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ABSTRACT 

Slender, masonry loadbearing walls made with concrete blocks are one of the most 

frequently used masonry structural systems in North America. They are commonly found 

in commercial and industrial single-storey construction, such as warehouses, and in 

school gymnasiums, auditoriums, and retail buildings.  

Tall, masonry loadbearing walls subjected to out-of-plane (OOP) loads are often 

governed by flexure, as the shear demands are small compared to the flexural moments 

they experience.  Due to their slenderness, these walls are very susceptible to second-

order effects, which translate into additional moment demands caused by the presence of 

axial loads and the wall deflections. Research has shown that to develop rational design 

procedures and achieve safe and economical design, an accurate estimation of second-

order effects is required.  

Leading provisions in masonry design in North America, such as the ones in the U.S. and 

Canada, have similarities and differences that warrant investigation and require an 

assessment to achieve a unified design method. 

This research has several goals: (1) to compare the current strength design and second-

order effects provisions for OOP loadbearing masonry walls from North American 

standards (CSA S304-14 , TMS 402-16 ), with an emphasis on the provisions related with 

moment amplifications due to second-order moments; (2) to evaluate the influence of 

different parameters such as reinforcement ratio, slenderness ratio, compressive strength 

(𝑓𝑚
′ ) and axial loading, in the flexural rigidity and effective stiffness; (3) to compare the 

design provisions with numerical models developed using the finite element method; and 
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(4) to conduct regression analyses using a data set developed using the numerical model 

and proposed expressions for effective stiffness suitable for code inclusion. 

Overall, it is expected that this research will identify the key differences in current design 

standards and lead to recommendations for further harmonization between the US and 

Canadian codes.  
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1 INTRODUCTION 

1.1 Background 

Masonry has proven to be one of the most durable and reliable construction 

materials since the beginning of human civilization. The earliest masonry structures were 

very conservatively designed, using massive cross-sections such that their design was 

governed by gravity load.  The design of masonry structures was greatly overhauled with 

the introduction of modern reinforced masonry in 1930, in which steel reinforcement was 

used to take the tensile stresses that masonry materials (concrete and stone) cannot.  In 

North America, modern provisions for reinforced masonry form the basis of the Canadian 

Masonry Design Standard (CSA S304-14) and the Building Code Requirements and 

Specification for Masonry Structures (TMS 402/602). 

The outstanding virtue of masonry loadbearing walls in structural applications is 

its capacity to resist the combined effect of eccentric axial loading and out-of-plane 

(OOP) bending by offering a robust axial capacity and bending stiffness.  While squat 

walls are susceptible to shear forces, the design of tall walls is often governed by flexure, 

as the shear demands are usually small compared to the flexural moment. To design 

slender masonry elements, special attention must be given to second-order moments (i.e. 

additional moments caused by the presence of compressive axial load and the wall 

deflections due to lateral load).  Determination of second-order effects heavily relies on 

an accurate estimation of an effective flexural stiffness.  Underestimating the flexural 

stiffness would lead to conservative moment amplification factors, resulting in an 

unnecessary amplification in the design moment of the wall.  North American standards’ 

provisions for slender walls are developed based on a small set of research programs.  

Due to the insufficient test data, these structural members are usually overly conservative 

in design if the North American provisions are followed (Clayton 2020) 

Research on masonry slender walls began in 1970.  Yokel et al. (1970) tested sixty 

reinforced and unreinforced masonry walls, axially loaded using different eccentricities 

and slenderness ratios.  The analysis established the foundations for the development of 
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rational design methods for eccentric axially loaded masonry walls.  It was observed that, 

due to the development of a strain gradient on the eccentrically-loaded section, they could 

sustain greater compressive stresses in comparison to concentrically loaded walls.  The 

walls in this study were pin supported and had slenderness ratios ranging from 15.7 to 

42.7.   

In 1976, Cranston and Roberts investigated the viability of the Allowable Stress 

Design method (ASD) as applied to Reinforced Masonry Walls (RMW).  They tested a 

series of 2.6 m high specimens, with slenderness ratios of 18.7, under combined axial and 

lateral loads.  It was demonstrated that the allowable stress method, prominently used up 

to that point, results in uneconomical designs for RM walls. Current versions of the TMS 

402-16 still offer provisions to design RMW using the ASD method while the Canadian 

standard decided to provide recommendations only for strength design approaches.   

One of the most influential research programs in those early days was conducted 

by the Structural Engineers Association of Southern California (SEAOSC) and the 

Concrete Institute (ACI) in 1979.  A total of 7, full-scale reinforced masonry walls 

subjected to eccentric axial loading and a uniform distributed pressure (out-of-plane) 

were tested. Different slenderness ratios ranging from 30 to a maximum of 48 were 

evaluated under pinned-pinned boundary conditions.  The experimental results suggested 

that there was minimal evidence to provide a fixed slenderness limit.  Additionally, no 

stability effects were appreciated when the axial loading was limited to 10% of the pure 

axial capacity. It was also noted the severity of second-order effects as the slenderness 

ratio increased, in which, in some cases, it accounted for approximately 25% of the yield 

moment (SEASC 1979).  The findings in this experimental study formed the basis of 

current masonry design provisions for tall masonry walls (CSA S304-14, TMS 402-16 ). 

As the research data increased, multiple authors recommended strength design 

approaches such as the Ultimate Limit State Design (ULSD), rather than the ASD method 

for further designs of in-plane and out-of-plane masonry elements.  With the ULSD the 

use of taller and slender walls in North America was expanded, and a need arose for more 

refined methods to account for the moment demands.  
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Developing rational design procedures has been an endless and challenging task, 

as many researchers have proven (Colville 1979; Hatzinikolas et al. 1980; Hamid and 

Drysdale 1980; Sulwaski and Drysdale 1986).  Any attempt to predict the OOP behaviour 

accurately in RMW appeared to be impossible if material and geometrical nonlinearity 

are not considered.  Hatzinikolas et al. (1978) conducted an experimental program to 

study the geometrical nonlinearity with specimens, ranging in slenderness ratio from 13.8 

to 24 and subjected to eccentric loading.  The samples were tested using pinned-pinned 

boundary conditions.  The study proposed a new method adopting the Moment Magnifier 

(MM) method from reinforced concrete, introducing an Effective Stiffness (𝐸𝐼𝑒𝑓𝑓) 

concept, which attempts to predict the flexural rigidity of masonry walls based on the 

estimated extent of cracking in the cross-section of the specimen. The concept of effective 

stiffness 𝐸𝐼𝑒𝑓𝑓  is still used in the current Canadian Standard. The TMS 402-16 committee 

adopted a different alternative, accepting the MM procedure, while the flexural rigidity 

is calculated based on the cracked modulus of inertia (𝐸𝑚𝐼𝑐𝑟). Both solutions (𝐸𝐼𝑒𝑓𝑓 and 

𝐸𝑚𝐼𝑐𝑟) have proven to be conservative (Liu et al. 1998; Dona et al. 2015) in predicting 

the flexural rigidity for RMWs. 

Results from this study showed that both countries rely on the same principles of 

strength of materials to compute the axial and bending resistance (P-M) of masonry walls.  

However, provisions such as (a) maximum axial capacity, (b) maximum reinforcement 

ratios (c) reduction factors, and others, affect the P-M capacities considerably.   

Regarding second-order effects, both North American standards offer similar 

methods to compute these effects.  The main discrepancy between the countries is the 

expressions proposed to calculate the flexural rigidity of the wall.  A comparison with a 

validated finite-element model, presented in Chapter 5, showed that the code provisions 

were vastly conservative in both standards for calculating moment amplifications 

produced by the second-order effects.  For instance, amplifications factors calculated with 

the standards were up to 11 times higher than those produced by the numerical models. 
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1.2 Problem Statement 

Loadbearing masonry walls are one of the most common structural systems used 

worldwide, however, the flexural OOP behaviour of this structure is still relatively 

uncertain in most circumstances.  Current design standards in North America have been 

developed from the same studies. Although they have been updated independently, there 

are still many questions regarding the levels of conservatism and accuracy of the 

procedure proposed by the Canadian and the U.S. Committee. 

Despite their proximity and the similarities between the construction materials used in 

the two countries, the Canadian standards for masonry design (CSA S304-14) and the 

Building Code Requirements and Specification for Masonry Structures (TMS 402-16 

402/602) have adopted different design provisions for OOP loading.  Consequently, 

similar structures subjected to comparable conditions, such as loading, material 

properties, and support type will be designed differently in Canada and the U.S. Multiple 

key differences are identified in both the prediction of the loadbearing capacity under 

flexure and the alternatives for calculating the additional moments associated with the 

second-order effects, especially for very tall walls.   

This study aims to identify the key differences in OOP-related design provisions 

described in the CSA S304-14 and TMS 402-16, and assess the different methods to 

estimate second-order effects.  The two codes will be compared to each other and also to 

a detailed numerical model.  These results could be used to develop rational design 

procedures for loadbearing walls and reduce the conservatism in CSA S304-14   and TMS 

402-16.  Additionally, this study aims to propose a new expression to calculate the rigidity 

of masonry walls.  These expressions could be included in future standards. 

1.3 Objectives, Scope and Methods 

The main objective of this study is the assessment of current design provisions from the 

Canadian Standard (CSA S304-14) and the U.S. Standard (TMS 402-16) for loadbearing 

masonry walls subjected to out-of-plane bending.  To achieve this outcome, the following 

specific objectives must be addressed. 
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1. Comparison of the strength design provisions for out-of-plane walls, 

recommended by the CSA S304-14 and TMS 402-16. 

● Theoretical comparison of provisions related to the strength design of out-

of-plane walls.  

● Identify and quantify the differences related to the strength design using 

parametric analysis based on P-M interaction diagrams.  

2. Comparison of the second-order effect related provisions for out-of-plane walls, 

recommended by the CSA S304-14  and TMS 402-16 . 

● Theoretical comparison of provisions related to the second-order effects 

of out-of-plane walls. Comparison of the the methods to compute these 

effects and the effective stiffness expression recommended on each 

standard. 

● Identify and quantify the differences related to the effective stiffness 

expression proposed by each standard using parametric analyses. 

3. Evaluate the effectiveness of the provisions related to the second-order effects 

using a FE model. 

● Develop and validate a finite element model for loadbearing reinforced 

masonry walls using experimental data. 

● Study the effect of some independent parameters in the evolution of 

second-order effects. 

● Compare the moment magnification effects from the FE results against 

those estimated by the North American standards (CSA S304-14, TMS 

402-16 ). 

4. Develop equations to estimate the out-of-plane stiffness of reinforced masonry 

walls through regression analysis. 

● Calculate an analytical effective stiffness using the strain readings from 

the FE results. 

● Develop a regression model using the data set obtained from the FE 

results. 
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● Measure the performance of the regression models generated and the 

current existing equations to calculate the effective stiffness. 

● Compare the performance of the generated equations with the available 

alternatives. 

This study is limited to the LS design and strength design methodologies prescribed in 

CSA S304-14   and TMS 402-16 .  A set of independent parameters were selected to study 

their influences in the P-M resistances and establish key differences between the 

standards.  The independent variables chosen consisted of: (a) Rebar separation, (b) 

Compressive strength, (c) Reduction factors, and (d) Height of the structure. 

Parametric analyses regarding the second-order effects provisions were limited to 

studying and comparing the effective stiffness expressions proposed by each country.  

The following independent parameters were selected: (a) Compressive strength, (b) 

Reinforcement ratio, (c) Axial Load, (d) Reduction factor, and (e) Creep effects. 

An investigation of the shear strength was not conducted, as the focus of this work is 

walls that are governed by flexure rather than shear (e.g., tall, loadbearing masonry walls).  

Shorter walls may be governed by shear and an assessment of both effects (flexure vs. 

shear) should always be conducted in the analysis of a masonry wall.   

Reliability analyses, the last step before inclusion of new expressions and results in a 

standard, were not part of the scope of this work. 

 

1.4 Organization of the Thesis. 

This study is composed of 6 chapters.  

Chapter 1 introduces the research and discusses the objectives and the scope. 

In Chapter 2, the literature review is presented, including an experimental program and 

numerical modelling of loadbearing masonry walls. 
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In Chapter 3, the strength-design-related provisions from the CSA S304-14   and the TMS 

402-16 are compared.  Parametric studies compared the design provision using P-M 

interaction diagrams and quantified the influences of some independent parameters.  

In Chapter 4, second-order effects related to provisions for loadbearing masonry walls 

are compared.  Parametric studies compared the effective stiffness expressions proposed 

in the CSA S304-14 and TMS 402-16 , and quantified the influences of some independent 

parameters.  

In Chapter 5, a FE model for reinforced fully and partially grouted walls is developed.  

The influence of multiple parameters such as slenderness ratio, compressive strength, 

reinforcement ratio and slenderness ratio in second-order effects of RMWs is discussed. 

Moment amplification factors calculated using the moment magnifier method are 

calculated as prescribed in CSA S304-14 and TMS 402-16 , and compared against the FE 

results.  Three equations to estimate the effective stiffness developed using regression 

analysis are proposed.  The performance of the regression model is compared against the 

available equations. 

Chapter 6 summarizes the conclusions of the study and provides recommendations for 

future research.  
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2. LITERATURE REVIEW 

2.1 Introduction. 

Loadbearing masonry walls are a widely used structural solution to resist a combination 

of axial loads and OOP bending moments.  In the past, these elements were built without 

steel reinforcement (termed as unreinforced masonry).  Nowadays, current practice 

encourages the use of steel rebar placed and grouted into the cells of the masonry 

assembly (referred to as reinforced masonry).  With the introduction of reinforced 

elements, masonry walls are a competitive alternative to other materials such as concrete 

and steel.  

Current North American design standards (CSA S304-14, TMS 402-16) are developed 

mainly from the same research pool.  The earliest research programs investigated the 

capacity of loadbearing masonry walls using the allowable stress design approach (ASD).  

The focus shifted rapidly to the ultimate limit strength design (ULS) approach in later 

programs.  Using allowable stress to design masonry elements, the calculated design 

stresses, 𝑓, are compared to the code-prescribed maximum allowable stresses, 𝐹.  The 

design is considered acceptable when the calculated stresses induced in the element are 

less than or equal to the allowable stress prescribed in the codes (𝑓 ≤ 𝐹).  Allowable 

stresses limits prescribed by the codes are kept within their linear range of the structure.  

In the new alternative (ULS), the strength of the masonry is evaluated at its ultimate 

failure state rather than under service loads.  Design loads are factored in proportion to 

the degree of uncertainty using a safety factor, 𝛼. The strength of the structure is reduced 

by a factor, ∅, in proportion to the level of confidence in the material strength and 

uncertainties related to its failure mode.  The design is considered acceptable when 

reduced resistance of the elements is greater or equal than the factored specified load 

(∅ 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥  𝛼 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑙𝑜𝑎𝑑). The ultimate limit state of OOP masonry walls is 

defined by the crushing of the masonry under compression, and in more severe cases (i.e. 

slender wall under high axial load levels) by the instability of the structure. This method 

permits the structure to incursion on its non-linear range, therefore, sections designed 

under this method are usually more economical than the ASD.  
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To date, TMS 402-16 permits both the ULS and the ASD methods to compute flexural 

resistance. CSA S304-14 presents the ULS as the only alternative available.  Although 

the basis of the ULS design methods is similar in both countries, the flexural and axial 

capacities computed by each standard are generally different. This can be attributed to 

multiple factors such as differences in nominal compressive strength, reduction factors, 

compressive width limit, axial capacity limits, ductility limits, ultimate compressive 

strains, nominal block dimensions, and additional provisions, which are explored in this 

study.  The differences between the two codes in regard to the strength design method is 

the focus of this study. 

Slenderness effects (also termed second-order effects) were identified as a major effect 

influencing the design of tall masonry walls in the 1980s. The influence of second-order 

effects can be assessed by determining the total moment experienced by the wall.  This 

flexural moment is composed of two components: (a) primary moment and (b) secondary 

moment.  In a conventional building, the primary moments are produced from an 

externally applied load such as wind load, the mass of the wall and its attachments 

subjected to earthquake acceleration, soil pressure, or an eccentric gravity load.  The 

secondary moment arises from the wall out-of-plane deformation created by the primary 

moments and the presence of the gravity loads.  Masonry walls are generally susceptible 

to these second-order effects due to the large deflections experienced during loading.  

Secondary moments have been reported to be up to 30% of the total moment for slender 

elements (ACI-SEASC Task Committee on Slender Walls 1982).  This phenomenon 

leads to the development of special provisions for slender walls (defined by the CSA 

S304-14 and TMS 402-16 as elements with a slenderness ratio greater than 30) in North 

America, such as ductility limits and axial force limits. 

North American design standards provided two methods to account for these slenderness 

effects in masonry walls: (a) 𝑃𝛿 (load displacement method) and (b) the moment 

magnifier method. While the first method relies on computing second-order moment as a 

product of the total deflection and the gravity load, the latter proposed a single equation 

to magnify the primary source of moments.  Both methods rely on an accurate prediction 
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of the flexural rigidity (𝐸𝐼).  Experimental results demonstrated that loading conditions, 

tensile bond strength, and the type of the wall must be taken into account to compute 

accurate prediction of slenderness effects (Hatzinikolas et al. 1978).  As calculating the 

flexural rigidity is a fundamental aspect of computing second-order effects, multiple 

authors have attempted to propose equations based on regression analysis developed on 

the basis of experimental and analytical data (Liu et al. 1998, Liu and Dawe 2003, Mohsin 

2005).  However, estimating the flexural stiffness for reinforced masonry walls has 

proven to be rather complex, as it requires accounting for phenomena such as tensile 

cracking, plastic strain, and nonlinear degradation (Pettit 2019).  

This chapter presents a review of available literature related to the experimental, 

analytical and numerical research program of loadbearing masonry walls. Techniques 

implemented for numerical analysis are discussed, and proposed equations to estimate 

the flexural rigidity of masonry walls are presented.  

2.2 Experimental Programs and Behaviour of Masonry Walls. 

Experimental programs of loadbearing masonry walls began in the 1970s. Yokel and 

Dikkers (1971) tested 192 brick and concrete block specimens under eccentric axial load, 

out of which 28 were reinforced concrete masonry walls, 13 solid concrete masonry walls, 

and 48 unreinforced specimens.  The specimens were 1.2 m and 0.6 wide and up to 6 m 

high. Free rotation at the top of the wallettes was allowed while it was restricted on the 

base.  The same program includes experimental testing of prisms. The prism test result 

suggested that the flexural-compressive strength increases with a gradual increase of the 

strain gradient. Interaction diagrams curves with axial compressive strength and flexural 

capacity were presented. The results suggested an increase in the accuracy of the 

interaction diagrams if the effect of the strain gradients is considered.  Computing second-

order effects with the moment magnifier method drove conservative predictions 

compared to the experimental results. The same year, Yokel (1971) proposed a 

differential equation for deflections of walls with prismatic cross-sections assuming an 

elastic material without tensile strength.  The exact solution of this equation was used to 

derive an expression to calculate an equivalent critical load 𝑃𝑐𝑟 given in equation 2.1 
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𝑃𝑐𝑟 =
0.64𝜋2𝐸𝑏𝑢𝑖

3

ℎ2
 (2.1) 

Where, 𝐸 is the modulus of elasticity, 𝑢𝑖 is the eccentricity, and ℎ is the height of the 

wall.  

The beam-column concept was explored by Chen and Atsuta (1973) to investigate the 

behaviour of loadbearing walls. The study developed axial strength curves for multiple 

materials. It was concluded that the tensile strength of plain concrete or masonry walls is 

a significant parameter influencing the strength of the walls, which was previously 

neglected.   

Cranston and Robert (1976) investigated the validity of using the British Standard (CP 

111-1970) to predict the behaviour of reinforced masonry walls.  A total of 38 

eccentrically loaded concrete block walls were tested. It was shown that the method 

described in the British Standard based on the working stress method tends to produce 

conservative results when compared to experimental results.  Based on the test results, 

stress-eccentricity-rotation curves were plotted, which captured the behaviour of the 

structure satisfactorily. The study concluded that limit state design procedures 

outperformed working stress procedures to design reinforced masonry walls.   

A few years later, a comprehensive testing program consisting of 68 concrete masonry 

walls was developed (Hatzinikolas et al. 1978).  All the specimens were tested under 

pinned-pinned conditions and variable eccentricities to evaluate structures under single 

and double curvature.  Slenderness ratios ranging from 12 to 22 were evaluated. The 

flexural rigidity of the walls was analyzed as a function of the cracking of the cross-

section.  An increase in the capacity of the specimen was found when tested under double 

curvature compared to single curvature experiments. Results also indicate a reduction of 

the axial capacity due to the presence of the joint reinforcement.  The author proposed 

the moment magnifier method to evaluate the slenderness effects of reinforced masonry 

walls, which are still used today.  Evaluating the second-order effects from the 

experimental results and comparing them against those calculated by the moment 
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magnifier method suggested that loading conditions, tensile bond strength, and type of 

wall (reinforced or unreinforced) must be taken into account if accurate predictions are 

expected.  

Until 1982, most experimental programs focused on short masonry walls, in which P-

Delta effects were not significant. Nevertheless, the demand for taller structures grew in 

the early 1980s with economic stability and the construction of warehouses and 

commercial buildings. The American Concrete Institute (ACI) and Structural Engineers 

Association of Southern California (SEASC 1982) developed an experimental program 

to study fully grouted reinforced masonry walls subjected to out-of-plane bending and 

eccentric axial loading.  They tested 9 walls, 1.2 m wide and 7.5 m high. Different 

slenderness ratios were evaluated: 30.6, 38.8, and 52.6.  All walls were subjected to a 

combination of eccentric gravity load and uniformly distributed lateral pressure.  The 

eccentric axial load was applied through a pulley system using a drum of water.  Once 

the peak axial load was reached, a uniform distributed pressure was applied to one side 

of the walls using an airbag (Fig. 2.1).  The maximum applied axial load was 15.3 kN, 

which represents 24% of the full section stress (𝑃𝑢/𝐴𝑛) for the walls with a block 

thickness of 246 mm, as the average compressive strength of the masonry (𝑓𝑚
′ ) was 

reported to be 18.7 MPa.  
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Figure 2.1 – Side Elevation of Test Setup (ACI-SEASC Task Committee on Slender 

Walls) 

Once the desired axial load was reached, the lateral uniform pressure was monotonically 

increased.  Due to safety proposes, the lateral load was stopped when it was judged that 

the masonry would reach its crushing strain. Although it was reported that from the 9 

panels, only 2 reached the crushing of the masonry, yielding of the rebar was achieved in 

all the cases before the loading was stopped.  The maximum mid-span displacement was 

reported to be approximately 415 mm (Fig. 2.2). Second-order effects were described to 

be more prominent in the thinner specimens (143 mm), accounting for about 20% of the 

total moment when the reinforcement began to yield.   Results from this test formed the 

basis of current design provisions in North America, such as maximum and minimum 

reinforcement clauses, axial load limits, and midspan deflection limits. 
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Figure 2.2 – Push-Over Curves (ACI-SEASC Task Committee on Slender Walls) 

The studies referenced above showed that moment amplification due to slenderness 

effects were important for the design of tall walls.  Maksoud and Drysdale (1993b) 

explored the possibility of using a moment magnification factor to design slender 

masonry walls. It was found that geometrical and material nonlinearity were important 

parameters for their response.  Additionally, high compressive stresses in the cross-

section were found to influence the ultimate response of the walls due to the effect of 

stiffness degradation.  Further parametric analyses demonstrated rapid stiffness 

degradation in slender walls compared to stocky specimens. These effects were attributed 

to the coupling action of the geometrical and material non-linearity.  Attempts to predict 

flexural stiffness based on an elastic tangent or secant modulus of the masonry material 

were reported to be unconservative. 

The MM method became popular in North America due to its simplicity.  However, the 

method largely depends on an accurate calculation of the flexural stiffness.  Therefore, 

further research focused on evaluating the flexural rigidity of reinforced masonry walls.  

Liu and Dawe (2001) tested 36 reinforced masonry walls subjected to a combination of 
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axial loading and lateral loads through a 4-point bending method.  Strain recorders were 

provided in the tension and compression faces of each specimen.  A flexural rigidity was 

obtained using the strain readings, and it was compared against the results computed 

using the expression proposed by the Canadian Standard. It was concluded that the 

standard produced unconservative results for structures under low axial levels, but as the 

loading is increased, the expression becomes conservative.  

Mohsin (2005) conducted an experimental program to evaluate the flexural rigidity of 

masonry walls when considering rotational stiffness at the base.  The study consisted of 

8 reinforced masonry walls tested under eccentric axial loading.  All the walls were 1.2 

m wide with 200 cm nominal thickness blocks.  Two slenderness ratios were evaluated: 

29 and 34.  The rotational stiffness was simulated using a steel shape at the base for which 

flexural rigidity was equivalent to commonly used foundations for loadbearing masonry 

walls.  Experimental results show that as the rotational stiffness increased, the axial and 

flexural capacity were enhanced, while the second-order effects were reduced.  An 

analytical flexural stiffness was calculated and compared against the CSA S304-04 

expression.  It was found that the effective stiffness calculated using the S304-04   

expression produced conservative results for structures with and without base rigidity.  

The difference was more pronounced whenever a rotation stiffness was present. The study 

proposed an effective stiffness equation based on non-linear regression analysis, which 

considered the effect of the base rigidity and slenderness ratio.  

Further studies assessed the capacity of the American standard (TMS 402-08) of 

estimating the flexural rigidity of masonry walls. Popehn et al. (2009) tested 4 

unreinforced walls under eccentric axial loading. The walls were 0.8 m wide and 3.5 m 

high. The specimens were tested under simply supported conditions.  Results indicated 

that moment amplification factors calculated as per the TMS 402-08 were up to 1.85 

greater than those obtained in the experiment.  

Isfeld et al. (2018) investigated the effect of base support conditions on the deflected 

shape of partially grouted walls subjected to eccentric axial loading and an OOP line load.  

Three panels were tested under simply supported conditions and what was referred to as 
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pinned-fixed boundary conditions.  The specimens were 1.2 m wide and 2.4 m high with 

a slenderness ratio of 12.  The three walls were each tested with both the pinned-fixed 

and pinned-pinned boundary conditions. The axial load was applied through two 

actuators in displacement control up to a maximum of 250 kN, while the OOP line load 

was applied at mid-height by using a box beam connected to steel cables (Fig. 2.3).  

Experimental displacement profiles were compared with calculations based on the CSA 

S304-14.  The authors concluded that the current standard is overly conservative, 

resulting in displacement 26 times greater than the experimental. The researchers also 

proposed that the design of slender walls should be re-examined. 

 

Figure 2.3 – Test set-up (Isfeld et al. 2019) 

More recent studies were conducted by Pettit (2019) at the University of Alberta.  A full-

scale test of four identical partially-grouted reinforced masonry wallettes was developed.  

All the specimens were subjected to a combination of out-of-plane bending and 250 kN 

of axial loading.  The specimens were 1.2 m wide, 12-course (2.4 m) high, and standard 

20 cm nominal thickness blocks were used. A control specimen was evaluated under pin 

end conditions, while the other featured an active, reactive support to simulate the base 
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rigidity as Mohsin (2005).  It was shown that the lateral load capacity of walls with base 

rigidity is up to 92.7% higher than equivalent structures under pinned conditions.  

Although the experimental studies have grown in both quality and quantity in the past 

years, there are still many challenges regarding understanding the rather complex 

behaviour of reinforced and unreinforced masonry walls. This assumption is reflected in 

current North American design standards. Despite the Canadian (CSA S304-14) and the 

American (TMS 402-16) standards having been developed based on the same research 

pool, each committee mandates different provisions to compute the flexural and axial 

resistances of masonry walls. It is evident from the experimental data that second-order 

effects are a critical aspect in the design of slender masonry walls subjected to OOP 

bending. However, the above studies have proven that current methods specified in both 

the American and the Canadian standards to compute second-order moments produced 

moment amplifications up to 2 times higher than the experimental results. 

2.3 Numerical and Finite Element Modelling. 

It is clear from the literature above that experimental testing has formed the foundations 

of our current knowledge of the behaviour of reinforced and unreinforced masonry walls. 

However, physical testing programs are often limited by economic and practical 

constraints. The development of comprehensive experimental programs is expensive and 

time-consuming, as they might require building full-scale masonry walls and mechanisms 

to simulate loading conditions on which these elements are often subjected. Finite 

element analysis has arisen as an excellent alternative to overcome this constraint by 

providing accurate and cost-efficient predictions of the behaviour of the masonry, which 

are validated based on previous experimental results. Numerical models can be used to 

investigate complex phenomena such as stiffness degradation, buckling analysis, 

earthquake simulations of full-scale masonry, which might not be feasible for an 

experimental evaluation.  

In a broad manner, numerical modelling using the finite element method (FEM) in a 

structural engineering context could be divided into macro and micro modelling. In the 
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macro modelling approach (Fig. 2.4a), a homogeneous behaviour of masonry with no 

distinction between units and mortar is assumed. The masonry is modelled as a series of 

continuum elements. These models are an effective alternative to analyze the global 

behaviour of reinforced masonry walls, but are unable to capture detailed failure modes. 

Micro modelling is more computationally expensive, however, it is usually adopted when 

the local behaviour of the masonry walls is of interest. In a detailed micro-model (Fig. 

2.4b), the masonry cross-section is modelled as a continuum element, and the unit-mortar 

interfaces as a discontinuum element. Micro-models can provide accurate and precise 

results but are limited to simulating relatively small members due to their computational 

intensity. 

 

Figure 2.4 - Finite Element Approaches (Adapted from Kurdo et al. 2017) 

2.3.1 Micro modelling  

Early FE micro-models were introduced by Page (1978) for walls made with masonry 

bricks subjected to in-plane loading. The author used an 8-node plane stress continuous 

element assuming isotropic elastic properties to describe the masonry unit. Nonlinear 

linkage elements were used to model the mortar joints. The stiffness matrix was derived 

based on relative displacement vectors in the normal and shear direction. The equilibrium 

of the element is shown in 2.2. Unfortunately, the failure criteria was not defined and the 

ultimate load could not be captured. 

{𝐹} = [𝑘]{𝑤} (2.2) 

Micro-modelling

(a)

Macro-modelling

(b)

Mortar
Unit-mortar 

interface

Homogenous 

material
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Where, 

The force vector: {𝐹} =  {𝐹𝑠 𝐹𝑛 }  

The stiffness matrix [𝑘]= [𝑘𝑠 0 0 𝑘𝑛  ] 

The displacement vector {𝑤}=  {𝑤𝑠(𝑡𝑜𝑝) − 𝑤𝑠(𝑏𝑜𝑡𝑡𝑜𝑚) 𝑤𝑛(𝑡𝑜𝑝) − 𝑤𝑠(𝑏𝑜𝑡𝑡𝑜𝑚) }, 

Ali et al. (1986) created a nonlinear FE micro-model for brick wall subjected to in-plane 

loading which implemented a local failure criterion for both the joint and brick elements. 

The model was developed using 2D plane stress elements. The stress-strain relationship 

of the brick and the joint elements were adopted from several experimental studies. Three 

failure criteria were defined: (a) fracture of the mortar under tension-compression or 

tension-tension state of stress, (b) crushing of the brick under compressive stresses, and 

(c) bond failure at the interface of the joint and brick elements. The authors utilized a FE 

mesh consisting of four noded quadrilateral elements. The results of the numerical model 

of the brick wall subjected to in-plane loads were compared against experimental studies 

and showed a decent agreement.  

