizon and rotating factor,
are developed/evaluated for better estimate convergence and noise reduction. Their
effects on the state estimation convergence are discussed in detail. The dual-model
state feedback design based on pole placement simplified the solution of state observer.
While applicable to general disturbance dynamics, the simple parameter § can also
be used to dynamically tune the controller performance on-line.
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Chapter 6

Robust Stability Analysis of

Unconstrained DMPC: A
Parameter Perturbation Method

6.1 Introduction

Robustness analysis of a control system deals with the control performance in
the presence of unexpected internal disturbances in the process. Usually, a nominal
controller is designed for process under ideal working conditions. Process deviations
from the ideal conditions would affect (degrade) the well designed nominal perfor-
mance. Therefore, at the design stage, it is desirable to obtain some knowledge on
how the control performance would change, and how to tune the nominal controller
to accommodate model-plant-mismatch(MPM).

Model predictive control needs a process description in explicit form, either a
parametric form such as DARMA, state space, efc., or a non-parametric step (im-
pulse) response coefficients form and its performance depends strongly on the process
modelling. One of the major issues in MPC is robustness analysis. Given the realities
of process identification, modelling error is unavoidable. Therefore, analysis of the
performance of MPC in the presence of model error is very important. Even without
theoretical support, it is a common feeling supported by numerous simulation results
that predictive control is quite robust relative to other modern multivariable control
techniques (Asbjornsen 1988).

After obtaining the process model, the differences between the actual process re-
sponse and the model response can be evaluated. Model uncertainties can be captured
in two ways:

e Method 1: Parametric Uncertainty

The first method uses model parameter uncertainties to characterize the changes
or errors in the process model. This form is especially suitable for processes

0A short version of this chapter was presented at the 1994 American Control Conference, Mary-
land, July 1994

92
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with slowly-drifting dynamics. The parameter uncertainties often have explicit
physical meanings. The changes in the mass of a moving vehicle or the catalyst
activity degradation in the chemical reactors are typical examples of parameter
changes of the process. The parameter uncertainties are usually obtained at the
same time as the model parameters are estimated.

e Method 2: Non-parametric Uncertainty

Another method is to use post-identification estimation. The model response
is compared with the actual process response subject to the same excitation.
Then, the model uncertainties are estimated from the information contained in
the residual and the excitation signals. There are two choices for the uncertainty
estimations, parametric or non-parametric. Obviously, if the same parametric
structure as the model is applied here, the model uncertainty is exactly the
same as the parameter uncertainties discussed above. Non-parametric methods
which are based on spectrum analysis in the frequency domain are usually used
for the general purpose of estimating the model uncertainties.

Signal analysis is a very broad area including various FFT algorithms, power
spectrums, window functions, etc. Due to its unlimited number of parameters,
it can be used for the estimation of most model uncertainties, provided that
the input excitation is rich enough. For SISO systems, it has been successfully
applied to estimate the model uncertainties (Banerjee & Shah 1995).

Generally speaking, the model uncertainties can be estimated very accurately
using signal analysis methods. Based on this accurate information, the sub-
sequent nominal controller can be tuned accordingly. However, there are two
problems related to this model uncertainty description. One is that the model
uncertainty spectrum usually does not have direct physical meaning which may
make it difficult to improve the process modelling. Another problem is that for
MIMO systems, there is no mature technology for model uncertainty estimation.

Model uncertainties usually degrade all aspects of MPC performance, but the
major concern is their effect on the closed loop stability. Since system stability can
be analyzed in both the time and the frequency domains, robustness analysis can be
evaluated in both domains too. For example, the Small Gain Theorem(SGT) can be
applied to examine the GPC control system robustness in the (spectral) frequency
domain (Clarke 1991) and the effects of GPC tuning parameters on the robustness
can be evaluated. Guidelines toward improving the robustness by using better tuned
parameters have been developed (Banerjee & Shah 1992). Since both GPC and most
of the commonly used MPC formulations have the same tuning parameters, these
guidelines are applicable to other MPC control algorithms as well.

In the time domain, extensive research results have been developed to analyze the
robustness of a control system given a state space description. Robustness criteria
can be obtained corresponding to the stability criteria in either Lyapunov function
form or the closed loop eigenvalue locations (Yedavalli 1985, Qiu & Davison 1986,
Dickman 1987, Kolla et al. 1989, Qu & Dorsey 1990, Niu, Abreu-Garcia & Yaz 19925b).
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Several new robustness criteria have been reported by describing model uncertainties
as interval matrices (Han & Lee 1994, Keel & Bhattacharyya 1995). Since robustness
criteria usually involve sufficient rather than necessary conditions, extensive research
has been directed towards obtaining less conservative conditions.

Since the proposed dual-model formulation is in state space form, its robustness
properties can be examined by directly applying recent research results from the
robustness analysis area. Therefore, the intention of this chapter is not to develop new
robust criteria but to apply existing literature results to the dual model formulation.
First, it assumes the parameter uncertainty form. Then, it takes the advantage
of the special structure of the dual model MPC formulation to generate explicit
representations of common types of model uncertainties. This in turn reduces the
conservativeness of the robust stability bounds derived using matrix perturbation
theory. One advantage of handling systems in state space is that the robustness
analysis can be easily extended to MIMO systems without technical problems.

6.2 Model-Plant-Mismatch in the Dual-Model Representa-
tion

MPM is characterized by parameter perturbations or uncertainty in the system
matrix ® and/or the control matrix 8 of the state space model (2.13). (Note that
the order of the model is determined by the prediction and control horizons specified
by the designer in Equation (4.2) ). In most applications, bounds on the parame-
ter uncertainty can normally be derived a priori from process analysis or estimated
based on experimental process identification tests. Once bounds on the parameter
uncertainty have been established the special structure of the dual model state space
formulation (2.13) can be used to get robustness bounds for MPC that are simple
and less conservative than those based on general systems theory.

If the uncertainties in the system and control matrices of Equation (2.13) are
represented by A® and A# respectively then it is straightforward to show that the
closed loop MPC formulation (4.6) becomes

[ X(k+1) ] _
| X(k+1) |
[ & ~ 0K ppe + A — AOK e 0K mpe + AOK npe X (k)
| (I ~KH)(A® — A0Kmpe) (I — KH)® + (1 ~ KH)A0Kmpe | | X (k)

Obviously, if there is any uncertainty in the process model, the controller and
observer design can not be easily separated as they were in the nominal case. If A,
is defined as the nominal closed loop matrix in Equation (4.6), then the perturbation
matrix (AA.) in additive form is:

AL - A® — AK mpe ABK mpe
¢ (I — KH)(A® — A0Kmpe) (1 — KH)AOK e
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_ I I A® - AKmpe 0
= [(I—KH) (I - KH) ” 0 AHK,,,,c]

(6.1)

The following subsections discuss four specific types of MPM that are common in
process models used for MPC. It is important to note that the dual model state space
formulation (2.13) assumes that the first n points of the open-loop step response are
represented by the elements of # and the remainder of the step response is represented
by the parametric model defined by r-elements in the last row of . For convenience,
these are referred to as the “fast” and the “slow” dynamics of the process.

6.2.1 Uncertainty in the Slow Process Dynamics, ¢

MPM in the slow process dynamics can be represented by parameter perturbations
in the matrix &. Assume that there is no MPM in the fast dynamics of the process,
i.e. A@ = 0. (Note that mismatch in the process gain and time delay are discussed
later). Since the elements of ® are either 0 or 1 except for those in the last row, the
matrix perturbation A® has the following structural form (where A¢ represents the
variation in the last row of matrix ®) :

F 0
0
Ad=| :
0
| Ad |
and the closed loop matrix perturbation is
Ad 0
A4 = [ (I - KH)A® 0 ] (6.2)

Given the special structure of K, H and A® in the dual-model formulation, it
follows that K HA® = 0. Therefore, the system matrix perturbation can be simplified
to

(6.3)

AA¢=[M’ 0]

AP O

This special structure of A® and AAs simplifies the robustness analysis as shown
in Section 6.3.

6.2.2 Uncertainty in the Fast Process Dynamics, 6

Let A® = 0 in Equation (6.1), and assume that the uncertainty in A6 is described
as variations of the step response coefficients, 4S; = S; — S;, t.e.

AOT = (651 8S, -+ 6Sp4i]
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Then the system matrix perturbation becomes

-I I [ A0Kppe O ]

—(I-KH) (I-KH) 0 AOKmp (6-4)

|

Gain mismatch and time-delay mismatch which are special cases of A8 are dis-
cussed below.
6.2.3 Gain Mismatch
The gain mismatch can be defined as Ak and satisfies
Si=(1+AkS; i=12,...,n+1

where Ak is a gain difference ratio, i.e.

_ K, — K, _ Actual Gain - Nominal Gain

Ak

K, Nominal Gain
The fast dynamics perturbation vector A#f is
A6 = Ak6

and the closed loop system perturbation matrix is

(6.5)

AAk=Ak[ ~0Kmpe 6K mpe ]

~(I = KH)8Kmpe (1 — KH)0K e

The AA; matrix is completely known except for the gain uncertainty Ak.

6.2.4 Time Delay Mismatch

Process time-delay mismatch is defined by assuming that the nominal time-delay d
is the minimal one. Time-delay mismatch for the MPC formulation is then represented
by

Al =o,Cy
where

[ S 0 0 0 0 T

Sa S 0 0 0

S3 S, Sy 0 0

®, = : : : : :

Sd... Sd...-l Sdm_.g Sd...—:'o oo S1
L Sn-H. Sn Sn—l Sn—2 et Sn—dm-(»-l .

(n+1)x(dm +1)
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Ad+1
P ——emm———
Ci= [10 -0 ~10--- 0]
1%(dm+1)

and d,, is the maximum possible process time-delay.
Unfortunately, there is no further simplification. The time-delay uncertainty can
be considered as a special form of Equation (6.4).

6.3 Robustness Analysis Using Matrix Perturbation The-
ory

There is a large body of literature dealing with the robust-stability analysis of
linear time invariant (LTI) systems. In 1977, a general methodology was proposed to
calculate explicit bounds on model uncertainties using time domain analysis (Patel,
Todd & Sridhar 1977). Improved results have been developed by taking advantage
of the known structure of particular linear perturbations (Yedavalli 1985). Recent
publications have focused on developing alternative criteria or reducing the degree of
conservativeness in the sufficient (but not necessary) conditions for robust stability.

However, generally speaking, there are two main approaches used for determining
robust stability criteria, time domain analysis based on the solution of Lyapunov
matrix equations or frequency domain techniques. The Lyapunov approach is difficult
if the system matrix is of high dimension or is poorly structured. Therefore, this
chapter is based on the frequency domain approach.

For special cases involving only one variable parameter, e.g. gain uncertainty in a
SISO system, root locus techniques can be used to get both necessary and sufficient
criteria.

Juang et al. developed robustness criteria by analyzing the eigenvalues of contin-
uous LTI systems in the presence of MPM (Juang et al. 1986). The following section
extends these results to discrete systems and applies them to MPC.

6.3.1 Formulation

Consider the multivariable linear discrete closed-loop system

Xi+1 = AcXi (6.6)
When there is parameter uncertainty (MPM) in A, the system is represented by
Xk+1 = fich (6-7)

Two widely used definitions of A are:

e Additive perturbation _
A= (Ac+AA)
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e Multiplicative perturbation
fic = (I + AAc)Ac

The additive perturbation model is more convenient for MPC type formulations and
is the only one considered in this paper. The following types of perturbation are
defined based on how much information is known about the perturbations (i.e. model

uncertainties):

1. Highly structured perturbation: The perturbation model structure and
bounds on each element of the perturbation matrix are known.

2. Weakly structured perturbation: The perturbation model structure is
known, but only a spectral norm bound on the perturbation matrix is known.

3. Unstructured perturbation: Perturbation model structure is unknown.

The study of robust stability usually assumes that the nominal system is stable,
i.e. all eigenvalues of A, are within the unit circle. Then, the system in (6.7) is said to
be robust if under perturbations in the elements of the actual system (4. = A+AAL),
the eigenvalues of A, are still within the unit circle.

6.3.2 Stability Criteria

Theorem 6.1 The perturbed system in (6.7) is asymptotically stable if (Ac.(e) —e™“T)
is invertible for allw > 0 and € € [0,1]. i.e.

det(Ac(e) —e“I) #0 (6.8)
where A.(€) is defined as a continuous matriz function of €, and satisfies

A0) =4, A(l)=A.+AA

Proof:

A.(€) represents the matrix variation from A, to A.+AA,, as € varies continuously
from O to 1. If there is a eigenvalue of A, + AA. outside the unit circle, there must
exist at least one € € [0, 1] such that A.(€) has eigenvalues on the unit circle. The
eigenvalue on the unit circle A; = ¢’ would make the matrix [A.(¢) — e”I)] become
singular at certain €,w;, t.e.

det(Ad(e) ~ 1) =0

This contradicts the condition in Equation (6.8). So, the result is proven. O
A similar result has been given for continuous system (Juang et al. 1986).

As one special case of A.(€), the actual system matrix A. + AA. also satisfies the
equation in (6.8) and leads to following theorem.
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Theorem 6.2 The perturbed system in (6.7) is asymptotically stable if
1. The nominal system in (6.6) is asymptotically stable, and

2. | Ade(@) | - | Mw) [[<1 w20
where M(w) = (A, —e“I)™!

