
An Investigation on Self-Attentive Models for Malware
Classification

by

Qikai Lu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Qikai Lu, 2021

Abstract

Malware classification is a critical task in cybersecurity. It offers insights on

the threats posed to victim devices from different malware and aids in the de-

signing of precautionary measures. In real world applications, due to the vast

amount of malware present in the networks, real-time malware classification

must be both accurate and fast. In this thesis, we first investigate the appli-

cation of self-attentive models to classify malicious binary files from raw bytes

alone. We propose two transformer-based models. The first model, SeqCon-

vAttn, conducts sequenced-based classification using byte sequences extracted

from binary files. Noting that the feedforward latency of SeqConvAttn scales

poorly to input sequence length, we then experimented with converting bi-

nary files into images, and introduced the second model, ImgConvAttn, to

apply self-attention to image-based classification. Next, we investigated the

integration of the two models into a two-stage framework, such that the supe-

rior accuracy and low latency of the respective models can both be leveraged.

Through experiments on the BIG 2015 Dataset provided by the Microsoft

Malware Classification Challenge and a select subset of the BODMAS Mal-

ware Dataset, we demonstrate that self-attention can enhance the accuracy

of malware classifiers for both sequence-based and image-based classification.

Furthermore, we demonstrate that our two-stage framework design can reduce

inference latency significantly while maintaining high accuracy.

ii

Preface

A portion of the content presented in this thesis, including Chapter 2, 3, 4, 5,

and 6 have been submitted to IEEE INFOCOM 2022 for review.

iii

Acknowledgements

I would like to thank Dr. Niu for helping me through my research. His

supervision had helped me greatly in overcoming the difficulties encountered

during my research. Furthermore, his guidance offered me lasting insights on

how to become a good researcher.

I would also like to thank my family, who offered me support through these

years. They have offered me encouragements during these times, allowing me

to pursue my research with full effort.

iv

Table of Contents

1 Introduction 1

1.1 Problem Motivation . 1

1.2 Malware Classification . 2

1.3 Our Contribution . 3

1.4 Thesis Outline . 4

2 Related Work 5

2.1 Malware Classification by Raw Bytes 5

2.1.1 Byte Sequence Classification 5

2.1.2 Malware Image Classification 6

2.2 Transformers in Malware Classification 8

2.3 Two-Stage Framework for Malware Classification 9

3 Model Designs 10

3.1 Background on Transformer 10

3.2 SeqConvAttn: Byte Sequence Classifier 12

3.3 ImgConvAttn: Malware Image Classifier 13

3.3.1 Model Architecture . 14

3.3.2 Image Generation . 15

3.4 Two-Stage Framework . 17

4 Common Experiment Settings 19

4.1 Datasets . 19

v

4.1.1 BIG 2015 . 19

4.1.2 Sub-BODMAS . 20

4.2 Test Metrics . 20

4.3 Test Environment . 21

5 Independent Model Experiments 23

5.1 Sequence-based Classification Experiments 23

5.1.1 Experiment Design . 23

5.1.2 Experiment Results . 25

5.1.3 Visualization of SeqConvAttn Attention 27

5.2 Image-based Classification Experiments 29

5.2.1 Experiment Design . 29

5.2.2 Experiment Results . 30

5.2.3 Comparing Gresycale and Bigram Frequency Images . 32

6 Two-Stage Experiments 37

6.1 Experiment Design . 37

6.2 Results on Two-Stage Framework 38

7 Conclusions and Future Work 42

Bibliography 44

vi

List of Tables

2.1 FeedForward Time of Image-based Deep Networks in TorchVision 8

4.1 Statistics of BIG 2015 Dataset 19

4.2 Statistics of Sub-BODMAS Dataset 21

4.3 Test Environment Specification 22

5.1 Results of Sequence-based Classification on BIG 2015 25

5.2 Results of Sequence-based Classification on Sub-BODMAS . . 26

5.3 Results of Imaged-based Classification on BIG 2015 30

5.4 Results of Imaged-based Classification on Sub-BODMAS . . . 31

6.1 Uncertainty Threshold υ for Two-Stage Framework on Sub-

BODMAS . 38

6.2 Results of Two-Stage Framework Classification on Sub-BODMAS 39

vii

List of Figures

3.1 Design of SeqConvAttn. 12

3.2 Design of ImgConvAttn. 14

3.3 Designs of Two-Stage Framework. 16

5.1 SeqConvAttn Attention Map and Malconv Gating Map 28

5.2 Relationship Between File Size and Inference Latency 34

5.3 Greyscale Image and ImgConvAttn Attention Map 35

5.4 Bigram Frequency Image and ImgConvAttn Attention Map . . 36

viii

List of Variables

Transformer-based Model

B Expansion factor in feedfoward component.

dm, id Encoding dimension of X and index of encoding dimension, respec-

tively.

dqkv Encoding dimension of query, key, and value sequence.

H Number of heads in multihead-attention.

K Number of serially connected transformer blocks.

M Raw byte sequence length.

N , n Length (number of elements) of X and position index of some element

in X, respectively.

S Size of both kernel and stride in convolutional networks of SeqConvAttn

and ImgConvAttn.

W1, b1 Feedforward expansion layer weight and bias, respectively.

W2, b2 Feedforward restorative layer weight and bias, respectively.

WO Multihead-attention weight that projects the concatenation of parallel

self-attention outputs back into an encoding sequence.

Wq, Wk, Wv Self-attention weights that projects X into query, key, value se-

quence, respectively.

X Input sequence of the transformer architecture.

ix

Two-Stage Framework

υ, p% Uncertainty threshold and expected percentage of malware files under-

going second-stage reclassification, respectively.

Cpred, Upred Predicted class and classification probability, respectively.

t1, t2 Inference latency of the first and second stage, respectively.

tspec Specified latency constraint.

x

Chapter 1

Introduction

1.1 Problem Motivation

Malware, also known as malicious software, are software that conducts ma-

licious activities when executed on a victim device. These activities include

a wide-range of exploitative and destructive behaviours, such as the theft of

personal information, potential corruption of stored data, providing unverified

agents access to a device, etc. Classification of malware, based on behavioural

or static properties, is an important measure for curtailing the damage in-

flicted by malware. On infected devices, identifying the malware type allows

for accurate diagnostics, resulting in effective quarantining and removal of the

malware. Detecting particular malware types from connected networks allows

for security analysts to design effective precautionary measures, in anticipa-

tion of future attacks against endpoint devices. Yet, while it is critical that

the classification engine must be accurate, its inference process must also be

timely. A major challenge in the anti-virus industry is the vast amount of files

constantly being transferred through the networks. For example, during the

first quarter of 2020, Kaspersky reported 164,653,290 “unique malicious and

potentially unwanted objects” [1]. To handle the vast quantity of malware

efficiently, endpoint security software need to conduct malware classification

and analysis on incoming software files from external networks in real-time.

Thus, the average inference latency must be low, as otherwise the resultant

slowdown will negatively impact other operations running on the endpoint

devices. Therefore, achieving high accuracy with low latency is the principal

1

objective of real-time malware classification.

1.2 Malware Classification

By methodology, malware classification can be broadly separated into two

categories: dynamic and static analysis. Dynamic analysis usually requires

the execution of suspicious software within a sandbox environment, with the

malware activity observed in runtime. Although this approach can produce

detailed information regarding the malicious behaviour of a file, it is slow to

perform. The requirement of a sandbox renders this approach inconvenient

in many scenarios. Alternatively, static analysis examines static features, or

signatures, extracted from software files to predict malicious behaviour. This

approach can be significantly faster than dynamic analysis, as malware execu-

tion is not required. Note that, many static analyses involve the decompilation

of binaries into assembly code or human readable languages, which is time-

consuming [2] and not suitable to real-time applications. Thus, many recent

publications on developing neural networks for malware classification focuses

on directly analyzing the raw bytes of the binary, with minimal preprocessing

or feature engineering.

Neural network classifiers for malware binary files can be further categorized

into two types: sequence-based and image-based classification. Sequence-

based classifiers, such as [3] and [4], applies 1D convolution onto raw byte

sequences for classification. However, a major challenge of sequence-based

classification is the modelling of long byte sequences in an efficient manner [5].

Image-based classifiers, on the other hand, first converts a binary file into an

image representation. Traditionally, this entails converting the byte sequence

into a greyscale image [6]. However, more recently, some research investigated

reforming the byte sequence onto frequency domain, such as [7], [8], and [9].

Many works, such as [10], [11], [12] and [13], have explored using different types

of convolutional neural network (CNN) models to improve malware classifica-

tion performance. Compared to byte sequences, images is viewed as a more

efficient representation of the binary file, at the cost of losing some level of

2

information. We note, from our survey of related works, that barring some

exception, such as [4] and [14], most classifiers are CNNs.

1.3 Our Contribution

We propose the application of the transformer architecture in both sequence

and image analysis to achieve superior classification accuracy. The trans-

former architecture [15] was first introduced in NLP, and have since achieved

state-of-the-art results in machine translation, summarization, question-and-

answering, etc. [16]. Functionally, transformers predominantly rely on the

self-attention mechanism to model inter-dependencies within a sequence. This

allows the capture of global contexts between all pairs of elements within the

sequence, whereas conventional convolutional layers could only capture local

context of elements within the scope of a kernel. We first introduce SeqConvA-

ttn, a CNN-transformer architecture designed to classify malwares from long

byte sequences.