A more rigorous FE model was developed by Sayed-Ahmed and Shrive (1994) of 7-

course high masonry wallettes. The interaction between blocks and mortar joint was 

simulated using a 3D continuous FE model. Geometrical and material nonlinearity was 

considered using an 8-node shell element. Elasto-plastic behaviour of mortar and 

masonry was assumed. The solution algorithm is based on an iterative process using arc-

length method. Comparison with experimental results obtained in 7-course high wallettes 

under concentrated load shows a decent correlation. Different from previous research, 

this model was able to capture the failure of the specimens based on the appearances of 

cracks and instability effects.   

Lofti and Shing (1994) developed a micro FE model of unreinforced masonry walls. The 

mortar joints were modelled using interface elements, while the masonry assemblage with 

a smeared crack approach. It was found that the model was able to predict the shear 

behaviour of the mortar joints accurately. Cracking initiation and propagation under the 
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tension and shear state of stress were also included through the material constitutive 

relationship. Using an interface element was reported to be an efficient approach in 

predicting the loadbearing capacity of masonry walls and identifying local failure modes 

in the masonry elements.   

Yi and Shrive (2001) developed a 3-D FE micro model for unreinforced masonry walls.  

The authors attempted to model masonry units, mortar joints, and grouted cores 

separately. The mortar joints and masonry block were described using iso-parametric 

shell elements. Solid elements were used for the grouted cores. Cracking propagation was 

modelled with a smeared crack approach. The non-linear behaviour was traced using an 

iterative process. It was reported that the numerical model was able to capture failure 

modes related to the progressive cracking propagation, web-splitting and crushing of 

mortar joints. Verification of the numerical evaluation showed a moderate agreement 

with the previous experiments.  

2.3.2 Macro Modelling 

A macro-modelling approach for slender masonry walls with cavity was attempted by 

Wang et al. (1997). The model was created using beam-column elements available in the 

commercial software ABAQUS. The masonry element was treated as a homogenous 

single unit. A predefined concrete material from ABAQUS was implemented. This 

material had the ability to capture tensile cracking with a linear tension softening branch. 

The compressive behaviour of the element was defined using results from prism testing, 

while the tensile properties were defined based on the bond strength between the block 

and the mortar joint. A Newton-Raphson iterative procedure was used with load control 

protocol until the peak load was reached. For the post-peak behaviour, the analysis was 

shifted into a modified risk algorithm to capture the softening of the structure. According 

to the authors, the model was able to predict the masonry behaviour accurately when it 

was compared against experimental results.   

A homogenous masonry element was proposed by Lopez et al. (1999) to account for the 

anisotropic nature of the material. The main feature of this model was that it could predict 
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cracking in all directions with greater computational efficiency than other micro-models. 

The theory of mapped spaces was used to transform the anisotropic behaviour of the 

masonry into an isotropic space based on a modified Mohr-Coulomb criterion. The 

authors suggested that the proposed approach considerably reduced the computational 

effort required for mesh generation. The model was validated using previous 

experimental programs, and it was reported to have an excellent correlation with the 

results. Although the model was reported to be unable to identify the fracture mechanism 

of the masonry, this publication formed the basis of practical modelling approaches for 

large scale masonry structures, which are impractical for micro-model approaches.  

Another homogenization technique to model masonry elements was proposed by Ma et 

al. (2001). The authors introduced a representative volume element (RVE), which intends 

to capture the equivalent elastic properties, strength, and failure patterns of a masonry 

assembly. This approach was used to simulate the masonry unit and joint materials as a 

whole. An equivalent stress-strain relationship for the RVE was proposed based on 

constitutive relationships of masonry units and mortar. The numerical model defined 

three modes of failure: (a) tensile failure of the mortar, (b) combined shear failure of the 

brick and mortar and (c) crushing failure of the brick. Although this technique was 

reported to be an excellent alternative for masonry walls subjected to in-plane bending, 

unfortunately, it was not recommended for OOP behaviour. It was shown that for 

intensively variable stress-strain fields, the homogenization technique was not applicable.  

Liu and Dawe (2003,b) investigated the flexural behaviour of loadbearing reinforced 

masonry walls using a FE macro-model. The authors idealized the masonry walls as 2-

node, 4 degrees of freedom (DOF) beam-column elements.  Material and geometrical 

nonlinearity were accounted for through a moment-curvature analysis of the cross-section 

(Fig. 2.5). The stresses at each fibre of the cross-section were calculated with the stress-

strain relationship given in equation 2.3. An iterative process was selected to apply 

gradual increments in the loading combined with a reduced stiffness matrix. For every 

load increment, the moment-curvature relationship was traced, the material failure was 

checked to compare the total bending moment with the maximum flexural capacity. The 
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maximum axial load was obtained using eigenvalue analysis. Parametric analyses 

demonstrate an excellent correlation with the experimental data (Fig. 2.6). This 

publication demonstrated the effectiveness of developing simplified versions of 

numerical models based on moment-curvature relationships for RMWs. The same FE 

model was later used to assess the design method proposed by the CSA S304-14    to 

quantify second-order moments in RMWs.  

𝜎𝑚 = 1.067𝑓𝑚
′ [

2𝜀𝑐

0.002
− (

𝜀𝑐

0.002
)

2

] (2.3) 

 

Figure 2.5 - Cross-section evaluation (Liu and Dawe 2003) 
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Figure 2.6 – Comparison of results for single-layer reinforced walls with two No. 10 

reinforcing bars and h/t = 8.6 under combined axial and lateral loading (Liu and Dawe 

2003) 

Dona et al. (2018) developed two cantilevers fibre-based models of reinforced masonry 

walls using the Open-source software framework (OpenSees). The model accounts for 

spread of plasticity through a force-based element available in the OpenSees Library 

(NonlinearBeamColumn). Geometrical nonlinearity is considered by implementing a 

geometric corotational transformation. The homogenized masonry behaviour was 

modelled using Concrete02, which is based on the Kent-Scott Park Model curve. The 

failure criterion was based on reaching the maximum masonry strain. Parametric studies 

demonstrated almost a perfect correlation between experimental results and the numerical 

evaluation (Fig 2.7).  This study showed the effectiveness of fibre-based sections to 

evaluate the flexural behaviour of RMWs.  
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Figure 2.7 – Model Validation. Push-Over Curves (Dona et al 2018) 

Pettit (2019) presented a mechanic-based model to predict the behaviour of loadbearing 

walls under pinned-pinned conditions, including the presence of base rigidity. Material 

and geometrical nonlinearity was accounted for through a fibre-section approach. The 

model is based on the differential equation governing the displacement of elastic beam-

column under axial load and distributed lateral load. Moment curvature analyses were 

used to calculate the stress-strain relationship from the masonry cross-section. A 

maximum crushing strain of 0.003 was defined, and the instability of the structure was 

analyzed using eigen value analysis. The analysis model process is described in Fig. 2.8. 

Load displacement response of previous experimental analysis showed a good agreement 

with the numerical evaluation response. Further applications of the model, such as 

development of interaction diagrams assuming slenderness effects, are presented.  
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Figure 2.8– Analysis model Process (Clayton 2019) 

2.4 Flexural Rigidity review 

The earliest expressions to calculate out-of-plane rigidity of masonry walls were 

presented by Yokel (1971a; 1971b). The authors proposed an equation to estimate the 

rigidity of a wall as a function of the stress level and cracking of the cross-section 

subjected to vertical and transverse loading.  For structures under eccentric loading, an 

approximation expression is suggested for unreinforced masonry (Eq. 2.4) and another 

for reinforced masonry (Eq. 2.5) 

𝐸𝐼 =
𝐸𝑖 𝐼𝑛

2.5
 (2.4) 
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𝐸𝐼 =
𝐸𝑖 𝐼𝑛

3.5
 (2.5) 

 

Where, 𝐸𝑖 is the tangent modulus of elasticity and 𝐼𝑛 the gross moment of inertia of the 

uncracked section. 

A different alternative is suggested for walls susceptible to excessive cracking (Eq. 2.6): 

𝐸𝐼 = 𝐸𝑖𝐼𝑛 (0.2 +
𝑃

𝑃𝑜
) ≤ 0.7𝐸𝑖𝐼𝑛 (2.6) 

In which 𝑃𝑜 is the wall’s axial load capacity, and 𝑃 is the applied compressive load. 

Factors such as slenderness ratio and load eccentricity were not considered in Eq 2.5. The 

factor (0.2 +
𝑃

𝑃𝑜
) intends to include the cracking effects in the cross-section. 

Hatzinikolas et al. (1978) realized that the cracked inertia of loadbearing masonry walls 

is influenced by the mortar penetration, mortar overhand and even the type of masonry 

unit. Consequently, the authors suggested performing experimental testing to determine 

an accurate flexural stiffness. Based on the available concrete standard, it was suggested 

to incorporate factors relating the effects of loading eccentricity to calculate the flexural 

rigidity. The research was concluded by proposing an expression to estimate the stiffness 

of the wall (Eq. 2.7).  

𝐸𝐼 = 𝐸𝑚𝐼𝑜 [0.5 −
𝑒

𝑡
] ≥ 0.1𝐸𝑚𝐼𝑜  (2.7) 

Where, 𝐸𝑚 is the modulus of elasticity of the masonry. 𝐼𝑜 is the gross moment of inertia, 

𝑒 is the load eccentricity and 𝑡 is the thickness of the block.  

In 1995 an experimental program was conducted by Aridru and Dawe (1995) to 

investigate the flexural rigidity of the masonry walls exclusively. Multiple parameters 

were studied, such as reinforcement ratio, loading eccentricity and slenderness ratio. 
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Reinforced and unreinforced partially grouted walls were tested. The authors concluded 

that the measurement of the strain at the surface was a reasonable strategy to estimate the 

flexural rigidity. Additionally, it was suggested that the bending moment and the flexural 

stiffness could be exponentially related.  

Aboud et al. (1995) defined an upper and lower bound flexural rigidity based on the 

moment-curvature relationship. An expression to calculate the flexural stiffness as a 

function of the out-of-plane deflection and the term Effective Flexural stiffness was 

introduced, accounting for possible variations of modulus of elasticity and the moment 

of inertia, as given in 2.8. 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝐼𝑔
𝑓

𝑅 + 𝐸𝐼𝑐𝑟(𝐼 − 𝑅) (2.8) 

𝐸𝐼𝑐𝑟 is the cracked stiffness and 𝑅 is a function of the moment ratio. 𝐸𝐼𝑔
𝑓
 is a modified 

sectional stiffness given by: 

𝐸𝐼𝑔
𝑓

=
𝛽𝑀𝑐𝑟𝐿2

∆𝑐𝑟𝐼𝑔
𝑓  (2.9) 

Where 𝛽 is a proposed factor to related the effect of the loading condition and the 

boundary conditions, 𝑀𝑐𝑟 is the cracking moment, 𝐿 is the structure’s span, ∆𝑐𝑟 is the 

cracking displacement, and 𝐼𝑔
𝑓
 is a modified gross inertia considering an uncracked 

section.  

A comprehensive experimental program was conducted by Liu et al. (1998) of 72 full-

scale concrete masonry walls under eccentric axial loading, with the purpose of 

calculating the flexural stiffness. An experimental moment-curvature was developed 

from the strain readings to calculate the Effective Stiffness of the sections, as given 

below: 
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𝐸𝐼 =
𝑀

𝜙
 (2.11) 

𝜙 =
𝜀1 − 𝜀2

𝑡
 (2.12) 

In which 𝜀1 is the strain at the tension face of the masonry and 𝜀2 is the strain at the 

compression face. 

A reduction of the flexural stiffness was reported whenever the axial loading was 

increased. The same modulus of elasticity was obtained throughout the linear phase of 

the stress-strain relationship. At higher loads, the flexural rigidity was reduced due to the 

non-linear evolution of the masonry material and the development of cracking. Two 

equations were proposed based on the experimental results.  

𝐸𝐼𝑒𝑓𝑓 = 0.7𝐸𝑚𝐼𝑜        𝑓𝑜𝑟       0 ≤
𝑒

𝑡
≤ 0.18 (2.13) 

𝐸𝐼𝑒𝑓𝑓 = 2.7𝐸𝑚𝐼𝑜𝑒−7.5(
𝑒
𝑡

) ≥ 𝐸𝑚𝐼𝑐𝑟        𝑓𝑜𝑟       
𝑒

𝑡
> 0.18 (2.14) 

Where, 𝐸𝑚 is the modulus of elasticity, 𝐼𝑐𝑟 is the cracked moment of inertia, 𝐼𝑜 is the 

gross inertia, and 𝑒 is the loading eccentricity. 

Liu and Dawe (2003) studied the flexural rigidity of reinforced masonry walls using a 

numerical model. The influences of multiple parameters in the rigidity of the walls were 

investigated: reinforcement ratio, load eccentricity, end eccentricity and slenderness ratio.  

Comparison of the numerical results with the flexural rigidity calculated using the 

Canadian standard showed that provisions underestimate the wall stiffness under a broad 

range of conditions (Fig. 2.9 and Fig. 2.10).  
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Figure 2.9– 𝐸𝐼𝑒𝑓𝑓/𝐸𝐼𝑜 versus 𝑒/𝑡. Eccentric Axial Loading (Liu and Dawe 2003) 

 

Figure 2.10– 𝐸𝐼𝑒𝑓𝑓/𝐸𝐼𝑜 versus 𝑒/𝑡. Eccentric concentric Loading (Liu and Dawe 2003) 
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Based on the numerical results, a regression analysis was performed, and the following 

equation as a lower and upper bound approximation were defined: 

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑜
= 0.8 − 1.95 (1 − 0.01

ℎ

𝑡
) (

𝑒

𝑡
)        𝑓𝑜𝑟       0 ≤

𝑒

𝑡
≤ 0.4 (2.15) 

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑜
= 0.022 (1.00 + 0.35

ℎ

𝑡
)        𝑓𝑜𝑟       

𝑒

𝑡
> 0.4 (2.16) 

Mohsin (2003) used a numerical model to develop a data set of flexural stiffness values 

for 300 wall specimens.  The key parameter from this study was identifying the influences 

of based rigidity on the OOP stiffness of reinforced masonry walls.  A non-linear 

regression analysis was performed to obtain an expression for flexural rigidity, 

considering the effect of base rigidity and slenderness ratio.   

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑜
= [{5 + 0.32 (

ℎ

𝑡
) − 0.0039 (

ℎ

𝑡
)

2

} {0.0158𝑒−0.0158(
𝑒
𝑡

)} {5 + 2.9𝑟

− 12𝑟2}] 

(2.17) 

For e/t < 0.33 & h/t ≤ 42 & r ≤ 0.26. 

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑜
= [{0.01 + 0.12 (

ℎ

𝑡
) − 0.00094 (

ℎ

𝑡
)

2

} {0.0787𝑒−0.0787(
𝑒
𝑡

)} {3

+ 1.836𝑟 − 12𝑟2}] 

(2.18) 

For 0.33 ≤ e/t < 0.42 & 30 ≤ h/t ≤ 42 & 0 ≤ r ≤ 0.26. 



31 

 

𝐸𝐼𝑒𝑓𝑓

𝐸𝐼𝑜
= [{1 − 0.05 (

ℎ

𝑡
) − 0.000892 (

ℎ

𝑡
)

2

} {1.7024𝑒−0.0133(
𝑒
𝑡

)} {1 + 2.2𝑟

− 12𝑟2}] 

(2.19) 

For 0.33 ≤ e/t < 0.42 & 30 ≤ h/t ≤ 36 & 0 ≤ r ≤ 0.051. 
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3. STRENGTH DESIGN COMPARISON 

3.1 Loadbearing Reinforced Masonry Walls under axial load and Out of Plane 

Bending  

Masonry buildings rely on the inherent compressive strength, lateral strength, and 

stiffness of masonry walls to transfer gravitational and lateral loads to the foundations 

and to guarantee the stability of the structures. Masonry walls resist eccentric or 

concentric axial loading, out-of-plane loads normal to the surface, and in-plane loads 

(Drysdale 2005). Walls subjected to the combined effect of axial compressive forces and 

out-of-plane (OOP) bending moment (Fig. 3.1) are termed loadbearing walls and are the 

subject of this study. Generally, the design of loadbearing walls against lateral loads relies 

on simple principles of mechanics, such as strain compatibility and internal force 

equilibrium, as the length of a wall is typically much larger than its thickness and 

Bernoulli theory is applicable.  However, the inclusion of the axial loading in the system 

makes the analysis and design more complex.  

 

Figure 3.1 – Loadbearing OOP wall loading condition. Eccentric axial loading. 
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Masonry walls can be constructed either as fully grouted (Fig. 3.2a) or partially grouted 

(Fig. 3.2b) walls. In fully grouted (FG) walls grout is poured on every cell.  FG walls 

could be used for several reasons.  For instance, FG walls are cost-effective when the 

longitudinal reinforcement is placed close enough that not pouring grout in every cell 

becomes impractical, or when it is required to increase the gross area to resist high axial 

forces.  FG walls may be required when the combination of gravity and lateral load 

require a deeper compressive block in the masonry to balance the tension forces in the 

steel reinforcement.  It may also be done to satisfy seismic detailing requirements. 

On the other hand, partially grouted (PG) walls, where only cells with rebars are grouted, 

are a cost-effective option for most designs.  This style of construction reduces the cost 

and the weight of the structural elements if the loads on the building are relatively low.  

In PG walls, the compressive block fits within the flange of the masonry units and it is 

enough to balance the tension in the steel reinforcement. 

 

Figure 3.2 – Masonry section. (a) Fully grouted wall (b) Partially grouted 



3.2 Comparison of strength design provisions. 

This section compares the key design provisions from the CSA S304-14  and TMS 402-

16 related to the strength design of out-plane reinforced masonry walls. First, the 

provisions are compared in terms of the code equations and underlying principles, and 

Fully-Grouted 

(a)

Partially-Grouted 

(b)
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later parametric studies are used to quantify the differences numerically. In this chapter, 

Canadian related equations are named under C-3.X (e.g. C-3.1) while the American 

related as U.S-3.X (e.g.. U.S-3.1). Expressions that are common in both standards are 

named as 3.X (e.g. 3.1). 

3.2.1 Masonry Assembly Compressive Strength (𝒇𝒎
′ ). 

The compressive strength of the masonry refers to the ability of a masonry assembly to 

withstand compressive loads. The CSA S304-14 and the TMS 402-16 allow the 

determination of the compressive strength of the masonry by testing prisms or using 

tabulated values. Most designers prefer to use the tables due to their simplicity of use, 

while prism testing is rarely conducted. The tabulated values of the masonry compressive 

strength assembly from the CSA S304-14 and the TMS 402-16  are shown in Table 3.1 

and Table 3.2, respectively.  

 

Figure 3.3 – Masonry Assembly 
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Table 3.1 – Specified compressive strength normal to the bed joint, 𝒇𝒎
′ , for concrete 

block masonry, MPa, Adapted from  Table 4 

Specified 

compressive 

strength of unit 

(average net 

area)*, MPA 

Type S Mortar Type N mortar 

Ungrouted 

hollow units 

Solid units 

or grouted 

hollow units 

Ungrouted 

hollow units 

Solid units or 

grouted hollow 

units 

30 or more ** 17.5 13.5 12 9 

20 13 10 10 7.5 

15 10 7.5 8 6 

10 6.5 5 6 4.5 

*Linear interpolation may be used ** For concrete block units with a specified 

compressive strength greater than 30 MPa, Clause 5.1.2 may be used to determine an 

𝑓𝑚
′  that could exceed the values given in this table. 
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Table 3.2 – Compressive Strength of Masonry Based on the Compressive Strength of 

Concrete Masonry Units and Type of Mortar Used in Construction, Adapted from TMS 

402-16 602-16 Table 2 

Net area compressive 

strength of concrete masonry, 

psi (MPa)1 

Net area compressive strength of ASTM C90 

concrete masonry units, psi (MPa) 

Type M or S mortar Type N mortar 

1,750 (12.07) - 2,000 (13.79) 

2,000 (13.79) 2,000 (13.79) 2,650 (18.27) 

2,250 (15.51) 2,600 (17.93) 3,400 (23.44) 

2,500 (17.24) 3,250 (22.41) 4,350 (28.96) 

2,750 (18.96) 3,900 (26.89) - 

3,000 (20.69) 4,500 (31.03) - 

1For units of less than 4in. (102 mm) nominal height, use 85% of the values listed. 

As seen on the tables above, both countries define two types of mortar used in 

construction. Type “S” mortar is implemented for structural purposes while type “N” is 

mostly used in non-structural elements. Canada specifies the compressive strength of the 

block units, whereas in the US, the compressive strength of the masonry assembly.  

CSA S304-14  makes a distinction between the compressive strength of ungrouted hollow 

units 𝑓𝑚,𝑢𝑔
′ , and grouted hollow units or solid elements 𝑓𝑚,𝑔𝑟

′ , while TMS 402-16 does 

not make such distinction and a unique value of 𝑓𝑚
′  is used throughout the design. 

Using interpolation, TMS masonry strength values are approximately 15% higher than 

their counterparts in for the same block strength. The implications of the different 
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interpretations are discussed in this work for both the strength design and calculations of 

the second-order effects. 

3.2.2 Modular Block Dimensions and Net Area Definition. 

Minor differences are appreciable in the dimensions of the typical block used in Canada 

and the United States. Overall, the Canadian blocks are slightly smaller than in the U.S. 

Table 3.3, and Table 3.4 show the equivalent block used in each country with its 

respective dimensions. Nominal height and length are 10 mm higher than the actual 

values in the CSA S304-14  to account for the mortar joint, which is approximately 10mm 

thick. Fig. 3.4 shows a typical masonry block with two hollow cells.   

 

Figure 3.4 – Nominal block dimension definitions 
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Table 3.3 – Canadian Modular Blocks dimensions. 

Block Nominal 

Width  

Canada, mm (in) 

Equivalent U.S 

Block Nominal 

Width, mm (in) 

Actual 

Width, mm 

(in) 

Minimum 

Faceshell 

Thickness, 

mm (in) 

Minimum Web 

Thickness, mm 

(in) 

100 (3.94) 101.6 (4) 90 (3.54) 20 (0.78) 20 (0.78) 

150 (5.90) 152.4 (6) 140 (5.51) 29 (1.14) 25 (0.98) 

200 (7.87)* 203.2 (8) 190 (7.48) 30 (1.18) 25 (0.98) 

250 (9.84) 254 (10) 240 (9.44) 35 (1.38) 28 (1.10) 

300 (11.81) 304.8 (12) 290 (11.41) 35 (1.38) 30 (1.18) 

*Most commonly used.  
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Table 3.4 – United States Modular Blocks dimensions. 

Block 

Nominal 

Width U.S, 

mm (in) 

Equivalent 

Canadian 

Block Nominal 

Width (mm) 

Actual 

Width (mm) 

Minimum 

Faceshell 

Thickness 

(mm) 

Minimum Web 

Thickness 

(mm) 

101.6 (4) 100 (3.93) 92.1 (3.62) 19.1 (0.75) 19.1 (0.75) 

152.4 (6) 150 (5.90) 142.9 (5.62) 25.4 (1) 19.1 (0.75) 

203.2 (8) 200* (7.87) 190 (7.48) 31.8 (1.25) 19.1 (0.75) 

254 (10) 250 (9.84) 240 (9.44) 31.8 (1.25) 19.1 (0.75) 

304.8 (12) 300 (11.81) 290 (11.41) 31.8 (1.25) 19.1 (0.75) 

*Most commonly used.  

The CSA S304-14 specifies the use of an “effective cross-sectional area” to determine 

the strength of the walls using hollow masonry blocks. Similarly, the TMS 402-16 uses 

the term “net cross-sectional area”. Although each standard provides a slightly different 

term for this concept, the physical interpretation is the same. 

Net cross-sectional area (𝐴𝑛) or effective cross-sectional area (𝐴𝑒) refers to the total area 

of masonry, including the area of the voids filled with grout, but excluding the webs of 

ungrouted cells. To illustrate this, Fig. 3.5 shows the net cross-sectional area for a PG and 

FG cases. 
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Figure 3.5 - Net Area and Effective Area (a) Fully grouted section (b) Partially Grouted 

Section 

For a fully grouted section, the net area becomes the gross area of the cross section 

essentially. However, for a partially grouted section, the area is the summation of the total 

area of the face shells and the equivalent grouted area (excluding webs of ungrouted 

cells). 

3.2.3 Slenderness Definition  

This section compares the slenderness definition adopted by each standard. Depending 

on the slenderness ratio of the structure, each standard requires particular provisions to 

satisfy the design. These requirements are discussed in section 3.2.4. The limitations in 

the wall capacity as a function of the slenderness ratio are described in section 3.2.5.  

The CSA S304-14 describes 3 types of walls based on their slenderness ratio. For all the 

type, the slenderness ratio (
𝑘ℎ

𝑡
) depends on the effective length factor k, the wall length h, 

and the width of the block t. Table 3.5 shows the slenderness definition per CSA S304-

14      

 

 

 

Fully Grouted 

(a)

Partially Grouted 

(b)
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Table 3.5 – CSA S304-14  Slenderness definition 

Clauses Equations Comment 

10.7.3.3.1 

𝐾ℎ

𝑡
< (10 − 3.5 (

𝑒1

𝑒2
))  (C-3.1) 

Where, 𝑒1 is the smaller virtual eccentricity 

occurring at the top or bottom of a vertical 

member at lateral support and 𝑒2 the largest 

virtual eccentricity.  

 

 

Non-slender wall. 

Second-Order effects 

negligible 

 

10.7.3.3.2 

 

(10 − 3.5 (
𝑒1

𝑒2
)) <

𝐾ℎ

𝑡
≤ 30  (C-3.2) 

 

 

 

Slender Walls. 

Calculate Second-

Order Effect 

10.7.3.3.3 

 

𝐾ℎ

𝑡
≥  30 (C-3.3) 

 

 

Slender Walls. 

Calculate Second-

Order Effect + Extra 

provisions 

 

TMS 402-16  proposed a different definition for the slenderness limit.  TMS 402-16 

defines the slenderness ratio as the ratio between the structure height h, and the radius 

of gyration r, (
ℎ

𝑟
). Two simple definitions are provided, if h/r < 99, the wall should not 

be considered as a slender structure, and if h/r ≥ 99, then the wall is considered as a 
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slender and more strict provisions and details must be used. Table 3.6 summarizes the 

slenderness definition per TMS 402-16  

Table 3.6 – TMS 402-16  slenderness definition 

Clauses Equations Comment 

9.3.5.4.2 
ℎ

𝑟
< 99  (U.S.- 3.1) 

 

Non-slender wall. 

 

9.3.5.4.2 

 

ℎ

𝑟
≥ 99 (U.S.- 3.2) 

 

Slender Walls.  

 

Although TMS 402-16 uses the radius of gyration to define the slenderness ratio instead 

of the block thickness as the CSA S304-14, numerically, both expressions are relatively 

similar for a pinned-pinned condition (k = 1). For solid rectangular sections, the radius of 

gyration is approximately 0.3t (Eq. 3-1).  

𝑟 =  √
𝐼

𝐴
 =  

√
𝑏ℎ3

12
𝑏ℎ

=  
ℎ

√12
 ~ 0.3ℎ = 0.3𝑡  3-1 

The A23.3 standard to design concrete structure allows assuming the radius of gyration 

of for solid rectangular cross-section as 0.3𝑡.  

 Substituting this approximation in the TMS 402-16  expression, 
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ℎ

0.3𝑡
= 99 ;

ℎ

𝑡
~30  

Consequently, in most cases, the slenderness definition adopted to design a wall is 

relatively similar in the US and Canada. Only for some partially grouted specimens with 

widely spaced reinforcement, the approximation proposed by the A23.3 might not be 

necessarily accurate. The approximation is based on rectangular sections (which for 

masonry walls implies fully grouted sections). Partially grouted walls do not have a solid 

rectangular cross-section. In a wall in which the bars are widely spaced, the 0.3t 

approximation becomes less accurate.   

3.2.4 Reduction Factors 

The limit states design approach used by both standards requires that the design strength 

(factored resistance) be greater than the required strength (factored loads). Design 

strength refers to the reduced value of the actual resistance of a material or cross-section 

affected by safety factors or reduction factors. Required strength is the total load 

multiplied by a certain safety factor. These factored loads are specified in other regulatory 

documents for both countries, the NBCC and ASCE 7 for Canadians and US design, 

respectively.  

Each country has different load combinations to calculate the required strength, although 

the philosophy to amplify the loads is similar (for instance, greater amplification factors 

are used for live loads than for dead load).   

The design strength is computed following different approaches. CSA S304-14 applies 

reduction factors to the material strength to calculate factored resistance, while in the 

TMS 402-16 the factors are applied to the nominal resistance based on the expected mode 

of failure. Table 3.7 summarizes the reduction factor applied by both standards.  
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Table 3.7 – Reduction Factors 

Standard Reduction factor Comments 

CSA S304-14    

 

Masonry Strength: ∅𝑚 = 0.6 

Steel Strength: ∅𝑠 = 0.85 

OOP wall stiffness: ∅𝑒 = 0.75 

 

Material strength 

reduction factors 

TMS 402-16  

Flexural Capacity: ∅ = 0.9 

Axial capacity:  ∅ = 0.9 

Nominal Strength 

reduction Factor 

As shown in Table 3.7, CSA S304-14 mandates a reduction to the material strength by a 

factor depending on the type of material. To compute the compressive stress of the 

masonry, 𝐶𝑚, the material strength has to be reduced by 40%, while the tensile capacity 

provided by the steel reinforcement by 10%. Additionally, the standard requires to affect 

the OOP stiffness calculation by a 25% reduction which is used to compute second-order 

effects (this is the focus of a major discussion in Chapter 4). On the other hand, TMS 

402-16 does not reduce the strength of the material but rather decided to affect the 

nominal capacity by a single factor for flexural (𝑀𝑟 = ∅𝑀𝑛) and axial (𝑃𝑟 = ∅𝑃𝑛) 

behavioral response. The wall stiffness remains unaffected.  

3.2.5 Provisions related to the flexural capacity (P-M interaction development) 

The strength of a wall against the applied axial load and the bending moment in 

loadbearing walls is typically represented as a P-M interaction diagram (Fig 3.6). The P-

M interaction line is a visual representation of the possible combinations of moments and 

axial loading that are equal to the strength of the wall.  Combinations of axial load and 

moment that are outside the region enclosed by the line are unsafe, and those that fall 

inside are safe. 
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To create a P-M interaction diagram, one strategy is to vary the depth of the neutral axis 

in a cross-section.  For each value of the neutral axis c, the forces in the materials, such 

as the compression in the masonry 𝐶𝑚, and the tension in the reinforcement 𝑇𝑠, are 

computed.  Equilibrium must be satisfied. The net force 𝑃𝑟 represents the amount of axial 

load that the cross-section can resist (Eq. 3.1).  The moment caused by the forces 𝐶𝑚, 𝑇𝑠, 

and 𝑃𝑟, is the moment resistance of the wall 

𝐶𝑚 = 𝑇𝑠 + 𝑃𝑟  (3.1) 

For ultimate limit state design, the axial load resistance, 𝑃𝑟, corresponds with the 

equivalent applied load, such that 𝑃𝑓 = 𝑃𝑟.  

TMS 402-16  and CSA S304-14 provide limitation for the maximum allowed 𝑃𝑟 in the 

element. The limitations are further discussed in section 3.2.5.2. 

