L R

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

385 Wellington Street
Ottawa, Ontario
K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)
K1A ON4

Your file Votre réldrence

Our tile Nolre rélérence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impressin de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta

WIRING OPTIMIZATION
IN
SLICING FLOORPLANS

v @

Hossein Sahabi

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree

of Master of Science

Department of Electrical Engineering

Edmonton, Alberta
Fall, 1992

L |

Nationat Library Bibliothéque aationale

o Canada du Canada

Canadian Theses Service ~ Service des théses canadienqes
Ottawa, Canada :

K1A ON4

The author has granted sn irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sel
coples of his/her thesis by any means and in

anyfonnor.forrnat,maléxgﬂﬂsﬂ\eslsavanable
to interested persons. '

The author retains ownership of the copyright
in histher thesis. Neither the thesis nor
substantial extracts from it may be printed or

otherwise reproduced without his!her per-
mission, .

L'auteur a accordd une licence irrévocable et
- non exclusive permettant & (a Bibliothéque

nationale du Canada de reproduire, préter,

-disﬂibuerouvendredes’eoplesdesaﬂlése

de quelque manidre et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

Lauteur conserve la propriété du droit d'auteur
qui protége sa thdse, Nila thése ni des extraits
Substantiels de celle-ci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-77127-5

te(

Canadg

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Hossein Sahabi
TITLE OF THESIS: Wiring Optimization In Slicing Floorplans
DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1992

Permission is hereby granted to The University of Alberta Library to
reproduce single copies of this thesis and to lend or sell such copies for
private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the

author’s written pemxission.
(Signed) &/ZLZ\

Permanent Address:
#2185, 11532 - 40 Avenue
Edmonton, Alberta
Canada

Dated: 2 /. J_u// /992

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned ceriify that they have read, and recommend to the
Faculty of Graduate Studies and Research, for acceptance, a thesis entitled Wiring
Optimization In Slicing Floorplans submitted by Hossein Sahabi in partal
fulfillment of the requirements for the degree of Maister of Science,

"r/!t %W—/kw Ly

DrJTXy hi(/m |

Dr. B. F. Cockburn

Date M 943, 992

Abstract

Floorplanning is one of the first stages of the integrated circuit layout design
process. During this step the geometry and location of modules on the chip sur-
face is determined. The objectives which are typically considered in floorplanning
are to optimize area, wiring, and performance of the chip. In this thesis, we are
concerned with wiring optimization in a special class of floorplans called slicing
floorplans. The problem is to adjust the module positions and orientations in a
given slicing floorplan so as to minimize the total wire length. Two new algo-
rithms are presented for this problem. The first algorithm is a branch and bound
algorithm which searchs for an optimum solution by considering all possible
configurations of the given floorplan. The second one is a greedy heuristic algo-
rithm which does not necessarily produce an optimum solution. The algorithms
are evaluated by applying them to practical VLSI circuits and the results are
enco raging. The branch and bound algorithm is only practical for small floor-
plans, while the heuristic algorithm is able to produce good solutions very quickly.

Acknowledgements

I would like to thank my supervisor, Dr. Jack Mowchenko, for his valuable
guidance throughout this research. Partial support of Natural Sciences and
Engineering Research Council and the Canadian Microelectronics Corporation are

acknowledged.

As well, I would like to acknowledge the financial support provided by Iran
Ministry of Culture and Higher Education throughout this research. I would like
to thank my parents who were encouraging during all stages in my education, and
I would like to thank my wife because of her patience and understanding in my

university education.

Table of Contents

Chapter 1: INtroductionccocccvernrnessasmmnsssssassnssssssnsssansissansaneasassasesenssss

Chapter 2: Background - certastssnsesnerasesasssnnsenasess

2.1. Floorplanning Formulation

2.2. Wire Length Estimation

2.3. Floorplanning Data Structures

2.4. Existing Floorplanning Algorithms ...

2.4.1. Stockmeyer’s Algorithm

2.4.2. Force-Directed Relaxdéion Algorithms

2.4.3. The Wong and Liu Algorithm

2.4.4. Performance-Driven Layout

2.5. Conclusions and Discussion

Chapter 3: New Algorithms For Wiring Optimization

3.1. Problem Definition
3.2. An Overview of Problem Solutions

3.3. A New Branch and Bound Algorithm For Wiring

Optimization

3.3.1. The Pre-Processing Algorithm

3.3.2. The Branch and Bound Algorithm

3.4. A Heuristic Algorithm For Wiring Optimization

3.5. Summary ...

11
14
15
19
22
27
3
33
33
34

37
37

55
59

Chapter 4: Implementation and Results

4.1. Preliminaries

4.2. Software Overview

4.3. Experimital Results

4.2.1. Abstract Data Types

4.2.2. Input and Output Files

4.2.3. Graphic Representation of the Floorplans

Chapter §: Conclusioms

References

ooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooo

oooooooooo

62
63
69
7
73
85
89

List of Tables

4.1. Statistics for the eXxample CiICUILScccccreeenreeacacasssnmseressisssnsssensnssenssesensse
4.2, The results of the branch and bound algorithm ...
4.3. The results of the branch and bound algorithm for 5% solutions
4.4, The results of the best-first algorithm with k=1 “
4.5. The results of the best-first algorithm with k=2cceceevreeevernreecrnrenenns
4.6. The results of the best-first algorithm with k=3 '
4.7. The results of the best-first algorithm with k=5

74
81
82
82
83
84

List of Figures

Body of Thesis

1.1. Slicing and non-slicing floorplans

1.2. Adjustments in slicing floorplans

oooooo

2.1. Net bounding box and minimum spanning tree

2.2. A slicing floorplan with its polar graph representation

2.3. A slicing floorplan with its .licing tree representation

oooooooooooooooo

2.4. The shape function

2.5. Representation of a slicing floorplan with a normalized polish

oooooooooo

EXPIESSION ...cuvevenceereerennrennene
2.6. Two combinational celis to illustrate the delay equation

3.1. The problem state space tree

3.2. Definition of xmin()
3.3. Calculation of xmin() for an internal node

3.4. Calculation of wmin() for an internal node

3.5. Updating r() and 1() iner
4.1. Description of .tre fileccccceueenren orararscites

4.2. Apte module locations

4.3. Apte module locations and net boundmg boxes
4.4, Plots of Py, changes in Apte

4.5. Plots of Py, changes in Hp

4.6. Plot of P, in Apte
Appendix

A.1. Xerox module locations, produced by
the branch and bound algorithm

A.2. Xerox module locations and net bounding boxes,

produced by the branch and bound algorithm
A.3. Plots of P,,., changes in Xerox.

Ad. Hp) locations, produced by the branch
'bound algorithm -

A5 Hp modulc locations and net bounding boxes,

produced by the branch and bound algorithm

A.6. Plot of P, versus the number of times
the Update_..Q functions are called, in Xerox.

A.7. Plot of P, versus the number of times
the Updare_..(functions are called, in Hp.

A.8. Ami33 module locations, produced
the best first algorithm with k=

A.9. Ami33 module locations and net bounding

boxes, produced by the best first algorithm with k=S5

...............

10
12
13
16

30
35
38
39
41
51
70
75
76
78
79
80

67|

92
93

94
95

& X

A.10. Ami49 module locations before running the algorithm
A.11. Ami49 module locations after running the best first algorithm

with k=5
A.12, Ami49 module locations and net botnding boxes before running
the algorithm

A.13. Amid49 module locations and net bounding boxes after running
the best first algorithm with k=5

100
101

102

Chapter One

Introduction

The integrated circuit design process consists of two main activities. The
first activity is design synthesis, which can be fusther broken down into behavioral
or functional design, and physical or layout design. The second activity is design
verification, which can be also further broken down into: logic verification, struc-
tural verification, and simulation. Various tools have been developed for each of

these activities [16].

Because of the rapid growth in complexity, size and density ° integrated cir-
cuits, layout design of VLSI systems is a challenging task. An efficient way to
manage the complexity of the VLSI layout problem is through hierarchical design.
With hierarchical design, the circuit is repeatedly partitioned into blocks, until
each block contains a single circuit module. Each module has a number of I/O ter-
minals on its boundaries. The circuit modules at the lowest level of the hierarchy
are assumed to be indivisible circuits which are realized with standard cells or
macro-cells. A standard cell implements a basic logic function such as a four
input NAND gate, a D flipflop, erc. Macro-cells perform more complicated func-
tions, such as an arithmetic logic unit (ALU), and their laycut is produced either
manually or with a module generator.

The hierarchical structure of a circuit layout can be represeated by a tree.
The root of the tree is the top level of the hierarchy and represents the whole cir-
cuit. Each internal node in the tree corresponds to a block which consists of a
group of modules. An indivisible single circuit module is assigned to each leaf
node at the lowest level of the tree; such modules are called leaf cells.

Even with computer assistance, manual layout design is a time consuming
and error prone process; hence there is considerable interest in finding efficient
ways to automate this activity. The dream of most computer-aided design tool
developers has been to have the computer produce the layout for an entire
integrated circuit without human intervention. Silicon compilation, which is the
most recent approach to automated layout, comes close to this capability. Silicon
compilers transform the structural description of a digital system into geometric
mask information. The work done by a silicon compiler can be broken down into
three major tasks: floorplanning, cell synthesis and chip assembly. Each of these

tasks is discussed in the following paragraphs.

Floorplanning consists of arranging various circuit modules on the chip sur-
face so as to satisfy a set of electrical and physical constraints, and to minimize a
cost function which measures the quality of the layout. Typically, modules are
assigned to rectangular regions and the leaf modules may have either fixed or
flexible shapes. If all of the leaf modules have fixed shapes, the task of arranging
modules on the chip surface is referred as macro-cell placement. Only when some
of the modules have flexible shapes is the task referred to as floorplanning. Thus
in floorplanning, in addition to deciding the location of modules, the aspect ratios
of flexible shape modules must also be determined. Floorplanning is a difficult
problem to solve, because of the many degrees of freedom in determining module

locations and aspect ratios.

The second task performed by a silicon compiler is cell synthesis. This task
consists of producing the mask layout for the circuit modules or leaf cells. There
are two types of cell synthesizers. One type produces the layout only for a
specific type of cell, such as an adder or a register. It takes as input some basic

parafnetcrs describing the general characteristics of the cell, such as the number of

bits in a register, and produces a layout using a predefined template. The second
type of cell synthesizer uses heuristic algorithms to produce the mask layout for

any schematic, and the layout does not adhere to a predefined template.

The third task performed by a silicon compiler is chip assembly. This task
consists of taking the floorplan and the leaf cell layouts and producing the layout
for the entire chip. The main problem in this task is to determine the routing
between the circuit module terminals. This may include shifting leaf cells in order
to have enough space to accommodate wiring, if the required space is not avail-
able. Another operation which may occur in chip assembly is compaction of the

layout to remove free space.

Among the three tasks which make up silicon compilation, this thesis is con-
cemed with floorplanning. Different objectives are used by different floorplanning
algorithms; these objectives are typically realized as factors in a cost function.

We now review three important cost objectives.

One of the objectives that is considered in floorplanning is area utilization.
Obviously, the layout which occupies a smaller area has a lower fabrication cost.
The area used by a particular layout depends on the area of modules to be placed
and on the area needed to complete the interconnections. Therefore, in order to
minimize the chip area, the modules must be packed together optimally and the

area occupied by interconnections must be reduced.

Another important objective that is addressed indirectly in chip area minimi-
zation, is total wire length minimization. Minimizing total wire length in a circuit
can be carried out by placing the modules which are highly connected close to
each other. Wigsrlength minimization makes the routing task easier and less rout-

ing area is reqguired, in general.

The third imporiant objective in floorplanning which has recenty received
attention, is performance optimization. Of the various parameters which affect
chip performance, interconnection delay is very important, since it directly reduces
the speed of the circuit. By considering the effect of critical nets, modules which
have a critical timing relationships can be placed such that the resulting floorplan

gives the minimum path delay.

IR Ean Th .
[. .
i ' .
I B

! . : .

(@ ®)

Figure 1-1: a) a slicing floorplan b) a non-slicing floorplan

After these discussions about various objectives in floorplanning, it is neces-
sary to introduce an imfortant class of floorplans. Give_n a floorplan, a layout can
be enclosed by a rectangle so that it contains all the componenis of the layout. It
is possible to subdivide this rectangle into a set of rectangles, each of which con-
tains one and only one of the circuit modules. Each of these rectangies is called a
basic rectangle. There are different ways to produce this rectangular decomposi-
tion. In some floorplans, the modules are arranged such that it is possible to pro-
duce the rectangular decomposition by recursively cutting the rectangles with
either a vertical line or a horizontal line. Such floorplans are called slicing floor-

plans [17]. We are interested particularly in slicing floorplans for a number of

reasons which will be explained in the next chapter. If the recursive cutting
method of partitioning is not feasible for a floorplan, it is called a non-slicing
floorplan, Figure 1-1 illustrates a slicing and a non-slicing floorplan.

This thesis is concerned with wiring optimization in slicing floorplans. It is
assumed that a slicing floorplan for a circuit already exists and the problem: is to
adjust the module positions and orientations so as to minimize the total wire
length. In a slicing floorplan, each rectangle except the basic rectangles:is split
into two smaller subrectangles. The type of adjustments to module positions are
restricted to interchanging the subrectangles produced by each slice line, and mir-
roring the modules in the basic rectangles. An example of these adjustments is

illustrated in Figure 1-2.

Figure 1-2: a) initial floorplan b) adjusted floorplan

In a circuit, terminals from different modules must be electrically connected
to each other. A set of terminals which are to be interconnected is called a net.
In Figure 1-2, o represents module terminals, and diagonal lines symbolize the nets

interconnecting the terminals.

As can be seen from Figure 1-2, the following adjustments have been made

to the initial floorplan:
1) The rectangle containing module A has been interchanged with the rectangle

containing module B.
2) Module A has been mirrored about its vertical axis.

3) The rectangle containing module D has been interchanged with the rectangle

containing module E.

4) The rectangle containing module G has been interchanged with the rectangle
containing modules F and C. Then, the rectangle containing module F has

been interchanged with the rectangle containing module C.
S) Module C has been mirrored about its vertical axis.

Figure 1-2 b) indicates that the adjustments bring terminals of some of the nets
closer to each other, while terminals of some other nets may become farther from
each othier. Overall, the adjustments should tend to bring terminals of the nets
closer to each other; this may reduce the total wire length of the circuit after com-
pleting the routing process.

This thesis explores different ways of solving the stated problem. In Chapter
2, a brief definition of the essential concepts of floorplanning is given, followed by
some existing algorithms for the task. We mainly present the algorithms that take
wiring optimization into account. In Chapter 3, the details of two new algorithms
as solutions to our problem are presented. Chapter 4 describes the implementation
of these algorithms and the results obtained by applying them to actual VLSI cir-

cuits. Conclusions and future work are given in Chapter 5.

Chapter Two
Background

This chapter is devoted to providing the necessary background definitions in
the field of floorplanning, and to describing existing floorplanning algorithms.
This chapter is organized in two sections. In section 1, the floorplanning problem
is defined formally and methods to estimate the wire length in floorplans are
described. As well, section 1 also describes the data structures used to represent a

floorplan. In section 2, four floorplanning algorithms are described and evaluated.

2.1. Floorplanning Formulation

As was pointed out in the last chapter, flocrplanning is one of the first stages
of the IC layout design process. During this step the circuit modules are arranged
on the chip surface. The geometries and locations of these modules must be
selected such that the design quality, measured in terms of chip area, wiring den-
sity, power and timing considerations is optimized. '

Floorplanning is a difficult problem because, in addition to the location of
modules, the aspect ratio and I/O terminal positions on the boundary of modules
must also be determined. Allowing a floorplanning algorithm to determine the
aspect ratios and terminal positions is advantageous because the flexibility in
deciding aspect ratios can be exploited to obtain better area utilization and perfor-
mance. Furthermore, terminal positions on the boundary of the modules can be

assigned such that the wiring area and the interconnection length are minimized.

