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Abstract

Motor vehicle emissions constitute a major source of local air pollution in the United States.

The U.S. government stipulated motor fuel content regulations and required that cleaner

fuels be adopted, instead of conventional gasoline, in certain pollution non-attainment areas.

To determine the environmental effects of these regulations, the emissions levels that would

have been reduced in the regulated areas in the absence of the regulations need to be known.

However, this counter-factual does not exist. The difference-in-difference strategy employed

in the current study takes the reductions in the emissions of control counties as a surrogate

for the counter-factual of the regulated areas. I find that the introduction of gasoline content

regulations results in a dramatic reduction in the pollution from on-road vehicles but not from

off-road engines and vehicles, during the period 1990 to 2002. Therefore, the less affected

pollution from the off-road sources could nullify the environmental benefits by adopting

clean fuels. This may be an additional explanation for why local air quality did not improve

though cleaner fuels were prescribed to certain polluted areas.

An accelerated vehicle retirement program was also adopted by the U.S. government to ad-

dress vehicle air pollution. The U.S. “Cash for Clunkers” (CARS) program offered incentive

to participants who retired their current vehicles and purchased a new vehicle, provided that

certain requirements on fuel economy improvements and vehicle categories were satisfied.

I evaluate the pollution-reduction effects of this program. Based on the rich set of house-

hold and vehicle characteristics contained in the 2009 National Household Travel Survey

(NHTS) data, an instrumental variable regression is used to predict the travel demand for
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the CARS retried and replacement vehicles and then their associated pollution. This study

finds that the CARS program potentially does not result in a reduction of CO2 emissions

and an environmental gain, even with taking into account its effects on the emissions of

criteria pollutants.

The U.S. Corporate Average Fuel Economy (CAFE) standards have imposed increasingly

stringent requirements on vehicle fuel economy. The improvement of fuel efficiency is mo-

tivated by the desire to reduce fuel consumption and vehicle carbon emissions. However,

the improved fuel efficiency leads to a reduced per-mile cost of driving and thus additional

travel demand, which is a direct rebound or “take back” effect, because it may offset the

potential fuel savings that otherwise would be obtained. This study empirically identifies

the rebound effect by estimating a joint model, which determinines vehicle miles and fuel

efficiency simultaneously. The current study finds no evidence of the rebound effect and

concludes that the potential negative effect resulting from the fuel efficiency improvement

should not be a concern.
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1 The Effects of U.S. Federal and State

Gasoline Content Regulation on Air

Pollution from On-road and Off-road

Vehicles

1.1 Introduction

Motor vehicle emissions constitute a major source of air pollution. This is an increasing

problem worldwide, as modern roads encourage more drivers to drive more miles. Volatile

organic compounds (VOCs), nitrogen oxides (NOx), carbon monoxide (CO), and particulate

matter (PM) generated by motor vehicles are four distinct air pollutants which significantly

affect both ambient air quality and human health.1 To limit the pollution from vehicle

usage, the U.S. federal government stipulated minimum motor fuel content requirements

under the 1990 Clean Air Act Amendments (CAAA). Particularly, the government require

that cleaner fuels instead of conventional gasoline be adopted in severely-polluted areas. For

example, federal reformulated gasoline (RFG) and winter oxygenated gasoline (OXY) are

used in ozone and CO non-attainment areas, respectively, as these two types of fuels are

cleaner for these purposes.
1For more details on these pollutants, please see Section 2.
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Beyond the federal regulations, states are also allowed to implement their own regional

gasoline content regulations in certain pollution non-attainment areas under state imple-

mentation plans (SIPs) approved by the 1990 CAAA. A fuel under the SIPs is also cleaner

than conventional fuel and is used to meet a state’s own emission-reduction target and obtain

the attainment designation for some certain pollutant(s). In addition, the state requirements

are normally more stringent than the federal requirements. For example, state regulations

may require a lower volatility limit on gasoline, a higher oxygen content in the fuel, or a

longer policy control period compared to the federal regulations. The SIPs fuels are labeled

“boutique fuels”, while the Reid Vapor Pressure (RVP) gasoline is a commonly adopted

boutique fuel.

Currently, over 17 types of gasoline are being sold in the U.S. fuel market, as a result of

different regional fuel content requirements Brown et al. (2008).2 In general, the gasoline

types can be distinguished based on the fuel attributes including fuel volatility (measured

by Reid Vapor Pressure), oxygen-content volume and type, and the volume of other fuel

contents such as sulfur. Compared with conventional fuel, some types of clean fuels may

have lower fuel volatility to reduce VOC emissions, which react with NOx to form ground-

level ozone smog in the presence of sunlight. Some types may have the requirements to

contain minimum fuel oxygen content to reduce CO emissions, which are primarily produced

from the incomplete combustion of carbon content in fuel due to a lack of oxygen content,

especially during the winter season. Besides the requirements on fuel volatility and oxygen

content, a clean fuel may also need to meet the emission-reduction targets for toxic air

pollutants (TAP) and NOx, and meet the limits on benzene as well, in order to be certified

as reformulated gasoline.

The effects of the fuel content regulations on wholesale gasoline prices and price volatility

were explored in Brown et al. (2008), Chakravorty et al. (2008), and Muehlegger (2006).

2For more information, see EPAct Section 1541(c): Boutique fuels report to congress, 2006: http://www.
epa.gov/otaq/boutique/420r06901.pdf.
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These authors found that the price gap was around three cents per gallon between regulated

and uncontrolled areas due to the higher cost of producing cleaner fuels. Furthermore,

some of these authors argued that the geographic segmentation resulting from different local

regulations can provide potential market power to gasoline suppliers within isolated markets

and, therefore, partially contribute to the price gap.

However, the effects of the regulations on reducing air pollution have not been well addressed.

Auffhammer and Kellogg (2011) first examined how gasoline content regulations affected air

quality, as measured by ground-level ozone concentration levels. They found that gasoline

content regulations, with the exception of the California Air Resources Board (CARB) refor-

mulated gasoline program, did not significantly reduce these ozone concentration levels, and

thus, did not effectively improve air quality. The current paper is most closely related to their

study, because it also is attempting to identify the effects of regulations on the reduction in

air pollution. However, the emission levels for VOCs, NOx, and CO “directly” emitted by

motor vehicles instead serve as the measures used to evaluate the pollution reduction effects

of the regulations.

Through the use of the different measures, the current study finds that content regula-

tions effectively reduced on-road vehicle emissions, a conclusion which seemingly contradicts

Auffhammer and Kellogg (2011).3 However, this apparent contradiction could be reconciled

by understanding the differences between the emissions of air pollutants and the ozone con-

centration levels. Ground-level ozone is not emitted by any source but rather is produced

by a chemical reaction between VOCs and NOx in the presence of sunlight. As a result, a

clean fuel regulation could effectively reduce vehicle emissions but not improve air quality

because, in addition to the emissions associated with the vehicle usage, the exhaust yielded

by industrial processes, chemical solvents, and natural sources also contains VOCs and NOx,

which additionally facilitates the forming of ozone and affects air quality.
3According to the National Emission Inventory (NEI), “on-road” emissions are defined as those created by

motorized vehicles of normal operation on public roadways, which includes the emissions of passenger
cars, motorcycles, minivans, sport-utility vehicles, light-duty trucks, heavy-duty trucks, and buses.

3



More specifically, the current paper tries to identify the emission-reduction effects resulting

from the implementations of the relevant regulations, for both on-road vehicles and off-road

engines and vehicles.4 To determine the environmental effects, the emissions levels that

would have been reduced in the regulated areas need to be known had the regulations not

been adopted. However, this counter-factual does not exist. The difference-in-difference (D-

in-D) strategy employed in the current paper takes the reductions in the emissions of control

counties as a surrogate for the counter-factual of the treatment areas.

Based on the fuel types, counties across the United States are allocated into an RFG-treated

group, an RVP-treated group, an OXY-treated group, and a control group in which con-

ventional gasoline is used. By comparing the changes in pollution levels for both treated

and control groups, the effects of the regulations on reducing VOCs, NOx, and CO are then

determined in 1990 and from 1996 to 2002. Due to a lack of data for the interval from

1991 to 1995, the current empirical strategy is carried out based on two categories of treated

counties: those that adopted a clean fuel in 1996 and those that adopted a clean fuel later

than 1996.

With respect to the counties that fall into the first category, the reductions in emissions levels

for regulated and control areas are compared between 1990 and 1996. All gasoline-content

regulations are found to have had a significant effect in reducing the targeted pollution

emitted by on-road vehicles. In 1996, the RFG program reduced VOCs, NOx, and CO by

35.5%, 16.9%, and 34.1% on average, respectively, at the county-level. These reductions are

collectively valued at $37.83 million USD in 2010 prices. The RVP program also lead to a

reduction of VOCs emissions by 30.6%, and the OXY program reduced CO by 35.4% at the

county-level in 1996. These particular reductions are valued at approximately $11.68 and

$16.20 million, respectively.5 In addition, emission densities and emissions per capita were
4The off-road sources as defined by the NEI include the following general equipment categories: agricultural,

airport support, light commercial, construction and mining, industrial, lawn and garden, logging, pleasure
craft, railroad, and recreational equipment.

5Following Antweiler and Gulati (2011), Hydrocarbon (HC), NOx, and CO were valued at approximately
$3.5, $3.5, and $0.5 CAD per kilogram in 2010 prices, respectively. The average annual exchange rate

4



used as the alternative dependent variables to examine the regulation effects. It is found

that the former but not the latter was well influenced by the fuel regulations.

The regulation effects were also examined over time for the counties that switched into or

out of a program in a year other than 1996. For counties that adopted RVP gasoline in

1998, 1999, and 2000, the estimates on the policy effects are all found to be negative (but

mostly insignificant) and have a tendency to increase in magnitude over time. Therefore, the

RVP program might perform better as a long-run emission-control strategy. Furthermore,

for counties that switched out of the OXY program, the pollution reduction effects quickly

cease over time.

Regarding off-road pollution, none of the policies were found to yield substantial pollution

reductions. This finding is explained by the fact that gasoline is primarily consumed by on-

road vehicles but not by off-road engines and vehicles. Because the emissions from on-road

and off-road sources jointly promote the production of ground ozone, the increasing and

unaffected off-road pollution may also explain why a substantial air quality improvement

cannot be observed for some of the regulated areas.

More importantly, this finding also provides us with policy recommendations: governments

should impose some complementary regulations to control the off-road emissions, majorly

produced from diesel combustion, in order to prevent the environmental gains collected by

the clean fuel regulations from being crowded out by the uncontrolled off-road pollution.

As expected, Low sulfur (500 parts per million) and Ultra Low Sulfur Diesel (ULSD, 15

parts per million) fuels are being adopted by off-road, locomotive, and marine sectors from

2007-2014, although the main purpose of using these cleaner fuels is to reduce non-highway

sulfur emissions.

between the USD and CAD was 1.02993904 in 2010.
5



1.2 Background on externalities and gasoline regulation

The major externalities associated with automobile usage may include local air pollution,

global air pollution, oil dependency, traffic congestion, and traffic accidents Parry et al.

(2007). The local and global air pollution are distinguished according to the potential in-

fluence scope of the pollution. VOCs, NOx, CO, and particulate matter (PM) generated

by motor vehicles are local pollutants and tend to affect local air quality, while carbon

dioxide (CO2) is well known as a global pollutant and the major component of greenhouse

gases, which impose a significant impact on global warming. In the current paper, only

local pollutants are focused on, as the gasoline content regulations aim at reducing the local

pollutants and dealing with the local air-pollution problems by enforcing the adoption of

clean reformulated gasoline.

1.2.1 Local air pollutants from on-road vehicles and their relevant

health impacts

The VOCs, NOx, CO, and PM generated by motor vehicles are four significant air pollutants

that affect both ambient air quality and human health. On-road vehicles emit these pollu-

tants into the air through fuel combustion and evaporation. When fuel is combusted under

lack of oxygen content, the carbon contents in fuel do not burn completely and on-road

CO emissions are emitted, especially during the wintertime. CO can cause health prob-

lems, varying from visual impairment and headaches to reduced work capacity, by hindering

oxygen delivery to the body’s organs and tissues.

VOCs (sometimes called hydrocarbons) are generated either through a vehicle’s exhaust or

through gasoline evaporation, while NOx is a product of high-temperature gasoline burning.

Moreover, VOCs and NOx together react chemically to form ground-level ozone in the pres-

ence of sunlight. These are the precursors of ambient ozone, which is the primary component
6



of smog and has negative health and environmental effects ranging from chest pain, cough,

and throat irritation to reduced crop production.

PM2.5 with a diameter less than 2.5 micrometers is one of the main particulates emitted from

motor vehicles mainly through tire wear and brake use. Due to its small size, it is believed

to have the greatest negative effects on health, including asthma, breathing difficulty, and

chronic bronchitis, especially for children and the elderly.

1.2.2 Overview of gasoline content regulation

Prior to the Clean Air Act Amendments (CAAA) of 1990, the different gasoline types were

distinguished by their octane grades. With the introduction of cleaner fuels required under

the 1990 CAAA, gasoline is characterized by more dimensions of fuel properties, say oxygen

contents and fuel additives. The burning of cleaner fuels rather than conventional fuels was

chosen by the U.S. government as a policy instrument to improve air quality because cars

and trucks are still a primary source of local air pollution. Figure 1 presents the different

types of gasoline sold in the U.S. fuel market, as of May 2006. The figure shows that RFG,

RVP, and OXY fuels, along with some state boutique fuels (say CARB and Arizona clean

burning gasoline), are major clean fuels. The following subsections present a overview of the

content regulations that prescribed these fuels.6

1.2.2.1 RFG program

The RFG program was first introduced in 1995, with Phase I covering 1995 through 1999

and Phase II being effective from January 1, 2000. Federally mandated areas are covered by

the RFG program, but a state can also opt into this program to use the RFG within certain

areas of a state. The program is targeted mainly at reducing the VOCs emissions during
6A good review on gasoline content regulation can be found in Brown et al. (2008), and more details can be

found in the Code of Federal Regulations, 40 CFR Part 80, and EPA, EPAct Section 1541(c): Boutique
fuels report to congress, 2006: http://www.epa.gov/otaq/boutique/420r06901.pdf.
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Figure 1.1: U.S. gasoline requirements, as of May 2006

Source: EPAct Section 1541(c): Boutique Fuels Report to Congress, Figure 1, p. 7, 2006, available at
http://www.epa.gov/otaq/boutique/420r06901.pdf.

the summer season of high ozone levels and the toxic air pollutants (TAP) throughout the

whole year. Gasoline of lower volatility, measured by a lower RVP value, is used to limit the

emission of VOCs.7 Compared to conventional gasoline, the RFG fuel has lower RVP levels.

Figure 1 lists the areas covered by this RFG regulation. Particularly, the southern RFG

regulated areas have more stringent RVP requirements relative to the northern areas because

the temperature on average are higher for the former, which is prone to the formation of the

RVP emissions. In addition, the RVP requirements has converted from low fuel RVP levels

to explicit VOCs reductions as the RFG Phase I transits into the Phase II. Furthermore, the

Phase II requires a higher reduction in the VOCs emissions in northern VOC-Control region,

and higher reductions in NOx and TAP as well, compared to the Phase I. These differences

reflect that RFG gasoline is required to achieve a better performance in terms of average

emission reductions over time.
7The removal by refiners of the light component of the fuel, particularly butane, is a common approach for

reducing the gasoline volatility because it is less costly to do so (see Auffhammer and Kellogg, 2011).
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Moreover, the RFG fuel blend requires oxygen content greater than or equal to 2.0 by weight

percent and benzene less than or equal to 1.0 by volume percent.8 According to the EPA,

the RFG program is a major gasoline content regulation as RFG is currently being used in

17 states and the District of Columbia, where non-attainment areas are federally mandated

to use RFG, and attainment areas can opt into the program. RFG accounts for one-third of

the gasoline sold in the United States. Table A1.1 in the Appendix provide more detailed

information on the RFG regulation.

1.2.2.2 RVP program

The RVP regulation Phase I covered 48 states during the 1989 to 1991 summer periods.

Limits on the RVP values of 10.5, 9.5, and 9.0 pounds per square inch (psi) were used

across different areas in the United States, with a smaller number representing a stricter

requirement. The RVP Phase II began in 1992 and required a bottom-line gasoline of 9.0

psi RVP across the nation, while a gasoline of 7.8 psi RVP applies to the southern ozone

non-attainment states during the summer time. The RVP gasoline generally has a lower

volatility than conventional gasoline and is used during the summer ozone season, typically

from June 1 to September 15, when the ground-level ozone problem is serious.

The RVP regulation is either federally mandated or implemented through the SIPs. Figure

2 presents the RVP-regulated areas according to the RVP value. It also shows that the

RVP gasoline is a major boutique fuel stipulated under the state fuel content regulations.

In addition, some states implemented more stringent RVP requirements, say 7.0 and 7.2

psi, in the SIPs. The Guide on Federal and State Summer RVP Standards for Conventional

Gasoline Only 2001, 2005, and 2010 lists the RVP limits by state and county. This regulation

information is summarized in Table A1.2 of the Appendix.

8The requirements specified here are stated under per-gallon standards, while the corresponding require-
ments under averaged standards are slightly different.
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Figure 1.2: State boutique fuel programs, as of May 2006

Source: EPAct Section 1541(c): Boutique Fuels Report to Congress, Figure 2, p. 8, 2006, available at
http://www.epa.gov/otaq/boutique/420r06901.pdf.

1.2.2.3 Oxygenate Gasoline Program

The U.S. EPA has set upper CO limits of 35 parts per million (ppm) for a one-hour period

and 9 ppm for an eight-hour period through the National Ambient Air Quality Standards

(NAAQS). The OXY program starting on November 1, 1992 initially required 39 areas of CO

non-attainment to use oxygenated gasoline. A minimum of 2.7 percent oxygen by weight was

required for the non-attainment areas of the CO NAAQS in order to enhance fuel combustion

and reduce CO emissions during the wintertime, typically from November 1 to February 28.

Figure 1 also shows that the oxygenated (OXY) fuels are further distinguished by oxygenate

type, indicating whether or not ethanol is required to be used as a fuel additive.9

Individual states are responsible for administering and enforcing the OXY program. The

program applies to the larger of the Consolidated Metropolitan Statistical Area (CMSA) or

9Ethanol and methyl tertiary-butyl ether (MTBE) are two major additives used to produce oxygenated
gasoline.
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the Metropolitan Statistical Area (MSA) containing the CO non-attainment area(s). States

may also implement the winter OXY fuel program beyond the scope required by the EPA or

to some attainment areas. In addition, states may adjust the OXY gasoline-control periods

and the oxygen-content weight of the fuel based on approval by the EPA. After a non-

attainment area is re-designated as an attainment area, the oxygenated gasoline can still be

used. Table A1.3 in Appendix provides more detailed information on the OXY regulation.

1.2.2.4 California Air Resources Board (CARB) reformulated gasoline

California adopted CARB reformulated gasoline on March 1, 1996.10 This gasoline is used

to reduce the emissions of VOCs, NOx, CO, and TAP. The gasoline formula is restricted

based on the standards set for eight gasoline parameters: sulfur, benzene, olefins, aromatic

hydrocarbons, oxygen, RVP, and distillation temperatures for the 50 percent (T-50) and 90

percent (T-90) evaporation points. The CARB gasoline contains oxygenated content ranging

from 1.8 to 2.2 weight percent and has a RVP value within a narrow range from 6.6 to 7.0

psi during the summer season.

1.3 Literature Review

A wide range of government policies are implemented to address the issue of the externalities

from motor vehicle usage. Fuel taxes and fuel-economy standards are well known as the two

most important traditional fuel-conservation instruments Parry et al. (2007). These two

instruments are well studied by early studies, while most recent economic analyses show an

emerging trend towards evaluating the environmental impacts of the policies (or programs)

that aim at solving the air pollution problem associated with vehicle usage, for example see

Bento et al. (2011) and Mérel and Wimberger (2012).
10Phoenix, Arizona also adopted its state-specific content regulation, Arizona’s Cleaner Burning Gasoline

(AZCBG), on June 10, 1998, but it is not of interest in this paper because only one county adopted
AZCBG.
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The current study follows the trend and examines the emission-reduction effects of the U.S.

federal and state gasoline-content regulations. The closely related studies are reviewed as

following. Muehlegger (2006) builds a structural model to investigate how the price of

gasoline is affected by the U.S. gasoline-content regulations during refinery outages, using

data from the states of California, Illinois, and Wisconsin. He finds that a 5-7 cent per gallon

price gap could be attributed to these regulations during the supply shock period. Using a

control and treatment approach, Brown et al. (2008) find that the changes in the number

of suppliers and geographic segmentation resulting from content regulation are important

factors for explaining the price gap between regulated and unregulated areas. Chakravorty

et al. (2008) argue that content regulation creates regulatory “islands” and thus increases

the market power of firms, thereby contributing to the gasoline price gap. The current study

differs from the previous studies which mainly focuses on the cost side of regulations.

Auffhammer and Kellogg (2011) first investigate the environmental effects, i.e., the benefit

side, of the U.S. gasoline-content regulations. They examine how local air quality, measured

by the ground-level ozone concentration levels, are affected by the introduction of the fuel

regulations. Based on hourly ozone readings from the EPA’s network of air-quality monitors

across the United Stated from 1989 to 2008, Auffhammer and Kellogg (2011) construct the

daily maximum ozone concentration level and daily 8-hour maximum. Using the difference

in difference strategy, they find that the RFG and RVP programs do not significantly reduce

ozone concentration levels, and thus, do not effectively improve air quality.

Auffhammer and Kellogg (2011) argue that the gasoline refiners under the RFG and RVP

regimes have the flexibility to choose how to comply with federal gasoline requirements,

which leads to the policy ineffectiveness of these two regulations. Particularly, the refiners

in general choose to remove butane, a type of VOCs, but not the compounds which are more

reactive in the formation of ground ozone, arising from the refiners’ cost-minimizing behavior.

The authors further conclude the local refiners’ lack of flexibility to choose what kinds of

harmful compounds in gasoline to remove accounts for California’s significant air-quality
12



improvement.

Table 1 shows that mobile fossil fuel combustion, solvent use, and industrial processes are

three largest pollution sources of the VOCs emissions in 2002, accounting for 45.2%, 29.5%,

and 12.1% of the total VOCs emissions, respectively; mobile fossil fuel combustion and

stationary fossil fuel combustion account for 57.2% and 38.0% of the total NOx emissions,

respectively; and mobile fossil fuel combustion is the largest source of the total CO emissions,

with a proportion of 88.7 percent of the total emissions. Therefore, if motor vehicle exhaust

is not the only source or is not the major source of VOCs and NOx emissions, the reduction

in vehicle emissions and unrealized air quality improvement can occur at the same time.

Table 1.1: National emissions of VOCs, NOx, and CO by sources in 2002 (Gg1)

Source/Pollutant VOCs ratio NOx ratio CO ratio
Stationary Fossil Fuel Combustion 1,147 0.076 7,542 0.380 3,961 0.043
Mobile Fossil Fuel Combustion 6,771 0.452 11,352 0.572 82,063 0.887
Oil and Gas Activities 348 0.023 118 0.006 153 0.002
Waste Combustion 333 0.022 149 0.008 3,294 0.036
Industrial Processes 1,818 0.121 649 0.033 2,304 0.025
Solvent Use 4,420 0.295 3 0.000 44 0.000
Field Burning of Agricultural Residues NA NA 33 0.002 706 0.008
Waste 158 0.011 3 0.000 15 0.000

Total 14,996 19,849 92,541

Notes: 1. Gg refers to gigagrams. 2. The proportions of three largest sources of each pollutant are
highlighted. Source: Derived from the U.S. EPA, Inventory of U.S. greenhouse gas emissions and sinks:
1990-2002.

Particularly, the current study finds the policy ineffectiveness of the gasoline content reg-

ulations on reducing the emissions from off-road engines and vehicles. Thus, the current

study also differs from Auffhammer and Kellogg (2011) because, by examining the pollution

reduction effect of the regulations, it provides other possible explanation why ground ozone

levels in some regulated areas do not drop significantly.

The current paper also empirically examines whether or not the OXY program helps reduce

vehicle CO emissions, and whether or not the gasoline content regulations affect the emissions
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from off-road sources. Auffhammer and Kellogg (2011) do not address these issues in their

study.

1.4 Data

The National Emissions Inventory (NEI) provides us with an estimated emissions for volatile

organic compounds (VOCs), nitrogen oxides (NOx), and carbon monoxide (CO) by emissions

sources. The U.S. EPA prepares the NEI data primarily based on emission estimates and

emission model inputs provided by State, Local, and Tribal air agencies and supplemented

by data developed by the EPA. One of the intended purposes of preparing the NEI is to

provide a starting point for rule development, past and ongoing examples include Non-road

Rule, Transport Rule, and Clear Skies, etc..

The emissions in the NEI refer to the amounts of pollutants emitted into the air during a

year. The NEI summarizes the annual emissions according to the emission sources and is

available at a county level for all fifty states plus the District of Columbia, Puerto Rico, and

the Virgin Islands in the United States.11 The emissions data are available for 3,140 counties

for 1990, and from 1996 to 2002, for a total of 8 years.12

Moreover, the NEI classifies the emission sources of the pollutants based on 14 “Tier-1” cat-

egories.13 Specifically, the category “on-road vehicles” refers to motorized vehicles of normal
11Puerto Rico and the Virgin Islands are omitted in the current study because of missing data.
12To my best knowledge, the clean fuel regulations are the only environmental regulations for this time

period. If some other regulations were implemented and these regulations affected vehicle fleet across the
nation in a same way, the D-in-D approach would still provide an unbiased policy effect.

In addition, Auffhammer and Kellogg (2011) do not use data beyond 2003 in their study though the
data are available. They argue that both federal and California gasoline regulations began to impose
new sulfur content standards in 2004. Using data beyond 2003 could confound the estimated effect of
RVP, RFG, and CARB regulations because these new standards could affect the emissions of NOx. The
sample period for the current study is up to year 2002, our empirical results should not be affected by
the sulfur content regulations.

13Include fuel combustion from electric utilities, industrial processes, and other sources, chemical and allied
product manufacturing, metals processing, petroleum and related industries, other industrial processes,
solvent utilization, storage and transportation, waste disposal and recycling, on-road vehicles, non-road
engines and vehicles, natural sources, and miscellaneous.
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operation on public roadways, including passenger cars, motorcycles, minivans, sport-utility

vehicles, light-duty trucks, heavy-duty trucks, and buses. The non-road sources include

the following general equipment categories: agricultural, airport support, light commercial,

construction and mining, industrial, lawn and garden, logging, pleasure craft, railroad, and

recreational equipment.

More spefically, county on-road emissions are estimated by multiplying county VMT with

appropriate emission factors. The NEI documentation states that county VMT is obtained

based on the data supplied by the Federal Highway Administration (FHWA). Essentially,

county VMT is determined by travel volume occurred within the county but not by where

a vehicle is registered and the vehicle owner’s residential address. Particularly, the FHWA

divides VMT among multi-state urban areas according to their portions in each state. Thus,

the issue of commuting zones should not be a concern to accurately estimate county on-road

emissions.

In this study, the emissions of VOCs, NOx, and CO are more focused because these pollutants

are addressed by the clean fuel regulations. In addition, the on-road VOCs, NOx, and CO

in the NEI are exhaust and evaporative VOCs, exhaust NOx, and exhaust CO, respectively.

The first panel in Figure 3 presents the mean county emission levels by pollutant from 1990

to 2002. The mean levels for VOCs, NOx, and CO are decreasing overtime for the on-road

vehicles, as a result, the means of per capita emissions and emission densities also exhibit a

decreasing trend as well (also see Figure 3). In contrast, the figure shows that the pollution

from off-road engines and vehicles tend to increase during the same period, no matter which

measure of pollution is used.

One thing needed to point out is that the on-road emissions in the NEI are estimated data.