We further extend the transformer classifier to image analysis. Recently,

[17] introduced the Vision Transformer, demonstrating that transformers could

also be applied to image classification. The underlying idea is to partition an

input image into non-overlapping sub-image patches. Self-attention can then

model the inter-dependencies between different pairs of patches, thereby cap-

turing the global context of the image. To our knowledge, there are currently

no published work on using transformers for image-based malware classifi-

cation. Thus we propose ImgConvAttn, a transformer model for classifying

malware from its image representation.

Finally, we present a two-stage framework to incorporate the two models,

SeqConvAttn and ImgConvAttn, together, such that the inference latency and

accuracy can be flexibly controlled. By design, the first-stage model generally

has a lower latency and but also lower accuracy, and the second-stage model

has a higher accuracy while incurring a higher latency. The idea is to rely on

the first stage for classification in the majority of cases, while sparingly em-

ploy the second stage only if the first-stage classification is uncertain. Based on

3

experimental observations, we also added a file-size-aware mechanism which

pre-emptively diverts certain binary files directly to the second stage to opti-

mize the framework, further reducing the inference latency while maintaining

high classification accuracy.

We evaluated the performance of the proposed models on two datasets, the

BIG 2015 Dataset from Microsoft Malware Classification Challenge [18] and

Sub-BODMAS, a select subset of the BODMAS Malware [19] Dataset. Our ex-

periments show that SeqConvAttn attained accuracy and weighted-F1 scores

supperior to most baseline models on sequence-based classification. ImgCon-

vAttn is also shown to be superior to the CNN baseline in image-based clas-

sification. We then evaluated the two-stage framework on the Sub-BODMAS

dataset and showed that as compared to independent baseline models. The

two-stage framework maintained a very high accuracy while reducing inference

latency significantly.

1.4 Thesis Outline

The content of this thesis is organized in the following manner. Chapter 2 is

a survey of related works. Chapter 3 explains of the designs of SeqConvAttn,

ImgConvAttn, and the two-stage framework. Chapter 4 details our experi-

ment settings global to all subsequent experiments. Chapter 5 presents the

experimental results of SeqConvAttn and ImgConvAttn as independent mod-

els. Chapter 6 presents the experimental results of the two-stage framework.

Chapter 7 contains the conclusion and discusses potential future works.

4

Chapter 2

Related Work

2.1 Malware Classification by Raw Bytes

Static analysis examines the signatures, static features derived from associated

files, to determine the malware type. Technically, such files could be binaries,

assembly code, or even human-readable programming language. However, in

most situations, only software binaries are readily available. Decompilation

of binaries into assembly code or programming language can often be time

consuming [2]. To reduce the overall inference latency, file preprocessing time

should also be minimized. We therefore forego any feature extraction tech-

niques that involve assembly code or human readable languages, and focus

solely on classification using raw binaries.

2.1.1 Byte Sequence Classification

Intuitively speaking, the content of a binary file can be directly examined

as a sequence. Based on our survey, the first malware classifier for byte se-

quences developed is Malconv, proposed by [3]. Given a byte sequence, Mal-

conv first performs byte embedding, then forwards the embedded sequence

through gated convolution [20]. Notably, the convolutional layer kernel size

and strides are set to 512 bytes, aggressively reducing the sequence length.

[21] then proposed an alternative deep architecture using multiple convolu-

tional layers, with smaller kernel and stride sizes. However, these models

are only concerned with malware detection, a binary classification problem.

[22], [23], and [24] formulated several adversarial attacks on Malconv to iden-

5

tify the weakness of the architecture. [25] conducted activation analysis to

gain further insights about the information learned from byte sequences. The

analysis concluded that filters from low-level convolutional layers were able to

identify salient ASCII and instruction sequences. [26] then extended Malconv

to multi-class classification on the BIG 2015 Dataset [18]. Finally, [5] intro-

duced two major improvements on the original Malconv architecture. First,

a convolution-over-time scheme was introduced, allowing Malconv to process

binary files of arbitrary sizes in an efficient manner. Second, to better model

dependencies between distant elements in the byte sequence, they proposed

the Global Channel Gating mechanism.

Alternative to Malconv, [4] and [14] have also introduced CNN-BiLSTM

and CNN-BiGRU, respectively, to process raw bytes. To handle the length

of the byte sequence, these approaches directly handled the byte sequences as

1D greyscale images, and resized the images to a length of 10,000 elements.

More importantly, these papers demonstrate the potential of applying NLP

architectures to malware classification.

2.1.2 Malware Image Classification

The earliest research in image-based classification by malware was conducted

by [6]. The approach used K-nearest neighbour classification on texture fea-

tures extracted from malware greyscale image. More importantly, the ap-

proach laid the groundwork in binaries-to-image conversion. For each binary

file, an image width is assigned according to the file size. The byte sequence

from the file is then restructured by line-breaking over the image width. In-

terpreting the each byte value as a brightness value, the binary file is thus

converted into a greyscale image. From our knowledge, the first known re-

search on applying CNN classifier to malware images was published by [10].

Their investigated architectures are shallow, with the deepest model consisting

of 3 convolutional layers and 2 fully connected layers. [11] proposed integrat-

ing deep networks with transfer-learning for malware classification, where the

bottleneck feature from ResNet50 [27] is taken to train shallow classifier net-

works. To accommodate the input constraint of ResNet50, the greyscale is

6

directly converted into RGB image, and re-sized to the specified input dimen-

sions. [12] repeated this approach, but replacing ResNet50 with VGG16 [28].

[29] further proposed integrating attention mechanism into CNN, both to im-

prove classification accuracy and to identify salient sections in the greyscale

image for analysis. [30] applied Inception-v3 [31] and Inception-ResNet-v2 [32]

for android malware detection. [33] then further investigated transfer learning

with ResNet50. In general, there is a clear trend of employing deep network

for achieving greater accuracy. However, this also translates to higher per-file

inference latency. On Table 2.1, we report the CPU latency for single image

feedforward through common deep models based on their TorchVision imple-

mentation. While the latency could be significantly reduced by running these

models on sufficiently powerful GPU, the environment firewall and end-point

security software are installed in may lack such hardware, rendering them

unsuitable for many applications.

Alternative to greyscales, some recent works have also proposed generating

malware images by analyzing byte frequency. [7] proposed generating malware

image through Markov image (transition matrix) rather than greyscales. The

markov image has a dimension of 256 × 256, with each pixel representing the

transition probability from one byte value to another in the byte sequence.

[8] further experimented with training a deep CNN model from scratch using

Markov images. [13] devised an architecture to accept the Markov image along

with the greyscale and RGB images, augmenting the information extracted

from the binary file. [9] investigated an alternative by directly recording the

frequency count of each byte bigram, and then performing discrete cosine

transform to desparsify the image.

We curtly note the existence of other byte-level feature engineering tech-

niques for extracting texture statistics from greyscale images. For example,

[34] experimented with using Gabor filter, histogram of oriented gradient, and

local binary pattern analysis to enhance texture information of the greyscale.

[35] proposed a texture partitioning and extraction technique to omit non-

important regions of a greyscale image representation. [2] devised second order

texture features by statistical methods. However, these methods currently do

7

not appear to be widespread.

Table 2.1: FeedForward Time of Image-based Deep Networks in TorchVision

Setting CPU Latency [ms]

VGG-16 (Input of 256 × 256) 116.8

ResNet50 (Input of 256 × 256) 89.7

Inception-v3 (Input of 300 × 300) 115.3

2.2 Transformers in Malware Classification

Research on applying transformers to malware classification is fairly recent,

with published works being relatively scarce. [36] devised I-MAD, a hierar-

chical transformer-based framework for classification on assembly code. The

work defined three different hierarchy of content in an assembly file: assembly

instructions, basic blocks, and assembly functions. The architecture employs

three transformers, with each transformer responsible for computing the en-

coding of its respective data hierarchy. For example, the encoding of the

basic block would be computed by using its component assembly instructions

as the input of the corresponding transformer. [37] presented an alternative

hierarchical transformer classifier, again for assembly code. [38] proposed a

non-hierarchical transformer model, where the input is a sequence of high

frequency words extracted from the assembly code. [39] investigated using

variants of BERT [16] to detect Android malware based on files from decom-

piled APKs. Note that these works all require the decompilation of malware

binaries to obtain the assembly code. From our knowledge, no works regarding

the application of transformers to raw binaries for malware classification have

yet been published.

8

2.3 Two-Stage Framework for Malware Clas-

sification

A number of works have investigated using two-stage frameworks for malware

classification. However, the purpose of the stages differs greatly between de-

signs. [40] implemented the framework to perform tiered classifications: the

first stage detects malware from benignware, the second stage classifies the

malware identified from the first stage. The designs of [41] and [42] are func-

tionally similar, but specialized their second tier to only discerning whether the

malware is a ranswomware. Echelon, developed by [43], uses the second stage

to double-check software that are predicted benign by the first stage, reducing

the overall false negative rate, where actual malware are predicted as benign.