Before discussing the various floorplanning algorithms, the problem must be
clearly defined. The floorplanning problem can be formulated as follows:

A set of modules are given which have variable dimensions and I/O terminals
with variable positions on the boundary of modules. The estimated delay and
power consumption is available for each module. The circuit ner list, which
specifies terminals of the modules to be interconnected and estimated delay per
unit length of interconnection, is also available. Finally, the following set of con-

straints are also given:

e Constraints on the location of some modules in the layout.
This restriction may take several forms. For example, the orientation of some
of the modules may be fixed, the location of a component may be restricted
to a specified region, the distance between two components may be bounded
above or below by a certain limit, or two components may have to be placed
symmetrically with respect to an axis of the chip.

e constraints on the overall chip area and aspect ratio.

e constraints on the aspect ratios of the modules.
Some of the modules in the design may have fixed dimensions; others may
have aspect ratios that vary continuously or discretely.

e constraints on the position of I/O terminals on the boundary of modules.
e constraints on total estimated power dissipation.

e constraints on the estimated delay at the chip level.

The problem to be solved is to determine geometries, locations, aspect ratios and
terminal positions for all the modules, so that all of the constraints are satisfied,
and to minimize a cost function which is usually a weighted sum of total

estimated area, wire length, delay and power dissipation.

2.2. Wire Length Estimation

The cost function which is so be optimized in floorplanning involves several
components and varies depending on the nature of the design. Since area, total
wire length and chip performance all depend on the results of the rohting step,
computing the exact value of the cost function requires that ‘the layout be com-
pletely routed. However, it is absolutely impractical to route the layout when a
floorplan is to be evaluated. Hence, being able to accurately estimate wiring qual-
ity is essential in chip floorplanning. The rationale behind our discussion about
approximate wire length calculations in this section is that the total wire length (
or total net length) is one of the most important components in the cost function
and it also plays a key role in our proposed algorithms.

In VLSI circuits, net interconnections are usually implemented with rectil-
inear wires (manhattan geometries). Because of many different, but electrically
equivalent, ways of interconnecting a set of terminals, even with manhattan wires,
net length estimation is not an easy task. Heuristic methods which are fast to
compute are required to solve the problem. Three popular methods for net length
estimation are explained here:

1) Bounding box half perimeter

The half perimeter of the smallest rectangle enc;losing all the terminals of the

net has been used extensively to estimate the net length. For nets with

manhattan geometries, this estimate is exact for two and three terminals nets.

The total net length of the circuit is estimated with the sum of these half per-

imeters for all of the nets in the circuit. This estimate is easy and fast to

compute. Figure 2-1 a) illustrates the bounding box for a net with five termi-
nals.

2)

3)

Minimum spanning tree

A more realistic estimate of the net length is the length of the minimum
spanning tree that connects the terminals of a net. Again, the total net length
of the circuit is estimated by the sum of the lengths of these minimum span-
ning trees. Although there are algorithms to solve minimum spanning tree
problem in polynomial time, its solution is much more time consuming than
finding minimum bounding boxes and it is not practical for floorplanning
'algorithms that require frequent net length estimates. Figure 2-1 b) illustrates
the manhattan minimum spanning tree of a net with five terminals.

Weighted distances between center of modules

In this approach, it is assumed that the I/O terminals of a module are all
located in the center of module. The total net length of the circuit is
estimated by the sum of the euclidean or manhattan distances between the
centers of a pair of modules multiplied by the number of nets connecting the
pair, over all pairs of modules in the circuit. - If the modules are large in size,
the actual position of the terminals may be far from the center of the mixdvi2
and this approximation is unrealistic. In spite of this problem, this estimate
is easier to compute than the two preceding methods.

mmeey

)] (®)

Figure 2-1: a) a bounding box b) a minimum spanning tree

-10-

2.3. Floorplanning Data Structures

In order to implement floorplanning algorithms, data structures are required
to represent the relative positions of the floorplan components. In Chapter 1, it
was mentioned that a floorplan can be subdivided into basic rectangles, each of
which represents a region in the floorplan that contains only one circuit module.
The rectangles which make up a floorplan are referred to as a recrangle dissection.
The data structures which are used to represent a floorplan, represent this dissec-
tion. In this section we review two of these data structures: polar graphs. and

decomposition trees.

Polar Graphs

One way to represent a floorplan is by using two directed graphs called polar
graphs. These graphs are known as horizontal and vertical polar graphs. The
horizontal polar graph gives the relative position of the basic rectangles in the x
coordinate. Each node in this graph corresponds to a vertical boundary of a basic
rectangle. The nodes corresponding to left and right vertical boundaries of the
entire floorplan are called the source node and the sink node, respectively. A
directed edge between node i and j in this graph represents the fact that there
exists a basic rectangle whose left and right boundaries are at the locations
corresponding to node { and j, respectively. Hence, each of the iedges in the graph
corresponds to a basic rectangle in the floorplan; this is encoded in the graph by
labeling each edge with its corresponding circuit module.

The vertical polar graph is the dual of the horizonss polar graph. This graph
is constructed in the same way using horizontat 4%y instead of vertical lines in
the floorplan. The source node in the graph #wri:sponds to top-most horizontal
boundary and the smknodeconespondsmbomfmmsthmmnlbounduy

-11-

The two polar graphs can define a floorplan uniquely. If we label the edges
in these graphs with the dimensions of the basic rectangles, then the longest path
in the horizontal and vertical graphs gives the width and height of the overall
floorplan.

The polar graphs that represent slicing floorplans have special characteristics.
Each of these graphs can be reduced toa graph 'with only one source node and
one sink node connected by a single edge. This can be carried out by a sequence
of series and parallel reductions. Pa-illel reduction consists of replacing two or
more edges that connect the same two nodes with a single edge, while series
reduction consists of removing a node i from the graph with its incoming and out-
going edges (j,i) and (i,k) and replacing them with a single edge (j,k). Because of
this characteristiz, the polar graphs representing slicing floorplans are called
series-parallel graphs. Figure 2-2 illustrates a slicing floorplan with its
corresponding polar graphs.

g iy gy . Ave—LtrpE o
! ' '

al s | !

L | | ¢ P

e depmmend :

: l] E |

el | Q™.
: ' ! '

T | S cC D

Figure 2-2: A slicing fioorplan with its polar graph repressntation
Decomposition Trees

The other data structure which is extensively used to represent floorplans is a
decompositibn tree. The decomposition tree is a directed tree which represents the

-12-

hierarchy of rectangular regions in the layout. Each leaf in the tree symbolizes a
basic rectangle in the flcorplan and each internal node symbolizes a composite
rectangle. In other words, each leaf node represents a circuit module and each
internal node represents a group of modules. Although this data structure can be
used for general floorplans, it is mainly used for slicing floorplans.

The decomposition tree which represents a slicing floorplan is cailed a slicing
tree. A slicing tree is a binary tree in which each leaf node represents a basic rec-
tangle and each internal node represents a composite rectangle in the floorplan.
Each internal node contains the direction of the slice line which splits the compo-
site rectangle represented by that node. Furthermore, there is an assumption about
the relative position of a node’s children in the tree. For example, it is assumed
that if a node corresponds to a vertical slice, its left child represents a rectangle
which is placed to the left of the rectangle represented by the right child. Simi-
larly, if a node corresponds to a horizontal slice, its left child represents a rectan-
gle which is below the rectangle represented by its right child.

One problem with slicing trees is that there can be many slicing trees for
each slicing floorplan. Figure 2-3 illustrates a slicing floorplan and one of its pos-
sible slicing trees.

Figure 2.3: A slicing floorplan with its slicing tree representation

-13-

2.4. Existing Floorplanning Algorithms
Some floorplanning algorithms deal specifically with the slicing floorplans.
Slicing floorplans are distinguished by a number of interesting features as follows:
1) A slicing floorplan can be represented by a series-parallel graph or a binary
tree (slicing tree).
2) They are ideally suited for hierarchical layout.

3) The routing task for slicing floorplans can be completely carried out by chan-

nel routers.!

4) For a given slicing floorplan, there is an efficient algorithm to determine
optimal shapes and orientations of modules. Conversely, it has been proved
that orientation optimization for more general layouts is NP-complete.

5) There are efficient algorithms that can produce slicing floorplans.

Because of the complexity of floorplanning problem, the existing algorithms
only antempt to optimize a subset of all the different quality measures. In this sec-
tion four such algorithms will be described. The first algorithm was developed by
Stockmeyer [12], and it is the one mentioned above which is able to determine
the optimal shape and orientation of modules for a given slicing floorplan in poly-
nomial time. The second algorithm is from a class of algorithms called "force-
directed algorithms" which represent the interconnection between modules with a
set of forces. The objective of these algorithms is usually wiring optimization,
and they do not necessarily produce slicing floorplans. The third algorithm was
described by Wong and Liu [15] and uses a method called simulated annealing
o generate opumnl slicing floorplans. The objective of this algorithm is a
"1 The routing regions i the layout are decomposed into rectangular rogions that contain ter-
minals on two sides only, called channels. The routing task is usually camried out in two

global routing and detailed routing. A channel router is an effective detailed routing
routing of channels,

3

-14.-

combination of area and total wire length miniinization. Jackson and Kuh intro-
duced the fourth algorithm [3], which is concerned with chip performance
optimization. This algorithm combines timing analysis and physical design to

dynamically optimize the performance of the chip during floorplanning,

2.4.1. Stockmeyer’s Algorithm

In this algorithm, it is assumed a slicing floorplan described by a slicing tree
is given. Each leaf cell in the circuit has two dimensions, @ and b, and it has two
possible orientations depending on whether side @ or side b is horizontal. The
algorithm is also given a cost function y(h,w), which is nondecreasing in both
arguments 4 and w and computable in constant time. The cost function is an arbi-
trary function that could measure area or perimeter, for example, and the two
arguments h and w are the height and width of the entire floorplan. The objective
of the algorithm is to find the orientations of all the modules in the circuit such
that the cost function is minimized.

The algorithm constructs a shape function for all rectangular regions in the
floorplan which describes all possible dimensions for the rectangular regions. An
instance of the shape function for a basic rectangle corresponding to a leaf cell in
the floorplan with dimensions @ and b is illustrated in Figure 2-4. If w and & are
the width and height of the basic regtangle, the following conditions must be
satisfied so that the basic rectangle can accommodate the leaf cell;

w>a ,h>b or wdb,h>a

In Figure 2-4, the shaded area represents the set of all pairs (w,h) that satisfy the
above conditions. Stockmeyer's algorithm describes a shape function with a set of
sorted ordered pairs which give the minimum possible dimensions as follows:

-15-

[(hl,W 1),(h2,W2),...,(hk,Wk)] hi>hi+l y Wi<W;it for 1<i <k
In Figure 2-4, assuming a>b, the shape function is described as follows:

{(ab)(ba)}

If a=b or the leaf cell has a fixed orientation, the shape function is different and

the above set consists of only one pair.

b : b [--"

Figure 2-4: The shape function

Stockmeyer’s aigorithm works by moving bottom up through the tree. For
each internal node u, the shape function of its children v and v’ are combined to
construct the shape function for u. Let us assume node # corresponds to a vertical
slice in the floorplan and the shape function associated with v and v’ are as fol-
lows:

(th W 1),(’!2,‘92),...,(’!& ,Wk)] h,’ >hi+l » Wi<W; for 1Si <k
{ (h 'l,W '1),(h 'z,W ’2),...,(,! 'm W 'm)] h ’,’ >h "'...1 » W 'i <w ,‘-4.1 for 1Si<m

The combination procedure pseudo-code is as follows:

-16 -

fombine(Shape(v),Shape(V'))

i=l; j=I;
Shape(u) = {};
loop: ‘{vhile(iSk and j<m)
Add joift((h,- Wih(h’;,w';)) to Shape(u);
ifth>h";
i=i+l;
goto loop;

}

ifihi<h’;)
J=i+l;
goto loop;

}
ifihi=h",)

i=i+l;

ji=j+1 ;

}
}

In this procedure the join function is defined as follows:

jOin ((ht Wi)v(h ’j W ’j))=(max (hg ’h 'j)awi +w 'j)

The important point in this procedure is that all k pairs in the shape function

of node v will not be combined with all m pairs in the shape function of node v’
to produce kxm pairs in the shape function of node u. To illustrate this, consider
the case where u corresponds to a vertical slice. If two pairs (h;,w;) and
(h’jw’;) are combined and added to the shape function of node u, and h;>h ‘ot
is not necessary to consider combining of (h;,w;) with (h’;,w";) for any k>j. The
combination of (h;,w;) with (h’;w’;) is:

join ((h; w;)(h'j w')y=(max (hy b ;) wi+w ;)
and the combination of (h;,w;) with (k" ,w’;) is:

Join ((a; w;) (h’, W)y=(max (h; g) wi+w'y)

and since the pairs in the Shape (v) and Shape (V') are sorted in decreasing order

-17-

of h and increasing order of w, we have:
max (h" B 'j)=max (h, ,h ,k)=h,
w;+w 'k >w;tw ! j

’

Thus, join ((h; w;),(h’,w’;)) has the same first element as join ((h; w;),(h i i)
but a larger second element, and therefore should not be added to the shape func-

tion for node u.

The construction of shape functions for internal nodes is continued until the
shape function for the root is constructed. From this shape function, the pair
which minimizes the cost function can be selected and the cell orientations
corresponding to this pair can be re-constructed, To aid in re-constructing the cell
orientations, the algorithm keeps two pointers for each pair in the shape function.
These pointers point to the pairs that combined to produce the given pair. The
pointers in the shape function of basic rectangles are null. By following these
pointers, the algorithm is able to find the the optimum orientation for each leaf
cell,

Stockmeyer’s algorithm has been generalized by Otten [8] for determining
the optimal shape of leaf cells with several different possible implementations.
Otten’s algorithm is basically the same as Stockmeyer’s; howsver, the shape func-
tion for basic rectangles contains more than two pairs.

Stockmeyer’s algorithm is used in some floorplanning algorithms to compute
the optimal shape of the flexible modules in a given slicing floorplan [6). The
running time imd storage requirements of Stockmeyer’s algorithm are both O(nd),
where n is the number of leaf cells and 4 is the depth of slicing tree. The worst
case complexity of this algorithm is O (n2).

-18 -

2.4.2. Force-Directed Relaxation Algorithms

The basic idea behind this class of algorithms is to represent the interconnec-
tions between modules with a set of forces which are proportional to the number
of interconnections and the distances between the modules. The objective is to
find an arrangement such that the sum of all the forces acting on the modules is
minimum. In this situation, each net’s terminal will be closer to one another and
this tends to minimize total wire length. Force directed algorithms are usuaily
applied to a floorplanning problem in two phases. First, the algorithm is
employed to obtain an initial solution. This phase is referred as the constructive
phase. Second, the initial solution is modified incrementally to improve the qual-
ity of solution. This phase is called iterarive improvement. Clearly, these algo-
rithms do not necessarily produce slicing floorplans. Force directed algorithms
have found wide application in a number of VLSI layout systems such as the
PLINT system developed by General Electric for standard and macro-cells [1].
In this section the details of the force-directed relaxation algorithm implemented in
a package called CHAMP is discussed [13].

In CHAMP, the floorplan is represented by an interconnection graph Each
node in this graph represents a module in the ficorplan and the interconnections
between modules are represented by edges, where each edge is given a weight

proportionai to the number of interconnections.