To calculate the compressive forces, 𝐶𝑚, carried by the masonry, its nonlinear stress-

strain relationship should be simplified into a well-defined shape that provides a 

reasonable estimate of the magnitude when the strain reaches its ultimate value, which is 

defined differently by each standard.  As prescribed in CSA S304-14 (Clause 11.2.1.6) 

and TMS 402-16  (Clause 9.3.2), both committees allow the use of an equivalent stress 

block approach to determine the compressive strength of masonry elements. The 

equivalent stress block assumptions at ultimate conditions are shown in Fig 3.6.  
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Figure 3.6 – Equivalent Stress Block assumptions.  

Table 3.8 shows the equation proposed by each standard to calculate the compressive 

strength of the masonry based on the equivalent stress block approach.  

Table 3.8 – Masonry Compressive Strength 

Standard Masonry Compressive Strength 𝐶𝑚 

CSA S304-14    𝐶𝑚 = 𝜙𝑚𝜒(0.85𝑓𝑚
′ )𝑏𝛽1𝑐   C-3.4 

TMS 402-16  𝐶𝑚 = (0.80𝑓𝑚
′ )𝑏𝛽1𝑐   U.S.- 3.3 

 

Cross-Section

Strain 

Distribution

Ultimate stress 

(CSA S304-14)

Ultimate stress 

(TMS 402-16)

c
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In terms of the crushing strain of the masonry materials, each standard recommends a 

different value. CSA S304-14 allows reaching a maximum strain of 0.003, whereas the 

TMS 402-16 sets a limit of 0.0025.  

CSA S304-14 adopts a coefficient of 0.85 for the equivalent compressive block during 

the force equilibrium (0.85 𝑓𝑚
′ ), versus 0.80 suggested by the TMS 402-16 committee. 

At ultimate conditions, this represents a 5% difference in the compressive strength of the 

masonry if the equations are directly compared. Although the smaller size of the U.S. 

compressive block would seem to be the conservative option, the Canadian committee 

provides a material reduction factor to the masonry strength ∅𝑚 of 0.65, which is 

ultimately translated to a reduction of the compressive strength of the masonry of 35%.  

Additionally, the Canadian standard includes a factor, χ, which is used to account for the 

direction of compressive stress in a masonry member relative to the direction used in the 

determination of 𝑓𝑚
′ , nevertheless, for the design of OOP walls this factor is taken as 1. 

The variability in the 𝑓𝑚
′  relative to the position of the neutral axis in the determination 

of the flexural strength is also to be noted.  CSA S304-14 allows using different values 

of 𝑓𝑚
′  depending on where the neutral axis is located with respect to the block faceshell 

and grouted cell. If the compressive zone is placed at the faceshell, designers have the 

option to select the compressive strength of an ungrouted prism (𝑓𝑚𝑢𝑔
′  ), which is 

typically greater than the effective 𝑓𝑚  of the grouted masonry (𝑓𝑚𝑔𝑟
′ ). TMS 402-16 does 

not establish a similar condition, and the use of a constant 𝑓𝑚
′  is encouraged throughout 

the design.  

The tensile forced 𝑇𝑠 carried by the steel reinforcement in Eq -3.1 at yield is calculated as 

shown in Table 3.9. 
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Table 3.9 – Tensile Strength Equations 

Standard Tensile strength 𝑇𝑠 

CSA S304-14    𝑇𝑠 = ∅𝑠𝐴𝑠𝐹𝑦   C-3.5  

TMS 402-16  𝑇𝑠 = 𝐴𝑠𝐹𝑦   U.S.- 3.4 

Similar triangles can again be used with the strain distribution to determine the 

reinforcing steel strain, ℇ𝑠, which may be expressed as 

ℇ𝑠 =
ℇ𝑚𝑢(𝑑 − 𝑐)

𝑐
 3.2 

The elastic force in the reinforcement could then be determined by substituting the 

stress 𝑓𝑠  for𝑓𝑦  in Eq 3.2 

𝑓𝑠 = ℇ𝑠𝐸𝑠  3.3 

As noted in Table 3.9, both standards rely on the same approach to calculate the tensile 

force carried by the steel reinforcement. CSA S304-14 mandates to include the material 

reduction factor ∅𝑠 = 0.9, whereas TMS 402-16, as commented before, does not require 

to reduce the material strength but instead reduces the nominal capacities.   

The flexural capacity of the cross-section can be calculated by solving the resulting 

internal moment about its depth, 𝑑. Most conventional walls in North America are built 

using a single layer of reinforcement located at the centre of the cell (𝑑 = 𝑡/2), which 

coincides with the line of action arising from concentric loads. Therefore, the moment 

resistance under this condition can be directly calculated using the compressive strength 

of the masonry as shown in Eq - 3.4. The moment equilibrium can be calculated about 

any point of the cross-section, as long it involves the interaction between the three forces 

on equilibrium (𝑃𝑟 , 𝑇𝑠, 𝐶𝑚). TMS 402-16 mandate to use the nominal capacity factor ∅ =

0.9 to reduce by 10% the moment resistance (𝑀𝑟 = ∅𝑀𝑛). On the other hand, CSA S304-
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14 does not applies any equivalent factor to the nominal capacity (𝑀𝑟 = 𝑀𝑛), as the 

material strength are already affected by ∅𝑚 and by ∅𝑠. 

𝑀𝑛 = 𝐶𝑚 (
𝑡

2
−

𝛽1𝑐

2
)   3.4 

Figure 3.7 and 3.8 illustrate a generic P-M interaction diagram for a PG cross-section 

developed using the CSA S304-14  and the TMS 402-16 . These curves are calculated for 

a 4 meters high wall, reinforced with 10M bars spaced at 1200 mm using a nominal 

compressive strength of 15MPa (Canadian values). No reduction factors are applied. 

Factored axial load resistances (𝑃𝑟) are plotted in the vertical axis, while its corresponding 

factored moment resistance (𝑀𝑟) along the horizontal axis. The area surrounded by the 

solid line represents the allowed combination of factor axial loads and moments. These 

diagrams are developed following the mechanics described above, and there are not 

affected by any additional provisions (i.e. Axial loading limits).  In the following sections, 

the additional requirements to consider when developing the interaction curves as 

mandated by the CSA S304-14 and TMS 402-16 are explained. For each provision (i.e. 

axial loading capacity limit) it is shown the same interaction diagrams developed above, 

but affected by its respective requirements. The curves are only affected by one provision 

at a time. At the end of the theoretical comparison, interaction curves affected by all the 

provisions are shown. 

The following points of interest are depicted in Fig. 3.7 and 3.8 

● Point A (Pure axial compression) = Largest axial compressive load. All the fibres 

of the sections are under full compression.  

● Point B (Compression with minor bending) = The section starts to experience 

bending forces. All the fibres are under compressive strains. 

● Point C (Steel develops tensile strain) = Tensile strain is developed in the rebar 

fibres. The tensile strength of the masonry is neglected.  



50 

 

● Point D (Balance point) = Masonry reaches its crushing strain, and the tensile 

reinforcement achieves the yielding strain simultaneously. Failure of the masonry 

occurs at the same time as the steel yields 

● Point E (Tension Controlled resistances) = The yielding strain of the 

reinforcement will be exceeded before the masonry reaches its crushing strain. 

● Point F (Pure Bending point) = The section is under pure bending (P = 0). The 

tensile strain in the rebar exceeds the yield strain. 

 

 

Figure 3.7 – Typical P-M interaction diagram for reinforced masonry wall as per CSA 

S304-14    
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Figure 3.8 – Typical P-M interaction diagram for reinforced masonry wall as per TMS 

402-16  

Figure 3.7 and 3.8, it is important to notice the distinction between the compression-

controlled (between point A to E) and tension-controlled region (between point E to F). 

Summarizing, in compression-controlled regions, P-M resistances are mainly governed 

by the magnitude of the compressive strength of the masonry. On the contrary, in tension-

controlled regions of the interaction diagram, the response is primarily controlled by the 

tensile strength of the reinforcement. Both zones are described in greater detail below.  

Between point A up to point C, the section is considered entirely in compression, as not 

tensile strains are yet developed (𝑐 > 𝑑). If the neutral axis depth crosses the centroid of 

the reinforcement, d, it will not be subjected to tensile stresses. To compute P-M 

resistances under this region, both the CSA S304-14and TMS 402-16 neglect the 

contribution of the steel reinforcement. Essentially, the masonry wall can effectively be 

considered as an unreinforced specimen for its design since the reinforcement is no longer 

being relied upon to carry tensile stresses. P-M resistances in this region are purely 

governed by the compressive strength of the masonry. An area of discontinuity in the 

CSA S304-14   curve appears due to restriction of the standard for Unreinforced Masonry 

Walls (UMWs). CSA S304-14 limits the virtual eccentricity of the section (𝑀𝑟/𝑃𝑟) to a 
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maximum of t/3 for UMWs. This limit intends to impede instability effects due to 

excessive cracking propagation. Therefore, applying this restriction is a requirement even 

for RMWs if the steel is not yet activated in tension, as the section is effectively an 

unreinforced specimen up to this point. Before the steel is activated, the moment 

resistances should not exceed 𝑃𝑟 (
𝑡

3
). No discontinuity is seen on the TMS 402-16 402 

curves, as the committee does not offer a similar provision.   

At point C, tensile strains are developed on the reinforcement fibres. The section is no 

longer considered under a state of pure compression. Both standards assumed no tensile 

strength of the masonry, therefore, flexural stresses are carried entirely by the steel 

reinforcement. Since the maximum tensile strain of the rebar has not yet been reached 

(𝜀𝑠 < 𝜀𝑦; 𝐹𝑠 = 𝜀𝑠𝐸𝑠), the flexural capacity is still mainly dependable on the masonry 

compressive strength magnitude rather than the yield strength of the reinforcement. 

Failure of the wall will be reached before the yielding of the rebars is achieved.  

At point D, the rebars reach their yield strain, and the P-M resistances are computed using 

the rebar yield strength, 𝑓𝑦 . For design purposes, no strain hardening of the reinforcement 

should be considered. The value of the yield strength should be used as a maximum 

induced stress on the rebars. For instance, for a specimen reinforced with rebars which 

yield strength is 400 MPa, from point D to F, the P-M capacities are computed using a 

maximum value of 400 MPa, independently of its strain levels. Therefore, under this area 

the response is primarily controlled by the yield strength of the reinforcement and to a 

lesser extent by the masonry compressive strength of the masonry, as it is used to compute 

the depth of the equivalent masonry compression block. 

3.2.5.1 Axial Compressive Force Limit (Pr ) 

Both standards present similar approaches to calculate the maximum resistance axial 

forces. This is calculated based on the net area (grouted and ungrouted) of the masonry 

and the compressive strength (𝑓𝑚
′ ). Table 3.10 shows the equation used on each standard.  
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The P-M interaction curves presented in section 3.2.5 affected by their respective axial 

limit are illustrated in Fig 3.9 and 3.10.  On each figure, the axial loading limit for both 

non-slender (𝑘ℎ

𝑡
< 30) and slender (𝑘ℎ

𝑡
> 30)  walls are shown. The height of the structure 

was not modified for the axial limit calculations.  
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Table 3.10 – Axial Compressive Force Clauses  

Standard Clauses Equations Comments 

CSA S304-14    
10.4.1, 

10.4.7.4.6.4 

For   
𝑘ℎ

𝑡
< 30 

𝑃𝑟(𝑚𝑎𝑥) = 0.80(0.85𝜙𝑚𝑓𝑚
′ 𝐴𝑒) 

(C-3.7) 

 

For   
𝑘ℎ

𝑡
> 30 

𝑃𝑟(𝑚𝑎𝑥) = 0.1𝜙𝑚𝑓𝑚
′ 𝐴𝑒 

(C-3.8) 

CSA S304-14   

mandates two 

expressions based on 

slenderness limits.  

TMS 402-16  9.3.4.1.1 

 

For   
ℎ

𝑟
< 99 

𝑃𝑟(𝑚𝑎𝑥) = 0.80(0.80𝑓𝑚
′ 𝐴𝑛) (1 − (

ℎ

140𝑟
)

2
)     

(U.S.- 3.6) 

 

 

For   
ℎ

𝑟
≥  99 

𝑃𝑟(𝑚𝑎𝑥) = 0.80(0.80𝑓𝑚
′ 𝐴𝑛) ((

70𝑟

ℎ
)

2

) 

(U.S.- 3.7)  

 

𝑃𝑟(𝑚𝑎𝑥) = 0.05𝑓𝑚
′ 𝐴𝑛 

(U.S.- 3.8)  

TMS 402-16  

provides two 

equations that 

consider the 

slenderness ratio. 

Additionally, for 

cases where 
ℎ

𝑟
≥  99 

shall not exceed 5% 

of the gross axial 

capacity 
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Comparing Fig. 3.7 and 3.8 (P-M curves unaffected by any provision) with Fig 3.9 and 

Fig. 3.10 (P-M curves affected by the axial limit provisions), it is shown that the North 

American standards do not allow to achieve a pure axial compressive limit state for 

reinforced masonry walls. Axial capacities are capped, and this limit seems to be more 

restrictive for higher slenderness ratios. 

 

Figure 3.9 – P-M interaction diagram for reinforced masonry wall as per CSA S304-14   

. Affected by axial compressive limit. 
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Figure 3.10 – P-M interaction diagram for reinforced masonry wall as per TMS 402-16 

. Affected by axial compressive limit. 

Table 3.10 shows that the TMS 402-16 expressions proposed two equations that are a 

function of the height and radius of gyration. For structures with a slenderness ratio of 

less than 99, the expression is affected by the factor (1 − (
ℎ

140𝑟
)

2
). Instability effects in 

structures with 
ℎ

𝑟
< 99 under typical axial loads are not expected, as the mode of failure 

is expected to be controlled by material failure, such as the crushing of the masonry blocks 

in compression and yielding of the reinforcement. For the same height-to-thickness ratio, 

CSA S304-14 recommends an equation independent of the h/t ratio. Thus, for a given 

cross-section, the axial limit will be the same while the slenderness ratio does not exceed 

the threshold value of 30.  

Walls with a higher slenderness ratio are expected to be more susceptible to instability 

effects. For these cases, the TMS 402-16 proposes a more rigorous factor ((
70𝑟

ℎ
)

2

) to 

calculate the axial limit, as shown in Fig. 3.9. Although the same height was used to 

compute this limit, using U.S.-3.6 led to a lower capacity. Additionally, the standard 
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requires that the compressive forces do not exceed 5% of the total axial capacity (U.S.-

3.7).  

The Canadian committee mandates a single additional restriction for slender walls. This 

restriction ensures that the applied axial compression load in the wall must not exceed 

10% of the gross capacity based on the compressive strength of the masonry unit (C-3.8).  

3.2.5.2  Effective Compressive Width Limit. 

When a wall is subjected to an external bending moment, it is resisted by an internal 

couple is created in the steel and masonry materials.  Tensile stresses are generated in the 

steel reinforcement, and compressive stresses are created in the masonry materials.  If the 

steel bars are widely spaced, the compressive stresses tend to appear near the locations of 

the steel bars, so that the compressive stress can more efficiently balance the tensile stress 

(Fig. 3.11-a.1).  If the steel bars are closely spaced, the distribution of compressive 

stresses are mostly uniform along the width of the wall (Fig. 3.11-b.1).  The difference 

between the two distributions of compressive stress is known as shear lag. 

To capture the effects of shear lag, the standards introduced the concept of effective width 

(𝑏𝑒𝑓𝑓). This is the maximum width of masonry in which compression is permitted to 

occur to balance the tension in the steel reinforcement and preserve the coupling of the 

two actions (Fig. 3.11-a.2)  
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Figure 3.11 – Shear Lag Effect in RMWs. (a.1) Widely Spaced reinforcement stress 

distribution. (a.2) Standard simplification. (b.1) Closely spaced reinforcement stress 

distribution. (b.2) Standard simplification 

The effective width limit is only applicable for combinations of axial load and moment 

on which the steel is assumed to carry tensile stresses.  It does not apply for load 

combinations in which the steel is not in tension.   

CSA S304-14 limits the effective compression zone to a minimum of 

• 4 times the wall thickness  

• the spacing between bars.   

While TMS 402-16  allows the designers to set the compression zone width to the 

minimum of: 

● 6 times the wall thickness,  

● the spacing between rebars, 
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● or 72 inches (1828.8 mm).  

 

Table 3.11 summarizes the effective compressive width limit imposed by the North 

American standards.  

Table 3.11 – Effective Compressive Width equations. 

Standard Compressive Width Limit 

CSA S304-14    𝑏𝑒𝑓𝑓 = 𝑚𝑖𝑛 (4𝑡, 𝑟𝑒𝑏𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔)  C-3.6 

TMS 402-16  𝑏𝑒𝑓𝑓 = 𝑚𝑖𝑛 (6𝑡, 𝑟𝑒𝑏𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔, 72 𝑖𝑛𝑐ℎ𝑒𝑠)  U.S.- 3.5 

 

Theoretically, the CSA S304-14 offers a more conservative provision, where for some 

circumstances, the effective width used could be 40% lower than a design developed 

using the TMS 402-16 approach. For instance, for a rebar spacing of 1400 mm (or 55 

inches), and block size thickness of 190 mm (or 7.48 inches), the 𝑏𝑒𝑓𝑓  calculated using 

U.S.- 3.5 is governed by the 6t limit, and the total width to assume in the design is 1140 

mm (or 44 inches). For the same conditions, the 𝑏𝑒𝑓𝑓  computed using CSA S304-14 is 

governed by the 4t limit, which results in a maximum width of 740 mm (or 29 inches). 

Additionally, the limit mandated by CSA S304-14 could be triggered for a lower rebar 

spacing compared to TMS 402-16 (6t vs 4t). Such reduction translates into a decrement 

of both the flexural and axial capacity of OOP walls.  

The effect of this provision is graphically shown in Fig. 3.12 and Fig. 3.13. The P-M 

interaction curves developed in section 3.2.5, are affected by their respective reductions 

due to the compressive width limits (dashed curve). On each figure, the P-M resistances 

neglecting this limit (solid curve) are also presented. 

In both diagrams, the P-M capacities decreased due to the reduction of the effective width 

used to compute the resistances once the steel starts to develop tensile strains. 
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Additionally, it appears that due to the stricter limit proposed by , the P-M capacities are 

reduced by a greater proportion than that of the TMS 402-16 curves.  

 

Figure 3.12 – P-M interaction diagram for reinforced masonry wall as per CSA S304-

14. Affected by effective compressive width limit. 
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Figure 3.13 – P-M interaction diagram for reinforced masonry wall as per TMS 402-16 

. Affected by effective compressive width limit. 

3.2.5.3 Maximum axial load capacity related to ductility 

TMS 402-16 provides a maximum flexural reinforcement provision (Cl. 9.3.3.2) which 

has the purpose of maintaining an adequate ductility level by specifying a minimum strain 

in the flexural reinforcement (1.5𝜀𝑦) under an axial load combination based on 𝐷 +

0.75𝐿 + 0.525𝑄𝑒. This requirement is expressed in terms of a maximum reinforcement 

ratio, 𝜌𝑚𝑎𝑥, above which the wall will not meet this ductility requirement.  By limiting 

the amount of steel in the wall, the capacity of the wall is effectively reduced. 

For fully grouted members with only concentrated tension reinforcement, the maximum 

reinforcement is given by: 

𝜌𝑚𝑎𝑥  =
𝐴𝑠

𝑏𝑑
=

0.64𝑓′𝑚 (
𝜀𝑚𝑢

𝜀𝑚𝑢 +  𝛼𝜀𝑦
) −

𝑃
𝑑𝑣

𝑓𝑦
 (U.S.- 3.8) 

The 𝛼 parameter in U.S.- 3.8 is specified as follows: 
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● 3.0 for reinforced shear walls (Intermediate seismic detail required) 

● 4.0 for reinforced shear walls (Special seismic detail required) 

● 1.5 for all other cases. 

If there is concentrated compression reinforcement with an area equal to the concentrated 

tension reinforcement, 𝐴𝑦, the maximum reinforcement is (TMS 402-16 ): 

𝜌𝑚𝑎𝑥  =
𝐴𝑠

𝑏𝑑
=

0.64𝑓𝑚
′ (

𝜀𝑚𝑢

𝜀𝑚𝑢 +  𝛼𝜀𝑦
) −

𝑃
𝑏𝑑

𝑓𝑦
 (U.S.- 3.9) 

For partially grouted sections where the neutral axis lies in the flanges, the maximum 

reinforcement is determined as a fully grouted member with tension reinforcement only 

(U.S.- 3.9). If the neutral axis is located at the web, the maximum reinforcement is 

determined as: 

𝜌𝑚𝑎𝑥  =
𝐴𝑠

𝑏𝑑

=

0.64𝑓𝑚
′ (

𝜀𝑚𝑢

𝜀𝑚𝑢 +  𝛼𝜀𝑦
) (

𝑏𝑤

𝑏 ) + 0.80𝑓𝑚
′  𝑡𝑓𝑠 (

(𝑏 − 𝑏𝑤)
𝑏𝑑 ) −

𝑃
𝑏𝑑

𝑓𝑦
 

(U.S.- 3.10) 

While CSA S304-14 does not have a ductility limitation for non-slender walls (kh/t < 30), 

for walls with 
𝑘ℎ

𝑡
≥ 30  the tension steel is required to yield before the crushing strain of 

the masonry is reached.  To achieve this objective, Cl 10.7.4.6 and 10.7.4.6.5 present an 

equation derived based on a steel yield strain of 0.002 and a yield strength of 400 MPa. 

𝑐

𝑑
≤

600

600 + 𝑓𝑦  
 (C-3.9) 

Where, 𝑐 is the depth of the neutral axis, 𝑑 is the distance from the masonry fibre of 

maximum strain to the centroid of the steel rebar, and 𝑓𝑦  the yield strength of the steel 

reinforcement. 
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To illustrate the differences between the two codes, Table 3.12 compares the c/d ratio 

required by each standard based on the strain profile for typical yield strength of 400 

MPa. Larger c/d ratios imply deeper compressive blocks that are able to balance more 

steel reinforcement in tension.  More reinforcement allowed in the cross-section is 

generally indicative of more capacity. 

Additionally, The P-M interaction curves presented in section 3.2.5 affected by their 

respective ductility limits are illustrated in Fig. 3.14 and Fig. 3.15. On each figure, the 

TMS 402-16 and the CSA S304-14 limit are shown. No other provisions are applied to 

the figures (i.e. Axial limit or compressive width limit) 

Table 3.12 – Comparison of maximum reinforcement provisions. 

𝐶𝑆𝐴 𝑆304 − 14 

𝜀𝑚𝑢 = 0.003 

𝑇𝑀𝑆 402 − 16 

𝜀𝑚𝑢 = 0.0025 

𝐶𝑆𝐴

𝑇𝑀𝑆
 

𝑐

𝑑
=

600

600 + 𝑓𝑦
= 0.6 

𝑐

𝑑
=

ℇ𝑚𝑢

ℇ𝑚𝑢 + 1.5ℇ𝑦
= 0.45 1.32 
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Figure 3.14 – P-M interaction diagram for reinforced masonry wall as per CSA S304-

14. Affected by ductility related limits. 

 

 

Figure 3.15 – P-M interaction diagram for reinforced masonry wall as per TMS 402-16. 

Affected by ductility related limits. 
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From Fig. 3.14,3.15 and Table 3.12, it seems that higher axial load is allowed by the 

Canadian committee when both standards require satisfying ductility limits. However, 

such limitations are only required for structures with height-to-thickness ratios greater 

than 30 by the CSA S304-14, whereas the TMS 402-16 mandates this provision for all 

values of slenderness.  Additionally, it is essential to consider that 𝜌𝑚𝑎𝑥 mandated by the 

TMS 402-16, shall be satisfied for a loading combination of 𝐷 + 0.75𝐿 + 0.525𝑄𝑒, while 

the CSA S304-14 equivalent provisions should be verified for all the ULS load 

combinations as per the NBCC. Thus, the ductility limits provision mandated by the CSA 

S304-14 is typically revised for higher loads than the TMS 402-16 (e.g. 1.5D + 1.5L vs 

D+0.75L+052𝑄𝑒). This might be translated into more robust designs in Canada to satisfy 

this provision. 

3.2.5.4 P-M interaction diagrams summary 

This section shows a sample of a typical moment interaction diagram designed as per the 

CSA S304-14 (Fig. 3.16) and TMS 402-16 (Fig. 3.17). The discussed provisions are 

included in these P-M curves.  

The following references points are depicted in Fig. 3.16 

● Point C-1 = Maximum axial load capacity as per Clause 10.4.1 (Section 3.2.5.1) 

● Point C-2 = Steel develops tensile strain. Effective compressive width limit is 

triggered.  

● Point C-3 = Ductility limit as per Clause 10.7.4.6 (Section 3.2.5.3) 

● Point C-4 = Maximum axial load capacity for slender walls (Section 3.2.5.1)  
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Figure 3.16 – Typical P-M interaction diagram as per CSA S304-14    

 

The following reference points are depicted in Fig. 3.17. 

● Point US-1 = Maximum axial load capacity as per Clause 9.3.4.11 (Section 

3.2.5.1) 

● Point US-2 = Steel develops tensile strain. Effective compressive width limit is 

triggered. 

● Point US-3 = Steel reaches yield strain. 

● Point US-4 = Ductility limit as per Clause 9.3.3.2. (Section 3.2.5.3) 

● Point US-5 = Maximum axial load capacity for slender walls (Section 3.2.5.1) 
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Figure 3.17 – Typical P-M interaction Diagram as per TMS 402-16  

 

3.3 Parametric Studies   

To quantify the differences between the Canadian standard (CSA S304-14) and the 

American standard (TMS 402-16) in a systematic way, parametric studies were 

conducted to evaluate the impact of isolated parameters on the capacity of fully and 

partially grouted walls loaded with axial compressive forces and out of plane bending. 

The capacity of the walls is represented by axial-moment (P-M) interaction diagrams. 
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3.3.1 Fixed parameters 

The fixed parameters were not changed in the study and were constant for all the P-M 

diagrams.  For a direct comparison between both standards, the same block sizes, rebar 

size, and steel yield strength were used unless specified otherwise.  The values of the 

fixed parameters above were set to those used for typical wall construction in Canada.  

All the calculations are done for a 1-metre width of wall. The fixed parameters are 

summarized in Table 3.13.  

Table 3.13 – Fixed parameters summary. 

Parameter Value 

Block thickness 190 mm (7.48 in) 

Yield Strength of Steel* 400 MPa (58 ksi) 

Rebar Size (10M)* 11.3 mm (0.44 in) diameter 

Height of the Wall** 4 m (157.48 in)  

* Canadian value used for consistency. **Independent parameter for section 3.3.4.4 

3.3.2 Independent parameters 

The independent parameters were varied to investigate their effects on the dependent 

parameters. The study had four independent parameters consisting of the rebar spacing, 

the compressive strength of the masonry, the material and strength reduction factors, and 

the height of the wall.  

Variation of the rebar separation would trigger the maximum effective width provision 

described on each standard. This parameter is selected to study the effect of this provision 

in reducing the capacity of the walls.  

In section 3.2.1, it was commented that nominal compressive strength values used in the 
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United States are consistently higher than those in Canada for the same block strength. 

The compressive strength is selected as an independent parameter to evaluate the 

implication of the differences in nominal compressive strength, and to compare the 

sensitivity of each standard from the variation of this parameter. 

The nature of reduction factors mandated by each standard is different. While CSA S304-

14  provides reduces the capacities of the material (i.e. ∅𝑚 for masonry, ∅𝑠 for steel) TMS 

402-16 specifies a strength reduction factor to affect nominal capacities. The reduction 

factor is selected as an independent parameter to study the implications of the different 

approaches in the P-M resistances.  

Variation of the height of the wall would impact the axial capacity of the walls. 

Additionally, it would trigger requirements related to the design of slender walls. 

Therefore, this parameter is selected to understand its effect on the axial loading 

capacities of OOP walls.  

3.3.3 Dependent parameters 

The dependent parameter is the strength of out-of-plane loadbearing masonry walls in 

terms of the flexural and axial capacity. The strength of the walls is evaluated using P-M 

interaction diagrams.  

3.3.4 Effects of Independent Parameters on the Strength of the Walls 

3.3.4.1 Effect of rebar spacing. 

The spacing between the rebar leads to two design scenarios. First, both standards limit 

the maximum allowed width of the compression zone, 𝑏𝑒𝑓𝑓 , as described in section 

3.2.5.2. Increasing the rebar spacing could trigger this limitation. Second, increasing the 

rebar spacing would often decrease the grouted area per meter assumed during the design. 

Less grouted area reduces the flexural and axial resistance of the walls.   
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To study these effects, 4 P-M interaction diagrams of walls, 4 meters high reinforced with 

10 M rebars, 20 cm blocks with a nominal strength of 15 MPa are shown in Fig. 3.18. 

Table 3.14 summarizes the parameters used in Fig. 3.18. 

The rebar spacing is increased by 400 mm in each scenario, starting from 200 mm (for a 

spacing equal to 200 mm, the wall is fully grouted) up to 1400 mm. This rebar 

arrangement is selected to trigger the effective compressive width limitation in both 

standards.  Table 3.13 shows the respective 𝑏𝑒𝑓𝑓  mandated by each standard for the rebar 

arrangements used in the diagrams. The effective compression width for a 20 cm block 

is triggered for the rebar spacing of 1000 mm and 1400 for CSA S304-14 and TMS 402-

16 provisions, respectively. The solid red and black lines represent the P-M interaction 

curves considering the compressive width limitation, while the dashed lines are the 

equivalent curves assuming that no such limit exists. In all the graphs, the maximum axial 

compressive load related to the ductility limits in the TMS 402-16 standard is also shown.  
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Table 3.14 – Effective Compressive width for a nominal block thickness of 200 mm 

Rebar Spacing 

(mm) 

Block thickness 

multiplier (mm) 
𝑏𝑒𝑓𝑓  (mm) 

𝑏𝑒𝑓𝑓  per meter 

(mm/m) 

CSA 

S304-14   

(4t) 

TMS 402-

16 (6t) 

CSA 

S304-14   

TMS 

402-16 

CSA 

S304-

14   

TMS 

402-

16 

200 760 1200 200 200 1000 1000 

600 760 1200 600 600 1000 1000 

1000* 760 1200 760 1000 760 1000 

1400** 760 1200 760 1200 542.9 857.1 

*CSA S304-14   provision is triggered **TMS 402-16 provision is triggered  

 

 

 

 

 

 

 

 

 

 



72 

 

Table 3.15 – Summary parameters used in Fig. 3.18. 

Parameters CSA S304-14    TMS 402-16  

Wall Height (m) 4 4 

Compressive Strength of 

The Masonry  (𝑓𝑚
′ )  

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 7.5 𝑀𝑃𝑎 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 10 𝑀𝑃𝑎 

Block Thickness (mm) 190 190 

Rebar Size (Canadian 

Nomination 
10M 10M 

Rebar Separation (mm)* 200, 600, 1000, 1400 400, 800, 1200, 1400 

Reduction Factors (∅) ∅𝑚 = 1 , ∅𝑠 = 1 ∅ = 1 

*Variable Parameter 
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Figure 3.18 – Effect of rebar spacing. Rebar spacing of 200 mm (Fully grouted)  

In Fig. 3.18, the compression-controlled region moment resistances (i.e. 800 kN/m) 

computed using the TMS 402-16 are shown to be up to 45% greater than the 

corresponding CSA S304-14   values. This dissimilarity is attributed to the differences in 

grouted compressive strength (𝑓𝑚
′

𝑔𝑟
) utilized by each standard. As discussed in section 

3.2.1, CSA S304-14   prescribes a grouted and ungrouted compressive strength, while 

TMS 402-16 does not make such distinction. Between 150 kN/m and 1000 kN/m of axial 

loading, the neutral axis lies on the grouted core. Therefore, CSA S304-14   P-M 

resistances in this range are computed using a 𝑓𝑚
′  value of 7.5 MPa. The TMS 402-16 

curve is developed using a compressive strength of 10MPa for all the axial loading levels.  