TuningMalconv, [44], uses the second stage to reclassify a malware only if the

first stage classification is uncertain, with the intent of boosting the accuracy of

the first stage without significantly increasing the average latency. TAMD [45]

is functionally similar, but architecturally more comprehensive. The design

employs model ensembles, rather than single models, in both stages. Addi-

tionally, the framework is designed to facilitate both efficient model training

and classification.

9

Chapter 3

Model Designs

In this section, we first provide a background on the transformer architecture.

Afterwards, the designs of our sequence-based and image-based classifiers are

described separately. Finally, the design two-stage framework is given.

3.1 Background on Transformer

Transformer [15] refers to a family of architectures that relies self-attention to

model inter-dependencies between elements in a sequence. The underlying idea

of is that the encoding of any target element can be computed as the aggregate

of the encodings of all source elements within the sequence. The extent that a

particular source element contributes to the aggregation process is determined

by an attentional weight. Colloquially, the weight is the amount of attention

the target pays to the source. Mathematically, the entire aggregation process

is referred to as scaled dot-product attention, defined by [15] as Equation 3.1.

SA(X) = softmax(
XWQ(XWK)T√︁

dkqv
)XWV (3.1)

Note that X ∈ RN×dm is the initial sequence encoding of length N and an

encoding dimension of dm. Learnable weights WQ,WK ,WV ∈ Rdm×dkqv are

used to project the X into, respectively, the query XWQ, key XWK , and

value XWV , with dkqv as the encoding dimension of these sequences. From

the perspective of the target element, scaled dot-product attention computes

its encoding by conducting a weighted sum over all source elements in the

value, with the attentional weights determined by the similarity of between

10

its corresponding query element and the every key element. By carrying out

the entire self-attention computation as a series of matrix multiplication, all

target element encodings are thus computed concurrently.

To learn the different types of inter-dependencies that may exist within

the sequence, [15] proposed employing multiple scaled dot-product attention

heads in parallel. As the weight of each attention head is initialized differently,

different heads could potentially capture different type of inter-dependency in

the sequence. To combine the information learned from the parallel heads,

their outputs are concatenated along the encoding dimension and re-projected

to a final encoding. The entire design is referred as multihead attention, with

the mathematical definition is presented by 3.2.

MHA(X) = Concat([SAh(X)]Hh=1)W
O (3.2)

Here, H refers to the number of parallel attention heads, and WO ∈ RHdkqv×dm

the post-concatenation projection weight. Note that in most transformer de-

signs, the model dimension stays invariant after undergoing multihead atten-

tion. Thus, for all subsequent models, dm = Hdkqv.

A conventional transformer architecture is composed of multiple encoder

blocks connected in a serial fashion, Each block contains a multihead attention

component followed by a feedforward component, with interjecting residual

connection after each component. The feedforward blocks consists of a ReLU

activated expansion layer followed by restorative layer, as shown by Equation

3.3 [15].

FF (X) = ReLU (XW1 + b1)W2 + b2 (3.3)

Note that the expansion layer parameters W1 ∈ Rdm×Bdm , b1 ∈ RBdm and the

restorative layer parameters W2 ∈ RBdm×dm , b2 ∈ Rdm . Here, B is referred to

as an expansion factor.

Transformers have no implicit awareness of the positions of elements in

the sequence. To remedy this, [15] proposed adding positional encoding to

the initial sequence encoding before undergoing self-attention. The positional

encodings of the two proposed models differ. Thus, further details are deferred

to description about the individual models.

11

Figure 3.1: Note that the K transformer blocks are connected serially.

3.2 SeqConvAttn: Byte Sequence Classifier

Intuitively, the content of a binary file can be represented as a byte sequence.

We devise the SeqConvAttn to classify malware from byte sequence alone,

with the architecture shown on Figure 3.1. Given a byte sequence of length

M , where M >> N , the input byte sequence first undergoes byte embedding.

The embedding layer maps each of the 256 byte values (and a unique padding

”byte”) to a corresponding vector. The embedded sequence then undergoes

1D convolution. Following [3], the convolutional layer is designed with dm

large kernels with size S and stride of S. The purpose of this layer is to com-

press every segment of S bytes into a single sequence element, aggressively

reducing the output sequence length to N = M
S

. The length reduction is nec-

essary as the computation of the scaled dot-product attention from Equation

3.1 scales quadratically to the sequence length N . Exceedingly long input se-

quence would therefore require too much computation resources and incur an

unacceptably long feedforward time.

After propagating through the 1D convolutional layer, position encoding is

added onto the post-convolution sequence, imbuing each element with infor-

mation about its position in the sequence. The positional encoding of SeqCon-

vAttn follows the original approach proposed by [15], as shown in Equation

3.4.

PE (n, id) =

⎧⎨⎩sin n

10000
2i
dm

, id mod 2 = 0

cos n

10000
2i
dm

, id mod 2 = 1
(3.4)

12

Here n ∈ Z ∩ [1, N] indicate the positional index of the an element in the se-

quence, and id ∈ Z ∩ [1, dm] the index of the encoding dimension. Essentially,

this positional encoding expresses positional context through a set of alternat-

ing sinusoids. After adding positional encoding, the resultant sequence X then

propagates through a series of K transformer blocks. We refrain from further

exposition about transformers here, as details are already presented in Section

3.1. Upon obtaining the transformer output encoding, it is then max-pooled

element-wise into a fixed dimension vector of dimension dm. This vector then

proceeds through additional fully-connected layers. The final output then un-

dergoes softmax, yielding the classification probability.

One potential limitation of this architecture is that the SeqConvAttn, once

trained, cannot adapt to the classification new malware classes without mod-

ification. The reason lies with the final layer of the fully connected-layers

block, whose width needs to match the number of classes specified by the

user. However, the actual modification necessary to accommodate changes

in the number of malware classes is relatively minimal. Specifically, the final

layer in the fully-connected layers block is replaced with a layer whose width

matches the number of malware classes. Optionally, all parameters in the

fully-connected layer are then re-initialized. Finally, the modified SeqConvA-

ttn model is then finetuned with additional data to learn to predict the newly

specified malware classes.

3.3 ImgConvAttn: Malware Image Classifier

As self-attention computation scales quadratically to input length, reducing

the input length should result in latency reduction for malware classification.

The most direct approach to reduce sequence length is truncation. However,

overly truncating a byte sequence may remove salient sections critical to mal-

ware identification. For example, [5] presented a case where the malware

author simply inserted malicious payload after the truncation index, thereby

bypassing classifier detection. To overcome this issue, we explored converting

the contents of binary files into images to obtain an efficient representation

13

Figure 3.2: Note that the append and detach blocks have no learnable param-
eter, but used to indicate modifications to the sequence encoding.

of malware in its entirety. [17] recently devised the Vision Transformer, a

transformer model specialized for image classification. Following the theme

of leveraging self-attention, we further implemented ImgConvAttn, a Vision

Transformer model specialized for image-based malware classification. In this

section, we first describe the structure of ImgConvAttn. Afterwards, we de-

scribe the different binary-to-image conversion methods investigated.

3.3.1 Model Architecture

As illustrated in Figure 3.2, given a malware image, ImgConvAttn first process

the image through a single 2D convolutional layer. The 2D convolution consists

of dm kernels with size S×S and stride of S in both horizontally and vertically.

This step effectively partitions the input image into non-overlapping sub-image

patches, and projects each sub-image into its corresponding encoding vector.

Afterwards, the patch encodings are flattened into a sequence. A placeholder

vector, referred to as [SOS] (start-of-sequence), is appended to the front of

14

the sequence. The purpose of this [SOS] token is to efficiently encapsulate

information within of the entire sequence into a single vector of length dm.

Position encoding are then added to preserve positional context of the patches.

According to [17], the existence of positional encoding is more important than

its type. Their experiments did not show noticeable advantage of using one

particular type of positional encoding over another, so long as some type of

positional encoding is used. Thus, we followed the implementation of [46],

where the positional encoding of ImgConvAttn is designed to be learnable

parameters, such that it can adapt to the model during training.

The resultant sequence encoding then passes through a number of a trans-

former encoder blocks. We refrain from further exposition about transformers

here, as further details are present in Section 3.1. Upon obtaining the trans-

former output sequence, only the [SOS] encoding is kept as the latent image

representation, and the rest of the sequence discarded. The idea is that af-

ter multiple layers of self-attention, the finalized [SOS] encoding should retain

sufficient context about the original image. To generate the final classification,

the [SOS] encoding propagates through additional fully connected layers, and

then undergoes softmax to generate classification probability.

As with SeqConvAttn, ImgConvAttn can be modified and finetuned with

minimal effort to adapt to changes in the malware classes. The exact proce-

dures are exactly the same as those introduced for SeqConvAttn in Section

3.2.

3.3.2 Image Generation

Based on our survey, there are predominantly two approaches to convert bi-

naries to images. The traditional approach, proposed by [6], converts a binary

into a greyscale image. Recent works such as [7], [8], and [13] explored gen-

erating Markov image. Influenced by [9], we further investigate generating

malware image using the bigram occurrence count histogram, referred subse-

quently as bigram frequency image, as a representation. We elaborate on the

specific image generation procedure here.