For the interconnection graph, a matrix E is defined with elements as fol-

lows:
min{P;} for i#j
Ej=] o for i=j

where (P;;} is the set of all distances along different paths between two nodes i
and j. For each path, the distance is defined as the sum of the reciprocal of the

-19-

weight of each edge between two nodes for all the nodes in the path.

From E a new matrix R, called the relativity matrix, is defined with elements

as follows:

R: =

{ Ej-A, fori#j
ij

0 fori=j

where A, is the average value over all E;;’s for i#j. From this matrix two sets of
nodes will be defined for each node i. A strongly connected node set F;, is the set
of all nodes j with negative value of R;;, and the weakly connected node set U;,
is the set of all nodes j with positive value of R;;. It is assumed a set of attrac-
tive forces proportional to IR;;| work on node i from the nodes belonging to F;;
alternatively, a set of repulsive forces act on node i from the nodes belonging to
U;.

In the constructive phase, each module is modeled by a node and there is no
shape consideration. All the nodes are labeled by module id-numbers, and they
are processed in the order of their id-numbers. First, node i is moved to the grav-
itational center of nodes belonging to F;. Then node i is moved under the
influence of repulsive forces of nodes belonging to U;, so that the minimum force
works on it. This procedure is repeated for all of the nodes in the graph. After
several cycles of this process, the node placement is expected to converge into a
certain arrangement which becomes the placement produced by the constructive
phase.

After an initial placement is obtained, each module is given a rectangular
shape and an appropriate chip boundary is set up enclosing all of the modules.
The overlaps between modules or modules and chip boundary are eliminated dur-
ing the iterative improvement phase by moving modules and/or by reshaping
modules with the chip boundary being shrunk. The movements or reshaping ratios

are so small that they do not dramatically change the structure of the floorplan.

This procedure has four steps as follows:

1) The chip boundary is shrunk by a given small value.

2) One module is selected arbitrarily, moved temporarily in four directions by a
given small distance, and the amount of overlap is calculated for the other

blocks as well as the chip boundary. Then the module is actually moved in

the direction which leads to the maximum reduction in overlap.

3) One module is selected arbitrarily and its aspect ratio is temporarily modified
by a given set of small values. Then it is actually modified to the aspect

ratio which leads to the maximum reduction in overlapping areas.

4) Tterate step 1 to 3 until a satisfactory result is achieved. To judge the quality
of floorplan, the chip area, including the wiring area, is estimated.

Experimental results demonstrate that the iterative improvement phase is the
most time consuming part of this particular algorithm. This procedure consists
mainly of selecting pairs of modules and caléu‘Iating overlapping areas between
them. If all pairs of modules are tried in the calculating process, the algorithm is
O(n?. However, if only neighboring modules are considered for overlapping cal-
culations, the algorithm becomes O (n).

In general, the solution produced by the constructive phase of this algorithm
is not satisfactory because of the greedy nature of the algorithm and the fact that it
does not consider the module shapes. Therefore, the iterative improvement phase
is essential to achieve acceptable solutions. Nevertheless, the final result in some
cases is not satisfactory as too much unused space is left. This is due to the fact
that this algorithm aims to optimize total wire length and does not directly address

chip area.

-21.

2.4.3. The Wong and Liu Algorithm

This algorithm employs the technique of simulated annealing to solve the
floorplanning problem, and simultaneously takes into consideration chip area and
total wire length. First, the simulated annealing algorithm is discussed.

Simulated annealing was proposed by Kirkpatrick et al. [5], as an efficient
method for determining global minimas of combinatorial optimization problems
involving many degrees of freedom. In general, a combinatorial optimization
problem consists of finding the minimum or maximum value of a cost function
which depends on many independent variables. This problem arises in many
different fields of science and engineering. Basically, simulated annealing is a
Monte Carlo technique which simulates the equilibrium states of a collection of
atoms at any given temperature T. According to Boltzman’s law, the probability
of existence of any configuration i of atoms is given by e""“yx‘r, where E(i) is
the energy associated with the configuration, and K,, is the Boltzman’s constant.
Hence, the most probable configurations ét any temperature are those with the

lowest energy.

In order to solve a combinatorial optimization problem, the cost function is
used in place of energy. In the physical annealing process, the physical system
moves from one system configuration to another. Cormrespondingly, the simulated
annealing algorithm moves from one potential problem solution to another. The
rate at which simulated annealing moves to a new solution is determined by the
so-called temperature paramete: 7, just as the rate of change of atomic
configurations in physical annealing depends on actual temperature. The simulated
annealing process consists of first "melting” the system being optimized at a high
effective temperature, and then lowering the temperature in small amounts based
on a temperature "cooling” schedule, until the system "freezes” and no further

changes occur. A new configuration of the system is accepted unconditionally if
its cost value is less than the cost of the previous configuration. It is accepted
with probability e2¢T if the cost value associated with the new configuration is
greater than with the previous configuration by Ac. A basic feature of the method
is that the algorithm tends to escape from local minima because a transition out of

a local minima is always possible at nonzero temperatures.

The basic structure of the simulated annealing algorithm is presented by the
following pseudo-code:

Simulated Annealing Algorithm (j,,T)
{

f* jq is the given initial state »/
f* Ty is the initial value for the parameter T */
T= To.'
X=jo

while(stopping criterion is not satisfied)
}{vhile,(inner loop criterion is not satisfied)

Jj = generate (X) ;

ift accept (c(j),e(X),T)
X=j

%' = update (T);
)
In the above pseudo-code, T is the temperature, and X and j are the problem
states. Each configuration of the problem which is a potential solution, is referred
as a problem state. In this algorithm, the acceptance of a riew solution is deter-
mined by the accepr() function coded as follows, where / and i are the problem
states, f () is a function which takes values on the interval (0,1], and random(0,1)
is a function which returns a random number between 0 and 1.

-23-

?ccept (c(@)e(),T)
Ac = cfj) - cti);
y = flleTh;

/* In the original simulated annealing algo: =ity e have %
M fAc .T)mn(l;e‘“”g)‘i v
r = random(G,1) ;

ifirsy)

return I;

else
return 0;

The simulated annealing method is appii. o the standard cell placement
| problem [5 }, macro-cell placement [4 } and global wiring { 14]. In this section,
we discuss about the Wong and Liu algorithm [15] which uses simulated anneal-
ing to generate an optimal slicing floorplan. The basic idea behind this approach
is to start with an initial slicing floorplan which could be obtained by some other
algorithm, and then move from the initial solution to new solutions in search of
the slicing floorplan that minimizes the total wire length as well as the total area
of the chip.

In order to apply simulated annealing to the floorplanning problem, the cost
function, the generate and update procedures, and also the inner loop and stop-
ping criteria must be clearly determined. Wong and Liu applied the cost function
defined as follows:

y=A +A,, xW
where A is the chip area, W is the total wire length of the layout using the
weighted distances between center of modules, and A,, is a weighting factor which
determines the relative importance of the previous two parameters.

The generate procedure proposed by Wong and Liu is based on the formal

representation of slicing floorplans with normalized polish expressions. A normal-

ized polish expression ;0,03 - - - @,,.; has the following properties:

1) a; belongs to the set { 12,..n*+ } for 1<i2n~1. Numbers in the
sequence are called operands , + and * are called operators

2) Each number from the above set appears only once in the sequence.

3) The total number of operators must be less than the total number of operands

in the sequence.
4) There are no consecutive operators of the same type in the sequence.

It has been proved that there is a one-to-one correspondence between the set
of normalized polish expressions of length 2n-1, and the set of slicing floorplans
with n basic rectangles, provided that each number in the sequence identifies one
of the leaf cells and * and + represent horizontal and vertical slices, respectively.
Figure 2-5 illustrates a slicing floorplan along with its corresponding normalized
polish expression.

Figure 2.S: Rujgreseiliation of a slicing floorplan with
m aiwcpolhhaexpmdon -

Each normalized polish expression can be modified to produce another nor-
malized polish expression with one of the three following moves:

-25.

1) Swap two adjacent operands.

2) Interchanging all *s and +'s in the sequence.

3) Swap an adjacent operand and operator.

These three moves are sufficient to ensure that it is possible to go from one nor-
malized polish expression to any other via a sequence of moves.

The generate procedure consists of applying randomly one of these three
moves to the present configuration of the system. The initial state of the system
consists of placing the » modules next to each other horizontally, corresponding to
the normalized polish expression 12*3*4...*n. This initial state is usually far from
the optimal solution. .

The update procedure in the Wong and Liu algorithm is a fixed ratio tem-

perature schedule.
Tg#ﬂk-l
In this equation, r is an important constant which must be set to a suitable value

in order to achieve satisfactory results.

The inner loop criterion is a condition which must be met to terminate the
procedure for a particular temperature. This criterion is satisfied when the number
of downhill moves exceeds N ot the total number of moves exceeds 2N where N
is O(n). A downhill move is a move which leads to a configuration of the system
with lower cost. The algorithm stops when the temperature falls below a limit or
the number of accepted moves is less than 5% of all moves made at a certain tem-
perature.

Although the Wong and Liu algorithm is elegant and simple, it is restricted
to slicing floorplans. As well, non-rectangular modules and variable terminal posi-
tions can not be handled. Finally, the total wire length estimation in this algo-
rithm s rather poor, since terminal positions are only approximated by the centers

-2-

of modules.

Because the Wong and Liu algorithm is based on the simulated annealing, it
is interesting to mention another attempt to solve the floorplanning problem using
this approach. The TimberWolf package [11] is a more sophisticated imple-
mentation of simulated annealing to solve the floorplanning problem which
includes the following basic features:.

1) Cells may be represented by any manhattan polygon.

2) Cells have aspect ratios that vary continuously or discretely over a range.
3) Cells may have variable terminal positions.

4) Weights may be assigned to each net to bias the placement.

As with the Wong and Liu algorithm, the objective of TimberWolf is total wire
length and area optimization.

244. Performance-Driven Layout

The previous algorithms reviewed in this chapter are aimed at attaining chip
area and/or total wire length minimizaion during floorplanning. However, wire
length or area minimization as a sole objective does not necessarily improve chip
performance.

From various aspects of chip performance, timing has an important role. In
order to improve the chip timing performance, the interconnection delays must be
reduced by considering timing constraints during floorplanning. Specifically, the
eftect of critical delay paths in the circuit must be considered and the modules that
have restricted timing relationships must be placed such that minimum path delay
is obtained.

Several approaches have been proposed for optitnizing chip performance dur-
ing floorplanning. One common method is net w_eighting { 10]. This involves

-27-

transferring timing: constraimts on critical nets to weight factors assigned to them,
and finding an arrangémnent of modules which has a minimum sum of weighted
net lengths. This technique is repeated and weights are adjusted until all timing
constraints are met. The problem with this approach is that it ignores the impor-
tant fact that timing analysis is inherently path-oriented. Although net weights are
a convenient way to influence layout design, it is not sufficient to produce satisfac-
tory results.

Some algorithms for timing optimization which are path-oriented have been
proposed [9], [7). An clegant algorithm for timing optimization, proposed by
Jackson and Kuh [3], is discussed here in detail. This algorithm is concemed
with performance optimization of layout for synchronous digital circuits. Accord-
ing to Jackson and Kuh, the main timing problems in synchronous digital circuits
are problems of clock skew, long paths and short paths. Clock skew occurs when
unequal delay from the circuit clock to sequential element clock terminals exist.
The long path problem is concerned with ensuring that a signal arrives at all cells
carlier than a required time. Finally, the short path timing problem occurs when a
signal races through the combinational logic, arriving at a sequential element’s
input too early. The Jackson and Kuh algorithm is concerned with biasing the
modules placement to handle the above problems.

The Jackson and Kuh algorithm approaches floorplanning hierarchically. At
each level of the hierarchy, a linear programming process is carried out to obtain
the cell placement. Cell overlaps exist at the end of this process because there is
no module shape consideration at this stage. The linear programming process is
followed by a partitioning step which distributes modules over the chip area. This
cycle of linear programming and pmitioniné is carried out for consecutive levels
of hierarchy until the chip has been subdivided into suitably smgli regions that

-28-

contain a predetermined small number of cells. When this procedure is finished,
cells are positioned such that they agree with a predetermined structure, such as a
row structure, and no overlaps exist. In order to describe the algorithm, the linear

programming and partitioning procedures must be clearly explained.

The linear programming process aims to maximize an objective function
value, while satisfying linear constraints equations [2]. In this process, both phy-
sical and timing properties of the layout are considered in both of objective func-

tion and the constraint equations.

Constraints are placed on the lupecd capacitance for all interconnections.
The capacitance per unit length for horizontal and vertical interconnections are

denoted by y and v, respectively. For each nst the capacitance of net is estimated

as follows:

Ci =y (n=live, &)
where r;./; 1; and b; are right, left, top and bottom dimensions of the net i's
bounding box, respectively. If total number of nets in the circuit is », the n equa-

tions are necessary to represent the interconnection capacitance relations.

Another set of physical constraints are introduced to center the cells within
the region in which they are to be placed. This is a first order linear slot con-
straint that forces the center of mass of ali cells in a region to be identified to the
center of the region. An example of this type of equation at the first level of
hierarchy is:

¢
2 mx;
X= i‘?‘.
& m;
i=1

where ¢ is the total number of cells, x; is the x coordinate of cell i in the region,
m; is the width of cell, and X is the x coordinate of the center of the region.

-29.

The timing constraints are defined as a set of delay equations. Figure 2-6
shows two cells and an interconnection net between them. For this configuration a
delay equation as follows can be defined.

a, 2 a+d+R,C,
In this equation, g; is the latest signal arrival time at the input of cell i, d; is the
delay of the signal through cell i, R; is the output resistance of cell i, and C; is
the capacitance of net i, It is assumed that cells 1 and 2 are combinational cells.
If p denotes the number of terminals and ¢ the number of cells in the circuit, and
each cell has a single output, then the number of these delay equations is p - c.
It should be mentioned that there must be special treatment for sequential elements
in these delay equations. The clock skew and long path problems can be solved

by satisfying these delay equations.

Net 1

Figure 2-6: Two combinational cells to illustrate the delay equations

The objective function of the linear programming is defined as follows:

y=M-axW
In this function we have:
D n
w-’% w=3C;

Where k is a user specified weight, R is the average cell output resistance, n is
the number of nets, and W is the sum of all net capacitances. The other parame-

ter, M, represents the minimum slack® for all cells at the path endpoints.

2 The chip clock frequency, clocking methodology and ¢lack skew in the circuit determine
the required armival time for a cell at a path endpoint. /tzmatively, the cell has an actual ar-

-130-

Maximizing M in the objective function will take care of critical paths delay, and
maximizing —oxW minimizes the sum of weighted net bounding box half perime-

ters for all nets, which tends to improve the layout’s area and total wire length.

After the linear program is solved at a given level of the layout hierarchy, a
partitioning stage is carried out to partition the layout region into two equal sized
half-regions. Using the predefined final cell structure as a guide, an area relation-
ship will exist between the two half-regions. In this process, cells are sorted by
either the x or y position by scanning through the list. A cut line is placed at the
position where the ratio of the cell area in the lower portion to the upper portion
of the list equals the area ratio of the two half regions. The cut line is then
dragged to the half region border, repositioning all touched cells in the adjacent
half region.

The complexity of this algorithm is a function of the linear programming
algorithm used. By considering all of the capacitance relations and timing equa-
tions, the number of equations and variables is linear with the size of the chip.
Efficient methods for solving the system of equations can be used to yield satis-

factory run time results.