From an axial load range of 0 kN/m up to approximately 150 kN/m the response of both 

curves are almost identical. At this range, the response is primarily controlled by the 

tension reinforcement, and to a lesser extent by the masonry compressive strength.  At 

this range of loads, the neutral axis lies on the faces hell of the block, and both the CSA 

S304-14 and TMS 402-16 resistances are calculated using the same 𝑓𝑚
′   and 𝑓𝑦

′  values of 

10 MPa and 400 MPa, respectively. 
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Figure 3.19 – Effect of rebar spacing. Rebar spacing of 600 mm (Partially grouted)  

At a rebar spacing of 600 mm (Fig. 3.19) the wall becomes partially grouted. The 

differences in the compression-controlled region (i.e. 500 kN/m) decrease considerably 

in contrast to the fully grouted wall of Fig 3.10.  In this region, the moment resistances 

computed using TMS 402-16  provisions are up to 20% greater than of CSA S304-14   

(15% less than the fully grouted wall). This can be attributed to the reduction of the 

grouted area per meter assumed during the design, compared to the wall with 200 mm 

spacing. For a rebar spacing of 600 mm, the grouted area per meter is 41,958 mm2/m, 

whereas for a spacing of 200 mm (fully grouted section) is 126,000 mm2/m. Compatibility 

and equilibrium in the cross-section show that the neutral axis lies on the grouted core 

only between 700 kN/m and 425 kN/m in Fig 3.10: therefore, CSA S304-14 resistances 

are computed using smaller values of 𝑓𝑚
′  (7.5 MPa). Not only a lower 𝑓𝑚

′  is used for a 

smaller range of axial loading, but the contribution of the grouted area in the strength of 

the wall is reduced considerably. At 400 kN/m of axial, an area of discontinuity in the 

CSA S304-14 curve appears due to the restriction of the standard for unreinforced 

masonry elements. The Canadian committee limits the virtual eccentricity of the section 
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(𝑀𝑟/𝑃𝑟) to a maximum of t/3 for UMWs. Moreover, because less grouted area is involved 

in the design, the tension-controlled region is extended. At much higher axial loads the 

response is dominated by the yield strength of the steel. The steel is activated sooner as 

less masonry area is used during the force equilibrium. The P-M resistances are almost 

identical up to 250 kN/m. More importantly, both curves are computed using an effective 

width of 1 meter as no compressive width limit is yet active in any of the standards. 

Additionally, the maximum axial capacity due to the ductility limit mandated by the TMS 

402-16 is increased by approximately 100 kN/m in contrast to the curve with a rebar 

separation of 200mm. Less masonry area is assumed in the design with a rebar spacing 

of 600 mm. Thus, the yield strain is achieved at higher axial loads. 

 

Figure 3.20 – Effect of rebar spacing. Rebar spacing of 1000 mm (Partially grouted)  

For a rebar spacing of 1000 mm (Fig. 3.20), the grouted area is reduced considerably to 

25200 mm2/m. Both interaction curves are similar between 400 kN/m to 500 kN/m of 

axial loading. After 400 kN/m the flexural capacity of the CSA S304-14 curve is limited 

to a maximum of 𝑃 ∗ (
𝑡

3
) up to 350 kN/m axial loading (and the section is considered 

unreinforced). If the loads increase, the steel reinforcement becomes active in tension and 
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the CSA S304-14 compressive width limit is triggered. The TMS 402-16 interaction 

diagram is not affected by this limit, as the 6t bound is not yet exceeded. The solid red 

line in Fig 3.12 represents the P-M curve of the wall affected by the compressive width 

limit, while the dashed red line corresponds to a case in which the limit is not applied.  

The reduction of the capacity of the section in the CSA S304-14  calculations compared 

to those of TMS 402-16 between the range of 200 kN/m and 350 kN/m is noticeable.  

After 350 kN/m the CSA S304-14  P-M resistance is calculated using a compressive width 

of 760 mm/m (240 mm/m less than with 600 mm of rebar spacing).   

The axial load limit related to the ductility effects increased by approximately 70 kN/m 

in contrast to the trial with a rebar spacing of 600 mm. 

 

Figure 3.21 – Effect of rebar spacing. Rebar spacing of 1400 mm (Partially grouted)   

At the highest spacing studied (1400 mm, Fig. 3.21) the influence of the grouted core area 

on the strength of the wall is less significant. At this spacing, the grouted area is reduced 

considerably. Therefore, both P-M curves are identical in the compression-controlled 

zone up to 400 kN/m of axial loading, where the discontinuity due to the URM limit 

imposed by the CSA S304-14 appears. At 330 kN/m of axial load, the reinforcement starts 
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carrying tensile stresses, and the compressive width limits are triggered in both standards. 

The reduction in the capacity of the section is more pronounced in the CSA S304-14   

curve than its counterpart, as illustrated in the bottom right portion of Fig 3.20.  This 

difference can be attributed to the effective compressive width used by each standard for 

the development of these curves. CSA S304-14 restricted the maximum compressive 

width to 542 mm/m, whereas TMS 402-16 uses 857 mm/m for its design. The moment 

capacity for purely flexural dominated response (i.e. low axial load levels) do not change 

significantly. Although lower compressive width will result in greater depth of the 

equivalent compressive blocks, c, this region is predominantly dominated by the tension 

strength of the rebars. P-M curves developed neglecting the compressive width 

limitations would result in two perfectly aligned curves as shown by the dashed lines in 

Fig. 3.21.  

An additional figure is presented in this section to demonstrate the reduction of the 

capacity of the section due to the decrease in the grouted area. Fig. 3.22 shows the P-M 

interaction diagrams of two walls with two reinforcement arrangements: 10M bars 

separated at 400 mm and 20M bars spaced every 1200 mm. Both arrangements represent 

the same reinforcement area per meter of wall (250 mm2/m). Assuming that only the cells 

that contain rebars are filled with grout, at higher rebar spacing, less masonry area is 

considered during the design of the wall with the rebar spaced every 1200 mm. 
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Figure 3.22 – Equivalent reinforcement area, different rebar spacing as per CSA S304-

14. 

From Fig. 3.22 the reduction in the strength of the walls in the compression-controlled 

region is noticeable. A section with the rebars separated every 400 mm is designed 

assuming a total masonry area (grouted + ungrouted) of 131200 mm2/m. For 1200 mm of 

rebar spacing, the total area of the masonry is 92000 mm2/m. As in compression-

controlled regions, the response is dominated by the compressive strength of the masonry, 

so less grouted area results in smaller P-M resistances. The axial cap of the CSA S304-

14 diagram with a spacing of 1200 mm of is 560 kN/m versus 720 kN/m for the 400 mm 

spacing version, representing roughly a 22% reduction in capacity compared to the wall 

with the lower rebar separation. The maximum allowed axial forces from the TMS 402-

16 curves decreased 32% (From 660 kN/m to 550 kN/m). Under medium axial load levels 

(between 350 kN/m and 100 kN/m) the compressive width limit is triggered in both 

standards, reducing the flexural capacity by a great margin.  As commented before, the 

reduction due to this limitation is more pronounced in the CSA S304-14 diagrams than 

in the TMS 402-16 version. At lower axial load levels, the resistances of all the curves 

presented in Fig 3.21 start to align with each other in the tension-controlled domain. 
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3.3.4.2 Effect of the Compressive Strength of the Masonry 

As mentioned in section 3.2.1, the nominal compressive strength values specified in the 

TMS 402-16 402 are consistently higher than those prescribed in the CSA S304-14 for 

the same block strength.  

The Canadian standard makes a distinction between ungrouted and grouted compressive 

strength. Depending on the neutral axis location during the compatibility analysis and the 

desired level of detail in the calculations, designers can opt for either grouted or ungrouted 

strength values. For instance, for a 15 MPa nominal block strength, if the neutral axis lies 

beyond the faceshell and within the grouted core, the strength of the masonry is taken as 

7.5 MPa (Table 3.16). The American standard does not make such distinction, and a 

consistent value of 13.29 MPa is used for a 15 MPa block strength, independently of the 

neutral axis location. 

Table 3.16 – Equivalent Compressive Strength Values 

Nominal Block Strength 

(MPa) 

CSA S304-14    𝑓𝑚
′  (MPa) TMS 402-16  

  𝑓𝑚
′  (MPa) 𝑓𝑚

′
𝑢𝑔

 𝑓𝑚
′

𝑔𝑟
 

15  10 7.5 13.29 

20 13 10 16.31 

 

To study the effect of the differences in masonry compressive strength, P-M interaction 

diagrams of fully grouted walls, 4 meters high, reinforced with 10M bars spaced at 

200 mm (i.e. effective width is 1 meter) were developed for 15MPa and 20MPa nominal 

strength blocks using each the respective properties of each standard. No strength 

reduction factors are applied.   
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The geometrical and material properties are summarized in Table 3.17. The blue circles 

in the P-M curves represent the inflection point where the steel is activated in tension, 

and the response is no longer controlled entirely by the compressive strength of the 

masonry.  

Table 3.17 – Summary parameters used in Fig. 3.23 

Parameters CSA S304-14    TMS 402-16  

Wall Height (m) 4 4 

Compressive Strength of 

The Masonry (𝑓𝑚
′ )* 

 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 7.5 𝑀𝑃𝑎 

20 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 13 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 10 𝑀𝑃𝑎 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 13.29 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 13.29 𝑀𝑃𝑎 

20 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 16.31 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 16.31 𝑀𝑃𝑎 

Block Thickness (mm) 190 190 

Rebar Size 

 (Canadian Nomination) 

10M 10M 

Rebar Separation (mm) 200  200 

Reduction Factors (∅) ∅𝑚 = 1.0 , ∅𝑠 = 1.0   ∅ = 1.0  

*Variable Parameter 
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Figure 3.23  – Variation of the Compressive Strength 𝑓𝑚
′ .  

From Fig. 3.23 seems that the masonry compressive strength significantly impacts the 

response in the tension- and compression-controlled regions. These dissimilarities seem 

to be more pronounced for the 15 MPa block than the 20 MPa block, as the differences 

in the masonry strength values are higher for 15 MPa blocks. For instance, the grouted 

compressive strength (𝑓𝑚
′

𝑔𝑟
) prescribed in TMS 402-16 strength for a 15MPa block is 

4.26 MPa higher than that of the CSA S304-14, while for a 20 MPa is 3.31 MPa.  

In the tension-controlled region, the response is primarily dominated by the tension in the 

steel rebar and to a lesser extent by the compressive strength of the masonry, thus the 

influence of the masonry compressive strength is reduced.  At pure bending (P = 0 kN/m), 

this influence is negligible: the ratio of the moment resistance from the TMS 402-16  over 

the CSA S304-14 (
𝑀𝑟(𝑈𝑆)

𝑀𝑟(𝐶𝑁)
) for a nominal strength of 15MPa and 20 MPa is 1.15 and 1.03, 

respectively. 

For the compression-controlled region, the differences are more pronounced as the 

compressive strength of the masonry governs the response. Up to the blue circles 

highlighted with a blue dashed circle, P-M resistances are computed entirely using the 
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masonry strength, as no tensile strains are yet developed.  However, due to the higher 

compressive stresses allowed by TMS 402-16, in Fig. 3.23, the maximum axial capacity 

of TMS 402-16 designs are 42% and 25% higher for the 15 MPa and 20 MPa blocks, 

respectively, in comparison to those calculated with the CSA S304-14 code. The point 

where the maximum bending moment occurs in each diagram is also an interesting 

reference for this study. The maximum bending moments from the TMS 402-16 curves 

are 61% and 50% higher for the 15 MPa and 20 MPa blocks, respectively, compared to 

those calculated using the CSA S304-14 magnitudes code.  

The axial capacity limits governed by the ductility limits imposed by TMS 402-16, are 

also affected due to the increment of compressive strength. The axial limit in the 15 MPa 

curve is approximately 60 kN/m higher than that of the 20 MPa diagram. Using higher 

compressive strength would require less axial force to reach the yield strain of the rebar 

due to the force equilibrium.  

3.3.4.3 Effects of reduction factors ∅. 

The principle of mechanics used to calculate the P-M resistances of masonry walls are 

relatively similar in both countries. However, each standard specifies reduction factors to 

decrease the resistance of the walls. These factors intend to account for uncertainties in 

materials or possible design and construction errors. As discussed in section 3.2.4, CSA 

S304-14 mandates material reduction factors that intends to affect the strength of the 

masonry (∅𝑒 = 0.6) and the steel (∅𝑠 = 0.85) independently, while TMS 402-16 opt to 

decrease the nominal resistances of the P-M interaction curves using a single factor (∅ =

0.9). 

To evaluate the effects of these factors in the strength of the wall, P-M interaction 

diagrams of walls, 4 meters high reinforced with 10M rebars, 20 cm blocks with a 

nominal strength of 15 MPa are developed. Fig. 3.24 represents a fully grouted section 

with rebar spaced at 200 mm, while Fig. 3.25 shows a partially grouted wall with the 

rebar spacing set to 1400 mm. For each wall, the P-M curve with its nominal capacity (no 
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reduction factors) and the alternative with the reduction factors applied are shown. 

Canadian blocks dimensions and material properties were used (Table 3.18.)   

 Table 3.18 – Summary parameters used in Fig. 3.24 and 3.25. 

Parameters CSA S304-14    TMS 402-16  

Wall Height (m) 4 4 

Compressive Strength of 

The Masonry  (𝑓𝑚
′ )  

(Canadian Values) 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 7.5 𝑀𝑃𝑎 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 10 𝑀𝑃𝑎 

Block Thickness (mm) 190 190 

Rebar Size 

 (Canadian Nomination) 

10M 10M 

Rebar Separation (mm) 

200 (Figure 3.24) 

1400 (Figure 3.25) 

200 

1400  

Reduction Factors (∅)* ∅𝑚 = 1 , ∅𝑠 = 1  ∅ = 1  

*Variable parameter 
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Figure 3.24 – Reduced vs Nominal P-M interaction diagrams. 200 mm rebar spacing.  

 

Figure 3.25 – Reduced vs Nominal P-M interaction diagrams. 1400 mm rebar spacing. 

As depicted in the above figures and previous analyses, the nominal CSA S304-14 and 

TMS 402-16  resistances are quite similar. However, the differences become significant 

when overlaying P-M interaction curves affected by reduction factors and those with 
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nominal capacities. CSA S304-14   reduced resistances are noticeably different from the 

nominal capacities. In the TMS 402-16 curves, although are also influenced by its 

reduction factors, the reduction seems to be less pronounced than that of CSA S304-14.   

For the fully grouted wall shown in Fig. 3.24, the influence of the reduction factors in the 

compression controlled region is more prominent than in flexural dominated regions (i.e. 

at low axial loads). It is important to note that between 900 kN/m and 120 kN/m nominal 

capacities computed using the TMS 402-16 are greater than those calculated with the 

CSA S304-14. On this range, TMS 402-16 flexural and axial resistances are computed 

using a stronger compressive strength than that of CSA S304-14 (10 MPa versus 7.5 

MPa), as explained in sections 3.2.1 and 3.3.4.1. The pure axial response (M = 0) is an 

excellent reference to assess the effect of this independent variable in the strength of the 

wall.  

The CSA S304-14 axial cap is decreased by 40%, whereas the TMS 402-16 by 10% due 

to reduction factors. Interestingly, CSA S304-14   nominal axial caps were 5% greater 

than that of the TMS 402-16, however, when both curves are affected by the reduction 

factor the TMS 402-16 resistances at pure axial response become 25% higher than the 

Canadians values. This difference is attributed to the notably lower material resistances 

factor ∅𝑚= 0.6 used by the CSA S304-14 compared to the behaviour-based factor 

proposed in the TMS (∅ = 0.9). While TMS 402-16 402 directly reduces the axial capacity 

(∅𝑃𝑟), the expression proposed by CSA S304-14 to compute the maximum compressive 

force is proportional to the strength of the masonry, which is affected by ∅𝑚. Axial 

capacities from the ductility limits are also affected by the reduction factors. This limit 

decreased by approximately 10%.  

For all the other P-M resistance combinations, the CSA S304-14 magnitudes are 

calculated using the 60% of the masonry compressive resistance. Before the steel 

reinforcement develops tensile strains, the Canadian curves are only affected by the 

decrease in the strength of the masonry. In the tension-controlled response (i.e. at low 

axial loads) the nominal P-M resistances are identical from 0 kN/m to 100 kN/m of axial 

load. However, when the ∅ factors are used in the design, the CSA S304-14 moment 
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resistance is approximately 18% less than the TMS 402-16 at pure bending (P = 0). While 

the American standard decreases the nominal flexural capacity by 10%, the CSA S304-

14 resistance is being affected by a reduction of the strength of the masonry and steel 

simultaneously. Although this region is mainly governed by the tension in the steel 

(decreased by ∅𝑠 = 0.85), to a lesser extent is affected by the compressive strength of 

the masonry, as it is used to compute the depth of the equivalent compression block. As 

explained before in section 3.3.4.1, the smaller the neutral axis depth, the lower the 

moment resistance.  

In the partially grouted section from Fig. 3.25, the compression-controlled region from 

the nominal P-M curves is identical between 480 kN/m to 400 kN/m. However, the 

decrement of the P-M capacities in the compression-controlled region seems to be as 

impactful as for the fully grouted wall. Maximum axial capacities decrease at the same 

proportion as in Fig 3.13. CSA S304-14 maximum axial resistances are outperformed by 

the TMS 402-16 when the reduced curves are compared.  Different from the fully grouted 

wall, the tension-controlled region is less affected by the reduction factors. For a rebar 

spacing of 1400 mm the masonry area is reduced considerably, therefore, the influences 

of the reduction of the masonry strength due to the  ∅𝑚  factor is not quite impactful. 

Although not readily noticeable in Fig. 3.25, the TMS 402-16 moment resistance is 3% 

greater than the CSA S304-14 magnitudes at pure bending. This discrepancy can be 

attributed to multiple reasons. Partially, it is due to the lower 𝑏𝑒𝑓𝑓  value (4t vs 6t) used 

by the CSA S304-14 standard to compute P-M resistances once the effective compressive 

width limit is triggered.  As commented repeatedly (section 3.2.5.1, 3.3.4.2), TMS 402-

16 prescribes higher compressive width dimensions than the Canadian standard. This, 

combined with the reduction of compressive strength of the masonry due to the factor, 

increases the depth of the equivalent compression block used during the force 

equilibrium. Therefore, the moment arm in the internal equilibrium is reduced, and 

consequently, lower moment resistances are computed.                                                       
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3.3.4.4 Effect of the Variation of the Height of the Wall. 

The previous P-M interaction diagrams were developed assuming a constant height of 4 

meters. To evaluate the effect of increasing the wall height on the strength of the wall, P-

M interaction curves for a 20 cm – 15MPa masonry wall reinforced with 10M bars spaced 

at 400 mm are shown in . Three wall heights were used, 4 meters (
ℎ

𝑡
= 21.05), 5 meters 

(
ℎ

𝑡
= 26.31) and 6 meters (

ℎ

𝑡
= 31.57). These slenderness ratios were intentionally 

selected to investigate the effect on slender and non-slenderness walls. The ductility limits 

mandated by each standard are included in the P-M curves. It is important to note that 

moment amplifications due to second-order effects are not included in this analysis. These 

effects are extensively studied in the next chapter. This section only investigates the 

strength of the wall in terms of P-M interaction curves.  
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Table 3.19 – Summary parameters used in Fig. 3.26 

Parameters CSA S304-14    TMS 402-16  

Wall Height (m)* 3.8, 4.75, 5.7 3.8, 4.75, 5.7 

Compressive Strength of 

The Masonry  (𝑓𝑚
′ )  

(Canadian Base Values) 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 7.5 𝑀𝑃𝑎 

15 MPa Nominal 

𝑓𝑚
′

𝑢𝑔
= 10 𝑀𝑃𝑎 

𝑓𝑚
′

𝑔𝑟
= 10 𝑀𝑃𝑎 

Block Thickness (mm) 190 190 

Rebar Size 

 (Canadian Nomination) 

15M 15M 

Rebar Separation (mm) 400  400 

Reduction Factors (∅) ∅𝑚 = 1.0 , ∅𝑠 = 1.0   ∅ = 1.0  

*Variable parameter 
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Figure 3.26 – Effect of the height variation in P-M interaction curves.  

As shown in Fig. 3.26, the axial cap resistances in the TMS 402-16 curves progressively 

decrease as a function of the slenderness ratio. Increasing the height from 4 meter to 5 

meters decreased the axial cap by 15%, whereas from 5 meters to 6 meters, the resistance 

decreased by 23%. As discussed in section 3.2.5.2, the TMS 402-16 standards prescribed 

two equations to compute the maximum allowed axial forces in the section as a function 

of the height of the structure and the thickness of the block. Slender members (ℎ/𝑡 ≥ 30) 

are susceptible to instability effects, therefore, the equation proposed by the standards 

(U.S.- 3.21) to calculate the axial cap for this type of wall becomes stricter.  

The variation of the height of the structure does not affect P-M interaction curves 

developed using the CSA S304-14  as it does for those derived with the TMS 402-16. The 

expression mandated by the S304-14 to calculate the axial cap limit (C-3.7) does not 

depend on the slenderness of the structure, except when kh/t exceeds 30.  In this case, the 

CSA S304-14 axial caps are limited by clause 10.7.4.6, which required that the yielding 

of the rebar is achieved before the crushing of the masonry (CSA S304-14   𝜌𝑚𝑎𝑥  𝑙𝑖𝑚𝑖𝑡 
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in Fig. 3.26).  It is essential to note that the 𝜌𝑚𝑎𝑥 limit mandated by the CSA S304-14   

ought to be satisfied for all the ultimate limit state load combinations applicable. 

In TMS 402-16, the maximum reinforcement requirement must be satisfied for any wall, 

independently of its slenderness ratio. The 402-16 equivalent provision is verified only 

under 𝐷 + 0.75𝐿 + 0.525𝑄𝑒. Typical factored axial loads computed using the load 

combinations described in the NBCC are greater than those computed using 𝐷 + 0.75𝐿 +

0.525𝑄𝑒.  

Both standards imposed an additional restriction of the axial capacity for slender 

members. CSA S304-14 mandates that the applied compressive load in the wall should 

not exceed 0.1𝜙𝑚𝑓𝑚
′ 𝐴𝑒. Due to these provisions, the maximum axial load for the CSA 

S304-14 curve is reduced by 65% compared to the capacity restricted by the 𝜌𝑚𝑎𝑥. P-M 

American curves are affected by a similar provision, however, the axial load is limited to 

a 5% of the maximum axial capacity 𝑓𝑚
′ 𝐴𝑒 .  

Consequently, it is clear the pronounced decrement of the axial capacity in Fig 3.26. The 

maximum compressive load decreased from 220 kN/m to 60 kN/m, which represents a 

reduction of 114%. It is important to remember that no reduction factors are applied to 

these curves. If the CSA S304-14 expression would have been influenced by the reduction 

factor ∅𝑚, the maximum axial capacity would have risen to 65 kN/m, which is almost 

equivalent to the TMS 402-16 magnitude. These limits often govern the design of slender 

masonry walls in both Canada and the United States.  
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3.4 Summary 

The findings of the theoretical and numerical comparison of the flexural capacity, axial 

capacity from the North American standards are summarized in Table 3.20.  

 Table 3.20 – Comparison of the parameters investigated. Flexural and Axial Capacity. 

Parameter Validation Comments 

Rebar Spacing 

and Compressive 

Width Limits  

Medium 

● Increasing the rebar spacing implies less 

grouted area if only the grouted is poured in 

cells with rebars. Therefore, the capacity of 

the masonry is reduced considerably, 

especially in compression-controlled zones.  

● At higher spacing, the difference in the P-

M resistances between standards decreases 

in the tension-controlled regions.  

● The compressive width limit suggested by 

the CSA S304-14    is triggered earlier than 

the TMS 402-16 . For 200 mm concrete 

blocks, the compressive width will be 

limited at 800 mm spacing, while the TMS 

402-16 provision is triggered at 1200 mm.  

● Not only the compressive width limit from 

the CSA S304-14   is triggered earlier, but 

it is stricter. 

Different 𝑓𝑚
′  

values prescribed 

in each standard 

High 

● Masonry compressive strength values 

specified in the TMS 402-16  are 

significantly higher than those prescribed 

by the CSA S304-14    for the same block 

strength. 

● Compression controlled regions are the 

most affected by the different 𝑓𝑚
′  values. 

Tension controlled regions are affected by a 

minor margin.  

● The dissimilarities are more prominent for 

the 15 MPa block than the 20 MPa block.  
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Reduction 

Factors ∅  
High  

● The Canadian committee introduces  

strength reduction factors for the 

compressive strength of the masonry (∅𝑚) 

and the yield strength of the rebar (∅𝑠). 
However, the TMS 402-16  mandated a 

unique behaviour-based factor of 0.9.  

● Reduction factors imposed by the CSA 

S304-14    are more severe than those 

proposed by the TMS 402-16 .  

● The comparison of the nominal P-M 

interaction curves shows an excellent 

correlation in the overall capacity of the 

wall.  

Variation of the 

Wall’s Height  
Low  

● Variation of the height will only affect the 

maximum allowed axial force. 

● Increasing the height from 4m to 5m 

decreased the axial cap by 15%, whereas  

from 5 meters to 6 meters, the capacity was 

reduced 20%, due to the more strict 

provisions for walls with with 
ℎ

𝑡
≥ 30 

● The P-M interaction curves from the CSA 

S304-14    are only affected if the 

slenderness ratio is greater or equal to 30. 

The clause 10.7.4.6 is triggered, and the 

walls are required to achieve yielding in the 

rebars before the ultimate strain of the 

masonry. Any gradual increment of the 

height will not affect this provision.  

Maximum 

reinforcement  
 

● A maximum reinforcement limit is 

mandated by the CSA S304-14    for 

slenderness ratios greater or equal to 30, 

whereas for the TMS 402-16  is required for 

any slenderness ratio.  

● The maximum reinforcement provisions 

from both standards are very strict. 

Although in theory, the TMS 402-16  

prescribe a more severe restriction (1.5𝜀𝑦) 

than the CSA S304-14    (𝜀𝑦). The reduction 

factor ∅𝑚 from the CSA S304-14    

decreases the compressive strength 
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capacity considerably, and consequently 

yielding is achieved at lower axial forces 

than the TMS 402-16 . 
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4. SECOND-ORDER EFFECTS COMPARISON. 

4.1 Introduction 

In essence, as the slenderness ratio (defined by the CSA S304-14 as 𝑘ℎ/𝑡 , and by the 

TMS 402-16 as ℎ/𝑡) increases, the axial capacity decreases due to the potential for 

instability effects as illustrated in Fig. 4.1 

 

Figure 4.1 - Effect of slenderness in the axial capacity of masonry walls. 

For most severe cases (i.e. very slender walls), this decrement in the axial compressive 

capacity can be associated with buckling. However, neither the CSA S304-14 nor the 

TMS 402-16 considers such failure mode explicitly for the design of masonry walls. 

Slenderness effects in RMWs subjected to weak axis bending are accounted for by 

calculating moment amplifications arising from the deflection of the structure.  

Masonry walls subjected to out-of-plane bending could be discretized in two types of 

flexural moments: (a) primary moment, 𝑀𝑝, and (b) secondary moments, 𝑀𝑠. The primary 

moments originate from the loads applied to the wall, such as eccentric axial loads, wind, 
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soil pressure or applied moments. Second-order moments arise as a consequence of the 

deflections due to the primary sources of moments. An axial eccentricity is created, which 

ultimately increases the bending moment experienced by the element. Therefore, the 

resulting factored moment, 𝑀𝑡, is then composed of both the primary and second-order 

moments (Fig. 4.2).  

 

Figure 4.2 – Bending moment in masonry walls. 

Both the CSA S304-14 and the TMS 402-16  provide two alternatives to compute the 

total factored moment, 𝑀𝑡, accounting for slenderness effects: (a) the P-Delta method 

(𝑃𝛿) and the Moment Magnifier Method (MM). These methods require using the 

effective stiffness, 𝐸𝐼𝑒𝑓𝑓 , of the wall to calculate the moment amplification effects. Each 

standard specifies its approach to estimating the flexural rigidity of the elements.  

The moment magnifier method was introduced in the 2013 edition of the TMS 402-16 . 

As it is relatively new, the preferred choice is to use the P-Delta method in the U.S.  In 

Loading and    

primary deflection 
Primary momentb) Secondary momentc)
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Canada, the most common method is the moment magnifier due to its simplicity. Both 

approaches are explained in detail in section 4.3.  

This chapter compares the design methods proposed in CSA S304-14 and TMS 402-16  

to calculate second-order effects in RMWs subjected to OOP bending moment. The 

provisions are presented, and key differences are identified. Parametric analyses quantify 

the influences of independent parameters (i.e. axial load, compressive strength of the 

masonry, reinforcement ratio, and strength reduction factor) in the rigidity of the walls 

calculated using the standards procedures.  

4.2 Effective Stiffness Calculation 

This section describes and compares the procedure proposed by each standard to calculate 

the stiffness of the masonry walls against OOP bending. The rigidity of the walls is 

calculated as the product of the modulus of elasticity (𝐸𝑚) defined by the CSA S304-14    

as 850𝑓𝑚
′  and the TMS 402-16 as 900𝑓𝑚

′  and the moment of inertia of the section. 

Nevertheless, the nonlinear stress-strain nature of the masonry, cracking propagation and 

yielding of the steel reinforcement make it impossible to determine a moment of inertia 

value. The gross moment of inertia (𝐼𝑜) is only applicable if a linear-elastic behaviour is 

expected. Therefore, an effective stiffness (𝐸𝐼𝑒𝑓𝑓) concept is introduced to adequately 

describe the moment-curvature relationship and compute deformations using linear 

elastic methods. Although both standards rely on calculating the rigidity to anticipate the 

second-order effects, each country offers a different alternative to calculate the effective 

stiffness. 

4.2.1 TMS 402-16  

TMS 402-16 offers two expressions to compute the effective stiffness, which depends on 

whether the acting moment (𝑀𝑢) exceeds the cracking moment (𝑀𝑐𝑟). The equations are 

presented as follow: 

𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑚0.75𝐼𝑛  𝑤ℎ𝑒𝑛 𝑀𝑢 < 𝑀𝑐𝑟  U.S. - 4.1 
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𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑚𝐼𝑐𝑟  𝑤ℎ𝑒𝑛 𝑀𝑢 ≥ 𝑀𝑐𝑟  
U.S. - 4.2 

 

Where 𝐸𝑚 is the modulus of elasticity computed as 900𝑓𝑚
′ , 𝐼𝑛 is moment of inertia of the 

uncracked section, and 𝐼𝑐𝑟 the cracked moment of inertia. 

The cracking moment is calculated using the following expression (U.S. - 4.3), which 

depends on the modulus of rupture of the block (𝑓𝑟), the section modulus block (𝑆), and 

the applied axial force.  