Real vehicle emissions are definitely better than the estimated emissions to use in order to

evaluate the effect of the gasoline content regulations. However, it is impossible to collect

real values for on-road fleet, even for a single vehicle. The current study controls for the

factors that could significantly affect the on-road vehicle emissions. After removing the effect
15



Figure 1.3: 1990-2002 county emission trends, on-road vs. off-road
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Note: the emissions of CO is scaled by 1/10.

of these factors on the on-road emissions, the difference in the reduction of emssions between

control and treatment groups could be a reflection of the regulation effect. However, if one

or more important control variables are not available, the estimated regulation effect could

be biased. Moreover, the accuracy of the estimated policy effect also are dependent on the

credibility of the NEI dataset.

When estimating the pollution emissions from the on-road sources, the NEI first calculated

the vehicle miles traveled (VMT) by county, roadway type, and vehicle type for each year,

and then multiplied the VMT by an appropriate emission factor in the form of grams per

mile.14 The emission factors for VOCs, NOx, and CO used in the NEI were estimated from
14The roadway types in the NEI are classified into twelve types. The six rural roadway types are principal

arterial-interstate, other principal arterial, minor arterial, major collector, minor collector, and local.
The six small urban and urban roadway types are principal arterial-interstate, principal arterial-other
freeways and expressways, other principal arterial, minor arterial, collector, and local.
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the EPA’s MOBILE computer software, which accounts for the emission-reduction effects of

various on-road control programs on their targeted pollutants, such as the Inspection and

Maintenance (I/M) program, the RFG fuel program, and the National Low Emission Vehicle

(NLEV) program. In other words, the effects of pollution-control equipment and regulatory

operating restrictions are taken into account to estimate the emissions, which is called the

“estimated emissions with rule effectiveness” according to the EPA. Thus, the estimated

emissions from the NEI could accurately represent the local emissions of air pollutants and

reflect the effects of local emission-control policies.

The population data used in the current paper were obtained from the time series of the U.S.

Census Bureau intercensal estimates at a county level. In addition, the data on monthly

means of daily maximum air temperature in degrees Celsius (0C) and monthly means of

daily minimum air temperature (0C) are from Historical Climate data (1940-2006) for the

conterminous United States at the county spatial scale based on PRISM climatology.

1.5 Empirical strategy and regression results

1.5.1 Strategy

The difference-in difference (D-in-D) strategy is employed to identify the environmental ef-

fects of the fuel content regulations. In order to perform the empirical analysis, the treatment

and control groups need to be determined. Three treatments are used:

1. RVP phase II with summer RVP of 7.8 psi or lower (federally mandated and SIPs

mandated counties, 1992 onward).

2. Federal RFG with summer RVP limit level of 7.1 psi for VOC-control region I, and

8.0 psi for VOC-control region II on average standard. This treatment also requires a

minimum 2.0 weight percent of oxygen content (federally mandated and opt-in counties,

1995 onward).
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3. Winter OXY fuel program (CO non-attainment areas, November 1, 1992 onward).

These three treatments were chosen because they are the current major clean fuel regulations

in the United States. A county is classified into a relevant treatment group if it had been

adopting or had ever adopted this treatment but quit later during the sample period. All

counties across the United States are allocated into three treatment groups and one control

group in which a county never adopts any of the clean fuel regulations.

The CARB fuel regulation is not examined in this study, as the entire state of California

started implementing the CARB program in 1996, and there are no variations in fuel reg-

ulations within the state. The counties in this state would be categorized into the same

treatment group and dropped when running a state-fixed effect model. In addition, the

Arizona clean burning gasoline (AZCBG) program is not studied in the analysis because

Maricopa is the only county adopting this program and has clean fuel regulation overlaps

as well: Phoenix (the county seat of Maricopa) used the winter OXY fuel from 1989/1990

winter, adopted the RVP through 1992 to 1997, adopted the RFG in 1997 and 1998, and

converted from the RFG to the AZCBG on June 10, 1998. Thus, the emission reductions

cannot be divided among the different policies.

In order to implement the D-in-D strategy, the pre-regulation year and post-regulation year

also need to be defined. They are defined accordingly dependent of which one of the following

three situations occurs for a treated county. First, a county may have already used cleaner

gasoline in the year 1990. Only 6 cities started using the winter OXY fuel in the 1989/1990

winter season: Denver, Colorado; Reno and Las Vegas, Nevada; Tucson and Phoenix, Ari-

zona; and Albuquerque, New Mexico.15 In this case, the pre-regulation year does not exist

because the first sample year in this study is 1990. Thus, the counties corresponding to the

6 cities above will be dropped from the study.

15Denver Co., Washoe Co. and Clark Co., Pima Co. and Maricopa Co., and Bernalillo Co. match the
six cities above, respectively. Source: EPA, Gasoline composition regulations affecting LUST sites, EPA
600/R-10/001, Jan 2010.
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Second, a county may have used or just start using cleaner gasoline in 1996 but not 1990. This

situation applies to most of treatment counties because both the OXY winter fuel program

and the RVP phase II started in 1992, and the RFG and CARB were first introduced in 1995

and 1996, respectively. Because the data contain a missing interval from 1991 to 1995, the

year 1990 is used as the pre-treatment year and 1996 is used as the post-treatment year for

these counties. Empirically, the emission-reduction effects are examined between 1990 and

1996 for these counties.

Third, it is also possible that a county adopted the clean fuel regulations later than 1996.

Now, the year first introducing the regulations is defined as the post-treatment year and

one year earlier than the post is the pre-treatment year. Keeping the pre-treatment year

unchanged, this paper empirically examines how the policy effects change as the temporal

span of adopting a certain type of clean fuels extends.

Table 1.2: Descriptive statistics by year (policy-related)

Number of counties

Year 1990 1996 1997 1998 1999 2000 2001 2002

RFG regulation

Switch in 0 163 1 0 5 0 0 0

Purified 0 130 0 0 0 0 0 0

Switch out 0 6 0 1 7 0 0 0

Purified 0 0 0 0 0 0 0 0

RVP regulation

Switch in 0 95 0 7 19 94 0 0

Purified 0 83 0 7 12 94 0 0

Switch out 0 52 1 0 5 0 0 0

Purified 0 0 0 0 0 0 0 0

OXY regulation

Switch in 6 76 0 0 0 0 0 0

Purified 0 21 0 0 0 0 0 0

Switch out 0 40 0 19 13 16 1 1

Purified 0 0 0 0 0 2 1 1

Note: Only 10 counties in Minnesota were incorporated into the OXY-treated group in this study according
to the documentation for the on-road national emissions inventory (NEI) for base years 1970-2002, though
Minnesota adopted a statewide oxygen mandate throughout the year beginning on October 1, 1997.
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Table 2 presents the number of counties that switch into each clean fuel regulation over

1990-2002. However, these treatment counties still need to be purified. First, a county si-

multaneously regulated by two or more regulations in a post-treatment year will be dropped

from the study, as it is impossible to partition the emission reductions among the corre-

sponding policy regulations in the overlap year. Second, a county converting from one clean

fuel regime to the other will also be dropped when examining the later policy’s effects, as this

county is not unregulated in the pre-treatment year. After purification, the current study

investigates 130 treated counties that adopted the RFG in 1996, 83, 7, 12, and 94 treated

counties that adopted the RVP in 1996, 1998, 1999, and 2000, respectively, and 21 counties

that adopted the OXY fuel program in 1996. For more information on the scope of these

treated counties, see Tables A1.4 to A1.7 in the Appendix.
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Figure 1.4: 1990-2002 mean emission trends for VOCs, NOx, and CO, regulated group vs. control
group (tons)1
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Notes: 1. The emission trends for the treatment groups are calculated based on the purified 1996-switch-in
counties. 2. The magnitude of CO emissions is scaled by 1/10 in Figure 4(a).
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Based on the scopes of the purified 1996-switch-in counties, the mean emissions are calculated

and drew in Figure 4 for both the regulated and control counties. With respect to on-road

vehicles, it can be observed that the emissions of all pollutants of interest exhibit decreasing

trends over the period of 1990 to 2002, for both the regulated and control groups no matter

which regulation is examined. In contrast, the emissions of off-road engines and vehicles

tend to increase for two groups within the same period. More importantly, Figure 4 shows

that the on-road emissions from the regulated group decrease faster than the emissions from

the control group across different regulations.

Now, the goal of the current study becomes more specific. For the RFG-treated counties,

the reductions in VOCs, NOx, and CO are compared with the corresponding reductions

in the control, because the RFG regulation is intended to reduce these three pollutants.

The reductions in VOCs in the RVP-treated group are also compared with those in the

control, because the RVP regulation is aimed at reducing the VOCs emissions. In addition,

the reductions in CO in the winter OXY-treated group are compared with those in the

control, because the OXY regulation is used to control the CO emissions. Moreover, the

later empirical analysis outcome is obtained based on two separate treatment groups: the

counties that switched into a clean fuel regime in 1996 and counties that switched into a

clean fuel regime later than 1996.

To evaluate the policy effects, the basic empirical regression is estimated as:

Polluc,t = cons + a · Popc,t + b · Popdnc,t + c · Incperc,t + d · Temptc,t

+ α · Treatc + β · dafter + γ · (Treatc · dafter) + µi · Statei + εc,t (1.1)

where Polluc,t and Popc,t are annual emissions (in tons) and population for county c at year

t.16 Population is a key factor to explain the pollution levels, as a larger population means
16The D-in-D model can also be set up with different ways, for example, see Auffhammer and Kellogg (2011).

Ttheoretically, the alternative way of setting up D-in-D model will present same estimation results as
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more vehicle miles traveled, and thus more pollution. The correlation coefficients between

VOCs, NOx, and CO, and population are 0.918, 0.959, and 0.914, respectively. In addition,

Popdnc,t and Incperc,t represent population densities and income per capita, respectively.

Areas with higher population densities tend to be crowded and characterized by good public

transit services, and thus vehicle driving may be restricted and population densities could

negatively affect the vehicle pollution. In contrast, people with higher per capita income

levels are more likely to own a vehicle and drive more, which results in more pollution.

Temptc,t, monthly average maximum or minimum temperature, is controlled in the regression

as well. When examining the pollution reduction effects of the regulations on the VOCs and

NOx, average maximum temperature in July is controlled for to reflect the fact that vehicles

produce more evaporative emissions for the VOCs and NOx in the summer time. However,

the average minimum temperature in January is controlled for when examining the CO

emission reduction effects because carbon contents in gasoline tend to burn incompletely to

generate the CO emissions in the cold winter time.

Statei is a dummy variable representing state i and is used to absorb state-specific effects.17

After controlling for these variables, the differential in emissions deductions between the

regulated counties and control counties could be attributed to the policy-related variables.

Treatc is a binary variable indicating whether a county falls into a certain type of treated

group or not; more specifically, Trfg, Trvp, and Toxy are used to represent the RFG-treated

group, RVP-treated group, and OXY-treated group, respectively, while Treatc equal to 0

represents the control, and dafter is a binary variable indicating the pre-treatment or post-

treatment year. For the counties that adopted the clean fuel content regulations in 1996,

dafter equals 0 when t=1990 and 1 when t=1990. εc,t is an unobserved disturbance.

In addition, the coefficients in the model have the following interpretations:

shown by the current study.
17The NEI dataset has emission values for over 3000 counties, as a result, using county fixed effect rather

than state fixed effect will cause the regression inestimable.
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α = E[Pc,t|Treatc = 1, dafter = 0] − E[Pc,t|Treatc = 0, dafter = 0]

β = E[Pc,t|Treatc = 0, dafter = 1] − E[Pc,t|Treatc = 0, dafter = 0]

γ = {E[Pc,t|Treatc = 1, dafter = 1] − E[Pc,t|Treatc = 1, dafter = 0]}

−{[Pc,t|Treatc = 0, dafter = 1] − E[Pc,t|Treatc = 0, dafter = 0]},

where α measures the difference in mean pollution levels between the treated and the control

in the pre-treatment period; β measures the difference in mean pollution levels between the

pre-treatment and post-treatment periods for the control; and γ is the D-in-D estimator that

reflects the policy effects.18

For the counties that adopt the clean fuel later than 1996 (the RVP-treated counties only),

the counties that switch into the RVP regulation in 1998, 1999, and 2000 are initially treated

as one group. Thus, a generalized treatment effect across different switch-in groups is ob-

tained by estimating the equation (1). However, it may argue that the regulation effects

of interest could vary across switch-in groups. This assumption is examined by using the

following regression specification:

18The lack of data for the period from 1991 to 1995 would result in an upper estimate of the policy pollution
reduction effect by using the year 1990 as the only pre-treatment year, provided that the treatment and
control groups had a same emission reduction trend in the absence of the gasoline content regulations.
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Polluc,t = cons +
3∑

j=1
(aj · Popc,t · Pj) +

3∑
j=1

(bj · Popdnc,t · Pj) +
3∑

j=1
(cj · Incperc,t · Pj)

+
3∑

j=1
(dj · Temptc,t · Pj) +

3∑
j=1

(αj · Treatc · Pj) +
3∑

j=1
(βj · dafter · Pj)

+
3∑

j=1
(γj · Treatc · dafter · Pj) +

3∑
j=1

(µj · Statei · Pj) +
2∑

j=1
Pj + εc,t (1.2)

where P1 − P3 are dummies for 1998, 1999, and 2000 RVP-switch-in groups, respectively.

Moreover, some counties might have withdrawn from the regulation later on. In this case,

the study also examines whether or not the pollution reduction effects disappear once the

regulation program ceases within this county. However, a pre-treatment year now is redefined

as the last year when a county is regulated by one fuel regulation. Meanwhile, it is required

that there is no policy overlap in a pre-treatment year and a county quit from the related

regulation but not transit into any other fuel regulation in a post-treatment year.

Table 2 also shows the number of counties that switch out each fuel regulation by calendar

year. Purified by the two requirements listed above, the RFG and RVP switch-out counties

are dropped from the study, while 2, 1, and 1 counties that switch out of the OXY regime in

2000, 2001, and 2002, respectively, are left to be investigated. For the scope of these switch-

out counties, see Table A1.7 in the Appendix. A generalized switch-out effect is estimated

by the equation (1) and separate switch-out effects also are estimated by the equation (2)

in which P1 − P3 now refer to 1999, 2000, and 2001 OXY-switch-out groups, respectively.

1.5.2 Empirical Results

D-in-D approach can provide an unbiased estimate of policy effect provided that the control

and treatment groups have a similar emission trend in pre-treatment period. However, 1996

is the only pre-treatment year available to us, so it is impossible to examine the similarity
25



of pre-treatment trend given the database used in the current study. However, the NEI

dataset contains pollution data for 7 pollutants and 14 emission sectors. By comparing

the emissions of different pollutants and from the sources other than on-road and off-road

sectors, the relative changes in these emissions between the treatment and contrl groups over

the period 1990 to 1996 could provide some clues on whether or not the assumption of the

similar trend holds.19 Moreover, the relative changes can also be estimated by using the

regression (1). If the similarity assumption holds, the estimate of treatment effect should be

statistically insignificant.

The emssions from fuel combustion-industrial are chosen to compare between the treatment

and control groups because fuel combustion-industrial may reflect the local economic activi-

ties and produce all 7 pollutants.20 With respect to the source of fuel combustion-industrial,

Table 3 below shows that the relative changes in the emissions of CO, NOx, VOCs, Ammonia

(NH3), PM10 and PM2.5 are statistically insignificant, but not Sulfur dioxide (SO2). This

finding implies that the similarity assumption may hold.

Table 1.3: The relative changes in emissions between the treatment and control groups
(tons)

fuel combustion-industrial
Pollutant CO NOx VOCs SO21 NH3 PM10 PM2.5
Relative changes 52.69 -634.49 28.05 -1428.74 16.04 -18.23 -10.13

Note: 1. Only the estimate on SO2 is statistically significant at a 10 percent confidence level. 2. With
respect to SO2, NH3, PM10, and PM2.5, the estimates are obtained by using the regression (1) while
without including the temperature variables, however, whether or not include these variable only marginally
affect the estimation results.

Tables 4 and 5 present the estimated environmental effects of the different gasoline-content

regulations from on-road vehicles. For the counties that adopted the RFG in 1996, Table 4

shows that county population and income per capita significantly affect emission levels: a

county with higher population and income levels has a higher volume of vehicle usage and
19The current study assumes that the gasoline content regulations have no impact on the emissions from

the other sectors.
20Fuel combustion-industrial refers to the combustion of coal, oil, gas and other fuels for industrial purposes.
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amount of vehicle pollution compared to a county with less population and income levels.

However, it seems that the temperature and population densities variable may not explain

the county’s aggregate pollution levels well.

The estimates on Trfg are used to measure the differences in the mean pollution levels

between the RFG-treated group and the control in the pre-treatment year. The differences

are significant and estimated as 2,016.7 tons in the mean VOCs emissions, 1,256.6 tons in

the mean NOx emissions, and 19,744.1 tons in the mean CO emissions. This means that

the pollution levels for the RFG-treated counties in the pre-regulation year are significantly

higher than those for the untreated counties. This finding is consistent with the fact that

the clean fuel regulations in general were adopted by the severely polluted areas to solve

their pollution problems.

Regarding emission levels, Table 4 also shows that the estimates on dafter are all signif-

icantly negative, which means that the average emissions gradually decrease over time for

the unregulated counties. The pollution reductions can be attributed to the contribution of

adopting other regulations that potentially affect vehicle usage and fuel consumption, say

higher fuel economy requirements.

Now, turn to the RFG-treatment effects. The estimates on Trfgdafter in Table 4 are all

statistically significant across the three vehicle pollutants. The reductions from the RFG are

3,884.6 tons (or 35.5%) in the mean VOCs emissions, 1,860.4 tons (or 16.9%) in the mean

NOx emissions, and 43,181.4 tons (or 34.1%) in the mean CO emissions, together valued

around 37.83 million US dollars at county level.2122 However, the table illustrates that RFG

gasoline does not effectively affect the emissions per capita but the emission densities with

a significant decrease of 14.2, 6.4, and 148.7 tons per square mile for the pollutants VOCs,

NOx, and CO, respectively. Nevertheless, the current study also shows policy overlap would
21The mean VOCs, NOx, and CO levels in the pre-treatment year are 10,927.9, 10,985.2, and 126,675.7

tons, respectively.
22Following Anweiler and Gulati (2011), Hydrocarbon (HC), NOx, and CO were valued at approximately

$3.5, $3.5, and $0.5 CAD per kilogram in 2010 prices, respectively. The average annual exchange rate
between the USD and CAD was 1.02993904 in 2010.
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result in higher pollution reductions, for more details, see Table A1.8 and A1.13 in Appendix.

Table Tab. 1.5 shows that, regardless of which regulation is concerned, the emissions per

capita of the control areas are higher in the pre-treatment year, 1990, compared to those of

the treatment areas. In addition, population grows more slowly in the control areas, which

leads to a relatively higher level of emissions per capita in the post-treatment year, 1996,

again compared to the treatment group. As a result, it is hard to predict the relative changes

in emissions per capita between the two groups, which may possibly explain the insignificant

effect of the regulations on emissions per capita.

Table 1.5: Population growth and emssions per capita (g) by control and treatment groups

Regulations Pollutant population growth rate emissions per capita (g)

treatment control treatment control
before after before after

RFG VOCs 9% 6% 34 19 44 27
RVP VOCs 11% 6% 37 23 44 27
OXY CO 15% 6% 465 281 555 383

With respect to the counties that adopted the RVP regulation in 1996, Table Tab. 1.6 shows

that the RVP significantly reduce the VOCs emissions by 3,679.6 tons (or 30.6%), valued

at 11.68 million US dollars.2324 For the 1998-switch-in, 1999-switch-in, and 2000-switch-in

counties, the treatment effects obtained from the generalized specification are all negative.

Moreover, the estimates on the variables TrvpdafterP1 TrvpdafterP2 and TrvpdafterP3

in the table present the separate policy effects across the RVP switch-in groups. It shows that

the treatment effects are negative but not statistically significant for the 1998 switch-in group.

However, the 4-year effects for the 1999-switch-in group and the 2-year and 3-year effects

for the 2000-switch-in RVP group become significant and the magnitudes of the estimated

policy effects increase over time. In general, it is observed that the RVP treatment effects

tend to become stronger as the temporal scope of this study is expanded. Regarding the
23The VOCs level in the pre-treatment year is 12,029.2 tons.
24With respect to the RVP and OXY regulations, this study only presents the estimated treatment effects

due to the limited space. Full regression results can be obtained by request.
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effects of the RVP regulation on on-road emissions per capita and emission densities, see

Table A1.9 in the Appendix.

Table 1.6: RVP and OXY effects, on-road vehicles

RVP 1996-switch-in 1998, 1999, and 2000-switch-in
1990-1996 1-year-in 2-year-in 3-year-in 4-year-in 5-year-in

VOCs emission levels (tons)
Generalized effects

Trvpdafter -3679.6*** -66.51 -183.0** -450.8*** -671.5* -1389.1
(575.4) (60.12) (73.53) (118.7) (397.0) (1127.5)

Separate effects
TrvpdafterP1 -286.0 -708.6 -1125.1 -1407.3 -1389.1

(709.2) (759.4) (865.2) (892.0) (1127.5)
TrvpdafterP2 -16.11 -35.84 -26.83 -246.7*

(125.1) (121.7) (122.0) (140.8)
TrvpdafterP3 -63.91 -159.3** -492.4***

(60.68) (69.36) (121.9)
r2 0.93 0.96 0.96 0.95 0.95 0.94
n 5446 16072 16072 16072 10602 5296
OXY 1996-switch-in 2000, 2001, and 2002-switch-out

1990-1996 1-year-out 2-year-out 3-year-out
CO emission levels (tons)

Generalized effects
Toxydafter -35714.6*** 4032.2 8629.8 6271.7

(8819.4) (8979.0) (14054.9) (15768.0)
Separate effects

ToxydafterP1 5916.9 2160.8 6271.7
(17726.5) (17502.9) (15768.0)

ToxydafterP2 -637.5*** 21690.7***
(138.7) (196.8)

ToxydafterP3 4622.2***
(185.2)

r2 0.93 0.95 0.95 0.95
n 5233 15854 10570 5286

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.

In terms of the OXY regulation, the counties that adopted the OXY in 1996 experience

a faster reduction of the CO emissions compared to the control counties. The treatment

effects are 35,714.6 tons (or 35.4%) of CO reductions, valuated at 16.20 million US dollars

at county level (also see Table Tab. 1.6).25 For more information related to the OXY effects
25The CO level in the pre-treatment year is 100,948.4 tons.
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on on-road emissions per capita and emission densities, see Table A1.10 in the Appendix.

So far, the switch-in effects have been evaluated. However, it can also provide some clues

about the effectiveness of the fuel regulations by examining if the treatment effects disappear

once a county stops using clean fuels. As argued earlier, the counties that switch out of the

RFG and RVP regulations are dropped from this study. For the 2000-switch-out, 2001-

switch-out, and 2002-switch-out counties, the OXY regulation effects cease quickly because

none of the generalized estimates on Toxdafter in Table Tab. 1.6 is significantly negative.

Regarding the separate policy effects, the OXY regulation only helps reduce the aggregate

CO emissions for the 2001-switch-out group in the first switch-out year, but the effects

disappear next year.

According to Auffhammer and Kellogg (2011), NOx emissions in a region can affect ozone

levels up to 1000 km downwind. Moreover, it is observed that the average county pollution

yield from the off-road engines and vehicles exhibit an increasing trend over the period

between 1990 and 2002 (see Figure 4), so that on-road emission levels of VOCs, NOx, and

CO are being approached by the off-road levels, with the level ratios of 2.70, 1.59, and 1.59 for

VOCs, NOx, and CO, respectively, in 2002. Therefore, off-road pollution potentially plays a

role in determining local air quality. The current study examines if the fuel regulations also

control the emissions from the off-road engines and vehicles.

However, no environmental gains from the off-road sources are found for the counties that

adopted the RFG fuels in 1996. This is reflected by the statistical insignificance of the

estimated treatment effects presented in Table Tab. 1.7 and the insignificance holds even

when either emission densities or emissions per capita is used as the dependent variable.

Table Tab. 1.8 provides us with the treatment effects of the RVP and OXY on the off-road

emissions. Similarly, significant pollution reductions still cannot be found for the different

RVP-switch-in groups, no matter which temporal scope is specified and which measure of

the dependent variable is used. Furthermore, the off-road CO emissions from the OXY
31



Table 1.7: RFG effects, off-road engines and vehicles

RFG 1996-switch-in
VOCs NOx CO
Emission levels (tons)

Trfgdafter 33.02 135.3 1751.3
(218.3) (687.8) (2136.1)
Emissions per capita (kgs)

Trfgdafter -6.500 0.719 -7.171
(5.992) (3.882) (18.19)
Emissions per square mile (tons)

Trfgdafter 0.482 1.208 7.752
(1.173) (5.333) (8.543)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistically
significant at 10%, 5%, and 1%, respectively.

1996-switch-in regimes are not affected. Regarding the OXY switch-out groups, the separate

policy effects show that the changes in CO levels between treatment and control groups are

not significant once the OXY-regulated regions quit using cleaner oxygenated fuel, with an

exception of the 2002-switch-out group (also see Table Tab. 1.8). However, the generalized

regulation effects across different switch-out groups are all insignificant.

As a summary of all the findings above, it can be concluded that all three clean fuel regula-

tions did effectively control the pollution emitted from the on-road vehicles but not off-road

sources. The different policy effects in terms of reducing the on-road and off-road emissions

result from the fact that gasoline is the major fuel to power on-road vehicles, while diesel is

the major fuel consumed by off-road engines and vehicles. Figure 5 illustrates that the miles

driven by gasoline-highway vehicles are dramatically higher (at least 11 times) than the miles

driven by diesel-highway vehicles from 1990 to 2002. Meanwhile, within the off-road sector

the consumption of gasoline is only about one third of the consumption of diesel, see Figure

6. Therefore, the regulations can have a greater influence on the emissions from on-road

sources.
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Figure 1.5: Vehicle miles driven by gasoline- and diesel-highway vehicles (109 miles)
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Notes: 1. Gasoline-highway miles include miles traveled from passenger cars, light-duty trucks, heavy duty
vehicles, and motorcycles. 2. Diesel-highway miles include miles traveled from passenger cars, light-duty
trucks, and heavy duty vehicles. Source: US EPA, Inventory of U.S. greenhouse gas emissions and sinks:
1990-2002.

Figure 1.6: Gasoline and diesel consumption, off-road sources (109 gallons)
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Source: US EPA, Inventory of U.S. greenhouse gas emissions and sinks: 1990-2011, Annexes.

Table Tab. 1.9 further shows that the diesel consumption by non-highway vehicles tends to

increase over the sample period. The increase in diesel results mainly from more utilization

of ships and boats, construction equipment, and locomotives.
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1.6 Conclusion

The introduction of gasoline content regulations resulted in a dramatic reduction in vehicle-

emitted pollution during the period 1990 to 2002, even though the number of vehicles and

miles driven increased during that time. The current paper tries to isolate the effects of the

regulations by using emission levels instead of ozone levels. All counties in the U.S. are first

allocated into different treatments groups (the OXY-treated group, the RFG-treated group,

and the RVP-treated group) and a control group depending on whether or not a county is

regulated and what type of regulation is adopted if it is under-regulated. A difference-in-

difference strategy is then carried out to identify the differential of the emission reductions

between the regulated groups and the control group.

The empirical findings showed that, the pollution reductions were substantial with adopting

the RFG, RVP, and OXY programs in 1996 to the severely polluted counties compared with

the ones which adopted conventional gasoline. For the counties that adopted the RVP fuel

later than 1996, the RVP-treatment effects can be observed to increase over time, though

the estimated values are not statistically significant (except for the 2000-switch-in counties).

Thus, this particular program might be more effective over the long-run. Further, once a

county switched out of the OXY program, the CO-reduction effects induced by this program

ceased.

Moreover, the current study illustrates that the off-road emissions of the related pollutants

increased as time span expanded and were not well controlled by the clean fuel programs.

