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Abstract 

Under congested conditions, the road traffic states of different arterial links will 

interact with each other; therefore, it is necessary to understand the behavior of 

traffic corridors and to investigate corridor-wide traffic coordinated control strategies. 

In order to achieve this, traffic flow models are applied in signal control to predict 

future traffic states. Optimization tools are used to search for the best sequence of 

future control decisions, based on predictions by traffic flow models. A number of 

model-based adaptive control strategies have been presented in the literature and 

have been proved effective in practice. However, most studies have modeled the 

traffic dynamic either at a link-based level or at an individual movement-based level. 

Moreover, the efficiency of corridor-wide coordination algorithms for congested 

large-scale networks still needs to be further improved. 

A hierarchical control structure is developed to divide the complex control 

problem into different control layers: the highest level optimizes the cycle length, the 

mid layer optimizes the offsets, and the Model Predictive Control (MPC) procedure 

is implemented in the lowest layer to optimize the split. In addition, there is an extra 

multi-modal priority control layer to provide priority for different travel modes. 

Firstly, MPC is applied to optimize the signal timing plans for arterial traffic. The 

objectives are to increase the throughput. A hybrid urban traffic flow model is 

proposed to provide relatively accurate predictions of the traffic state dynamic, 

which is capable of simulating queue evolutions among different lane groups in a 
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specific link. Secondly, this study expands the dynamic queue concept to the 

corridor-wide coordination problem. The ideal offset and boundary offsets to avoid 

spillback and starvation are found based on the shockwave profiles at each signalized 

intersection. A new multi-objective optimization model based on the preemptive goal 

programming is proposed to find the optimal offset. Thirdly, the priority control 

problem is formulated into a multi-objective optimization model, which is solved 

with a Non-dominated Sorting Genetic Algorithm. Pareto-optimal front results are 

presented to evaluate the trade-off among different objectives and the most 

appropriate solution is chosen with high-level information.  

Performance of the new adaptive controller is verified with software-in-the-

loop simulation. The applied simulation environment contains VISSIM with the 

ASC/3 module as the simulation environment and the control system as the solver. 

The simulation test bed includes two arterial corridors in Edmonton, Alberta. The 

simulation network was well calibrated and validated. The simulation results show 

that the proposed adaptive control methods outperform actuated control in increasing 

throughput, decreasing delay, and preventing queue spillback. 
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Chapter 1 Introduction 

 

1.1 Research Motivation 

1.1.1 Characteristics of Congested Arterial  

High levels of traffic congestion during peak periods are regular in busy arterials of 

major metropolitan areas, because the traffic demand approaches or exceeds the 

capacity of the arterial network. The identification of congested condition and 

understanding of the characteristics are the prerequisite to control the congested 

traffic flow. However, using the precise definition based on demand/capacity ratio is 

not an easy task in the real world by using the current data collection system. 

Because it is difficult to measure the actual traffic demand and capacity when the 

traffic system is congested, the congested condition at signalized intersection can be 

defined as the condition of having an approach with residual queue [1]. Traffic flow 

will become unstable under congested conditions. A small fluctuation from any 

vehicle in a platoon may cause adverse consequences and reduce the efficiency of 

traffic system sharply. The low stability of saturated traffic flow puts forward more 

stringent requirements to the traffic control system. 

Traffic lights at intersections are the major control measure in urban road 

network; however, it may lead to less efficient operations when traffic demand 

approaches or exceeds the network capacity. For example, one limited congestion 

triggered by a temporarily and locally excessive demand may lead to an unstable 
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escalation and the creation of secondary congestion when no suitable control actions 

are employed. Subsequently, it may lead the entire system to restricted mobility and 

result in degraded operational efficiency [2-4]. If the traffic state comes to the realm 

of congested condition, traffic intersections are not isolated and the traffic states of 

roads will interact with each other. Hence, it is necessary to understand the behavior 

of arterial traffic and to investigate corridor-wide coordinated signal control 

strategies. Providing an efficient signal control system has become increasingly 

important because of effects of the high congestion levels on the urban environment 

and the quality of life. There must exist an optimal control decision to keep the 

arterial traffic used in a well-organized way.  

1.1.2 Traffic Signal Control  

Over the past several decades, a large body of literature has been devoted on this 

vital issue and most of them fall into the following three categories: fixed-time 

control, actuated control and adaptive control. The fixed-time control strategy in 

current practice typically segments a day into a number of time intervals, and then a 

best-suited signal timing plan for each interval is determined by applying Webster’s 

formula or using optimization tools [5-7]. Unfortunately, the anticipated traffic 

patterns, particularly in congested condition, are seldom realized in the real-world 

exactly as they were planned. Obviously, the fixed-time control may cause unstable 

or unreliable control performance. The actuated control strategy partially responds to 

the real-time traffic arrivals, but it has been proved to be suboptimal control 

especially under heavy traffic condition because of the preset limits [8, 9]. For 
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example, it may result in myopic control. Adaptive control strategy adjusts, in real 

time, signal timing plans in response to real-time traffic flow fluctuations. With 

advances in computation and sensing, it has become an increasingly attractive option 

and been researched for the last three decades [10, 11]. Some adaptive control 

strategies proactively adjust signal timing plans to meet predicted traffic states before 

vehicles arrive. Others react by providing feedback to the measured traffic states.  

Proactive control strategy uses macroscopic, mesoscopic or microscopic 

traffic flow models to predict the future traffic states, and develop optimization tools 

to search for the best future control decisions based on the predicted traffic states. 

Therefore, this strategy, also called as the model-based adaptive control strategy, can 

make the best control decisions from a long-term point of view. A number of 

elaborate traffic flow models, which are deductively derived to describe the complex 

interactions between traffic states evolution and key control parameters, have been 

applied to provide relatively accurate predictions [12-18]. Subsequently, a number of 

model-based adaptive control systems have been presented in literature or even 

implemented in the field, some of which have been proved effective in practice [10]. 

However, the efficiency of corridor-wide coordination strategies is still needed to be 

further improved. It is very important to find a trade-off between the accuracy and 

the computational complexity, so that the model-based control strategies can make 

better control decisions and also keep being applicable in practice. Furthermore, it 

remains a challenging task to generate reliable signal timing plans in congested 
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traffic condition, which can systematically and globally consider the frequently 

occurred queue interactions among different lanes and adjacent intersections. 

1.1.3 Multi-modal Priority Control  

Modern arterial traffic flow is usually composed of multiple travel modes (such as 

cars, transit, pedestrian, trucks, and emergency vehicles), which compete for the 

same road space [19]. With correct installation and control strategy selection, traffic 

signals can improve both traffic mobility and safety for all road users. Multi-modal 

transportation has been recognized as the key to the future sustainable transportation 

system. Priority control systems are established to favor one mode over another. 

Transit Signal Priority (TSP) is a popular tool for improving transit performance and 

reliability, which temporarily adjusts the traffic signal timing to benefit transit 

vehicles. It is widely accepted that TSP can reduce unintended bus delays at 

signalized intersections through extending the current green or truncating the current 

red. A major controversy, though, is that TSP may bring excessive delays on non-

TSP approaches, as their assigned greens are shortened [20]. Ever since the 

emergence of the concept of TSP, researchers and traffic engineers have been 

seeking for best solutions to implement TSP strategies and improve the level of 

service for transit operations while offsetting negative impacts to other travel modes 

[21-23]. Adaptive signal priority control, which combines adaptive signal 

optimization with TSP strategies, is a cost-effective way to achieve these goals.  

In many practical decision-making problems, multiple objectives or multiple 

criteria are evident. The aforementioned adaptive priority control is a typical multi-
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objective optimization problem, where two or more travel mode priority controls 

must be satisfied simultaneously in order to obtain the preferred signal timing plan. 

In fact, it is normally the case that priority objectives of different travel modes are in 

conflict with each other. However, most studies have used the integrated delay as the 

objective of their priority control algorithms to balance the trade-offs between 

different travel modes. This is accomplished by combining different objectives 

through a weighted sum into a single objective, which obviously provides an easy 

way to enable a decision maker to choose a solution. However, the weighting vector 

needs to be assumed beforehand in this method. In addition, the weighting factors 

may not correspond accurately to the relative importance of the objectives.  

1.2 Statement of Problems 

For different proposed traffic flow models of arterial traffic network, different 

model-based control strategies have subsequently been derived. Despite the 

promising results and contribution from previous research, several elements 

regarding the traffic flow modeling and optimal control problem have not been 

clearly studied; but they affect the control performance and limit the applicability in 

congested conditions. 

a.  The queue evolution is modeled either at an individual movement-based level 

or link-based level by most previous studies. Hence, the control optimization 

problem is impossible to consider the multiple signal phase operation which 

is usual in practice and the adjusted saturation flow rate when shared lanes 

exist in a link. 
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b.  Most previous studies have not explicitly modeled the queue interactions 

among neighboring lane groups in a link and accounted for the impact of 

overflow turning queue length, which are very common during congested 

conditions. For example, left storage bay spillback will occur when turning 

traffic uses up the entire space of the storage lanes and blocks the through 

traffic. 

c.  Most existing coordination algorithms do not directly consider the dynamic 

evolution of queues at intersection approaches, so their application to 

congested conditions may lead to suboptimal results. Instead of using models 

based on the average traffic flow conditions and predefined congestion 

conditions, dynamic offset optimization is needed to deal with congestion 

phenomena.     

d.  In the current preference-based approach for multi-modal priority control, a 

relative preference vector needs to be supplied without any knowledge of the 

possible consequences. It is obvious that the trade-off solution obtained by 

using the preference-based method is largely sensitive to the relative 

preference vector used in forming the composite function. 

e.  Most traffic signal controllers in the field do not have the capability to 

implement adaptive signal control algorithms directly. The simulation 

platform should be able to test adaptive traffic signal control strategies based 

on industry standards and protocols. It is much close to the practice 
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application if the adaptive control strategies can be implemented directly in 

modern actuated-coordinated traffic controllers.  

1.3 Research Objectives and Scope  

The overall objective of the research is to develop and evaluate model-based 

adaptive signal control methodologies for congested arterial traffic flow. This 

research proposes a hierarchical control structure to divide the signal control problem 

of a large traffic system into three different control layers. Control problems with 

different details are addressed in different layers. As shown in Figure 1.1, the highest 

layer optimizes the cycle length on the basis of flow capacities and volume levels. 

Over time, the flexible cycle length is updated as the system adapts to changing 

traffic conditions. The mid layer continuously calculates optimal split with an 

embedded enhanced SFM and using the rolling horizon scheme for proactive control. 

The objective is to maximize the throughput and balance the queue length between 

adjacent links and lane groups. Based on the adjusted cycle length and green splits, 

the lowest layer adjusts the offsets from the network level by introducing the 

boundary offsets and considering the spillback offset and starvation offset. In 

addition, there is an extra multi-modal priority control layer to provide priority to 

different travel modals in the mixed arterial traffic.  

A. Proactive Split Control with Enhanced Arterial Traffic Flow Model 

This component employs traffic flow model to represent traffic state evolutions and 

their interaction with control parameters over the arterial network. It is an important 

prerequisite and the goal is to predict the traffic states evolutions into the future. This 
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research proposes one hybrid traffic flow model for arterial traffic network, which 

considers shared lanes and the left-turn bay capacity and is capable of simulating the 

queue evolutions among neighboring lane groups in a link. Then the MPC (Model 

Predictive Control) approach is adopted to develop a model-based adaptive control 

strategy which addresses several issues as mentioned in the above section.  

B. Adaptive Model-based Offset Control  

With embedded traffic flow models for signalized arterial network, traffic state 

equations and queue evolution equations can be established. Then the coordination 

problem can be described as a mathematical optimization problem to minimize or 

maximize a performance measure, which is a complex function of the signal timing, 

traffic state, and queue dynamic parameters. This research expands the dynamic 

queue concept to the coordination problem. 

C. Adaptive Signal Priority Control on Mixed Traffic  

Mixed traffic road users on most urban arterials are controlled by the same set of 

signals, and must compete for shared road space. Priority control systems are 

established to favor one traffic mode over another. However, the weighting 

coefficients need to be assumed beforehand in this method. In addition, the 

weighting coefficients may not correspond accurately to the relative importance of 

the objectives or allow trade-offs between the objectives to be expressed. Instead, 

another way is to use a multi-objective optimization in finding a number of Pareto-

optimal solutions. Then, the higher-level information is used to choose one solution.   

D. Evolutionary Algorithms Development 
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Due to the nonlinear nature of the proposed optimization models, an efficient 

algorithm is needed to provide sufficiently computing efficiency and reliable 

solutions in real world operations. Many previous studies have shown the 

effectiveness of Genetic Algorithm (GA) when solving signal optimization problems 

[24-26]. This study uses GA as the solution algorithms. It starts by initializing a 

population of solutions. Each individual represents a potential signal timing solution 

that evolves through many generations. New candidate solutions are generated by 

crossover and mutation at each iteration [27].  

E. Software-in-the-loop Simulation Based Implement and Evaluation 

The proposed adaptive signal control strategies are implemented and evaluated in the 

software-in-the-loop simulation (SILS) environment. The adaptive control strategies 

are implemented in the SILS by adding input–output functions over the NTCIP and 

Transmission Control Protocol/Internet Protocol (TCP/IP). The simulation results 

verify the performance at the macroscopic level through analytical analysis. 
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Figure 1.1 Research Flow Chart 

1.4 Research Contributions  

There are several major contributions of this research to the state-of-the-art 

knowledge in adaptive signal control field, including the followings: 

a.  A hybrid lane-group-based traffic flow model is put forward for arterial 

traffic network by combining the cell-transmission concept, dispersion-and-

store concept and store-and-forward concept. It has the potential to offer a 
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reliable representation of queue evolutions under various types of lane 

channelization at each intersection approach. 

b.  A hierarchical control structure is developed and analyzed for enhanced 

corridor-wide coordination operations, which aims to maximize the 

throughput and at the same time prevent the occurrence of starvation, 

blockage and spillback. The impact of phasing sequence on signal control 

performance can also be better captured and factored.  

c.  A modified rolling horizon scheme is proposed for the successive 

optimization framework. The control horizon and projection horizon are 

time-variant, which are based on the implicit timing features of adaptive 

control and are responsive to the real-time traffic conditions. 

d.  An adaptive algorithm is proposed to design signal coordination under 

congested condition. The ideal offset and boundary offsets to avoid spillback 

and starvation are found based on the shockwave profiles at each signalized 

intersection. A new multi-objective optimization model based on the 

preemptive goal programming is proposed to find the optimal offset. 

e.  Instead of using ambiguous weighting factors, multi-objective optimization 

problems is proposed to generate a set of priority control solutions called 

Pareto-optimal solution, so that the decision can be taken after the 

optimization. The most appropriate solution is chosen with high-level 

information. 
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1.5 Organization of the Dissertation 

There are seven chapters in this dissertation. Chapter 1 gives an introduction of the 

relevant research background, statement of problems as well as the objectives and 

scope of this research. The main contributions of this research are also summarized 

in this chapter. Chapter 2 presents a comprehensive literature review on macroscopic 

traffic flow models for arterial traffic, signal timing optimization method and on-line 

optimization framework. Chapter 3 describes the simulation platform architecture, 

test beds and evaluation scenarios. Chapter 4 presents an enhanced SFM-based 

signal optimization model to address the queue dynamic and multiple lane groups. 

Chapter 5 presents an algorithm to design signal coordination for networks with 

congested intersections. Chapter 6 presents a multi-objective optimization model to 

find Pareto-optimal front results for evaluating the trade-off among different 

objectives. Chapter 7 summarizes the main conclusions of this research and 

discusses recommendations for future research works. 
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Chapter 2 Literature Review 

 

2.1 Traffic Flow Models for Arterial Traffic Network 

A number of macroscopic traffic flow models have been presented in literatures to 

describe the traffic state evolutions of the urban traffic network. This review focuses 

only on deterministic models (discretized or not), since only such models could 

result in the practical formulation of the deterministic optimal control problem for 

traffic signals. The models, that represent the traffic state evolutions on signalized 

arterial networks, can be classified into the following three generalized categories: (1) 

kinematic wave model (KWM); (2) store-and-forward model (SFM); (3) dispersion-

and-store model (DSM) [28].  