2.5. Conclusions and Discussion

The Stockmeyer algorithm is an efficient algorithm and is guaranteed to gen-
erate a chip with minimum area for a given slicing structure. However, this algo-
rithm does not address wiring optimization. The second algorithm, which was a
force directed algorithm, is concerned with wiring optimization, but not directly
with area. It tries to arrange the modules on the chip surface such that the

modules which are connected with more nets are placed closer together. Because

rival time determined by its latest arriving signal, The long path slack at an endpoint cell is
the difference between required arrival time and actual arrival time,

-31-

this algorithm is not directly: concerned with area utilization, the result might not
be satisfactory and it may leave too much free space. The Wong and Liu algo-
rithm uses a cost function which is a weighted sum of chip area and wire length
estimation. This algorithm is elegant and simple and more likely to achieve satis-
factory results. But because of the nature of the algorithm, the result is 2 trade off
between minimum area and minimum wire length. Another problem with this
algorithm is that the wire length estimation is rather poor. The Jackson and Kuh
algorithm differs from the other algorithms in that it addresses chip timing perfor-
mance. As predicted, this algoﬁthm is effective at optimizing chip performance,
but the sesult may not necessarily be good in terms of chip area and overall wiring
complexity.

In most of the floorplanning algorithms, chip area and total wire length are
combined into a single cost function, as in the Wong and Liu algorithm. Because
of this combination, we can expect to have room for improving the total wire
length of the resulting floorplans. In fact, our problem is to modify the slicing
floorplan resulting from another algorithm in order to achieve the minimum total
wire length, while the chip’s area or shape remains unchanged. The precise
definition of this problem and two algorithms for solving the problem are dis-

cussed in the next chapter.

An important point which should be restated is that we can only estimate the
total wire length of a circuit. Therefore, it is predictable that minimizing an est-
mate may not lead to the optimum wire length after final routing, and it does not
also directly optimize the wiring area or circuit performance. However, minimiz-

ing a wire length estimate should tend to improve the overall quality of the wiring.

-32-

Chapter Three

New Algorithms
For Wiring Optimization

3.1. Problem Definition

In the previous chapter, some floorplanning algorithms that attempt to minim-
ize total wire length were reviewed. In this chapter, two closely related new
approaches for minimizing total wire length ia slicing floorplans are described.
The objective of these algorithms is to modify an existing slicing floorplan so as
to minimize the total wire length, without changing the chip area and shape.
Before examining these algorithms in detail, the problem being addressed will be
defined precisely.

We assume that a slicing floorplan which is described by a slicing tree is
given. Let us denote the slice direction assigned to each internal node v with
C(v), which can take either of two values V or H representing vertical or hor-
izontal slice directions, respectively. For each leaf node o in the tree, the
assigned module will be denoted by M(c). The value of C(v) for all 1x}temal
nodes and M () for all leaf nodes are unchangeable and therefore are fixed*input

information to the problem.

The important point here is that, for each node in the slicing &ee, the relative
position of child nodes does not affect the size or shape of the floorplan. Further-
more, at the leaf levels the orientation of modules can be changed without any

effect on the size and the shape of floorplan.

Let us denote the relative position of each internal node v with A (v), which
can take either of two values F or R. The value F indicates that the child nodes

-33-

are in the forward position, which is defined as the left child being to the left of
the right child node for a horizontal slice, and below the right child node for a
vertical slice. In contrast, the value R indicates that the child nodes are in
reverse position compared to what is defined as jorward position. For each leaf
node a, we also denote the leaf cell orientation as A (a). In this case, A (o) can
take four values FR, RR, FU and RU. The first letter in these labels represents
mirroring about the vertical axis. The letter F represents forward or normal
orientation, and R represents reverse or mirrored orientation. The second letter
represents mirroring about the horizontal axis. The letter R represents right side
up or normal orientation, and U represents up side down or mirrored orientation.
Initially, A (v) for each internal or leaf node v in the tree is unknown and needs to
be determined by the algorithm.

The problem being addressed in this thesis can be formulated as follows:
Given:
e The circuit netlist which specifies the module terminals to be interconnected.
e A slicing floorplan with its slicing tree representation. In the slicing tree

C (v), for all internal nodes v, and M (o), for all leaf nodes , are fixed input

information.
e Modules dimensions and terminal locations.

Determine:
A(v) for all internal and leaf nodes v in the tree so that the total net length of the

circuit is minimum.

3.2. An Overview of Problem Solutions

Any algorithm which attempts to solve this problem must visit each node in
the slicing tree, and based on the estimated total wire length, must make a

.34

decision about A (v). The total wire length estimate which we use is the sum of
all net bounding box half perimeters. This estimate is easy and fast to compute,
and is accurate enough for our purposes. The value of A (V) for each node in the
slicing tree describes a configuration of the floorplan which is referred to as a
problem state. In general, the state space of a problem is represented by a
directed graph in which each node represents a problem state, and each directed
edge represents a step in the problem solving process. Because of the nature of
our problem, this graph is a tree, and the root of the tree represents the initiai state
of the problem where A (v) is unknown for all of the nodes in the slicing tree. At
every other node in the state space tree, A (v) for some or all of the nodes in the
slicing tree is known. The depth of the state space tree is equal to the number of
nodes in the slicing tree. The algorithm finds a solution path through this tree
from the root, which is she initial state, to one of leaf nodes which corresponds to
a floorplan configuration with the minimum total wire length. Figure 3-1 illus-
trates a slicing tree and its stste space tree representation. The floorplan in this
figure is a very simple one and consists of only two modules which are placed
next to each other. The slicing tree for this floorplan has only three nodes.

\ Initial State
o
B p
A B
Vo T 1=
! IR
! A : B :
L
s------!..---.l

FR FU RR RU

Figure 3-1: The problem state space tree

-35-

One method of solving this problem is to traverse all possible solution paths
in the state space tree, and then select the one with the lowest total wire length as
the final solution. Although this method, which is called exhaustive search, finds
the best possible solution, it cannot be performed within a practical length of time
for problem instances of interesting size. In fact, for a floorplan with » modules,
the state space tree has 23*~! different paths to examine; thus the state space tree

grows exponentially with the number of modules.

An interesting technique that reduces the search complexity is called Branch
and Bound. Branch and Bound traverses paths one at a time, keeping track of the
best path found so far. The total wire length associated with this path is used as a
bound on future paths to be searched. As the search proceeds along a path, the
algorithm at each state places a lower bound on the total wire length which can be
achieved in the solution rooted at that state. If the lower bound is greater than the
best wire length found so far, the algorithm eliminates the next state and all of its
possible extensions from the state space tree, and hence it greatly reduces the
search complexity. It should be mentioned that although the branch and bound
reduces search complexity considerably, it may still examine a large number of

paths.

The important calculation in the branch and bound is how to find a lower
bound on the total wire length for a state of the problem in which the value of
A (v) for some of the nodes in the slicing ‘mee is not determined. Based on the
relative position assigned to these undecided nodes, different configurations with
different total wire lengths may be obtained. The matter of finding the lower
bound will be discussed later in this chapter. The value of the lower bound is
updated, along a path in the state space tree, once the relative position of nodes in

the slicing tree is determined.

-36-

Another strategy for reducing search complexity is to find the solution path
according to a heuristic or rule. One simple rule that may be used is to select, at
each state from all possible states at the next level, the state with the lowest value
of lower bound on the total wire length. This algorithm is highly efficient, since
there is only one path to be tried. Clearly, this method does not necessarily leads

to the optimum solution, because the decisions are based on local information.

In the rest of this chapter, we will discuss the details of a branch and bound
and a heuristic algorithm: for solving our problem. The motivation for implement-
ing the branch and bound algorithm for our problem is that it might be efficient
for floorplans of practical size. Alternatively, the heuristic algorithm might be

able to come up with reasonably good solutions very quickly.

3.3. A New Branch and Bound Algorithm For Wiring Optimization

In this section the details of a branch and bound algorithm for our problem
are discussed. As was pointed out before, the key to a successful branch and
bound algorithm is an efficient and accurate way of computing a lower bound on
the total wire length. In order to calculate the required lower bound, denoted by
Py, and update it along different paths in the state space tree, the slicing tree
must be processed prior to running branch and bound algorithr.. Therefore,
before discussing the structure of the algorithm, we will consider the information
which is required at each node in the slicing tree and then describe how this infor-
mation is provided by a pre-processing algorithm.

3.3.1. The Pre-Processing Algorithm

The pre-processing algorithm traverses the slicing tree, in bottom-up fashion,
to calculate an initial value of P,,,. The following information is provided for

-37-

each node v (internal or leaf node) in the slicing tree:
e xmin(n;,v) , ymin(n;,v)
o wmin(n;\v) , hmin(n;,v)
e terminals(n;,v)
o List(v)
o width(v) , height (V)
The definition of this information and how they are calculated are discussed in the
following paragraphs.
xmin(n;,v) & ymin(n,v) :

xmin (n;,v) is defined as the minimum of either of x; or x,, where we have:
x;=the minimum possible distance from the left side of v's rectangle to the
furthest of a;’s terminals in v.
xy=the minimum possible distance from the right side of v's rectangle to the
furthest of n;’s terminals in v.
Figure 3-2 illustrates an example of net n;’s bounding box which encloses n;’s
terminals in rectangle v (rectangle comresponds to node v. The value of x; and
X4 are specified in this figure. In this example, since x, is smaller than x,, we

have: xmin (n;,v) = x;

Figure 3-2: Definition of xmin()

-38 -

Similarly, ymin(n;,v) is defined as the minimum of either of y; or y,, where we
have:

y=the minimum possible distance from the bottom side of v’s rectangle to the
furthest of #;’s terminals in v.

y,=the minimum possible distance from the top side of v’s rectangle to the

furthest of n; ’s terminals in v.

For a leaf node v, these values can be calculated from the leaf cell geometry.
For an arbitrary net n;, we can find the location of the rightmost and leftmost ter-
minals within a leaf rectangle, then xmin(n;,v) is the minimum of the distances
from the rightmost terminal to the rectangle’s left side, or the distance from the

leftmost terminal to the rectangle’s right side. The same technique can also be

used for calculating ymin(n;,v).
xmin(n, ,V,) width(V,)
g................* .. o
Pt)
|ernereeraensens 3 O ——— —
: A ;
' 3 '
....... E: .‘.,.:
' R ettt)
cccacas 1 :
Meiecnroorersencserassrece IaLrocsrssarsasensacssaccscesses >
Wldth(vl) xmin(nj Ve)

Figure 3-3: Calculation of xmin() for an internal node

For an internal node v, let us assume net n; has terminals in both of v,’s
children v, and v,. Calculation of .xmin(n;,v,), for the case where v,
corresponds to a vertical slice, is illustrated in Figure 3-3. By considering the
situation in this figure, it can be seen that the minimum distance from the right

‘'side of v, to the furthest terminal of net »; is xmin(nj.v,)-l-width(v,).

-39 -

Similarly, the minimum distance from the left side of v, to the furthest terminal
of net n; is xmin(n;,v,) + width(v;). Note that width () describes the width of the
rectangle corresponding to a node. Therefore, xmin (r;,v,) can be calculated from

the following equation:
xmin (n; v, y=min (width (v, yrxmin (n; v,),width (v, Yxmin (v, ;))

On the other hand, the vertical slice has no effect on the vertical extent of the net

| bounding bbx. Thus we have:

ymin (n; vy Y=max (ymin (n; v;).ymin (n; v,))
If the slice direction corresponding to v, is horizontal, the only difference in the
above equations is the change in the role of xmin() and ymin() , and the replace-
ment of width () with height (), where height () describes the height of the rectangle
corresponding to a node.

The value of xmin(n,-.v,,) and ymin(nj.v,), when LT has terminals in only
one of v,’s children, is equal to wnin() and ymin() in that child node. For
instance, if net n; has terminals only in v;, then xmin(n;,v,) is equal to
xmin (nj V;), and ymin (n;.vp) is equal to ymin (n;,v;).
wmin(n;,v) & hmin(n;,v) :

wmin (n;,v) is defined as the minimum width of net ;’s partial bounding
box! enclosing net ;s terminals within rectangle v. The size of partial bounding
boxes for leaf nodes does not change with different module orientations. But for
internal nodes, the relative position of child nodes and their descendants affects

the size of net bounding boxes, and for different module arrangements, a net’s
partial bounding box may have different sizes. wmin (n;,v) specifies the minimum

! The net partial bounding box is defined as the bounding box which encloses some but not
all of the nets’ terminals. ' ‘

possible width of net n;’s partial bounding box that is achievable by some
arrangéthent of modules inside v’s rectangle. hmin (n;,v) is similar to wmir (v,n;)
and is defined as the minimum possible height of net n ;°s partial bounding box.
Calculation of wmin() and hmin () is similar to that of xmin() and ymin ().
For a leaf node v, the distance between the rightmost and leftmost terminals of net
n; inside v is wmin(n;.v). Similarly, hmin (nj.v) is the distance between topmost

and bottommost terminals of »; lying in v.

Xxmin(n, v,)
PR B >
LT '
| A I R .
' ! ' '
ﬂ --------------- r- ' '
! . ¢ !
' ' ' |
1 P [ETPEOPT P P
' 1 1 1
:) hidndaddaded b '
......... '

§< >

Figure 3-4: Calculation of wmin() for an internal node

To calculate the value of wmin () and hmin () for an internal node, let us con-
sider the situation in Figure 3-4, where v, coresponds to a vertical slice and net
n; is a common met between v,’s children v, and v,. According to the
definitions, the minimum possible extent of net a; to the right of the slice line will
be xmin(n;,v,), and similarly the minimum possible extent of net n; to the left of

the slice line is xmin(n;,v;). Thus we have:
wmin(n i Vp Y=xmin (n i VI Hxmin(n J WVr)

Because the vertical slice has no effect on the horizontal extent of net n;, we

have:
hm‘” (n] vvp)m (hmin (nl ,V')om" ("j ,V, »

-41-

A similar methiod can be used for calculation of wmin (n;.vp) and hmin(n;,v,),
when the slice direction at v, is horizontal.

Analogous with xmin() and ymin(), the value of wmin (nj,v,) or
hmin (n;,v,), where net n; has terminals in only one of Vp’s children, say v, is

equal to wimin (n;,v;) and hmin (n;,v;), respectively.
terminals(nj.v) :

This parameter is defined as the number of terminals of net »; lying inside
rectangle v. For the leaf nodes, this parameter can be determined from the circuit
netlist. For internal nodes it can be obtained by adding the number of nets’ termsi-
nals in the child nodes.

List(v) :

List (v) is a netlist associated with node v. If v is an internal node, then the
list contains all the nets which have some, but not all, of their terminals lying in
the composite rectangle corresponding to node v. If v is a leaf node, the list con-
tains all the nets which are attached to the module assigned to v. For both leaf
nodes and internal nodes, a net »; is omitted. from Lisz(v) if all of n;’s terminals
lie within rectangle v. To improve the efficiency of the branch and bound algo-
rithm, this list is sorted in nondecreasing otder of net id-numbers; also, all of the
above listed parameters are only calculated for the nets in this list.

The procedure for constructing List() for a leaf node is different from that for ‘
an internal node. For a leaf node v, the nets in List(v) can be easily extracted
from the circuit netlist. To explain how a list is constructed for an intemnal node,
we consider again a node v, with two children v, and v, whose netlists List(v;)
and List(v,) are already constructed. Since List(v;) andl.a;st(v,) are sorted, these
lists are merged and the nets which satisfies the requirements will be added to
List(vp). The following pseudo-code describes the construction of List(vp) in

-42.-

details. As the pseudo-code demonstrates, as scon as a net is added to List vp),

its auributes terminals (n;,v,), xmin(n;,v,), ymin(n; Vp), wmin(n;,v,) and

hmin (n; ,v,) are calculated and saved.

Construct (v,)
Vp : an internal node in the slicing tree.

V) =V, 's left child.

r = Vp's right child.