This policy ineffectiveness may be explained by the fact that diesel is the major fuel used in

the off-road sector. As a result, the emissions from this sector were less affected by the fuel

content regulations.

In agreement with the point made by Auffhammer and Kellogg (2011), that the fuel refiners

had choices to choose how to comply with the fuel content standards specified under the RFG

and RVP regulations may have significant impacts on ozone levels. Moreover, the off-road
34



emissions may also substantially influence the local air quality. Therefore, the increased and

less affected pollution from the off-road sources could nullify the environmental benefits by

adopting clean fuels. This may be an additional explanation for why local air quality did

not improve though the clean RFG and RVP fuels were prescribed to some areas with severe

pollution.
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Table 1.8: RVP and OXY effects, off-road engines and vehicles

RVP 1996-switch-in 1998, 1999, and 2000-switch-in
1990-1996 1-year-in 2-year-in 3-year-in 4-year-in 5-year-in

VOCs emission levels (tons)
Generalized effects

Trvpdafter -81.66 49.66 37.41 62.72 -49.04 -150.3
(226.5) (78.62) (77.58) (87.39) (130.7) (376.9)

Separate effects
TrvpdafterP1 -136.1 4.746 -206.7 -193.1 -150.3

(184.6) (187.8) (185.8) (184.2) (376.9)
TrvpdafterP2 -87.01 5.690 -130.7 -11.87

(90.76) (87.66) (89.79) (119.5)
TrvpdafterP3 116.2 82.82 -14.02

(91.75) (89.65) (104.1)
OXY 1996-switch-in 2000, 2001, and 2002-switch-out

1990-1996 1-year-out 2-year-out 3-year-out
CO emission levels (tons)

Generalized effects
Toxydafter -505.0 -471.4 450.2 -858.7

(1203.7) (2769.0) (4119.2) (3552.4)
Separate effects

ToxydafterP1 -300.4 -579.8 -858.7
(3569.4) (3836.0) (3552.4)

ToxydafterP2 94.69 2531.3***
(84.63) (120.6)

ToxydafterP3 -1233.5***
(109.6)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistically
significant at 10%, 5%, and 1%, respectively.

36



Table 1.9: Fuel consumption for non-highway vehicles by fuel type (103 gallons)

Vehicle Type 1990 2002 change
Aircraft

Gasoline 374,216 280,643 -33%
Jet Fuel 18,280,137 18,499,519 1%

Ships and Boats
Diesel 1,697,600 2,014,416 16%
Gasoline 1,300,400 1,081,157 -20%
Residual 2,060,708 2,404,778 14%

Construction Equipment
Diesel 1,581,500 1,818,411 13%
Gasoline 318,200 532,998 40%

Agricultural Equipment
Diesel 3,164,200 3,233,874 2%
Gasoline 812,800 831,828 2%

Locomotives
Diesel 3,450,643 4,160,463 17%

Other
Diesel 926,800 709,339 -31%
Gasoline 1,205,400 1,810,509 33%
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2 Evaluating the Environmental Effects

of the “Cash for Clunkers” Program

2.1 Introduction

Accelerated vehicle retirement programs have become popular among governments wanting

to address air pollution and the adverse effects associated with vehicle usage. In the United

States, the Consumer Assistance to Recycle and Save (CARS) Act was signed into law on

June 24, 2009, establishing the Car Allowance Rebate System (CARS) program, commonly

known as the “Cash for Clunkers” program, which went into operation on July 1, 2009, with

a few vehicles transactions completed before July 27, 2009, when it was officially launched.

The CARS program offered a $3,500 or $4,500 incentive to participants who retired their

current vehicles and purchased a new vehicle, provided that certain requirements on fuel

economy improvements and vehicle categories were satisfied.

The “Cash for Clunkers” program led to 676,984 final transactions (updated as of November

10, 2010), at a cost of $2.85 billion, far above the initial cost budget of $1 billion. The pro-

gram was terminated on August 25, ahead of its original end date of November 1, 2009. The

motivation for implementing this program was to stimulate economic growth and decrease

unemployment by shifting vehicle purchases made by households, businesses, and govern-

ments from the future to the present. The program also aimed to accelerate the replacement

53
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of “dirty” gas guzzlers by new, cleaner, and high efficiency vehicles. In this paper, only the

pollution-reduction effects are examined.

To evaluate the environmental effects of a vehicle scrappage program, three factors need

to be determined: travel schedules, emission factors, and vehicle survival rates for both

retired vehicles and their replacements. Two assumptions on the travel demand of retired

and replacement vehicles are often adopted by the literature. First, some earlier studies

assume that a retired vehicle is driven at the average of the vehicles of a particular type

and vintage (for example, see Li et al., 2013). The average is often taken from Lu (2006)’s

“Vehicle survivability and travel mileage schedules”. However, this average is estimated at

an aggregate level based only on vehicle age and vehicle type, so it could be significantly

different from the travel schedules specific to the retired vehicle. This problem most likely

occurred with the CARS vehicles because the trade-in vehicles required by the program were

old and had low fuel efficiency and the current study shows that retired vehicles travel less

than the fleet average.

Second, it is often assumed that the vehicle miles traveled (VMT) schedules for the retired

and replacement vehicles are the same (for example, see Antweiler and Gulati (2011) and

Sandler (2012)), because the same vehicle owner may not change their driving habit. How-

ever, assuming the same travel demand may be problematic. New vehicles in general provide

better performance, more comfort and higher level of safety to their owners; in addition, the

unit driving cost for these vehicles is lower due to their higher fuel efficiency. Thus, a new

vehicle is likely to travel more than its paired retired vehicle in the trade-in year. The current

study also illustrates that the annual VMTs on average declines with a vehicle’s aging and

fuel efficiency depreciation.

The current paper differs from most scrappage studies because its analytical framework is

adopted from the urban economics literature. This literature has comprehensively examined

how urban form, such as residential densities, along with household characteristics explain

travel behavior (for example, see Bento et al. (2005) and Brownstone and Golob (2009)).
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Based on the rich set of household and vehicle characteristics contained in the National

Household Travel Survey (NHTS) 2009, the VMT schedules are first derived for the NHTS

vehicles. Next, the NHTS vehicles are matched with the CARS vehicles to construct the

VMT demand specific to the trade-in and replacement vehicles that participated in the

CARS program.

Moreover, the endogeneity issue of fuel efficiency (or self-selection issue) is also addressed in

the current paper in order to examine the relationship between fuel efficiency and vehicle

travel demand. If a household expects to drive more, it is more likely for the household

to choose a more efficient vehicle. As a result, the observed highly positive effects of fuel

efficiency on VMTs may arise from the household’s self-selection on vehicle choices. Because

the CARS program created a big gap in in fuel economy between the trade-in and replacement

vehicles, an empirical study could overestimate the travel demand for the new CARS vehicles

and thus their pollution without taking into account the endogeneity issue.

The current study also differs from other scrappage studies because it takes into account “in-

direct” vehicle emissions, for example, diurnal exhaust, to evaluate the “Cash for Clunkers”

program.1 The “indirect” emissions bring additional emission gains to the CARS program

as older retired vehicles tend to produce more “indirect” emissions compared to their newer

replacement vehicles. Empirically, the current paper examines the environmental effects of

the CARS program on the following pollutants: reactive organic gases (ROG, with a same

class as EPA’s volatile organic compounds (VOC)), total organic gases (TOG), nitrogen ox-

ide (NOx), carbon monoxide (CO), carbon dioxide (CO2), sulfur oxide (SOx), particulate

matter 10 micros or less in diameter (PM10), and particulate matter 2.5 microns or less in

diameter (PM2.5).

Based on the “model-predicted” VMTs, this paper shows that for the participating Califor-

nian vehicles, the program resulted in reducing the emissions in ROG, CO, NOx, and PM2.5

1According to the EMFAC2011-LDV User’s Guide, “diurnal exhaust” refers to the hydrocarbons emissions
caused by fuel evaporation from a sitting vehicle throughout a day when ambient temperatures rise.
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by 95%, 90%, 94%, and 7%, evaluated as $1.07, $2.99, $1.55, and $0.01 million, respectively,

while CO2, SOx, and PM10 emissions increased by 20%, 16%, and 16%, evaluated as $82.43,

$0.004, and $0.007 million, respectively.2 Therefore, this paper concludes that the positive

gains from the reduced emissions of ROG, CO, NOx, and PM2.5 were completely offset by

the increased CO2 emissions, with a loss of approximately $76.82 million, at an aggregate

level (or $1003.9 dollars per program vehicle).

The environmental effects of the program are also evaluated under the two standard scenarios.

The first scenario assumes that the new vehicles will travel the same amount as their paired

old vehicles, while the second scenario assumes that the new vehicles will travel at the fleet

average. As argued earlier, the VMTs predicted by the regression model in this paper for the

new vehicles should be greater than the fleet average, while the VMTs for the old vehicles

should be smaller than the average. Thus, the changes in the net emission derived under the

regression model and the changes derived under the first scenario are the lower and upper

limits of the program effects, respectively. The net program effects under the best scenario

are found to be positive, with a gain of $35 million or of $458 per vehicle. Regarding the

middle case, the net effects are still negative as $60.23 million or $787.2 per vehicle.

This paper shows that VMTs are highly affected by vehicle type, age, and fuel efficiency etc.

and replacement vehicles tend to be driven more than the paired retired vehicles. Therefore,

the paper concludes that implementing the CARS program is more likely to result in negative

environmental effects. The negative effects can be explained by the empirical finding that

the emission rates for ROG, TOG, CO, and NOx play a more dominant role in determining

a vehicle’s emissions compared to VMTs and survival rates because the magnitudes of the

emissions rates significantly increase with vintage. As a result, old vehicles are more likely

to produce more emissions of the four pollutants listed above.

With respect to CO2, SOx, PM10, and PM2.5, VMTs are more dominant in determining

a vehicle’s pollution because CO2 and SOx emissions are closely correlated with fuel con-
2The model hereafter refers to the system of two equations (1) and (2).
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sumption and fuel properties, and, in turn, fuel consumption is closely correlated with VMT.

Therefore, the emission rates for CO2 and SOx do not differ dramatically across old and new

vehicles. As a result, the new vehicles tend to emit more CO2 and SOx because they are

driven more. Similarly, PM10 and PM2.5 are emitted mainly as a result of brake use and

tire wear, so they are also highly related to how much a vehicle is driven.

Moreover, this paper also finds some evidence that some program participants would have

traded in their current vehicle in order to purchase another vehicle without being offered

the program incentive: 16,801 new vehicle purchasers out of 143,827 survey respondents, a

weight of 11.68 percent, may have fallen into the category of adverse selection.

Furthermore, the program also changed the category selection of the vehicle purchased by

the participants, and this change potentially determined the future pollution and fuel con-

sumptions of the newly purchased vehicles. In order to be eligible for the CARS program, a

transaction had to satisfy stringent and binding conditions for fuel-efficiency improvements.

These conditions could have made program participants choose a vehicle with higher fuel

economy than that of a vehicle chosen without being offered the $3,500 or $4,500 CARS

incentive. The result would have been a significant trade-in bonus.

Of course, the binding requirements for improvements in fuel efficiency also applied to the

vehicle owners in the case of adverse selection, and could potentially have caused these own-

ers to choose smaller and more fuel-efficient vehicles. Choosing a vehicle with higher fuel

efficiency could have reduced pollution for some pollutants, even under the existence of ad-

verse selection. To some extent, this argument differs from traditional arguments concerning

adverse selection because the literature tends to ignore the emissions effects of the vehicles

susceptible to adverse selection.

The rest of this paper is organized as follows. Section 2 presents the background and de-

scriptions of the Cash for Clunkers program. Section 3 presents the relevant literature and

discusses the contribution of and the difference between our study and the previous litera-
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ture. Section 4 describes our data, and then Section 5 provides our regression model and

estimation results. Section 6 presents the methodology of the current study and the envi-

ronmental effects of the CARS program, and then discusses the findings. Section 7 contains

the conclusion of the paper.

2.2 Background of the “Cash for Clunkers” program

To be qualified as an eligible trade-in vehicle for the “Cash for Clunkers” program, a vehicle

had to be under 25 years old and drivable and to have a fuel economy below 18 miles per

gallon (mpg); in addition, the vehicle had to have a continuous insurance record, and the

trade-in owner had to have owned the vehicle for at least one year.

However, a Category 3 vehicle (trucks, vans, or SUVs with vehicle weight rating between

8,500 to 10,000 lbs) had to be from a model year not later than model year 2001 and

had no fuel economy requirements (for the classification of vehicle categories under the

CARS program, see Table Tab. 2.1 below). The manufacturer’s suggested retail price of a

replacement vehicle could not be over $45,000, and the minimum fuel economy for passenger

cars, Category 1 trucks, and Category 2 trucks was 22, 18, and 15 mpg, respectively.

Table Tab. 2.1 also presents the bonus scheme stipulated by the CARS program. The bonuses

were conditional on the satisfaction of the eligibility criteria. Table Tab. 2.1 illustrates that

the amount of a bonus depended on the category and fuel economy of the trade-in and

replacement vehicle pair. For a trade-in vehicle that was a passenger car, Category 1 truck,

or Category 2 truck, and a replacement vehicle that was a passenger car, if the fuel economy

was improved by 4 to 9 miles per gallon, the trade-in credit was $3,500; and if the fuel

economy was improved by at least 10 miles per gallon, the credit was $4,500. For a trade-in

vehicle that was a passenger car, Category 1 truck, or Category 2 truck, and a replacement

vehicle that was a Category 1 truck, if the fuel economy was improved by 2 to 4 miles per

gallon, the trade-in credit was $3,500, and if the fuel economy was improved by at least 5
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miles per gallon, the credit was $4,500.

If a replacement vehicle was a Category 2 truck, its paired trade-in vehicle had to be a

Category 2 or Category 3 truck, and the trade-in vehicle could not be a passenger car or a

Category 1 truck. If the trade-in vehicle was a Category 2 truck, an improvement of fuel

economy by 1 mile per gallon or at least 2 miles per gallon led to a $3,500 or $4,500 credit,

respectively, while the trade-in credit was $3,500 if the trade-in vehicle was a Category 3

truck.

In the case of a new Category 3 truck, its paired traded-in vehicle had to be within the same

category. For a transaction involving two Category 3 trucks, the trade-in credit was $3,500,

provided that the new vehicle was smaller or similar in size. The National Highway Traffic

Safety Administration (NHTSA) interpreted this requirement to mean that the new vehicle

had to have a gross vehicle weight rating no greater than that of the old one.

Generally, passenger cars have a higher fuel economy than light-duty trucks; thus, a higher

improvement in fuel economy was required to obtain the bonus if the replacement vehicle was

a passenger car. It can also observe that the requirements for fuel improvement became less

stringent as the replacement vehicles became larger in size, because larger vehicles on average

have a lower fuel economy, and improving their fuel economy is mechanically difficult.

The CARS program was implemented in the hope of accelerating the replacement of gas

guzzlers by vehicles with high fuel efficiency. Therefore, the program had to guarantee that

the retired vehicles could not return to the road. In general, this requirement was achieved

by requiring automobile dealers to operate the engine of a trade-in vehicle with a sodium

silicate solution (liquid glass) until the engine was disabled. Finally, the old vehicles were

crushed or shredded at a disposal facility.
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2.3 Literature review

Understanding how much the retired vehicle and its replacement would be driven is a crucial

question to determine the environmental effects of an accelerated vehicle retirement program.

Dill (2004) demonstrates that the pollution reduction effects of such a program could vary

dramatically based on the different assumptions on the VMTs of the vehicles participating

in two California retirement programs.

A fixed VMT or the average by vehicle type and age from Lu (2006) is assumed by recent

scrappage studies that are closely related to the current paper. Knittel (2009) evaluates the

cost of reducing carbon dioxide under the “Cash for Clunkers” program. He simply assumes

that all trade-in vehicles were driven by a fleet average, 12,000 miles annually, regardless

of their characteristics such as vehicle type, age and fuel economy. New vehicles could be

annually driven for either the same or more miles as the trade-in vehicles, depending on what

values of the parameters on rebound effects are assumed. Knittel calculates that it costs at

least $237, an expensive way, to reduce carbon emissions by one ton under the program. In

addition, he shows that the carbon-reduction effect of the program can be negative when

the Lu’s (2006) average is adopted.

Li et al. (2013) examine the effects of “Cash for Clunkers” on new vehicle sales, employ-

ment, fuel consumption, and the environment. Using a difference-in-difference approach with

Canada as the control group, these researchers find that a significant increase in vehicle sales

occurs during the program, with a net sales increase of 0.25 million from June to December

of 2009, and that the program creates 3,676 job-years during the same period. However, the

increase in vehicle sales in the long run is estimated as 30,579 or zero because the program

borrowes vehicle sales from the future. To evaluate the pollution effects of the program, Li

et al. (2013) simply assume that the trade-in and new vehicles follow Lu (2006)’s average

VMTs, determined by vehicle type and vintage. The program is found to reduce CO2 emis-

sions by 8.58 to 28.28 million tons, implying that a cost of $91 to $301 to reduce a ton of
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CO2 emission.

Antweiler and Gulati (2011) evaluate BC SCRAP-IT®, British Columbia’s accelerated ve-

hicle retirement program. Their study is an improvement over earlier scrappage studies by

providing more accurate estimation of VMTs and vehicle-specific emissions for the retired

vehicles. Approximately 70% of their sample vehicles are inspected by British Columbia’s

Motor Vehicle Emissions Inspection and Maintenance Program (AirCare). The AirCare

dataset includes odometer readings and emission test records for the retired vehicles. By

using the vehicle’s last two inspection results, Antweiler and Gulati (2011) construct better

estimates on the vehicle’s end-of-life annual VMTs and associated pollution. In addition,

they assume that replacement vehicles have the same annual travel schedules as trade-in

vehicles and find that a program vehicle on average saves 10.5 tonnes of CO2, 70 kg of NOx,

28 kg of HC, and 405 kg of CO, totally valued at C$859.

Sandler (2012) also improves the VMT estimation for the retirement vehicles participated

in the California’s Bay Area’s vehicle buyback program. A refined control vehicle group is

chosen to match with the retired vehicles based on vehicle identification number (VIN) and

registered location, and then odometer readings are used to calculate the VMTs of the control

group, which are served as the counterfactuals of the retired vehicles. Thus, his evaluation

on the program does not adopt any standard assumptions on the scrapped vehicles in the

literature. However, due to the lack of information on replacement vehicles, Sandler also

assumes that the replacement vehicles are driven the same number of miles as the trade-in

vehicles and concludes that both the depreciation of the vehicle fleet and adverse selection

lead to a decline in the vehicle retirement program’s cost-effectiveness over time.

The current study argues that assuming a fixed VMT or the average from Lu (2006) may not

be appropriate when examining the CARS program. Given the program requirements, the

old vehicles have to be gas guzzlers with a fuel economy lower than 18 mpg (except for the

Category 3 trucks), while the replacement vehicles tend to have high fuel efficiency. For ex-

ample, in order to obtain a $4500 bonus, an improvement of 10 mpg has to be achieved when
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a CARS transaction involves two passenger cars. Hence, the use of the vehicles participating

in the CARS program could potentially deviate from the average.

Antweiler and Gulati (2011) and Sandler (2012) use more appropriate approaches to de-

termine the VMT schedules for the retired vehicles during their end of life; however, the

assumption that the retired and new vehicles travel the same amount may not be justified.

First, the marginal cost of driving new vehicles decreases because of the improvement in fuel

efficiency for the replacements. Second, vehicle owners tend to trade in vehicles not being

used, and third, the new vehicles in general provide more comfort to drivers Knittel (2009).

Lastly, a change in vehicle type could also occur following a CARS transaction, which would

affect travel behavior.

From a broader literature, the VMT prediction for the CARS vehicles may also be informed

by the studies which examine the relationship between vehicle fuel efficiency and VMTs,

for example, studies which investigate the fuel efficiency rebound effect (for a review of the

rebound effect literature, see Sorrell et al., 2009). Among these studies, the endogeneity of

vehicle fuel efficiency needs to be controlled for in order to provide a more accurate VMT

estimates. Small and Dender (2007) state that households have their expected travel demand

and are likely to choose a vehicle with higher fuel efficiency than other households if they

tend to drive a long distance regularly. Thus, a household’s expected amount of driving can

affect its vehicle choice and the observed high volume of travel associated with high fuel

efficiency may be just a reflection of a household’s vehicle selection. Therefore, accounting

for the endogeneity would not over-estimate VMTs for the CARS replacement vehicles of

high efficiency and the pollution yield by these vehicles.

Using instrumental variables for vehicle fuel efficiency is one way to address the endogeneity

(e.g., see Liu (2009)). Jointly modeling fuel efficiency and VMT decisions is another way

used to control for the endogeneity of fuel efficiency. In general, the jointly modeling can be

implemented through either using simultaneous equation estimation technique (e.g., Greene

et al. (1999) and Small and Dender (2007)) or jointly estimating the discrete choice of vehicle
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and the continuous choice of VMTs conditional on vehicle choice (e.g., Goldberg (1998), West

(2004), Bhat and Sen (2006), and Bhat et al. (2009)).

Rather than using the typical VMT numbers assumed by the scrappage literature or vehicle

odometer readings, the current paper refers to the efficiency&VMT literature to derive the

travel demand for the CARS vehicles. Particularly, this paper follows Liu (2009) to use

the price of gasoline when a household purchases its vehicle along with other variables as

instruments to correct the potential endogeneity problem. As argued earlier, instrumenting

the fuel efficiency is not the only way to reveal the relationship between the efficiency and

VMTs, but adopting this approach can relax some assumptions imposed by some jointly

modeling studies, such as a symmetric response to both gasoline prices and fuel efficiency or

as a fixed total mileage budget for each household (for the related critiques, see West et al.

(2014) and Liu et al. (2014)). The computation of the discrete-continuous model could also

be intensive.

In addition, the rich information on residential densities, and household and vehicle char-

acteristics contained in 2009 NHTS is also used by the study to predict the VMTs during

a vehicle’s lifetime. Density is used because it is the most frequently used in the urban

economics literature as an indicator of urban sprawl because density can be consistently

measured across space and time and is readily available (e.g., see Bento et al., 2005). Den-

sity is also a proxy for access to employment, shopping, and other travel destinations, so it

can potentially influence VMT Brownstone and Golob (2009).

A recent study by West et al. (2014) adopts regression discontinuity design to examine the

change in household’s driving behavior for one year after the CARS transaction. They argue

that the CARS program creates a credibly exogenous “policy-induced improvement” in fuel

efficiency. They collect the data on new car buyer in Texas during the CARS program in

2009, provided that these buyers’ retired “clunkers” are either barely eligible and barely

ineligible for the CARS subsidy. They find that 4 to 6 percent more fuel efficient vehicles

are purchased by the barely eligible new car buyers compared to the barely ineligible new
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car buyers, however, the former does not drive more miles than the latter. Therefore, they

conclude that the rebound effect tends to be insignificant. The finding from West et al.

(2013) is consistent with ours in the sense that the current study also finds an economically

small effect of fuel efficiency on VMTs.3

2.4 Data

The 2009 National Household Travel Survey (NHTS) has rich information for investigating

household travel behavior. A system of regression equations (described in the next sec-

tion) is estimated based on the urban form indicator, household characteristics, and vehicle

attributes from the 2009 NHTS. Once the coefficient estimates for the regression system

are obtained, the VMT values can be predicted for each NHTS vehicle during its residual

lifetime.

To determine the VMT for the CARS vehicles, a vehicle cohort is first defined by vehicle

type and age, and then the mean fuel economy for each CARS vehicle cohort is calculated

based on the transaction details contained in the Car Allowance Rebate System dataset.

Next, the NHTS vehicles are matched with the CARS vehicles according to vehicle cohort

and the calculated mean fuel economy. The VMT schedules of the each CARS vehicle cohort

is then derived from the VMT of the matched NHTS vehicles with a same cohort.

Now, the emissions for the CARS vehicles can be estimated by combining the VMT schedules

with the emission factors retrieved from the EMission FACtors (EMFAC) 2011 model, pro-

vided the counts of each CARS vehicle cohort are determined. The California sub-datasets

from the 2009 NHTS and the CARS datasets are used to evaluate the environmental effects

of the CARS program because the EMFAC2011 is modeled to predict the emissions emitted

by the vehicles operated in California.

3To see this, compare Figure 3(b) on P.24 to Figure 5(b) on P.26.
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CARS data

The CARS data contains the details for 676,984 vehicle transactions (updated as of November

10, 2010). In California, 76,514 vehicles participated in the program, accounting for around

11.30 percent of all CARS transactions. The data provide information, such as vehicle year,

make, model, fuel economy, and vehicle fuel economy, for both trade-in vehicles and newly

purchased vehicles. Based on this information, the input errors on vehicle category for the

participating vehicles are corrected according to the CARS vehicle eligibility guide.4

Table Tab. 2.2 shows that, in California, the counts within each vehicle category dramatically

changed with the implementation the CARS program. The counts of Passenger cars rose

from 14,734 to 49,564, while, in contrast, the counts of Category 1, 2, and 3 all dropped.

The category shares may provide a better view of the count changes. Specifically, the share

of Passenger cars rose from 19.26 to 64.78 percent. This increase corresponds to a dramatic

decrease in the share of Category 1 trucks from 67.66 to 31.21 percent, a moderate decrease

in the share of Category 2 trucks from 12.53 to 3.85 percent, and a slight decrease in the

share of Category 3 trucks from 0.55 to 0.17 percent. Table Tab. 2.2 also presents how the

counts within each vehicle type changed according to vehicle category. The counts of Vans

within Category 1 trucks dropped the most from 18,568 to 1,748, corresponding to a share

drop of around 20 percent.

Moreover, a significant improvement in fuel economy can also be observed in Table Tab. 2.2.

The highest increase of 11.79 mpg was achieved by Passenger cars due to the CARS program’s

more stringent requirements on fuel improvement, while the smallest improvement in fuel

economy occurred in Category 2 trucks, with only an increase of approximately 2 mpg.

4The guide is available at http://www.fueleconomy.gov/feg/CarsSearchIntro.shtml.
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Table 2.2: A brief view of vehicles participating in the CARS program

Category1 Type Count Percentage Fuel economy
old new old new old new

Passenger cars Car 14,734 49,564 19.26 64.78 17.52 29.31

Category 1 trucks

Van 18,568 1,748 24.27 2.28 17.10 19.83
SUV 28,563 17,744 37.33 23.19 15.25 22.30
Pickup truck 4,435 4,174 5.80 5.46 16.62 20.29
NA2 203 211 0.27 0.28 14.31 23

Aggregate 51,769 23,877 67.66 31.21

Category 2 trucks
Van 1,165 21 1.52 0.03 13.22 15.52
Pickup truck 8,411 2,922 10.99 3.82 14.35 16.37
NA2 14 2 0.02 0.00 23

Aggregate 9,590 2,945 12.53 3.85
Category 3 trucks NA2 421 128 0.55 0.17 23
Total 76,514 76,514

Note: 1. Vehicle category is defined by the CARS program, see Table Tab. 2.1. 2. There is not enough
information to determine the vehicle types.

NHTS 2009

The NHTS 2009, which is conducted by the U.S. Department of Transportation, is the

primary dataset used in the study. This dataset contains the household-level data on travel

behavior from March 17, 2008 through May 7, 2009, and has 309,163 vehicles. As explained

earlier, VMT, household residential densities, and household vehicle choices are key factors of

interest in the current study. Table Tab. 2.3 presents the summary statistics for the relevant

variables according to housing densities. This table reveals that both annual VMT and

vehicle fuel economy exhibit a reverse relationship with respect to residential density. In

addition, the households residing in the less dense areas tend to have higher annual family

income and to own newer vehicles.