2.1.1 Kinematic Wave Model 

This kind of model is based on the analogies from the hydrodynamic theory. Its 

general form consists of the two-dimensional conservation equation (Equation 2-1), 

the definitional formula which states that flow is equal to the product of density and 

speed (Equation 2-2), and the assumption that the speed is a function of traffic 

density [29]. In the discretized form, it is assumed that the link is divided into a 

number of segments. Daganzo proposed the Cell Transmission Model (CTM) which 

is a convergent numerical approximation to the continuous hydrodynamic model [30, 

31]. For a homogeneous roadway, Daganzo suggested using the time-invariant flow-

density relationship (Equation 2-3). 
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0
k q

t x

 
 

 
      (2-1) 

q ku        (2-2) 

Where k , q  and u  denote traffic density, flow and speed, respectively, which may 

vary across location x and time t. 

 min , , ( )jamq Vk Q W k k       (2-3) 

Where 
jamk  is the jam density, Q is the inflow capacity, V is the free-flow speed, and 

W is the backward shockwave speed. 

By dividing the whole network into homogeneous cells (cell length equals to 

the duration of time step multiplied by the free-flow speed), the results of the KWM 

can be approximated by a set of recursive equations. Equation (2-4) ensures the flow 

conservation, and Equation (2-5) determines the outflow for each cell at each time 

step. 

1( 1) ( ) ( ) ( )i i i in t n t y t y t        (2-4) 

 1,max 1( ) min ( ), ( ), [ ( )]i i i i iy t n t Q t w N n t       (2-5) 

Where ( )in t  = the number of vehicles in cell i during time step t 

( )iy t  = the number of vehicles that leave cell i during time step t  

,maxiN = the maximum number of vehicles that can be accommodated by cell , 

 ω = W/V 

( )iQ t  = the minimum of capacity flows from cell i to i + 1 
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Lo et al. showed that the CTM could be applied to signalized networks. The 

first cell of one link was modeled to function like a traffic signal and ( )iQ t  was 

formulated as a binary variable (Equation 2-6) that fluctuated between null and 

saturation flow rate 
maxQ [32-35]. In Lin and Wang’s model [36], cells in the network 

were categorized into four groups: ordinary, intersection, origin, and destination. 

However, the two models were only applicable to one-way traffic.  

max
( )

0
i

Q If t green phase
Q t

If t red phase


 


    (2-6) 

Zhang et al extended the two above models to two-way traffic and all the 

cells composing the network were categorized into five groups: ordinary, origin, 

destination, non-signalized diverge, signalized diverge, and signalized merge cells 

[26]. The origin cells were those with the inflow fixed as the corresponding demand 

input, and the destination cells were those with outflow unlimited. Li proposed 

enhanced CTM formulations to consider queue blockage among different lane 

groups at an intersection approach [37]. Each link was conceptually divided into four 

zones: the merging, propagation, diverging, and departure zones. Vehicles entering 

such a link moved over these four zones and then proceed to their respective 

destinations. Because in the diverging zone vehicles bounded to different 

destinations could join different queues, the enhanced CTM could consider blockage 

among different movements.  



 

16 

 

2.1.2 Store-and-Forward Model 

Store-and-forward model was first proposed by Gazis for representing the traffic 

conditions at oversaturated intersections and had since been used in various works 

notably for road traffic control [38, 39]. The concept was essentially adopted from 

the theory of communication networks. In this modeling approach, it was first 

assumed that vehicles entering a link were traveling at a fixed travel time. Then the 

vehicles were either stored at the end of this link in case of red signal, or further 

forwarded to downstream links at saturation flow rate during the time of green [28]. 

Considering a link z connecting two intersections 1i   and i  (Figure 2-1), the traffic 

dynamic of link z is given by the conservation equation (Equation 2-7) [16]. Queues 

are subject to the Equation 2-8. During periods of high demand, this constraint may 

automatically lead to a suitable upstream gating for protecting downstream areas 

from oversaturation. The inflow to the link z is given by Equation 2-9. 

( 1) ( ) [ ( ) ( ) ( ) ( )]z z z z z zx k x k T q k s k d k u k          (2-7) 

,max0 ( )z zx k x       (2-8) 

,( ) ( )z i Z iq k t u k      (2-9) 

Where  T = the discrete-time step  

k = 0, 1, …, the discrete-time index 

( )zx k = the number of vehicles within link z at time kT  

( )zq k , ( )zu k = the inflow and outflow of link z in the period [kT, (k+1)T], 

respectively  

( )zd k , ( )zs k  = the demand and the exit flow within the link, respectively  
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,maxzx = the maximum admissible queue length, number of vehicles 

 
,i Zt  = the turning ratio towards link z from the links that enter intersection i  

zq
zu

zd zs

1i  i

 

Figure 2.1 Arterial Link Example of SFM 

The most important characteristic of SFM is that the discrete-time step T is 

equal to cycle length, which enables the mathematical description of the traffic flow 

evolution without use of discrete variables. The outflow ( )zu k then has an average 

value for each period (Equation 2-10). This is of paramount importance because it 

opens the way to the application of a number of highly efficient optimization and 

control methods with polynomial complexity, which allows for coordinated control 

of large-scale networks in real time [16, 40]. 

( ) ( ) /z z zu k G k S C        (2-10) 

Where ( )zG k  is the green time of link z; 
zS is the saturation flow rate of link z; and 

C is the cycle length. 

The SFM is a simple model and is only applicable in the congested condition, 

when the vehicle queues resulting from the red phase cannot be dissolved completely 

at the end of the following green phase. Later, the model was extended to represent 
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of all possible traffic conditions (congested as well as uncongested) [13, 41].  In 

these approaches, a nonlinear outflow function was defined (Equation 2-11). 

However, a continuous link outflow (rather than zero flow during red and free flow 

during green), was still maintained.  

 ( ) min ( ) / , ( ) /z z z zu k G k S C x k T      (2-11) 

2.1.3 Dispersion-and-Store Model 

Dispersion-and-store model is based on empirical observations to simulate the 

dispersion of a platoon, that is, platoon of vehicles entering a link are dispersed until 

they are uniformly distributed on the link stretch. The dispersed platoon is 

subsequently either stored at the end of the link when the signal turns to red, or 

further diffused on the downstream link when the signal stays in green [42]. A 

number of literatures have developed different models to describe the behavior of 

platoons between signalized intersections. Generally, there are two kinds of 

mathematical models describing the dispersion of a platoon: Normal Distribution 

Model proposed by Pacey and Geometric Distribution Model proposed by Robertson 

[43-46]. 

Research had already been conducted on the applicability of platoon 

dispersion model as a reliable traffic flow model in urban networks. Most of the 

research had shown that Robertson platoon dispersion model is reliable, accurate, 

and robust [46-48]. It has become a virtually universal standard for platoon 

dispersion model and has been implemented in some traffic simulation software. The 
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basic Robertson platoon dispersion model takes the following mathematical form 

[49].  

(1 )     d d

t n t T n t nq F q F q      (2-12) 

Where d

tq = the arrival flow rate at the downstream signal at time t 

Ta = the average link travel time 

T = the minimum travel time on the link (measured in terms of unit steps 

 aT T ) 

t Tq 
= the departure flow rate at the upstream signal at time t-T 

n = the modeling time step duration 

 Fn = the smoothing factor given by 

1

1  



n

n n a

F
T

     (2-13) 

Where n
is the platoon dispersion factor and n

is the travel time factor.  

Equation (2-12) shows that the traffic flow d

tq  is a weighted combination of 

the arrival pattern at the downstream end of the link during the previous time step 



d

t nq  and the departure pattern from the upstream traffic signal T seconds ago 
t Tq . 

As it is an empirical model, the accurate calibration is critical in developing effective 

traffic signal timing plans. The state of practice has been the use of a goodness-of-fit 

approach to calibrate the model parameters. Alternatively, Yu developed an 

analytical framework for calibrating parameters of the platoon dispersion model 

using a statistical analysis of the link travel time distribution [50]. Rakha and 

Farzaneh improved Yu’s procedure and developed three generalized platoon 
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dispersion models that explicitly accounted for the effect of the time step duration on 

platoon dispersion [51]. Wong et al. modified the original DSM to deal with the 

problem of time-varying demand. It employed a calibrated set of sheared formulae 

for queues and delays, which was based on the group-based signal specification [52].  

2.1.4 Comparison 

CTM is capable of describing the traffic flow phenomena under the entire span of 

traffic conditions. It calls for the subdivision of network links into shorter cells and 

correspondingly shorter time steps. Thus CTM describes the link-internal traffic state 

evolutions more accurately. For example, it can capture shockwaves and queue 

dynamic phenomena. Unfortunately, it has the following obvious disadvantages: (1) 

the real-life implementation of CTM-based optimization control faces some 

difficulties, because the creation of large dimensional state vectors results in high 

computational requirements; (2) the real-time application calls for specific 

measurements for each cell which are usually not available or highly noisy due to 

various effects. It seems CTM has a limited significance in interrupted (signal-

controlled) traffic flow, in contrast to the uninterrupted freeway traffic flow, because 

many unpredictable and hardly measurable disturbances (incidents, illegal parking, 

pedestrian crossings, intersection blocking, etc.) may perturb the traffic flow in urban 

areas [16]. 

Clearly, SFM is a simple model and it can only provide a rough 

representation of the traffic dynamic in congested condition. For example, the model 

is not aware of short-term queue oscillations due to green-red switching within a 
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cycle. However, it represents the stop-and-go traffic flow dynamic of signalized 

arterial network fairly well in heavy congested condition, because the uncongested 

part of a link is considered negligible compared to the total link length and a platoon 

cannot be dispersed. Averaging link outflow over one or more cycles, which is 

determined as a percentage (green per cycle ratio) of the saturation flow rate, implies 

that it is only applicable for split optimization. It is obvious that cycle length and 

offsets have no impact within the SFM and must be either fixed or updated in real-

time independently. Finally, the linear state-space feature of the store-and-forward 

model opens the way to the application of a number of highly efficient optimization 

and control methods.  

Although DSM is only an empirical model, it is generally considered to 

represent interrupted traffic flow in signalized networks better in moderate traffic 

condition. This model has been empirically validated in several urban areas around 

the world. It is also known that in heavy congested condition the CTM model 

predicts a complicated queue evolution, where queues could be formed and 

dissipated at various locations along a link. However, the real-time accurate 

calibration of the model parameters is difficult. 

On the whole, both SFM and DSM consider the whole link as a single storage 

segment, but CTM uses the discretization of time and space in order for the 

continuous model to be approximated by a set of finite difference equations.  
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2.2 Signal Timing Optimization Method   

2.2.1 Simple Prediction based Method 

In the 1980s and 1990s, a number of model-based adaptive control systems emerged, 

such as OPAC in USA [53, 54], PRODYN and CRONOS in France [55, 56], 

MOTION in Germany [57] and UTOPIA in Italy [58]. Several experimental studies 

have shown benefits obtained by these systems on the delay and travel time 

compared to actuated signal timing plans. 

The prediction methods of these systems are similar, which predict the future 

traffic arrivals through the historical data measured from the upstream detectors or 

the detectors of upstream links. For example, the ideal detector location for OPAC is 

about 10s upstream of the stop-line (at free flow speed) or upstream of the worst 

queue on each lane of all through phases [10]. PRODYN estimates the number of 

vehicles lying between a detector and the traffic signal by using a upstream detector 

[55]. This kind of prediction methods can take into account the traffic flow variations 

at a scale of a few seconds and more globally (at the level of the intersection) than 

the actuated control. However, it is obvious that they are limited in the length of the 

time horizon. The longest prediction horizon is the time taken by the vehicles 

running from the upstream detector to the stop-line of the intersection. 

These systems use optimization methods to determine the green phase 

duration by a small time steps (4 or 5 s). The cycle duration is not constrained and 

varies from one cycle to the next. Only a few systems adjust or optimize phase 

sequence [59]. The obvious advantage is the greater flexibility for finding the green 
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phase durations in response to the real-time traffic states, especially for those which 

have a wide possible cycle spectrum at each cycle. However, they are not able to 

optimize several intersections of a large-scale network in the same optimization 

process, because most of the used optimization methods behave exponentially with 

the number of intersections. Some of these optimizations use heuristic techniques 

and extensive search techniques to find solutions. For example, OPAC employs 

complete enumeration while PRODYN employs dynamic programming and decision 

tree [55, 60, 61]. On the other hand, UTOPIA employs a heuristic global 

optimization method with polynomial complexity which allows for simultaneous 

consideration of several intersections [58]. This difficulty leads to a sub-optimality 

control for a large-scale network. 

Most of the systems operate on two or more hierarchical levels, which divide 

the complex control problem of a large traffic system into different control levels or 

layers. The lower control level mainly focuses on local control in a more elaborate 

way, and the higher control level deals with network-wide coordinated control in a 

more general way [60]. For example, the RHODES system is developed into a three-

level hierarchical structure [61, 62]. At the highest level, there is a dynamic network 

loading model that captures the slow-varying characteristics of traffic, such as road 

closures and construction. At the middle level, network flow control is actuated to 

coordinate road network, which is based on the prediction and estimation of the 

traffic flow loads on the roads. At the bottom level, intersection control is carried out 

by applying a model-based rolling horizon optimization approach. 
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2.2.2 Advanced Model based Method 

A. CTM based Methods 

Dynamic Intersection Signal Control Optimization (DISCO) was the first dynamic 

urban traffic optimization control approach based on CTM [15, 33, 34]. As discussed 

in section 2.1, by introducing binary variables, equation 2-5 was equivalently 

converted into a linear system. DISCO considered the entire fundamental diagram of 

traffic flow, which was essential for controlling congested and transient traffic. 

DISCO was able to generate a dynamic timing plan and optimized cycle length, 

phase splits, and offsets explicitly. The timing plans were derived by solving the 

optimization problem via a genetic algorithm. DISCO was applied to a congested 

network in Hong Kong and the results showed that DISCO outperformed the existing 

plans by 30–40% in overall delay reductions [35].  

In order to handle the number of stops, fixed or dynamic cycle length and the 

problem of unintended vehicle holding, Lin and Wang proposed an enhanced 0-1 

mixed-integer linear programming formulation based on CTM, in order to minimize 

a weighted sum of total delay and total number of stops [36]. Equation 2-5 was 

replaced by three linear inequalities that did not accurately replicate flow 

propagation and might suffer the so-called “vehicle-holding problem.” To address 

this issue, a penalty term for the phase change was used in the objective function to 

capture the cost associated with the lost time. The model was capable of capturing 

physical queues, fixed and variable cycle length, and the number of stops, while 

preserving the minimum and maximum green durations. In terms of computational 
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efficiency, the proposed formulation had the least number of binary integers as 

compared with other previous formulations that were developed with the same 

approach. 

Pohlmann et al. developed a prototype of a new adaptive control based on 

CTM [63]. Every 15 minutes the proposed prototype adapted and optimized signal 

plans and coordination patterns to the currently estimated traffic demand in the 

network. Firstly, the upcoming traffic demand was forecasted and estimated. Then 

cycle length and green splits were adjusted based on the estimated demand. Finally, 

offsets were optimized by using the CTM in combination with Genetic Algorithms 

and a second alternative approach named Sequential Enumeration. The simulation 

results showed that quality of the optimized signal plans and especially the adequacy 

of cycle lengths stood and fell with the accuracy of traffic demand. 

Li presented an arterial signal optimization model to captures traffic dynamic 

with enhanced CTM formulations, which took into account complex flow 

interactions among different lane groups [37]. The signal optimization model could 

optimize the cycle length, split, and offset, while preventing link blockage and lane 

blockage. Extensive simulation experiments were conducted for field segments of 

four congested intersections in Silver Spring, Maryland. Through comparisons with 

signal-timing plans from TRANSYT-7F, results demonstrated that both the total 

delay and throughput resulting from the proposed model were far better, particularly 

in congested condition. 

 B. SFM based Methods 
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Presumably the first report on the use of SFM for signal control optimization is by 

Dans and Gazis [64]. They formulated the problem of minimization of the aggregate 

delay as a dynamic optimization model. Through time discretization, the model was 

reduced to a linear programming (LP) problem for a fairly wide range of operational 

conditions, in order to obtain the order of queues exhaustion and an approximation to 

their optimum time variation. A variety of constraints, such as an upper limit on the 

individual delay, were transformed into additional linear constraints of the LP 

problem. The method is demonstrated by optimizing the operation of a two-node, 

four-queue network.   