Proof: Since A is stable, A, — e[ is always invertible. The perturbed system
matrix is expandable as:
Ac+AA. — eI = (A, — &°I)[I + (A. — €¥I)TAA]

where one of the two terms, A.—e?“[ is always invertible. According to Theorem 6.1,
the invertibility of (A. + AA, — ¢’I) must be ensured. It is sufficient to require that

I(4c - €*DTAA] < [[(Ac — )| AA]
<1

which gives .
|AA(w)]] < M@

The following corollary applies to the case where the error matrix can be written
as the product of two matrices, an unknown part E(w) and a known part B(w),

AA.(w) = E(w)B(w)

Corollary 6.1 The perturbed system in (6.7) with AA.(w) = E(w)B(w) is asymp-
totically stable if

1. The nominal system in (6.6) is asymptotically stable, and

2 |EW) - BwMw) <1l w20
where M(w) = (A, — e“I)™1

The proof is quite straightforward.

REMARKS:

1. These theorems and the corollary are only sufficient conditions for system sta-
bility. The norm inequality

IE x Bl < [|E]l l|BIl

introduces extra conservativeness into the robustness bound. Therefore, it is
desirable to extract known information in matrix B as much as possible. Then,
the known part of the B-matrix can be considered together with M(w) to reduce
the conservativeness. The special structure of the dual-model description helps
obtain this objective as shown in a later section.
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2. For weakly structured perturbations, this theorem is used to obtain allowable
bounds for the error matrix since only the norm information is required for the
model error.

3. Any matrix norm can be used.

4. For highly structured perturbations, the magnitude bounds on each element of
the error matrix can be defined. The error matrix can therefore be decomposed
accordingly. The following corollary will give less conservative results than
Corollary (6.1).

Corollary 6.2 The perturbed system in (6.7) with | E(w) |< p(w)II(w) is asymptot-
ically stable if

1. The nominal system in (6.6) is asymptotically stable.

2. pw) <1/ || Mw)BW)M(w) | w>0

where [I(w) is @ matriz consisting of the absolute uncertainty bound of each
element in E(w) while pu(w) is a scalar.

A typical example is the gain uncertainty in the dual-model description where the
gain mismatch term can be extracted from the rest of the matrices.

6.3.3 Robust Stability Bounds for Dual-Model MPC

The main objective of this section is to determine robust stability bounds, RB,
(i.e. the degree of MPM that can be accommodated without causing instability) for
MPC systems in the presence of MPM, i.e.

IEw)|| <RB

where the robustness bound RB includes the nominal process model parameters,
tuning parameters, etc. Even without the knowledge of modelling error E(w), the
nominal controller can be designed to improve the ability of the closed loop con-
trol system to handle unexpected process variations. This can be done using the
perturbation theorems and corollaries presented in the previous section as:

1
|B(w)(Ace — e )|

The four specific types of MPM discussed in Section 6.2 are:

RB =

e Errors in the model of the slow process dynamics, A®.
e Errors in the model of the fast process dynamics, A#.

e Gain mismatch, Ak.
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Table 6.1:Error Matrix of MPC Uncertainty

ASA0Kmpe O I !
General 0 AOKmpe (I-KH) (I-KH)
Ad 0
AP A® 0 '
Af —AOKmpe 0 ! !
0 A0Kmpe (I-KH) (I-KH)
—oKmpc aKmpc
Ak Ak ~(I~KH)8Kmpe (I~KH)0Kmpe
i ,CyKmpe (I-KH) (I-KH)

e Process time-delay mismatch, Ad.

Table 6.1 contains the B(w), E(w) matrices required to apply the perturbation
theorems to calculate the RB and to evaluate the system stability in the presence of
each of the four different types of mismatch. The perturbation theorems and matrix
definitions in Table 6.1 are very general in the sense that they can be used with
any matrix norm. However, if a specific norm is used the robustness analysis can be
further simplified, especially when the special structure of the dual-model state space
formulation is used.

Table 6.2 shows the stability requirements using the specific forms of E(w) and
B(w) that apply to DMPC, and the 2-norms of the E(w) matrix(e.g. the square root
of the maximum eigenvalue of ETE). Examination of Table 6.2 leads to the general
conclusion (for all four types of MPM defined in section 6.2.1 to 6.2.4) that:

1. the robustness improves as the norm || M(w) || decreases;

2. the robustness bound increases as the MPC is “detuned”, i.e. smaller feedback
gain Kp,pc.

For example, as the norm of the controller gain || Ky || decreases, the robustness
bounds increase. The controller gain, Ky, is a function of MPC tuning parameters
P, M and ) (see Equation (4.4)) . Hence, MPC can be tuned to provide the degree
of robustness required for a given application.

Note however that:

o Increased robustness usually means decreased performance due to lower state
feedback gain, Kppe-

e The matrix inequalities that define robustness are generally conservative.
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Table 6.2:2-Norm of Error Matrix and MPC Robustness Bound

| Ew) | RB Design Objective
Minimize
® Uncertainty | || Ad || m | M(w) ||
T Uncerainty | © | ooy | TM@B@) Tl | Kope |
k Uncertainty Ak M) B | M(w)B(w) ||
d Uncertainty S M@ B@)1Km | M(w)B(w) [, |l Kmpe I

6 =31, (85:)°

6.3.4 Robustness Analysis: Simulation Results

The effect of the MPC tuning parameters A, P and M on the robustness bounds of
the process 1/(s+1), T, = 0.3, in the presence of different types of MPM, is calculated
based on the definitions in Table 6.2.

The Nyquist frequency is one half of the sampling frequency, i.e. fxy = f,/2 =
1.667(rad/sec), which is used to normalize the real frequency in these figures. There-
fore, in the normalized frequency range (0 to 1.0), the critical frequency of the process
fe = 1(rad/sec) becomes f./fxy =0.6.

1. Control Weighting )\

With fixed values of P and M, P = 8, M = 1, the effects of the control weight-
ing, A, on the robustness bound are shown in Figure 6.1. The effect of A on the
state feedback gain K. is shown in Figure 6.2.

The effects can be summarized as:

e More knowledge about the type of uncertainty and tighter bounds on the
uncertainty result in increased robustness bounds. For example, the ro-
bustness bound for the gain uncertainty is much larger than the bound for
the general case, i.e. 0.22 vs. 0.012.

o Increasing the control weighting, A\, improves robustness bounds in the
high frequency range more than those in the low frequency range. In other
words, if the modelling error is a high frequency component (e.g. time-
delay mismatches), then, the MPC controller is able to overcome the MPM
by proper control weighting A. However, on the other hand, if the model
error happens at the low frequency range (e.g. gain and slow mode poles),
the effect of ) is quite limited.

e Increasing the control weighting A decreases the feedback gain (perfor-
mance) of the system(Figure 6.2).

Parameter Bounds: It is interesting to see how the frequency domain robust-
ness bound can be used to calculate the parameter bounds for the process model
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coefficients. As an interpretation of the robustness bound, for example, A = 1.0
gives a minimum bound of 0.033 (Figure 6.1.c) for the Af case. According to
the stability condition in Table 6.2 that,

10
8 =Y (45:)? < 0.033

i=1
Assuming a maximum relative error in S; as ds, then

e = Yzjj(as,-)2

=1

= 1ZO[S:'(

i=1

10
< (85?57
i=1

e

5 -
S,

13

For this example, the process model gives 312, S? = 5.7814. So that
5.7814 x (6s)* < 0.033

which gives

ds < 7.56%
That gives a quantitative result showing that the actual process step response
coefficients can be allowed to vary in a neighbourhood of +7.56%, on average,
about the real process coefficients without affecting the closed loop stability. On
the other hand, if all other coefficients are exact, the one uncertain coefficient,
say Sjo is allowed to vary by ds from

S2 x (d5)2 = 0.9029 x (5)? < 0.033

which gives ds < 19.12%.

Now, consider another example for the A®-uncertainty case (Figure 6.1.b). The
absolute value of the robustness bound appears smaller than in the previous
example (0.023 vs. 0.033). But the robust stability condition for this case is

lagl| < RB

For this simple example, n, = 1 and ||Ad|| = 2(Ar)? gives |Ar| < 0.1073.
Therefore, the actual parameter of the slow mode AR model could vary in the
range of (0.7408 £ 0.1073), i.e. 14.48%.

. The Output Prediction Horizon P

With A = 0 and M = 1, the effects of the prediction horizon, P, on the
robustness bound and controller gain are very similar to that of the control
weighting (Figure 6.3 and Figure 6.4). The low frequency part of the robustness
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bound can be increased by increasing the prediction horizon. For the case of
gain uncertainty (Figure 6.3d), the difference between adjusting P or A is quite
obvious. It appears that the effect of the prediction horizon is very limited
while control weighting can significantly increase the high frequency part of the
robustness bound. One explanation could be that the gain mismatch has an
influence over the whole prediction horizon. At the same time of increasing
the prediction horizon, more gain mismatches are introduced via the process
coefficients which counter affect the result of prediction horizon. Therefore,
the prediction horizon is not a good tuning parameter for the gain uncertainty
situations. But it is good for A cases.
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Figure 6.3: The Effect of MPC Prediction Horizon P on the Robust-
ness Bounds

3. The Input Control Horizon M

The control horizon, on the other hand, has a dramatic different effect on both
the robustness bounds (Figure 6.5) and the controller gain (Figure 6.6) where
A =0 and P =8 are used. M =1 is the best choice for all types of mismatch
at almost every frequency in the sense that the robustness bounds are larger,
i.e. that larger MPM can be tolerated without instability. These results also
show that the robustness bound and the controller gain are very sensitive to
changes in the control horizon. However, being integer numbers only, the control
horizon can not be used to tune the controller smoothly. A new technology,
the fractional control horizon, will be discussed in Chapter 8 to improve the
smoothness of the tuning.
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The Effect of Prediction Horizon P in MPC on the Con-
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Figure 6.6: The Effect of Control Horizon M in MPC on the Controller
Gain

4. All of the results can be summarized by saying that, in general, in-
creased robustness is obtained at the cost of poorer closed-loop performance.

6.3.5 Sensitivity Analysis of The Robustness Bound

The robustness bound is a nonlinear, discontinuous function of all the tuning
parameters and the process dynamics, :.e.

RB=F(\P M)

The tuning parameters have different magnitudes and a different relative effect on
robustness. However, there is no obvious way to generate relative or normalized
effects. Hence, their effects are compared using the same controller gain which implies
similar process performance. Then, the sensitivity of the robustness bound to tuning
parameters can be analyzed as the partial derivative:
RB,, = [B(RB)]

O | Kompeli=e
where ¢ = A, M, or P. Note that numerical approximations must be used to calculate
the continuous derivative shown above.

Table 6.3 shows the sensitivity analysis result when || K|l is in the neighbour-
hood of 0.45 to 0.50. When a tuning parameter changes, the corresponding robustness



Table 6.3:Sensitivity Analysis of the Robustness Bound

fox1073 | fax1073 | fox 1073

A 0 0.21 2.9

AP | P 0.6 1.6 0.05
M| o1 3.0 0.64

A 34 4.9 12.0

Ad ) 2.6 5.0 6.5
M| 054 0.83 14

A 0 0.65 4.7

Ak P 0.44 5.0 0.15
M 0 0.81 0.50

A 0 0.15 2.0
General | P 0.18 0.55 0.20
M| 0.04 0.12 0.45
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bound changes as well. Its frequency components are represented by the low frequency
part fo, the medium frequency part f,, = 0.17 and the high frequency part f. = 0.6
(which is the critical frequency of the overdamped process).

For each specific type of model uncertainties in the dual-model, the effects of
tuning parameters can be summarized as:

1. For model uncertainties in the slow dynamics, ¢.e. A®, a combination of increas-
ing the prediction horizon P for the low frequencies and increasing the control
weighting A for the medium and high frequencies could be used to improve the
robustness.

2. For model uncertainties in the fast dynamics, i.e. A6, all tuning parameters
can be used to increase the robustness bounds although the control weighting
A has the greatest effect for this type of model uncertainty.

3. In case of process gain uncertainty, the control weighting A increases the ro-
bustness at high frequencies but the prediction horizon, P, is the only tuning
parameter that affects the robustness bounds at low frequencies.

4. For the general case, control weighting, A, has the largest effect on robustness at
high frequencies but the prediction horizon, P, has a stronger effect at medium
and low frequencies. The effect of A on the control performance (e.g. controller
gain) is almost linear (Figure 6.2). Being a continuous adjustable parameter, it
is the most commonly used on-line tuning parameter for MPC control systems.

The control horizon M strongly affect both robustness and performance but in
its original integer form, it gives very coarse tuning adjustments. The results
also show that even with the same cost of control performance, the control
horizon can not do a better job than P and A.
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Robustness analysis based on perturbation theory (e.g. Corollary 6.1 and 6.2)
provides a direct and very general technique for analyzing the robust stability limits
of MPC. However, the results can sometimes be very conservative. Tighter robustness
bounds have been derived using:

e the dual-model formulation (2.13);
e specific types of MPM (Table 6.1);
e 2-norms of B, E and M matrices (Table 6.2).

However, the robustness results are still simply sufficient rather than necessary. The
next section looks at necessary and sufficient conditions for robust stability for some
very simple, specific examples.