Moreover, gasoline prices are also a key factor to determine household VMT. Hence, more

details on this variables need to be presented here.5 The 2009 NHTS does not collect fuel

prices via fuel purchase diaries. However, a fuel price is assigned to each NHTS sample
5Please refer to the documentation files “Methodologies for Estimating Fuel Consumption Using the 2009

National Household Travel Survey” and “Weekly Gasoline Prices, 2009 NHTS”.
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Table 2.3: Variable summary by residential density (N=277,194)

Housing units per square mile 0-99 100-499 500-999 1K-2K 2K-4K 4K-10K 10K-25K >25K
in Census block group
Best estimate of annual 11.95 11.66 11.31 10.90 10.62 10.46 10.27 10.07

miles (in 1000 miles)
EIA derived miles per gallon 19.57 20.20 20.46 20.53 20.73 21.35 21.99 21.68
Vehicle age 8.67 7.83 7.68 7.88 8.27 8.40 8.42 7.40
Average household income 68.25 81.23 85.29 81.58 75.77 72.54 78.09 92.93

(in 1000 dollars)

Source: calculated from the 2009 NHTS.

vhicle according to the vehicle’s engine type and fuel type. Regarding gasoline, its type

is first classifed by formulation (conventional, oxygenated, and reformulated gasoline) and

further classified by grade (regular, midegrade and premium gasoline) within each type of

gasoline formulation.

Gasoline prices used in the 2009 NHTS are retail prices and obtained from the Energy Infor-

mation Administration (EIA) survey Form EIA-878 “Motor Gasoline Price Survey”. More

specifically, the retail prices are collected from a frame of approximately 115,000 retail gaso-

line outlets. Based on each outlet’s zip code, individual outlets are mapped to counties. In

addition, the gasoline prices are also monthly average prices with sample weights constructed

by sales volume, surrogated by the sampled outlet’s number of pumps. Lastly, the gasoline

prices for a given NHTS household are determined by the Petroleum Administration for

Defense Districts (PADD) designation to which this household belongs.

EMFAC 2011

The EMFAC model, developed by the California Air Resources Board (CARB), is used

as an official tool to estimate emission rates and emission inventories from on-road motor

vehicles in California. This information helps the CARB to design air-quality-related regula-

tions and plans and to meet the Federal Highway Administration’s transportation planning

requirements.
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The on-road emission rates were retrieved from a web-based data access tool, the EM-

FAC2011 Emissions Database (updated January, 2013),6 which provides the emission rates

at the Californian region levels and at the state level, the calendar year of interest, season,

vehicle category, fuel type, vehicle model year, and driving speed. More specifically, the

emission rates used in the current paper are for the annual state-wide average at a combined

driving speed. Moreover, gasoline as fuel type is chosen because not enough information is

available to determine the fuel type for the vehicles that participated in the CARS program.

The vehicle classes defined by the EMFAC2011 are slightly different from those defined by

the CARS program (for more details on vehicle classification in the EMFAC2011, see Ta-

ble Tab. 2.4). Thus, it is necessary to determine how the emissions rates modeled in the

EMFAC2011 can be applied to the vehicles that participated in the CARS program. The

Passenger Cars in the EMFAC2011 match Passenger Cars in the CARS program. The emis-

sions rates for Light-Duty trucks of class 3 in the EMFAC2011 are applied to the Category

1 and Category 2 trucks because the average weights of Light-Duty trucks, including vans,

sport utility vehicles (SUVs), and pickup trucks, with model years from 1975 to 2010, fall

into the range of 3,751 to 5,750 lbs except in 1986 and 1987 (see Table Tab. 2.5). Finally,

the emission rates for Light-Heavy-Duty trucks of class 5 apply to Category 3 trucks in the

CARS program because they fall into the same vehicle weight range.

Table 2.4: Vehicle classes modeled in the EMFAC2011

Vehicle Class Fuel Type Code Description Weight Class (lbs) Abbr.
1 All* PC Passenger Cars All LDA
2 All* T1 Light-Duty Trucks 0-3,750 LDT1
3 Gas, Diesel T2 Light-Duty Trucks 3,751-5,750 LDT2
4 Gas, Diesel T3 Medium-Duty Trucks 5,751-8,500 MDV
5 Gas, Diesel T4 Light-Heavy-Duty Trucks 8,501-10,000 LHD1

Note: * includes gas, diesel, and electric. Source: CARB, EMFAC2011-LDV User’s Guide, September 19,
2011.

The pollutants modeled by the EMFAC2011 include ROG (the same class as EPA’s volatile
6The database is available at http://www.arb.ca.gov/emfac/.
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Table 2.5: Vehicle weight for 1975 to 2010 for Light-Duty Trucks

Model Year 1975 1976 1977 1978 1979 1980 1981 1982 1983
Weight (lbs) 4,072 4,155 4,135 4,151 4,252 3,869 3,806 3,806 3,763
Model Year 1984 1985 1986 1987 1988 1989 1990 1991 1992
Weight (lbs) 3,782 3,795 3,738 3,713 3,841 3,921 4,005 3,948 4,056
Model Year 1993 1994 1995 1996 1997 1998 1999 2000 2001
Weight (lbs) 4,073 4,125 4,184 4,225 4,344 4,283 4,412 4,375 4,463
Model Year 2002 2003 2004 2005 2006 2007 2008 2009 2010
Weight (lbs) 4,546 4,586 4,710 4,668 4,665 4,752 4,707 4,605 4,738

Source: EPA, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends:
1975 Through 2010.

organic compounds), TOG, CO, NOx, CO2, PM10, PM2.5, and SOx. The pollution re-

duction effects on all these pollutants are addressed in this study. Based on a vehicle’s

normal daily activities including starting, idling, running, or just sitting outside in the sun,

the EMFAC2011 further classifies the emissions from a vehicle as the following types: run-

ning exhaust, idle exhaust, starting exhaust, diurnal emission, resting loss, hot soak, running

losses, tire wear, and brake wear (see the definitions in Glossary of Terms). Correspondingly,

the emissions of each pollutant are estimated as the sum of the different types of emissions

of this pollutant.

2.5 Model and regression results

Following Liu (2009), a structural model below is used to estimate the travel demand for the

CARS vehicles:

V MTij = a0 + a1MPGj + a2Gcost + Xib1 + Vjb2 + εi (2.1)
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MPGj = F (Xi, Vj, Zj) + ηj (2.2)

where V MTij refers to annual vehicle miles traveled for vehicle j from household i. MPGj

is the fuel efficiency, miles per gallon and Gcost is gasoline price. Xi is a vector of exogenous

household characteristics such as household income levels, the number of household mem-

bers, the number of primary drivers, the number of workers, and three household life cycle

classification dummies. The first dummy is equal to 1 if the adults in a household have at

least one child, the second dummy is equal to 1 if adults in a household have children, and

the last dummy is equal to 1 if adults in a household have no children. 7 Xi also includes

race dummies for the household survey respondents.

Following Brownstone and Golob (2009), housing density, measured by housing units per

square mile at a block level, is also included in Xi as an explanatory variable. They argue

that residential density can be regarded as a proxy for access to employment and other

destinations and that, in general, households located in a less dense area might need to

drive more distance to work places and other places like shopping malls. In addition, three

dummies indicating whether or not a housing unit is owned or rented, heavy rail status, and

whether or not a household is located in an urbanized area are all taken into account to

explain vehicle usage.8 εi is the unobserved household characteristics.

Vehicle attributes Vj includes three individual vehicle-type dummies: Vans, SUVs, and

Pickup trucks (Automobiles are omitted). Vehicle age, age square, and age cubic terms

7The NHTS 2009 classifies the life cycle as follows: one adult with no children; two or more adults with no
children; one adult with the youngest child aged 0 to 5; one adult with the youngest child aged 6 to 15;
one adult with the youngest child aged 16 to 21; two or more adults with the youngest child aged 0 to
5; two or more adults with the youngest child aged 6 to 15; two or more adults with the youngest child
aged 16 to 21; one adult, retired, with no children; and two or more adults, retired, with no children.
These categories are compressed into the three categories used in the regression equation.

8The current study does not account for the vehicle use substitution effect as the chapter 3 does because
the CARS dataset does not collect most of the household characteristics such as vehicle ownership.

56



are also controlled for in equation (1).9 As argued earlier, a high MPG leads to a low

marginal driving cost, and thus high volume of travel. Meanwhile, a household expecting to

drive long road trips frequently may tend to choose a vehicle with high MPG. Hence, the

joint decision of VMT and vehicle fuel efficiency causes the endogeneity of the explanatory

variable MPGj in equation (1).

To correct the potential endogeneity, Zj is introduced into equation (2) as a vector of in-

struments of the variable MPGj. To be valid instruments, Zj should take effects on a

household’s vehicle choice, but not on the utilization of its vehicle. Equivalently, the instru-

mental variables affect MPGj, but are independent of ηj, which is the unobserved vehicle

characteristics is assumed by Liu (2009) to have the generalized extreme value distribution.

Again, following Liu (2009), the gasoline price when a household purchased vehicle j, effective

CAFE standard when the household purchased vehicle j, and 30 vehicle brand dummies are

used as instruments to control for the potential endogeneity.1011 Due to the data availability,

state annual pre-tax gasoline price was used in the current study and the price is adjusted

by price deflator with 2009 as the base year.Liu argues that a prevailing low gasoline price

may cause a household to purchase a vehicle of low fuel efficiency, vice versa; however, the

future utilization of the vehicle is more likely to be affected by the future fuel prices but not

the price at purchase. The stringency of the effective CAFE standard can affect the average

fuel efficiency of vehicle market, and thus, a household’s vehicle choice, but it may not affect

the household’s travel demand after purchase. The decision on vehicle brand could reflect a

household’s preference. A household is likely to purchase a Japan-made car if the household

9Age square and age cubic terms are included following Lu (2006).
10Previous gasoline price may be more important than price at purchase in terms of determining a household’s

vehicle MPG choice. However, the period having “previous” gasoline price can not be too long ahead
of the period in which a houshold purchases a vehicle because too early information may not affect a
household’s current behavior. If the interval between these two periods are not long, the gasoline price
at purchase could be closely related to the “previous” price.

11The vehicle brands with the 30 highest weights in the 2009 NHTS are chosen as brand dummies. They are
Acura, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hyundai, Infiniti, Isuzu,
Jeep, Kia, Lexus, Lincoln, Mazda, Mercedes-Benz, Mercury, Mitsubishi, Nissan, Oldsmobile, Plymouth,
Pontiac, Saturn, Subaru, Toyota, Volkswagen, and Volvo.
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has more concern of reliability, while it may choose a German-made car if the household

has more consideration on safety. On average, the former vehicle is more efficient than the

latter. However, the usage of a vehicle may not depend on its brand.

The structural model presented above is chosen because it follows the traditional framework

used in the urban economics literature to investigate vehicle travel behavior. In addition,

Brownstone and Golob (2009) and Liu (2009) use the same dataset of the NHTS, but with the

survey year of 2001, to investigate vehicle travel demand. More importantly, the specification

above addresses the issue of fuel efficiency endogeneity and the chosen instrumental variables

are tested by Liu (2009) as valid instruments. This specification is not the only way to

estimate the VMTs, but it tries to employ all available information in the 2009 NHTS to

provide an accurate estimation of VMTs. Table 6 provides the summary statistics for the

variables associated with the model, which are calculated from the 2009 NHTS.

The model is estimated by using both the instrumental variables (IV) method and ordinary

least squares (OLS) method. Column (1) of Table 7 below presents the IV estimates for the

structural model. The column shows that 1 MPG improvement in the efficiency results in

an increase in VMTs by 33.7 miles, annually. It also shows that the gasoline price negatively

affects VMTs and 1 dollar increase in the price reduces annual VMTs by 506 miles. Thus,

it may conclude that a household is more sensitive to the change in fuel price than to the

change in fuel efficiency because the former is more noticeable. Households with higher

income levels tend to drive more and an increase in income level by 10,000 dollars would

lead to an increase in annual VMTs by only 53.6 miles. In addition, both household size and

the number of workers take a positive effect on driving. An additional household member or

worker leads to VMT increase by 351 or 652 miles.

The IV regression results also show that VMTs are negatively associated with the count of a

vehicle’s primary driver. A household’s life cycle classification can also determine its travel.

Compared to retired adults living with no children, adults living with children drive 2,058

miles more, while unretired adults living with no children drive 1,666 miles more. A vehicle
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owned by Asian is driven 696 miles less compared to the omitted group, but it is driven 572

miles or 955 miles more if the vehicle is owned by American Indian (or Alaskan Native) or

Multiracial household.12 As expected, a household locating in a more dense area is likely

to have a lower travel demand: VMT would decrease by 101 miles if the household lived in

area with 1000 more housing units per square mile. Home locates in a MSA with rail or in

an urbanized area will reduce household travel by 241 or 982 miles.

Meanwhile, column (1) of Table 7 also demonstrates that vehicle type significantly affects a

vehicle’s usage. After controlling for other factors including fuel economy, Vans and SUVs

are found to be driven 344 and 191 miles more than Pickup Trucks, respectively, while

Automobiles are driven 563 miles less annually. Column (1) also illustrates that vehicle age

affects VMTs. Vehicle age can reflect a vehicle’s performance, as an older vehicle tends to

have a worse performance and may be less safe, and thus is driven less miles than a newer

vehicle.

Furthermore, the estimation results from OLS method are also presented in column (3) of

Table 7 in order to compare them with those from IV method. Most coefficient estimates

from the two different estimation methods have same sign and statistical significance and

similar magnitude. However, the effect of fuel efficiency on VMTs is found to be nearly 19

times bigger effects under OLS method than that under IV method, approximately. Thus,

correcting the potential endogeneity problem can present a more reliable relationship between

fuel efficiency and VMTs.

2.6 Analysis of the environmental effects of the CARS

To evaluate the effects of the CARS program, the counterfactual emissions that the trade-in

vehicles would have produced in their residual lives need to be determined, had they not

been crushed or shredded. The amount of counterfactual emissions, in turn, depends on how
12The race for the omitted group is other specity not listed in the 2009 NHTS.
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long the residual lifetime of a trade-in vehicle would have been, how many miles it would

been driven annually, and how much pollution would have been produced for each mile that

the vehicle traveled. In addition, vehicle survival rates also play a role in determining the

amount of emissions because these rates measure the probability that a vehicle is still in

operation during its residual life.

2.6.1 The VMT schedules for the trade-in and replacement vehicles

Mathematically, the pollution forgone from a trade-in vehicle i can be expressed as

T i∑

ti

e(vi, ti) · s(vi, ti) · M(vi, ti), (2.3)

where e, s, and M are the emission rates, vehicle survival rates, and annual VMTs for vehicle

i, respectively. The notation implies that these three factors are time variant and dependent

on vehicle type vi and vintage ti.13 More specifically, the emission rates e are retrieved from

the EMFAC 2011; and s is the vehicle survival probability conditional on a vehicle’s survival

until the age of t − 1, and calculated from the estimated survival rates from Lu (2006).14

Lastly, T i refers to the lifetime of vehicle i. Following Lu (2006), the lifetime is assumed to

be 25 years for Automobiles and 36 years for Vans, SUVs, and pickup Trucks.

The CARS program classifies vehicles into Passenger Cars, Category 1 Trucks, Category 2

Trucks, and Category 3 Trucks. In order to derive the annual VMTs, the CARS vehicle types

need to be reclassified as Automobiles, Vans, SUVs, and pickup Trucks in order to match

them with the types defined by the 2009 NHTS.15 However, the Category 3 Trucks, which

include large Trucks, Vans, and SUVs, are not reclassified, because of the lack of information
13The CARS program was implemented in 2009, so the vehicle age is calculated as 2010 minus the vehicle

model year. In addition, the replacement vehicles with model years 2009 and 2010 were new in 2010, so
they both are assumed to be age 1.

14Independence of hazard rates across years is assumed, and then the conditional survival rate of a vehicle,
sC

t , at time t equals sU
t /sU

t−1, provided that it has survived until t − 1, where sU
t and sU

t−1 are the
unconditional survival rates at time t and t − 1, respectively.

15The reclassification is performed based on vehicle make, model, and model year.
60



for doing so. Based on the arguments made above, vi refers to one of the following vehicle

types: Automobiles, Vans, SUVs, pickup Trucks, and Category 3 Trucks.

So far, the question of how to construct the VMT schedules for the trade-in vehicles has not

been addressed. The procedure for answering this question begins by using the regression

specification and coefficient estimates from Section sec. 2.5 to predict the annual miles driven

by the NHTS vehicles . Next, the NHTS vehicles are matched with the CARS vehicles by

using specific criteria, and the VMT schedules are then constructed for the latter. The

details of the procedure are presented below.

For Automobiles, Vans, SUVs, and pickup Trucks, the miles currently driven by the NHTS

vehicles in 2009 are determined as the predicted values of the dependent variable, V MT ,

in the regression equation (1). The future VMTs by these NHTS vehicles are estimated by

combining the future values of the explanatory variables with the corresponding coefficient

estimates from the regression equation (1). In the current study, it is assumed that variables

related to the household characteristics are constant over time because the NHTS is not a

time-series dataset, and the future values of these variables are not available.

The household life cycle and race variables are not likely to change within a short period;

thus, they might not significantly affect the prediction of VMT; however, other household

variables can affect the VMT prediction. For example, household income tends to increase

over time, and thus to be positively related to VMT. Therefore, holding the household income

constant may cause the future VMTs to be underestimated.

Moreover, the empirical findings in this study show that vehicle fuel efficiency has significant

effects on VMTs, so understanding how fuel efficiency changes with aging is necessary. The

mean MPG of the NHTS vehicles is first calculated according to vehicle type and age, and

then the differences in the mean MPG of the same vehicle type between age t and t − 1 are

calculated. Next, a regression is run between the differences and a constant term by vehicle

type, and the annual depreciation rates of the MPG are estimated as 1.07%, 1.14%, 1.47%,
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and 0.472% for Automobiles, Vans, SUVs, and pickup Trucks, respectively. As a result, the

future MPG and thus the VMTs for the NHTS vehicles of these four types can be derived.

Based on the empirical results obtained by this study, household characteristics were found

to significantly affect VMTs. Ideally, the CARS vehicles could be better matched with the

NHTS vehicles in terms of VMT prediction if the household characteristics for the CARS

participants were also known to us. However, the CARS program did not perform a survey

to collect such information. Therefore, the matching process has to be based only on vehicle

attributes as following: first, the mean fuel economy of the CARS trade-in vehicles is also

calculated by cohorts defined by vehicle type and vintage, and then a range that contains

the 2.5% upper and 2.5% lower limits of the mean fuel economy is determined.16 However,

the upper limit is not allowed to exceed 18 miles per gallon, the limit for a trade-in vehicle to

be eligible for the CARS program. Next, the NHTS vehicles that not only match the vehicle

type and age of the CARS vehicles but also fall into the fuel economy ranges determined by

the CARS vehicles of the same type and age are kept. The VMTs of the remaining NHTS

vehicles are averaged by vehicle type and age, and the averages are used as the predicted

VMTs of the CARS trade-in vehicles.

The CARS program does not provide any information on fuel economy for Category 3 Trucks.

Moreover, if a Category 3 Truck is a Van, SUV, or Truck cannot be determined. Therefore, a

different approach must be used to determine the VMTs of Category 3 Trucks. As Category

3 Trucks are large Vans, SUVs, or Trucks, for simplicity the NHTS vehicles classified as

Vans, SUVs, or Trucks are collapsed into one category, and the mean miles by year from the

collapsed category are calculated as the VMT schedules for the CARS Category 3 Trucks.

Now, all elements necessary to determine the forgone pollution from a trade-in vehicle i are

available to us.

For a replacement vehicle j, the emissions produced by this vehicle during the residual life of

its corresponding trade-in vehicle i, (T i − ti), need to be estimated. However, the temporal
16The trade-in vehicles have 109 cohorts.
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interval during which the accumulated pollution from the replacement vehicle j is calculated

is based on (T i − ti) but is not simply equal to (T i − ti). Following Knittel (2009), the

interval denoted as Dj is calculated as Dj =
T i∑

ti

sC
t , where sC

t is conditional survival rate

of vehicle i.17 Given the average age of the CARS retired vehicles is 15.7 years old, the

expected number of years a CARS vehicle would be driven on road is calculated as 2.78 or

7.51 years depending on whether the trade-in vehicle is a car or a light duty truck, with an

average of 6.60 years.18

Moreover, when determining the travel demands for the replacement vehicles, the interval Dj,

together with vehicle type and vehicle age, is used to define the cohort to which the vehicle j

belongs.19 An additional dimension is introduced to estimate the VMTs of the replacement

vehicles in order to help produce more accurate estimates of the VMTs and, thus, also of the

emissions. Now, the emissions produced by the new vehicle j can be expressed as20

Dj+tj∑

tj

e(vj, tj) · s(vj, tj) · M(vj, tj, Dj). (2.4)

Similarly, the mean fuel efficiency of each of the new CARS vehicle cohorts defined as above

is calculated, and then a MPG range is determined by using the 2.5% upper and lower

limits of the mean MPG. Again, the NHTS vehicles are matched to the CARS according to

vehicle type, age, and the MPG range. Finally, the VMT schedules of the CARS vehicles

are calculated as the averages of the annual miles driven by the matched NHTS vehicles of

17For the notation, see footnote 10.
18For the vehicles that are more likely to be traded in even in the absence of the CARS program, they

tend to have shorter lifetimes compared to those not expected to be traded in, which could lead to an
overestimate of the VMTs for the retired vehicles.

19The replacements are classified into 498 cohorts. The average age of the replacements can be obtained as
1.02 years old

20It is possible that Dj is longer than the residual lifetime of a replacement vehicle j,
(
T j − tj

)
. Under this

case, Dj should be replaced by
(
T j − tj

)
. Regarding the CARS trade-in vehicles, the youngest light duty

truck is 3 years old, and then expected residual lifetime for these vehicles are estimated as 13.16 years.
On the other side, the shortest residual lifetime for a new CARS car is 22 years (note: some replacements

have model year of 2007), which is still longer than 13.16 years, i.e, the longest residual interval for the
trade-in vehicles. Therefore, Dj calculated by the method presented in the paper can be safely used as
the interval to estimate the pollution from the replacement vehicles.
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same cohort. The procedures discussed above apply only to Automobiles, Vans, SUVs, and

pickup Trucks, while the approach used to predict the VMTs for the trade-in Category 3

Trucks applies to the new vehicles of same category. Again, the emission rates and vehicle

survival rates for the replacements can be obtained from the EMFAC 2011 and Lu (2006),

respectively.

Some additional points need to be addressed. First, the vehicle matching process is based

on the prescribed fuel efficiency range, and also same vehicle type and vintage, but not

household characteristics, because the CARS database does not collect information on these

characteristics. Therefore, the changes in household characteristics could ocurr following the

matching process proposed in this paper. For example, if an unaccounted increase in income

across the matched NHTS households occurred, the current study could overestimate the

VMTs for the replacement vehicles and their pollution. However, the unaccounted increase

in income may not be dramatically high if low-income households are more likely to purse a

fuel efficient but not a luxury and low fuel efficient vehicle. Given the data availability, this

may be the best possible way to predict VMT for the new CARS vehicles.

Second, the structural model (1) is not used to predict the VMTs when a vehicle arrives at

age 25 or older, regardless of which type it belongs to; instead, the 24-year VMTs are used

when a vehicle’s age exceeds 24, because the age range of the NHTS vehicles lies between

1 and 24; moreover, the model predicts that VMTs over 24 years old will tend to increase

with age. This prediction contradicts the common observation that vehicles on average are

driven less as they age. Using the 24-year VMT to predict a vehicle’s future VMT could

result in overestimating the VMTs, but may not significantly affect the estimation of the

vehicle pollution because the magnitudes of both the VMTs and the vehicle survival rates

are likely to be small when a vehicle’s age is over 24.

Third, no information is available for identifying their types for some Category 2 Trucks and

Category 3 Trucks. The differences between their individual fuel efficiency and the mean

fuel efficiency determined by vehicle type and age are calculated. Next, the squares of the
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differences are taken and summed across vehicle age according to vehicle type. The smallest

magnitude in a sum of square terms would indicate the closeness between the fuel efficiency

of vehicles of an unknown type and those of a known vehicle type.

More specifically, the fuel efficiency is found to be closest to that of a pickup Truck for

the trade-in vehicles and to that of a SUV for the new vehicles. Therefore, the vehicles

of unknown types are identified as pickup Trucks if they are trade-in vehicles or SUVs if

they are replacement vehicles, and their VMTs are calculated by using the method described

above.

Figure 1 shows the expected VMT schedules by vehicle types for the trade-in vehicles of age

16 and replacement vehicles of age 1 and also with expected residual lifetime of 6.60 years.21

22 This figure shows that the miles driven by the vehicles of all types tend to decrease over

time. The VMT trends across different vehicle types are also similar because the VMTs are

all adjusted by vehicle survival rate, which is dramatically decreasing with vehicle’s aging.

Moreover, the new CARS vehicles have much higher VMTs compared to the trade-in vehicles

at any given future year. The VMT differences can be explained by the big gap in vehicle age

between the retired and replacement vehicles. In addition, the new vehicles have achieved

significant improvements in fuel efficiency. Vehicle age and fuel efficiency are shown to have

significant effects on VMTs (see the regression results in Table 7).

2.6.2 The emissions for the trade-in and replacement vehicles

The pollutants modeled by the EMFAC2011 include reactive organic gases (ROGs, which are

in the same class as the EPA’s volatile organic compounds (VOCs)), carbon monoxide (CO),

nitrogen oxides (NOx), carbon dioxide (CO2), particular matter (PM) including PM10 and
21These two cohorts are chosen based on the average ages for the retired and replacement vehicles and the

mean residual lifetime Dj of the retired vehicles. Hereafter, these two cohorts are called “representative”
cohort. As mentioned earlier, there are 109 and 498 cohorts for the retired and replacement vehicles,
respectively. Due to the space limit, only the two representative cohorts are addressed.

22Table A2.1 in Appendix shows the numeric VMT values for the trade-in and replacement vehicles of the
two representative cohorts.
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Figure 2.1: Expected annual VMT schedules by vehicle type (base year 2010)
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PM2.5, and oxides of sulfur (SOx). The pollution-reduction effects on all these pollutants

are addressed in the current study.

According to the EMFAC2011-LDV User’s Guide (2011), the emissions emanating from

a vehicle can be distinguished according to the types of emission processes and include

running exhaust, idle exhaust, starting exhaust, diurnal emissions, hot soak, running loss,

and resting loss (see the definitions in Glossary of Terms). Among these different emissions

types, running exhaust and running loss can be regarded as “direct” emissions from a vehicle’s

movement, while the other types of emissions are regarded as “indirect” emissions because

they are not directly associated with a vehicle’s driving. In this paper, both “direct” and

“indirect” vehicle pollution are estimated for the CARS vehicles. The emissions for each

pollutant mentioned above are calculated as follows according to their emission process:
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ROG (TOG) = s · V MT · (RUNEX + RUNLS) + 365 · s · (IDLEX + STREX

+ DIURN + HTSK + RESTL)

CO (NOx, CO2, or SOx) = s · V MT × (RUNEX) + 365 · s · (IDLEX + STREX)

PM10 (PM25) = s · V MT · (RUNEX + PMTW + PMBW ) + 365 · s · (IDLEX

+ STREX),

where RUNEX and RUNLS (both in grams per mile) refer to the emission factors for

running exhaust and running losses, respectively; IDLEX, STREX, DIURN , HTSK,

and RESTL (all in grams per vehicle per day) refer to the emission factors for idle exhaust,

starting exhaust, diurnal, hot soak, and resting losses, respectively; PMTW and PMBW

are the factors for PM emissions resulting mainly from tire wear and brake use, respectively;

and s is vehicle survival rate. Idle exhaust applies only to heavy-duty vehicles (corresponding

to Category 3 Trucks in the study), but not to passenger cars and light-duty vehicles because

this variable refers to the emissions created while loading or unloading goods.