For all common nets n; in List(v;) and List(v,)

{

if(terminals (n; v, y+terminals (n; v,)<
total number of n;'s terminals)

{
Add n; to List (Vp)
terminals (n;,v,)=terminals (n; vy Yterminals (n;)

Calculate xmin (n; v,).ymin (n;,V,).hmin (n; v,)
?nd wmin (n;,v,) and save them.

else

Calculate minimum dimensions of net n;’s
bounding box and save them.

For all nets n; in List (v;) which are not common with List(v,)

{

zif(terminals (n;,V,)< total number of n;’s terminals)
Add n; to List(vp)
terminals (n i Vp Y=terminals (n;,v;)

Calculate xmin (n;.v,).ymin (n;.vp)shmin(n;.v,)
and wmin(n j .v,f and save them.

For all nets n ;j in List(v,) which are not common with List (V)

}
}

Perform calculations similar to that above for n;

In the above procedure, one issue should be discussed. When the procedure
detects a net n; which is:cojisgton between v; and v,, but which does not satisfy
the number of terminals criterion, the net will not be added to the Lisz(v,). But

-43-

in this case, net n; lies entirely inside v,, and at this point, we can find the
minimum width and height of n;’s overall bounding box which encloses all of
n;’s terminals in the entire floorplan. Calculation of the minimum width and
height of the net n;’s bounding box is exactly like the calculation of hmin() or
wmin(),% For the case where Vv, corresponds to a vertical slice is as follows:
net_width (n J)=xmin (n; v, Y+xmin (n ; WV,)
net_height (n;y=max (hmin (n; ,v;),hmin (n;,v,))

where net_width(n;) and net_height(n;) are the minimum width and height of
n;’s bounding box. After the entire slicing tree has been pre-processed, these
values for all the nets in the circuit are added to obtain the initial value of Py, .
width(v),height(v) :

width (v) and height (v) are the width and height of the floorplan rectangle
corresponding to the node v. In contrast to the listed parameters above, width ()
and height () are calculated in a different manner. These values vare calculated by
processing the slicing tree in two passes. On the first pass, the slicing tree is pro-
cessed in bottom-up fashion, and the minimum possible width and height for each
node are obtained. To explain how first pass values of width() and height () are
calculated for an internal node, consider a node v, with vertical slice direction.
Because the algorithm moves bottom-up in the slicing tree, width() and height ()
are known at v, and v;, which are v,’s right and left children respectively.
width (v,) and height (v,) are calculated as follows:

width (v, y=width (v, Ywidth (v,)
height (v, }=max (height (v;),height (v,))

4 In fact, the minimum dimensions of net n;’s bounding box is hmin(nj,vp) and
wmin (nj .vp).

The height and width of nodes with a horizontal slice direction are calculated
similarly.

Following the first pass, the slicing tree is processed from top to bottom in
order to obtain the final values of height() and width(). The first pass values of
height () and width() for the root are not changed. For any internal node, the first
pass values of height() and width () for its children are available. If the internal
node v, has a vertical slice direction, and the height of v,’s children are unequal,
then the smaller height will be updated to the larger height. On the other hand, if
the sum of the width of v, ’s children is not equal to v, 's width, the width of both
Vv, ’s children will be updated such that they still have the same ratio, and the sum
of them is equal to the v,’s width. Similar calculations are carried out for the

internal nodes whose slice directions are horizontal,

The following pseudo-code summarizes the pre-processing algorithm which

has been discussed in this section:

Pre-Process (A)
Vp : @ node in the slicing tree.

{

If (node v, is an internal node)

{
V) = node v, left child.
V, = node v, right child.

Pre-Process (vy)
Pre-Process (v,)

Construct(vy)

else /* Vv, is a leaf node. */
List(v,) = all the nets artached to M(vp)
For each net n; in List(v,)

Calculate terminals (n;,v,,), xmin(n;.v,), ymin (n;,v,)
wmin (n;,V,) and hmin (n; Vp)

-45-

}

This procedure calls itself recursively and with this technique it goes to the
leaf levels of slicing tree, and then returns to the top. In order to process the

whole slicing tree, the procedure must be called for the root of the tree.

3.3.2, The Branch and Bound Algorithm

After the whole slicing tree has been pre-processed, the branch and bound
algorithm can be applied to the problem. A pseudo-code description of the branch
and bound algorithm, BandB(), is as follows:

BandB(queue)
queue: contains all the nodes in the slzcmg tree in
parent first order.

-I{f (queue is not empty)

= the node at the head of the queue.
Iﬁ is an internal node)

A(v,)=F

Sltce Cal(v,)
Update_i Internal(v,)
1{(Plow<Ppes)

Remove v, from the queue.
BandB(queue)
Undo all of the changes to the queue.

)
Undo all of the changes to Py,
and the minimum bounding boxes.

A(vp)=R
Repeat procedure similar to that above.

)
?Ise [* If v, is a leaf node */

Vv,)=FR
&te _Leaf(v,)
’{(P tow <Pbeg)

Remove v, from the queue.

- 46 -

BandB(queue)
Undo all of the changes to the queue.

)
Undo all of the changes to Py,
and the minimum bounding boxes.

A(V,)=RR
Repeat procedure similar to that above.
A(v,)=FU
Repeat procedure similar to that ahove.
A(v,)=RU
Repeat procedure similar to that above.

}
7lse [* queue is empty */

lif(Piow <Ppes)
P best =P low
Save the current relative position for all the nodes
\ as the best solution found so far.
)

}

The above procedure operates by recursively processing a queue of slicing
tree nodes. The nodes can appear in the queue in different orders, provided that
each node precedes either of its children. Two specific orders in which we are
interested are depth-first and breadth-first. In the depth first order, when a node is
examined, all of its children and its descendants are examined before any of its
siblings. For breadth first, nodes are visited in a level by level fashion. Although
the final configuration resulting from the algorithm for both of these orders must
be the same, the ability to cut the branches in the search tree may be different.
This issue is addressed in the next chapter.

Two parameters are important in the branch and bound algorithm. The first
parameter is the lower bound on the total wire length, which is denoted by Py, .

The initial value of P, is produced by the pre-processing algorithm (see page

-47-

44). The second parameter is the smallest total wire length encountered by the
algorithm up to the current state in the search. This parameter, which is denoted
by Pp.s. is used to cut the branches in the state space tree and speed up the
search. The initial value of Py, can be obtained by assigning arbitrary relative
positions to all nodes in the slicing tree and then calculating the resulting total
wire length. These arbitrary relative positions can also be the result of a sub-

optimal search for a solution.

The branch and bound algorithm starts from the problem initial state, where
the queue of slicing tree nodes is full. Let us assume that node v, is at the head
of the queue. First, BandB() assigns the relative position F to v, and updates the
value of Py, based on this decision. In BandBQ, Update_Internal() and
Slice_Cal() are the functions called for updating Py, . The details of these func-
tions will be explained later. If Py, is less than Py, the algorithm may be on
the right track to the optimum solution. Therefore, BandB() removes v, from the
queue and recursively calls itself. Alternatively, if Py, is greater than P, ., then
we cannot obtain the optimum solution with this telatjve position and BandB()
does not call itself. In either of these cases, the changes made to P,,, and the
queue are undone. Then the relative position R is assigned to v, and the above
procedure is repeated.

If the node at the head of the queue is a leaf node, a procedure similar to that
above is used, with the only difference being that BandB() tries all four possible
relative positions for a leaf node. In this case, Update_Leaf{) is the function
called for updating P, , and this function will be explained in detail later.

When the queue becomes empty, Py, is the actual total half perimeter of the
circuit. In this situation, if Py, is less than P, then the current solution is

better than the current best solution. In this case, BandB() sets Py, equal to Py,

and saves the current relative position for all the nodes in the slicing tree as the

best solution found so far.

An important issue in the branch and bound algorithm is computing Py, , the
lower bound on the total wire length of the circuit. As was explained earlier, the
pre-processing algorithm obtains the value of P,,, by summing the minimum
width as:d height of all the net bounding boxes in the circuit. In other words, the
lower bound on the #=¢al wire length of the circuit is the sum of the lower bounds
on half perimeter of the individual nets in the circuit. To update P,,,, BandB()
keeps track of the lower bound on each net bounding box half perimeter individu-
ally. For each net n;, a minimum bounding box is maintained which is defined as
the smallest possible bounding box that can enclose net n;’s terminals, given that
relative posiﬁons have been assigned to some of the nodes in the slicing tree. Net
n;'s mihimum bounding box is described by four parameters 7 (n;),! (n;)t (n;) and
b(n;); these four parameters give the right, left, top and bottom boundary loca-
tions, respectively, of net n; 's minimum bounding box. For instance r() and /()
are defined as follows:

r(n;) = Smallest possible value of the right boundary of net n;'s bounding box
l(n;) = Largest possible value of the left boundary of net n;’s bounding box

In other words, the right boundary of #;’s bounding box is pushed to the leftmost
possible positivm, and this position is denoted by r(n;). Similarly, the left boun-
dary is pushed to the rightmost possible position and this position is denoted by
I(n;). The interesting feature of the minimum bounding boxes is that, in defining
r() and l(), we don't care about the relative position of right and left boundaries,
In other words, in some situations we may have 7()<i().

As the relative position decisions are made in the slicing tree, the minimum
bounding box dimensions are updated, and if the update has an impact on Py,,,

-49.

then Fy,, is aiso updated. Eventually, when the queue of slicing tree nodes
becomes empty, the relative position for all the nodes in the slicing tree is deter-
mined. In this situation, the minimum bounding boxes become the actual bounding
boxes for the nets, and Py,, becomes the actual total half perimiter of the floor-
plan.

When a decision about node’s relative positica is made, the minimum bound-
ing boxes of the nets which are affected must be updated. For a leaf node, all of
the nets which are attached to the comresponding leaf cell must be considered.
These nets are available from the List() structure for that leaf node. For an inter-
nal node v,, nets whose terminals lie entirely in one of v,’s children are special
cases and need not to be considered by the updating procedure. The relative posi-
tion at v, can affect the location of these nets’ bounding boxes, but it has no
effect on their size. The nets which must be considered by the updating procedure
are those in List(v;) and List(v,) where v; and v, are v,’s left and right children.

The procedure for updating minimum bounding boxes is different for leaf
nodes and internal nodes. First, we will discuss the updating procedure for inter-
nal nodes. Let us assume V, is an internal node where C (v,)=V and the algo-
rithm has assigned A (v,)=F. According to the definition, for an arbitrary net n;
in List(v;), the closest possible distance between net n;’s partial bounding box
right boundary and the left side of v, is xmin (nj,vy). Since the position of the
slice line and the value of xmin () are known, the leftmost possible position of n;’s .
partial bounding box right boundary is also known. This position is illustrated in
Figure 3-5 (a). If this value is larger than the current value of r(n;), rn;) is
updated to the new value. Similarly, the closest possible distance from net n;’s
partial bounding box left boundary to the right side of v, is also xmin(n; V).
Therefore, the rightmost possible position of n;’s minimum bounding box left

boundary is known. This position is illustrated in Figure 3-5 (b). If this value is
smaller than the current value of /(n i), I(nj) is updated.

Figure 3-S: Updating r(m)) and i(ny)

Summarizing, the values of 7(n;) and /(n;) are updated according to the following
equations:
new_r (n;)=max (old_r (n;).slice (v,)~width (v, Y+xmin (n;,v;))
new_l(n;)=min (old_l (n;).slice (v, y-xmin (n;,v;))

In the above equations xmin (r;,v;) and width(v;) are already dctermined by the
pre-processing algorithm. slice(v,) is the x or y position of the slice line,
depending on the slice direction. The origin of these coordinates is the left-bottom
comer of the whole floorplan, and therefore slice(v,) describes the absolute posi-
tion of slice line in the floorplan. Similarly, for each net n; in List(v,), r(n;) and
{(n;) are updated according to the following equations:

new_r (n; y=max (old_r (n;)slice (v, Ytxmin(n; v,))
new_l (n; y=min (old_I (n;).slice (v, Yxwidth (v,)-xmin (n;.v,))

The relative position at v, has no effect on the y position of the minimum

-51-

bounding boxes when the C(v,)=V. Therefore, only () and /() boundaries of
bounding boxes need to be updated and ¢() and b() remain unchanged. Altemna-
tively, if C(v,)=H, then only the vertical extent of the minimum bounding boxes
are affected. In this case, only #() and b() are updated in a manner similar to r ()
and /() for each net in Lisi<{v,) and List(v,), using ymin(), *eigit() and slice()
information.

A question which must be answered is "What s the inidal %¢lue of the
minimum bounding box boundaries?". To answer this question, let ns assume that
net n; lies entirely in some node v; whose parent is v,. Obviously, a relative
position assigned to v, has a great effect on the position of a;’s minimum bound-
ing box. If v; is the left child of vé, then assigning forward relative position to
V, places the net n;’s minimum bounding box in the left of the slice line, and
assigning the reverse relative position at v, places the bounding box in to the
right of the slice line. Although the relative position assignment at v, changes the
location of the minimum bounding box, it provides no information about the size
of the minimum bounding box. For all v,’s ancestors, net n; also lies entirely in
one of their children and the relative position of these nodes also will not change
the size of #;’s minimum bounding box.

Initially, the relative position of all the nodes in the slicing tree is undeter-
mined, and therefore the initial values of r(),/(),¢() and b0 for all nets are unk-
nown, The problem here is that if these values are initially unknown, how we can .’
update them based on the technique explained earlier. To solve this problem, the
algorithm initially assigns the NULL value to 7()./(,¢() and b() for all of the nets
in the circuit. The NULL value indicates that the position of the minimum bound-
ing box is unknown. Every time that the algorithm makes a decision about the

relative position of a node v,, it looks to its children net lists. Each net which is

-52-

considered for the first time has NULL boundaries, and its boundaries at that point
become defined. To clarify this point, let us assume that node v, is an internal
node with C(v,)=V and A(v,)=F, and n; is a net in List(v;), where v; is Vp's
left child. Similar to the procedure for updating the minimum bounding boxes,

r(n;) and /(n;) become defined as follows:

r(n;)=slice (v, y-width (v, }+xmin (n V1)
I (nj)=slice (v,)-xmin (n;,v;)
By examining the above equations, it can be easily verified that, for
xmin (n; V;)<width (v;)/2, the value of r(n;) is less than I(n;). In this case, we do
not care that the minimum bounding box has negative dimensions.

Although the method of updating the minimum bounding boxes has been
explained, the matter of updating P, has not been clearly addressed. Let us
come back to the definition of Py,,. Pj,, is the sum of the minimum bounding
box half perimeters for all the nets in the circuit. As far as each individual net is
concerned, there is an arrangement of modules which leads to the minimum width
and height for that net’s bounding box and these minimum values were obtained
by the pre-processing algorithm. Therefore, the initial value of P, obtained by
the pre-processing may be an unrealistic value for the total half perimeter of the
circuit. To update Py,,, the ambunt of change which is made to the minimum
bounding box dimensions when they are updated must be added to P,,,. How-
ever, when r(n;)<I(n;) or t(n;)<b(n;), no changes are made to P,,,,,:. As well,
P,,, is only updated when the resulting dimensions become larger than the pre-

processing minimum dimensions.

A pseudo-code description for the whole procedure of updating minimum
bounding boxes and P;,,, for an internal node appears as follows:

-53-

Update Internal(Vp)
Vp, S an internal node in the slicing tree with C(v,)=V .

(
Vi = V,’s left child.
vV, = v, s right child.