6.4 Robustness Analysis Using Root Loci

For SISO processes, the robust performance of the closed loop system can be easily
analyzed using the root locus approach if there is only one unknown parameter. For
gain mismatch or time-delay mismatch in MPC applications, the root locus approach
can be successfully applied to calculate the maximum allowable gain or time-delay
mismatch, i.e. the Ak or Ad that moves the eigenvalues of the system to the unit
circle. The robustness bounds are necessary as well as sufficient and can be used

1. To evaluate the conservativeness of robustness bounds obtained from perturba-
tion theorems.

2. To evaluate the effects of tuning parameters when model uncertainties are
present.

The discussion in the preceding section and in previous studies based on the Small-
Gain Theorem (Banerjee & Shah 1992) suggests that the slower the controller (i.e.
large P, large A, small M) the more robust the closed loop system. The following
example shows this is not always true!

6.4.1 Effects of MPC Tuning Parameters on Gain Bounds

For a given process, the maximum allowable gain mismatch can be found by
continuously increasing the gain mismatch term Ak until the stability limit is reached.
By repeating the same procedure, the gain bounds K, can be obtained for different
combinations of controller parameters.

1. Example: Root Locus Analysis

The effects of the prediction horizon P and control weighting A are shown in
Figure 6.7 where the process is 1/(s + 1), T, = 0.3, M = 1. Figure 6.8 shows
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the effects of the control horizon M and control weighting A for the same process
with fixed P = 9. Careful analysis of the results from several root locus plots
leads to the following conclusions:

e Robustness increases as A increases (at the expense of performance).

o The sign or direction of the effect of the prediction horizon P and control
horizon M on robustness can reverse depending on the value of the control
weighting A (Figure 6.7 and 6.8).

— For small ), increasing P or decreasing M increases robustness.
— For large ), increasing P or decreasing M decreases robustness.

e Even with ) fixed, the effects of P and M on robustness (maximum allow-
able gain mismatch) are nonlinear.

These conclusions, although example dependent, are obviously much more spe-
cific than those based on perturbation theory. A similar root locus analysis of
the second order discrete system (1 +0.5¢7')/(1 — 1.5¢7! +0.7¢"2) (which has
been used frequently by K. J. Astrom) leads to similar conclusions.

Maximum Allowable Gain Mismatch, Km

2 L i 5 - 1 L
0 0.5 1 LS 2 25 3 s

Control Weighting, Lambda —>
Figure 6.7:The Effect of Tuning Parameters, P and A on Gain Bound

2. Example: Time Domain Responses

The robustness analysis presented above for a first order system provides tun-
ing guidelines that in some cases are opposite to widely accepted guidelines for
tuning MPC. Consider the time domain responses presented in Figure 6.9 to
Figure 6.12. using the following tuning parameters with Ak = 10:
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Maximum Allowable Gain Mismatch, Km

0 05 1 LS 2 25 3 35
Control Weighting, Lambda —>

Figure 6.8:The Effect of Tuning Parameters, M and A on Gain Bound

(a) A=2.0, P=17, M =1, the closed loop system is stable(Figure 6.9).

(b) A =20, P=9, M =1, the closed loop system is unstable(Figure 6.10),
i.e. increasing P de-stabilized the system.

(c) A=2.0, P =9, M = 2, the closed loop system is stable again(Figure 6.11).
i.e. increasing M stabilized the system.

(d) A=0.5, P=9, M = 2, the closed loop system is unstable(Figure 6.12),
i.e. decreasing A de-stabilized the system.

The results summarized in bold type are opposite to most widely used tuning
guidelines and to intuitions.

3. Example: Conservativeness of Perturbation Based Approach

The conservativeness is quite obvious when comparing Figure 6.7 with Fig-
ure 6.1(d) (the one with gain uncertainty). With the same MPC tuning pa-
rameters (A = 0, P = 8, M = 1), the robustness bound calculated from pertur-
bation theory is very small (= 0.026) while the true allowable gain mismatch
can be up to 5.0. This comparison shows that the conservativeness of robust-
ness bounds derived based on ezisting perturbation theorems is large enough to
produce misleading results about the effects of MPC tuning parameters on the
system robustness.
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Figure 6.9:Stable MPC Response with Ak =10and A =20,P=7,M =1
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Table 6.4:The Effects of P and A on Time-Delay Mismatch, M =1

( Prediction Horizon (P)
|_Weighting A [|5]|7]9[11] 13
00  |[3[3[4] 4 4
0.20<A<10{{313|4} 4 4
1.25<A<20( 314|144 4
225<A<30|4(4]4) 4 4

Table 6.5:The Effects of M and A on Time-Delay Mismatch, P =10

Control Horizon (M)

Weighting A [1[2]3|4] 5
0.0 4111 1
0.25 4121212 2
0.50 413132 2
0.75 413133 3

1.0 44133 3
1.25 4141413 3
15<A<2514(4|4|4 4
2.75 4141514 4
3.0 4155|595 5
3.25 4151515 5

6.4.2 Effects of MPC Tuning Parameters on Time-Delay
Bounds

The maximum allowable mismatch in the process time-delay, Ad,,, was obtained
for different combinations of MPC tuning parameters using the same root locus ap-
proach described above. The time-delay mismatch was assumed to be an integer
multiplier of the sampling interval, 7.

1. Example: MPM in the Time-delay

Using the same process (1/(s + 1), T, = 0.3 ), Tables 6.4 and 6.5 show the
maximum (integer) time-delay mismatch that can be handled using different
sets of tuning parameters.

The results can be summarized as:

e The robustness to time-delay changes increases as ) increases (i.e. rows in
Table 6.4 and 6.5).
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e Increasing the prediction horizon P allows more time-delay mismatch (z.e.
columns in Table 6.4).

e For small \, decreasing M gives more robustness (i.e. rows 1 to 6 in
Table 6.5).

e For large ), increasing M tends to allow more time-delay mismatch (z.e.
rows 9 and 10 in Table 6.5).
2. Example: Time Domain Responses
The last conclusion is illustrated in the time domain, assuming the time-delay
mismatch Ad,, =5 and selecting the set of controller parameters as:
(a) A=3.0, P =10, M = 1, the closed loop system is unstable (Figure 6.13).

(b) A = 3.0, P =10, M = 2, the closed loop system is stable(Figure 6.14),
i.e. increasing M stabilized the system, which is contrary to most

tuning guidelines.
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Figure 6.13: Unstable MPC Response with Ad = 5 and A = 3.0,P =
100M =1

6.5 Conclusion

1. A dual-model, state space formulation for MPC is formulated and used as the
basis for stability and robustness analysis. Specific, less conservative bounds
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Figure 6.14:Stable MPC Response with Ad=5 and A =3.0,P =10, M =2

for robust stability are derived for the cases of MPM in the slow modes of the
process, the fast modes of the process, the process gain and the process time
delay. Tuning guidelines for robust MPC tuning are developed and illustrated
by simulations.

2. Root locus techniques used to determine necessary and sufficient bounds for
robust stability of a SISO MPC system with MPM in the process gain or time-
delay, showed that robust stability analysis based on matrix perturbation can
be very conservative and sometimes misleading.

3. The robustness analysis showed that widely accepted MPC tuning guidelines are
not always correct. For example, increasing P can de-stabilize and increasing
M can stabilize an MPC system in the presence of MPM.



Chapter 7

Constraint Handling and
Constrained Stability

7.1 Introduction

In this age of high competition, chemical processes, whether new built or existing,
have to maintain production at high efficiencies to reduce operation costs. Production
rates have to be pushed closer and closer to, or even over their design capacities so
that, with the same capital investment, significant profit increases can be obtained.
On the other hand, safety issues in terms of occupational as well as environmental pro-
tection have become more and more important for modern automated plants. These
new challenges require multivariable and constraint dependent control strategies.

Obviously, the widely applied, SISO based PID control techniques which are the
basis of most DCS systems can not be used to solve the interactions and constraints
in multivariable systems. For input constraints, the conventional method is simply
to cut-off, i.e. cut the absolute input at its limits (usually called control saturation).
There is no traditional way to handle output constraints, which mostly relate to the
final product quality and/or environmental emissions.

Model predictive control techniques have the ability to satisfy industrial require-
ments, especially because of their unique ability to handle hard constraints. MPC
uses a process model to transform output constraints into input constraints. These
output constraints, together with input constraints, form a feasible region for the
future control action. Then, an optimization problem can be set up to find the op-
timal control action within the feasible region. Usually, process control becomes an
optimization problem instead of a control problem. However, computational efforts
have to be considered for real time control applications. Two effective methods have
been used to reduce the computations:

1. Linear models are used to describe the processes and the optimization is also lin-
ear or quadratic with linear constraint equations. In this convex type constraint
region, the optimal solution is always unique.

2. Supervisory control applications are recommended for use with large scale MPC
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applications where numerous local control loops perform regulatory control.
With this control structure, the control interval used for MPC is in the minute-
domain while embedded local PID controllers run at very fast rates(seconds).

With the rapid developments in both powerful computer hardware and more effi-
cient numerical software packages, the computation itself is not a big concern for the
implementation of predictive controllers.

Two issues in the predictive control area need further investigation. The first
major concern, especially to academic researchers, is the stability of the constrained
predictive control system. It is especially important from the point view of predictive
control theory completeness. Obtaining an optimal solution does not guarantee long
term stable behaviour. In recent years, important results on constrained stability have
been achieved for MPC with quadratic objective functions (Zafiriou 1991, Zafiriou &
Marchal 1991, Oliveira & Biegler 1994) and MPC with modified objective functions
(Rawlings & Muske 1993). Since these research results are very new to most control
researchers, this issue is reinvestigated in this thesis using the dual model state space
formulation. Detailed examples are used to clarify the concept and procedures.

For MPC with a linear objective function, the control solution of a well-posed
problem is always one of the vertices of the constraint region. The constrained sta-
bility is even more important. This problem is discussed in detail in this chapter and
a very simple stability criterion is obtained.

Since the constraints result in a set of linear algebraic equations containing the
process model coefficients, past inputs, states and outputs, constrained MPC is very
sensitive to model uncertainties and disturbances. These effects could produce incon-
sistent constraints where conventional predictive controllers could not find a solution
and simply abort the control application. Practically, this is unacceptable because in
those situations, the controller has to take whatever action is necessary (and feasible)
to return the process back to normal as soon as possible. In order to avoid constraint
inconsistency, some output constraints can be relaxed (Zafiriou & Hung-Wen 1993)
or even ignored under some circumstances. This is also the major area of difference
among commercial MPC control packages. In this Chapter, a new constraint handling
strategy is proposed to deal with this problem.

7.2 State Space Formulation with Constraints

The dual model state equation in Equation (2.13) plus the output prediction in
Equation (4.1) can be rewritten here as:

X(k+1) ® X (k) + 0 Au(k)

® X (k) + 6CTAU(k) (7.1)

Y,(k) = ®,X(k)+ AAU(K)
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Note that the current control action Au(k) has been dimensionally extended to match
the profile AU(k) to be consistent with the output prediction equation Y,(k).

Usually three types of hard constraint sets are considered by the control algorithm
— input limits, incremental or rate limits and output limits. Predictive control can
extend these constraint sets to long range dimensions by using the future profiles for
the input moves and output predictions. Therefore, constraints can be imposed on
the input trajectory U(k) and the output trajectory Y,(k) and expressed as:

cAu : LAu S AU(k) ..<. HAu
Cs: L, < Uk) <£ H,
cy : Ly < l,l’(k) < H!l

All constraint sets can be transformed into constraints on AU(k) by using the
output prediction equation such that

Cau: Law < AU(K) < Hau
Co: L. < LAUk)+u(k—1) < H.
C,: L, < AAU(K)+&,X(k) < H,

where A is the dynamic matrix and L is a unit lower triangle matrix.
REMARKS:

1. The boundaries of the constraint set are time variant because of the inclusion
of the past control input u(k — 1) and states X (k). Therefore, the on-line
control optimization must consider a completely new constraint set every control
interval. This increases the amount of time for the algorithm to find a solution
on-line.

2. For almost all process control applications, the steady state, i.e. Au(k) =
0,u(k) = u, and X(k) = X,,, must also satisfy the constraint equations.
Therefore, the constraint boundaries must satisfy

LAu < 0
L, < U
L, < X
H Au = 0
H, 2> ug
H, 2> X,

3. Theoretically, different limits can be applied to each future control move and
each output prediction in the trajectories , e.9. L, = [I!, {2, I3]T. To simplify
the optimization problem, they can be chosen equal to avoid complicating the
control algorithm. For example, the low limit of u(k) can then be written as
L, = L,[1, 1, 1]T. Therefore, in this thesis, both analysis and simulations use
the simplified form without further comment.



120

4. In a linear convex structure, the inconsistent constraint problem, i.e. there
would be no common region for the constraint sets, can be detected by building
a new linear programming problem (Solow 1984). Efficient algorithms such
as the Simplex method for this linear programming problem can be used to
find whether there is a inconsistency or not. Even though this topic is beyond
the scope of this study, it is important to note that inconsistencies do occur in
practical applications due to disturbances, model uncertainties and/or improper
constraint limits.