15

Figure 3.3: Top: The basic two-stage framework proposed. Bottom: A vari-
ant with an additional file-size-aware mechanism, which pre-emptively diverts
large binary files directly to the second-stage.

• To generate the bigram frequency image, the occurrence count of each of

the 65,536 distinct bigrams within a byte sequence are first tallied into a

histogram. Afterwards, the histogram is re-arranged into a matrix of size

256 × 256, where an entry at row i and column j indicates the number

of occurrence of bigram (i, j).

• Markov Image: The Markov image records the transition probability

between distinct byte values within the byte sequence. Specifically, for

an entry at row i and column j, its value indicate the probability of byte

j following immediately after byte i in the byte sequence.

• Greyscale: To convert a byte sequence to a greyscale, we enforce a fixed

width of 256 bytes, and line-break the byte sequence into consecutive

lines. Here, each byte is considered as a brightness value. To ensure

consistent image dimension with respect to the bigram frequency and

markov image, the image is resized into a 256 × 256 matrix bilinear

interpolation.

16

3.4 Two-Stage Framework

Theoretically, SeqConvAttn and ImgConvAttn are designed to be functionally

complementary. Whereas SeqConvAttn should be more accurate, ImgConvA-

ttn should be faster. We draw inspiration from [44] and [45], and devise a

two-stage framework to leverage the advantage of both models, as shown by

the design on the upper portion of Figure 3.3. The underlying intent is to

avoid unnecessarily running the slower SeqConvAttn if ImgConvAttn can gen-

erate a confident prediction. We assign ImgConvAttn as the first-stage, with

an expected per-file inference latency of t1. SeqConvAttn is then assigned

as the second-stage, with a latency of t2. Given a binary file, ImgConvAttn

would conduct the initial classification. The classification uncertainty is then

checked against a threshold value υ. If the uncertainty is below the threshold,

the binary file is assigned to the class predicted by ImgConvAttn, concluding

the classification process. However, if the uncertainty exceeds the threshold,

the binary is subjected to reclassification by SeqConvAttn. Assuming that

the ImgConvAttn is sufficiently confident in its predictions most of the time,

the majority of binary files should only incur a inference latency of t1, while

the minority would incur a latency of t1 + t2. In our design, classification

uncertainty is defined as Equation 3.5.

Upred = 1 − P(Cpred) (3.5)

Here, Cpred and Upred refers to, respectively, the predicted class and the clas-

sification uncertainty. P refers to the probability ”operator”.

Proper setting of uncertainty threshold υ offers meaningful control in the

tradeoff between latency and accuracy of the two-stage framework. Thus we

introduce a simple approach to determining the υ for a specified latency re-

quirement using a set-aside development (validation) set. Consider an arbi-

trary uncertainty threshold υp, such that p% of files are expected to undergo

SeqConvAttn reclassification. For a given latency constraint tspec, we could

solve for the percentage of the files permitted for reclassification by Equation

17

3.6.

p% =
tspec − t1

t2
(3.6)

Once p is solved, the corresponding υp could then be experimentally deter-

mined by assessing the classification uncertainties of ImgConvAttn on the

development set. Specifically, we set υp to the (100 − p)th percentile, such

that only the p% most uncertain cases proceed to SeqConvAttn. Assuming

that the development set is sufficiently representative of the test environment,

a framework with uncertainty threshold υp should approximately meet the

latency constraint of tspec.

We curtly note that the lower Figure 3.3 is a variant of the two-stage frame-

work. This variant contains a supplementary conditional that pre-emptively

redirects large binaries files that are likely to incur a latency t1 ≥ t2 to directly

undergo second-stage classification. Note that this variant is devised based on

experimental observation. Thus, we defer further discussion of this variant to

Section 6.1.

18

Chapter 4

Common Experiment Settings

4.1 Datasets

4.1.1 BIG 2015

The BIG 2015 [18] was originally provided for the Microsoft Malware Classi-

fication Challenge. While the original dataset consists of a ”train” and ”test”

partition, only the ”train” set is labelled. We partitioned the 10868 labelled

malware binaries in ”train” set into disjoint train, validation, and test set. We

present the statistics of partitioned datasets on Table 4.1.

Table 4.1: Statistics of BIG 2015 Dataset

Malware Train Valid Test

Ramnit 1216 143 182

Lollipop 1979 249 250

Kelihos ver3 2410 273 259

Vundo 368 54 53

Simda 36 2 4

Tracur 616 63 72

Kelihos ver1 327 39 32

Obfuscator.ACY 967 129 132

Gatak 814 103 96

All 8733 1055 1080

For each malware, the original dataset provided its hexadecimal representa-

19

tion. Thus, we converted the hexadecimals into bytes, generating the binary

file. For some of these files, some hexadecimals are of the value ”??”. These

instances were dealt with by interpreting all ”??”s as ”00”s during the conver-

sion process. Note that the resultant binary files are sterilized, with the PE

headers removed by the original vendor before distribution.

For subsequent experiments, we do not directly record the reported per-

formance on Big 2015 from surveyed publication into the results table. As

the test sets differs between different publications and our work, we consider

direct comparisons infeasible. However, where necessary, we will reference

results from surveyed publications for explanation purposes.

4.1.2 Sub-BODMAS

The original BODMAS dataset [19] contains of 57,293 malware binaries, be-

longing to one of the 581 malware families. However, the majority of mal-

ware classes possess insufficient number of malware samples for meaningful

assessment. Consequently, only a subset of the malware files are selected for

experimentation. Specifically, we only retrieved files whose malware class con-

tains more than 1000 instances timestamped from and after January 1, 2020.

The resultant dataset contains 23065 malware binaries in total, drawn from

11 classes. The subset is then partitioned into disjoint train, validation, and

test sets. We refer to the resultant dataset as Sub-BODMAS. Statistics on

Sub-BODMAS is presented on Table 4.2.

4.2 Test Metrics

We use three metrics to assess the quality of our model, accuracy, weighted-F1,

and latency.

• Accuracy measures the proportion of test samples whose predicted class

matches the ground class.

• Weighted-F1 is a weighted average of the one-vs-all F1-score of each

class, with the weights the number of test instances belonging to each

20

Table 4.2: Statistics of Sub-BODMAS Dataset

Malware Train Valid Test

sfone 3618 362 543

wacatac 1524 153 228

upatre 2013 202 302

wabot 2522 253 378

small 2000 201 300

ganelp 1632 164 244

dinwod 1106 111 166

mira 1042 105 156

berbew 1112 112 166

sillyp2p 1048 105 157

ceeinject 832 84 124

All 18449 1852 2764

class.

• Latency is the average duration between when the binary file content is

loaded into RAM and when the predicted classification is obtained. For

assessment of independent models, this accounts for the byte sequence

preprocessing (such as truncation, image conversion) and model feedfor-

ward time. For the two-stage framework, this also includes time taken

by the latency control measures. Note that to address portability issues,

the latency assessment is done by running the classifiers on CPUs only.

4.3 Test Environment

As our experiment involves time assessment, we list the relevant specifications

of our test environment on Table 4.3. Note again that while the GPU is listed,

it is only used for model training, and not for testing.

21

Table 4.3: Test Environment Specification

Setting Specification

Python 3.6.9

Pytorch 1.7.1+cu110

Cuda 11.2

OS Ubuntu 18.04.5 LTS

CPU AMD Ryzen 9 3900X 12-Core Processor

Memory 64 GB

GPU GeForce RTX 2080 TI

22

Chapter 5

Independent Model
Experiments

5.1 Sequence-based Classification Experiments

5.1.1 Experiment Design

For preprocessing, we standardize all byte sequence length to 400,000. If the

original byte sequence is longer than this limit, it is truncated to preserve only

the first 400,000 bytes. If the sequence has fewer than 400,000 bytes, padding

”bytes” are appended to the malware until the specified length is reached.

For SeqConvAttn, the initial embedding dimension is 8. The 1D convolu-

tional layer consists of 128 kernels, each with the width and stride of to 500.

The transformer section consists of 3 blocks. Each transformer block has a

model dimension of 128, matching the post-convolution encoding dimension.

The multihead attention consists of 8 parallel scaled dot-product attention

heads. The feedforward components of each transformer block has an expan-

sion factor of 4. The final classifier consists of two additional linear layers,

with the first layer having a width of 128, and the width of the second layer

determined by the number of classes.

For model training, the training batch size is 25. During training, Adam

optimization is used, with a learning rate of 1e-4, β1 = 0.9, and β2 = 0.999.

The training process lasts for 25 epochs, with the checkpoint yielding the

highest validation accuracy selected as the optimal version.

Our baseline for comparison against SeqConvAttn are listed below.

23

• Malconv [3]: Our Malconv implementation is taken from existing Github

code [47]. Note that for analysis purposes, we adjusted the original

convolutional kernel and stride size from 512 to 500.

• Malconv+GCG [5]: This model introduced Global Convolution Gating

to better learn inter-dependencies between distant elements. The orig-

inal code is taken from [47], but extensively modified to remove the

convolution-over-time mechanism. Again, the convolutional kernel and

stride size are set to 500.