Later, Diakaki developed the TUC (traffic responsive urban control) system 

by using SFM as the underlying traffic flow model [65-67]. Instead of optimizing the 

signal timing parameters, TUC optimized the linear multivariable feedback regulator 

off-line. The control law was developed through the application of the Linear-

Quadratic (LQ) methodology to the formulated optimal control problem. It required 

the availability of nominal values of green splits, which were the values of green 

splits that were optimal for a given historical demand and might be obtained through 

available techniques (e.g. through TRANSYT optimization).  

Compared with TUC, Aboudolas et al. presented other two novel control 

methodologies based on the SFM [16]. Firstly, an open-loop quadratic-programming 

control (QPC) approach was developed, which can be efficiently solved by using 

broadly available codes of commercial software. However, to keep the linear 

characteristic, the store-and-forward model was only applicable in congested 
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condition. Therefore, an open-loop nonlinear optimal control (NOC) approach was 

developed based on a nonlinear traffic model, which was more elaborate to describe 

more complex traffic dynamic. A numerical feasible-direction optimization 

algorithm was applied to solve NOC iteratively, which required more computational 

complexity than QPC. A preliminary simulation-based investigation was conducted 

to demonstrate the comparative efficiency and real-time feasibility of the developed 

signal control methods. 

Later, Aboudolas et al. investigated the efficiency of the QPC that aimed at 

balancing the link queues and minimizing the risk of queue spillback [40]. The 

corresponding optimization algorithm was embedded in a rolling-horizon control 

scheme for the application of the proposed methodology in real time. The efficiency 

and real-time feasibility was demonstrated and compared with the LQ approach via 

simulation test with a number of different demand scenarios.  

 C. DSM based Methods 

TRANSYT is one of the most widely used offline signal optimization programs and 

uses the DSM as the traffic flow model. The link flows and link turning proportions 

are inputs, which are assumed to be constant for the entire simulation period. The 

performance index is a combination of the total delay and the number of stops made 

by vehicles. If the adjusted timings improve the performance index, the optimization 

process will output the beneficial timings [68]. The optimum is reached by 

successive adoption of beneficial timings. Its hill-climbing optimization algorithm 

does not guarantee that a global optimum will be achieved and is also highly 
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dependent on the quality of the starting solution. Another limitation of TRANSYT is 

that the performance is questionable in heavy congested traffic condition. Version 7 

of TRNSYAT was modified by Federal Highway Administration in 1981 to 

accommodate driving on the right. TRANSYT-7F incorporates genetic algorithm 

search technique to improve and accelerate the convergence to optimal solution. In 

the recent releases of TRANSYT-7F, new objective functions are added to handle 

heavy congested condition (i.e., minimize queue and maximize throughput) [69]. 

SCOOT was first developed by Robertson’s team and has been extended later 

in several respects. It is has been applied to over 150 cities in the world [10]. 

SCOOT incorporates an optimizer into the TRANSYT for online application and 

includes algorithms for dynamic control of individual intersections, arterials, and 

grids/networks. Similar to TRANSYT, SCOOT seeks to minimize the linear 

combination of vehicular delay and stops. It uses link flow profile to tune cycle 

length, splits, and offset values of each intersection on cycle-by-cycle basis. More 

precisely, SCOOT is run repeatedly in real time to investigate the effect of 

incremental changes of splits, offsets, and cycle time. If the changes turn out to be 

beneficial, they are submitted to the local signal controllers. SCOOT handles 

congestion with several features, such as: congestion importance factors, congestion 

offset, gating, and variable node-based target saturation. However, if queuing 

occurred right up to the exit detector, SCOOT is not capable to model this condition 

and could not detect the stationary vehicles [70]. 
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2.2.3 Adaptive Offset Optimiztion Method 

The literature review on the adaptive offset optimization methods, which can be 

classified as two types: 1) the centralized control, and 2) the hierarchical control.  

A. Centralized Control 

Wey and Jayakrishnan [71] presented an integer-linear program of signal 

optimization with an embedded Robertson’s platoon dispersion model. The model 

assumed flexible cycle lengths and phase sequences and included explicit constraints 

to model the movement of traffic along the streets, and to capture the permitted 

movements from signal controllers. Lo et al. presented the Dynamic Intersection 

Signal Control Optimization (DISCO) prototype, which may be the first dynamic 

urban traffic optimization control approach based on the Cell Transmission Model 

CTM [35]. DISCO was able to generate a dynamic timing plan and optimized cycle 

length, phase splits, and offsets explicitly. Later, several other studies extended and 

improved the CTM-based signal timing optimization [26, 36]. Li extended the cell 

transmission concept to take into account complex flow interactions among different 

lane groups. The proposed arterial signal optimization model can yield effective 

signal plans for both saturated and under-saturated intersections [72].   

 MITROP (Mixed-Integer Traffic Optimization Program) was designed to 

simultaneously optimize all the traffic control variables of the network including 

cycle time, splits of green time, and offsets. The traffic flow dynamic was described 

both by deterministic and stochastic models. The optimization problem was 

formulated in terms of mixed-integer linear programming and a globally-optimal 
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solution was determined using IBM's MPSX optimization system [73]. The method 

was applied to several traffic signal networks.  

The work by Abu-Lebdeh and Benekohal [74, 75] provided frameworks for 

developing a signal coordination model on arterials with oversaturated intersections. 

The works were based on the dynamic queue management of a signal system on a 

single arterial. The split, cycle length and offsets were dynamically and continuously 

adjusted to respond to real-time conditions. Girianna and F. Benekohal extended the 

concept of signal coordination to a grid network of oversaturated arterials, and 

formulated the signal coordination as a dynamic optimization problem. The 

algorithm intelligently generated optimal signal timing plans along individual 

arterials by considering the traffic demand’s variation and the position of critical 

signals [76].  

Recently, Liu and Chang proposed an optimization model for the design of 

arterial signal timings with an embedded set of enhanced macroscopic traffic flow 

equations, which can precisely model the traffic evolution along the arterial link [77]. 

He et al. presented a unified platoon-based mathematical formulation, called 

PAMSCOD, to perform arterial traffic signal control [17]. A mixed-integer linear 

program (MILP) was solved to determine future optimal signal plans (cycle length, 

offset, split) based on the current traffic controller status, online platoon data and 

priority requests from special vehicles.  

B. Hierarchical Control 
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SIGOP (Network Signal Optimization Model) consisted of two major components: a 

flow model and an optimization methodology. The objective function was expressed 

as system disutility in terms of vehicle delay, stops, and excess queue length. The 

optimization procedure sought the optimal signal setting to minimize the value of 

disutility [78].  

TRANSYT was one of the most widely used offline signal optimization 

programs and uses the platoon dispersion flow model. The link flows and link 

turning proportions were inputs, which were assumed to be constant for the entire 

simulation period. The performance index was a combination of the total delay and 

the number of stops made by vehicles. If the adjusted timings improved the 

performance index, then the optimization process outputs beneficial timings. 

Optimization is reached by the successive adoption of beneficial timings [68]. 

Lieberman et al. proposed the RT/IMPOST [79]. The idea was to control 

queue growth on every saturated approach by suitably metering traffic to maintain 

stable queues. A mixed-integer linear program (MILP) was formulated to yield 

optimal values of signal offsets and queue length for each approach. In order to 

continuously control the actual queue lengths on each saturated approach at optimal 

queue lengths computed by the MILP formulation, a nonlinear programming 

formulation adjusted the green phase durations of each signal cycle. 

Diakaki et al. developed the traffic-responsive urban control (TUC) to 

provide coordinated, traffic-responsive control in large-scale urban networks [67]. It 

included four parts: split control, offset control, cycle length control and public 
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transport priority. A decentralized feedback control law was applied to effectuate the 

offset control. Taking into account the possible existence of vehicle queues, it 

modified the offsets of the main stages of successive junctions along arterials to 

create green waves.  

Based on the CTM, Von der Fakultät für proposed a new offset optimization 

method for signalized arterial networks. The method consisted of three modules: (1) 

the input module; (2) the optimization module consisting of a Genetic Algorithm 

(GA) based optimizer; and (3) a traffic analysis module that serves as the fitness 

function for the GA-based optimizer [80]. In Pohlmann and Friedrich’s research, 

every 15 minutes the ATCS adapted and optimized signal plans and coordination 

patterns to the current estimated network traffic demand. In the first step, the 

upcoming traffic demand was forecasted and estimated. Based on this demand, cycle 

length and green splits were adjusted. Finally, offsets were optimized by using the 

CTM in combination with GA and a second approach, called Sequential 

Enumeration [63]. 

2.2.4 Comparison 

By employing traffic flow models fed with traffic measurements, the corresponding 

signal control problem is readily formulated to a dynamic optimization problem. It 

usually includes discrete variables to reflect the impact of red/green phases on traffic 

flow. Several constraints, such as maximum and minimum splits, are included. From 

the literature, we find the real-time solution and realization faces a number of 

apparently difficulties. This is probably why heuristic solution algorithms are 
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devised in order to solve the optimization problem. Indeed, the heuristic algorithms 

reduce the solution time of the problem.  

The reviewed systems adjust three major types of signal timings: green splits, 

cycle length, and offsets; however, it seems the existing research do not study the 

following issues enough. Firstly, little research fully studied the impact of phase 

sequence optimization on control performance. Especially, if the traffic flow model 

captured queue interactions in a link, the optimization model would factor the impact 

of phase sequence easily. Secondly, most existing signal coordination algorithms for 

congested networks do not directly consider the dynamic evolution of queues. Most 

reported adaptive control systems are unable to find the exact optimal offsets. 

Thirdly, Webster’s formula for calculating cycle length is invalid when saturation 

level exceeds 1.0. Little research proposes a clear method to optimize the cycle 

length in congested condition. Finally, the reviewed control strategies seems 

outmoded as compared with the real-life signal strategies that assume dual-ring, 8-

phase, variable cycle and phase controllers.  

2.3 On-line Optimization Framework 

2.3.1 Dynamic Programming (DP) 

Dynamic programming is an exact solution for optimization over time. It 

decomposes a control problem to a series of sub-problems (i.e. step), which 

corresponds to discrete segments of time in real-time control problem. At each step, 

a set of state variables give the information on the controller and the traffic states at 

that time. The Bellman’s equation is recursively calculated backwards step-by-step 
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to find the optimal action, which transfers the system from the current state to a new 

state. In summary, the DP is a global optimization strategy for multistage decision 

processes and it provides a standard with which all other strategies can be compared. 

Application of DP to the signal control problem can be found in [53, 81].  

Unfortunately, the implication of DP for real-time traffic signal control is 

limited. Firstly, the computational demand is exponential to the size of the state 

space, the information space and the action space. Furthermore, in practice it is 

difficult to obtain the complete information on the time period in which the 

controller seeks optimization. For example, traffic detectors may supply only 5–10s 

data of future arriving vehicles. Finally, most of the outputs from the program are 

never implemented because optimized policies are generated for all possible 

combinations of initial conditions at each stage of the control period. In practice, 

only one optimum policy would be implemented. By being able to produce the 

theoretically optimal control strategy for each input state, DP usually serves as a 

standard for evaluation of the relative effectiveness of other strategies that can be 

implemented in practice. 

2.3.2 Sequencing Optimization 

Sequencing optimization has the following features: (1) the control period is divided 

into stages; (2) each stage is divided into an integral number of intervals; and (3) 

during each stage there must be a sufficient number of phases to guarantee that no 

optimal solution is missed. The phase-change (switching) times are measured from 

the start of the stage. Then the optimization problem is to determine the sequence of 
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switching times to minimize the delay over the whole state. At each state, the initial 

queues on each approach and the arrivals of the stage are given. The solution of the 

problem is to search the set of all possible combinations of valid switching times 

within the stage to determine the optimum sequence [60]. 

Although sequencing optimization procedure needs the information of 

vehicles arrivals over the entire stage length, it is more readily to operation in real-

time. Obtaining accurate arrivals over this length of time is difficult, but it could be 

implemented with a traffic prediction model that predicts the traffic pattern over the 

entire stage. 

2.3.3 Rolling Horizon 

In this scheme, a projection horizon is predetermined which consists of N time 

intervals, as shown in Figure 2.2 [82]. Traffic states are measured for the first H 

intervals (head portion) and are estimated from the traffic flow model for the next N–

H intervals (tail portion). Optimal control actions for the whole projection horizon 

are specified based on the measured and predicted information so as to optimize the 

performance indices over a target period. However, each control step only 

implements the first control sample of the optimal control sequence. Then, the 

projection horizon is shifted into the future by one roll period and the same process is 

restarted again with new traffic measurements for the next iteration. Usually, the roll 

period is equal to the length of the head portion.  

Because the rolling horizon scheme considers a much longer future period for 

signal optimizations, it can avoid myopic decisions and achieve better signal 
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operations. Furthermore, it can coordinate multiple control measures and objectives, 

and is more robust to disturbances and model mismatch errors. 

Projection Horizon

Head Tail

Roll 

Period

Time
Iteration 1 H N-H

H N-HIteration 2 R

Iteration 3 H N-HR

 

Figure 2.2 Concept of Rolling Horizon Scheme [81]  

2.3.4 Comparison 

Most of the reviewed adaptive control systems adopt the rolling horizon procedure. 

Hereby, the optimization problem is solved over a projection horizon N, by using 

measured initial traffic measurements and demand predictions over N. After new 

measurements are collected and a new optimization problem is solved, and so forth. 

In the practice of signal control, the previous research has several disadvantages. 

First, most research assumes the length of the projection horizon is pre-set and fixed. 

If the traffic demand is relatively low and stable, the longer horizon is unnecessary. 

Because the traffic states for the tail portion are predicted from the traffic flow model, 

the efficiency of rolling horizon approach may be seriously affected if the prediction 

is inaccurate within such a long tail portion. Secondly, using short intervals, such as 
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in DISCO, places a heavy burden on computational requirements and also leads to 

operational inefficiency. 

2.4 Summary 

In summary, model-based adaptive control strategies have been developed for a long 

period of time, and the results are fruitful. A number of adaptive control systems 

have been presented in literatures or even applied in practice. Some of these systems, 

which were implemented in real-life traffic field, have been proved effective in 

practice. However, the efficiency of corridor-wide strategies for large-scale traffic 

networks is still needed to be further improved.  

A number of elaborate urban traffic models, which are deductively derived to 

describe the traffic flow dynamic, have been applied. For different traffic flow 

models, different model-based control strategies have subsequently been derived. 

Unfortunately, the development of corridor-wide model-based control strategies 

faces obvious difficulties due to the combinatorial nature of the related optimization 

problem. For example, if the traffic flow models are nonlinear, the computational 

complexity will increase exponentially when the scale of the network grows. As a 

consequence, any feasible strategy design includes some simplification, either in its 

traffic flow model, or in its optimization model and algorithm, or in the control 

structures. Generally speaking, it is very important to find a trade-off between the 

accuracy and the computational complexity of the model, so that the model-based 

control can make better control decisions and also keep being applicable in real-life 

practice. 
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Traffic flow models help adaptive control systems perform more proactively, 

although they also may introduce errors that can be propagated (spatially and 

temporally) during the course of control actions. MPC is a methodology that 

implements and repeats optimal control in a rolling horizon scheme. It is a closed-

loop control by integrating the real-time feedback. Hence, it is able to deal with the 

unpredictable disturbances, traffic demand variation and mismatch errors of the 

prediction model. 
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Chapter 3 Adaptive Signal Control Implementation and 

Evaluation Platform 

 

3.1 Software-in-the-Loop Simulation 

Simulation platform is needed to implement and evaluate Adaptive traffic signal 

control (ATSC) strategies based on the following reasons. Firstly, modern traffic 

controllers have specific physical architectures, control logic, data flows, 

communication interfaces, and protocols. Vendor-specific controller capabilities are 

typically do not support the ATSC strategies directly. It is hard to guarantee the 

transferability of ATSC strategies from the research to the field. Therefore, testing 

ATSC strategies on actual traffic controllers prior to field implementation is 

necessary to bridge this gap. Secondly, a field test with adaptive signal controller 

requires detector installation, backhaul communication setup and other maintenance 

activities, which are expensive. Many ATSC strategies have been tested using 

microsimulation packages, which can simulate the signal control and microscopic 

drives behaviors on urban arterials. The latest advance is a concept called Software-

in-the-loop Simulation (SILS), which retain the functionality of a real-world traffic 

controller. It consists of a microscopic simulation model and several virtual traffic 

controllers under the simulation software. The communication and exchange of 

information between these two components are achieved by a controller interface. 
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For example, Econolite’s Advanced System Controller series 3 (ASC/3) is linked to 

VISSIM [83]. This study uses the ASC/3 SIL controller embedded in VISSIM.  

