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Introduction: Spoken Word Recognition
● Spoken word recognition studied in phonetic and psycholinguistic research
● Tells us things about the lexicon

○ E.g., more lexically frequent → faster to recognize (Dahan, Magnuson, & 
Tanenhause, 2001; Dupoux & Mehler, 1990; Ernestus & Cutler, 2015)
■ Usually explained as resting levels for activation or different 

connection strengths (Dahan et al., 2001)
● Studies generally get at mental processes ongoing during word recognition
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Introduction: Pseudowords
● Most word recognition studies use pseudowords (usually phonotactically legal)

○ Ensures linguistic processing in experimental tasks
● Responses to pseudowords often thrown out, or else examined to understand 

real word processing
● Restricted research in this area points to lack of knowledge

○ E.g., what happens when heard in an experiment? (represents 50% of 
stimuli)
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Introduction: Present Study
● Seeks to describe some of the processes involved in pseudoword recognition

○ Bears some relation to a number of linguistic phenomena
■ Hearing a word a listener hasn’t encountered before
■ Detecting what’s been heard is not a real word (and possibly 

recovering from that)
● Effects of several lexical predictors analyzed with linear mixed-effects modeling
● Trends from fit models examined and framed in greater speech processing 

context

4



Analysis: Data set
● Comes from Massive Auditory Lexical Decision data set (Tucker et al., 2017)

○ Responses to auditory lexical decision task
○ 232 monolingual western Canadian English speakers
○ 26,800 real words, 9,600 pseudowords recorded to be phonotactically legal

■ Recorded by 28 year-old western Canadian English speaker trained in 
phonetics

■ Mean of 11.88 responses per pseudoword
■ Pseudowords on average 132 ms longer than words

○ Pseudowords generated using Wuggy (Keeulers & Brysbaert, 2010), set 
to substitute a third of the sub-syllabic units in real words with other 
sub-syllabic units (e.g., onset cluster, phoneme, etc.)
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Analysis: Lexical Predictors
● Phonotactic probability

○ How often certain phones, phone combinations, or transitions occur
○ Positive correlation to pseudoword “goodness” (Vitevitch, Luce, 

Charles-Luce, & Kemmerer, 1997; Bailey and Hahn, 2001)
○ High values facilitative to auditory lexical decision but overshadowed by 

effect of lexical status (Vitevitch & Luce, 1998)
● Calculated here as product of diphone co-occurrence probabilities, using Google 

Unigram corpus (Michel et al., 2011) and augmented copy of CMU 
Pronouncing Dictionary 0.6 (Weide, 2005)

● Hypothesis: positive correlation to difficulty in recognizing pseudoword
○ Higher values should suggest that an item is less remarkable, and more 

competitors to decide between 6



Analysis: Lexical Predictors
● Phonological neighborhood density

○ Measure of how many phonologically similar items there are to an item in 
question

○ Usually, for a given item, the count of entries in lexicon with an 
edit-distance of 1 from said item

○ Inhibitory effect for high values in auditory lexical decision with 
pseudowords (Luce, 1986; Luce & Pisoni, 1998)

○ Inhibitory effect for high values on accuracy in primed naming tasks 
(Goldinger, Luce, & Pisoni, 1989)

● Hypothesis: positive correlation to difficulty in recognizing pseudoword
○ Higher values should suggest more competitors to decide between
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Analysis: Lexical Predictors
● Uniqueness point

○ Phoneme where sequence can be uniquely identified from among other 
items in the lexicon

○ Found to be more important than phonological neighborhood density in 
audio-primed visual lexical decision (Marslen-Wilson & Zwitserlood, 1989)

○ Effect size found comparable to lexical frequency (Balling & Baayen, 2012)
● Hypothesis: positive correlation to difficulty in recognizing pseudoword

○ Higher values should suggest more time needed to determine the item 
being heard
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Analysis: Data Subsetting and Transforming
● Correctly identified pseudowords (n=96,049)
● Responses less than 500 ms from onset, before the word offset, or to items with 

phonotactic probability calculated to be 0 were dropped
○ 94,199 responses remained to analyze (98.07%)