• CNN+BiLSTM [Ours]: We drew inspiration from [4], and implemented

our version of CNN+BiLSTM model. Compared to the proposed Se-

qConvAttn model, the only difference is the replacement of the trans-

former section with a single biLSTM layer.

• CNN+BiGRU [Ours]: This model is very similar with the CNN+BiLSTM

[Ours] baseline, with the only difference being that the BiLSTM layer is

exchanged for a BiGRU model.

• CNN+BiLSTM* [14]: Technically, this CNN-BiLSTM design is based on

[4]. However, as the paper did not offer sufficient information to repli-

cate the original model, we follow the replication given by [14], with one

major difference. We replaced the max-pooling layer with ReLU acti-

vation, and adjusted the convolution layers accordingly to maintain the

approximate intermediate feature map dimensions. Cursory experiments

demonstrated this improves the model accuracy. Additionally, this de-

sign likely better adheres to the design of [4], which did not employ

max-pooling. Note also that the input sequence of this model is ob-

tained by re-sizing the full byte sequence (without truncation) to 10,000

elements as a 1D greyscale image.

• CNN+BiGRU* [14]: This is very similar to CNN+BiLSTM*, with the

only difference being the replacement of the BiLSTM with BiGRU.

Again, the max-pooling layers are replaced with ReLU activation.

24

5.1.2 Experiment Results

Table 5.1: Results of Sequence-based Classification on BIG 2015

Model Accuracy Weighted-F1 CPU Latency [ms]

Malconv 95.28 95.11 19.1

Malconv+GCG 95.37 95.34 35.7

CNN+BiLSTM [Ours] 97.04 97.01 60.0

CNN+BiGRU [Ours] 95.46 95.31 54.5

CNN+BiLSTM* 93.61 93.60 6.2

CNN+BiGRU* 93.61 93.60 6.0

SeqConvAttn 97.22 97.22 34.1

On Big 2015, Compared to the baseline models, SeqConvAttn attained su-

perior accuracy and weighted-F1 score when compared to the baseline. The

next best model, CNN+BiLSTM, achieved a comparable accuracy score of

97.04. However, its CPU latency is about 25 ms longer than SeqConvAttn.

This is because the encoding process of LSTM is sequential, with the en-

coding element dependent on the previous state of the LSTM. SeqConvAttn

lacks this flaw, as the self-attention concurrently computes the encoding of all

elements in the sequence. Compared to Malconv, there is an apparent trade-

off between accuracy and latency, with SeqConvAttn being 2% more accurate,

while Malconv being 15 ms faster. Unexpectedly, Malconv+GCG also attained

an inferior accuracy when compared to SeqConvAttn, while incurring a com-

parable latency. As [5] designed Malconv+GCG to improve the modelling of

inter-depednecies between distant elements in a sequence, it is surprising that

SeqConvAttn achieved superior accuracy and weighted-F1 score. We surmise

that this may be caused by the byte sequence truncation done during pre-

processing. Potentially, using longer byte sequences as input could offset the

difference in accuracy between SeqConvAttn and Malconv+GCG. However,

that is beyond the scope of this investigation.

We note that SeqConvAttn also significantly surpassed CNN+BiLSTM*

25

in accuacy and weighted-F1. [4] reported an accuracy of 98.20% using the

CNN+BiLSTM model. However, we were not able to replicate such per-

formance using our implementation of CNN+BiLSTM*. Potentially, this is

caused by difference in sequence resizing algorithm or model designs, as in-

formation from the original publication is insufficient for model replication.

However, unless further information becomes available, we consider SeqCon-

vAttn as superior for classification accuracy.

Table 5.2: Results of Sequence-based Classification on Sub-BODMAS

Model Accuracy Weighted-F1 CPU Latency [ms]

Malconv 96.71 96.74 18.4

Malconv+GCG 96.92 96.94 36.4

CNN+BiLSTM [Ours] 96.89 96.91 55.4

CNN+BiGRU [Ours] 96.56 96.60 55.5

CNN+BiLSTM* 89.91 89.23 8.9

CNN+BiGRU* 89.91 89.58 8.0

SeqConvAttn 96.92 96.92 33.7

On Sub-BODMAS, the advantage of SeqConvAttn appears greatly dimin-

ished, with difference in accuracy and weighted-F1 score between different

models under 0.5%. For example, when compared to Malconv+GCG, the

accuracy and weighted-F1 of SeqConvAttn are comparable. Compared to

CNN+BiLSTM, and CNN+BiGRU, the most significant advantage of SeqCon-

vAttn is its latency, with a difference of 25 ms. When comparing SeqConvAttn

with Malconv, the tradeoff between accuracy and latency appears to favour

towards Malconv, as the slight improvement of 0.21% accuracy may not justify

a latency increase of 15 ms in many situation. Nevertheless, by accuracy alone,

SeqConvAttn still attained one of the highest scores. Furthermore, compared

to models of comparable accuracy, Malconv+GCG and CNN+BiLSTM, the

inference latency is still, respectively, comparable and shorter.

26

5.1.3 Visualization of SeqConvAttn Attention

We further investigate the features learned by the SeqConvAttn model. Recall

that the attentional weights correspond to the softmax(
XWQ(XWK)T√

dkqv
) matrix

in Equation 3.1. Additionally, note that each element in the post-convolution

sequence corresponds to a segment of 500 bytes. A high attention value at

row i and column j of the matrix thus suggests a salient dependency of byte

segment i on byte segment j. To visualize such inter-dependencies between

segments, attention maps of all attention heads in the final transformer block

are elementwise averaged into a single attention map. The resultant maps

for two malware samples are presented at the top of Figure 5.1. Note that

the softmax of Equation 3.1 is applied horizontally across the attention map.

Furthermore, natural log was applied to all values in the matrix before image

display for better visualization effect.

From the SeqConvAttn attention maps, several vertical highlights, or bright

green streaks, can be identified. Additionally, several faint horizontal lines are

also noted. That the column index of the vertical highlights and the row index

of the horizontal lines are the same is no coincidence, as they both address

the same sequence byte segments. Based on Equation 3.1, the vertical high-

lights indicate that most byte segments in the post-convolution sequence have

strong dependency to the highlighted byte segment. On the other hand, the

faint horizontal highlights indicate that for these byte segments, there are no

strong dependencies with respect to other byte segments in the sequence, as

the attentional weight is approximately equal across the sequence. Summar-

ily, the highlighted byte segments likely contain salient information critical to

malware identification. To some extent, the predominance of these highlights

for different byte sequences is somewhat unexpected, as it may imply that few

inter-dependencies exists between distant byte segments. However such impli-

cation is against intuition. Consider that in assembly code, conditional and

jump branches allow programs to execute instructions that are nonconsecutive

on the binary level, which can be interpreted as a form of dependency. The

more likely reason for the absence of inter-dependency is that by compressing

27

Figure 5.1: Left: The SeqConvAttn Attention Map (Top) and Malconv Gating
Map (Top) of a SillyP2P file. Left: The SeqConvAttn Attention Map (Top)
and Malconv Gating Map (Top) of a Berbew file.

segments of 500 bytes into single elements through 1D convolution, the resul-

tant element encodings likely lost inter-dependencies information contained in

the byte segments.

We further compared the attention map of SeqConvAttn to the gating map

in Malconv. Akin to the attention weights in SeqConvAttn, Malconv employs

gated convolution [20] to filter byte segment information for classification. The

bottom of Figure 5.1 displays the gating maps computed for the same malware

samples as that of the attention maps. Note that it is difficult to divulge from

the gating map the emphasis or suppression of information from a particular

byte segment. Unlike attention maps, whose value suppresses or emphasize

the entire element encoding, values of gating map can independently suppress

specific sections (along the dimension) of the element encoding. This hinders

the interpretability of Malconv, as salient byte segments cannot easily identi-

fied from the gating map. The best can be discerned from the gating maps

are the presence of different byte sections, indicated by the different texture

28

patterns, Potentially, this is indicative of different types of information being

presented by different byte sections. However, unlike SeqConvAttn attention

maps, it is difficult to identify individual byte segments that are salient for

classification. From this, we note another advantage of SeqConvAttn, that its

attention map is more readily interpretable for human analysis.

Comparing attention maps against gating maps, it is noted that dense sec-

tions of high attention byte segments in the former often corresponds to partic-

ular binary region of the latter. We suspect then, that the underlyng features

learned by ConvSeqAttn and Malconv are likely similar for many cases. This

potentially explains the close accuracy score attained on the Sub-BODMAS

dataset between the two models, as shown in Table 5.2. The fact that both

SeqConvAttn and Malconv appear to retrieve similar information, despite the

feature extraction mechanism being relatively different, suggests the limita-

tion of using convolution-based dimension reduction approach. Essentially,

the ability of transformers to model inter-dependencies between any pair of

elements is not applicable in most instances due to information lost during

1D convolution. Improvements in feature engineering, such that dependencies

between features are better enhanced, should be subjected to future investi-

gation.

5.2 Image-based Classification Experiments

5.2.1 Experiment Design

The ImgConvAttn is taken from an existing implementation of the Vision

Transformer [17] by [46]. The initial convolutional layer consists of 64 kernels

of dimensions 16× 16 and a stride of 16. The subsequent transformer consists

of 4 blocks, each having a model dimension of 64. Each multihead attention

contains 4 parallel attention heads. The feedfoward component has an expan-

sion factor of 4. The final classifier consists of a single linear layer, whose

width is determined by the number of class.