3.1.1 Traffic Controller 

Functions of ASC/3 controller include control, coordination, preemption and TSP 

features, extent detector options, and communication abilities [84]. The virtual 

ASC/3 controller in the SILS performs identically as hardware controller, and they 

runs from the same code base. Complex signal timing plans can be realized by the 

logic processor, where different commands can be either accessed directly or enabled 

through a special extension file. The emulated external logic provides the capabilities 

to implement ATSC strategies. In addition, ASC/3 SILS concept enables the use of 

multiple virtual ASC/3 controllers simultaneously. They are compliant with the 

National Transportation Communications for Intelligent Transportation Systems 

Protocol (NTCIP) and Transmission Control Protocol / Internet Protocol (TCP/IP). 

Finally, the ASC/3 controller has built-in TSP features for green extension and red 

reduction strategies. Custom defined TSP strategies can also be achieved through the 

logic processor. 

3.1.2 Traffic Microsimulation 

VISSIM models dynamic and stochastic movements of individual vehicles according 

to the physical characteristics of different vehicle types, rules of driver behavior, 

traffic management rules and others. The simulation performance an online 

animation of the traffic flow and offline reports of traffic performance measurement 

can be generated. Specifically, it consists of two programs: traffic flow model and 
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the signal control model. The advantage of splitting simulation into two programs is 

that the signal control strategy implemented in VISSIM can be flexible. VISSIM 

provides the module of External Signal Control, which enables to simulate user 

developed signal control strategies as a separate application (*.exe) or a program 

library (*.dll). The current VISSIM software provides an Econolite ASC/3 module to 

simulate signalized intersections using ASC/3 controller. Dedicated user interface is 

available to set control parameters. 

3.1.3 Date Flow and Integration 

Figure 3.1 shows a real world transportation environment with actuated control. 

There is a two-way communication. The detector calls are sent to the traffic 

controller, which processes the inputs through its traffic control logic and returns 

current signal states to signal heads through the relay. The vehicles react to the traffic 

light by stopping in case of red signal, or proceeding in case of green signal. In SILS, 

the traffic signal control logic is implemented with virtual traffic signal controller, 

and the real traffic environment is replaced by the microsimulation software. The 

vehicles in the simulation environment generate detector calls, which are sent to the 

virtual controller. The controllers updated the phase status according the 

programmed logic. The updated phase status is subsequently sent back to the 

simulated environment.  
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Figure 3.1 Real Transportation Environment and SILS Data Flow 

The ASC/3 SILS has several components: the Data Manager, Traffic Control 

Kernel, Controller Front Panel Simulator, and VISSIM DLL Interface components 

[85].  

 Data Manager manages the timing data in the Windows environment. 

The database file is identical as an actual ASC/3 controller. Any 

changes in the controller settings are stored in the database. 
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 Traffic Control Kernel, acting as the virtual ASC/3 core software, 

encompasses all internal processing that occurs between the mapped 

field inputs and commanded field outputs. 

 The Controller Front Panel Simulator is a Graphical User Interface 

(GUI) designed to simulate the keypad of a physical controller.  

 The VISSIM DLL allows VISSIM to pass Input/Output functions to 

the virtual controllers and to receive signal timing data back.  

3.2 Simulation Platform Architecture 

Although ASC/3 SILS provides the ability to model different signal timing strategies, 

ATSC strategy requires extending the built in capabilities to implement the 

optimized decisions using the native controller functions. In addition, the platform 

must provide efficient and reliable communication amongst adaptive control actions 

and ASC/3 SILS. Figure 3.2 illustrates how the adaptive control strategies are 

implemented in the applied simulation platform. It contains ASC/3 SILS, ASC/3 

interface, and control system. Signal timing data are imported through NTCIP from 

ASC/3 interface to the control system. Traffic performance measurement data are 

imported from VISSIM to the control system. A Microsoft Visual C++ application is 

created to control the simulation process and continuously read VISSIM evaluation 

files by using the Component Object Model (COM) interface. The signal timings are 

then modified through the adaptive algorithms in the control system. Finally, the new 

optimized signal timings are sent back to the ASC/3 SILS. Optimization of ASC/3 
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controller signal timings is achieved by the interface between the control system and 

ASC/3 SILS, and is evaluated through VISSIM simulations. 
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Figure 3.2 Framework of Simulation Platform 

3.2.1 ASC/3 Interface 

ASC/3 interface connects the virtual controller and control system, and it enables to 

read and override the control logic of the controller by sending the appropriate 

actions at the appropriate time stamps. The transfers follow NTCIP and 

communicate through an Ethernet port via Simple Network Management Protocol 

(SNMP). According to the SNMP protocols, every data frame includes an opening 

flag, address, control, information, cyclic redundancy check, and a closing flag. 
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Different frame types are transmitted to different units at every second or 0.1 second. 

The ASC/3 interface signal timing data through extracting the address, control, and 

information fields from the controller databases. Then the data are decrypted to 

specific signal timings recognizable by the control system. Finally, the interface 

encrypts the optimized signal timing plans back into the ASC/3 database format. 

3.2.2 Control System 

The control system includes adaptive optimization program, optimization program 

and traffic flow modeling. To consider the impacts of signal timing plans on traffic 

flow dynamic, the traffic flow modeling is applied to predict the cycle-based traffic 

flow states based on loop detector data. The inputs to the optimization models are 

predicted traffic flow dynamic and signal status. The outputs from the optimization 

models are adaptive control strategies. Genetic Algorithm (GA) is used to solve the 

problem. Many previous studies have also shown the effectiveness of GA when 

solving signal optimization problems [86-88].   

3.2.3 Data Flow and Integration 

Figure 3.3 describes the interaction of the different components. After the 

initializations, two major threads are active. One thread is responsible for servicing 

the commands from the controller. It also updates appropriate variables based on 

information available in the controller commands. The other thread services the data 

streams from the simulation software. These streams can include request for traffic 

data and updates to the loop detector calls.  
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Figure 3.3 Data Flowchart  

3.3 Test-network Simulation Model  

3.3.1 Study Corridors 

To evaluate the performance of the proposed model, this study has selected two 

arterial corridors in the city of Edmonton, Alberta, Canada. As shown in Figure 3.4, 

the downtown corridor is about 2.3 km long and consists of 9 intersections, and the 

southeast corridor is about 7.4 km long and consists of 8 signalized intersections. 

The downtown corridor with short link length stretches along the Jasper Ave from 

109 Street to 125 Street. The southeast corridor with long link length stretches along 

the 83rd Street, Argyll Road, the 86th Street, and the Connors Road. The PM peak 

period was selected for simulation because it has the highest volume of ridership. 
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Figure 3.4 Study Corridors  

The signal timing plan is shown in Table 3.1 and 3.2. The signal plans are 

represented following standard NEMA 8-phases diagram. For southeast corridor, 

Intersection (Int.) 4, Int. 7 and Int. 8 have a standard four-phase plan without 

protected left-turn phases. The remaining intersections contain protected left-turn 

phases. For the downtown corridor, Int. 3, Int. 4, Int. 6, Int. 7, and Int. 9 have a 

standard four-phase plan without protected left-turn phases. The remaining 

intersections contain protected left-turn phases. Coordinated Phase 2 and Phase 6 are 
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the reference phases. Yellow time and all-red time were set according to the 

respective real signal timing.  

Table 3.1 Signal Timings at Downtown Corridor 

Intersection No. Cycle Offset Timing Plan 

1 110 70 

Φ1 Φ3
6s 37s

46s

Φ4 
9s
Φ8 Φ5

6s

42s

42s

Φ2 

Φ6 

 

2 110 9 30sΦ4 
Φ5

6s

67s

61s

Φ2 

Φ6 

 

3 110 10 

Φ2 Φ4 

Φ8 Φ6 

68s 32s

32s68s  

4 110 28 

Φ2 Φ4 

Φ8 Φ6 

74s 26s

26s74s  

5 110 60 

Φ3

Φ7 

38s

38s

Φ4 
7s

Φ8 
7s

Φ5
7s

49s

42s

Φ2 

Φ6 

 

6 110 50 

Φ2 Φ4 

Φ8 Φ6 

69s 31s

31s69s  

7 110 84 

Φ2 Φ4 

Φ8 Φ6 

71s 26s

26s71s

Fixed 

Ped 

Jump

 

8 110 89 

Φ1 Φ3
5s 27s

71s

Φ4 
44s

Φ8 

24s

29s

Φ2 

Φ6 
 

9 110 5 

Φ2 Φ4 

Φ8 Φ6 

84s 16s

16s84s  
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Table 3.2 Signal Timings at Southeast Corridor 

Intersection No Cycle Offset Timing Plan 

1 100 79 
Φ2 Φ4 

Φ8 Φ5 Φ6 

90s 10s

10s61s29s  

2 100 0 
Φ2 Φ4 

Φ8 Φ6 

12s 88s

88s12s  

3 100 96 
Φ2 Φ4 

Φ8 Φ5 Φ6 

69s 31s

31s52s17s  

4 50 44 
Φ2 Φ4 

Φ8 Φ6 

34s 16s

16s34s  

5 100 24 
Φ2 Φ3

Φ8 

23s 23s

77s

Φ4 
54s

 

6 100 92 
Φ2 Φ3

Φ7 

28s 64s

39s

Φ4 
8s

Φ8 
33s

Φ6 
28s  

7 50 8 
Φ2 Φ4 

Φ8 Φ6 

29s 21s

21s29s  

8 100 90 
Φ1 Φ3

Φ7 

10s 39s

43s

Φ4 
18s

Φ8 
14s

Φ5
17s

33s

26s

Φ2 

Φ6 

 

 

3.3.2 Modeling Process 

The study corridors were modeled in VISSIM simulation model with existing 

network geometry, traffic volumes, turning movements at intersections, signal timing 

data, and transit operations data. The VISSIM model of two corridors was carefully 

calibrated and validated to resemble field conditions as much as possible. The 

modeling process started from the basic network geometry. After that, the geometry 

was fine-tuned, all traffic and transit data incorporated, and the model was calibrated 

and validated. The data coded in the model were based on real data collected in the 



 

50 

 

field or from City of Edmonton. The flowchart of the modeling process is given in 

Figure 3.5. 

Basic Network Geometry

Google Earth, Google Maps Street 

view, Field Observation

Geometry Fine Tuning

Traffic Movement Data

(City of Edmonton, Data 

collection)

Traffic Control Data

(ASC/3 Database files, 

SYNCHRO)

Transit Operations

(Bus lines, bus stops, schedules, 

boarding and alighting)

Calibration and Validation

VISSIM Model

(No TSP scenario)

VISSIM Model

(TSP scenario)

Introducing TSP Strategies

 

Figure 3.5 Modeling Process Flowchart 
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The intersection traffic counts were taken at 5-minute intervals, as shown in 

Table 3.3. Although the turning movement counts were not collected on same date, 

they represent the real-world traffic pattern. It is necessary to convert the data to the 

same time period by traffic balancing. The raw data contains not only turning 

movement counts, but also vehicle types. Therefore, the average heavy vehicle rate 

can be calculated and modeled in VISSIM. Pedestrian counts are also included in the 

raw data. Figure 3.6 gives examples of the hourly turning movement and the lane 

assignment at each intersection. 

Table 3.3 Turning Movements Data  

Downtown 

Int. No.  

Data  

Missing 

Interval Collection 

Date 

Southeast 

Int. No. 

Data  

Missing 

Interval Collection 

Date 

1 No 5 min 11/08/2011 1 No 5 min 05/30/2011 

2 No 5 min 04/30/2009 2 No 5 min 05/27/2009 

3 No 5 min 05/04/2009 3 No 5 min 04/19/2011  

 

4 No 5 min 05/07/2009 4 No 5 min 02/15/2011  

 

5 No 5 min 05/06/2009 5 No 5 min 09/16/2010  

 

6 No 5 min 05/25/2009 6 No 5 min 09/16/2010  

 

7 No 5 min 05/26/2009 7 No 5 min 09/15/2010  

 

8 No 5 min 05/25/2009 8 No 5 min 09/15/2010  

 

9 No 5 min 05/26/2009     
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(a) Int. 1 of downtown corridor (b) Int. 5 of downtown corridor 

 

(c) Int. 4 of southeast corridor  (d) Int. 7 of southeast corridor 

Figure 3.6 Examples of Turning Movement at Intersections 

Based on bus stop detail document, bus stops location and bus stop length are 

paced on the VISSIM simulation road networks. Then, the bus schedule of each bus 

line was configured according to the bus departure times and headways described in 

the September bus schedule provided by ETS. The average headways of major bus 

routes and minor bus routes are 10 minutes and 15 minutes, respectively, during peak 
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hours. VISSIM allows users to set up both side-street transit stations and bus bays; 

the bus stop type was determined using Google Maps. For downtown corridor, four 

lines travel the whole corridor: No. 1, No. 5, No. 120, and No. 135. For the southeast 

corridor, nine lines travel the whole transit corridor. Those lines are No. 8, No. 15, No. 

61, No. 64, No. 65, No. 66, No. 68, No. 69, No. 72. Only No. 8 and No. 15 operate all 

the time, while the other routes are express only for peak hours. The bus dwell time is 

important when estimating bus link travel times. This study uses empirical bus dwell 

time calculation according to the number of boarding passengers, alighting times, 

and bus clearance times at bus stops. Ridership estimations for all lines were 

provided by ETS and they were coded in the model.  

The signal timings and the detector locations were built in VISSIM according 

to documents provided by the City of Edmonton’s traffic operations branch. Three 

key configurations are needed to realize the TSP function in VISSIM, including 

configuring the detectors in VISSIM to detect TSP requests, developing the TSP 

plans in VISSIM and mapping the bus detectors in VISSIM. To distinguish the TSP-

enabled buses from the general traffic and regular buses, a new vehicle class is 

defined in simulation as ‘TBus’. The check-in and check-out detectors would send a 

pulsed signal to the signal controller only when a TSP-enabled bus passes the 

detectors. Once a pulsed signal is received by the ASC/3 controller, the TSP signal 

timing will override the existing timing without interrupting the coordination. Two 

major parameters need to be configured first: MAX RDTN which is the maximum 

time that other phases can be reduced during priority and MAX EXTN which is the 

maximum time a phase can be extended during priority.  
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3.3.3 Calibration and Validation  

The calibration and validation are important for the simulation evaluation 

considering the following reasons. First, testing the new traffic signal control 

strategies prior to field implementation is essential under representative traffic 

conditions. Confounding effects hinder before-and-after field tests. Controlled 

simulation experiments can draw strong statistical conclusions. Second, simulation 

saves time, effort and costs induced by testing on a field controller. Third, after the 

simulation test, the adaptive control strategies can be easily transferred to the field 

controllers. 

Traffic movements for each signalized intersection were used to calibrate 

traffic operations in the model. The field data were collected in different time periods 

and different days, which impacted the precision of the counts. These traffic flows 

needed to be adjusted to account for the unbalanced traffic counts. For this purpose, 

some additional traffic generators and collectors were used for inflow or outflow of 

the additional traffic. Calibration was performed by iteratively adjusting traffic 

counts in the model until a highly correlated match between the field data and the 

modeled data was reached. The coefficient of determination, R
2
, analysis was 

conducted to investigate the relationship between simulation output and field 

observation. R
2
 indicates how well data points fit a proposed line or curve. On the 

graph, the actual traffic volumes are represented on the y-axis and simulated traffic 

volumes are represented on the x-axis: if the actual traffic volumes exactly match the 

simulated volumes, then all data points would be on a 45 degree line and R
2
 value for 
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the dataset would equal 1. However, the farther away from the 45 degree line those 

data points are, the greater the discrepancies between actual and simulated traffic 

volumes, and hence, the lower the R
2
 value of the dataset. The expression for R

2
 is:   

2

2

2

1

( )

1
1

( )

i i

i

n

i i

i i

v f

R

v v
n 



 





 
    (3-1) 

Where: 

iv : the 5-minute traffic volumes from the VISSIM simulation 

if : the 5-minute empirical traffic volumes 

In addition, the simulation output is a mean value through 10 times of run. 