𝑀𝑐𝑟 = (𝑓𝑟 +
𝑃

𝐴𝑔
) 𝑆  

U.S. - 4.3 

The standard assumes that if the cracking moment is not exceeded, the wall is still on its 

linear-elastic range, and the gross inertia properties could be used to compute deflections 

and second-order effects. For cracked elements, cracked properties should be used 

instead. 

The American committee proposed an equation to calculate the cracked moment of 

inertia, 𝐼𝑐𝑟 (U.S.-4.4). This equation accounts for the nonlinear nature of the masonry and 

the effect of the axial loading in the rigidity of the element.  

𝐼𝑐𝑟 = 𝑛 (𝐴𝑠 +
𝑃𝑢𝑇𝑠𝑝

𝑓𝑦2𝑑
) (𝑑 − 𝑐)2 +

𝑏𝑐3

3
 U.S. - 4.4 

Where 𝐴𝑠 is the reinforcement area, 𝑃𝑢 is the axial load, 𝑇𝑠𝑝 the thickness of the block, 𝑓𝑦  

is the steel yield strength, 𝑏 is the compressive width and 𝑐 is the neutral axis depth 

calculated as: 

𝑐 =
𝐴𝑠𝑓𝑦 + 𝑃𝑢

0.64𝑓𝑚
′  𝑏

 U.S. - 4.5 
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According to clause 11.3.5.5.5 in TMS 402-16 , the procedure described above only 

applies if the neutral axis is located within the face shell. For other cases, the rigidity 

should be calculated by a “comprehensive” analysis. 

4.2.2 CSA S304-14    

The Canadian committee proposed an equation to calculate the effective stiffness based 

on a combination of the cracked and uncracked sections properties as displayed in C - 

4.1. 

(𝐸𝐼)𝑒𝑓𝑓 = 𝐸𝑚[0.25𝐼𝑜 − (0.25𝐼𝑜 − 𝐼𝑐𝑟)] (
(𝑒 − 𝑒𝑘)

(2𝑒𝑘)
)  C - 4.1 

Where, 𝐸𝑚 is the modulus of elasticity computed as 850𝑓𝑚
′ , 𝐼𝑜 is the moment of inertia of 

the uncracked section, 𝐼𝑐𝑟 is the cracked moment of inertia, 𝑒 is the virtual eccentricity 

computed as (
𝑀𝑓𝑝

𝑃𝑓
), 𝑒𝑘 is the kern eccentricity determined as the section modulus, 𝑆𝑒 , 

divided by the cross-sectional area , 𝐴𝑒. 

The maximum and minimum limits of the effective stiffness are given in C-4.2. The value 

of (𝐸𝐼)𝑒𝑓𝑓 must be between 𝐸𝑚𝐼𝑐𝑟 and 2 0.25𝐸𝑚𝐼𝑜. 

𝐸𝑚𝐼𝑐𝑟 < (𝐸𝐼)𝑒𝑓𝑓 ≤ 0.25𝐸𝑚𝐼𝑜 C - 4.2 

CSA S304-14 permits the determination of the effective stiffness by alternate methods 

that shall account for the influence of the axial loading, variable moment of inertia and 

nonlinear stress-strain distribution.  

The CSA S304-14 does not provide an equation to calculate the 𝐼𝑐𝑟, but current design 

practices in Canada rely on calculating the 𝐼𝑐𝑟 using a linear stress distribution and a 

transformed section defined C - 4.3. 

𝐼𝑐𝑟 =
𝑏(𝑘𝑑)3

12
+

𝑏(𝑘𝑑)(𝑘𝑑)2

2
 C - 4.3 
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Where for single reinforced masonry, 

𝑘𝑑 = 𝑑(√2𝑛(𝜌) + 𝑛(𝜌) − 𝑛(𝜌) ,   𝜌 =
𝐴𝑠

𝑏𝑑
   C - 4.4 

 

Alternatively, the neutral axis (kd) can be calculated using transformed section analysis. 

4.2.2.1 Rigidity  Coefficient 

The Canadian standard requires that the effective stiffness (𝐸𝐼𝑒𝑓𝑓) must be affected by 

the rigidity coefficient (Eq. C - 4.5) from Clause 10.7.4.2.2. This clause mandates the 

application of a reduction factor ∅𝑒 = 0.75, which intends to account for the effects of 

variability of materials on the deflections and buckling calculations, to the theoretical 

value of the flexural stiffness. Additionally, the rigidity coefficient includes the effect of 

the long-term deflections of the masonry by introducing a creep factor (through dividing 

the flexural stiffness by a quantity 1 + 0.5𝛽𝑑).  

𝐸𝐼𝑒𝑓𝑓 =
𝜙𝑒𝐸𝐼𝑒𝑓𝑓

1 + 0.5𝛽𝑑
   C - 4.5 

Where 𝛽𝑑 is the ratio of factored dead load moment to total factored moment.  

4.2.3 Comparison Discussion. 

● The TMS 402-16 offers two alternatives that depend on whether the cracking 

moment calculated using U.S. - 4.3 is exceeded or not. In contrast, the CSA S304-

14  provides an equation with an upper and lower bound limit. 

● The TMS 402-16 provides an equation to compute the cracked moment of 

inertia(U.S.-4.4). This expression intends to consider the axial load and non-linear 

nature of the masonry. CSA S304-14 does not offer an alternative to calculate this 

parameter. However, as commented in section 4.2.2, cracked inertia is commonly 
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calculated assuming a linear stress distribution and a transform section approach 

without considering the axial loading effects. 

● Although the TMS 402-16 does not provide an upper bound limit explicitly, 

uncracked cases should be computed using 75% of the gross moment of Inertia 

(U.S.-4.2). If this is compared against the upper bound limit provided by the CSA 

S304-14   (0.25𝐸𝑚𝐼𝑜), the American values will always be 200% higher than that 

of the Canadian. 

● The CSA S304-14 introduces a rigidity coefficient which mandates to affect the 

effective stiffness by a reduction factor of ∅𝑒 = 0.75 and the inclusion of creep 

effects. The TMS 402-16 does not offer any equivalent provisions, nor is it 

required to affect the stiffness by a reduction factor or creep effects.   

 

4.3 Methods to calculate moment magnifications due to second-order effects. 

4.3.1 Load Displacement Method (𝑷𝜹) 

The load-displacement method intends to allow the direct calculations of the secondary 

moment based on the deflected shape of the wall, as these moments are produced by the 

eccentricity created from the total deflection. 

Figure 4.3 illustrates the case for a simply supported wall subjected to a uniform 

distributed pressure and concentric axial load. The primary moment due to the uniform 

pressure 𝑊 can be approximated using a parabolic shape. The deflection at mid-height of 

the wall due to this moment is defined as ∆𝑜. This deflection can be calculated either from 

principles of mechanics using beam theory or any other method as it arises from the 

known pressure 𝑊. Due to the primary deflection, there is now an eccentricity created 

with the top applied load, which defines our first source of secondary moment, 𝑀𝑠, as 

𝑃𝑓∆𝑜 (Fig. 4.3a). However, a secondary deflection, ∆1, is introduced from the second-

order moment originated by the initial deformation ∆𝑜. Consequently, the total 

deformation of the system accounting for primary and secondary sources of moments is 
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∆𝑜 + ∆1 as indicated in Fig. 4.3b. Although both standards rely on the same assumption 

and derivation of equation 4-1, each country defines different alternatives to compute the 

deflections induced in the system. 

The total factored moment can then be expressed as: 

𝑀𝑡 = 𝑀𝑝 + 𝑀𝑠 

𝑀𝑡 = 𝑀𝑝 + 𝑃𝑓(∆𝑜 + ∆1) 

 4.1 

 

 

Figure 4.3 – Load Displacement method for simply supported conditions. 

4.3.1.1 TMS 402-16  

The load-displacement method proposed in the TMS 402-16 , relies on the same principle 

explained in section 4.3.1. The standard mandates determining the total moment at mid-

height of the wall using U.S. - 4.6. 

𝑀𝑢 =
𝑊𝑢ℎ2

8
+

𝑃𝑢𝑒𝑢

2
+ (𝑃𝑢𝑤 + 𝑃𝑢)𝛿𝑢  U.S. - 4.6 

a) Primary moment: Uniform pressure +  

+ 

b) Total Moment = Primary + Secondary
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Where 𝑊𝑢 is the factored uniform lateral load, 𝑃𝑢 is the applied axial load, 𝑒𝑢 is the axial 

loading eccentricity, 𝑃𝑤 is the self-weight of the structure at mid-height, and 𝛿𝑢 is the 

mid-span deflection.  

This method is only allowed by the American standard when: 

𝑃𝑢

𝐴𝑔
≤ 0.20 𝑓𝑚

′  U.S. - 4.7 

The American committee offers two expressions to compute the ultimate deflection, 𝛿𝑢, 

based on the cracking moment of the walls (U.S. - 4.8, and U.S. - 4.9). These equations 

are given for simply supported conditions. For other support conditions, moments and 

deflections shall be calculated using established principles of mechanics. 

For 𝑀𝑢 < 𝑀𝑐𝑟 

𝛿𝑢 =
5𝑀𝑢ℎ2 

48𝐸𝑚𝐼𝑛
  U.S. - 4.8 

  

For 𝑀𝑢 ≥  𝑀𝑐𝑟 

𝛿𝑢 =
5𝑀𝑢ℎ2 

48𝐸𝑚𝐼𝑛
 +

5(𝑀𝑢 − 𝑀𝑐𝑟)ℎ2

48𝐸𝑚𝐼𝑐𝑟
 

 

   U.S. - 4.9 

Where 𝑀𝑢 is the factored moment, 𝑀𝑐𝑟 is the cracking moment calculated using U.S. - 

4.3, 𝐸𝑚 is the modulus of elasticity of the masonry and 𝐼𝑐𝑟 is the cracked moment of 

inertia.  

4.3.1.2 CSA S304-14    

The CSA S304-14    mandates two equations to calculate the total moment of the structure 

using the load-displacement method depending on the slenderness ratio. CSA S304-14   

permits to neglect the influences of the self-weight for structures with a height-to-

thickness ratio lower than 30 (C - 4.6). 
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For 
𝑘ℎ

𝑡
< 30  

𝑀𝑡 = 𝑀𝑝 + 𝑃𝑓𝛥𝑓  C - 4.6 

Where 𝑀𝑝 is the primary moment due to the lateral loading and eccentric axial force, 𝑃𝑓 

is the factored axial load, and ∆𝑓 is the deflection at mid-span including second-order 

effects (∆𝑜 + ∆1). 

CSA S304-14  does not mandate an expression to calculate the primary and secondary 

deflections. However, Canadian designers usually opt to compute these magnitudes based 

on an iterative approach.  For the simple support condition in Fig 4.3, the primary 

deflection, ∆0, can be calculated as: 

∆0=
5𝑊𝑢ℎ4

384𝐸𝐼𝑒𝑓𝑓
  C - 4.7 

Where 𝑊𝑢 is the factored uniform lateral load, ℎ is the height of the structure, and 𝐸𝐼𝑒𝑓𝑓  

is the effective stiffness affected by the rigidity coefficient from section 4.2.2.1. 

The secondary deflection, ∆1, can be calculated as: 

∆1=  
5𝑃𝑓(∆𝑜 + ∆1)ℎ2

48𝐸𝐼𝑒𝑓𝑓
 C - 4.8 

Where 𝑃𝑓 is the applied axial load, ℎ is the height of the structure. 

As indicated in C - 4.8, this creates an iterative process since the secondary moment, 

𝑃𝑓(∆𝑜 + ∆1), is used to determine secondary deflections. 

For walls with slenderness ratios greater than 30, CSA S304-14 prescribes in clause 

10.7.4.6.6 that the total factored moment, 𝑀𝑡, shall be determined at the mid-height of 

the wall and shall be calculated as: 

For 
𝑘ℎ

𝑡
≥ 30  
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𝑀𝑡 =
𝑊𝑢ℎ2

8
+

𝑃𝑓𝑡𝑒

2
+ (𝑃𝑓𝑤 + 𝑃𝑓𝑡)𝛥𝑓   C - 4.9 

Where 𝑊𝑢 is the factored uniform lateral load, 𝑃𝑓𝑡 is the factored axial load, 𝑒𝑢is the axial 

loading eccentricity, 𝑃𝑓𝑤 is the factored weight of wall tributary at mid-height of the 

structure, and 𝛥𝑓 is the mid-span deflection, including the second-order effects.   

Equation C - 4.9 is adapted from the Uniform Building Code (NBCC), which is based on 

the loading conditions of a wall under a uniform distributed pressure and eccentric gravity 

load.  

4.3.1.2.1 Comparison discussion 

● For  
𝑘ℎ

𝑡
< 30,  the Canadian standard does not specify any means to calculate the 

primary moment or deflection. It also does not require to include the self-weight 

of the structure in the calculations (C - 4.6). Hence, the load-displacement method 

could be implemented for any loading condition as long as the primary 

moment,𝑀𝑝, is correctly calculated. For the same slenderness ratio, TMS 402-16 

mandates the inclusion of the self-weight of the walls in the calculations (U.S. - 

4.6). For 
𝑘ℎ

𝑡
≥ 30, both the CSA S304-14 and TMS 402-16 expressions are 

derived for simply supported conditions, in which maximum bending moment and 

deflections occur nearly at mid-height. For different boundary conditions, 

deflection and primary moment need to be calculated using principles of 

mechanics or other methods. 

● TMS 402-16  recommends expressions to calculate deflections based on beam 

theory and the cracking moment for simply supported conditions (U.S. - 4.3 and 

U.S. - 4.4). No equation is mandated by the CSA S304-14, but it is required that 

the method selected consider additional deflections due to second-order effects. 

Common design practices in Canada relies on an iterative method to obtain 𝛥𝑓  (C 

- 4.7). 
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● TMS 402-16 restricts the use of the load-displacement method for certain axial 

stress levels (
𝑃𝑢

𝐴𝑔
≤ 0.20 𝑓𝑚

′ ). Canada permits to compute second-order effects 

with this method regardless of the conditions.  

4.3.2 Moment Magnifier Method  

The moment magnifier approach is a method developed originally for slender reinforced 

concrete structures and later adapted for masonry elements. This method offers a 

simplified approach to compute the total moment of the structure, 𝑀𝑡, by amplifying the 

primary moment using an amplification factor instead of calculating the second-order 

moments as the product of the gravity load and the maximum displacement of the 

structures. The MM equation is given by: 

𝑀𝑡 = 𝑀𝑝 ∗ 𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 4.2 

A simply supported wall loaded with an eccentric axial load, 𝑃𝑓, is used to illustrate the 

development of the MM. This case is shown in Fig. 4.4. The total deflected shape and the 

secondary moment diagram are assumed to be defined using a half-sine function, where 

∆0 is the deflection due to the primary sources of moment (i.e. lateral pressure) and ∆1 

the deflection from secondary moments.  Therefore, the total deflection at mid height, ∆𝑡, 

is then ∆𝑡= ∆0 + ∆1 (Fig. 4.4a) and the secondary moment, 𝑀𝑠, 𝑀𝑠 = 𝑃𝑓(∆0 + ∆1) (Fig 

4.4.b). 
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Figure 4.4 – Moment Magnifier derivation. 

Knowing that the curvature of the section is defined by ∅ = 𝑀𝑡/𝐸𝐼 , and using the same 

sinusoidal shape assumption as before, the curvature profile can be then defined as 

𝑃𝑓(∆𝑜+∆1)

𝐸𝐼𝑒𝑓𝑓
𝑠𝑖𝑛 𝑠𝑖𝑛 (

𝜋𝑥

ℎ
) . The secondary deflection at mid-height, ∆1, can be then 

calculated using the moment-area method, where the area of the half-curvature (from the 

top to mid-span) in Fig. 4.4c, is calculated as: 

𝐴 = ∫
𝑃𝑓(∆𝑜 + ∆1)

(𝐸𝐼)𝑒𝑓𝑓
𝑠𝑖𝑛 𝑠𝑖𝑛 (

𝜋𝑥

ℎ
)  𝑑𝑥

ℎ
2

0

=
𝑃𝑓(∆𝑜 + ∆1)ℎ

𝜋(𝐸𝐼)𝑒𝑓𝑓
 4.3 

Calculating the centroid of this half-area, A, 

Loading Total 

deflection

(a)

Secondary moment

(b)

Curvature Associated 

to Secondary Moment

(c)
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𝑥 =
𝑄

𝐴
=

∫
𝑃𝑓(∆𝑜 + ∆1)

(𝐸𝐼)𝑒𝑓𝑓
𝑠𝑖𝑛 𝑠𝑖𝑛 (

𝜋𝑥
ℎ )  𝑥 𝑑𝑥

ℎ
2

0

∫
𝑃𝑓(∆𝑜 + ∆1)

(𝐸𝐼)𝑒𝑓𝑓
𝑠𝑖𝑛 𝑠𝑖𝑛 (

𝜋𝑥
ℎ

)  𝑑𝑥
ℎ
2

0

=
ℎ

𝜋
 4.4 

The deflection at mid-height can be computed as, 

∆1= 𝐴 (
ℎ

𝜋
) 

∆1=
𝑃𝑓(∆𝑜 + ∆1)ℎ

𝜋(𝐸𝐼)𝑒𝑓𝑓
(

ℎ

𝜋
) =

𝑃𝑓ℎ2

𝜋2𝐸𝐼
(∆𝑜 + ∆1) 

4.5 

Recognizing that the Euler buckling load, 𝑃𝑐𝑟, is defined as 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

ℎ𝑤
2

 4.6 

Then Eq 4.6 becomes 

∆1= (∆𝑜 + ∆1) (
𝑃𝑓

𝑃𝑐𝑟
)   4.7 

Re-arranging, 

∆1= ∆𝑜

𝑃𝑓/𝑃𝑐𝑟

1 − 𝑃𝑓/𝑃𝑐𝑟
 

Since the total deflection is the sum of ∆𝑜 and ∆1, it can be expressed in terms of ∆𝑜 as, 

∆𝑡= ∆0 + ∆1 

∆𝑡= ∆0 + ∆𝑜

𝑃𝑓/𝑃𝑐𝑟

1 − 𝑃𝑓/𝑃𝑐𝑟
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∆𝑡=

∆0 (1 − (
𝑃𝑓

𝑃𝑐𝑟
) + (

𝑃𝑓

𝑃𝑐𝑟
))

1 − 𝑃𝑓/𝑃𝑐𝑟
 

∆𝑡=
∆0

1 −
𝑃𝑓

𝑃𝑐𝑟

 
4.8 

Knowing that the total moment, 𝑀𝑡, can be computed as the summation of the primary 

source of moment 𝑀𝑃 = 𝑃𝑓𝑒 and the product of the axial loading, 𝑃𝑓, and the total 

deflection, ∆𝑡,.  

𝑀𝑡 = 𝑃𝑓𝑒 + 𝑃𝑓∆𝑡 

= 𝑃𝑓𝑒 +
𝑃𝑓∆𝑜

1 −
𝑃𝑓

𝑃𝑐𝑟

 
4.9 

Where for a rectangular moment diagram ∆𝑜 can be calculated as, 

∆𝑜=
𝑃𝑓𝑒ℎ𝑤

2

8𝐸𝐼
 4.10 

Substituting this back into the total factored moment yields: 

𝑀𝑡 = 𝑃𝑓𝑒 + 𝑃𝑓 [
𝑃𝑓𝑒ℎ2

8𝐸𝐼𝑒𝑓𝑓 (1 −
𝑃𝑓

𝑃𝑐𝑟
)

] 

𝑀𝑡 = 𝑃𝑓𝑒 [(1 +
0.23 (

𝑃𝑓

𝑃𝑐𝑟
)

1 − (
𝑃𝑓

𝑃𝑐𝑟
)

) ] 

4.11 
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The term 0.23(𝑃𝑓/𝑃𝑐𝑟) is a function of the shape of the primary moment diagram (𝑃𝑓𝑒). 

For a parabolic moment diagram, such as that caused by uniform lateral pressure (i.e, 

wind load) this term becomes nearly zero. Therefore, the total moment , 𝑀𝑡, is computed 

as follows: 

𝑀𝑡 = 𝑀𝑝 (
1

1 −
𝑃𝑓

𝑃𝑐𝑟

) 4.12 

4.3.2.1 TMS 402-16  

The magnified moment according to the TMS 402-16 is calculated as: 

𝑀𝑡 = 𝛹𝑀𝑢 U.S.-4.7 

Where 𝑀𝑢 is the factored moment from the first-order analysis. The moment 

magnification factor  𝛹 is calculated using: 

𝛹 =
1

1 −
𝑃𝑢

𝑃𝑒

 
U.S.-4.8 

Where, 𝑃𝑢 is the applied axial load and 𝑃𝑒  the critical buckling load calculated as  

𝑃𝑒 =
𝜋2𝐸𝑚𝐼𝑒𝑓𝑓 

ℎ2
  U.S.-4.9 

Where 𝐸𝑚 is the modulus of elasticity of the masonry, 𝐼𝑒𝑓𝑓 is the stiffness of the wall, and 

ℎ is the height of the structure.  

4.3.2.2 CSA S304-14    

The expression 4.12 is derived for symmetric single curvature situations. For cases of 

unequal end eccentricities, 𝑒1and 𝑒2, the CSA S304-14   propose an equivalent moment 

factor, 𝐶𝑚. Thus, the CSA S304-14   expression is given by C - 4.10. 
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𝑀𝑡 = 𝑀𝑝 (
𝐶𝑚

1 −
𝑃𝑓

𝑃𝑐𝑟

)  
C - 4.10 

 

Where 𝑀𝑝 is the factored moment from the first-order analysis. 𝑃𝑓 is the applied axial 

load and 𝑃𝑐𝑟 is the euler buckling load, and the 𝐶𝑚 is calculated as: 

𝐶𝑚 = 0.6 +
0.4𝑀1

𝑀2
≥ 0.4   C - 4.11 

Where 𝑀1 is the smaller factored end moment taken as a negative for double curvature 

and 𝑀2 is the larger end moment always taken positive. The ratio 
𝑀1

𝑀2
 may be taken as 1.0 

if both end eccentricities are less than 0.1t or when lateral loads contribute more than 50% 

of the primary moments. 

The Euler buckling load,𝑃𝑐𝑟, is modified to include the rigidity coefficient as indicated in 

C - 4.12 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼𝑒𝑓𝑓 

𝑘ℎ2
  C - 4.12 

4.3.2.3 Comparison discussion 

The moment magnifier equations recommended by both committees are essentially the 

same. Only minor differences are identified, such as the 𝐶𝑚 factor and the effective length 

factor (𝑘). 𝐶𝑚 Relates the moment diagram to an equivalent uniform moment distribution. 

The American committee does not require such factor as in most cases, the applied lateral 

load consists of uniform pressure, leading to a 𝐶𝑚 value of 1. For cases with largely 

concentrated end moments this factor could introduce a significant deviation between the 

standards. 
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The effective length factor, 𝑘, proposed by the CSA S304-14 could introduce some 

deviation if different boundary conditions are assumed. The CSA S304-14 allows 

designers to take advantage of the boundary conditions, which is typically done by 

Canadian designers for non-slender structures. However, for very slender structures, a 

common practice is to design the element assuming a pinned-pinned condition (𝑘 = 1), 

ignoring any attribute from the base rigidity. Only for this case, the terms 𝑘ℎ in CSA 

S304-14 and ℎ in TMS 402-16  are equivalent.   

4.3.3 Parametric Studies.  

This section investigates the influences of some independent parameters in the effective 

stiffness formulation provided by each standard through parametric analyses. This section 

only evaluates and compares the procedure described in the CSA S304-14 and TMS 402-

16  to compute the effective stiffness. Thus, the effectiveness of their formulations is not 

assessed. The parameters in this study are classified as fixed, dependent and independent, 

which are described as follows. 

4.3.3.1 Fixed parameters 

The fixed parameters were not changed in this study and were constant for all the OOP 

walls. The thickness, mild steel properties, length and rebar spacing were the fixed 

parameters of this study. The thickness of the walls was set to 190 mm, which represents 

a 20 cm nominal block commonly used in Canada. Canadian mild steel properties were 

used with a yield strength of 400 MPa and a Young’s modulus of 200GPa. The length of 

the wall was set to 1000 mm, as the analyses were done for equivalent 1m sections. Two 

rebar spacing were selected. For fully grouted walls the spacing was set to 200 mm, which 

represents a rebar per cell. For partially grouted trials the rebar spacing was set to 800 

mm.  

4.3.3.2 Dependent parameters 

The dependent parameter of the study consisted of the OOP stiffness of reinforced 

masonry walls using the effective stiffness formulations as per the CSA S304-14 and 
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TMS 402-16. This parameter is studied under different values of the independent 

parameters 

4.3.3.3 Independent parameters 

The independent parameters were varied to investigate their isolated effect on the 

dependent parameter. This study had four independent variables consisting of the 

compressive axial loading, reinforcement ratio, compressive strength (𝑓𝑚
′ ), the reduction 

factor (∅𝑒), and the creep factor (𝛽𝑑). 

The axial loading was selected as an independent variable to evaluate its effect on 

enhancing the flexural stiffness and quantify the differences between the standards as this 

parameter is increased. Five reinforcement ratios were investigated in this study, 

consisting of 0.5, 1, 1.5, and 2.5. The increment was set to 0.5 to evaluate the influence 

of this parameter in the effective stiffness calculation and establish a comparison between 

the standards based on a gradual increment of the reinforcement area. The effect of the 

reduction factor ∅𝑒  described in section 4.2.2.1 and mandated by the CSA S304-14 was 

quantified and compared against the TMS 402-16 alternatives to compute the stiffness of 

the wall, and the CSA S304-14 curve neglecting this factor. Four compressive strength 

levels were selected for this study, 7.5 MPa, 10 MPa, 15 MPa, 20 MPa, and 25 MPa to 

study the sensitivity of both expressions against the increment of this parameter and 

quantify the differences under multiple levels of compressive strengths.  

4.3.3.4 Effects of the Independent Parameters on the Effective Stiffness.  

4.3.3.4.1 Effect of Axial Loading (𝑷𝒇) 

This section investigates the effects of axial loading in the effective stiffness formulation. 

It should be expected that higher compressive forces reduce the curvature of the section 

subjected to bending stress, enhancing the stiffness of the element. 

To study this effect, Fig. 4.5 and 4.6 shows the influence of the axial loading (P) in the 

flexural stiffness (𝐸𝑚𝐼𝑒𝑓𝑓) calculated as per the North American standards for a fully 

(Fig. 4.5) and a partially grouted (Fig. 4.6) trial. The material and geometrical properties 
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are summarized in Table 4.1. The axial load (𝑃𝑢), was normalized by a 10% of the 

nominal axial capacity of a fully grouted trial with a 20 cm blocks with a nominal strength 

of 15 MPa (0.1𝑓𝑚
′ 𝐴𝑒). The effective stiffness (𝐸𝑚𝐼𝑒𝑓𝑓) was normalized by the gross 

moment of inertia of the fully grouted section described above times the modulus of 

elasticity (𝐸𝑚𝐼𝑜).  

 

Table 4.1 – Summary of properties. Effect of Axial Load. 

Parameters CSA S304-14    TMS 402-16  

Compressive Strength of The 

Masonry  (𝑓𝑚
′ )  

𝑓𝑚
′ = 15 𝑀𝑃𝑎 𝑓𝑚

′ = 15 𝑀𝑃𝑎 

Modulus of Elasticity 850𝑓𝑚
′  900𝑓𝑚

′  

Block Thickness (mm) 190 190 

Rebar Size (Canadian 

Nomination) 
10M 10M 

Rebar Separation (mm) 

 

Fig. 4.5  

200 

Fig. 4.6 

800 

 

Fig. 4.5  

200 

Fig. 4.6 

800 

Reduction Factors (∅𝑒) ∅𝑒 = 1 − 

Creep Factor (𝛽𝑑) 𝛽𝑑 = 0** − 

** A value of 0 is used to neglect the influences of this factor. 
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Figure 4.5 - Effect of the Axial Loading in the Effective Stiffness Fully Grouted. 

 

Figure 4.6 – Effect of the Axial Loading on the Effective Stiffness. Partially Grouted. 
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For partially and fully grouted walls, the behaviour is consistent. The description and 

comparison below are valid for both cases. The CSA S304-14 and TMS 402-16 

procedures are discussed first, and a comparison is established at the end of this section.  

As seen in Fig 4.5 and 4.6, the influences of the axial loading on the Canadian formulation 

can be summarized in 3 phases. From point C1 to C2 the lower bound limit of C - 4.2 

(𝐸𝑚𝐼𝑐𝑟) is used to compute the stiffness of the wall. Low axial loading levels produces 

high virtual eccentricities (𝑒 = 𝑀𝑓/𝑃𝑢). When the virtual eccentricity is 3 times higher 

than the kern eccentricity (𝑒𝑘), the masonry section is considered cracked. In these cases 

the stiffness is calculated using 𝐸𝑚𝐼𝑐𝑟, and as 𝐼𝑐𝑟  (C −  4.3) depends only on the material 

properties and the geometry, it will remain constant throughout any axial load level that 

leads to 𝑒 > 3𝑒𝑘 . For any case where 𝑒 < 3𝑒𝑘  (From point C2 to C4 on Fig. 4.5 and 4.6), 

the effective stiffness is computed using C - 4.1, which considers the influence of the 

axial loading based on the virtual eccentricity, 𝑒. At this range, higher axial loads will 

lead to a gradual increment of the (𝐸𝐼)𝑒𝑓𝑓. Finally, at lower levels of eccentricity (i.e. 

High axial load), the structure is considered uncracked, and the upper limit is used instead 

(0.25𝐸𝑚𝐼𝑜). If the axial load is applied concentrically, an accidental eccentricity 

equivalent to 10% of the thickness of the block should be assumed.  

In contrast to the CSA S304-14, the TMS 402-16 offers two alternatives to compute the 

rigidity of the element based on a simple condition. In cases in which the applied moment 

exceeds the cracking moment (𝑀𝑐𝑟) computed using U.S. - 4.3, the cracked moment of 

inertia should be used to compute the stiffness (𝐸𝑚𝐼𝑐𝑟 U. S. − 4.2). For the other case 

(𝑀𝑢 ≥ 𝑀𝑐𝑟) the TMS 402-16 allows using 75% of the gross inertia (𝐸𝑚0.75𝐼𝑛  , U. S. − 4.1) 

to compute the rigidity of masonry walls. It is important to note that the equation provided 

by the TMS 402-16 to calculate the cracking moment explicitly considers the axial 

loading. This relationship is illustrated in Fig. 4.7, where the cracking moment increases 

almost linearly relative to the applied axial load. Thus, the higher the axial loading, the 

bigger is the moment required to exceed the cracking moment.  
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Figure 4.7 – Axial loading versus cracked moment of inertia. TMS 402-16 . 

By evaluating Fig. 4.5 and  4.6, the relationship between the axial loading and the stiffness 

of the wall calculated using TMS 402-16 procedure can be seen. From point US1 to US2, 

the stiffness of the wall is computed using the cracked moment of inertia (𝐸𝑚𝐼𝑐𝑟). As 

noted before, the proposed equation in the TMS 402-16 explicitly considers the 

interaction of the axial loading. Higher compressive forces in the element enhance the 

OOP rigidity of the wall. In uncracked cases where the acting moment does not exceed 

the cracking moment (From point US3 to US4), the stiffness of the wall is not affected 

by any variation of the axial loading, as in this range where it is calculated using the gross 

moment of inertia. 