7.3 Stability Analysis of Constrained, Quadratic MPC

7.3.1 Stability Analysis: A Combinatorial Problem

The implementation of constrained predictive control usually becomes an opti-
mization problem which minimize the performance index

T = [[Yep(k) — B, X (E) — AAU(E)[l2

s.t. GAU(k) > b (7.2)
where
I _ Lay
-1 _HAu
_ L _ L,—u(k-1)
G=|_r| *=|_H +uk-1)
A L, — ®,X(k)
| —4 ] | —Hy —®,X(k) ]

Usually, numerical algorithms have to be applied to find the solution for this quadratic
optimization problem except some simple cases, e.g. SISO control with M = 1.
With boundary time-varying constraints, the controller structure remains linear but
switches from one to another (Zafiriou 1990). This makes the stability analysis very
difficult.

A general analysis of the constrained control system stability, by most researchers
(Zafiriou 1990, Zafiriou 1991, Oliveira & Biegler 1994), usually starts from the as-
sumption that a set of constraint equations is active, i.e.

G.AU(k) =b, (7.3)

where G,, b, are subsets, i.e. selected rows, of the general constraint matrix G and
b respectively.

Note that the quadratic objective function plus a convex constraint set guarantees
that the constrained solution must be on the boundaries (recall that a linear program
always has its solution at one of the vertices). This property results in some elements
of the control profile being determined by the constraint equations, which define
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the constraint boundaries, while others are not. In another words, the degrees of
freedom of the controller are reduced. Because each constraint equation in G can be
considered as a whole row element to build the active matrix G,, mathematically,
there are (2" — 1) possible structures of G, if the number of constraint equations is
n.

The active constraint equation is in a linear algebraic form and can be solved
by many methods including numerical algorithms. Note that this algebraic equation
is likely underdetermined, i.e. the rank of G, is less than or equal to the number
of columns which is the control horizon M. Otherwise, there would be no solution
to satisfy all equations, i.e. an inconsistent constraint set. For example, a SISO
problem with two unknown control variables (i.e. M = 2) has a maximum of only
two active constraint equations. Graphically, one active constraint equation means
the optimal solution must be on a single line so that only one control variable is
left to be determined by the optimization. If two constraint equations are active,
the solution is simply the intersection point of these two lines. Therefore, active
constraint equations reduce the degrees-of-freedom in the optimization problem.

The analytic solution of the ill-structured algebraic equation should use the con-
cept of range and null-space decomposition (Golub & Van-Loan 1989). Assume that
the rank of G, is r, as discussed above, and r < r, < M, where 7, refers to the
number of rows in G,, the problem is to find a full rank sub-space of G, such that a
part of the algebraic equation can be solved to generate components of U(k).

1. Constrained Solution and Stability Analysis
The following five steps define a procedure to perform constrained stability
analysis.

e STEP 1: perform QR decomposition (which is an extension of the eigen-
value analysis to non-square matrix) on the matrix G¥ as

GT = QR
where Q is an orthogonal matrix, i.e. QTQ = I;

e STEP 2: exchange the columns of the matrix R such that R becomes an
upper triangle matrix, z.e.

GIP = QRP = QR = [Q1 Q] [ RO‘ ] (7.4)

where R, is a full rank upper triangle matrix and P is the permutation
matrix. Since P is constructed by exchanging the columns of an identity
matrix, it is also full rank and satisfies PTP = I.

Obviously, by multiplying both sides of Equation (7.4) by P7, this relation
can be rewritten as

o = (& 92][’31 ]'PT
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T
G. = P[’R.fo][gi]
Therefore, replacing G, in the active constraint equation (7.3), yields
QT
P [RT o] [ Q%]AU=b,, (7.5)

STEP 3: partition the full control vector AU into two components, the
range component AU; and the null-space component AU,

AU;
AU = [& <] [ AU, ]
= QAU + QAl,
With this representation, the LHS of the active equation (7.5) becomes

T
LHS = P[RT o][g'é.][g1 Qz][ig;]

- Pl o[ %% oo, | 26
= PRTAU;
where the orthogonal property of Q is used such that
QTQ =1,07Q, =0
Q7Q=0,07Q =1

Since both matrix P and R, are full rank, the range component AU, can
be completely determined from the algebraic constraint equation as

AU, = R;TPTh, (7.6)

STEP 4: find the null-space control component AU, from the uncon-
strained optimization problem where the objective function becomes
ming = [[Yip(k) — B, X (k) — AAU(K)||
= Y(k) - 2,X (k) —~ AQIAUL (k) — AQAT,(K) (7.7)

The unconstrained solution is therefore obtained as
AUy (k) = (AQy)*[Yip(k) — B X (k)] — (AQ2)"AQ1AUL(K) (7.8)

Finally, the full control variable AU can be obtained by combining these
two components from Equation (7.6) and Equation (7.8)

AU = QAU + QAU
= Q(AQ2) [Yep(k) — Bp X (k)] + [I — Q2(AQ:)"A| Q1 AU (K)
= Q(AQ2)*[Yep(k) — Bp X (k)] + [ — Q2(AQ,)* A|Q R TP b,
(7.9)
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e STEP 5: find the constrained state feedback gain Kj,p. using the calcu-
lated control moves as

KypcX (k) = CctAU (k)
Then, check the eigenvalues of the closed loop matrix (® — 0K§pc)-

It is interesting to note that whenever any constraint is active, the original
(unconstrained) state feedback control law is changed. The effect of constraints
on closed loop stability can be summarized as:

(a) If the range component AU; in Equation (7.6) is a function of the state
variable (i.e. b, contains the state variable X (k)), an extra state feedback
path will be introduced into the closed loop system. The stability must
be re-evaluated by re-calculation of the eigenvalues of the system matrix.
For example, if any output constraint is active, the right hand side of the
active equation b, is state variable dependent which may change the closed
loop stability properties.

(b) Even if AU is not state dependent, the nominal unconstrained stability
analysis may still change due to the fact that the dynamic matrix A now
becomes AQ, in Equation (7.9).

(c) For the extreme case of @, = 0, i.e. all control variables are decided
by the constraint equation, the stability is totally independent of the un-
constrained optimal solution and independent of the tuning parameters
specified for conventional MPC. For example, control weighting and out-
put weighting do not have any effect at all. The control horizon and output
horizon would have a very limited effect. The control law simply becomes

AU = QAU = G b,

Again, the effect of constraints on stability depends on whether b, is state
dependent or not. State dependent b, changes the feedback structure of
the system. State independent b, does not give any state feedback so that
the system would behave as an open-loop process.

(d) On the other hand, if @, = I, there is no component determined by the
active constraint equation.

I-0Q,(AQ:)°A=0
The control variable is exactly equal to the unconstrained optimal solution.
2. Example
Let’s consider the 3rd order SISO system in Equation (2.17), t.e.

1

Gl = DG+ DG + 1)
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with the sampling interval T, = 1 and the dual-model order n = 8. An MPC
controller is designed using P = 8, M = 3, A = 0 to obtain a stable closed loop
system with the largest unconstrained poles at (—0.0695 + 0.13985).

Assuming that the hard constraints have the form of

05 < AU(k)ixy < 05
~20 < U(K)sx1 2.0

INIA
INIA

With these fourteen constraint equations, there are a total of (24 — 1 = 16383)
combinations of possible active constraint equations. Then, for each combina-
tion, the above stability analysis has to be performed.

Assume that the active constraint equation set is

0.0435 0.0077 0 -15] [0o0100 ---0
[0.1064 0.0435 0.0077]AU(’°)‘[1.5 ]‘[0 0010 - O]X(’“)

i.e. the low limit on the 1st output prediction and the high limit on the 2nd
output prediction.

The active constraint matrix G, can then be decomposed as

[ 0.0435 0.1064

GT = | 0.0077 0.0435
0  0.0077
T 09847 01662 | 0.0527 —0’8442 28'3523 R
= | —0.1743 -0.9387 | —0.2976 o '
L o —0.3032 | 09532 | 0 0 0
o) Q2

With a full rank R,, the range component AU, is
AU, = Rilb,
—22.64 99.82 -1.5 00100 ---0
- [ 0 —39.25]([1.5 ]‘[000 10 ---O]X(k))
_ | 18367 | |0 0 —2264 9982 0 0 0 0 O X (k)
~ | —58.87 00 0 -39.25 0 0 0 0 O

~ —

~
Kglo.

Then, using the constrained calculation in Equation (7.9), the constrained state
feedback gain can be obtained as:

Krpe = CTQa(AQy)"®, — CT[I — Qo(AQ)" A| QK.
= [0 0.0004 0 0 0.0194 0.0597 0.1141 0.1752 0.2378]
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The closed loop stability can be determined from the eigenvalues of (20K, )-
Using the values calculated above, it turns out that the largest eigenvalues are
(0.7851 +0.20915). For this active constraint set, the control system is still sta-
ble. But remember that this is just one case of 16383 possible active constraint
sets. For a complete stability analysis, all 16383 constraint combinations would
have to be analyzed.

The above analysis shows that mathematically there is no problem determining
the constrained stability of MPC. However, it is almost impossible to apply it to
practical applications without simplification. Two direct applications of the above
results are MPC control with a linear optimization objective function (MPC-LP) as
discussed in Section 7.4 and MPC control with a control horizon M = 1.

7.3.2 SISO with M =1, A Simplified Analysis

For the SISO process with M = 1, the constraint matrix G becomes a simple
vector with the form

SR . In,
-1 —hay
1 ly —u(k—1)
-1 —hy +u(k —1)
s51 ly — z.(k)
S2 ly — z,(k)
G = . b= .
Sp ly — z,(k)
—381 —hy =+ $1(k)
—352 —hy + z2(k)
[ —Sp L —hy + z,(k) j

Obviously, the assumption of only one future control move, z.e. M = 1 does simplify
the constraint set because all types of constraints can be converted into upper/lower
limits on the control input. No complicated numerical procedures are involved. The
optimal solution is found by simply reducing the unconstrained solution (if it is outside
of the bounds) to the closest bound. Many applications, especially these involving
control of sluggish processes, choose the control horizon M = 1 to avoid numerical
computations. Even for some MIMO systems, e.g. 2 x 2, simplified solutions are also
available (Mutha 1990).

The simplified constraint set obtained with M = 1 also makes it easy to analyze
the stability of the constrained control system. Since only one constraint equation
may be active at any time instant, the active constraint matrix is either G, = 1 or
G, = s;i. There are (P +2) possible structures for G,. Depending on what values are
used in b,, the closed loop stability can be discussed in two cases — input or output
constraints.
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Input Constraints
If only the constraints on AU or U are active, the constrained solution is

A‘U(k) = f(lAui h'Au: lu: h1n u(k - 1))
Recall that the open loop state equation is
X(k +1) = PX(k) + 0Au(k)

Since the control move Au(k) is not a function of the state variables, X(k),
and is bounded, the closed loop matrix is the same as the one in the open loop
formulation. Even though the transient responses of the process states may
change due to the limitations on the input energy, the asymptotical properties
of the closed loop system are not different from the open loop process. Open
loop stable processes are still closed loop stable when input constraints are
active. But open loop unstable processes become unstable if input constraints
are imposed. Conceptually, this is obvious since unstable processes require
unbounded input energy to keep them under control.

The input constrained controller also finds application in many processes since
it is very simple and intuitive. Simple Bang-Bang control is a typical example.
Even though the controlled variable fluctuates, its average value is controlled
to the desired point and there is no stability problem.

Output Constraints
Assume that one constraint equation (upper limit) is active,

G.Au(k) = b,
where G, = s; is a simple scalar and b, is

b. = BlH, - ®,X(k)]

B =10 -__.1-010---01

The constrained solution can then be obtained by solving the active constraint
equation
Au(k) = s;'(BH, — B®,X (k))

Clearly, the state variable X (k) is fed back by the constrained control move.
The closed loop system equation is obtained by substituting the control law
back into the open loop state equation, 1.e.

X(k+1) = ®X(k)+0Au(k)
= (® - s70B®,)X (k) + s;'0BH,

Since the system structure is still linear, closed loop stability can be determined
from the eigenvalues of the system matrix (® — s;'0B®,). The state feedback
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term does change the open loop elements in ®. Since both B and &, have

specific structures, the state feedback can be written in an explicit form as

.- 0
0 ---

[0
0

s7'0B®, =

OO 0O

REMARKS:

- 0 81/
cee 0 89/
- 0 siy/s
- 0 1
- 0 Si/si
-0 sn/s;

0

N - N =R=10T
OO O v

0

e Since 7 can be any integer number from 1 to P, there are a total of P cases
that must be evaluated to ensure closed loop stability.

o The extra state feedback affects the columns of the open loop dynamic

matrix. Corresponding changes in the eigenvalues are expected.

e Traditional MPC tuning parameters, A7, etc, do not have any direct
impact on the closed loop performance. They do affect which constraint

set becomes active though.

3. Simulation Result

Consider a first order plus time-delay SISO system with
G(s) =

The corresponding discrete model with 7, = 0.1 is
0.03921¢! + 0.056¢ 2

G(g™) =

system.

6—0.06

(s+1)

1 — 0.9048¢-1

The control horizon and prediction horizon are M = 1, P = 5 which results
in seven possible active constraint sets. The first two are constraints on the
input and the last five are constraint equations on the output predictions. The
spectral radius of the corresponding closed loop system is shown in Figure 7.1,
where the constraint set #0 refers to the spectral radius of the unconstrained

With the control weighting A = 0, the unconstrained solution is stable with
the largest pole located at 0.6430. Based on the spectral radius information
in Figure 7.1, the active output constraint does however cause closed loop in-
stability for this example. The active constraint on the 1st prediction of the
output, y(k +1|k), results in an unstable closed loop pole at 1.4292. To prevent
this problem, this output constraint on y(k + 1|k) could be relaxed so that it is
never active during the control calculations. This simple example shows that it
is important to analyze the properties of the constrained system at the design

stage such that reasonable and consistent constraint limits can be applied.
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Figure 7.1:Closed Loop Spectral Radius for Active Constraints

7.3.3 Summary

Predictive controllers using a linear model description plus linear constraint equa-
tions become piece-wise linear, state feedback controllers when hard constraints are
active. Closed loop stability can be still evaluated by examining the system eigen-
values, but there are many constraint combinations that must be considered. To
guarantee closed loop system stability, all possible linear structures have to be stable
even though some structures are never active during the control calculation.