From the equations (2) and (3), the emission schedules of different pollutants can be derived

for both the retired and replacement vehicles according to the previously defined vehicle

cohorts. Figure 2 below demonstrates how the ROG and CO2 emissions evolve as a vehicle

ages for the two “representative” cohorts.23 For the retired vehicles of 16 years old, the

decreasing VMTs and survival rates outweigh the increasing ROG emission rates as time

passes. As a result, the future ROG emissions for these vehicles exhibit a decreasing trend

regardless of its vehicle type as seen in Figure 2. In addition, the magnitude of ROG

emission rates determines that Category 3 Trucks produce the most emissions at any given
23See footnote 16.
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time, while passenger cars produce the least, regardless of pollutant type. Moreover, the

pollution patterns for Vans, SUVs, and Pickup Trucks are similar because a same set of

survival rates and emissions rates are applies to these types of vehicles and these vehicles on

average have close travel demand predicted by the empirical results.

Regardless of vehicle type, Figure 2 also shows that for the vehicles of age 1 the ROG

emissions first increase with time, reach to the maximum level at an age between 10 to

12, and decrease again. This observation can be explained by the information contained in

Table 8. For a passenger car of model year 2009 (or of age 1), its VMTs and survival rate

would decrease a lot when the vehicle was age of 10, but the decrease is completely offset

by the increase in their emission rates, see column (5) in Table 8. Hence, the first phase of

increasing in ROG emissions is observed. Given the same car, the ROG emissions emitted at

its age of 20 would be less than those at its age of 10 because survival rate is the dominant

factor to determine the ROG level, see column (6) in Table 8.

In contrast, an increasing phase can not be found with respect to CO2. Table 8 also shows

that given a passenger car the emission rates of CO2 tend to be stable overtime, see column

(5) and (6). Thus, VMTs and survival rates play a dominant role in determining a car’s CO2

emissions levels and the levels tend to be decreasing overtime. More importantly, Figure 2

illustrates that ROG emissions from a car of newer vintage in the near future (say five years)

are less than those from a car of older vintage, while CO2 emissions from the former are more

than those from the latter. This finding results from the observation that the ROG emission

rates of old vintage vehicles dramatically rise, but the CO2 emission rates are relatively

stable across different vehicle vintages, see column (7) in Table 8.

ROGs are either emitted from a vehicle’s tailpipe or evaporate from a vehicle’s fuel system.

The vehicles of old vintage are generally equipped with outdated emission control system, as a

result, the ROG emissions from one mile’s driving by such a vehicle can be much higher than

those by a vehicle of new vintage. Although a vehicle, including its emission control system,

generally performs worse as the vehicle ages, and fuel is more likely to escape from an older
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vehicle than a newer one, the magnitude of the ROG emission rate does not dramatically

increase over time given the vehicle vintage unchanged. All these facts essentially determine

the ROG emission patterns. Furthermore, the emission schedules for both CO and NOx

exhibit a similar pattern for ROG because the emissions rates for these two pollutants are

also highly inversely related to vehicle vintage.

CO2 emissions in contrast are determined by fuel property and fuel consumption, but are

not directly constrained by the vehicle emission control system. The amounts of CO2 from

burning a gallon of fuel are dependent on the fuel’s carbon contents. Similarly, SO2 emissions

are majorly determined by fuel’s sulfur contents. Therefore, vehicle age and vintage less

directly affect the emission rates of CO2 and SOx than on the rates of the other pollutants

mentioned earlier, but they do affect the emissions levels of these two pollutant through

their impacts on VMTs. Specifically, a vehicle tends to be driven less and consumes less fuel

with aging and is likely to emit less CO2 and SO2 into the air. Lastly, PM10 and PM2.5

are generated mainly as a result of brake use and tire wear. Presumably, the emissions of

these two pollutants like CO2, SOx tend to be determined by VMTs are inversely related

with vehicle age.

2.6.3 The net pollution effects of the CARS program

The pollution schedules for any cohort of trade-in and replacement vehicles in the CARS

program have been derived, and we can obtain the cohort emissions by multiplying the

emissions of each cohort by the corresponding cohort counts. Next, the cohort emissions can

be aggregated for the replacement vehicles according to their type and age.24 The emissions

of one pollutant for a given vehicle type and age between retired and replacement vehicles,

however, are still not comparable because of the difference in vehicle counts. Then, the

per-vehicle emissions produced by the retired and replacement vehicles during the residual

24Recall that residual lifetime is an additional dimension to define the replacement cohorts.
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lifetime of the retired vehicles can be obtained according to vehicle type and age. If these

emissions are called “residual” emissions per vehicle thereafter, then Figure 3 and 4 below

presents these residuals to us. Again, only ROG and CO2 are chosen as representative

pollutants to perform analysis.

Not surprisingly, Figure 3 shows that the “residual” ROG levels per trade-in vehicle first

increase with vehicle age, reach maximum levels around vehicle age 20, and decrease at the

end of a vehicle’s end of life, regardless of the vehicle type. This findings means that a

car of age 25 could emit more the “residual” emissions than a car of age 5, with 2010 as

base year. As argued earlier, vehicle vintage plays a more important role in determining the

magnitudes of ROG emission rates, and thus emission levels.25 Thus, the “residual” ROG

emissions from the vehicles of older vintage could be larger than those from the vehicles

of newer vintage. Moreover, the figure also shows that the replacement vehicles generate

relatively lower “residual” ROG emissions because the replacements have the latest model

years and are equipped with more advanced emission control systems and the function of

such systems does not deteriorate dramatically overtime.26

In contrast, Figure 4 suggests that the “residual” CO2 emissions decrease with vehicle’s

aging for both the retired and replacement vehicles. Moreover, new CARS vehicles (except

Category 3 Trucks) produce less the “residual” CO2 emissions than the younger retired

vehicles but more emissions than the older retired ones.27 The negative difference arises from

the fact that the residual intervals during which the retired and replacement vehicles produce

emissions are calculated differently.28 The positive difference results from the finding that

the older retired vehicles are driven less and the CO2 emission rates do not vary significantly
25For example, the emission rate of ROG running exhaust is 0.3687 gram per mile for an automobile of

model year 1985 (or of age 25). This amount is 34.14 times the rate for an automobile of model year
2005 (or of age 5), which equals 0.0108 gram per mile.

26For example, the ROG emission rate for an automobile of model year 2005 would be 0.0223 gram per mile
when the vehicle reached age of 25, a decent increase compared to the current emission rate.

27Have the CARS program had Category 3 Trucks of age 4 or 5, the CO2 emissions from these vehicles
would be greater than those from the replacement vehicles.

28Recall, the intervals are
(
T i − ti

)
and Dj for the retired and replacement vehicles, respectively, and the

former on average is longer than the later.
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across vehicle age and vintage.29

Now, the emission levels of each pollutant can be aggregated at an upper lever according only

to vehicle type. In order to make a comparison, per vehicle pollution levels are calculated,

and then the difference in the mean pollution levels between the retired and replacement

vehicles can be obtained as shown in Figure 5. The figure demonstrates that the CARS

program achieves per vehicle pollution reductions in ROG, TOG, CO, and NOx compared

to the retired vehicles across the five vehicle types. This finding is not surprising because

replacement vehicles are estimated to produce less per vehicle emissions of these four pollu-

tants regardless of its type and vintage as shown in Figure 3. Moreover, per Passenger Car

has the lowest pollution gains relative to other vehicle types because the retired vehicles have

shorter residual lifetime. Per Category 3 Truck has the highest gains because the magnitudes

of the emission rates for the pollutants of interest are higher for the retired vehicles of this

category relative to those of the other vehicle types. Per vehicle emission gains from Van,

SUV, and Pickup Truck are approximately equal and lie between the lowest and the highest.

In contrast, Figure 5 shows that replacement vehicles produce more per vehicle emissions

than retired vehicles with respect to the pollutants CO2, SOx, and PM10. Again, VMTs

compared to other factors have more influence to determine the emissions of these pollutants

and replacement vehicles tend to have higher travel volume relative to their retired ones,

and thus the rise in per vehicle pollution is predicted. Passenger Car and Category 3 Truck

are likely to produce higher per vehicle losses in terms of CO2, SOx, and PM10, which is

explained by the shorter residual lifetime of the retired car and bigger magnitudes of the

emission rates for the truck, respectively. Although the emissions of PM2.5 are positively

related to VMTs, the tiny magnitudes of PM2.5 emission rates cause the residual lifetime of

the retired vehicles to be a dominant factor to determine its pollution levels. On average, the

CARS Passenger Cars have much shorter residual time compared to other types of vehicles.
29For example, the emission rate of CO2 running exhaust is 384.7986 grams per mile for an automobile of

model year 1985, and is only 1.10 times the rate for an automobile of model year 2005, which equals
349.8002 grams per mile.
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Thus, only PM2.5 losses per Passenger Car are observed.

Lastly, the predicted emissions can be aggregated at an topmost level and compared accord-

ing to retired and replacement vehicles. Figure 6 shows that the net pollution gains induced

by the CARS program occur for ROG, TOG, CO, NOx, and PM2.5 while the losses occur

for CO2, SOx, and PM10.

2.6.4 The effects under alternative assumptions for VMTs of

replacement vehicles

Based on the structural model of equations (1) and (2), the VMT schedules for the CARS

vehicles and associated pollution have been estimated. For ease, the VMTs and relevant

pollution are called “model-predicted” VMTs and pollution. The current study assumes

that vehicle travel demands are affected only by household and vehicle characteristics. Once

one or more of these characteristics, say vehicle age and fuel economy, have changed, the

travel demands change accordingly. Some scrappage studies, however, argue that a driver

might not change his travel behavior even after replacing his old vehicle with a new vehicle;

and thus, these studies assume that a replacement vehicle will be driven for the same number

of miles as its paired old vehicle was being driven before it was traded in; for example, see

Antweiler and Gulati (2011) and Sandler (2012).

However, the first alternative assumption is questionable because significant changes in vehi-

cle attributes such as vehicle vintage, fuel efficiency, and even vehicle type, have occurred as

a result of the CARS program’s requirements, and all these changes take effects on VMTs.

Therefore, using the VMTs of old vehicles as those of the new vehicles could result in un-

derestimating the pollution produced by the new vehicles. Nevertheless, the pollution under

the first alternative assumption is estimated because the results can be used as the lower

boundary of the pollution produced by the replacement vehicles.

Second, replacement vehicles are often assumed to be driven at the fleet average VMTs; for
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example, see Li et al. (2013). This assumption is more likely to be verified than the first one

in terms of evaluating the CARS program. If a driver did drive a replacement vehicle at the

fleet average, the “model-predicted” pollution of the replacement vehicle could be regarded

as the upper boundary of the estimation because the participating new vehicles have higher

fuel economy and “model-predicted” VMTs than the fleet average.

Table 9 presents the environmental effects of the CARS program under three different as-

sumptions. Unsurprisingly, the pollution levels of the new vehicles calculated under As-

sumption 3 (fleet average VMTs) are constrained by the upper limit under Assumption 1

(“model-predicted” VMTs) and the lower limit under Assumption 2 (retired vehicle VMTs).

In other words, the pollution reductions induced by the CARS program are the greatest un-

der Assumption 2 (or the induced pollution increases are the smallest), while the reductions

are the smallest under Assumption 1 (or the increases are the greatest).

More specifically, the emissions of ROG, TOG, CO, NOx, and PM2.5 drop due to the

implementation of the CARS program, while the emissions of CO2, SOx, and PM10 increase

under Assumption 1 and 3. However, the emissions of all pollutants are predicted to decrease

under Assumption 2. The smallest travel demands are assumed under Assumption 2 and

applied to the replacement vehicles, which can explain the difference in terms of pollution

changes. Moreover, Table 9 also shows that VMTs have more influential impacts on the CO2

pollution of the replacement vehicles than other types of vehicle pollution. The magnitudes

of CO2 pollution vary significantly across different VMTs assumptions.

The monetary values of the corresponding pollution gains and losses are calculated by as-

suming that the average costs per ton of ROG, CO, NOx, CO2, SOx, PM10, and PM2.5 are

$180, $74.5, $250, $177, $970, $170, and $1170, respectively. More specifically, the average

costs of ROG, NOx, SOx, PM10, and PM2.5 are taken from the median marginal damage in

Muller and Mendelsohn (2009); the costs of CO are the midpoint of the range estimated by

McCubbin and Delucchi (1999); and the costs of CO2 are from Beresteanu and Li (2011).
73



Given the assumption of “model-predicted” VMTs, Table 9 shows that the emission reduction

is estimated as 95%, 90%, 94%, and 7% for ROG, CO, NOx, and PM2.5, respectively, while

20%, 16%, and 16% increase in CO2, SOx, and PM10 are predicted, respectively, for the

76,514 Californian vehicles participating in the CARS program. Table 9 also presents that

the monetary gains resulting from the reductions of ROG, NOx, CO, and PM2.5 are $1.07

million, $2.99 million, $1.55 million, and $0.01 million, respectively, while the monetary

losses from the increases of CO2, SOx, and PM10 are $82.43 million, $0.004 million, and

$0.007 million, respectively. Thus, the positive gains are completely offset by the increased

CO2 emissions, with a loss of $76.82 million at an aggregate level. When this amount is

converted to per vehicle term, an individual CARS transaction is found to lead to a net loss

of approximately $1003.9.

For the best scenario, the net gain would be $35 million (or $458 per vehicle). For the

middle scenario, the losses would be $60.2 million (or $787.2 per vehicle). Therefore, it is

concluded that the pollution reduction effects of the CARS program could be over estimated

given that a household would not change its driving demand is assumed. In addition, if the

damage from a tonne of CO2 is assumed to be close to $50, the conclusion would not change,

see the last column in Table 9. The program is likely to play a negative role in reducing

pollution. Li et al. (2013) examine the program effect on employment using the measure

of “job-year”. To my best knowledge, so far no studies directly address the program effect

on employment rate. If the program raised the employment rate through shifting the future

vehicle purchases to the current period, it would result in additional monetary gains or less

losses.

2.6.5 A discussion on adverse selection

When evaluating an accelerated vehicle retirement program, the issue of adverse selection

must be addressed. A vehicle owner knows the quality and performance of his vehicle better
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than those administering such a program. The owner of a vehicle in poor condition would

have soon traded in his vehicle in the absence of such a program. However, this owner could

take advantage of his superior knowledge of his vehicle and had an incentive to participate

a vehicle retirement program. In the literature, this phenomenon is known as “adverse

selection”.

The CARS program had a unique feature that reveals the extent of the adverse selection.

Dealers in the CARS program sent new vehicle purchasers the questionnaire for the “Survey

of Consumer Response to CARS Initiative”. 143,998 CARS purchasers participated in this

voluntary survey. The first question asked if a participant would still have traded in his old

vehicle in the absence of this program.

The responses of the survey participants are summarized as follows: 16,801 new vehicle

purchasers answered “yes” to this question, while 127,026 answered “no”; thus, about 11.68

percent of 143,827 purchasers who responded to this question admitted that they would have

soon traded in their vehicle. Moreover, if this percentage were an accurate estimate of the

“adverse selection” and could be applied to California’s program participants, 8,938 out of

the total 76,514 transactions would be in question.

Previous studies concerning the issue of adverse selection in a scrappage program argue

that the transactions in question tend to negatively affect the cost-effectiveness of a vehicle

retirement program as the vehicles involved in these transactions would have been scrapped

soon anyway without being payed any incentive to the owners; for example, see Sandler

(2012).

However, the CARS program had strict fuel-efficiency improvement requirements, which

might have led the program participants to choose a vehicle with a higher fuel economy than

a vehicle that would have been chosen without being offered the $3,500 or $4,500 CARS

incentive, a significant trade-in bonus.

Of course, the binding requirements for improvements in fuel efficiency also applied to the
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vehicle owners in the case of adverse selection and could have changed their decisions about

vehicle type and/or fuel economy. Choosing a vehicle with higher fuel efficiency generally

results in a pollution reduction, even under the existence of adverse selection. This survey

provides information that allows the real decisions about vehicle type to be compared with

the counterfactual decisions in the absence of the CARS program.

The second survey question asked what type of a new or used vehicle a participant would have

purchased when disposing of his vehicle if he had not planned to purchase another vehicle

at that time. Again, Table 9 summarizes the answers from all the survey respondents,

showing that the counterfactual decisions about vehicle type are similar no matter whether

a participant planned to purchase a used or a new vehicle.

However, when these decisions are compared to the real ones made under the CARS program,

more passenger cars are found to be chosen by participants in reality, around 24.3 percent

more than in the counterfactual situation. Moreover, the increased proportion is achieved

by transferring the sales of the larger vehicles including Vans, SUVs, and Pickup Trucks into

the sales of passenger cars under the CARS program.

More interestingly, if the CARS program had not existed, some customers would not have

purchased any vehicle when disposing of their old vehicles. However, the significant amount

of trade-in bonus might have triggered some new vehicle purchases that would not have

occurred otherwise, and that also increased future pollution. This phenomenon is called

policy “overshooting” by the current study. The issues of adverse selection and potential

changes in vehicle purchasing decisions could be studied in future research.

2.7 Conclusion

The CARS participants replaced their old gas guzzlers with the vehicles of newer vintages,

higher fuel efficiency, and even different vehicle types. Therefore, it might not be appropriate
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to assume that the program participants would not change their driving behavior or just drive

at the fleet average miles after purchasing the new vehicles. However, these two assumptions

are commonly adopted by the scrappage literature when evaluating an Accelerated Vehicle

Retirement program.

This paper followed the traditional framework from the urban economics literature to ex-

amine vehicle travel behavior; in addition, valid instruments were used to control for the

potential endogeneity problem of fuel efficiency. A big fuel gap between the retired and

replacement vehicles were created by the CARS program and fuel efficiency was found to

have much smaller impacts on VMTs under IV estimation method compared to OLS method.

Thus, accounting for the endogeneity could help provide a more accurate estimation of VMTs,

and thus the associated vehicle pollution.

Using the 2009 NHTS as a primary dataset, the current study predicted the travel demand

for the NHTS vehicles based on the surveyed household and vehicle characteristics. Next,

the VMTs of the CARS vehicles were derived by matching them with the NHTS vehicles

according to their vehicle attributes. Thus, the empirical analysis performed by the current

study relied on the attributes of the vehicles actually scrapped by the CARS program but

not heavily on the traditional assumptions adopted by the scrappage literature.

Combining the “model-predicted” VMTs of the Californian CARS vehicles with the EM-

FAC2011 emission factors, the current study predicted a reduction of emissions of ROG,

CO, NOx, and PM2.5 by 95%, 90%, 94%, and 7%, respectively, while the program resulted

in an increase of emissions of CO2, SOx, and PM10 by 20%, 16%, and 16%, respectively. The

CARS program led to a loss of $76.8 million at an aggregate level (or $1003.9 per vehicle)

with the gains from the reduced emissions of the relevant pollutants completely offset by the

increase of the global pollutant CO2.

In order to determine if the results of previous studies could be used as references in this

current study, the environmental effects of the CARS program were also examined under
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the other two scenarios assumed in the scrappage literature. If the fleet average VMTs were

assumed, the program was found to have led to the losses of $60.2 million (or $787.2 per

vehicle). However, net environmental gains were obtained if the replacement vehicles were

assumed to have same VMTs as its paired retired vehicle at the trade-in year. The gains under

the best scenario were calculated as $35 million (or $458 per vehicle). Therefore, it concluded

that different assumptions on travel demand could significantly affect the environmental

evaluation of the CARS program.

The current study also demonstrated that the emission rates played a more dominant role

in determining the emissions of ROG, TOG, CO, and NOx because the emissions of these

four vehicle pollutants produced by one mile’s driving were strongly positively correlated

with vehicle vintage, i.e., inversely correlated with the performance of a vehicles’ pollution

control system. The replacement vehicles equipped with more advanced pollution control

system were much cleaner, so they were likely to produce much less emissions of the relevant

pollutants than the trade-in vehicles even though they had higher VMT volumes.

In contrast, the emissions of CO2, SOx, PM10, and PM2.5 were affected by VMTs because

fuel consumption together with a fuel’s carbon and sulfur contents can determine the emission

levels of CO2 and SOx, and VMTs and fuel consumption were closely related. Similarly,

VMTs took a significant effect on the emissions of PM10 and PM2.5, as these two pollutants

were produced mainly as a result of tire wear and brake use. Due to the higher VMT volume,

the new CARS vehicles were more likely than the old vehicles to emit more CO2, SOx, PM10,

and PM2.5. Therefore, it was more possible to observe that the CARS program would lead

to an increase in the emissions of these four pollutants but a reduction of ROG, TOG, CO,

and NOx emissions, as illustrated in the current study.

Knittel (2009) also examined the CARS program and predicted a reduction in CO2 emissions,

which was opposite to the conclusion obtained by the current study. The contradiction

mainly resulted from the different assumptions on the driving volume of the retired vehicles.

Knittel (2009) assumed that all retired vehicles were driven constantly at 12,000 miles,
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annually, until they were scrapped. However, the current study found that the retired

vehicles initially were driven at 9,722 miles (based on “model-predicted” VMTs) and were

driven less and less as they were getting old. Therefore, Knittel (2009) presented higher

estimated pollution levels from the retired vehicles and concluded an environmental gain

induced by the CARS program.

Li et al. (2013) also concluded that the CARS program achieved a positive environmental

gain by using the fleet average VMTs from Lu (2006) as VMT schedules for both the retired

and replacement vehicles. However, the fleet average tends to overstate the travel demand

for the retired vehicles; and on the other side, the fleet average is likely to underestimate

the demand for the replacements vehicles. Use of the fleet average, however, can not explain

why their empirical results were different from ours because assuming the average or “model-

predicted” VMTs only slightly changed the empirical results obtained by the current study,

see Table 9. Essentially, the difference in conclusion can be interpreted by the observation

that Li et al. (2013) took into account the program’s effects on new vehicle sales. They

argued that the program affected the new vehicle sales by shifting the future purchasing

demands into the program effective period. After removing the pollution produced by the

replacement vehicles belonging to the shifted sales, they found that the program was still

costly to achieve a positive pollution reduction.

The current study found that the CARS program potentially did not result in the CO2

emissions and an environmental gain even with taking into account its effects on the pollution

of criteria pollutants. However, this study did not account for the shifting vehicle demands,

i.e., counterfactual vehicle sales in the absence of the CARS program. Had the pollution

from the counterfactual been removed, the program’s environmental benefit would be larger

than that obtained by the current study. The merits of the program in terms of economic

stimulus were left for the future research. Lastly, this paper identified the existence of adverse

selection by using the unique feature of the CARS survey. Unlike other scrappage literature,

this study found that the vehicle transactions in the case of adverse selection still had some
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potential effects on pollution reduction because the purchasing decisions about new vehicles

and fuel economy of the participating vehicles were also affected positively by the CARS

program’s requirements.
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Table 2.6: Variable summary statistics (N=277,195)

mean s.d. min max
Annual vehicle miles traveled (units of 1000) 11.35 9.10 0.7 165
Vehicle fuel efficiency (mpg) 20.26 5.37 5.9 50
Fuel cost (dollars per gallon) 3.07 0.14 1.2 4
Exogenous household characteristics
HH income (units of 10,000 dollars)1 7.75 5.55 0.3 17
HH size 2.63 1.27 1 14
Count of vehicle’s primary drivers 1.54 0.71 1 14
Count of HH workers 1.16 0.95 0 6
Adults with children 0.33 0.47 0 1
Adults with no children 0.31 0.46 0 1
Race of HH respondent is White 0.88 0.33 0 1
Race of HH respondent is African American or Black 0.05 0.22 0 1
Race of HH respondent is Asian only 0.02 0.14 0 1
Race of HH respondent is American Indian or Alaskan Native 0.01 0.08 0 1
Race of HH respondent is Native Hawaiian or other Pacific 0.00 0.05 0 1
Race of HH respondent is Hispanic 0.02 0.15 0 1
Race of HH respondent is Multiracial 0.01 0.08 0 1
Number of housing units per square mile (units of 1000) 1.28 2.23 0.1 30
Home is owned 0.92 0.27 0 1
Home locates in a MSA with rail 0.16 0.37 0 1
Home locates in an urbanized area 0.67 0.47 0 1
Vehicle attributes
Vehicle age 8.11 5.24 1 24
Automobiles 0.52 0.50 0 1
Vans 0.08 0.28 0 1
SUVs 0.19 0.39 0 1
Pickup Trucks 0.21 0.40 0 1

Note: 1. HH income is calculated as the midpoints of the 18 income categories in the NHTS with $170,000 and
$35,000 assigned for the top category and missing incomes, respectively (these two numbers were adopted by
Brownstone and Golob (2009)). 2. Following Greene et al. (1999), the vehicles with annual fuel consumption
either less than 25 gallons or greater than 6000 gallons are eliminated. This process is applied to remove the
vehicles not in use or with too much use.
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Figure 2.2: ROG and CO2 emission schedules by vehicle type
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Table 2.8: ROG emission rates schedule (passenger cars, calendar year 2010)

(1) (2) (3) (4) (5) (6) (7)
Model year 2009 1994 Ratio
Vehicle age 1 10 20 16 (2)/(1) (3)/(2) (4)/(1)
VMT 13662.91 11016.68 8672 8015.74 0.81 0.79 0.59
Survival rate 0.990 0.787 0.092 0.787 0.79 0.12 0.80
ROG
Running exhaust 0.007 0.012 0.026 0.142 1.76 2.15 20.89
Starting exhaust 0.239 0.374 0.604 7.863 1.56 1.62 32.86
Diurnal 0.029 0.112 0.272 2.276 3.89 2.41 78.78
Hot soak 0.040 0.411 0.982 3.098 10.21 2.39 77.02
Running loss 0.012 0.041 0.083 0.250 3.44 2.04 21.00
Resting loss 0.020 0.123 0.308 1.096 6.27 2.50 55.65
CO2
Running exhaust 353.21 352.55 354.00 338.26 1.00 1.00 0.96
Starting exhaust 485.91 468.78 435.53 418.94 0.96 0.93 0.86

Note: For the definition of different emission types, see Appendix. Idle exhaust is not applicable to passenger
cars and not included in the table.

84



Figure 2.3: Per-vehicle ROG emissions during the residual lifetime of the trade-in vehicles
by vehicle type and age (kg, calendar year 2010)
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Figure 2.4: Per-vehicle CO2 emissions during the residual lifetime of the trade-in vehicles
by vehicle type and age (kg, calendar year 2010)

0
10

00
0

20
00

0
30

00
0

C
O

2

0 5 10 15 20 25
Vehicle age

Old New

(a) Automobiles

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
C

O
2

0 5 10 15 20 25
Vehicle age

Old New

(b) Vans

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
C

O
2

0 5 10 15 20 25
Vehicle age

Old New

(c) SUVs

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
C

O
2

0 5 10 15 20 25
Vehicle age

Old New

(d) Pickup Trucks

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
C

O
2

0 5 10 15 20 25
Vehicle age

Old New

(e) Category 3 Trucks

86



Figure 2.5: per vehicle pollution gains (or losses) by vehicle types and pollutants (kg)
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Figure 2.6: Aggregated emissions effects of the CARS program (tons)
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Table 2.9: Environmental effects of the CARS program under different scenarios (tons)

Pollutant ROG CO NOx CO2 SOx PM10 PM2.5
Old vehicle 6217.1 44764.9 6637.7 2329867.0 24.0 262.1 131.1
Assumption 1: "model-predicted" VMTs
New vehicle 283.9 4610.0 424.4 2795560.0 28.0 304.3 122.1

-95% -90% -94% 20% 16% 16% -7%
Assumption 2: retired vehicle VMTs
New vehicle 247.7 3808.0 343.5 2164392.0 21.7 233.3 93.7

-96% -91% -95% -7% -10% -11% -29%
Assumption 3: fleet average VMTs
New vehicle 276.8 4473.9 410.8 2702005.0 27.0 292.3 117.3

-96% -90% -94% 16% 12% 12% -10%

Pollutant ROG CO NOx CO2 SOx PM10 PM2.5 CO2
Cost ($ per ton) 180 74.5 250 177 970 170 1170 50
Assumption 1: "model-predicted" VMTs
Difference (million) 1.07 2.99 1.55 -82.43 -0.004 -0.007 0.01 -23.28
Aggregate (million) -76.82 -17.67
Per vehicle (dollar) -1003.94
Assumption 2: retired vehicle VMTs
Difference (million) 1.07 3.05 1.57 29.29 0.002 0.005 0.044 0.005
Aggregate (million) 35.04 14.02
Per vehicle (dollar) 457.95
Assumption 3: fleet average VMTs
Difference (million) 1.07 3.00 1.56 -65.87 -0.003 -0.005 0.016 -18.61
Aggregate (million) -60.23 -12.97
Per vehicle (dollar) -787.21

Table 2.10: A comparison of counterfactual and real decisions on vehicle type

Type Counterfactual decision Real decision
used new new

count proportion count proportion count proportion
Auto 23480 0.470 37810 0.468 54575 0.713
Vans 2597 0.052 3972 0.049 1726 0.023
SUVs 13532 0.271 23244 0.288 13658 0.179
Ptrucks 9310 0.186 13959 0.173 6555 0.086
Other 1030 0.021 1812 0.022
total 49949 80797 76514
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3 The Direct Rebound Effect: Evidence

from the 2009 National Household

Travel Survey

3.1 Introduction

The US Corporate Average Fuel Economy (CAFE) standards have imposed increasingly

stringent requirements on vehicle fuel economy. The average fuel economy of cars and trucks

increased by 102.2 and 67.2 percent, respectively, over the period of 1975 to 2012.1 The

improvement of fuel efficiency is motivated by the desire to reduce fuel consumption and

vehicle carbon emissions. However, the improved efficiency leads to a reduced per-mile cost

of driving, thereby increasing household real income. If travel service is a normal good,

additional demand for the service will be produced due to income and substitution effects.