We assign a training batch size of 50, During training, the same Adam

optimization setting for the SeqConvAttn experiment is used here. Each model

29

is trained for 100 epochs, with the checkpoint yielding the highest validation

accuracy selected as the optimal version.

The baseline for comparison against ImgConvAttn is the 3C2D model [9].

The original design, proposed by [10], is a shallow CNN consisting of 3 convolution-

and-max-pooling layers and 2 fully connected layers with training dropout. [9]

added dropouts to the fully connected layer to improve model robustness. This

baseline is implemented based on description provided by [9]. Note that we did

not implement additional baselines with deep models to minimize the inference

latency. In addition, for each model, we experiment with three different types

of image: bigram frequency, Markov, and greyscale.

5.2.2 Experiment Results

Table 5.3: Results of Imaged-based Classification on BIG 2015

Model Accuracy Weighted-F1 CPU Latency [ms]

3C2D-Greyscale 91.30 91.38 2.8

ImgConvAttn-Greyscale 93.06 93.09 5.1

3C2D-Markov 96.67 96.63 6.0

ImgConvAttn-Markov 97.04 96.97 8.7

3C2D-Frequency 95.83 95.80 5.9

ImgConvAttn-Frequency 98.61 98.60 8.2

Two observations can be taken from experimental results of the BIG 2015.

First, the ImgConvAttn model is superior to the 3C2D model in classification

accuracy for all image types. While ImgConvAttn is generally 2-3 ms slower

than 3C2D, the average inference latency is nevertheless quite fast. Second, on

ImgConvAttn, between the different malware image types, bigram frequency

generates the best results, significantly outperforming greyscale and surpass-

ing Markov images in accuracy and weighted-F1. The synergy of these two

observations is demonstrated by the ImgConvAttn-Frequency model, which

impressively achieved a higher accuracy than SeqConvAttn, while only incur-

ring a quarter of the latency of the latter.

30

Table 5.4: Results of Imaged-based Classification on Sub-BODMAS

Model Accuracy Weighted-F1 CPU Latency [ms]

3C2D-Greyscale 89.22 88.27 8.4

ImgConvAttn-Greyscale 91.03 90.74 10.2

3C2D-Markov 95.12 95.07 20.8

ImgConvAttn-Markov 96.02 95.94 23.1

3C2D-Frequency 95.04 94.97 20.3

ImgConvAttn-Frequency 95.98 95.98 22.6

The same experiment is repeated on the Sub-BODMAS dataset, with ex-

perimental results again showing ImgConvAttn as the more accurate model.

Additionally, as all models are slower on Sub-BODMAS, the slight latency dis-

parity between 3C2D and ImgConvAttn becomes further insignificant. Note

that the cause of average latency increase on Sub-BODMAS is because Sub-

BODMAS binary files are generally larger than binary files in BIG 2015, which

slows down the image conversion step. Comparing the results for the bigram

frequency and Markov images, the resultant accuracy appears to be compa-

rable between the two image types on both ImgConvAttn and 3C2D. In any

case, when compared to greyscale images, both bigram frequency and Markov

images yielded significantly better accuracy and weighted-F1 score, but in-

curred a significantly longer latency. The latency disparity between greyscale

and other image types is caused by different image generation procedures,

as both bigram frequency and Markov image both requires the tallying of

bigram occurrence, whereas greyscale does not. Figure 5.2 plots the relation-

ship between binary file size (byte sequence length) and inference latency for

ImgConvAttn-Greyscale and ImgConvAttn-Frequency on the Sub-BODMAS

validation set. From the plots, strong linear relationships could be observed

for both image generation methods. Note that the presence of two lines for

the ImgConvAttn-Greyscale plot is caused by the conditional application of

byte sequence padding during the greyscale generation process.

Finally, we note that comparing the ImgConvattn with SeqConvAttn on

31

Sub-BODMAS, the selection of one architecture over another reflects a trade-

off between accuracy and speed. This is the expected scenario based on the

original design philosophy. Thus, we then experimented leveraging the advan-

tage of both using the two-stage framework.

5.2.3 Comparing Gresycale and Bigram Frequency Im-
ages

Noting that the the classification accuracy from bigram frequency images out-

performs that of greyscale images significantly, we further investigated the

reasons behind these results. On Figure 5.3 and 5.4, the greyscale and bigram

frequency image of three samples of Upatre malware from Sub-BODMAS test

set are presented. Note that for bigram frequency, we project the image as

a heatmap over the grey spectrum. Furthermore, certain pixel value in the

image are capped for viewing purposes. Additionally, we also present the

corresponding ImgConvAttn attention maps for analysis purposes. To visu-

alize each attention maps, attention maps from the attention heads of the

last transformer block are first averaged elementwise. The resultant map is

then further averaged across the sequence, perpendicular to the dimension of

softmax. This yields a vector, with each value the average attention over the

entire sequence. The [SOS] -associated attentional value is then removed, and

the resultant 256-length vector reshaped to a 16× 16 image. Thus, each value

in the attention map can be interpreted as the saliency of its corresponding

sub-image patch in the image. Note that grid lines are added to the greyscales

and bigram frequency images for visualization purposes.

The greyscale images, when compared with each other, are significantly

varied despite belonging to the same malware class. This is because the un-

derlying byte sequences from different file instances can differ greatly. Such

variation between the images likely make acquiring the salient features for

classification difficult. As observed from the corresponding attention maps,

the salient patches identified from the three gresycale images have little in

common. However, the more fundamental cause for the poor accuracy from

greyscale image is two fold. First, converting byte sequence to 2D image in-

32

troduces relationship between bytes that are not existent in the original 1D

format. Such relationship could be easily altered by shifting the position of

certain byte sections or interjecting bytes at some locations, resulting in sig-

nificant variation in the resultant greyscale. Second, the byte value cannot

be interpreted as a greyscale value. This is because distinct byte values, such

as 12 (0x0C) and 255 (0xFF) do note have a comparative relationship that

defines one value as greater than the other. This issue becomes relevant when

resizing the greyscale, as the interpolation from image pixels has no meaning-

ful explanation. Note that from our survey, some publications did achieve very

high accuracy using greyscale only. For example, the transfer-learned MCFT-

CNN [33], based on Resnet50 [27], reported an accuracy of 98.63%. Thus,

the greyscale-based classification is not necessarily discredited as an effective

type of malware image. However, its lack of an intuitive justification must be

acknowledged.

Compared to greyscale images, the bigram frequency images from differ-

ent Upatre samples appear, at least superficially, to be relatively consistent.

Overlaying the malware ImgConvAttn attention maps onto their respective

frequency images, a number of salient patches are appear common between

the instances. For example, using notation [row, column], patches [0, 3], [0,

7], [0, 10], [0, 12], are highlighted to some extent in all three samples. As

each patch encapsulate the frequency of 256 distinct bigrams, this suggests

that certain bigrams within the highlighted sub-images are salient for mal-

ware identification, with the more frequent bigrams being the priority candi-

dates. The potential correlation between bigrams and malware class can also

be intuitively justified. The execution of malicious activity may rely on partic-

ular instruction sets, which remains consistent between different samples. The

presence of these instruction sets may be reflected by particular occurrence

frequency of specific bigrams. As the bigram frequency is a matrix, the entry

corresponding to a particular bigram occupies the same pixel for all images.

Thus, salient information can be captured for more easily by ImgConvAttn,

leading to higher classification accuracy.

33

Figure 5.2: Top: The relation between file size and inference latency for
ImgConvAttn-Greyscale. Note that the dashed red line separates the data-
points into two disjoint subsets. A linear equation is then derived for each
subset. Bottom: The relation between file size and inference latency for
ImgConvAttn-Frequency.

34

Figure 5.3: Left: Generated Greyscale Image. Right: Visualization of Img-
ConvAttn Attention Map. Note that reach row corresponds to a different
Upatre sample.

35

Figure 5.4: Left: Generated Bigram Frequency Image. Right: Visualiza-
tion of ImgConvAttn Attention Map. Note that reach row corresponds to a
different Upatre sample.

36

Chapter 6

Two-Stage Experiments

6.1 Experiment Design

We experimented with two two-stage framework designs, as shown by Diagram

3.3. The first design is a basic design of the two-stage framework. The second

contains an additional file-size-aware mechanism, such that binary files of suf-

ficiently large size are sent directly to the second-stage, bypassing first-stage

classification altogether. The intent of this mechanism is to reduce the average

inference latency of the framework. Results from image-based classification,

as shown by Figure 5.2, demonstrate that larger files (longer byte sequences)

incur larger latency due to the image generation process. For several binary

files, the incurred latency of ImgConvAttn exceeded the average latency of

SeqConvAttn, resulting in t1 ≥ t2. Diverting these large binary files directly

to SeqConvAttn would reduce the latency and potentially improve prediction

accuracy. Given the linear equation modelling the relationship between file

size and latency, we set the expected latency to 30 ms (approximately the

latency of SeqConvAttn), and determine the approximate file size threshold.

Note that for ImgConvAttn-Greyscale, we employed the linear equation with

the shallower slope.