Constraints on the process inputs do not change the open loop characteristics, but
may result in problems for open loop unstable processes. Usually, input constraints
are not a major concern in predictive control design since firstly, open loop unstable
systems are rare in chemical processes, and secondly, most input constraints are only
temporarily active.

As discussed earlier, output constraints are mapped into input constraints (using
the process model) as part of the formulation of the constrained optimization problem.
Thus it might appear at first that all constraints could be treated as input constraints.
However, constraints on the process outputs (and/or states) introduce extra state
feedback and therefore affect the closed loop stability significantly. Theoretically, their
effects can be evaluated by considering every possible control structure. However,
there are usually too many combinations even for a simple case such as M = 1. For
the majority of multivariable applications, it is not practical to do a complete stability
analysis if output constraints are specified.

The design procedure discussed above for constrained predictive controllers usually
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results in a conservative design. At the design stage, without the knowledge of which
constraint set will be active, all possible constrained control structures must be stable
even though some constraint sets will never be active. Also many constraints are only
active momentarily so that their asymptotical effects, i.e. stability, do not have the
chance to show up. However, for many constrained applications, the optimal solution
(even at steady state) lies at the intersection of a set of active constraints. Obviously,
the subset of constraints that could be active at steady state must be considered
carefully.

7.4 MPC with Linear Programming (MPC-LP)

Using a linear objective function, the MPC formulation is the same as that in
Equation (7.2) except that its optimization index becomes

min J = [Y,p(k) — B, X (k) — AAU(k)|
The MPC-LP control action has two distinct properties:

1. There is no unconstrained solution for MPC-LP;

2. The control solution of a well-posed problem is always at one vertex of the
feasible constraint region.

Therefore, mathematically, all control components are determined by the full-rank,
active linear constraint equations as:

AU = G b,

For this case, there is no need to do any range and null-space decomposition. The
solution can be taken into the dual-model state space formulation (7.1) as

X(k+1) = ®X(k) + 6CTAU(k)
= ®X(k) + 0CTG b,

The closed loop stability of the constrained MPC-LP depends totally on the open
loop stability defined by ®, and the active constraint equations in G, and b,.

There are two ways to handle the constrained stability problem of MPC-LP. One
is to treat it as a special case of MPC-QP by observing that MPC-QP essentially
considers all possible structures of G, while MPC-LP considers only full ranked G,
structures. Then, the number of constrained control structures is reduced but is
still too large for use in practical applications. Another approach is to relate MPC-
LP to unconstrained MPC-QP which substantially simplifies the stability problem of
MPC-LP. This approach is discussed in the following subsections in detail.
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7.4.1 Input Constraints Active Only

If only input constraints (absolute and/or incremental) are active, i.e.
by = f[LAua Hpy, Ly, Hy, u(k - 1)]

The addition of the control actions to the state space formulation does not change the
steady state properties since the input energy is limited. Therefore, the closed loop
stability of the constrained MPC-LP is exactly the same as the open loop stability.

For example, with M = 2, if an upper limit on Au(k|k) and a lower limit on
u(k + 1|k) are active, the constraint equation is

1] (8 ) = (% -uie)

The control actions can then be solved as

Au(klk) [t 07" (05 (05
Auk+1lk) ) |1 1 —-05—-uk-1) ) \ -1—-u(k-1)
With this control action, the closed loop system becomes

X(k+1) = ®X(k) + 61, 0]((.)_'51)_1,(1;—1))

= ®X(k) + 0.50

Obviously, the open loop poles in & are not moved as a result of this constrained
solution.

7.4.2 Output Constraints Active Only
If all active constraints are output variable related,
bﬂ = f[Lya Hya X(k)]

The presence of the state variable vector X (k) in the constraint equation and hence
in the control calculation introduces a feedback term to the control system. Closed
loop stability is therefore changed by the active constraints.

All output constraint equations have the form
AAU(k) + ,X (k) < By (7.10)

Note that B, refers to the output constraint bound vector consisting of either lower
bounds or upper bounds.
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Since the active constraint matrix G, is a subset of the dynamic matrix A in
Equation (7.10), with the orthogonal permutation matrix P,

G,
PA = ( e )
— [ ®ra
s, = ( e )
_ [ Bya
PB, = ( e )
Then, Equation (7.10) can be decomposed as two equation sets, an active equality
set and an inactive inequality set, so that

G AU(K) + 8, X(k) = Bya (7.11)
Gy AU (k) + ¢I>,,,,X (k) < By,b (7.12)

The constrained solution obtained from Equation (7.11) is
AU(k) = G7'By. — G;'®, ., X (k) (7.13)
Substituting AU (k) into Equation (7.12), yields
(=GsG5 By + Bp) X (k) < Byy — GG Bya (7.14)

The closed loop system becomes

X(k+1) = (® —0CTG;'®,.)X(k) +6CTG;'By,
= (& —O0KED)X (k) +0CTG,.'By,

Obviously, the open loop poles are shifted by the state feedback gain vector of MPC-
LP, which is expressed as K. = CTG;'®,,.

Again, the closed loop stability can be evaluated by the eigenvalues of (8 —6K5E).
If the stability analysis discussed in the last section is used, it becomes a combinatorial
problem with too many possible structures of G, to be considered.

A different approach is developed here. Note that the active constraint matrix
G, is a full-rank subset of the dynamic matrix A which is used for the unconstrained
solution of MPC-QP. It is very interesting to examine the relationship between the
unconstrained MPC-QP’s state feedback Ky and the constrained MPC-LP’s KLL.
which are defined as

Knpe = CTA'S,
K,’,‘:c = CTG.'%,,
An explicit explanation is that Kp. is a least squares solution for all state equa-

tions and K5F. is the ezact solution for some selected elements of the state variable.
Mathematically, it is possible to find the relation between K, and K,ﬁgc since
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Kppe = CTA*S,
CT(ATA)'ATe,
= CT(GZG,, + G{Gb)-l(dla'@p.a + GZ'Q ,b)

where the orthogonal property of the permutation matrix P is used.
Define matrices P, and P,;; as,

P, = (GfGa)-l
P, atb = (Gfaa +G{Gb)_1

and use the well known Lemma:
(A+ BCD)‘l =A1_A'B(C! + DA™'B)'DA™!
so that

Py = (P 1 +GZ‘G(,)_I
= P, — P.Gs{I +GTP.Gy|"'GI P,

After some algebraic manipulation, the gain vector can be simplified to

Kmpe = CTPs(GT®,, +GT®,4)
= KL — CTP,GI[I +GoP.GII [~ ®pp + GiG Bpa]  (7.15)

REMARKS:

e The unconstrained MPC-QP’s state feedback gain K, is made up of the con-
strained MPC-LP’s feedback gain K5F. and a correction term related to all
output constraint equations.

e If all output constraints are active, i.e. M = P,G, = A,®,, = ®,, the un-
constrained Ky, is exactly the constrained K,’;,f,’c. The closed loop stability of
MPC-LP is also equivalent to that of unconstrained MPC-QP.

An important result on the stability of MPC-LP can be obtained by further anal-
ysis of the state feedback gain relationship in Equation (7.15).

Theorem 7.1 The output constrained MPC-LP system is closed loop stable if the
corresponding MPC-QP system is unconstrained stable.
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Proof:
The closed loop system of MPC-LP is

X(k+1) = (2—0KL)X(K)
= (® — 0K ppe) X (k) + CTP,GY(I + GsP,GT] ' [®pp — GsG; B, 0] X (k)
(applying Equation (7.14))
< (® — 0K mpe) X (k) + CTP,GT[I + Gy PGy [Byp — GG By a]
= (® — 0K ppe) X (k) + Constant

With constant vector additions, the closed loop stability of MPC-LP is represented
by the eigenvalues of (® —0K ;) which is the closed loop matrix of the unconstrained
MPC-QP control system. Stable unconstrained MPC-QP guarantees that MPC-LP
is also stable. O

If the active constraint set has both input and output constraint equations, the
control action AU can be partitioned as two parts, AU; and AU,, using QR decompo-
sition procedures similar to these discussed above. Since only the output constraint
relevant component AU, introduces state feedback, the whole control system then
becomes partially open-loop and partially closed loop. The stability result about
MPC-LP can still applied to this case, as long as the control system is open loop
stable. Detailed proofs are omitted here.

One direct application of Theorem (7.1) on MPC-LP is to use a linear optimiza-
tion index in the MPC control system (Morshedi, Cutler & Skrovanek 1985, Lim
1988). As long as the unconstrained MPC-QP formulation is stable, the output con-
strained closed loop stability of MPC-LP can be guaranteed. To ensure at least one
active output constraint equation, it is suggested that a end-condition type, output
constraint be added to the original MPC-LP formulation, e.g. (Genceli & Nikolaou
1993). A relaxed endpoint constraint has also been used to guarantee the feasibility
of constrained GPC, e.g. (Rossiter, Kouvaritakis & Gossner 1996).

The drawback of using MPC-LP is that there is no analytic solution even for
the unconstrained case. MPC-LP control becomes a constraint driven optimization
problem. Numerical searching must be used to find the solution.

Another application is to add a linear optimization index, J>, involving only criti-
cal output predictions (instead of all output predictions as in MPC-LP) whose active
constraints would cause stability problem if a QP formulation were used (Oliveira
& Biegler 1994). Using LP, the stability of the unconstrained system will not be
affected. A more detailed discussion is given in Section 7.5.

7.5 Constraint Handling and Softening

Even though the predictive controller takes constraints into account in its calcu-
lations, the constraint violations can not be guaranteed at this stage. Disturbances
as well as model uncertainties can still drive the controlled system to unexpected
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conditions which could be outside the constraint bounds. Therefore, constraint in-
feasiblities must be considered by any practical controller. The easy solution is to
disable the control application and produce an alarm to operators. This is usually
unacceptable. Two methods are recommended to solve this problem. One is to im-
pose constraints carefully and only when it is necessary. Another is to relax certain
constraints.

7.5.1 Constraint Window

Mathematically, it is not a problem to represent all kinds of hard constraints in an
optimization format and to analyze their effects on the closed loop stability. However,
it has been shown that the hard constraints requirements, especially the constraints
on output variables and their predictions, are usually too restrictive for real appli-
cations. The original MPC algorithm applies output constraints on every point of
the prediction horizon. The large number of output constraints would not only com-
plicate the optimization but also increase the possibility of constraint inconsistency.
Due to the unavoidable model uncertainties, it is admitted that it may be physically
impossible to provide 100 percent constraint enforcement (Froisy 1994).

In practice, output constraints can be applied to only a part of the prediction hori-
zon - constraint window. For example, for processes with NMP, the initial portion of
the closed loop response can be ignored to improve the control performance (Garcia
& Morshedi 1986). Theoretical results have also been reported which relax the con-
straints for a finite (initial) time j; (Rawlings & Muske 1993). Output constraints can
also be applied only to the steady state prediction rather than the dynamic portion
of the predictions. To consider the steady state constraints, one popular approach is
to change the setpoint specification accordingly for dynamic constraint enforcement.

There are two kinds of constraints, hard constraints and soft constraints. Hard
constraints are those do not allow any violation. However, temporary violations of
soft constraints may be acceptable in some applications and hence constraint soften-
ing techniques can be applied. This can relax some constraint requirements for the
predictive controllers. Since the output constraints may cause stability problems and
require numerical searching, they should, if practical, be relaxed for the control stage.

7.5.2 Constraint Softening: An Introduction

Generally, the procedure used for softening constraints is to find an active con-
straint set first. Then, if the constraint can be relaxed, an extended objective function
is used for the MPC calculation, i.e.

J=h+TD

where 7, is the conventional MPC objective function, i.e.

P
T =Y (ysp(t +5) — y(t + 5))?

=1
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and 7, is a term to minimize the constraint violation.

J2 can be defined as S||¢|| (Li & Biegler 1989, Zafiriou 1991, Feher & Erickson
1993) or [le]l%, [l€]|* (Oliveira & Biegler 1994). ¢ is called the relaxation factor. For
example, let’s assume the active output constraint is y, such that y = y; is the
bounded solution for the constrained MPC, then ¢ can be defined as

€ = By

An new optimization problem can then be solved which penalizes the constraint
violation but allows temporary violations. Usually there are two problems in this
kind of arrangement:

1. Combinatorial Problem:

Similar to the constrained stability analysis, there are too many possible active
constraint sets. Suppose thai there are 10 output constraints, then, there are
210 — 1 = 1023 possible active output constraint sets. At the design stage, there
is no way to know which one will be active. Therefore, the control design and
analysis should consider every possible combinatioa of active constraints. To
prevent performance deterioration in the future, the controller tuning should be
very conservative.