For each net n; in List(v;)
I{f(r(n') and |{n; Y NULL)

old _r=r(n;)
old_I=l(n;)

r(n;y=max (old_r slice (v,)-width (v, }+xmin (n;,v;))
I(n;)=mm (old 1 slice (v,)—xmm (n;V1))

If (old_i r-old |_I>net_width (n;))
Py, =P +r(n)—old r+old | 1-1(n;)
else xf (r(n;)-l (n;)>net width (n)
} P =P +r) }-1Tnjy-net width (n;)
flse/* r(n;) and I(n;) = NULL */

r(n; }=slice (v, y-width (v, Y+xmin (n;,v;)
I (nj)=slice (vp Y=xmin (n;.v;)

I}ereat procedure similar to the above for each net n; in List(v,)

The same techniques can be used to update the minimum bounding boxes
and Py, for a leaf node. The main difference here is that for each net in List()
associated with the leaf node, the actual position of net terminals will be used to
define or update the minimum bounding boxes. The actual position of terminals
are calculated based on the cell orientation. This procedure is illustrated by the
following pseudo-code:

Update_Leafl v,)
}'P : a leaf node in the slicing tree.

For each net n; in Lc'st(v,)

_maxx = absolute x position of n; ji 's rightmost terminal.
minx = absolute x position of n; s leftmost terminal.,
maxy = absolute y posinon of n 's topmost terminal.
miny = absolute y position of n; ;'s bottommost termmal

Iif(r(nj) and I(n;}# NULL)

old _r=r(n;);
old” I-I(n,)y

r(n;)= max(old_r, maxx)
I(nl)- min(old_l, minx)

If (old_r—old_I>net_width (n;))
Py, =P +r(n)—old r+old l-l(n)
else zf (r(n)—l (n;)>net width (n
=P +rln)1 Tn;)-ner_width (n;)

llse/"' rn;) and l(nj) = NULL¥/
(r(n)=maxx

l(n,)-mmx
Update t(n;) ,b(n;) and P, using maxy and miny
)

The final point which should be discussed in the branch and bound algorithm
is the function Slice_Cal(). In order to update the minimum bounding boxes, and
subsequently P,,,,, for an internal node, the position of the slice line is required.
Whenever a relative position is assigned to an internal node V. this function is
called to calculate the slice line position with respect to the left-bottom comer of
the floorplan. This function calculates the slice line position based on Vp's
children’s dimensions, which are already determined by the pre-processing algo-
rithm, and th courdinates of v,’s left-bottom corner. Therefore, in addition to
the position of v,’s slice line, this function calculates the coordinates of its

children’s left-bottom comer.

3.4. A Heuristic Algorithm for Wiring Optimization

In terms of a state space search, heuristics are intefpreted as rules for choos-

ing those branches in a state space tree that are most likely to lead to an accept-

-5 -

able problem solution. A simple way to implement a heuristic search was
described earlier in this chapter. In this algorithm, we try all possible next states
at the next level of state space tree and evaluate the total wire length estimate for
each one. Then, the state with lowest total wire length estimate is selected and
the algorithm proceeds. This strategy is called a best-first search.

In order to implement a best-first search for our problem, we can use the
lower bound on the total wire length of the circuit, the same as the one in the
branch and bound algorithm. A procedure is required which evaluates P, at
each node of the slicing tree for different relative positions, and saves the relative
position with the lowest P,,,. This procedure can be coded using the available
functions from the branch and bound algorithm as follows:

Best(v)
Vp: an arbnrary node in the slicing tree

gf(v, is an internal node)

A(vp)=

Slice Cal(v)

Update Imemal(v,)

Save Py, for the forward relative position

Undo all of the changes to the P,,,
and the minimum bounding boxes.

Repeat similar procedure to that above for
the relative position R

Save the relative position with the lower Py,
and update P, accordingly.

)

flsc /* v, is a leaf node */

v,)=FR

Up&re Leaflv,)
Save Py, for 5:3 Jorward right side up orientation

Undo all of the changes to the P,,,
and the minimum bounding boxes.

Repeat procedure similar to that above for the
relative positions RR, FU and RU.

Save the orientation with the lowest Py,
and update Py, accordingly.

}
}

By using this procedure, the best-first search through the problem state space can

be implemented as follows:

Best_First(queue)
queue: contains all the nodes in the slicing tree in
parent first order.

While (queue is not empty)
Vv, =The node at the head of the queue.
Best(vy)

Remove v, from the queue.

It can be seen that Best() resembles the BandB() procedure in the previous

section. In fact, the best-first search code can be rewritten using BandB() as fol-

lows:

Best_First(queue)

queue: contains all the nodes in the slicing tree in
g{mrent first order.

?’hile (queue is not empty)

Remove one element from the head of the main queue
and put it into Heu-queue.

Ppeq=A Big Number

-57-

BandB(Heu_queue)

Update P,,,, and the minimum bounding boxes with
the best relative position saved for the node

in the Heu_queue.

)
}

In order to utilize the BandB() procedure, a new queue called Heu_queue is
defined. This queue contains only one node from the slicing tree which is the
current node being examined by the heuristic. Initially, Heu_queue is empty and
one node from the main queue is removed and added to Heu_queue. Then P,
is set to a big number, so that when the BandB() is called, the "if" conditions at
the beginning of BandB() always succeed and BandB() tries ail possibilities for
the node in the Heu_queue. When the BandB() procedure is finished, the best pos-
sible relative position is saved. Then the value of P,,, and net bounding box
boundaries are updated accordingly. Finally, the node in Heu_queue is removed
and another node from the main queue is put into the Heu_queue and the whole

procedure is repeated until the main queue becomes empty.

The main problem with the best-first search is that it can not predict the
behavior of a problem along the state space search. In other words, the best rela-
tive position at each level may not to be the best in the absolute sense. One way
to overcome this problem is to go along all different paths in the state space ori-
ginating from the current node. This method is obviously the same as the branch
and bound search which we have already implemented. A compromise between
the best-first and the branch and bound search is that, instead of going down all
the paths in the state space tree, we try all the paths down to a certain depth from
the current node. Although this method, which is called a best-first search with k
look-ahead, suffers from the same problem as the best-first search, it uses more

information to make its decisions. The original best-first algorithm is the special

.58 -

case of the look-ahead algorithm with k=1. The original best-first algorithm is
modified as followed to implement this idea.

Best_First(queue k)

queue: contains all the nodes in the slicing tree in

parent first order.

l{c: number of look-ahead

Remove k elements from the head of the main queue
and put them into Heu-queue.

While (queue is not empty)
Py.q =A Big Number
BandB(Heu_queue)
Update Py, and net bounding boxes with
the best relative position saved for the node
at the head of the Heu_queue.

Remove one element from the head of Heu_queue.

Remove one element from the main queue and add it
to the tail of Heu_queue.

3.5. Summary

Up to this point, two different approaches to solve the wire length optimiza-
tion problem have been presented. Although we know that the branch and bound
algorithm solves the problem exactly, its run time might not be practical for typi-
cal circuits. On the other hand we know that the best-first search is too greedy in
nature, but it may be quite efficient in terms of run time. The quality of the result
from the best-first procedure must be investigated and compared with the exact
solution from the branch and bound algorithm. The efficiency of these algorithms
can be only tested by implementing them and applying them to practical VLSI cir-
cuits. The next chapter is devpted to a discussion of the implementation tech-

niques and experimental results for the two algorithms.

-59-

Chapter Four

Implementation and Results

4.1. Preliminaries

The new algorithms presented in chapter 3, have been implemented in the
C++ language on the UNIX operating system. C++ is an evolution of C which
supports object-oriented design and programming. The new algorithms have been
implemented using an object-oriented design methodology, and C++ was used
because of its popularity among object-oriented languages.

Object-oriented design methodology represents an important view of software
design. Object-oriented design views the construction of software systems as col-
lections of objects. An object is a logical entity, like a real world component,
which is mapped into the software domain. The software realization of an object
contains both data structures and processes that manipulate the data structures.
These processes are called operations or methods, and usually contain procedural

and control constructs.

Since each object in an object-oriented design is a module,’ modularity is
inherently provided in an object-oriented design. Modularity is an important desir-
- able characteristic of software. A large program composed of a single module
cannot be handled easily. The number of control paths, variables, and overall
complexity of such a program make it difficult to understand and debug. Further-
more, modular software is flexible in architecture and achieves three important

aspects of software quality: extendibility, reusability and compatibility.

5 The software is divided into separately named and addressable elements, called modules
that are integrated to satisfy problem requirements., A simple form of a module can be a sub-
routine or procedure, representing a step of the task to be performed by the software.

Extendibility is the ease with which software products may be adapted to changes
of specifications. Reusability is the ability of software products to be reused for a
new application, in whole or in part. Finally, compatibility is the ease with which

software products may be combined with each other.

Another important issue in software design which is addressed by object-
oriented design is information hiding. Information hiding is one of the key princi-
ples to ensure modularity, and implies that all information about a module should
be private to the module and inaccessible to other modules that have no need for
such information. The use of information hiding as a design criterion for modular
programs provides its greatest benefits when modifications are required during
testing and debugging. Besides, it has the advantage of providing a significant
level of protection to the information contained within a module. Any accidental
modification or incorrect usage of this information is prevented. Information hid-
ing is achieved in an object-oriented design through private components of an
object. Within an object, some of the data structures and/or methods can be

private to the object and inaccessible to anything outside the object.

In describing objects in an object-oriented design, we are clearly more
interested in classes of objects than in individual objects. Class is the technical
term in object-oriented design to describe a set of data structures representing
objects that are characterized by common properties. In order to have complete
descriptions of the classes of data structures, we use abstract data types. In gen-
eral, an abstract data type describes a class of data structures by the list of features

available on the data structures and the formal properties of these features.

In order to implement an abstract data type, C++ has two constructs: the first
is an extension of the struct construct in C, and the second is the class comstruct.

The class construct is syntactically similar to struct. It has a name to identify it

-61 -

and it can have data members and member functions (methods). Some or all of
the members can be declared as private or public members. The public members
are accessible both inside and outside the class, while the private members are

only accessible within the class.

In object-oriented programming, the abstract data types are extended to allow
for type/subtype relationships. This is achieved through a mechanism called
inheritance. Rather than re-implementing shared characteristics, a class can inherit
selected data members and member functions of other classes. In C++, inheri-
tance is implemented through the mechanism of class derivation. A class that is
inherited is referred s &s a base class and the class that does the inheriting is
called the derived class. When one class inherits another, the members of the
base class become members of the derived class. In C++, the accessibility of the

base class members inside the derived class can be controlled.

4.2. Software Overview

One program has been developed for each of the algorithms presented in the
last chapter. Because of the similarities between these two algorithms, the pro-
grams have similar components, and the issues which are discussed here apply to
both of them. The main body of the programs contains abstract data type
definitions and procedures corresponding to the pseudo-code presented in the pre-
vious chapter. Besides these components, the software requires components t0
read the input files, initialize the data structures, and write the results in the output
file. In this section, we first describe the abstract data types defined to implement
the objects, then we briefly describe the input and output files, and finally we
present the specifications of a program which produces a graphical representation
of the algorithms’ results.

.62 -

4.2.1. Abstract Data Types

In order to provide an object-oriented architecture for the programs, the
objects in the algorithms that we are trying to implement must be precisely
identified. The objects which can be identified in the algorithms are from one of
the following types:6 a node in the slicing tree, a net in the netlist of each node in
the slicing tree, a module, a net in the netlist of each module, a net minimum
bounding box and a node in the queue of slicing tres nodes. In order to imple-
ment each of the above objects, an abstract data type must be used. Each abstract
data type describes the data members of each object and also the set of operations
that may be applied to objects of that type. We use the C++ class construct to
define the required abstract data types. The classes which have been defined to
implement the above objects are as follows: 1) basic_list, 2) list, 3) queue, 4)
net, 5) module and 6) tree. Each of these classes is explained in the following

paragraphs.

The basic_list class

This class contains common features of the queue and list classes. The list
class describes an element in a linked list and the queue class describes an ele-
ment in a queue. There is a strong conceptual relationship between a queue and a
linked list, the main difference being the operations which are performed on the
two structures. Therefore, the queue and list classes can be defined as special
cases of a single class which contains the common features between the two.
Although the basic_list class does not describe any particular object in the pro-
gram, it is a superclass of the two classes queue and list. The basic_list class

specifications are as follows:

6 The final program contains other objecis, but in this section we are concemned only with
the objects required to implement the algorithms discussed in the previous chapter.

-63 -

Class: basic_list

Superclass: none

Private data,

next: pointer to an object of type basic_list.
Public Operations,

constructor: Initialize the object when it is created.
get_nex(): Read the private data.

set_next(value): Write the given value to the private data.

This class is very simple and has only one private data member which is a
pointer to another object of the same type. The pointer represents the concept of
linkage between elements which is implicit in both the linked list and the queue
data structures. This class also has three public member functions. The first func-
tion is a constructor which is invoked automatically each time an object of this
type is created to initialize the data member. The other two functions (ger_nex()
and set_next()) are used to access the private data, and anything outsid# the object

can only s:ers and modify the private data through using these functions.

The list class

The netlist for each node in the slicing tree and the netlist for each module
are implemented as linked list data structures. Thus, defining a class for elements
of a linked list seems to be sufficient to implement objects of both of these types.
However, each object of one of these types has some unique attributes. For
instance, a net in the netlist of a tree node contains xmin() and ymin() data ele-
ments, while a net in the module netlist contains x and y position of the net’s ter-
minals. In order to solve this problem a unique class is defined for elements in a
linked list with some attributes, where each attribute has different interpretations
for objects of either of the above types. This class is called liss, which its

specifications are as follows:

Class:
Superclass:
Private data,

net_id:
x:

y:
w:

h:

Public Operations,
constructor:
ger_.():
set_..(value):

add_nexy():
find_bbox():

As illustrated above, the class has a couple of private data elements, which
have different interpretations for the netlist of a node in the slicing tree and the
netlist of a module. This class has different member functions, such as a con-
structor, the functions for accessing to the private data members, and a function
for adding new clements to an existing list. The other men..er function which
needs explanation is find_bbox(). As stated in the previous chapter, the netlist for
a module or a node in the slicing tree is sorted based on the net id-numbers.
When this operation is applied to an element in the list, it goes through the next
elements of the list which are objects of the same type and compares the position

of terminals until it reaches an element with a different net id-number. Then it

list

basic_list

net identifier.

xmin() in the tree node netlist,

x coordinate of the net terminal in the module netlist.
ymin() in the tree node netlist,

y coordinate of the net terminal in the module netlist.
wmin() in the tree node netlist,

terminal identifier in the module netlist.

hmin() in the tree node netlist,

not applicable in the module netlist.

Initialize the object when it is created.

Read the private data,

available for each data member.

Write the given value to the private data,
available for each data member.

Add a new element to the list and

return a pointer to that.

Find the position of partial net bounding box
and the number of net terminals within a module,
applicable only in the module netlist.

returns the position of net bounding box and the number of terminals.

- 65 -

The queue class
Like the class list, the queue class is also derived from the class basic_list.
The only private data in this class is a pointer to an object of the class tree, which

will be discussed later. This class specifications appears below:

Class: queue

Superclass: basic_list

Private data,

node: pointer 1o a node in the slicing tree.

Public Operations,

constructor: Initialize the object when it is created.

get_node(): Read the private data.

set node(value): Write the given value to the private data.

add(head tail): Add a new element to the tail of the queue,
and return a pointer to that.

remove(head,tail): Remove an element from the head of the queue,
and return a pointer to the new head.

undo(head,tail): Add an element to the head of the queue,

and return a pointer to the new head.

Besides the public member functions for accessing the private data, there are
three more operations that can be applied to objects of this class. Each of these
operations has two arguments which specifies the tail and head of a queue data
structure. Except for remove(), which is only applied to the head of the existing
queue, the other two operations can be applied to any object of this type. When
add() or undof) is applied to an object, that object becomes part of the existing
queue. For all of these operations, the head or tail of the qucue must be updated

to the new values returned by these operations.