We refer to the two-stage frameworks as ⟨Stage1⟩-⟨Stage2⟩-[fsa]-⟨p⟩%. ⟨Stage1⟩

and ⟨Stage2⟩ are the incorporated models. The optional term [fsa] is abbre-

viation of ”file-size-aware”, indicating that the two-stage framework design

contains such mechanism to divert large binaries directly to the second-stage.

Value p is the expected percentage of files directed to the second-stage based

37

on uncertainty threshold setting, which maps to specific uncertainty thresholds

determined from the validation set. Note that while in real-world application,

we expect that the uncertainty threshold υ is selected based on a specified

latency constraint tspec using Equation 3.6. However, for this experiment,

uncertainty threshold υ is selected based on p%, based on development (val-

idation) set performance, for ease of comparison. We list these uncertainty

thresholds on Table 6.1.

The model pairs integrated in the two-stage framework are the following:

• ICAGrey+SCA: ImgConvAttn-Greyscale as first-stage, SeqConvAttn as

second-stage.

• ICAFreq+SCA: ImgConvAttn-Frequency as first-stage, SeqConvAttn as

second-stage.

Note that a two-stage framework that incorporates ImgConvAttn-Markov was

not implemented, as it is demonstrated comparable to ImgConvAttn-Frequency

in both accuracy and latency. For the file-size-aware two-stage variants, the

computed file size threshold for ICAGrey+SCA-fsa is 13 MB. For ICAFreq+SCA-

fsa, the threshold is 5 MB.

6.2 Results on Two-Stage Framework

Table 6.1: Uncertainty Threshold υ for Two-Stage Framework on Sub-
BODMAS

Percentage to Second Stage ICAGrey-SCA ICAFreq-SCA

p = 5 0.35199 0.21816

p = 10 0.26004 0.04455

p = 15 0.17975 0.01322

p = 20 0.05142 0.00808

p = 25 0.01374 0.00587

p = 30 0.00541 0.00455

38

Table 6.2: Results of Two-Stage Framework Classification on Sub-BODMAS

Model Accuracy Weighted-F1 CPU Latency [ms]

ICAGrey-SCA-5% 92.76 92.59 12.1

ICAGrey-SCA-10% 93.60 93.48 13.9

ICAGrey-SCA-15% 94.54 94.43 15.8

ICAGrey-SCA-20% 95.51 95.41 17.8

ICAGrey-SCA-25% 95.84 95.75 19.4

ICAGrey-SCA-30% 96.06 95.98 20.8

ICAFreq-SCA-5% 96.67 96.66 24.0

ICAFreq-SCA-10% 96.81 96.80 25.4

ICAFreq-SCA-15% 96.92 96.91 27.2

ICAFreq-SCA-20% 96.96 96.95 29.8

ICAFreq-SCA-25% 96.96 96.95 30.97

ICAFreq-SCA-25% 96.96 96.95 32.52

ICAGrey-SCA-fsa-5% 93.45 93.32 11.1

ICAGrey-SCA-fsa-10% 93.92 93.80 12.0

ICAGrey-SCA-fsa-15% 94.72 94.61 13.5

ICAGrey-SCA-fsa-20% 95.62 95.52 15.2

ICAGrey-SCA-fsa-25% 95.84 95.75 16.5

ICAGrey-SCA-fsa-25% 96.06 95.98 19.0

ICAFreq-SCA-fsa-5% 96.78 96.77 14.4

ICAFreq-SCA-fsa-10% 96.85 96.84 14.8

ICAFreq-SCA-fsa-15% 96.96 96.95 17.0

ICAfreq-SCA-fsa-20% 97.00 96.99 17.4

ICAFreq-SCA-fsa-25% 97.00 96.99 21.2

ICAFreq-SCA-fsa-25% 97.00 96.99 22.1

For all designs, it is observed that the adjustment of the uncertainty thresh-

old υ does offer control between the accuracy and latency for the two-stage

frameworks, with both metrics monotonically increasing with smaller uncer-

39

tainty threshold (larger p%). However, at some point, there is always a

clear effect of diminishing return observed. This effect appears when p ∈

{15, 20, 25, 30}. At this range, further increase in latency corresponds to suc-

cessively smaller gain in accuracy. The reason for this phenomenon is that with

smaller uncertainty thresholds, binary files with more certain classification are

also subjected to second-stage reclassification. As the first-stage classifica-

tion with higher certainty are more likely to be correct, reclassification by the

second-stage would likely yield the same prediction. This redundancy thus

results in the observed diminishing returns.

Examining between ICAGrey-SCA and ICAFreq-SCA frameworks, former

is significantly faster. However, the accuracy of ICAGrey-SCA is left wanting,

with ICAGrey-SCA-25% not even matching the accuracy of ICAFreq-SCA-5%,

or that of most of the sequence-based classifiers. This observation is also noted

with the file-size-aware two-stage frameworks, where ICAGrey-SCA-fsa is still

inferior to ICAFreq-SCA-fsa on accuracy. Examining the latency difference

between ICAGrey-SCA and ICAGrey-SCA-fsa, a moderate latency decrease

of 1-3 ms is achieved by the latter design. However, a significant latency reduc-

tion of about 10 ms is noted between the ICAFreq-SCA and ICAFreq-SCA-fsa.

This makes sense, as the latency of bigram frequency image generation scales

worse against file size when compared to greyscale, this results more files di-

verted directly to the second-stage. Comparing the latency ICAGrey-SCA-fsa

with ICAFreq-SCA-fsa, the speed advantage of the former is effectively nulli-

fied. We conclude that despite the two-stage model being capable of offsetting

the inferior accuracy of the first-stage model through occasional reclassifica-

tion of uncertain cases by the second-stage model, the inherent accuracy of

the first-stage model nevertheless greatly affects the overall performance of

the two-stage framework.

A peculiarity noted from the ICAFreq-SCA and its file-size-aware variant

is that when uncertainty threshold υ is sufficiently low, the accuracy attained

by the two-stage framework exceeds the accuracy of either of its component

model. Recall that the accuracy attained by ImgConvAttn and SeqConvAttn

on BODMAS are, respectively, 95.98 and 96.92. ICAFreq-SCA-20% slightly

40

surpassed those models with an accuracy of 96.96, and ICAFreq-SCA-fsa-20%

surpassed that still with 97.00. We suspect that this improvement reflects

that the two-stage model, in some instances, operates as an ensemble model.

Specifically, for binary files with uncertain initial classification, both models

become involved in generating the final prediction.

41

Chapter 7

Conclusions and Future Work

In this investigation, we introduced the application of self-attentive models to

conduct low latency classification of malware through raw binaries. To achieve

this, we implemented two models to interpret the binaries in two different

ways. First, we proposed SeqConvAttn to handle the raw binary as a byte

sequence. Intending to reduce the inference latency, we then investigated

representing binary files as images, and applied ImgConvAttn, a self-attentive

model based on the Vision Transformer [17], to classify malware images. We

further proposed the integration of the two models into a two-stage framework,

such that accuracy and latency advantage of the respective models could be

leveraged in a controllable manner, thereby achieving superior classification

while reducing per-file inference latency. From experimental results on the

BIG 2015 dataset [18], and Sub-BODMAS, a select subset of the BODMAS

malware dataset [19], we demonstrated that both the following:

• SeqConvAttn is superior to most of the baseline models tested in clas-

sification accuracy, with its overall performance comparable to Mal-

conv+GCG [3].

• ImgConvAttn consistently attains superior accuracy over the CNN base-

line. For the different images, bigram frequency image is able to achieve

superior accuracy over greyscale image, and is generally comparable to

Markov image.

• The two-stage framework can effectively control the average per-file in-

42

ference latency. Additionally, by minimizing occasional slowdowns of the

first-stage model through the file-size-aware mechanism, superior accu-

racy could be maintained while lowering the inference latency.

We also recognize that our investigation have a number of limitations. Thus,

we propose the followup research for future works:

• Self-attention computation in transformer scales quadratically to the

length of the input sequence. This entails that long byte sequences need

to be truncated before classification, which renders the model vulnerable

to malware files whose malicious payload are located after the trunca-

tion limit. Investigations in designing a self-attentive model capable of

reading entire byte sequences of arbitrary lengths is thus necessary.

• We suspect that sequence length reduction of by convolution with large

kernels causes significant information loss. Investigation on acquiring

features on a finer granularity in the byte sequence may further improve

classification accuracy.

• We have conducted analysis of SeqConvAttn and ImgConvAttn atten-

tion maps to identify salient features for malware classification. Further

investigations could be conducted by matching such features to instruc-

tion sets in the assembly file, to offer further explainability for model

prediction.

• For our two-stage framework, the prescribed uncertainty threshold selec-

tion is only feasible in a static test environment, where the underlying

distribution of malware encountered remains the same. A process to

adjust the uncertainty threshold in a dynamic environment, where such

distribution drifts over time, would be useful for real-world application.

43

Bibliography

[1] V. Chebyshev, F. Sinitsyn, D. Parinov, O. Kupress, E. Lopatin, and
A. Kulaev, It threat evolution q1 2020. statistics, Accessed: 2021-08-14.
[Online]. Available: https://securelist.com/it-threat-evolution-q1-2020-
statistics/96959/.