2. Complicated Numerical Searching:
This new optimization is more complicated with mixed objective functions,
since the J; term also includes the future control moves. Efficient numerical
algorithms for QP and/or LP can no longer applied to this problem.

3. Stricter Stability Requirements:
If J> uses a 2-norm definition, as in J), these two terms can be combined
together which is equivalent to changing the control weighting in the original
MPC formulation (Oliveira & Biegler 1994). Since the weighting comes as a
result of a combinatorial problem, it required that the original MPC system
should be closed loop stable for a large range of control weighting.

A new strategy to handle output constraints is proposed in the next section.

7.5.3 Dynamic Constraint Softening using Prior Output Tra-
jectory

With knowledge of the process model and past input/output behaviour, it is possi-
ble to make predictions of the process output. From the predicted output trajectory,
it is possible to determine the extent of any output constraint violations. There-
fore, an intuitive method can be used to put penalty weighting on any future output
constraint violations.
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Define R
T =Y (v + %) lsp(t + 5) — y(& + 3 (7.16)
=1
where +; is the standard output weighting terms discussed in Chapter 4 and ¢; is
defined as a function of the distance between the output constraint y, and the future
predicted output y(t + j),

¥ = Fly—yt+35)}
= Flw —ym(t +7J) + A;AU} (7.17)
Note that the unknown future control moves, AU, are included in the output weight-
ing functions in Equation (7.17) which would make the control problem a nonlinear

optimization problem (Feher & Erickson 1993). However, if only the model predic-
tions, ¥, are applied, the weighting function can be simplified to

Vi = F{ys — ym(t +5)} (7.18)

with ¥; — oo, if the j-th constraint is active. As shown in Figure 7.2, the weightings
reflect the distances between the predicted outputs and their constraint limits.

2 —
L8} i
L6 L v ]
14F o me s oo Constraine Upper Bound - - .
12

Setpoint Trajectory

0.8 oo ) Output Predictions ]
06k (t+10it) )
041 :
02+ - .
00 5 10 1.5 2‘0 55 30

Prediction Steps —->
Figure 7.2:Process Predictions and Constraints

Three advantages of this new formulation are:

1. Simple optimization:

The objective function is still quadratic so that many efficient numerical al-
gorithms are available to find the control solution. Since only constraints on
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inputs are considered, an analytical solution may also be possible (Mutha 1990)
which would significantly reduce the time for on-line optimization even further.

2. Continuous control mode changes:

With the variable weighting, the predictive controller can still be represented as
a state feedback controller but with a variable gain vector. If the 1 is defined as
a continuous function of the distance, the gain elements are continuous functions
as well. Therefore, the linear controller is smoothly switching from one structure
to another instead of abrupt switching as in the original MPC formulation.

3. Dynamic consideration of the constraints:

The new formulation considers the hard constraint boundaries as well as the
distance from the current state to the constraint. The controller can therefore
take early action to prevent future constraint violations. This would also reduce
the possibility of infeasible solution or conflicting constraints.

The on-line implementation of the control optimization is the other major benefit
from this new control formulation since it is the same as the unconstrained formula-
tion. However, theoretically, there is a problem with the stability analysis. Because
the output weighting are now a function of the state variables, they would introduce
extra nonlinear state feedback into the controller. Generally speaking, it must be
considered as a nonlinear controller for the closed loop stability analysis.

7.5.4 Stability Issue

Rewrite the (unconstrained) state feedback control gain for the MPC controller
as

Kmpc = f(/\,M,P,‘Y,l,[J)
= CTA*e,
= CT(AT(y+9)A+ M AT (7 + )3, (7.19)

Note that input constraints, whether on the incremental input or absolute input, do
not change the open loop stability as discussed in the previous sections. Only the
unconstrained solution, which is a state feedback controller, needs to be considered
for the analysis of stability. Closed loop stability can be evaluated by the eigenvalues
of the matrix (® — 0 Kpnp).

REMARKS:

1. If the original unconstrained MPC system is stable for all v € [0, 00), then the
variable weighting MPC is also stable. Obviously, it requires the MPC system
to be tuned stable for a wide region of output weighting;



138

2. Assuming only one constraint is active, i.e. 1; — 0o, the objective function
becomes

T = [yp(t+37) —y(t+5)P
= max||Y, - Y2

which is similar to the “robust MPC” formulation (Campo & Morari 1987) and
later extensions (Zheng & Morari 1995). The “Robust MPC” formulation does
not try to minimize errors at all future horizons, but only the maximum error,
i.e. worst-case optimization. Together with linear constraint equations, this
formulation allows the integration of parameter uncertainties into the control
calculation (Campo 1990). Therefore, it facilitates the robustness analysis of
the closed loop control system.

A physical interpretation is when an output prediction approaches its constraint,
the “robust MPC” controller would consider this output term only and make
control moves to bring it back to the setpoint.

Use ¥ to represent the variable weighting matrix,

% 0 -~ 0
=] 0
0 0 - op

with ¢; € [0,00),7=1,2,...,P.

A sufficient condition for the closed loop stability of the variable weighting
predictive control system is that all eigenvalues of ® — §K,c(¥ = 00) are within the
unit circle for all individual v; and their combinations.

For example, a typical 2-norm of the controller gain [|Kpp| as a function of ¥
is shown in Figure 7.3. Obviously, as the weighting increases, the controller gain
increases and eventually converges to a constant. As a result, the original control
system would become fast but could be destabilized (similar to reducing the prediction
horizon to P = 1). If the stability of the closed loop system with ¢y = oo can be
ensured, there would not be any stability problem for the controller with low gain.

This sufficient condition provides an analytical tool to evaluate the stability at
the control design stage. It is a combinatorial problem too but a much simpler one
since output constraints are directly considered (instead of mapping into the input
domain). In the output domain, all output constraints are considered as high/low
limits only while in the input domain, they are linear functions. For example, a
SISO system would have only one active output constraint at one time. That means
if there are 10 output constraints, there are 10 possible structures of the ¥ matrix
(reduced from 1023). This significantly reduces the computation effort required for
the stability analysis.
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Figure 7.3:The Effect of Qutput Weighting on the State Feedback Gain

7.6 Conclusion

Model Predictive Control with hard constraints becomes a piece-wise linear state
feedback controller so that the stability problem can be evaluated by the characteris-
tics of the closed loop system matrix. Active output constraints introduce extra state
feedback terms. A control system with active input constraints becomes an open loop
system. Generally speaking, the stability analysis procedure is too complicated and
time consuming to be carried out for practical applications.

A new stability result is developed for MPC with linear objective function and hard
constraints. Its constrained stability can be guaranteed provided the corresponding
MPC-QP formulation is unconstrained stable.

A new constraint handling method is proposed which softens output constraints
and facilitates the stability analysis. The control calculation is also simplified by
using the knowledge of the future output trajectory so that less numerical searching
is required.



Chapter 8

Dual-Model Predictive Control
with Dynamic Tuning

8.1 Introduction

The quadratic optimization objective function is widely used in modern control
techniques ranging from LQC, GMV to Least Squares based identification algorithms.
This is also true for model predictive controllers including DMC, IDCOM and GPC.
One of the main reasons for the popularity of the quadratic objective function is that,
for unconstrained situations, there exists an analytic solution which makes both anal-
ysis and computation very simple. In order to obtain good MPC performance, several
parameters must be chosen properly. Among them are the prediction horizon(P), the
control horizon(M), the control weighting()) and output weightings (including steady
state weighting for open loop stable systems). It has been shown that the integer type
parameters, P and M, have a large impact on the control performances (in Chapter 4)
and robustness (in Chapter 6). Therefore, adjusting P and M is quite common for
tuning MPC applications. There are, however, two problems associated with these
two parameters:

1. Since they are integers, it is impossible to adjust the parameters smoothly and
continuously. In particular, both the tracking performance and robustness are
very sensitive to the control horizon(Qi & Fisher 1994). For example, in many
applications, taking M = 1 makes the control system stable but sluggish, or
conservative. On the other hand, using M = 2 results in fast response, and may
cause instability or poor robustness.

2. When (auto) adjusting the control horizons, the structure of the dynamic matrix
for the unconstrained solution must be changed and a matrix inversion (pseudo-
inverse) is required. These commonly off-line calculation procedures need a
great deal of computation especially for complex MIMO systems and may be
impractical for on-line tuning.

The introduction of continuous (rather than integer) tuning parameters is de-
sirable especially for on-line performance tuning. The commercial DMC package
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includes a set of ‘equal concern parameters’ for this purpose. In DMC, all prediction
and control horizons are fixed and the ‘equal concern parameters’, (which appear to
be equivalent to adjusting the output weightings), can be adjusted on-line by engi-
neers or computer programs. The integer type control horizon can be simplified by
assuming a linear relationship among control moves which continuously adjusts the
controller. For example, the pole-placement based method is proposed to find the
linear relationship (Peng, Fisher & Shah 1993). But it requires the solution of a
nonlinear algebraic equation and is only suitable for designing unconstrained predic-
tive controllers. In this chapter, an additional tuning parameter is defined which can
be treated as a fractional horizon to replace the integer control horizon as a tuning
parameter. The second problem, i.e. the computational load associated with modi-
fication and inversion of the dynamic matrix, can be solved by the idea of recursive
least squares techniques.

Closed loop stability may become a problem if the controller parameters are
changed on-line. It is well known that MPC is an optimal, performance-orientated
control technology. Stability analysis is a post design procedure. With a variable
linear control structure, i.e. on-line tuning, the stability of the closed loop system
should be ensured before commissioning the control application.

The complete development of a new predictive control structure with an additional
tuning parameter, the fractional control horizon, is discussed in this chapter. The
effects of the fractional horizon on the nominal stability and the robustness are also
proven. This new structure is then extended to more general situations as well as to
constrained predictive control design.

8.2 Recursive Calculations for Increasing Horizons

The unconstrained MPC solution can be obtained by calculating the control tra-
jectory, AU, that minimizes an appropriate performance index such as:

P M
J = ;[y,p(k + jlk) — y(k + jlk)* + Z MNAu(k +j —1))? (8.1)

This leads to the following least-squares control law:

(ATA + ADAU = ATE (8.2)

where the M-step future control action, AU, and P-element prediction error vector,
E, are given by

[Au(k), Au(k+1), ---, Au(k+ M —1)]T
Y, — B, X(k —1)

AU
E



The dynamic matrix A explicitly consists of the unit step response data as:

[ S1 0 o --- 0 ]
S S o -- 0

Sa Sz S1 s 0

SM SM_1 SM_2 s Sl

L Sp Sp-1 Sp-2 -+ Sp-m+1 lp

and
010 -0 --- 0
001 -0 --- 0
QP: A T,
000 ---1 ---0 px(nt1)
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The calculation of future output predictions, Y;,(k+ilk) = ®,X (k) can be done by
using process models in many different but equivalent ways (Li et al. 1989, Clarke &
Mohtadi 1987, Qi & Fisher 1993), plus feedback/feedforward estimation techniques.

Obviously, the future control action is a continuous function of the parameter A,

but a discrete function of integer parameters, P and M.

8.2.1 The Effects of M on the Control Action

Assuming there is an extra control action Aunmy; at step m + 1, i.e. the control
horizon M = m +1 , the dynamic matrix A, can be re-built by using the previous

matrix A,, and a new coefficient vector z,,4; as:

Anpr = [Am, -’L'm+1]

where
I+l = [0, -+, 0, 5, --, Sp-m]axl)

such that

A Ann = z‘;l; ][Am $m+1]

[ AT T
T _ ApAm + M AnTm+1
Am+lAm+1 A = X 1'3;,,.4.1Am x£+1$m+1 + /\m-{»-l ]

The least squares solution in Equation (8.2) can be expressed as:

[A,’;Am+AI ATz, “ AU, ]_[ AT ]E
- T

T T
T+t Am Ty Tmel + Am+1 Aumyr T+l

(8.3)



and after some algebraic manipulation, the solution can be obtained as:

AU,
JAY T
where
AUp,
G

G,

G

= AUp - Gl”:{nﬂ(E - AnAUR)
= G2x?n+1(E - AﬂlAng)

(AR Am + M) 'ATE

G3G>

(2T 1 Tmt1 + Amtt — Toy 1 AmGa) !
= (AL Am+ M)Al T
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(8.4)
(8.5)

Note that in both Equation (8.4) and (8.5) there is a term (E — A,;,AUj). Define
(E — AnAUL) as the residual term after m-step future inputs calculated to minimize
the prediction error E. The above expression can be interpreted as described in the

following remarks.
REMARKS:

1. With an extra element in the control horizon, the new future control vector
AU,, with (M = m + 1), can be obtained by using the original (M = m)
control vector AU, plus a modification term (Equation (8.4)).

2. The effectiveness of increasing the control horizon can be evaluated by analyzing
the residual term (E — A,,AU?). From the point of view of system optimiza-
tion, a large residual suggests increasing the control horizon until the residual
becomes sufficiently small.

3. The recursive update of the future control vector involves only a new, lower
dimensional matrix inverse, i.e. G, instead of an (m + 1) by (m + 1) matrix
inverse. For SISO or MIMO systems, if only one control horizon is retuned from
m to m + 1, G, is a scalar. This is very useful for on-line adjustment of the
controller parameters.

Note the following well known lemma about the block matrix inversion:

Assume the matrix

then

where
6, =
‘1’12 =
by =
b =

[ A B
| BT D

KK
o-1=| B Pr2
| $21 P22

A+ A'B(D-BTA'B)"'BTA™!
~A'B(D-BTA'B)™!
—(D-BTA'B)"'BTA™!