To quantify and compare the influence of the axial loading in both standards, three points 

in Fig. 4.5 and 4.6 were selected. The first point is C2. Up to this position, the rigidity of 

the wall is computed using the cracked moment of inertia in both standards. While the 

CSA S304-14   curve is constant through all this range (From C1 to C2), the TMS 402-

16 counterpart is being enhanced by the compressive forces, which results in differences 
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of up to 59%. After C2, although the effective stiffness from the CSA S304-14 is 

calculated using C - 4.1, which considers the effect of the axial loading, the influence of 

this parameter seems to be more notorious in the American expression. Up to US2 the 

wall is considered cracked according to the TMS 402-16 (𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑚𝐼𝑐𝑟), at this point 

values calculated using the TMS 402-16 standards are 114% higher compared to the CSA 

S304-14  . Finally, at axial loading ranges where the wall is considered uncracked by both 

standards (After C3 in the CSA S304-14 and after US3 in the TMS 402-16 curve), the 

TMS 402-16 stiffness value will always be 200% higher than the CSA S304-14  . Both 

committees rely on the gross moment of inertia at this range, nonetheless, while the TMS 

402-16 allows using 75% (𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑚0.75𝐼𝑂) of the inertia, the CSA S304-14   is limited 

to a maximum of 25% (𝐸𝐼𝑒𝑓𝑓 = 𝐸𝑚0.25𝐼𝑂)   

4.3.3.4.2 Reduction Factor ∅𝒆 

One of the major differences between the standards is the adoption of a reduction factor 

∅𝑒  in Canada. The CSA S304-14 mandates to apply a reduction factor equal to ∅𝑒 = 0.75 

to account for the variability of materials on the deflections and buckling calculations. 

This factor translates directly to a reduction of stiffness by 25%. The American committee 

does not mandate any equivalent factor. Although concrete design provisions in the 

United States recommend a similar decrease to account for uncertainties in the stiffness 

of the wall, TMS 402-16 does not include it for masonry elements. According to the 

commentary version of the TMS 402-16, the committee considers unnecessary the 

additional conservatism that this factor would bring to the stiffness computation. It could 

be argued that the TMS 402-16 implicitly introduces a reduction factor for uncracked 

masonry sections as the gross moment of inertia is reduced by 25% (U.S. - 4.1).  However, 

it is essential to note that the ∅𝑒  factor is mandated by the CSA S304-14   in both 

uncracked and cracked cases. 

Figure 4.8 shows the influences of this parameter on the stiffness of the wall. The 

parametric analysis in section 4.3.3.4.1 was repeated but it was added a CSA S304-14   

curve affected by the reduction factor, which is represented using a dashed red line.   
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 Figure 4.8 – Effect of the reduction factor ∅𝑒  

As seen in Fig 4.8, the stiffness of the wall in both the cracked and uncracked cases is 

reduced by 25% if the CSA S304-14 calculations are affected by the ∅𝑒  factor. Thus, the 

percentage of difference between both standards increases by the same amount as the 

reduction. The necessity of this additional conservatism is not evaluated by the parametric 

analysis presented in this section. However, an apparent decrease can be seen in the 

stiffness of the wall that ultimately increases the amplification of the primary moment. 

These results are not yet compared with experimental or analytical data. Parametric 

analysis in chapter 5 quantifies the consequences of applying the reduction factor 

∅𝑒  compared with finite element models.  

4.3.3.4.3 Effect of creep factor (𝜷𝒅) 

In section 4.2.2.1 the rigidity coefficient mandated by the CSA S304-14    was introduced. 

This coefficient considers the effect of additional deformations produced by long-term 
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exposure to persistent mechanical stresses (creep effects) using the creep factor (𝛽𝑑). The 

TMS 402-16 does not mandate a comparable provision, and the creep effects are not 

considered in the stiffness calculation.  

The CSA S304-14   calculate this factor as the ratio between the factored dead load 

moment, which is the moment produced by the eccentric axial load from the dead load 

combination (𝑃𝑓𝑒), and the total factored moment (𝛽𝑑 =
𝑀𝑑𝑒𝑎𝑑

𝑀𝑡𝑜𝑡𝑎𝑙
)  Thus, a creep factor of 

0 would indicate that the primary moment is only induced by the lateral loading, while a 

factor of 1 is only possible if the only source of the primary moment is due to the axial 

eccentricity loading. 

Table 4.2 shows the variation of the flexural stiffness due to the addition of the creep 

effects in the CSA S304-14 equation. As a reference for this study, an accidental 

eccentricity of 10% of the block thickness is selected to calculate the moment due to dead 

load (𝑀𝑑 = 𝑃𝑓𝑑𝑒). The axial loading was increased by a ratio of 10 kN. The same wall 

properties as section 4.3.3.4.1 were adopted for the analysis. 

 

 

 

 

 

 

 

 

 

 



120 

 

Table 4.2 - Influence of the creep factor  𝛽𝒅 from the CSA S304-14    

𝑬𝑰𝒆𝒇𝒇/𝑬𝑰𝒐 𝑪𝒐𝒏𝒕𝒓𝒐𝒍 

No Creep Included * 

Axial 

Dead 

Load 

(kN/m) 

Creep 

Factor 

(𝜷𝒅) 

𝑬𝑰𝒆𝒇𝒇/𝑬𝑰𝒐 Creep 

Included * 

 

Decrement 

(%) 

 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.22 

0.23 

0.23 

0.23 

0.24 

0.24 

0.24 

0.24 
 

 

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

35.00 

40.00 

45.00 

50.00 

55.00 

60.00 

65.00 

70.00 

75.00 

80.00 

85.00 

90.00 

95.00 

100.00 

105.00 
 

 

0.01 

0.01 

0.02 

0.03 

0.03 

0.04 

0.04 

0.05 

0.06 

0.06 

0.07 

0.08 

0.08 

0.09 

0.10 

0.10 

0.11 

0.11 

0.12 

0.13 

0.13 
 

 

0.15 

0.14 

0.14 

0.14 

0.14 

0.14 

0.15 

0.16 

0.17 

0.18 

0.19 

0.20 

0.20 

0.20 

0.21 

0.21 

0.21 

0.21 

0.21 

0.21 

0.21 
 

 

0.63 

1.27 

1.90 

2.53 

3.17 

3.80 

4.43 

5.07 

5.70 

6.33 

6.97 

7.60 

8.23 

8.87 

9.50 

10.13 

10.77 

11.40 

12.03 

12.67 

13.30 
 

*Values normalized as section 4.3.3.4.1 

As seen in Table 4.2, the additional deformations originated by the creep effects are 

accounted for in the CSA S304-14 by imposing a reduction of the effective stiffness as 

the creep factor increases. For the reference selected in this study, low axial loads (i.e. 5-

20 kN/m) represent a reduction of the 𝐸𝐼𝑒𝑓𝑓  by approximately 3%, while higher 

compressive forces could lead to a decrease of up to 13%. It is important to notice that 

the eccentricity selected for this analysis represents the smallest axial eccentricity for a 

20cm nominal block (accidental eccentricity). Greater loading eccentricities could lead 

to higher moments produced by the dead load and consequently higher creep factors. For 
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structures loaded with only eccentric axial load, the reduction is quite significant. This 

case results on a 𝛽𝑑 a factor of 1, which is translated to a reduction of the 𝐸𝐼𝑒𝑓𝑓  of 50%. 

4.3.3.4.4 Effect of the Compressive strength 𝒇𝒎
′  and modulus of elasticity (𝑬𝒎)   

Although there are differences in the commonly used prism compressive stress (𝑓’𝑚) 

values between countries (section 3.2.1), all the parametric studies in this section were 

done using identical values. This analysis studies the influence of the variation of the 

compressive strength in the formulations proposed by the CSA S304-14   and TMS 402-

16 to compute the OOP stiffness of masonry walls.  

This document presents only one of the multiple cases, as the behaviour is consistent in 

all the circumstances evaluated. Fig 4.9 shows the variation of the compressive strength 

vs the normalized effective stiffness (𝐸𝑚𝐼𝑒𝑓𝑓/𝐸𝑚𝐼𝑜). The stiffness is normalized as in 

section 4.3.3.4.1. The material properties are summarized in Table 4.3. No axial loading 

is considered for comparison purposes. Therefore, any differences between the standards 

can only be attributed to the independent variable studied in this section.  
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Table 4.3 - Summary of properties. Effect of Compressive Strength 

Parameters CSA S304-14    TMS 402-16  

Modulus of Elasticity 850𝑓𝑚
′  900𝑓𝑚

′  

Block Thickness (mm) 190 190 

Rebar Size (Canadian 

Nomination) 
10M 10M 

Rebar Separation (mm) 

 

200 

 

200 

Reduction Factors (∅𝑒) ∅𝑒 = 1 − 

Creep Factor (𝛽𝑑) 𝛽𝑑 = 0** − 

** A value of 0 is used to neglect the influences of this factor. 

As shown in Fig 4.9, both formulations are influenced by the compressive strength of the 

masonry assembly. Higher compressive strength leads to stiffer walls. However, the TMS 

402-16 expression seems to be more sensitive to the variation of this parameter. As 

despite in the figure, for a compressive strength value of 10 MPa the 𝐸𝐼𝑒𝑓𝑓  calculated 

using the American procedure is approximately 8% greater than that of the Canadian, 

while for a compressive strength of 20 MPa, the TMS 402-16 is 20% higher than of the 

CSA S304-14  . 
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Figure 4.9 – Effect of the compressive strength. 

It could be expected that the increment of the effective stiffness could be attributed 

entirely to the 𝐸𝑚 as it is a function of the 𝑓𝑚
′  (i.e. 𝐸𝑚 = 850𝑓𝑚

′  in the CSA S304-14). 

Higher compressive strength will lead to a larger 𝐸𝑚, but it will also lead to a smaller 

cracked moment of inertia. Although each standard has a different formulation for 𝐼𝑐𝑟, 

this parameter is proportional to the modular ratio (𝑛 =
𝐸𝑠

𝐸𝑚
). Increasing 𝐸𝑚 decreases the 

modular ratio and the cracked moment of inertia (𝐼𝑐𝑟). This is shown in Fig 4.10, where 

the variation of the compressive strength versus the normalized cracked moment of inertia 

is depicted.   
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Figure 4.10 – Variation of the cracked moment of inertia. 

However, the influence of the modulus of elasticity is negligible when the section is 

considered cracked. To demonstrate this assumption, the TMS 402-16 equations to 

compute the flexural stiffness is used. Neglecting the term 
𝑏𝑐3

3
  (Which is typically 

smaller) and the axial loading in the 𝐼𝑐𝑟  expression from the TMS 402-16 , leads to a 

modified version of equation U.S. - 4.4, as shown below: 

𝐼𝑐𝑟 = 𝑛(𝐴𝑠)(𝑑 − 𝑐)2 U.S. - 4.12 

Thus, when calculating the 𝐸𝑚𝐼𝑐𝑟 the equation will take the following form: 

𝐸𝑚𝐼𝑐𝑟 = 𝐸𝑠(𝐴𝑠)(𝑑 − 𝑐)2 U.S. - 4.13 

The modified expression no longer considers the 𝐸𝑚 and the only variable affected by a 

variation of the 𝑓𝑚
′  is the compressive depth (𝑐). Increasing the compressive strength of 
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the masonry decreases the compressive depth length, thus enhancing effective stiffness. 

Fig. 4.11 illustrates the evolution of the compressive depth versus the 𝑓𝑚
′  as per the CSA 

S304-14  and TMS 402-16 . This figure illustrates that higher compressive strength leads 

to a smaller neutral axis depth, as a smaller masonry area is needed for the internal 

equilibrium of forces. For typical 𝑓𝑚
′  values (5-25 MPa) a variation of 10 MPa in the 

compressive strength could lead to about 10-15% of increment in the stiffness of the wall.  

 

Figure 4.11 – Neutral Axis Depth Evolution. 

4.3.3.4.5 Effect of the Reinforcement Ratio 

In this section, the influences of the variation of the reinforcement ratio in the OOP 

stiffness of reinforced masonry walls is evaluated. It is expected that increasing the area 

of steel enhances the stiffness of the element. Mechanically, the more steel the section 

has, the bigger is the transformed area section. Thus, the section is able to resist higher 

tensile forces, which ultimately increases the cracked moment of inertia of the cross-

section.  
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To evaluate this assumption, Fig. 4.12 shows the variation of the normalized effective 

stiffness calculated as per the TMS 402-16 and the CSA S304-14 versus the 

reinforcement ratio. The same normalization used in section 4.3.3.4.1 was used. The 

materials and geometry properties are summarized in Table 4.4. No axial loading is 

assumed for comparison purposes, as the intention is to evaluate the isolated effect of the 

reinforcement area. 

Table 4.4 – Summary of properties in Fig. 4.11. 

Parameters CSA S304-14    TMS 402-16  

Compressive Strength of The 

Masonry  (𝑓𝑚
′ )  

𝑓𝑚
′ = 15 𝑀𝑃𝑎 𝑓𝑚

′ = 15 𝑀𝑃𝑎 

Modulus of Elasticity 850𝑓𝑚
′  900𝑓𝑚

′  

Block Thickness (mm) 190 190 

Reduction Factors (∅𝑒) ∅𝑒 = 1 − 

Creep Factor (𝛽𝑑) 𝛽𝑑 = 0** − 

** A value of 0 is used to neglect the influences of this factor. 
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Figure 4.12 – Effect of the Variation of the Reinforcement Ratio.  

This analysis is valid for both the fully and partially grouted sections. From Fig. 4.12, it 

seems that the OOP rigidity of the wallets is enhanced due to the increment of the area of 

steel. In both expressions, the rate of increment seems to be proportional. Doubling the 

reinforcement ratio (from 0.5% to 1.0%) increases the stiffness of the wallets by 

approximately 60%. However, under the parameters shown in Table 4.4, the expression 

to calculate the cracked moment of inertia from TMS 402-16 is not applicable for 

reinforcement ratios greater than 1.8%, as the neutral axis calculated using U.S. - 4.4 lies 

beyond the face shell of the element. It is expected that for axially loaded members, the 

relative difference between the standards increases considerably.  
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4.4 Summary 

A mapped summary of the influences of the independent parameters in the flexural 

stiffness compute using the North American equations is presented in Table 4.5 

Table 4.5 –  Comparison of the parameters investigated. Second-Order Effects. 

Parameter Influence Comments 

Variation of the 

Axial Loading  
High 

● The CSA S304-14    does not account for 

the axial loading in the cracked moment 

of inertia (𝐼𝑐𝑟)  while the TMS 402-16  

does it. As the axial load is increased, the 

difference between both standards 

becomes more pronounced. Flexural 

stiffness calculated according to the CSA 

S304-14    are more conservative in all the 

conditions.  

● For cracked walls, the TMS 402-16 was 

demonstrated to be up to 59% higher than 

that of the CSA S304-14. For uncracked 

cases, the American stiffness is 3 times 

greater than that of the CSA S304-14  . 

Variation of the 

Reinforcement 

Ratio 

Low 

● As the reinforcement ratio increases, the 

effective stiffness according to both 

standards is enhanced by similar 

proportions.  

● Doubling the reinforcement ratio (from 

0.5% to 1.0%) has proven to enhance the 

flexural stiffness by approximately 60% 

● The TMS 402-16 expression to calculate 

the depth of the neutral axis is only 

applicable for reinforcement ratios lower 

than 1.5%, under the compressive 

strength evaluated.  

Variation of the 

𝑓𝑚
′ . 

Low 

● Although increasing the compressive 

strength of the masonry decreased the 

cracked moment of inertia (𝐼𝑐𝑟), due to 

the effect of the modular ratio. Increasing 

the 𝑓𝑚
′  enhance the effective stiffness. 

● The TMS 402-16 expression is more 

sensitive to a variation of the compressive 

strength. Thus, at higher values, the 
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differences between the standard 

increases. 

● Between 10 MPa and 25 MPa the 

increment is more pronounced (About 

25%). After 25 MPa the increment is 

negligible. 

Reduction 

Factor ∅𝑒   
High  

● The Canadian Committee proposed a 

reduction factor ∅𝑒  which decreased by 

25% the 𝐸𝐼𝑒𝑓𝑓  directly. The TMS 402-16 

committee finds such factors 

unnecessary. 

● Applying this factor to the CSA S304-14   

calculation results in a decrease of 25% in 

all the axial loading ranges. 

Creep factor  

𝛽𝑑  
Low - High 

● The TMS 402-16 does not consider the 

effect of the creep in the calculations of 

the effective stiffness. However, the CSA 

S304-14 accounts for it through a creep 

factor  𝛽𝑑. 

● Depending on the loading condition, the 

effect of the creep factor can be 

negligible. Nevertheless, if the source of 

the primary moment is mainly due to the 

eccentric axial loading, the creep factor 

could reduce the flexural stiffness by up 

to 50%  
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5. FINITE ELEMENT MODEL FOR FLEXURAL RIGIDITY EVALUATION 

5.1 Introduction. 

In Chapter 4, the methods to calculate second-order effects according to the North 

American standards (i.e. CSA S304-14, TMS 402-16 ) were introduced. It was found that 

both committees offer two alternatives to calculate the moment amplifications, (a) P-

Delta method and (b) Moment Magnifier Method.  Although minor differences were 

identified in the adoption of the MM according to each standard (i.e. 𝑐𝑚 and k factors). 

the most significant discrepancy between both countries relates to the expressions used 

to calculate the effective stiffness in RMWs.  To assess the accuracy of the effective 

stiffness equations in both codes, in the absence of an experimental data set, numerical 

analysis validated based on previous experimental programs (e.g., SEASC and Mohsin 

2003) are a viable alternative. 

In this chapter, a fibre-based model for reinforced fully and partially grouted masonry 

walls subjected to out-of-plane bending and concentric axial load is developed using the 

Open System for Earthquake Engineering Simulation (OpenSEES) software package. 

Material and geometrical nonlinearity are included. The numerical model is validated 

using experimental programs of fully and partially grouted walls (SEASC 1987, Mohsin 

2003).  

This study selected four independent parameters to evaluate their isolated effects on the 

second-order effects in RMWs. These parameters consisted of masonry compressive 

strength (𝑓𝑚
′ ), slenderness ratio(

ℎ

𝑡
), reinforcement ratio(𝜌) and axial loading (𝑃). 

Analytical moment amplification factors were calculated and compared with CSA S304-

14 and TMS 402-16. The data set created consisted of 1535 fully grouted walls and 403 

partially grouted trials. 

Using the strain information obtained with the model, three expressions for the effective 

stiffness were developed and compared against the design provisions from TMS 402-16  

and CSA S304-14. These equations were derived using multilinear regression analysis. 
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5.2 Finite Element Model  

A fibre-based model was created using the Open System for Earthquake Engineering 

Simulation (OpenSEES) platform. OpenSEES was developed within the Network for 

Earthquake Engineering Simulation (NEES) and serves as an object-oriented, open-

source software framework dedicated to finite element modelling and analysis. This tool 

is extensively used in the research community due to its efficacy and accuracy in 

predicting complex structural behaviours. Although the source code of OpenSEES is 

written in C++, allowing users to create new classes, materials, elements, etc. The 

numerical model is created using TCL scripts language that includes the structural model 

geometry, section, analysis type, recorders and solvers.  

This software has proven to be an excellent tool that accurately predicts the behaviour of 

masonry walls subjected to in-plane and OOP loads using a fibre-section approach. (Dona 

et al 2018, Entz 2018, Alonso et al. 2019). 

5.2.1 Fibre Modelling Approach 

The fibre model sectional approach is a widely used technique in finite element analysis 

due to its ability to produce excellent predictions using fewer computational resources 

than continuous models. In this approach, the sectional stress-strain state of the elements 

is obtained through integrating the uniaxial stress-strain response of individual fibres in 

which the section is divided (Casarotti and Rui 2006). Structural members are represented 

by a series of elements with finite length and an assigned cross-section. The OpenSEES 

framework provides a library with multiple elements and classes. Two elements are 

typically adopted to model nonlinear structures (i.e., Force-based elements and 

displacement-based elements). These elements allow the incorporation of the spread of 

plasticity along the member length and the interaction between the axial forces and 

transverse deformation of the section. Thus, using enough elements permits the 

reproduction of plastic hinges along the entire length of the member without using 

localized plasticity elements as other modelling techniques. (Casarotti and Rui 2006).   
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The fibre section adopted in this study is illustrated in Fig. 5.1. The cross-section is 

composed of masonry fibres, and a lumped rebar fibre located at the centre of the cross-

section to simulate the total area of steel in a masonry wall. The material constitutive 

relationships are explained in section 5.2.2, while the element formulation used is detailed 

in section 5.2.3.  

 

Figure 5.1 – Fibre Section model. (Bilotta et al 2021) 

5.2.2 Material Properties. 

5.2.2.1 Masonry 

Uniaxial stress-strain laws material from the OpenSEES library were implemented. The 

homogenous behaviour of the fully-grouted masonry was recreated using "Concrete02" 

based on the Kent-Scott-Park model. A parabolic stress-strain relationship is assumed up 

to the maximum compressive stress of the masonry, followed by a linear softening branch 

stopping at the maximum crushing strain. The material also assumes a linearly tensile 

strength increment, followed by a linear tension softening branch to failure. 
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The model proposed by Priestley and Elder (1983) to evaluate the homogenous behaviour 

of the masonry assemblage was adopted in this study to calculate the ultimate and 

crushing stress of the masonry fibres, the maximum compressive strength is assumed to 

happen at a strain of 0.002 (Drysdale and Hamid 2005) (Fig. 5.2).  This material model 

has demonstrated excellent results on fully and partially grouted specimens (Mohsin 

2003, Clayton 2020). The model also presents an excellent correlation with the 

"Concrete02" parabolic stress-strain distribution and can be expressed as: 

𝜎𝑚 = { 𝑓′𝑚 [
2𝜖

0.002
− (

𝜖

0.002
)

2

]                                                         𝜖

≤ 0.002 𝑓′𝑚[1 − 𝑍(𝜖 − 0.002)]                                       0.002 < 𝜖

≤  𝜖2𝑜𝑢            0.2𝑓′𝑚                                                                             𝜖 > 𝜖2𝑜𝑢   

(5.1) 

Where: 

𝑍 =
0.5

(
3 + 0.29𝑓′

𝑚

145𝑓′
𝑚

− 1000
) − 0.002

 
(5.2) 

𝑓′𝑚 , 𝜖, 𝜎𝑚𝑡  𝑎𝑛𝑑 𝐸𝑚 are the grouted masonry strength, grouted masonry strain, grouted 

masonry tensile stress and  modulus of elasticity of the masonry. The maximum tensile 

strength of the masonry was assumed to be 0.65 MPa, linear elastic until cracking and 

with a linear tension softening. 
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Figure 5.2 – Behaviour of Masonry under Compression according to Priestley and 

Elder model and Concrete02. 

5.2.2.2 Steel reinforcement 

OpenSEES "Steel02" a uniaxial material model with isotropic strain hardening based on 

the Giuffre-Menegotto-Pinto model, was used to simulate the longitudinal reinforcement. 

From the available models in the library, Steel02 demonstrated to have the best 

equilibrium between convergence and correlation rates during the parametric analysis of 

this chapter, therefore, it was selected from all the other steel models available. Fig. 5.3 

illustrates the stress-strain relationship of “Steel02.” 
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Figure 5.3 – Steel 02 Material Model. 

 

5.2.3 Element Formulation 

5.2.3.1 Beam-Column Element 

For nonlinear analysis using a fibre section approach, a number of elements are available 

in the OpenSEES framework, including elastic, inelastic, nonlinear, displacement-based 

and force-based elements. For this study, the “nonlinearBeamColumn” element was 

implemented. This element is based on a non-iterative or iterative force formulation, 

which considers the spread of plasticity along the element (OpenSEES) 

Forces-based elements rely on the availability of an exact equilibrium solution within the 

basic system of a beam-column element. Thus, equilibrium between the elements and 

sections should be exact in the range of constitutive nonlinearity. The section forces are 

determined from the basic forces by interpolation. Principles of virtual forces are used to 

formulate the compatibility between the section and the elements deformations (Fig.  5.4) 
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Figure 5.4 - Principle of virtual forces (Terzic 2011) 

5.2.4 Failure Modes 

Two failure modes are defined in the model: 

1. Crushing of the masonry fibre: Triggered when the strain in the masonry exceeds 

the specified crushing strain in compression based on the Priestley and Elder 

2. Rupture of the reinforcement: Triggered when the tensile strain exceeds the 

specified rupture strain based on the Giuffre-Menegotto-Pinto model 

5.3 Validation. 

To evaluate the performance of the model, two experimental programs with different 

loading scenarios were used. The first campaign corresponds to the experimental results 

of slender masonry walls from the ACI-SEASC Task Committee on Slender Walls 

(SEASC 1982), which have formed the basis of current design standards in Canada and 

the United States.  The second is the experimental program conducted by Mohsin in 2003 

at the University of Alberta. 

5.3.1 Experimental program 1. Fully-grouted walls subjected to a monotonic 

uniform lateral pressure and eccentrically axial load (SEASC 1982) 

5.3.1.1 Experimental Setup 

The experimental program consisted of 9 reinforced masonry panels subjected to a 

uniform lateral pressure and an eccentric axial load. All panels were 1.2m wide, but with 

different block thicknesses (Table 5.1). The boundary conditions for all the specimens 

were pinned-pinned. Multiple slenderness ratios were evaluated, starting from 30 up to 



137 

 

53 (Table 5.1).  The eccentric axial load was applied through a pulley system using a 

drum of water, and it was held constant during the lateral loading application.  

Once the axial load reached the peak value, a uniform lateral pressure was applied 

monotonically using an airbag along with the wall height and width. The displacement at 

mid-span was read as rapidly as possible and recorded manually. Due to safety concerns, 

the lateral load was stopped when it was judged that the crushing strain of the masonry 

would be near to occur. From the nine panels tested, only 2 reached the crushing of the 

masonry. Different thicknesses of concrete masonry units were used: 6 in (143 mm), 8 in 

(194 mm), and 10 in (246 mm). Fig. 5.5 and Fig. 5.6 depicts the test setup and specimen 

details. 

 

Figure 5.5 – SEASC Experimental Setup (SEASC 1982)   



138 

 

 

Figure 5.6 – SEASC Specimen detail (SEASC 1982)   

 

Table 5.1 - Masonry Wall Panel Summary (SEASC 1982) 

Panel 

Block 

Thickness 

(mm) 

Axial Load 

(kN/m) 

Eccentricity  

(mm) 
h/t  Failure Mode 

1 

2 

3 

4 

5 

6 

7 

246 

246 

246 

194 

194 

194 

143 

4.67 

15.3 

15.3 

15.3 

15.3 

5.7 

5.7 

198.5 

198.5 

198.5 

97.07 

97.07 

97.07 

71.57 

30.6 

30.6 

30.6 

38.8 

38.8 

38.8 

52.6 

Stopped Test 

Stopped Test 

Stopped Test 

Stopped Test 

Stopped Test 

Stopped Test 

Crushing 

8 143 5.7 71.57 52.6 Crushing 

9 143 5.7 71.57 52.6 Stopped Test 
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5.3.1.2 Material properties 

Material properties of the walls are shown in Table 5.2 and Table 5.3, respectively. The 

compressive strength and the modulus of elasticity of the masonry were calculated on-

site through prism testing.  

Table 5.2 – Masonry Material Properties (SEASC 1982) 

Masonry Unit 

Thickness (mm) 

Compressive 

Strength 

(MPa) 

Modulus of 

Elasticity 

(MPa) 

246 17.0 14,962 

194 17.9 11,859 

143 22.0 10,963 

All the panels were reinforced with five #4 bars, Grade 60 steel (Fig. 5.6). The steel rebar 

properties are shown in Table 5.3. The distance from the outer face of the wall to the 

centerline of the steel was measured after pouring the grout into the masonry cells. Table 

5.4 shows the rebar positioning summary.  

Table 5.3 – Rebar  Material Properties (SEASC 1982) 

Yield Strength 

(MPa) 

Ultimate 

Strength 

(MPa) 

Elastic 

Modulus 

(MPa) 

483 758 197,190 
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Table 5.4 – Placement of Steel reinforcement (SEASC 1982) 

Panel 
Thickness 

(mm) 

Distance "d" from Outer Face of Wall to 

Centerline of Steel (mm) 

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5 Ave. d 

1 

246 

131.8 131.8 125.4 128.5 125.4 128.5 

2 106.4 106.4 119.1 106.4 119.1 111.5 

3 133.3 130.3 133.3 133.3 136.6 133.3 

4 

194 

105.6 105.6 105.6 107.6 98.5 104.1 

5 119.3 111.7 109.2 111.7 98.5 112.7 

6 83.8 83.8 81.2 81.2 78.7 81.7 

7 

143 

71.8 74.9 81.0 81.0 81.0 77.9 

8 55.3 56.8 56.3 54.8 61.2 56.8 

9 76.2 80.0 75.9 75.9 77.9 77.2 

 

5.3.1.3 Loading Protocol  

The eccentric axial loading was applied using a load control integrator and held constant 

during the analysis. The loading eccentricity effect was simulated by applying an 

equivalent moment at the top of the structure. The self-weight was modelled as a uniform 

distributed load equivalent to the weight of each specimen according to its block 

thickness. Displacement control was used to apply the distributed lateral load that 

simulates the effects of the airbag. For the validation, the lumped rebar approach was 

used. The lumped rebar was placed at the average "d" location specified in Table 5.4.  

5.3.1.4  Validation.  

Graphs illustrating the uniform distributed lateral pressure as a function of the midspan 

deflection for all the panels are shown from Fig. 5.6 to 5.15.  

Panel 3,4,5, and 6 showed a satisfactory correspondence before the yielding of the 

reinforcement. After the yielding point, the strain hardening effects were not accurately 

captured by the numerical evaluation. One possible explanation is that the bilinear stress-

strain behaviour assumption used for the steel material did not accurately capture the 
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strain hardening effect of the rebar. Additionally, it is possible that the rebar position 

provided in the report was not measured correctly, and the average distance was used.  

This is very frequently observed even in supervised construction. Incorrect rebar 

positioning can be translated into an increment or decrement of the moment arm of the 

cross-section, which can significantly impact the behaviour at post-yielding.  

 

Figure 5.7 – Comparison of analytical model prediction to results of SEASC 

experiment panel 1 
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Figure 5.8 – Comparison of analytical model prediction to results of SEASC 

experiment panel 2   

 

 Figure 5.9– Comparison of analytical model prediction to results of SEASC 

experiment panel 3   
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Figure 5.10– Comparison of analytical model prediction to results of SEASC 

experiment panel 4  

 

Figure 5.11– Comparison of analytical model prediction to results of SEASC 

experiment panel 5   
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Figure 5.12– Comparison of analytical model prediction to results of SEASC 

experiment panel 6   

 

 Figure 5.13– Comparison of analytical model prediction to results of SEASC 

experiment panel 7   
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Figure 5.14 – Comparison of analytical model prediction to results of SEASC 

experiment panel 8   

 

Figure 5.15 – Comparison of analytical model prediction to results of SEASC 

experiment panel 9. 
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5.3.2 Experimental program 2.  Slender partially-grouted walls subjected to 

monotonic increasing eccentric axial load (Mohsin 2003). 