The additional travel demand is called the direct rebound or “take back” effect because it

may offset the potential fuel saving that otherwise could be obtained.

Moreover, a higher real income level will also encourage more consumption of other products.

The energy incurred to produce these extra products is called the indirect rebound effect of

fuel efficiency improvement. Producers and consumers respond to a change in the efficiency of
1Source: US EPA, Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends:

1975 through 2012. March, 2013.
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producing an energy service by adjusting supply and demand in all sectors. The economy-

wide responses, measured mainly by the adjustment of energy prices, are defined as the

general equilibrium effect.2 Knowing the magnitude of the rebound effect is critical for

determining if a technological innovation will save energy and reduce emissions. In some

extreme cases, the energy consumption induced by the additional demand for energy service

could completely offset the energy saving resulting from an efficiency improvement, and then

the “backfire” phenomenon will occur Sorrell et al. (2009).

Most literature on the rebound effect has examined the direct effect because it is relatively

difficult to quantify both the indirect and general equilibrium effects. The related empirical

studies can be distinguished by the type of data used. Aggregate studies obtain the rebound

effect based on national or state-level data and arrive at relatively consistent results, with

about a +0.1 rebound effect for the short run (one year) and +0.2 to +0.3 for the long run

Greene et al. (1999). However, most of the earlier aggregate studies did not control for the

endogeneity of fuel efficiency when evaluating the rebound effect.

Small and Dender (2007) argue that fuel prices, the regulatory environment, and a house-

hold’s expected amount of driving can all affect vehicle fuel efficiency. In general, households

have their expectation about the vehicle miles traveled (VMTs), and thus a household expect-

ing to drive a long distance regularly may be more likely than other households to choose a

vehicle with high fuel efficiency. Therefore, the observed highly positive relationship between

fuel efficiency and VMTs may be just an embodiment of the vehicle-selection mechanism. As

a result, the interdependence between fuel economy and VMTs should be taken into account

in order to provide an unbiased estimate of the rebound effect. Furthermore, whether or

not a study controls for the fuel efficiency endogeneity may be one reason why micro-studies

based on household-level data present much more diverse estimates of the effect, ranging

from 0 to about +0.9. These results mean that a 100 percent improvement of fuel efficiency

2For more information on the distinctions between the different types of rebound effects, see Greene et al.,
1999.
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could produce additional VMTs varying from zero to 90 percent at most.

Moreover, the rebound effect studies can also be distinguished by whether or not they take

into account the interactions between multiple household vehicles. To some extent, the dif-

ferent vehicles within a household are substitutes, and an increase in VMTs due to improved

fuel efficiency for one household vehicle may reduce the use of the other household vehicle(s).

Hence, treating multiple vehicles within a household independently could result in overesti-

mating the direct rebound effect. Greene et al. (1999) state that the share of multiple-vehicle

households increased from 22 to 55 percent from 1960 to 1990 and reached 71 percent in

2009.3 Arising from the increasing number of household vehicles, the overestimation of the

rebound effect would exaggerate without controlling for the vehicle substitution effects.

The current study examines the relationship between VMTs and fuel efficiency by adopting

the econometric model proposed by Greene et al. (1999). Their empirical model jointly

determine the vehicle VMTs, fuel efficiency, and fuel prices. In addition, Greene et al. (1999)

add the VMTs from the other vehicle(s) to explain a vehicle’s travel behavior in order to

account for the effects of the other vehicle(s)’s fuel efficiency. The current paper will interpret

the introduction of other vehicle(s)’ VMTs as controlling for the vehicle substitution effect

between multiple household vehicles.

The data used by the current study are from the 2009 National Household Travel Survey

(NHTS), which contains the most recent information related to the US household travel

behavior. This dataset will enable us to provide an updated estimate of the rebound effect

that will take into account the changes in household travel patterns. For example, the

production share of sports utility vehicles (SUVs) increased from less than 2 percent to

nearly 30 percent over 1975 to 2012, and the share of cars decreased from 71 to 50 percent.4

Moreover, the 2009 NHTS provides an advantage because it includes household geographic

variables, which as Greene et al. (1999) argue, should be included to explain VMTs but were
3The number is obtained by summarizing the data from the 2009 NHTS; also see Table 2.
4Source: US EPA, Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends:

1975 through 2012. March, 2013
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not available for their study.

In order to implement the analysis, the 2009 NHTS dataset is divided into four subdatasets

according to the vehicle ownership level, i.e., 1-, 2-, 3-, and 4-vehicle households. Empir-

ically, the current paper finds that without taking into the endogeneity of fuel efficiency,

the Ordinary Least Squares (OLS) estimation method provides an unreliable estimate of the

rebound effect: a 10 percent improvement in fuel efficiency corresponds to an increase in

VMTs of over 17 percent. Meanwhile, the VMTs from different household vehicles are found

to be positively correlated. This finding contradicts to the common observation that if one

vehicle is used more, the other vehicles within the same household will be driven less.

Based on a system of simultaneous equations, the current paper demonstrates that the

substitution effect exists for 1-, 2-, 3-, and 4-vehicle households. Using 2-vehicle households

as an example, a 10 percent increase in one vehicle’s VMTs would cause a decrease in the

other vehicle’s VMTs by 1.6 percent. More importantly, the VMT elasticity of fuel efficiency

is statistically insignificant for 1- to 4-vehicle households. Therefore, the current paper finds

no evidence of the rebound effect and concludes that the potential negative effect resulting

from fuel efficiency improvement should not be a concern.

In contrast, Greene et al. (1999) find that the rebound effect is significant regardless of the

number of household vehicles. The difference in the significance of the rebound effect might

be because the current study does not assume that the elasticity of VMTs with respect to

fuel efficiency has the same magnitude, but the opposite sign, as that of VMTs with respect

to fuel prices. As a vehicle ages, its fuel efficiency tends to drop. However, the drop in

fuel efficiency is much less observable relative to fuel price changes, so it is reasonable for

households to respond more sensitively to the changes in fuel prices. Hence, the current

study does not make this assumption and finds that fuel prices have a greater impact on

VMTs.

The rest of the paper is organized as follows. Section 2 presents the background on the fuel
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efficiency rebound effect and reviews the related literature. Section 3 describes the data and

model, and then Section 4 provides the estimation results. Section 5 contains the conclusion

of the paper.

3.2 Background

Frondel et al. (2007) attribute the diverse magnitudes of the rebound effect reported in the

literature to the different elasticities used to measure the effect. According to Sorrell et al.

(2009), these elasticities can be expressed as

• ηe(F ): the elasticity of fuel consumption (F ) with respect to fuel efficiency(e),

• ηe(M): the elasticity of travel demand (M) with respect to fuel efficiency(e),

• ηPM
(M): the elasticity of travel demand (M) with respect to the price of per-mile

driving (PM),

• ηPF
(M): the elasticity of travel demand (M) with respect to the fuel price (PF ), and

• ηPF
(F ): the elasticity of travel demand (M) with respect to the fuel price (PF ).

ηe(M) is a commonly used measure of the rebound effect Sorrell et al. (2009). The connection

between the different elasticity measures can be derived as ηe(F ) = ηe(M)−1 = −ηPM
(M)−

1, based on the relationship M ≡ e·F and PM ≡ PF /e.5 6 Hence, if ηe(M) = 0, then ηe(F ) =

−1, so that if the travel demand does not change even though an efficiency improvement

5




M ≡ e · F → dF
de = 1

e · dM
de − F

e

ηe(F ) = e
F · dF

de

ηe(M) = e
M · dM

de

=⇒ ηe(F ) = e
e·F · dM

de − 1 = −1 + ηe(M) and




PM ≡ PF

e → dPM = − PF

e2 · de

ηPM
(M) = dM

dPM
· PM

M

ηe(M) = e
M · dM

de

=⇒ ηPM
(M) = − dM

de · e2

PF
· PM

M = − dM
de · e

M · e·PM

PF
= −ηe(M)

=⇒ ηe(F ) = −1 − ηPM
(M).

6For more information on the relationship between the different elasticities, see Sorrell and Dimitropoulos
(2008) and Greene et al. (1999).
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occurs, then a 10 percent efficiency improvement, for example, will lead to a 10 percent fuel

saving, or a fully achieved fuel saving.

In a more general case, ηe(M) > 0 and −1 < ηe(F ) < 0 are observed, implying that

fuel saving is only partially realized from a fuel efficiency improvement. For example, if

a household responds to a 10 percent increase in fuel efficiency by driving an additional 4

percent, then ηe(M) = 0.4 and ηe(F ) = −0.6. Thus, 6 percent of the fuel consumption will

be saved, but 4 percent is taken back. In an unfavorable case, ηe(M) > 1 and ηe(F ) > 0,

indicating that the fuel consumption increases as result of the efficiency increase, and a

backfire occurs.

Furthermore, ηPM
(M), ηPF

(M), and ηPF
(F ) are three price elasticities and their negative

values can be used as an approximation of ηe(M) to measure the rebound effect under cer-

tain circumstances Sorrell and Dimitropoulos (2008). In addition, |ηPF
(M)| ≤ |ηPM

(M)| ≤

|ηPF
(F )| ≤ |ηPM

(F )| tend to hold Sorrell and Dimitropoulos (2007). Moreover, ηPF
(F ) can

be taken as an upper bound for the rebound effect Sorrell and Dimitropoulos (2007), and

if fuel efficiency e is constant, ηPF
(F ) = ηPM

(M) Frondel et al. (2007).7 In practice, which

elasticity definition is used depends partly on data availability Sorrell et al. (2009).

As well as adopting different measures of the rebound effect, the related literature also uses

a variety of datasets. Some studies use aggregate level data, say, national or state-level data.

Sorrell et al. (2009) review 17 related studies. Among them the aggregate studies provide

more consistent estimates of the rebound effect as ranging between 5 percent to 30 percent.

In contrast, the dissaggregate studies based on household-level data present more diverse

findings on the rebound effect, with the estimates ranging between 0 percent to 87 percent.
7




ηPF
(F ) = dF

dPF
· PF

F

PM ≡ PF

e → dPM = dPF

e

M = e · F → dM = e · dF

=⇒ ηPF
(F ) = dM

dPM
· 1

e2 · PF

F
= dM

dPM
· PM

M
= ηPM

(M)
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Greene et al. (1999) provide a possible explanation for why the estimates from aggregate

data are less divergent. The substantial fuel price fluctuations since 1973 coincide with the

dramatic increase in vehicle fuel economy. This coincidence creates such a well-designed

experiment that the estimated rebound effect is not sensitive to alternative model specifica-

tions and research methodologies. In addition, the current paper argues that aggregate data

studies tend to have less variables to control for in order to explain travel behavior, and that

data aggregation may also cause less variations in the controlled variables. This argument

may also explain the convergence of the results from aggregate studies.

Furthermore, whether or not (or how to) consider the potential sources of estimation bias

when identifying the rebound effect could also have an impact on the empirical results.

Sorrell et al. (2009) present these sources as follows: first, it is commonly assumed that

households respond to an efficiency improvement in the same way as to a fuel price drop

(e.g., Small and Dender (2007)). Second, in most empirical studies fuel efficiency is assumed

to be exogenous. In practice, the first condition may not be satisfied because a change in

vehicle fuel efficiency causes other capital costs from, for example, purchasing a new vehicle,

while a change in fuel price does not induce any other costs. As a result, the use of price

elasticities could result in overestimating the rebound effect because the additional capital

costs spent on improving fuel efficiency are normally not available to researchers and thus

not controlled for Henly et al. (1988).

Sorrell et al. (2009) also argue that price elasticities are likely not to be symmetric with the

changes in energy prices. In general, the elasticities are higher during an increase in energy

prices, and studies using the data with rising energy prices might overestimate the rebound

effect. In addition, the current paper argues that the price elasticities tend to be greater

than the efficiency elasticities because the changes in energy prices are more noticeable than

those in fuel efficiency. The fuel efficiency of a vehicle generally falls over a long period, so a

consumer may not observe that process in a short period. However, a consumer can notice

the changes in fuel prices immediately. Hence, it is reasonable to assume that a consumer
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responds more to a change in fuel price.

The assumption of exogenous efficiency may not be appropriate for two reasons. First, Linn

(2013) argues that vehicle fuel efficiency is likely correlated with other vehicle attributes,

such as engine power or quality, which take effects on VMTs but often are excluded. Thus,

the potential endogeneity of fuel efficiency might occur. Second, the potential dual causality

between fuel efficiency and travel demand could also lead to the endogeneity problem. Fuel

efficiency significantly affects the household travel demand. In turn, travel demand also

affects on vehicle fuel efficiency. A household expecting to drive more will purchase a more

fuel efficient vehicle, which will give this household a lower driving cost. The current paper

will call this phenomenon the vehicle self-selection mechanism.

Particularly, the vehicle self-selection effect is not well addressed in many empirical studies,

especially the earlier aggregate studies, because they use the OLS regression method to

obtain the estimates of the rebound effect; for example, see Greene (1992). In contrast, the

recent aggregate studies tend to recognize the interdependence of the fuel efficiency and travel

demand (e.g., Small and Dender (2007)). Many empirical disaggregate studies can be found

to account for the dual causality between the fuel efficiency and VMTs. Discrete/continuous

or simultaneous regression equations are estimated to control for the causality (for example,

see Goldberg (1998), Greene et al. (1999), and West (2004)). However, even these studies

still present diverse estimates of the rebound effect.

Furthermore, the rebound literature often ignores the interdependence between multiple

vehicles in a household. Some studies may aggregate all vehicle miles by household or just

choose a single-vehicle household to investigate (e.g., Frondel et al. (2007)). Greene et

al. (1999) state that the different vehicles in a household are most likely to have quality

differences, and that the characteristics of the other vehicles will affect each vehicle’s use.

Hence, aggregating the VMTs of all household vehicles would ignore the interactions between

vehicles. An increase in one vehicle’s VMTs induced by a fuel efficiency improvement would

decrease the use of the other household vehicle(s). As a result, treating household vehicles
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independently may result in overestimating the rebound effect. The current paper interprets

the interaction among household vehicles as a vehicle substitution effect.

Greene et al. (1999) present the most careful investigation of the direct rebound effect

Sorrell et al. (2009) by building up a system of simultaneous equations in which VMTs,

fuel efficiency, and fuel prices are treated as endogenous variables. Greene et al. (1999)’s

econometric model uses VMTs to explain a vehicle’s fuel efficiency and controls for vehicle

interaction by including the VMTs of other vehicles as explanatory variables for a particular

vehicle’s VMT equation.8 They estimate a direct rebound effect of +0.2.

Although following Greene et al. (1999)’s proposed framework, the current study finds that

the rebound effect is not statistically significant across vehicle ownership. The contradiction

in conclusion can be explained by the fact that the current study does not assume that

VMTs respond in the same way to an equivalent change (but opposite) in fuel efficiency and

fuel price. In addition, the dataset used by this paper contains the geographical variables,

measured by housing densities at a block level, which are not available to Greene et al.

(1999).

A recent study by Linn (2013) to investigate the rebound effect is also closely related to the

current paper. Linn (2013) introduces the mean fuel efficiency of a household’s other vehicles

into VMT&fuel efficiency equation to control for the interaction between household vehicles.

He also does not impose any restriction on the coefficient estimates of fuel efficiency and

fuel prices on VMTs. Lastly, he states that the problem of omitted variables is the major

source that biases the estimated effect of fuel efficiency. To control for the omitted variables,

he accounts for vehicle model fixed effects and instruments the vehicle’s fuel efficiency by

the interactions of the fixed effects with the gasoline price at the time when a household

purchases its vehicle. However, he does not directly address the issue of vehicle self-selection

and finds a significant rebound effect, ranging between 0.2 to 0.4 percent.

8Greene et al. (1999) do not incorporate the characteristics of all other household vehicles to examine each
vehicle’s own use because doing so would make the system of equations to be insolvable.
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In contrast, the current paper takes the self-selection issue as a more severe problem that

biases the empirical results of the rebound effect. Simultaneously regressing VMTs and fuel

efficiency is used by the current study to correct the bias, and meanwhile, the problem

caused by the omitted vehicle attributes is mitigated by adding vehicle age, category, and

fuel types into our regression model. Emphasizing different sources that cause the issue

of fuel efficiency endogeneity and adopting different estimation techniques may explain the

difference in conclusion between this study and Linn (2013). In addition, the vehicle model

fixed effects used by Linn (2013) will absorb a significant portion of the variation of fuel

efficiency, which may also take effects on the estimation of the rebound effect.

Last but not least, some studies also adopt quasi-experimental approach to identify the

rebound effect, based on energy consumption induced by energy service before and after an

energy efficiency improvement. The quasi-experimental approach is most adopted to examine

the change in energy demand by household heating, for example, following the installation

of a more fuel efficient boiler (for a review of the related studies, also see Sorrell et al., 2009).

A recent study by West et al. (2014) also uses the quasi-experimental approach to determine

the rebound effect induced by fuel efficiency improvement. These researchers state that

the Cash for Clunkers (CARS) program results in a credibly exogenous “policy-induced

improvement” in fuel efficiency. They find that the new vehicles’ owners who are barely

eligible to participate in the CARS program do not drive more miles than the barely ineligible

new car buyers for one year after the CARS transaction, though the formers purchase 4 to

6 percent higher efficiency vehicles. They conclude that the rebound effect is likely to be

insignificant. This conclusion is consistent with ours.

To identify the direct rebound effect, the current paper uses one of the most recent datasets

collecting information on the US household travel behavior. As argued earlier, the vehicle

ownership and use pattern of US households have changed dramatically. The use of the 2009

NHTS will incorporate these changes to investigate the relationship between fuel efficiency

and VMTs. In the following sections, the 2009 NHTS dataset and estimation method will
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be described.

3.3 Methodology

Data and model

The data for this study are from the 2009 NHTS and were collected by the U.S. Federal

Highway Administration (FHWA). The 2009 NHTS’ predecessor is not used because of its

inconsistency in data collection, especially in the approach for estimating VMTs.9 The NHTS

collects travel information, through telephone survey, from the the U.S. households with

landline, while the telephone numbers for these households are required to be residential. The

survey respondent has to be an adult (at least 18 years old) household member. The NHTS

is a list-assisted random digit dialing (RDD) telephone number survey such that households

with landline telephones have an equal probability to be interviewed. The response rate is

25.1 percent.

The 2009 NHTS dataset provides information on household characteristics, geographical

variables, and vehicle attributes (including VMTs), which enables us to quantify household

travel behavior and understand transportation patterns.10 The annual VMTs for the 2009

NHTS vehicles are estimated based on three key factors: single odometer readings, self-

reported VMTs, and miles driven during the designated sample day. The survey contains

150,147 households and 309,163 sample vehicles for the 50 US states and the District of

Columbia. In the following paragraphs, the empirical methodology used in the current study

is first introduced, and the variables used in the empirical model are described in detail.

9Annual VMTs from the 2001 NHTS are derived from two odometer readings, while only a single odometer
reading is available in the 2009 NHTS, and VMTs are obtained from this single reading and other available
information.

10The 2009 NHTS also collects the information on daily trips, e.g., trip purpose, mode of transportation
used, and how long a trip takes. This information can be found in a travel day trip file. However, due to
the purpose of the current study, it does not use this file.
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Greene et al. (1999) state that vehicle travel can be regarded as one of household-produced

services and has both quantity and quality components. The quality components should not

be ignored because the same number of miles driven by an old sedan or a new luxury car

have qualitative differences because these vehicles are distinguished by vehicle attributes such

as safety, comfort, and maneuverability. Therefore, simply aggregating all vehicles’ VMTs

within each household may not be appropriate for quantifying household travel behavior.

Greene et al. (1999) propose that only the VMTs of other household vehicles but not their

characteristics should be included to explain the use of a particular vehicle, and present the

travel demands in a three-vehicle household as follows:

M1 = a1V1 + f1H + g1C1 + b12M2 + b13M3

M2 = a2V2 + f2H + g2C2 + b21M1 + b23M3 (3.1)

M3 = a3V3 + f3H + g3C3 + b31M1 + b32M2,

where Mi is the VMTs for vehicle i, Vi is an attribute vector of vehicle i, Ci is the total cost

per mile for vehicle i, and H is a vector containing the household characteristics.11 The cost

of driving a mile (Ci) is computed as the sum of the fuel cost
(

PFi

mpgi

)
, other operation costs

(OCi), and depreciation (δi), mathematically expressed as Ci = PFi

mpgi
+ OCi + δi.

Furthermore, a system of equations for vehicle one in the three-vehicle households is pre-

sented as




M1 = a11V11 + f11H + g11
(

PF1
mpg1

)
+ b12M2 + b13M3

mpg1 = a12V12 + f12H + g12M1 + d12PF1 .

(3.2)

11The VMTs from the other two household vehicles can not combined into one variable, i.e., the VMTs of
all other vehicles because the VMT of each individual vehicle is endogenous and the summing up will
forcely destroy the endogeneity nature the VMT variables.
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A household expecting to drive more will choose to own more efficient vehicles. Now, mpg

is treated as endogenous in the system. In addition, the VMTs of the other two vehicles are

assumed to directly affect the VMTs and indirectly affect the fuel efficiency of the vehicle of

interest, through their impacts on its use. Due to the interactions between all three vehicles

within the same household, six equations (two for each vehicles) are jointly estimated.

The above simultaneous system above is used here because it accounts for both the vehicle

self-selection and substitution effects, while keeping the estimation of such a system tractable.

In addition, the operation cost and depreciation normally are not available to household

travel surveys (including the 2009 NHTS), and the estimated rebound effect could be biased

if these omitted variables are correlated with the variables contained in the regression. A

system that incorporates miles, cost, and MPG as endogenous could minimize the estimation

bias Greene et al. (1999).

Unlike Greene et al. (1999), the current study does not consider the fuel prices paid by

households as endogenous. Fuel prices are affected mainly by factors such as world oil price

fluctuations, fuel transportation costs, and fuel taxes, and households are likely to have

little power to determine fuel prices. The prices also tend to exhibit less variations in a

cross-sectional dataset compared with time-series data.

In order to explicitly present the rebound effect, only the continuous variables of system (2)

are used in a natural logarithm, which becomes




Lm1 = a0 + a1Lvehage1 + a2LpF + a3Lmpg1 + a4Lincome + a5Lhhsize + a6Lresdn

+a7Lwrkcount + a7Auto + a8V an + a9SUV + a10Homeown + a13Urban−indic

+a14Rail−indic + a11Adltnochild + a12Adltchildd1 + γRace + d1Lm2 + d2Lm3

Lmpg1 = b0 + b1Lm1 + b2LpF + b3Lincome + b4Lresdn + b5Lvehage1 + b6Auto

+b7V an + b8SUV + b9Gasoline + b10Diesel + b11Ntrlgas.

(3.3)
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Table Tab. 3.1 describes the variables used in the system (3), which are, intuitively, important

for explaining household travel behavior. A vehicle is likely to be driven less as it ages

(Lvehage) and to perform worse over time. Households with higher income levels (Lincome)

drive more if travel service can be regarded as a normal good. It is not surprising that a

household with more family members (Lhhsize) will have higher travel demand. A household

with more workers (Lwrkcount) tend to have more driving. In addition, household life-cycle

variables may also affect VMTs: retired adults with no children have no need to go to work

or to take their children to school, and thus drive less compared to unretired adults either

with no children (Adltnochild) or with children (Adltchild). A vector of 7 race dummies

(Race) is also used to explain travel demand.

The relationship between land use density, measured by housing units per square mile at a

block level (Lresdn) and vehicle use has been extensively examined in the urban economics

literature. For example, Brownstone and Golob (2009) argue that in a denser area, accessing

places of employment and other destinations like shopping malls is easier than in other

areas, so a household living in a denser area will drive less. Similarly, a household located

in an urbanized area (Urban−indic) or in an area with rails (Rail−indic) may also have

less demand to drive. This study also examines whether a household owns a housing place

(Homeown) or rents it could affect VMTs. Lastly, vehicle-type dummies are also included

to explain VMTs.

The other endogenous variable, fuel efficiency, is determined mainly by vehicle type, age,

fuel type, fuel price, and household characteristics. Households with high income levels can

afford more luxury and larger-size vehicles, which tend to have lower fuel efficiency. Hous-

ing densities also affect the efficiency through the impacts on a household’s vehicle choices

because maneuvering and parking a smaller vehicle in a high-density area is easier than

maneuvering and parking a larger vehicle Brownstone and Golob (2009). Hence, residential

density is likely to be positively correlated with fuel efficiency. A household with a bigger

size is likely to own a larger vehicle which, generally, is less fuel efficient.
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In addition, the fuel prices when or before households plan to buy a vehicle could affect

their vehicle choices and thus fuel efficiency. As a result, the current fuel price LpF seems

to be unrelated to the efficiency. LpF in the 2009 NHTS are collected by the U.S. Energy

Information Administration (EIA). These prices are monthly retail prices at the Petroleum

Administration for Defense Districts (PADD) level. However, the current price could be a

representation of the historical fuel prices. Thus, if an area is observed to have a high current

fuel price, the past fuel prices in this area are likely to have also been high relative to those

in other areas. The households in such an area are more likely than those in other areas to

choose more fuel efficient vehicles.

The United States can be partitioned into five Petroleum Administration for Defense Districts

(PADD). The U.S. EIA provides the retail gasoline prices (regular-all formulations) for ten

representative cities in the different PAD Districts.12 San Francisco, CA has the highest

mean of weekly gasoline prices, followed by Los Angeles, CA and Seattle, WA, among the

ten cities over the period from June, 2003 to December, 2012, while Houston, TX has the

lowest mean. The gasoline prices for three cities are presented in Figure Fig. 3.1, which

reveals that the past fuel prices are consistently higher in an area which has relatively higher

current fuel prices compared to other areas.13 Therefore, the current fuel price is expected

to be positively associated with fuel efficiency because a high fuel price leads to a high

driving cost. Moreover, the similar changing pattern of fuel prices across the three cities also

provides some evidence that the prices are most likely to be exogenous to households.

12The ten cities and associated districts are Boston (MA), Miami (FL), and New York City (NY) from PAD
District 1; Chicago (IL) and Cleveland (OH) from PAD District 2; Houston (TX) from PAD District 3;
Denver (CO) from PAD District 4; and Los Angeles (CA), San Francisco (CA), and Seattle (WA) from
PAD District 5.