(D - BTA'B)!
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a similar relationship between AU, and AU?, can also be obtained by defining

A = ATA,.+ )M
B A-,T;.-tm-i»l
D = $£+1$m+1 + Am+1

The detailed derivation is omitted here.

8.2.2 Fractional Horizons a

A linear interpolation can be calculated along the straight line A— B in Figure 8.1
between the two control actions AU?, (point A, with M = m) and AU,, (point B,
with M = m + 1). Defining a real parameter a, a € [0,1] and the control move as
AUZ, leads to

AUS = AUS + a(AU, ~— AUR)

AU, — aKn(E — AnAUD) (8.6)

where K, = G1z% . Obviously, AU2 is vector of control moves that corresponds to
the control horizon M = m+a. Therefore, the continuously adjustable parameter, o,
which has the same unit scale as the control horizon, can be used to improve control
performance.

Note that a very useful extension of Equation (8.4) can be made to general pre-
dictive controllers with control horizons m and n as opposed to the special case of
m and m + 1. A linear interpolation between any two integer control horizons can
be obtained with corresponds to a control horizon m + a(n — m) (line A — C in
Figure 8.1). The control move update would include a small sized matrix inversion
instead of a scalar. All the stability results presented in the next section would still
hold.

8.3 Stability and Robustness of MPC with A Fractional
Control Horizon

The new control algorithm, expressed in terms of AUZ, is bounded by two con-
ventional MPC controllers. Stability and robustness analysis can be extended to this
algorithm too. The state feedback structure of this control algorithm is developed
first as below. A

8.3.1 State Feedback Control Form

In the state space formulation, the MPC controller can be represented by a state
feedback controller. The controller gain vector K, is a function of the tuning
parameters A, M, P and the output weighting terms in the control objective equation
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(8.1). The closed-loop stability of MPC systems can be analyzed by evaluating the
eigenvalues of the closed loop matrix ® — 6K ppc.

Corresponding to the control calculation in Equation (8.6), it is easily verified
that the controller gain becomes:

K:lpc = Kglpc - a(Kr]hpc - Krelpc) (8‘7)

where Kg.,,_. is the controller gain with control horizon M = m, and K}npc is the
controller gain with control horizon M =m + 1.

Recalling the control gain changes in Figure 6.6, the norm of the control gain
changes as a stair type function of the integer control horizon. The fractional horizon
gives a smooth change to the control gain, i.e. like an interpolation line. Therefore, it
is better suited for fine tuning the predictive controller. A simulation result is shown
in Figure 8.2 where as a increases from 0 to 1, the output response moves from the
M =1 case to the M = 2 case, i.e. becomes faster.

8.3.2 Stability of MPC with A Fractional Horizon

In order to guarantee the closed-loop stability of the fractional horizon MPC
controller, all eigenvalues of (® — 0K,‘,',pc) should be within the unit circle. If the
value of a is given, K7}, can be calculated and the closed loop stability can be easily
evaluated. Further, a general closed-loop stability result of the fractional horizon
MPC can be verified according to following lemma:
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Lemma 8.1 The closed-loop MPC system with fractional horizon M +a is stable for
all @ € [0,1] if and only if the MPC systems are stable with (integer) control horizon
Mand M +1.

Proof of necessity:
Since the parameter « € [0, 1], the necessity is trivial.
Proof of Sufficiency:
with horizon M, stable MPC —|| & — 0K?, . II2< 1.
with horizon M + 1, stable MPC —|| ® — 0K, [l2< 1.
with horizon M + a, the closed loop MPC

" ® - 6K, mpc ” ” a(q> 6K, ) + (1 - a)((p 0K, mpc) "2

< al®- OKrl;l.pc ll2 +(1 — ) || (2 — 6Kp,) 2
< a+(l-a)
<1

If one of the predictive control structures is not stable, (usually the one with the
larger control horizon), then a maximum allowable parameter amq, can be calculated
by matrix perturbation methods.
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Lemma 8.2 If the MPC system is stable for M = m but unstable for M = m + 1,
then there erists an upper bound Q.. such that the MPC system is stable for all
M =m+a,a € [0, amaz]. Further, a sufficient condition gives Qmez @S:

_ 1-[[ 2 0KD,. |1
TO(KEy. — K2 2

Proof:

| @ —0KGpellz = [l (B —0K,) +ab(Kyp — Kapo)) ll2

< 112~ 0Ky llz +a [| 6(Krpe — Kmngo) Il2

with the requirement

| @ - 0Kn,c ll2< 1
leads to
1- || @ - 6K pc ll2
= | 0(K e — KRipe) Il2
therefore

_ 1= ||‘I’ 0K e |l2
" 0( mpc Kglpc) ”2

where by assumption, K, ,,,pc # K3

Qmer Can also be calculated by root locus methods which would give a sufficient
and necessary condition. The knowledge of am.: can provide a guideline for on-line
tuning the controller, e.g. stability margins.

8.3.3 Robust Stability of MPC with A Fractional Horizon

As discussed in Chapter 6, model uncertainties change both the system matrix &
and the control matrix  and hence the closed-loop system stability. The nominal
system design should ensure that the actual closed loop system is stable against model
uncertainties, A® and Af. In most applications, the smaller the control horizon, the
more robust the system.

The parameter a can be used as an effective and convenient measure of compromise
between performance and robustness. For example, for the choice of M = 1 and
M = 2, an a-controller with & = 0.2 gives much better robustness than M = 2
without the excessive decrease in control performance.

The effect of the fractional horizon « on the robustness of the control system can
be evaluated the same way as the closed loop stability. A general result is given below
without a detailed proof.

Lemma 8.3 The closed-loop MPC system with fractional horizon M + a is robust
stable for all a € [0,1] if and only if the MPC systems are robust stable with (integer)
control horizons M and M + 1.
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8.4 Fractional horizon MPC with Hard Constraints

Even with hard constraints, the fractional horizon « concept can be used in the
same way as before. However, there is no analytic relationship between the con-
strained solutions AU? and AU!. The constrained optimization has to be solved
twice to find constrained solutions, for AU? and for AU!, within the same control
interval. Then, an interpolation between these two control actions can be obtained
using a. Since both AU? and AU! are constrained feasible, AU® is located either
inside the boundary (unconstrained) or on the boundary (constrained) due to the lin-
ear convex nature of the constraint equations. More complicated computations, i.e.
solving constrained optimization twice, are required if the fractional horizon control
is implemented in this way.

As discussed in Chapter 7, hard constraints would change the structure of the
closed loop control system. In particular, output constraints may cause stability
problems even though the nominal (unconstrained) control system is stable. The
fractional control horizon, with good robustness and stability properties, can be used
to adjust the control performance smoothly. However, it would certainly be a great
advantage if the stability results could be extended to handle hard constraints.

The general idea is to change the controller structure by continuously adjusting
the fractional horizon to avoid active constraints. Before further development, two
presumptions should be pointed out followed by feasibility analysis.

ASSUMPTION 1:

Two stable controller structures can be obtained from the nominal unconstrained
control design scheme which correspond to an aggressive (faster) and a slower control
action respectively. The unconstrained controllers can therefore be referred to as state
feedback controllers with gain vectors K}, and K.

ASSUMPTION 2:

One of the two controller structure, either the faster one or the slower one, has an
unconstrained solution which satisfies all hard constraints, i.e. constrained stable.

Note that, the first assumption is trivial because of the unconstrained controller
design. The second assumption, on the other hand, is not very obvious due to the
complex nature of the time-varying boundary constraints.

Consider the control of open loop stable processes. Obviously, it is reasonable to
assume that the original initial starting point is always at steady state and hence a
feasible solution. Then, suppose no future control moves at all so that the process
would stay at this operating point forever and there would be no violation of the
constraints. That is to say, it is always a safe choice for one structure of the controller
which is equivalent to choosing a control horizon equal to zero, i.e. M = 0, in the
model predictive controller. Then, even during the transient period with receding
horizon control calculations, an M = 0 controller is always safe and feasible because:
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1. it is eventually stable because of the open loop stable processes;

2. it is always a feasible solution ensured by all previous control steps.

With those two selected unconstrained stable control structures, the fractional
horizon controller can then be obtained which uses an interpolated control calculation
in between, where

1. Without hard constraints, all control structures on the interpolation line are
guaranteed (unconstrained) stable. This important line is then defined as Un-
constrained Stable Line (USL).

2. With hard constraints, if one controller gives an unconstrained solution out-
side the feasible convex constraint region, USL can have one and only one
intersection point with the constraint boundaries (for example, the point P in
Figure 8.3).

3. Any control structure between the stable end and the intersection point is still
on the USL and therefore guaranteed (constrained) stable;

4. The controller uses an unconstrained solution instead of constrained one which
requires numerical searching. Note that a fixed structured controller would find
the constrained solution at point C in Figure 8.3.

IR Feasible [
BN Constraint Region i\

Figure 8.3:The Fractional Control Horizon and The Constraint Set
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Therefore, stable control can be obtained that handles hard constraints by chang-
ing the control structure, as opposed to traditional fixed structure controllers. The
new control calculation is simply an unconstrained MPC solution. The only other
requirement is to find the intersection of the USL with the constraint boundaries
which corresponds to solving a linear algebra equation set. As a result, at the design
stage, the predictive controller can be chosen to achieve good nominal control prop-
erties without considering hard constraints. At the implementation stage, the on-line
calculation of the adjustable control horizon can be used to handle constraints in a
manner that keeps the stability property.

USL ALGORITHM:

e Step 1: Find two nominal unconstrained stable MPC controllers, K,,. and
Kf o

e Step 2: Calculate the two (unconstrained) control actions, AU? and AU',
corresponding to the two control structures;

e Step 3: Build the USL as
AU® = AU® + a(AU! — AUY)

e Step 4: If hard constraints are active, find o and AU* by solving the USL and
the constraint equations, i.e. GAU® = b. Note that a can be chosen smaller
than the value that satisfies the constraints.

e Step 5: Implement the calculated control move AU®.

The USL algorithm is used at every control step. Even though two unconstrained
MPC calculations and a linear algebraic equation must be solved on-line, it is much
simpler than the numerical search algorithm of constrained quadratic optimization.

To illustrate the new constraint handling strategy, consider the following simple
example. The process is

0.0014¢~! + 0.0054¢~2

-1 -
Gla™) = TToag1 + 0.9527¢2

Two unconstrained stable MPC controllers can be selected as:
e Controller 1: P =20, M =1, = 0.0 gives closed poles at 0.9288 + 0.0973j;
e Controller 2: P =20, M =3, = 0.0 gives a closed pole at 0.2277;

The first controller is slow and the second one is much faster.
Now, add some constraints to this MPC control system.

lugl| <5, and |yl <3
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The unconstrained response from the slow controller in Figure 8.4 shows that the
unconstrained system remains inside the feasible constraint region. But, the fast
controller control action in Figure 8.7 (as 1-controller) violates the control constraint
and therefore needs to be adjusted.

The fractional control horizon « is calculated such that the control move uses as
much control action as possible for a fast control response but still remain within
the constraint limits. Figure 8.6 shows the variations in « required to keep within
the constraint limits. The control move varies between the M = 1 controller action,
i.e. (a = 0)-controller, and the M = 3 controller action, i.e. (a = 1)-controller.
This control system with a variable control horizon « gives a much fast response as
shown in Figure 8.5. Figure 8.7 shows the changes of the constraint boundaries (the
dashed lines for the upper/lower limits), the 0-controller moves (the dotted line) and
the 1-controller moves (the dot-dashed line) for the control interval from 120 to 150.
Obviously, the a-controller moves (the solid line) are switched from one to another.
It uses smaller control action if it is close to the constraint and applies larger action
if far away from the boundaries. It remains as a linear controller structure bounded
by the stable 0-controller and the 1-controller so that the stability is ensured.

3 , . Setpoint and Output Trajectory .
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Figure 8.4:Unconstrained Control Response of M = 1 Controller

This example shows the great potential of using variable control structure to handle
hard constraints. The obvious advantage comes from the guaranteed stability and the
anelytical solution even with hard constraints.
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8.5 Dynamic Tuning Predictive Control: a-Controller

The tuning parameters of the structurally adjustable MPC controller can be changed
based on information about model identification, and/or actual control performance.
Examples of information are the residual between the model output and the actual
process output, or some performance measures based on the actual overall closed loop
control response.

8.5.1 Dynamic Tuning using A Variable Fractional Horizon

The fractional control horizon can be chosen a priori by the user at the same
time as other control parameters. It can be also defined as a function of the system
performance. For example, it can be automatically calculated depending on how good
the output is tracking the desired trajectory, i.e. the predictive control structure can
be changed dynamically.

Both nominal and robust performance analysis of predictive controllers have shown
that they are very sensitive to the control horizon. For real applications, there is a
trade-off between a fast response and a good robustness. The fractional control
horizon technique can be used to adjust this kind of trade-off on-line.

Define the parameter « as a function of the difference between the model output
y[* and the actual output measurement y; over some period of time, e.g. the residual
term:

de =y —Ur
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The residual comes from the MPM, process disturbances and noise. Obviously, if a
large residual exists, the controller should be tuned for good robustness (which usually
means slow response). If the process can be described well by the model (z.e. small
residual), fast control response can be achieved (with smaller robustness margin).