5.3.2.1 Experimental description and Setup 

Eight partially-grouted walls were tested under an eccentric axial load using different 

support conditions. The experimental program was developed to study the influences of 

base rigidity in slender masonry walls. The eccentric axial loading was monotonically 

increased up to the failure point. From the eight specimens, two panels were tested under 

pinned conditions in both ends. Table 5.5 summarizes the specimens used for the model 

validation. Figure 5.16 illustrates the experimental setup.  

Table 5.5 – Test Specimen Summary (Mohsin 2003) 

Specimen 

Block 

Thickness 

(mm) 

h/t 

W3 190.10 28.6 

W8 190.10 33.9 

 

 

 Figure 5.16 –Experimental Setup (Mohsin 2003) 
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5.3.2.2  Masonry Assemblage 

All the specimens had an identical cross-section (Fig. 5.17). Two 15M reinforcing steel 

bars grade 60 with a nominal yield strength of 400 MPa were used. The compressive 

strength of the masonry and modulus of elasticity were determined through the testing of 

hollow and grouted prisms. The material properties of the walls are shown in Table 5.6 

and Table 5.7. 

  

Figure 5.17 – Specimens Cross-Section (Mohsin 2003) 

 

Table 5.6 – Masonry Material Properties (Mohsin 2003) 

Prism Type Compressive Strength 

(MPa) 

Modulus of Elasticity 

(MPa) 

Hollow 14.6 14,335 

Grouted 10.2 7,379 

 

Table 5.7 – Reinforcing Steel Properties (Mohsin 2003) 

Yield Strength 

(MPa) 

Ultimate 

Strength 

(MPa) 

Elastic 

Modulus 

(MPa) 

423 568 215,000 

 

5.3.2.3 Numerical Evaluation Loading Protocol  

The eccentric axial loading was applied using a displacement control protocol integrator 

until material failure or convergence issues were obtained. The loading eccentricity effect 
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was simulated by simultaneously applying an equivalent moment at the top of the 

structure with the axial load (the axial load and the bending moment increase at the same 

ratio). The self-weight was modelled as a uniform distributed load equivalent to the 

weight of each specimen based on the thickness of the block.  

The fibre section was created using the lumped bar approach. The masonry block webs 

were neglected. Only the face shells and an equivalent grouted cell were modelled, as 

shown in Fig. 5.18. An effective compressive strength (𝑓𝑚
′ ,𝑒𝑓𝑓 ) value was used for both 

the face shells and the grouted core.  

 

Figure 5.18 – Fibre Section. Mohsin 2003 experimental program.  

5.3.2.4 Validation.  

Figures 5.19 and 5.20 present the force-deflection curve for panel W3 and W8, 

respectively from Mohsin (2003) experimental program. An excellent correlation was 

found between the numerical evaluation and the experimental data in both panels during 

the elastic response. The peak eccentric axial load was captured accurately in both cases. 

The largest discrepancy appears after the peak load is reached.  After the peak load, the 

stiffness degradation from the numerical evaluation is more significant than the 

experimental data.  



149 

 

 

Figure 5.19 – Experimental and numerical force-deflection curves. Mohsin Panel W3. 

 

Figure 5.20– Experimental and numerical force-deflection curves. Mohsin Panel W8. 
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5.4 Parametric Studies. 

The fibre model described above was used to evaluate the out-of-plane behaviour of fully 

grouted RMWS subjected to concentrically axial load and uniformly distributed lateral 

pressure under pinned conditions (Fig. 5.21). Multiple simulations were held. Fully and 

partially grouted walls were studied. The parameters of this study are classified as fixed, 

independent, and dependent. 

Additionally, this section evaluates the effectiveness of the moment magnifier method 

proposed in the North American Standards (i.e. CSA S304-14, TMS 402-16). The 

evaluation is held by comparing the amplification effects calculated using the existing 

equations from the standards against the numerical evaluation.  

 

Figure 5.21 – Parametric Analysis Model. 
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5.4.1 Analysis description and Loading Protocol  

The concentric axial load was applied at the top node using a load control integrator and 

was held constant throughout the analysis. The self-weight was later applied as a uniform 

load distributed along the height of the structure equivalent to the weight, also using a 

load control integrator.  

For the uniform distributed pressure, a third load pattern with "element load" type was 

applied to each element through a displacement control integrator. The control node was 

set to the middle node (Midspan). The displacement increased monotonically, and 

consequently, the equivalent distributed load rose at the same rate. 

Fully grouted elements were modelled as a rectangular cross-section, as explained in 

section 5.3.1.1. For partially grouted trials, a rebar spacing of 627 mm was assumed, with 

only grouted poured of cells with reinforcement (Mohsin 2005, Clayton 2019). 

As the lumped rebar approach was validated (sections 5.3.1 and 5.3.2), all the numerical 

evaluation used an equivalent steel fibre placed at the center of the cross-section. For fully 

grouted trials, an equivalent rectangular section was used to model the homogenized 

behaviour of the masonry and grout as described by Priestly and Elder. For partially 

grouted trials a simplified equivalent section as shown in section 5.3.2.2 

All the data points were obtained using a consistent criterion. The max crushing strain of 

the masonry was set to 0.003, as the CSA S304-14 recommends. The values were 

obtained at the maximum applied moment due to the lateral pressure (i.e. ultimate load). 

If a maximum applied moment was not achieved before the crushing strain of the 

masonry, the values at crushing were used. Any simulation that did not achieve a 

convergence before reaching the crushing strain of the masonry was discarded. 

5.4.2 Fixed Parameters 

These types of parameters were not changed throughout the study and were constant for 

all the walls modelled. The thickness of the block, the yield strength and modulus of 
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elasticity of the steel, the boundary conditions, and the grouted cell arrangements were 

the fixed parameters of this study.  

A thickness of the block of 190 mm was selected, which is equivalent to a 20 MPa 

nominal block thickness used in Canada. The typical yield strength of the reinforcement 

in Canada is 400 MPa, while in the United States 416 MPa (60 ksi). For consistency, a 

yield strength of 400 MPa with a modulus of elasticity of 200 GPa was selected. All the 

walls were investigated under pinned-pinned conditions.  

The fixed parameters are summarized in Table 5.8. 

Table 5.8 – Fixed Parameters Summary. 

Parameter Value 

𝑓𝑦  (MPa) 400 

Steel Modulus of Elasticity (GPa) 200 

Block Thickness (mm) 190 

Wall Width (mm) 1200 

Number of Grouted Cells  
6/6 For Fully Grouted 

2/6 For Partially Grouted 

 

5.4.3 Dependent Parameter 

The dependent parameter of this study consisted of the OOP stiffness of the reinforced 

masonry walls. This parameter is investigated using the ratio between the primary source 

of moment induced in the system and the total moment accounting for geometrical 

nonlinearities (M1/Mt) at the ultimate load.  

5.4.4 Independent Parameter  

The independent parameters were varied to investigate their effects on the dependent 

parameter. This study had four independent parameters consisting of the compressive 

strength of the masonry (𝑓𝑚
′ ), the reinforcement ratio (ρ), the slenderness ratio (h/t), and 

the axial load (P).  
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Table 5.9 and 5.10 summarize the variation of the parameters used per simulation for the 

fully grouted and partially grouted trials, respectively.  

Table 5.9 – Model simulation Matrix for Fully-grouted trials 

Parameter Range 
Variation per 

simulation 
Total Variations 

Axial load (kN/m) 5-105 5 kN/m  21 

Slenderness ratio 

(h/t) 
20-60 10  5 

 Steel reinforcement 

ratio ρ (%) 
0.52 – 2.63 0.52 5 

𝑓𝑚
′  (MPa) 10-30 10 3 

 

Table 5.10 – Model simulation matrix for partially-grouted trials 

Parameter Range 
Variation per 

simulation 
Total Variations 

Axial load (kN/m) 5-100 10 kN/m  11 

Slenderness ratio 

(h/t) 
20-60 10  5 

 Steel reinforcement 

ratio ρ (%) 
0.175 – 0.52 0.175 3 

𝑓𝑚
′  (MPa) 10-30 10 3 

 

The axial loading was selected as an independent parameter to investigate both its effects 

on the flexural stiffness of the cross-sections and the overall stability of the element. The 

variation range was chosen based on discussions with practicing engineers in Alberta. 

Typical axial loads for loadbearing masonry walls in Canada range between 50 kN/m and 

70 kN/m. In this study, it was expected to develop a regression analysis for fully grouted 

elements. Therefore, a more extensive data set was created for fully grouted trials.   

Multiple slenderness levels were selected to compare the evolution of the second-order 

effects as the slenderness ratio increases. With a constant block thickness throughout the 

simulations, the wall height was increased by 1.9m per step. The minimum ratio selected 
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(i.e. 20) corresponds to a relatively short wall on which second-order effects might not 

be significant. The maximum height is 11.4m (i.e. h/t = 60), representing a very tall wall 

where the second-order effects are expected to govern the design. 

Three levels of compressive strength of the masonry were adopted. Low (10 MPa), 

medium (20 MPa) and high compressive strength levels (30 MPa).  This parameter was 

selected to understand the evolution of the flexural stiffness under different levels of 

compressive strength. For this study,  nominal masonry capacities were used.  

For the fully grouted walls, the minimum reinforcement ratio ρ selected (i.e. 0.52%) for 

the analysis is equivalent to 10M(11.3 mm) rebars spaced every 200 mm. The maximum 

ρ (i.e. 2.63%) represents a highly reinforced structure with 25M bars every 200 mm. 

Although this amount of steel might not be feasible for some solutions, future standard 

versions might start accepting higher reinforcement ratios with more relaxed provisions. 

For the partially grouted trials, the reinforcement ratio was selected based on a rebar 

spacing of 600 mm. Thus, the minimum ratio studied (0.25%) represents a reinforcement 

arrangement of 10M bars every 600 mm, while the highest is equivalent to 20M bars 

every 600 mm. 

From the total of 1575 fully grouted simulations, 42 were discarded due to convergence 

issues. From the 495 partially grouted trials, the total number of valid simulations were 

403. 

5.4.5 Effects of the Independent Parameters.  

To evaluate the effect of the independent parameters in the second-order effects of 

RMWs, M1/Mt versus Axial Load graphs were developed. M1 in the graph refers to the 

maximum applied moment due to the lateral pressure, while MT is the total moment in 

the element, which includes the primary and secondary moments. M1/Mt refers then to 

the inverse of the moment magnification factor. This is the factor the primary moment 

must be multiplied by to obtain the moment capacity or design moment of the wall. Thus, 

the smallest the ratio M1/Mt is, the larger the second-order effects are. These figures are 
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presented for all the reinforcement ratios and compressive strength levels studied (From 

Fig. 5.22 to 5.29).  

 

 

 Figure 5.22 – M1/Mt vs Axial Load. Partially grouted 𝜌 = 0.175% 

 

 Figure 5.23 – M1/Mt vs Axial Load. Partially grouted 𝜌 = 0.35% 

 

 Figure 5.24 – M1/Mt vs Axial Load. Partially grouted 𝜌 = 0.52% 
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 Figure 5.25 – M1/Mt vs Axial Load. Fully grouted 𝜌 = 0.52% 

  

Figure 5.26 – M1/Mt vs Axial Load. Fully grouted 𝜌 = 1.01% 

  

Figure 5.27 – M1/Mt vs Axial Load. Fully grouted 𝜌 = 1.57% 
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 Figure 5.28 – M1/Mt vs Axial Load. Fully grouted 𝜌 = 2.1% 

 

 Figure 5.29 – M1/Mt vs Axial Load. Fully grouted 𝜌 = 2.6% 

5.4.5.1 Effect of the Axial Load 

As illustrated in the above figures, the second-order effects are influenced by the axial 

loading induced in the structural system. The axial load has a significant role in both the 

flexural stiffness of the cross-section and the instability effects induced in the global 

system. As commented before (Section 4.3.3.4.1), increasing compressive axial forces is 

known to decrease the curvature of the cross-section and hence enhance the flexural 

rigidity (EI) of the cross-section. However, it simultaneously increases the geometrical 

nonlinearity induced in the system due to the second-order effects leading to a decrease 

in the global stiffness (k). 

To illustrate this phenomenon, Fig 5.30 and Fig 31 are presented. Fig 5.30 illustrates the 

normalized total lateral load (𝜎ℎℎ/𝑓𝑚
′ 𝑡) versus the normalized mid-span deflection (∆/𝑡) 

for a fully grouted specimen with a slenderness ratio of 40, subjected to concentric axial 
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loads of  40, 60, 80 and 100 kN/m. Fig. 5.31 shows the evolution of the total, the primary 

and the second-order moment for the same wall under a 100 kN/m of axial load. 

 

Figure 5.30– Normalized Lateral pressure versus normalized mid-span deflection. 𝜌 =

1%. Variable Axial Load. 
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 Figure 5.31 – Total, primary, and second-order moment evolution versus normalized 

mid-span deflection. 𝜌 = 1%. P = 100 kN/m. 

In Fig. 5.31, the decrease in the applied pressure due to the higher axial forces is shown. 

Between 0.1 to 0.4 ∆/𝑡,  the enhancement of the flexural rigidity due to the compressive 

forces is evident. A greater later pressure is required to achieve the same deformation for 

walls with higher axial loads. However, as the applied pressure rises, geometrical 

nonlinearities become predominant, leading to a lower capacity at ultimate load. The 

reduction in the lateral load capacity indicates that the proportion of first-order moments 

from the total moment decreases. This behaviour is clearly shown in Fig. 5.30. At low 

deformation levels, the total moment is mainly due to the lateral applied pressure. Since 

the structure keeps deforming, the second-order moment grows gradually, while the 

increment rate of the primary moment starts to decline. An inflection point is eventually 

reached at approximately 1.7∆/𝑡 where the proportion of second-order effects becomes 

dominant, and the primary source of moments drops.  

It is essential to notice that the axial load also modifies the mode of failure on which the 

ultimate load is reached. At low axial load levels (e.g. 5 kN/m to 35 kN/m), the material 
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failure governs the ultimate load. Due to the strain hardening of the steel, the lateral 

applied load kept rising to the maximum crushing strain 0.003 was reached. The ultimate 

load is no longer achieved at the crushing strain for higher axial load levels (e.g. 40 kN/m 

to 105 kN/m). The second-order effects become more predominant, and the ultimate 

condition depends on the stability effects rather than the material behaviour.  

For all the conditions evaluated in this study, the critical buckling load was never reached. 

However, as the instability condition is amplified due to the axial loading, higher forces 

would produce pronounce instability effects in the M1/Mt ratio. Although the structure 

did not buckle under the applied axial load, the system reached an instability condition, 

where a small pressure translated into a rapid increment of the deformation. Thus, it 

becomes difficult to develop significant bending stresses in the section at ultimate load. 

This effect is more notorious in partially grouted elements as their gross inertia is lower 

than fully grouted sections. Revision of the data showed that the axial loading drastically 

shifted the failure mode in some partially grouted trials.   

5.4.5.2 Effect of the Slenderness Ratio 

As the slenderness ratio increases, the structure becomes more susceptible to moment 

amplifications due to second-order effects. However, it is essential to point out that the 

slenderness ratio does not modify the flexural rigidity (𝐸𝐼) of the cross-section but 

decreases the global stiffness matrix (k) due to the geometrical nonlinearities. This can 

be shown by comparing two walls with identical cross-sections subjected to the same 

axial load levels. For instance, in Fig. 5.25 a wall with a compressive strength of 10 MPa 

under an axial load of 50 kN/m and a height-to-thickness ratio of 40, has an M1/Mt ratio 

of 0.72, while the same section for a slenderness ratio of 50 the M1/Mt is 0.49. This 

represents an increment of 47% of the second-order moment from increasing the height 

of the structure by 1.9 meters.  

Additionally, the slenderness ratio modifies the failure condition on which the ultimate 

load is reached. For smaller ratios (e.g. 20), the second-order effects might not be 

significant, therefore, the failure is usually governed by crushing of the masonry even 

under high axial forces. For higher ratios, the ultimate load is reached due to instability. 
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Partially grouted elements seem to be more susceptible to slenderness effects as the gross 

inertia is smaller than fully grouted trials. Instability effects were presented under any 

axial load level for the partially grouted trials with 𝜌 = 0.175% and slenderness ratio 

greater than 40.  

5.4.5.3 Effects of the Reinforcement Ratio. 

From Fig 5.22 to 5.29 it seems that structures with higher reinforcement ratios are less 

susceptible to slenderness effects. Based on transformed section principles, the area of 

steel is transformed into equivalent masonry area through the modular ratio (n). Thus, the 

more steel in the section, the greater the cracked moment of inertia. 

Additionally, it should be noticed that increasing the reinforcement area sacrifices the 

ductility of the walls. For heavily reinforced walls, the second-order effects are less 

significant, and the ultimate load is mainly achieved at the crushing strain of the masonry, 

while the rebars do not reach the yielding strain. In lower reinforcement ratios, the 

yielding of the rebar is achieved, and the stiffness of the section is affected by the yield 

strain developed. The more ductility the system experiment, the higher the stiffness 

degradation at ultimate load will be. 

5.4.5.4 Effect of the Compressive Strength 

The modulus of elasticity of the masonry rises whenever the compressive strength is 

increased. Consequently, higher 𝑓′𝑚 will often translate in a clear enhancement of the 

stiffness if the ultimate load is achieved when the structure is still in its linear range or in 

moderate ductility levels. However, if the strength of the masonry increases, less masonry 

area would be needed to equilibrate the tension forces from the steel in the internal 

equilibrium. The neutral axis (𝑐) is then reduced, and by compatibility analysis, more 

strain could be developed in the steel reinforcement. For instance, at reinforcement ratios 

greater than 1.5, the yield strain of the rebar was achieved only under compressive 

strength levels of 20 and 30 MPa. In cases where a high yield strain is developed, the 

stiffness is degraded due to the ductility effects.   
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5.4.6 Comparison and Evaluation of the Second-order Effects Calculated using the 

North American Standards. 

In section 5.4.5 it was discussed the effect of the independent parameters in the second-

order effects of RMWs. This section compares the moment amplification factor obtained 

by the Canadian standard (CSA S304-14) and the American standard (TMS 402-16) 

against the results from the numerical evaluation. The methods are evaluated using the 

same simulations presented in section 5.4.5. The influence of the independent parameters 

on the percentage of error produced in the MM method is discussed. 

 

These factors are calculated using the moment magnifier method as described in section 

4.3.2. For all the data sets created in this section, the effective length (k) and the 

𝑐𝑚 factors mandated by the CSA S304-14, are taken as 1. Thus, the conditions used to 

calculate all the amplification factors are identical. The expression used in this section is 

given by equation 5.1. 

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = (
1

1 −
𝑃𝑓

𝑃𝑐𝑟

)  5.1 

Where 𝑃𝑓 is the applied axial load and 𝑃𝑐𝑟 is the critical buckling load assuming a k factor 

equal to 1. 

Two sets of graphs are shown per each reinforcement ratio, set "A” and set "B". 

Set "A" corresponds to contour plots that illustrate the percentage of error between the 

moment magnification factor calculated by each standard and the numerical analysis. A 

constant scale is used for all the groups to facilitate the comparison under different 

reinforcement ratios. The contour is generated using cubic interpolation between the 

available values. The blank spaces in set "A" represent points where the critical buckling 

load is exceeded according to the standards, and consequently, an amplification factor 

cannot be calculated. This set of graphs can be used as an estimation to determine at 
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which range of value the moment amplifications calculated are within an acceptable 

margin of error.  

Set "B" shows the ratio of M1/MT versus the axial load, similarly to section 5.4.5. M1/Mt 

refers then to the inverse of the amplification factors calculated using equation 5.1. CSA 

S304-14 expression neglecting the reduction factor 𝜑𝑒 is also included to evaluate the 

consequences of reducing by 25% the cracked moment of inertia. As commented in 

section 4.2.1, the equations to calculate the effective stiffness proposed by the TMS 402-

16  are only valid if the neutral axis (U.S. 4-1) is within the face shells. If the neutral axis 

is beyond the face shell, the standards mandate to compute the stiffness using any method 

rooted in strength of materials and equilibrium. For those cases, in this study, the effective 

stiffness was calculated using the following equations (5.2 and 5.3), which are derived 

based on transformed section analysis of cracked sections. This approach considers the 

axial loading in both the calculation of the depth of the neutral axis and the cracked 

moment of inertia. 

𝑐 =

−𝑛(𝐴𝑠 +
𝑃

(𝑓𝑠)) + √(𝑛 (𝐴𝑠 +
𝑃
𝑓𝑠

))

2

+ 2𝑛𝑑𝑏𝑒𝑓𝑓 (𝐴𝑠 +
𝑃
𝑓𝑠

)

𝑏𝑒𝑓𝑓
 

 5.2 

 

𝐼𝑐𝑟 = 𝑛 (𝐴𝑠 +
𝑃𝑢

𝑓𝑠
) (𝑑 − 𝑐)2 +

𝑏𝑐3

3
  

 5.3 

Where 𝑃 is the applied axial load, 𝑛 is the modular ratio, 𝐴𝑠 is the area of steel, 𝑏𝑒𝑓𝑓  is 

the effective width, and 𝑓𝑠  is the stress in the steel calculated by Hooke’s Law and should 

not exceed the yield strength. 
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Figure 5.32 – Set A. Percentage of error in Moment Magnification factors. Partially 

ρ=0.175% 
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Figure 5.33 – Set B. M1/Mt vs Axial Load. Partially grouted ρ=0.175%  
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Figure 5.34 – Set A. Percentage of error in Moment Magnification factors. Partially 

ρ=0.35% 
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Figure 5.35 – Set B. M1/Mt vs Axial Load. Partially grouted ρ=0.35% 
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Figure 5.36 – Set A. Percentage of error in Moment Magnification factors. Partially 

ρ=0.52% 
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Figure 5.37 – Set B. M1/Mt vs Axial Load. Partially grouted ρ=0.52% 
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Figure 5.38 – Set A. Percentage of error in Moment Magnification factors. Fully 

grouted ρ=0.52% 
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Figure 5.39 – Set B. M1/Mt vs Axial Load. Fully grouted ρ=0.52%  
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Figure 5.40 – Set A. Percentage of error in Moment Magnification factors. Fully 

grouted ρ =1.05% 
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Figure 5.41 – Set B. M1/Mt vs Axial Load. Fully grouted ρ=1.05%  
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Figure 5.42 – Set A. Percentage of error in Moment Magnification factors. Fully 

grouted ρ =1.57% 
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Figure 5.43 – Set B. M1/Mt vs Axial Load. Fully grouted ρ=1.57%  
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Figure 5.44 – Set A. Percentage of error in Moment Magnification factors. Fully 

grouted ρ =2.1% 
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Figure 5.45 – Set B. M1/Mt vs Axial Load. Fully grouted ρ=2.1%  
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Figure 5.46 – Set A. Percentage of error in Moment Magnification factors. Fully 

grouted ρ =2.6% 
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Figure 5.47 – Set B. M1/Mt vs Axial Load. Fully grouted ρ=2.6%  
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Throughout the discussion, it is important to consider that the percentage of error in the 

amplification factors should not only be attributed to inaccuracy of the standard equation 

in estimating the flexural rigidity of the element. This section evaluates the ability to 

calculate the second-order effects with the moment magnifier method using the effective 

stiffness expression proposed by each standard, but the method itself is not being 

evaluated.  

From the set of figures A and B, it seems that the procedure described in CSA S304-14    

is the most conservative. Neglecting the reduction factor ∅𝑒  has proven to improve the 

performance of the CSA S304-14 equation considerably. TMS 402-16 is the most viable 

solution within the group, however, the expression is only applicable for structures with 

reinforcement ratios lower than 1.8%. For higher reinforcement ratios, the percentage of 

error shown in the set of figure B attributed to TMS 402-16  are calculated using equations 

5.2 and 5.3. 

Gradual increment in the axial loading leads to an exponential rise in the percentage of 

error of the magnification effects computed using the North American standards. The 

moment magnification factor relies on the ratio between the applied axial load and the 

𝑃𝑐𝑟 (𝑃/𝑃𝑐𝑟). CSA S304-14 does not exhibit the influence of the axial loading in the 

calculation of the effective stiffness, consequently, the 𝑃𝑐𝑟 is only dependant on the 

mechanical properties of the cross-section, such as the amount of steel and the 

compressive strength (𝑓𝑚
′ ). While the axial loading is making the walls stiffer in the 

numerical model, the 𝑃𝑐𝑟 calculated using CSA S304-14 expression remains constant. 

TMS 402-16 considers a non-linear stress distribution and the interaction of the axial load 

in the flexural stiffness. Thus, the percentage of error is much lower compared to the CSA 

S304-14.  While for trials under low axial forces (40 kN/m), the amplification factors 

from both standards are relatively similar, the difference grows exponentially for higher 

forces. To compare both standards, a reference point was selected. This point represents 

a fully grouted trial with a reinforcement ratio of 0.52%, a 𝑓𝑚
′  of 10 MPa, a slenderness 

ratio of 30, subjected to an axial load of 60 kN/m. Under these parameters, the 

magnification factor calculated using the CSA S304-14  is approximately 3.5 times higher 

than that of the numerical model, while the factor calculated using the TMS 402-16 is 
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about 1.5 times bigger than that of the analytical response. This represents a relative 

difference of 133% between the CSA S304-14 and TMS 402-16 because of the axial load 

increment.  

Additionally, it was found that the moment magnifier method was not applicable in some 

circumstances. For high axial loads, the 𝑃𝑐𝑟 calculated using CSA S304-14 exceeded the 

applied axial load in many circumstances where the numerical evaluation did not exhibit 

any instability issue. Consequently, an amplification factor cannot be calculated in cases 

where the failure mode is governed by material failure according to the numerical 

evaluation (i.g.  
ℎ

𝑡
= 30, 𝜌 = 0.52%, 𝑃 = 50 𝑘𝑁/𝑚). On the contrary, the 𝑃𝑐𝑟 calculated 

using TMS 402-16  was only exceeded in a few cases before the numerical model showed 

pronounce instability effects 

In some trials, the percentage of error exceeded 900% (e.g. 
ℎ

𝑡
= 50, 𝜌 = 1.26%, 𝑃 =

80 𝑘𝑁/𝑚). Due to the nature of the moment magnifier method, for cases on which the 

𝑃𝑐𝑟 calculated is closer to the applied load, the percentage of error tends to grow 

exponentially. Under these conditions, the error could be attributed to the compound 

effect related to the limitations of the moment magnifier method and the effectiveness of 

the equations to compute flexural rigidities.  

The variation in slenderness ratio has a similar effect as the axial loading in the percentage 

of error. In both sets of figures, it was shown that the rate of error grows exponentially as 

the height-to-thickness ratio is increased. A higher slenderness ratio reduced the critical 

buckling load. Hence, the error induced in the moment amplification calculator increases. 

However, it appears that both standards are susceptible to the influence of slenderness by 

a similar margin. No significant discrepancy was found in the relative difference in the 

percentage of error between the standards compared to the numerical model when the 

height of the structure was varied.  

The percentage of error in the moment amplifications are reduced when higher 

compressive strengths (𝑓𝑚
′ ) are used. This statement applies to both standards. TMS 402-
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16 seems to be more susceptible to the influence of this parameter. Chapter 4, section 

4.3.3.4.4 showed that the effective stiffness is enhanced by higher compressive strength 

according to the expressions proposed in the standards. However, TMS 402-16 

expression was more sensitive to the variation of this parameter (Fig 4.9). In the context 

of the error percentage, a deviation of 10 MPa reduced the error by up to 15% for CSA 

S304-14 amplifications compared to the analytical results. The same variation could 

decrease up to 30% of error in the factors computed using TMS 402-16.  

At higher reinforcement ratios, the stiffness calculations appear to be more accurate in 

both countries. Therefore, the percentage of error in the amplification effects are lower. 

In Chapter 4 section 4.3.3.4.5, it was proven that the area of steel in the cross-section 

enhanced the OOP stiffness of the wallets. It was also shown that the rate of increment 

was proportionally in both standards. Increasing the reinforcement ratio by 0.5% 

decreases the percentage of error by up to approximately 50%, in slender structures (i.e. 

30 h/t) subjected to high axial forces. It should be noted that the TMS 402-16 expression 

was only applicable for reinforcement ratios lower than 1.8%. For walls with a higher 

reinforcement area, the moment amplifications were computed using 5.2 and 5.3. Using 

the TMS 402-16 expression to calculate the moment magnification factors for 

reinforcement ratios higher than 1.8% would result in unconservative moment 

amplification. To some extent, the cracked moment of inertia calculated under this 

parameter exceeded the gross inertia even for sections with minimal axial forces. 

Penalizing the flexural stiffness in CSA S304-14 by a reduction factor seems unnecessary. 

Although the factor intends to predict any uncertainties, the degree of conservatism 

already inherent in the equation seems high enough so that the factor becomes 

unnecessary. The performance of the equation improved considerably when the factor 

was removed, mainly for short walls under low axial load. To some extent, amplification 

effects under low axial load levels were relatively close to those computed using TMS 

402-16 . 

All the above discussion is applicable for both partially and fully grouted elements, 

however, the percentage of error related with partially grouted trials appears to be more 
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pronounced than in solid sections due to its lower gross moment of inertia and masonry 

area.  

5.4.6.1 Range of Acceptable Results of the Moment Magnifier Method. 

The previous sections showed that the error related to the moment magnification factors 

depends on the interaction between the axial loading, slenderness ratio, steel 

reinforcement, and compressive strength of the masonry. Therefore, selecting a range for 

which the moment magnifier method produces acceptable results is only possible if the 

interactions between the mentioned parameters are considered.  

 

A threshold value of a percentage of error of 30% in the moment amplification factor is 

identified as an acceptable result, according to the author. This error is equivalent to 

amplifying the acting moment by 1.3 times more than it is required to compute the total 

moment of the element. The range of parameters on which the moment magnifier method 

would produce less than 30% of error are shown from Table 5.11 to Table 5.18. 

Combinations of parameters marked in the tables with an “O” represent scenarios with a 

lower or equal error than the threshold value selected.   
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Table 5.11  – Acceptable results. Partially grouted wall ρ = 0.175% 
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Table 5.12 – Acceptable results. Partially grouted wall ρ = 0.35% 
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Table 5.13 – Acceptable results. Partially grouted wall ρ = 0.52% 
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Table 5.14 – Acceptable results. Fully grouted wall ρ = 0.52% 
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Table 5.15 – Acceptable results. Fully grouted wall ρ = 1.05% 
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Table 5.16  – Acceptable results. Fully grouted wall ρ = 1.57% 
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Table 5.17  – Acceptable results. Fully grouted wall ρ = 2.19% 
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Table 5.18 – Acceptable results. Fully grouted wall ρ = 2.63% 

C
S

A
 S

3
0
4
-1

4
  

∅
𝑒
=

0
.7

5
 

h/t 
Compressive Strength (𝑓𝑚

′ ) 

10 MPa 20 MPa 30 MPa 

60 O O     O O O    O O    

50 O O     O O O    O O O    

40 O O O    O O O O O  O O O O O  

30 O O O O O  O O O O O O O O O O O O 

20 O O O O O O O O O O O O O O O O O O 

                    

C
S

A
 S

3
0

4
-1

4
  
  

∅
𝑒
=

1
 

60 O O     O O O    O O O    

50 O O O O   O O O O O  O O O O O  

40 O O O O   O O O O O O O O O O O O 

30 O O O O O O O O O O O O O O O O O O 

20 O O O O O O O O O O O O O O O O O O 

                    

T
M

S
 4

0
2
-1

6
  60 O O O    O O O O   O O O O   

50 O O O O   O O O O O O O O O O O O 

40 O O O O O O O O O O O O O O O O O O 

30 O O O O O O O O O O O O O O O O O O 

20 O O O O O O O O O O O O O O O O O O 

 
Axial 

Load 

kN/m 
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 

 

5.4.7 Regression Analysis. 

5.4.7.1 Regression analysis for the prediction of the effective stiffness calculated from 

the strain profile according to the numerical model. 