[2] V. Verma, S. K. Muttoo, and V. Singh, “Multiclass malware classifica-
tion via first-and second-order texture statistics,” Computers & Security,
vol. 97, p. 101 895, 2020.

[3] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[4] Q. Le, O. Boydell, B. Mac Namee, and M. Scanlon, “Deep learning at
the shallow end: Malware classification for non-domain experts,” Digital
Investigation, vol. 26, S118–S126, 2018.

[5] E. Raff, W. Fleshman, R. Zak, H. S. Anderson, B. Filar, and M. McLean,
“Classifying sequences of extreme length with constant memory applied
to malware detection,” arXiv preprint arXiv:2012.09390, 2020.

[6] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification,” in Proceedings of the
8th international symposium on visualization for cyber security, 2011,
pp. 1–7.

[7] S. Xia, Z. Pan, Z. Chen, W. Bai, and H. Yang, “Malware classifica-
tion with markov transition field encoded images,” in 2018 Eighth In-
ternational Conference on Instrumentation & Measurement, Computer,
Communication and Control (IMCCC), IEEE, 2018, pp. 1–5.

[8] B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X. Bao, “Byte-level mal-
ware classification based on markov images and deep learning,” Com-
puters & Security, vol. 92, p. 101 740, 2020.

[9] T. M. Mohammed, L. Nataraj, S. Chikkagoudar, S. Chandrasekaran, and
B. Manjunath, “Malware detection using frequency domain-based image
visualization and deep learning,” arXiv preprint arXiv:2101.10578, 2021.

[10] D. Gibert, “Convolutional neural networks for malware classification,”
University Rovira i Virgili, Tarragona, Spain, 2016.

44

https://securelist.com/it-threat-evolution-q1-2020-statistics/96959/
https://securelist.com/it-threat-evolution-q1-2020-statistics/96959/

[11] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, “Ma-
licious software classification using transfer learning of resnet-50 deep
neural network,” in 2017 16th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), IEEE, 2017, pp. 1011–1014.

[12] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and
P. de Geus, “Malicious software classification using vgg16 deep neural
network’s bottleneck features,” in Information Technology-New Genera-
tions, Springer, 2018, pp. 51–59.

[13] A. Pinhero, M. Anupama, P. Vinod, C. A. Visaggio, N. Aneesh, S. Ab-
hijith, and S. AnanthaKrishnan, “Malware detection employed by visu-
alization and deep neural network,” Computers & Security, p. 102 247,
2021.

[14] S. Venkatraman, M. Alazab, and R. Vinayakumar, “A hybrid deep learn-
ing image-based analysis for effective malware detection,” Journal of
Information Security and Applications, vol. 47, pp. 377–389, 2019.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[18] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Mi-
crosoft malware classification challenge,” arXiv preprint arXiv:1802.10135,
2018.

[19] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang, “Bodmas:
An open dataset for learning based temporal analysis of pe malware,”
in Proceedings of Deep Learning and Security Workshop (DLS), in con-
junction with IEEE Symposium on Security and Privacy (IEEE SP),
2021.

[20] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language model-
ing with gated convolutional networks,” in International conference on
machine learning, PMLR, 2017, pp. 933–941.

[21] M. Krčál, O. Švec, M. Bálek, and O. Jašek, “Deep convolutional malware
classifiers can learn from raw executables and labels only,” 2018.

[22] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in 2019 IEEE Security and Privacy Workshops
(SPW), IEEE, 2019, pp. 8–14.

45

[23] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eck-
ert, and F. Roli, “Adversarial malware binaries: Evading deep learning
for malware detection in executables,” in 2018 26th European signal pro-
cessing conference (EUSIPCO), IEEE, 2018, pp. 533–537.

[24] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Ex-
plaining vulnerabilities of deep learning to adversarial malware binaries,”
arXiv preprint arXiv:1901.03583, 2019.

[25] S. E. Coull and C. Gardner, “Activation analysis of a byte-based deep
neural network for malware classification,” in 2019 IEEE Security and
Privacy Workshops (SPW), IEEE, 2019, pp. 21–27.

[26] M. A. Kadri, M. Nassar, and H. Safa, “Transfer learning for malware
multi-classification,” in Proceedings of the 23rd International Database
Applications & Engineering Symposium, 2019, pp. 1–7.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, “Mal-
ware analysis of imaged binary samples by convolutional neural network
with attention mechanism,” in Proceedings of the Eighth ACM Confer-
ence on Data and Application Security and Privacy, 2018, pp. 127–134.

[30] J. Jung, J. Choi, S.-j. Cho, S. Han, M. Park, and Y. Hwang, “Android
malware detection using convolutional neural networks and data section
images,” in Proceedings of the 2018 Conference on Research in Adaptive
and Convergent Systems, 2018, pp. 149–153.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[32] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[33] S. Kumar et al., “Mcft-cnn: Malware classification with fine-tune convo-
lution neural networks using traditional and transfer learning in internet
of things,” Future Generation Computer Systems, 2021.

[34] N. Kumar and T. Meenpal, “Texture-based malware family classifica-
tion,” in 2019 10th International Conference on Computing, Commu-
nication and Networking Technologies (ICCCNT), IEEE, 2019, pp. 1–
6.

46

[35] Y. Zhao, C. Xu, B. Bo, and Y. Feng, “Maldeep: A deep learning classi-
fication framework against malware variants based on texture visualiza-
tion,” Security and Communication Networks, vol. 2019, 2019.

[36] M. Q. Li, B. Fung, P. Charland, and S. H. Ding, “I-mad: A novel
interpretable malware detector using hierarchical transformer,” arXiv
preprint arXiv:1909.06865, 2019.

[37] X. Hu, R. Sun, K. Xu, Y. Zhang, and P. Chang, “Exploit internal struc-
tural information for iot malware detection based on hierarchical trans-
former model,” in 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
IEEE, 2020, pp. 927–934.

[38] Y. Ding, S. Wang, J. Xing, X. Zhang, Z. Oi, G. Fu, Q. Qiang, H. Sun,
and J. Zhang, “Malware classification on imbalanced data through self-
attention,” in 2020 IEEE 19th International Conference on Trust, Secu-
rity and Privacy in Computing and Communications (TrustCom), IEEE,
2020, pp. 154–161.

[39] A. Rahali and M. A. Akhloufi, “Malbert: Using transformers for cyberse-
curity and malicious software detection,” arXiv preprint arXiv:2103.03806,
2021.

[40] F. Yang, Y. Zhuang, and J. Wang, “Android malware detection using
hybrid analysis and machine learning technique,” in International Con-
ference on Cloud Computing and Security, Springer, 2017, pp. 565–575.

[41] M. A. Salah, M. F. Marhusin, and R. Sulaiman, “A two-stage malware
detection architecture inspired by human immune system,” in 2018 Cy-
ber Resilience Conference (CRC), IEEE, 2018, pp. 1–4.

[42] J. Hwang, J. Kim, S. Lee, and K. Kim, “Two-stage ransomware detec-
tion using dynamic analysis and machine learning techniques,” Wireless
Personal Communications, vol. 112, no. 4, pp. 2597–2609, 2020.

[43] A. D. Raju and K. Wang, “Echelon: Two-tier malware detection for raw
executables to reduce false alarms,” arXiv preprint arXiv:2101.01015,
2021.

[44] L. Yang and J. Liu, “Tuningmalconv: Malware detection with not just
raw bytes,” IEEE Access, vol. 8, pp. 140 915–140 922, 2020.

[45] A. Yan, Z. Chen, R. Spolaor, S. Tan, C. Zhao, L. Peng, and B. Yang,
“Network-based malware detection with a two-tier architecture for online
incremental update,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), IEEE, 2020, pp. 1–10.

[46] R. Wightman, Pytorch image models, https://github.com/rwightman/
pytorch-image-models, 2019. doi: 10.5281/zenodo.4414861.

[47] Malconv2, https://github.com/NeuromorphicComputationResearchProgram/
MalConv2, 2020.

47

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://github.com/NeuromorphicComputationResearchProgram/MalConv2
https://github.com/NeuromorphicComputationResearchProgram/MalConv2

	Introduction
	Problem Motivation
	Malware Classification
	Our Contribution
	Thesis Outline

	Related Work
	Malware Classification by Raw Bytes
	Byte Sequence Classification
	Malware Image Classification

	Transformers in Malware Classification
	Two-Stage Framework for Malware Classification

	Model Designs
	Background on Transformer
	SeqConvAttn: Byte Sequence Classifier
	ImgConvAttn: Malware Image Classifier
	Model Architecture
	Image Generation

	Two-Stage Framework

	Common Experiment Settings
	Datasets
	BIG 2015
	Sub-BODMAS

	Test Metrics
	Test Environment

	Independent Model Experiments
	Sequence-based Classification Experiments
	Experiment Design
	Experiment Results
	Visualization of SeqConvAttn Attention

	Image-based Classification Experiments
	Experiment Design
	Experiment Results
	Comparing Gresycale and Bigram Frequency Images

	Two-Stage Experiments
	Experiment Design
	Results on Two-Stage Framework

	Conclusions and Future Work
	Bibliography