Thus, the variation caused by random factors can be eliminated. Figure 3.7 shows 

results from the calibration process. High R
2
 values indicate a high correlation 

between the data sets collected in the field and those from the simulation. 

 

(a) Downtown Corridor   (b) Southeast Corridor 
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(c) Downtown Segment 

 

(d) Southeast Segment 

Figure 3.7 Model Calibration Results 

To validate the model, bus travel times from the field were compared with 

those from the model. The process was performed iteratively by setting speed limits, 
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speed distributions, and driving behavior in VISSIM. Table 3.4 shows a comparison 

of the two sets of bus travel times, averaged from ten simulation runs over a 2-hour 

peak period. 

Table 3.4 Model Validation Results 

Route 1 Downtown Corridor Southeast Corridor 

EB (s) WB (s) SB (s) NB (s) 

Field Observation 451.8 559.2 1105.0 1178.0  

Simulation 437.4 538.8 1089.7 1068.6  

Relative Error -3.1% -3.6% -1.38% -9.28% 

 

3.3.4 Design of Experiments 

The PM peak period, from 15:30 to 17:30, was selected for simulation. It is 

necessary to input some vehicles before evaluation. This is the warm-up time, which 

is 10 minutes. Cool down time is also necessary, which is also 10 minutes. During 

the simulation, the rates at which vehicles are assumed to enter the control area at the 

boundary of the control area vary over time according to Figure 3.8. 
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(a) Downtown Corridor 

 

(b) Southeast Corridor 

Figure 3.8 Temporal Variations of Traffic Demand   

This study did not attempt to answer the question of how this system was 

compared to other adaptive systems in the market. Instead, the analysis was 

conducted to evaluate the performance of proposed models with the actuated control. 

The base case model involved the existing traffic conditions for the PM peak period. 

VISSIM models were developed, calibrated and validated for current traffic 

conditions. Here we applied another scenario, with some small changes in traffic 

demands to make them more suitable for the focus of the research. By using the 

actual PM peak volume as the base line, this study generated two possible levels of 

traffic demand conditions: (1) current PM peak volume; (2) 15% increase of current 

volume. These corresponded to different levels of intersection saturation, which were 

estimated by the intersection capacity utilization in SYNCHRO. Table 3.5 showed 

the saturation rate of all intersections under the different levels of traffic demand.  
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Table 3.5 Intersection Saturation Rate under Different Traffic Demand Conditions 

Downtown 

Corridor 

Saturation Rate Southeast 

Corridor 

Saturation Rate 

Current 15%  Current 15%  

Intersection 1 0.71 0.82 Intersection 1 0.79 0.90 

Intersection 2 0.80 0.93 Intersection 2 0.83 0.98 

Intersection 3 0.81 0.93 Intersection 3 1.08 1.23 

Intersection 4 0.75 0.89 Intersection 4 1.01 1.23 

Intersection 5 0.89 1.12 Intersection 5 0.63 0.85 

Intersection 6 0.66 0.80 Intersection 6 0.81 0.96 

Intersection 7 0.83 0.96 Intersection 7 0.75 0.89 

Intersection 8 0.73 0.92 Intersection 8 0.81 0.93 

Intersection 9 0.90 1.06    

 

 



 

60 

 

Chapter 4 Proactive Arterial Signal Optimization with 

Embedded Enhanced Store-and-Forward Model   

 

4.1 Introduction  

A number of elaborate traffic flow models, which are deductively derived to describe 

the complex interactions between traffic states evolution and key control parameters, 

have been applied to provide relatively accurate predictions [12-14, 39, 64, 89-91]. 

Subsequently, a number of model-based proactive control systems have been 

presented in literature or implemented in the field, some of which are proven 

effective in practice [16-18, 34, 60, 61]. However, it remains a challenging task to 

generate applicable and reliable network-wide proactive control system using traffic 

flow models:  efficiency must be improved, and it is important to find a balance 

between accuracy and complexity. Furthermore, another challenging task is to 

generate reliable signal timing plans that can systematically and globally consider 

dynamic queue interactions among different lanes and adjacent intersections in 

congested traffic conditions.  

A particular simplified control design pursued by various works in the past is 

based on the store-and-forward model (SFM) [39, 64]. SFM enables the 

mathematical description of the traffic flow process without use of discrete variables, 

allowing for efficient optimization and control methods in real-time for a large-scale 

network [16]. SFM has several obvious limitations, which have not been thoroughly 
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studied. First, SFM considers the constant travel time in one specific link and cannot 

reveal the queue dynamic in one cycle. Second, SFM assumes that all movements 

(straight and right- and left-turning) of an incoming link receive the right of way 

simultaneously, so SFM has difficulty integrating with multiple signal phases. Third, 

it is very common to see queue interaction among neighboring lane groups in a link. 

Turning vehicles strongly influence the validity of the model. In this study, an 

enhanced SFM-based signal optimization model is presented to address the 

aforementioned issues. 

4.2 Enhanced Store-and-Forward Model 

Loop detectors are installed at intersections to collect the required traffic information 

as the input for control strategies. Figure 4.1 illustrates the loop detector location of 

several ATSC systems. For instance, SCATS requires loops at stop-line. This study 

requires loops to be installed at the upstream of the signalized link, similar to the 

SCOOT configuration. 

 

(a) SCATS 
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(b) SCOOT 

 

(c) ATCS 

Figure 4.1 Detector Requirement for Adaptive Systems 

The nature of traffic on the urban network is stop-and-go running condition 

where vehicles queue at the stop-line during signal red phase whereas, upstream of 

the link can be free flow. Thus, the speed obtained from the loop cannot be 

generalized over the signalized link. Similarly, unlike the motorway traffic the 

occupancy of the loops cannot easily provide the density of the entire link. This 

section describes the mathematical equations to represent dynamic traffic states for 

the arterial traffic network. The equations have key features: 1) model traffic flow 
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evolution along arterial links and nodes; 2) model the merging and diverging of 

vehicle movements at intersections; 3) capture the physical queue formation and 

dissipation process; 4) represent the interaction between control parameters and 

dynamic traffic states. The traffic dynamic includes a process: upstream arrivals, 

propagation to the end of queue, merging into lane groups, and departing, as shown 

in Figure 4.2. In order to describe the model, we define J  as the set of nodes 

(intersections) and L as the set of links (streets) in the urban traffic network. Link Wj

is marked by its downstream node j  and the direction of west. The sets of links of 

input flow and output flows for link Wj  are defined as 
Wj

I and 
Wj

O . 

 

Figure 4.2 Dynamic Traffic Flow Evolutions along Arterial Streets 
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A. Upstream Arrivals 

Upstream arrival equation describes the flow evolution, which arrives at the 

upstream of one link over time. Similar to most other research, SFM formulates the 

inflow to the link Wj  as the sum of departure flows from 
Wj

I , as shown in Equation 

(4-1). 

,( ) ( )
j WW

jW

in out

l j

l I

q k q k


        (4-1) 

Where ( )
jW

inq k = the upstream arrival flow of link Wj  during time step k 

, ( )
E

out

i jq k = the departing flows from link l  that merge into Wj , and l
 
belongs 

to 
Wj

I  

B. Propagation to the End of Queue 

Then upstream arrivals flow propagates to the end of queue. In the SFM, the 

discrete-time step T is equal to cycle length. Vehicles entering a link are either stored 

at the end of this link (during a red signal), or further forwarded to downstream links 

at the saturation flow rate (during a green signal). Therefore, SFM does not consider 

the propagation process. Existing other research uses different mathematical 

equations to model this process.  

 The Robertson platoon dispersion model takes the form of Equation (4-2) to 

simulate the the propagation process [49]. However, one critical problem is that if we 

consider the queue length, then the average link travel time and minimum travel time 

will be variable in real time.  

( ) ( ) (1 ) ( )
W W W

arrive in arrive

j n j n jq t F q t P F q t T          (4-2) 



 

65 

 

Where ( )
W

arrive

jq t = flows arrive at the end of the time t 

ta = the average link travel time 

P = the minimum travel time on the link (measured in terms of unit steps 

aP t ) 

( )
W

in

jq t P = the arrival flow rate at the upstream of the link at time t P  

Fn = the smoothing factor  

 Liu and Chang’s research represents the evolution of upstream arrivals to the 

end of queue with the average approaching speed [77]. The average speed is 

depending on the density of the segment between the link upstream and the end of 

queue, as described by Equation (4-3). Then the number of vehicles arriving at the 

end of queue is dynamically updated by Equation (4-4).  

min

min

min min min

min

min min

( )

( )
( ) ( ) [1 ( ) ] ( ) [ , ]

( )

j WW

W

W
jW W

W

free

j

jfree jam
j jjam

j

v if k

k
v k v v v if k

v if k

 

 

 
  

 

 

 

 

      


 

        (4-3) 

( ) min{ ( ) ( ) , ( ) ( )}
j W W W W WW

arrive

j j j j jq k k v k N C k Q k        (4-4) 

where ( )
Wj

v k  = the average approaching speed;  

min  = the minimum critical density below which traffic moves at free flow 

speed 
jW

freev ; 
minv = the minimum traffic flow speed corresponding to the jam 

density (
jam ); 

( )
jW

arriveq k  = flows arrive at the tail of the queue during time step k 
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Wj
C = capacity of link Wj , number of vehicles;  

( )
Wj

Q k = queue length, number of vehicles;  

Wj
N = number of lanes 

,  = constant model parameters to be calibrated.  

This study also uses the concept of average approaching speed to represent 

the propagation process, but the arriving flow at the end of queue at link Wj  is stated 

as:   

( ) (1 ( )) ( ( )) ( ) ( ( ) 1)
j j j
W W W

arrive in inq k k q k k k q k k              (4-5) 

( ( ))
( )

( ) ( )


   
  

   

W W

W W

j j veh

j j

C Q k l
k rem

N v k c k

( ( ))
( )

( ) ( )


   
  

   

W W

W W

j j veh

j j

C Q k l
k floor

N v k c k
   (4-6) 

Where  floor x  = the largest integer that is smaller than or equal to  x  

rem  x = the remainder 

( )c k = cycle length at time step k  

vehl = average vehicle spacing 

 The average approaching speed equals to free flow speed when speed limit is 

higher; otherwise, it equals to speed limit when speed limit is lower. 

( )


 


jW

W

jW

free

j limit

v under high speed limit
v k

v under low speed limit
 ; 

C. Merging into Lane Groups 



 

67 

 

Upon arriving at the end of a queue at a link, vehicles may change lanes and should 

merge into different lane groups, according to the driver’s destination. The merging 

flow into lane group o  at time step k, can be approximated: 

,,

( ) ( ) 
j o W jWW

arrive arrive

j oq k k q     (4-7) 

Where 
,
( )

W
j o k  = the turning ratio for different turning movements. This study 

considers 
,
( )

W
j o k  as predefined, and there is a large body of research on real-

time O-D estimation. 

D. Departing Process 

The next step is the queue discharge for different lane groups o . The departing flow 

,
( )

j d
W

outq k
 
from different lane groups at time step k is given by: 

 
, , ,, , , ,( ) min ( ) ( ) / , ( ) / ( ), ( ( )) /   

j d W j o W j o W WW W W

out arrive

j o j o j d j dq k S k g k T Q k T q k C n k T      (4-8) 

Where  , ( )
Wj oS k = saturation flow rate of lane groups o   

,
( )

j oW

g k =green phase duration of lane groups o    

,oW
jQ = Queue length of lane group o    

d = belongs to the set of downstream nodes of output links of link Ej  

, ( )
Wj dn k =number of vehicles in the link 

The first term of Equation (4-8) considers the congested condition; the 

second term considers the uncongested condition; and the third term considers the 

available storage space of the destination link. 



 

68 

 

Saturation flow rate is calculated by using the method from HCM 2010, 

which estimates the saturation flow rate of any lane group based on known 

prevailing traffic parameters. The algorithm takes this form: 

i o i

i

S S N f       (4-9) 

Where 
oS is the saturation flow rate per lane under base conditions and 

if is 

multiplicative adjustment factor for each prevailing condition i. 

E. Queue Evolution  

Queues at lane groups are updated at every time step k. 

, ,, ,( 1) ( ) ( ( ) ( ))
W W jW o jW d

arrive out

j o j oQ k Q k T q k q k        (4-10) 

F. Flow Conservation 

The evolution of the total number of vehicles present at link Wj  can be stated as: 

,

( 1) ( ) ( ) ( )
W W j j d W jW WW

jW

in out

j j j

d D

n k n k q q T d e T


           (4-11) 

Wj
d and 

jW
e are the demand flow and exit flow of links during time step k, 

respectively. 

4.3 Optimization Formulation 

4.3.1 Optimization Framework  

This study adopts the MPC (Model Predictive Control) approach [92] to develop a 

model-based adaptive control strategy which addresses several issues 

aforementioned. Figure 4.3 illustrates the basic elements of the MPC control loop. 

The kernel of the control loop is the MPC controller, whose task is to specify, in real 

time, the control inputs to achieve the pre-specified objectives and constraints.  
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Figure 4.3 Framework of the Control Loop 

In general, traffic flow models help adaptive control perform more 

proactively, although the models may also introduce errors that can be propagated 

(spatially and temporally) during the course of control actions. Many of the reviewed 

adaptive control systems adopt the rolling horizon procedure to overcome this 

problem. A modified rolling horizon scheme is used in this research. The concepts of 

control horizon and projection horizon keep the same, but they are time-variant in 

response to real-time traffic conditions. The following variable-time-window rolling 

horizon scheme is adopted in this study, as shown in Figure 4.4 [93].  

 The stage, called as projection horizon, is the period over which traffic 

states are projected and the optimization problem is solved. It is integers 

of the optimized cycle length in that stage, ( )pS M c k  . The cycle length 
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is variable to adapt to the time-varying traffic conditions, as discussed in 

the abovementioned upper layer. 

 Although one stage optimizes the control plan over Sp by using initial 

traffic measurements and demand predictions over Sp, but it is 

implemented only within the control interval Tk.  After that, the projection 

and control horizon shifted forward by Tk. The optimization process starts 

again with collected new real-time measurements.  

c(1)

… ... … ... 

c(k)

ImplementaionImplementaion

Projection Horizon (Length=Sp)Projection Horizon (Length=Sp)

c(2)

ImplementaionImplementaion

Stage 1Stage 1

Stage 2Stage 2

Stage kStage k

ttT1T1 T2T2 TkTk

 

Figure 4.4 Illustration of the Rolling Horizon Scheme  

4.3.2 Optimization Model  

In congested conditions, the control objectives need to be decidedly different, as 

mobility is restricted. For example, the delay minimization strategy provides user-

optimal delay minimization in uncongested conditions, but can sometimes work not 

in favor of minimizing total delay when systems become congested. Instead, the 
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signal plans should be timed such that every green second should be serving traffic at 

its maximum flow rate. In this research, the following represents the objective for 

maximizing the throughput in the controlled sub-network.  

1

( )
M

in

l

k l L

max q k
 

        (4-12) 

One type of the principal constraints is Equations (4-1), (4-5), (4-6), (4-7),  

(4-8), (4-9), (4-10), and (4-11), which represent the dynamic traffic state evolution 

along the arterial network. Another is the queue length constraints for left-run and 

through queues, as shown in Equation (4-13). The queue length cannot be larger than 

the capacity of the corresponding lane groups. 

,, ( )
l ol oQ k C       (4-13) 

 As the enhanced SFM considers different movements of one link, the two-

ring, eight-phase structure from National Electrical Manufacturers Association 

(NEMA) is formulated as another type of constraints.  The default phase mapping in 

the NEMA standard is shown in Figure 4-5 and Figure 4-6 [94].  