The net class

This class is defined to describe net minimum bounding boxes. It contains
private data members to represent the dimensions of minimum bounding boxes

and the total number of net terminals. The specifications of the net class appears

-66 -

below:

Class:
Superclass:

Private data,
r:

FgonT

total:

Public Operations,
constructor:

get_.():
set_..(value):

store():
restore():

Among the private data members in this class, w and h are the ner_width()
and net_height() parameters explained in the previous chapter. As can be seen
from the class specification, there is no net id-number among the private data
members. In order to describe nets with different id-numbers, an array of
pointers is defined where each element of this array points to an object of this

class. The index of that element of the array is the id-number of the net which is

net

none

ininimum bounding box right coordinate.
minimum bounding box left coordinate.
minimum bounding box top coordinate.
minimum bounding box bottom coordinate.
minimum width of net overall bounding box.
minimum height of net overall bounding box.
total number of net terminals.

Initialize the object when it is created.
Read the private data,

available for each data member.

Write the given value to the private data,
available for each data member.

Save the bounding box coordinates,
Change the bounding box coordinates
according to the previously saved values.

described by the object pointed to.

The module class

This class is defined to describe the circuit modules. This class is also fairly

simple and is specified as follows:

Class:

Superclass:

module

none

-67 -

Private data,

x: x coordinate of left bortom corner of the module.
y: y coordinate of left bottom corner of the module.
width: width of the module.
height: height of the module.
nes_list: pointer to the beginning of module netlist.
Public Operations,
constructor: Initialize the object when it is created
get_.(): Read the private data,
available for each data memb->,
set_..(value): Write the given value to the pr:.ate data,
available for each data member.

Again an array of pointers to objects of this class is defined. The index of
each element of this array is id-number of the module which is described by the

pointed obiect of this class.

The tree class

This class which is the most important class in our programs, is defined to

describe a node (internal or leaf) in the slicing tree structure. The specifications

of this class appears below:
Class: tree
Superclass: rone
Private data,
a: relative position assigned to the node.
besta: best value of "a" seen up to the current point
in the search.
c: slice direction assigned to a node.
X,y x & y coordinates of the left bottom corner of
the rectangle corresponding to the node.
slice: x or y coordinates of the slice line assigned
to the internal node depending on the slice direction,
not applicable to leaf nodes.
width, heighs: width & height of the rectangle
corresponding to the node.
nets: pointer to the beginning of the node netlist (List()).
module: id-number of the modui ¢ assigned to a leaf node,
not applicable to internal nodes.
left: pointer to left child node.
right: pointer to right child node.

- 68 -

Public Operations,

constructor: Initialize the object when it is created.

get_.(): Read the private data,
available for each data members.

set_..(value): Write the given value to the private data,
available for each data member.

is_leaf): Return 1 when the object to which it is applied
corresponds to a leaf node.

has_ver_slice():

Return 1 whenithe object to which it is applied
corresponds to an internal node with vertical slice.

save_best(): Write "a" to "besta"

slice_cal(): Calculate the position of the slice line for an
internal node

update_node(): Update P,,,, and the minimum
bounding box boundaries for the nets in Lisy(),
applicable only 1o internal nodes.

update_leaf(): Update P,,,, and the minimum
bounding box boundaries for the nets in List(),
applicable only to leaf nodes.

add_lefu(): Add a left child to the node to which it is applied
and return a pointer to that node.

add_righ(): Add a right child to the node to which it is applied

and return a pointer to that node.

Each object of this class has many data members. Among the various data
members, there are two pointers to the objects of the same type. One of them
points to the node’s left child and the other points to the node’s right child. Each
object has also a pointer to an object of class list which describes the node netlist.
Among the member functions, two of the operations, update_nade() and
update_leaf() are the most important operations in this class. The pseudo-code of

these operations was presented in the previous chapter.

4.2.2. Input and Output Files

The program for each of the algorithms requires two input files and the
results are written to a single output file. The parser for the input files first checks
the syntax of input files and reports any errors. If there are no errors, the input

files are read again and used to establish the required data structures.

One of the input files contains the module descriptions and the circuit netlist.
This file is expected to have the extension of .cel in its name. An example of a
typical module, named C-5, described in a .ce! file is as follows:

cell C-5;

width 450,

height 300;

net 87 x 210y 63 term 0;

net PGl x 340 y 22 term 1,
net VDD x 40 y 280 term 2;:

In the .cel file cell, width, height, net, x, y and term are the reserved keywords.
The string of characters following the keywords cell and net are the names
assigned to a module and a net. These names can be any combination of
alphanumeric characters, underscore or minus sign. The rest of the data elements
are numbers. The dimensions of each module, in addition to all of the attached
nets and coordinates of the terminals with respect to the left bottom-corner of the
module are available in the .cel file. All of the dimensions and coordinates in this

file are in microns.

N Oy W N~
LN L

A

Cl1 C2C3 C4

Figure 4-1: Description of .tre file

The second input file contains the structure of the slicing tree. ‘This file is
expected to have the extension of .re in its name. Each row in this file
corresponds to a node in the slicing tree and the node descriptions appear in depth

first order. The .rre file format which describes a simple slicing tree with its

-70 -

corresponding slicing tree is illustrated in Figure 4-1. In the .tre file 4, Vand L
are the reserved keywords. H and V represent horizontal and vertical slice direc-
tions assigned to an internal node. L indicates that the node is a leaf node and the

name of the module assigned to that leaf node follows the L.

Thr: output file, which has .out extension, is basically the same as the .tre
file. In addition to all of the information in the .tre file, it contains the relative

positions assigned to each node in the slicing tree. An instance of a .out file for
the example of Figure 4-1 follows:

F;
R;
C'o RU’.
C'I FR;
F;
C-2 RR;
C-3 FU;

N A W~
(o o1 o T o ¥~ R

4.2.3. Graphical Representation of the Floorplans

In order to understand the results output by the programs, it is essential to
have a graphical representation of the floorplans before and after running the pro-
grams. If in addition to the location of the modules, the net bounding boxes are
also illustrated, then we can have a better view of the effect the algotithms have

on compacting the net bounding boxes.

X windows is an ideal environment for generating such a graphic representa-
tion. It is a software environment for engineering workstations which has become
accepted as a standard graphical interface to the workstations. X windows offers a
large number of graphic capabilities. Some of the capabilities which are related to

our requirements are as follows:

1) X windows organizes display screens into a hierarchy of overlapping win-

dows. Each application can use as many windows as it needs, resizing,

-1-

moving and stacking them on top of one another as needed.

2) X windows provides drawing capabilities. X's graphics operations are
immediate rather than display list oriented. In other words, the workstation
does not save series of graphics operations, but rather draws everything
immediately.

3) X windows drawing operations are bit mapped. Each application specifies all
the operations in terms of integer pixel addresses within a window. All
graphics operations are addressed within a particular window, so applications
can draw things in their window without regard to where their windows are
positioned on the screen.

4) X windows supports drawing high quality text for a wide range of applica-
tions.

The program which is developed to illustrate the floorplans and the net
bounding boxes in the X windows environment is written in C. A C language
subroutine package known as Xlib is provided within the X windows system. Xlib
makes programming much easier and the programmer can avoid dealing with the
internal complexities of the X windows system. The floorplan drawing program
opens two equal sized windows in an arbitrary position on the screen, one for the
floorplan before running the algorithms and one for the floorplan after running the
algorithms. The modules are drawn in each window and the net bounding boxes
can be drawn optionally. All drawing is done through a series calls to subroutines
in Xlib. Everything drawn to a window will be scaled up or down to fit in the
window. Therefore two illustrations of one floorplan before and after running the
algorithms have the same scales, whereas the illustrations for two different floor-

plans may not.

-72-

4.3. Experimental Results

The efficiency of the presented algorithms was evaluated by applying them to
practical VLSI circuits. Five standard benchmark circuits, which are provided by
the Microelectronic Center of North Carolina (MCNC), were used as example cir-
cuits. The number of modules, nets and terminals in each of these circuits is

presented in Table 4-1.

Number of | Number of | Number of
Benchmark
modules nets terminals

Xerox 10 203 796
Apte 9 40 214
Hp 11 56 264
Ami33 33 89 480
Ami49 49 408 931

Table 4-1: Statistics for the example circuits

To run the algorithms for a given circuit, two input files are required. The first
one, the .cel file, can be easily prepared from the available netlist and cell infor-
mation for each of these circuits. The second file, the .tre file, must be obtained
from a given floorplan. For the evaluation, we prepared the .tre file from the lay-
out resulting from another algorithm published by Onodera et al. That algorithm
does not necessarily produce slicing floorplans, thus the published layouts are
slightly modified to provide a slicing floorplan. The relative module locations
were copied exactly from the layouts provided in the paper; however, the module
orientations could not be determined from the published layouts and these were

arbitrarily defined.

.73 -

Two measures are important in order to evaluate the efficiency of the algo-
rithms. The first is the running time of the algorithms, which was measured
through the fime command in the Unix system. The time command gives
different time measures for each process. Among these measures we are

interested in “user time"7 which is measured in seconds and denoted by T.

The second parameter which is important is the total half perimeter of the
circuit. This parameter tells us how effective the algorithms are in compacting the
net bounding boxes. We denote the total half perimeter for the floorplans before
and after runnirg the algorithms by P, and Py, respectively.

Depth First Breadth First
Benchmark
Xerox 413511 | 395255 4 | 131.0 | 395255 4 639.8
Apte 250497 | 160258 | 36 50.3 | 160258 | 36 8.4
Hp 159827 | 116101 | 27 | 858.5 | 116101 | 27 | 4251.2

Table 4-2: The results of the branch and bound algorithm

The results of applying the branch and bound algorithm to the henchmarks
are presented in Table 4-2. As can be seen, the results for Ami33 and Ami49 are
not presented in this table. The branch and bound algorithm did not terminate for
these circuits within a practical length of time. For each benchmark in the table,
T, Pinits Pgin and the improvement percentage of Py, over Py, are given.

7 The Unix system allows two different modes of operation: user mode and system mode.
In the user mode the execution is done on behalf of the user, while in system mode the operat-
ing system gains the control of the computer. Every process in Unix has both a user and sys-

tem phase. The user time reférs to the amount of time that the computsr spends for a process
in the user mode,

.74 -

a) Before running the algorithm

[36)

C4

]

.7

ijic.z)

b) After running the algorithm

ico

[

T2 Ic3

¢t

cS

Figure 4-2: Apte module locations

.15 -

a) Before running the algorithm

b) After running the algorithm

3 2 T3

.

XX n -

Figure 4-3; Apte module locations and
net bounding boxes

-76 -

As can be seen from Table 4-2, the branch and bound algorithm was able to
improve each of the given circuits from 4% to 36%. The improvement made in
these circuits is not only due to mirroring the cells in the Onodera layouts, but
also because of some changes in the location of the modules. The initial and final
floorplans for the Apte circuit are illustrated in Figure 4-2. Furthermore, the net
bounding boxes for the Apte initial and final floorplans are illustrated in Figure 4-
3. The significant effect of the branch and bound algorithm in compacting net
bounding boxes is obvious from this figure. The initial and final floorplans and
zet bounding boxes fqr the other two circuits, Xerox and Hp are presented in the
Jonerdix,

The branch and bound algorithm for each benchmark was tried for two
different orders of the nodes in the slicing tree: depth first and breadth first.
Although the final floorplan resulting from thesc iwn orders is the same, the run
time is quite different. For instance for Hp the ru: tme for the breadth first order
is almost five times greater than the time for the depth first order. In contrast, for
Apte the run time for the depth first order is almost six times larger than the time
for breadth first order. There is no general trend which describes whether one of

these orders is superior for a given problem.

An interesting issue in the branch and bound algorithm is to see how the
value of Py, changes during the run time. The plots of changes in the vaiue of
P,.q in Apte for the depth first order is illustrated in Figure 4-4. The first plot in
this figure gives Py, versus the number of times the queue becomes empty. As
can be seen from this plot, the changes in P, happen smoothly. The second
plot illustrates the Py, changes versus time. This plot demonstrates that changes
in P, versus time is not smooth. This is due to the fact that the value of Py,

is changed only when the queue becomes empty and the time required for the

queue to become empty is random.

plest

poust

262000

23900¢

240C2H

2300C0

227000

2:0000

200000

190000

180C08

1723000

160000
0

260000

250000

240000

230000

220000

213000

2€0000

190300

180000

170000

163000
0

a) P, versus number of times the queue is empty

A A L

‘apte® o

H M) .5
¢ of times zrhe Jueue 13 empty

b) Py versus time

25

¥

¥

A A e

*apte ¢

860 1000 1500
tinm, 1/60 sec

.78 -

2000

2500

Figure 4-4: Plots of Py, changes in Apte

pbest

pbest

a) Py versus number of times the queue is empty

16C000

o0

155000

33000

145000

140000 %o

235200

130000

25000

120000

vhpt o

115000
e}

160000

10 29 kY 40 $0

4 9¢ zimes the Jueue i3 enmpty

b) Py versus time

155000

150000 P

145000

+40000 r
135000

130000 §

125000

-

120000 p

%

N n

hp o

116000
[+]

5000 Lse 15000 20000
time, 1/60 sec

Figure 4-5: Plets of P, changes in Hp

-19.-

25000

The plots of Py, in Hp for the depth first order are illustrated in Figure 4-5,
There is an interesting situation in this figure. Except for two big jumps, the
changes in P, are smooth and most of the changes are made during the first
one-fifth of the run time. In the rest of the time there is no greater improvement
in Pp.gq. In other words, by setting a time limit on the algorithm we can get a
good solution for the Hp problem more rapidly. The plots of P, in Xerox are
given in Appendix.

Another interesting issue in the branch and bound algorithm is to see how the
value of Py, approaches the actual total half perimeter of circuit. Py, is the
lower bound on the total half perimeter of the circuit and the initial value of Py,
is an unrealistic value for the total half perimeter of the circuit. The plot of
changes in Py, during the first time that the queue becomes empty is illustrated
in Figure 4-6. As can be seen in this figure, the initial value of Py, is far from
the final value, which is the actual total half perimeter of the circuit. Similar plots

of Py, in Xerox and Hp are given in the Appendix.

260000 Y T T T T Y

240000 [

20000 p

200000

160000 P

160000

plow

P P o o
140000

120000 p

100000 b . 1

80000 P

60000 A e s

0 2 4] L} 10 12 14 16 10
¢ of times the Upaste_.. () functions are called
Figure 4-6: Piot of P,,, versus the number of times

the Update_..() functions are called, in Apte

-80 -

By considering the results of the branch and bound algorithm in Table 4-2, it
can be seen that in some cases the run time is very large. In order to improve the
speed of the algorithm, we can let the algorithm search for reasonably good solu-
tions instead of for an optimum solution. When the objective of the search is
sub-optimal solutions, the branches in the state space tree are cut more rapidly. In
order to implement this idea, the branch and bound algorithm must be modified
slightly. Instead of comparing Py, with Py, the value of
(1 + desired percentage)xP,,,, is compared against Py,,,. The desired percentage
is the margin by which the produced solutions can exceed the optimum solution.
The results of this modification to the branch and bound algorithm, where the mar-

gin was set to 5 percent, are presented in Table 4-3.

Depth First Breadth First
Benchmark
Po | Py | @ | T Pin |% | T
Xerox 413511 | 413511 | O | 1084 | 413511 | O | 539.1
Apte 250497 | 163640 | 35 | 332 | 163640 | 35 6.0
Hp 159827 | 121695 | 24 | 798.3 | 116241 | 27 | 162.7

Table 4-3: The results of the branch and bound algorithm for §% solutions

By examining entries in this table and comparing them with Table 4-2, it is easily
realized that this modification decreases the run time, but not significantly.

The best-first algorithm was also evaluated experimentally. The best-first
algorithm can be applied with a different number of look-ahead(£). In Table 4-
4, the results of applying the basic best-first algorithm with k=] for depth first and
breadth first node orders are presented.