13San Francisco, CA and Los Angeles, CA are from the same district (PAD District 5), and these two cities
have highly similar fuel prices. Los Angeles is not included in this figure.
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Figure 3.1: Gasoline retail prices from June, 2003 to December, 2012
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Data structure

Based on the set-up of the empirical model, this study divides the 2009 NHTS data into

four sub-datasets: 1-, 2-, 3-, and 4-vehicle households.14 The term “vehicle” here refers to

an automobile, van, SUV, or truck rather than a recreational vehicle (RV), motorcycle, or

golf cart because replacing the former with the latter is difficult in terms of functionality.

Moreover, some criteria have to be used to purify the household vehicles because important

information, such as vehicle type and vehicle age, might be lacking for one or more vehicles.

In addition, some vehicles may be outliers in the sense that they are either rarely used or

driven too much. They are identified if the annual fuel consumption of a vehicle is less than

25 or over 6,000 gallons.15 Due to the interaction between household vehicles, households

with vehicles that are either rarely used or driven too much are excluded from the current

study. After purification, the four sub-datasets are determined according to the number of
14Due to the small percentage of households owning five or more vehicles (just over 2 percent) and the issue

of missing data, these households are excluded from the current study.
15A similar screening criterion was used by Greene et al. (1999).
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“purified” household vehicles

More details need to be introduced to construct the sub-datasets. In the sub-dataset of

4-vehicle households, for example, each household has four records. Every record for a

particular 4-vehicle household has all household characteristics and four vehicles and their

attributes. All household-related variables appear in the same positions across the four

records, while each vehicle is included in each record once and only once. The sequence of

vehicles could be 1, 2, 3, 4 in the first record, 2, 3, 4, 1 in the second, 3, 4, 1, 2 in the second,

and 4, 1, 2, 3 in the last record. Accordingly, the other four sub-datasets can be constructed.

Table Tab. 3.2 below presents the summary statistics for the related continuous variables,

according to household vehicle ownership level.16 Regardless of whether the purification

process is applied or not, 2-vehicle households occupy the highest proportion among all

households, followed by 1-, 3-, and 4-vehicle households. Moreover, approximately 70 percent

of the households own more than one vehicle, and hence investigating the travel demand for

multiple vehicles is crucial in order to understand the travel behavior of the US households.

After purification, the proportions for 3-, and 4-vehicle households decrease mainly because

the missing key vehicle variables are more likely to occur as vehicle ownership level rises.

Regarding travel demand, the average VMTs are close for households with two or more vehi-

cles (around 11,600 miles per vehicle, annually), while 1-vehicle households drive relatively

less (around 9,803 miles). Not surprisingly, the vehicle ownership level and household income

increase with household size. Moreover, the mean fuel efficiency tends to fall as households

own more vehicles, while the mean vehicle age tends to rise.

16The weight of households with six or more vehicles before purification is only 0.65%. This household
category is ignored in this study.
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“Partial” versus “system” elasticity

Regarding the system (3), the estimate of a3 would be interpreted as a “partial” rebound

effect because this estimate only measures only the response of a vehicle with improved fuel

efficiency. The estimate of a3 is not restricted to be equal to that of a2; i.e., because of

the argument made earlier in this paper, households are assumed to not necessarily respond

in the same way to an equivalent change in fuel price or fuel efficiency. In addition, for

multiple-vehicle households, an increase in fuel efficiency for one household vehicle will lead

to more utilization of this vehicle, and this increased use might reduce the use of the other

vehicles. As a result, the “system” MPG elasticity would be also dependent on, but lower

than, the “partial” rebound effect, a3.

The relationship between the “partial” and “system” effects can be illustrated by using 3-

vehicle households as an example. First, combine system (3) with the other two sets of six

equations for vehicles two and three, and then the VMTs for three vehicles from a household

can be solved and approximated as




M1 = K1 + Mπ1
2

M2 = K2 + Mπ2
1

M3 = K3 + Mπ3
1 ,

(3.4)

where K1, K2, and K3 are all constant terms. Starting with a 1 percent rise in the fuel

efficiency of vehicle one, the rise would cause M1 to increase, initially, by a3 percent. M2 and

M3 will increase by a3π2 and a3π3 percent, respectively, according to the last two equations

in the system (4). This increase, in turn, affects M1 and triggers another round of VMT

changes. This iteration will continue infinitely. Provided that |π1π2| < 1, the ultimate VMT

changes (in percentage terms) induced by the 1 percent improvement of fuel efficiency for
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vehicle one can be expressed as





�M1 = a3 + a3π1π2 + a3(π1π2)2 + · · · = a3
1−π1π2

�M2 = a3π2 + a3(π1π2)π2 + a3(π1π2)2π2 + · · · = a3π2
1−π1π2

�M3 = a3π3 + a3(π1π2)π3 + a3(π1π2)2π3 + · · · = a3π3
1−π1π2

.

(3.5)

Taking into account the responses from all three vehicles, the system elasticity can be cal-

culated as
(

1+π2+π3
1−π1π2

)
a3.17 The coefficients π1 − π3 are connected to those in system (3)

according to the relationship π1 = d1, π2 = d2, and π3 = d1, while the last two equalities can

be inferred from the special data structure for the current study.

3.4 Results

One-vehicle households

Table 3 provides the coefficient estimates according to the household vehicle ownership level.

For 1-vehicle households, the VMT elasticity with respect to the household income level is

0.132, indicating that a household with a $40,000 income will drive 13.2 percent more than

one with a $20,000 income. Household size also significantly affects VMTs, with an elastic-

ity of 0.149, indicating a 2-member household will have 14.9 percent more travel demand

compared to a 1-member household, given one vehicle is owned. Because the elasticity of

residential density is only 0.047, it appears to have a small effect on VMTs. However, this

estimate means that a household moving its housing location from an area with 1000 hous-

ing units per square mile to one with 2000 housing units would decrease its driving by 4.7

percent. In addition, the table shows that a 2-worker household would drive 7.1 percent
17The approach used to derive the system elasticity can be applied to the cases with different vehicle

ownership levels. The derivation for 1- and 2-vehicle households can be obtained in Greene et al. (1999).
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more than 1-worker household.

The race of household suvery respondent does not significantly affect driving demand. How-

ever, the household life cycle affects the VMTs. Unretired adults with (or without) children

will travel 2147 (or 1272) miles more than retired adults without children, annually, if the

latter are assumed to drive 9803.3 miles−the mean travel demand of 1-vehicle households

(see Table Tab. 3.2). Moreover, a household drives less if its housing unit is owned or located

in an urban area, by 0.048 or 0.027 in natural logarithm terms, which converts into 482 or

268 miles according to the mean miles for one-vehicle households. A household locating in

an area with rail would drive 158 miles less.

Vehicle attributes are also important for calculating the rebound effect. The VMT elasticity

with respect to vehicle age is estimated as -0.113. This result indicates that an 11-year-old

vehicle is driven by 1.13 percent less than a 10-year-old vehicle because the former increases

in age by 10 percent. In addition, for 1-vehicle households, the use of automobile, vans,

or SUVs is not significantly different from that of trucks (a dummy variable omitted in the

regression). More importantly, a vehicle will be used 4.7 percent less if the fuel price increases

by 10 percent. For the measure of the rebound effect, ηe(M), the estimated elasticity is 0.116,

which is not statistically significant.

The other endogenous variable in the system is fuel efficiency. The household income level

and its residential density have significant effects on MPG, although the empirical estimates

of the two effects are small. Doubling the household income (or housing density) would

result in a 0.8 percent reduction (or a 0.6 percent rise) in MPG. Moreover, vehicle attributes

including vehicle age and type also significantly affect MPG. For example, the fuel efficiency

of an 11-year-old vehicle would depreciate by 0.64 percent relative to a 10-year-old vehicle.

Table 3 reveals that automobiles on average have the highest MPG, followed by vans, SUVs,

and trucks. In addition, a vehicle with gasoline, diesel, or natural gas has a much lower

MPG than an electricity-powered one (a dummy variable omitted in the system).
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Particularly, the Table 3 illustrates that the causal relationship between VMTs and fuel

efficiency is found to be significantly positive in the MPG equation. An increase in VMTs

by 10 percent would lead to an increase in fuel efficiency by 1.5 percent, suggesting that

households do take into account their expected travel demand when choosing their vehicles.

Without controlling for the endogeneity of fuel efficiency, the rebound effect would become

too high. It is estimated as 1.96 by the OLS estimation method (see Table Tab. 3.4).

Multiple-vehicle households

When a household owns multiple vehicles, the system of equations to be estimated becomes

slightly different than the one used for 1-vehicle households. For example, when 2-vehicle

households are used , the number of simultaneous equations is four, with two equations for

each household vehicle. Second, the VMTs for the other vehicle are introduced into the

right-hand side of the VMT equation for each vehicle, so that two vehicles from the same

household appear twice in the 2-vehicle sub-dataset. In the first round, the VMTs of vehicle

one are a dependent variable while the VMTs of vehicle two are an explanatory variable. In

the second round, the vehicles one and two in the previous round are listed as vehicles two

and one, respectively. Due to the two vehicles’ interchange of roles, the coefficient estimates

for vehicle one will be identical to those for vehicle two. Moreover, this inference can be

generalized and applied to the households owning three or more vehicles. As a result, only

the regression results for vehicle one will be provided in the rest of this paper.

Table 3 also presents the coefficient estimates of the VMT equation for multiple-vehicle

households. The estimated income elasticities are 0.09, 0.07 and 0.02 for 2-, 3-, and 4-

vehicle households, respectively. The effects of household income on travel demand exhibit a

decreasing trend as the number of household vehicles increases. Household size is shown to

have a significant impact on VMTs. Doubling the household size could lead to around 17.3

to 19.6 percent additional miles. Residential density has a relatively stable effect on VMTs,
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and doubling the density would decrease VMTs by approximately 4 to 6 percent.

A 2- or 3-vehicle household living in its owned housing unit tends to drive less than one

living in a rented unit, while owning or renting does not affect the travel demand of the

households with four vehicles. Similarly, Urban−indic and Rail−indic affect only 2- and

3-vehicle households, and living in an urban area and (or) an area with rails would cause

these households to drive less. Similar to 1-vehicle households, unretired adults with (or

without) children have a higher travel demand than retired adults without children because

the former need to drive to work and (or) drive their children to school. Race variables do

not have a consistent impact on VMT.

Moreover, vehicle age affects multiple-vehicle households’ travel more than 1-vehicle house-

holds, and doubling the vehicle age will reduce the travel demand from 15.6 percent to 24.1

percent. Fuel prices also significantly affect household travel behavior. A fuel price rising by

10 percent will decrease VMTs by 3.2, 5.3, and 4.8 percent for 2-, 3-, and 4-vehicle house-

holds, respectively. In addition, automobiles are not driven differently from trucks, while

vans and SUVs are driven more than trucks.

Regarding the most important estimate of the rebound effect, Table 3 shows that the mag-

nitude of the effect is less than 0.15 and the effect is statistically insignificant across vehicle

ownership. In addition, the interaction between household vehicles is shown to be important

for determining the VMTs for multiple-vehicle households. For 2-, 3-, and 4-vehicle house-

holds, a 10 percent rise in the VMTs driven by other vehicles will lead to a reduction in

VMTs by the vehicle of interest of approximately 1.1 to 1.8 percent, and the result is statis-

tically significant at 1 percent significance level. Therefore, once an efficiency improvement

for one household vehicle occurs, this vehicle might be used more due to its lower travel cost.

Meanwhile, the driving demand for other vehicles could be reduced as shown in Table 3, and

this reduction could mitigate the increase in aggregate driving demand resulting from the

efficiency improvement.
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In terms of the MPG equation, Table 3 shows that income plays a consistent role in deter-

mining the fuel efficiency of household vehicles, such that doubling the income leads to a

decrease in fuel efficiency of 0.6 to 1.6 percent across vehicle ownership levels. Thus, house-

holds with higher incomes generally choose more fuel consuming vehicles, which are likely

to provide better quality service and driving experience to these households. In addition,

Table 3 shows that households in a denser area tend to drive more fuel efficient vehicles.

This finding is explained by the observation that a smaller size of vehicle, normally with a

higher fuel efficiency, is easy to park and maneuvered in a denser area.

Vehicle age has a significant impact on fuel efficiency, which decreases by 1.6 to 4.2 percent

according to the vehicle ownership level if the vehicle age is doubled. High fuel prices are

associated with high fuel efficiency. Hence, households do take into account driving cost when

deciding which combination of vehicles they should buy. Vehicle body and fuel types also

play an important role in determining fuel efficiency. Specifically, automobiles are the most

fuel efficient, followed by vans, SUVs, and trucks. Electrical vehicles have the highest MPG,

followed by gasoline powered vehicles, while diesel fuel vehicles and natural gas vehicles have

similar efficiency in terms of miles per gasoline-equivalent gallon.

With respect to the multiple vehicle households, a vehicle’s own miles are also shown to

positively affect fuel efficiency, and a household is likely to own more efficient vehicles if it

expects to have high travel demand. Hence, the vehicle selection mechanism works when a

household determines its vehicle combination. For multiple vehicle households, the elasticity

of MPG with respect to VMTs is estimated to be in a range of 1.7 to 2.4 percent across

vehicle ownership. Without taking into account the endogeneity of fuel efficiency (or the

vehicle selection effect), the estimate of the rebound effect may become unconvincing. Table

Tab. 3.4 shows that the rebound effect without controlling for the potential endogeneity is

estimated to be close to 2, which is far above the typical rebound effect obtained in the

related literature. The OLS estimates further show that the travel demand for all household

vehicles changes in the same direction, even though this finding does not make sense.
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The current study adopts the empirical model used by Greene et al. (1999). However, their

study empirically illustrates that the rebound effect exists across different vehicle ownership

levels, even for 4- or 5-vehicle households, in which travel by other vehicles generally does

not affect the VMTs of each vehicle. The divergence may occur because the current study

does not make Greene et al. (1999)’s important assumption that households facing an equal

change, but in the opposite direction, in fuel price and MPG will respond in the same way.

3.5 Conclusion

The United States government has imposed increasingly stringent standards on vehicle fuel

economy as a policy for coping with rising energy demand and vehicle pollution from house-

hold travel. However, an improvement in fuel efficiency will lead to a decrease in travel cost

and encourage households to drive additional miles. If this rebound effect were significant,

it could neutralize the potential benefits that could be obtained from increasing fuel effi-

ciency. Hence, the magnitude of the rebound effect must be empirically identified in order

to determine the effectiveness of fuel economy standard requirements.

Although many researchers have investigated the relationship between fuel efficiency and

travel demand, the estimates of the rebound effect tend to be inconsistent, with a range

from zero to over +0.8. The divergence in the estimated effect may first lie in the differences

in the measures of the rebound effect across studies. Second, the divergence may also result

from the different types of data used in the literature. Aggregate studies provide a much

narrower range for the rebound effect, between 10-30 percent, compared to the studies using

household level data.

Moreover, whether the endogeneity of fuel efficiency (or vehicle self-selection) is controlled

for or not could also cause the estimated rebound effects to be significantly different. Fur-

thermore, the related literature can also be distinguished according to how the researchers

deal with the interaction (or substitution) between multiple household vehicles, while the
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related studies tend to treat different vehicles from the same household independently.

The current study has attempted to identify the rebound effect. Based on the 2009 NHTS,

this study finds that without controlling for the vehicle self-selection effect, the estimated

rebound effect obtained by OLS becomes too high to be convincing. In addition, the OLS

regression results also show that the changes in the VMTs of different household vehicles

move in the same direction, even though this finding does not make economic sense.

Using the model proposed by Greene et al. (1999), which accounts for both vehicle self-

selection and substitution effects at the same time, this study also demonstrates that vehicle

substitution exists for 2-, 3-, and 4-vehicle households. Hence, an increase in the VMTs of

one household vehicle would reduce the travel demand of the other vehicles. Moreover, the

the substitution effect tends to be smaller as the number of household vehicles rises.

Furthermore, the study finds that the direct rebound effect is statistically insignificant for 1-

to 4-vehicle households. This result differs from that obtained by Greene et al. (1999), who

find that the rebound effect is significant regardless of the number of vehicles owned by a

household. The difference may be explained by the current study’s dropping the assumption

that the VMT elasticity of fuel efficiency improvement is opposite but of the same magnitude

to the elasticity of the fuel price. In addition, the empirical finding of the current paper is

also different from that of Linn (2013), which illustrates that addressing different sources of

the endogeneity of fuel efficiency could also cause the divergence in empirical results.

Some rebound literature argues that the rebound effect varies according to vehicle travel

demand. For example, Su (2012) finds that those with much higher or much lower travel

demand compared to average travel level tend to respond less to the change in fuel price per

mile. The behavioral change with respect to VMT distribution is not investigated by the

current paper. This issue will be left for the future study.
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Table 3.1: Variable descriptions

Variables1 Definition
Continuous Variables
Lm Annual vehicle miles traveled.
Lmpg EIA derived miles per gasoline-equivalent gallon estimate.
LpF EIA monthly gasoline retail prices at a PADD level (dollars per gallon).
Lvehage Vehicle age (2009 minus model year)2.
Lincome Household income3.
Lhhsize Count of household members.
Lwrkcount Count of household workers.
Lresdn Housing units per square mile-block group.
Dummy variables
Auto Vehicle is an automobile.
V an Vehicle is a van.
SUV Vehicle is a sport utility vehicle (SUV).
Truck Vehicle is a Truck.
Gasoline Fuel type is motor gasoline.
Diesel Fuel type is diesel.
Ntrlgas Fuel type is natural gas.
Electricity Fuel type is electricity.
Homeown Housing unit is owned.
Urban−indic Home address located in urbanized area.
Rail−indic Home address located in metropolitan statistical area (MSA) with rail.
Adltnochild4 Adult(s) with no children.
Adltchild4 Adult(s) with one or more children.
Race A vector of 7 race dummies.

Notes: 1. All continuous variables are used in natural logarithms, which are indicated by the prefix “L”. 2.
A vehicle of model year 2009 is treated as a vehicle age of one. 3. HH income is calculated as the midpoints
of the 18 income categories in the NHTS with $170,000 assigned for the top category and missing incomes,
respectively (this number was adopted by Brownstone and Golob, 2009). 4. The 2009 NHTS has life-cycle
categories as follows: one adult with no children; two or more adults with no children; one adult with the
youngest child aged 0 to 5; one adult with the youngest child aged 6 to 15; one adult with the youngest child
aged 16 to 21; two or more adults with the youngest child aged 0 to 5; two or more adults with the youngest
child aged 6 to 15; two or more adults with the youngest child aged 16 to 21; one adult, retired, with no
children; and two or more adults, retired, with no children. This paper aggregates these categories into the
three categories used in the regression equation: adults with no children, adults with one or more children,
and retired adults with no children.
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Table 3.2: Summary statistics by household vehicle ownership level1

Before purification After purification
n of n of Weight n of Weight m mpg vehage income hhsize resdn
vehicles HHs HHs
One 41426 29.0% 37865 31.6% 9803.3 21.36 8.10 40064.6 1.57 2108.5
Two 65168 45.6% 57213 47.7% 11533.0 20.68 7.53 79207.0 2.53 1303.5
Three 25630 17.9% 19096 15.9% 11675 20.37 8.32 92871.6 2.95 1007.7
Four 7788 5.4% 4594 3.8% 11760.6 20.28 8.92 100315.6 3.43 856.9

Note: 1. The vehicles here are not distinguished as either automobiles, vans, SUVs, or trucks.
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Table 3.4: OLS regression results1

1-vehicle 2-vehicle 3-vehicle 4-vehicle
Lm1 Lm1 Lm1 Lm1

Lmpg1 1.964*** 1.756*** 1.893*** 1.937***
(0.026) (0.011) (0.014) (0.024)

LpF 1 -0.794*** -0.414*** -0.323*** 0.059
(0.130) (0.052) (0.070) (0.120)

Lm2 0.041*** 0.019*** 0.008
(0.003) (0.004) (0.006)

Lm3 0.015*** 0.020***
(0.004) (0.006)

Lm4 0.010
(0.006)

R2 0.337 0.309 0.335 0.348
N 14619 79946 47982 16584

Notes: 1. The same explanatory variables as those in system (3) are controlled for, but only some
coefficient estimates are reported in this table. 2. Standard errors in parentheses. 3. * p<0.10, **
p<0.05, *** p<0.01.
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Glossary of Terms

Running exhaust tailpipe emissions while a vehicle is driving and idling as part of
normal driving, say at intersections.

Idle exhaust tailpipe emissions from heavy-duty vehicles while loading or unloading
goods.

Starting exhaust tailpipe emissions from starting a catalyst-equipped vehicle.

Diurnal evaporative HC emissions from a sitting vehicle during daytime when the
ambient temperature is rising; excludes hot soak.

Resting loss evaporative HC emissions from a sitting vehicle while the ambient tem-
perature is either constant or decreasing; excludes hot soak.

Hot soak evaporative HC emissions immediately emitted from a vehicle that has just
ended its trip.

Running loss evaporative HC emissions from an operating vehicle; caused by fuel losses
from the fuel system.

Tire wear particulate matter emissions from tire wear.

Brake wear particulate matter emissions caused by brake use.
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Table A1.1: RFG regulation details (In-Out Table)1

State In # of Out # of VOCs control period
year In year Out start date end date

AZ 1997 1 19982 1 1-Jun 30-Sep
Los San Diego Angeles-San Diego, CA 1995 6 19963 6 1-Jun 15-Sep
CT 1995 8 1-Jun 15-Sep
DE 1995 3 1-Jun 15-Sep
IL 1995 8 1-Jun 15-Sep
IN 1995 2 1-Jun 15-Sep
KY 1995 6 1-Jun 15-Sep
ME 1995 7 19994 7 1-Jun 15-Sep
MD 1995 13 1-Jun 15-Sep
MA 1995 14 1-Jun 15-Sep
St. Louis, MO 1999 5 1-Jun 15-Sep
NH 1995 4 1-Jun 15-Sep
NJ 1995 21 1-Jun 15-Sep
NY 1995 13 1-Jun 15-Sep
PA 1995 5 1-Jun 15-Sep
RI 1995 5 1-Jun 15-Sep
Dallas & Houston, TX 1995 12 1-Jun 15-Sep
VA 1995 28 1-Jun 15-Sep
WI 1995 6 1-Jun 15-Sep
Washington DC 1995 1 1-Jun 15-Sep
State-specific reformulation
AZ (AZCBG) 1998 1 1-Jun 30-Sep
CA (CARB) 1996 58 varies varies

Notes: 1. Some independent cities or areas are not a part of any county, but still are treated as counties in
this table and our study. 2. Adopted Arizona Cleaner Burning Gasoline program in 1998. 3. Converted into
CARB in 1996. 4. Converted from RFG to 7.8 RVP.

Sources: 1. Auffhammer and Kellogg, 2010. 2. The Code of Federal Regulations, 40 CFR, Part 80.70. 3.
US EPA, Fuels and Fuel Additives, RFG Areas, available at

. 4. Reformulated gasoline (RFG) covered areas within 200 miles of a Marathon terminal or
Marathon exchange or throughput terminal. RFG Attachment I. Marathon Petroleum Corporation.

2
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Table A1.2: RVP phase II regulation details (In-Out Table)1

Area (or State) In # of Out # of Start End RVP
year In year Out date date value

Birmingham, AL2 1992 2 1-Jun 15-Sep 7.8
Birmingham, AL 1998 2 1-Jun 15-Sep 7.0
AZ 1992 1 19973 1 1-Jun 15-Sep 7.8
Los Angeles-San Diego, CA 1992 6 19953 6 1-May 31-Oct 7.8
rest of the state, CA 1992 52 19964 52 varies varies 7.8
CO 1992 6 1-Jun 15-Sep 7.8
FL 1992 6 1-Jun 15-Sep 7.8
Atlanta, GA2 1992 13 1-Jun 15-Sep 7.8
Atlanta, GA 1999 13 1-Jun 15-Sep 7.0
GA (excluding Atlanta) 1999 12 1-Jun 15-Sep 7.0
GA (excluding Atlanta) 2003 20 1-Jun 15-Sep 7.0
IL 1995 3 1-Jun 15-Sep 7.2
IN 1996 2 1-Jun 15-Sep 7.8
Kansas City, KS2 1992 2 1-Jun 15-Sep 7.8
Kansas City, KS2 1997 2 1-Jun 15-Sep 7.2
Kansas City, KS 2001 2 1-Jun 15-Sep 7.0
LA 1992 17 1-Jun 15-Sep 7.8
ME 1999 7 1-May 15-Sep 7.8
MD 1992 12 19953 12 1-Jun 15-Sep 7.8
MI 1996 7 1-Jun 15-Sep 7.8
Kansas City, MO2 1992 3 1-Jun 15-Sep 7.8
Kansas City, MO2 1997 3 1-Jun 15-Sep 7.2
Kansas City, MO 2001 3 1-Jun 15-Sep 7.0
St. Louis, MO 1992 5 19993 5 1-Jun 15-Sep 7.8
NC 1992 9 1-Jun 15-Sep 7.8
NV 1992 1 1-Jun 15-Sep 7.8
OR 1992 5 1-Jun 15-Sep 7.8
PA 1998 7 1-Jun 15-Sep 7.8
Knoxville, TN 1992 1 19935 1 1-Jun 15-Sep 7.8
Memphis & Nashville, TN 1992 6 1-Jun 15-Sep 7.8
Beaumont, TX 1992 3 1-Jun 15-Sep 7.8
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Dallas & Houston, TX 1992 12 19953 12 1-Jun 15-Sep 7.8
EI Paso, TX2 1992 1 1-Jun 15-Sep 7.8
EI Paso, TX 1996 1 1-Jun 15-Sep 7.0
Victoria, TX2 1992 1 1-Jun 15-Sep 7.8
Eastern TX (w/o Dallas&Houston) 2000 94 1-May 15-Oct 7.8
VA 1992 28 19953 28 1-Jun 15-Sep 7.8
Washington DC 1992 1 19953 1 1-Jun 15-Sep 7.8
All other states 1992 1-Jun 15-Sep 9.0

Notes:1. Some independent cities or areas are not a part of any county, but still are treated as counties in
this table and our study. 2. A more stringent RVP requirement was applied in the following summer. 3.
Converted into RFG. 4. Converted into CARB. 5. The regulated areas no longer implemented the RVP
program in the following period due to redesignation to attainment.