 

72 

 

 

Figure 4.5 Typical Vehicular and Pedestrian Movements at a Four-leg Intersection 

[94]  

 

Figure 4.6 Standard Ring-and-barrier Diagram [94] 

The decision variables are green durations. The constraints are composed of  

the physical structure of signal controllers and actual traffic conditions. In North 

America, the commonly accepted constraints are composed of three parts: 1) 

maximum and minimum greens; 2) pedestrian settings; and 3) cycle length and 

NEMA dual ring structure. 

( ) ( ) ( ) ( )
N S W E

left through left through

j j j jg k g k g k g k      (4-14) 

( ) ( ) ( ) ( )
S N E W

left through left through

j j j jg k g k g k g k      (4-15) 

( ) ( ) ( ) ( ) ( )
N S W E

left through left through

j j j jg k g k g k g k c k       (4-16)                     
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Where ( )
N

left

jg k and ( )
N

through

jg k represent the green split for left turn and through 

movement of approach Nj , respectively; ( )
S

left

jg k and ( )
S

through

jg k  represent the green 

split for left turn and through movement of approach Sj , respectively; ( )
W

left

jg k and 

( )
W

through

jg k  represent the green split for left turn and through movement of approach

Wj , respectively; ( )
E

left

jg k and ( )
E

through

jg k  represent the green split for left turn and 

through movement of approach Ej , respectively. 

The following is the common minimum and maximum green constraint. 

min max

, , ,( )l o l o l og g k g l L        (4-17) 

4.3.3 Solution Algorithm  

The implementation of the GA is performed by a Genetic Algorithm Toolbox in 

MATLAB. The process of GA algorithm to search the optimal control action is 

shown in Figure 4.7. First, a population of solutions is generated, which represent a 

set of random possible control actions. Then the fitness of each chromosome is 

evaluated using the cost function and the constraints. Based on evaluation results, 

good chromosomes are randomly selected from the current population to be parents. 

Two new offspring chromosomes are produced from two parents according to a 

cross-over rule. The process of genetic operators repeats to produce new generation 

of possible solutions until reaching the stopping criteria. Finally, the best solution 

remains in the population is the final optimal control actions.  
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Figure 4.7 GA Process  

4.4 Simulation Evaluation  

For comparison, VISSIM is employed as the performance index provider. The 

performance of the proposed model was compared with the benchmark, actuated 

control. ASC/3 treated each intersection independently and applied actuated control 

at each isolated intersection based on the optimal signal timing plans obtained from 

SYNCHRO 7.0. As this study only discuss the mid layer of split optimization, the 
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cycle length and offsets keep consistent during the simulation. Since the offset 

optimization is not implemented during the simulation experiments, it is not 

reasonable to use delay as a Measure of Effectiveness (MOE). Hence, the network 

throughput and maximum queue length are selected as MOEs. Due to the stochastic 

nature of the simulation model and underlying processes, each microsimulation run 

can be regarded as a random experiment, i.e. a random day in real life. Therefore 10 

simulations with a common set of random seeds were completed for each scenario 

including the base case model. The final results, averaged over the multiple runs, 

were reported. When comparing different strategies, a representative run (median run) 

was then chosen.  

Parameters used in the GA process are shown in Table 4.1. Figure 4.8 

illustrates the convergence of GA results at each generation. The results represent the 

fitness function value of the best-fitted individual. 

Table 4.1 Parameters Setting of GA   

Name Value 

Population Size  20 

Maximum trials for generating initial solutions 50 

Number of offspring generated in each generation 100 

Probability of carrying out local search (mutation) 0.3 

Maximum number of generations  200 
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Figure 4.8 GA Results for Each Generation 

Int. 1, Int. 2, Int. 5 and Int. 8 of downtown corridor have left-turn pocket 

lanes, and Int. 1, Int. 2, Int. 3, Int. 5 and Int. 6 of southeast corridor have left-turn 

pocket lanes. The left turn volume from the corridor to cross roads varies from 12 to 

187 vehicles per hour. Table 4.2 presents comparison results from the proposed 

model and actuated control under different demand levels, based on one-hour 

simulations in VISSIM after a 10-min warm-up period. As indicated in Table 4.1, for 

the southeast corridor, the proposed model outperforms actuated control in average 

throughput by about 5% under high volume scenarios, and 2% under current volume 

scenarios, respectively. For the downtown corridor, the proposed model outperforms 

actuated control in average throughput by about 12% under high volume scenarios 

and 7% under current volume scenarios, respectively. The proposed model always 
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has the highest throughput compared with actuated control, especially under the 

higher demand level.   

Another interesting finding is that the downtown corridor experienced greater 

improvements than the southeast corridor. This may be explained by the corridors’ 

geographical configuration. The average spacing between two intersections are 120 

meters and 720 meters for downtown and southeast corridor, respectively. It is 

reasonable that the proposed model performs better for the corridor with closely 

spaced signalized intersections because the uncongested part of the link is considered 

negligible compared to the total link length, and a platoon cannot be dispersed. The 

proposed traffic flow model well represents the stop-and-go traffic flow dynamic of 

signalized arterial network in congested conditions. 

Table 4.2 Throughput Comparison of VISSIM Simulation Results  

Corridor Scenarios MOE 

Simulation Results from VISSIM 

Proposed 

Model 

Actuated Improvement 

Downtown 

Corridor 

Current vehicles in 

one hour 

23882 22320 7% 

15%  27516 24568 12% 

Southeast 

Corridor 

Current vehicles in 

one hour 

19301 18923 2% 

15%  22646 21568 5% 

 

The Box Plots of Figure 4.9 provide basic information about the distribution 

of different simulation runs. “1” represents the throughput distribution with actuated 

control under current demand;  “2” represents the throughput distribution with 

proposed model control under current demand;  “3” represents the throughput 
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distribution with actuated control under 15% increase demand;  and “4” represents 

the throughput  distribution with proposed model control under 15% increase 

demand. The throughputs from proposed model are remarkably higher than those 

from actuated control under two different demand conditions. Furthermore, the 

throughput spread from actuated control is much larger than that from proposed 

model control, pointing to a larger diversity of control performance. It seems the 

performance of the proposed model is much more stable, especially under the high 

demand condition. SYNCHRO selected longer cycle lengths to maximize the phase 

capacity for high demand scenario, this may adversely increase the chance of 

blockages due to the higher arrival rates to downstream links. Under actuated control 

scenarios with high demands, the severe blockages between lane groups and 

upstream-downstream links in the network can always be observed from VISSIM 

simulation animations. This phenomenon may explain the performance diversity of 

actuated control. In addition, we can also see that the downtown corridor 

experienced greater improvements than the southeast corridor.  
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Figure 4.9 Distribution of Throughput under Different Scenarios 

To test the capability of the proposed model with respect to capturing 

blockages between different lane groups and between downstream-upstream links 
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under congested conditions, the relative queue length ratio ( ) / ( )l lQ k C k is used as the 

MOE. Ten consecutive values are analyzed from two particular intersections: 1) the 

through movement of westbound approach of Intersection 5 of the downtown 

corridor;  and 2) the left-turn movement of southbound approach of Intersection 5 of 

the southeast corridor. As shown in Figure 4.10, the relative queue length ratio 

becomes higher when traffic demand is at 15% increase. Under the actuated control 

scenario, queues length frequently reaches the maximum length, whereas the 

proposed model yielded a smaller queue length and effectively mitigated the 

blockage and spillback. Furthermore, the proposed model can realize much more 

stable queue length for the consecutive period.  

  

 

(a) Intersection 5 with Current Volume 
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(b) Intersection 5 with 15% Increase 

 

   

 

 

(c) Intersection 4 with Current Volume                 
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(d) Intersection 4 with 15% Increase 

Figure 4.10 Relative Queue Length Dynamic. 

4.5 Summary  

This chapter presented an optimization model for real-time signal control under 

congested conditions. The proposed model combines an enhanced SFM, 

mathematical optimization and optimal control, to capture not only the critical 

operational issues at signalized intersections, but also the traffic evolution along the 

arterial link as well as to ensure computing efficiency. Clearly, SFM is a simple 

model that can only provide a rough representation of the traffic dynamic in 

oversaturated conditions. However, SFM represents the stop-and-go traffic flow 

dynamic of signalized arterial network fairly well in congested conditions. As the 

model is only applicable for split optimization, a hierarchical control structure was 

proposed to optimize the cycle length, split and offset. The highest layer updates the 
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cycle length over time based on network capacities and volume levels. The mid layer 

continuously calculates optimal split using the rolling horizon scheme. Finally, the 

offsets at each intersection are optimized.  

 For the split design under two different traffic demand patterns, the presented 

microscopic simulation shows the effectiveness of the proposed model in 

comparison with actuated control based on the optimal signal timing plans obtained 

from SYNCHRO. The throughput improvement ranges from 2% to 12% depending 

on the demand patterns. One interesting finding is that geometry configurations may 

affect the performance of the model. It is reasonable that the traffic model performs 

better for the corridor with closely spaced signalized intersections, because the 

uncongested part of a link is considered negligible compared to the total link length, 

and a platoon cannot be dispersed. From the results of queue length dynamic, the 

proposed model successfully manages the queue length to avoid spillback and 

blockage. This extensive simulation experiment and analyses in comparison with 

results from SYNCHRO reveals that the proposed model is promising for use in the 

design of arterial signals, especially under congested, high demand traffic conditions. 

 

 

 



 

84 

 

Chapter 5 Adaptive Model-based Offsets Optimization for 

Congested Arterial Traffic 

5.1 Introduction  

Proper determination of intersection offsets provides for the efficient movement of 

platoons through multiple intersections during the green signal phase, resulting in 

significantly reduced delays and improved driver satisfaction. In past research, two 

major strategies for developing signal coordination timing plans have been used: 

bandwidth maximization [7, 95-98]  and flow profile methods [68, 99-101]. These 

two methods optimize offsets according to several mathematical objectives, such as 

maximizing bandwidth [7, 96] and minimizing disutility (e.g. delay or number of 

stops) [102]. A number of researchers have also proposed various approaches to 

improve the performance of actuated coordinated systems [103-106]. However, the 

performance of these signal coordination algorithms may lead to suboptimal results 

during the congested condition, which is characterized by a lack of steady-state flow 

conditions and by significant interaction among traffic state between adjacent links. 

Instead of based on the average traffic flow conditions and predefined congestion 

conditions, dynamic offset optimization is needed to deal with the congestion 

phenomena, such as dynamic evolution of queues at intersection approaches.     

Adaptive Traffic Control Systems (ATCS) optimize traffic signal control in 

real-time by continuously adapting signal timing plans at intersections to the current 

traffic demand [10]. With advances in computation and sensing, ATCS have become 
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an increasingly attractive research topic and traffic control option. A number of 

elaborate traffic flow models for the signalized arterial network have been 

deductively derived to describe the complex interactions between traffic states 

evolution and key signal control parameters [14, 34, 39, 64, 90]. Optimization tools 

are used to search for the best sequence of control decisions based on the traffic 

information predicted by traffic flow models. Hence, the undesirable traffic 

conditions will not develop by employing embedded traffic flow models. For some 

model-based ATCS, the signal timing plans, including the cycle length, green split, 

offset and phase sequence, are optimized in a centralized manner simultaneously. 

The problem can be described as a mathematical optimization problem and the 

objective is to minimize or maximize a performance measure that is a complex 

function of the traffic state and signal timing parameters. However, the 

implementation is constrained by the real-time computational complexity of the NP-

hard optimization problem [34, 77]. Some other ATCS develops hierarchical 

structure to divide the complex control problem of a large traffic system into 

different control levels or layers. Control problems with different details are 

addressed in different levels, e.g. the coordination layer optimizes the offsets at each 

intersection (one per cycle), and local control layer continuously calculates optimal 

splits.  

In this study, the offset is optimized based on a developed hierarchical 

structure of signal timing optimization. In the highest layer, the cycle length is 

adjusted based on the predicted traffic demand and network saturation rate. Over 
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time, the cycle length is updated as the system adapts to changing traffic conditions. 

In the mid layer, the split is optimized proactively with an embedded traffic flow 

model and in a rolling horizon scheme to maximize the throughput. Through 

appropriate state equations, the control procedure ensures time-dependent, dynamic 

control. Lastly, the offset is adjusted based on the optimized cycle length and green 

split. This section will discuss the offset optimization layer. This study expands the 

dynamic queue concept to the network-wide coordination problem. First, the ideal 

offset are found based on the shockwave profiles at each signalized intersection. 

Then, goal programming is introduced to optimize offset for the whole network. 

Simulation experiments are conducted to compare the proposed model with fixed-

time control in producing network-wide coordination.  

5.2 Methodology  

5.2.1 Ideal Offset and Boundary Offsets 

Using a shockwave theory, numerous studies have developed queue dynamic 

processes for signalized intersections under congested conditions [74, 79, 107, 108]. 

According to the Lighthill-Whitham-Richards (LWR) theory [109], shockwaves are 

generated by the traffic signal at intersections. Figure 5.1 is a space-time diagram to 

display queue dynamics under congested conditions. At the beginning of the 

effective green phase, the front of a residual queue begins to discharge at the 

saturation flow rate and a discharge shockwave propagates upstream from the stop 

line of intersection i . The platoon from intersection 1i  entering the link ( 1, )i i  

encounters the residual queue 
( 1, )( )i iQ k

 at intersection i at time step k . A backward-
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moving shockwave is created by the stoppage caused by the residual queue. 

Therefore, subsequent entering vehicles encounter stoppage. Whether these two 

shockwaves intersect with each other depends on the relationship between the 

saturated discharging traffic flow at intersection i  and the traffic arrival from 

intersection 1i  . A new residual queue is formed sometime after the start of the red 

light of the next cycle when the queuing shockwave meets the traffic arrival. The 

shockwaves and queue dynamic described above will repeat from cycle to cycle. 

i

i-1

TIME

Shockwave
Vehicle 

Trajectories

1

2

3

( 1, ) ( )i iQ k

( 1, ) ( 1)i iQ k 

( 1, )i iL 

 

Figure 5.1 Shockwave Profile and Queue Dynamic in Congested Condition 

From Figure 5.1, it is observed that if the discharged platoon from 

intersection 1i   joins the tail of the downstream residual queue at the time when the 

tail has reached its free flow speed, then there will be no stoppage or starvation. This 

ideal signal offset allows the leading vehicle in the incoming platoon to just avoid 

encountering the residual queue, yet allows it to reach the stop line one headway 

after the last vehicle in the residual queue discharges. This ideal offset was 
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calculated via several different equations in previous research, such as [79] and [67]. 

In this study, Equation (1) by Lieberman et al. [79] is used to calculate the ideal 

offset. 

( 1, )

( 1, ) ( 1, ) 1

( 1, )

( 1, ) ( 1, ) 1

( )
( ) ( )

i i

i i i iideal

i i

i i i i

L v
k Q k

v v






 



 

 
   

  

   (5-1) 

Where ( 1, )i iL   = the link length  

( 1, )i iv  = the travel speed of the leading vehicle of the incoming platoon 

1 = discharge shockwave speed 

( 1, )( )i iQ k
= residual queue length 

As shown in Figure 5.2 (a), spillback occurs when a queue from a 

downstream intersection uses up all the space on a link and prevents vehicles from 

entering the upstream link on green. Some literature has also defined this condition 

as causing “de facto red” to the upstream movement. As shown in Figure (b), 

starvation occurs at a downstream intersection when the discharge of vehicles at the 

upstream intersection is delayed beyond the ideal offset. Starvation causes capacity 

loss due to the wasting of limited green time at the downstream intersection. These 

two phenomena both waste green time and should be avoided.  
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A
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TIME

Traffic 

Flow

 

(a) Spillback 

i

i-1

TIME

Traffic 

Flow

Q

 

(b) Starvation 

Figure 5.2 Spillback and Starvation in Congested Condition. 
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This study defines two boundary offsets: maximum offset and minimum 

offset. The maximum offset prevents spillback at upstream intersections by ensuring 

that the stoppage shockwave 
2  dissipates before reaching the upstream intersection. 

The minimum offset ensures that the first-released vehicle joins the discharge queue 

at the downstream intersection. Equations (2) and (3) by Lieberman et al. [79] are 

used to exemplify the concept. 