-81-

Depth First Breadth First

Benchmark

Pini Plin | % | T Prp | % | T
Xerox 413511 | 403081 2 | 1.1 | 404047 2110
Apte 250497 | 163950 | 35 | 0.3 | 166462 | 34 | 0.3
Hp 159827 | 122074 | 24 { 0.3 | 123472 | 23 | 0.3
Ami33 54512 37385 | 31 { 0.6 37603 | 31 | 0.6
Ami49 873824 | 731186 | 16 | 2.2 | 723416 | 17 | 2.0

Table 4-4: The results of the best-first algorithm with k=1.

Comparing the results in this table with the results from the branch and bound
algorithm in Table 4-2, shows the best-first algorithm to be very effective. All of
the results were achieved very quickly including Ami33 and Ami49. Note that the

results from the two different ordering of the nodes are very close to each other.

Depth First Breadth First

Benchmark

P | Py | % | T | P |%| T
Xerox 413511 | 403081 2 | 1.3 | 404047 3112
Apte 250497 | 163950 | 35 | 0.4 | 164072 | 35 | 04
Hp 159827 | 116446 | 27 | 0.5 | 117844 | 26 | 0.5
Ami33 54512 37333 | 32 |1 0.8 37319 | 32 | 0.8
Amid49 873824 | 724628 | 17 | 2.7 | 714171 | 18 | 2.6

Table 4-S: The results of the best-first algorithm with k=2,

Our hope is that better results can be achieved by increasing the amount of
look-ahead. In Table 4-5, the results of applying the best-first algorithm with k=2,

-82-

again for depth first and breadth first orderings, are presented. The results for
Xerox are the same as the results for k=1. For Apte the result for breadth first
order is slightly improved. For Hp we have almost 3% improvement over the
results for k=I. For Ami33 the solution is slightly worse than the one for k=1.
Finally, for Ami49 we had a slight improvement. In general, we can expect

improvement by increasing k, but because the algorithm is not optimum, the situa-

tions like in Ami33 might arise.

Depth First Breadth First
Bénchmark

P | Pry | % | T | Pip || T
Xerox 413511 | 395255 | 4 | 1.8 | 404047 | 3 | 1.8
Apte 250497 | 163950 | 35 | 0.6 | 164072 | 35 | 0.6
Hp 159827 | 116101 | 27 | 0.7 | 117844 | 26 | 0.7
Ami33 54512 | 37319 | 32 | 13| 37319 | 32 | 1.2
Amid9 873824 | 723274 | 17 | 4.0 | 719854 | 18 | 4.0

Table 4-6: The results of the best-first algorithm with k=3

In Table 4-6 and 4-7, the results of applying the algorithm for k=3 and k=5
are presented. For Xerox and Hp with k=3 and k=5 the optimum solution is
obtained. For Apte, by increasing & the optimum solution could not be achieved
For Ami33 and Ami49 the results are generally improved by increasing the value
of k. The initial and final floorplans and net bounding boxes for Ami33 and
Ami49 resulting from the algorithm with k=5 and depth first ordering are
presented in Appendix.

-83-

Depth First Breadth First
Benchmark
Pinit Pia | % | T | Piw |%| T

Xerox 413511 | 395255 4 5.0 | 402402 3 5.8
Apte 250497 | 163950 | 35 1.7 | 164072 | 35 1.3
Hp 159827 | 116101 | 27 2.3 | 117221 | 27 2.1
Ami33 54512 37030 | 32 4.1 37859 | 31 4.5
Ami49 873824 | 714583 | 18 | 13.9 | 719854 | 18 | 13.3

Table 4-7: The results of the best-first algorithm with k=5

In general, the best-first algorithm is quite efficient and, in some cases, is
even able to achieve the optimum solution. Furthermore, it made a significant
improvement in Ami33 and Ami49 where the branch and bound fails to finish
after hours. It should be mentioned that, for all the circuits, the improvement

made by the algorithm is not only due to mirroring the cells in the initial floor-

plans, but also because of some changes in the location of the modules.

-84 -

Chapter Five

Conclusions

In this thesis we considered the problem of wiring optimization in slicing
floorplans. The problem which was addressed was how to re-arrange the modules
in a given slicing floorplan so as to minimize total wire length of the circuit, while
leaving the overall shape and area of the floorplan unchanged. In order to clearly
specify this problem, the slicing tree representation of a slicing floorplan was used.
For each internal node in the slicing ree, there are two possible relative positions
of its children, and for each leaf node there are four possible orientations of the
module assigned to the leaf. The problem was to find the relative positions of all
the internal nodes, and the orientations of the modules assigned to the leaf nodes
that minimize total wire length. As an estimate of total wire length, we used the

total half perimeter of the net bounding boxes.

This approach to minimizing the total wire length of a floorplan has not been
awempred previously. In existing algorithms for wiring optimization, wire length
is just one component of a cost function, along with chip area, and this results in a
trade-off between minimum area and minimum total wire length. In our approach,
the objective was to minimize the total wire length while not changing the chip

m.

To solve the wire length optimization problem, two algorithms were
presented. The first one is a branch and bound algorithm which operates by keep-
ing the lower bound on the total half perimeter of the circuit. This algorithm
visits nodes in the slicing tree in parent first order. At each node, it assigns a rela-
tive position to the node ard updates P,,,. Then the value of P,,, is compared

with Py, and if Py, is less than P, g, the algorithm continues the search based

-85 -

on the assigned relative position. The algorithm also tries the alternate relative

position for that node and repeats the procedure.

The second algorithm presented in this thesis was a greedy algorithm called
the best-first algorithm. The best-first algorithm is based on ideas and techniques
from the branch and bound algorithm. It visits nodes in the slicing tree in parent-
first order and it assigns to each node the relative position which results in the

lowest Py, .

The presented algorithms were implensented in the C++ language within the
UNIX operating system using an object oriented methodology. The efficiency of
the algorithms was evaluated by applying them to benchmark circuis provided by
Microelectronic Center of North Carolina (MCNC). The results stipwed that the
branch and bound algorithm is only practical for small floorplans. The most
important parameter which affects the run time of the algorithm is the number of
modules in the floorplan, and the algorithm is impractical for floorplans with 15

modules or more.

The best-first algorithm is quite efficient in terms of run time. For small cir-
cuits, for which branch and ‘bound is practical, the comparison between the results
of the branch and bound and the best-first demonstrates that, most of the time, the
best-first algorithm is able to achieve solutions within 5% of the optimum solution,
and even yields the optimum solution occasionally. For larger floorplans, the
best-first algorithm is able to obtain good solutions, with considerable improve-

ment over the initial floorplans, very quickly.

Both of the algorithms presented in this thesis have practical applications.
Prior to the wiring of a floorplan, these algorithms can be applied to improve the
wiring quality of the layout. When the number of modules in the floorplan is

small, the branch and bound can be applied; when the number of modules are

- 86 -

higher, the best-iirst algorithm can be employed. The results of applying the algo-
rithms to the benchmark circuits show that there is still room for minimizing the
total wire length of floorplans produced by the other floorplanning algorithms.
This point proves that our approach can be employed in the existing floorplanning
systems. The other issue which should be noted is that, although minimizing the
total half perimeter of the circuit does not directly reduce the wiring area or wir-
ing delay, it can be expected that it does make an overall improvement in both of

these measures.

Future work could include finding better heuristics for the wire length minim-
ization problem. The results of applying the best-first algorithm are encouraging,
but it is not an optimum algorithm. Unfortunately, heuristic searchs have inherent
limitations. Since they use limited information, they are seldom able to predict
the exact behavior of the problem state space farther along in the search. There-
fore, expecting to have an exact heuristic is unrealistic, but we can still hope to

have more efficient heuristics that can predict the problem behavior better.

Another issue which can be considered in the future is to generalize the prob-
lem to non-slicing floorplans. The algorithms presented here are only applicable
to slicing floorplans, but it may be possibie to extend these algorithms to more
general floorplans. For instance, pinwheels, which are the simplest non-slicing

floorplans, could perhaps be handled this way.

The most important issue which should be the subject of future work is to
consider the timing performance of the floorplan during the re-arranging of
modules. The constraints on the delays of critical paths in the circuit should be
considered when the relative positions of the nodes in the slicing tree are deter-
mined. The decision on the relative positions would be made so as not to violate

the delay constraints of the critical paths. By implementing such an algorithm, an

-87 -

existing floorplan could be modified to achieve better timing performance.

-88 -

References

1.

Ll

H. Anway, G. Farnham, and R. Reid, ‘‘Plint Layout System for VLSI
Chips,” Proc. 22nd Design Automation Conference, pp. 449-452, 1985.

§. P. Bradley, A. C. Hax, and T. L. Magnant, ‘‘Chapter 2: Solving Linear
Programs,”’ in Applied Mathematical Programming, pp. 48-90, Addison Wes-
ley, 1977.

M. A. B. Jackson and E. S. Kuh, ‘‘Performance-driven Placement of Cell
Based ICs,”” Proc. 26th Design Automation Conference, pp. 370-375, 1989.
D. Jepsen and D. Gelatt, “Macro Placement by Monte Carlo Annealing,”
Proc. 1983 IEEE International Conference on Computer Design, pp. 495-
498, November 1983.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, ‘‘Optimization by Simu-
lated Annealing,”" Science, vol. 220, no. 4598, pp. 671-680, May 1983.

D. P. Lapotin and S. W. Director, ‘‘Mason: A global floorplanning approach
for VLSI design,’” IEEE Trans. on CAD of ICs and Systems, vol. CAD-5, no.
4, pp. 477-489, October 1986.

B. Lokanathan and E. Kinnen, ‘‘Performance Optimized Floorplanning by
Graph Planarization,” Proc. 26th Design Automation Conference, pp. 116-
121, 1989.

R. Otten, “‘Layout Compilation,” in Design Systems for VLSI circuits, Logic
Synthesis and Silicon Compilation, ed. P. Antognetti, pp. 113-195, Martinus
Nijhoff Publishers, 1987.

S. Prasitjutrakul and W. J. Kubitz, *‘Path-Delay Constrained Floorplanning: A
Mathematical Programming Approach for Initial Placement,”” Proc. 26th
Design Automation Conference, pp. 364-369, 1989.

-89 -

10.

11.

12.

13.

14.

1S.

16.

17.

18.

M. Rose, M. Wiesel, D. Kirkpatrick, and N, Netileton, ‘‘Dense, Performance
Directed, Auto Place and Route,”” Proc. IEEE Custom Integrated Circuit

Conference, pp. 11.1.1-11.1.4, 1988.

C. Sechen and A. Sangiovanni-Vincentelli, *“The TimberWolf Placement and
Routing Package,”” JEEE Journat of Solid State Circuits, vol. sc-20, no. 2,

pp. 510-522, April 1985,

L. Stockmeyer, ‘‘Optimal orientations of cells in slicing floorplan designs,"

Information and Control, vol. 59, pp. 91-101, 1983.

K. Ueda, H. Kitazawa, and I Harada, *“‘CHAMP: Chip Floorplan for
Hierarchical VLSI Layout Design,”” IEEE Trans. on CAD of ICs and Sys-
tems, vol. CAD-4, no. 1, pp. 12-22, January 1985,

M. P. Vecchi and S. Kirkpatrick, *‘Global Wiring by Simulated Annealing,"
IEEE Trans. on CAD of ICs and Systems, vol. CAD-2, no. 4, pp. 215-222,
October 1983.

D. F. Wong and C. L. Liu, ‘A new algorithm for floor plan design,”’ Proc.
23rd Design Automation Conference, pp. 101-107, 1986.
A. R. Newton and A. L. Sangiovanni-Vincentelli, ‘*‘Computer-Aided Design

for VLSI Circuits,”” IEEE Computer, vol. 19, no. 4, pp. 38-63, April 1986.

R. Otten, “‘Automatic Floor-plan Design,” Proc. 19th Design Automation

Conference, pp. 261-267, 1982,

H. Onodera, Y. Taniguchi, and K. Tamaru, ‘‘Branch-and-bound Placement
for Building Block Layout,” Proc. 28th Design Automation Conference, pp.
433-439, 1991.

Appendix

a) Before running the algorithm.

o S
[t e c.S

(X4)

c2 (9]

C.¢

|c_:3 : (3%}

b) After running the algorithm.

o c

i

Figure A-1: Xerox module locations, produced by the
branch and bound algorithm.

-01-

a) Before running the algori

TR

b) After running the algori

Figure A-2: Xerox module locations and
produced by the branch and bow

-92.-

Igorithm.

and net bounding boxes,
bound algorithm.

pbest

pbest

a) Pyes: versus nurmber of times the queue is empty

4:4500

412000

410000 p

45600C

v

406000

404C00

402000

400000

398000 p

396000 P

3

394000
0

414000

3 4 $ L
¥ of =imew 2he queue i3 ampty

b) Py versus time

412000

410000 p

408000

406000

‘e

404000

*

402000 r
400000 P

398000

396000

A e N I 2

394000
0

500 1000 1800 2000 2500
tine, 1/60 sec

-93-

3000 3500

Figure A.3: Plots of P, changes in Xerox.

a) Before running the algorithm.

b) After running the algorithm.

-FJ

Figure A-4: Hp module locations,
produced by the branch and bound algorithm.

a) Before running the algorithm.

()

b) After running the algorithm.

I8

Figure A-S: Hp module locations and net bounding boxes,
produced by the branch and bound algorithm.

-95.

plow

plow

Fi

gure A.6: Plot of Py, vursus the number of times

the Update_..() functions are called, in Xerox.

450000 -t s T T T
“xeron® @
.

40C000 F

)

(]
.
350000 p L4 4
[
.
300000 | .
[
.
250000 P o ® 4
.
o o
200000 P g
o o *
150000 —t A . . N " A 2
0 2 4] L 0 12 14 16 10 20
¢ of times the Spdate_.. 4} functions are called

Figure A.7: Plot of P, versus the number of times

150000

140000 p

130000

120000

110000

100000 P

70000

the Update_..() functions are called, in Hp.

* npe ©

L] 10
¢ of times the Update .

15 20
. {) functions sre called

a) Before running the algorithm.

Figure A-8: Ami33 module locations produced by
the best first algorithm with k=S.

a) Before running the algorithm.

12 A ‘1‘7]

=

b) After running the algorithm.

] [¥]

=) |

Figure A-9: Ami33 module locations and net bounding boxes,
produced by the best first algorithm with k=5.

-98 -

Figure A-10: Ami49 module locations before running the algorithm.

C43 |[C_48

C_45 C_46 C_47

T4

Figure A-11: Ami49 module locations after running
the best first algorithm with k=S,

C.43 |ic_48

C_45 C46 |[ca7
[c4
c.41
C.42
C.40
ta |[LE][cqh-e-2
.2 .38 C.13
C.19 c- c-ia _27
' 4
€31 Mt 30 |ic.28
.37 [c4 €5 [IC.B3)C.32 ng
| e | L
L5 T
C16 Fehcs | [C9
c.t)
3 = (o |
c.11

- 100 -

Figure A-12: Ami49 module locations and net bounding boxes
before running the algorithm.

r
S
B
. "
= lln IIIIIIIIIIHI
=
|

| iil!!ii:'. '

i -u--ulll

|| X ﬂﬂ ”“ﬂ”ﬂ” I Mo

IIIBHII m IIIII l'l’u ﬂllll ”

IIIII IIII e ol

) v me Em o

= ‘ .L'lll‘

- 101 -

Figure A-13: Ami49 module locations and net bounding boxes
after running the best first algorithm with k=5.

vean ®- -
Be- .
sy y) §)

lr“l

1

gl -
R e
I [LHE=1 i
Bl T

[221) B
. —TIr

-102 -