● Reaction time (from offset), phonotactic probability, phonological neighborhood 
density+1, and uniqueness point were all logged for model fitting
○ Normal distribution of residuals

● All continuous variables were centered and scaled in the model fitting to bring 
the predictors to similar scales and help the models to converge
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Results: Model
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● Predictors of interest: log phonotactic probability, log phonological 
neighborhood density+1, log uniqueness point

● Controls: pseudoword duration, trial number
○ Dropped during fitting: age, sex, booth number, all two-way interactions 

between predictors of interest
● Random effects: random intercept for subject with a random slope for trial, 

random intercept for item with a random slope for trial



Results: Phonotactic Probability
● Rare sequences should be easier to 

identify, and common sequences 
harder
○ Like distinctive vs. common 

writing styles
● Agrees with Vitevitch & Luce 

(1998)
○ Their data set is smaller and 

restricted to CVC items
○ Our results show effect’s 

robustness across possible 
pseudowords 11



Results: Phonological Neighborhood Density
● More possible candidates to compare, 

so more difficult to decide
● Matches previous trends (Luce, 

1986; Luce & Pisoni, 1998)
● Effect size is approximately the same 

sa phonotactic probability
○ Suggests its role may be smaller 

than has been described in 
previous studies (see above)
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Results: Uniqueness Point
● Further in → need to wait longer for 

enough evidence to decide
● Probably segment that contains most 

information, as in Balling & 
Baayen’s account of surprisal and 
uniqueness point (2012)
○ Effect size larger than other 

predictors of interest
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Discussion: Info Used in Pseudoword Recognition
● Significance of each trend suggests multiple pieces of lexical information are 

used in pseudoword recognition
○ Likely that same mechanisms used in real word recognition are used in 

pseudoword recognition
○ No “magic bullet” predictor

● Task responses as the product of multiple characteristics of an item
○ Uniqueness point does has largest effect
○ Effects of phonotactic probability and phonological neighborhood density 

are similar
■ Suggests similar importance?
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● There must exist some mechanism to decide if pseudoword/nonword is being 
heard
○ “If all else fails… Nonword!” accounts are less than satisfying...
○ Nonword identification itself could help determine when a perception error 

has occurred, as perhaps in Shortlist B (Norris & McQueen, 2008)
● Based on significance of all trends, unlikely to be organized around one 

particular characteristic (e.g., phonological neighborhoods)
○ If it were, we would expect one characteristic to explain a large amount of 

variation

Discussion: The Lexicon
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● Speech processing is going on during pseudoword trials (as we would hope)
○ Phonological priming and semantic priming could inadvertently occur

● If characteristics of the pseudowords skew too far from wordlikeness (e.g., 
consistently low phonotactic probability or phonological neighborhood density) 
confounds could arise
○ Lexical decision: are listeners really only deciding lexical status at that 

point?

Discussion: The Experimental Tasks
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Conclusions and Future Directions
● We should be paying attention to our pseudowords

○ Responses should not be neglected in data analysis
○ Processing is still ongoing when a pseudoword is heard in experiments
○ There is some order to be found in the responses to them

● Future directions:
○ Effect of morphological complexity?
○ Timing of uniqueness point (as opposed to position)?
○ Acoustic similarity vs. phonological similarity
○ Effects of wordlikeness?
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Appendix: Model fitting process
● Linear mixed-effects regression using lme4 package (Bates et al., 2015) in R (R 

Core Team, 2015)
● In fitting model, nested models were compared via maximum likelihood and 

restricted maximum likelihood, as in Zuur (2009)
○ Random structure forward-fit

■ Complexity added to random-effect structure if maximum likelihood 
indicated it was warranted

○ Fixed structure backward-fit
■ Complexity removed from fixed-effect structure if restricted maximum 

likelihood indicated it was not warranted
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Appendix: Table of Coefficients
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Appendix: Sample Spectrograms
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