( 1, ) ( 1, ) ( 1, ) ( 1, ) 2
( 1, )

( 1, ) ( 1, ) 2 2 1

Maximum Offset = 1 (1 ) min , 1
i i i i i i i i

i i

i i i i

L Q v L
g

v L



  

   



 

    
       

     

  (5-2) 

( 1, ) ( 1, ) ( 1, )

( 1, ) ( 1, )

Minimum Offset 1
i i i i i i

i i i i veh

L Q hv

v L l

  

 

 
  

  

    (5-3) 

Where ( 1, )i ig  = the green phase duration  

h = mean queue discharge headway 

vehl = average vehicle spacing within a standing queue 

2 = speed of backward-moving shockwave caused by stoppage 

Another constraint is the offsets relationship between primary and opposing 

traffic. Taking the relationship between two offsets of one link as an example, two 

offsets are defined: the primary direction, 
( 1, ) ( )i i m 

 and the opposing direction, 

( , 1) ( )i i m 
. There are two different scenarios when this relationship in considered, 

which depends on the value of 
( 1, ) ( )i i m 

, as shown in Figure 5.3. If 
( 1, ) ( ) 0i i m   , 

the offset is set to clear heavy queues for the primary directions and the opposing 

traffic tends to arrive at the same cycle as it is released from signal i. If 
( 1, ) ( ) 0i i m   , 

the queue in the primary direction is lighter, and the green start time at intersection 
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1i   is leading the green start time at intersection i . Then, Equation (7) describes the 

offset relationship between the two directions, where m is the index for a cycle 

number, c(k) is the cycle length for signal i-1 at cycle k, and n is the number of 

cycles of signal i-1, reflecting the traffic regimes of the two intersections.  

( 1, ) ( , 1) ( 1, )

( 1, ) ( , 1) 1 ( 1, )

( ) ( ) 0 ( ) 0

( ) ( ) ( ) ( ) 0

i i i i i i

k n

i i i i i i i

m k

k k If k

k k c m If k

  

  

  



   



  



  



   (5-4) 

Where  m = an integer value, reflecting the traffic regimes of the two intersections. 

 The offsets of another two directions also need to satisfy this relationship. In 

addition, this method does not support half-cycling.  

i

i-1

=

i

i-1

 
Figure 5.3 Relationships between Offsets for Primary and Opposing Traffic 
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5.2.2 Model Formulation  

To use the available green phase duration and minimize delays, the offset needs to be 

intuitively designed to control the interaction between incoming platoons and 

residual queues. This depends on the input-output flow balance and queue length 

control in each congested approach at every cycle. As aforementioned, the highest 

layer and mid layer of the hierarchical structure adjusted the cycle length and split to 

control the input-output flow balance and queue length dynamic; now, the question is 

how to optimize the offset from the network level. As discussed previously, if the 

offset exceeds the maximum and minimum offsets, it could result in a condition of 

spillback and starvation. Therefore, it is essential to control the offset within this 

certain range. This study adopts the approach of goal programming to formulate this 

problem in order to provide a compromising solution among multiple objectives. 

Generally, the modeling process of goal programming approach is: 1) to establish a 

specific numeric goal for each of the objectives, 2) to formulate an objective function 

for each objective, and 3) to seek a solution that minimizes the sum of deviations of 

these objective functions [110]. There are different types of goal programming 

approach according to how goals compare in importance. Specifically, the approach 

of preemptive goal programming is used in this study to find a solution of the offsets 

at intersections, which has a hierarchy of priority levels for different goals. In this 

case, first-priority consideration is the primarily important goal; second-priority 

consideration is the secondarily important goal; and so forth. According to the 

relative importance of single control objectives, the optimization problem is 
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formulated 1) to minimize spillback, and 2) to minimize the starvation, 3) to 

maintain the ideal offset. The first objective is deemed the most important for signal 

control under congested conditions because it can avoid intersection blockages. Then, 

the first objective is converted to goal constraints as upper one-sided goals that we 

do not want to exceed. This is because the smaller the objective values, the better the 

offset control can manage spillback. Each goal can then be expressed as follows: 

Goal 1:  1 ( , 1)( ( ))i if = min k       (5-5) 

Goal 2:  2 ( , 1)( ( )i if = max k       (5-6) 

Goal 3: 
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 (5-7)     

Where f1 is the spillover goal, f2 is the starvation goal, f2 is the ideal 

offset goal, ( ) ( )in

i-1,iq k  is the upstream arrival flows at time step k of link l.  

Then, we convert goals to a preemptive goal program as follows: 

 1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

, ,Lexmin

Subject to

f b

f b

f b

  

 

 

 

  

 

 

 

  

  

  

    (5-8) 

Where lexmin represents lexicographic minimization, bi represents an 

aspiration level of fi, i
 represents a positive deviation from the aspiration level of fi, 
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and  
i
 represents a negative deviation from the aspiration level of fi. In this 

research, b1, which is the aspiration level of the most important objective, equals to 

the maxim offset, b2 equals to the minimum offset under which we do not want to 

fall, and b3 equals to zero. For a two-way arterial network, the ideal offset of each 

approach of an intersection cannot be achieved simultaneously, because they interact 

with each other. 

5.2.3 Solution Algorithm 

A standard GA cannot be applied directly to solve the above formulated problem 

which has three objectives with different relative priority. A systematic way 

proposed by Sherali and Soyster is used to convert the preemptive goal program to a 

single-objective optimization problem by adding a set of equivalent weights for each 

objective [111, 112]. Then the standard GA can be implemented to solve the 

converted problem. According to importance, the first objective dominates the 

second objective, so the added weights must also guarantee that the first objective 

always dominates the second objective. The proposed methodology proposed by 

Sherali and Soyster is as follows. 

 1 2 3 1 2 3(x), (x), (x); (x) (x) (x)

. .

Minimize f f f f f f

s t x X
  (5-9) 

Assume that 
*x is the set of optimal solutions to (5-8). Then 

*x  is also an 

optimal solution to the following program: 

 1 1 2 2 3 3( ) ( ) ( ) ( ); XMinimize F x f x f x f x x          

Where  
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The first priority goal (i=1) receives the highest weight. The second and third 

goals receive smaller weights. Finally, the preemptive goal program of (5-8) is 

transformed to a single-objective optimization formulation, which is written as  

2

1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

( ) ( ) ( ) ( ) ( )Minimize M M

Subject to

f b

f b

f b
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 

 

 
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 

 

 

   

  

  

  

  (5-10) 

The standard GA can be applied to solve the problem (5-10). The 

implementation of the GA is performed by a Genetic Algorithm Toolbox in 

MATLAB. Similar to Figure 4.7, the GA repeatedly modifies a population of 

individual solutions using selection rules, crossover rules, and mutation rules.  

5.3 Simulation Evaluation 

A reference case was needed for comparison with the proposed model. Therefore, 

one optimized fixed-time control plan was generated with SYNCHRO for both the 

current and 15% increase traffic demand. For the reference case, the offsets were 

constant during the VISSIM simulation. Each of the scenarios was simulated 

multiple times and results were tested for statistical significance. As this study only 

discusses the lower layer of offset optimization, the cycle length and split were 
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consistent during the simulation. In addition, the proposed model does not consider 

the transition. The scenario with 15% increase traffic demand exhibited extensive 

queues, which propagate to block the upstream intersection.  

The average delay for the whole corridor was used as the Measures of 

Effectiveness (MOE). As shown in Table 2, the total average delay is improved at 9% 

and 14% under current and 15% increase demand scenarios, respectively. Figure 5.4 

shows the average delays at different analysis periods. One can find out that, in 

general, the optimized offset generates shorter travel delay than the fixed offset. 

Therefore, the proposed model performs better in producing corridor-wide 

coordination in terms of total delay. 

Table 5.1 Delay Comparison of VISSIM Simulation Results 

Scenarios MOE 
Simulation Results from VISSIM 

Proposed Model Fixed-time Improvement 

Current Average 

Delay(s) 

19.1 20.9 9% 

15%  25.6 29.8 14% 
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(a) Current-Demand Scenario                           

 
   (b) 15%-Increase Scenario 

 Figure 5.4 Average Delay under Different Demand Scenario 

Another performance measure is the available space for queues in corridor’s 

links. Low percentage values indicate higher chances of queue backup and possible 

spillback. Figure 5.5 shows the reserve queuing capacities percentages on the 

corridor links as time progress. Results indicate the effectiveness of the developed 

control plans in allocated queues in the corridor’s links. 



 

98 

 

                                                     

Figure 5.5 Network Reserve Queuing Capacities 

5.4 Summary 

This study presented an algorithm to design signal coordination for networks with 

congested intersections. The ideal offset, maximum offset, and minimum offset were 

introduced to formulate the optimization function. Then, goal programming was 

introduced to optimize offset for the whole corridor. Simulation results showed that, 

in terms of total delay, the proposed model provided better coordination than fixed-

time control plan did. This study only discussed offset optimization with a fixed 

cycle length and split. In the future, the whole architecture will be implemented in 

one optimization process to verify the performance. Another future study is to 

compare the performance of the proposed model with that of other adaptive offset 

optimization methods.  
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Chapter 6 Adaptive Signal Priority Control on Mixed 

Traffic Arterials 

6.1 Introduction 

The adaptive priority control is a typical multi-objective optimization problem, 

where two or more objectives must be satisfied simultaneously in order to obtain the 

preferred solution. Normally, objectives from different travel modes may be in 

conflict with each other. Each trade-off solution corresponds to a specific order of 

importance of the objectives from different travel modes. Various studies have used 

the preference-based method to balance the trade-offs between different travel modes, 

where the integrated delay is formulated as the objective of their control algorithms. 

In the preference-based method (i.e. weighted-sum method), a set of objectives are 

normalized and scaled into a single composite objective by summing the weighted 

normalized objectives. Then the task is to find one solution which optimizes the 

single-objective problem. Table 6.1 lists the objective functions of some existing 

adaptive priority control problem. The objective functions of most reviewed studies 

are to minimize the weighted summation of delays of various travel modes, although 

they used different delay estimation models. The weights can be considered as a 

function of various factors such as real-time bus occupancy, schedule lateness, 

maximum allowed traffic delay, longest queues and priority for emergency vehicles. 

The weighting factor is a relative number among various objectives, and represents 

system manager’s relative preference on each objective. For example, the relative 
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weighting factor on bus delay over vehicular delay and pedestrian delay means the 

policy preference to shift more passengers from private vehicles to public 

transportation. 

The drawback of the preference-based approach is obvious. First, the 

solutions are sensitive to the relative preference vector which is determined without 

any knowledge of the possible consequences. A change in this preference vector will 

result in a different solution. Second, finding a relative preference vector may be 

highly subjective, which sometimes requires experience-driven and qualitative 

information. In reality, some factors are often difficult to determine beforehand and 

hard to be weighted. Third, without perfect knowledge of the trade-off information 

between different objectives, the obtained solutions are circumstance dependent. 

Instead of using ambiguous weighting factors, the other approach is to generate a set 

of solutions, called Pareto-optimal solution, to investigate the trade-off information 

between different objective using multi-objective optimization technologies [113]. 

Then the decision can be taken after the optimization using high-level information.   

This study implements multi-objective optimization technology to evaluate the trade-

off among different conflicting adaptive priority control objectives under mixed 

arterial traffic. Transportation manager will be in a better position to make a choice 

to balance the priority request from different travel modes when such trade-off 

solutions are unveiled. 
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Table 6.1 Summary of Preference-based Adaptive TSP Methods 

Authors Performance Index Model and Algorithm 

Li et al. [21] A weighted sum of bus and other traffic 

delay 

Standard quadratic 

programming models 

Christofa and 

Skabardonis [23] 

A summation of the person delay for the 

auto and transit vehicles passengers 

Quadratic programming 

models 

Christofa et al. 

[114] 

A person based delay considering 

schedule adherence and auto vehicle 

progression 

A mixed-integer linear 

program 

 

Duerr [115] A weighted sum of vehicle delay, 

vehicle stops, residual queues and 

overflow impact 

Genetic Algorithm 

approach 

He et al. [17, 19] A weighted sum of signal delay, queue 

delay, platoon penalty, and the sum of 

slack variables 

A mixed-integer linear 

program 

 

Stevanovic et al. 

[116] 

A summation of the person delay for the 

auto and transit vehicles passengers 

Genetic Algorithm 

approach  

Ma et al. [117] Total weighted delay of all bus priority 

requests considering schedule deviation 

Dynamic programming 

model, rolling time horizon 

approach 

Lee et al. [118] A weighted general traffic delay and 

transit vehicle delay 

Genetic Algorithm 

approach 

Medina et al. [119] Delay based on unit, delay based on 

occupancy, delay based on occupancy 

and priority 

Simple additive weighting, 

analytical hierarchical 

process, technique for order 

preference by similarity to 

ideal solution 
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6.2 Model Development 

The multi-objective optimization procedure is shown in Figure 6.1. After all priority 

control objectives from different travel modes and control constraints have been 

defined, the multi-objective optimization technology will find a well-distributed set 

of trade-off solutions, which is called the Pareto optimal set. It means no 

improvement can be achieved in any objective without degradation in the other. A 

solution on the Pareto front is corresponding to a given objective weight set. The 

vectors of the decision variables corresponding to the solutions included in the 

Pareto optimal set are called non-dominated [113]. The non-optimal solutions are in 

the area above the Pareto front, and infeasible solutions are in the area below the 

Pareto front.  Transportation manager can obtain valuable information based on the 

shape of the Pareto front. For example, they can know how much other objective 

functions would be compromised if a selected objective function is to be favored. 

Finally, one solution can be selected with high-level traffic information.  

Traffic Flow ModelingTraffic Flow Modeling Signal Control RulesSignal Control Rules

Multi-objective 

Optimization Problem

Objective f1

Objective f2

……

Objective fm

Subject to Constraints

Multi-objective 

Optimization Problem

Objective f1

Objective f2

……

Objective fm

Subject to Constraints

Multiple trade-off 

solutions found

Choose One 

Solution 

Choose One 

Solution 

High-level 

Information

 

Figure 6.1 Multi-objective Optimization Process 
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6.2.1 Problem Formulation 

The multi-objective adaptive priority control model is summarized as follows.  

Objective:   (g) | max (g) , ( ) |a bN
Minimize D d d g     (6-1) 
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Where ig is green duration time of phase i; min

ig is minimum green; max

ig is 

the maximum green; walkg  is walk time; 
pedclearanceg is pedestrian clearance time;   is 

a flag variable (0: no pedestrian call; 1: pedestrian call); C  is cycle length; y  is 

yellow time; and ar is All-red time. 

The variables in the optimization are green duration ig . The first objective is 

to minimize the maximum control delay da, and the second objective is to minimize 

total bus delay
bN

d . Based on the HCM 2010, the control delay consists of two 

parts: uniform delay (UD) and random delay (RD), or uniform delay (UDo) and 

overflow delay (OD) under overflow condition [120]. 

If the volume to capacity ratio (X) is smaller than 1, then 
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0.9( ) ( )

2 1

2

a

1 (1- g / C) X
d UD RD = C

2 1-(g / C)min(X,1) v X
  


             (6-3) 

If the volume to capacity ratio (X) is larger than 1, then 

a o

1 T
d =UD OD C(1- g / C)+ (X -1)

2 2
                                     (6-4) 

The constraints are composed of three parts: maximum and minimum green; 

pedestrian setting; and cycle length and NEMA dual ring structure. For more detailed 

description of bus delay estimation, and constraints elaborated, please refer to our 

previous research [20]. There may not exist an unambiguous optimal solution that 

minimizes both the total bus delay and maximum control delay simultaneously. 

Hence, a set of Pareto optimal solutions or non-dominated solutions are sought 

instead. All these solutions form a Pareto frontier. Based on transportation manager’s 

consideration of other information, an optimal timing plan can be selected.  

6.2.2 Solution Algorithm 

Multi-objective approach needs to search for non-dominated Pareto optimal solutions, 

which is efficient algorithms. In recent years, a number of researches has studied this 

problem and developed a number of GA-based multi-objective optimization tools.  

One promising method is the Non-dominated Sorting Genetic Algorithms – NSGA 

[121]. NSGA keeps the normal crossover and mutation operator, but uses different 

selection operator compared with a simple genetic algorithm. Specifically, before a 

selection, the selection operator ranks the population according to the individual’s 

non-domination. Recently, Deb et al. developed an upgraded NSGA with several 

major innovations, named NSGA-II. The major improvements include a fast crowed 
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distance estimation procedure, a fast non-dominated sorting approach, and a simple 

crowed comparison operator [113]. NSGA-II is used in this study to solve the multi-

objective adaptive priority control problem. Figure 6.2 is the flowchart of NSGA-II 

Algorithm. The major process is as follows. 