Sources: 1. Auffhammer and Kellogg, 2010. 2. The Code of Federal Regulations, 40 CFR, Part 80.70.
3. US EPA, Guide on Federal and State RVP Standards for Conventional Gasoline Only, EPA-420-B- 10-
018, March, 2010. 4. US EPA, Guide on Federal and State RVP Standards for Conventional Gasoline
Only, EPA420-B- 05-012, November, 2005. 5. US EPA, Guide on Federal and State RVP Standards for
Conventional Gasoline Only, EPA420-B- 01-003, March, 2001. 6. Reformulated gasoline (RFG) covered areas
within 200 miles of a Marathon terminal or Marathon exchange or throughput terminal. RFG Attachment
I. Marathon Petroleum Corporation. 7. Map retrieved from United Way of Metropolitan Atlanta-County
Offices.
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Table A1.3: OXY regulation details (In-Out Table)1

State MSA/CMSA In # of Out # of Start End Oxygen

year In year Out date date content

AK Anchorage2 1995 1 2004 1 1-Nov 28-Feb 2.70%

AK Fairbanks3 0

AZ Phoenix2 1989 1 2-Nov 31-Mar 3.50%

AZ Tucson 1989 1 1-Oct 31-Mar 1.80%

CA4 1992 19 1998 19 varies varies 2.70%

CO Colorado Springs2 1992 1 2000 1 1-Nov 7-Feb 3.10%

CO Denver-Boulder2 1992 7 2007 7 1-Nov 31-Jan 1.50%

CO Fort Collins-Loveland2 1992 1 2004 1 1-Nov 7-Feb 3.10%

CT Hartford 1992 3 1996 3 1-Nov 28-Feb 2.70%

CT NY-Northern NJ-Long Island-CT2 1992 3 2000 3 1-Oct 28-Feb 2.70%

DC Washington 1992 1 1996 1 1-Nov 28-Feb 2.70%

MA Boston-Lawrence-Salem 1992 6 1996 6 1-Nov 28-Feb 2.70%

MD Baltimore 1992 6 1995 6 1-Nov 28-Feb 2.70%

MD Philadelphia-Wilmington, Trenton 1992 1 1996 1 1-Nov 28-Feb 2.70%

MD Washington 1992 5 1996 5 1-Nov 28-Feb 2.70%

MN Duluth 1992 1 1994 1 1-Oct 31-Jan 2.70%

MN Minneapolis-St. Paul2, 5 1992 10 year-round 3.10%

MT Missoula 1992 1 1-Nov 28-Feb 2.70%

NC Greensboro-Winston-Salem-High Point 1992 7 1994 7 1-Nov 28-Feb 2.70%

NC Raleigh-Durham 1992 4 1995 4 1-Nov 28-Feb 2.70%

NJ NY-Northern NJ-Long Island-CT2 1992 13 1999 13 1-Oct 28-Feb 2.70%

NJ Philadelphia-Wilmington, Trenton 1992 8 1996 8 1-Nov 28-Feb 2.70%

NM Albuquerque 1989 1 1-Nov 28-Feb 2.70%

NV Las Vegas2 1989 1 1-Oct 31-Mar 3.50%

NV Reno 1989 1 1-Oct 31-Jan 2.70%

NY NY-Northern NJ-Long Island-CT2 1992 11 2000 11 1-Oct 28-Feb 2.70%

NY Syracuse 1992 3 1994 3 1-Nov 28-Feb 2.70%

OH Cleveland-Akron-Lorain 1992 7 1994 7 1-Nov 28-Feb 2.70%

OR Grant’s Pass 1992 1 2000 1 1-Nov 28-Feb 2.70%

OR Klamath 1992 1 2001 1 1-Nov 28-Feb 2.70%
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OR Medford 1992 1 2002 1 1-Nov 28-Feb 2.70%

OR Portland 1992 4 2008 4 1-Nov 28-Feb 2.70%

PA Philadelphia-Wilmington, Trenton 1992 5 1996 5 1-Nov 28-Feb 2.70%

TN Memphis 1992 2 1994 2 1-Nov 28-Feb 2.70%

TX El Paso2 1992 1 1-Oct 31-Mar 2.70%

UT Ogden3 0

UT Provo-Orem2 1992 1 2006 1 1-Nov 28-Feb 2.70%

UT Salt Lake City3 0

VA Washington 1992 10 1996 10 1-Nov 28-Feb 2.70%

WA Seattle-Tacoma 1992 3 1996 3 1-Nov 28-Feb 2.70%

WA Spokane 1992 1 2005 1 1-Sep 28-Feb 3.50%

WA Vancouver 1992 1 1996 1 1-Nov 28-Feb 2.70%

Notes: 1. Some independent cities or areas are not a part of any county, but still are treated as counties in
this table and our study. 2. The OXY control period and/or oxygen content requirements had been revised,
and only the most recent requirements were listed in the table. 3. This area was not implementing an OXY
program even though the area had been designated as a nonattainment area. 4. All areas in CA were required
to use CA Phase II fuel (a 1.8%-2.2% of oxygen content) starting from June 1, 1996. 5. Only these 10 counties
in Minnesota were incorporated into the OXY-treated group in our study according to Documentation for the
onroad national emissions inventory (NEI) for base years 1970-2002, though Minnesota adopted a statewide
oxygen mandate throughout the year beginning on October 1, 1997.

Sources: 1. US EIA, Areas Participating in the Oxygenated Gasoline Program, available at
. 2. US EPA, State Winter Oxygenated Fuel Program Requirements

for Attainment or Maintenance of CO NAAQS, EPA420-B-08-006, January, 2008. 3. US EPA, State Winter
Oxygenated Fuel Program Requirements for Attainment or Maintenance of CO NAAQS, EPA420-B-05-013,
November, 2005. 4. US EPA, State Winter Oxygenated Fuel Programs, October, 2001, at

. 5. US EPA, State Winter Oxygenated Fuel Programs, December 6,
1999, at . 6. US EPA, State Winter Oxygenated Fuel Programs,
June 16, 1999. 7. US EIA, Oxygenated Gasoline Control Area Pollutions Excel spreadsheet, available at

. 8. Documentation for the onroad national
emissions inventory (NEI) for base years 1970-2002.

131



Table A1.4: The scope of the purified RFG-treated counties (1996 switch in)

State County State County State County State County

CT Hartford Co MD Baltimore Co NJ Camden Co VA Fairfax Co

CT Middlesex Co MD Calvert Co NJ Cape May Co VA Hanover Co

CT New London Co MD Carroll Co NJ Cumberland Co VA Henrico Co

CT Tolland Co MD Cecil Co NJ Gloucester Co VA James City Co

CT Windham Co MD Charles Co NJ Mercer Co VA Loudoun Co

DE Kent Co MD Frederick Co NJ Salem Co VA Prince William Co

DE New Castle Co MD Harford Co NY Dutchess Co VA Stafford Co

DE Sussex Co MD Howard Co NY Essex Co VA York Co

DC Washington city MD Kent Co PA Bucks Co VA Alexandria city

IL Cook Co MD Montgomery Co PA Chester Co VA Chesapeake city

IL DuPage Co MD Prince George’s Co PA Delaware Co VA Colonial Heights city

IL Grundy Co MD Queen Anne’s Co PA Montgomery Co VA Fairfax city

IL Kane Co MD Baltimore city PA Philadelphia Co VA Falls Church city

IL Kendall Co MA Barnstable Co RI Bristol Co VA Hampton city

IL Lake Co MA Berkshire Co RI Kent Co VA Hopewell city

IL McHenry Co MA Bristol Co RI Newport Co VA Manassas city

IL Will Co MA Dukes Co RI Providence Co VA Manassas Park city

IN Lake Co MA Essex Co RI Washington Co VA Newport News city

IN Porter Co MA Franklin Co TX Brazoria Co VA Norfolk city

KY Boone Co MA Hampden Co TX Chambers Co VA Poquoson city

KY Bullitt Co MA Hampshire Co TX Collin Co VA Portsmouth city

KY Campbell Co MA Middlesex Co TX Dallas Co VA Richmond city

KY Jefferson Co MA Nantucket Co TX Denton Co VA Suffolk city

KY Kenton Co MA Norfolk Co TX Fort Bend Co VA Virginia Beach city

KY Oldham Co MA Plymouth Co TX Galveston Co VA Williamsburg city

ME Androscoggin Co MA Suffolk Co TX Harris Co WI Kenosha Co

ME Cumberland Co MA Worcester Co TX Liberty Co WI Milwaukee Co

ME Kennebec Co NH Hillsborough Co TX Montgomery Co WI Ozaukee Co

ME Knox Co NH Merrimack Co TX Tarrant Co WI Racine Co

ME Lincoln Co NH Rockingham Co TX Waller Co WI Washington Co

ME Sagadahoc Co NH Strafford Co VA Arlington Co WI Waukesha Co
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ME York Co NJ Atlantic Co VA Charles City Co

MD Anne Arundel Co NJ Burlington Co VA Chesterfield Co

Total 130
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Table A1.5: The scope of the RVP-treated counties (1996 switch in)

State County State County State County State County

AL Jefferson Co IL Madison Co LA St. James Par NC Forsyth Co

AL Shelby Co IL Monroe Co LA St. Mary Par NC Gaston Co

FL Broward Co IL St. Clair Co LA West Baton Rouge Par NC Granville Co

FL Duval Co IN Clark Co MI Livingston Co NC Guilford Co

FL Hillsborough Co IN Floyd Co MI Macomb Co NC Mecklenburg Co

FL Miami-Dade Co KS Johnson Co MI Monroe Co NC Wake Co

FL Palm Beach Co KS Wyandotte Co MI Oakland Co OR Marion Co

FL Pinellas Co LA Ascension Par MI St. Clair Co OR Polk Co

GA Butts Co LA Beauregard Par MI Washtenaw Co TN Davidson Co

GA Cherokee Co LA Calcasieu Par MI Wayne Co TN Rutherford Co

GA Clayton Co LA East Baton Rouge Par MO Clay Co TN Shelby Co

GA Cobb Co LA Grant Par MO Franklin Co TN Sumner Co

GA Coweta Co LA Iberville Par MO Jackson Co TN Williamson Co

GA DeKalb Co LA Jefferson Davis Par MO Jefferson Co TN Wilson Co

GA Douglas Co LA Lafayette Par MO Platte Co TX Hardin Co

GA Fayette Co LA Lafourche Par MO St. Charles Co TX Jefferson Co

GA Fulton Co LA Livingston Par MO St. Louis Co TX Orange Co

GA Gwinnett Co LA Orleans Par MO St. Louis city TX Victoria Co

GA Henry Co LA Pointe Coupee Par NC Davidson Co UT Davis Co

GA Paulding Co LA St. Bernard Par NC Davie Co UT Salt Lake Co

GA Rockdale Co LA St. Charles Par NC Durham Co

Total 83
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Table A1.6: The scope of the RVP-treated counties (1996 later switch in)

State County State County State County State County

1998-switch-in (7 counties)

PA Allegheny Co PA Beaver Co PA Fayette Co PA Westmoreland Co

PA Armstrong Co PA Butler Co PA Washington Co

1999-switch-in (12 counties)

GA Barrow Co GA Dawson Co GA Haralson Co GA Pickens Co

GA Bartow Co GA Forsyth Co GA Jackson Co GA Spalding Co

GA Carroll Co GA Hall Co GA Newton Co GA Walton Co

2000-switch-in (94 counties)

TX Anderson Co TX Ellis Co TX Kaufman Co TX Rockwall Co

TX Angelina Co TX Falls Co TX Lamar Co TX Rusk Co

TX Aransas Co TX Fannin Co TX Lavaca Co TX Sabine Co

TX Atascosa Co TX Fayette Co TX Lee Co TX San Augustine Co

TX Austin Co TX Franklin Co TX Leon Co TX San Jacinto Co

TX Bastrop Co TX Freestone Co TX Limestone Co TX San Patricio Co

TX Bee Co TX Goliad Co TX Live Oak Co TX Shelby Co

TX Bell Co TX Gonzales Co TX McLennan Co TX Smith Co

TX Bexar Co TX Grayson Co TX Madison Co TX Somervell Co

TX Bosque Co TX Gregg Co TX Marion Co TX Titus Co

TX Bowie Co TX Grimes Co TX Matagorda Co TX Travis Co

TX Brazos Co TX Guadalupe Co TX Milam Co TX Trinity Co

TX Burleson Co TX Harrison Co TX Morris Co TX Tyler Co

TX Caldwell Co TX Hays Co TX Nacogdoches Co TX Upshur Co

TX Calhoun Co TX Henderson Co TX Navarro Co TX Van Zandt Co

TX Camp Co TX Hill Co TX Newton Co TX Walker Co

TX Cass Co TX Hood Co TX Nueces Co TX Washington Co

TX Cherokee Co TX Hopkins Co TX Panola Co TX Wharton Co

TX Colorado Co TX Houston Co TX Parker Co TX Williamson Co

TX Comal Co TX Hunt Co TX Polk Co TX Wilson Co

TX Cooke Co TX Jackson Co TX Rains Co TX Wise Co

TX Coryell Co TX Jasper Co TX Red River Co TX Wood Co

TX Delta Co TX Johnson Co TX Refugio Co

TX DeWitt Co TX Karnes Co TX Robertson Co
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Table A1.7: The scope of the OXY-treated counties (switch in and out)

State County State County State County State County

1996-switch-in (21 counties)

AK Anchorage Municipality MN Chisago Co MN Washington Co OR Yamhill Co

CO El Paso Co MN Dakota Co MN Wright Co UT Utah Co

CO Larimer Co MN Hennepin Co MT Missoula Co WA Spokane Co

CO Weld Co MN Isanti Co OR Jackson Co

MN Anoka Co MN Ramsey Co OR Josephine Co

MN Carver Co MN Scott Co OR Klamath Co

2000-switch-out (2 counties)

CO El Paso Co OR Josephine Co

2001-switch-out (1 counties)

OR Klamath Co

2002-switch-out (1 counties)

OR Jackson Co
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Table A1.8: The scope of regulation overlap including RFG

RFG&CARB overlap RFG&OXY overlap
State County State County State County State County
CA Los Angeles CT Fairfield NJ Morris NY Nassau
CA Orange CT Litchfield NJ Ocean NY New York
CA Riverside CT New Haven NJ Passaic NY Orange
CA San Bernardino NJ Bergen NJ Somerset NY Putnam
CA San Diego NJ Essex NJ Sussex NY Queens
CA Ventura NJ Hudson NJ Union NY Richmond

NJ Hunterdon NJ Warren NY Rockland
NJ Middlesex NY Bronx NY Suffolk
NJ Monmouth NY Kings NY Westchester
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Table A1.9: RVP effects, on-road vehicles

RVP 1996-switch-in 1998, 1999, and 2000-switch-in
1990-1996 1-year-in 2-year-in 3-year-in 4-year-in 5-year-in

VOCs emissions per capita (kgs)
Generalized effects

Trvpdafter 2.940** -0.323 -0.703 -2.864*** -2.021 -2.239
(1.476) (1.012) (0.982) (1.001) (1.533) (3.250)

Separate effects
TrvpdafterP1 -0.103 -0.632 0.641 0.420 -2.239

(2.011) (2.167) (1.784) (1.784) (3.250)
TrvpdafterP2 -0.533 -0.0299 0.311 -4.124**

(1.645) (1.459) (1.469) (1.911)
TrvpdafterP3 -0.108 -0.388 -5.161***

(1.368) (1.246) (1.156)
VOCs emissions per square mile (tons)

Generalized effects
Trvpdafter -6.657*** -0.0875 -0.216** -0.542*** -1.391** -1.881

(1.131) (0.0886) (0.0984) (0.130) (0.561) (1.425)
Separate effects

TrvpdafterP1 -0.373 -0.915 -1.461 -1.829 -1.881
(1.032) (1.084) (1.237) (1.275) (1.425)

TrvpdafterP2 -0.140 -0.269 -0.401 -1.128***
(0.316) (0.301) (0.309) (0.408)

TrvpdafterP3 -0.0788 -0.168** -0.548***
(0.0743) (0.0798) (0.116)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table A1.10: OXY effects, on-road vehicles

OXY 1996-switch-in 2000, 2001, and 2002-switch-out
1990-1996 1-year-out 2-year-out 3-year-out

CO emissions per capita (kgs)
Generalized effects

Toxydafter -13.78 13.02 107.4 22.57
(52.73) (58.64) (73.25) (91.18)

Separate effects
ToxydafterP1 30.86 15.95 22.57

(26.90) (35.03) (91.18)
ToxydafterP2 -9.401 295.1***

(7.664) (11.59)
ToxydafterP3 3.788

(10.53)
CO emissions per square mile (tons)

Generalized effects
Toxydafter -67.39** 2.186 2.419 4.134

(26.87) (4.922) (6.801) (9.274)
Separate effects

ToxydafterP1 3.045 1.633 4.134
(10.25) (9.903) (9.274)

ToxydafterP2 0.656** 4.073***
(0.255) (0.312)

ToxydafterP3 1.760***
(0.295)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table A1.11: RVP effects, off-road engines and vehicles

RVP 1996-switch-in 1998, 1999, and 2000-switch-in
1990-1996 1-year-in 2-year-in 3-year-in 4-year-in 5-year-in

VOCs emissions per capita (kgs)
Generalized effects

Trvpdafter -0.170 11.06** 10.59** -2.252 -7.651 0.0220
(7.081) (5.188) (5.305) (5.193) (10.10) (23.57)

Separate effects
TrvpdafterP1 -7.902 17.45 -13.38 -11.85 0.0220

(22.96) (24.49) (23.43) (23.54) (23.57)
TrvpdafterP2 -11.20 6.577 -16.34** -8.404

(7.021) (6.095) (7.192) (6.567)
TrvpdafterP3 18.59** 17.78** -7.188

(9.061) (7.777) (6.336)
VOCs emissions per square mile (tons)

Generalized effects
Trvpdafter -0.0806 0.0470 0.0270 0.108 0.0957 -0.232

(0.432) (0.136) (0.135) (0.165) (0.289) (0.419)
Separate effects

TrvpdafterP1 -0.168 -0.00854 -0.254 -0.238 -0.232
(0.295) (0.298) (0.300) (0.299) (0.419)

TrvpdafterP2 -0.162 -0.113 -0.306 0.235
(0.334) (0.326) (0.325) (0.415)

TrvpdafterP3 0.128 0.0864 0.00806
(0.156) (0.154) (0.189)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.
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Table A1.12: OXY effects, off-road engines and vehicles

OXY 1996-switch-in 2000, 2001, and 2002-switch-out
1990-1996 1-year-out 2-year-out 3-year-out

CO emissions per capita (kgs)
Generalized effects

Toxydafter -11.36 -0.123 16.21 5.236
(30.56) (17.70) (29.24) (34.75)

Separate effects
ToxydafterP1 -1.057 4.253 5.236

(18.95) (21.40) (34.75)
ToxydafterP2 2.966 43.25

(13.71) (36.75)
ToxydafterP3 11.45

(30.51)
CO emissions per square mile (tons)

Generalized effects
Toxydafter 0.315 -0.0295 0.260 4.13e-04

(6.702) (1.075) (1.110) (0.310)
Separate effects

ToxydafterP1 -0.0779 0.0477 4.13e-04
(3.041) (2.973) (0.310)

ToxydafterP2 0.0806 0.814***
(0.165) (0.195)

ToxydafterP3 0.203
(0.209)

Notes: 1. The numbers in parentheses are the standard errors. 2. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% level, respectively.

Table A1.13: The effect of regulation overlap on pollution reduction (n=5348)

Pollutant Levels Per capita Density

VOCs Trfgdafter -14580.6*** 5.186*** -50.25***
(2729.6) (1.687) (10.76)

r2 0.933 0.335 0.943

NOx Trfgdafter -7449.3*** 1.124 -24.16***
(1633.8) (3.88) (5.861)

r2 0.969 0.11 0.981

CO Trfgdafter -152920.8*** 63.31*** -501.9***
(29211.5) (23.19) (110.6)

r2 0.928 0.26 0.948

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.010
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Table A2.1: Expected VMT schedules by vehicle type (miles)

Age Auto Vans SUVs Trucks Category 3 Auto Vans SUVs Trucks Category 3
Trade-in vehicles Replacement vehicles1

1 13500 14084 13719 13878 14725
2 13149 13635 13274 13437 13114
3 12748 13118 12763 12930 12461
4 12294 12537 12189 12358 12311
5 11787 11899 11560 11730 11765
6 11229 11211 10884 11053 10808
7 10628 10487 10173 10340 10178
8 9991 9741 9440 9605 9476
9 9330 8986 8700 8861 8711
10 8656 8236 7967 8122 7986
11 7676 7504 7252 7401 6899
12 6380 6798 6563 6705 6276
13 5163 6055 5840 5973 5665
14 4086 5363 5167 5291 4963
15 3179 4727 4550 4664 4316
16 6318 9242 8783 8438 7987 2440 4150 3990 4095 3612
17 4787 8090 7680 7375 6982 1856 3632 3489 3584 3157
18 3600 7064 6699 6430 6082 1401 3171 3043 3130 2750
19 2697 6160 5837 5601 5385 1053 2765 2651 2730 2435
20 2018 5366 5080 4874 4871 790 2408 2307 2378 2203
21 1507 4677 4424 4244 3880 592 2098 2009 2073 1754
22 1127 4076 3853 3696 3560 443 1829 1750 1807 1610
23 846 3557 3362 3226 3155 333 1596 1526 1577 1427
24 636 3112 2941 2822 2668 250 1396 1335 1380 1206
25 479 2723 2574 2470 2335 189 1222 1168 1208 1056

Note: 1. Only the VMTs for the retired vehicles of age 16 and the replacement vehicles of age 1 and also
with the residual lifetime of 6.60 years are listed due to space limit. For more details, see footnote 18 in the
main body of the paper. 2. The VMTs of vehicles of age 24 are used to represent the VMTs after a vehicle’s
age exceeds 24, which are multiplied by the vehicle survival rates to obtained the expected VMTs for the
vehicles of age older than 24. The table does not list the VMTs for the vehicles of age older than 25 due to
space limit.
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Table A2.2: Vehicle counts and fuel economy by category of the trade-in vehicles

Age Auto Van SUV Truck Category 31

mpg count mpg count mpg count mpg count count

Trade-in vehicles

3 16.00 2

4 14.00 1 12.00 1

5 17.00 2 16.50 8 15.75 4 15.75 4

6 17.43 7 16.13 23 16.16 25 15.59 17

7 17.33 15 16.59 85 15.88 104 16.04 72

8 17.74 39 17.18 285 15.90 589 15.86 159

9 17.88 116 17.49 577 16.07 1055 15.45 431 22

10 17.71 224 16.83 852 15.56 2000 15.68 579 23

11 17.93 280 17.13 1268 15.08 2783 15.35 769 24

12 17.99 458 17.25 1595 15.28 3172 15.19 1014 23

13 17.97 629 17.18 2063 15.12 2961 15.35 1024 25

14 17.95 674 17.32 1970 15.23 2967 15.11 842 20

15 17.78 1204 17.14 2435 15.00 3032 14.56 935 22

16 17.78 1304 16.77 1853 15.13 2535 15.06 1120 19

17 17.65 1022 17.06 1784 15.37 1997 15.37 861 14

18 17.53 1303 16.45 1167 15.08 1371 15.02 837 22

19 17.54 1485 17.10 1193 15.48 1192 15.27 762 28

20 17.47 1522 16.20 741 15.18 750 14.74 889 42

21 17.35 1234 15.89 672 15.31 750 14.91 813 49

22 17.22 962 15.76 369 15.29 486 15.04 624 24

23 17.13 803 14.82 284 15.26 375 15.40 447 17

24 17.05 671 15.06 263 15.13 233 15.24 474 24

25 16.80 643 14.11 194 14.13 138 14.29 324 17

26 16.04 137 13.47 51 13.90 42 14.14 65 6

sum 14734 19733 28563 13063 421

Replacement vehicles

2007 27.51 49 19.5 2 22.44 25 18.29 21 1

2008 26.08 550 17.88 34 21.43 292 18.33 147 31

2009 27.51 30982 20.34 1047 22.39 14583 18.71 6193 95

2010 32.52 17983 19.02 686 21.98 3057 18.45 735 1

sum 49564 1769 17957 7096 128
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Table A2.4: Emission factors of ROG and CO2 for passenger cars by vehicle age

ROG CO2
vehage runex runls strex diurn htsk restl runex strex

(g/mile) (g/vehicle/day) (g/mile) (g/vehicle/day)
1 0.006172 0.009938 0.21888 0.027846 0.03346 0.018126 353.4484 487.3792
2 0.006574 0.011831 0.234812 0.029928 0.041859 0.020406 352.0161 485.2883
3 0.007547 0.01358 0.280449 0.03307 0.054557 0.023869 350.7618 483.9279
4 0.008984 0.015535 0.340536 0.037663 0.073792 0.02918 350.2867 482.8276
5 0.009837 0.01817 0.369735 0.050136 0.117681 0.044117 349.9601 482.0852
6 0.011839 0.024508 0.451574 0.113096 0.307886 0.122298 349.971 480.7917
7 0.023385 0.030565 1.469918 0.146996 0.447842 0.164061 340.9912 445.2737
8 0.026031 0.040441 1.656371 0.197249 0.658686 0.218257 337.8479 437.9961
9 0.027173 0.048408 1.732319 0.23359 0.825712 0.260387 338.8364 437.7595
10 0.028669 0.05575 1.823458 0.269884 0.984568 0.304658 339.4015 435.7723
11 0.037195 0.063316 2.940797 0.306835 1.141259 0.349136 332.179 425.6568
12 0.046101 0.070897 4.160869 0.34235 1.292978 0.392108 334.3867 427.4771
13 0.057574 0.154798 5.486503 1.132505 1.747967 0.627493 336.754 429.8762
14 0.06399 0.191233 6.143503 1.506906 2.055845 0.756683 337.3666 427.8565
15 0.089156 0.226592 7.291793 1.906238 2.455783 0.897737 337.9855 425.5268
16 0.137747 0.245293 7.844678 2.172216 2.798758 1.025348 338.3335 421.7992
17 0.265468 0.249887 9.288199 2.270996 3.145844 1.112354 339.0146 416.9403
18 0.342701 0.255762 10.2656 2.362492 3.486861 1.208038 363.6464 439.9867
19 0.343173 0.259845 10.19396 2.44625 3.868 1.301999 363.496 436.3548
20 0.345732 0.264138 10.14037 2.500396 4.134098 1.413225 363.7483 433.4011
21 0.32987 0.268409 9.850508 2.608492 4.477758 1.537698 363.2498 431.3809
22 0.318081 0.597358 9.355418 2.877179 5.792009 1.824051 363.0769 429.8742
23 0.322987 0.665712 9.037342 3.073181 5.993317 2.005511 362.9634 426.8292
24 0.322206 0.731143 8.638781 3.088202 5.919238 2.139381 363.1246 424.7315
25 0.370022 0.724424 8.661552 3.373529 6.103013 2.344582 384.8473 444.4711

Note: the missing values of the emissions factors are replaced by the values calculated by linear interpolation.
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Table A2.5: Regression output for IV regression first stage

Dependent variable Vehicle fuel efficiency (mpg)
Gasprice_at purchase 0.170*** (0.020)
CAFE_at puchase -0.239*** (0.021)
Fuel cost (dollars per gallon) 0.047 (0.068)
HH income (units of 10,000 dollars) -0.025*** (0.002)
HH size 0.001 (0.011)
Count of vehicle’s primary drivers 0.116*** (0.012)
Count of HH workers 0.329*** (0.012)
Adults with children 0.596*** (0.029)
Adults with no children 0.525*** (0.023)
Race is White -0.136** (0.064)
Race is African American or Black -0.351*** (0.073)
Race is Asian only -0.250*** (0.085)
Race is American Indian or Alaskan Native 0.060 (0.115)
Race is Native Hawaiian or other Pacific -0.197 (0.170)
Race is Hispanic -0.087 (0.084)
Race is Multiracial 0.163 (0.123)
Residential density -0.005 (0.004)
Home is owned -0.383*** (0.032)
Home locates in a MSA with rail -0.024 (0.025)
Home locates in an urbanized area -0.226*** (0.018)
Vehicle age -0.520*** (0.014)
Vehicle age square 0.030*** (0.001)
Vehicle age cubic -0.001*** (0.000)
Auto 7.809*** (0.132)
Vans 2.144*** (0.035)
SUVs 0.652*** (0.028)
Acura 1.353*** (0.098)
BMW -1.877*** (0.093)
Buick -0.568*** (0.072)
Cadil -3.077*** (0.085)
Chevr 0.925*** (0.063)
Chrys -0.256*** (0.076)
Dodge 0.413*** (0.068)
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Ford 0.444*** (0.063)
GMC 0.031 (0.076)
Honda 4.696*** (0.065)
Hyund 2.663*** (0.085)
Infin -1.833*** (0.122)
Isuzu 1.383*** (0.152)
Jeep 0.417*** (0.080)
Kia 1.329*** (0.100)
Lexus -0.108 (0.084)
Linco -2.916*** (0.093)
Mazda 2.053*** (0.086)
Merce -0.582*** (0.092)
Mercu -1.256*** (0.082)
Mitsu 1.211*** (0.110)
Nissa 1.903*** (0.070)
Oldsm -0.210** (0.095)
Plymo 2.314*** (0.131)
Ponti 1.071*** (0.082)
Satur 2.618*** (0.088)
Subar 2.221*** (0.089)
Toyot 3.650*** (0.063)
Volks 2.421*** (0.091)
Volvo -0.401*** (0.097)
Gasoline -9.842** (3.868)
Diesel -10.927*** (3.868)
Ntrlgas -13.063*** (3.887)
Constant 32.362*** (3.902)
N 236,933
r2 0.468
Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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