Therefore, to satisfy the two boundary conditions for the a,
kld<0 =1, Qkla=tc0 =0

For example, a nonlinear function such as the following can be used
o =1- ;2r-a.rctan A (8.8)

The parameter 7,0 < n < 00, is used to adjust the sensitivity of a to the residual
term dy as shown in Figure 8.8.

Obviously, this arrangement for a gives:

e a large control horizon, i.e. a — 1, if there is little noise/disturbance, model-
plant-mismatch, etc;

e a small control horizon, i.e. a — 0, if there is large noise/disturbance, model-
plant-mismatch, etc;

¢ an adjustable response speed for rejecting the existing residual d. For example,
with 77 = 0.5, the value of a decreases rapidly for even a small value of d, while
with n = 5, there is a dead-zone effect for small residuals.

Alternatively, a weighted sum of the residuals over some user-specified period of
past time could be used and setpoint changes could be accommodated by considering
deviations from a practical desired setpoint trajectory.

It is important to note that the “dynamic tuning” using Equation (8.8), or any
other means of determining o, results in absolute stability of the predictive control if
both boundary cases are stable.

To illustrate the advantages of dynamic tuning, consider the following example
with gain mismatch added (from 1.0 to 3.0) at step 124. The variable fractional
horizon is reduced (where 7 = 0.2) as soon as there is residual caused by the MPM
(Figure 8.9). As a result, robust control performance is obtained as shown in Fig-
ure 8.10.

8.5.2 Closed Loop Performance Based Method

Using the fractional control horizon a, an interesting result can be obtained in
terms of the dominant closed loop poles.

Lemma 8.4 If SR® is the spectral radius of the closed-loop MPC system with frac-
tional horizon M + a, then

SR® <SR! + (SR’ - SR'), a€|0,1]
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Proof:
With horizon M + a, the closed loop MPC
SR® = [[& - KZ%H |2
| (@ — Kb,8) + (1 - a)(@ — KSu) [l
o || @ = Kiped 2 +(1 - @) [| (B~ K3peb) [z
aSR® + (1 — a)SR!
SR! + a(SR" — SRY)

A IA

g

For example, if the fast controller has dominant pole at p = 0.2 and the slower
controller has p = 0.9, then fractional horizon MPC with a = 0.5 would have a
dominant pole around p = 0.2 + 0.5(0.9 - 0.2) = 0.55.

A useful application of this Lemma is for on-line tuning of MPC control perfor-
mance. After the MPC action is implemented on the real process, the closed loop
control performance can be measured in terms of step response, poles or model pa-
rameters. Then, after two or more trials, a can be used to direct the new controller
toward better performance. Both interpolation and extrapolation can be used for this
purpose. Even though traditional MPC parameters such as A can be used here, their
effect on the closed loop performance (i.e. pole locations) is not as obvious as with
.

Note that even though the a-controller was originally developed as a fractional
control horizon, it is not limited to the MPC controllers with the same A\, P only. It
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can be extended to more general controller formats. The two bounding contrellers can
use MPC control structures with totally different tuning parameters. As long as the
resulting controllers are stable, the concept of a-tuning can be applied. More generally,
the two controllers can be any type of linear controller such as deadbeat, mean-level,
PID control algorithms.

8.6 Conclusions

A recursive calculation formula for control action was developed which simplifies
the on-line control calculation. A continuous (real rather than integer) tuning pa-
rameter, a, is introduced to fine tune the predictive control such that best trade-off
between performance and robustness can be achieved. The new predictive controller
with a fractional horizon includes good stability, robustness and/or performance prop-
erties.

Another significant application of the fractional horizon control is to use a variable
structure controller to handle hard constraints, or for automatic, on-line adjustment
of the control performance. With the new control design, not only do the control
properties such as closed loop stability remain valid, but the constrained solution is
also simplified.

As an extension, an a-controller structure can be further used to handle more
general situations. The new controller gives the flexibility required for tuning the
control system on-line. The two bounding controller forms can be any stable linear
control algorithms.



Chapter 9

Conclusions

The new predictive control scheme, DMPC, facilitates practical applications by
integrating (1) state space recursive prediction, (2) predictive control-relevant pa-
rameter estimation, (3) robust disturbance handling via feedforward and feedback,
and (4) dynamic tuning. Design and analysis techniques based on state space theory
result in straightforward, effective tuning and robust control performance. Major re-
sults have been obtained in five areas: process modelling and identification, nominal
control design, robustness analysis, constrained stability and dynamic control tuning.

1. Process Modelling and Identification

The dual-model formulation developed in this thesis combines the conventional
FSR and DARMA models into a compact state space format and has the ad-
vantages of both models, i.e. it is applicable to general open loop stable and
unstable processes and the high dimension associated with FSR model (e.g.
DMC) is reduced significantly. State space control theory has been applied
directly to facilitate and improve predictive control design:

e Controllability analysis shows that future output predictions used in the
optimization index of predictive control are not equal weighted. Some
predictions such as the longest prediction are heavily emphasized while,
on the other hand, some linear combinations of the predictions are close
to being out-of-control.

e The parameter identification algorithm based on extended Kalman filter
theory gives unbiased, optimal parameter estimation even with colored
disturbance dynamics. Simultaneously estimating both states and param-
eters, the identification scheme results in a set of parameters which is
tailored to the requirements of predictive control, i.e. predictive control-
relevant identification. Model uncertainties in a parametric form are also
obtained which are useful for the robustness analysis of model predictive
control.

e The expansion of the state space structure to handle multi-inputs and
multi-output processes is straightforward. Therefore, the state space pro-
cedures used in this thesis including prediction, feedback observer, model

158
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parameter identification, analysis, control tuning etc. are applicable to
MIMO system control with almost no change.

2. Nominal Control Design

After obtaining the process model coefficients, a nominal controller is designed
by selecting the tuning parameters inherent in Model Predictive Control. Both
the servo and regulatory performance of the predictive controller strongly de-
pend on the tuning parameters, but are treated differently in this thesis.

e MPC Servo Controller

The effects of conventional MPC tuning parameters are determined and
then used to improve the condition of the dynamic matrix, which con-
sequently improves the robustness of the control system. For example,
reducing the control horizon and/or adding a control move penalty results
in better conditioning of the dynamic matrix. A new method based on
matrix decomposition is developed to determine values for these intuitive
but non-unique integer type tuning parameters such as the control horizon.
The best combination of tuning parameters is then chosen to implement
the predictive controller.

e MPC Predictive Feedforward Controller

A predictive feedforward control scheme is developed to improve the distur-
bance rejection performance. Similar to the future control profile concept,
a disturbance profile is introduced in order to eliminate the effect of dis-
turbances on the future output variables. Ideally, the disturbance can be
rejected perfectly by feedforward control only but feedback is necessary in
practice. Alternative methods for the controller design are also developed.

e Output Feedback Observer

Optimal state estimation (i.e. output prediction) is obtained by applying
observer algorithms such as the Kalman Filter method to the dual-model
formulation. Instead of solving a high dimensional Riccati equation, a
much simpler, pole placement method can be used for designing the ob-
server because of the particular structure of the dual-model formulation.
Then, the effects of feedback modification techniques, the feedback hori-
zon and the rotating factor 3, on the state convergence are discussed. The
proposed S-observer which is optimal for some specific but popular dis-
turbance structures, provides a convenient, independent second degree of
freedom or tuning parameter to adjust regulatory performance.

3. Nominal and Robust Performance Analysis

The stability requirements for a predictive controller based on a nominal model
and model uncertainties are determined in the state space domain where the
predictive controller is equivalent to a type of state feedback controller. A gen-
eral robust stability criterion for DMPC is obtained using matrix perturbation
theory. With the special parameterization of the dual model representation,
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the conservativeness of the robust controller design is reduced. The effects of
MPC tuning parameters are investigated and guidelines are obtained for robust
predictive control design. It is also shown that the conservativeness of the suffi-
cient criterion is sometimes big enough to give misleading results. For example,
despite conventional tuning guidelines which say the opposite, increasing the
output prediction horizon can de-stabilize and increasing the control horizon
can stabilize an MPC system in the presence of model-plant-mismatch.

. Constrained Stability Analysis and Design

The conventional way to handle hard constraints in predictive control results in
a numerical solution and undetermined stability for active output constraints.
The stability analysis of constrained MPC is reformulated to show the effects
and difficulties caused by active constraints. For MPC with a conventional
quadratic objective function (MPC-QP), active input constraints make the con-
trol system become an open loop system. Active output constraints change the
state feedback structure of the control system and therefore may cause insta-
bility. The constrained stability analysis method is mathematically sound but
becomes a combinatorial problem. Since there are too many possible active
constraint sets, the constrained stability analysis is impractical for most real
control applications.

For MPC with a linear objective function (MPC-LP), constrained stability re-
sults have also been developed in this thesis. Rather than evaluating every
possible constrained control structure, a very simple stability criterion is devel-
oped which shows that active output constraints do not cause stability problems
if the corresponding unconstrained MPC-QP formulation is stable. Since un-
constrained stability can be evaluated easily within the state feedback control
framework, this constrained stability criterion for MPC-LP is very convenient
and useful for practical applications.

Two improvements to handle hard constraints are suggested in this thesis. One
uses a ‘soft constraint’ concept to replace the hard constraints on process out-
puts. With time-varying output penalty terms in the optimization index, the
optimal solution is obtained analytically. Possible non-feasibility problems due
to disturbances and MPM are also avoided. This proposed method also simpli-
fies the stability analysis. Another alternative using the proposed a-controller
is very promising for practical applications. The a-controller is adjusted au-
tomatically such that hard constraint violations are always avoided and the
constrained control stability is absolutely guaranteed.

. Dynamic Tuning

For smooth on-line tuning, two tuning knobs, « and f3, are introduced into the
proposed implementation of predictive control. The a-controller is able to fine
tune the servo control performance for the nominal as well as possible model-
plant-mismatch situations. The single parameter a adjusted directly based on
on-line available information can guarantee closed loop control stability. The
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(B-observer is used to tune the feedback design. Based on the quality of process
measurements, the parameter 3 is used to adjust the speed of state estimation
and disturbance rejection.

The biggest advantage of using these two parameters come from the fact that
they are explicitly related to the pole locations. As shown in this thesis, a
linearly shifts the dominant pole location of the controller and 8 shifts the
pole locations of the state observer. The combined function of o and 3 tuning
results in a user-determined tradeoff between robustness and servo/regulatory
performances which can be implemented on-line using current information.

Even though the results in this thesis are obtained using a dual model represen-
tation, most of them are also applicable to other predictive control algorithms. For
example, the a-controller and S-observer concepts can also be applied to the popular
DMC and GPC schemes. Overall, the new predictive control scheme, DMPC, pro-
vides enhanced functionality and more flexibility for practical industrial applications.

Future extensions of this research work could include

¢ DMEKF Applications in MIMO Systems

In principle, the DMEKF algorithm can be extended to MIMO process iden-
tification without technical problems. As shown by a simple SISO process in
this thesis, this algorithm gives predictive control-relevant estimation of model
parameters, and an integrated way of balancing the requirements of state esti-
mation and parameter estimation. Applications of this algorithm to handle high
order SISO and MIMO control of real industrial processes should be performed.
In particular, the choice of the weighting matrix in the extended Kalman filter
algorithm should be examined further.

e Less Conservative Robustness Bounds for MIMO Systems

The use of the dual-model description helps obtain simpler and less conserva-
tive robust stability conditions than ‘general robustness analyses’. Because of
the state space form used in this thesis, the robustness analysis can be easily
extended to MIMO processes. However, the sufficient conditions are still too
conservative. To further reduce the conservativeness, new theoretical devel-
opments in matrix perturbation theory (e.g. internal matrices theorems) are
required.

¢ Constrained Robust Stability

The stability of the nominal MPC system is affected by both model uncertain-
ties and (active) hard constraints. While the individual effect of either model
uncertainties or constraints on the system stability is examined in Chapter 6 or
Chapter 7, the closed loop stability under both model uncertainties and con-
straints is a much more complicated theoretical problem. At this moment, there
does not appear to be a practical, theoretical approach to solve this problem.
However, constraint avoidance methods using the soft constraint concept or
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the constrained a-controller structure are promising for practical applications.
For example, adjusting the controller structure (instead of using fixed structure
conventional MPC) via the a parameter results in excellent stability proper-
ties. More efficient numerical procedures would improve the practicality of this
approach.

On-line Tuning a and 8 for MIMO Processes

For MIMO processes, the multivariable controller can be tuned on-line using
a and 8. The simplest method is to use only one a (or 8) to modify the
state feedback gain matrix Kpp. (or the observer matrix K). For example, the
controller gain matrix becomes

K:lpc = K?npc + a(Kr];xpc - Kgupc)

When only one parameter is adjusted, all theoretical results developed in this
thesis can be directly applied. But, the dynamic performance of each in-
put/output pair can not be tuned independently using only one tuning parame-
ter. Therefore, during the nominal MPC design, conventional MPC parameters
should be selected carefully to determine K3, and K},

Another method is to use different tuning parameters (a or 8) for different I/O
pairs. For example, for a 2 x 2 process, the on-line a-tuning parameter becomes

an o
o= 11 (12
Qg1 Qaxn

Each channel could be tuned independently by using the appropriate a;;. The
properties of a-controller, e.g. stability, robust stability etc., may need to be
extended for this more general formulation.
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