Step 1: After specifying the algorithm parameters, such as length of gene, 

size of population, probability of mutation and crossover, and maximum generation 

number, the algorithm starts by building a population of individuals based on all the 

signal phase schemes of the intersections in the corridor.  

Step 2: Each individual is evaluated, ranked, and sorted according to the 

dominance rule.  

Step 3: It applies the crossover and mutation operations to create a new 

population of offs-springs.  

Step 4: The parent population and children population are combine to a new 

population for forming Pareto fronts.  

Step 5: The crowding distance is added to each individual, so the algorithm 

can ensure the diversity of the front. After implementing the fast non-dominated 

sorting approach, the algorithm obtains the non-dominated fronts of the population. 

Step 6: If is meets the criteria of maximum generation, the process stops and 

save the final children population.  
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Start

Initialize the population

Evaluate and sort the population using non-

domination rules

Select the parents

Perform crossover and muation

Intermediate population

Non-domination, rank and crowding 

distance 

Gen < Max. Gen

Stop

NoNo

NONO

YesYes

Gen.=1Gen.=1

Gen.=Gen+1

 

Figure 6.2 Flowchart of NSGA-II Algorithm 
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6.2.3 Solution Selection 

As shown in Figure 6.1, after a set of trade-off solutions are worked out, decision 

maker will use high-level information to evaluate obtained trade-off solutions and 

select one solution. Regarding the adaptive priority control problem, advanced 

technologies have been developed to provide real-time information about the traffic 

flow conditions and operation information of transit vehicles. For example, traffic 

states data (e.g. volume and speed) can be collected in real time by inductive loop 

detector, video, and magnetic sensors placed near the intersection. Automated 

Vehicle Location (AVL) technologies can track transit vehicles and send the location 

information continuously. Automatic Passenger Counters (APC) can detect boarding 

and alighting passengers at transit stops, which can be used to estimate the passenger 

occupancy of each transit vehicle. To find the final solution of the adaptive priority 

control problem, this study uses the priority list in Figure 6.3 as an example to 

explain the decision process.  

Step 1: The first priority is to check whether the maximum control delay on 

one approach exceeds a user defined value. It reflects the overall implications of a 

control scheme on traffic flow that overflow are controlled to avoid the queue length 

exceeding a link’s storage capacity, which indicates a possible spillback into the 

preceding intersection.  The unsatisfied solutions will be deleted. If all the solutions 

do not meet this measure, the priority will be inhibited. 

Step 2: check schedule adherence (early, on time, or late) to improve public 

transit schedule consistency. If the bus is behind the schedule, the solution that 
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minimizes the bus delay will be chosen; if the bus is on time or ahead of the schedule, 

it will go to the next step. 

Step 3: considering the occupancy, select the solution that maximizes 

personal throughput for transit and private vehicles.   

Start

Trade-off solutions

Maximized personal throughput 

One chosen solution

Stop

YesYes

NoNo

YesYes

NoNo

Late at Schedule adherence 

Maximum control delay< 

User defined value

Inhibit priority request  

Minimized bus delay

 

Figure 6.3 One Example of User Prioritized Rules 
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6.3 Simulation Evaluation 

The NSGA-II was run to optimize the two objectives: control delay and bus delay. 

Table 6.2 summarizes the parameters relative to the NSGA-II procedure.  

Table 6.2 NSGA-II Parameter Used in Simulation Tests 

Parameter Value Parameter Value 

Population Size 60 No. of Functions 2 

Chromosome Length 50 No. of Generation 50 

Selection Strategy Tournament 

Selection 

Cross-over 

Probability 

0.95 

  Mutation Probability 0.10 

Cross-over 

Probability 

0.90 X-over on binary 

string 

Single point 

X-over 

 

It is observed that a clear frame of actual Pareto Frontiers is located in the 

generation 12. As the generation number grows, more Pareto Frontiers are 

discovered. Figure 6.7 show the relationship between the two objective values at 

generation 20. The figure clearly shows the trade-offs between control delay and bus 

delay. Firstly, an obvious conclusion is that bus delay conflicts with the maximum 

control delay. When the bus delay decreases because of a higher weighting given to 

the bus, the control delay increases at increasing rates. Second, the trade-off degree 

is obviously different for the eight intersections, which may depend on the saturation 

rate of each intersection. In order to evaluate the trade-off between two objectives, a 

set of well-fitted third degree polynomial regression functions are presented in Table 

6.3. It can be observed that the minimum value of delay belongs to the location 
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where the marginal bus delay and traffic control delay are equal. The best values are 

different for each intersection. Therefore, the different values should be determined 

and used at each specific intersection.  
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 Figure 6.4 Pareto Frontier of Generation 20 from NSGA-II 
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Table 6.3 Trade-off between Two Objectives 

Case Coefficients 

 b0 b1 b2 b3 r
2
 

Intersection 1 29.920 2.241 0.178 0.005 0.977 

Intersection 2 85.003 -21.967 1.953 -0.054 0.967 

Intersection 3 59.365 -0.107 0.005 0.000 0.989 

Intersection 4 42.759 -0.272 0.015 0.000 0.979 

Intersection 5 17.585 -1.061 -0.035 0.004 0.992 

Intersection 6 36.976 -3.521 0.268 -0.007 0.992 

Intersection 7 68.621 -2.082 0.069 -0.001 0.988 

Intersection 8 537.763 -7.933 3.924 -0.066 0.938 

 

To analyze the validity of multi-objective optimization method, three control 

scenarios are considered in this study: (1) baseline: actuated control at signalized 

intersections without any TSP control strategy; (2) weighted TSP: actuated control at 

signalized intersections, with the adaptive TSP strategy using weighted combination 

method; (3) multi-objective TSP: actuated control at signalized intersections, with 

the adaptive TSP strategy using proposed multi-objective optimization method.  

The evaluation and comparison are divided into two categories: (1) the 

corridor level, which focuses on the total bus travel time and average bus delay along 

the 7.4 kilometer bus corridor, and (2) individual intersections, including traffic 

control delay, bus delay, etc. Five Measures of Effectiveness (MOEs) were 

considered and analyzed: (1) total bus travel time along the corridor; (2) bus delay at 
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each intersection; (3) control delay at each intersection; (4) schedule adherence along 

the corridor; (5) personal throughput at each selection. These five MOEs determine 

priority control performance and benefit. 

Table 6.4 shows the statistic tests of the total bus travel time along the 

corridor. Only the buses driving through the entire corridor are counted as the object. 

The results are the average value of the multiple runs. In the t-test, one assumption is 

that the sample of the results follows the normal distribution at a 95% confidence 

level. Comparing the non-TSP scenario to the TSP scenario, both weighted and 

multi-objective TSP bring significant bus travel time savings. The mean value of the 

total travel time shows weighted TSP will save about 60-80 seconds compared to the 

baseline, and the multi-objective TSP can save 40-95 seconds along the whole 

corridor compared to the baseline. Multi-objective TSP shows better travel time 

savings on southbound, as it gives much more priority the buses southbound to 

improve schedule adherence.  
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 Table 6.4 Total Bus Travel Times along the Corridor 

Control Type 

Southbound Northbound 

Average total travel 

time (s) 

Time 

saving 

Average total 

travel time (s) 

Time 

saving 

Baseline 1087.6 N/A 1081.5 N/A 

Weighted 1008.3  79.3 1021.4 60.1 

Multi-

objective 

992.6 95.0 1038.7 42.8 

t value 4.96 3.08 

t critical value 

(two tail) 
2.13 2.13 

Confidence 

Level 
95% 95% 

Significant 

improvement? 
Yes Yes 

 

In Table 6.5, it can be found that in most of intersections, the multi-objective 

strategy saves more bus delay than weighted method. Second, it also can be 

concluded that there are similar reductions on bus delay caused by both two 

strategies at most of intersections. That means, in terms of bus delay, two methods 

provide almost the same benefit to the bus. As a trade-off between the bus priority 

and general traffic delay, two methods consider both granting TSP priority and 

minimizing general traffic impact. The benefits of multi-objective optimization 

method are:  (1) the personal delay is significantly decreased compared with 

weighted method; (2) transit serviceability and schedule reliability are improved, 
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which can result in increased ridership and customer satisfaction; (3) there is no 

control delay exceeding 50 seconds. 

Table 6.5 MOEs at Individual Intersections 

Intersection  1 2 3 

MOE 
Personal 

delay 

Bus 

delay 

Control 

delay 

Personal 

delay 

Bus 

delay 

Control 

delay 

Personal 

delay 

Bus 

delay 

Control 

delay 

Baseline 18.5 11.0 24.0 15.2 7.3 34.2 20.3 15.8 58.7 

Weighted 16.5 8.0 23.4 8.9 4.7 33.0 12.8 9.3 52.5 

Difference 2.0 3.0 0.6 6.3 2.6 1.3 7.5 6.5 6.2 

Multi-

objective 
15.2 8.5 25.2 6.5 3.8 33.2 13.2 9.6 51.3 

Saving 3.3 2.5 -1.2 8.7 3.5 1.0 7.1 6.2 7.4 

Intersection 4 5 6 

MOE 
Personal 

delay 

Bus 

delay 

Control 

delay 

Personal 

delay 

Bus 

delay 

Control 

delay 

Personal 

delay 

Bus 

delay 

Control 

delay 

Baseline 19.8 10.4 43.1 6.9 6.2 7.9 29.2 25.4 33.6 

Weighted 15.2 7.2 41.5 6.8 6.2 7.2 28.3 20.4 27.5 

Difference 4.6 3.2 1.6 0.1 0.0 0.7 0.9 5.0 6.1 

Multi-

objective 
12.3 5.6 42.3 6.2 5.8 7.0 26.1 18.6 26.9 

Saving 7.5 4.8 0.8 0.7 0.4 0.9 3.1 5.0 6.1 

Intersection 7 8 Corridor 

MOE 
Personal 

delay 

Bus 

delay 

Control 

delay 

Personal 

delay 

Bus 

delay 

Control 

delay 
Schedule adherence 

Baseline 32.3 6.4 60.5 24.3 25.0 20.2 83% 

Weighted 28.6 5.3 52.7 19.6 18.1 22.0 83% 

Difference 3.7 1.1 7.8 4.7 6.9 -1.8 0% 

Multi-

objective 
26.8 5.6 47.6 16.3 15.3 23.1 100% 

Saving 5.5 0.8 12.9 8.0 9.7 -2.9 17% 
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6.4 Summary  

The performance of adaptive priority control depends on three factors: delay 

estimation, weights determination and optimization formulation. This study used 

multi-objective optimization method to investigate the priority control performance 

from the aspects of the weights determination and optimization formulation. It can be 

concluded from the results that the multi-objective genetic algorithm had potential 

use in intersection adaptive signal timing optimization. It demonstrated that NSGA-II 

is efficient to solve multiobjective signal timing design problems under real traffic 

arrival patterns. Further, the proposed Pareto-frontier regression functions provided 

an insight into the trade-off among multiple signal optimization objectives.  

A set of Pareto optimal signal timing plans are generated that form an 

efficient frontier. The frontier exhibits an obvious tradeoff between maximum 

control delay and total bus delay, providing a foundation for the decision making 

with high-level information. This study proposed prioritized rules for the multi-

objective priority control problem. The results showed that multi-objective 

optimization method can gain better comprehensive traffic benefits than weighted 

method. The findings provides traffic manager an easy way to select the most 

appropriate adaptive priority control solutions for particular situations that best serve 

the needs of transit vehicles and general traffic.  
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

If the traffic state comes to the realm of congested condition, traffic intersections are 

not isolated and the traffic states of roads will interact with each other. Hence, it is 

necessary to understand the behavior of arterial traffic and to investigate coordinated 

signal control strategies. Model-based adaptive signal control is a promising control 

methodology that can meet the needs for controlling and coordinating congested 

arterial traffic. In the thesis, several methods were proposed to address the problems 

arising when model-based adaptive control methodology is used for signal timing 

optimization for congested mixed arterial traffic. The main methods considered in 

the thesis can be summarized as follows. 

(1) Hierarchical control structure 

This study utilized a hierarchical control structure to divide the signal control 

problem of a large traffic system into three different control layers. Control problems 

with different details were addressed in different layers: the highest layer optimized 

the cycle length on the basis of flow capacities and volume levels; the mid layer 

continuously calculated optimal split with an embedded enhanced SFM and using the 

rolling horizon scheme for proactive control; the lowest layer adjusted the offsets 

from the network level by introducing the boundary offsets and considering the 

spillback offset and starvation offset; there was an extra multi-modal priority control 

layer to provide priority to different travel modals in the mixed arterial traffic.  
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(2) MPC Controller 

MPC controller was built to address multiple control problems for arterial traffic 

corridor. It combined an enhanced SFM, mathematical optimization and rolling-

horizon scheme to capture queue interactions among neighboring lane groups in a 

link and multiple signal phase operation. 

(3) Multi-objective Methodology 

This study adopted preemptive goal programming approach to tuning offset in 

real time for congested arterial corridor, which considered maximum offset and 

minimum offsets to avoid spillback and starvation. Under mixed arterial traffic, 

different travel modes competed for the same road space. Priority control was 

established to favor one mode over another. A new multi-objective optimization 

problem was formulated to find trade-off solutions between control delay of general 

traffic and bus delay.  

(4) Solution algorithms based Modified GA  

GA is adopted to solve the problem. Many previous studies have also shown the 

effectiveness of GA when solving signal optimization problems. Modified GA-based 

signal optimization programs were developed and evaluated.  

(5) SILS based Adaptive Control Implementation 

In order to implement and evaluate the adaptive control algorithms, a simulation 

platform was developed, containing SILS environment, ASC/3 interface, and control 

system. The adaptive control was implemented in the virtual ASC/3 controller by 

adding input–output functions over the NTCIP and Transmission Control 
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Protocol/Internet Protocol (TCP/IP). The signal timings were modified through the 

proposed optimization models.    

(6) Simulation Evaluation 

Based on the developed simulation platform, the evaluations of the proposed 

adaptive traffic signal control strategies were conducted on two case studies in the 

City of Edmonton, Alberta. Each of the scenarios was simulated multiple times and 

results were tested for statistical significance. Our findings showed that proposed 

models outperformed actuated signal timings in increasing throughput, decreasing 

delay, and preventing queue spillback. 

7.2 Limitations and Recommendations 

Research on adaptive traffic signal control is extremely challenging. There are some 

limitations of this study.  

 Phase sequence is kept constant in the proposed adaptive control strategies 

and this study did not investigate the phase sequence optimization, but the 

performance improvement resulting from different sequences cannot be 

neglected. A reasonable method needs be developed to address phase 

sequence optimization with considering the cost of disturbing coordination. 

 When the arterial corridor is large, corridor-wide cycle length becomes 

unsuitable. It is necessary to investigate the cycle length optimization under 

the congested condition. 

 Some of the parameters of the traffic models proposed in the thesis, such as 

turning rates and shockwave speed, were assumed to be constant. Actually, 
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these parameters will change with time because of route choice decision, 

weather conditions, seasonal variations, construction events, incidents and 

others. However, they were not considered sufficiently in this thesis.  

 The enhanced SFM model assumed a fixed turning ratio to simulate vehicles 

merging intro different lane groups, but the lane-change behavior may have 

big impact on the queue dynamic because of stochastic individual drivers.  

There are several needs for future research that were identified, including the 

following: 

 With advances in traffic sensing technologies, innovative data sources are 

available, such as smartphone data and connected vehicle data. These new 

data source will enhance the capability and accuracy of arterial traffic flow 

prediction model. Finally, this enhancement can improve the performance of 

the adaptive control strategies. 

 Traffic demand was assumed fixed during the two hour simulation in this 

study. However, the traffic demand variation was an important nature of 

arterial traffic network. Therefore, future research can investigate hybrid 

control models, considering the prediction of the future traffic demand, 

dynamic traffic assignment, and adaptive signal control,   

 All of the experiments were done in simulation environment. It is well known 

that simulations have certain limitations in representing real-world traffic 

dynamic under congested condition. Field testing will provide valuable 

validation of the proposed control strategies.   
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