This section explores the capacity of developing an equation to calculate the effective 

stiffness of RMWS through multilinear regression analysis. The data set was created 

using the numerical simulations shown in the previous sections. The effective stiffness 

was calculated at ultimate load, which represents the maximum lateral load that could be 

applied at the structure before the push-over curves started to degrade. It was calculated  

as 
𝑀

∅
= 𝐸𝐼𝑒𝑓𝑓 . The curvature was calculated from the strain profiles by dividing the 

masonry strain at ultimate load over the depth of the neutral axis  (𝜙 =
𝜀𝑚

𝑐
). The depth of 

the compressive masonry block was calculated assuming that plane sections remained 

plane.  
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Only data points from the fully grouted trials were used in this analysis. The regression 

analyses were conducted using the Sklearn library available in the computer language 

"Python". From multiple analyses, the three most accurate alternatives are shown and 

discussed in this section. The total number of walls considered for the regression analysis 

was 1492. The training data was set to 30% of the total number of walls. 

The performance of the proposed equations is graphically shown in Fig. 5.48 and in 

subsequent plots of predicted effective stiffness (From the regression analysis) against 

the analytical effective stiffness (From the numerical evaluation). The red line is the ideal 

scenario, where the predicted stiffness is equal to the analytical stiffness. Both the training 

and the testing data are plotted. Any point above the red line overestimates the effective 

stiffness, while points below this line are conservative results. The closer the points to the 

red line, the better is the performance of the model. As performance indicators the RMSE 

was selected as a measure of precision and the ME as a measure of bias, while the 

𝐸𝑚𝐸𝐼𝑒𝑓𝑓 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)/𝐸𝑚𝐸𝐼𝑒𝑓𝑓 (𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙) ratios as a measure of accuracy. 

The first linear regression model present is the simplest within the group MLR1. A single 

equation is proposed to estimate the flexural rigidity for all the reinforcement ratios 

evaluated.  
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Figure 5.48 - Regression plot. Multilinear Regression 1 (MLR1). 

𝐸𝑚𝐼𝑒𝑓𝑓 = 3505.64𝑃 + 611.717𝐴𝑠 + 28517.94𝑓𝑚
′ + 5616.90 (

ℎ

𝑡
) − 498664.35  MLR1 

Where 𝑃 is the axial load in kN, 𝐴𝑠 represents the total areal of steel in 𝑚𝑚2, 𝑓′𝑚 is the 

grouted compressive prism strength in MPa, and 
ℎ

𝑡
 is the height-thickness ratio. 𝐸𝑚𝐼𝑒𝑓𝑓 is 

expressed in 𝑁 − 𝑚2.  

The performance indicator from the MLR1, is shown in Table 5.19. 
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Table 5.19 – Performance Indicator MLR1 

Indicator Value 

𝐑𝟐 0.88 

RMSE (𝑵 − 𝒎𝟐) 213371.19 

ME (𝑵 − 𝒎𝟐) 42499.63 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝑷

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝑨

𝒏
𝒂

𝒍𝒚
𝒕𝒊

𝒄
𝒂

𝒍)
 

Average 1.039 

Min 0.64 

Max 1.54 

St. Dev 0.14 

 

It was shown in section 5.4.5 that structures with lower reinforcement ratios exhibit 

yielding of the rebars at the ultimate load. Considering the ductility effects, a more 

complicated alternative is proposed as MLR2. Two equations are presented, which are 

conditioned by the reinforcement ratio. The regression plot is shown Fig. 5.49. 

  

Figure 5.49 - Regression plot. Multilinear Regression 2 (MLR2) 
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𝐸𝑚𝐼𝑒𝑓𝑓 = 5607.70𝑃 + 505.93𝐴𝑠 + 10960.11𝑓𝑚
′ + 10199.11 (

ℎ

𝑡
)

− 211274.16                                                  𝐹𝑜𝑟 𝜌 < 1.5 

𝐸𝑚𝐼𝑒𝑓𝑓 = 2812.55𝑃 + 599.40𝐴𝑠 + 38155.99𝑓𝑚
′ + 4456.93 (

ℎ

𝑡
)

− 582060.06                                                      𝐹𝑜𝑟  𝜌 ≥ 1.5 

MLR2 

Where 𝑃 is the axial load in kN, 𝐴𝑠 represents the total areal of steel in 𝑚𝑚2, 𝑓′𝑚 is the 

grouted compressive prism strength in MPa, and 
ℎ

𝑡
 is the height-thickness ratio. 𝐸𝑚𝐼𝑒𝑓𝑓 is 

expressed in 𝑁 − 𝑚2 . 

The performance indicator from the MLR2, is shown in Table 5.20. 

Table 5.20 – Performance Indicator MLR2 

Indicator Value 

𝐑𝟐 0.91 

RMSE (𝑵 − 𝒎𝟐) 182415.55 

ME (𝑵 − 𝒎𝟐) 26725 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝑷

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝑨

𝒏
𝒂

𝒍𝒚
𝒕𝒊

𝒄
𝒂

𝒍)
 

Average 1.016 

Min 0.75 

Max 1.52 

St. Dev 0.11 

 

The non-linear evolution of the effective stiffness is impossible to describe perfectly 

using a multi-linear regression. Therefore, the possibility of adding polynomial 

coefficients to the equations is explored, and the results of a polynomial regression (PR1) 

are shown in Fig. 5.50. 
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Figure 5.50 - Regression plot. Polynomial Regression (PR1). 

𝐸𝑚𝐼𝑒𝑓𝑓 = 1661.14𝑃 + 578.68𝐴𝑠 − 32785.13𝑓𝑚
′ + 108.91 (

ℎ

𝑡
)

− 6.34𝐴𝑙2 − 1.56𝑃𝐴𝑠 + 150.48𝐴𝑙𝑓𝑚
′ + 58𝑃 (

ℎ

𝑡
)

− 0.044𝐴𝑠2 + 20.61𝐴𝑠𝑓𝑚
′ − 3.79𝐴𝑠 (

ℎ

𝑡
) − 1358.29𝑓𝑚

′

− 5884655.41 

(4.4) 

Where 𝑃 is the axial load in kN, 𝐴𝑠 represents the total areal of steel in 𝑚𝑚2, 𝑓′𝑚 is the 

grouted compressive prism strength in MPa, and 
ℎ

𝑡
 is the slenderness ratio. 𝐸𝑚𝐼𝑒𝑓𝑓  is 

expressed in 𝑁 − 𝑚2  

The performance indicators from the PR1, are shown in Table 5.21. 
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Table 5.21 – Performance Indicator PR1 

Indicator Training 

𝐑𝟐 0.95 

RMSE (𝑵 −
𝒎𝟐) 

127912.20 

RMSE (𝑵 −
𝒎𝟐) 

-3726.97 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝒂

𝒏
𝒂

𝒍𝒚
𝒊𝒄

𝒂
𝒍)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝒑

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

) 
Average 1.01 

Min 0.46 

Max 1.25 

St. Dev 0.11 

 

5.4.7.1.1 Discussion 

The three alternatives have shown a moderate level of accuracy and precision based on 

the interpretation of the author. MLR2 has been identified as the most optimal solution. 

MLR1 is the simplest expression but is highly outperformed by the other regressions. 

PR1 is a single and precise equation, but it requires 12 coefficients, which might not be 

feasible for designers.  

The 𝑅2 value from MLR2 indicates an excellent correlation, however, it is not a reliable 

performance indicator. The ME is relatively low, considering the units and the max and 

min values of the effective stiffness used for the analysis, which indicates a low bias. The 

average 𝐸𝑚𝐼𝑒𝑓𝑓 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)/𝐸𝑚𝐼𝑒𝑓𝑓 (𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙) is close to 1, which is another factor that 

indicates high accuracy. A low standard deviation suggests a relatively small spread of 

the estimated values. However, it is difficult to interpret the RMSE and ME values 

without references to compare. Therefore, the same indicators are calculated for the North 

American expressions for the same range of parameters used in the regression analysis.  

5.4.7.2 Performance indicator of current North American equations 

Performance indicators and plots based on the same data set used in the regression 

analysis are provided for the North American Standards. Fig.  5.51 shows the performance 
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plot for the equation recommended by the Canadian Standard (CSA S304-14 ). The 

reduction factor ∅𝑒  is included. The performance indicators are summarized in Table 

5.22. 

 

Figure 5.51 - Regression plot CSA S304-14 ∅𝑒 = 0.75. 

Table 5.22 – Performance Indicator CSA S304-14 ∅𝒆 = 0.75. 

Indicator Results 

𝐑𝟐 0.86 

RMSE (𝑵 −
𝒎𝟐) 

819372.087 

RMSE (𝑵 −
𝒎𝟐) 

760327.57 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝒂

𝒏
𝒂

𝒍𝒚
𝒊𝒄

𝒂
𝒍)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝒑

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

) 

Average 1.84 

Min 1.19 

Max 2.50 

St. Dev 0.20 
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In section 5.4.6, it was shown that the degree of conservatism added by using a reduction 

factor was unnecessary. The performance indicators for the Canadian expression 

neglecting the reduction factors are also calculated for comparison purposes. Fig. 5.52 

shows the performance plot for CSA S304-14  ∅𝑒 = 1. The indicators are summarized in 

Table 5.23. 

 

Figure 5.52 - Regression plot CSA S304-14  ∅𝑒 = 1.  

Table 5.23 – Performance Indicator CSA S304-14  ∅𝒆 = 1. 

Indicator Results 

𝐑𝟐 0.88 

RMSE (𝑵 −
𝒎𝟐) 

500696.82 

RMSE (𝑵 −
𝒎𝟐) 

452888.53 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝒂

𝒏
𝒂

𝒍𝒚
𝒊𝒄

𝒂
𝒍)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝒑

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

) 

Average 1.3815 

Min 0.98 

Max 1.87 

St. Dev 0.15 
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The performance plot and indicators for the TMS 402-16 equation are shown in Fig. 5.53 

and Table 5.24, respectively. These indicators were calculated using the expression from 

the TMS 402-16 to the applicable parameters and the transformed section analysis for 

cases on which the American procedure is not viable. 

 

Figure 5.53 - Regression plot TMS 402-16 and Transformed Section Analysis. 

Table 5.24 – Performance Indicator TMS 402-16 and Transformed Section Analysis. 

Indicator Results 

𝐑𝟐 0.89 

RMSE (𝑵 −
𝒎𝟐) 

296229.57 

RMSE (𝑵 −
𝒎𝟐) 

231403.76 

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
( 𝒂

𝒏
𝒂

𝒍𝒚
𝒊𝒄

𝒂
𝒍)

𝑬
𝒎

𝑰 𝒆
𝒇

𝒇
(𝒑

𝒓
𝒆

𝒅
𝒊𝒄

𝒕𝒆
𝒅

) 

Average 1.15 

Min 0.89 

Max 1.48 

St. Dev 0.11 
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5.4.7.2.1 Discussion and Comparison 

All the indicators for the existent equations and the model developed are summarized in 

Table 5.25. 

Table 5.25 – Comparison of performance indicators according to standards equation 

and regression analysis. 

Equation 𝑅2 RMSE  

(𝑁 − 𝑚2)   

ME  

(𝑁 − 𝑚2) 

𝐸𝑚𝐼𝑒𝑓𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝐸𝑚𝐼𝑒𝑓𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 

Average Std. Dev 

MLR1 0.88 213371.19 -42499.63 1.039 0.14 

MLR2 0.91 182415.55 26725 1.016 0.11 

PR1 0.95 127912.20 -3726.97 1.01 0.11 

CSA S304-14    

∅ = 0.75 
0.86 819372.08 760327.57 1.84 0.20 

CSA S304-14    

∅ = 1 
0.88 500696.82 452888.53 1.381 0.15 

TMS 402-16  0.89 296229.57 231403.76 1.15 0.11 

 

Of the existing equations, the TMS 402-16 alternative had the best performance. The 

average 𝐸𝑚𝐼𝑒𝑓𝑓 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
/𝐸𝑚𝐼𝑒𝑓𝑓 (𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)

 is close to 1, with a relatively low standard 

deviation, indicating low bias and a small spread of the calculated value. The RMSE value 

is 2.76 times lower than that of the CSA S304-14, and the ME is 3.23 times smaller, 

indicating a significantly lower bias and variance than its counterpart.  

The CSA S304-14 equation had the worst performance within the group. The high values 

of RMSE and ME reflect higher bias and variance than any other equation. An average 

𝐸𝑚𝐼𝑒𝑓𝑓 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
/𝐸𝑚𝐼𝑒𝑓𝑓(𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)

 of 1.84 not only indicates deficient precision but 

also that the values are generally overestimated. 

Neglecting the reduction factor proposed by CSA S304-14 appears to improve the 

performance of the equation by a significant margin. The average is closer to 1 compared 
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to the results influenced by the ∅𝑒  factor. The RMSE and the ME were reduced by 

approximately 40%. 

As illustrated in the regression plots and the min values of 𝐸𝑚𝐼𝑒𝑓𝑓(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
/

𝐸𝑚𝐼𝑒𝑓𝑓 (𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)
 of the TMS 402-16  and CSA S304-14    expressions, there are some 

cases in which the effective stiffness calculated is higher than the stiffness obtained from 

the strain readings. Evaluating the data indicates that in these cases, the walls experienced 

a significant level of ductility. Thus, it is possible that calculating the rigidity of the 

wallets based on Euler Bernoulli's linear approximation is not the most reliable method 

under these circumstances.  

All the regression models generated in this study vastly outperform the existing equations, 

as indicated by the performance indicators. The RMSE from the MLR2 is approximately 

3.84 times lower than that of the CSA S304-14  equation and 1.62 times smaller than that 

of the TMS 402-16 equation. The ME is substantially smaller than any other existing 

equation. The performance plots and indicators demonstrate that the proposed equation 

MLR2 is an effective solution to compute effective stiffness values under the data set on 

which it was developed.  

The M1/Mt vs Axial Load graphs shown in section 5.4.6 were repeated with the inclusion 

of the magnification ratios computed using MLR2. These graphs are shown in Appendix 

A for the fully grouted trials studied.  

5.4.7.3 Limitations of the proposed equation. 

The limitations of the proposed model (MLR2) to calculate the effective stiffness of 

RMWs are listed: 

● A limited range of reinforcement ratios was explored in this study. Rebar yielding 

could appear at the ultimate load for higher axial forces if less reinforcement area 

is used. The regression analysis might fail to follow the non-linear behaviour of 

structures with less steel area.  
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● Partially-grouted walls were not included in the analysis. The accuracy of the 

estimated effective stiffness could be affected by the variation of the gross 

moment of inertia.    

● No reduction factor is applied, and no reliability analysis is developed. The 

effective stiffness was overestimated in some cases. Design equations required a 

degree of conservatism, which can be implemented by including reduction 

factors.  

● It is possible that MLR2 expression fails to estimate the flexural stiffness for walls 

with different parameters that are not between the selected in the study. 

● Data points for high axial load where instability issues are expected were 

neglected. This study does not provide an alternative for those cases. 

5.5 Summary 

Comments of the results from the numerical simulations and the regression analyses 

developed in this study are as follow: 

● The fibre-based model developed in this chapter showed a satisfactory 

correspondence with experimental results of fully and partially grouted full-scale 

tests. 

● The effects of a series of independent parameters in the second-order effects of 

RMWs were evaluated. From the independent variables investigated, the axial 

load and the slenderness ratio were identified as the most critical parameters that 

amplify the second-order effects in RMWs 

● The moment magnification effects are highly conditioned by the applied 

compressive force. Under low axial loads, the ultimate load is achieved at the 

crushing strain of the masonry. High compressive forces amplify the second-order 

effects. Consequently, the ultimate load is no longer achieved at the maximum 

allowed strain. Thus, less strain in the rebars is developed, and for some cases, 

yielded rebars never appear.  
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● Moment Magnification effects produced by the fibre-based model were compared 

to those produced by the CSA S304-14, TMS 402-16 . In all the cases examined, 

the standards overestimate the second-order effects. CSA S304-14 was the most 

conservative alternative producing amplification factors up to 11 times higher 

than the numerical evaluation and up to 6 times higher than the TMS 402-16. 

● The percentage of error in the moment amplifications are highly influenced by the 

increment of the axial loading in both standards. However, this effect is more 

pronounced in Canadian designs, as the cracked moment of inertia expression 

assumes no enhancement of the flexural rigidity due to this parameter. 

● Due to the nature of the MM method, the percentage of error increases 

exponentially the closer the acting axial load is to the critical buckling load. 

● Increasing the compressive strength of the masonry and the reinforcement ratio 

proved to decrease the percentage of error related to the moment amplification 

effects calculator. A variation of 10 MPa could reduce the amplification error up 

to 15%. Doubling the reinforcement ratio proved to decrease the error by up to 

50%. 

● A range of acceptable results is presented in table form. This range considers the 

interaction of the independent parameters studied. A threshold value of an 

acceptable error of 30% is used to develop the tables.  

● Three new equations to calculate the effective stiffness under the conditions 

evaluated are proposed. All the models developed in this study vastly 

outperformed the existing equations.  

● The MM method has proven to be an effective method to estimate the second-

order effects for RMWS with pinned supports whenever an accurate flexural 

stiffness is used to calculate the 𝑃𝑐𝑟 
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    6.  CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the steps to complete each proposed objective, describes the 

conclusion from this study, and establishes recommendations for future research projects.  

6.1 Summary 

The objectives of this study were achieved through the following process: 

1. Compare the design provisions for out-of-plane walls, recommended by the CSA S304-

14 and TMS 402-16 : 

● The provisions related to the flexural capacity and axial capacity of out-of-plane 

reinforced masonry walls were theoretically compared, and the key differences 

were identified. 

● The flexural and axial capacity as per the CSA S304-14 and the TMS 402-16  

were compared using P-M interaction curves.  Multiple parameters were varied, 

and their influences were assessed.  

2. Compare the design provisions for out-of-plane walls, recommended by the CSA S304-

14  and TMS 402-16 : 

● The provisions related to the second-order effect of out-of-plane reinforced 

masonry walls were theoretically compared, and the key differences were 

identified. 

● The methods for calculating the cracked moment of inertia (𝐼𝑐𝑟) and the effective 

stiffness (𝐸𝐼𝑒𝑓𝑓) were compared through parametric analysis.   

3. Evaluate the effectiveness of the provisions related to the second-order effects using a 

finite element model: 

● A fibre-based model for fully and partially grouted reinforced masonry walls was 

developed using OpenSEES. The numerical model accounts for material 
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nonlinearity with spread plasticity and geometrical nonlinearity through a 

corotational transformation available in the OpenSEES library.  

● The numerical model was validated using previous experimental programs 

developed by other researchers (SEASC 1982, Mohsin 2005). 

● A total of 1535 simulations of fully grouted and 403 of partially grouted RMWS 

subjected to out-of-plane bending moment and concentric axial loading were held.  

In each simulation, parameters such as axial loading, height, reinforcement ratio, 

and masonry compressive strength were varied.  Any result that encountered 

convergence issues before the ultimate load was discarded.  The effect of 

independent parameters on the second-order effects was investigated. 

● From the data set created, the ratio of the primary moment (moment due to lateral 

loading) over the total bending moment (including second-order moments) at 

ultimate load was calculated.  The same ratio was computed using the TMS 402-

16  and the CSA S304-14.  The moment amplification effects were compared 

against the current standard procedure. 

4. Develop equations to estimate the out-of-plane stiffness of reinforced masonry walls 

using regression analysis. 

● An analytical effective stiffness was calculated using the strain readings based on 

linear approximations from Euler-Bernoulli beam theory.  

● Using the data set of the analytical effective stiffness, a multilinear regression 

analysis was held using the SKlearn library available in the Python computer 

language.  

● Three equations were proposed to calculate the flexural rigidity of RMWs. 

● The accuracy and precision of the proposed models were compared against the 

existing equation using performance plots and indicators.  

6.2 Conclusions 

Conclusions drawn from the direct comparison of the design provisions and the numerical 

simulations of loadbearing reinforced masonry walls are as follow: 
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Chapter 3: 

● Major differences have been identified between the two North American 

standards. Overall, the CSA S304-14 produces more conservative results 

regarding axial and flexural capacity. 

● Parametric studies of P-M interaction curves demonstrated significant differences 

in the compression-controlled region, while the tension-controlled region was the 

least affected.  TMS 402-16  capacity was about 5% greater in this region.  

● One of the major discrepancies between the standards is the introduction of 

strength reduction factors (∅𝑚 and ∅𝑠) by CSA S304-14 , while TMS 402-16  uses 

behaviour-based reduction factors.  The Canadians P-M interaction curves are 

highly affected by these factors, especially in compression-controlled regions.  

Parametric studies show that neglecting the ∅ factors in both standards results in 

relatively similar P-M interaction curves.  The difference in the tension-controlled 

zone is negligible, while TMS 402-16 P-M capacity in the compression-zone is 

still 15% higher than the Canadian. 

● The effective compressive width provision from CSA S304-14  is triggered at a 

lower rebar separation than the TMS 402-16.  For a commonly used nominal 

block thickness of 200 mm, the compression width will be reduced at 800 mm 

rebar spacing according to CSA S304-14.  By contrast, the TMS 402-16  provision 

would not be triggered until 1200 mm of rebar separation.  Additionally, the 

Canadian limitation is more strict.  Canada uses a maximum of 4 times the block 

thickness, while The United States uses a maximum of 6 times.  

● Masonry compressive strength values prescribed in TMS 402-16  are significantly 

higher than those specified in CSA S304-14.  Parametric analysis showed that 

under compression controlled regions, important dissimilarities should be 

expected (with TMS 402-16 having higher P-M resistances).  However, under 

tension controlled regions, this discrepancy has a minor effect.  

● The maximum reinforcement provisions related to ductility requirements in both 

standards are very strict. Although in theory, TMS 402-16 offers a more 
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conservative solution (1.5𝜀𝑦 vs 𝜀𝑦), due to the reduction factor mandated by the 

CSA S304-14 , the yielding of the rebar is generally achieved at lower axial forces.  

Also, this limit is only mandated by the CSA S304-14 for a height-to-thickness 

ratio greater than 30, while TMS 402-16 requires satisfying this provision under 

any circumstance.  

● Variation of the wall height reduces the axial capacity of the RMWs according to 

the TMS 402-16.  The variation of this parameter does not affect the CSA S304-

14   P-M curves for elements with slenderness ratio lower than 30.  For slender 

structures (i.e. h/t = 30), both committees introduce new axial limits based on the 

gross axial capacity.  TMS 402-16 offers a stricter limit for these conditions (5% 

vs. 10% of the gross axial capacity). 

Chapter 4: 

● The moment magnifier methods proposed by each standard are relatively similar.  

CSA S304-14    introduces a 𝐶𝑚 factor to relate moment diagrams to an equivalent 

moment distribution.  However, in most cases (e.g. 
𝑀1

𝑀2
 = 1), this factor is considered 

to be 1. The differences in the second-order effects provisions are related to the 

calculation of the effective stiffness.  

● The CSA S304-14 relies on an equation with an upper and lower bound limit to 

calculate the effective stiffness. The TMS 402-16 committee proposes an 

expression for uncracked walls and another for cracked structures.  One of the 

major differences is the inclusion of the axial loading in the TMS 402-16 

formulation, whereas the expression used in Canada typically does not consider 

its effects directly.  A gradual increment of the axial loading leads to an 

enhancement of the flexural stiffness if the TMS 402-16 equation is used.  

However, the CSA S304-14  expression would usually be unaffected.  

● A major difference in the flexural stiffness calculation is the inclusion of the 

rigidity coefficient by the CSA S304-14.  This coefficient mandates affecting the 

stiffness by a reduction factor ∅𝑒 = 0.75 and includes the effect of additional 

deformation due to sustained load over a period of time, using a creep factor (𝛽𝑑).  
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Parametric studies have shown a reduction in the flexural stiffness by up to 60% 

due to the (𝛽𝑑) factor.  The American committee considers it unnecessary to 

include any reduction factor and neglects the effect of creep in masonry walls.  

● Variation of the reinforcement ratio enhanced the flexural rigidity of both 

standards by a similar margin.  Doubling the reinforcement ratio proved to 

increase the stiffness of the wall by approximately 60%. 

● The equations proposed in TMS 402-16  are only applicable for cases in which 

the neutral axis lies within the faceshell of the block.  Parametric analysis showed 

that under a compressive strength of 15 to 25 MPa, the equations would only be 

applicable for reinforcement ratios lower than 1.5%. 

● Variation of the compressive strength of the masonry has a minor effect on the 

flexural rigidity, according to both committees.  Increasing the compressive 

strength from 10 MPa to 25 MPa proved to enhance the effective stiffness by 25%. 

Chapter 5: 

● The second-order effects are highly influenced by the axial loading.  Increasing 

the axial load has proven to enhance the flexural stiffness of the cross-section (EI), 

but it decreases the global stiffness (k).  Thus, the crushing strain of the masonry 

(0.003) is achieved at ultimate load for walls subjected to low axial forces.  A 

higher compressive load amplifies second-order moment; consequently, the 

ultimate load is achieved before the crushing strain of the masonry.  Therefore, 

less strain is developed in the rebars, and for some circumstances, the yield 

strength is never reached. 

● The critical buckling load was not exceeded in any of the simulations held in this 

analysis. However, high axial forces led to instability conditions where a slight 

lateral pressure produced a sudden failure in many circumstances (e.g., Axial load 

= 80 kN/m).  

● Structures with higher reinforcement ratios are less susceptible to second-order 

effects, but the ductility is sacrificed. For reinforcement ratios greater than 1.8%, 

the ultimate load was reached before yielding of the rebar appeared.  
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● The development of yielding strain in the rebar affects the effective stiffness 

considerably.  The more yield strain developed at ultimate load, the higher the 

degradation of the effective stiffness.  Increasing the compressive strength (𝑓𝑚
′ ) 

increases the structure’s ductility, and the yield strain could be achieved with 

higher axial forces before the ultimate load is reached.  Nevertheless, higher 𝑓𝑚
′  

could lead to stiffer structures if the ultimate load is reached before the yielding 

of the rebar appears.  

● Comparison of the moment amplification factors from the numerical analysis to 

those from the CSA S304-14 demonstrated that the current provisions for 

estimating second-order effects are vastly conservative.  Even for 50 kN/m of 

axial loading and 
ℎ

𝑡
= 20, the amplification factors double those produced by the 

fibre-based model. For a higher axial loading and slenderness ratio, the percentage 

of error exceeded 800%. After a slenderness ratio of 40, axial loading higher than 

50 kN/m exceeded the 𝑃𝑐𝑟 calculated using the CSA S304-14 equation. 

Consequently, the amplification factors could not be calculated for cases where 

the FE model did not exhibit instability effects.  

●  The reduction factor ∅𝑒  mandated by CSA S304-14 was found unnecessary, as, 

in most of the circumstances, the second-order effects were highly 

underestimated.  

● Second-order effects calculated following TMS 402-16 provisions showed an 

acceptable percentage of error up to a slenderness ratio of 30. For higher 
ℎ

𝑡
, the 

percentage of error grew gradually, and vastly conservative amplifications are 

expected.  For reinforcement ratios greater than 1.8%, the TMS 402-16 equations 

were not applicable to computing amplification factors.  Only in a few cases was 

the 𝑃𝑐𝑟 exceeded before the numerical model demonstrated pronounced instability 

effects.  

● The percentage of error related to the calculation of the moment amplification 

factors grew exponentially as the axial loading was increased.  This effect seems 

to be more pronounced for factors calculated using CSA S304-14, as the standard 
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does not include the effect of the axial loading in the cracked moment of inertia 

calculation.  

● Increasing the compressive strength and the reinforcement ratio proved to 

decrease the percentage of error in the moment amplification calculations.  The 

rate of decrement was similar in both standards. 

● From the three regression analyses presented in this study, the author identifies 

MRL2 as the most optimal solution. MLR1 is a simple equation but the least 

accurate within the group.  PLR1 is the most precise and accurate but the most 

complicated. MRL2 has the best combination of precision, accuracy, and 

simplicity. 

● The proposed MLR2 equation vastly outperformed the existing equations for 

calculating the effective stiffness based on the performance indicators calculated.  

However, the expression proved to be unconservative in some cases, and a 

reliability analysis is recommended before implementing it in future standards.  

● The moment magnifier method has proven to be a viable method to estimate the 

second-order effects for RMWs subjected to concentric axial loading and out-of-

plane bending under pinned-pinned condition, when a more accurate alternative 

for computing the flexural stiffness was used (MLR2) 

6.3 Recommendations 

The following recommendations are suggested for future research projects.  

● The maximum crushing strain recommended by the TMS 402-16  is 0.0025, while 

the CSA S304-14 recommends 0.003.  Future research should identify an ideal 

strain limit. Both standards could benefit from an increase in the maximum 

allowed strain.  

● Future research program should revise the strength reduction factor ∅𝑚 and ∅𝑠 

proposed by the CSA S304-14.  Canadian designers could benefit from using a 

single behaviour-based factor as recommended by TMS 402-16  

● New limitations for the compressive width limits, backed by an experimental 

program, could be proposed. The CSA S304-14 alternative is the most 
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conservative. However, even the limit proposed by the TMS 402-16 could be 

extended.  

● An intensive research program, either experimental or analytical, should revise 

the maximum reinforcement limit provisions for walls with a slenderness ratio 

equal or greater than 30.  Parametric studies proved that this limit could be applied 

for higher slenderness ratios.  Also, a similar program could explore the creep 

effect, which is included in the Canadian standard but neglected in the TMS 402-

16.  

● Second-order effects could be calculated using a more refined procedure based on 

the effective stiffness to quantify the percentage of error more accurately.  

● Future research should focus on creating a more complete data set of numerical 

evaluations.  A bigger data set would not only be beneficial for understanding the 

flexural behaviour of RMWs under a wider range of parameters, but it would also 

provide more data points for further regression analyses. The following 

recommendations to improve the data set are listed: 

a. Include simulations of partially grouted specimens and cross-sections with 

different moments of inertia. 

b. Evaluate eccentric axial loading.  The minimum eccentricity to consider could 

be the accidental eccentricity (0.1t) recommended by the CSA S304-14. 

c. Include the effect of the creep in the finite element model. 

d. Explore the behaviour of walls with a lower reinforcement ratio for which the 

ductility effect would be more pronounced.  

e. Include a wider range of axial loading to understand the behaviour of 

reinforced masonry walls under higher compressive forces. 

f. Modify the boundary conditions and include base rigidity as done by previous 

researchers (Mohsin 2003 and Clayton 2020).    
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APPENDIX A: MOMENT MAGNIFICATION FACTORS CALCULATED 

USING MLR2 

 

Figure A.1 – M1/Mt vs Axial Load. Fully grouted ρ=0.52%  
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Figure A.2 – M1/Mt vs Axial Load. Fully grouted ρ=1.05%  
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Figure A.3 – M1/Mt vs Axial Load. Fully grouted ρ=1.57%  
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Figure A.4 – M1/Mt vs Axial Load. Fully grouted ρ=2.19%  
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Figure A.554 – M1/Mt vs Axial Load. Fully grouted ρ=2.63%. 


